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Activation-induced cytidine deaminase (AID) is essential for two 

processes of immunoglobulin diversification in germinal center B cells: somatic 

hypermutation (SHM), in which mutations are introduced into immunoglobulin 

(Ig) genes, and class-switch recombination (CSR), in which genomic constant 

regions are recombined to encode antibodies of different isotypes. Both of these 

processes require AID-catalyzed C-to-U lesions at the Ig loci, which are resolved 

to generate point mutations or double-stranded DNA breaks in the cases of SHM 

and CSR, respectively. Despite over a decade of intense study, a number of open 

issues remain surrounding AID. The diversity of findings regarding AID’s role in 

DNA demethylation raises the question of the scope of its involvement in this 

process. Additionally, while it is clear that AID-mediated damage occurs, the 

effects of this damage on the average B cell have not been characterized. Finally, 

the issue of whether AID is able to edit RNA in vivo has never been rigorously 

addressed in the literature. 

 In each of these cases, the advent of high-throughput sequencing provides 

methods for genome-wide characterization of AID’s effects. This thesis presents 

the application of a number of genome-scale, sequencing-based methods to 

characterize the effects of AID deficiency and overexpression on the activated B 

cell: mRNA-Seq and miRNA-Seq allow for measurements of RNA expression 

and editing, while reduced-representation bisulfite sequencing (RRBS) assays 

DNA methylation. These analyses confirmed AID’s known role in 



immunoglobulin isotype switching, while also demonstrating that it has little 

other effect on gene expression. Additionally, no evidence of AID-dependent 

mRNA or miRNA editing could be detected. Finally, RRBS data failed to support 

a role for AID in the regulation of DNA methylation. Thus, despite evidence of 

its additional activities in other systems, antibody diversification appears to be 

AID’s sole physiological function in activated B cells. 

Following the conclusion of my studies of AID’s effects in B cells, I 

applied similar genomics tools to two amenable topics in nucleic acid 

modifications. First, I used mRNA-Seq to attempt to determine the substrate of 

the orphan cytidine deaminase Apolipoprotein B mRNA-editing enzyme, 

catalytic polypeptide 2 (APOBEC2). Next, I used whole-genome bisulfite 

sequencing to explore the distribution of 5-methylcytosine in Trypanosoma brucei. 

In both of these cases, results were inconclusive but suggest future directions for 

investigation. 
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Chapter 1. Introduction* 

The different behavior of the cells of an organism despite their shared 

DNA sequence has been one of the great motivating questions of molecular 

biology. One of the key advances in understanding this process has been 

recognition of the influence of chemical modifications of nucleic acids 

themselves. Although it has long been known that such an absolutist view of the 

central dogma is a gross oversimplification (Crick, 1970), the characterization of 

nucleic acid modifications has made it clear that DNA and RNA are not passive 

one-dimensional encodings of protein sequences. Rather, their properties can be 

altered by a wide array of modifying enzymes. The resulting menagerie of 

modified bases have crucial consequences for nearly every aspect of cell function 

(Grosjean, 2009). 

 

1.1 Nucleic acid modifications 

 Both DNA and RNA are biochemically modified in a staggering number 

of ways in the cell. RNA in particular displays great diversity in its 

modifications, with 144 identified to date (Limbach et al., 1994; Machnicka et al., 

2012). It is likely that RNA’s greater diversity is a consequence of both the larger 

number of roles that RNA plays in the cell and the importance of preventing 

deleterious changes in DNA. 

 These modifications are important for the function of nearly every type of 

RNA. Modifications of tRNA are both the most diverse and most frequent, with 

about 17% of bases modified in eukaryotic cells (Jackman and Alfonzo, 2012). 
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Perhaps most famously, the modified base inosine at position 34 of tRNAs is 

responsible for the “wobble” base pairing with the third position of the codon 

(Murphy and Ramakrishnan, 2004). In rRNA, modifications occur at a large 

number of functionally important regions and influence stability (Decatur and 

Fournier, 2002). Modifications, in particular pseudouridylation and 2’-O-

methylation, play a similar stabilizing role in snRNAs (Karijolich and Yu, 2010). 

Modifications of mRNAs include N6-methylation of adenosine, which is 

dynamically regulated and important for modulating RNA stability (Wang et al., 

2014). Also found within mRNA are the deamination modifications, which 

convert adenosine and cytosine to inosine and uracil respectively. This process, 

which also occurs in tRNA and miRNA, is termed RNA editing, and will be 

treated at greater length.  

DNA modifications, while smaller in number, still impact cellular function 

in a variety of important ways. These modifications can be assigned to two 

classes: those that are introduced enzymatically, and those that are not. The 

second class, which includes bases such as 8-oxoguanine, occur as a result of 

oxidative damage and do not appear to be functional (Cooke et al., 2003).  

With the exceptions of deamination of adenosine, cytosine, and its 

derivatives, all known enzymatic modifications of DNA bases do not affect base 

pairing. One well studied example is N6-methyladenosine, which among other 

functions is crucial in E. coli for discriminating between the template and newly 

synthesized strands for purposes of DNA repair (Barras and Marinus, 1989) and 

preventing re-replication of newly synthesized DNA (Russell and Zinder, 1987). 

Another notable DNA base is β-d-glucopyranosyloxymethyluracil, or base J, 
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which prevents transcriptional readthrough in Leishmania (van Luenen et al., 

2012). However the most prominent class of modified DNA bases in vertebrates 

are 5-substituted cytosines. These bases, 5-methylcytosine (5mC), 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine 

(5caC), appear to be the only persistent modified bases with functional 

consequences found in mammalian DNA (Figure 1.1). Of these, 5mC was the first 

discovered (Hotchkiss, 1948) and is by far the most abundant, most versatile, and 

best studied.  

 

1.1.1 DNA cytosine methylation 

1.1.1.1 Functions of DNA methylation 

 5mC in DNA is common to all domains of life and serves a wide variety of 

functions in different organisms. In E. coli, it is important for the regulation of 

stationary phase transcription (Kahramanoglou et al., 2012). In the fungus 

Neurospora crassa, cytosine methylation is crucial for silencing repetitive elements 

(Selker et al., 2003). The cytosine methylation system is extremely complex in 

Arabidopsis, where it maintains a silenced state for transposons and regulates 

gene expression (Stroud et al., 2013). In the ciliated protist Oxytricha trifallax, 5mC 

marks DNA for degradation during a complicated set of genome rearrangements 

that accompany reproduction (Bracht et al., 2012). Methylation of cytosine also 

appears to be important for life cycle stage-specific gene expression in the 

parasitic nematode Trichinella spiralis (Gao et al., 2012) and caste-specific gene 

expression in the honeybee (Elango et al., 2009). In many other organisms, such 

as the kinetoplastid T. brucei, the existence of DNA methylation has been 

reported, but its function is unknown (Militello et al., 2008). 
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A.        B. 

          

C.         D. 

       

 

Figure 1.1. 5-substitued deoxycytidine derivatives. (A) 5-methylcytosine, (B) 5-
hydroxymethylcytosine, (C) 5-formylcytosine, (D) 5-carboxycytosine. 
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In mammals, 5mC occurs predominantly in the sequence context CpG, 

which allows for symmetrical marking of both strands. Approximately 70-80% of 

cytosines in this context are methylated in mammalian DNA, which represents 

about 1% of the genome overall (Ehrlich et al., 1982). However there is also 

appreciable 5mC in non-CpG sequence contexts in certain mammalian cell types 

(Ramsahoye et al., 2000), and widespread methylation in other contexts in fungi 

(Rountree and Selker, 1997) and plants (Cokus et al., 2008). Notably, the 

dinucleotide CG is both globally depleted and unevenly distributed within 

mammalian genomes (Illingworth and Bird, 2009). This has been attributed to the 

higher inherent mutagenicity of 5mC compared to unmodified cytosine (Bird, 

1980) as well as the functional importance of the CpG-rich regions, which are 

termed “CpG islands.”  

 Originally, cytosine methylation in mammals was thought to function as a 

silencing mark that could explain stably inherited differences in gene expression 

between cellular lineages of an organism (Holliday and Pugh, 1975; Riggs, 1975). 

Many examples have since been found that clearly support the hypothesis that 

methylation of an element leads to its silencing. The inactive X chromosome is 

almost entirely methylated at CpG, and can be reactivated by loss of methylation 

(Mohandas et al., 1981). Retrotransposons are frequently densely methylated, 

and this methylation inhibits their mobilization (Yoder et al., 1997). Imprinted 

genes are also regulated by methylation, often with the silent allele modified (Li 

et al., 1993). Finally, many developmentally regulated genes are inhibited in a 

relatively straightforward manner by methylation, the prototypical case being 

Oct4 during transition from the ES cell state (Hattori et al., 2004). 
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However, it has become clear that DNA methylation is not a simple and 

absolute bar to transcription. The model that has emerged holds that at some, but 

not all, CpG island-containing promoters, methylation leads to long-term 

silencing, while at CpG-poor promoters, methylation has little effect on 

transcription (Jones, 2012). Silencing of promoters by CpG island methylation 

also seems to function primarily in early development, and is a minor means of 

gene expression regulation in later differentiation, if it occurs at all (Bock et al., 

2012). Additionally, it has been shown that DNA methylation is a part of a larger 

network of factors that are involved in silencing. It appears that silencing of a 

gene by other DNA-binding proteins generally precedes DNA methylation, 

which functions more as a heritable stabilizer of the silenced state (Cedar and 

Bergman, 2009).  

DNA methylation also has several functions that do not fit neatly into the 

classical promoter-silencing model. It appears that most of the functional 

differences in DNA methylation between differentiated cells occur at enhancers 

and insulators rather than promoters (Ziller et al., 2013). Gene bodies also vary 

widely in their levels of methylation, but the significance of this is still unclear 

(Jones, 2012). It has also been proposed that the lower levels of methylation in 

introns compared to exons may serve a functional role in splicing (Laurent et al., 

2010). 

 

1.1.1.2 Establishment and maintenance of DNA methylation 

 Shortly after implantation, the embryo undergoes a period of rapid 

methylation that is catalyzed by the “de novo” DNA cytosine methyltransferases 

DNMT3A and DNMT3B (Okano et al., 1999). This leads to a pattern of near-
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global methylation of CpG-poor sequences, with some CpG-rich regions 

protected by DNA binding protein such as SP1 (Macleod et al., 1994). After this 

initial pattern is established, it is maintained heritably by the action of the 

“maintenance” DNA cytosine methyltransferase DNMT1 (Li et al., 1992). This 

enzyme is able to faithfully reproduce DNA methylation patterns on newly 

synthesized DNA by means of its high specificity for the hemimethylated CpG 

duplex (Song et al., 2012). 

Specific loci become methylated later in development after binding by one 

of a number of silencing factors, such as the H3 lysine methyltransferases G9A 

(Feldman et al., 2006) or EZH2 (Viré et al., 2006). These factors recruit DNMT3 

enzymes, in addition to other silencing factors such as histone deacetylases. In 

turn, densely methylated sequences can recruit other silencing factors, such as 

MECP2, which can regenerate the repressive chromatin state following DNA 

replication (Nan et al., 1998). In this way, DNA methylation is better understood 

as a resilient scaffold upon which silencing occurs, rather than the effector of 

silencing itself.  

 

1.1.1.3 DNA demethylation 

While the means for the establishment and maintenance of DNA 

methylation in mammals is relatively well understood, the means by which the 

mark is removed from DNA is a far more controversial area. DNA 

demethylation occurs at several points during development. The most dramatic 

loss of methylation occurs immediately after zygote formation, when the 

paternally-derived genome undergoes almost complete demethylation in 6-8 

hours (Mayer et al., 2000). The maternally-derived genome undergoes 
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demethylation of similar scale but with much slower kinetics, achieving full 

demethylation at the morula stage (Howlett and Reik, 1991). The other large-

scale demethylation event that takes place is the “resetting” of the global somatic 

cell methylation in primordial germ cells (PGCs), the precursors to germ cells. 

Between E7.5 and E11.5, this population of cells lose most DNA methylation 

(Hajkova et al., 2002). Small scale, targeted demethylation events also take place 

during differentiation of somatic cells, which appear to be driven by proximal 

transcription factor binding (Stadler et al., 2011). 

Two broad classes of mechanisms have been proposed for DNA 

demethylation: passive and active. Passive demethylation refers to the dilution of 

DNA methylation through replication in the absence of maintenance methylation 

activity. This appears to be the dominant mechanism for demethylation of 

maternal genome in the zygote: methylation gradually decreases at the same 

time that oocyte-derived DNMT1 is excluded from the nucleus (Howell et al., 

2001). It may also account for some site-specific demethylation later in 

development, with various DNA-binding proteins occluding newly synthesized 

DNA and preventing access for DNMT1 (Hsieh, 2000).  

While the literature dealing with passive DNA demethylation is relatively 

straightforward, the mechanisms of active demethylation in mammals have been 

considerably more controversial. While direct, one-step reversal of cytosine 

methylation is too energetically unfavorable a process to occur, the AlkB family 

of enzymes have been shown to demethylate 1-methyladenosine and 3-

methylcytosine via oxidized intermediates, releasing the methyl carbon as 

formaldehyde and regenerating the original base (Falnes et al., 2002; Trewick et 

al., 2002). However, no comparable Alkb-family enzyme that accepts 5mC as a 
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substrate has been found in vertebrates. The methyl-CpG-binding protein MBD2 

has been proposed as such a direct DNA demethylase (Bhattacharya et al., 1999), 

but these findings could not be replicated (Bird, 2002). A problem with the direct-

demethylation candidates is that a number of studies indicate that DNA is 

broken and repaired in the course of demethylation (Barreto et al., 2007; Hajkova 

et al., 2010; Kress et al., 2006). A hypothesis not contradicted by these reports is 

that DNA demethylation in mammals is achieved by targeted removal of 5mC by 

a glycosylase without previous modification of the base (Jost, 1993). This is 

thought to be the dominant mechanism of active DNA demethylation in plants, 

with the DME/ROS1 family of glycosylases serving this function in Arabidopsis 

(Zhu, 2009). MBD4 has been proposed as this glycosylase in mammals (Kim et 

al., 2009b), although previous in vitro work found this enzyme to be far more 

active on thymidine than 5mC (Zhu et al., 2000). Other reports suggested that 

demethylation may proceed by a radical mechanism catalyzed by the elongator 

complex member ELP3 (Okada et al., 2010) or by conversion to thymidine by 

DNMT3-family enzymes under conditions of low S-adenosylmethionine 

(Kangaspeska et al., 2008; Métivier et al., 2008).  

Among all of these proposed mechanisms, the evidence most strongly 

supports two: demethylation by oxidation, and demethylation by deamination. 

The characterization of the TET family of enzymes has given credence to the 

former. These Fe(II)- and α-ketoglutarate-dependent enzymes convert 5mC to 

5hmC in vitro, and lead to global depletion of 5mC when overexpressed 

(Tahiliani et al., 2009). Subsequent work has shown that demethylation of the 

paternal zygotic genome (Gu et al., 2011b) and PGCs (Hackett et al., 2013) require 
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TET-family proteins, as do other examples of site-specific demethylation (Klug et 

al., 2013).  

There have also been a number of proposals as to the post-oxidation steps 

in TET-mediated demethylation. It has been suggested that C is directly 

regenerated by decarboxylation of 5caC (Schiesser et al., 2012), but no 

decarboxylase with such an activity has been identified. It is also possible in 

some cases that a pseudo-passive mechanism may take place, with 

hemihydroxymethylated CpG failing to serve as a suitable substrate for DNMT1 

(Inoue and Zhang, 2011), but the kinetics of some examples of active 

demethylation preclude this from serving as the only mechanism. A 5hmC-

specific (or 5fC- or 5caC-specific) glycosylase could also lead to net 

demethylation by base excision repair, and it has been suggested that TDG could 

serve this purpose (Maiti and Drohat, 2011). Beyond the possibility that TET-

mediated oxidation represents the mechanism of active DNA demethylation, the 

discovery of high levels of 5hmC in Purkinje neurons (Kriaucionis and Heintz, 

2009) and ES cells (Pastor et al., 2011) as well as the existence of proteins that 

have very high affinity for 5hmC (Mellén et al., 2012) and 5fC (Iurlaro et al., 2013) 

suggests that oxidized cytosine derivatives may be functional marks in their own 

right and not simply intermediates.  

The other well-supported mechanism for active demethylation in 

mammals involves deamination by cytidine deaminases. The observation that 

activation-induced cytidine deaminase (AID) and apolipoprotein B editing 

enzyme, catalytic polypeptide 1 (APOBEC1) can act on 5mC in DNA led to the 

hypothesis that the resulting T:G mismatch could be repaired in an error-free 

manor to yield net demethylation (Morgan et al., 2004). It has also been 
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hypothesized that deaminase-mediated damage could lead to processive-like 

demethylation by long-patch base excision repair, and could do so by acting on 

unmodified cytosine (Fritz and Papavasiliou, 2010). The evidence for and against 

deamination-mediated mechanisms of demethylation will be discussed at length 

in a later section. 

 

1.1.2 RNA editing 

The term RNA editing is used to describe two separate varieties of RNA 

modification: base-insertion/deletion editing, and base-modification editing. 

Insertion/deletion editing was the first type discovered, and involves the post-

transcriptional addition or deletion of internal uridines to yield RNA sequences 

that differ from their source DNA (Benne et al., 1986). This process is crucial for 

proper expression of certain mitochondrial genes in kinetoplastids, and is crucial 

for their survival (Schnaufer et al., 2001). 

While insertion/deletion editing is unique to kinetoplastids, base-

modification editing is much more widespread. The two types of base-

modification editing that occur in vertebrates are termed A-to-I editing, which is 

catalyzed by the ADAR family of proteins, and C-to-U editing, which is 

catalyzed by the AID/APOBEC family. A-to-I editing occurs extremely widely in 

mammalian transcriptomes, with more than 108 sites identified as being edited 

by ADAR at some level (Bazak et al., 2014). The majority of these events occur in 

Alu repeats in transcript 3’UTRs (Ramaswami et al., 2012). 

Adar-catalyzed editing has been shown to have a number of functional 

roles. Because ADAR enzymes show a preference for double-stranded RNA 

(Nishikura et al., 1991) and A-to-I editing disrupts complementarity, it has been 
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suggested that the general function of this type of editing is modulating RNA 

secondary structure. In support of this hypothesis, ADAR and the RNAi 

pathway appear to compete for substrates (Wu et al., 2011), and lack of ADAR1 

can lead to an inflammatory response consistent with overproduction of 

endogenous dsRNA (Hartner et al., 2009; Rice et al., 2012).  

Because inosine has similar base-pairing properties as guanosine, A-to-I 

editing can have direct effects on coding sequences as well. This mode of 

regulation diversifies the coding sequences of a number of ion channels (Burns et 

al., 1997; Higuchi et al., 1993; Hoopengardner et al., 2003), and has been shown to 

be a mechanism of temperature adaptation in octopi (Garrett and Rosenthal, 

2012). Such coding changes may also contribute to the anti-viral activity of 

ADAR (Hamilton et al., 2010).  

 

1.2 The AID/APOBEC family of cytosine deaminases 

The AID/APOBEC family of polynucleotide cytidine deaminases catalyze 

deamination of cytosine to yield uracil in single-stranded DNA, with some 

exceptions. They all possess at least one characteristic catalytic domain in which 

the histidine and cysteines of the motif H[AV]E-X[24-36]-PCX[2-4]C coordinate a zinc 

ion, which in turn activates a water molecule to add at the 4 position of cytosine 

(Conticello, 2008). Subsequent loss of ammonia yields net conversion of cytosine 

to uracil (Figure 1.2). While these proteins share a common mechanism, there is 

great diversity in the specific substrates and functional importance of the 

AID/APOBECs, which will be discussed in depth for each member of the family. 
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Figure 1.2. Mechanism of polynucleotide cytosine deamination. 
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1.2.1 APOBEC1 

APOBEC1 was the first member of the AID/APOBEC family to be 

discovered (Teng et al., 1993). Its well-characterized activity is the site-specific 

editing of the ApoB transcript in small intestinal enterocytes. This editing results 

in a premature stop codon and translation of a truncated form of the protein with  

different properties in lipid metabolism (Chen et al., 1987; Powell et al., 1987).  

APOBEC1 is unique among the AID/APOBEC family as the only member 

for which RNA editing has been demonstrated in vivo. It has also been shown 

that APOBEC1 can edit a large number of transcript 3’UTRs in vivo (Rosenberg et 

al., 2011), and that is overexpression in the liver causes tumor formation 

(Yamanaka et al., 1997). In DNA, APOBEC1 can act on cytosine in E. coli (Harris 

et al., 2002) and cytosine and 5-methylcytosine in DNA in vitro (Morgan et al., 

2004). The latter observation led to the hypothesis that it may be involved in 

DNA demethylation, and there is some evidence that this may take place in 

neurons (Guo et al., 2011).  

 

1.2.2 APOBEC2 

APOBEC2 is clearly a member AID/APOBEC family by sequence 

similarity, and is evolutionarily well-conserved as far back as bony fish 

(Conticello, 2004). It has also been successfully crystalized, and displays folds 

characteristic of free nucleotide cytidine deaminases (Prochnow et al., 2006). 

Despite these features, no catalytic activity for this protein has been identified 

(Anant et al., 2001; Harris et al., 2002; Mikl et al., 2005; Nabel et al., 2012). 

However, a number of phenotypes have been reported in the absence of 

APOBEC2. It is expressed at high levels in skeletal and cardiac muscle (Liao et 
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al., 1999), with higher levels in slow-twitch fibers than in fast-twitch (Mikl et al., 

2005). Mice deficient in APOBEC2 display a higher proportion of slow-twitch 

muscle fibers, as well as decreased body mass and myopathy in later life (Sato et 

al., 2010). Mice that constitutively overexpress APOBEC2 may also develop lung 

and liver tumors at an elevated rate (Okuyama et al., 2012). In other species, 

more dramatic phenotypes have been observed. Knockdown of apobec2 in early 

development results in impaired left/right axis definition in Xenopus laevis, 

which was attributed to inhibition of TGF-β signaling (Vonica et al., 2011). In 

zebrafish, morpholino knockdown of apobec2 at the single-cell stage led to severe 

muscle dystrophy (Etard et al., 2010) or neuron loss, which was attributed to 

hypermethylation of the neurod2 promoter (Rai et al., 2008). Knockdown in adult 

zebrafish was also found to impair nerve regeneration following injury (Powell 

et al., 2012). 

 There is no consensus on how APOBEC2 achieves these effects. It has been 

hypothesized that APOBEC2 may be involved in DNA demethylation (Powell et 

al., 2012; Rai et al., 2008), RNA editing (Liao et al., 1999), or that it has lost its 

cytidine deaminase activity altogether and may act by a different mechanism 

(Etard et al., 2010; Sato et al., 2010; Vonica et al., 2011). 

 

1.2.3 The APOBEC3 subfamily 

Since its appearance in the placental lineage of mammals, the APOBEC3 

subfamily of proteins have undergone a number of fusions and expansions, 

resulting in a single Apobec3 gene in mice and 7 in humans (Conticello, 2008). The 
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rapid diversification of this subfamily in the primate lineage is not surprising 

given these enzymes’ function: restriction of viruses and retrotransposons.  

 APOBEC3G has been the most intensely studied of the APOBEC3s 

because of its identification as the HIV restriction factor antagonized by the viral 

gene product Vif (Sheehy et al., 2002). This activity is achieved by hypermutation 

of retroviral (-)-strand cDNA (Harris et al., 2003; Lecossier et al., 2003; Mangeat et 

al., 2003; Zhang et al., 2003). Other APOBEC3 enzymes display similar antiviral 

activity against other viruses (Chen et al., 2006; Delebecque et al., 2006; Russell et 

al., 2005; Turelli et al., 2004), and restrict retrotransposons (Esnault et al., 2005; 

Muckenfuss et al., 2006), and foreign DNA (Stenglein et al., 2010).  

 The potent antiviral activities of APOBEC3s come at the cost of oncogenic 

mutations. APOBEC3s generally (Alexandrov et al., 2013; Nik-Zainal et al., 2012; 

Roberts et al., 2013) and APOBEC3B specifically (Burns et al., 2013a; 2013b) have 

been linked to a variety of human cancers by their characteristic mutational 

spectra. 

 

1.2.4 Activation-induced cytidine deaminase (AID) 

Activation-induced cytidine deaminase (AID) was initially identified in 

1999 as a factor required for class-switch recombination (CSR) and 

immunoglobulin somatic hypermutation (SHM) (Muramatsu et al., 2000; 1999; 

Revy et al., 2000). The 24kD protein, encoded by the Aicda gene, is conserved 

among jawed vertebrates and appears to be the basal member of the APOBEC 

family (Conticello, 2004). Although it was initially hypothesized to be an RNA 

editor due to its similarity to APOBEC1 (Muramatsu et al., 1999), it has since 

been established that AID is able to convert cytosine to uracil in single-stranded 
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DNA, as demonstrated in E. coli (Petersen-Mahrt et al., 2002) and in vitro 

(Bransteitter et al., 2003; Chaudhuri et al., 2003; Dickerson et al., 2003).  

 

1.2.4.1 Class-switch recombination and immunoglobulin somatic 

hypermutation 

In the decade since AID’s discovery, a broadly accepted model for its roles 

in antibody diversification has emerged (Delker et al., 2009; Di Noia and 

Neuberger, 2007). In this model, AID initiates CSR and SHM by conversion of 

cytosine to uracil in different regions of the immunoglobulin (Ig) loci. CSR occurs 

as a result of the double-stranded breaks frequently produced in the course of 

repair of such lesions in the S regions of the IgH locus. Joining of breaks in 

different S regions results in a different constant region immediately 

downstream of the transcribed V(D)J and consequently to antibodies of a 

different isotype (Xu et al., 2012). SHM is initiated by AID deamination within 

the V(D)J region of Ig loci. Repair of these lesions proceeds with an unusually 

high error rate, leading to mutations and thus altering the affinity of the encoded 

antibody (Di Noia and Neuberger, 2007). Selection of cells bearing these mutated 

immunoglobulins leads to affinity maturation. AID is the sole initiator of these 

processes: Aicda-/- mice exhibit a complete lack of secondary Ig isotypes and no 

mutations in Ig variable regions during an immune response (Muramatsu et al., 

2000). Mutations in the AICDA gene in humans result in a similar condition 

known as hyper-IgM syndrome type 2 (Revy et al., 2000).  
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1.2.4.2 Off-target effects of AID in B cells 

 Although AID displays striking specificity in its action on the Ig loci, it can 

act at other points in the genome. A large number of loci are mutated at an 

elevated rate in the presence of AID, including Bcl6 and Fas (Muschen et al., 2000; 

Pasqualucci et al., 1998; Shen et al., 1998). In some cases, notably mutations at 

Myc, these AID-catalyzed “non-Ig somatic hypermutations” have been shown to 

contribute to B cell tumors in mice (Pasqualucci et al., 2001). AID appears to act 

at a much larger number of loci, and that fidelity of repair following damage 

varies greatly at different sites (Liu et al., 2008). In addition, AID can catalyze the 

formation of DNA breaks, which can lead to translocations. The most notable of 

these is the Myc/Igh translocation that is characteristic of Burkitt’s lymphoma 

(Pasqualucci et al., 2007; Robbiani et al., 2008), but it has become clear that AID-

dependent DNA breaks are distributed broadly throughout the genome (Chiarle 

et al., 2011; Klein et al., 2011).  

 

1.2.4.3 AID and DNA demethylation 

Despite the lack of an obvious non-immune phenotype in AID-deficient 

mice, there are signs that AID has additional functions outside of antibody 

diversification. Notably, it is expressed in many cell types other than B cells, 

namely oocytes, PGCs, ES cells (Morgan et al., 2004), breast tissue (Pauklin et al., 

2009), and prostate epithelial cells (Lin et al., 2009), although its presence in PGCs 

has recently been challenged (Hajkova et al., 2010). As AID is a DNA mutator, its 

expression outside of B cells would likely have been strongly selected against if it 

had no function in these tissues. Further suggestions of functions for AID beyond 

the immune system come from studies of lower vertebrates. As in mice, AID 
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expression is found during early development in D. rerio (Rai et al., 2008), 

Xenopus (Marr et al., 2007), and the newt P. waltl (Bascove and Frippiat, 2010). 

The broad conservation of AID expression in early development strongly 

suggests a function at that stage.  

The first direct evidence that AID might have functions beyond the 

standard model of antibody diversification came in 2004, when it was shown by 

Petersen-Mahrt and colleagues that AID, along with the related cytidine 

deaminase APOBEC1, can convert 5mC in single-stranded DNA to thymidine in 

vitro (Morgan et al., 2004). This observation led to the proposal that these 

enzymes could function in DNA demethylation. 

AID could initiate demethylation by a damage-and-repair mechanism 

similar to that used in SHM (Figure 1.3). The deamination of 5mC by AID yields 

thymidine. This T would then be removed by a T-G mismatch-specific 

glycosylase, of which two, TDG and MBD4, are known in mammals (Hardeland 

et al., 2003; Millar et al., 2002). The resulting abasic site would then be replaced 

by an unmethylated cytidine via base excision repair (BER) processes, yielding 

the net removal of methylation without alteration of sequence. BER could also 

proceed through either short or long patch repair, potentially yielding 

demethylation of multiple neighboring cytosines in the latter case. This could 

give rise to the appearance of processive demethylation, despite originating from 

a single deamination event.  

The AID model of demethylation received a measure of in vivo validation 

from work in D. rerio early embryos (Rai et al., 2008). Introduction of a 

methylated DNA fragment into single-cell embryos induced expression of AID 

along with related putative cytidine deaminases Apobec2a and Apobec2b. 
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Figure 1.3. Proposed mechanisms of AID-dependent DNA demethylation. 
Deamination of 5mC by AID yields thymine. Excision of thymine by either of the 
mammalian T-G-specific glycosylases (TDG or MBD4) and subsequent error-free 

replacement with cytosine would yield loss of methylation at that base on one 
strand. Deamination of cytosine followed by excision of uracil and error-free 

long-patch BER could lead to replacement and net demethylation of neighboring 
5mCs. 
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Additionally, overexpression of AID along with the T-G glycosylase MBD4 leads 

to efficient demethylation of a methylated DNA fragment, with observable 

conversion of 5mC to T. Morpholino knockdown of AID or of MBD4 in D. rerio 

single-cell stage embryos results in hypermethylation of the promoter of the 

neurogenesis-related transcription factor neurod2 at 80% epiboly. Furthermore, 

both AID and MBD4 were also detectable at the locus by chromatin 

immunoprecipitation (ChIP), suggesting that the promoter’s methylation state 

was dynamic through development and not just the result of transmission of 

altered methylation state at the single-cell stage. Consequently, AID morphants 

displayed severe defects in neurogenesis consistent with decreased neurod2 

expression. The tissue- and locus-specific phenotype suggests that active 

demethylation may serve as a mechanism for regulating specific lineage 

decisions, as opposed to only resetting methylation state grossly in the zygote 

and germline. 

Intriguingly, Rai and colleagues also found that the Gadd45 family of 

proteins, previously implicated in active demethylation in Xenopus (Barreto et al., 

2007), were involved in AID-dependent demethylation. Combined knockdown 

of four of the six Gadd45 family members found in zebrafish sharply reduced 

demethylation of a reporter and increased methylation of the genome as a whole. 

It was thus suggested that Gadd45 serves as a scaffold to couple AID and MBD4, 

supported by the facts that Gadd45α promotes their association with a 

methylated reporter plasmid and that the three proteins also co-

immunoprecipitate. The apparent physical interaction of AID and Mbd4 

afforded by Gadd45 provides a mechanism for the tight coupling of deamination 
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to repair that would be necessary for demethylation without attendant 

widespread mutation, as has been noted (Law and Jacobsen, 2010). 

Although there is no direct evidence for deaminase-dependent effects on 

cytosine methylation in mammalian somatic tissue, a recent study has implicated 

AID in establishment of the hypomethylated state of mouse primordial germ 

cells (PGCs) (Popp et al., 2010). In this study, genomic DNA from sperm, total 

fetus, placenta, and male and female E13.5 PGCs from wild-type and Aicda-/- mice 

was bisulfite-converted and sequenced using the Illumina ultra-high throughput 

platform, a method termed BS-Seq or MethylC-Seq (Cokus et al., 2008; Lister et 

al., 2008). The resulting data provides a genome-wide map of cytosine 

methylation at single-nucleotide resolution. While the lack of sequencing depth 

precluded quantitative measures of methylation for every genomic cytosine, the 

coverage was more than sufficient to detect significant increase in methylation in 

Aicda-/- PGCs. This difference was more pronounced for female than for male 

PGCs, and was roughly homogeneous throughout the genome. The broad nature 

of the methylation increase implies that AID functions without regard to specific 

loci, and thus is a plausible component of germline methylation erasure. This 

report marks the first description of a non-immune phenotype in Aicda-/- mice. 

Further evidence of AID’s capacity to demethylate DNA in mammalian 

cells came in a recent study of reprogramming during interspecies heterokaryon 

formation (Bhutani et al., 2010). This system uses polyethylene glycol fusion of 

mouse ES cells with human fibroblasts to induce reprogramming of the human 

nucleus to an ES-like state with high frequency. Because reprogramming is 

known to involve demethylation, heterokaryon formation allows for study of 

demethylation in mammalian cells, albeit in a non-physiological context. 
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Knockdown of AID was found to significantly inhibit reprogramming as 

measured by transcript levels of the pluripotency markers Oct4 and Nanog. 

Methylation of the promoters of these genes was also significantly increased as a 

result of reduced levels of AID. As heterokaryons are non-dividing, AID-

dependent demethylation in this system is necessarily active. Similar deficiencies 

for AID-deficient cells have been noted for reprogramming by Yamanaka factors 

as well (Kumar et al., 2013; Sabag et al., 2014). 

While the evidence that AID has a role in demethylation is suggestive, 

there are still caveats. It has been found for all tested members of the family that 

deaminase activity is higher on C than on 5mC (Nabel et al., 2012). Additionally, 

a recent report detected no AID expression in mouse PGCs at E11.5, although a 

small level of AID expression was observed at E12.5 (Hajkova et al., 2010). As the 

epigenetic reprogramming of PGCs begins at E11.5, AID cannot be the sole agent 

of demethylation. This idea is consistent with the occurrence of significant, albeit 

reduced, demethylation in the PGCs of Aicda-/- mice compared to somatic cells. 

Whether AID-independent demethylation in these cells is a result of 5mC 

deamination by another member of the AID/APOBEC family or due to any of 

the mechanisms mentioned above is an open question. It is also possible that the 

AID/APOBEC family of deaminases have differing target gene preferences for 

demethylation, and thus play complementary roles in the genome-wide removal 

of cytosine methylation.  

Another issue raised by these results is the functional importance of the 

observed PGC hypermethylation, as Aicda-/- mice are fully viable. Even if AID 

were the sole agent of active demethylation, it is not clear that loss of this 

mechanism would result in a drastic phenotype. This view is supported by 
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evidence from A. thaliana, in which loss of all three 5mC-removing glycosylases 

in vegetative tissue leads to viable plants displaying increased methylation only 

at certain loci, and no genome-wide increase (Penterman et al., 2007). As DNA 

methylation is essential for parental imprinting, Popp and coworkers suggested 

that the consequences of PGC AID deficiency may lie in retention of a parental-

like epigenetic state. Data supporting this view lies in a small but significant 

difference that exists between wild-type and Aicda-/- mice in the relationship 

between litter size and birth weight (Popp et al., 2010). In normal mice, pups that 

are part of large litters tend to have lower birth weights, while Popp and 

colleagues report that in Aicda-/- mice this compensation is absent. 

Hypermethylated elements responsible for this phenotype have not been 

identified.  

  

1.3 Statement of the problem 

Despite over a decade of intense study, a number of open issues remain 

surrounding AID. The divergent findings regarding AID’s role in DNA 

demethylation raises the question of the scope of its involvement. Additionally, 

while it is clear that AID-mediated damage occurs, the effects of this damage on 

the average B cell have not been characterized. Finally, the issue of whether AID 

is able to edit RNA in vivo has never been rigorously addressed in the literature. 

 In each of these cases, the advent of high-throughput sequencing provides 

methods for genome-wide characterization of AID’s effects. This thesis presents 

the application of a number of genome-scale, sequencing-based methods to 

characterize the consequences of AID deficiency and overexpression on the 

activated B cell: mRNA-Seq and miRNA-Seq allow for measurements of RNA 
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expression and editing, while reduced-representation bisulfite sequencing assays 

DNA methylation. These analyses confirmed AID’s known role in 

immunoglobulin isotype switching, while also demonstrating that it has little 

other effect on gene expression. Additionally, no evidence of AID-dependent 

mRNA or miRNA editing could be detected. Finally, RRBS data failed to support 

a role for AID in the regulation of DNA methylation. Thus, despite evidence of 

its additional activities in other systems, antibody diversification appears to be 

AID’s sole physiological function in activated B cells.  

Following the conclusion of my studies of AID’s effects in B cells, I 

applied similar genomics tools to two amenable topics in nucleic acid 

modifications. First, I used mRNA-Seq to attempt to determine the substrate of 

the orphan cytidine deaminase Apolipoprotein B mRNA-editing enzyme, 

catalytic polypeptide 2 (APOBEC2). Next, I used whole-genome bisulfite 

sequencing to explore the distribution of 5-methylcytosine in Trypanosoma brucei. 

In both of these cases, results were inconclusive but suggest future directions for 

investigation. 
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Chapter 2. Systematic characterization of the effects of AID on the B cell 

transcriptome and DNA methylome† 

 

2.1 Assaying AID-dependent changes in the activated B cell  

While AID-dependent effects have been reported in a variety of systems, I 

chose to investigate activated murine B cells for a number of reasons. First, B 

cells are the physiological setting for the highest levels of AID. I hypothesized 

that AID-dependent effects would be more apparent as well as more likely to be 

physiologically meaningful in the cell type with the highest levels of AID. 

Additionally, there were a number of practical concerns that made ex vivo 

stimulated B cells an attractive system. They are simple to derive in large 

quantities, with a single spleen supplying enough material for several types of 

experiments. Moreover, primary cells from the mouse that are cultured ex vivo 

closely approximate the physiological conditions of CSR, while providing far 

more uniformity than possible for any true in vivo system. Finally two useful 

mouse strains have already been generated: Aicda-/- (Muramatsu et al., 2000) and 

AID–miR-155T, which has a transgene containing a C-terminal AID-GFP-fusion 

and a mutation in the miR-155 target site, leading to overexpression of AID-GFP 

(Teng et al., 2008). In combination with the wild-type, these strains allowed 

investigation of dose-response relationships for any observed effects.  

The investigation began with high throughput sequencing of poly-A+ 

RNA, or mRNA-Seq. This technique was an attractive starting point for a 

number of reasons. First, it is high-throughput, with a single experiment yielding 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
†	
  The	
  work	
  described	
  in	
  this	
  chapter	
  was	
  published	
  in	
  (Fritz et al., 2013)	
  



	
  27 

expression data for every gene in the genome. Additionally, mRNA-Seq can 

provide useful data beyond simple expression profiles, most saliently here 

evidence of RNA editing. Finally, because most possible effects of a nucleic acid 

editing protein like AID would be manifested either directly or indirectly on the 

transcriptome, it is likely that mRNA-Seq would allow for detection of any of 

AID-dependent DNA demethylation, RNA editing, or damage responses to off-

target AID activity. 

 

2.1.1 Validation of the activated B cell culture system  

To ensure that ex vivo stimulation was occurring as desired and that each 

of the genotypes behaved as expected, I sought to validate the cell isolation and 

culture conditions. The criteria for stimulation conditions were as follows: (1) 

that the cells isolated were in fact naïve B cells and (2) that AID was efficiently 

induced. Both of these criteria were assessed by flow cytometry following 

negative selection of CD43+ splenic cells and stimulation in culture for 3d with 

anti-CD40, LPS, and IL-4. This suite of factors, which induce switching to IgG1, 

IgG3, and IgE, were used because they are known to produce high levels of CSR. 

Following stimulation, cells displayed forward and side scatter consistent 

with blasting B cells. Additionally, over 98% of cells displayed the surface 

marker B220, indicating that the dissection and cell purification were performed 

correctly (data not shown). In order to determine whether AID was efficiently 

induced, the cells were also stained with anti-IgG1 antibodies. Because CSR is 

absolutely dependent on AID, surface expression of secondary Ig isotypes such 

as IgG1 functions as a proxy for AID expression. Flow cytometry demonstrated 

the expected pattern of IgG1+ cells by genotype, with background levels for  
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Aicda-/-, 14% for WT, and 31% for AID–miR-155T (Figure 2.1). Because AID level 

is known to be positively correlated with rates of CSR, this pattern also 

demonstrates that AID is in fact overexpressed in AID–miR-155T cells, and that 

the AID-GFP fusion is CSR-competent. 

Additionally, AID expression itself could be detected by flow cytometry in 

the case of the AID–miR-155T mouse due to its C-terminal GFP fusion. As 

expected, no GFP expression was detectable for the Aicda-/- or WT mice. In the 

case of the AID–miR-155T mouse, over 85% of cells were GFP+, demonstrating 

that the culture conditions robustly induce AID expression. Because there are no 

alterations in the transgene contained by AID–miR-155T cells that should affect 

transcription, this figure is also a fair estimate of the fraction of WT cells that 

express AID under these conditions. For all subsequent B cell experiments 

(except for the noted exceptions), all material was derived from the same single B 

cell culture per genotype assayed in Figure 2.1. 

  

2.1.2  Generation, mapping, and validation of mRNA-Seq data 

RNA extracted from Aicda-/-, WT, and AID–miR-155T activated B cells was 

used to prepare mRNA-Seq libraries using a standard protocol with the addition 

of two sets of “spike in” control transcripts after poly-A+ selection (Figure 2.2). 

The first was the commercially available ERCC panel of precisely quantified 

RNAs (Jiang et al., 2011a) which allow determination of the lower limit of 

detection for gene expression. The second was 5 sets of “pre-edited” RNAs 

derived from Trypanosoma brucei variant surface glycoprotein (VSG) genes with a 

single C-to-T change introduced at a frequency of 50%, which serve as a positive 

control for the detection of RNA editing.  
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Figure 2.1. Quantification of IgG1+
 and GFP+ populations of ex vivo stimulated 

naïve splenic B cells used for subsequent experiments as determined by flow 
cytometry. Plotted populations are 7AAD-, B220+. 
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Following purification of poly-A+ RNA and addition of exogenous spikes, 

the RNA-Seq library was prepared via modifications of a standard protocol 

(Rosenberg et al., 2011). Briefly, the RNA was chemically fragmented with Mg2+ 

and high heat, then reverse transcribed with random hexamer priming. The 

resulting cDNA was made double stranded with a cocktail of DNA polymerases, 

and following end repair and generation of A-overhangs, this cDNA was ligated 

to Illumina adaptors to facilitate sequencing. The adaptor-ligated product was 

size selected by gel electrophoresis, enriched by PCR, and size selected once 

more before 100-cycle, single-end sequencing on the Illumina HiSeq 2000. 

After verifying that the resulting sequencing reads passed basic quality 

control measures, they were aligned to the reference genome in a splice-junction-

conscious manner, and with the exogenous spike sequences added as extra 

“chromosomes.” The resulting mapped reads were then compared to the 

Ensembl reference gene annotation (with certain alterations, as noted later) using 

the program Cufflinks in order to generate relative gene and isoform expression 

values. The resulting expression values have units of fragments per kilobase of 

transcript per million reads mapped, or FPKM. Because it is normalized to both 

length of transcript and number of reads mapped, FPKM provides a count-like 

unit that allows for comparison between samples for a given transcript, as well 

as between transcripts for a given sample. 

To determine the limits of detection for this measurement of gene 

expression, the resulting values were first compared for the ERCC controls alone. 

The ERCC panel consists of 92 RNAs with no similarity to any sequences in the 

mouse genome, which allows for fully exogenous measurement of the limit of 

detection of abundance for transcripts (Jiang et al., 2011b). The resulting 
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estimates of abundance were well correlated for each pair of samples for 

transcripts with > 5 FPKM, and were within a 2-fold difference as low as 0.1 

FPKM (Figure 2.2). Since an FPKM of 5 corresponds to the 16th percentile of 

expressed genes for this data set, this analysis demonstrates that the data 

presented should be sensitive to relatively subtle changes in most expressed 

genes and large changes even in poorly expressed transcripts.  

 

2.1.3  AID-dependent differences in immunoglobulin isotype abundance  

After verifying that the exogenous controls behaved as expected with 

respect to transcript quantification, the next validation step was to detect the 

expected difference between the samples sequenced: transcription of productive 

secondary Ig isoforms.  

Conceptually, this was no different than detecting differences in isoform-

level expression differences in any other gene, as all of the JH-C spliced 

transcripts should be derived from productive transcripts. However, because the 

existing standard gene annotations do not include JH segments, a standard gene- 

or isoform-expression analysis would give no information about the levels of 

CSR in the source cell population. I first found the correct coordinates for each Ig 

segment by mapping the sequences for each as listed in IMGT (Lefranc et al., 

2009) to the genome. I then manually generated annotations for each of the 5 

theoretically possible “isoforms” for each isotype (each of the germline promoter 

and JH,1-4 spliced to C1, followed by the remaining C exons) and used this set to 

replace the existing Ensembl IgH locus annotation. Quantifying expression at the 

isoform level and then summing the FPKM values for each of the J-containing 

IgH isoforms for each isotype then allowed for relative measures of CSR. 
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Figure 2.2 Quantification of ERCC controls for RNA-Seq. Pairwise comparisons 
of ERCC RNA spike levels for (a) Aicda–/– and AID–miR-155T samples (r = 

Pearson correlation coefficient) 
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As expected, nearly all JH-C spliced transcripts for the Aicda–/– sample 

were IgM or IgD, while the wild-type and AID–miR-155T samples both 

displayed appreciable amounts of IgE, IgG1, IgG2a, and IgG3-derived transcripts 

(Figure 2.3 A). Furthermore, apparent CSR frequencies were higher for AID–

miR-155T than for wild-type for each secondary isotype, consistent with 

previous reports (Teng et al., 2008). This result demonstrates that the RNA-Seq 

data generated are of sufficient depth and quality to detect large differences in 

isoform abundance, and also indicates that the B cells used display the expected 

AID-dependent differences at the RNA level. 

One caveat of measuring CSR by RNA-Seq is that it provides only a 

relative measurement. To determine how CSR frequencies quantified by RNA-

Seq analysis compare to standard measurements, and thus to generate a fixed 

peg that would allow conversion to absolute values, the fraction of IgG1+ cells as 

determined by flow cytometry were compared to the abundance of JH-Cγ1 

transcripts as a fraction of all JH-C transcripts (Figure 2.3 B). A clear linear 

relationship was observed, albeit with slope not equal to 1, which likely 

represents differing per-cell levels and/or sequencing efficiencies of different 

isotype transcripts. Determining these correction factors for each isotype should 

allow RNA-Seq to be used as quantitative tool for assaying absolute frequencies 

of CSR.  

 

2.1.4  AID has little effect on non-immunoglobulin gene expression  

With the sensitivity of the mRNA-Seq system thoroughly validated, 

effective comparisons of gene expression could be made between samples.  
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A. 

 
B.  

 
Figure 2.3. Quantification of immunoglobulin isotype abundance. (A) Relative Ig 

isotype abundance by AID level as calculated by RNA-Seq. (B) Comparison of 
CSR to IgG1 as calculated by RNA-Seq and flow cytometry for 3 analyzed B cell 

genotypes. (m = slope of line of best fit) 
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Overall, the gene expression profiles were similar for the three samples, 

with a Pearson correlation coefficient > 0.995 for each pairwise comparison 

(Figure 2.4). Within these expression profiles, AID itself was clearly expressed at 

the expected level for each dataset. But besides AID, the short list of genes that 

with adjusted p-value < 0.05, > 2 fold-change differences between conditions, 

and FPKM of at least 5 for at least 1 condition (Table 2.1) was composed of 

elements predominantly annotated as pseudogenes in other references, or 

elements with RNA-Seq coverage characteristic of mismapped reads derived 

from paralogous transcripts. In addition, few transcripts that displayed a > 2 fold 

difference did so for more than one of the binary comparisons, suggesting that 

these apparent differences were the result of noise rather than authentic AID-

dependent effects. These findings are concordant with those from a lower-depth 

RNA-Seq comparison of Aicda–/– and wild-type under slightly different 

conditions (36 nt paired-end sequencing, and IL-4 plus anti-CD-40 stimulation, 

data not shown).  

I also used the RNA-Seq data to estimate the abundance of different 

transcript isoforms. Expression analysis at the isoform level again shows a high 

degree of similarity between Aicda–/–, wild-type and AID–miR-155T samples, 

with the previously discussed exception of IgH transcripts (Figure 2.5). The 

lower degree of correlation for the isoform-level comparison as compared to the 

gene-level is expected, due to the uncertainty inherent in assigning ambiguous 

reads to one of several isoforms.  

Overall, the analysis failed to detect any clear difference in gene 

expression outside of the IgH locus. While these results do not exclude the  
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Figure 2.4 Gene expression comparison for Aicda-/- and AID–miR-155T B cells. (r 
= Pearson correlation coefficient) 
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Table 2.1. Genes with at least 2-fold difference in expression, FPKM of at least 5 
for one condition, and adjusted p-value < 0.05 for Aicda-/- (KO) and AID–miR-

155T (TG) samples, from RNA-Seq data as determined by Cuffdiff. 
 

gene KO_FPKM TG_FPKM log2(fold_change) q_value 
Aicda 1.14 120.99 6.73016 0.00E+00 
Rpl7a-ps5 1.25 46.18 5.2117 0.00E+00 
Mfap5 0.54 5.74 3.4151 4.20E-09 
Gm14431 0.74 6.30 3.09394 3.71E-02 
Gm4245 0.74 6.30 3.09394 3.71E-02 
Havcr1 4.64 15.08 1.7006 3.91E-08 
Sgip1 5.75 17.04 1.5663 6.11E-09 
Cd9 3.57 9.84 1.46525 2.23E-03 
Gm3839 12.60 33.83 1.42458 3.89E-06 
Gm10327 3.13 8.35 1.41717 5.53E-03 
Gm10293 9.64 22.76 1.24041 3.14E-04 
Gm10709 169.32 379.70 1.16513 8.12E-12 
Ccr4 7.46 16.09 1.10807 8.60E-05 
Gnb4 8.24 16.75 1.0237 3.17E-03 
Pld4 17.09 8.03 -1.09064 4.12E-04 
Fcrl5 7.90 3.63 -1.12079 1.85E-02 
Oas1g 12.54 5.68 -1.14153 2.38E-02 
Ifitm3 96.35 43.11 -1.16026 1.63E-05 
BC094916 10.29 4.60 -1.16053 1.45E-02 
Oas2 9.24 3.89 -1.24865 1.07E-02 
Gm5431 5.29 2.22 -1.25388 1.45E-02 
Pydc3 9.58 3.96 -1.27535 3.76E-04 
Sla 15.16 6.17 -1.29709 1.04E-04 
Ccl5 634.25 250.14 -1.34233 0.00E+00 
Ifit3 18.77 6.42 -1.54769 8.43E-08 
AI607873 5.81 1.84 -1.66161 3.34E-04 
Serpinb1a 6.14 1.94 -1.66476 5.73E-05 
Pydc4 31.13 9.80 -1.66687 4.28E-12 
Plac8 85.76 24.07 -1.83303 1.13E-10 
Hist1h2af 122.00 25.14 -2.27855 0.00E+00 
C530028O21Rik 8.56 0.10 -6.4739 1.88E-03 
Alox5ap 47.78 0.40 -6.91307 1.95E-10 
Gm9493 484.50 1.56 -8.28029 0.00E+00 
Gm2606 202.40 0.08 -11.3459 0.00E+00 
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Figure 2.5 Isoform expression comparison for Aicda-/- and AID–miR-155T B cells. 
(r = Pearson correlation coefficient)  
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possibility of AID-dependent changes in gene expression in B cells, they 

demonstrate that if such changes exist outside the Igh locus, they are likely too 

small to be physiologically relevant. While these findings are derived from 

analysis of a single sample in each case, a lower-depth RNA-Seq comparison of 

Aicda–/– and wild-type under slightly different conditions (36 nt paired-end 

sequencing, and IL-4 plus anti-CD-40 stimulation) also found high concordance 

between samples by AID level.  

 

2.1.5 AID has no effect on VH segment usage in naïve B cells  

AID deficiency has been associated with autoimmune disease and a 

skewed usage pattern of VH segments in both humans (Meyers et al., 2011) and 

mice (Kuraoka et al., 2011). Because our data were derived from naïve B cells 

non-specifically stimulated to undergo CSR ex vivo, any differences in VH gene 

usage between samples ought to mirror the in vivo repertoire prior to affinity 

maturation. Thus the mRNA-Seq data set generated should allow for 

determination of whether this previously observed effect occurred prior to 

affinity maturation. 

FPKM values for the entire set of VH segments were derived by using a 

separate annotation consisting of only Ig V segments, defined in relation to the 

IMGT sequences as previously described for J segments. Because only one VH is 

transcribed in a mature B cell, the measurements correspond to relative segment 

usage between samples. This transcript abundance analysis revealed only minor 

differences in VH transcript abundance between Aicda–/–, wild-type and AID–

miR-155T samples. Importantly, none of these exhibited a clear relationship with 

AID expression (Figure 2.6), strongly suggesting that the pattern of VH usage was  



	
  40 

 
Figure 2.6. Relative frequencies of VH segment usage by AID level, as calculated 

by mRNA-Seq. Values shown are the top 50 VH segments for the WT sample. 
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unaffected by AID. This result is in contrast to the pattern of VH usage in newly 

emigrant B cells in AID-deficient humans (Meyers et al., 2011; Yamane et al., 

2010), suggesting that the influence of AID over VH usage occurs after 

establishment of the primary repertoire and probably reflects the dynamics 

between AID-mediated affinity maturation and B cell survival, rather than a role 

in early B cell development.  

 

2.2 Assaying AID-dependent mRNA editing  

While it has become clear that AID’s roles in initiating CSR and SHM 

proceed via a DNA-editing mechanism (Di Noia and Neuberger, 2007), the 

question of whether AID can edit RNA in a cellular context remains open. 

Indeed, a number of reports have hypothesized AID-dependent RNA editing 

activity in B cells (Kobayashi et al., 2009; Muramatsu et al., 2000; Nonaka et al., 

2009). The RNA-Seq reads described in the previous sections were precisely the 

dataset required for answering this question in a rigorous manner. 

 

2.2.1 Refinement and validation of a comparative mRNA-Seq RNA editing-

detection pipeline  

 While RNA-Seq is often treated as simply a method for gene expression 

profiling, the sequences it generates contain far more information than just RNA 

abundance. In particular, comparing mapped reads to reference to identify 

recurrent mismatches is an effective strategy for identifying RNA editing events, 

as has been demonstrated in a number of reports (Bazak et al., 2014; Eisenberg et 

al., 2010; Ramaswami et al., 2013). Previous work in the laboratory demonstrated 

the particular utility of paired wild-type and specific deaminase-deficient 
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comparative RNA-Seq for identifying RNA editing events (Rosenberg et al., 

2011). By using the sequences from near-congenic, deaminase-deficient samples 

as a final filter, false positives arising from mismapping and genomic differences 

can be minimized. 

The pipeline applied to the sequencing data is described in Figure 2.7. 

Briefly, single nucleotide variants (SNVs) were considered candidate editing sites 

if they conformed to the following criteria: (1) had greater than 30x read 

coverage, (2) at least 20% apparent C-to-T editing, (3) were a minimum distance 

from a non-C-to-T SNV (1 kb if using reference, 10 kb if not), (4) were not 

significantly strand-biased, as determined by Fisher’s exact test, (5) were not 

located in regions that were not isogenic between the mice used, as determined 

by the frequency of non-C-to-T SNVs, and (6) did not occur in the Aicda–/– 

sample. These cutoff values were determined to minimize the false positive rate 

for a comparison of RNA-Seq data from Apobec1-/- and wild-type macrophages. 

Two parallel analyses were performed for positions within reference exons (to 

achieve the lowest possible background) and for all positions (to include 

positions in transcripts not found in the reference annotation). 

 

2.2.2 Validation of the RNA editing detection pipeline 

In order to determine the limits of detection of this pipeline, three analyses 

were undertaken. First, the fraction of the transcriptome covered under the 

parameters described was quantified. Second, apparent editing was analyzed for 

the “pre-edited” RNA spikes. Finally, the pipeline was applied to analogous 

RNA-Seq data for the bona fide RNA editor APOBEC1 (C. Hamilton and F.N. 

Papavasiliou, unpublished data). 
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Figure 2.7. Schematic of RNA editing detection pipeline. 
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To estimate the fraction of the transcriptome covered at least 30x and thus 

visible to this pipeline, the amount of coverage by base was computed for ERCC 

spikes with various FPKM values (Figure 2.8). More than 90% of bases of the 

transcripts with FPKM ≥ 10 had at least 30x coverage, while those with FPKM = 8 

had about 60% of bases with sufficient depth to be interrogated for editing by 

this strategy. For the B cell RNA-Seq datasets, roughly the top 6600 transcripts 

have FPKM ≥ 10 and are thus well covered by the RNA editing analysis. Thus 

this combination of analysis strategy and dataset is appropriate for identifying 

editing events in moderately to highly expressed transcripts.  

Next, editing was determined for the “pre-edited” controls added during 

preparation of the library. These RNAs were derived from 5 Typanosoma brucei 

variant surface glycoprotein (VSG) genes, which had a single C-to-T mutation 

through site-directed mutagenesis. For each VSG the wild-type and “pre-edited” 

varieties were transcribed in vitro, purified, quantified, and then mixed in a 1:1 

ratio, resulting in a population of transcripts approximating a 50% editing ratio 

at a single site. These pairs were added at a range of concentrations to the B cell 

RNA following poly-A+ selection. 

Application of the described pipeline allowed detection of the editing 

event in the exogenous “pre-edited” VSG RNA with FPKM = 23, but not for the 

VSG with FPKM = 7. Therefore this more stringent measure of the limit of 

detection for editing yields a similar answer to depth of coverage alone. Both 

show that, for this pipeline and this depth of sequencing, medium- to highly-

expressed transcripts are thoroughly interrogated for editing. However, editing 

events in poorly expressed transcripts are below the limit of detection. 
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Figure 2.8. Cumulative per-base coverage depth for ERCC spike transcripts with 
various expression values (FPKM), illustrating the portion of the transcriptome 

accessible to the RNA editing analysis workflow for the AID-overexpressing 
100bp mRNA-Seq. 
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As a final validation, the pipeline was applied to RNA-Seq data for wild-

type and Apobec1-/- macrophages that had been generated for other purposes (C. 

Hamilton, unpublished data). A large number (> 40) of APOBEC1-dependent 

RNA editing events were identified by this method (Figure 2.9). Importantly, the 

reciprocal comparison was also performed; that is, the number of apparent 

editing events that were present in the Apobec1-/- sample but not in the wild-type. 

This count provides a measurement of the background noise of the technique 

(due to mismapping or genomic sequence differences). It also allows for 

computation of an implied false positive rate (IFPR), as # of events in the 

deaminase-deficient sample / # of events in the wild-type. For APOBEC1-

dependent editing in macrophages, the IFPR was 7-8%. This demonstrates that 

the pipeline is highly specific for detecting true editing events in mRNA, at least 

if the events have APOBEC1-like properties. 

 

2.2.3 No AID-dependent RNA editing events can be detected in mRNA  

With the pipeline thoroughly validated, it was then applied to the B cell 

RNA-Seq data discussed in section 2.1. This analysis revealed less than 10 

candidate editing sites in the AID–miR-155T and wild-type samples that were 

absent in the Aicda–/– sample (Figure 2.9). Approximately equal numbers of 

candidate sites were found in the reciprocal comparison, resulting in IFPRs of > 

75% for each condition. In contrast to APOBEC1, this strongly suggests that AID 

does not edit a large number of RNAs. Because the data presented is derived 

from a single sample for each genotype, estimates of the variance in apparent 

candidate editing events was not possible. However, the small number of such  



	
  47 

 

Figure 2.9. Candidate editing event counts derived from samples from AID 
overexpressing, wild-type, and Aicda-/-, B cells, and wild-type and Apobec1-/- 

macrophages, for analysis pipelines incorporating the Ensembl reference gene 
model and using no outside annotation. 
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events enabled manual inspection of these candidates to determine with greater 

certainty whether AID-dependent RNA editing was occurring in these samples. 

To determine if there was a highly specific AID-dependent RNA editing 

event that was present in the sequencing data, reads for the few candidate AID-

dependent editing events were visually inspected. In each case these events were 

adjudged to be false positives because of one of the following criteria: near-

threshold distance from non-C-to-T SNVs, C-to-T mismatches also occurring in 

the Aicda–/– sample, or complete absence of apparent editing in the AID–miR-

155T sample. Thus, the method fails to detect AID-dependent editing of 

moderately or highly expressed polyadenylated RNAs. While these results do 

not exclude the possibility of AID-dependent editing of low-expressed or non-

polyadenylated RNAs, it is highly unlikely that editing of a highly expressed 

protein-coding transcripts takes place in B cells. 

 

2.3 Assaying AID-dependent changes in DNA methylation  

Although the mRNA-Seq analyses suggest that AID does not have large 

effects in B cells beyond its known roles in SHM and CSR, they did not exclude 

the possibility of AID-dependent DNA methylation occurring in a way that does 

not dramatically alter gene expression. Because AID-dependent changes in DNA 

methylation has been an area of intense interest (Bhutani et al., 2013; 2010; 

Cortellino et al., 2011; Kumar et al., 2013; Popp et al., 2010; Rai et al., 2008; 2010; 

Sabag et al., 2014), I decided to compare the methylomes of Aicda–/–, wild-type 

and AID–miR-155T B cells to determine whether AID demethylates DNA in this 

cell type. 
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2.3.1 Generation of genome-scale methylation data by the reduced-

representation bisulfite sequencing (RRBS) method  

A number of techniques exist for generating genome-scale DNA 

methylation data (Harris et al., 2010). The most comprehensive of these is whole-

genome bisulfite sequencing (WGBS), in which genomic DNA undergoes 

bisulfite conversion (converting all cytosines to thymines, but leaving 5-

methylcytosines unchanged). The converted DNA is then sequenced and 

mapped to a reference genome. This allows the fraction of cytosines methylated 

at a given site to be calculated as the ratio of reads containing C to total number 

of reads covering that site. The advantages of this technique are its single-base 

resolution, direct and quantitative readout of methylation, and near-complete 

genomic coverage. However this superior coverage comes at a significant cost: 

because high depth is required for methylation ratios to be quantitative, it 

requires very deep sequencing per sample. For example, in a recent report the 

equivalent of 5 Illumina Hi-Seq lanes was required to achieve just 13x average 

coverage for a human sample (Heyn et al., 2012). 

To retain the advantages of bisulfite sequencing without the issues that 

come along with obtaining its extensive coverage, I chose to use reduced-

representation bisulfite sequencing (RRBS) to generate genome-scale methylation 

data (Meissner et al., 2008). This technique differs from WGBS by including 

digestion with the restriction enzyme MspI (which has restriction site C^CGG, 

and is insensitive to methylation) and size selection prior to bisulfite conversion. 

This strategy eliminates the completely uninformative reads that are frequent in 

WGBS, because each read must begin with a CpG dinucleotide. Because CpGs 

are very non-uniformly distributed in mammalian genomes (Illingworth and 
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Bird, 2009), using MspI sites as the ends of each sequencing insert has the added 

advantage of focusing sequencing on the CpG-rich, genic portion of the genome, 

as well as yielding more insert-internal CpGs, and thus more informative 

sequencing. The drawback of this focused coverage is that large CpG-poor 

portions of the genome will be entirely excluded by this technique. 

 

2.3.2 Validation and coverage analysis of RRBS data  

Genomic DNA from the same three B cell samples described in section 

2.1.1 was used to prepare RRBS libraries by a standard protocol (Gu et al., 2011a). 

Two lanes of multiplexed 50-cycle sequencing yielded 47-54 million reads per 

sample. Following removal of 3’ adapter sequence, the reads were mapped using 

the program Bismark (Krueger and Andrews, 2011). This program accounts for 

the complications of the non-complementarity of the two strands of the genome 

following bisulfite conversion and the expected incomplete conversion due to the 

presence of 5mC by first temporarily converting all C’s to T’s in the read and 

mapping against a C-to-T converted version of the genome, then doing the same 

for the G-to-A conversion, and finally reporting the best single result for each 

read. This technique resulted in 68-70% mapping efficiency for trimmed reads.  

Because 5mC is extremely rare in non-CpG contexts in B cells (Ziller et al., 

2011), the apparent level of methylation at these sites can be used to approximate 

the background error of RRBS-derived methylation measurements, which are 

due to incomplete bisulfite conversion and mismapping. All 3 samples displayed 

apparent overall methylation levels of < 1.5% for non-CpG sites, demonstrating 

that non-conversion error is not a factor in interpretation of this dataset. 
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In order to determine the extent of genomic coverage in the dataset, the 

number of informative basecalls was quantified for a number of types of 

features. This analysis demonstrated the excellent coverage of CpG islands (85% 

with ≥ 100 individual CpG measurements) and promoters (64%) (Figure 2.10). 

This coverage was achieved despite low overall genomic coverage (2% of 1 kb 

windows with ≥ 100 individual CpG measurements), demonstrating the 

efficiency of targeting achieved by RRBS. To be included in subsequent analyses 

it was required that a CpG be covered at least 10x in all 3 samples, which yielded 

nearly 950,000 sites.  

 

2.3.3 RRBS fails to detect AID-dependent differences in DNA methylation  

To determine whether AID has a gross effect on the B cell DNA 

methylome, the distribution of methylation frequency for various genomic 

features was compared for the three AID genotypes. For each genomic feature  

type analyzed (1 kb windows, individual CpGs, CpG islands and promoters), 

there was no apparent difference in DNA methylation distributions associated 

with AID expression (Figure 2.11). The mean methylation frequency for each set 

of features was highly similar for each genotype. For each feature type, the 

expected bimodal distribution of methylation was observed, with proportionally 

more 1 kb windows near-fully methylated than the other feature types.  

To assess more subtle differences in DNA methylation by AID expression, 

methylation frequencies of individual features for each pair of samples were 

compared. For each feature set analyzed, methylation frequencies between 

samples were very strongly correlated (Figure 2.12). For 1 kb windows, a Pearson 

r = 0.997-0.998 was observed for each pair; in comparison, the maximum  
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Figure 2.10. RRBS coverage of (a) 1kb genomic windows, (b) gene promoters, (c) 
CpG islands, and (d) CpG island shores for the WT sample. Promoters were 

defined as -5kb to +1kb from the TSS in Ensembl annotation, CpG islands were 
taken from the cpgIslandExt track of the UCSC table browser, and island shores 

were defined as 2kb up or downstream of a CpG island. 
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A.                B. 

 
C. 

 
 

Figure 2.11. Distribution of DNA methylation frequencies in activated B cells by 
AID expression as determined by RRBS for (a) 1 kb windows, (b) individual 
CpGs, and (c) CpG islands. Width along x-axis denotes relative frequency of 

features with given level of methylation. Black horizontal line is sample median; 
gray horizontal lines are first and third quartiles. 
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A. 

 
B. 

 
Figure 2.12. Pairwise comparisons of methylation frequency in AID-

overexpressing and Aicda–/– B cells for (a) 1 kb windows and (b) all CpGs, as 
determined by RRBS. (r = Pearson’s correlation coefficient) 
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reported r for methylation values of 1 kb windows for biological replicates of 

cells in the hematopoietic lineage is 0.997 (Bock et al., 2012). This suggests that 

any overall changes in DNA methylation attributable to AID are much smaller in 

magnitude than can be detected by this technique. 

 

2.3.4 Attempted validation of AID-dependent differentially methylated 

regions  

The high degree of correlation of methylation values between samples did 

not exclude the possibility that sampling noise could mask small numbers of true 

AID-dependent changes in methylation. To determine if this was the case, I 

sought to independently verify the largest apparent AID-dependent decreases in 

DNA methylation identified by RRBS. To this end, the Sequenom Epityper 

system was used to assay the most promising candidate regions for AID-

dependent demethylation. This technique involves bisulfite conversion of DNA 

followed by PCR amplification, in vitro transcription, base-specific RNA  

cleavage, and mass spectrometry of the resulting product. The relative masses of 

the resulting spectral products can be used to determine absolute levels of 

methylation at each cytosine in the original genomic DNA. Because it is targeted 

to a known genomic region and samples large numbers of DNA molecules in one 

measurement, it reduces the error resulting from mapping and sampling noise 

that are inherent in RRBS. 

The regions selected for analysis were those that had > 20% higher 

methylation in the Aicda–/– sample than in the wild-type as measured by RRBS 

and that also were easily accessible in terms of primer design. Randomly selected 

regions with < 10% difference in methylation between samples were also assayed 
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to validate the technique. High quality data for all 3 genotypes was obtained for 

8 apparently AID-dependent hypermethylated CpGs and 18 similarly 

methylated CpGs that were also well covered by RRBS.  

For the candidate differentially methylated CpGs, the methylation 

frequencies for the Aicda–/– sample as determined by RRBS were generally much 

higher than as determined by Epityper (Figure 2.13 A). In contrast, these 

methods gave similar values for the wild-type and AID–miR-155T samples. The 

fact that the apparent AID-dependent hypermethylated CpGs are not 

reproducible and yield uniformly lower methylation values when assayed by an 

independent technique strongly suggests that the RRBS-derived values for these 

CpGs represent overestimates of the true population mean methylation 

frequency, due to noise or an artifact of the method. Additionally, the set of 

CpGs with similar methylation values between samples by RRBS displayed 

excellent agreement in methylation frequencies as determined by the two 

methods (Figure 2.13 B), demonstrating that RRBS as performed here yields 

accurate methylation values for well-covered CpGs. Taken together, these results 

suggest that the most extremely hypermethylated CpGs in the Aicda–/– sample 

were not a result of an authentic AID-dependent process.  

 

2.3.5 AID-dependent changes in DNA methylation and mRNA abundance do 

not suggest function  

Finally, in an attempt to locate any subtle but biologically meaningful 

AID-dependent changes in DNA methylation, the fold-changes in gene 

expression by RNA-Seq were compared to the changes in promoter methylation  
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A. 

 
B. 

 
Figure 2.13 Comparison of DNA methylation frequencies as determined by RRBS 
and Epityper for a random subset of CpGs with (A) > 20% greater methylation in 

Aicda–/– than in WT and (b) CpGs with < 10% difference between Aicda–/– and 
WT. Lines are best linear fit for Aicda–/– or pooled WT and AID–miR-155T data. 

(m = slope of line of best fit) 
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for each pair of samples (Figure 2.14). Each pairwise comparison between 

genotypes showed that these variables were uncorrelated (|r| < 0.03 in all cases), 

suggesting that the observed modest differences in DNA methylation were not 

associated with changes in gene expression and therefore were unlikely to be 

physiologically relevant. As a whole, these results demonstrate that no candidate 

for consistent AID-dependent loss of methylation in B cells can be identified by 

RRBS. 

 

2.4 Assaying AID-dependent changes in miRNA abundance and sequence  

Although it appears that none of mRNA expression levels, RNA editing, 

or DNA methylation are affected by AID outside of the Ig loci, there of course 

remain other classes of nucleic acids that the previously described analyses do 

not address, such as miRNAs. Because AID has been implicated in the mutation 

of miRNA genes (Robbiani et al., 2009) as well as the editing of miRNAs 

themselves (Kobayashi et al., 2009; 2011), I sought to characterize the effects of 

AID deficiency on the miRNAome in terms of both abundance and sequence.  

 

2.4.1 Generation and mapping of miRNA-Seq data  

 In order to minimize the differences in genomic sequence between the 

samples used and maximize the AID levels in the B cell, a retroviral  

complementation strategy was used to generate material for miRNA-Seq. Aicda-/- 

B cells were stimulated in culture with LPS and IL-4 and infected with 

retroviruses to induce stable overexpression of either AID and GFP, or GFP 

alone. At 24h and 48h after infection, GFP+ cells were sorted by flow cytometry to 

yield pure populations of infected cells. These flow cytometric measurements  
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Figure 2.14 Comparison of differences in gene expression and methylation in the 

associated promoters for AID–miR-155T and Aicda–/– B cells. (r = Pearson’s 
correlation coefficient) 
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indicated that GFP was induced in both populations, and that switching to IgG1 

occurred only in the AID-overexpressing sample.  

After total RNA was extracted from the sorted B cells, miRNA-Seq 

libraries were prepared according to a standard protocol (Hafner et al., 2012). 

First, an RNA linker containing a sample-specific barcode was ligated to the 3’ 

end of all RNAs. This was followed by PAGE size selection to yield only miRNA-

sized products. Next, another RNA linker was ligated to the 5’ end, ensuring that 

only 5’-phosphorylated small RNAs would be sequenced. These species were 

then reverse transcribed, amplified by PCR, and sequenced on an Illumina HiSeq 

2000. The resulting sequencing data was first trimmed to remove adapter 

sequence and then mapped against the genome, allowing unique mappings only.  

 

2.4.2 AID has little effect on miRNA abundance  

Reads overlapping miRNA sequences as annotated in miRBase were 

counted and normalized to million reads mapped for each of the four samples. 

These counts were compared for each pair of samples. For both time points, 

miRNA abundance was well correlated between the samples, with Pearson 

correlation coefficients exceeding 0.95 in every case (Figure 2.15). While this does 

not exclude the possibility that AID may have some subtle effect on miRNA 

abundance, it suggests that any such effect is unlikely to be large enough to be 

physiologically significant.  

 

2.4.3 No AID-dependent RNA editing events can be detected in miRNA  

To determine whether AID acts as an editor of miRNAs, an RNA editing 

detection strategy similar to that used for mRNAs was employed. Briefly,  
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Figure 2.15. Abundance of small RNA-Seq reads overlapping annotated miRNAs 
that make up at least 0.1% of any sample for B cells overexpressing AID or GFP 
for 1 d or 2 d, normalized to million reads mapped. Points are colored according 

to time. 
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positions with at least 10% mismatches and at least 10x depth were identified 

and classified by type of base change. Because there is no known example of C-

to-T editing in miRNAs, the observed frequencies of each possible base change 

type were quantified to get an idea of whether AID-dependent miRNA editing 

could be widespread. However, C-to-T changes were among the least common 

base alterations observed (Figure 2.16 A). For each base change type, including 

C-to-T, the frequency observed was approximately the same for each sample. 

These likely represent sequencing error, mismapping, or other types of RNA 

editing that do not depend on AID. For instance, A-to-G alterations constitute the 

most common change observed for all samples, and are possibly the results of 

ADAR-catalyzed editing (Alon et al., 2012; Kawahara et al., 2007; Vesely et al., 

2012; Yang et al., 2005). 

To look more specifically at potential AID-dependent editing, unique 

mismatched sites were analyzed. These were defined as events that did not occur 

in the corresponding sample at the same time point while using a lower depth 

threshold. Again, C-to-T sites were among the least frequent (Figure 2.16 B). 

Only one C-to-T site for each of the AID-overexpressing samples fulfilled these 

criteria. These sites do not appear to be authentic RNA editing as they have 

insufficient depth in the GFP-only overexpressing sample to compare, and they 

occur at nearly 100%, suggesting a genomic SNV or mismapping. Thus, if AID-

catalyzed editing of miRNAs occurs, it does so at a rate that is well below the 

background of the sequencing protocol, and is therefore unlikely to be 

physiologically significant. 
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A. 

 
 

B. 

 
 

Figure 2.16. Number of (A) total and (B) unique observed mismatches for each 
base change type in aligned small RNA-Seq reads. (r = Pearson’s correlation 

coefficient)  



	
  64 

 
Chapter 3. Progress towards identification of the substrate of APOBEC2 

3.1 Motivation  

Despite the existence of a crystal structure (Prochnow et al., 2006), 

knockout mouse (Mikl et al., 2005), and its long evolutionary conservation 

(Conticello, 2004), very little is known about the biological function of the 

putative cytosine deaminase APOBEC2. While the Apobec2-/- mouse displays shift 

in muscle fiber type balance (Sato et al., 2010) and knockdown in zebrafish leads 

to muscular dystrophy (Etard et al., 2010), precisely how this is accomplished is 

unclear. More fundamentally, no deaminase activity for APOBEC2 has been 

demonstrated on any substrate, DNA or RNA. Because this problem seemed 

amenable to the genomics techniques that I had become familiar with in the 

work described in chapter 2, I decided to undertake studies with the primary 

goal of identifying the substrate of APOBEC2.  

 

3.2 Analysis of APOBEC2 activity in primary myoblasts  

I chose to use primary myoblasts differentiated in culture as a system for 

investigating the role of APOBEC2 because they fulfilled a number of key 

criteria. First, these cells are a commonly used system for recapitulating muscle 

differentiation in culture. Additionally, it had previously been demonstrated that 

APOBEC2 is induced upon differentiation in a myoblastic cell line (Vonica et al., 

2011). Because the choice of fiber-type is thought to be set before fiber formation 

(Braun and Gautel, 2011), the differentiation process seems like the mostly likely 

setting for APOBEC2 to be exerting its physiological effects. 
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3.3 Establishment and validation of the primary myoblast culture system  

Myoblasts are naturally resident in the muscles of neonatal mice, and 

protocols for their culture are well established (Danoviz and Yablonka-Reuveni, 

2011). Following thorough dissection of the leg muscles, I isolated myoblasts by 

taking advantage of their resistance to adhesion. Rounds of pre-plating on 

standard tissue culture dishes cause the contaminating fibroblasts to adhere, 

while leaving myoblasts in the supernatant. Re-plating on collagen-coated dishes 

in the presence of basic fibroblast growth factor, hepatocyte growth factor, and 

high levels of FBS (20%) allows the myoblasts to adhere and divide for periods of 

weeks. Once myoblasts grow to roughly 70% confluence, they can be induced to 

differentiate by withdrawal of growth factors and changing from 20% FBS to 5% 

horse serum.  

To determine if the cultured cells were in fact myoblasts, 

immunofluorescence microscopy was performed to detect the muscle lineage 

marker MyoD and the myotube differentiation marker MyHC. The images from 

undifferentiated cells show that nearly all cells present express MyoD, and thus 

are not contaminating fibroblasts (Figure 3.1 A). At this time point, very few cells 

express MyHC, and no cell fusion is apparent. However at 24h after serum 

withdrawal, nearly all cells express MyHC, and many fusion events are observed 

(Figure 3.1 B). By 48h after serum withdrawal, fusion has progressed to the point 

that nearly all nuclei are part of a continuous unicellular network (Figure 3.1 C). 

Unfortunately, attempts to stain for APOBEC2 using a Western-competent 

antibody failed, with similar levels of signal observed in the Apobec2-/- sample.  

To verify that APOBEC2 induction in primary myoblast system had 

similar kinetics to that previously reported for a myoblastic cell line  
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Figure 3.1 Immunofluorescence microscopy images of myoblasts at 10x 
magnification (A) prior to differentiation, (B) 24h after differentiation and (C) 48h 
after differentiation. (Hoescht in blue, MyoD in red, MyHC in green, and actin in 

grayscale) 
  

A 

C

B
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(Vonica et al., 2011), Apobec2 RNA levels were assayed over the course of 

differentiation. Two sets of wild-type myoblasts were lysed for RNA 

immediately before differentiation and for each of the next 5 days. Following 

conversion to cDNA, Apobec2 levels were measured by quantitative RT-PCR. 

This analysis revealed that Apobec2 transcript levels increase approximately 8-

fold 1 day after serum withdrawal, and remain at roughly that level throughout 

differentiation (Figure 3.2).  

To determine the kinetics of APOBEC2 protein expression in the system, 

protein lysates were harvested from both wild-type and Apobec2-/- cultures prior 

to differentiation and 1 and 2 days after. Western blotting revealed that, in 

contrast to RNA levels, protein levels of APOBEC2 are still rising at 1 day after 

differentiation, and reach high levels at 2 days after (Figure 3.3). For this reason, 

days 1 and 2 after differentiation were used as time points for subsequent 

studies. Additionally, no APOBEC2 protein could be detected in the Apobec2-/- 

samples, despite similar reductions in levels of MYOD1 and overall cell 

morphology.  

 

3.4 APOBEC2-dependent changes in gene expression  

 To identify APOBEC2-dependent changes in gene expression or RNA 

sequence that could lead to identification of a substrate, an mRNA-Seq dataset 

was generated from differentiating myoblasts. Myoblasts were prepared from a 

pair of Apobec2-/- and wild-type 10-day old littermates and grown to 70% 

confluency. RNA was harvested prior to differentiation and at 24 and 48 hours 

afterwards, and this RNA was used to prepare mRNA-Seq libraries by a protocol 

similar to that described in 2, but lacking exogenous spikes.  
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Figure 3.2. Apobec2 RNA levels after differentiation for primary myoblasts, as 
determined by quantitative RT-PCR. Values are relative to Gapdh and to 

Apobec2 levels for the undifferentiated sample. For each of the 5 timepoints, 
each measurement was taken in triplicate. Colors correspond to replicates. 
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Figure 3.3. Apobec2 and MyoD protein levels after differentiation for primary 
myoblasts, as determined by Western blot. 
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 For both the 24h and 48h pairs of samples, the correlation between the 

resulting gene expression values was very high (Figure 3.4). However in contrast 

to the results observed in the B cell mRNA-Seq, a number of genes were well-

covered and had significantly different expression levels between the samples 

(Table 3.1). Besides Apobec2 itself, this list of genes notably includes genes from 

two imprinted loci: the miRNA genes Rian and Meg3, which are derived from the 

Gtl2 locus, and Cdkn1c, which is derived from the Kcnq1 locus, were all 

upregulated approximately 2-fold in both wild-type samples. Given APOBEC2’s 

reported involvement in DNA demethylation (Rai et al., 2008; 2010) and the 

importance of DNA methylation in the regulation of imprinted genes 

(Bartolomei and Ferguson-Smith, 2011), these loci appeared to be prime 

candidates as targets of APOBEC2. 

 

3.5 APOBEC2-dependent changes in miRNA abundance  

 Because APOBEC2-dependent changes appear to be present in 2 miRNA 

primary transcripts in myoblasts, the RNA samples described in the previous 

section as well as another biological replicate similarly prepared were also used 

to prepare miRNA-Seq libraries. Quantification revealed approximately 2-fold 

increases in the wild-type samples for a large number of miRNAs derived from 

the Gtl2 locus, in concordance with the mRNA-Seq findings (Table 3.2). This 

further suggested that APOBEC2 may have a role in the regulation of the Gtl2 

locus during myoblastic differentiation. 
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A. 

 
B. 

  
 

Figure 3.4 Gene expression values for wild-type and Apobec2-/- samples at (A) 1d 
and (B) 2d after differentiation, from mRNA-Seq. Points in red are significantly 

different, as determined by Cufflinks. (r = Pearson correlation coefficient) 
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Table 3.1 Genes significantly different in myoblast for at least one comparison 
and with FPKM > 1 in at least 1 sample. (W_d1 = wild-type FPKM at 1 day post-
differentiation, K_d1 = Apobec2-/- FPKM at 1 day post-differentiation, W_d2 = 

wild-type FPKM at 2 days post-differentiation, K_d2 = Apobec2-/- FPKM at 1 day 
post-differentiation, d1_q = adjusted p-value for day 1 comparison, d2_q = 

adjusted p-value for day 2 comparison) 
 

gene W_d1 K_d1 d1_q W_d2 K_d2 d2_q 
Gm7325 379.45 353.53 1.00E+00 212.27 149.90 1.30E-03 
Cdkn1c 208.59 127.35 4.61E-05 84.76 59.23 5.86E-05 
Meg3 191.18 109.97 1.30E-01 47.65 20.62 9.75E-04 
Apobec2 107.58 0.06 0.00E+00 117.76 0.07 0.00E+00 
Rian 89.68 48.22 1.82E-06 28.62 12.84 4.61E-12 
Eif2s3y 34.44 54.52 1.00E+00 39.07 64.34 7.83E-03 
2410018M08Rik 1.05 38.13 3.25E-07 42.15 36.28 1.00E+00 
Ptprs 13.81 19.55 8.34E-01 22.18 31.76 2.67E-03 
2810453I06Rik 14.74 3.96 1.95E-06 20.39 21.32 1.00E+00 
Daam2 4.76 11.22 1.95E-09 7.26 13.76 3.07E-12 
Gm17517 11.38 0.93 0.00E+00 0.95 12.65 0.00E+00 
Rftn1 7.82 2.66 4.60E-05 12.34 6.07 5.85E-05 
Gm10269 2.85 9.39 2.13E-02 3.08 3.37 1.00E+00 
Polh 7.62 4.77 1.00E+00 8.88 4.88 3.78E-03 
Mafb 2.79 1.79 1.00E+00 7.83 4.69 5.35E-03 
Snapc1 7.29 4.31 1.00E+00 7.71 4.25 2.96E-02 
Gm17646 3.68 6.44 3.20E-03 6.52 4.02 5.46E-05 
Ifi202b 3.72 1.88 8.53E-01 6.42 3.17 3.05E-02 
Gm17492 3.36 6.18 1.99E-03 6.23 3.88 2.55E-04 
Rbpsuh-rs3 0.00 5.11 3.57E-09 3.07 0.00 1.64E-08 
Usp9x 3.64 0.00 5.95E-23 0.01 0.01 1.00E+00 
H2-Gs10 0.38 1.92 3.70E-05 0.49 0.45 1.00E+00 
Spna1 0.03 1.17 2.45E-11 0.01 0.51 1.31E-06 
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Table 3.2 miRNAs with greater than 1.5-fold average increases for the wild-type 
as compared to Apobec2-/- in both 1d and 2d samples. miRNAs derived from the 

Gtl2 locus are highlighted in yellow. 
 

name chr start end avg_fc_d1 avg_fc_d2 
Mir669l 2 10390598 10390695 2.3274 2.6468 
Mir873 4 36615543 36615619 3.0290 3.0820 
Mir592 6 27886655 27886750 1.5432 3.5210 
Mir196a-1 11 96126478 96126579 1.9639 2.5010 
Mir338 11 119876079 119876176 2.5706 2.0878 
Mir673 12 110810200 110810290 1.5325 2.0765 
Mir493 12 110818443 110818525 1.5693 2.2964 
Mir433 12 110829925 110830048 1.5672 1.7134 
Mir379 12 110947235 110947357 2.2052 1.5072 
AC121784.4 12 110948819 110948935 2.1054 1.7742 
Mir666 12 110955295 110955393 1.5174 1.5725 
Mir543 12 110955466 110955545 1.8647 2.0442 
Mir495 12 110956957 110957036 1.7691 1.6591 
Mir381 12 110965032 110965106 1.9228 1.6067 
Mir487b 12 110965543 110965624 1.5535 2.1474 
Mir154 12 110976634 110976717 2.4047 1.5996 
Mir412 12 110981499 110981578 1.6868 1.8079 
Mir369 12 110981628 110981706 1.7411 1.8111 
Mir410 12 110981925 110982005 1.7402 1.5189 
Mir203 12 113369091 113369166 1.5883 2.2689 
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3.6 Methylation analysis of candidate imprinted loci  

 The APOBEC2-dependent changes in transcript and miRNAs levels 

derived from the Kcnq1 and Gtl2 loci suggested that APOBEC2 might regulate 

these imprinted loci via DNA demethylation. To investigate this further, the 

methylation status of the imprinted control regions (ICRs) of these loci was 

assayed by targeted bisulfite sequencing using genomic DNA from the same 

myoblast samples. Following bisulfite conversion of the DNA from the 

undifferentiated and d1-differentiated samples, amplified products from the 

ICRs were subcloned into a sequencing vector and at least 10 clones were 

sequenced from each sample for each amplicon. 

 For the only amplicon tested for Kcnq1 and for 3 of the 5 amplicons tested 

for Gtl2, there were no differences between the samples. For the remaining 2 Gtl2 

amplicons, methylation was consistently 20-30% higher in the wild-type than in 

the Apobec2-/- sample (Figure 3.5). This was not the expected result, as 

methylation of this ICR has previously been shown to be inhibitory to expression 

of Meg3 and Rian (Ferguson-Smith, 2011). To determine whether this difference 

was due to APOBEC2, the undifferentiated samples of each genotype were also 

sequenced. This revealed that there was almost no change in methylation over 

the course of differentiation, and thus the observed differences were not 

APOBEC2-dependent. It is possible that the observed differences in methylation 

were due to heterogeneity in preparation of the myoblasts or strain differences in 

the mice used.  
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A. 

 

B. 

 

Figure 3.5 Methylation levels for 2 regions of the Gtl2 ICR, for wild-type and 
Apobec2-/- samples prior to differentiation and 1 day post-induction. Each column 

represents a single CpG within the amplicon. 
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3.7 No APOBEC2-dependent editing is apparent in cultured myoblast 

mRNA  

To check whether APOBEC2-dependent RNA editing was occurring in the 

differentiating myoblasts, an RNA editing detection pipeline similar to that 

described in chapter 2 was applied to the mRNA-Seq data. Again, subject to 

cutoffs for minimum coverage depth and percentage apparent editing, C-to-T 

changes that were present in the wild-type but not the Apobec2-/- sample were 

identified. In this case another filter was added, in which reads overlapping 

candidate editing sites were realigned with the program BLAT (Kent, 2002) and 

then the fraction of mismatches at the site recounted. This strategy has been 

previously shown to reduce false positives that are the result of mismapping 

(Peng et al., 2012). While VSG spikes were not used in the preparation of this 

library, the numbers of aligned reads were similar to those in the B cell samples, 

so a similar portion of the transcriptome was likely covered.  

Application of the pipeline to the 1d-differentiated sequencing data 

resulted in a greater number of apparent candidate editing events (81) in the 

Apobec2-/- sample as in the wild-type sample (59), for an IFPR of > 100%. This 

strongly suggests that APOBEC2-dependent RNA editing, if it occurs, does not 

occur at a high frequency. To determine whether such editing occurs at all, the 

supporting RNA-Seq reads for each of the candidate editing events were visually 

inspected. All but two were rejected because of distance to a non-C-to-T SNV or 

distance from a splice junction. To determine whether these two candidate 

events were in fact true RNA editing, the sequences were amplified from the 

genomic DNA of the wild-type myoblasts by PCR and analyzed by Sanger 

sequencing. These sequences revealed that the mismatches were a result of 
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heterozygous SNVs at the sites in question in the wild-type sample. Thus, no 

candidate APOBEC2-dependent RNA editing events could be identified in the 

myoblast-derived mRNA-Seq data. 

Because miRNA-Seq data was also available, a similar comparison was 

made to check for APOBEC2-dependent editing in small RNAs. Although for 

some samples more unique C-to-T events were apparent in the wild-type sample, 

these were not consistent between replicates and appeared to be artifactual upon 

visual inspection (Table 3.3). 

 

3.8 Analysis of APOBEC2 RNA editing activity in adult murine muscle  

Experiments in the myoblast system failed to reveal a function for 

APOBEC2. Plausible issues with the myoblast experiments include the facts that 

the system is not physiological, or that APOBEC2 may act later than the 

induction of differentiation. Alternatively, the issue may have been with the 

experimental techniques and not the system itself. Examples of functions that 

could have been missed by the techniques used include editing of a long non-

coding RNA, editing of a low-expressed RNA, or a scaffold role for APOBEC2 in 

a complex that does not make use of its putative catalytic activity. 

 In order to comprehensively characterize any possible APOBEC2-

dependent RNA editing in physiological settings, directional, ribo-minus 

mRNA-Seq libraries were prepared from muscles from a pair of wild-type and 

Apobec2-/- adults. The three muscles used were chosen because they are classic 

examples of the easily accessible muscle types: the heart (cardiac), the extensor 

digitorum longus (fast-twitch skeletal), and the soleus (slow-twitch skeletal). The 

directional and ribo-minus library preparation conditions were chosen to  
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Table 3.3 Counts of apparent unique C-to-T SNVs (candidate editing events) in 
miRNA-Seq from wild-type and Apobec2-/- myoblasts. (IFPR = implied false 

positive rate) 
 

Comparison WT sites Apo2-/- sites IFPR 
d0 replicate 1 15 15 100% 
d0 replicate 2 15 15 100% 
d1 replicate 1 12 7 58% 
d1 replicate 2 15 14 93% 
d2 replicate 1 18 18 100% 
d2 replicate 2 24 6 25% 
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decrease the noise in identifying editing events due to incomplete annotations 

and to analyze non-polyadenlyated RNAs, respectively. 

Application of a similar RNA editing detection pipeline to that used on 

the myoblast samples again failed to identify any RNA editing events. No 

candidate events were identified in the wild-type soleus or EDL (as well as in the 

Apobec2-/- reciprocal comparison). For the heart, 59 candidate events were found 

in the wild-type compared to only 19 for the Apobec2-/- sample. While the counts 

alone were consistent with the existence of APOBEC2-dependent editing, nearly 

all of the events were located in regions of apparent non-isogenicity. The few that 

were from other genomic locations were found to be the result of mismapping 

upon visual inspection of the supporting reads. 
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Chapter 4. Investigation of 5-methylcytosine content of T. brucei DNA 

4.1 Motivation and preliminary findings  

 While DNA 5-cytosine methylation is best known as a silencing 

modification in mammals, the mark is used for a wide variety of other purposes 

in other organisms. For example, it is involved in regulating life cycle stages in a 

parasitic worm (Gao et al., 2012), in marking DNA for degradation in a ciliated 

protist (Bracht et al., 2012), and in setting caste identity in the honeybee (Elango 

et al., 2009; Wang et al., 2006). 

 In the unicellular eukaryotic parasite Trypanosoma brucei, 5-cytosine 

methylation is present in nuclear DNA, albeit at a lower level than in mammals 

(Militello et al., 2008). However its function in this organism, as well as the 

pattern of methylation within its genomic DNA, are unknown. As part of a study 

focused on another epigenetic mark in T. brucei, a colleague, Hee-sook Kim, had 

previously generated strains deficient in each of the 3 closest homologues of 

known 5-cytosine methyltransferase enzymes (henceforth CMT1, CMT2, and 

CMT3). Although none of the mutants displayed decreased methylation in bulk 

as assayed by dot blot, this experiment verified that 5-methylcytosine was 

present in DNA at levels well above background. Because of my interest in 

cytosine methylation, I decided to undertake whole-genome bisulfite sequencing 

of T. brucei with the goal of producing the first map of methylation in this 

organism and generating hypotheses for its function. 
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4.2 Identification of candidate methylated sites by whole-genome bisulfite 

sequencing  

Because the genome of T. brucei is small (25 Mb), whole-genome bisulfite 

sequencing was the obvious choice for assaying methylation. To determine 

whether whole-genome bisulfite sequencing was possible for the T. brucei 

genome, as well as to validate the alignment strategy, simulated bisulfite-

converted reads were generated from a standard genome (427 strain) and then 

aligned back with Bismark. This resulted in 77.6% of simulated 50bp reads 

aligning uniquely, with only 15.6% of sites left completely uncovered. This was 

taken as evidence that the T. brucei genome was sufficiently complex to allow for 

efficient mapping of 50bp bisulfite-converted reads. 

 Libraries were prepared from wild-type genomic DNA from both the 

bloodstream form (BF) and procyclic form (PF) of wild-type 427-strain T. brucei, 

and the BF of CMT1-/- and CMT2 and CMT3 knockdown strains. Although none 

of the mutants had displayed decreased methylation in bulk, libraries were still 

prepared from both in case either was responsible for methylation of a particular 

subset of cytosines, as is the case in Arabidopsis (Lister et al., 2008). As a control 

for library preparation and mapping, an unconverted wild-type BF sample was 

run in parallel. 

Unmethylated lambda phage DNA was added to the genomic DNA prior 

to library preparation to serve as a positive control for bisulfite conversion. 

Genomic DNA was fragmented by sonication, repaired, ligated to sequencing 

adapters, bisulfite converted twice, and amplified by PCR. 

Once the sequencing data was in hand, test alignments were performed to 

determine the optimal genome configuration in terms of maximum number of 
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reads aligning uniquely. The BF sample was mapped to each permutation of the 

927-strain genome (for which genomic sequence is more complete, but belonging 

to a related strain and thus containing a number of sequence differences) or 427-

strain (which is less complete but corresponds to the genomic DNA actually used 

here) with or without a supplementary file containing known VSGs and 

repetitive elements. While all 4 of these options performed acceptably well, the 

best performing was 427 with VSGs, which yielded 43.4% of reads aligning 

uniquely. While this is much lower than the mapping efficiency for the simulated 

reads (77.6%), this is expected due to the repetitive sequences, and polymerase 

and sequencing errors that the simulation does not account for. 

After aligning all of the reads to the 427+VSG genome, apparent 

methylation levels were checked for the phage genome to verify that bisulfite 

conversion proceeded efficiently. For the converted libraries, the fraction of 

phage cytosines uncoverted ranged from 0.1-0.6%, while for the unconverted 

library it was 99.8%. Thus the background error due to incomplete bisulfite 

conversion, mismapping, and incorrect demultiplexing is less than 0.6%. 

Genomic coverage was then visually inspected with IGV. This revealed 

that for the bisulfite converted libraries coverage was “lumpy,” with sharp peaks 

as well as large stretches of zero coverage present. In contrast, the unconverted 

control displayed much more uniform coverage. Quantification of the 

theoretically mappable but uncovered (“anomalously uncovered”) regions of the 

genome revealed that it was much higher for the bisulfite-converted samples 

(13.7-13.9%) than for the uncoverted sample (2.1%) as well as the ideal Poisson-

distributed case (<0.1%). Comparison of the anomalously unmapped regions for 

the BF and PF samples revealed that they frequently overlapped (61% overlap 
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observed, with 14% expected if these bases were randomly distributed). 

Additionally, these anomalously uncovered regions had significantly lower CG-

content than covered regions (41.7%, compared to 47.4% for covered regions). 

Taken together, this suggests that the coverage pattern displayed in the bisulfite 

converted samples was a result of the properties of the bisulfite converted 

sequences themselves, perhaps as a result of preferential amplification of CG-rich 

sequences, and not a failure of the mapping strategy or insufficient number of 

raw seqeunces. This shortcoming could likely be fixed in the future by use of a 

PCR-free library preparation strategy. 

Bulk-level analysis of the methylation levels was then performed on the 

mapped reads. For each of the bisulfite-converted samples, the apparent 5mC/C 

ratio was 0.2-0.4%. These values are well within the range of background, and 

are much lower than was expected based on the initial 5mC dotblots.  

Despite the imperfect coverage and the surprisingly low levels of overall 

cytosine methylation, the sequencing data were analyzed to identify methylated 

cytosines. For each site, the binomial test was performed with the probability of 

success equal to the background uncovered percentage for that sample as 

determined by analysis of the unmethylated phage control. The resulting p 

values were then adjusted with the Benjamini-Hochberg method, and sites with 

q values < 0.05 considered candidate methylated sites. These candidate sites 

were few in number and were mostly derived from a few discrete genomic 

locations (Table 4.1). Visual inspection of the candidates revealed that most of 

these locations displayed hallmarks of mismapping, such as non-bisulfite-type 

mismatches nearby, or all of the methylation-supporting bases occurring at the  

 



	
  84 

Table 4.1. Sites with significant levels of unconverted cytosine, as determined by 
the binomial test. Values for each library are apparent percentage methylated. 

Sites in orange are located in the 177-base pair repeat. 

site BF PF CMT1 CMT2 CMT3 BF_unconv 
Tb427VSG-999904:11 5% 0% 1% 1% 3% 99% 
Tb427VSG-999904:81 4% 2% 2% 3% 5% 100% 
Tb427VSG-999904:142 14% 29% 10% 19% 0% 97% 
Tb427VSG-999904:188 5% 2% 2% 4% 5% 99% 
Tb427_01_v4:93 19% 23% 19% 19% 19% 35% 
Tb427_01_v4:623754 0% 0% 33% 0% 0% 100% 
Tb427_01_v4:1061477 29% 63% 33% 61% 67% 45% 
Tb427_01_v4:1061479 100% 100% 100% 100% 100% 100% 
Tb427_01_v4:1061485 100% 100% 100% 100% 100% 100% 
Tb427_01_v4:1061486 100% 100% 99% 100% 100% 100% 
Tb427_01_v4:1061489 100% 100% 99% 100% 100% 100% 
Tb427_01_v4:1061492 100% 100% 100% 98% 100% 100% 
Tb427_01_v4:1061495 100% 100% 100% 100% 100% 100% 
Tb427_05_v4:1470913 18% 36% 0% 50% 0% 100% 
Tb427_08_v4:26469 33% 12% 29% 31% 28% 0% 
Tb427_09_v4:2240282 25% 15% 28% 14% 9% 100% 
Tb427_09_v4:2240286 25% 15% 26% 13% 9% 100% 
Tb427_09_v4:2240416 26% 6% 23% 11% 29% 100% 
Tb427_09_v4:2240417 26% 6% 23% 11% 29% 100% 
Tb427_09_v4:2240418 26% 7% 25% 11% 25% 100% 
Tb427_09_v4:2240426 25% 13% 33% 13% 28% 100% 
Tb427_09_v4:2240429 29% 13% 38% 15% 28% 100% 
Tb427_09_v4:2240430 29% 12% 43% 17% 28% 100% 
Tb427_09_v4:2240433 31% 13% 55% 22% 25% 100% 
Tb427_09_v4:2240435 36% 13% 55% 22% 31% 100% 
Tb427_09_v4:2240436 36% 14% 55% 13% 31% 100% 
Tb427_09_v4:2240440 36% 20% 67% 25% 31% 100% 
Tb427_09_v4:2240442 31% 21% 67% 25% 31% 100% 
Tb427_09_v4:2240450 33% 18% 71% 20% 40% 100% 
Tb427_09_v4:2240451 25% 20% 67% 0% 33% 76% 
Tb427_10_v5:449 4% 0% 1% 3% 18% 0% 
Tb427_10_v5:125988 4% 9% 6% 5% 6% 100% 
Tb427_10_v5:4057088 83% 86% 83% 88% 87% 91% 
Tb427_10_v5:4057096 88% 93% 94% 91% 91% 100% 
Tb427_10_v5:4057098 67% 81% 76% 79% 82% 89% 
Tb427_11_01_v4:640 50% 54% 49% 50% 50% 58% 
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site BF PF CMT1 CMT2 CMT3 BF_unconv 
Tb427_11_01_v4:2960 16% 25% 50% 29% 19% 0% 
Tb427_11_01_v4:530862 7% 16% 25% 15% 0% 100% 
Tb427_11_01_v4:1127249 8% 11% 7% 8% 5% 100% 
Tb427_11_01_v4:4125370 5% 5% 3% 10% 3% 100% 
Tb427_11_01_v4:4633063 89% 89% 91% 87% 89% 94% 
Tb427VSG-1494:687 0% 18% 14% 36% 14% 100% 
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end of reads. The exception to this was sites within the 177-base pair repeat, an 

element found in the minichromosomes of T. brucei (Sloof et al., 1983).  

 

 4.3 Validation of candidate methylated sites by methylated DNA 

immunoprecipitation  

To determine whether the 177-base pair repeat was truly methylated, I 

attempted to validate the bisulfite result by an orthogonal technique: methylated 

DNA immunoprecipitation. In this technique, DNA is immunoprecipitated with 

an antibody specific for 5mC and target regions are compared to input or to an 

isotype control by quantitative PCR. 

Genomic DNA was sonicated to an average size of 500bp and 

immunoprecipitated with a monoclonal anti-5mC antibody or an isotype control. 

As a control, mouse tail-tip DNA was immunoprecipitated in parallel. 

Two sets of primers to specifically amplify the 177-base pair repeat along with 

two sets of primers to amplify separate well-covered areas that had no 

methylated basecalls were designed and successfully tested for specificity on the 

sonicated DNA. Mouse DNA was analyzed at known methylated (H19) and 

unmethylated (Actb) loci. These primers were used for SYBR Green real-time 

PCR on the immunoprecipitated DNA.  

 In the mouse positive control, the methylated sequence was clearly 

enriched in the IP sample, with an enrichment of about 50x relative to the 

unmethylated amplicon (Figure 4.1). There was an even more dramatic 

enrichment in comparison to the isotype control, with so little DNA 

immunoprecipitated that real-time amplification failed. However for both T. 

brucei samples, an apparent disenrichment of the 177-bp sequences was observed  
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Figure 4.1. Validation of apparently methylated sites by MeDIP-qPCR. 
Enrichment was calculated relative to known unmethylated regions and (A) 

input or (B) isotype control IP. Values are averages for 2 sets of primers each for 
177-bp repeat and unmethylated regions. (177-1 and -2 = amplicons spanning the 
177-bp repeat, NC-1 and -2 = amplicons spanning unmethylated negative control 

regions, BF = bloodstream form, PF = procyclic form, Mm = Mus musculus)  
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in the IP relative to both input and isotype control. Relative to input as well as to 

isotype IP, the 177-bp repeat sequences appeared to be at least 10-fold less 

abundant than the sequences used as negative controls. A simple lack of 

enrichment would be interpretable as a lack of methylation at the 177-base pair 

repeat, but the magnitude of the apparent disenrichment suggests that the 

situation is more complex. It is possible that the sequences used as negative 

controls contain modified bases that cross-react with the 5mC antibody.  
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Chapter 5. Discussion‡ 

5.1  Refined model of AID activity in B cells 

 The genome-wide analyses of AID-dependent changes in gene expression 

and DNA methylation allow for a reexamination of the various activities that 

have been ascribed to AID in the B cell. The most obvious of these is the 

requirement of AID for CSR, which was made apparent by the presence of 

secondary-isotype-derived productive transcripts in the AID–miR-155T and 

wild-type samples and their absence in the Aicda-/- sample. Additionally, the 

increase in secondary isotype transcript levels in the AID–miR-155T sample 

compared to wild-type reconfirms the positive correlation between AID levels 

and levels of CSR (Teng et al., 2008). As has been previously discussed (Wang et 

al., 2009), this suggests that under physiological conditions the AID system is not 

optimized for maximum CSR, and so there is likely a tradeoff between CSR and 

off-target AID activity that maintains an intermediate level of the protein. 

 The second known physiological role for AID, initiating somatic 

hypermutation (SHM), is unfortunately not amenable to the analyses described 

here. This is due to two factors: cell type and sequencing technology. Attempts to 

detect elevated levels in mismatch rate at V-segments in the wild-type and AID–

miR-155T samples failed. This was not surprising, given the low levels of SHM in 

ex vivo stimulated naïve B cells and the sequencing error rates for the Illumina 

HiSeq platform. The likely bias towards correctly mapping unmutated V(D)J-

derived reads more frequently than mutated ones would further confound any 

conversion of mRNA-Seq data into a true SHM rate. It should however be 
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possible to directly examine levels of SHM by mRNA-Seq given a system in 

which these levels are higher (for example, germinal center B cells, with a 

transgenic BCR, after immunization), and perhaps greater sequencing depth 

and/or accuracy. 

 Although the mRNA-Seq results were consistent with the known 

“classical” functions of AID, the analyses failed to detect any signs of the known 

off-target effects of AID in B cells. For the well established AID-catalyzed 

hypermutation of certain non-Ig loci (Liu et al., 2008; Pasqualucci et al., 1998; 

Shen et al., 1998; Yamane et al., 2010), this lack of evidence was not surprising. 

The challenges of using mRNA-Seq to quantify SHM would present an even 

greater problem for detecting mutation of non-Ig targets, given their much lower 

mutation rate. 

 However, it is somewhat surprising that the DNA damage caused by AID 

does not display greater effects on the transcriptome or DNA methylome. 

Despite the known broad occupancy of AID in the genome (Liu et al., 2008; 

Yamane et al., 2010) and occurrence of AID-dependent translocations (Klein et 

al., 2011; Ramiro et al., 2004; Robbiani et al., 2009), there was no clear 

upregulation or promoter demethylation of DNA repair genes in the AID-

containing samples. There are a number of non-exclusive explanations for these 

observations. First, it is likely that off-target AID-dependent damage is rare in 

absolute terms. Previous reports have estimated the frequencies of AID 

deamination of its most frequent non-Ig target at 10-4 per basepair, and at of one 

of the most common AID-catalyzed translocations at 4 x 10-7 per wild-type cell 

(Robbiani et al., 2009). While this level of damage can have clear effects at the 

organismic level over time, as in the c-myc/IgH translocation in Burkitt’s 
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lymphoma, this sort of selection-dependent effect would not be apparent in the 

naïve culture system used here. 

 Another possibility is that the repair of AID-dependent DNA damage 

does not require a large transcriptional response. The fact that AID-dependent 

abundance differences are apparent for Ig isoforms, but not for the other genes 

known to play a role in CSR such as RPA (Chaudhuri et al., 2004) and Spt5 (Pavri 

et al., 2010) indicates that this is at least partly the case. It is possible that B cells 

are primed to deal with such widespread DNA damage without requiring a 

dynamic transcriptional response. The view that B cells are at least somewhat 

primed to perform error-free DNA repair is supported by the finding that 

constitutive AID expression leads to tumors in non-B cell types (Okazaki et al., 

2003). 

 Finally, it is possible that AID-dependent damage does elicit an 

appreciable population-level transcriptional response, but in a narrower 

population than the one sequenced here. It is possible that sequencing of a more 

uniform population in terms of AID induction or cell cycle phase may reveal 

such an AID-dependent upregulation of DNA damage response genes. 

A clear limitation of the work presented here is that none of the analyses 

are direct measurements of the frequency of off-target AID activity or AID 

occupancy in the genome per se; use of a more physiological system, such as 

germinal center B cells after immunization, may be able to yield more 

quantitative answers about the frequency and consequences of off-target AID 

activity. However it is clear that for the subset of cells studied here the only 

observable transcriptional consequences of AID at the population level are at the 

Ig loci despite its ability to act at many places in the genome. 
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5.2 Reconciliation of AID activity in B cells and other systems 

Despite previous data showing AID occupancy throughout the genome 

(Yamane et al., 2010) and DNA demethylation concurrent with B cell activation 

(Shaknovich et al., 2011), no AID-dependent demethylation events were 

observed in activated B cells, even when AID is overexpressed. This is in contrast 

to observations of AID-dependent demethylation in iPS cells (Bhutani et al., 2013; 

Kumar et al., 2013), primordial germ cells (Popp et al., 2010), heterokaryons 

(Bhutani et al., 2010), neurons (Guo et al., 2011), and zebrafish embryos (Rai et 

al., 2008). Three classes of explanations are possible to explain this difference: (1) 

that AID-dependent DNA methylation is cell-type specific and does not occur in 

B cells, (2) that AID-dependent DNA methylation occurs in B cells, but was not 

detected by the assays used here, and (3) that AID-dependent DNA methylation 

does not occur at all. 

Perhaps the easiest explanation for the gap between the dramatic effects 

attributed to AID in more exotic systems and the limited changes observed in B 

cells is that the AID-dependent demethylation pathway is cell-type specific. It is 

possible that AID does not catalyze DNA demethylation at all in B cells because 

cofactors required for AID-dependent DNA demethylation are not present in B 

cells, or alternatively B cells could possess some other factor that prevents 

deleterious demethylation in the presence of AID. The latter seems more likely 

than the former, given the expression in B cells of the two alleged cofactors of 

AID required for DNA demethylation, Gadd45 and TDG (Rai et al., 2008) and the 

known deleterious effects of AID expression in other cell types (Okazaki et al., 

2003). While no candidate that could act as such a cofactor has been identified, 



	
  93 

there is precedent for altered treatment of AID-induced damage, which appears 

to be responsible for the varying error rates of repair at different loci (Liu et al., 

2008). 

There are also a number of circumstances that would lead to AID-

dependent DNA methylation that is undetectable by RRBS. For example, it is 

possible that AID-dependent DNA demethylation occurs at a subset of sites that 

are not covered by RRBS, such as CpG-poor regions of the genome. This 

possibility could be investigated by use of WGBS on the existing samples. 

Alternatively, AID-dependent demethylation in B cells could be obscured by 

rapid re-methylation, for example by DNMT1. However if this is the case, it is 

unlikely to be physiologically meaningful even if it were to be observable. 

Finally, it is possible that the differences are so small in number and magnitude 

that they are simply below the limit of detection of the RRBS technique. While it 

is clear that there is no difference in bulk levels of methylation between the 

samples, it is possible that a subset of the observed differences that are consistent 

with noise are biologically meaningful. Increased sequencing depth and 

sequencing of replicates would provide information about this possibility, but it 

is impossible to eliminate completely. 

Finally, there are reasons to doubt the existing reports of AID-dependent 

demethylation in mouse cells. One particularly concerning issue regarding 

publications that have found differences in methylation between cells from  

Aicda-/- and wild-type mice in reprogramming contexts (Kumar et al., 2013; Popp 

et al., 2010) is that they make use of an Aicda- allele that is on a C57BL/6 x CBA 

F1 background (Muramatsu et al., 2000) that has been backcrossed for many 

generations to C57BL/6. This is a concern here because the AID locus is in close 
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proximity to the locus of Nanog, a key factor in reprogramming to pluripotency. 

It is clear from both the distribution of SNVs in the mRNA-Seq data reported 

here and the observations of others (Hogenbirk et al., 2013) that the CBA-like 

region encompasses the Nanog locus. Reprogramming efficiency is known to be 

highly strain-dependent (Schnabel et al., 2012), and it is possible that the 

differences attributed to AID-deficiency were actually the result of differences 

between NanogC57BL/6 and NanogCBA. 

Furthermore, there are aspects of the reports of the AID’s influence on 

reprogramming that call their authors’ conclusions into question. Other 

laboratories have observed no effect of AID deficiency for reprogramming 

experiments using both Yamanaka factors (Habib et al., 2014) and heterokaryon 

formation (Foshay et al., 2012). While these differences do not invalidate the 

original reports, they do suggest that the effects attributed to AID are not robust.  

There are also reasons to suspect that the evidence for AID-dependent 

demethylation from lower vertebrates is not generalizable to mammals. In 

zebrafish, identical methylation phenotypes were observed when Aid, Apobec2a, 

or Apobec2b were knocked down (Rai et al., 2008). Because mammalian AID and 

APOBEC2 clearly behave very differently in terms of in vitro activity (Bransteitter 

et al., 2003; Chaudhuri et al., 2003; Dickerson et al., 2003; Mikl et al., 2005) and 

knockout phenotype (Muramatsu et al., 2000; Sato et al., 2010), it is difficult to 

imagine a situation where they would be interchangeable, as appears to be the 

case in zebrafish.  

Most significantly, the viability of the Aicda-/- mouse suggests that any 

possible role that AID plays in the regulation of DNA methylation is relatively 

modest. In contrast to the embryonic lethal phenotypes for the knockouts of bona 
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fide regulators of DNA methylation such as Dnmt1 (Li et al., 1992), Dnmt3a 

(Kaneda et al., 2004), Tet1 (Yamaguchi et al., 2013), and Tet3 (Gu et al., 2011b), 

Aicda-/- mice have no apparent defects in fertility, size, or health outside of the 

expected immune deficiencies. The similar phenotype of humans lacking AID 

(Revy et al., 2000) suggests that this is generally true of AID’s role in mammals.  

A consolidated explanation for the observations relating to AID and DNA 

demethylation would be as follows: in B cells, even though AID activity is 

widespread, AID-induced DNA damage does not lead to DNA demethylation 

because B cells possess a DNA repair system that leads to faithful transmission of 

methylation state. In reprogramming by iPS and heterokaryon formation, AID-

induced DNA damage can rarely lead to DNA demethylation due to differences 

in cofactors or available substrates. This demethylation is more likely to occur by 

deamination of nearby C and long-patch-type repair than by direct deamination 

of 5mC because of AID’s strong preference for the unmodified base (Larijani et 

al., 2005; Morgan et al., 2004; Nabel et al., 2012; Wijesinghe and Bhagwat, 2012).  

 

5.3 RNA-Seq strategies for characterizing B cell populations 

In addition to confirming a narrow role for AID action in B cells, the 

analyses presented here also demonstrate the broad capabilities of high 

throughput RNA sequencing. In addition to its standard usage as a gene 

expression assay, its utility in detecting RNA editing, CSR frequency and VH 

segment usage demonstrate its flexibility as a tool for characterizing populations 

of B cells.  

Although not performed on the data here, mRNA-Seq has the capacity to 

assay mutation rates. With improved depth, and when used on a system with 
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higher mutation rates, RNA-Seq may be a useful tool for assessing AID-

dependent mutation genome-wide. As the most comprehensive data to date 

regarding AID-catalyzed non-Ig hypermutation still only cover about a hundred 

loci (Liu et al., 2008), use of very deep RNA-Seq on B cells from immunized mice 

could lead to a much more complete picture of AID’s off-target activities. This 

same sequencing data could be useful in identifying AID-dependent 

translocations in a truly wild-type context by finding recurrent fusion-derived 

reads (Kim and Salzberg, 2011). 

 

5.4 Potential roles for APOBEC2 

 The clearest conclusion that can be drawn from the data presented here is 

that APOBEC2 is not likely to be an RNA editor. In both differentiating 

myoblasts and mature muscle tissue, no such activity could be observed. While I 

cannot exclude the possibility that it edits a very rare transcript or a common 

transcript at a very low level, it is also unlikely that such activity, should it exist, 

has physiological significance.  

While the data presented do not demonstrate a role for APOBEC2, they do 

help to clarify its possible activities. It remains possible that APOBEC2 has a 

function in DNA demethylation during muscle development. The observations 

of expression differences at known methylation-regulated genes between wild-

type and Apobec2-/- samples supports this, as do the impaired DNA 

demethylation phenotype observed in Apobec2a/b morphant zebrafish (Rai et al., 

2008). However, APOBEC2’s lack of enzymatic activity on DNA in vitro (Mikl et 

al., 2005; Nabel et al., 2012), and cytoplasmic localization (Etard et al., 2010) argue 
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against APOBEC2-mediated DNA demethylation. If APOBEC2 does function as 

a DNA demethylase in mammals, this activity must not be essential. 

 Alternatively, it is possible that mammalian APOBEC2 is not a cytidine 

deaminase at all, despite the clear conservation of its cytidine deaminase catalytic 

domain throughout evolution (Conticello, 2004). The lack of enzymatic activity in 

vitro and failure to find a substrate in vivo has led previous researchers in the 

field to suggest this possibility (Sato et al., 2010; Vonica et al., 2011), and the data 

presented here gives little reason to argue. APOBEC2 could have a structural 

function, or perhaps could catalyze deamination of a non-C substrate. Its 

enzymatic activity may also differ between species. While there is evidence that 

it serves a deamination-dependent function in lower vertebrates, it may have lost 

this activity in the mammalian lineage, which would explain the divergent 

phenotypes of APOBEC2-deficiency for zebrafish and mouse. Future studies of 

the proteins and/or nucleic acids that directly interact with APOBEC2 will likely 

be helpful in illuminating the function of the most obscure of the APOBECs. 

 

5.5 DNA cytosine methylation in T. brucei 

 The failure of whole-genome bisulfite sequencing to identify methylated 

sites in the T. brucei genome can be explained in two nonexclusive ways: that 

flaws in the experimental or analytical techniques prevented detection of 

methylation, or that this methylation does not exist.  

 One clear issue with the WGBS data described here is the poor genomic 

coverage of AT-rich regions. It is possible that all of the methylated sites in the T. 

brucei genome are located in AT-rich areas, and thus were not identified because 

they were not covered. Improved coverage could be achieved in future studies 
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by use of PCR-free library preparation protocols. Biases inherent in PCR have 

been shown to be the driving force in AT-content bias in library preparation 

(Aird et al., 2011), and PCR-free library preparation strategies have been shown 

to dramatically correct this bias (Kozarewa et al., 2009; Miura et al., 2012). 

 Even if ideally distributed coverage were attained, the ability to 

discriminate between methylated and non-methylated sites depends on the 

depth of coverage. If methylation occurs at low frequency, extremely high levels 

of coverage would be required to identify the methylated sites. While 10x 

average coverage would be more than sufficient for identification of methylated 

sites for a mammalian-like methylation landscape, it is impossible to know what 

levels of coverage are required for T. brucei without some prior knowledge of the 

distribution of methylated sites. 

Another complicating factor in the interpretation of WGBS data in T. 

brucei is the status of the genome. If methylated sites are located in regions that 

are difficult to assemble (such as repetitive sequences) or that differ between 

strains, these sites would be invisible to the strategy employed here. However, 

the extremely low frequency of C in reads that fail to map suggests that 

discordance between reference genome and genome of the sample is not the 

driving factor that prevented detection of methylation. 

 Finally, bisulfite sequencing in T. brucei is further complicated by the 

presence of beta-d-glucopyranosyloxymethyluracil, or base J, in genomic DNA. 

While there appears to be no study of the reactivity of bisulfite towards J, there is 

precedent for 5-oxidized pyrimidines forming stable adducts with bisulfite that 

are poor substrates for PCR (Huang et al., 2010). If J behaves similarly to 5hmC in 
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terms of bisulfite reactivity, coverage of J-rich regions may be impossible by 

bisulfite sequencing. 

 While there are many reasons why WGBS as deployed here could have 

failed to identify methylation, it is also possible that such methylation does not 

exist at all. The evidence that 5mC occurs in T. brucei DNA comes from two dot-

blot experiments, which both found that trypanosome genomic DNA bound anti-

5mC antibody more than Dcm- E. coli genomic DNA (Militello et al., 2008) and 

(H.-S. Kim, unpublished data). While the 5mC antibody is clearly not reactive 

towards C or any other base found in mammalian DNA, it remains possible that 

it crossreacts with some metabolite or other base found in T. brucei. It is also 

known that the antibody used is reactive towards 5mC in RNA. Although an 

RNAse A-treated control was performed with indistinguishable levels of signal, 

it is possible that the treatment conditions were insufficient to remove 

contaminating methylated RNA. 

Although no 5mC signal was observed in Dcm- E. coli DNA, it is possible 

that the differences in DNA extraction procedures or chromosome sizes between 

the E. coli and T. brucei samples led to differences in background that were 

interpreted as positive signal. One such source of background could be the 

presence of serum. Although almost none of the reads that fail to map to the T. 

brucei genome map to the B. taurus genome, if such fragments are very small they 

may have been excluded from the library preparation process. 

If it is the case that cytosine methylation is absent or very rare in T. brucei, 

it raises the question of what the identified putative CMT have as substrates. 

Because T. brucei has appreciable levels of 5mC in tRNA (Militello et al., 2014), it 

is likely that at least one of these CMTs acts on RNA. Techniques such as Aza-IP 
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(Khoddami and Cairns, 2013) could be a fruitful way to match these CMTs to 

their RNA substrates. 

 

5.6 Closing remarks 

 Although the work presented here provides a number of directions for 

future study. Perhaps the most obvious space for such work is the gap between 

AID’s apparent behavior in mouse B cells and iPS. Paired wild-type/knockout 

genome-scale methylation studies in cells undergoing reprogramming could be 

useful in assessing precisely how AID produces its methylation phenotype. In 

vitro characterization of AID from different species with respect to activity 

towards modified cytosines may also clarify the divergent phenotypes of AID 

deficiency in mammals and fish.  

 With respect to APOBEC2, the failure of pure sequencing methods to find 

a substrate suggests that looking first for interacting molecules may be a more 

fruitful approach. Mass spectrometry should allow clarification of APOBEC2’s 

interacting proteins, and ChIP or CLIP would allow identification of interacting 

nucleic acids even if they are not themselves edited. In vitro experiments using 

Apobec2 from zebrafish and mice may reveal the reason for the large difference 

in its importance between species. 

 The T. brucei results reported here suggest a clear way forward for 

characterizing this organism’s methylome: PCR-free WGBS. By solving the issue 

of uneven coverage, this technique should allow for a high-resolution map of 

DNA methylation, or make it clear that it does not exist. Once this map is 

established, the details of how methylation is regulated and what role it plays in 

T. brucei could be a rich field of study.   
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Chapter 6. Materials and methods 

6.1  Mice 

All C57BL/6 wild-type, Aicda-/- (Muramatsu et al., 2000), and AID-

miR155T (Teng et al., 2008) were used at 6-8 weeks of age for B cell experiments. 

C57BL/6 wild-type and Apobec2-/- (provided by L. Chan, Baylor College of 

Medicine) were used at 10-12 days of age for primary myoblasts. All mice were 

bred and maintained under specific pathogen-free conditions at the Rockefeller 

University Animal Care Facility and all procedures involving mice were 

approved by The Rockefeller University Institutional Animal Care and Use 

Committee. 

 

6.2  Cell culture 

6.2.1  B cells 

Mice were euthanized by cervical dislocation and spleens removed. The 

spleens were crushed with a syringe plunger in a cell strainer in a 6cm dish with 

5 mL cold 1x PBS, and the flowthrough pipetted vigorously and spun at 1500 

rpm for 4’ at 4ºC. The resulting pellet was resuspended in 1 mL 0.16M NH4Cl in 

water and incubated 5’ at RT to lyse red blood cells. This solution was underlaid 

with 1 mL FBS and spun 1500 rpm for 5’ at 4C. The resulting pellet was washed 

twice with 1x PBS with 10% FBS, resuspended in 2.5 mL PBS with 10% FBS, and 

counted with a hemocytometer. Cells were then resuspended in 90 µL PBS with 

0.5% BSA and 10ul anti-CD43 MACS beads (Miltenyi Biotec) per 107 cells. This 

mixture was incubated 15’ in refrigerator, then applied to an LS magnetic column 

(Miltenyi Biotec) that had been prewashed with 3mL 1x PBS with 0.5% BSA and 
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2mM EDTA. The column was eluted with 3.5 mL 1x PBS with 0.5% BSA and 

2mM EDTA, and the cell count in the eluent determined with a hemocytometer. 

The cells were then centrifuged and resuspended at 106 cells per mL in pre-

heated RPMI with glutamine (Gibco) supplemented with 1x Pen/strep (Life 

Technologies), 2 mM L-glutamine (Life Technologies) 10% FBS, 50 uM 2-

mercaptoethanol, 5 ng/mL IL-4 (Sigma), 1ul/mL monoclonal IgM a-CD40 

(Ebiosciences, clone HM40-3), and 25 µg/mL LPS (Sigma). The cells were 

cultured in 6-well plates at 37C and 5% CO2. Prior harvesting of nucleic acids for 

mRNA-Seq and RRBS, dead cells were removed by resuspending 107 cells in 100 

µL dead cell removal beads (Miltenyi), incubating 15’ at RT, adding 1 mL dead 

cell binding buffer, then applying to an LS column (Miltenyi) that had been 

prewashed with 3 mL dead cell binding buffer. The columns were then washed 

with 12 mL binding buffer and split into thirds for flow cytometry or lysis for 

DNA or RNA. 

 

6.2.2 Primary myoblasts 

Congenic 10-12 day-old C56BL/6 wild-type and Apobec2-/- pairs were 

euthanized by decapitation and muscles of the hind leg dissected. The muscles 

were pulped with scalpels in 1.25 mL of a collagenase/dispase solution (2.4 

U/mL dispase II [Roche], 1% collagenase B [Roche], 2.5 mM CaCl2) in a 35mm 

dish. This suspension was incubated 24’ at 37C and 5% CO2, pipetting 

thoroughly every 12’. PBS (2 mL) was added to the resulting slurry and filtered 

through a cell strainer inside of a 50 mL conical flask that had been pre-wet with 

1 mL 1x PBS. A further 7 mL PBS was used to wash the plate and strainer, and 
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the flowthrough moved to a 15 mL conical. This suspension was then pelleted 

(5’, 2000 rpm, 4C) and resuspended in 3 mL growth media (Ham’s/F10 media 

[Gibco] supplemented with 20% FBS, 2x Pen/strep [Life Technologies], 2.5 

ng/mL bFGF, 10 ng/mL HGF, and 5 ng/mL heparin sulfate [Sigma]). The cells 

were then plated onto an uncoated 60mm tissue culture dish and incubated at 

37C and 5% CO2 for 3h to allow fibroblasts to settle. The supernatant was then 

moved to a collagen-coated 60mm dish, and the replating procedure repeated the 

following day. Cells were expanded for 3 weeks and differentiated at 70% 

confluency by changing to differentiation media (DMEM [Gibco] supplemented 

with 1x Pen/strep and 5% horse serum [Gibco]). 

 

6.3 Flow cytometry 

For flow cytometric analysis of B cells, cells were pelleted (5000 rcm, 4C, 

30”), resuspended in 3 µL 7-AAD solution (BD), and incubated on ice 5’. The cells 

were then stained with 100 µL of FACS buffer (1x PBS with 1% FBS) along with 

1:200 IgG1-PE (BD) and 1:400 B220-APC (BD). The cells were incubated 5’ on ice, 

washed twice with 500 µL cold FACS buffer, and resuspended in 300 µL FACS 

buffer. For wild-type, Aicda-/-, and AID-miR155T B cells used for mRNA-Seq and 

RRBS, data was acquired on a FACSCalibur flow cytometer (BD). For 

retrovirally-complemented Aicda-/- B cells used for miRNA-Seq, data was 

acquired on a FACSAria cell sorter (BD), and singlet, 7-AAD-, B220+, GFP+ cells 

were sorted into culture tubes coated with FBS. 
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6.4 Retroviral infection 

For preparation of retroviral particles, 12 µg pCL-Eco and 12 µg pMX-GFP 

or pMX-AID-IRES-eGFP in 1.4 mL OptiMEM was mixed with 60 µL 

lipofectamine 2000 (Life Technologies) in 1.6 mL OptiMEM and incubated 20’ at 

RT. This mixture was added dropwise to a 10cm dish of 90% confluent 293T cells 

in DMEM (Gibco) with 10% FBS and 1x Pen/strep, and the cells then moved to 

an incubator. After 6h, media was changed to virus collection media (IMDM 

(Gibco) with 5% FBS and 1x Pen/strep). Media was changed and discarded at 

24h after transfection, changed and collected at 48h, and collected at 72h. The 

collected supernatant was spun 2’ at 1000 rcm to remove debris, filtered through 

a 45 um syringe filter, and stored at -80C until use. 

Aicda-/- B cells in culture for 1d were infected with retroviral supernatant 

supplemented with 8 µg /mL polybrene (1 mL retroviral supernatant per 106 

initial B cells), and spun 800 rcm, 10C, 2h. Cells were moved back to the 

incubator without changing media, and GFP expression was monitored by 

microscopy. 

 

6.5 Generation of RNA spikes 

ERCC spikes were the gift of C. Mason (MSKCC). VSG spikes were 

generated by K. Lay from pGEM-VSG constructs (contributed by G. Hovel-

Miner), and VSG* constructs, in which single C>T changes were introduced by 

mutagenesis PCR using Phusion polymerase. These constructs were linearized 

with SalI, gel-purified, and transcribed using the Mega T7 In Vitro Transcription 
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kit (Ambion). The resulting transcripts were precipitated, resuspended, and 

quantified using a Bioanalyzer RNA chip (Agilent). 

 

6.6 Generation of sequencing libraries 

6.6.1 mRNA-Seq 

For preparation of libraries from B cells and primary myoblasts, RNA was 

harvested by lysing cells in Trizol (Invitrogen) according to the manufacturer’s 

instructions, using 1 mL for 2 x 106 B cells or a 6 cm dish of myoblasts. Libraries 

were then prepared according to a protocol adapted from (Rosenberg et al., 

2011). Total RNA (10 µg) was selected twice with Sera-Mag oligo(dT) beads, and 

for the B cell libraries, ERCC (0.5 µL of 1:100 dilution per sample) and VSG spikes 

(50-300 pg/sample) were added. RNA was then chemically fragmented to a 

mode size of about 200 nt (4’ at 94C in 30 mM Mg2+), and precipitated. The 

fragmented RNA was then reverse-transcribed with Superscript III (Invitrogen) 

and random hexamer primers, and made double stranded with a mix of E. coli 

DNA polymerase I, E. coli DNA ligase, and RNAse H (all NEB). The ends of the 

double-stranded cDNA were then repaired with T4 DNA polymerase and T4 

polynucloetide kinase and adenylated with Klenow exo- (all NEB). These 

products were then ligated to Illumina TruSeq DNA adapters with T4 DNA 

Quickligase (NEB), and size-selected on a 2% agarose gel, taking fragments in the 

range 300-350 bp. These fragments were then enriched by PCR using Phusion 

DNA polymerase (NEB) for 15 cycles. Following validation using a Bioanalyzer 

Pico chip (Agilent), the libraries were sequenced (100-cycle, single-end) on an 

Illumina HiSeq 2000. 
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For preparation of libraries from muscle tissue, muscles were dissected 

and put immediately into 1.5 mL Trizol, then homogenized with a 5 mm stainless 

steel bead in a Qiagen TissueLyser LT at 50 Hz for 10’. Ribosomal RNA was 

depleted with the Ribo-Zero Gold Magnetic Human/Mouse/Rat kit (Epicentre) 

according to the manufacturer’s protocol. Directional RNA-Seq libraries were 

then prepared according to the manufacturer’s protocol using the NEBNext Ultra 

Directional RNA Library Prep Kit for Illumina, along with Illumina TruSeq DNA 

Adapter oligos, and sequenced on an Illumina HiSeq 2000 (100-cycle, single-end). 

 

6.6.2 miRNA-Seq 

Libraries were prepared by A. Mihailovic according to a published 

protocol (Hafner et al., 2012). Sequencing was performed on an Illumina HiSeq 

2000 sequencer (50-cycle, single-end). 

 

6.6.3 Reduced-representation bisulfite sequencing 

Libraries were prepared according to a protocol adapted from (Gu et al., 

2011a). DNA was harvested from 5 x 106 B cells per genotype with the DNeasy 

Blood and Tissue kit (Qiagen), according to the manufacturer’s instructions. The 

resulting genomic DNA (500 ng per sample) was digested with 2 µL MspI (NEB) 

for 18h and purified by phenol/chloroform extraction. Following end repair and 

adenylation, Illumina methylated adapter oligos were ligated to the products. 

Gel purification for products of size 200-350 bp was followed by two rounds of 

bisulfite conversion using the Qiagen Epitect kit. The resulting fragments were 
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enriched by PCR with Pfu Cx Hotstart polymerase (Agilent) and sequenced at 

low density on an Illumina HiSeq 2000 (50-cycle, single end). 

 

6.6.4 Whole genome bisulfite sequencing 

Whole genome bisulfite sequencing libraries were prepared according to a 

protocol adapted from (Johnson et al., 2012). Genomic DNA (3.2 µg per sample) 

was spiked 1:1000 with unmethylated phage DNA (Promega) and fragmented to 

an average size of 300 bp using a Covaris S2 sonicator. The fragmented DNA was 

then end-repaired, adenylated, and quantified using the Quant-iT reagents (Life 

Technologies) and a FLUOstar Omega fluorescence plate reader. Illumina TruSeq 

DNA Adapters were then ligated at a 10:1 molar ratio, and 2 rounds of bisulfite 

conversion were performed using the Qiagen Epitect kit. Resulting fragments 

were amplified with Pfu Turbo Cx Hotstart polymerase and size selected on a 2% 

agarose gel to yield fragments of size 375-475 bp. Resulting products were 

quantified with Quant-iT reagents and sequenced on an Illumina HiSeq 2000 (50 

cycle, single-end). 

 

6.7 Sequencing data analysis 

6.7.1 mRNA-Seq 

Following quality control inspection with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), reads were 

aligned to the Ensembl reference transcriptome (release 63) supplemented with 

Igh transcripts with J1-4-C and I-C junctions explicitly added for each isotype, and 

then to the NCBI37 reference genome supplemented with ERCC and VSG 
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sequences. This was done using Tophat v2.0.3 (Kim et al., 2009a) and with the 

parameters “--b2-sensitive --no-novel-juncs”. Values for gene expression were 

calculated with Cuffdiff v.2.0.2 (Trapnell et al., 2010), using the Ensembl gene set 

supplemented with Igh transcripts and a masking file with annotated 

mitochondrial genes, rRNA and tRNA genes and pseudogenes. Values for Ig 

isotype abundance were calculated by dividing the sum of the FPKM values for 

J1-4-Cx for a given isotype by the sum of the FPKM values for all J1-4-C isoforms. 

For VH segment usage analysis, all mouse Ig segments listed in IMGT 

(Lefranc et al., 2009) were first aligned to chromosome 12 with Bowtie v0.12.7 

(Langmead et al., 2009). These alignments were then curated by manually 

inspected with IGV (Robinson et al., 2011).  

 

6.7.2 miRNA-Seq 

 Adapters were removed from sequence data using the script 

fastx_barcode_splitter.pl and two bases were trimmed from the 3′ end using 

fastx_trimmer, both from the FASTX-toolkit suite 

(http://hannonlab.cshl.edu/fastx_toolkit/). Trimmed reads were aligned with 

Bowtie v0.12.7 against NCBI37 using the parameters “-l 15 -v 2 --best --strata -m 

1”. The resulting hits that overlapped with sequences annotated in miRbase 

(Kozomara and Griffiths-Jones, 2014) release 18 were then quantified using the 

tool Seqmonk 

(http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/). 
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6.7.3  RRBS 

Following quality control inspection with FastQC, adaptors were 

sequentially trimmed from raw reads by using the program TrimGalore v0.2.2 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with the 

parameters “-a AGATCGGAAGAGC”, then “-s 8 -a CGGTTCAG”, then “-s 8 

AGCAGGAA”. Trimmed reads were aligned to the mouse genome (NCBI37) 

using Bismark v0.7.4 (Krueger and Andrews, 2011) with Bowtie v0.12.7 with 

parameters “-l 20”. Initial methylation counts were found using Seqmonk, and 

statistical analyses were performed using R. Each position was used for analysis 

if it was covered at least 10x for all of the samples, and features were used if they 

contained at least 3 such positions. Features were defined using the Ensembl 

reference. Promoters were defined as -5 kb to +1 kb from the reference TSS. 

 

6.7.4 WGBS 

Reads were aligned using Bismark v0.7.7 and Bowtie v0.12.7 with the 

parameters “-q -n 1 -k 2 --best --chunkmbs 512”. A custom genome was used for 

alignment, consisting of the following sequences: Tb427 v4 for chromosomes 1-9 

and 11, Tb427 v5 for chromosome 10, a composite BES site (“chromosome 12”), a 

curated set of VSG and repetitive sequences (G. Cross), the phage strain J02459_1 

genome, the phiX174 genome used for Illumina quality control, and the Illumina 

adaptor sequences. The number of C and T basecalls at every genomic C was 

then counted using Seqmonk, and bisulfite conversion efficiency calculated as 

the percentage of apparently methylated basecalls mapping to the phage 

genome. Candidate methylated positions were then identified by applying a 
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binomial test with chance of success set at the bisulfite conversion efficiency for 

that sample (in R, with the function binom.test). The resulting p values were 

adjusted for multiple testing using the Benjamini-Hochberg method (in R, with 

the function p.adjust with method=”BH”), and sites with q<0.05 in any sample 

were taken as candidates. 

 

6.8 Epityper assays 

Primers for use in the Epityper assay were designed using the Epidesigner 

tool (www.epidesigner.com). The assays were performed by the Weill Cornell 

Medical College Epigenomics Core.  

 

6.9 Targeted bisulfite sequencing 

 Genomic DNA from primary myoblasts was bisulfite converted with the 

Qiagen Epitect kit, then amplified with Hotstar Taq polymerase (Qiagen). 

Aliquots of each reaction were electrophoresed on an agarose gel to verify 

amplification, and then cloned using the Strataclone PCR cloning kit (Agilent) 

according to the manufacturer’s protocol. The ligation reaction was transformed 

into Strataclone Solopack chemically competent E. coli (Agilent) and plated on 

LB-agarose with ampicillin and X-gal. White colonies (10 per plate) were 

sequenced with the T3 primer by Genewiz. Resulting sequences were analyzed 

using the QuMA tool (Kumaki et al., 2008). 

 

6.10 Immunofluorescence imaging 

Primary myoblasts in 35 mm dishes were fixed in PBS with 4% 

formaldehyde and blocked in PBS with 1% BSA, 1% gelatin, 5% normal goat 
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serum, and 0.1% Triton-X. Cells were then stained in blocking buffer with 1:10 

mouse monoclonal a-MyHC (clone MF-20, DSHB, supernatant) and 1:50 rabbit 

polyclonal a-MyoD (M-318, SC760, Santa Cruz). After washing 3 times with PBS, 

secondary stain was performed in blocking buffer with 1:1000 goat a-rabbit 

Alexa Fluor 546, 1:1000 goat a-mouse Alexa Fluor 488, and 1:200 phalloidin-

Alexa Fluor 657. After 3 washes, cells were incubated with 1:1000 Hoescht in 

PBS, and a cover slip was mounted using Prolong Gold (Life). Images were 

acquired using a Zeiss Wide-field fluorescence/brightfield/DIC microscope. 

 

6.11 Western blotting 

Western blotting of primary myoblasts was performed by B. Rosenberg. 

One 60mm dish per condition was rinsed in 1x PBS, trypsinized, quenched, and 

pelleted before flash-freezing and storage at -80C. These pellets were lysed in 60 

µL RIPA buffer with cOmplete mini protease inhibitor (Roche) and PMSF for 20 

minutes at 4C and centrifuged at 12 krpm for 20 minutes at 4C. Following 

quantification of the supernatant using the Bradford assay, for each of two blots 

10 µg protein was diluted 1:1 with 2x Laemmli buffer with 200 mM DTT and 

incubated for 5 minutes at 95C. These samples were then electrophoresed on a 

Criterion 12.5% Tris-HCl gel (Bio-Rad) at 150V. Following wet transfer to PVDF 

membrane (100V, 30 minutes) and blocking (PBS with 0.1% Tween and 5% milk, 

2.5 hours at 4C), the following primary incubations were performed: 1:1000 of 

polyclonal rabbit anti-APOBEC2 (gift of Alin Vonica) in PBS with 0.1% Tween 

and 5% milk overnight at 4C; 1:250 of polyclonal rabbit anti-MyoD1 (Santa Cruz, 

M-318) 1 hour at room temperature. Following 4 washes (5 minutes, PBS with 
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0.1% Tween, room temperature), secondary incubation was performed with 

RG16 anti-rabbit HRP at 1:20000 in PBS with 0.1% Tween and 1% milk for 1 hour 

at room temperature. The membrane was then washed twice in PBS and 

visualized by ECL (1 minute exposure for APOBEC2, 4 minute exposure for 

MyoD1). 

 

6.12 Methylated DNA immunoprecipitation 

Immunoprecipitation of methylated DNA was performed according to a 

protocol adapted from (Mohn et al., 2009). Genomic DNA was fragmented to an 

average size of 500 bp using a Covaris S2 sonicator, then precipitated. After 

setting aside input samples, DNA was immunoprecipitated using Dynabeads 

sheep a-mouse IgG magnetic beads and mouse monoclonal a-5mC (Eurogentec 

clone 33D3) or mouse IgG1 isotype control antibody (Cell Signaling). DNA was 

digested from the beads with proteinase K and phenol/chloroform extracted. 

Quantitative real-time PCR was then performed using Sybr Green master mix 

(Life Technologies) and an ABI 7900 thermocycler.  

 

6.13  Primer sequences 

Below are the sequences of the primers used in the experiments described. 

 

Illumina amplification primers (asterisk denotes a phosporothioate linkage): 

TS1.0: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACG*A 

TS2.0: CAAGCAGAAGACGGCATACGAGA*T 
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Targeted bisulfite sequencing primers (Gtl2 primers from (Sato et al., 2011), 

Kcnq1 primers from (Rivera et al., 2008)): 

Gtl2-1F: TGTGTTGTGGATTTAGGTTGTAGTTTA 

Gtl2-1R: TAATCCCATTCCCAATCTATAAAAATA 

Gtl2-2F: CCAAAACAAACCCAATAAATTCTAA 

Gtl2-2R: TGGTGAGTTTTGGTTAGAAAAGTGT 

Gtl2-3F: CCCCCAATAACTTATAAACCATAATACT 

Gtl2-3R: GGATGGTAGTAGATAATTTGTTGTTTGA 

Gtl2-4F: AAATCAAAATCCTTTTACCTCAACAATA 

Gtl2-4R: GGAAATAATTTTAATTGGTGATTGTTTT 

Gtl2-5F: AAATTTTGTAAGGAAAAGAATTTTTAGG 

Gtl2-5R: TTCAAAATTACTAATCAACATAAACCTC 

Kcnq1-outer-F: AGTGTTTGTTTTGAGTTTAGAT 

Kcnq1-outer-R: CCTCAAAACCACCCCTACTTC 

Kcnq1-inner-F: GATTTTTATGGTGAGGTTTTA 

Kcnq1-inner-R: CAAAACCACCCCTACTTCTAT 

 

MeDIP primers (from (Weber et al., 2005)): 

177-1 F: GCGCAGTTAACGCTATTATAC 

177-1 R: CTTTGTTGCACACATTAAACAC 

177-4 F: GTGCAACAAAGCTAATAAATGGTTC 

177-4 R: CACACTTGTATTTAATGTTGCACACTTG 

Nc-1 F: TGAAATACTTAGGGTGACGGATG 

Nc-1 R: ATCCCTCTCCTCAACACAAATC 

Nc-2 F: TGTACGTGTCTGCTCGTTTG 
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Nc-2 R: TTCGGGTGGAGTCGGAA 

H19 F: GCATGGTCCTCAAATTCTGCA 

H19 R: GCATCTGAACGCCCCAATTA 

Actb F: AGCCAACTTTACGCCTAGCGT 

Actb R: TCTCAAGATGGACCTAATACGGC 
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