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 Often the needs of an organism exceed the number of genes in the 

genome. Thus, modification of the genes, themselves, or of the gene products is 

necessary. This becomes particularly important in cells of the immune system, 

which have to combat a virtually infinite array of foreign pathogens.  B-

lymphocytes, the mediators of humoral immunity, have developed extensive 

mechanisms of gene diversification collectively known as antibody diversification. 

Antibody diversification, a set of processes necessary for an organism to mount a 

specific and robust immune response, relies on Activation Induced Cytidine 

Deaminase (AID) to initiate two of such processes: Somatic Hypermutation 

(SHM) and Class Switch Recombination (CSR). AID-dependent deamination of 

cytidine bases within the variable region (SHM) and switch region (CSR) of the 

immunoglobulin locus (Ig) results in the modification of the antigen binding 

domain and diversity within effector function of the antibody, respectively. 

Though the activity of AID is known, the regulation of AID during the different 

stages of antibody diversification is less well understood. This question has been 

particularly challenging to address because of the difficulty of working with AID, 

which becomes insoluble when expressed in non B-cells.  

 This thesis presents the development of a screen, which searches for 

interacting partners for poorly soluble proteins. This screen relies on the 



insolubility of the protein of interest and the ability of interacting proteins to 

induce solubilization via binding and masking of exposed hydrophobic domains. 

 After validation of this screen using representative soluble and insoluble 

proteins, it was applied to AID and thirty putative AID binding partners were 

identified.  A handful of these proteins were uncovered in prior interaction 

screens, thus underscoring the validity of this new screening approach.  

In addition, this thesis presents a comprehensive analysis, utilizing both in 

vitro and in vivo approaches, of one of the putative AID cofactors discovered in 

the screen, RING Finger Protein 126 (RNF126). In vitro studies revealed that 

RNF126 is a bona fide AID binding partner and, in addition, acts as an E3 

ubiquitin ligase, modifying AID with the addition of a single ubiquitin moiety. 

Further, a conditional knockout model of RNF126 was generated and used to 

determine that RNF126 plays a role in vivo in fine-tuning AID activity during SHM 

and CSR.  

The findings presented here demonstrate the utility of a novel screening 

technique to search for interacting partners for insoluble proteins and, through its 

use, expands the list of putative AID cofactors.  In addition, through a thorough 

analysis of a single AID binding partner, this thesis puts forth a novel mode of 

regulation of the potent mutating enzyme, paving the way for future research to 

uncover the role of mono-ubiquitinated AID during SHM and/or CSR.  
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CHAPTER 1: INTRODUCTION 

The blueprint of an organism is its genome; that is to say that the genome is 

the most fundamental code necessary for life. However, much of the diversity of 

life and the diversity of processes within a cell necessitate modifications to this 

basic code. Thus the “Central Dogma” that one gene produces one RNA, which 

produces one protein, has proven to be too simplistic. Mechanisms of 

diversification have been described at each level of the Central Dogma. Protein 

structure and function is altered with the use of post-translational modifications 

(Prabakaran et al., 2012); the composition of, and thus the information contained 

within, RNA is modified through processes such as alternative splicing and RNA-

editing (Hamilton et al., 2010); and lastly, modifications to the DNA, itself, have 

been instrumental in generating diversity on a cell-to-cell basis. While 

manipulation, or mutation, of the genome can be detrimental to the organism by 

promoting genomic instability, complete fidelity in this regard would abrogate 

evolution at the organismal and cellular level. Thus, modification at the DNA level 

must be tightly regulated to generate a balance between diversity (or genomic 

instability) and genomic stability. 

One of the most fundamental questions in biology is that of how an organism, 

or more simply, a cell, is able to respond to a virtually infinite and unknown array 

of environmental factors given only a limited genome to work with. In many 

cases, organisms solve this problem by hard-coding many possible surface-

bound receptor proteins into the genome in gene families. In these instances, 
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epigenetic mechanisms are used to regulate mono-allelic expression to ensure 

that each cell only expresses one of several possible receptors. Complexity in the 

organism’s response, then, is derived from the presence of a population of cells, 

each expressing a unique receptor. This sort of biological approach can be seen 

in receptors of sensory systems, such as olfactory receptors for smell (Serizawa 

et al., 2004) and rhodopsin expression for sight (Johnston and Desplan, 2008; 

2010).  

In instances where much greater diversity is demanded by selective 

pressure, additional possibilities that go beyond the scope of the genome are 

necessary. This idea is particularly prevalent in the immune systems of higher 

vertebrates, where organisms must combat an unknown and virtually unlimited 

set of external pathogens. Thus, this system must be anticipatory, that is, it must 

be prepared to mount a response even before this information is known. Despite 

the human genome containing approximately 20,000 genes, the two antigen-

recognition cell types of the vertebrate adaptive immune system, B and T 

Lymphocytes, are able to generate greater than 107 different receptors against 

potential pathogens (Market and Papavasiliou, 2003). B Lymphocytes, in 

particular, make use of additional diversification mechanisms to generate a 

potentially limitless number of receptors, increasing the host’s chance of survival. 

An exploration of pathogen-defense mechanisms at different branches of 

evolution reveals a progression from hard-coded immune receptors to receptors 

with flexibility in their specificity due to various mechanisms of genomic 

2



modification. 

1.1 The Evolution of Adaptive Immunity 

At the heart of immunity is an organism’s ability to differentiate between self 

and non-self. Organisms of all taxonomical clades have developed mechanisms 

to do just this, but arguably the most complex systems developed can be found 

within the adaptive immune systems of vertebrates. The journey to this sort of 

complexity began with the onset of Innate Immunity, a system alive and well in 

complex vertebrates.  

During evolution, innate immune defenses emerged prior to adaptive 

immunity and innate immune receptors can be found throughout the animal 

kingdom and in plants (Flajnik and Kasahara, 2010; Medzhitov and Janeway, 

2000). Innate immune receptors are hard-coded in the genome, such that they 

are passed on to subsequent generations. Because of this, only a limited number 

of receptors can exist, so as not to overwhelm the genome. Thus, rather than 

encoding receptors that are specific for unique pathogens, innate immune 

receptors have evolved to recognize patterns, or motifs, that are common to a 

number of invading pathogens. For this reason, innate immune receptors are 

often referred to as Pattern Recognition Receptors (PRRs). Common pathogen-

associated motifs (PAMs) detected by these receptors include lipopolysaccharide 

(LPS), peptidoglycan, bacterial DNA, and viral dsRNA (Medzhitov and Janeway, 

2000). Despite being limited in number, because all innate immune cells express 

3



the same repertoire of PRRs, the innate immune response is both rapid and 

robust. 

Because of the constant challenge posed by new types of pathogens, as well 

as the ability of a single pathogen to evolve to evade immune defenses, even 

organisms that contain only innate immune systems are under selective pressure 

to diversify their receptors. Similar to how sensory receptors are encoded as 

large gene families, many organisms have expanded and diversified gene 

families encoding innate immune receptors, thus allowing for the expression of 

receptors of varying specificities (Litman et al., 2005b). This is exemplified in the 

sea urchin, which contains over 200 Toll-Like Receptors (TLRs) as compared to 

between 1 and 20 in other animals (Buckley et al., 2008b; Roach et al., 2005). 

Additional mechanisms observed include: combinatorial use of encoded 

receptors and gene recombination (Buckley et al., 2008a), inclusion of nucleotide 

polymorphisms (Lazzaro et al., 2004) and/or alternative splicing of immune 

receptor genes and gene families (Danilova, 2012). For example, the drosophila 

immune cells have been shown to express more than 18,000 isoforms of the 

immunoglobulin-structured receptor, Dscam, through alternative splicing of 

variable exons with constant exons (Watson et al., 2005). As an interesting 

aside, even single-celled organisms such as bacteria have developed fairly 

sophisticated forms of defense. Bacteria have developed defense mechanisms 

that are both general, much like innate receptors, which involves the digestion of 

foreign DNA by the recognition of palindromic sequences, as well as a more 

4



specific defense mechanism known as CRISPR, which involves RNAi-like 

machinery (Fineran and Charpentier, 2012).  

Importantly, evolution of innate immune responses occurs at the level of the 

organism and on a Darwinian evolution time-scale, improving defense systems 

from one generation to the next. In contrast, evolution and adaptation within the 

adaptive immune system occurs at the cellular level, within the lifetime of a single 

organism. Although it was initially thought that conventional adaptive immunity, 

consisting of B and T lymphocytes, appeared only in jawed vertebrates in a sort 

of “big bang” mechanism, evidence now exists to suggest that even jawless 

vertebrates have evolved an adaptive immune system that displays similar 

principles of design (Boehm, 2011; Danilova, 2012; Flajnik and Kasahara, 2010; 

Litman et al., 2005a; 2010). The occurrence of convergent evolution within these 

two branches of vertebrates suggests that it is more likely that the evolution of 

conventional adaptive immunity occurred incrementally, with the stepwise 

acquisition of additional diversifying mechanisms. The main commonalities of all 

vertebrate adaptive immune systems are the presence of a two-cell system and 

the expression of receptors, which have been built from gene segments to 

generate diversity. Conventional adaptive immunity in jawed vertebrates relies on 

two cell types: B lymphocytes (B cells) and T lymphocytes (T cells). B cells, 

which act in the humoral immune response, recognize native antigen, and T 

cells, which participate in cell-mediated immunity, recognize antigen in the 

context of an antigen presenting cell (APC). Similarly, jawless vertebrates (e.g. 
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hagfish and lamprey) have been found to possess two distinct lymphocyte-like 

lineages, which function in humoral and cellular immunity, respectively. This fact 

suggests that either an extinct common vertebrate ancestor also possessed 

lymphocyte-like cells, which provided the foundation for the evolution of both 

forms of adaptive immunity, or that a lymphocyte-precursor cell existed in 

invertebrates (Boehm, 2011). Notably, other necessary features of conventional 

adaptive immunity can be found in extant invertebrate species. Most interestingly, 

the enzymes RAG1/2, which are essential for jawed-vertebrate antibody 

diversification, were found in the genome of the sea urchin (Fugmann et al., 

2006). 

 The receptors of jawless and jawed adaptive immune systems are 

structurally unique. Jawless vertebrates express receptors called Variable 

Lymphocyte Receptors (VLRs), which are structurally similar to PRRs of the 

innate immune system and contain leucine-rich modules. In contrast, B cells and 

T cells produce receptors known as the B-cell Receptor (BCR, or antibody) and 

the T-cell Receptor (TCR); the structure of both receptors consist of characteristic 

immunoglobulin folds. Despite these differences, the receptors derived from both 

branches of vertebrates can be highly diversified through the recombination of 

gene segments. In both cases, it is believed that multiple and diverse gene 

segments evolved from several duplication events paired with transposition 

(Boehm, 2011). The mechanistic details of how these gene segments are 

recombined are slightly different between jawless and jawed vertebrates, 

6



however both likely evolved from the same selective pressure. Jawless 

vertebrates rely on gene conversion recombination events, placing one of many 

leucine-rich modules into an incomplete VLR locus. Interestingly, this gene 

conversion event occurs alongside expression of putative cytosine deaminases, 

which show homology to the vertebrate antibody diversification enzyme, 

Activation Induced Cytidine Deaminase (AID) (Rogozin et al., 2007).  

Most jawed-vertebrates recombine gene segments using recombination 

enzymes likely derived from transposon insertion, in a process known as V(D)J 

recombination. However, in addition to V(D)J recombination, birds utilize cytidine-

deaminase-dependent gene conversion events to further diversify their 

antibodies, reminiscent of the system that evolved in jawless vertebrates. Again, 

these similarities suggest that complex adaptive immune systems have 

developed by co-opting enzymes and mechanisms that existed in ancient 

organisms (Litman et al., 2010). An overview of immunity throughout evolution is 

presented in Figure 1.1. 

 Within the branch of jawed vertebrates it is clear that further mechanisms 

of diversification evolved, as represented by the fact that B cells have developed 

mechanisms of secondary diversification that do not exist in T cells.  This is likely 

due to the fact that extensive diversification in T cells, which must recognize 

antigen in the context of self, may be deleterious due to the loss of recognition of 

antigen-presenting molecules. B cells, on the other hand, recognize antigen in its 
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native context and thus have much more flexibility in the extent of diversification 

allowed.   

The ability of B cells to diversify their receptors relies on the adoption of 

mechanisms typically associated with genomic instability, such as double-strand 

break formation and mutation. While genomic instability is necessary for 

evolution, when conducted at the level of a single living organism, introduces the 

possibility of diseases, such as cancer and autoimmunity.  Very exquisitely, B 

cells have been able to harness the power of genomic instability at the 

immunoglobulin locus, while still protecting genomic stability elsewhere. The 

mechanisms involved in this complex balancing act are discussed, with a focus 

on secondary diversification. 

1.2 B Lymphocytes and Antibodies 

B cells are the mediators of humoral immunity because of their ability to 

produce both membrane-bound and secreted antigen receptors, known as 

antibodies. B cell development in mammals begins in the fetal liver and continues 

in the bone marrow, as a result of differentiation from precursor hematopoietic 

stem cells. During this development process, the first stage of antibody 

diversification occurs, producing a mature B cell with a single, non-autoreactive, 

surface-bound B cell receptor. Once this occurs, the B cell leaves the bone 

marrow and enters the periphery where it takes up residence in secondary 

lymphoid organs, such as the spleen and other lymph nodes. It is here that the B 

cell encounters foreign antigen and is stimulated to undergo secondary 
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diversification and selected for enhanced affinity for antigen. A schematic of B 

cell development is presented in Figure 1.2. 

Antibodies, themselves, are a complex of approximately 150 kDa, 

composed of two heavy chain proteins and two light chain proteins. Each of 

these proteins is first assembled from gene segments contained within the heavy 

chain immunoglobulin locus (IgH) and either the κ or λ light chain immunoglobulin 

locus (Igλ or Igκ), respectively. The N-terminus of both the heavy and light chain 

proteins constitutes the antigen-binding site of the antibody (Fab), the specificity 

of which can be altered through the variation of amino acid sequence in this 

region. This portion of the protein is derived from the variable region of the Ig 

genes. The C-terminus, on the other hand, constitutes the constant domain (Fc) 

of the antibody and plays no role in antigen-specificity. Rather, the constant 

domain of the heavy chain decides the isotype of the antibody, which determines 

the functionality of the antibody by dictating the immune response downstream of 

antibody-antigen complex formation. 

1.3 Antibody Diversification 

Over 50 years ago, at a time when the scope of the human genome was 

not yet known, scientists recognized that it was unlikely that the diversity of 

antibody generated was encoded in the genome. Most notably, F. MacFarlane 

Burnet, with no experimental evidence invoked a “randomization” process that 

would result in the alteration and variation of the coding of immunoglobulin 

molecules (Burnet, 1976). Prior to his proposal, the only biological precedent for 
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Figure 1.2. An Overview of B-Cell Development. B-Cells develop in the bone
marrow. pro-B cells express a pro-BCR composed of glycoprotein and surrogate
light chain. It is at this stage that VDJ recombination of the heavy chain locus 
occurs. The D and J gene segments are rearranged first, followed by the 
rearrangement of V to D. At the pre-B cell stage, the heavy chain is recombined 
and expressed as a surface bound IgM. This is complexed with a surrogate light
chain. At the pre-B cell stage, VJ rearrangement of the light chain locus occurs. 
Once V(D)J recombination has occurred on both heavy chain and light chain 
genes, a mature IgM BCR is expressed on an Immature B-cell. Alternative 
splicing of the heavy chain locus produces a mature B cell that expresses 
surface bound IgM and IgD. This mature B cell leaves the bone marrow and 
enters the periphery where it contacts foreign antigen. Binding of antigen to the 
mature BCR signals secondary diversification in the germinal centers, 
including Somatic Hypermutation and Class Switch Recombination. Igα and Igβ 
are transmembrane proteins that associate with the BCR and generate a signal
in response to antigen-BCR complex formation.

Bone Marrow Periphery
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such a process was Lederberg’s studies on mutation in phage adaptation 

(LEDERBERG, 1959). The first experimental evidence that such a process 

occurs was provided by Weigert and Cohn when they showed that immunization 

altered the amino acid sequence of immunoglobulin lambda light chains, 

introducing single amino-acid changes (Weigert et al., 1970). Half a decade later, 

following the advent of recombinant DNA technology, S. Tonegawa showed that, 

in addition to mutation, somatic gene rearrangement occurs to piece together the 

immunoglobulin gene from several, variable gene segments (Tonegawa, 1983). 

These two discoveries began the movement to provide mechanistic insight to 

Burnet’s original hypothesis of randomization (Neuberger, 2008).  

 Today we have a far better understanding of the mechanisms involved in 

immunoglobulin diversification. Initial diversification occurs in an antigen-

independent fashion through the genomic rearrangement of one of several gene 

segments, termed variable (V), diversity (D) and joining (J), respectively. This 

process, known as V(D)J recombination, occurs in both B and T cells.  

Encounter of a B cell with antigen initiates secondary diversification 

reactions at the Immunoglobulin locus. These reactions, Somatic Hypermutation 

(SHM) and Class Switch Recombination (CSR), provide greater variability within 

the antigen-binding domain and alter the effector function of the antibody by 

changing domains within the C-terminus of the protein complex. Each of the 

methods of diversification share many similarities, however there exist distinct 
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differences that account for their divergent outcomes.  An overview of the three 

steps of antibody diversification is presented in Figure 1.3. 

1.3.1 Primary Diversification—V(D)J Recombination 

Initial diversification occurs in an antigen-independent fashion through the 

genomic rearrangement of one of several V, D and J gene segments. Diversity is 

attained through the random selection of each gene segment as well as the 

variability that arises at the junctions upon DNA ligation and repair. The 

beginning steps toward working out the mechanism of V(D)J recombination 

began with the discovery of the two essential proteins, Recombinase Activating 

Gene 1 and 2 (RAG1 and RAG2). The discovery of these enzymes came from a 

series of well-planned, but also incredibly lucky, experiments conducted in the 

1980s in the lab of David Baltimore (Schatz and Baltimore, 2004). Using an 

artificial V(D)J recombination substrate, it was found that lymphocytes, but not 

fibroblasts, were able to induce recombination, suggesting the presence of a 

lymphocyte-specific master regulator (Schatz and Baltimore, 1988). Through 

transfection and expression of large tracts of genomic sequence in fibroblasts, 

they were able to rescue V(D)J recombination, leading to the discovery of RAG1 

(Schatz et al., 1989). However, it took many more years to discover RAG2, which 

is co-expressed with RAG1 and necessary for its function (Oettinger et al., 1990). 

 Since the discovery of the RAG proteins, many of the basic mechanistic 

details of V(D)J recombination have been worked out. The heavy chain 

immunoglobulin is composed of V, D and J gene segments, which must be 
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Figure 1.3 An Overview of Antibody Diversification. A) V(D)J Recombination 
is a deletional recombination event between one of many variable, diversity, and 
joining segments to create the variable region of the immunoglobulin gene. This 
is catalyzed by the RAG1/2 recombinase complex and occurs in an 
antigen-independent fashion. B) Somatic Hypermutation results in the
accumulation of point mutations in the recombined variable region. AID initiates 
this process through the deamination of cytidine to uridine, followed by removal 
of the uracil base by Uracil DNA Glycosylase (UNG) and repair by several Base 
Excision Repair (BER) and MisMatch Repair (MMR) enzymes. * denotes the 
mutated variable region. C) Class Switch Recombination results in the exchange 
of the default constant region, μ (IgM), for one of many downstream regions. AID
initiates this process through deamination of bases in the switch region 
(yellow circle) upstream of each constant region, resulting in the formation of 
double strand breaks and repair by non-homologous end joining 
pathways (NHEJ/A-EJ).
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recombined, while the light chain gene recombines only V and J segments.  

Humans have 65 possible V segments, 27 possible D segments, and 6 possible 

J segments which can be recombined to produce the heavy chain Ig gene 

(Market and Papavasiliou, 2003), accounting for much of the diversity in antibody 

produced. Each of these coding segments is flanked by the presence of very 

specific sequences known as recombination signal sequences (RSS), which 

guide recombination. RSS sequences are composed of a stretch of seven highly 

conserved, palindromic nucleotides (heptamer), and a stretch of nine conserved 

nucleotides (nonamer) separated by a stretch of either 12 or 23 nucleotides, 

referred to as 12RSSs and 23RSSs, respectively. The correct recombination of V 

to D (and not V to V or V to J), as well as D to J (and not D to D or J to J) is 

helped in part by the fact that 12RSS and 23RSS sequences can only recombine 

with one another and not themselves, otherwise referred to as the “12/23 rule.” V 

segments are flanked by only 23RSSs, D segments by only 12RSSs and J 

segments by only 23RSSs. Thus, this excludes the possibility of eliminating the D 

segment from the full IgH gene (Schatz and Swanson, 2011).  

 The mechanism of V(D)J recombination can be broken down into two 

main  components: (1) DNA break formation and (2) DNA Repair. The 12 and 

23RSSs are brought into close proximity by binding of the RAG proteins, which 

then induce DNA nicks within each of the RSS’s. A trans-esterification reaction 

between the strands of DNA occurs, resolving the nick by producing a hairpin at 

the coding end, and leaving the break on the signal sequence end blunt. The 
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signal sequences will be resolved into a circular piece of DNA (sj), while the 

hairpins between the coding segments are nicked, and the DNA breaks repaired 

utilizing proteins from the non-homologous end joining pathway (NHEJ). 

Additional nucleotides are added before break repair occurs by the non-

templated DNA polymerase, TdT, thus providing additional junctional diversity 

(reviewed in (Alt et al., 2013; Schatz and Swanson, 2011)). 

 Many more details of this reaction, ranging from epigenetic modifications 

of the locus (Matheson and Corcoran, 2012), the structure of the RAG1 protein 

interaction with DNA (Yin et al., 2009), the role RAG2 plays in the recognition of 

specific histone modifications (Matthews et al., 2007), as well as a number of 

other findings, have been elucidated. These mechanistic details go beyond the 

scope of this thesis, but many reviews can be referenced for up-to-date findings 

(Alt et al., 2013; Nishana and Raghavan, 2012; Schatz and Swanson, 2011).  

The importance of all of these findings in the context of this thesis, though, is in 

the recognition of (1) the adaptation of a transposon-like element in evolution to 

take advantage of genomic instability to produce antibody diversity, and (2) the 

complexity of the mechanisms developed in order to reign in this genomic 

instability and protect the genome from extensive damage. Similar themes will be 

seen in a discussion of the mechanistic details of secondary diversification in B 

cells. 
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1.3.2 Secondary Diversification – Somatic Hypermutation and Class-Switch 

Recombination 

Encounter of a mature B cell with antigen initiates secondary 

diversification reactions at the Ig loci, collectively referred to as the germinal 

center response. These reactions, Somatic Hypermutation (SHM) and Class 

Switch Recombination (CSR) share many basic mechanisms but function very 

differently with respect to antibody diversity.  SHM generates greater diversity 

within the V(D)J-rearranged antigen-binding domain of the antibody and CSR 

produces antibodies with the capacity to recruit several different types of 

downstream immune effectors, thus governing the type of immune response.  

SHM is coupled with a process of selection such that B cells with antibodies that 

gain affinity toward antigen are selected for survival and B cells with antibodies 

that have lost affinity toward antigen (or gained affinity for self-derived peptides) 

are selected for apoptosis. Thus, over time, a population of B cells with increased 

affinity for antigen is produced. This process is better known as Affinity 

Maturation. 

Because the processes of SHM and CSR seem to have exceedingly 

different outcomes—it was an astonishing development 10 years ago when AID 

was identified as a key player in both reactions. In fact, the cytidine deaminase, 

which enzymatically converts a cytidine base to a uridine (C to U) through a 

deamination reaction, is essential to initiate both processes.  The mechanism of 

this deamination reaction is depicted in Figure 1.4. 
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1.3.2.1 Somatic Hypermutation 

 During SHM, point mutations accumulate in the rearranged variable region 

of both the Ig heavy (IgH) and Ig light (Igλ or Igκ) genes. Because this region of 

the Ig gene makes up the antigen-binding domain of the protein complex, it is 

these mutations that dictate the change in affinity of the antibody for antigen. 

There are many characteristic patterns that can be described in terms of the 

location and types of mutations that occur during SHM. First, mutations begin 

approximately 50-100 nucleotides downstream of the IgVariable promoter region 

and extend another 1,000 – 2,000 nucleotides (Lebecque and Gearhart, 1990; 

Rada and Milstein, 2001). This suggests that the 5’ boundary of SHM is the 

promoter, inferring a connection between mutation and transcription of the locus. 

In fact, many groups have observed that mutation frequency is intimately linked 

with the level of transcription through the region (Longerich et al., 2005).  

Movement of the promoter in front of non-mutated regions induces mutation 

(Peters and Storb, 1996), deletion of the promoter drastically reduces mutation 

(Fukita et al., 1998), and regulation of transcriptional activity by use of the Tet 

operator results in mutation frequencies that are well-correlated with the level of 

transcription (Bachl et al., 2001).  

It is likely that the role of transcription during SHM is highly nuanced. On 

one level, transcription is necessary to open the DNA duplex, revealing a ssDNA 

substrate for AID deamination. However, more recent findings suggest that the 

RNA molecules, themselves, or processing of the RNA play an important role.  
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First, in addition to sense transcription, anti-sense transcription occurs through 

the variable coding exons (Perlot et al., 2008). The function of these anti-sense 

transcripts is still unknown. Further, the RNA Exosome, an RNA processing and 

degradation complex, has been shown to enhance AID deamination on both the 

template and non-template strands of DNA—a phenomenon seen in vivo 

(Milstein et al., 1998), but not in vitro (Basu et al., 2011). Whether the Exosome 

degrades the nascent sense transcript, revealing the template strand of DNA, or 

whether it is involved in the processing of other ncRNAs (either sense or 

antisense), remains to be seen. However, these findings emphasize the fact that 

the role of transcription during SHM likely goes beyond the initial unwinding of the 

locus. 

Despite the ability of AID to deaminate only base C, mutations can be 

found occurring at all four nucleotides. At C:G base pairs, transition mutations are 

predominant over transversion mutations, implicating direct replication over the 

mismatched U:G as a repair mechanism. C:G mutations occur in a strand non-

specific manner, whereas A:T mutations show a strand bias (Mayorov et al., 

2005a). And lastly, though this is not always the case, often deaminated cytidine 

bases are found in the context of the sequence WRCY, or its complement, 

RGYW (W = A/T, R = A/G, Y = C/T) (Rogozin and Kolchanov, 1992). These 

observed characteristics have been instrumental in elucidating the factors and 

mechanisms involved in the resolution of AID-mediated deamination events to 

produce point mutations at the variable region of the Ig locus. 
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 Two main repair pathways have been implicated in the SHM reaction: the 

Base Excision Repair pathway (BER) and the Mismatch Repair pathway (MMR). 

An overview of these pathways and their involvement in SHM is presented in 

Figure 1.5. While these pathways are normally used for faithful and error-free 

repair, they have been co-opted to introduce mutations through the recruitment of 

error-prone repair proteins.  

The BER pathway functions mainly at the deaminated C. Uracil 

Deglycosylase (UNG) recognizes the mismatched U:G basepair and excises the 

U to generate an abasic site (Li et al., 2012; Rada et al., 2002b). The 

endonuclease, APE1, and the Mre11-Rad50-Nbs1 (MRN) complex have been 

implicated in nicking the DNA to generate a single-strand break (SSB) (Larson et 

al., 2005; Masani et al., 2013; Yabuki et al., 2005). The formation of the SSB 

provides DNA polymerases access to the DNA. During error-free repair, the high 

fidelity polymerase, pol β, is recruited; however, during SHM, error-prone 

polymerases are recruited. The deoxycytidyl transferase, Rev1, which forms a 

complex with the DNA polymerase ζ, specifically incorporates cytidine bases 

opposite uridine bases or abasic sites. Rev1 has specifically been found to play a 

role in SHM, particularly in the generation of transversion mutations at the 

deaminated C base (Jansen et al., 2006; Simpson and Sale, 2003). A similar loss 

of C and G transversions is seen in mice, which lack the ability to ubiquitinate the 

polymerase processivity factor, PCNA. Mice that contain either a lysine-to-

arginine mutation at lysine 164 or that lack the E3 ubiquitin ligase, Rad18, which 
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Figure 1.5. Mechanisms of AID-mediated mutation during SHM. Initial AID 
deamination events are processed by various repair pathways to result in the 
accumulation of point mutations in the variable region of the Ig locus. Direct 
replication over a U:G mistmatch results in a transition mutation. The 
involvement of Base Excision Repair enzymes results in all possible mutations 
at the deaminated C. Uracil Deglycosylase (UNG) excises the mismatched U, 
resulting in an abasic site. The endonuclease, APE1, generates a SSB. 
The DNA-encircling processivity factor, PCNA, recruits the Rev1-containing 
error prone polymerase complex to generate mutations at the deaminated C. 
The involvement of Mismatch Repair enzymes results in the mutation of 
A:T base pairs in proximity to the deaminated C. Recognition of the mismatch by 
the Msh2/6 complex and resection of DNA by the exonuclease, Exo1, results in 
a ssDNA gap. This gap is filled in by the error prone polymerase, pol η, which is 
again recruited by PCNA. This results in all possible mutations at A:T basepairs. 
Mutations at C:G base pairs tend to be strand unbiased, suggesting that AID 
accesses both the non-template and template strands of DNA equally. 
However, mutations at the A:T base pairs are strand biased and show
greater mutation of A bases on the non-template strand. This is likely due to the 
lack of access of error prone repair proteins to the template strand. 
The star represents an abasic site.
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ubiquitinates PCNA, have altered SHM mutation patterns (Arakawa et al., 2006; 

Bachl et al., 2006; Langerak et al., 2009; Roa et al., 2008). Thus, ubiquitinated 

PCNA plays a role in dictating whether the BER repair pathway will be error-free 

or error-prone.  

In a parallel, non-competitive fashion, the MMR pathway serves the 

purpose of generating mutations at basepairs adjacent to the deaminated C. The 

complex of Msh2-Msh6 recognizes the U:G mismatch and, through a currently 

unknown mechanism, a SSB is generated (Krijger et al., 2009; Li et al., 2006; 

Martomo et al., 2004; Roa et al., 2010). During MMR, this SSB allows the 

exonuclease, ExoI, to enter the DNA and resect the DNA neighboring to the 

mismatched basepair (Bardwell et al., 2004), creating a single-stranded gap. Just 

as was seen for the BER mechanism, either error-free or error-prone 

polymerases can be recruited to fill in the gap. Again, ubiquitinated PCNA 

recruits the error-prone polymerase, pol η, which erroneously polymerizes 

frequently opposite of templated T and A bases (Delbos et al., 2005; Zeng et al., 

2001; 2004). Thus, this accounts for the formation of mutations at A:T basepairs 

that are not directly the result of AID deamination. In fact, mice that lack both 

Msh2 and pol η produce a mutation pattern that completely lacks mutations at 

A:T basepairs (Delbos et al., 2007).  

The combined effort of (1) direct replication over the U:G mismatch, (2) the 

error-prone BER pathway and (3) the error-prone MMR pathway can account for 

all mutations observed during SHM.  However, many mechanistic details, such 
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as how error-prone repair is targeted and restricted to the Ig locus, remain 

unknown. In fact, experiments using ung-/- mice suggest that there is a direct 

competition between error-free and error-prone repair during SHM. The mutation 

pattern seen in ung-/- mice, which cannot excise the mismatched U base, shows 

a loss of transversion mutations and an increase in transition mutations at C:G 

basepairs. This suggests that, in the absence of UNG, transition mutations are 

generated through replication over the mismatched base pair; however, when 

UNG is present and the U excised, error-free BER occurs to faithfully correct at 

least some of the deaminated C bases (Rada et al., 2002b). Another perplexing 

observation is that mutations at C:G basepairs are strand-unbiased whereas 

mutations at A:T basepairs are strand biased. This suggests that, while AID-

mediated deamination is targeted to both strands, the subsequent repair 

processes are not. In fact, both pol η and the Msh2-Msh6 complex appear to be 

biased toward the non-template strand, thus accounting for the bias at A:T 

basepairs, but not C:G basepairs (Mayorov et al., 2005a; Unniraman and Schatz, 

2007). How this specific targeting occurs is unclear. It is possible that the non-

transcribed strand, which is not associated with the nascent pre-mRNA, is more 

exposed to these protein complexes. However other mechanisms, such as the 

involvement of the RNA Exosome, may be at play here. 

 Just as was seen during the discussion of V(D)J recombination, 

mechanisms that promote genomic instability are co-opted to generate diversity 

at the Ig loci. During SHM, the introduction of point mutations occurs at the 
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variable regions of the IgH and IgL genes. Introduction of mutations outside of 

the Ig loci, though, would be detrimental to the organism. It has been shown in 

mice deficient in UNG and Msh2 that AID-mediated mutation can be detected 

outside of the Ig locus, however not throughout the entire genome. Thus, it 

appears that at least two levels of regulation occur—one that targets AID to a 

subset of the genome, and the second, which targets error-free versus error-

prone repair enzymes (Liu et al., 2008). Thus, a complex set of mechanisms, 

which are now only being revealed, has evolved to allow genomic instability to 

exist along side genomic stability within a single cell—quite an amazing 

accomplishment. 

1.3.2.2 Class Switch Recombination 

Class-Switch Recombination (CSR) is a very unique form of antibody 

diversification because rather than altering the antigen-binding capabilities of the 

receptor, it alters the function of the receptor within the immune response. The 

IgM isotype is the most ancient form of antibody and defines the B cell lineage. 

Its presence emerged in evolution beginning in cartilaginous fish and can be 

found in all jawed vertebrates. While primitive vertebrates appear to have a small 

variety of other isotypes of antibodies, it was not until the emergence of 

amphibians that CSR evolved, allowing single cells to switch between different 

isotypes and thus different effector functions as needed (Flajnik and Kasahara, 

2010). Besides IgM and IgD (which is a spliced isoform of the antibody), 

mammals have three main isotypes of antibody (with additional subsets): IgG, 
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which is involved in high affinity memory responses and makes up the bulk of the 

antibody response to pathogens, IgE, which functions mainly in the inflammatory 

and allergy responses, and IgA, which is found at mucosal surfaces (Flajnik and 

Kasahara, 2010). The C-terminal region of the Ig heavy chain gene and protein 

defines each of these isotypes. 

Just like SHM, CSR is initiated by, and absolutely dependent upon, AID-

mediated deamination of deoxycytidine residues in the Ig locus. However, rather 

than occurring in the variable region, deamination occurs in highly repetitive 

“switch” regions (S) upstream of each of the constant region gene segments 

(Figure 1.3).  For example, Sµ lies upstream of Cµ, which encodes the constant 

region for IgM and Sγ1 lies upstream of Cγ1, which encodes the constant region 

for IgG1. S regions range in size from 1-12 kilobases and contain a highly G-rich 

non-template strand sequence (Chaudhuri and Alt, 2004; Dunnick et al., 1993). 

Though mutations do accumulate within the S regions, the purpose of AID-

mediated deamination during CSR is to generate DSBs within two switch regions 

(Sµ and a downstream S region), which can then be recombined. This functions 

to delete the IgM constant region and replace it with a downstream constant 

region of a different isotype. The excised DNA is ligated to form a circular piece 

of DNA (Iwasato et al., 1990) (Figure 1.3). Thus, while the initiating step is the 

same between SHM and CSR, the outcomes are quite different. This difference is 

largely due to how the cell resolves the mutations generated.  
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Similar to SHM, CSR requires transcription through the locus. Specifically, 

transcription initiates at intervening (I) exons upstream of each of the switch 

regions and continues through each of the constant region exons producing a 

non-coding, “sterile”, transcript known as the germline transcript (GLT). 

Transcription occurs constitutively at the µ locus and in a stimulus- and switch-

dependent fashion at each of the other constant loci (Lee et al., 2001; Stavnezer, 

1996; Stavnezer-Nordgren and Sirlin, 1986). Transcription from I promoters is 

regulated by the distal 3’IgH regulatory region (RR), as deletions in this region 

result in decreased transcription and defective CSR (Pinaud et al., 2001; 2011; 

Vincent-Fabert et al., 2010).  Again, transcription has been proposed to open the 

locus, revealing a ssDNA substrate for AID activity. Because of the highly 

repetitive, C/G rich sequence of S regions, transcription through this region is 

capable of producing stable RNA:DNA hybrids known as R-loops, exposing the 

G-rich non-template strand for AID activity (Chaudhuri et al., 2003; Daniels and 

Lieber, 1995; Yu et al., 2003). Experiments have demonstrated that the presence 

of a G-rich non-template strand aids CSR (Shinkura et al., 2003), however other 

studies suggest that R-loop formation may not be the only mechanism at play 

here. Most notably, replacement of the murine G-rich S region with the A/T rich 

region from xenopus laevis, which cannot form R loops, was still able to support 

CSR (Tashiro et al., 2001; Zarrin et al., 2004). This data suggests that either the 

formation of stem-loop structures at palindromic sequences or the presence of 

the conserved sequence, 5’-AGCT-3’, is sufficient to target AID. 
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In addition to making the locus more accessible to AID, experimental 

evidence suggests that the RNA molecule, itself, is participating in the 

mechanism of CSR. It is well-established that transcription is not sufficient for 

CSR; rather, splicing of the sterile RNA is necessary (Hein et al., 1998; Lorenz et 

al., 1995). The association of AID with splice-associated protein factors such as 

PTBP2 and CTNNBL1 further suggests the importance of RNA splicing for CSR 

(Conticello et al., 2008; Nowak et al., 2011). It remains unclear at present if it is 

the act of splicing or the product of splicing, the RNA molecule, which is 

important for CSR. However, just as in the variable region, high levels of sense 

and antisense transcription occur at the constant regions to produce a number of 

non-coding RNAs (Perlot et al., 2008).  

Recent work has focused on understanding the potential role of these Ig-

associated non-coding RNAs in the regulation of CSR. These RNA molecules 

could act as a guide RNAs, targeting AID to the correct region of the Ig locus 

(unpublished data, Chaudhuri Lab), or even recruit necessary DNA repair factors, 

as has been seen in DSB repair mechanisms in other systems (Wei et al., 2012). 

The discovery that the RNA exosome is required for efficient CSR further 

stresses the importance of RNA and RNA processing for CSR (Basu et al., 

2011).  

As a side note, transcription generated at Iµ occurs after recombination, 

generating a post-switch transcript, which contains Iµ spliced to the constant 

region exons of the switched isotype (Li et al., 1994). While this is currently 
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thought to be a by-product of CSR, possible functions for this transcript have 

simply not been investigated. 

Similar repair pathways used for SHM are implicated in the formation of 

double strand breaks (DSB) downstream of AID-mediated deamination at S 

regions. Mismatched deoxyuridine bases are excised by UNG to generate an 

abasic site, allowing APE1 to generate a SSB (Masani et al., 2013; Rada et al., 

2002b). SSBs sufficiently close to one another on opposite strands are easily 

processed into DSBs, generating the substrate for recombination. Thus, in the 

core of the S region where there is a high density of 5’-AGCT-3’ deamination 

hotspots, AID-mediated deamination and SSB break formation is likely to occur 

at high rates (Min et al., 2003). It should be noted that, though UNG is clearly 

necessary for CSR, evidence exists to raise questions regarding its specific 

function.  Reconstitution of ung-/- B cells with a catalytically inactive form of UNG 

restores CSR. In addition, inhibition of the activity of UNG with a peptide inhibitor 

does not affect CSR levels (Begum et al., 2009). Thus, it is possible that UNG 

plays a non-canonical role during CSR, acting as a scaffold for the recruitment of 

downstream DSB repair factors. It is also possible that UNG plays a dual role 

and, in its absence, the generation of DNA breaks is compensated for by the 

presence of the MMR repair pathway proteins. 

In collaboration with the BER pathway, the MMR pathway also plays a role 

in generating DSBs in S regions during CSR. Recognition of a mismatched 

basepair by the Msh2-Msh6 complex leads to the recruitment of Mlh1 and Pms2, 
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which in turn recruit Exo1 to resect a patch of DNA neighboring to the original 

mismatched basepair. Mice that contain deficiencies in each of these proteins 

have severely defective CSR (Bardwell et al., 2004; Ehrenstein and Neuberger, 

1999; Ehrenstein et al., 2001; Martin et al., 2003; Martomo et al., 2004; Schrader 

et al., 1999; 2007; Stavnezer and Schrader, 2006). The importance of both 

pathways for CSR is demonstrated by the complete loss of CSR in Msh2/UNG 

double knockout mice (Xue et al., 2006). In these mice, Uracil insertion into DNA 

is resolved via replication to produce characteristic C-to-T mutations. It is likely 

that in physiological settings, the BER pathway functions within the core of the S 

regions where a high density of SSBs form, whereas the MMR pathway is used 

to process DNA to generate DSBs from non-proximal SSBs. This likely occurs in 

the extremities of the S region where AID-hotspots are less frequent. This model 

is supported by two key pieces of data. First, in the absence of Msh2, the Sµ 

tandem repeat core region is necessary for CSR to occur; second, CSR events to 

the isotype, IgG2b, which contains a switch region least speckled with AID-

hotspots, is most affected by the loss of mismatch repair enzymes (Min et al., 

2003; Schrader et al., 1999). 

Even though it has been shown that the formation of two DSBs is sufficient 

to induce a recombination event by engineering ISce-I restriction sites in place of 

switch regions, these recombination events occur at a rate much lower than 

wildtype (Zarrin et al., 2007). Thus, it appears that the efficiency of CSR depends 

on the formation of an excess of deamination events, mutations, SSBs and DSBs 
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within the S regions. In fact, it has been shown that removal of the faithful repair 

polymerase, Pol β, actually results in an increase in mutation and DSB formation 

at the S regions, resulting in slightly increased levels of CSR (Wu and Stavnezer, 

2007).  Again, there is a battle between error-free and error-prone repair at the Ig 

locus. Some deamination events are correctly repaired; however, because the 

number of mutations exceeds the capacity of error-free repair, error-prone repair 

gains access and DSBs form. 

The last step of CSR requires the resolution of DSBs through long-range 

recombination of breaks formed in two S regions. This occurs primarily through 

the use of the classical non-homologous-end-joining (C-NHEJ) pathway resulting 

in blunt DSB junctions, and through the alternative-end-joining pathway (A-EJ), 

which results in break joints with greater homology. Often the use of the A-EJ 

pathway is revealed in the absence of a critical NHEJ protein factor.  

Initially, the DSB is sensed and marked by a variety of protein factors. The 

Mre11-Rad50-Nbs1 (MRN) complex recognizes the presence of DSB and 

activates the kinase, ATM (Dinkelmann et al., 2009). However, because the 

severity of CSR defect is greater in MRN-deficient mice as compared to ATM-

deficient mice, it is likely that the MRN complex plays additional roles 

(Dinkelmann et al., 2009; Lumsden et al., 2004). In fact, the MRN complex plays 

a role in funneling DSBs into both the NHEJ and A-EJ pathways for repair.  

Phosphorylation of ATM initiates the ATM-dependent DNA damage response, 

which in turn induces the phosphorylation of a number of proteins essential for 
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DSB repair including the histone variant, H2AX (to form phospho-H2AX or γ-

H2AX) and 53BP1. These proteins, together, form foci that span over 100 Kb 

around the DSB and are essential for CSR (Reina San-Martin et al., 2003; Ward 

et al., 2004). 

During C-NHEJ, the complex Ku70/Ku80 binds broken DNA ends and 

recruits XRCC4 and Ligase4 (Lig4) to promote end-joining. The kinases, DNA-

PKcs are also recruited, which activate DNA end processing by the 

endonuclease, Artemis. Deficiencies in each of these factors results in defects in 

CSR to varying degrees, typically ranging from about 20%-40% of wildtype levels 

(Boboila et al., 2010; Han and Yu, 2008; Li et al., 2008; Rivera-Munoz and 

Soulas-Sprauel, 2009; Soulas-Sprauel et al., 2007). However, the fact that CSR 

is not completely abolished in the absence of necessary NHEJ protein factors 

suggests the existence of a parallel pathway. In addition, analysis of break joints 

in the absence of the C-NHEJ pathway reveals that a greater level of 

microhomology is used in repair. 

The A-EJ pathway is less well understood, but involves additional end-

processing of DNA by the MRN complex and the DNA end processing factor, 

CtIP. Both factors promote a more microhomology-mediated form of DNA repair 

(Lee-Theilen et al., 2011). In addition, the DNA damage sensor, Parp1, has been 

implicated in this pathway (Robert et al., 2009); however, the bulk of the factors 

involved, including the necessary DNA ligase, remain unknown (Boboila et al., 

2012). It also remains unclear what factors dictate the choice of pathway. It has 
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been shown that 53BP1 in complex with its binding partner, Rif1, prevents DNA 

end-resection, thereby promoting C-NHEJ over A-EJ (Bothmer et al., 2010; 2011; 

Di Virgilio et al., 2013); however, additional mechanisms are likely to be revealed 

in the coming years. A summary of the mechanisms used to resolve DSBs during 

CSR are presented in Figure 1.6 (adapted from (Xu et al., 2012). 

1.4 Activation Induced Cytidine Deaminase (AID) 

 Much of SHM and CSR can be carried out by ubiquitous DNA repair 

factors. In fact, the only known B-cell specific factor is AID. Because of the 

potential dangers of AID activity, including off-target mutations and the formation 

of deleterious translocations, great interest has focused on how AID is regulated 

to specifically induce genomic instability at the Ig locus, protecting the rest of the 

genome from harm. 

1.4.1 The discovery of AID 

The discovery of AID and the elucidation of its mechanism were greatly 

facilitated by the formation of the B lymphocyte cell line, CH12F3 in 1996 by the 

Honjo laboratory. Derived from the CH12.LX lymphoma cell line, CH12F3s were 

selected to undergo class switch recombination exclusively, and at high 

frequency, to the isotype IgA upon stimulation with IL-4, TGFβ, and CD40L. 

Despite the presence of other B cell lines available at the time, the CH12F3 line 

provided a robust inducible system in which to study the mechanics of class 

switch recombination (Nakamura et al., 1996). 
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Figure 1.6 Overview of CSR Repair Mechanisms. Within two switch regions
(yellow circles, blue/purple lines), AID deamination coupled with DNA processing
by BER and MMR enzymes results in the formation of DSBs. Recognition of 
DSBs by the MRN complex (Mre11, Rad50, Nbs1) activates the ATM-dependent
repair pathway, resulting in the phosphorylation of 53BP1 and H2AX. Breaks are
 repaired through two pathways: Classical non-homologous end joining 
(C-NHEJ) and alternative end-joining (A-EJ). The proteins known to take part in 
each pathway are depicted. C-NHEJ results in blunt joints or joints with minimal
microhomology. A-EJ results in break joints with larger stretches of homology. 
53BP1 has been shown to prevent excess resection, thus preventing A-EJ.  
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Predicting that a specific recombinase was responsible for CSR, 

Muramatsu and Honjo applied a PCR-based subtraction method to screen genes 

upregulated upon stimulation of CH12F3 cells for CSR. Among the four novel 

genes discovered, Activation-Induced-Cytidine-Deaminase (AID) proved to be 

interesting because of its (1) germinal center B cell restriction, (2) homology to 

the APOBEC family of RNA cytidine deaminases and (3) in vitro deaminase 

activity, unique from that of APOBEC1 (Muramatsu et al., 1999).  

Confirmation of the necessity of AID in somatic hypermutation and class 

switch recombination came with the generation of an aicda-/- animal by 

Muramatsu et al. in 2000. Though no gross abnormalities were observed, these 

animals suffered a striking inability to undergo CSR (upon stimulation in vitro and 

antigenic challenge in vivo), and surprisingly, also SHM (in vivo) (Muramatsu et 

al., 2000).  

Concurrent with the mouse work conducted in the laboratory of T. Honjo, 

Anne Durandy was studying human hyper-IgM syndrome (HIGM) patients who 

completely lack class switch recombination and over-produce IgM. At the time, 

the known cause of HIGM was X-linked, resulting in a deficiency in CD40 

signaling (Reviewed in (Durandy et al., 2004)). However, the Durandy lab also 

identified groups of patients with an autosomal form of hyper-IgM syndrome and 

using standard human genetics identified AID as the gene responsible for a 

subset of these patients (henceforth known as type II, or HIGM2 patients). 

Interestingly, these patients also lacked somatically mutated immunoglobulin 
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genes (Revy et al., 2000). The Honjo and Durandy papers were published back-

to-back and together provided incontrovertible evidence that AID plays a central 

and initiating role in both CSR and SHM.  

1.4.2 AID is a DNA mutator 

Initial characterization of AID revealed that it possessed a cytidine 

deaminase domain with homology to several unknown genes and also to the 

known RNA deaminase, Apolipoprotein-B mRNA editing catalytic polypeptide –1 

(APOBEC1) (Muramatsu et al., 1999). Due to the homology of AID to the mRNA 

editing enzyme, APOBEC1, it was initially hypothesized that AID also edited 

mRNA. In order to account for the involvement of AID in both SHM and CSR, it 

was imagined that AID targets either (1) distinct mRNAS, a DNA mutator in the 

context of SHM and a region-specific recombinase/nuclease in the context of 

CSR, or (2) a single mRNA that functions in both SHM and CSR, facilitated by 

task-specific targeting co-factors, similar to ACF, the targeting co-factor for ApoB 

editing (Mehta et al., 2000; Muramatsu et al., 2000).  

Alternatively, it was proposed that AID may edit DNA directly, providing 

substance to earlier theories that postulated the existence of a mutating factor 

that is directly targeted to the Ig locus (Neuberger et al., 1998; Peters and Storb, 

1996; Wiesendanger et al., 1998). Genetic evidence for this scenario was 

provided by a number of studies that demonstrated that ectopic expression of 

AID was able to mutate mammalian cells, as well as bacteria and yeast (Martin 

and Scharff, 2002; Mayorov et al., 2005b; Petersen-Mahrt et al., 2002; 

Yoshikawa et al., 2002). As it is unlikely that AID would edit the same mRNA in 
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all of these cells to result in the generation of a novel DNA mutator, the simplest 

interpretation of these data is that AID is a DNA mutator, and as such, the first 

member of a family of polynucleotide deaminases that acts on host DNA. In 

support of these cellular studies, in vitro studies have confirmed that AID exhibits 

activity on DNA substrates, but not RNA substrates, despite its ability to bind 

both DNA and RNA (Bransteitter et al., 2003; Chaudhuri et al., 2003; Dickerson 

et al., 2003; Nonaka et al., 2009) Several studies have raised questions 

regarding the DNA editing hypothesis including evidence that AID can edit the 

RNA of the hepatitis B virus, catalytically dead mutants of UNG can rescue CSR, 

as well as correlative studies suggesting that AID downregulates Topoisomerase 

I through an RNA-editing mechanism, leading to DSB formation during CSR 

(Begum et al., 2009; Kobayashi et al., 2009; Liang et al., 2013). Despite these 

studies, though, the preponderance of evidence suggests that AID directly 

targets DNA. Not only has AID been observed to be localized at the Ig locus 

using chromatin immunoprecipitation (ChIP), but, through a number of indirect 

assays, the existence of uracils in DNA has been shown to occur in an AID-

dependent manner (Maul et al., 2011; Pavri et al., 2010). Lastly, a 

comprehensive study using RNA-seq of both small RNAs and poly-A+ mRNAs 

from stimulated B cells shows no evidence of RNA editing upon stimulation for 

CSR (Fritz et al., 2013).  Thus, proof for the alternative RNA-deamination model 

will require the discovery of an AID-mutated RNA molecule. 
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1.4.3 The regulation of AID 

Regardless of the controversy concerning the molecular mode of action of 

AID, the mutagenic strength of AID and thus its threat to genomic stability is not 

disputed. As such, it is expected that AID is tightly regulated at multiple levels 

within the cell. In fact, several different modes of regulation have begun to be 

uncovered, ranging from transcription of AID through regulation of the AID 

protein. The various methods of AID regulation are presented below and 

summarized in Figure 1.8 (adapted from (Xu et al., 2012) and (Alt et al., 2013)). 

1.4.3.1 Transcriptional control of AID expression 

 Because of the mutagenic potential of AID, its expression must be tightly 

regulated. AID transcript is undetectable in naïve B cells, but greatly up-regulated 

in response to stimulation. AID expression is induced by classic CSR stimuli, 

such as lipopolysaccharide, CD40-receptor engagement, interleukin-4 (IL-4), and 

TGFβ, as well as IgM-CD19-CD21 crosslinking in the context of SHM (Dedeoglu 

et al., 2004; Faili et al., 2002; He et al., 2004; Pone et al., 2012; Rawlings et al., 

2012). These stimuli function to up-regulate both the canonical and non-

canonical NF-κB pathways, which work together to induce and maintain AID 

expression (Xu et al., 2012).  

 In addition to NF-κB, several activating and inhibitory factors have been 

identified that help to regulate proper AID expression. These proteins have been 

found to bind in four main cis-regulatory elements throughout the AID locus: 

Region I lies directly upstream of the promoter, Region II lies downstream of the 

promoter in the first intron, Region III lies 17 kb downstream of the promoter, and 
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Region IV lies 9 kb upstream of the promoter (Crouch et al., 2007; Gonda et al., 

2003; Xu et al., 2012; Yadav et al., 2006). The activating factors, including 

HOXC4, SMAD3, SMAD4, PAX5, E2A proteins, and BATF bind throughout these 

four regions and cooperate with NF-κB at the promoter to enhance transcription 

of AID (Betz et al., 2010; Ise et al., 2011; Park et al., 2009; Sayegh et al., 2003; 

Tran et al., 2009). To keep these activating forces in check, Region II also 

contains binding sites for inhibitory factors, such as MYB and E2F (Tran et al., 

2009). These factors are important for maintaining AID in the off-state in naïve B 

cells (Xu et al., 2012). 

 Expression of AID has been documented in other cell types, though at 

much lower levels than in germinal center B cells. These cell types include 

oocytes, primordial germ cells (PGCs), ES cells, breast tissue, and prostate 

epithelial cells (Fritz and Papavasiliou, 2010; Lin et al., 2009; Morgan et al., 2004; 

Pauklin et al., 2009). Because of the danger of AID expression, it has been 

suggested that AID has a separate function, particularly in DNA demethylation, in 

these cell types. While good evidence exists to suggest that this is the case 

during zebrafish development, future studies are necessary to determine if AID 

functions during mammalian development (Abdouni et al., 2013; Rai et al., 2008). 

In addition, thorough DNA methylation studies have been conducted in murine 

splenic B cells and it does not appear that AID plays a role in DNA methylation 

status in this context (Fritz et al., 2013). 
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In addition, AID expression can be induced in conditions associated with 

cellular transformation (Gourzi et al., 2006) and has been implicated in the 

generation of translocations common in B cell lymphomas (Klein et al., 2011; 

Klein and Dalla-Favera, 2008; Robbiani et al., 2008; 2009). 

1.4.3.2 Post-transcriptional control of AID expression 

miR-155, a miRNA previously shown to play a role in the proper activation 

of B lymphocytes, directly regulates AID levels in response to activating stimuli 

(Dorsett et al., 2008; Teng et al., 2008). Disruption of the miR-155 target site in 

the 3’ UTR of the AID locus produces an up-regulation of AID protein levels upon 

activation of B cells; this results in increased levels of CSR. Furthermore, AID 

expression in miR-155 mutant mice was found to be temporally deregulated, as 

shown by AID expression in peripheral B cells. This suggests that miR-155 plays 

a role in switching off AID expression in post-GC B cells (Teng et al., 2008).  

Furthermore, both reports noted that in the absence of miR-155 control 

excess AID protein led to mutation of off-target sites. For example, the gene bcl6 

was found mutated at a rate three times higher than in WT mice; importantly, the 

occurrence of cMyc-IgH translocations, a known side effect of aberrant AID 

activity, was increased 15-fold (Dorsett et al., 2008; Teng et al., 2008). Thus, via 

the regulation of AID protein levels, miR155 acts as a tumor suppressor by 

silencing potentially harmful mutations and translocations. 

In addition to miR-155, Teng et al. cloned three other microRNAs that 

were regulated during the transition from resting to activated B cell upon CSR 
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stimulation. One, miR-181a, was significantly down-regulated during the time 

course of the reaction (Teng et al., 2008). At the same time, De Yebenes et al. 

undertook a screen for microRNAs that suppressed CSR and found that ectopic 

overexpression of miR-181b resulted in a ~50% reduction in the levels of CSR to 

IgG1 (de Yébenes et al., 2008). The miR-181 family comprises four distinct 

transcripts with identical seed regions (a, b, c and d) so it is likely that both 

groups identified the same functional seed region of mir-181 as functionally 

down-regulated in the context of CSR	  and, in addition, as perturbing CSR when 

ectopically expressed. Standard luciferase assays with mutant and wild-type 

versions of the AID 3’UTR suggest that miR-181b may directly control levels of 

AID expression; however, whether this control in the proper cellular context is 

direct or indirect remains to be determined. 

1.4.3.3 Post-translational control of AID protein 

 Post-translational modifications of proteins (PTMs) are one of the most 

well known mechanisms used to regulate the activity of proteins, as well as 

provide diversity to their function. This is one mechanism by which a cell can 

overcome the limitations of the genome (Hunter, 2007). Thus far, much of the 

focus on PTMs with reference to AID regulation has been in the realm of 

phosphorylation, but recently investigation has spread to ubiquitination. What is 

known about AID in the context of these two modifications is presented below. In 

time, it is likely that there will be a greater understanding of the regulation of AID 

in terms of these, and other, powerful PTMs. 
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Phosphorylation: 

 Thus far, AID has been found to be phosphorylated at 5 different residues: 

serine 3 (S3), threonine 27 (T27), serine 38 (S38), threonine 140 (T140) and 

tyrosine 184 (T184) (Basu et al., 2005; Gazumyan et al., 2011; McBride et al., 

2006; 2008; Pasqualucci et al., 2006). 

 The first occurrence of AID phosphorylation observed, and that which has 

been studied the most, is the phosphorylation of S38. Carried out by the 

ubiquitous, cAMP-dependent kinase, PKA, this phosphorylation event has proven 

to be necessary for both efficient SHM and CSR (Basu et al., 2005; Cheng et al., 

2009; McBride et al., 2006; Pasqualucci et al., 2006). The finding that S38 

phosphorylation is necessary for the interaction of AID with the ssDNA binding 

protein, RPA, provided some insight into the importance of this modification 

(Basu et al., 2008; Chaudhuri et al., 2004; Rada, 2009; Vuong et al., 2009). 

Initially, RPA was proposed to stabilize ssDNA in transcription bubbles to 

maintain a substrate for AID; however, this would not be necessary during CSR 

due to ability of switch regions to form stable R-loops. Based on this, it would be 

expected that loss of S38 phosphorylation would only result in a defect in SHM, 

not CSR. More recent work, though, has provided convincing evidence that RPA 

plays distinct roles during SHM and CSR. The S38A, phospho-null mutant of AID 

is unable to deaminate a transcribed SHM substrate in vitro, while still 

maintaining the ability to deaminate a transcribed CSR substrate in vitro (Vuong 

et al., 2009).  Thus, it appears that RPA does play a role in increasing access of 
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ssDNA substrates for AID during SHM, when R-loops do not form, but not during 

CSR. The defect in CSR observed upon loss of S38 phosphorylation appears to 

occur downstream of AID-mediated deamination. It has been shown that AID can 

access the S regions in the absence of RPA, and in fact, that phosphorylation of 

AID at the Ig locus is necessary for the recruitment of RPA to the locus (Vuong et 

al., 2009). Thus, during CSR, it appears that RPA has been co-opted to play a 

role in DSB repair. Recent work has shown that RPA binds ssDNA exposed by 5’ 

-to- 3’ resection and is predicted to allow for alternative, microhomology-based 

end-joining to occur if C-NHEJ fails (Yamane et al., 2013). Whether the 

recruitment of RPA plays other roles during CSR, such as the recruitment of 

downstream repair factors, remains to be seen. 

Similar to S38 phosphorylation, phosphorylation of T140 plays a role in 

enhancing both SHM and CSR. Mutation of T140 to generate a phospho-null 

mutant of AID results in a decrease in both CSR and SHM. Interestingly, SHM is 

affected to a greater extent than CSR, suggesting that phosphorylation of T140 

may play a role in governing the interaction of AID with factors that are specific 

for each process (McBride et al., 2008; Vuong and Chaudhuri, 2012). 

Unlike the other phosphorylation sites discussed, phosphorylation of S3 

inhibits AID activity. Mutation of the site to prevent phosphorylation leads to an 

increase in CSR, as well as off-target effects of AID activity, such as cMyc-IgH 

translocations. This phosphorylation event can be generated in vitro by the 

ubiquitous kinase, PKC and removed by the phosphatase, PP2A. In fact, 
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inhibition of PP2A results in an increase in AID phosphorylation at this site and a 

concomitant decrease in CSR (Gazumyan et al., 2011). The mechanism of how 

S3 phosphorylation inhibits activity is not yet known, but may involve the 

interaction of AID with proteins that block its activity. 

 The phosphorylation events on Y184 and T27 do not have any known 

function at this point. Both fall within predicted PKA phosphorylation motifs and 

both can be phosphorylated in vitro by PKA. While Y184-Phospho AID has been 

detected in primary B cells by mass-spectrometry analysis, the T27-phospho 

form of AID has not, raising questions about its physiological relevance. In 

addition, mutation of the Y184 phosphorylation site does not severely inhibit 

CSR, suggesting that this phospho-event may not play a role in CSR (Basu et al., 

2005; Pasqualucci et al., 2006). Additional experiments are necessary to 

determine the functionality of these two modifications (Vuong and Chaudhuri, 

2012). 

Ubiquitination: 

 Ubiquitin is an approximately 8.5 kDa protein that is covalently attached at 

its C-terminus to an amino acid, typically a lysine, on a target protein. 

Ubiquitination can occur in many flavors, ranging from mono-ubiquitination, or the 

attachment of a single ubiquitin moiety to the target protein, to poly-ubiquitination, 

or the attachment of ubiquitin chains to the target protein. Ubiquitin chains are 

formed by the covalent attachment of one ubiquitin protein to one of seven lysine 

residues on another ubiquitin protein. Each of the different types of chains, 
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composed of one or many different ubiquitin linkages, are recognized differently 

by ubiquitin-binding proteins and thus can produce very different downstream 

events. Lysine-48 (K48) linkages are commonly found in proteins targeted for 

degradation by the proteasome, lysine-63 (K63) linkages are commonly found in 

cell signaling complexes, and mono-ubiquitination of histones has been shown to 

play a role in nucleosome dynamics and the regulation of transcription (Pickart, 

2001a; 2001b). Despite these examples, though, it is very likely that each of 

these types of ubiquitination can play a variety of roles, depending on the cellular 

context. An overview of the enzymes involved in ubiquitination is presented in 

Figure 1.7. 

Aoufouchi et. al. were the first to observe poly-ubiquitination of nuclear 

AID upon treatment of cells with a proteasome inhibitor, MG132 (Aoufouchi et al., 

2008). This provides an explanation for the observation that nuclear AID has a 

much shorter half-life than cytoplasmic AID and suggests ubiquitin-mediated 

degradation as a mechanism to regulate AID activity in the nucleus (Geisberger 

et al., 2009). Cytoplasmic poly-ubiquitination has also been observed upon 

inhibition of the chaperone, Hsp90 (Orthwein et al., 2010). 

Neither of these papers were able to identify (1) the residue(s) on AID that 

were ubiquitinated and (2) the E3 ubiquitin ligase(s) involved in the ubiquitination 

event. In addition, while the pattern of ubiquitination observed by Aoufouchi et. al. 

can be interpreted as poly-ubiquitination, the lower molecular weight “laddering” 

pattern seen is more reminiscent of multiple mono-ubiquitination events 
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Figure 1.7 Overview of the ubiquitination cascade. Ubiquitination requires a 
cascade of three enzymes: the ubiquitin activating enzyme (E1), the ubiquitin 
conjugating enzyme (E2) and the ubiquitin ligase (E3). In an energy-dependent 
mechanism, ubiquitin is covalently linked at its C-terminus to a cysteine residue 
on the E1 and then transferred to a cysteine on the E2. E3 proteins, which 
contain RING domains, act as a bridge between the E2 and the substrate protein 
and provide much of the specificity for the substrate. This bridge allows for the 
transfer of the ubiquitin from the E2 to a residue (lysine, shown) on the target 
protein. A mono-ubiquitination event is shown, however repetition of this same 
mechanism is used to produce poly-ubiquitin chains.
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(Aoufouchi et al., 2008). This opens the exciting possibility that AID is both poly-

ubiquitinated for degradation, and mono-ubiquitinated for some other in vivo 

function. This thesis presents the identification of a novel E3 ligase that is able to 

mono-ubiquitinate AID. It will be very exciting in the future to discern the cellular 

roles of each of the different ubiquitination events and also determine whether 

one or multiple ubiquitin ligases are used in these processes.  

1.4.3.4 Subcellular localization of AID 

One means to avoid excess genomic mutation by a potent DNA mutator, 

such as AID, is to regulate its cellular localization. Exclusion of excess AID from 

the nuclear compartment should relieve mutagenic stress. In fact, it has been 

observed that in cells where AID is known to be active in the nucleus, no nuclear 

accumulation can be detected (Rada et al., 2002a). Thus, there exist 

mechanisms to actively import AID into the nucleus when necessary, export it 

from the nucleus to regulate its activity and maintain it in the cytosol to prevent 

off-target mutation.  

Nuclear export of AID is dependent on the CRM1 export pathway and is 

thus sensitive to inhibition by the drug, Leptomycin B (LMB). This export has 

been shown to rely on the last ten amino acids of AID (residues 188-198), which 

make up the nuclear export sequence (NES, Figure 1.8). Treatment of cells with 

LMB, or mutation of key hydrophobic residues within the NES, results in the 

accumulation of nuclear AID (Brar et al., 2004; Ito et al., 2004; McBride et al., 

2004). Interestingly, mutation of the C-terminal NES also results in a decrease in 
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Figure 1.8 Regulation of AID. Various mechanisms of AID regulation are shown.
Transcription of AID is regulated by a balance of activating (green) and inhibitory 
(red) transcription factors. AID expression is further regulated at the level of 
translation via miRNAs, specifically miR-155. AID protein is regulated by the 
addition of post-translational modifications. The five known phosphorylation sites 
are depicted with a “P” enclosed in a red circle. Ubiquitination has been 
observed, but the site of modification is not known. Catalytic residues of AID are 
also shown. H56, C87 and C90 participate in the coordination of Zn, and E58 
plays a catalytic role in the deamination mechanism. AID subcellular localization 
is tightly regulated by an N-terminal nuclear localization signal (NLS) and a 
C-terminal Nuclear Export Sequence (NES). Lastly, AID association with 
transcriptional machinery plays a role in targeting. Stalling by the factor, Spt5, 
RNA processing and degradation by the RNA exosome and binding of DNA by 
RPA all play a role in enabling AID access to the DNA in order to induce 
mutations. Lastly, genomic loci neighboring the Ig locus in the 3D space of the 
nucleus have an increased chance of mutation and translocation. Thus, it is likely 
that a subset of the nucleus is targeted by AID; however, the mechanisms 
involved here are unknown.
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class-switch recombination while maintaining the ability to mutate (McBride et al., 

2004). Replacement of the physiological NES with a heterologous NES cannot 

rescue CSR to wildtype levels, despite restoring export (Geisberger et al., 2009). 

Thus, it appears likely that either the C-terminus plays two roles—one that is 

export-specific and another that is CSR-specific, or that export is important for 

the mechanism of CSR, but is extremely sensitive to the efficiency of AID binding 

to exportins. In line with dual roles for the C-terminus, it has been shown that AID 

is actively imported into the nucleolus and export from this compartment relies on 

the C-terminus of AID. It is possible that movement in and out of the nucleolus is 

an important step in CSR, and thus the presence of this export sequence would 

be as well (Hu et al., 2012).  

Though less well understood, recent findings have begun to uncover the 

mechanistic details of AID nuclear import. A nuclear localization signal (NLS) 

composed of several non-contiguous basic residues is located at the N-terminus 

of AID (Hu et al., 2012; Patenaude et al., 2009a). Proper nuclear import relies on 

the proper structural folding of AID, as the first 39 residues of AID are required 

(Hu et al., 2012) (Figure 1.8). Interestingly, the same signal is used to localize 

AID to the nucleolus, suggesting the importance of this compartment for CSR (Hu 

et al., 2012). 

Last, it is likely that AID is retained in the cytosol by association with a 

cytosolic complex. Residues 158-198 of AID have been shown to be important 

for cytosolic retention. Replacement of this region with the analogous region in 
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Apobec 2 allows for passive diffusion of AID into the nucleus in the presence of 

the export inhibitor, LMB (Patenaude et al., 2009b). In addition, cytosolic AID has 

been purified from DT40 chicken B cells and shown to be part of a complex that 

sediments on a sucrose gradient with a sedimentation coefficient of 10-11S, 

suggesting that the complex is about 350 kDa (Häsler et al., 2011). Within this 

complex, AID has been shown to interact with the translation elongation factor, 

eEF1A; elimination of this interaction by mutating the residues involved results in 

an increase in the nuclear accumulation of AID in the presence of LMB (Häsler et 

al., 2011). Future experiments will be necessary to determine other key 

components of this cytosolic retention complex. 

1.4.3.5 AID protein cofactors 

 The fact that AID is the only known B cell-specific factor necessary for 

SHM and CSR, coupled with the extraordinary specificity of SHM and CSR, has 

prompted intense investigation to understand how AID is targeted specifically to 

the Ig locus, sparing the rest of the genome. In addition, it still remains unknown 

how AID is locally positioned at the Ig locus, targeting the variable region during 

SHM and the switch regions during CSR. To this end, several labs have 

conducted screens to search for AID-interacting proteins that could be the elusive 

AID-targeting factor. 

 The ubiquitous family of 14-3-3 adaptor proteins were identified to bind the 

S region motif 5’-AGCT-3’ with high affinity, thus suggesting them as a potential 

targeting factors (Xu et al., 2010). In fact, drug inhibition, knock-out or expression 
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of dominant negative forms of various 14-3-3 isoforms resulted in decreased 

accumulation of AID at S regions and a concomitant decrease in CSR (Xu et al., 

2010).  While these proteins may play a role in CSR recruitment, the 5’-AGCT-3’ 

motif is not abundant in the variable region, suggesting that a different, and 

unknown, mechanism is needed to recruit AID to the Ig locus during SHM. It is 

possible, though, that differential targeting of AID during SHM versus CSR is 

mediated by its interaction with a different subset of cofactors. However, because 

14-3-3 proteins are ubiquitously expressed, it seems unlikely that these proteins, 

alone, are sufficient to recruit AID specifically to S regions. 

 In addition to the recognition of DNA sequences, many chromatin 

modifying factors have been identified, which regulate the recruitment of AID 

and/or repair factors to the Ig locus. The histone chaperone, FACT complex, has 

been shown to play a role in both SHM and CSR, suggesting the importance of 

nucleosome dynamics in making the locus accessible for SHM and CSR protein 

factors (Aida et al., 2013; Stanlie et al., 2010). Interestingly, FACT deficiency 

during CSR does not affect transcription through the locus, but rather cleavage of 

the DNA (Stanlie et al., 2010). This suggests that chromatin dynamics are equally 

important for DSB formation and repair. 

Unlike the FACT complex, many of the identified chromatin remodelers 

have specific effects on either SHM or CSR. KAP1, which recognizes H3K9me3, 

a histone modification associated with CSR, binds and recruits AID to the Sµ 

switch region. Loss of KAP1 results in a decrease in AID recruitment to S 
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regions, as well as decrease in CSR. Interestingly SHM is not affected in mice, 

which lack KAP1 (Jeevan-Raj et al., 2011). Similarly, the histone chaperone, 

Spt6, can interact directly with AID. Knockdown of Spt6 results in a significant 

decrease in CSR levels in the CH12 cell line (Okazaki et al., 2011). The 

mechanism by which Spt6 acts in this setting remains unknown. In contrast, the 

nuclear export factor, GANP, actively remodels chromatin specifically at the 

variable regions through its histone acetyl transferase activity. This modification 

allows access of AID to the region (Kuwahara et al., 2000; 2004; Maeda et al., 

2010; Singh et al., 2013).  Mice deficient in GANP exhibit normal CSR, but 

decreased SHM.  

Many of the AID-interacting proteins discovered provide a link between 

AID activity and the well-known fact that transcription is highly correlated with 

SHM and CSR. First, AID has been shown to directly interact with RNA 

Polymerase II (RNAPII), thus providing a direct connection between transcription 

and mutation (Besmer et al., 2006; Nambu et al., 2003). Further, as already 

discussed, the ssDNA binding protein, RPA, is thought to play a role in stabilizing 

a ssDNA intermediate during transcription of SHM targets (Chaudhuri et al., 

2004; Vuong et al., 2009). Last, the RNAPII associated stalling-factor, Spt5, 

interacts with AID and facilitates its interaction with RNAPII. Spt5 localizes with 

RNAPII and AID throughout the genome and sites at which Spt5 accumulate are 

predictive of AID-mediated mutation (Pavri et al., 2010). Based on these findings, 

it is likely that AID associates with RNAPII and the transcription machinery. As 
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RNAPII stalls during its elongation phase, AID disassociates, allowing for 

mutation. In line with this model, insertion of a transcription terminator containing 

a poly(A) signal downstream of the variable region promoter in DT40 cells 

increased AID-mediated mutation. Additional AID RNAPII stalling at the Poly(A) 

signal sequence likely accounts for the increase in mutation load (Kodgire et al., 

2013). In an attempt to explain how AID activity is limited to a distance of 2 Kb 

from the promoter whereas mRNA transcription is not terminated until much later, 

it has been proposed that not all transcription complexes at the Ig locus are 

created equal. Non-AID containing RNAPII could be responsible for transcribing 

the complete mRNA, whereas AID/Spt5-containing transcription complexes may 

be more prone to stalling, releasing AID before transcription has terminated 

(Kodgire et al., 2013). This model would predict that several incomplete Ig 

transcripts exist in B cells stimulated for CSR and/or SHM. In fact, recent work 

from the Basu lab has shown that in the absence of a critical subunit of the RNA 

exosome, an accumulation of ncRNAs occurs at AID-targeted loci (Basu et. al., 

unpublished, “Immunity and Tolerance” CSH Meeting, May/June 2013). Thus, it 

is possible that the existence of these truncated transcripts is masked in wildtype 

cells by the activity of the exosome. Future experiments are needed to piece 

apart the genesis and role of these ncRNAs, as well as the validity of this model. 

The importance of RNA to SHM and CSR has become increasingly 

appreciated. Not only is transcription necessary, but also processing of the 

transcripts through splicing is required. As such, AID has been found to interact 
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directly with the splicing factors, CTNNBL1 and PTBP2 (Conticello et al., 2008; 

Nowak et al., 2011). Knockdown of PTBP2, specifically, results in a decrease in 

the accumulation of AID at the Ig locus (Nowak et al., 2011). Thus, it is possible 

that either the splicing machinery, or the processed RNA, itself, plays a role in 

AID stabilization at the locus. Either way, it is clear that RNA processing, 

including splicing and degradation by the Exosome, is intimately linked to AID 

activity. 

 As mentioned, the majority of AID in the cell is not in its active form at the 

Ig locus. Thus, it is likely that AID is a member of several different protein 

complexes throughout its lifetime. As discussed, cytosolic AID is complexed with 

both eEF1A and Hsp90 (Häsler et al., 2011; Orthwein et al., 2010). In addition, 

Regγ, a protein associated with ubiquitin-independent protein degradation, binds 

nuclear AID and also plays a role in regulating the abundance of AID protein 

(Uchimura et al., 2011).  With time, more of the components of the cytosolic and 

nuclear AID complexes will be revealed, hopefully along with a better 

understanding of how the activity of AID is regulated. In addition, it has been 

shown once that PTMs on AID can affect protein-protein interactions. 

Specifically, phosphorylation of AID on S38 enhances binding to RPA. It will be 

interesting in the future to understand if, and how, other PTMs, such as 

ubiquitination, play a role in regulating AID complex formation. A list of identified 

AID cofactors is presented in Table 1.1. 

 

54



14-3-3 Adaptors Bind AGCT repeats in switch regions

FACT Histone chaperone, involved in SHM and CSR

KAP1 Recognizes H3K9me3, involved in recruitment of AID to switch regions, CSR specific

Spt6 Histone chaperone, CSR specific

GANP Histone acetyl transferase, makes variable regions accessible to AID, SHM specific

RNAP II RNA Polymerase

RPA ssDNA binding protein, binds phosphorylated AID, involved in both SHM and CSR

Spt5 RNAP stalling factor, enhances binding of AID with RNAPII

Exosome Processing and degradation of RNA, increases access of AID to template strand, involved in SHM and CSR

CTNNBL1 Spliceosome-associated factor

PTBP2 Splicing factor, stabalizes AID at Ig locus

EEF1A Maintains AID in cytosol

HSP90 Stabilizes AID in cytosol

PKA Phosphorylates AID

REG Degradation of nuclear AID

DNA BINDING

CHROMATIN FACTORS

TRANSCRIPTION-ASSOCIATED

RNA-ASSOCIATED

CYTOSOLIC

OTHER

Table 1.1 AID protein cofactors. A list of identified AID protein cofactors is 
given, along with a brief description of its function.
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1.4.3.6 AID targeting and off-target mutation 

 It is clear that transcription and the transcription machinery plays a role in 

targeting AID. However, many genes in activated B cells are highly transcribed. 

Thus, it still remains unclear why AID activity accumulates at the Ig locus. ChIP-

Seq studies of AID and Spt5 demonstrate that AID accumulates at many highly 

transcribed genes in the genome, suggesting that the specificity of mutation 

occurs downstream of initial AID targeting (Pavri et al., 2010; Yamane et al., 

2011). Though it is clear that off-target AID activity occurs, as both mutation and 

DSB formation have been detected outside of the Ig locus, these mutations and 

translocations form at much lower rates than what is seen at the Ig locus.  

(Klein et al., 2011; Liu et al., 2008; Ramiro et al., 2004; Robbiani et al., 2009). 

Chromatin Capture studies coupled with deep-sequencing have revealed that 

genes which are frequently mutated by AID display proximity to the Ig locus in the 

3D space of the nucleus (Rocha et al., 2012). Genes that are actively transcribed 

are often spatially localized, thus providing a connection with the earlier studies 

connecting AID to highly transcribed genes. However, again, not all transcribed 

genes are targets of AID and thus there must be unidentified factors that 

introduce greater specificity. 

 In addition to the trans-factors discussed, many labs have searched for 

cis-regulatory modules that recruit AID to the Ig locus. While the promoter is 

clearly important for the induction of transcription, the nature of the promoter and 

neighboring enhancer regions may play a role in the recruitment of AID. An 
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analysis of non-Ig genes that undergo AID-mediated mutation revealed the 

presence of three transcription factor binding sites: E-box motifs, binding sites for 

YY1 and C/EBP-β (Duke et al., 2013). These factors may work together to recruit 

AID, providing a mechanism for the specific recruitment to some transcribed 

genes, but not others. Experiments conducted in DT40 B cells have shown that 

regions 3’ of the Ig locus participate in the recruitment of AID. Deletion of a 6 Kb 

region downstream of the 3’ RR resulted in a loss of gene conversion (GCV) and 

mutation, despite high levels of transcription due to the insertion of an SV40 

enhancer (Kothapalli et al., 2008). Further, insertion of a region 9.8 Kb 

downstream of the start site of the IgL locus in DT40 cells into a non-Ig locus was 

sufficient to activate hypermutation, thus suggesting that this region could recruit 

AID and/or other necessary factors (Blagodatski et al., 2009). Further 

experiments will be needed to work out the specific sequences involved in 

recruitment, whether it is AID or some other factor that is recruited here, and how 

these cis-regulatory modules work together with the transcriptional machinery 

and other trans-factors. 

1.5 Statement of Problem 

 AID is a very potent enzyme with the ability to induce mutation in the 

genome of cells in which it resides. When harnessed properly, the capacity of 

this enzyme to mutate is able to produce a large and diverse repertoire of 

antibody specificities and functionalities to fortify the host’s adaptive immune 

system. However, when used improperly, AID has the potential to wreak havoc 
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on the health and stability of the host’s genome. This misuse of AID can, and has 

been shown to, result in the accumulation of point mutations and the formation of 

DNA breaks and aberrant chromosomal translocations at non-immunoglobulin 

loci in the genome---genomic abnormalities that leave the host vulnerable to the 

formation of cellular cancers. Because of this, the localization and activity of AID 

must be meticulously regulated to assure the health of the cell and maintain the 

balance of genomic instability within the immunoglobulin loci and genomic 

stability elsewhere. 

 Because of the great potential for harm due to the mis-regulation of AID, it 

is likely that several layers of regulatory mechanisms exist to ensure that AID-

mediated deamination is targeted specifically. In fact, much of the research within 

the realm of AID biology is focused on understanding how AID, itself, as well as 

its activity, is monitored by the cell. Many of these modes of regulation have been 

discussed and likely involve the interaction of AID with other cellular proteins, 

which could either target AID to the immunoglobulin loci, regulate its activity, or 

participate in the recruitment of events downstream of AID-mediated 

deamination.  

 The interest in the involvement of AID protein cofactors in antibody 

diversification has led many laboratories to search for proteins, which can directly 

bind AID. However, this venture has proven to be particularly challenging 

because of the propensity for AID to become insoluble when ectopically 

expressed. Typically, ectopic expression of AID results in its mis-folding, 
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aggregation and presence in insoluble inclusion bodies. This makes it difficult to 

purify in order to study the protein in vitro, as well as study its interaction to other 

proteins using classical techniques such as the yeast-two hybrid assay (Y2H). 

Thus far, a variety of techniques, including immunoprecipitation followed by 

mass-spectrometry and RNAi knockdown screens, have been used to identify 

putative AID cofactors. These screens have suggested the synchronization of 

AID with other broadly important cellular pathways, including RNA splicing 

(Conticello et al., 2008), RNA processing and degradation by the RNA exosome 

(Basu et al., 2011), transcription (Besmer et al., 2006; Fukita et al., 1998; 

Lebecque and Gearhart, 1990; Nambu et al., 2003; Rada and Milstein, 2001; 

Storb et al., 2007; Tumas-Brundage and Manser, 1997; Winter et al., 1997), and 

RNA polymerase stalling (Pavri et al., 2010); however, a clear picture of the 

players involved in the AID reaction and the sequence of events remains, for the 

most part, unclear. Thus, the search for potential AID cofactors could still benefit 

from the development of better techniques for identifying interacting partners for 

insoluble proteins. 

This thesis presents the development and validation of a novel screening 

approach to identify interacting partners for poorly soluble proteins, as well as the 

application of this screen to Activation Induced Cytidine Deaminase (AID). Using 

the screen, several novel putative AID cofactors have been identified along with 

some previously discovered interacting partners, verifying the robustness of the 

screening approach.  
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In addition, because of its interesting domain structure and the potential 

for interesting regulatory mechanisms on AID, one interacting partner identified in 

the screen, RING Finger Protein 126 (RNF126), was studied further. RNF126 

was verified to be a bona fide AID binding partner and additionally determined to 

act as an E3 ubiquitin ligase, modifying AID with the addition of a single ubiquitin 

moiety. While poly-ubiquitination of nuclear AID has been implicated in its 

degradation, this discovery marks the first example of mono-ubiquitination of AID. 

In addition, this is the first example of the discovery of an AID ubiquitination event 

paired with the E3 ubiquitin ligase responsible. In addition to studying the function 

of RNF126 in vitro, a conditional knockout model was generated and used to 

assay the importance of RNF126 during various stages of antibody 

diversification. While it is clear that RNF126 is not essential for antibody 

diversification, these studies reveal the potential role of RNF126 in fine-tuning the 

activity of AID during CSR and SHM. In addition, these studies demonstrate the 

layered intricacies of both diversification mechanisms, suggesting the importance 

of analyzing putative AID cofactors in a variety of contexts, as it is very possible 

that the importance of a single protein factor might not be detectable in an 

otherwise wild-type context.  

The findings presented here demonstrate the utility of a novel screening 

technique to search for interacting partners for insoluble proteins and, through its 

use, expands the list of putative AID cofactors. The discovery that the novel E3 

Ubiquitin Ligase, RNF126, interacts with and modifies AID presents a novel 
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mode of regulation of the potent mutating enzyme and paves the way for future 

research to uncover the role of mono-ubiquitinated AID during SHM and/or CSR. 

Lastly, the generation of the RNF126 conditional knockout mouse model not only 

will prove invaluable for future studies of this enzyme during antibody 

diversification, but also in all other systems where RNF126 is expressed. 
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CHAPTER 2: DEVELOPMENT AND VALIDATION OF A NOVEL SCREEN TO 

IDENTIFY INTERACTING PARTNERS FOR INSOLUBLE PROTEINS 

2.1 Motivation 

The cell has evolved complex signaling networks to translate external and 

internal cues into the appropriate cellular response to foster the survival of the 

cell or of the multicellular organism to which it belongs. As our understanding of 

these signaling networks has increased, it has become clear that the involvement 

of many proteins, and thus of protein-protein interactions, is necessary to carry 

out the process faithfully. Traditionally, protein-protein interactions have been 

studied on a case-by-case basis using biochemical, biophysical or genetic 

techniques (Phizicky and Fields, 1995). However, with the onset of genome-wide 

sequencing came an interest in assigning function to the slew of new and 

unknown open-reading frames (ORF). Thus, it became increasingly appealing to 

develop high-throughput methods to discover novel protein interaction partners of 

functionally characterized genes in order to identify biological roles of protein-

protein interaction networks and to provide useful clues to assign function to 

unknown ORFs.  

Most of the genome-wide protein-protein-interaction data published to date 

has been produced with yeast two-hybrid assays or with in vivo pull-down 

approaches. Yeast-two-hybrid assays are often utilized for large scale protein-

protein-interaction screens (Fields and Song, 1989; Ghavidel et al., 2005) and 

rely on the modular nature of eukaryotic transcription factors in which one domain 
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binds DNA in a sequence specific manner and the other domain acts to activate 

transcription. Thus, when one protein of interest is fused to the DNA binding 

domain and its interacting partner to the activation domain, proof of interaction 

can be determined by the transcription of a reporter gene. On the other hand, in 

vivo pull-down approaches toward identifying protein-protein interactions typically 

rely on the addition of an affinity tag to the protein of interest, expression in its 

native cell and purification of the protein along with its bound cofactors. Mass 

spectrometry is then applied to identify the proteins that precipitated along with 

the tagged protein of interest.  Although these purification methods were first 

developed for small scale protein identification experiments, they have been 

successfully adapted for use in genome-wide proteomics studies (Alber et al., 

2007a; 2007b; Gavin et al., 2006; Krogan et al., 2006). Both yeast-two-hybrid 

and affinity based techniques generate false positives and require independent 

confirmation of potential interaction partners.  

More importantly, though, proteins that are poorly soluble or insoluble 

when ectopically expressed are least amenable to characterization using these 

tools. Poor solubility upon ectopic expression of a protein can result from either 

improper folding or the exposure of hydrophobic domains that would be masked 

when in complex with cofactors. This problem is particularly palpable for those 

who study the enzyme, AID. Because of the mutagenic potential of AID, it has 

been predicted that key regulatory mechanisms involve the interaction of AID 

with protein cofactors, which either regulate through binding or impart a post-
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translational modification, another mechanism known to be invaluable for AID 

regulation. However, because AID is poorly soluble upon expression in bacterial 

cells, it has proven difficult to use traditional techniques to screen for AID-

interacting partners. 

2.2 Design of solubility-based interaction screen 

To specifically address the problem of cofactor identification for poorly 

soluble proteins, such as AID, we have devised a new screening approach that 

actually takes advantage of the insolubility of the protein of interest to identify 

interacting partners. Often proteins that are insoluble when expressed alone will 

form soluble complexes when co-expressed with a native binding partner. In 

practice, this technique involves the co-expression and co-folding of two proteins, 

an unknown protein expressed from a cDNA library of choice, and a known, 

insoluble protein fused to an antibiotic resistance protein. As will be shown in the 

following proof-of-principle experiments, fusion of the gene for an insoluble 

protein with the gene coding for antibiotic resistance produces a fusion protein 

that is also insoluble. Thus, when this fusion gene is expressed, bacteria are only 

able to grow under drug selection when the fusion protein is solubilized, but not 

when it is in its insoluble form. Solubilization of the protein of interest, and of the 

fusion protein, rescues the ability of bacteria to grow under drug selection. For 

these experiments the drug resistance gene, Chloramphenicol Acetyl 

Transferase (CAT), was used, which confers resistance to the drug, 

chloramphenicol.  
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2.3 Validation of interaction screen 

Prior to applying this technique to AID, it has been validated to establish 

that: (1) fusion of soluble and insoluble proteins to CAT yields soluble and 

insoluble fusion proteins, respectively, (2) drug resistance can be rescued by 

solubilization of a known insoluble protein with its native binding partner, and (3) 

positive interaction and subsequent solubilization can be detected even when the 

interacting partner constitutes the minority of a population of expressed proteins. 

In order to establish that the solubility status of the fusion protein is directly 

correlated with that of the fused protein of interest, AID was used as a 

representative insoluble protein and the phage effector protein, Cell-Cycle 

Inhibitory Factor (CIF) (Hsu et al., 2008), a protein of similar size to AID, as a 

representative soluble protein. Bacterial expression of AID with a C-terminal 

fusion to CAT rendered cells unable to grow on chloramphenicol plates. In 

contrast, C-terminal fusions of CAT to CIF enabled cells to be resistant to even 

high doses of chloramphenicol, reaching up to 240 µg/mL (Figure 2.1).  

In addition, it was necessary to establish that interaction of a known 

cofactor to the fused protein of interest could rescue solubility. In order to test 

this, we have used a known heterodimer in which one component is necessary 

for the solubilization of the other. It has been previously established that the 

tRNA editing enzyme adenosine-deaminase acting on tRNA (ADAT3) is insoluble 

unless co-expressed with the other component of the heterodimer, ADAT2 

(Rubio et al., 2007). Utilizing an N-terminal fusion of ADAT3 to CAT, it can be 
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Figure 2.1. A genetic assay selects for the restoration of solubility of an 
insoluble protein. (A) A schematic depicts representative CAT fusion 
proteins used. AID and AID-CAT are insoluble and thus produce 
chloramphenicol sensitive cells; Cif and Cif-CAT are soluble allowing cells to 
be resistant to chloramphenicol; ADAT3 and ADAT3-CAT are insoluble unless 
coexpressed with its binding partner, ADAT2. (S=sensitive, R=resistant). (B) 
Plasmids carrying the indicated genes were transformed into BL21ai E. coli, 
plated on chloramphenicol containing plates under induction conditions. 
Resistant colonies were counted.  Shown here are colony numbers obtained 
on LB plates containing 120 μg/ml chloramphenicol. 
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seen that, much like for AID, expression of ADAT3-CAT in bacteria results in 

drug sensitivity and the inability of colonies to form on chloramphenicol plates. 

Only upon co-expression of ADAT2 with ADAT3-CAT, can bacteria harboring the 

ADAT3-CAT fusion protein survive on chloramphenicol plates (Figure 2.1). 

Together, these results establish that fusions of CAT render cells resistant to 

chloramphenicol as long as the fused protein is soluble. Furthermore, at least for 

the case of the heterodimer ADAT2/3, reconstitution of a soluble complex by co-

expression of a necessary binding partner rescues the ability of bacteria to be 

grown on chloramphenicol plates. 

 To assure that this screening technique would be able to identify novel 

AID interacting partners when expressed amongst a large library of sequences, 

we took advantage of proteins known to be able to bind AID. In particular, the C-

terminal, RING domain containing, region of the E3 ligase mutant double minute 

(mdm2) has been shown to interact with AID by a yeast-two-hybrid screen 

(MacDuff et al., 2006).  Co-expression of the C-terminal region of mdm2 with the 

AID-CAT fusion protein was able to rescue the solubility of the fusion protein and 

produce resistance to chloramphenicol when neither expression of AID-CAT 

alone nor mdm2 alone could do this (Figure 2.2). Thus, this technique was able 

to confirm the interaction, which was first shown using the traditional yeast-two-

hybrid screen. 

In order to demonstrate that an interaction could be efficiently isolated 

from a pool of known negatives, we generated a small library of irrelevant 
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Figure 2.2  Detection of a positive interaction amongst non-interactors. 
(A) A schematic depicts representative CAT fusion proteins. (B) Chloramphenicol 
resistant colonies after co-transformation of the indicated expression plasmids 
were counted. Co-expression of AID-CAT and the Mdm2 RING domain allowed 
for efficient survival on chloramphenicol plates. These interactions were revealed 
even when the Mdm2 RING plasmid was diluted 1:20 and 1:200 in a mini-library 
of known non-interactors.  
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bacterial cDNAs, which consisted of 20 cDNAs encoding known bacterial 

virulence factors. Co-transfection of this mini-library with AID-CAT did not render 

bacteria able to survive on chloramphenicol plates, demonstrating that, as 

expected, none of these twenty proteins are able to bind AID. However, dilution 

of the mdm2 RING domain expressing plasmid within the mini-library in a 20:1 or 

200:1 ratio followed by transformation and expression in the presence of AID-

CAT, recovered chloramphenicol resistant clones (Figure 2.2). Importantly, all of 

these clones expressed mdm2 RING domain and AID-CAT, confirming that the 

solubilization of AID was due to the interaction with the RING domain of mdm2. 

Thus, this screening technique is sensitive enough to isolate positive AID 

interactions even when the interacting protein constitutes a minority of the total 

population of the library. 

2.4 Concluding Remarks 

Recent progress has been made in the development of novel techniques 

to assay protein-protein interactions on a high-throughput scale with the goal of 

filling in the gaps in the interactome left by the use of more classical techniques. 

Despite the many benefits of these new methods, though, none are particularly 

reliable for the identification of interactions with a protein that is poorly soluble or 

insoluble when ectopically expressed. The solubility-based screen developed 

here specifically targets this subset of proteins in an attempt to expand the 

repertoire of methods used to identify protein-protein interactions. 

The set of experiments discussed thus far establish the utility of this technique 

when working with poorly behaved proteins. By generating fusion proteins 
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between a protein of interest and a drug-resistance protein, it has been 

established that there is a direct link between solubility and drug resistance. That 

is, fusion of a soluble protein produces a soluble fusion protein and drug 

resistance and fusion of an insoluble protein produces an insoluble fusion protein 

and drug sensitivity. In addition, solubilization induced through the interaction of 

an binding partner can rescue drug-resistance, providing a direct read-out for 

protein-protein interactions, thus rendering this technique useful for high-

throughput screening for binding partners of a protein of interest. 
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CHAPTER 3: IDENTIFICATION OF RING FINGER PROTEIN 126 AS AN E3 

UBIQUITIN LIGASE FOR AID 

3.1 Application of Interaction Screen to AID 

As a source of potential AID-interacting proteins a full length, normalized 

cDNA library was generated from the RAMOS human B cell lymphoma line. This 

cell line constitutively expresses AID and hypermutates, suggesting that 

necessary AID cofactors are also expressed (Sale and Neuberger, 1998). The 

library, which contains approximately 22,000 unique clones, was screened in 

triplicate in order to be reasonably confident of near-complete coverage. From 

these replicates, a list of 127 candidate interactors was generated, of which 36 

were cloned more than once in each of the three experiments. The interaction of 

these 36 proteins with AID was further validated by co-expression experiments in 

E. coli. Each candidate was tagged with an N-terminal hexa-histidine tag and co-

expressed in BL21 DE3 cells along side FLAG-tagged AID. Reciprocal affinity 

purification and western blots were conducted for all 36 candidates and 30 out of 

36 co-purified with AID, suggesting a 16% false positive rate. An outline of the 

screen is presented in Figure 3.1 

 As validation for this novel screening technique, many of the previously 

determined putative AID cofactors were also identified in this screen. These 

include components of the RPA complex (Chaudhuri et al., 2004), the splicing 

factor, CTNNBL1 (Conticello et al., 2008), Karyopherins (Patenaude and Di Noia, 

2010; Patenaude et al., 2009a) , and finally AID itself. The fact that AID-CAT 

binds co-expressed AID raises the question of why AID-CAT cannot simply 
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Figure 3.1 Detailed Schematic of Screening Process. The Gateway Cloning 
System (Invitrogen) was used to recombine an entry vector containing cDNA from
the RAMOS cDNA library with a destination vector containing AID-CAT. 
Recombination occurs between “attR” and “attL” sites using the 
“LR Recombinase”. Notably, recombination replaces the toxic Ccdb gene with a 
cDNA from the library. In addition, because only the destination vector contains 
spectinomycin resistance, successful recombination can be selected for on 
spectinomycin plates. These plates are grown O/N at 30°C to minimize the 
potential toxicity due to trace expression of a toxic cofactor. The colonies from 
spectinomycin selection are transferred (using velvet pads) onto new plates 
containing spectinomycin, chloramphenicol to select for solubilization of AID-CAT, 
and arabinose and IPTG to induce T7 RNAP and AID-CAT/cofactor expression, 
respectively. Again, plates are grown O/N at 30°C. Colonies that grow on these 
plates represent potential AID-interacting candidates as they were able to 
solubilize AID-CAT. These colonies are picked, liquid cultures grown, and DNA 
prepared and sequenced to identify the unknown cDNA from the library. 
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dimerize and rescue solubility. This is likely related to the trimeric nature of active 

CAT, which would necessitate the placement of three AID molecules in the AID-

CAT trimer at a significant distance from one another. Thus, multimerization of 

the AID moiety would preclude CAT trimerization and thus inhibit survival on 

chloramphenicol plates (Leslie et al., 1988).  

 The majority of the novel factors identified in the screen fall within the 

category of mRNA transcription, processing, splicing and export—processes that 

have already been shown to be necessary for CSR, though the mechanism 

remains unknown. In addition, a significant number of factors have been shown 

to be important for DNA repair, again a process necessary for CSR. The 

remaining identified cofactors are either unknown or from uncharacterized open 

reading frames (ORFs), or factors with known functions but whose involvement in 

AID-mediated processes is unclear. A list of all factors identified in triplicate, as 

well as their predicted functions, is presented in Table 3.1.  

3.2 RING Finger Protein 126 (RNF126) 

Because of the potential interesting characteristics of one of the unknown 

ORFs identified in the screen, Ring Finger Protein 126 (RNF126), further 

experiments were conducted to understand its influence on AID and AID-

mediated events. RNF126 is a relatively small protein of approximately 310 

amino acids and is well conserved throughout evolution.  In fact, there exists a 

62% similarity between human and zebrafish forms of the protein. Though 

virtually nothing is known about the role of RNF126, three domains exist that are 
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Factor    Accession # Description Function #cloned Co-IP? 

RNA Processing 
hnRNP-M NP_005959 Splicing? Coating transcript? Unknown 17 Y 

hnRNP-A0 NP_006796 Splicing? Coating transcript? Unknown 35 Y 
DDX21 NP_004719 Nucleolar RNA helicase  Unknown 10 Y 
DDX19 NP_001014449 Nucleolar RNA helicase  Unknown 10 Y 
LGTN NP_008824 Sui1; RNA binding Unknown 16 Y 

CPSF73 NP_057291 Cleavage and polyadenylation specificity 
factor PolyA Tail Addition 6 Y 

XRN2 NP_036387 5’>3’ exoribonuclease mRNA term. 6 Y 

EEF1A1 NP_001393 Translation initiation factor Translation 9 Y 

RBM39 NP_909122 U2AF homolog; splicing splicing 14 Y 
NIP30 NP_079222 Nucleolus-associated Unknown 3 N 
NOL11 NP_056277 Nucleolus-associated Unknown 12 N 

CTNNBL1 NP_110517 mRNA splicing Import? Splicing? 6 Y 
Nuclear Import/Export 

Nup93 NP_055484 Nucleoporin Nuclear Pore Complex 12 Y 
Importin 

Subunit -1 NP_002256 Importin beta family Nuclear import 11 Y 

DNA Repair 
RAD51 NP_002866 Rad51 Homolog 1 Isoform 1 DNA repair 7 Y 

RRM2B NP_001025 Ribonucleoside Reductase Deoxyribonucleotide 
Synthesis 8 Y 

IER5 NP_057629 Novel repair factor? Unknown 6 Y 

FEN1 NP_004102 Flap endonuclease DNA repair 6 Y 
General Cellular Biology 

Actin NP_001605 Gamma actin isoform cytoskeleton 12 Y 
RDH11 NP_057110 oxidoreductase Nucl. Metabolism 6 N 
PGAM1 NP_002620 Glycolysis/metabolism Nucl. Metabolism 13 Y 
IMPDH2 NP_000875 IMP dehydrogenase Nucl. Metabolism 35 N 

Protein Modification 
UbcH7 NP_055904 Ubiquitin ligase Prot degradation 6 Y 

PPP2R1A NP_055040 Protein phosphatase Reg subunit 6 Y 
AID Biology 

AICDA NP_065712 Cytidine deaminase DNA mutation 8 Y 
RPA1 NP_002936 Replication protein A AID cofactor 15 Y 

Chaperone Proteins 
TCP1-eta NP_001009570 T-Complex Protein 1 chaperone 23 Y 

BiP/HSPA5 NP_005338 78 kDa glucose-regulated protein 
precursor 

Chaperone;HSP70 family 
member 31 Y 

HERPUD2 NP_071768 homocysteine-responsive endoplasmic reticulum-
resident ubiquitin-like domain member 2 protein 

Upregulated during 
unfolded protein response 9 Y 

Unknown Function 
C14orf94 NP_060285 Unknown Unknown 7 Y 
C22orf28 NP_055121 Unknown Unknown 6 Y 
CXorf9 NP_061863 Lymphoid sp.; SH2 domain Unknown 18 N 
ZNF44  NP_057348 Zn finger; DNA binding Unknown 6 N 

DAZAP2 NP_055579 Zn finger; DNA binding Unknown 5 Y 
ZMIZ2 NP_113637 MIZ-type Zn finger Unknown 7 Y 

RNF126 NP_919442 Ring Domain Containing Protein E3 Ubiquitin Ligase 6 Y 
      

Table 3.1 List of identified putative AID-Cofactors. A list of all 36 candidates 
that were cloned in triplicate. The name and accession number of each gene are
presented, as well as the number of times each gene appeared in the screen 
(# cloned). 30/36 hits were verified to interact by Co-IP 
(last column—Y=yes, N=no). In addition, the best description of the function of 
the gene found in the literature is presented. For many of the genes, the 
functions are not known and descriptions of other aspects of the biology of the 
gene are given. AID-interacting factors found by other screens are highlighted.
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very suggestive of function: an N-terminal Zinc Domain, a C-terminal RING 

Finger Domain and a very C-terminal stretch of serine residues (Figure 3.2). The 

C-terminal serine tail contains approximately 12 serines that are conserved from 

its emergence in zebrafish to human (Figure 3.2). Few other proteins contain 

such a domain and its conservation throughout evolution suggests that it plays an 

important role in the mechanism of RNF126. Just upstream of the C-terminal 

serine stretch lies a C3H2C3-type RING domain, which has been shown to be 

necessary for auto-ubiquitination in in vitro assays (Burger et al., 2006).  Lastly, 

the N-terminal Zinc domain shows significant homology (69%) to a zinc finger 

domain on a related E3 ligase, BCA2, which has been identified as a BZF 

domain, a novel ubiquitin binding domain (Amemiya et al., 2008). The 

conservation of these domains prompts intense investigation to determine how 

each play a role in the physiology of RNF126. 

3.3 Identification and validation of RING Finger Protein 126 as an AID-

interactor 

As with the other potential interacting candidates, the direct interaction of 

RNF126 with AID was validated by exogenous expression in both bacterial and 

mammalian systems. First, co-expression of a hexa-histidine tagged RNF126 

and a Flag tagged AID followed by affinity purification shows that AID and 

RNF126 interact. His-RNF126 was purified on a Ni-NTA column and eluted with 

increasing amounts of imidazole. Flag-AID co-eluted with RNF126, but did not 

appear in elution fractions that did not contain His-RNF126 (Figure 3.3).  
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RNF126
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Figure 3.2 RING Finger Protein 126. Cartoon of RNF126 domain structure. 
The position and sequences of the RING domain and Zinc finger domain are 
shown. The insert shows that the amino acid composition of the C terminal 
serine-rich domain is evolutionarily conserved.

76



W
CE

Solu
ble

30
mM

15
0m

M

25
0m

M

Imidazole Elution

αFlag (AID)

αHis (RNF126)

25

50
37

20

Figure 3.3 RNF126 interacts with AID in bacterial cells. AID co-purifies with 
RNF126 upon co-expression and purification in E.coli. Flag tagged AID was 
co-expressed with His-tagged RNF126. Purification of RNF126 on a Talon cobalt 
column and elution with imidazole reveals that AID co-elutes with RNF126.
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In order to better characterize the interaction of RNF126 and AID, the 

regions on both AID and RNF126 that were involved in protein-protein binding 

were determined. Because AID is a small protein, truncation of the protein often 

leads to mis-folding and thus misleading results. To get around this, an approach 

developed by Conticello et. al. was used (Conticello et al., 2008). A set of 

chimera expression constructs, interspersing regions of the APOBEC family 

member, APOBEC2, within AID were used to determine the role individual 

domains of AID play in its interaction with RNF126. Co-expression of His-tagged 

AID and FLAG-tagged RNF126 in bacterial cells followed by co-affinity 

purification experiments revealed that, whereas chimeras A, B and D interacted 

well with RNF126, Chimera C did not (Figure 3.4).  This region replaces residues 

88-116 of AID with the comparable region of APOBEC2, and contains part of the 

zinc-coordinating motif (Figure 1.8), as well as the region of AID (aa 106-116) 

that has been found to confer specificity for AID hotspots. This region, when 

replaced with a comparable region from other APOBEC family members, alters 

the mutation preference of AID (Kohli et al., 2009). 

To ascertain what regions of RNF126 are necessary for its interaction with 

AID, N-terminal truncations of Flag-tagged RNF126 were co-expressed with 6X-

His tagged AID. AID was purified on a Ni-NTA column, followed by elution with 

increasing concentrations of imidazole.  The most severe truncation, containing 

only the RING finger domain and the C-terminal serine stretch, was sufficient to 

interact with AID (Figure 3.5). This data fits well with the observed interaction of 
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Figure 3.4 Delineation of interaction domain on AID. To define the regions of 
AID that interact with RNF126, a set of chimera expression constructs as in 
Conticello et al. were made, interspersing regions of the APOBEC family 
member, APOBEC2, within AID. Schematics are shown in the figure: the black 
line represents APOBEC2 sequence within the AID sequence, shown in grey; in 
addition, white boxes indicate the catalytic residues. Co-expression of 
Flag-tagged RNF126 and His-tagged APOBEC2/AID chimeras in bacterial cells 
followed by purification on a BD Talon Cobalt column demonstrates that whereas 
chimeras A, B and D co-purify with RNF126, Chimera C does not. Chimera C 
replaces the region of AID spanning residues 88-116 with the comparable region 
of APOBEC2. This suggests that this region of AID is the primary site of 
interaction between AID and RNF126. Left panel: anti-FLAG and anti-His blots to 
demonstrate equivalent expression in whole cell extract of RNF126 and AID 
(and its chimeras with Apobec2), respectively. Right panel: the membrane was 
first blotted with anti-FLAG to detect RNF126, followed by incubation with 
anti-HIS antibody to detect the AID/APOBEC2 chimera proteins. 
Co-purification of RNF126-FLAG and 6xHisAID/APOBEC2 was assessed in the 
150mM imidazole fraction.
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  FLAG-RNF126 (FullLength:1-304) 
  FLAG-RNF126-T1 (120-304) 
  FLAG-RNF126-T2 (170-304) 
  FLAG-RNF126-T3 (200-304) 
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FL
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His-AID
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FLAG-RNF126

His-AID

Figure 3.5 Delineation of interaction domain on RNF126. Truncations of 
RNF126 reveal that the RING domain interacts with AID. 
Flag-tagged full-length RNF126 (FL) and various truncations of RNF126 
(T1, T2, T3 - schematic shown) were co-expressed with His-tagged full-length 
AID (gray box-N terminal Zinc finger of RNF126; white box-the RING domain; 
black box-the serine tail domain) . Purification of His-AID on a BD Talon cobalt 
column (BD Biosciences) reveals that N-terminal truncations of RNF126 are still 
able to interact with AID. In addition, the interaction appears stronger as more 
of the N-terminus is deleted, which could result because of increased solubility 
of some of the truncation constructs. Importantly, the last truncation (200-end), 
which contains the RING domain and the serine tail, can interact strongly with 
AID. This suggests that AID can interact with isolated RING domains in general. 
Indeed, the RING domain of the E3 ligase, Mdm2, can interact with AID in a 
yeast-two hybrid screen as well as in our screen; however AID does 
not interact with full-length Mdm2. 
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the RING domain of the E3 ligase Mdm2 in a yeast-two hybrid screen.  Thus, it is 

likely that it is also the RING domain of RNF126 that primarily interacts with AID 

(MacDuff et al., 2006). 

To assure that these two proteins interact in the context of a mammalian 

cell, FLAG-tagged AID and Hemagluttin (HA)-tagged RNF126 were expressed in 

the mammalian 293T HEK expression system. Purification of either AID or 

RNF126 was completed by precipitation with anti-FLAG or anti HA antibodies. 

These studies, again, reveal that AID and RNF16 co-precipitate and thus interact 

(Figure 3.6). In addition to demonstrating an interaction, these studies also show 

that RNF126 and AID reside within the same cellular compartment. 

 Because AID is primarily expressed in B cells for the purpose of antibody 

diversification (Alt et al., 2013; Delker et al., 2009; Teng and Papavasiliou, 2007; 

Vuong and Chaudhuri, 2012; Xu et al., 2012), it was important to determine if 

RNF126 is expressed in a physiological setting alongside AID. Utilizing both 

quantitative RT-PCR and Western blotting, it is clear that RNF126 is expressed in 

primary B cells upon stimulation in vitro to undergo CSR (Figure 3.7 A, B). While, 

naïve, unstimulated B cells do express RNF126, there appears to be a slight 

increase at both the mRNA and protein level upon stimulation. In addition, the 

expression of RNF126 is not dependent on the presence of AID or the formation 

of AID-mediated breaks in these cells because a similar expression profile is 

shown in aicda-/- B cells (Figure 3.7 B).  
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Figure 3.6 RNF126 interacts with AID in mammalian cells. RNF126 interacts 
with AID in a HEK 293T mammalian system. Flag-tagged AID and HA-tagged 
RNF126 were co-expressed. Affinity purification of either tag resulted in the 
purification of the binding partner only when both proteins were expressed.
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Figure 3.7 RNF126 is expressed in primary B cells. (A) Expression of RNF126 
is induced in switching B cells after stimulation for class-switch recombination 
as assessed by qRT-PCR (normalized to CD19 levels). (B) RNF126 protein 
levels increase in murine B cells after stimulation to undergo class switch 
recombination in an AID-independent manner. Arrow denotes RNF126 band 
(Tubulin: loading control). The values beneath the blot denote a quantification 
of RNF126 protein levels, normalized to Tubulin.
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3.4 RNF126 ubiquitinates AID 

Because RNF126 contains a RING finger domain, a domain commonly 

found in E3 ubiquitin ligases, and RNF126 has already been shown to be able to 

auto-ubiquitinate in vitro (Burger et al., 2006), it was plausible that RNF126 could 

also modify AID in addition to simply interacting. In order to test this, a HEK 293T 

ubiquitination assay was developed. In this assay, AID is expressed with and 

without co-expression of RNF126 and/or ubiquitin. Upon addition of RNF126, but 

not without, AID is ubiquitinated (Figure 3.8). Interestingly, these experiments 

exhibited neither a single slow migrating band, representative of a mono-

ubiquitination event, nor a higher molecular weight smear, representative of poly-

ubiquitination events. The pattern of ubiquitination observed, a ladder of 

approximately three to four slower migrating bands, could be representative of 

either a small poly-ubiquitin chain addition on one residue of AID, or multiple-

mono-ubiquitination events on different residues of AID. To determine which of 

these scenarios is occurring, two mutants of ubiquitin, a Lysine 48 mutation to 

Arginine (K48R) and a Lysine 63 mutation to Arginine (K63R) were co-expressed 

with AID and RNF126. Poly-ubiquitin chains generated through linkages at lysine 

48 are typically found in proteins targeted for degradation by the proteasome; 

conversely, poly-ubiquitin chains generated through linkages at lysine 63 are 

commonly found on protein components of signaling modules (Pickart, 2001b). 

Although other poly-ubiquitin linkages have been seen, K48 and K63 are the 

most common. Expression of both K48R and K63R ubiquitin moieties in the 293T 
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Figure 3.8 RNF126 ubiquitinates AID in HEK 293T Cells. AID is ubiquitinated 
by RNF126 in HEK 293T cells. Co-expression of hAID with HA-tagged RNF126 
and Flag-tagged ubiquitin results in the formation of ubiquitylated AID, even in 
the presence of K48R/K63R mutant ubiquitin. RIPA extracts were prepared and 
AID immunoprecipitated with an anti-AID antibody. An anti-AID and an anti-FLAG 
(ubiquitin) blot are shown. The heavy chain band is marked as “HC.” 
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assay resulted in a similar three to four band laddering pattern, suggesting that 

this laddering pattern is not poly-ubiquitination (at least not of linkages at K48 or 

K63), but rather multiple mono-ubiquitination events (Figure 3.8). It has been 

shown that increased concentrations of E3 ligase can convert a mono-

ubiquitination event into multiple mono-ubiquitination events (Li et al., 2003). 

Because this assay relies on the overexpression of RNF126 in the 293T system, 

it is possible that the laddering pattern observed is due to increased levels of 

RNF126 over what would be physiological levels of the protein.  

To overcome this problem, an in vitro ubiquitination assay was developed 

and optimized using purified recombinant RNF126 and AID, as well as other 

necessary components of the ubiquitination cascade. Because UbcH5b was 

already identified as a compatible E2 ubiquitin conjugating enzyme for RNF126 

(Burger et al., 2006), this E2 enzyme was chosen for these in vitro assays. 

Further experiments confirmed that only UbcH5b and Ubch5C, although to a 

lesser extent, are able to support in vitro ubiquitination of AID by RNF126; 

however, other E2s tested were not (Figure 3.9). 

Just as in the 293T ubiquitination assays, ubiquitination of AID occurred in 

an RNF126-dependent fashion; furthermore, the addition of ubiquitin is 

dependent on all other components of the ubiquitination cascade, including Ube1 

(E1), UbcH5b (E2), ubiquitin and energy (ATP) (Figure 3.10 A). While it was 

possible to detect a slight laddering of AID upon ubiquitination, the band 

representative of the addition of a single ubiquitin moiety to AID appears more 
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in vitro ubiquitination assay. An anti-AID immunoblot is shown; unmodified and 
Ub-AID are marked with asterices. The asterix used to mark UbcH5a,b,c denotes 
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intense than even higher migrating bands, suggesting one main mono-

ubiquitination event with the possibility of additional ubiquitination events on the 

same AID molecule. To confirm this, in vitro ubiquitination assays were 

performed using a mutant form of ubiquitin in which all seven lysines are mutated 

to arginine (K0). This mutant is unable to form poly-ubiquitin chains. The same 

slight laddering pattern of AID ubiquitination was observed using K0 ubiquitin as 

compared to wildtype, thus confirming that RNF126 mono-ubiquitinates AID 

(Figure 3.10 B). 

Because the RING domain of E3 ligases is essential for substrate 

ubiquitination and because it has already been established that the RING domain 

of RNF126 interacts with AID, it was important to determine if mutation of the 

RING Domain resulted in a loss of ubiquitination. A mutant version of RNF126 

(RNF126*), which contained mutations at two of the zinc-coordinating cysteines 

in the RING domain (C229A/C232A), was tested in the 293T ubiquitination 

assay. Unlike wildtype RNF126, RNF126* was unable to ubiquitinate AID, 

providing direct evidence for the necessity of the RING domain (Figure 3.11). 

Though ubiquitination most commonly occurs on lysine residues, 

ubiquitination has also been observed on serine, threonine and cysteine residues 

(Cadwell and Coscoy, 2005; Wang et al., 2007). To determine the residue on AID 

that is ubiquitinated by RNF126, lysine to arginine mutants of AID were subjected 

to the 293T ubiquitination assay. Single lysine to arginine mutants, as well as 

grouped lysine to arginine mutants, were still able to be ubiquitinated (Figure 3.12 
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Figure 3.11 The RING domain of RNF126 is necessary for AID
ubiquitination. Mutations in the RING domain of RNF126 abrogate the ability
to modify AID. Mutant RNF126 (RNF126*), which contains cysteine to alanine 
mutations at the first two zinc-coordinating cysteines in the RING domain of 
RNF126 (C229A and C232A ) is catalytically inactive. HA tagged wildtype 
RNF126 or RNF126* are co-expressed in 293T cells with Flag-AID. 
Wildtype RNF126 is able to induce ubiquitylation of AID (lane 2), 
but RNF126* is not (lanes 3). Expression of Flag-AID without exogenous ligase 
is shown as a control (lane 1). The top panel shows an αAID western blot of an 
αFLAG IP. The bottom three panels show levels of Flag-AID (αAID), 
HA-RNF126/RNF126* (αHA) and tubulin (αTubulin) in the input/whole cell 
extract. The heavy chain band from the antibody used in the IP is denoted 
as “HC.”
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A). However, mutation of all lysines to arginine (AID K0) resulted in a loss of 

ubiquitination (Figure 3.12 A), suggesting that a lysine residue is ubiquitinated. 

However, reconstitution of aicda-/- B cells with AID K0 could not rescue CSR 

(Figure 3.12 B). Thus, it cannot be ruled out that structural changes to the protein 

are the cause of the loss of ubiquitination. In addition, mass spectrometric 

analysis of in vitro ubiquitinated AID was attempted; however, due to limited 

material, full coverage of the protein was not achieved and the ubiquitination site 

not identified. 

3.5 RNF126 displays specificity toward AID 

Thus far it has been established that (1) RNF126 can interact with AID, 

and (2) RNF126 can act as an E3 ligase to modify AID. To become more certain 

that these events were not non-specific, it was important to establish that 

RNF126 possesses specificity for AID as a substrate.  To determine this, the 

ability of RNF126 to ubiquitinate AID was first compared to two other ligases 

expressed in B cells, RNF8 and BCA2. 

RNF8 has been shown to play a distinct role in mediating the recruitment 

of protein factors necessary for double-strand break repair during class-switch 

recombination (Ramachandran et al., 2010). To assess the ability of RNF8 to 

modify AID, these factors were co-expressed in the HEK 293T ubiquitination 

assay. While co-expression of RNF126 with AID in 293T cells results in the 

ubiquitination of AID, co-expression of RNF8 and AID in this setting does not 

(Figure 3.13 A, left panel). This finding was confirmed using the in vitro 
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Figure 3.13 RNF126 selectively ubiquitinates AID when compared to RNF8. 
(A) 293T cells were transfected with Flag-AID, alone or with HA-RNF126 or 
HA-RNF8 (left panel), and Flag-PCNA, alone or in combination with the same 
ligases (right panel). Co-expression of RNF126, but not RNF8, results in AID 
ubiquitylation. Ubiquitylation of PCNA occurs upon co-expression of RNF8 (lane 3), 
but not RNF126 (lane 2). Both AID and PCNA were immunoprecipitated with
αFlag and blotted with αAID and αFlag, respectively (top panels). Western blots 
of AID (αAID), PCNA (αFlag), RNF126/RNF8 (αHA) and tubulin (αTubulin) of 
input (whole cell extract) are shown in the bottom three panels. Asterices mark the 
unmodified and modified bands of AID and PCNA and “HC” denotes the heavy 
chain band. Lane 1 of each panel represents the expression of the substrate 
without exogenous ligase. (B) GST-RNF8 and GST-PCNA were used as an 
alternate ligase and substrate in the in vitro ubiquitylation assay. Reactions were 
carried out with either UbcH5b or UbcH5c as the E2 enzyme. In both cases, 
RNF8 selectively ubiquitylates PCNA and not AID (lanes 3,5) and RNF126 
selectively ubiquitylates AID and not PCNA (lanes 4,6). Lane 1 excludes all 
components except the substrate and Lane 2 only excludes the E3 ligase. .  
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ubiquitination assay, in which it was clear that mono-ubiquitination of AID 

required RNF126 (Figure 3.13 B).  

RNF126 shows incredibly high homology to another RING domain 

containing E3 ligase, BCA2. BCA2 shows 46% identity to RNF126 in overall 

amino acid content and 75% homology within the RING domain, lacking only the 

serine tail, which is unique to RNF126 (Burger et al., 2006) (Figure 3.14 A). 

Further, it is the RING domain of RNF126 that has been shown to bind AID 

(Figure 3.5). Thus, comparison of RNF126 with BCA2 in their ability to 

ubiquitinate AID provided a good test for the specificity of RNF126. In addition, 

BCA2 is expressed in B cells during CSR, providing physiological relevance 

(RNA-Seq data from (Fritz et al., 2013)). Despite the similarities between these 

two proteins, co-expression of BCA2 with AID in HEK 293T cells does not lead to 

AID ubiquitination (Figure 3.14 B). Again, this provides evidence for the 

specificity of the RNF126-AID interaction and modification. 

 In addition to these studies, which compare RNF126 to other E3 ligases, it 

was also important to test the ability of RNF126 to ubiquitinate alternate 

substrates. Though it is fairly common for ligases to ubiquitinate multiple 

substrates in different cellular contexts (Mailand et al., 2007; Zhang et al., 2008), 

it was still interesting to determine if RNF126 could ubiquitinate other proteins 

that are involved in CSR/SHM.  One such substrate is Proliferating Cell Nuclear 

Antigen (PCNA), a homo-trimeric ring that encircles DNA and is necessary for 

DNA replication and repair in the context of AID mediated reactions (Langerak et 

al., 2009; Roa et al., 2008). Specifically, mono-ubiquitination of PCNA at lysine 
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164 (K164) is believed to recruit the error-prone DNA polymerase, Pol η, 

resulting in the accumulation of mutations at non-C:G base pairs within the 

variable region and switch regions of the immunoglobulin locus (Faili et al., 

2004). Mono-ubiquitination of PCNA has been shown to be carried out by two 

different E2/E3 ubiquitin conjugating enzyme/ligase pairs: Rad6/Rad18 (Hibbert 

et al., 2011; Hoege et al., 2002) and UbcH5c/RNF8 (Zhang et al., 2008). 

However, additional enzymes are thought to allow for residual mono-

ubiquitination even in the absence of these canonical modifying complexes. The 

ability of RNF8 and RNF126 containing complexes to ubiquitinate PCNA was 

determined in both the 293T ubiquitination assay, as well as the in vitro assay. In 

both assays it was clear that RNF8 had activity toward PCNA, but RNF126 was 

completely inactive (Figure 3.13 A, B).  

Though every possible candidate substrate for RNF126, or conversely, 

every possible candidate ubiquitin ligase for AID, was not tested, these 

experiments establish that (1) RNF126 shows specificity for AID when presented 

with a substrate known to be present at the immunoglobulin locus during CSR 

and SHM and (2) that two other ligases, one of which has been demonstrated to 

be present at the immunoglobulin locus (RNF8) and one which is expressed in 

switching B cells and shows high homology to RNF126 (BCA2) cannot 

ubiquitinate AID.  
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CHAPTER 4: GENERATION AND CHARACTERIZATION OF AN RNF126 

CONDITIONAL KNOCKOUT MOUSE MODEL SYSTEM 

4.1 Motivation 

A number of screening methods have been undertaken to show that AID 

interacts with a variety of cellular proteins, suggesting the involvement of several 

universal cellular processes in AID-mediated reactions. However, for many of 

these factors mechanistic details are still lacking. Often the AID cofactors 

identified are essential cellular proteins. This makes it difficult to generate knock-

out models due to lethality as well as produces complicated phenotypes because 

of the existence of multiple cellular roles for a given factor. Thus, most findings 

have relied on shRNA knock-down studies and/or mutation of the empirically-

determined binding interface.  In addition, a variety of model systems have been 

utilized for these studies, including DT40 chicken B cells, the murine B cell 

lymphoma line, CH12s, and primary B cells in vitro and in vivo.  Each of these 

contexts studies a slightly different AID-dependent mechanism and thus may 

utilize a different set of AID cofactors. 

Having already established that the E3 Ubiquitin Ligase, RNF126, is able 

to interact with and mono-ubiquitinate AID (Delker et al., 2012), the role of 

RNF126 and RNF126-mediated ubiquitination in antibody diversification 

remained to be examined. Because of the difficulties associated with analyzing 

the importance of putative AID cofactors, the generation of an RNF126 

conditional knockout mouse model was undertaken in order to provide the most 

thorough analysis of the role of RNF126 during antibody diversification. Through 
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the generation of a B-cell specific knockout, the role of RNF126 during SHM, 

CSR and affinity maturation could be assessed. 

4.2 Generation of an RNF126 conditional knockout mouse model  

Because rnf126 is a relatively uncharacterized gene, it was unclear 

whether a full knockout would result in embryonic lethality. For this reason, 

generation of a conditional knockout mouse model, taking advantage of the Cre 

Recombinase system, proved to be the most prudent approach (Schmidt-

Supprian and Rajewsky, 2007). The rnf126 locus on chromosome 10 was 

targeted with a knock-out first construct, which contains a gene-trap cassette 

within intron 1, terminating translation after exon 1 when the full construct is 

present. Conditional knock-out potential can be restored by taking advantage of 

the FRT, or Flipase Recombinase sites, that flank the gene-trap cassette. In the 

absence of the gene-trap and drug resistant cassettes within intron 1, deletion of 

exons 2-8, and thus generation of a knock-out allele, is made possible by the 

presence of two LoxP sites which flank exons 2-8, the bulk of the coding region 

of the gene (Figure 4.1). A more thorough presentation of the strategy used to 

both generate and genotype the RNF126 conditional knockout mouse is 

presented in Figure 4.2 

 Targeted ES cells were derived from a C57BL/6N background, but with an 

agouti coat color, thus enabling detection of high chimerism by mosaic coat color 

while preserving the C57BL/6 background even in the F1 progeny. Breedings 

between several chimeric mice and C57BL/6 wildtype mice produced one 

offspring in which transmission of the targeted construct was detected both by 
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Figure 4.1 Schematic of targeting construct and resultant allele. The 
endogenous allele, targeting vector, targeted allele and knockout allele are shown. 
RNF126 contains 9 exons, of which exons 2-8 are flanked by LoxP sites. In 
addition, a gene-trap construct has been inserted within intron 1, which, when 
present, prevents translation through the locus thereby creating a knock-out allele. 
The gene-trap construct is flanked by FRT recombination sites and was deleted 
by breeding mice transgenically expressing the Flipase recombinase 
(see Floxed and Flipped allele). B-cell specific conditional knockouts were 
obtained by breeding mice containing the Floxed (and Flipped) allele with mice 
expressing the recombinase CRE from the mb-1 locus. SspI sites used for 
genomic DNA digestion and expected band sizes for the endogenous allele and 
targeted allele are shown. In addition, primers used for PCR genotyping the 
locus are shown as green and red arrows.
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Figure 4.2 Detailed schematic of RNF126 locus and genotyping primers. 
(A) Genotyping of the targeted knock-out first allele. Prior to breeding to mice 
expressing Flipase, mice containing the knock-out first allele were genotyped with 
the R2-F/Endo-R primer set, yielding a 213bp product that is not produced from 
the endogenous allele. (B) Differentiation of the endogenous allele from the Floxed 
allele is obtained using the primer set Endo-F/Endo-R. Identification of deletion of 
exons 2-8 by CRE-induced recombination is determined using the primer set 
Endo-F/RP-R. (C) A table denoting genotyping primer sets used and the expected 
amplicon for each RNF126 allele.
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coat color and southern blotting (Figure 4.3A). Deletion of the gene-trap cassette 

was accomplished by crossing mice containing at least one rnf126-targeted allele 

with Flipase expressing mice. Subsequently, the Flipase transgene was crossed 

out, leaving the final targeted allele (abbreviated “Fl”), which has knock-out 

potential when crossed with a Cre-expressing strain (Figure 4.3B). Lastly, 

attempts to breed mice containing one or two targeted alleles with intact gene 

trap constructs suggest that deficiency in RNF126 results in either insufficiencies 

in reproduction and/or embryonic lethality as mice containing targeted alleles 

were born at much lower frequencies than expected. Further, deceased pups 

found from breedings were enriched for mice containing homozygous targeted 

alleles (Figure 4.4). 

4.3 Validation of the RNF126 conditional knockout mouse model. 

In order to generate a B-cell specific rnf126-/- conditional knock-out, the 

established mb1-Cre strain of mice, which contains a humanized Cre gene 

knocked into the mb1 locus, was used (Hobeika et al., 2006).  The mb1 gene 

encodes the Igα subunit of the B cell receptor and is expressed at the pro-B cell 

stage of B cell development. Thus, Cre expression is upregulated, and the floxed 

gene of interest deleted, in the earliest stage of B cell development.  

To validate that the construct functions as it should, experiments were 

conducted at the DNA, RNA and protein level to confirm that deletion of rnf126 

was occurring in the B cells of mice with the genotype RNF126Fl/Flmb1Cre/+. 

Importantly, PCR genotyping of genomic DNA derived from the tail reveals an 

intact locus, whereas genotyping of genomic DNA from splenic B cells from the 
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Figure 4.4 Full RNF126 knockout mice are produced at much lower rates 
than expected. Because the targeting vector contains a gene trap construct in 
intron 1, disrupting expression through the allele, mice that are homozygous for 
this allele are “functional” knock-outs (RNF126-/-). Very few functional knockout 
mice were produced from breedings. (A) Breedings between homozygous and 
heterozygous functional knockouts produced significantly fewer homozygous 
mice than expected. Tables depict total number of pups from each breeding type,
and the expected and actual number of pups for each genotype. (B) When dead 
pups were found in cages they were genotyped. The majority of dead pups found 
were homozygous for the targeted allele and thus RNF126-/-. 
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same mouse reveals the expected deletion (Figure 4.5A). Thus, despite the 

presence of the Cre gene throughout the mouse, expression is limited to the B-

cell subset. In some cases it appeared as if Cre expression was leaky and 

deletion occurred in a subset of cells derived from tail. When mice that contained 

leaky Cre expression were used in experiments, it was noted; however, no 

differences were observed between B-cells derived from these mice as 

compared to non-leaky Cre expressing mice. 

In addition, it has been verified that deletion of exons 2-8 of the rnf126 

gene in B cells results in loss of gene expression, which can be shown both at 

the level of mRNA (Figure 4.5B) and protein (Figure 4.5C). 

4.4 Analysis of RNF126 conditional knockout mice 

4.4.1 B Cell Development is unaffected by the loss of RNF126 

Because the recombinase Cre was expressed from the mb-1 locus, thus 

deleting the rnf126 gene at the Pro-B cell stage (Hobeika et al., 2006), it 

remained a possibility that B cell development would be affected by the loss of 

RNF126. To assess this, flow cytometry was used to characterize the relative 

levels of Pro-, Pre- and Immature B cells in the bone marrow of RNF126Fl/Fl 

mb1+/+ and RNF126Fl/Fl mb1Cre/+ mice. RNF126Fl/Fl mb1Cre/+ mice, when compared 

to both unrelated C57Bl/6 wildtype mice and RNF126Fl/Fl mb1+/+
 mice, had 

comparable levels of each B-cell subset and thus displayed no observable defect 

in B cell development (Figure 4.6 A), In addition, the proportion of mature 

IgM/IgD double positive B cells in the spleen of these mice was assayed and, 

again, no defect was observed in the RNF126Fl/Fl mb1Cre/+ mice as compared to 
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Genotyping using primers depicted in Figure 4.1 show deletion of RNF126 
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8. This deletion occurs only in the presence of the mb-1 CRE gene (bottom panel). 
(B) RNA was collected from splenic B cells stimulated for 72hr in vitro. B cells 
were derived from an unrelated c57bl/6 wildtype mouse, an unrelated aicda-/- 
mouse and related rnf126Fl/Fl mb1+/+ and rnf126Fl/Fl mb1Cre/+ mice. Primers 
that bind in Exon 1 and Exon 4 of the rnf126 gene were used to assay the 
presence of transcript. Primers within the rpl32 gene were used as a 
normalization control. (C)Western blot analysis of whole cell lysates derived from 
splenic B cells stimulated in culture to undergo CSR shows the absence of 
RNF126 protein in B cells in RNF126Fl/Fl mb-1CRE/+ mice, but not 
RNF126Fl/FL mb-1+/+ mice. RNF126 runs as multiple bands, as marked. 
An anti-RNF126 western blot is shown. 
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Figure 4.6 B cell development is not affected by loss of RNF126. 
(A) Summary of FACS analysis of bone marrow cells derived from C57Bl/6 
wildtype, RNF126Fl/Fl mb1+/+ and RNF126Fl/Fl mb1Cre/+ demonstrates 
comparable levels of pro-, pre- and immature B cells. Data from 1 C57Bl/6 
widltype mouse, 1 RNF126Fl/Fl mb1+/+ mouse and 2 RNF126Fl/Fl mb1Cre/+ is 
shown. Error bars denote standard deviation. (B) Summary of FACS analysis of 
spleen cells derived from the same mice as in A. Again, there are comparable 
levels of IgM+IgD(Lo) and IgM+IgD+ B cells in all genotypes tested.
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wildtype mice (Figure 4.6 B). Thus, normal B cell development is maintained in 

the absence of RNF126. 

4.4.2 Genetic deletion of RNF126 results in a slight reduction of CSR in 

vitro 

 As AID is the key component of antibody diversification and loss of AID 

results in complete abrogation of antibody diversification in mature B cells, it was 

of great interest to determine if deletion of RNF126 also affected CSR. Thus, 

experiments were conducted in order to determine if primary B cells derived from 

RNF126Fl/Fl mb1Cre/+ mice displayed compromised levels of CSR. Splenic B cells 

derived from RNF126Fl/Fl mb1Cre/+ and RNF126Fl/Fl mb1+/+ mice were stimulated in 

vitro with IL-4/αCD-40 to induce a switch from the IgM isotype to that of IgG1. 

Levels of CSR were measured by flow-cytometry and reported as the percentage 

of B cells, which express surface-bound IgG1. While RNF126-deficient B cells 

are able to undergo CSR, they do so at a slightly reduced efficiency, both when 

CSR levels are measured at 72hr and 96hr post-stimulation (Figure 4.7). In 

response to these stimuli, RNF126-deficient B cells displayed a slight delay in 

proliferation, which may account for the subtle defects observed in CSR, as it is 

known that CSR is dependent on progression through the cell cycle (Figure 4.8). 

4.4.3 Loss of RNF126 results in a subtle defect in Affinity Maturation in 

response to NP-CGG 

 In addition to affecting CSR, mis-regulation of AID can also result in 

aberrant SHM and affinity maturation. In fact, it is entirely possible that there 

exists a different subset of AID cofactors for each of these processes, thus 
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Figure 4.7 Genetic loss of RNF126 does not significantly impair CSR. Naïve 
splenic B cells derived from RNF126Fl/Fl mb1+/+ and RNF126Fl/Fl mb1Cre/+ 
mice were stimulated in vitro with aCD-40 and IL-4 to induce a CSR event to 
IgG1. FACS analysis completed at 72hr and 96hr post stimulation was used to 
determine the percentage of cells which express surface IgG1. Colors indicate 
experimentally paired mice. P-values, determined by the unpaired student’s 
t-test, are shown.
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Figure 4.8 RNF126 knockout B cells exhibit a slight delay in cell 
proliferation. RNF126Fl/Fl B cells were purified from 1 RNF126Fl/Fl mb1+/+ 
mouse and RNF126Fl/Fl mb1cre/+ B cells were purified from 2 
RNF126FL/Fl mb1Cre/+ mice (labeled 1 and 2). Cells were loaded with CFSE 
as described in Materials and Methods and stimulated in vitro with IL-4 and 
anti-CD40. FACS plots show switch rates to IgG1 relative to cell division 
(CFSE) and histograms overlay CFSE profiles of each genotype. Analysis was 
completed at (A) 72hr, (B) 96hr and (C) 120hr post-stimulation. 
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contributing to the difference in outcomes. At present, and for unknown reasons, 

SHM in B cells cannot be assayed in vitro. Thus, to determine if loss of RNF126 

results in a defect in SHM and Affinity Maturation, an in vivo immunization model 

was used.  The established and well-studied nitro-phenol (NP) immunization 

model was chosen.  

To assay affinity maturation, or the increase in antibody affinity to a given 

antigen as a result of somatic hypermutation and B cell-selection in the germinal 

center, animals were immunized with NP16-CGG and serum was collected to 

assess titers of NP-specific IgG1 antibodies. Affinity to NP conjugated to BSA in 

a ratio of 30 (NP30-BSA) was used as a measure of total NP-specific IgG1 

antibodies and in a ratio of 3 (NP3-BSA) as a measure of high affinity NP-specific 

antibodies. Affinity maturation was then calculated as the ratio of high affinity to 

total NP-specific antibodies (NP3/NP30). As expected, there was an increase in 

titers of total and high affinity NP-specific antibodies as time progressed post-

immunization; this increase occurred in both the RNF126Fl/Fl mb1+/+  and 

RNF126Fl/Fl mb1Cre/+ mice, however a significant defect was observed in the 

production of high affinity anti-NP antibodies in RNF126Fl/Fl mb1Cre/+ mice (Figure 

4.9, (representative of Cohort 2--refer to Figure 4.11)). In total, 28 mice have 

been immunized and peripheral blood collected at day 21 post-immunization. 

NP3/NP30 ratios have been measured in these mice and show that loss of 

RNF126 results in a subtle, but consistent, defect in affinity maturation (Figure 

4.10).  
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Figure 4.9 Loss of RNF126 hinders production of high affinity antibodies. 
Titers of NP3-binding IgG1 and NP30-binding IgG1 were determined by ELISA 
for cohort 2, which contained 4 RNF126FL/FL mb1+/+ and 4 
RNF126Fl/Fl mb1Cre/+ mice at D7, D14 and D21 post-immunization. 
NP-specific IgG1 levels were normalized to total serum IgG1. Error bars denote 
standard deviation. P-values, determined by the unpaired student’s t-test, are 
shown.
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Figure 4.10 RNF126-deficient B cells display a defect in affinity maturation. 
NP3/NP30 ratios at D21 post-immunization, or a measure of affinity maturation, 
are shown for each mouse within each genotype (X-axis) and cohort 
(color coordinated). A decrease in affinity maturation occurs in mice with 
RNF126-deficient B cells, with a p-value of .0625 (unpaired student’s t-test). 
The bars denote the average NP3/NP30 ratio and the standard deviation.
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In addition, Figure 4.11 presents the relative titers of (1) high affinity NP-

specific antibodies and (2) total NP-specific antibodies measured at D21 post-

immunization in the three cohorts of mice immunized. As can be seen, the overall 

immune response in Cohort 3 does not appear to be as robust as Cohort 1 and 

2. For completeness, though, this data is still included in the affinity maturation 

analysis. It is possible, though, that the inclusion of Cohort 3 has skewed the 

significance of difference in affinity maturation between wildtype and RNF126 

conditional knock-out mice and should be taken into consideration. Affinity 

maturation measurements shown in Figure 4.10 are color-coded based on cohort 

number and, as can be seen, a much greater defect is observed in the first two 

cohorts. 

Thus, while RNF126 does not appear to be essential for either CSR and 

affinity maturation, genetic loss of RNF126 does result in subtle defects in both 

processes. This suggests that RNF126 plays a role in fine-tuning the reactions. 

4.4.4 Loss of RNF126 results in altered mutation patterns during Somatic 

Hypermutation 

 Another benefit to using the NP-immunization model is that NP induces a 

characteristic immune response, allowing one to sequence the variable region of 

the immunoglobulin gene and assess mutation rates and patterns. Due to high 

germline affinity for NP, B cells which have produced a V(D)J rearrangement 

containing the V186.2 V region and the JH2 J region are selected for post-

immunization. Thus, primers specific for these two regions can be used to 

sequence for mutations within the variable region. 
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Figure 4.11 Complete presentation of antibody titers in three cohorts of 
mice. A total of 28 mice, within 3 cohorts, were immunized with NP-CGG as 
described in Materials and Methods. Cohort 1 and 2 each contained 4 
RNF126FL/FL mb1+/+ and 4 RNF126Fl/Fl mb1Cre/+, and Cohort 3 contained 
6 RNF126FL/FL mb1+/+ and 6 RNF126Fl/Fl mb1Cre/+. Average titers of 
NP3-binding IgG1 (left panel, high affinity) and of NP30-binding IgG1 
(right panel, total) at day 21 post-immunization in control (black) and 
RNF126-deleted mice (gray) for cohorts 1-3 are shown. The asterisk denotes 
that the decrease in relative NP3-binding IgG1 levels in the RNF126-deleted 
mice of cohort 2 compared to wildtype is statistically significant 
(p=.046, determined by unpaired student’s t-test). Error bars denote the standard 
deviation.
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To investigate whether RNF126 is necessary for somatic hypermutation in 

vivo, two RNF126Fl/Fl mb1+/+ and three RNF126Fl/Fl mb1Cre/+ mice were immunized 

intraperitineally with nitro-phenol conjugated to chicken gamma globulin (NP16-

CGG). Mice were sacrificed 14 days post-immunization, germinal center B cells 

FACs-sorted using the cell-surface markers FAS, GL7 and CD19 and genomic 

DNA prepared. Somatic mutations were assessed in three regions of the 

immunoglobulin heavy chain gene: (1) the rearranged V186.2 variable region, the 

dominant form of antibody selected for in response to NP, (2) the un-rearranged 

JH4 intronic region downstream of the rearranged variable region, and (3) the 

region upstream of the V186.2 variable exon and downstream of the promoter 

region (schematic presented in Figure 4.12). Mutations found within each of 

these regions can be informative. First, because the V186.2 exonic region 

encodes for the majority of the antigen-binding domain of the antibody, mutations 

found here are under selection pressure to improve affinity. In contrast, mutations 

located downstream of the rearranged variable region in the JH4 intron, which 

are not informative of the antibody produced, represent those mutations that are 

not under selection pressure. Thus, analysis of these mutations can be more 

informative of AID activity and repair pathways utilized because selection has not 

occurred to erase the mark of those mutations. Lastly, the third region, termed 

the V186.2 Upstream Region, was sequenced to assess the existence of any 

alterations in the spatial location of mutations relative to the promoter, where AID 

is thought to be loaded along with RNAP II (Peters and Storb, 1996) and induce 

mutation upon RNAP II stalling (Pavri et al., 2010). Differences in the pattern of 
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mutations found in this region could be informative of the presence of defects in 

AID complex formation at the Ig locus. Analysis of SHM in RNF126Fl/Fl mb1+/+ and 

RNF126Fl/Fl mb1Cre/+ mice is broken down into the regions described. A summary 

of the data obtained from the three regions is shown in Figure 4.12. 

A. V186.2 Exon 

 Because this region codes for the portions of the antibody that come into 

direct contact with antigen, mutations here have the most impact on affinity. 

Thus, an analysis of mutations in this region should correlate with an analysis of 

affinity maturation. A defect in the generation of high affinity antibodies, and thus 

affinity maturation, was detected in RNF126Fl/Fl mb1Cre/+ mice (Figure 4.9 and 

4.10). Intuitively, then, it would be expected that the loss in affinity maturation is 

due to a decrease in mutation within this region. Unexpectedly, this was not what 

was found. As a note, for all analyses presented unique mutation frequencies 

were calculated.  This is a more conservative approach because it not only 

excludes PCR duplicates (where the entire sequence is the same), but also 

excludes duplicate mutations at the same base in the same mouse. These 

duplicates could represent bona fide AID-mutations, but more likely represent a 

mutation that was carried through to an additional round of mutagenesis. Thus, 

this one mutation appears in multiple sequences derived from clonally divided B 

cells.  Unique mutation frequencies in the V186.2 exonic region were not 

significantly different in RNF126Fl/Fl mb1Cre/+ mice as compared to RNF126Fl/Fl 

mb1+/+ mice (Figure 4.12).  Thus, loss of RNF126 does not inhibit the introduction 

of mutations by AID.  
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Figure 4.12 Overview of somatic hypermutation analysis in immunized mice. 
(A) Schematic of regions used for mutation analysis. Regions were cloned from 
genomic DNA prepared from germinal center B cells from 14-day immunized 
mice (rnf126Fl/Fl mb1+/+ and rnf126Fl/Fl mb1Cre/+). Primers used to amplify 
each region are shown: US-F/R were used to amplify the 295bp V186.2 upstream 
region, which spans from the promoter to Intron 1 of the recombined antibody 
gene, Exon-F/R were used to amplify the 351bp V186.2 exonic region, which 
makes up the bulk of the antigen binding domain of the translated antibody and 
JH4-F/R were used to amplify the 357bp JH4 intronic region, beginning at the 
exon/intron junction. (B) Detailed representation of mutation analysis. A table is 
used to describe the following information for each genotype and region 
sequenced: (1) the total number of sequences analyzed, (2) the number of 
mutated sequences as an absolute number and a percent of total sequences, 
(3) the number of unique and total mutations, and (4) the unique mutation 
frequency and (5) the non-unique mutation frequency, each with its 
corresponding p-value, as calculated by the chi-squared test. The number of mice 
of each genotype used is stated (N=2 for rnf126Fl/Fl mb1+/+ and N=3 for 
rnf126Fl/Flmb1Cre/+). 
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This data, though, leaves open the question of why affinity maturation is 

defective in RNF126 conditional knockout mice. This inconsistency can be 

explained in a few different ways. First, it is known that particular mutations 

(Tryptophan 33 to Leucine (W33L)) contribute greatly to NP-affinity. Thus, a 

decrease in this mutation could explain defective affinity maturation. In addition, it 

has been observed before that the introduction of additional mutations in the 

region either by overactive AID or AID that persists post-germinal center can also 

be detrimental to affinity (Teng et al., 2008).  Analysis of V186.2 sequences from 

RNF126Fl/Fl mb1Cre/+ and RNF126Fl/Fl mb1+/+ mice revealed that, while there were 

no differences in the prevalence of the W33L mutation, there was a shift toward a 

larger number of mutations present per sequence/B-cell in the RNF126 

conditional knockout mice (Figure 4.13).  In fact, an analysis of the non-unique 

mutation frequency reveals that RNF126 conditional knockout mice exhibit a 

greater number of mutations than their wildtype counterparts (Figure 4.12).  

These additional mutations could account for the loss of affinity for immunogen.  

Further experiments will be necessary to determine the mechanism of how 

RNF126 limits AID mutation in the context of the V186.2 exon. 

B. JH4 Intron 

 As mentioned, the JH4 intron lies downstream of the rearranged variable 

region. Thus, it does not encode for antibody and mutations here can be used to 

assess the mutagenic load in the absence of germinal-center selection. Just as 

was seen in the V186.2 exonic region, unique mutation frequencies in the JH4 

intron from RNF126Fl/Fl mb1Cre/+ and RNF126Fl/Fl mb1+/+ mice were not 
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Figure 4.13 Loss of RNF126 results in altered mutation patterns in the 
V186.2 exon. (A) An analysis of the types of mutations at residue 33 (W33) 
reveals that there is no significant decrease in the known high-affinity mutation 
W33 to L33 in RNF126 conditional knockout mice. The fraction of sequences 
mutated to other amino acids is also shown. (B) An analysis of the number of
mutations per clone reveals that sequences derived from RNF126-deficient
B cells contain more mutations than those derived from wildtype B cells. This 
difference is significant (p = .0018), as determined by the Mann-Whitney test. In
both analyses, unique sequences were used so as to avoid PCR duplicates. 
Wildtype data is presented in black and RNF126 conditional knockout data 
presented in red.
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significantly different (Figure 4.12).  Again, it is not likely that RNF126 affects the 

mutagenic activity of AID.  In line with this, there does not appear to be a 

significant difference in the number of mutations per sequence in the JH4 region 

(Figure 4.14). 

 Despite the lack of difference in total mutation frequency, it is particularly 

evident in this region that the pattern of mutation in RNF126Fl/Fl mb1Cre/+ mice is 

different from that of RNF126Fl/Fl mb1+/+ mice. It has been well-established that 

mutations at C:G basepairs are not strand biased—that is, cytosine bases on the 

template (T) strand are just as likely as cytosine bases on the exposed non-

template (NT) strand to be targeted by AID and mutated. In contrast, mutations at 

A:T basepairs do show a strand bias. Adenine bases on the NT strand are 

mutated more frequently than the T strand. This has been explained by the 

greater accessibility of the error-prone repair pathways, including Pol η, to the NT 

strand.   

As expected, analysis of JH4 sequences from RNF126Fl/Fl mb1+/+ mice 

exhibited strand bias in A:T mutations, but not C:G mutations (Figure 4.15). 

Strikingly, however, an analysis of strand bias in JH4 sequences derived from 

RNF126 conditional knockout mice revealed a gain in bias toward the T strand in 

mutations at C:G bases and a loss of bias at A:T mutations (Figure 4.15).  These 

results suggest that, in the absence of RNF126, there is enhanced access for 

either AID or error-prone repair proteins to the T strand.  In vitro transcription and 

deamination studies would be useful to determine if the presence of RNF126 

inhibits AID access to the T strand, or if these results are better explained by the 
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Figure 4.14 Summary of JH4 mutations. A. Pie charts show the fraction of total 
sequences that contain between 0 and 9 mutations for rnf126Fl/Fl mb1+/+ and 
rnf126Fl/Fl mb1Cre/+ mice. B. A table depicts the percentage of mutations from 
each base in the sequence (vertical) to each possible base (horizontal). Values 
are corrected for base composition of the sequence (27% G, 15% C, 26% A, 32%
T).  Wildtype data is presented on the left and RNF126 conditional knockout data
is presented on the right. Highlighted squares and arrows depict a decrease (red)
 and increase (green) in mutation rates in the RNF126 conditional knockout,
respectively. 
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Figure 4.15 Loss of RNF126 results in an increase in template strand 
mutations in the JH4 intronic region. (A) The fraction of total G/C mutations
that occur at NT-strand G bases (or C bases on T strand, black) and NT-strand
C bases (blue) is presented for wildtype and RNF126 conditional knockout mice.
Dotted lines represent expected number of mutations at G and C respsectively, 
assuming that there is no strand bias. As previously shown, wildtype mice exhibit
no strand bias in G/C mutations (p value = .45, chi-squared test); however,
RNF126 condtional knockout mice display a bias toward mutation at the template
strand (G>C, p value = .0026, chi-squared test). (B) A similar analysis is presented
for mutations at A:T basepairs. It has been observed that there is a strand bias
toward greater mutations at A bases on the NT strand as compared to template
strand. Accordingly, wildtype mice in this experiment exhibit the expected strand
bias, with more mutations occurring at A bases rather than T bases on the NT
strand (p value = < .0001, chi-squared test). A/T mutations in RNF126 conditional
knockout mice show a loss of this strand bias, with an increase in A mutations on 
the T strand (p value = .0538, chi-squared test). Chi-squared tests are performed 
on actual mutation load versus expected mutation load assuming no strand bias.
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differential recruitment of error-prone repair at the T strand.  It should be noted 

that this alteration in strand-bias is not seen in the other two regions analyzed; 

however, this could be explained by the fact that this pattern is lost from the 

V186.2 exon due to multiple rounds of selection and cannot be detected in the 

V186.2 US region because of the scarcity of mutations.   

C. V186.2 Upstream (US) Region 

 From 116 US sequences from RNF126Fl/Fl mb1+/+ and 163 US sequences 

from RNF126Fl/Fl mb1Cre/+ mice, there appeared to be no clear difference in either 

the total mutation frequency or the spatial distribution of mutations throughout the 

region (Figure 4.12 and 4.16). Thus, it does not appear that loss of RNF126 

affects the loading of AID on the transcription complex. In addition, the majority of 

sequences from mice of both genotypes contained no mutations, reinforcing the 

observation that AID-mediated mutation occurs approximately 100 nucleotides 

downstream of the promoter (Figure 4.17). 

 Further, there appears to be no difference in the spatial distribution of 

mutations between RNF126Fl/Fl mb1+/+ and RNF126Fl/Fl mb1Cre/+	  as assessed 

within the V186.2 exon and JH4 intronic region (Figure 4.16), again illustrating 

that RNF126 does not contribute to the spatial localization of AID-mediated 

mutation during SHM.  

4.5 Knockdown of RNF126 results in a significant decrease in CSR  

 Because the process of generating a knockout mouse model is arduous, 

gene knock-down studies, which hijack the cellular RNAi machinery to inhibit 

translation of a target gene, are often the first step in studying the role of a 
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Figure 4.16 The spatial distribution of mutations is unaffected in RNF126 
conditional knockout mice. Using SHMTool (Maccarthy et. al., 2009), plots were
 generated depicting the frequency of mutation at each base sequenced within the
three regions analyzed. Each base is represented along the X axis, from 5’ (left) 
to 3’ (right). The Y axis depicts the fraction of sequences mutated at each base, 
including all mutations (non-unique). RNF126FL/FL mb1+/+ data is presented in 
black, above the axis and RNF126Fl/Fl mb1Cre/+ is presented in red, below the 
axis.
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unmutated. Pie charts show the fraction of total sequences that contain between 
0 and 9 mutations for rnf126Fl/Fl mb1+/+ and rnf126Fl/Fl mb1Cre/+ mice.
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particular gene. The inefficiencies involved in infecting primary B cells, coupled 

with the short time-frame of CSR experiment (3-5 days) make RNA knock-down 

studies difficult to conduct in primary B cells. For this reason, the CH12 cell line, 

which can be induced to switch from IgM to IgA at high rates, can be used. As 

expected, shRNA knock-down of AID in CH12 cells results in an almost complete 

loss of CSR (Figure 4.18).  Similarly, shRNA knock-down of RNF126 using three 

different hairpins that target either the 3’UTR or the coding region of the 

transcript show a significant decrease in the level of CSR (Figure 4.18).  This 

loss in CSR is accompanied by a loss in RNF126 at the protein level (Figure 

4.18).   

 Though there is a slight defect in CSR upon genetic deletion of RNF126 

from B cells, it is nowhere near the defect seen in the knock-down studies in 

CH12 cells. There are several possible explanations for this. First, shRNA knock-

down of target genes is notoriously non-specific, especially in mammalian cells. It 

is common that hairpins targeted against one gene result in a change in gene 

expression profiles of many genes (Kaelin, 2012). For this reason, multiple 

hairpins against RNF126 were tested. Second, CH12 cells are an immortal cell 

line that contains many chromosomal abnormalities. Thus, it is possible, but 

unlikely, that the mechanism of CSR is different in these cells as compared to 

primary B cells. And third, the process of gene knock-down in CH12s, which is 

representative of the mature B cell state is different than a genetic knock-out in B 

cells at an earlier stage of development.  As mentioned, mb-1 Cre is expressed 

at the Pro-B cell stage and thus RNF126 is knocked-out at the earliest stage of B 
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Figure 4.18 shRNA knockdown of RNF126 in CH12 cells results in decreased 
class-switch recombination. (A) Representative FACS plots from one 
experiment are shown. Knockdown of AID, as compared to the negative control 
(shGFP) results in an almost complete loss of CSR, as measured by IgA+ cells. 
In addition, knockdown of RNF126 using three different hairpins results in a 
decrease in CSR-levels. (B) A summary of three independent experiments is 
shown. CSR levels in the shGFP hairpin expressing line are set to 100. The 
percent loss of IgA+ cells is depicted above each bar. Error bars are 
representative of the standard deviation. (C) Anti-RNF126 western blot 
demonstrates that the hairpins against RNF126 (shRNF126-1,2,3) successfully 
result in a loss of RNF126 protein. Arrows denote (1) a nonspecific band (ns), 
which can be used as a normalization control, and (2) RNF126. 
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cell development; however, CSR, SHM and Affinity Maturation are not assayed 

until the B cells have matured and left the bone marrow. The time difference 

between knockout and experimentation allows for the possibility of compensation 

by a homologous protein. In addition to this possibility, expression of a similar 

protein in mature B cells may lead to redundancy, or the ability of multiple 

proteins to play one role in the cell. Under physiological settings one protein is 

often preferred, however the other can compensate upon loss of the first 

(Barbaric et al., 2007). The difference in results obtained through knock-down 

and knock-out could support this idea.   
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CHAPTER 5: DISCUSSION 

5.1 Advantages and disadvantages of the solubility-based interaction 

screen 

Protein-protein interaction data provides valuable insight into molecular 

networks within living cells. Popular methods to obtain protein interaction data in 

a high-throughput fashion include affinity purification followed by mass 

spectrometric analysis of proteins co-purified with the tagged protein of interest, 

and yeast-two-hybrid approaches. These approaches can be best thought of as 

complementary to one another, as each has distinct drawbacks that the other 

lacks. For instance, affinity based pull-down methods do not provide information 

about binary protein-protein-interactions; rather, they describe the assembly of 

multiple proteins that are stably associated with the tagged bait protein. In 

addition, these techniques also suffer from an inherent inability to detect transient 

protein-protein interactions. Overall, affinity based methods tend to be biased 

toward the identification of large, stable complexes. On the other hand, yeast-

two-hybrid screens investigate interactions in the yeast nucleus between 

overexpressed fusion proteins. It is estimated that over 50% of such interactions 

are false positives because they cannot be confirmed by other methods such as 

co-immunoprecipitation (Sprinzak et al., 2003). This approach also generally fails 

to identify weak or transient interactions that do not sufficiently transactivate the 

reporter. Thus, yeast-two-hybrid screens seem biased toward the identification of 

strong binary interactions.  Recent progress has been made to attempt to fill the 

gaps in the interactome left by these more classical techniques. New protein-
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protein interaction screens include, but are not limited to, split molecule 

complementation, which leads to fluorescence upon interaction (e.g. split GFP 

approaches (Cabantous and Waldo, 2006), chemical and photo-crosslinking 

followed by specific immunoprecipitation to lock more transient interactions in 

place (reviewed in (Lowder et al., 2011)), and the fusion of a bait protein with 

molecules that can modify and “mark” neighboring proteins (e.g. biotin ligases 

such as BirA (Roux et al., 2012)). Despite the many benefits of these methods, 

though, none are particularly reliable for the identification of interactions with a 

protein that is poorly soluble or insoluble when ectopically expressed. The 

solubility-based screen discussed in this thesis further expands our ability to 

probe the interactome by specifically targeting this subset of poorly behaved 

proteins.   

There are a few disadvantages of this technique. First, similar to other 

interaction screens, this assay is unlikely to pick up transient interactions.  

Because solubilization and drug resistance are the read-outs of this particular 

screen, a stable interaction between the drug-resistance gene containing fusion 

protein and the unknown cDNA-derived protein is necessary.  In addition, this 

screen assays the ability of proteins to bind in a non-physiological cell-type. 

While this may reveal interactions that may not have been picked up through 

affinity pull-downs, putative interactions must be verified in a more physiological 

setting. For example, eukaryotic proteins, which may be physically separated due 

to cellular localization would still be able to bind in a bacterial cell. Lastly, the 

exposure of hydrophobic domains on proteins often makes them “sticky” and 
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more likely to bind non-specifically to exposed hydrophobic domains on other 

proteins. Thus, it is possible that if the co-expressed unknown partner is also 

poorly behaved, binding and solubilization may observed simply because of the 

presence of two exposed hydrophobic domains rather than due to a physiological 

interaction. Despite these disadvantages, though, this screen provides a platform 

to better understand the interactome of insoluble proteins; putative cofactors 

identified in the screen can easily be tested for validity. 

5.2 Putative AID cofactors identified by interaction screen 

The specific motivation behind the development of this assay was to 

identify interaction partners for AID, a potent DNA mutator highly expressed in B 

lymphocytes (Muramatsu et al., 1999; 2000) and poorly soluble when expressed 

in all systems tested. In mature B cells, AID deaminates cytidines at the 

immunoglobulin locus to initiate a cascade of error prone repair that results in 

either point mutations (during SHM) or genomic recombination (during CSR), 

depending on the location within the Ig locus (Longerich et al., 2006). Although 

AID preferentially targets the immunoglobulin locus, loci elsewhere in the 

genome have been shown to be targeted at a lower frequency by the detection of 

point mutations or genomic translocations (Liu et al., 2008; Oliveira et al., 2012; 

Robbiani et al., 2008; 2009). For this reason, it is likely that AID is tightly 

regulated. In fact, evidence for regulation at the transcriptional, post-

transcriptional and post-translational level has been established (Delker et al., 

2009). In addition, the sub-cellular localization of AID is tightly controlled (Brar et 

al., 2004; Ito et al., 2004; McBride et al., 2004).  
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Many attempts have been made to identify AID interactors using either 

affinity-based purification methods or yeast-two-hybrid approaches; as a result, a 

handful of proteins have been implicated in the AID reaction (Chaudhuri et al., 

2004; Conticello et al., 2008; MacDuff et al., 2006). Using the solubility based 

interaction screen, a number of previously reported AID co-factors have been 

successfully identified, including components of the ssDNA binding complex, 

RPA, which are thought to play a role in the recruitment of DNA break repair 

machinery to the Ig locus (Chaudhuri et al., 2004; Vuong et al., 2009) and 

CTNNBL1, a splicing factor recently identified by a yeast-two-hybrid approach 

(Conticello et al., 2008). The importance of splicing of the immunoglobulin gene 

CSR has been proposed, but the mechanism remains unclear (Hein et al., 1998). 

In the past, mdm2, a RING domain containing protein that targets p53 for 

degradation, has been shown to interact with AID (MacDuff et al., 2006); 

however,  full-length mdm2 was not identified in this novel screen, even though 

the C-terminal (RING domain containing) truncation of mdm2 can clearly 

solubilize AID as previously demonstrated (Figure 2.2 and (MacDuff et al., 

2006)). This is not surprising because the library used here does not contain 

mdm2 truncations and it is only the very C-terminus RING domain of the protein 

that was shown to interact in previous yeast-two-hybrid studies (MacDuff et al., 

2006).  

The fact that this new screening approach has identified known co-factors 

underscores its validity. More importantly, however, the screen has identified 

factors not previously known to complex with AID. These include proteins that 
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are likely to play important roles in DNA repair, such as Rad51 and FEN1. In 

addition, the RRM2 complex was identified, which is responsible for the synthesis 

of deoxyribonucleotides during DNA repair (Niida et al., 2010). We have also 

identified factors with known roles in RNA processing, such as the 

polyadenylation factor and endonuclease, CPFS73. RNA processing at the 

immunoglobulin locus has increasingly been recognized as a necessary 

precursor to the completion of CSR and, although the mechanism is still not 

understood, there likely exists a tight coordination between transcription at the Ig 

locus, AID-mediated mutation, and double-strand break repair.  

We have also identified a number of ubiquitous factors that are potentially 

very important for the subcellular localization of AID by either mediating 

cytoplasmic-nuclear trafficking (such as karyopherin (Patenaude and Di Noia, 

2010) and Nup93), or by playing a role in retaining AID in the cytoplasm and 

excluding it from the nucleus (e.g. TCP1-eta and Bip in analogy to other 

chaperones (Orthwein et al., 2010). Finally, a number of factors that are of 

completely unknown function have been identified and it will be important to 

determine their relevance to CSR and SHM in the future. 

5.3 Potential roles for RNF126 and mono-ubiquitinated AID 

RING Finger Protein 126, a very interesting AID interacting protein, was 

revealed using this screen. In addition to verifying that RNF126 is a bona fide 

AID interactor in bacterial and mammalian cells (Figures 3.3, 3.4, 3.5, 3.6), it was 

determined that it acts as an E3 ubiquitin ligase in a complex that mono-

ubiquitinates AID (Figures 3.8, 3.10). In addition, other E3 ligases expressed in B 
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cells with specific functions in B cell biology do not appear to have such activity, 

arguing for selectivity (Figures 3.13, 3.14). Though AID ubiquitination has been 

noted previously by Reynaud et al. (Aoufouchi et al., 2008), the type of 

ubiquitination observed here (mono-) is quite different than the poly-ubiquitination 

observed previously.  Thus, it is likely that, like phosphorylation, ubiquitination of 

AID is a more general PTM used to regulate AID in a variety of different ways. 

A number of roles for RNF126 in the context of AID and antibody 

diversification can be hypothesized based on sequence similarities of the 

domains of this E3 ligase with homologous domains of known function present in 

better characterized proteins. For example, in addition to the RING domain, 

which interacts with and modifies AID (Figures 3.5, 3.11), RNF126 contains 

several intriguing domains that could be suggestive of function. For instance, its 

N-terminal zinc finger domain is homologous to a recently identified ubiquitin-

binding domain (Bacopulos et al., 2012) potentially suggestive of regulation. The 

co-existence of a ubiquitin ligase and ubiquitin binding domain within the same 

protein is reminiscent of the proposed regulation of translesion DNA repair. 

Ubiquitination of pol η is thought to result in a closed conformation through the 

interaction of the ubiquitin moiety with the ubiquitin binding domain at the N-

terminus of the polymerase. As a result, this prevents the interaction of pol η with 

PCNA. Thus, ubiquitination can either positively or negatively regulate the 

assembly of the repair complex, depending on which substrates are targeted by 

ubiquitin (Bienko et al., 2010). Whether this phenomenon occurs in the biology of 

RNF126 still needs to be determined. 
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 Lastly, RNF126 contains a conserved stretch of serines at the very C-

terminus (Figure 3.2). Though the function of this domain is unknown at present, 

it is homologous to similar stretches of serines found in proteins that have been 

shown to act as transcriptional activators at RNAPII-dependent promoters (Bates 

and DeLuca, 1998; Kretzschmar et al., 1994; Miau et al., 1997). These include 

viral proteins, which bind to general transcription factors in order to hijack the 

transcription machinery of the host cell (Bates and DeLuca, 1998), but also 

include cellular proteins, such as the transcriptional coactivator, PC4 (Ge and 

Roeder, 1994; Ge et al., 1994) and other proteins with roles in transcription (Miau 

et al., 1997). Given the multitude of genetic and proteomic data linking AID to 

transcription initiation, elucidation of the role of this particular domain of RNF126 

in the context of a potential dual interaction with the Ig promoter and AID will be 

interesting to pursue.  

 This thesis presents an analysis of only the RING domain of RNF126 and 

its activity in ubiquitination. The role that these other domains play in the biology 

of RNF126, itself, as well as in AID biology remains a very interesting avenue of 

research to pursue in the future. The generation of the RNF126 conditional 

knockout mouse makes it easier to investigate the role of individual domains on 

RNF126. Bone marrow reconstitution of RNF126 conditional knockout mice with 

mutant forms of the protein (for example, with mutant Zn Finger domains, or 

truncations of the serine tail) can be used to determine the role single domains 

play in SHM and affinity maturation.  
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The role of RNF126-mediated ubiquitination and of mono-ubiquitinated 

AID in antibody diversification can be ascertained from an analysis of the 

changes in each step of antibody diversification upon loss of RNF126. Of course, 

the role of RNF126, itself, may go beyond ubiquitination of AID and this must be 

taken into consideration. Despite this, hypotheses derived from experimental 

evidence regarding the role of RNF126 in antibody diversification are presented 

below. 

5.3.1 In Somatic Hypermutation  

 The relatively uncharacterized protein, RNF126, has been identified as an 

E3 ubiquitin ligase with the ability to mono-ubiquitinate AID (Delker et al., 2012). 

Ubiquitination, which was originally thought to only play a role in protein 

degradation, has been shown to play a variety of roles in many cellular 

processes (Pickart, 2001b), thus suggesting that RNF126 may play an interesting 

regulatory role for AID and AID-mediated steps of antibody diversification. It has 

already been established that mono-ubiquitination is important for both somatic 

hypermutation and class-switch recombination. Mono-ubiquitination of the 

polymerase processivity factor, PCNA, on lysine 164 (K164) has been shown to 

recruit translesion synthesis polymerases necessary for error prone repair. Mice 

that express ubiquitin-null mutants of PCNA (K164R) display reduced class-

switch recombination ex vivo and a reduction in mutations at A:T base pairs 

during in vivo somatic hypermutation (Roa et al., 2008). In addition, the mono-

ubiquitination of the histones H2A and H2AX by RNF8 is necessary for the 

recruitment of RNF168 and subsequent RNF168-mediated poly-ubiquitination.  
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Both events are important for the recruitment and stabilization of the repair factor, 

53BP1, and faithful DSB repair (Doil et al., 2009; Jackson and Durocher, 2013; 

Mailand et al., 2007; Mattiroli et al., 2012; Ramachandran et al., 2010).  

Thus, given these examples, it is plausible that mono-ubiquitination of AID 

plays a similar role in recruiting necessary repair proteins to the Ig locus.  In line 

with this hypothesis, loss of RNF126 results in an alteration of the pattern of 

mutations observed during SHM. Most notably, in the JH4 region, a greater 

mutation load was observed on the template strand in the absence of RNF126. 

This suggests that either AID, itself, or error-prone repair factors gained greater 

access to the template strand upon loss of RNF126.  However, based on studies 

conducted in mice lacking both UNG and MSH2, it appears that AID has equal 

access to both template and non-template strands (Xue et al., 2006).  Thus, it is 

more likely that the difference observed is due to access of downstream repair 

proteins. The only other instance in which the template strand was observed to 

accumulate more mutations was in patients deficient for NBS1, a member of the 

MRN complex (Du et al., 2008).  In addition, overexpression of NBS1 in the 

murine B cell line, RAMOS, increases the strand bias of mutations toward the 

non-template strand (Yabuki et al., 2005).  Thus, through an unknown 

mechanism, NBS1 prevents error-prone repair on the template strand.  It is 

possible then that RNF126, and possibly ubiquitinated AID, functions in the same 

pathway.  It is conceivable that, in contrast to ubiquitinated PCNA, which recruits 

error-prone repair, mono-ubiquitinated AID results in the recruitment of error-free 

repair, thus contributing to the local battle between error-free and error-prone 
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repair.  It is also conceivable that RNF126 plays a role at the G1-to-S cell cycle 

check point.  Persistence of U:G mismatches into S-phase, where repair is 

thought to be dominated more by error-prone repair (Li et al., 2012), could result 

in the observed increase in template strand mutations. 

Though the same alteration in strand bias was not observed in the V186.2 

exon region, the altered mutation rate observed here also supports this 

hypothesis.  In the absence of RNF126, an increase in the number of mutations 

per B cell clone was observed. As mentioned, this could represent overactive 

AID or the presence of AID outside of the germinal center, but could also be 

representative of an increase in error-prone repair or the persistence of U:G 

mismatches into S-phase.  If RNF126 promotes error-free repair, then in its 

absence, a greater number of mutations would accumulate during the process of 

replication and the generation of new B-cell clones.  

It would be very interesting to test these hypotheses directly. Schatz et al. 

(Unniraman and Schatz, 2007) have generated transgenic mice, which contain a 

SHM substrate containing a tract of A/T bases with either one central C (NT 

strand): G (T strand) basepair or one central G (NT strand): C (T strand) 

basepair.  These mice enabled them to determine that, while AID could efficiently 

deaminate the C base on both strands, A/T mutations only accumulated when 

the deaminated C lay on the NT strand. Thus, strand bias is determined mainly 

by the access of error prone repair proteins (Unniraman and Schatz, 2007).  

Utilizing this system, it would be predicted that in the absence of RNF126, A/T 
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mutations would accumulate equally well with the deaminated C on the T strand, 

as compared to the NT strand.  

In addition, if RNF126 is truly involved in the recruitment of error-free 

repair, then it likely plays a role outside of the Ig locus to correct for off-target AID 

mutation.  An analysis of off-target mutation load and translocation frequency in 

the RNF126 conditional knockout mouse model would informative on this front. 

5.3.2 In Class Switch Recombination 

 It is much more challenging to discern the role of RNF126 during CSR 

because the phenotype in the RNF126 conditional knockout with regard to CSR 

is much more subtle. Though there does appear to be a subtle defect in CSR in 

the knockout B cells, it is not statistically significant.  This is further complicated 

by the fact that there is a much greater defect upon knockdown of RNF126 in a B 

cell line (discussed more in section 5.4).  While it is possible that RNF126 

performs the same function in CSR as it does in SHM, it is also important to 

remember that this is not necessarily the case.  Precedent for this exists for the 

binding factor, RPA, which likely stabilizes ssDNA during SHM, but was co-opted 

to play a DNA repair role during CSR.  Further, the mono-ubiquitinated form of 

AID generated by RNF126 may play two separate roles in SHM and CSR.  An 

analysis of mutations generated in the switch regions during CSR in wildtype and 

RNF126 knockout B cells would help determine if the mutation pattern is altered 

as was seen during SHM.  Further, in vitro deamination assays on transcribed 

SHM targets compared to transcribed CSR targets (Switch regions) in the 

presence and absence of RNF126 would help to elucidate the presence of an 
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inherent difference in the role of RNF126 in regulating AID activity on distinct 

substrates. 

5.4 The possibility of redundancy and/or compensation in the RNF126 

conditional knockout mouse model 

Often the in vivo function of unknown genes/proteins is approached 

genetically through the generation of knockout mouse models. This approach, 

however, can be complicated by the presence of genetic robustness, or the 

ability of an organism to sustain either environmental or genetic changes and 

maintain normal function. Genetic robustness can occur through two main 

pathways—(1) genetic buffering, or the use of alternative pathways to 

accomplish the same goal, and (2) functional complementation, where two genes 

have redundant functions (Barbaric et al., 2007; Gu, 2003). Studies in S. 

cerevisiae and C. elegans have shown that genes that exist as single copies with 

no sequence similarity to other genes have a greater likelihood of producing a 

phenotype when knocked out or knocked-down with RNAi (Gu, 2003; Gu et al., 

2003; Kamath et al., 2003). Furthermore, several examples of compensation 

exist in knockout mouse models. For example, redundant, but not completely 

overlapping, functions exist for the genes MyoD and Myf5, which are both 

involved in skeletal muscle development. Mice lacking both MyoD and Myf5 do 

not develop skeletal muscle and die shortly after birth; however, mice lacking 

either of the individual genes have phenotypes ranging from normal to slightly 

perturbed (Barbaric et al., 2007; Braun et al., 1992; Rudnicki et al., 1992; 1993). 

In fact, upon MyoD inactivation, Myf5 is upregulated, presumably to account for 
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the loss of MyoD (Rudnicki et al., 1992). Other examples include knockouts of 

individual genes within highly related gene families—for example, knockouts of 

single caspase genes result in a variety of phenotypes ranging from prenatal 

lethality (caspase 8) to no detectable phenotype (caspase 12) (Barbaric et al., 

2007). Compensation and redundancy have even been predicted to play a role in 

masking additional functions for AID. Various studies have suggested that AID 

may play a role in DNA demethylation by deaminating a methylated cytosine 

residue to generate a T:G mismatch, which is repaired to an unmethylated 

cytosine (Fritz and Papavasiliou, 2010); however, the aicda-/- mouse model does 

not have any observable defects outside of its canonical role in antibody 

diversification. To reconcile this difference, it has been shown that, while aicda-/- 

cells are functional in a reprogramming assay, cells in which AID has been 

knocked-down are not. This suggests that compensatory mechanisms that exist 

in the context of a knock-out may be overcome by the shorter time-frame of 

knock-down experiments, thus drawing a distinction between genetic and “acute” 

losses of genes/proteins (Bhutani et al., 2012).  It should be noted that more 

recent studies addressing the role of AID in reprogramming have found that AID-

null cells less proficiently maintain and stabilize a stem-cell like state 4 weeks 

post reprogramming and that many genes at this time point are found to be 

hypermethylated as compared to wildtype induced pluripotent stem cells (iPSC). 

Thus, this suggests that AID does have an alternate role in DNA demethylation 

(Kumar et al., 2013).  However, these findings do not invalidate the earlier 
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studies, which showed that a knock-down of AID results in a loss of 

reprogramming. 

Because many knock-out mice without obvious phenotypes are not 

published, it is hard to estimate how many null mutants result in no observable 

phenotype; however, it has been estimated that approximately 10-15% of knock-

out mice made do not show a phenotype, likely due to the presence of 

redundancy (Barbaric et al., 2007). Thus, it is very likely that the subtle defects in 

antibody diversification observed in RNF126 conditional knock-out mice are due 

to imperfect compensation by other proteins present in the cell. Similar to the 

scenario in which acute loss of AID reveals potential functions not seen with the 

knock-out mouse model, knock-down of RNF126 in a murine B cell line results in 

a much more significant decrease in CSR levels as compared to that seen in the 

conditional knock-out model. It remains to be seen whether these discordant 

results are due to a difference in cell type, primary cells versus CH12 cell line,  or 

whether compensation that has occurred in the mouse system is not present in 

the cell line.  Because Cre was expressed from the mb-1 locus, RNF126 was 

knocked out at the pro-B cell stage; however, antibody diversification was not 

assayed until the mature B cell stage, allowing ample time for compensation to 

occur, which would preferentially occur if RNF126 normally plays a role during 

the development process. Experiments are underway to address this issue. Use 

of mice, which ubiquitously express the Cre recombinase fused to a mutant 

estrogen receptor (Cre-ERT), can be used to induce deletion of a gene of interest 

upon treatment of cells with the estrogen-mimic, tamoxifen (Feil et al., 1997).  
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Thus, treatment of splenic B cells in vitro directly prior to CSR stimulation will 

eliminate the possibility of compensation during B cell development. 

Unfortunately, it is much more difficult to get at the question of redundancy in 

mature B cells. The generation of multiple gene knockouts in one mouse, or a 

combination of gene knockout with gene knockdown may reveal a stronger 

phenotype if redundancy is, in fact, occurring. 

In the 293T ubiquitination assay developed, BCA2/RNF115, an E3 ligase 

that is highly homologous to RNF126, cannot ubiquitinate AID (Delker et al., 

2012). However, it still remains a possibility that, in the absence of RNF126, 

BCA2/RNF115 could acquire the ability to modify AID. In addition, hundreds of 

E3 ligases are expressed in activated B cells, allowing for the definite possibility 

of compensation. At this point it is still uncertain what E3 ligase is actively 

ubiquitinating AID in vivo, though the ability of RNF126 to do so in vitro suggests 

its function in vivo. Transcriptome-wide comparisons of gene expression in 

wildtype versus RNF126 knockout B cells could provide evidence for the up-

regulation of alternate E3 ligase enzymes, which would be likely candidates for 

compensatory mechanisms; however, it is also possible that redundancy can 

occur with an enzyme that is already highly expressed in activated B cells. 

Future studies of the role of RNF126 in antibody diversification would 

likely benefit from the generation of knock-in mice containing mutant forms of the 

RNF126 gene rather than knockout mice.  The complete loss of the protein likely 

contributes to the onset of compensation and/or redundancy. Thus, the presence 

of a mutant form of the protein may inhibit this. Knock-in mice containing RING 
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domain mutants could be used to study the role of RNF126-mediated 

ubiquitination and mice containing mutations of the Zn Finger or truncations of 

the serine tail could be used to determine the roles of these other intriguing 

domains. 

5.5 A model for the role of RNF126 during Antibody Diversification 

The change in the measured levels of CSR and SHM observed in the 

RNF126 conditional knockout as compared to wildtype is subtle, at best; 

however, the pattern of mutations observed at the Ig locus during SHM is 

significantly altered.  Thus, it is likely that the system of Antibody Diversification 

has evolved several mechanisms that function in parallel to account for the 

possible loss of one component.  Given the alteration in the pattern of mutations 

in the JH4 region, there are several hypotheses that can be generated to explain 

the role of RNF126 during SHM.  First, it is possible that RNF126 participates in 

a complex that prevents access of either AID or downstream repair factors to the 

template strand of DNA.  Thus, in the absence of RNF126, AID and/or mutagenic 

repair factors, such as pol η, would gain greater access to the template strand, 

thus accounting for the observed shift in strand bias observed.  Second, as 

mentioned previously, it is possible that RNF126 actually promotes error-free 

repair on the template strand, thus targeting error-prone repair on the non-

template strand.  Thus, in the absence of RNF126, error-prone machinery can 

extend to the template strand, resulting in the observed mutation pattern.  

Though the benefit of limiting mutagenic repair to one strand of DNA is not 

directly clear, it is possible that this type of mechanism could act to limit the 
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frequency of DSB formation in the variable region during SHM.  As such, this 

could be a way to differentiate the repair processes that promote the formation of 

point mutations during SHM and the formation of DSBs during CSR.  In addition 

to these two hypotheses, which both suggest that RNF126 plays a role in 

preventing mutation on the template strand, it is also simply possible that 

RNF126 is involved in the recruitment of known, canonical repair factors, such as 

Pol η.  Then, in the absence of RNF126, non-canonical repair enzymes would be 

recruited to the Ig locus in an attempt to compensate for the loss of RNF126, 

thus producing an altered pattern of mutation.  This third model opens the 

exciting possibility that, analogous to ubiquitinated PCNA, RNF126-mediated 

ubiquitinated AID is necessary for the proper recruitment of repair factors to the 

Ig locus. These three models are depicted in Figure 5.1. 

In order to test the validity of these three models, further experimentation 

will be necessary.  It will be useful to cross the RNF126 conditional knockout 

mouse to mice containing knockouts of various translesion polymerases, such as 

pol η, pol κ, pol ι.  If, in the context of a double-knockout, the altered pattern of 

mutation is no longer observed, then it can be reasonably assumed that the 

targeted polymerase works with RNF126 in generating the pattern of mutation.  

Further, chromatin immunoprecipitation (ChIP) experiments for known repair 

factors can be conducted in the presence and absence of RNF126 to determine 

if the factors recruited to either the variable or switch regions is altered in the 

absence of RNF126.   
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In addition, though, it will be important to determine if the observed 

phenotype in the RNF126 conditional knockout mouse is due to a loss in 

RNF126-mediated ubiquitination of AID.  Along with experiments to determine 

the involvement of known translesion polymerases, in vitro studies can be 

conducted to determine if ubiquitinated AID can directly interact with each of the 

translesion polymerases, thus providing a link between RNF126 and repair.  

Furthermore, when the residue on AID that is targeted by ubiquitination is 

determined, mice harboring ubiquitin-null mutants of AID can be generated.  

Analogous SHM and CSR assays can then be conducted in the context of a 

ubiquitin-null mutant of AID to determine if the same phenotype exists as was 

seen in RNF126 conditional knockouts.  This would provide reasonable evidence 

that the phenotype observed upon loss of RNF126 is due to a loss in RNF126-

mediated ubiquitination of AID. 

Thus far, these hypotheses focus specifically on the role of RNF126 

during SHM.  A more thorough analysis of the pattern of mutations in the switch 

regions during CSR in RNF126 conditional knockout mice will be necessary to 

determine if these hypotheses can extend to CSR, as well. 

5.6 Functions for RNF126 outside of the immune system 

Additional substrates for RNF126 in other cellular contexts have been 

identified recently, providing excitement for the utility of the RNF126 conditional 

knockout mouse model as a generalized tool to study this E3 ligase throughout 

cell types in the mouse. First, RNF126 has been implicated in cancer cell 

proliferation by targeting the cell cycle regulator, p21, for ubiquitin-mediated 
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degradation (Zhi et al., 2013); second, RNF126 and the homologous E3 ligase, 

BCA2/Rabring7/RNF115, have been shown to be involved in the internalization 

and endosomal sorting of the epidermal growth factor receptor (EGFR) (Smith et 

al., 2013). In addition, expression of RNF126 has been documented in a very 

specific portion of the hippocampal region of the mouse brain, suggesting a 

potential role for this E3 ligase in memory formation or brain function (Lein et al., 

2007). By generating crosses of the RNF126-floxed mouse with cell-type-specific 

CRE expressing mice, the importance of RNF126 can be investigated in each of 

these systems. 

5.7 Looking forward 

 The work presented here creates a foundation for future research both in 

terms of the novel tools developed, as well as in discoveries made.  First, the 

solubility-based protein interaction screen developed can be applied to any 

insoluble proteins of interest, thus making it a useful tool to study proteins in all 

biological pathways.  Second, the RNF126 conditional knockout can be bred to 

cell-specific CRE expressing mice in order to study the role of RNF126 in many 

different cellular contexts.  In addition to these tools, though, this work has also 

identified a novel mode of regulation of the enzyme, AID.  The regulation of AID 

likely involves a complex interaction of a variety of cellular factors, including both 

protein and RNA.  In addition, it has become clear that there must exist a balance 

between error-free and error-prone repair downstream of AID-induced 

mismatches and how this decision is made remains unknown.  The finding here 

that RNF126 mono-ubiquitinates AID expands the list of AID regulatory 
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mechanisms and provides a foundation for future studies to elucidate the exact 

role of this modification during the various stages of antibody diversification.  

Ubiquitination is a commonly used mechanism to regulate cellular processes so it 

is not unexpected that it is utilized during AID biology; however, as has been 

discussed, it will be interesting to determine if ubiquitination of Ig-locus 

associated proteins, for example AID versus PCNA, provides a mechanism for 

the decision made between different types of repair pathways. The findings 

presented here provide the foundation and tools necessary to begin to better 

understand the role of ubiquitinated AID in antibody diversification. 
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CHAPTER 6: EXPERIMENTAL METHODS 

6.1 Pertaining to all in vitro work: CHAPTERS 2 and 3 

6.1.1 Mice and Cells 

Wildtype and aicda-/- C57BL/6 mice between the ages of 8-12 weeks were used 

for in vitro class switch recombination assays. For bacterial expression 

experiments BL21DE3 E. coli cells were used. For mammalian expression HEK 

293T cells were used. 

6.1.2 Antibodies Used 

The following antibodies were used for this study: anti-Flag (Sigma M2 clone, 

beads and HRP conjugate), anti-HA beads (Sigma EZ View Red HA beads), anti-

HA (Roche, clone 3F10), anti-HA HRP (Miltenyi, cat# 130-091-972), anti-His HRP 

(Santa Cruz, cat# 8036), anti-AID (Cell Signaling, EK25G9 clone), anti-RNF126 

(Sigma, cat# HPA043050), anti-H3 (abcam, cat# 1791), anti-PCNA (Santa Cruz, 

Clone PC10, cat# 56), anti-Tubulin (Sigma, clone DM1A). 

6.1.3 Primers Used 

AID-Forward: 5′-atggacagcctcttgatgaaccg-3′ 

AID Linker-Reverse: 5′-

gcatccatGAGGGGAAGATGTCCCTGCACATTaagtcccaaagtacgaaatgcgtctcg-3′ 

Linker CAT-Forward: 5′-

ggacttAATGTGCAGGGACATCTTCCCCTCatggatgcaaaacaaacgcggcag-3 

CAT-Reverse: 5′-ttatttggacgttctacgctgcgtataaatcgcatccatc-3′ 

RNF126 Q1-F: 5’-GCAGCCCGGACGGTACT-3’ 

RNF126 Q1-R: 5’-AGCTCCTCAATGAAGCCAGACT-3’ 
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RNF126 Q2-F: 5’-CCCCCACCGACCAGAAC-3’ 

RNF126 Q2-R: 5’-ATCGTCGAAGATGCCAAAGG-3’ 

CD19 QPCR-F: 5’-AGAAGGAAAAGGAAGCGAATGA-3’ 

CD19 QPCR-R: 5’-GGAGAGCACATTCCCGTACTG-3’ 

6.1.4 Plasmids Used 

A. Screen. The AID-CAT fusion gene was assembled by PCR.  The human AID 

cDNA and the chloramphenicol transferase (CAT) cDNA were amplified by 

standard PCR using the primer pairs AID-Forward/AID-Linker-Reverse and 

Linker-CAT-Forward/CAT-Reverse, respectively. This was followed by an 

overlap-extension PCR using the AID-Forward and CAT-Reverse primer pair.   

AID-CAT was then cloned as an NdeI/XhoI fragment into the second expression 

cassette of a pCDF-duet vector (Novagen).  The first expression cassette 

contained either a fragment of Mdm2 (a gift from Dr. Reuben Harris, University of 

Minnesota) or candidate interactors.   

The fragment of Mdm2 was also cloned into a pCOLA-duet vector (Novagen) as 

a SalI/NotI fragment. Similarly, a number of unrelated virulence factors (cagA, 

sopB, sopE, sifA, invB, invC, cdtA. cdtB, yopK, yopJ, yopH and others) were 

cloned to generate the mock mini-library of factors that are highly unlikely to 

interact with AID. 

Finally, the CAT-ADAT3 construct was generated similarly to that of AID-CAT 

except that it was an N-terminal fusion. The C terminal fusion (ADAT3-CAT) 

sterically hindered the interaction with ADAT2, ADAT3’s only known co-factor.  
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The cDNA library was derived by Invitrogen from the RAMOS Burkitt’s lymphoma 

cell line, which hypermutates constitutively. To generate the destination vector for 

the cDNA library, cDNA encoding the AID-CAT fusion protein and the attR1/attR2 

recombination cassette containing the ccdB gene were sequentially cloned into the 

second and first cloning site of pCDF-Duet (Novagen) using the restriction enzyme 

combinations NdeI/XhoI and NcoI/NotI, respectively.  The chloramphenicol 

resistance cassette located within the attR cassette was removed by cutting with 

SacII/BamHI followed by religation.  One Shot® ccdB Survival™-T1R Chemically 

Competent Cells (Invitrogen) were used to propagate the destination vector.  

B. Bacterial Expression. We used the pCDF-Duet vector (Novagen) to clone C-

terminally Flag tagged AID into the second multiple cloning site using NdeI/XhoI. 

The first multiple cloning site was used to clone various putative interacting 

factors (including RNF126). The same vector was also used to clone RNF126 on 

its own, for purification purposes, or fragments of RNF126 together with AID for 

domain delineation and interaction purposes. 

C. Mammalian Expression. The mammalian expression vector pcDNA3 

(Invitrogen) was used for transient expression of hAID, hRNF126 and ubiquitin 

(and mutants thereof) in HEK 293T cells. In these constructs AID is either 

untagged or FLAG-tagged, as indicated for each experiment. RNF126 is HA-

tagged. Ubiquitin is either untagged or FLAG-tagged, as indicated for each 

experiment. Flag-PCNA, HA-RNF8 and HA-BCA2 were expressed from the 

pCMV-Sport6 vector (Invitrogen). 
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6.1.5 Screening Protocol 

  Destination vectors based on pCDF-duet and containing the attR1-ccdB-

attR2 construct in the first expression cassette and AID-CAT in the second, were 

directionally recombined with the cDNA library (22,000 cDNAs, split into 42 pools 

containing 800-1000 unique colonies per pool) using the Gateway system 

(Invitrogen). Each recombination reaction was then transformed into BL21DE3ai 

bacteria (Invitrogen) and plated on spectinomycin plates (50µg/ml) and grown at 

30°C to determine transfection efficiency. Spectinomycin plates with the expected 

~800 colony number were then replica-plated onto induction plates (using velvet 

pads) containing chloramphenicol (60µg/ml). Induction was achieved by addition 

of arabinose (0.02%) to the plates (which controls T7 RNAP expression in 

BL21DE3ai cells) and by addition of IPTG (0.5mM, which controls T7-driven 

expression of both cassettes of the pCDFduet vector, namely, the cDNA clone 

and the AID-CAT gene).  Induction occurred at 30oC overnight (until colonies 

were visible). We cannot estimate toxicity because death due to toxicity is 

indistinguishable from death due to lack of solubility and thus lack of 

chloramphenicol resistance; both scenarios result in a lack of colonies. This is a 

limitation of this assay; however, we did try to minimize minor toxicity by growing 

non-induction and induction plates at 30oC overnight. Colonies that survived on 

induction plates were picked, grown in liquid culture (again under induction 

conditions and at 30oC overnight). DNA from these cultures was then prepped 

and sequenced to identify potential interactors.  
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We aimed for a number of colonies per spectinomycin plate consistent with 

the expected number of clones per pool (800-1000); however, the number of 

colonies recovered on induction plates was variable presumably due to the variable 

number of potential interactors per pool. 

Interactors that were recovered multiple times or a few times, but 

reproducibly in each of three independent screens, are shown in Table 3.1 along 

with their identity and accession number. Each of these hits was subsequently 

validated through co-purification of each cDNA of interest (in frame with 6xHis in the 

pCDFduet vector) with AID-FLAG (cloned in the second cassette of the pCDFduet 

vector, in lieu of AID-CAT). We were not able to validate the interaction of 6/36 

candidates, which corresponds to the 16% false positive rate. This information is 

also included in the supplemental table in the column titled “Co-IP?”. Those that are 

marked with a “Y” were able to be validated and those that are marked with an “N” 

were not.  

6.1.6 Bacterial Co-Expression and Co-purification  

For co-expression and co-purification experiments, the coding sequence 

for C- terminal FLAG-tagged AID was initially cloned into the second multiple 

cloning site of pCDF-Duet (Novagen) with NdeI/XhoI (following the original 

configuration of the screening setup). The first multiple cloning site was used for 

cloning the cDNAs of candidate interactors in frame with the hexahistidine tag 

using the SalI/NotI sites. For further co-purification experiments using AID and 

RNF126, this configuration was used as well as the opposite (6xHisAID / 
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RNF126-FLAG, to assuage fears of non-specific precipitation of AID onto FLAG-

agarose beads). In all cases, plasmids were transformed into BL21 DE3 cells 

and protein expression was induced with 1mM IPTG for 12-16 hours at 23°C 

after the OD600 reached 0.8. Bacterial pellets were collected by centrifugation and 

directly resuspended in buffer A (20 mM HEPES [pH=7.0], 200 mM KCl, 1 mM 

PMSF), frozen and stored at -80°C. Prior to protein purification, partially lysed 

cells were thawed, treated with a non-specific nuclease (Benzonase; Novagen) 

and then fully lysed using a cell disruptor (French press). The lysate was 

centrifuged and the resulting supernatant was loaded either onto a Talon resin 

charged with Co2+ ions (BD Biosciences) or on anti-FLAG beads (Sigma). Talon 

resin purification was done as follows: The resin was first washed with buffer A 

followed by buffer B (buffer A plus 30 mM Imidazole) and eluted with buffer A 

containing 150mM or 250mM imidazole. The eluted proteins were immediately 

dialyzed against buffer A to remove the imidazole. Alternatively, lysates were first 

pre-cleared by incubation with agarose beads and subsequently incubated with 

anti-FLAG beads for 2 hours at 4°C. Beads were then washed at least five times 

with buffer A. The captured protein was eluted by incubating the beads with 

buffer A containing FLAG peptide. 

6.1.7 Mammalian Co-expression and Co-purification 

293T cells that were plated at 60-75% confluence in a 6 well dish were 

transfected with 1.5 µg of either pCDNA3.Flag-AID, pCDNA3.HA-RNF126 or 

both. 48 hr post transfection cells were lysed with 300 µL of Cytosolic Lysis 
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Buffer (50 mM HEPES, pH 7.2, 10% Glycerol, 1% NP-40, 10 mM KCl, 1 mM 

MgCl2), sonicated for 10’ in 30’’ intervals and treated for 1hr with Benzonase 

(Novagen). The nuclear pellet remaining after this treatment was resuspended 

and lysed in high salt buffer (Cytosolic Lysis Buffer + 400 mM NaCl). Both lysates 

were combined and the remaining cellular debris removed by centrifugation at 

13.2K RPM. Protein concentrations were normalized between samples prior to 

performing immunoblots and immunoprecipitations. Approximately 8% of the 

lysate was loaded as “Input,” and the remainder immunoprecipitated with anti-HA 

(specific for RNF126) or anti-Flag (specific for AID) beads overnight. Each IP was 

washed 3X with Cytosolic lysis buffer followed by 3X washes with High Salt 

buffer. Laemmli buffer was added to the beads, which were then boiled and 

loaded on the gel. 

6.1.8 B-Cell Purification and Activation 

Naïve splenic B cells from 8-12 week old wildtype and aicda-/- C57BL/6 

mice were purified by CD43 negative selection on a magnetic column (MACS, 

Miltenyi Biotec). Purified B cells were plated at a concentration of 0.5 X 106 

cells/mL and stimulated with 10 ng/mL IL-4 and 25 µg/mL LPS (Sigma).  

6.1.9 Quantitative Real Time RT-PCR (Q-PCR) 

Total RNA was isolated using TRIzol (Invitrogen) according to the 

manufacture’s instruction. First strand cDNA was synthesized using Superscript 

III Reverse Transcriptase (Invitrogen). Q-PCR was performed using the SYBR® 

Green PCR Master Mix (Invitrogen). All samples were analyzed in triplicate and 
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normalized to levels of CD19. Data shown represents an average of the results 

from two different primer sets: 1, RNF126 Q1-F/R and 2, RNF126 Q2-F/R. 

Primers for CD19 are called CD19-QPCR-F/R. 

6.1.10 Preparation of mammalian cell extracts  

Cells were harvested and the pellets washed with 1X PBS. Cells were 

lysed with RIPA buffer (50 mM Tris (pH 8), 150 mM NaCl, .5% Na Deoxycholate, 

.1% SDS, 1% NP-40, .5 mM EDTA, 1 mM DTT and protease inhibitor cocktail 

(Roche)). Buffer used for the 293T ubiquitination assays was also supplemented 

with the deubiquitinase inhibitor, N-Ethylmaleimide (NEM, 1 mg/mL, Sigma). 

Lysates were normalized with the detergent compatible DC-Assay (Biorad). 

When noted, quantification of protein levels was done using the ImageJ software. 

Values shown represent the fold change of the protein of interest after 

normalization to the loading control. 

6.1.11 HEK 293T ubiquitination assay  

HEK 293T cells were plated in a 6-well dish and transfected with 500 ng-

1µg of pCDNA3.AID/FLAG-AID, 500 ng -1µg of pCDNA3.HA-RNF126 and 1 µg 

of pCDNA3.Flag-Ubiquitin, when indicated, using Lipofectamine 2000 

(Invitrogen). 36-48hrs later, cells were lysed as described (Supplemental 

Methods). AID immunoprecipitations were performed using either 2.5-3.5 µL of 

anti-AID antibody (Cell Signaling) and protein G-Sepharose beads (Invitrogen) or 

anti-Flag M2 agarose beads (Sigma). Beads were washed at least 3X with lysis 

buffer and eluted with Laemmli buffer containing 200 mM DTT and boiling. 
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Samples were loaded on a 12.5% Tris-HCl Criterion gel (BioRad) transferred and 

blotted with the antibodies indicated.  

6.1.12 In vitro ubiquitination assay 

His-tagged RNF126 was purified as described.  His-tagged Ube1 (E1), 

His-tagged UbcH5b (E2) and ubiquitin were purchased from BioMol, Lysineless 

Ubiquitin from Boston Biochem and hAID from Enzymax. All components were 

resuspended in ubiquitination buffer (50mM Tris HCl (pH 7.5), 2.5 mM MgCl2, 

1mM DTT) and incubated at 37°C for 30 minutes to 1 hour. An equal volume of 

Laemmli buffer containing 200 mM DTT was added and the samples boiled prior 

to gel loading. Concentrations of components used are as follows: Ube1-50 nM, 

UbcH5b-500 nM, RNF126-300 ng, AID-300 ng, Ubiquitin-1-4 µg, ATP-1-2 mM, in 

a total volume of 25 µL. Reactions were loaded on a 12.5% Tris-HCl Criterion gel 

(Biorad) and membranes were blotted with an anti-AID antibody. 

6.1.13 HEK 293T ubiquitination assay using alternate E3 ligases and 

substrates 

When alternate ligases and/or substrates were included in this assay, the 

protocol remained as described; however, amounts of plasmid DNA transfected 

in the cells varied depending on the expression level of the given construct. 

750ng – 1 µg HA-BCA2 and HA-RNF8 and 200 ng of FLAG-PCNA were 

transfected in these experiments.  

6.1.14 RNF8/PCNA in vitro ubiquitination assay   

RNF8 and PCNA were used as an alternate E3 Ligase/Substrate pair in 

this assay. 100 ng of GST-RNF8 (Abnova) and 100 ng of GST-PCNA (Abnova) 
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were incubated as described in Materials and Methods with 500 nM of either the 

E2, UbcH5B or the E2, UbcH5C (BioMol). All other components and 

concentrations remained the same. 

6.2 Pertaining to all in vivo work: CHAPTER 4 

6.2.1 Generation of an RNF126 conditional knockout mouse model 

ES cells containing the targeted RNF126 allele were purchased from the 

EUCOMM International Knockout Mouse Consortium. Targeting was done in the 

JM8A3.N1 ES cell line, which is derived from a C57BL/6N background and 

contain an agouti coat color. 

ES cells were injected into a C57BL/6 blastocyst by the Rockefeller 

University Gene Targeting Resource Center. Chimera mice of high chimerism 

(brown/black in coat color) were selected and bred to C57BL/6 wildtype mice. 

Offspring were screened for agouti (brown) coat color as an indication of whether 

the targeted allele was transmitted to the offspring. Several rounds of breeding 

produced a single brown mouse and southern blotting was used to verify the 

presence of the RNF126 targeted allele.   

 Mice containing one copy of the targeted allele (RNF126ki/+) are 

functionally heterozygous because the gene trap construct inserted in intron 1 

disrupts translation. This gene trap cassette is flanked by Flipase recombinase 

sites (FRT). RNF126ki/+ mice were bred to transgenic mice expressing the 

Flipase recombinase (Jackson Labs # 005703) to reinstate complete translation 

of the targeted allele. Mice containing a Flipped version of the targeted allele 
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(RNF126Fl/+) were bred to C57BL/6 mice to cross out the Flipase transgene and 

then to mb-1 Cre expressing mice (Hobeika et al., 2006) to generate the 

conditional knockout. Through rounds of breeding, RNF126Fl/Flmb1Cre/+ mice were 

generated and validated at the DNA, RNA and protein level as B cell-specific 

RNF126 conditional knockout mice. RNF126FL/FL mb1+/+ were used as wildtype 

littermate controls in experiments 

6.2.2 Genotyping Primers 

 Table 6.1 presents the genotyping primers used during the generation of 

the RNF126 conditional knockout mouse, as well as a brief description of where 

the primers bind and the expected amplicons. 

6.2.3 Southern Blot and PCR Analysis of RNF126 conditional knockout 

mice 

Initial confirmation of the correct integration of the construct into the rnf126 

locus was completed by Southern blot analysis. When hybridized to SspI-

digested genomic DNA, this probe could differentiate between wildtype (14.1 kb) 

and targeted (8.5 kb) alleles. 

 Genomic DNA isolated from tail biopsies or pelleted splenic B cells were 

used for PCR genotyping. Tails or B cells were incubated overnight at 56°C in 

500 µL Tail Lysis Buffer (100 mM Tris-Cl pH 8.5, 5 mM EDTA, .2% SDS, 200 mM 

NaCl). Samples were centrifuged at 9K RPM for 8 minutes to pellet any 

remaining tail material and the supernatant was combined with an equal volume 
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of isopropanol. Samples were centrifuged for 30 minutes at full speed (13.2K 

RPM) to pellet the DNA, which was then dried and resuspended in water. 

 Primers used for genotyping and expected amplicon sizes for each 

genotyping primer set are presented in 6.2.2. KOD Hot Start Polymerase (EMD 

Millipore) was used for all PCR reactions. For the primer sets Endo-F/Endo-R 

and Endo-F/RP-R, PCR conditions were 30 cycles of 95°C for 20sec, 54°C for 

10sec, and 70°C for 4sec. All four primers for Cre genotyping were included in 

one reaction. Conditions for this PCR were 30 cycles of 95°C for 20sec, 57°C for 

10sec, 70°C for 5sec. Similarly, all four primers for Flipase genotyping were 

included in one reaction. Conditions for this PCR were 30 cycles of 95°C for 

20sec, 58°C for 10sec, 70°C for 10sec. 

6.2.4 B Cell Culture Conditions 

B Cells (primary and CH12) were cultured in RPMI-1640 + Glutamax 

(Gibco Life Technologies) supplemented with 10% FBS (BenchMark), 1X Penn 

Strep (Life Technologies), 55 µM β-mercaptoethanol (Life Technologies), 1mM 

Sodium Pyruvate (Life Technologies), 5mM HEPES (Life Technologies), 1X MEM 

Non Essential Amino Acids (Life Technologies). HEK 293T cells were cultured in 

DMEM media (Gibco Life Technologies) supplemented with 10% FBS 

(BenchMark), 1X Penn Strep (Life Technologies) and 2mM L-glutamine (Life 

Technologies). 
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6.2.5 Splenic B cell Purification and Activation 

Naïve splenic B cells from 8-12 week old mice were purified by CD43 

negative selection on a magnetic column (MACS, Miltenyi Biotec). Purified B 

cells were plated at a concentration of 0.5 X 106 cells/mL and stimulated with 

either (1) 10 ng/mL IL-4 (Sigma) and 1 mg/mL anti-CD40 (ebiosciences), (2) 10 

ng/mL IL-4 and 25 µg/mL LPS (Sigma) or (3) 25 µg/mL LPS (Sigma). 

6.2.6 In vitro Class Switch Recombination Assay 

Naïve splenic B cells were purified and stimulated as described above. At 

stated time points post-stimulation (e.g. 72hr, 96hr), cells were collected and 

FACS analysis was used to determine the percentage of B cells, which have 

undergone CSR. 

6.2.7 B Cell Proliferation Analysis with CFSE 

CFSE (Carboxyfluorescein diacetate succinimidyl ester, Invitrogen, 

CellTrace) was dissolved in DMSO at a final concentration of 5 mM. B cells were 

resuspended at 1X106/mL in PBS/5% FBS. 2 µL of CFSE was added for every 1 

mL of cells to achieve a final CFSE concentration of 10 µM. Cells were labeled at 

room temperature for 10 min. The tube was covered with aluminum foil to prevent 

bleaching. The reaction was quenched by adding an equal volume of FBS and 

placing the tube on ice for 5 min. The tube was filled with PBS/5%FBS and 

centrifuged at 300xg for 5 min at room temperature. Cells were washed two more 

times in PBS/5%FBS, resuspended in culturing medium supplemented with CSR 
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stimuli and plated. Cells not loaded with CFSE were used as a negative control 

for FACS analysis. 

6.2.8 sqPCR of RNF126 levels 

Splenic B cells were purified from mice stated in the given experiment and 

stimulated to undergo CSR in vitro. RNA was prepared from 72hr activated B 

cells using the RNeasy Mini Kit (Qiagen). First strand cDNA was synthesized 

using Superscript III Reverse Transcriptase (Invitrogen) and semi-quantitative 

PCR performed to assay levels of RNF126 mRNA. Primers for RPL32 were used 

as a normalization control. Primers used were as follows: RNF126- F: 5’-

acggtacttctgccactgct-3’ (binds in exon 1) R: 5’-aactggctgtatccctgtgg-3’ (binds in 

exon 4); RPL32- F: 5’-AAGCGAAACTGGCGGAAAC-3’ and R: 5’-

TAACCGATGTTGGGCATCAG-3’. PFU Turbo (Agilent) was used for PCR 

amplification using an annealing temperature of 55°C and 30 cycles. 

6.2.9 B Cell Development Assay 

Bone marrow cells were flushed from the femurs and tibias of mice 

indicated in the experiment. Flow cytometry was used to assay the relative 

proportions of pro-, pre- and immature B cells in the bone marrow. Lymphocytes 

were gated based on their FSC/SSC profiles and B cells were identified as 

CD19+/IgM-. B cell subsets were determined by size (FSC) and surface CD43 

levels. In addition, spleen cells were prepared and IgM/IgD double positive B 

cells were assayed by Flow Cytometry. Antibodies used are stated below. 
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6.2.10 Antibodies Used. Anti-RNF126 (Sigma, HPA043050), CD19-PE (Clone 

ID3, BD Pharmingen 557399), CD19-APC (Clone ID3, BD Pharmingen 550992), 

FAS-PE (BD Pharmingen 554258), GL7-FITC (BD Pharmingen 553666), GL7-

Alexa Fluor 647 (eBiosciences 51-5902-80), IgG1-PE (Clone A85-1, BD 

Pharmingen 550083), IgG1-APC (BD Pharmingen 550874), CD43-PE (BD 

Pharmingen 553271), IgM-PE (BD Pharmingen 553409), IgD FITC (BD 

Pharmingen 553439), IgA-PE (eBiosciences 12-4204-82). 

6.2.11 Preparation of mammalian cell extracts 

Cells were harvested and the pellets washed with 1X PBS. Cells were 

lysed with RIPA buffer (50mM Tris (pH 8), 150mM NaCl, .5% Na Deoxycholate, 

.1% SDS, 1% NP-40, .5mM EDTA, 1mM DTT and protease inhibitor cocktail 

(Roche)). Lysates were normalized with the detergent compatible DC-Assay 

(Biorad).  

6.2.12 Viral Transduction of CH12 Cells 

HEK 293T cells were transfected with 1 µg of hairpin expressing pLKO.1 

lentiviral vectors with 750 ng of psPAX2 and 250 ng of pMD2.G packaging 

vectors with Lipofectamine 2000 reagent (Invitrogen). 24hr post-transfection, 

media was changed to IMDM (Life Technologies) with 5% FBS (BenchMark). 

72hr post-transfection, virus-containing supernatant was collected, filtered 

through a .45µm filter, and supplemented with polybrene at 8µg/mL 

concentration. 1X106 CH12 cells were resuspended in viral supernatant and spin-
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infected at 850xg for 2hr at 20°C. CH12 cells were removed from the centrifuge 

and 1mL of culturing medium added. 

6.2.13 shRNA Knockdown Experiments 

CH12 cells were virally transduced with hairpin expressing vectors against GFP, 

AID, and RNF126. 48hr post-infection, cells were selected in 1µg/mL of 

puromycin. Cells were stimulated for CSR with 10 ng/mL IL-4 (Sigma), 1 µg/mL 

anti-CD40 (eBiosciences) and 1 ng/mL TGFβ. CSR to IgA was analyzed by flow 

cytometry at 48hr post stimulation.  Hairpin sequences are as follows: shGFP: 

GCAAGCTGACCCTGAAGTTCA, shAID: 

CCGGGCGAGATGCATTTCGTATGTTCTCGAGAACATACGAAATGCATCTCGC

TTTTTG,  

shRNF126-1:  

CCGGGCTTTGAAATAAATGGACGTTCTCGAGAACGTCCATTTATTTCAAAGC

TTTTTG, shRNF126-2: 

CCGGGCTCCTCAATCAGTTTGAGAACTCGAGTTCTCAAACTGATTGAGGAGC

TTTTTG, shRNF126-3: 

CCGGCCCAGTGTGTAAAGAAGACTACTCGAGTAGTCTTCTTTACACACTGGG

TTTTTG.   

6.2.14 Immunization of Mice 

Mice were immunized intraperitoneally with 50µg of alum-precipitated 

NP16/17-CGG (Biosearch Technologies). Precipitation was carried out at room-

temperature using 50mL of a 1 mg/mL solution of NP-CGG and 200µL of Alum. 
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6.2.15 Mutation Analysis 

Splenic germinal center B cells were FACS-sorted using the surface 

markers CD19, FAS and GL7 and genomic DNA was prepared. The following 

regions were amplified with a nested PCR reaction using PFUTurbo (Agilent) and 

the stated primers: V186.2 Exon (351 bp) (5’-

TCTTTACAGTTACTGAGCACACAGGAC-3’ and 5’-

GGGTCTAGAGGTGTCCCTAGTCCTTCATGACC-3’ followed by 5’-

CAGTAGCAGGCTTGAGGTCTGGAC-3’ and 5’-

GGGTCTAGAGGTGTCCCTAGTCCTTCATGACC-3’), JH4 Intron (357 bp) (5’- 

AGCCTGACATCTGAGGAC-3’ and 5’-TAGTGTGGAACATTCCTCAC-3’ followed 

by 5’-CTGACATCTGAGGACTCTGC-3’ and 5’-GCTGTCACAGAGGTGGTCCTG-

3’) and V186.2 Upstream Region (295 bp) (5’-

GGCTCTAATGTTACATCCATAGCCTCAAC-3’ and 5’-

GGGTCTAGAGGTGTCCCTAGTCCTTCATGACC-3’ followed by 5’-

CAGACAAGATGAGGACTTGGGCTTCAGTATCC-3’ and 5’-

GTCCAGACCTCAAGCCTGCTACTG-3’). PCR products were blunt cloned into 

the pSC-B vector provided with the StrataClone Blunt PCR Cloning Kit (Agilent) 

and colonies sequenced with a T3 primer. Blat was run locally to align sequences 

to a consensus and trim vector sequence information external to the PCR 

product. For each region analyzed, all sequences from one mouse were 

combined and mutation analysis was conducted with the aid of SHMTool 

(Maccarthy et al., 2009).  
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6.2.16 NP Elisa 

Serum from immunized mice was prepared from peripheral blood collected 

from the facial vein using Serum Seperator Tubes (BD Biosciences). Serum 

dilutions (prepared in blocking buffer) were incubated with either NP3-BSA or 

NP30-BSA (5µg/mL) coated wells of a flat-bottom EIA/RIA plate (Costar). Serum 

was incubated at 37°C for 1.5 hours after coated plates had been blocked in 

blocking buffer at room temperature for 1 hour. Wells were washed 3X with 

washing buffer after blocking and 5X after incubation with serum. A 1:1000 

dilution of secondary antibody was prepared in blocking buffer, loaded in each 

well and incubated for 1 hour at 37°C. Again, plates were washed 5X with 

washing buffer. Plates were developed using a 1 mg/mL solution of 4-Nitrophenyl 

phosphate disodium salt hexahydrate (PNPP, Sigma) resuspended in ELISA 

buffer. Substrate was incubated for 30 minutes prior to measuring the OD at 405 

nm. NP-specific serum IgG1 was detected using an alkaline phosphatase (AP) 

conjugated secondary antibody (goat anti-mouse IgG1 antibody, Southern 

Biotech, 1070-04). Total IgG1 levels for the purpose of normalization were 

determined by coating plates with a Goat anti-mouse IgG antibody (Jackson 

Labs, 115-006-071) and detection with the same secondary (anti-mouse IgG1) 

antibody. Buffer conditions are as follows: Blocking Buffer (1% BSA, 1X Borate 

Buffer), Washing Buffer (.05% Tween 20 in 1X PBS), 1X ELISA Buffer (.1M 

Glycine (from a stock of 1M Glycine at pH 10.4), 1mM ZnCl2, 1mM MgCl2), 1X 

Borate Buffer (100 mM Boric Acid, 25 mM Sodium Borate, 75 mM Sodium 
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Chloride). Serum NP3 IgG1 and NP30 IgG1 levels are normalized to total IgG1 

levels. Affinity Maturation is determined as the ratio of NP3/NP30. 
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Primer Name Sequence Description Amplicon

R2-F TCT ATA GTC GCA GTA GGC GG Construct Specific Sequence,           
5' of Targeted Region

Endo-F CTG CCT GCT CTA CTC TTG TC Binds Intron 1

Endo-R GTA GGA CGT GGA CAG CTA GG Binds Intron 1

RP-R TGA ACT GAT GGC GAG CTC AGA CC Construct Specific Sequence,           
3' of Targeted Region

oIMR1348 CAC TGA TAT TGT AAG TAG TTT GC

oIMR1349 CTA GTG CGA AGT AGT GAT CAG G

oIMR7338 CTA GGC CAC AGA ATT GAA AGA TCT Internal Control-Forward 324 bp

oIMR7339 GTA GGT GGA AAT TCT AGC ATC ATC C Internal Control-Reverse

hCRE-F CCCTGTGGATGCCACCTC Mb1 Cre Allele-Forward 450 bp

hCRE-R GTCCTGGCATCTGTCAGAG Mb1 Cre Allele-Reverse

oIMR8744 CAAATGTTGCTTGTCTGGTG Internal Control-Forward 200 bp

oIMR8745 GTCAGTCGAGTGCACAGTTT Internal Control-Reverse
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Table 6.1 Primers used to genotype the RNF126 conditional knockout 
mouse. Primer sequences, descriptions and expected amplicon sizes
are presented.

169



REFERENCES 

Abdouni, H., King, J.J., Suliman, M., Quinlan, M., Fifield, H., and Larijani, M. 
(2013). Zebrafish AID is capable of deaminating methylated deoxycytidines. 
Nucleic Acids Res, 1-12. 

 

Aida, M., Hamad, N., Stanlie, A., Begum, N.A., and Honjo, T. (2013). 
Accumulation of the FACT complex, as well as histone H3.3, serves as a target 
marker for somatic hypermutation. Proceedings of the National Academy of 
Sciences 110, 7784–7789. 

 

Alber, F., Dokudovskaya, S., Veenhoff, L.M., Zhang, W., Kipper, J., Devos, D., 
Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B.T., et al. (2007a). 
Determining the architectures of macromolecular assemblies. Nature 450, 683–
694. 

 

Alber, F., Dokudovskaya, S., Veenhoff, L.M., Zhang, W., Kipper, J., Devos, D., 
Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B.T., et al. (2007b). The 
molecular architecture of the nuclear pore complex. Nature 450, 695–701. 

 

Alt, F.W., Zhang, Y., Meng, F.-L., Guo, C., and Schwer, B. (2013). Mechanisms 
of programmed DNA lesions and genomic instability in the immune system. Cell 
152, 417–429. 

 

Amemiya, Y., Azmi, P., and Seth, A. (2008). Autoubiquitination of BCA2 RING E3 
Ligase Regulates Its Own Stability and Affects Cell Migration. Molecular Cancer 
Research 6, 1385–1396. 

 

Aoufouchi, S., Faili, A., Zober, C., D'Orlando, O., Weller, S., Weill, J.-C., and 
Reynaud, C.-A. (2008). Proteasomal degradation restricts the nuclear lifespan of 
AID. J. Exp. Med. 205, 1357–1368. 

 

Arakawa, H., Moldovan, G.-L., Saribasak, H., Saribasak, N.N., Jentsch, S., and 
170



Buerstedde, J.-M. (2006). A role for PCNA ubiquitination in immunoglobulin 
hypermutation. PLoS Biol. 4, e366. 

 

Bachl, J., Carlson, C., Gray-Schopfer, V., Dessing, M., and Olsson, C. (2001). 
Increased transcription levels induce higher mutation rates in a hypermutating 
cell line. J. Immunol. 166, 5051–5057. 

 

Bachl, J., Ertongur, I., and Jungnickel, B. (2006). Involvement of Rad18 in 
somatic hypermutation. Proc. Natl. Acad. Sci. U.S.a. 103, 12081–12086. 

 

Bacopulos, S., Amemiya, Y., Yang, W., Zubovits, J., Burger, A., Yaffe, M., and 
Seth, A.K. (2012). Effects of partner proteins on BCA2 RING ligase activity. BMC 
Cancer 12, 63. 

 

Barbaric, I., Miller, G., and Dear, T.N. (2007). Appearances can be deceiving: 
phenotypes of knockout mice. Brief Funct Genomic Proteomic 6, 91–103. 

 

Bardwell, P.D., Woo, C.J., Wei, K., Li, Z., Martin, A., Sack, S.Z., Parris, T., 
Edelmann, W., and Scharff, M.D. (2004). Altered somatic hypermutation and 
reduced class-switch recombination in exonuclease 1-mutant mice. Nat. 
Immunol. 5, 224–229. 

 

Basu, U., Chaudhuri, J., Alpert, C., Dutt, S., Ranganath, S., Li, G., Schrum, J.P., 
Manis, J.P., and Alt, F.W. (2005). The AID antibody diversification enzyme is 
regulated by protein kinase A phosphorylation. Nature 438, 508–511. 

 

Basu, U., Meng, F.-L., Keim, C., Grinstein, V., Pefanis, E., Eccleston, J., Zhang, 
T., Myers, D., Wasserman, C.R., Wesemann, D.R., et al. (2011). The RNA 
exosome targets the AID cytidine deaminase to both strands of transcribed 
duplex DNA substrates. Cell 144, 353–363. 

 

171



Basu, U., Wang, Y., and Alt, F.W. (2008). Evolution of phosphorylation-
dependent regulation of activation-induced cytidine deaminase. Molecular Cell 
32, 285–291. 

 

Bates, P.A., and DeLuca, N.A. (1998). The polyserine tract of herpes simplex 
virus ICP4 is required for normal viral gene expression and growth in murine 
trigeminal ganglia. J. Virol. 72, 7115–7124. 

 

Begum, N.A., Stanlie, A., Doi, T., Sasaki, Y., Jin, H.W., Kim, Y.S., Nagaoka, H., 
and Honjo, T. (2009). Further evidence for involvement of a noncanonical 
function of uracil DNA glycosylase in class switch recombination. Proceedings of 
the National Academy of Sciences 106, 2752–2757. 

 

Besmer, E., Market, E., and Papavasiliou, F.N. (2006). The transcription 
elongation complex directs activation-induced cytidine deaminase-mediated DNA 
deamination. Molecular and Cellular Biology 26, 4378–4385. 

 

Betz, B.C., Jordan-Williams, K.L., Wang, C., Kang, S.G., Liao, J., Logan, M.R., 
Kim, C.H., and Taparowsky, E.J. (2010). Batf coordinates multiple aspects of B 
and T cell function required for normal antibody responses. Journal of 
Experimental Medicine 207, 933–942. 

 

Bhutani, N., Decker, M.N., Brady, J.J., Bussat, R.T., Burns, D.M., Corbel, S.Y., 
and Blau, H.M. (2012). A critical role for AID in the initiation of reprogramming to 
induced pluripotent stem cells. Faseb J 27 (3), 1107-1113. 

 

Bienko, M., Green, C.M., Sabbioneda, S., Crosetto, N., Matic, I., Hibbert, R.G., 
Begovic, T., Niimi, A., Mann, M., Lehmann, A.R., et al. (2010). Regulation of 
translesion synthesis DNA polymerase eta by monoubiquitination. Molecular Cell 
37, 396–407. 

 

 

172



Blagodatski, A., Batrak, V., Schmidl, S., Schoetz, U., Caldwell, R.B., Arakawa, 
H., and Buerstedde, J.-M. (2009). A cis-acting diversification activator both 
necessary and sufficient for AID-mediated hypermutation. PLoS Genet. 5, 
e1000332. 

 

Boboila, C., Oksenych, V., Gostissa, M., Wang, J.H., Zha, S., Zhang, Y., Chai, 
H., Lee, C.-S., Jankovic, M., Saez, L.-M.A., et al. (2012). Robust chromosomal 
DNA repair via alternative end-joining in the absence of X-ray repair cross-
complementing protein 1 (XRCC1) Proceedings of the National Academy of 
Sciences U.S.A 109 (7), 2473. 

 

Boboila, C., Yan, C., Wesemann, D.R., Jankovic, M., Wang, J.H., Manis, J., 
Nussenzweig, A., Nussenzweig, M., and Alt, F.W. (2010). Alternative end-joining 
catalyzes class switch recombination in the absence of both Ku70 and DNA 
ligase 4 Journal of Experimental Medicine 207, (2), 417-427.  

 

Boehm, T. (2011). Design principles of adaptive immune systems. Nat Rev 
Immunol 11, 307–317. 

 

Bothmer, A., Robbiani, D.F., Feldhahn, N., Gazumyan, A., Nussenzweig, A., and 
Nussenzweig, M.C. (2010). 53BP1 regulates DNA resection and the choice 
between classical and alternative end joining during class switch recombination. 
Journal of Experimental Medicine 207, 855–865. 

 

Bothmer, A., Robbiani, D.F., Di Virgilio, M., Bunting, S.F., Klein, I.A., Feldhahn, 
N., Barlow, J., Chen, H.T., Bosque, D., Callen, E., et al. (2011). Regulation of 
DNA end joining, resection, and immunoglobulin class switch recombination by 
53BP1. Molecular Cell 42, 319–329. 

 

Bransteitter, R., Pham, P., Scharff, M.D., and Goodman, M.F. (2003). Activation-
induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA 
but requires the action of RNase. Proc. Natl. Acad. Sci. U.S.a. 100, 4102–4107. 

 

173



Brar, S.S., Watson, M., and Diaz, M. (2004). Activation-induced cytosine 
deaminase (AID) is actively exported out of the nucleus but retained by the 
induction of DNA breaks. J. Biol. Chem. 279, 26395–26401. 

 

Braun, T., Rudnicki, M.A., Arnold, H.H., and Jaenisch, R. (1992). Targeted 
inactivation of the muscle regulatory gene Myf-5 results in abnormal rib 
development and perinatal death. Cell 71, 369–382. 

 

Buckley, K.M., Munshaw, S., Kepler, T.B., and Smith, L.C. (2008a). The 185/333 
gene family is a rapidly diversifying host-defense gene cluster in the purple sea 
urchin Strongylocentrotus purpuratus. J. Mol. Biol. 379, 912–928. 

 

Buckley, K.M., Terwilliger, D.P., and Smith, L.C. (2008b). Sequence variations in 
185/333 messages from the purple sea urchin suggest posttranscriptional 
modifications to increase immune diversity. J. Immunol. 181, 8585–8594. 

 

Burger, A., Amemiya, Y., Kitching, R., and Seth, A.K. (2006). Novel RING E3 
ubiquitin ligases in breast cancer. Neoplasia 8, 689–695. 

 

Burnet, F.M. (1976). A modification of Jerne's theory of antibody production using 
the concept of clonal selection. CA Cancer J Clin 26, 119–121. 

 

Cabantous, S., and Waldo, G.S. (2006). In vivo and in vitro protein solubility 
assays using split GFP. Nat. Methods 3, 845–854. 

 

Cadwell, K., and Coscoy, L. (2005). Ubiquitination on nonlysine residues by a 
viral E3 ubiquitin ligase. Science 309, 127–130. 

 

Chaudhuri, J., and Alt, F.W. (2004). Class-switch recombination: interplay of 
transcription, DNA deamination and DNA repair. Nat Rev Immunol 4, 541–552. 

174



Chaudhuri, J., Khuong, C., and Alt, F.W. (2004). Replication protein A interacts 
with AID to promote deamination of somatic hypermutation targets. Nature 430, 
992–998. 

 

Chaudhuri, J., Tian, M., Khuong, C., Chua, K., Pinaud, E., and Alt, F.W. (2003). 
Transcription-targeted DNA deamination by the AID antibody diversification 
enzyme. Nature 422, 726–730. 

 

Cheng, H.-L., Vuong, B.Q., Basu, U., Franklin, A., Schwer, B., Astarita, J., Phan, 
R.T., Datta, A., Manis, J., Alt, F.W., et al. (2009). Integrity of the AID serine-38 
phosphorylation site is critical for class switch recombination and somatic 
hypermutation in mice. Proceedings of the National Academy of Sciences 106, 
2717–2722. 

 

Conticello, S.G., Ganesh, K., Xue, K., Lu, M., Rada, C., and Neuberger, M.S. 
(2008). Interaction between antibody-diversification enzyme AID and 
spliceosome-associated factor CTNNBL1. Molecular Cell 31, 474–484. 

 

Crouch, E.E., Li, Z., Takizawa, M., Fichtner-Feigl, S., Gourzi, P., Montaño, C., 
Feigenbaum, L., Wilson, P., Janz, S., Papavasiliou, F.N., et al. (2007). 
Regulation of AID expression in the immune response. J. Exp. Med. 204, 1145–
1156. 

 

Daniels, G.A., and Lieber, M.R. (1995). RNA:DNA complex formation upon 
transcription of immunoglobulin switch regions: implications for the mechanism 
and regulation of class switch recombination. Nucleic Acids Res. 23, 5006–5011. 

 

Danilova, N. (2012). The evolution of adaptive immunity. Adv. Exp. Med. Biol. 
738, 218–235. 

 

de Yébenes, V.G., Belver, L., Pisano, D.G., González, S., Villasante, A., Croce, 
C., He, L., and Ramiro, A.R. (2008). miR-181b negatively regulates activation-
induced cytidine deaminase in B cells. J. Exp. Med. 205, 2199–2206. 

175



 

Dedeoglu, F., Horwitz, B., Chaudhuri, J., Alt, F.W., and Geha, R.S. (2004). 
Induction of activation-induced cytidine deaminase gene expression by IL-4 and 
CD40 ligation is dependent on STAT6 and NFkappaB. Int. Immunol. 16, 395–
404. 

 

Delbos, F., Aoufouchi, S., Faili, A., Weill, J.-C., and Reynaud, C.-A. (2007). DNA 
polymerase eta is the sole contributor of A/T modifications during immunoglobulin 
gene hypermutation in the mouse. J. Exp. Med. 204, 17–23. 

 

Delbos, F., De Smet, A., Faili, A., Aoufouchi, S., Weill, J.-C., and Reynaud, C.-A. 
(2005). Contribution of DNA polymerase eta to immunoglobulin gene 
hypermutation in the mouse. J. Exp. Med. 201, 1191–1196. 

 

Delker, R.K., Fugmann, S.D., and Papavasiliou, F.N. (2009). A coming-of-age 
story: activation-induced cytidine deaminase turns 10. Nat. Immunol. 10, 1147–
1153. 

 

Delker, R.K., Zhou, Y., Strikoudis, A., Stebbins, C.E., and Papavasiliou, F.N. 
(2012). Solubility-based genetic screen identifies RING finger protein 126 as an 
E3 ligase for activation-induced cytidine deaminase. Proceedings of the National 
Academy of Sciences 110 (3), 1029-1034. 

 

Di Virgilio, M., Callen, E., Yamane, A., Zhang, W., Jankovic, M., Gitlin, A.D., 
Feldhahn, N., Resch, W., Oliveira, T.Y., Chait, B.T., et al. (2013). Rif1 Prevents 
Resection of DNA Breaks and Promotes Immunoglobulin Class Switching. 
Science 339 (6120), 711-715. 

 

Dickerson, S.K., Market, E., Besmer, E., and Papavasiliou, F.N. (2003). AID 
mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 
1291–1296. 

 

176



Dinkelmann, M., Spehalski, E., Stoneham, T., Buis, J., Wu, Y., Sekiguchi, J.M., 
and Ferguson, D.O. (2009). Multiple functions of MRN in end-joining pathways 
during isotype class switching. Nat. Struct. Mol. Biol. 16, 808–813. 

 

Doil, C., Mailand, N., Bekker-Jensen, S., Menard, P., Larsen, D.H., Pepperkok, 
R., Ellenberg, J., Panier, S., Durocher, D., Bartek, J., et al. (2009). RNF168 binds 
and amplifies ubiquitin conjugates on damaged chromosomes to allow 
accumulation of repair proteins. Cell 136, 435–446. 

 

Dorsett, Y., McBride, K.M., Jankovic, M., Gazumyan, A., Thai, T.-H., Robbiani, 
D.F., Di Virgilio, M., Reina San-Martin, B., Heidkamp, G., Schwickert, T.A., et al. 
(2008). MicroRNA-155 suppresses activation-induced cytidine deaminase-
mediated Myc-Igh translocation. Immunity 28, 630–638. 

 

Du, L., Dunn-Walters, D.K., Chrzanowska, K.H., Stankovic, T., Kotnis, A., Li, X., 
Lu, J., Eggertsen, G., Brittain, C., Popov, S.W., et al. (2008). A regulatory role for 
NBS1 in strand-specific mutagenesis during somatic hypermutation. PLoS ONE 
3, e2482. 

 

Duke, J.L., Liu, M., Yaari, G., Khalil, A.M., Tomayko, M.M., Shlomchik, M.J., 
Schatz, D.G., and Kleinstein, S.H. (2013). Multiple Transcription Factor Binding 
Sites Predict AID Targeting in Non-Ig Genes. J. Immunol 190 (8), 3878-3888. 

 

Dunnick, W., Hertz, G.Z., Scappino, L., and Gritzmacher, C. (1993). DNA 
sequences at immunoglobulin switch region recombination sites. Nucleic Acids 
Res. 21, 365–372. 

 

Durandy, A., Revy, P., and Fischer, A. (2004). Human models of inherited 
immunoglobulin class switch recombination and somatic hypermutation defects 
(hyper-IgM syndromes). Adv. Immunol. 82, 295–330. 

 

 

177



Ehrenstein, M.R., and Neuberger, M.S. (1999). Deficiency in Msh2 affects the 
efficiency and local sequence specificity of immunoglobulin class-switch 
recombination: parallels with somatic hypermutation. Embo J. 18, 3484–3490. 

 

Ehrenstein, M.R., Rada, C., Jones, A.M., Milstein, C., and Neuberger, M.S. 
(2001). Switch junction sequences in PMS2-deficient mice reveal a 
microhomology-mediated mechanism of Ig class switch recombination. Proc. 
Natl. Acad. Sci. U.S.a. 98, 14553–14558. 

 

Faili, A., Aoufouchi, S., Guéranger, Q., Zober, C., Léon, A., Bertocci, B., Weill, J.-
C., and Reynaud, C.-A. (2002). AID-dependent somatic hypermutation occurs as 
a DNA single-strand event in the BL2 cell line. Nat. Immunol. 3, 815–821. 

 

Faili, A., Aoufouchi, S., Weller, S., Vuillier, F., Stary, A., Sarasin, A., Reynaud, C.-
A., and Weill, J.-C. (2004). DNA polymerase eta is involved in hypermutation 
occurring during immunoglobulin class switch recombination. J. Exp. Med. 199, 
265–270. 

 

Feil, R., Wagner, J., Metzger, D., and Chambon, P. (1997). Regulation of Cre 
recombinase activity by mutated estrogen receptor ligand-binding domains. 
Biochem. Biophys. Res. Commun. 237, 752–757. 

 

Fields, S., and Song, O. (1989). A novel genetic system to detect protein-protein 
interactions. Nature 340, 245–246. 

 

Fineran, P.C., and Charpentier, E. (2012). Memory of viral infections by CRISPR-
Cas adaptive immune systems: acquisition of new information. Virology 434, 
202–209. 

 

Flajnik, M.F., and Kasahara, M. (2010). Origin and evolution of the adaptive 
immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 
47–59. 

178



Fritz, E.L., and Papavasiliou, F.N. (2010). Cytidine deaminases: AIDing DNA 
demethylation? Genes Dev. 24, 2107–2114. 

 

Fritz, E.L., Rosenberg, B.R., Lay, K., Mihailović, A., Tuschl, T., and Papavasiliou, 
F.N. (2013). A comprehensive analysis of the effects of the deaminase AID on 
the transcriptome and methylome of activated B cells. Nat. Immunol 14, 749-755. 

 

Fugmann, S.D., Messier, C., Novack, L.A., Cameron, R.A., and Rast, J.P. (2006). 
An ancient evolutionary origin of the Rag1/2 gene locus. Proc. Natl. Acad. Sci. 
U.S.a. 103, 3728–3733. 

 

Fukita, Y., Jacobs, H., and Rajewsky, K. (1998). Somatic hypermutation in the 
heavy chain locus correlates with transcription. Immunity 9, 105–114. 

 

Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, 
C., Jensen, L.J., Bastuck, S., Dümpelfeld, B., et al. (2006). Proteome survey 
reveals modularity of the yeast cell machinery. Nature 440, 631–636. 

 

Gazumyan, A., Timachova, K., Yuen, G., Siden, E., Di Virgilio, M., Woo, E.M., 
Chait, B.T., Reina San-Martin, B., Nussenzweig, M.C., and McBride, K.M. (2011). 
Amino-terminal phosphorylation of activation-induced cytidine deaminase 
suppresses c-myc/IgH translocation. Molecular and Cellular Biology 31, 442–449. 

 

Ge, H., and Roeder, R.G. (1994). Purification, cloning, and characterization of a 
human coactivator, PC4, that mediates transcriptional activation of class II genes. 
Cell 78, 513–523. 

 

Ge, H., Zhao, Y., Chait, B.T., and Roeder, R.G. (1994). Phosphorylation 
negatively regulates the function of coactivator PC4. Proc. Natl. Acad. Sci. U.S.a. 
91, 12691–12695. 

 

179



Geisberger, R., Rada, C., and Neuberger, M.S. (2009). The stability of AID and 
its function in class-switching are critically sensitive to the identity of its nuclear-
export sequence. Proceedings of the National Academy of Sciences 106, 6736–
6741. 

 

Ghavidel, A., Cagney, G., and Emili, A. (2005). A skeleton of the human protein 
interactome. Cell 122, 830–832. 

 

Gonda, H., Sugai, M., Nambu, Y., Katakai, T., Agata, Y., Mori, K.J., Yokota, Y., 
and Shimizu, A. (2003). The balance between Pax5 and Id2 activities is the key 
to AID gene expression. J. Exp. Med. 198, 1427–1437. 

 

Gourzi, P., Leonova, T., and Papavasiliou, F.N. (2006). A Role for Activation-
Induced Cytidine Deaminase in the Host Response against a Transforming 
Retrovirus. Immunity 24, 779–786. 

 

Gu, X. (2003). Evolution of duplicate genes versus genetic robustness against 
null mutations. Trends Genet. 19, 354–356. 

 

Gu, Z., Steinmetz, L.M., Gu, X., Scharfe, C., Davis, R.W., and Li, W.-H. (2003). 
Role of duplicate genes in genetic robustness against null mutations. Nature 421, 
63–66. 

 

Hamilton, C.E., Papavasiliou, F.N., and Rosenberg, B.R. (2010). Diverse 
functions for DNA and RNA editing in the immune system. RNA Biol 7, 220–228. 

 

Han, L., and Yu, K. (2008). Altered kinetics of nonhomologous end joining and 
class switch recombination in ligase IV–deficient B cells. J. Exp. Med 205 (12), 
2745-2753.  

 

 

180



Häsler, J., Rada, C., and Neuberger, M.S. (2011). Cytoplasmic activation-induced 
cytidine deaminase (AID) exists in stoichiometric complex with translation 
elongation factor 1α (eEF1A). Proceedings of the National Academy of Sciences 
108, 18366–18371. 

 

He, B., Qiao, X., and Cerutti, A. (2004). CpG DNA induces IgG class switch DNA 
recombination by activating human B cells through an innate pathway that 
requires TLR9 and cooperates with IL-10. The Journal of Immunology 173 (7), 
4479-4491. 

 

Hein, K., Lorenz, M.G., Siebenkotten, G., Petry, K., Christine, R., and Radbruch, 
A. (1998). Processing of switch transcripts is required for targeting of antibody 
class switch recombination. J. Exp. Med. 188, 2369–2374. 

 

Hibbert, R.G., Huang, A., Boelens, R., and Sixma, T.K. (2011). E3 ligase Rad18 
promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme 
Rad6. Proceedings of the National Academy of Sciences 108, 5590–5595. 

 

Hobeika, E., Thiemann, S., Storch, B., Jumaa, H., Nielsen, P.J., Pelanda, R., and 
Reth, M. (2006). Testing gene function early in the B cell lineage in mb1-cre 
mice. Proc. Natl. Acad. Sci. U.S.a. 103, 13789–13794. 

 

Hoege, C., Pfander, B., Moldovan, G.-L., Pyrowolakis, G., and Jentsch, S. 
(2002). RAD6-dependent DNA repair is linked to modification of PCNA by 
ubiquitin and SUMO. Nature 419, 135–141. 

 

Hsu, Y., Jubelin, G., Taieb, F., Nougayrède, J.-P., Oswald, E., and Stebbins, C.E. 
(2008). Structure of the cyclomodulin Cif from pathogenic Escherichia coli. J. Mol. 
Biol. 384, 465–477. 

 

 

 
181



Hu, Y., Ericsson, I., Torseth, K., Methot, S.P., Sundheim, O., Liabakk, N.B., 
Slupphaug, G., Di Noia, J.M., Krokan, H.E., and Kavli, B. (2012). A Combined 
Nuclear and Nucleolar Localization Motif in Activation-Induced Cytidine 
Deaminase (AID) Controls Immunoglobulin Class Switching. J. Mol. Biol. 425 (2), 
424-443. 

 

Hunter, T. (2007). The age of crosstalk: phosphorylation, ubiquitination, and 
beyond. Molecular Cell 28, 730–738. 

 

Ise, W., Kohyama, M., Schraml, B.U., and Zhang, T. (2011). The transcription 
factor BATF controls the global regulators of class-switch recombination in both 
B cells and T cells. Nature 6, 536-543. 

 

Ito, S., Nagaoka, H., Shinkura, R., Begum, N., Muramatsu, M., Nakata, M., and 
Honjo, T. (2004). Activation-induced cytidine deaminase shuttles between 
nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 
1. Proc. Natl. Acad. Sci. U.S.A. 101, 1975–1980. 

 

Iwasato, T., Shimizu, A., Honjo, T., and Yamagishi, H. (1990). Circular DNA is 
excised by immunoglobulin class switch recombination. Cell 62, 143–149. 

 

Jackson, S.P., and Durocher, D. (2013). Regulation of DNA Damage Responses 
by Ubiquitin and SUMO. Molecular Cell 49, 795–807. 

 

Jansen, J.G., Langerak, P., Tsaalbi-Shtylik, A., van den Berk, P., Jacobs, H., and 
de Wind, N. (2006). Strand-biased defect in C/G transversions in hypermutating 
immunoglobulin genes in Rev1-deficient mice. J. Exp. Med. 203, 319–323. 

 

Jeevan-Raj, B.P., Robert, I., Heyer, V., Page, A., Wang, J.H., Cammas, F., Alt, 
F.W., Losson, R., and Reina San-Martin, B. (2011). Epigenetic tethering of AID to 
the donor switch region during immunoglobulin class switch recombination. J. 
Exp. Med. 208, 1649–1660. 

182



Johnston, R.J., and Desplan, C. (2008). Stochastic neuronal cell fate choices. 
Curr. Opin. Neurobiol. 18, 20–27. 

 

Johnston, R.J., and Desplan, C. (2010). Stochastic mechanisms of cell fate 
specification that yield random or robust outcomes. Annu. Rev. Cell Dev. Biol. 26, 
689–719. 

 

Kaelin, W.G. (2012). Use and Abuse of RNAi to Study Mammalian Gene 
Function. Science 337, 421–422. 

 

Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, 
A., Le Bot, N., Moreno, S., Sohrmann, M., et al. (2003). Systematic functional 
analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–
237. 

 

Klein, I.A., Resch, W., Jankovic, M., Oliveira, T., Yamane, A., Nakahashi, H., Di 
Virgilio, M., Bothmer, A., Nussenzweig, A., Robbiani, D.F., et al. (2011). 
Translocation-capture sequencing reveals the extent and nature of chromosomal 
rearrangements in B lymphocytes. Cell 147, 95–106. 

 

Klein, U., and Dalla-Favera, R. (2008). Germinal centres: role in B-cell physiology 
and malignancy. Nat Rev Immunol 8, 22–33. 

 

Kobayashi, M., Aida, M., Nagaoka, H., Begum, N.A., Kitawaki, Y., Nakata, M., 
Stanlie, A., Doi, T., Kato, L., Okazaki, I.-M., et al. (2009). AID-induced decrease 
in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class 
switch recombination. Proceedings of the National Academy of Sciences 106, 
22375–22380. 

 

Kodgire, P., Mukkawar, P., Ratnam, S., Martin, T.E., and Storb, U. (2013). 
Changes in RNA polymerase II progression influence somatic hypermutation of 
Ig-related genes by AID. Journal of Experimental Medicine 210 (7), 1481-1492. 

183



Kohli, R.M., Abrams, S.R., Gajula, K.S., Maul, R.W., Gearhart, P.J., and Stivers, 
J.T. (2009). A portable hot spot recognition loop transfers sequence preferences 
from APOBEC family members to activation-induced cytidine deaminase. J. Biol. 
Chem. 284, 22898–22904. 

 

Kothapalli, N., Norton, D.D., and Fugmann, S.D. (2008). Cutting edge: a cis-
acting DNA element targets AID-mediated sequence diversification to the chicken 
Ig light chain gene locus. J. Immunol. 180, 2019–2023. 

 

Kretzschmar, M., Kaiser, K., Lottspeich, F., and Meisterernst, M. (1994). A novel 
mediator of class II gene transcription with homology to viral immediate-early 
transcriptional regulators. Cell 78, 525–534. 

 

Krijger, P.H.L., Langerak, P., van den Berk, P.C.M., and Jacobs, H. (2009). 
Dependence of nucleotide substitutions on Ung2, Msh2, and PCNA-Ub during 
somatic hypermutation. J. Exp. Med. 206, 2603–2611. 

 

Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, 
S., Datta, N., Tikuisis, A.P., et al. (2006). Global landscape of protein complexes 
in the yeast Saccharomyces cerevisiae. Nature 440, 637–643. 

 

Kumar, R., Dimenna, L., Schrode, N., Liu, T.-C., Franck, P., Muñoz-Descalzo, S., 
Hadjantonakis, A.-K., Zarrin, A.A., Chaudhuri, J., Elemento, O., et al. (2013). AID 
stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency 
genes. Nature. 

 

Kuwahara, K., Yoshida, M., Kondo, E., Sakata, A., Watanabe, Y., Abe, E., 
Kouno, Y., Tomiyasu, S., Fujimura, S., Tokuhisa, T., et al. (2000). A novel 
nuclear phosphoprotein, GANP, is up-regulated in centrocytes of the germinal 
center and associated with MCM3, a protein essential for DNA replication. Blood 
95, 2321–2328. 

 

 
184



Kuwahara, K., Fujimura, S., Takahashi, Y., Nakagata, N., Takemori, T., Aizawa, 
S., and Sakaguchi, N. (2004). Germinal center-associated nuclear protein 
contributes to affinity maturation of B cell antigen receptor in T cell-dependent 
responses. Proc. Natl. Acad. Sci. U.S.a. 101, 1010–1015. 

 

Langerak, P., Krijger, P.H.L., Heideman, M.R., van den Berk, P.C.M., and 
Jacobs, H. (2009). Somatic hypermutation of immunoglobulin genes: lessons 
from proliferating cell nuclear antigenK164R mutant mice. Philos. Trans. R. Soc. 
Lond., B, Biol. Sci. 364, 621–629. 

 

Larson, E.D., Cummings, W.J., Bednarski, D.W., and Maizels, N. (2005). 
MRE11/RAD50 cleaves DNA in the AID/UNG-dependent pathway of 
immunoglobulin gene diversification. Molecular Cell 20, 367–375. 

 

Lazzaro, B.P., Sceurman, B.K., and Clark, A.G. (2004). Genetic basis of natural 
variation in D. melanogaster antibacterial immunity. Science 303, 1873–1876. 

 

Lebecque, S.G., and Gearhart, P.J. (1990). Boundaries of somatic mutation in 
rearranged immunoglobulin genes: 5“ boundary is near the promoter, and 3” 
boundary is approximately 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727. 

 

LEDERBERG, J. (1959). Genes and antibodies. Science 129, 1649–1653. 

 

Lee, C.G., Kinoshita, K., Arudchandran, A., Cerritelli, S.M., Crouch, R.J., and 
Honjo, T. (2001). Quantitative regulation of class switch recombination by switch 
region transcription. J. Exp. Med. 194, 365–374. 

 

Lee-Theilen, M., Matthews, A.J., Kelly, D., Zheng, S., and Chaudhuri, J. (2011). 
CtIP promotes microhomology-mediated alternative end joining during class-
switch recombination. Nat. Struct. Mol. Biol. 18, 75–79. 

 

185



Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, 
A.F., Boguski, M.S., Brockway, K.S., Byrnes, E.J., et al. (2007). Genome-wide 
atlas of gene expression in the adult mouse brain. Nature 445, 168–176. 

 

Leslie, A.G., Moody, P.C., and Shaw, W.V. (1988). Structure of chloramphenicol 
acetyltransferase at 1.75-A resolution. Proc. Natl. Acad. Sci. U.S.A. 85, 4133–
4137. 

 

Li, G., Borjeson, T., Boboila, C., and Alt, F.W. (2008). DNA-PKcs and Artemis 
function in the end-joining phase of immunoglobulin heavy chain class switch 
recombination. The Journal of Experimental Medicine 205 (3), 557-64. 

 

Li, M., Brooks, C.L., Wu-Baer, F., Chen, D., Baer, R., and Gu, W. (2003). Mono- 
versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 
1972–1975. 

 

Li, S.C., Rothman, P.B., Zhang, J., Chan, C., Hirsh, D., and Alt, F.W. (1994). 
Expression of I mu-C gamma hybrid germline transcripts subsequent to 
immunoglobulin heavy chain class switching. Int. Immunol. 6, 491–497. 

 

Li, S., Zhao, Y., and Wang, J.-Y. (2012). Analysis of Ig gene hypermutation in 
Ung(-/-)Polh(-/-) mice suggests that UNG and A:T mutagenesis pathway target 
different U:G lesions. Mol. Immunol. 53, 214–217. 

 

Li, Z., Zhao, C., Iglesias-Ussel, M.D., Polonskaya, Z., Zhuang, M., Yang, G., Luo, 
Z., Edelmann, W., and Scharff, M.D. (2006). The mismatch repair protein Msh6 
influences the in vivo AID targeting to the Ig locus. Immunity 24, 393–403. 

 

Liang, G., Kitamura, K., Wang, Z., Liu, G., Chowdhury, S., Fu, W., Koura, M., 
Wakae, K., Honjo, T., and Muramatsu, M. (2013). RNA editing of hepatitis B virus 
transcripts by activation-induced cytidine deaminase. Proceedings of the National 
Academy of Sciences 110, 2246–2251. 

186



Lin, C., Yang, L., Tanasa, B., Hutt, K., Ju, B., and Ohgi, K.A. (2009). Nuclear 
receptor-induced chromosomal proximity and DNA breaks underlie specific 
translocations in cancer. Cell 139 (6), 1069-1083. 

 

Litman, G.W., Cannon, J.P., and Dishaw, L.J. (2005a). Reconstructing immune 
phylogeny: new perspectives. Nat Rev Immunol 5, 866–879. 

 

Litman, G.W., Cannon, J.P., and Rast, J.P. (2005b). New insights into alternative 
mechanisms of immune receptor diversification. Adv. Immunol. 87, 209–236. 

 

Litman, G.W., Rast, J.P., and Fugmann, S.D. (2010). The origins of vertebrate 
adaptive immunity. Nat Rev Immunol 10, 543–553. 

 

Liu, M., Duke, J.L., Richter, D.J., Vinuesa, C.G., Goodnow, C.C., Kleinstein, S.H., 
and Schatz, D.G. (2008). Two levels of protection for the B cell genome during 
somatic hypermutation. Nature 451, 841–845. 

 

Longerich, S., Basu, U., Alt, F., and Storb, U. (2006). AID in somatic 
hypermutation and class switch recombination. Curr. Opin. Immunol. 18, 164–
174. 

 

Longerich, S., Tanaka, A., Bozek, G., Nicolae, D., and Storb, U. (2005). The very 
5' end and the constant region of Ig genes are spared from somatic mutation 
because AID does not access these regions. J. Exp. Med. 202, 1443–1454. 

 

Lorenz, M., Jung, S., and Radbruch, A. (1995). Switch transcripts in 
immunoglobulin class switching. Science 267, 1825–1828. 

 

Lowder, M.A., Appelbaum, J.S., Hobert, E.M., and Schepartz, A. (2011). 
Visualizing protein partnerships in living cells and organisms. Curr Opin Chem 
Biol 15, 781–788. 

187



Lumsden, J.M., McCarty, T., Petiniot, L.K., Shen, R., Barlow, C., Wynn, T.A., 
Morse, H.C., Gearhart, P.J., Wynshaw-Boris, A., Max, E.E., et al. (2004). 
Immunoglobulin class switch recombination is impaired in Atm-deficient mice. J. 
Exp. Med. 200, 1111–1121. 

 

Maccarthy, T., Roa, S., Scharff, M.D., and Bergman, A. (2009). SHMTool: a 
webserver for comparative analysis of somatic hypermutation datasets. DNA 
Repair (Amst.) 8, 137–141. 

 

MacDuff, D.A., Neuberger, M.S., and Harris, R.S. (2006). MDM2 can interact with 
the C-terminus of AID but it is inessential for antibody diversification in DT40 B 
cells. Mol. Immunol. 43, 1099–1108. 

 

Maeda, K., Singh, S.K., Eda, K., Kitabatake, M., Pham, P., Goodman, M.F., and 
Sakaguchi, N. (2010). GANP-mediated recruitment of activation-induced cytidine 
deaminase to cell nuclei and to immunoglobulin variable region DNA. J. Biol. 
Chem. 285, 23945–23953. 

 

Mailand, N., Bekker-Jensen, S., Faustrup, H., Melander, F., Bartek, J., Lukas, C., 
and Lukas, J. (2007). RNF8 ubiquitylates histones at DNA double-strand breaks 
and promotes assembly of repair proteins. Cell 131, 887–900. 

 

Market, E., and Papavasiliou, F.N. (2003). V(D)J recombination and the evolution 
of the adaptive immune system. PLoS Biol. 1, E16. 

 

Martin, A., and Scharff, M.D. (2002). Somatic hypermutation of the AID transgene 
in B and non-B cells. Proc. Natl. Acad. Sci. U.S.a. 99, 12304–12308. 

 

Martin, A., Li, Z., Lin, D.P., Bardwell, P.D., Iglesias-Ussel, M.D., Edelmann, W., 
and Scharff, M.D. (2003). Msh2 ATPase activity is essential for somatic 
hypermutation at a-T basepairs and for efficient class switch recombination. J. 
Exp. Med. 198, 1171–1178. 

188



Martomo, S.A., Yang, W.W., and Gearhart, P.J. (2004). A role for Msh6 but not 
Msh3 in somatic hypermutation and class switch recombination. J. Exp. Med. 
200, 61–68. 

 

Masani, S., Han, L., and Yu, K. (2013). Apurinic/apyrimidinic endonuclease 1 is 
the essential nuclease during immunoglobulin class switch recombination. 
Molecular and Cellular Biology 33, 1468–1473. 

 

Matheson, L.S., and Corcoran, A.E. (2012). Local and global epigenetic 
regulation of V(D)J recombination. Curr. Top. Microbiol. Immunol. 356, 65–89. 

 

Matthews, A.G.W., Kuo, A.J., Ramón-Maiques, S., Han, S., Champagne, K.S., 
Ivanov, D., Gallardo, M., Carney, D., Cheung, P., Ciccone, D.N., et al. (2007). 
RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J 
recombination. Nature 450, 1106–1110. 

 

Mattiroli, F., Vissers, J.H.A., van Dijk, W.J., Ikpa, P., Citterio, E., Vermeulen, W., 
Marteijn, J.A., and Sixma, T.K. (2012). RNF168 Ubiquitinates K13-15 on 
H2A/H2AX to Drive DNA Damage Signaling. Cell 150, 1182–1195. 

 

Maul, R.W., Saribasak, H., Martomo, S.A., McClure, R.L., Yang, W., Vaisman, A., 
Gramlich, H.S., Schatz, D.G., Woodgate, R., Wilson, D.M., et al. (2011). Uracil 
residues dependent on the deaminase AID in immunoglobulin gene variable and 
switch regions. Nat. Immunol. 12, 70–76. 

 

Mayorov, V.I., Rogozin, I.B., Adkison, L.R., and Gearhart, P.J. (2005a). DNA 
polymerase eta contributes to strand bias of mutations of A versus T in 
immunoglobulin genes. J. Immunol. 174, 7781–7786. 

 

Mayorov, V.I., Rogozin, I.B., Adkison, L.R., Frahm, C., Kunkel, T.A., and Pavlov, 
Y.I. (2005b). Expression of human AID in yeast induces mutations in context 
similar to the context of somatic hypermutation at G-C pairs in immunoglobulin 
genes. BMC Immunol. 6, 10. 

189



McBride, K.M., Barreto, V., Ramiro, A.R., Stavropoulos, P., and Nussenzweig, 
M.C. (2004). Somatic hypermutation is limited by CRM1-dependent nuclear 
export of activation-induced deaminase. J. Exp. Med. 199, 1235–1244. 

 

McBride, K.M., Gazumyan, A., Woo, E.M., Barreto, V.M., Robbiani, D.F., Chait, 
B.T., and Nussenzweig, M.C. (2006). Regulation of hypermutation by activation-
induced cytidine deaminase phosphorylation. Proc. Natl. Acad. Sci. U.S.a. 103, 
8798–8803. 

 

McBride, K.M., Gazumyan, A., Woo, E.M., Schwickert, T.A., Chait, B.T., and 
Nussenzweig, M.C. (2008). Regulation of class switch recombination and 
somatic mutation by AID phosphorylation. J. Exp. Med. 205, 2585–2594. 

 

Medzhitov, R., and Janeway, C. (2000). Innate immunity. N. Engl. J. Med. 343, 
338–344. 

 

Mehta, A., Kinter, M.T., Sherman, N.E., and Driscoll, D.M. (2000). Molecular 
cloning of apobec-1 complementation factor, a novel RNA-binding protein 
involved in the editing of apolipoprotein B mRNA. Molecular and Cellular Biology 
20, 1846–1854. 

 

Miau, L.H., Chang, C.J., Tsai, W.H., and Lee, S.C. (1997). Identification and 
characterization of a nucleolar phosphoprotein, Nopp140, as a transcription 
factor. Molecular and Cellular Biology 17, 230–239. 

 

Milstein, C., Neuberger, M.S., and Staden, R. (1998). Both DNA strands of 
antibody genes are hypermutation targets. Proc. Natl. Acad. Sci. U.S.a. 95, 
8791–8794. 

 

Min, I.M., Schrader, C.E., Vardo, J., Luby, T.M., D'Avirro, N., Stavnezer, J., and 
Selsing, E. (2003). The Smu tandem repeat region is critical for Ig isotype 
switching in the absence of Msh2. Immunity 19, 515–524. 

190



Morgan, H.D., Dean, W., Coker, H.A., and Reik, W. (2004). Aid deaminates 5-
methylcytosine in DNA and is expressed in pluripotent tissues-implications for 
epigenetic reprogramming. Journal of Biological Chemistry 279 (50), 52353-60. 

 

Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and 
Honjo, T. (2000). Class switch recombination and hypermutation require 
activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. 
Cell 102, 553–563. 

 

Muramatsu, M., Sankaranand, V.S., Anant, S., Sugai, M., Kinoshita, K., 
Davidson, N.O., and Honjo, T. (1999). Specific expression of activation-induced 
cytidine deaminase (AID), a novel member of the RNA-editing deaminase family 
in germinal center B cells. J. Biol. Chem. 274, 18470–18476. 

 

Nakamura, M., Kondo, S., Sugai, M., Nazarea, M., Imamura, S., and Honjo, T. 
(1996). High frequency class switching of an IgM+ B lymphoma clone CH12F3 to 
IgA+ cells. Int. Immunol. 8, 193–201. 

 

Nambu, Y., Sugai, M., Gonda, H., Lee, C.-G., Katakai, T., Agata, Y., Yokota, Y., 
and Shimizu, A. (2003). Transcription-coupled events associating with 
immunoglobulin switch region chromatin. Science 302, 2137–2140. 

 

Neuberger, M.S., Ehrenstein, M.R., Klix, N., Jolly, C.J., Yélamos, J., Rada, C., 
and Milstein, C. (1998). Monitoring and interpreting the intrinsic features of 
somatic hypermutation. Immunol. Rev. 162, 107–116. 

 

Neuberger, M.S. (2008). Antibody diversification by somatic mutation: from 
Burnet onwards. Immunol. Cell Biol. 86, 124–132. 

 

Niida, H., Katsuno, Y., Sengoku, M., Shimada, M., Yukawa, M., Ikura, M., Ikura, 
T., Kohno, K., Shima, H., Suzuki, H., et al. (2010). Essential role of Tip60-
dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA 
repair during G1 phase. Genes Dev. 24, 333–338. 

191



Nishana, M., and Raghavan, S.C. (2012). Role of recombination activating genes 
in the generation of antigen receptor diversity and beyond. Immunology 137, 
271–281. 

 

Nonaka, T., Doi, T., Toyoshima, T., Muramatsu, M., Honjo, T., and Kinoshita, K. 
(2009). Carboxy-terminal domain of AID required for its mRNA complex formation 
in vivo. Proceedings of the National Academy of Sciences 106, 2747–2751. 

 

Nowak, U., Matthews, A.J., Zheng, S., and Chaudhuri, J. (2011). The splicing 
regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding 
of AID to switch-region DNA. Nat. Immunol. 12, 160–166. 

 

Oettinger, M.A., Schatz, D.G., Gorka, C., and Baltimore, D. (1990). RAG-1 and 
RAG-2, adjacent genes that synergistically activate V(D)J recombination. 
Science 248, 1517–1523. 

 

Okazaki, I.-M., Okawa, K., Kobayashi, M., Yoshikawa, K., Kawamoto, S., 
Nagaoka, H., Shinkura, R., Kitawaki, Y., Taniguchi, H., Natsume, T., et al. (2011). 
Histone chaperone Spt6 is required for class switch recombination but not 
somatic hypermutation. Proceedings of the National Academy of Sciences 108, 
7920–7925. 

 

Oliveira, T.Y., Resch, W., Jankovic, M., Casellas, R., Nussenzweig, M.C., and 
Klein, I.A. (2012). Translocation capture sequencing: a method for high 
throughput mapping of chromosomal rearrangements. J. Immunol. Methods 375, 
176–181. 

 

Orthwein, A., Patenaude, A.-M., Affar, E.B., Lamarre, A., Young, J.C., and Di 
Noia, J.M. (2010). Regulation of activation-induced deaminase stability and 
antibody gene diversification by Hsp90. J. Exp. Med. 207, 2751–2765. 

 

 

192



Park, S.-R., Zan, H., Pal, Z., Zhang, J., Al-Qahtani, A., Pone, E.J., Xu, Z., Mai, T., 
and Casali, P. (2009). HoxC4 binds to the promoter of the cytidine deaminase 
AID gene to induce AID expression, class-switch DNA recombination and 
somatic hypermutation. Nat. Immunol. 10, 540–550. 

 

Pasqualucci, L., Kitaura, Y., Gu, H., and Dalla-Favera, R. (2006). PKA-mediated 
phosphorylation regulates the function of activation-induced deaminase (AID) in 
B cells. Proc. Natl. Acad. Sci. U.S.a. 103, 395–400. 

 

Patenaude, A.-M., and Di Noia, J.M. (2010). The mechanisms regulating the 
subcellular localization of AID. Nucleus 1, 325–331. 

 

Patenaude, A.-M., Orthwein, A., Hu, Y., Campo, V.A., Kavli, B., Buschiazzo, A., 
and Di Noia, J.M. (2009a). Active nuclear import and cytoplasmic retention of 
activation-induced deaminase. Nat. Struct. Mol. Biol. 16, 517–527. 

 

Patenaude, A.-M., Orthwein, A., Hu, Y., Campo, V.A., Kavli, B., Buschiazzo, A., 
and Di Noia, J.M. (2009b). Active nuclear import and cytoplasmic retention of 
activation-induced deaminase. Nat. Struct. Mol. Biol. 16, 517–527. 

 

Pauklin, S., Sernández, I.V., Bachmann, G., Ramiro, A.R., and Petersen-Mahrt, 
S.K. (2009). Estrogen directly activates AID transcription and function. Journal of 
Experimental Medicine 206, 99–111. 

 

Pavri, R., Gazumyan, A., Jankovic, M., Di Virgilio, M., Klein, I., Ansarah-
Sobrinho, C., Resch, W., Yamane, A., Reina San-Martin, B., Barreto, V., et al. 
(2010). Activation-induced cytidine deaminase targets DNA at sites of RNA 
polymerase II stalling by interaction with Spt5. Cell 143, 122–133. 

 

Perlot, T., Li, G., and Alt, F.W. (2008). Antisense transcripts from immunoglobulin 
heavy-chain locus V(D)J and switch regions. Proceedings of the National 
Academy of Sciences 105, 3843–3848. 

193



Peters, A., and Storb, U. (1996). Somatic hypermutation of immunoglobulin 
genes is linked to transcription initiation. Immunity 4, 57–65. 

 

Petersen-Mahrt, S.K., Harris, R.S., and Neuberger, M.S. (2002). AID mutates E. 
coli suggesting a DNA deamination mechanism for antibody diversification. 
Nature 418, 99–103. 

 

Phizicky, E.M., and Fields, S. (1995). Protein-protein interactions: methods for 
detection and analysis. Microbiol. Rev. 59, 94–123. 

 

Pickart, C.M. (2001a). Mechanisms underlying ubiquitination. Annu. Rev. 
Biochem. 70, 503–533. 

 

Pickart, C.M. (2001b). Ubiquitin enters the new millennium. Molecular Cell 8, 
499–504. 

 

Pinaud, E., Khamlichi, A.A., Le Morvan, C., Drouet, M., Nalesso, V., Le Bert, M., 
and Cogné, M. (2001). Localization of the 3' IgH locus elements that effect long-
distance regulation of class switch recombination. Immunity 15, 187–199. 

 

Pinaud, E., Marquet, M., Fiancette, R., Péron, S., Vincent-Fabert, C., Denizot, Y., 
and Cogné, M. (2011). The IgH locus 3' regulatory region: pulling the strings from 
behind. Adv. Immunol. 110, 27–70. 

 

Pone, E.J., Zhang, J., Mai, T., White, C.A., Li, G., Sakakura, J.K., Patel, P.J., Al-
Qahtani, A., Zan, H., Xu, Z., et al. (2012). BCR-signalling synergizes with TLR-
signalling for induction of AID and immunoglobulin class-switching through the 
non-canonical NF-κB pathway. Nat Commun 3, 767–. 

 

 

194



Prabakaran, S., Lippens, G., Steen, H., and Gunawardena, J. (2012). Post-
translational modification: nature's escape from genetic imprisonment and the 
basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med 4, 
565–583. 

 

Rada, C., and Milstein, C. (2001). The intrinsic hypermutability of antibody heavy 
and light chain genes decays exponentially. Embo J. 20, 4570–4576. 

 

Rada, C. (2009). AID and RPA: PKA makes the connection local. Nat. Immunol. 
10, 367–369. 

 

Rada, C., Jarvis, J.M., and Milstein, C. (2002a). AID-GFP chimeric protein 
increases hypermutation of Ig genes with no evidence of nuclear localization. 
Proc. Natl. Acad. Sci. U.S.a. 99, 7003–7008. 

 

Rada, C., Williams, G.T., Nilsen, H., Barnes, D.E., Lindahl, T., and Neuberger, 
M.S. (2002b). Immunoglobulin isotype switching is inhibited and somatic 
hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755. 

 

Rai, K., Huggins, I.J., James, S.R., Karpf, A.R., and Jones, D.A. (2008). DNA 
demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, 
and gadd45. Cell 135 (7), 1201-12. 

 

Ramachandran, S., Chahwan, R., Nepal, R.M., Frieder, D., Panier, S., Roa, S., 
Zaheen, A., Durocher, D., Scharff, M.D., and Martin, A. (2010). The 
RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination. 
Proceedings of the National Academy of Sciences 107, 809–814. 

 

Ramiro, A.R., Jankovic, M., Eisenreich, T., Difilippantonio, S., Chen-Kiang, S., 
Muramatsu, M., Honjo, T., Nussenzweig, A., and Nussenzweig, M.C. (2004). AID 
is required for c-myc/IgH chromosome translocations in vivo. Cell 118, 431–438. 

 
195



Rawlings, D.J., Schwartz, M.A., Jackson, S.W., and Meyer-Bahlburg, A. (2012). 
Integration of B cell responses through Toll-like receptors and antigen receptors. 
Nat Rev Immunol 12, 282–294. 

 

Reina San-Martin, B., Difilippantonio, S., Hanitsch, L., Masilamani, R.F., 
Nussenzweig, A., and Nussenzweig, M.C. (2003). H2AX is required for 
recombination between immunoglobulin switch regions but not for intra-switch 
region recombination or somatic hypermutation. J. Exp. Med. 197, 1767–1778. 

 

Revy, P., Muto, T., Levy, Y., Geissmann, F., Plebani, A., Sanal, O., Catalan, N., 
Forveille, M., Dufourcq-Labelouse, R., Gennery, A., et al. (2000). Activation-
induced cytidine deaminase (AID) deficiency causes the autosomal recessive 
form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575. 

 

Rivera-Munoz, P., and Soulas-Sprauel, P. (2009). Reduced immunoglobulin 
class switch recombination in the absence of Artemis. Blood 114 (17), 3601-9. 

 

Roa, S., Avdievich, E., Peled, J.U., Maccarthy, T., Werling, U., Kuang, F.L., Kan, 
R., Zhao, C., Bergman, A., Cohen, P.E., et al. (2008). Ubiquitylated PCNA plays 
a role in somatic hypermutation and class-switch recombination and is required 
for meiotic progression. Proceedings of the National Academy of Sciences 105, 
16248–16253. 

 

Roa, S., Li, Z., Peled, J.U., Zhao, C., Edelmann, W., and Scharff, M.D. (2010). 
MSH2/MSH6 complex promotes error-free repair of AID-induced dU:G mispairs 
as well as error-prone hypermutation of A:T sites. PLoS ONE 5, e11182. 

 

Roach, J.C., Glusman, G., Rowen, L., Kaur, A., Purcell, M.K., Smith, K.D., Hood, 
L.E., and Aderem, A. (2005). The evolution of vertebrate Toll-like receptors. Proc. 
Natl. Acad. Sci. U.S.a. 102, 9577–9582. 

 

 

196



Robbiani, D.F., Bothmer, A., Callen, E., Reina San-Martin, B., Dorsett, Y., 
Difilippantonio, S., Bolland, D.J., Chen, H.T., Corcoran, A.E., Nussenzweig, A., et 
al. (2008). AID is required for the chromosomal breaks in c-myc that lead to c-
myc/IgH translocations. Cell 135, 1028–1038. 

 

Robbiani, D.F., Bunting, S., Feldhahn, N., Bothmer, A., Camps, J., Deroubaix, S., 
McBride, K.M., Klein, I.A., Stone, G., Eisenreich, T.R., et al. (2009). AID 
produces DNA double-strand breaks in non-Ig genes and mature B cell 
lymphomas with reciprocal chromosome translocations. Molecular Cell 36, 631–
641. 

 

Robert, I., Dantzer, F., and Reina San-Martin, B. (2009). Parp1 facilitates 
alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during 
immunoglobulin class switch recombination. Journal of Experimental Medicine 
206 (5), 1047-56. 

 

Rocha, P.P., Micsinai, M., Kim, J.R., Hewitt, S.L., Souza, P.P., Trimarchi, T., 
Strino, F., Parisi, F., Kluger, Y., and Skok, J.A. (2012). Close proximity to Igh is a 
contributing factor to AID-mediated translocations. Molecular Cell 47, 873–885. 

 

Rogozin, I.B., and Kolchanov, N.A. (1992). Somatic hypermutagenesis in 
immunoglobulin genes. II. Influence of neighbouring base sequences on 
mutagenesis. Biochim. Biophys. Acta 1171, 11–18. 

 

Rogozin, I.B., Iyer, L.M., Liang, L., Glazko, G.V., Liston, V.G., Pavlov, Y.I., 
Aravind, L., and Pancer, Z. (2007). Evolution and diversification of lamprey 
antigen receptors: evidence for involvement of an AID-APOBEC family cytosine 
deaminase. Nat. Immunol. 8, 647–656. 

 

Roux, K.J., Kim, D.I., Raida, M., and Burke, B. (2012). A promiscuous biotin 
ligase fusion protein identifies proximal and interacting proteins in mammalian 
cells. J. Cell Biol. 196, 801–810. 

 

197



Rubio, M.A.T., Pastar, I., Gaston, K.W., Ragone, F.L., Janzen, C.J., Cross, 
G.A.M., Papavasiliou, F.N., and Alfonzo, J.D. (2007). An adenosine-to-inosine 
tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc. Natl. 
Acad. Sci. U.S.a. 104, 7821–7826. 

 

Rudnicki, M.A., Braun, T., Hinuma, S., and Jaenisch, R. (1992). Inactivation of 
MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results 
in apparently normal muscle development. Cell 71, 383–390. 

 

Rudnicki, M.A., Schnegelsberg, P.N., Stead, R.H., Braun, T., Arnold, H.H., and 
Jaenisch, R. (1993). MyoD or Myf-5 is required for the formation of skeletal 
muscle. Cell 75, 1351–1359. 

 

Sale, J.E., and Neuberger, M.S. (1998). TdT-accessible breaks are scattered 
over the immunoglobulin V domain in a constitutively hypermutating B cell line. 
Immunity 9, 859–869. 

 

Sayegh, C.E., Quong, M.W., Agata, Y., and Murre, C. (2003). E-proteins directly 
regulate expression of activation-induced deaminase in mature B cells. Nat. 
Immunol. 4, 586–593. 

 

Schatz, D.G., and Baltimore, D. (1988). Stable expression of immunoglobulin 
gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts. Cell 53, 
107–115. 

 

Schatz, D.G., Oettinger, M.A., and Baltimore, D. (1989). The V(D)J recombination 
activating gene, RAG-1. Cell 59, 1035–1048. 

 

Schatz, D.G., and Baltimore, D. (2004). Uncovering the V(D)J recombinase. Cell 
S116, S103-106. 

 

198



Schatz, D.G., and Swanson, P.C. (2011). V(D)J recombination: mechanisms of 
initiation. Annu. Rev. Genet. 45, 167–202. 

 

Schmidt-Supprian, M., and Rajewsky, K. (2007). Vagaries of conditional gene 
targeting. Nat. Immunol. 8, 665–668. 

 

Schrader, C.E., Edelmann, W., Kucherlapati, R., and Stavnezer, J. (1999). 
Reduced isotype switching in splenic B cells from mice deficient in mismatch 
repair enzymes. J. Exp. Med. 190, 323–330. 

 

Schrader, C.E., Guikema, J.E.J., Linehan, E.K., Selsing, E., and Stavnezer, J. 
(2007). Activation-induced cytidine deaminase-dependent DNA breaks in class 
switch recombination occur during G1 phase of the cell cycle and depend upon 
mismatch repair. J. Immunol. 179, 6064–6071. 

 

Serizawa, S., Miyamichi, K., and Sakano, H. (2004). One neuron-one receptor 
rule in the mouse olfactory system. Trends Genet. 20, 648–653. 

 

Shinkura, R., Tian, M., Smith, M., Chua, K., Fujiwara, Y., and Alt, F.W. (2003). 
The influence of transcriptional orientation on endogenous switch region function. 
Nat. Immunol. 4, 435–441. 

 

Simpson, L.J., and Sale, J.E. (2003). Rev1 is essential for DNA damage 
tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell 
line. Embo J. 22, 1654–1664. 

 

Singh, S.K., Maeda, K., Eid, M.M.A., Almofty, S.A., Ono, M., Pham, P., 
Goodman, M.F., and Sakaguchi, N. (2013). GANP regulates recruitment of AID to 
immunoglobulin variable regions by modulating transcription and nucleosome 
occupancy. Nat Commun 4, 1830. 

 

199



Smith, C.J., Berry, D.M., and McGlade, C.J. (2013). The E3 ubiquitin ligases 
RNF126 and Rabring7 regulate endosomal sorting of the Epidermal Growth 
Factor Receptor. J. Cell. Sci. 126, 1366-80. 

 

Soulas-Sprauel, P., Le Guyader, G., Rivera-Munoz, P., Abramowski, V., Olivier-
Martin, C., Goujet-Zalc, C., Charneau, P., and de Villartay, J.-P. (2007). Role for 
DNA repair factor XRCC4 in immunoglobulin class switch recombination. The 
Journal of Experimental Medicine 204 (7), 1717-27. 

 

Sprinzak, E., Sattath, S., and Margalit, H. (2003). How reliable are experimental 
protein-protein interaction data? J. Mol. Biol. 327, 919–923. 

 

Stanlie, A., Aida, M., Muramatsu, M., Honjo, T., and Begum, N.A. (2010). 
Histone3 lysine4 trimethylation regulated by the facilitates chromatin transcription 
complex is critical for DNA cleavage in class switch recombination. Proceedings 
of the National Academy of Sciences 107, 22190–22195. 

 

Stavnezer, J. (1996). Immunoglobulin class switching. Curr. Opin. Immunol. 8, 
199–205. 

 

Stavnezer, J., and Schrader, C.E. (2006). Mismatch repair converts AID-
instigated nicks to double-strand breaks for antibody class-switch recombination. 
Trends Genet. 22, 23–28. 

 

Stavnezer-Nordgren, J., and Sirlin, S. (1986). Specificity of immunoglobulin 
heavy chain switch correlates with activity of germline heavy chain genes prior to 
switching. Embo J. 5, 95–102. 

 

Storb, U., Shen, H.M., Longerich, S., Ratnam, S., Tanaka, A., Bozek, G., and 
Pylawka, S. (2007). Targeting of AID to immunoglobulin genes. Adv. Exp. Med. 
Biol. 596, 83–91. 

 
200



Tashiro, J., Kinoshita, K., and Honjo, T. (2001). Palindromic but not G-rich 
sequences are targets of class switch recombination. Int. Immunol. 13, 495–505. 

 

Teng, G., and Papavasiliou, F.N. (2007). Immunoglobulin somatic hypermutation. 
Annu. Rev. Genet. 41, 107–120. 

 

Teng, G., Hakimpour, P., Landgraf, P., Rice, A., Tuschl, T., Casellas, R., and 
Papavasiliou, F.N. (2008). MicroRNA-155 is a negative regulator of activation-
induced cytidine deaminase. Immunity 28, 621–629. 

 

Tonegawa, S. (1983). Somatic generation of antibody diversity. Nature 302, 575–
581. 

 

Tran, T.H., Nakata, M., Suzuki, K., Begum, N.A., Shinkura, R., Fagarasan, S., 
Honjo, T., and Nagaoka, H. (2009). B cell–specific and stimulation-responsive 
enhancers derepress Aicda by overcoming the effects of silencers. Nat. Immunol. 
11, 148–154. 

 

Tumas-Brundage, K., and Manser, T. (1997). The transcriptional promoter 
regulates hypermutation of the antibody heavy chain locus. J. Exp. Med. 185, 
239–250. 

 

Uchimura, Y., Barton, L.F., Rada, C., and Neuberger, M.S. (2011). REG-γ 
associates with and modulates the abundance of nuclear activation-induced 
deaminase. Journal of Experimental Medicine 208, 2385–2391. 

 

Unniraman, S., and Schatz, D.G. (2007). Strand-biased spreading of mutations 
during somatic hypermutation. Science 317, 1227–1230. 

 

 

201



Vincent-Fabert, C., Fiancette, R., Pinaud, E., Truffinet, V., Cogné, N., Cogné, M., 
and Denizot, Y. (2010). Genomic deletion of the whole IgH 3' regulatory region 
(hs3a, hs1,2, hs3b, and hs4) dramatically affects class switch recombination and 
Ig secretion to all isotypes. Blood 116, 1895–1898. 

 

Vuong, B.Q., and Chaudhuri, J. (2012). Combinatorial mechanisms regulating 
AID-dependent DNA deamination: interacting proteins and post-translational 
modifications. Semin. Immunol. 24, 264–272. 

 

Vuong, B.Q., Lee, M., Kabir, S., Irimia, C., Macchiarulo, S., McKnight, G.S., and 
Chaudhuri, J. (2009). Specific recruitment of protein kinase A to the 
immunoglobulin locus regulates class-switch recombination. Nat. Immunol. 10, 
420–426. 

 

Wang, X., Herr, R.A., Chua, W.-J., Lybarger, L., Wiertz, E.J.H.J., and Hansen, 
T.H. (2007). Ubiquitination of serine, threonine, or lysine residues on the 
cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell Biol. 
177, 613–624. 

 

Ward, I.M.I., Reina-San-Martin, B.B., Olaru, A.A., Minn, K.K., Tamada, K.K., Lau, 
J.S.J., Cascalho, M.M., Chen, L.L., Nussenzweig, A.A., Livak, F.F., et al. (2004). 
53BP1 is required for class switch recombination. J. Cell Biol. 165, 459–464. 

 

Watson, F.L., Püttmann-Holgado, R., Thomas, F., Lamar, D.L., Hughes, M., 
Kondo, M., Rebel, V.I., and Schmucker, D. (2005). Extensive diversity of Ig-
superfamily proteins in the immune system of insects. Science 309, 1874–1878. 

 

Wei, W., Ba, Z., Gao, M., Wu, Y., Ma, Y., Amiard, S., White, C.I., Danielsen, 
J.M.R., Yang, Y.-G., and Qi, Y. (2012). A Role for Small RNAs in DNA Double-
Strand Break Repair. Cell 1–12. 

 

Weigert, M.G., Cesari, I.M., Yonkovich, S.J., and Cohn, M. (1970). Variability in 
the lambda light chain sequences of mouse antibody. Nature 228, 1045–1047. 

202



Wiesendanger, M., Scharff, M.D., and Edelmann, W. (1998). Somatic 
hypermutation, transcription, and DNA mismatch repair. Cell 94, 415–418. 

 

Winter, D.B., Sattar, N., Mai, J.J., and Gearhart, P.J. (1997). Insertion of 2 kb of 
bacteriophage DNA between an immunoglobulin promoter and leader exon stops 
somatic hypermutation in a kappa transgene. Mol. Immunol. 34, 359–366. 

 

Wu, X., and Stavnezer, J. (2007). DNA polymerase beta is able to repair breaks 
in switch regions and plays an inhibitory role during immunoglobulin class switch 
recombination. J. Exp. Med. 204, 1677–1689. 

 

Xu, Z., Fulop, Z., Wu, G., Pone, E.J., Zhang, J., Mai, T., Thomas, L.M., Al-
Qahtani, A., White, C.A., Park, S.-R., et al. (2010). 14-3-3 adaptor proteins recruit 
AID to 5“-AGCT-3-”rich switch regions for class switch recombination. Nat. Struct. 
Mol. Biol. 17, 1124–1135. 

 

Xu, Z., Zan, H., Pone, E.J., Mai, T., and Casali, P. (2012). Immunoglobulin class-
switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 
12, 517–531. 

 

Xue, K., Rada, C., and Neuberger, M.S. (2006). The in vivo pattern of AID 
targeting to immunoglobulin switch regions deduced from mutation spectra in 
msh2-/- ung-/- mice. J. Exp. Med. 203, 2085–2094. 

 

Yabuki, M., Fujii, M.M., and Maizels, N. (2005). The MRE11-RAD50-NBS1 
complex accelerates somatic hypermutation and gene conversion of 
immunoglobulin variable regions. Nat. Immunol. 6, 730–736. 

 

Yadav, A., Olaru, A., Saltis, M., Setren, A., Cerny, J., and Livák, F. (2006). 
Identification of a ubiquitously active promoter of the murine activation-induced 
cytidine deaminase (AICDA) gene. Mol. Immunol. 43, 529–541. 

 
203



Yamane, A., Resch, W., Kuo, N., Kuchen, S., Li, Z., Sun, H.-W., Robbiani, D.F., 
McBride, K., Nussenzweig, M.C., and Casellas, R. (2011). Deep-sequencing 
identification of the genomic targets of the cytidine deaminase AID and its 
cofactor RPA in B lymphocytes. Nat. Immunol. 12, 62–69. 

 

Yamane, A., Robbiani, D.F., Resch, W., Bothmer, A., Nakahashi, H., Oliveira, T., 
Rommel, P.C., Brown, E.J., Nussenzweig, A., Nussenzweig, M.C., et al. (2013). 
RPA accumulation during class switch recombination represents 5“-3” DNA-end 
resection during the S-G2/M phase of the cell cycle. Cell Rep 3, 138–147. 

 

Yin, F.F., Bailey, S., Innis, C.A., Ciubotaru, M., Kamtekar, S., Steitz, T.A., and 
Schatz, D.G. (2009). Structure of the RAG1 nonamer binding domain with DNA 
reveals a dimer that mediates DNA synapsis. Nat. Struct. Mol. Biol. 16, 499–508. 

 

Yoshikawa, K., Okazaki, I.-M., Eto, T., Kinoshita, K., Muramatsu, M., Nagaoka, 
H., and Honjo, T. (2002). AID enzyme-induced hypermutation in an actively 
transcribed gene in fibroblasts. Science 296, 2033–2036. 

 

Yu, K., Chedin, F., Hsieh, C.-L., Wilson, T.E., and Lieber, M.R. (2003). R-loops at 
immunoglobulin class switch regions in the chromosomes of stimulated B cells. 
Nat. Immunol. 4, 442–451. 

 

Zarrin, A.A., Alt, F.W., Chaudhuri, J., Stokes, N., Kaushal, D., Pasquier, Du, L., 
and Tian, M. (2004). An evolutionarily conserved target motif for immunoglobulin 
class-switch recombination. Nat. Immunol. 5, 1275–1281. 

 

Zarrin, A.A., Del Vecchio, C., Tseng, E., Gleason, M., Zarin, P., Tian, M., and Alt, 
F.W. (2007). Antibody class switching mediated by yeast endonuclease-
generated DNA breaks. Science 315, 377–381. 

 

Zeng, X., Winter, D.B., Kasmer, C., Kraemer, K.H., Lehmann, A.R., and 
Gearhart, P.J. (2001). DNA polymerase eta is an A-T mutator in somatic 
hypermutation of immunoglobulin variable genes. Nat. Immunol. 2, 537–541. 

204



Zeng, X., Negrete, G.A., Kasmer, C., Yang, W.W., and Gearhart, P.J. (2004). 
Absence of DNA polymerase eta reveals targeting of C mutations on the 
nontranscribed strand in immunoglobulin switch regions. J. Exp. Med. 199, 917–
924. 

 

Zhang, S., Chea, J., Meng, X., Zhou, Y., Lee, E.Y.C., and Lee, M.Y.W.T. (2008). 
PCNA is ubiquitinated by RNF8. Cell Cycle 7, 3399–3404. 

 

Zhi, X., Zhao, D., Wang, Z., Zhou, Z., Wang, C., Chen, W., Liu, R., and Chen, C. 
(2013). E3 ubiquitin ligase RNF126 promotes cancer cell proliferation by 
targeting the tumor suppressor p21 for ubiquitin-mediated degradation. Cancer 
Res. 73, 385–394. 

 

 

205


	Rockefeller University
	Digital Commons @ RU
	2014

	Taming a Potent Mutator: Identification and Characterization of Novel Mechanisms of Regulating Antibody Diversification in B-Lymphocytes
	Rebecca Kyle Delker
	Recommended Citation


	Delker_PhDThesis_Text_Final

