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A key development for our understanding of the mechanisms that control gene 

expression has been the finding that the histones recruit proteins with effector functions 

to chromatin. This is mediated primarily by post-translational modifications that occur on 

the histone N-terminal domains (“tails”). Single or combinations of histone tail 

modifications serve as scaffolds for protein complexes controlling transcription or co-

transcriptional processes, thus impacting gene expression. Histone tail modifications are 

regulated by multiple, often overlapping pathways in the cell, and as such, present an 

important regulatory “node” through which the cell is able to integrate and respond to 

environmental signals. However, a consequence of this is that any artificial or naturally 

occurring molecule that “mimics” the histone tails has the potential to strongly impact 

gene function and the cell’s response to the environment. 

  Indeed, we were able to identify a novel pathway exploited by the influenza virus 

to directly dampen the host transcriptional response. The non-structural protein 1 (NS1) 

of the Influenza virus contains a histone H3-like sequence that is able to bind to and 

disrupt the activity of the human PAF1 transcription elongation complex (PAF1C). Loss 

of PAF1C function leads to an impaired antiviral response and increased influenza viral 

replication. Genome-wide binding analyses indicate that PAF1 is inducibly recruited to 

anti-viral and inflammatory genes during infection, and that its presence coincides with 



 
 

the recruitment of RNA polymerase II (Pol II) and the expression of target genes. 

Altogether, our findings imply that exploiting histone mimicry could be a general 

strategy for pathogens to subvert or co-opt host-processes for their own benefit. Our 

studies also strongly suggest that proper regulation of transcription elongation by PAF1C 

is an important rate-limiting step in the transcriptional response to pathogens.  
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CHAPTER 1: INTRODUCTION 

1.1 Selective Responses to Infectious Agents 

The inflammatory response represents the first line of defense against invading 

microorganisms.  This response relies on the activities of a multitude of germline 

encoded pattern recognition receptors (PRRs) that are able to detect specific pathogen-

derived macromolecules and components, commonly referred to as ‘pathogen-associated 

molecular patterns (PAMPs) (Baccala et al., 2009; Kawai and Akira, 2007). Some PRRs 

may also be involved in sensing damage-associated molecular patterns (DAMPs), which 

are endogenous indicators of cellular damage (Matzinger, 1994; Seong and Matzinger, 

2004).  

Known PRRS include the Toll-like receptors (TLRs), retinoic acid-inducible gene I 

(RIG-I)-like receptors, nucleotide oligomerization domain (NOD)-like receptors, as well 

as C-type lectin receptors(Akira et al., 2006; Kawai and Akira, 2007). Upon recognition 

of their cognate ligands, these receptors activate signaling cascades that lead to the 

activation of various sequence-specific transcription factors, including nuclear factor 

kappa-B (NF-κB) and the interferon regulatory factors (IRFs). Together, these 

transcription factors coordinate the transcriptional response against pathogens. This 

typically involves the expression of pro-inflammatory cytokines, such as interleukin-6 

(IL-6), tumor necrosis factors-alpha (TNFα) or the type I interferons (IFNα/β). In turn, 

these cytokines function to induce expression of anti-microbial genes and to recruit 

effectors cells of the innate and adaptive immune system, all in all facilitating pathogen 

clearance.   
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While the inflammatory response is critical for the clearance of pathogenic 

intruders, inappropriate induction or prolongation of the inflammatory response may 

result in damage to host tissues and threaten organism survival. As such, the cells have 

evolved numerous strategies to control both the kinetics and magnitude of the 

inflammatory response during infection. Aside from this, the cell must also develop 

strategies to defend against antagonism by pathogen-derived effector molecules. I focus 

here on regulation of the inflammatory response at the level of gene expression and the 

chromatin-based mechanisms that controls it.  

 

1.2 Overview of Chromatin Structure 

The genomes of eukaryotic cells are maintained as a stable nucleoprotein-DNA 

complex called chromatin. Chromatin is organized in a hierarchical manner, with the 

nucleosome as its fundamental repeating subunit (Kornberg, 1974; Olins and Olins, 

1974). Nucleosome bound tracts of DNA account for the first organizational level of 

chromatin and appear by electron microscopy as “beads on a string” (where nucleosomes 

are the “beads” and the intervening DNA is the “string”). Poly-nucleosome bound tracts 

of DNA can then be further folded into higher ordered structures with increasing DNA 

packing densities (Figure 1.1). Linker histones, which bear little structural resemblance to 

the core histones, are believed to facilitate compaction by mediating inter-nucleosomal 

interactions(Thomas, 1999; Vignali and Workman, 1998).  
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Figure 1.1: Overview of chromatin organization Genomes of eukaryotic cells are 
organized into chromatin, which is composed of repeating units of nucleosomes. 
Nucleosomes are connected to each other by short stretches of linker DNA, forming the 
first organizational level of chromatin (“beads-on-a-string”). Nucleosome bound tracts of 
DNA may fold in higher order structures to form condensed chromatin fibers. (Image 
adapted from Tonna et al., 2010) 
 

At the heart of chromatin, lies the nucleosome core particle. Each particle 

comprises of approximately 147 base pairs of DNA wrapped in a 1.65 super helical turns 

around an octamer of four ‘core’ histone proteins (H2A, H2B, H3 and H4)(Luger et al., 

1997). Octamers are formed from a central H3:H4 tetramer (formed from two H3:H4 

dimers) that is flanked by two H2A: H2B dimers (Davey et al., 2002; Luger et al., 1997). 

The histone proteins are relatively similar in structure, featuring a C-terminal “histone-

fold” domain as well as a short, unstructured N-terminal “tail” domain (Figure 1.2) 

(Davey et al., 2002; Luger et al., 1997). The histone fold domains of the histone proteins 
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are responsible for mediating both histone-histone as well as histone-DNA interactions, 

and form the bulk of the nucleosome core structure (Hacques et al., 1990; Luger et al., 

1997). On the other hand, the N-terminal tail domains of the histone proteins are thought 

to extrude DNA bound nucleosome core particle. These exposed N-terminal “tail” 

domains are also rich in basic residues, and are subject to a number of post-translational 

modifications (See also section 1.4) 

Packaging DNA into nucleosomes reduces DNA accessibility to cellular factors, 

and thus has the potential to hinder cellular processes dependent on DNA (including 

transcription (Huang and Bonner, 1962; Laybourn and Kadonaga, 1991; Morse, 1989; 

Orphanides and Reinberg, 2000) , replication (Kelly et al., 2010) and DNA repair 

(Fernandez-Capetillo et al., 2002)). Ability to regulate nucleosome structure, and 

functionally couple chromatin states to cellular states is thus crucial for the eukaryotic 

cell’s transcriptional response to the environment (including to infection). In the cell, 

chromatin structure is directly controlled by the activities of two classes of regulators: 

ATP-dependent chromatin-remodeling complexes and histone-modifying enzymes.  
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Figure 1.2: Structure of the nucleosome core particle and the histone proteins. A. 
Front (left panel) and side (right panel) views of the nucleosome core particle. The 
nucleosome comprises of an octamer of the four core histone proteins, H2A (Yellow), 
H2B (red), H3 (blue) and H4 (green). Octamers are formed from a central H3:H4 
tetramer (formed from two H3:H4 dimers) that is flanked by two H2A: H2B dimers. 
Approximately 147 base pairs of DNA are wrapped around the nucleosome in 1.65 
helical turns. (Images adapted from Luger, 2003) B. Linear organization of the core 
histones. The core histones are structurally similar to each other, comprising of a C-
terminal histone-fold domain, as well as an N-terminal unstructured domain (‘tail’). Each 
histone fold domain is made of 3 alpha helices (α1, α2 and α3), separated by 
loops(L1,L2). In chromatin, the histone-fold domains form the bulk of the nucleosome 
structure, whereas intrinsically disorder tail domains protrude out of the nucleosome. 
(Images adapted from Dutnall and Ramakrishnan, 1997) 
 

1.3 ATP-dependent chromatin remodeling complexes 

Chromatin remodeling complexes are multi-subunit complexes that utilize ATP 

hydrolysis to alter histone-DNA interactions. Some of these complexes may function to 

Histone fold domainN-terminal tail
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bring about the exchange or eviction of nucleosomes, while others are required for 

nucleosomal repositioning/sliding along the DNA (Mohrmann and Verrijzer, 2005). 

Ultimately, these activities change the overall accessibility of nucleosome bound DNA 

for processes like transcription and replication.  

Chromatin remodeling complexes are divided into 4 families, based on their 

ATPase subunit: SWI/SNF, ISWI, CHD/Mi-2 and Ino80 (Becker and Horz, 2002; 

Eberharter and Becker, 2004; Mohrmann and Verrijzer, 2005). These complexes display 

distinct remodeling activities, and may work to promote either activating or repressive 

chromatin environments. For instance, the ATP-utilizing chromatin assembly and 

remodeling factor (ACF) which is a member of the ISWI family, functions by generating 

regularly spaced nucleosomes across the DNA, thus restricting DNA accessibility and 

repressing DNA-dependent processes (Corona et al., 2002; Ito et al., 1999; Shogren-

Knaak et al., 2006a). On the other hand, the SWI/SNF family of complexes has been 

shown to create nucleosome free regions at the promoters and transcription start sites of 

target genes, enhancing transcription factor binding and the recruitment of the 

transcriptional machinery (Agalioti et al., 2000; Imbalzano et al., 1994; Ramirez-Carrozzi 

et al., 2009).  

 

1.4 Histone Modifications and Chromatin dynamics 

Histone modifying enzymes constitute the second major class of chromatin 

regulators. As mentioned previously, the core histone proteins are subject to multiple 

post-translational modifications. The majority of the PTMs occur in the unstructured, 

basic N-terminal tail domains. Histone modifications include lysine methylation, 
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acetylation, sumoylation and ubiquitination; arginine methylation; and serine and 

threonine phosphorylation (Figure 1.3)(Kouzarides, 2007). These modifications are 

largely regulated by two sets of enzymatic complexes: those that catalyze the addition of 

a chemical group/protein to the histone tail substrate (“writers”) and those that catalyze 

its removal (“erasers”). The activities of these enzyme complexes are typically site-

specific and many of them are found in conjunction with signaling molecules and larger 

regulatory complexes. 

 

 

Figure 1.3: Post-translational modification of the core histone proteins Important 
histone modifications include phosphorylation (ph), acetylation (ac), methylation (me) 
and ubiquitylation (ub1). Most of the known histone modifications occur on the N-
terminal unstructured domains of the histone proteins, although those occurring in the 
globular histone-fold domains (e.g. H3 at K56 and K79) have been reported to occur. 
(Images adapted from Bhaumik et al., 2007) 
 

Histone modifications may affect nucleosome and chromatin structure in three non-

mutually exclusive ways. First, modifications may change the change nucleosome charge 

density, and/or interfere with histone-DNA interactions. This could lead to the loss of 

nucleosome stability or a change in nucleosome mobility. In support of this, force 
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spectroscopy studies report that hyper-acetylated nucleosomes are less stable than hypo-

acetylated nucleosomes (Brower-Toland et al., 2005).  

Secondly, histone modification may impact inter-nucleosomal interactions and 

inhibit the formation of higher order chromatin structures. Acetylation of lysine 16 in 

histone H4 (H4K16), in particular, was found to prevent condensation of nucleosome 

arrays into chromatin fibers in vitro (Shogren-Knaak et al., 2006b; Zhou et al., 2007) . 

This could be in part explained by observations that residues 16 to 20 of the N-terminal 

tail of histone H4 interacts with two acidic-patches in the histone-fold domain in histone 

H2A of the adjacent nucleosome (Luger et al., 1997). H4K16 acetylation could function 

either to neutralize electrostatic interactions (Shogren-Knaak and Peterson, 2006) 

between H4 N-terminal tail and H2A, or to occlude H4 N-terminal tail-H2A interactions. 

Finally, the presence of specific histone modifications along with their valency, can 

be recognized or “read” by dedicated proteins through specialized protein domains 

(Ruthenburg et al., 2007b; Taverna et al., 2007). Examples of such domains include 

bromodomains that recognize histone acetyl-lysines; and PHD domains, Tudor domains 

and chromodomains that bind to methylated lysines or arginines (Table 1.1). Importantly, 

some reader proteins may also carry two or more of these domains, allowing them to 

recognize multiple modifications simultaneously(Ruthenburg et al., 2007a). Thus, single 

and combinatorial patterns of histones could have very different functional outcomes on 

chromatin, depending on the proteins that recognize them. This forms the basis of the 

‘histone code’ hypothesis (Strahl and Allis, 2000; Turner, 2000).   
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Table 1.1: Recognition modules of known histone modifications. This table lists 
examples of known chromatin associated “reader”- modules and the histone post-
translational modifications they are known to bind to. Examples of cellular proteins that 
bear these domains are also indicated. (Adpated from (Taverna et al., 2007) and (Yun et 
al., 2011) )  

 

 

1.5 Chromatin dynamics and the Inflammatory Response 

As discussed before, chromatin structure imposes obstacles on transcription. As 

such, chromatin structure and its dynamic regulation can play an important role in 

determining transcriptional activation or repression of important inflammatory genes 

Position Known Proteins
Various Rsc4, PB1, Brdt, Brd2, Brd3, Brd4
H3S10ph 14-3-3 proteins
H2AXS139 MDC1
H3K4me0 BHC80, AIRE
H3K4me3 BPTF, TAF3, RAG2, PHF8
H3K9me3 SMCX
H3R2 WDR5
H3K4me1/2/3 CHD1
H3K9me2/3 HP1
H3K23me MPP8
H3K27me2/3 PC, MPP8
H3K36me2/3 Eaf3, MSL3, MRG15
H3K4me JMJD2A, JMJD2C
H3K9me2/3 TDRD7, UHRF1
H3K79me2 53BP1
H4K20 53BP1/Crb2, PHF20
H3R17 TDRD3
H4R3 TDRD3
H4K20me1/2 PHF20L1
H3K4me1 PHF20L1
H3K9me1/2 SFMBT
H3K9me2/3 G9a/GLP

WD40

Royal 
Family

Reader Module

Ankyrin Repeats

Chromodomain

Tudor

MBT

Bromodomain
14-3-3
BRCT

PHD



10 
 

during homeostasis. A prime example of this would be chromatin-based regulation of the 

IFNβ gene, which is an important cytokine induced in most somatic cell types upon viral 

infection. Under steady state conditions, the IFNβ gene is kept repressed by the presence 

of a nucleosome directly positioned at, and obscuring the TATA box at the promoter 

(Lomvardas and Thanos, 2001). However, during stimulation, acetylation of histones H3 

at lysine 9 and lysine 14 and H4 at lysine 8 within this nucleosome (Agalioti et al., 2002) 

results in nucleosomal remodeling by the SWI/SNF complex and the recruitment of 

TFIID to the promoter (Agalioti et al., 2000; Lomvardas and Thanos, 2001; Panne et al., 

2007; Parekh and Maniatis, 1999). These activities ultimately expose the DNA to the 

cell’s transcriptional machinery, allowing for transcription of the gene to occur. 

In addition to regulation during the activation phase, the chromatin environment 

may serve to limit the overall activity of a given gene. Indeed, di-methylation of histone 

H3 at lysine 9 (H3K9me2) within nucleosomes bound to the IFNβ promoter was shown 

to correlate with its transcriptional output (Fang et al., 2012). Reduction of H3K9me2 

abundance at the IFNβ promoter, through genetic ablation or pharmacological inhibition 

of the G9a/GLP methyltransferase complex, correlated with an increased and more rapid 

expression of IFNβ during gene activation. Levels of H3K9me2 at the IFNβ promoter 

were thus suggested to be a determinant of cell-type specific differences in IFNβ 

expression (Fang et al., 2012). 

Beyond influencing transcription activation and repression, chromatin structure may 

influence the activation kinetics of different subsets of genes during the inflammatory 

response. Indeed, several groups have showed that the inducible recruitment of some 

transcription factors to their target genes upon immune stimulation is highly dependent 
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on the pre-existing chromatin state on the target gene. For example, Saccani et al. showed 

that NF-κB associates with its target genes with variable kinetics during LPS stimulation 

of macrophages (Saccani et al., 2001, 2002).  Certain genes were bound by NF-κB and 

transcribed immediately upon NF-κB translocation to the nucleus (‘primary response 

genes’), whereas others were bound and transcribed with significantly delayed kinetics 

(‘secondary response genes’)(Saccani et al., 2001). This was attributed to the presence of 

a nucleosome barrier at the secondary response genes, which could be overcome if the 

cells were pre-treated/primed with IFNγ prior to LPS stimulation.  

In support of this, a subsequent study showed that genes activated in LPS-

stimulated macrophages showed variable dependence on SWI/SNF chromatin remodeling 

complex (Ramirez-Carrozzi et al., 2009; Ramirez-Carrozzi et al., 2006). In fact, the 

majority of LPS-induced primary response genes in this study were activated in a 

SWI/SNF independent manner, whereas SWI/SNF dependence was observed for the 

secondary response genes (Ramirez-Carrozzi et al., 2009). Importantly, the differential 

dependence on SWI/SNF activity correlated strongly with nuclease accessibility at the 

promoters of target genes; Genes that were SWI/SNF dependent exhibited low nuclease 

accessibility prior to LPS stimulation, suggesting that nucleosomal organization at the 

gene was indeed important for determining the kinetics of gene activation (Ramirez-

Carrozzi et al., 2006). 

 

1.6 Pathogenic subversion/co-opting of host chromatin processes 

Given the importance of chromatin dynamics and histone modifications in the 

regulation of the immune response to pathogens, it is no wonder that many pathogens 
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have developed strategies that specifically target host chromatin processes. For instance, 

the Shigella flexneri effector protein OspF migrates to the nucleus during infection, 

where it specifically targets the ERK (extracellular signal regulated kinases) and p38 

MAPKs (mitogen-activated protein kinases) for de-phosphorylation (Arbibe et al., 2007). 

This inhibits MAPK mediated histone H3 serine 10 phosphorylation, resulting in 

inhibited transcriptional activation of the inflammatory genes and to the benefit of the 

bacteria(Arbibe et al., 2007).  

Chromatin dynamics has also been shown to play a major role in the life cycles of 

many viruses. In particular, DNA viruses, which replicate in the nucleus, must contend 

with the host-mediated chromatinization of their genomes during infection. Several DNA 

and RNA viruses thus evolved mechanisms that co-opt several host chromatin processes 

to regulate viral gene expression. For instance, during herpes simplex virus (HSV) 

infection, viral VP16 protein is required to recruit histone acetyltransferases and 

chromatin remodeling complexes to the chromatinized viral genome, allowing for the 

activation of viral genes (Herrera and Triezenberg, 2004). In the absence of VP16, 

nucleosomes assembled on the viral genome restrict DNA accessibility and repress the 

viral gene transcription (Herrera and Triezenberg, 2004).  

Viruses that integrate into the genome, such as the retroviruses have also evolved 

strategies to use host chromatin processes for their benefit. For one, heterochromatic 

silencing of integrated human immunodeficiency virus (HIV) has been suggested to 

facilitate maintenance latent reservoirs of virally infected cells in the host and evade 

immune clearance (Pierson et al., 2000). In fact, reactivation of HIV from latency 

involves chromatin remodeling and the generation of open chromatin at the integrated 
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viral genome. This is mediated by the HIV protein Trans-activator of transcription, TAT, 

which recruits histone acetyltransferases (HATs), including CBP/p300 and p/CAF (Deng 

et al., 2000; Deng et al., 2001; Kiernan et al., 1999),  to the viral promoter. 

Hyperacetylation of nucleosomes by HATs at the viral promoter facilitates chromatin 

remodeling, and the formation of a permissive chromatin environment for transcription 

(Lusic et al., 2003). Finally, TAT also recruits the positive transcription elongation 

factor-b (PTEF-b), which phosphorylates the C-terminal domain of Pol II to promote 

transcription elongation through the viral genome (Yang et al., 2005).  

 

1.7 Beyond the histone code: Other means to subvert host chromatin processes 

The specialized effector domain present in ‘readers’ recognize short amino acid 

sequences. Structural studies have also proven that the modularity of this recognition can 

be artificially modified  and that histone tail modifications do not necessarily have to be 

recognized in the context of the entire histone tail (Li et al., 2007). Rather, the histone 

tails could be envisioned as being composed of multiple overlapping short linear motifs, 

with each motif (and its modification state) functioning as a discrete unit of information 

for histone- and chromatin-bound proteins (Fischle et al., 2003).  

An interesting implication of this hypothesis is that non-histone proteins that bear 

similar motifs might be subject to the same regulation and protein-protein interactions 

afforded to the histones. This raises an interesting consideration related to host-pathogen 

interactions: Can pathogens take advantage of the histone code by supplementing their 

own proteome with histone-derived motifs?  
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Several histone-like sequences in non-histone proteins have already been well 

characterized in the recent years. One of these proteins is the methyltransferase G9a, 

which is responsible for histone H3 di-methylation at lysine 9.  G9a bears a 163-ARKT-

166 motif that strongly resembles the 7-ARKS-10 motif of its target H3 target residue 

(Figure 1.4A). Consistent with this, G9a was found to auto-methylate itself on lysine 165 

(Chin et al., 2007; Sampath et al., 2007), and this methylation was required for G9a to 

form a co-repressor complex with a separate H3K9me2 reader and chromodomain-

containing protein, HP1γ (Sampath et al., 2007).  

In addition to this, the H3-like sequence in G9a is also conserved in its homologue 

and hetero-dimerization partner GLP (Tachibana et al., 2005) (Figure 1.4A), even though 

the two proteins share relatively poor primary sequence conservation in their N-terminal 

domains. Like G9a, the H3-like sequence of GLP is subject to auto-methylation. GLP 

methylation is thought to create a binding site for another chromodomain containing 

protein M phase phosphoprotein 8, MPP8 (Chang et al., 2011). Interestingly, the 

chromodomain of MPP8 also interacts with methylated DNMT3A (a de novo DNA 

methyltransferase), which turns out to also carry a similar histone H3K9-like sequence 

that is recognized and methylated by the G9a/GLP complex (Figure 1.4A). MPP8 dimers 

binding both methylated G9a/GLP complex and methylated DNMT3A were thus 

proposed to functionally link two transcriptionally repressive events (i.e. H3K9 

methylation and DNA methylation activities) to the same complex (Figure 1.4B) (Chang 

et al., 2011).  
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Figure 1.4: Histone mimicry in G9a, GLP and DNMT3a proteins. A. Domain 
architecture and aligned sequences for mouse (m) or human (h) G9a, GLP and Dnmt3a 
proteins against histone H3. B. Model for GLP/G9a complex interactions with Dnmt3a 
through MPP8 protein. MPP8 homo-dimers bind to automethylated G9a/GLP complex 
and methylated Dnmt3a protein. This could potentially couple G9a/GLP mediated H3K9 
di-methylation with Dnmt3a mediated de novo DNA methylation. ANK: Ankyrin repeats, 
SET: Su(var)3-9, E(z) Trithorax domain; DNA Mtase: DNA methyltransferase; PWWP: 
PWWP protein interaction domain. (Images adapted from Sampath et al., 2007; Badeaux 
and Shi, 2013) 
 

1.8 Motif mimicry is prevalent amongst pathogens 

Motif mimicry is a common tactic used by pathogens to subvert or co-opt host cell 

processes (Davey et al., 2011)(see also Table 1.2). In fact, the putative histone-derived 

motifs are highly reminiscent of a class of compact, non-globular protein interaction 

interfaces known as short linear motifs (SLiMs) (Davey et al., 2012; Diella et al., 2008; 

Van Roey et al., 2013). SLiMS are found widely throughout the genome, and serve many 

regulatory functions, such as directing ligand binding, serving as sites for post-

translational modification and mediating complex assembly. Like the histone –tail motifs, 

multiple SLiMs can overlap each other, or be used in a cooperative fashion. The ability of 

hG9a 157   QPKVHRARKTMSKPGNGQPPVPE 179 
mG9a 154   QPKVHRARKTMSKPSNGQPPIPE 176 
mGLP 197   DVRVHRARKTMPKSILGLHAASK 219 
hGLP 166   DVKVHRARKTMPKSVVGLHAASK 188 
            |||:  
hH3   1   ARTKQTARKSTGGKAPRKQLATK 23 
                ||||       ||  
hDnmt3a    38      RQEPSTTARKVGRPGRKRKHPPVE    61 
mDnmt3a    35      RQEPSATARKVGRPGRKRKHPPVE    58  

 

K GLP (m: 1289aa, h: 1288aa)

K G9a (m: 1263 aa , h:1210 aa)

SETANK

SETANK

K
PWWP

DNA MTase Dnmt3a (m: 908 aa , h:912 aa)

A B
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some SLiMs to be post-translationally modified also allows them to alternate between 

different functional states that can impact downstream protein-protein interactions 

(Davey et al., 2012; Diella et al., 2008; Van Roey et al., 2013). Thus, the prevalence of 

these motifs in the regulation of cell function, coupled with their intrinsic properties, has 

made them ideal targets for pathogens(Davey et al., 2011).  

Perhaps, the most well described example of motif mimicry in pathogens would be 

within the adenovirus E1A protein(Pelka et al., 2008). The E1A protein contains a 

collection of independent protein binding motifs that allow it to interact with a diverse 

array of host proteins. These include host CtBP (co-repressor C-terminal binding protein) 

through a short PxDLS motif (where x is any amino acid) (Boyd et al., 1993; Schaeper et 

al., 1995); cell cycle regulator pRb through a LxCxE motif(Carvalho et al., 1995); BS69 

co-repressor through a PxLxP motifs(Ansieau and Leutz, 2002); and CBP/p300 through a 

FxD/ExxxL motif (O'Connor et al., 1999). E1A mediated interactions with these proteins 

allow the virus to target cell cycle- and growth related gene expression, thus enhancing 

viral replication. Further examples of viral mimicry of host derived motifs and their 

functional outcomes are displayed in Table 1.2. 

Bacteria pathogens have also been shown to mimic host short motifs, although these 

do not seem to occur to the extent as in viruses, which are obligate intracellular parasites. 

For instance, the Vibrio cholera heat labile toxin (Cholera toxin, CT) contains a C-

terminal ER rentention signal KDEL (Sixma et al., 1991). Upon entry into the ER, ER-

resident chaperones and enzymes facilitate toxin activation (Tsai et al., 2001). The 

activated toxin is then able to enhance activation of cellular adenyl cyclase, resulting in a 

cascade of events that lead to an increased excretion of chloride ions and water from the 
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affected cells (Sharp and Hynie, 1971). Production of CT is thought to facilitate host 

colonization, and may also be a mechanism for the bacterium to generate cAMP (via 

cellular adenyl cyclase) as an energy source. 

Interestingly, some viruses have developed effector proteins that hijack the 

functions of cellular motifs. An example of this occurs in the Papillomaviruses (PV). The 

PV targets several cellular proteins, including E6AP, interferon regulatory factor-3 

(IRF3), the notch co-activator MAMLI, all of which contain acidic leucine (L)-rich 

sequences comprising an LxxLL motif(Zanier et al., 2013). These interactions are 

mediated by a unique fold within the PV E6 oncoprotein, and are essential for the virus to 

suppress the host immune response and induce oncogenesis (Zanier et al., 2013). Loss of 

the LxxLL binding site in the E6 protein results in the loss of transformation and 

degradation activities of the E6 protein (Zanier et al., 2013). Altogether, these studies 

highlight the important role of motif biology in the cell, and why they represent attractive 

targets for pathogens to manipulate. 
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Table 1.2: Examples of pathogen mimicy of host-derived short motifs  
Motifs are presented in single letter amino acid code; X refers to any amino acid.‡ E1A 
Conserved region 1; †E1A conserved region 3; $: Protein C-terminus. Amino acids 
indicated within square braces can be substituted for each other at that position. Adapted 
from Davey et al., 2011 
 

Host Target Viral 
Protein Virus Motif Outcome Ref. 

AP-1 Nef HIV ExxxLL CD4 downregulation; enhanced viral 
infectivity 

Craig et al., 
1998 

Calcineurin p12 HTLV1 SPxLxLT Inhibition of NFAT-calcineurin 
interactions; Transcriptional repression 

Kim et al., 
2003 

CtBP E1A 
(CR1)‡ Adenovirus PxDLS Loss of CTBP1 acitivity; Enhanced 

transformation of cells 
Schaeper et 
al., 1995 

CtBP E1A 
(CR3)† Adenovirus RxxTG Loss of CTBP1 acitivity; Enhanced 

transformation of cells 
Bruton et al., 
2008 

Farnesyltransferase HDAg-L HDV Cxxx$ HADg-L Farnesylation; Required for viral 
biogenesis 

Glenn et al., 
1992 

HCF VP16 HSV EHxY Activation of viral immediate early genes; 
HCF-1/OCT-1/VP16 complex formation Lu et al., 1998 

JAK LMP1 EBV PxxPxP Activation of NF-KB signaling; Repression 
of host apoptotic pathways 

Gires et al., 
1999 

NEDD4 VP40 Ebola PPxY Ubiquitylation of VP40; Role in viral 
budding 

Harty et al., 
2000 

Oligosaccharyltransferase E1 HCV Nx[ST] Glycosylation of E1; Role in protein folding 
and viral entry 

Meunier et al., 
1999 

p300/CBP E1A Adenovirus FxDxxxL Enhanced expression of viral genes Ferreon et al., 
2009 

PDZ domain(s) E6 HPV x[ST]xV$ Targetted degradation of host tumor 
suppressors MAGI-I and SAP97/Dlg 

Zhang et al., 
2007 

PDZ domain(s) NS1 Influenza A 
virus x[ST]xV$ Interactions with host PDZ domains-

containing proteins 
Obenauer et 
al., 2006 

RB  E1A Adenovirus LxxLYD Displacement of E2F proteins from Rb 
Liu and 
Marmorstein, 
2007 

SIAH1 ORF45 KSHV PxAxV Degradation of ORF45; Putative role in 
viral re-activation 

Abada et al., 
2008 

TR E1A Adenovirus LxxLIxxxL Dysregulation of thyroid hormone receptor 
function 

Meng et al., 
2005 

TRADD LMP1 EBV YYD$ Activation of NF-KB signaling; Repression 
of host apoptotic pathways 

Izumi and 
Kieff, 1997 

TRAF2 LMP1 EBV PxQxT Activation of NF-KB signaling; Repression 
of host apoptotic pathways Ye et al., 1999 

Tsg101 Gag HIV PTAP Recruitment of Tsg101 to endosome; Role 
in viral budding 

Pornillos et 
al., 2002 
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1.9 Why Histone mimicry? 

There are several reasons as to why histone motif mimicry might be a particularly 

successful strategy for pathogens: 

Evolutionary plasticity 

 For one, these motifs are short, with the capacity to encode a functional interaction 

interface within three to ten amino acids (four in the case of G9a, GLP and DNMT3A 

(Chang et al., 2011; Chin et al., 2007; Sampath et al., 2007)). Generation of a functional 

motif de novo in unrelated protein is thus not likely to require more than a few mutations. 

In addition, the short sequence length also allows pathogens to utilize multiple motifs at 

any one time. For pathogens, this is an especially important consideration, given that their 

evolutionary space is constrained by their small genomes.  

Modular functionality.  

Secondly, as part of the histone protein, these motifs play especially important roles 

in regulating chromatin structure and gene expression. Incorporation of individual and/or 

combinations of such histone motifs into a pathogen-derived protein could be sufficient 

for the pathogen to gain control over entire chromatin regulatory pathways in the cell. 

Specifically, pathogens could use such motifs to inhibit host chromatin processes, or use 

these motifs to co-opt cellular machinery.  

Support for this has emerged from studies involving inhibitors (I-BET and JQ1) of a 

class of chromatin reader proteins known as the BET proteins. The BET proteins are a 

family of bromodomain containing proteins that bind to acetylated histones (particularly 

to histone H4) (Filippakopoulos et al., 2012). The BET inhibitors function as structural 

‘mimics’ of acetylated histone H4 tails and exert their effects by competing with histone 
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binding to the BET bromodomains (Filippakopoulos et al., 2010; Nicodeme et al., 2010). 

Treatment of cells with either I-BET or JQ1 was sufficient to block BET recruitment to 

and function on chromatin (Dawson et al., 2011; Filippakopoulos et al., 2010; Nicodeme 

et al., 2010). Indeed, inhibition of BET proteins by I-BET resulted in the repression of the 

transcriptional response to LPS stimulation in macrophages (Nicodeme et al., 2010).  

Mimicry is difficult to counter.  

Third, mimicry, in itself, is a particular successful survival strategy for pathogens 

against their host. Typically, pathogen-host interactions can be exemplified by a simple 

arms race where host adaptation to virus is counteracted by pathogen adaptation, and vice 

versa (Daugherty and Malik, 2012). In the case of mimicry however, the spectrum of 

potentially useful adaptations that would facilitate host escape from mimicry are limited 

by the need to maintain other host–host interactions and functions(Elde and Malik, 2009). 

In addition, host defenses against pathogenic mimicry are further confounded by the fact 

that the host must now be able to not only recognize the offending pathogen-derived 

molecule, but must similarly be able to tell it apart from itself (Elde and Malik, 2009). 

This is especially so in the case of the histone proteins. Given the vast number of 

interactions the histone tail motifs coordinate on chromatin and the crosstalk in which 

they engage in, histone tail mutations are not well tolerated. Indeed, it was recently 

shown that expression of histone H3 bearing missense mutations (lysine 27 to 

methionine, K27M) was sufficient to cause the loss of tri-methylated H3K27 throughout 

the cell, even in the presence of wild-type histone H3 protein (Lewis et al., 2013). While 

these observations do not preclude the possibility of compensatory mutations occurring in 



21 
 

histones during a host-pathogen arms race, the overall probability of that occurring is not 

likely to be high. 

 

1.10 Hypothesis  

Based on the above observations, we propose that mimicry of histone-derived 

motifs is likely to be a viable strategy by which pathogens can dysregulate host cell 

chromatin state and gene expression during infection. Specifically, pathogen histone 

mimics could exert their effects on host gene expression either by inhibiting the binding 

cellular factors from chromatin. Alternatively, pathogens might use mimicry to gain 

access to and co-opt the host chromatin processes. Understanding how pathogens can 

exploit the histone code will give insight into cellular processes, and may also be 

instrumental in developing therapeutics.  
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Cells and viruses 

A549 and Madin–Darby canine kidney (MDCK) cells were obtained from the 

American Type Culture Collection (ATCC) and were maintained in Dulbecco’s minimal 

essential medium (DMEM) (Gibco, Invitrogen) supplemented with 2mM Glutamine 

(Gibco, Invitrogen), 10% Fetal Bovine Serum (Hyclone) and penicillin-streptomycin 

(Gibco, Invitrogen). The A/Wyoming/3/2003 (H3N2), A/Puerto Rico/8/1934 (H1N1) 

viruses and the Flag-NS1 strains were propagated on MDCK cells. The A/Puerto 

Rico/8/1934(ΔNS1) (PR8/ΔNS1) virus was propagated in NS1-expressing MDCK cells. 

Vesicular stomatitis virus (VSV) (Indiana strain) was propagated in BHK cells. 

 

2.2 Virus infections 

A549 cells were plated at 5 x 105 cells per well in a 6-well plate 16-18 hours prior 

to infection. For infections, A549 cell monolayers were washed once in PBS, before 

being inoculated with 200 ul of influenza virus diluted to the appropriate MOI in 

PBS/0.3% BSA. Virus was allowed to adsorb onto the monolayer for 1 hour at 37°C, and 

plates were rocked gently every 10-15 minutes to ensure that the cell monolayer did not 

dry out. After viral incubation, the remaining virus was aspirated, and 2 ml of fresh 

growth medium was added back to the wells. Cells were then collected at various times 

post-infection for further assays. 
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2.3 Virus Growth Curves and Plaque Assays 

Confluent A549 cells were infected at a multiplicity of infection (MOI) of 0.01. 

Following infection, cells were maintained in DMEM containing 0.3% Bovine Serum 

Albumin (BSA) and 0.375 μg/ml of tosylsulfonyl phenylalanyl chloromethyl ketone 

(TPCK)-treated trypsin (Sigma). At the indicated time post infection, cell culture 

supernatants were collected. Viral titers at each time point were then quantified by plaque 

assays on MDCK cells. 

For quantification of virus, dilutions of viral stocks or culture supernatants of the 

infected cells were adsorbed for 1 hour at room temperature onto layers of confluent 

MDCK cells. The infected MDCK cells were then overlaid with a 2 ml solution of 

DMEM containing 0.3% BSA, 25mM HEPES buffer (Gibco, Invitrogen), 2mM 

Glutamine (Gibco, Invitrogen), penicillin-streptomycin (Gibco, Invitrogen), 1 μg/mL 

TPCK-trypsin and 1% agar (LP0028, Oxoid). Plates were then incubated 48 to 72 hours 

until plaques could be observed. Plaques were then fixed in a solution of 7% 

formaldehyde, before being visualized by crystal violet staining. 

 

2.4 Generation of Flag-NS1 viruses 

The NS1 and NEP open-reading frames (ORFs) on the Influenza NS segment share 

a common N-terminal sequence. As such, to attach the Flag tag specifically to NS1 

without disrupting the NEP ORF, the NS segment was modified as follows. The first 90 

nucleotides of the 3’vRNA, with all the ATG start codons deleted, served as the 3’ vRNA 

packaging signal. The endogenous splice donor site for NEP was left unchanged. The 

3’vRNA packaging signal was followed by the 3XFlag sequence 
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(MDYKDHDGDYKDHDIDYKDDDDK) and the NS1 ORF with stop codon. Two silent 

mutations in the endogenous splice acceptor site in the NS1 ORF (TTCCAGGACATA) 

were introduced to prevent splicing at this site (TTCCCGGGCATA) as described 

previously (Varble et al., 2010). The Flag-NS1 ORF was followed by a new splice 

acceptor site that corresponds to the 459-527 nucleotides of the wild type NS segment, 

and the entire NEP-ORF with ATG. In this design, the 3XFlag-NS1 and NEP are 

generated from the unspliced or spliced mRNAs, accordingly. The deletion of the hPAF1 

binding sequence was generated by introducing a stop codon after amino-acid 220 of the 

NS1 coding sequence. The modified NS segments were generated using fusion PCR and 

cloned into a pDZ vector using SapI restriction sites(Quinlivan et al., 2005). Flag-NS1 

viruses were generated using reverse genetics system (Fodor et al., 1999). The sequence 

of the NS segment in the Flag-NS1 viruses were confirmed by RT-PCR and sequencing. 

Titers of viral stocks were determined by plaque assay in MDCK cells. A schematic of 

the targeting strategy is shown in Figure 2.1.  
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Figure 2.1: Generation of Flag-tagged NS1 virus Schematic of the genomic structure 
of the NS segment of wild-type Influenza A virus (wt) and the strategy used for the 
generation of the Flag-NS1 expressing influenza viruses. Mutation of the splice acceptor 
site of the NS segment enables selective Flag-tagging of NS1. SD, SA splice donor or 
acceptor sites, respectively. 
 
 

2.5 siRNA mediated Knockdowns 

Cells were transfected using Lipofectamine™ RNAiMAX Transfection Reagent 

(Invitrogen) according to the manufacturer’s instructions. Cells were transfected with 

siRNA pools targeted to either human PAF1 (L-020349-01, Dharmacon), CHD1 (L-

008529-00, Dharmacon) or a control non-targeting pool (D-001810-10-05, Dharmacon) 

at a final siRNA concentration of 50 nM. Transfected cells were used for further assays at 
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48 hours post transfection and gene knockdown efficiency was determined by 

quantitative PCR and/or Western blotting.  

 

The sequences for the pooled human CHD1 siRNA oligonucleotides are as follows: 

CACAAGAGCUGGAGGUCUA 

GAUGAAGAUUGGCAAAUGU 

CGAUCUCAUUUCUGAAUUA 

GUACCGCUCUCCACUCUUA 

 

The sequences for the pooled human PAF1 siRNA oligonucleotides are as follows: 

GUGCCAUGGAUGCGAAAGA 

GAGUACAACUGGAACGUGA 

CUGUAGAAGAGACGUUGAA 

CCACUGAGUUCAACCGUUA 

 

2.6 Preparation of RNA-sequencing (RNA-Seq) libraries 

RNA-Seq libraries were prepared with a protocol adapted from reference 

Rosenberg et al., 2011. Briefly, total RNA was extracted from infected A549 cells at 

different time points post infection using Trizol reagent (Invitrogen). Ribosomal RNA 

was depleted using the RiboMinus™ Eukaryote Kit for RNA-Seq (Invitrogen). Prior to 

fractionation, RNA was also treated with RNase-free DNase I (Qiagen) and purified 

using the RNeasy MinElute kit (Qiagen).  
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The RNA was fractionated in fragmentation buffer (40mM Tris acetate, pH8.2, 

100mM potassium acetate and 30mM magnesium acetate) at 94 °C for 4.5 min. The 

fragmented RNA was reverse transcribed (Superscript III, Invitrogen) and then purified 

using the QIAGEN QIAquick PCR purification kit. The complementary DNA (cDNA) 

was then end-repaired using T4 DNA polymerase (NEB), DNA polymerase I, Large 

(Klenow) Fragment (NEB) and T4 PNK (NEB). End-repaired DNA was purified using 

the QIAGEN Qiaquick PCR purification kit. Klenow Fragment (NEB) was used to add 

‘A’ bases to the 3’end of the DNA fragments before being purified by the QIAGEN 

MinElute PCR purification kit. Sequencing adaptor oligonucleotides (Illumina) were 

added with T4 DNA Ligase (NEB). Double-stranded cDNA libraries were then separated 

by electrophoresis through a 2% agarose gel, and fragments ranging from approximately 

175 nt to 225 nt were excised and amplified by PCR with linker-specific primers 

(Illumina). The integrity and quality of RNA and cDNA were monitored throughout on 

the Agilent Bioanalyzer 2100. Ultra-high-throughput sequencing was performed on the 

Illumina Genome Analyzer II (GAII) by standard sequencing-by-synthesis reaction for 

36-nt reads. 

 

2.7 Immunofluorescence 

A549 cells were cultured on coverslips overnight and then infected with the virus 

strains specified. At the indicated interval post-infection, cells were fixed in 3% 

paraformaldehyde (EMS) for 10 min at room temperature. Coverslips were washed in 1x 

PBS and blocked with blocking solution (1mg/ml BSA, 3% FBS, 0.1% Triton X100 and 

1mM EDTA pH 8.0 in PBS) for 30 min at room temperature. Cells were then probed 
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with mouse monoclonal antibody against NS1 (diluted 1:300), or mouse monoclonal anti-

Flag antibody (diluted 1:300) for 1 hr and detected by Alexa 594 conjugated Goat anti-

mouse antibodies (Invitrogen). DNA was counterstained with DAPI. 

 

2.8 Gene Expression Analysis by Microarray 

Cells were infected with a virus strain that lacks NS1 (PR8/∆NS1) at MOI 1 or 

stimulated with recombinant human IFN beta 1a (IFNβ1) (11415-1, PBL Interferon 

Source). Where cells were stimulated with IFNβ1, a concentration of 500 units/mL of 

cytokine was used. For infections with wild-type H1N1 influenza virus, the A/Puerto 

Rico/8/1934 (H1N1) strain was used at MOI 3.  Infections with vesicular stomatitis virus 

(Indiana strain) were done at MOI 3. For Poly(I:C) stimulations, cells were transfected 

with Poly(I:C) at a final concentration of 2 µg/ml using the Lipofectamine2000 reagent 

(Invitrogen). Total RNA was isolated from infected, IFNβ1 stimulated or Poly(I:C) 

stimulated siRNA treated A549 cells using the RNeasy Kit (QIAGEN). 200ng of total 

RNA per sample was used to prepare biotin-labeled RNA using MessageAmp™ Premier 

RNA Amplification Kit (Applied Biosystems) and hybridized to HumanHT-12 v4 

Expression BeadChips (Illumina). Data analysis was performed using the GeneSpring 

GX11.0 software (Agilent Technologies). Raw expression values were subjected to 

quantile normalization, and baseline transformation was performed to either the median 

of control samples for fold change analyses (see below), or to the median of all samples 

for comparisons between unstimulated siRNA treated cells. 

To compare gene expression in siPAF- and control siRNA-treated cells, the 

normalized signal intensities of each microarray probe in the stimulated (infected or 
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IFNβ1 stimulated) samples was paired with and subject to baseline transformation against 

that of the corresponding un-stimulated sample that had been subject to the same siRNA 

treatment. An analysis of variance test (ANOVA) (p < 0.001), followed by a post hoc 

(TUKEY HSD) test and the indicated fold change cut offs were applied to identify probe-

sets that showed statistically significant differences in expression upon stimulation for 

each siRNA treatment. Stimulation induced genes were defined as genes that are induced 

≥2 fold (p <0.001) in virus infected cells compared to un-stimulated cells in at least one 

siRNA treatment. hPAF1 dependent genes in virally infected  and Poly(I:C) stimulated 

cells were defined as genes in which siPAF treatment induced a lower or greater (≥ 2 

fold, p <0.001) magnitude of response compared to siCtrl treated cells upon stimulation. 

hPAF1-dependent genes in IFNβ1-stimulated cells were defined as genes in which siPAF 

treatment induced a lower or greater (≥ 1.5 fold, p <0.001) magnitude of response 

compared to siCtrl-treated cells upon stimulation. All p-value computations were 

subjected to multiple testing correction using the Benjamini Hochberg method.  

For microarray analyses on the kinetic experiments with siPAF1 treated cells, the 

cells were infected with PR8/∆NS1 at MOI 3. Total RNA was isolated used for 

microarray as described before. For the analysis, raw expression values were subjected to 

quantile normalization, and baseline transformation was performed to the median of all 

samples. Samples were compared via T-tests, since we did not include non-siRNA treated 

cells in these experiments. Entities that displayed  > 2 fold change in expression (p<0.01) 

were subjected to further analyses. 

Hierarchical clustering (Eisen et al., 1998) of data was performed and visualized 

using the Cluster and Treeview software (http://www.eisenlab.org/eisen/). Genes that are 
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represented by multiple probesets on the microarray are depicted by the average of those 

probesets in the heatmaps generated. 

Functional analyses were conducted through the use of Ingenuity Pathways 

Analysis (Ingenuity® Systems, www.ingenuity.com). The Functional Analysis identified 

the biological functions that were most significant to gene lists generated from the 

microarray. Right-tailed Fisher’s exact test was used to calculate a p-value determining 

the probability that each biological function assigned to that data set is due to chance 

alone. 

 

2.9 Quantitative Real-Time PCR (qPCR) 

Total RNA from stimulated cells was extracted using the RNeasy kit (QIAGEN) 

according to the manufacturer’s instructions. RNA was DNase treated using the RNase 

free DNase kit (QIAGEN) and cDNA was synthesized using the First strand cDNA 

synthesis kit (Roche). qPCR was performed using SYBR green (Roche) or the 

LightCycler 480 Probes Master mix (Roche). The sequences of primers used are shown 

in Table 2.1. 

 

 

 

 

 

 

 

http://www.ingenuity.com/
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Table 2.1: List of Primers used in this study. Listed are primers that have been used in 
this study. Hs: Homo sapiens; F: Forward primer; R: Reverse primer 

 

Target Primer name Sequence Use
H3N2_NP F CCCAGGAAATGCTGAGATCG
H3N2_NP R GTCGTACCCACTGGATACTG
H3N2_NS1 F TGGAAGGACCTCTTTGCATCA
H3N2_NS1 R TCTTCGGTGAAAGCCCTTAGT
PR8_PB2 F AGAGACGAACAGTCGATTGCCG
PR8_PB2 R ATCGCTGATTCGCCCTATTGAC
PR8_NP F TATTGAGAGGGTCGGTTGCTCACA
PR8_NP R ACCAGTTGACTCTTGTGTGCTGGA
PR8_M1 F GTGGCATTTGGCCTGGTA
PR8_M1 R ATAGCCTTAGCTGTAGTGCTGG
PR8_M2 F TAACCGAGGTCGAAACGCCTA
PR8_M2 R GCCCTCCTTTCAGTCCGTATTT

Universal primer 
(Influenza A) Uni-12

AGCAAAAGCAGG Reverse 
Transcription

hs_HPRT1 F TGAGGATTTGGAAAGGGTGT
hs_HPRT1 R ACAGTCATAGGAATGGATCT
hs_PAF1 F CAATTCCCACCGGACTCTG
hs_PAF1 R GTTTGTGCTGTTTCTCCAAGG
hs_IFNB1 F CAGTCTGCACCTGAAAAGATATTATG
hs_IFNB1 R GATTTCCACTCTGACTATGGTCCAGG
hs_CCL5 F AAGCTCCTCTGAGGGGTTGA
hs_CCL5 R TTGCCAGGGCTCTGTGACCA
hs_IFIT1 F TCCAGGGCTTCATTCATAT
hs_IFIT1 R TTCGGAGAAAGGCATTAGA
hs_IFIT2 F AGGCTTTGCATGTCTTGG
hs_IFIT2 R GAGTCTTCATCTGCTTGTTGC
hs_OAS1 F GATCTCAGAAATACCCCAGCCA
hs_OAS1 R AGCTACCTCGGAAGCACCTT
hs_ISG15 F ACTCATCTTTGCCAGTACAGG
hs_ISG15 R CAGCTCTGACACCGACATG
hs_MX1 F GTTTCCGAAGTGGACATCGCA
hs_MX1 R GAAGGGCAAGTCCTGACACT
hs_IFIT1_prom F CAGCTTACACCATTGGCTGCTGTT
hs_IFIT1_prom R GGTTGCTGTAAATTAGGCAGCCGT
hs_IFIT1_TES F TTGGCTGACTTCACCTAGCTCACT
hs_IFIT2_TES R CAAAGGACATAGAGGCACCCTGT
hs_IFI6_prom F TGATGCCCACACTTCATAGCTCCT
hs_IFI6_prom R TTTACTCGCTGCTGTGCCCATC
hs_IFI6_TES F TGCTTGGGTTGTCTTCTCCTTCCT
hs_IFI6_TES R AAGAAGCGCTAGTGATCACCCTCA

Targets Company Catalog Number Format
Hs HPRT1 Applied Biosystems 4333768F Taqman Probe
Hs ISG15 Applied Biosystems Hs00192713_m1 Taqman Probe
Hs IFNB1 Applied Biosystems Hs02621180_s1 Taqman Probe
Hs DDX58 Applied Biosystems Hs00204833_m1 Taqman Probe
Hs CHD1 Applied Biosystems Hs00154405_m1 Taqman Probe
Hs PAF1 Invitrogen 4331182 Taqman Probe

M1 mRNA 
(H1N1/PR/8/34)

NP mRNA 
(H3N2/Wyoming/2003)
NS1 mRNA 
(H3N2/Wyoming/2003)
PB2 mRNA 
(H1N1/PR/8/34)
NP mRNA 
(H1N1/PR/8/34)
M1 mRNA 
(H1N1/PR/8/34)

Hs IFIT1

Hs IFIT2

Hs OAS1

Hs ISG15

Hs MX1

mRNA detection 

Hs IFIT1 TES

Hs IFIT2 promoter/TSS

Hs IFIT2 TES

mRNA detection 

mRNA detection 

mRNA detection 

mRNA detection 

mRNA detection 

mRNA detection 

mRNA detection Hs HPRT1

Hs PAF1

Hs IFNB1

Hs CCL5

mRNA detection 

mRNA detection 

mRNA detection 

mRNA detection 

ChIP validation

Commercially Available Primers

mRNA detection 

mRNA detection 

mRNA detection 

ChIP validation

ChIP validation

ChIP validation

Hs IFIT1 promoter/TSS
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2.10 In vitro methylation assay 

Methylation assays were performed as previously described (Nishioka et al., 

2002)with minor variations. In brief, 300 ng of protein or peptide substrate and 100 ng of 

histone methyltransferases (HMT) were incubated with [3H] SAM in HMT buffer (50 

mM Tris-HCl (pH 8.5), 5 mM MgCl2, 2 mM DTT) for 30 minutes at 37⁰C. The reaction 

was then immunoprecipitated for 1 hour with avidin beads (used with peptide substrates) 

or GST beads (used with GST-tagged substrates) and then washed extensively in BC150. 

This step minimizes non-specific radioactive incorporation. Eluted material was then 

subjected to PAGE, gel drying and exposed for radioactive signal detection. Set7/9 was a 

gift from Dr. Marc-Werner Dobenecker and purified SET1C was a gift from Dr. Tang 

Zhanyun. 

2.11 In vitro acetylation assay 

HAT reactions were performed in HAT assay buffer (50 mM Tris at pH 8.0, 10% 

glycerol, 50 mM KCl, 0.1 mM EDTA, 10 mM butyric acid, 1 mM dithiothreitol [DTT], 1 

mM phenylmethylsulfonyl fluoride [PMSF]). Protein or peptide substrates (100ng) were 

incubated with [3H]acetyl coenzyme A (CoA) and purified TIP60 (Gift from Dr. Xiao-

Jian Sun) for 1h and affinity purified using analogous immunoprecipitation of the 

substrate before PAGE and detection on autoradiography film (see in vitro methylation 

assay). 

2.12 Immunoprecipitation  

Nuclear extracts from untreated and infected cells (pretreated with HDAC inhibitors 

when required) were denatured in Laemmli buffer (63mM Tris HCl, 10% Glycerol, 2% 

SDS, pH6.8) at 95⁰C for 10 minutes (with cycles of vortexing). The extract was then 
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diluted to a final concentration of 0.2%SDS in BC150 and sonicated with a Bioruptor 

(Diagenode). Proteins were then immunoprecipitated with Flag M2 antibody (Sigma)-

coupled magnetic beads for 2 hours at 4⁰C. After extensive washing in BC300 and 

BC150 (last wash), the material was eluted with Flag-competing peptide at 37⁰C for 15 

minutes (3 cycles) and the eluted material was combined and acetone-precipitated. 

Western blotting for NS1 modifications was followed by stripping and re-probing for 

loading control.  

 

2.13 Peptide pull-down assays 

Pull-down assays with extracts and recombinant proteins were performed as 

described previously(Wysocka, 2006). Nuclear extracts were prepared from HEK293 

cells using the Dignam protocol (Dignam et al., 1983). 108 cells were used per pull-down 

assay. Salt and Triton-X100 concentrations were 250mM and 0.2% (v/v), respectively. 

Fractions from nuclear extracts fractionated on Heparin column, were pre-cleared with 

avidin beads and then incubated with biotinylated-peptide pre-bound to avidin beads for 

3h at 4°C. Approximately 2µg of peptide was used per pull down. Beads were washed 

eight times with BC300 containing protease inhibitor cocktail (Roche). Bound proteins 

were eluted from the resin using 100mM glycine, pH2.8 and run on Micro-Spin Columns 

(Pierce, 89879). Eluates were combined, neutralized, and analyzed by SDS–PAGE. A 

similar procedure was used for peptide pull down using purified protein (100ng) or 

reconstituted complex (1µg). All peptides were synthesized by the Rockefeller University 

Proteomics Resource Center. 
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2.14 Antibodies 

Anti-dimethyl NS1 antibody (NS1me2) was raised in rabbits against peptides (220-

230) bearing pre-methylated K229 residue. Methyl specific antibodies were purified first 

by pre-absorbing serum (1 out of 8 rabbits showed highly reactive methyl-specific serum 

at the second bleed after peptide injection) to a matrix containing unmodified peptides, 

followed by purification on a NS1me2 column. Anti-PB1 and anti-NP are custom made 

antibodies kindly provided by P. Palese. Mouse anti-Flag is from Sigma (A8592); 

antibody against hPAF1C subunits were all purchased from Bethyl laboratories: PAF1 

(A301-047A); CTR9 (A301-385A); LEO1 (A310-048A); RTF1 (A300 179A); 

Parafibromin/CDC73 (A300-170A); as well as CHD1(A301-218) and 

SMARCAL1(A301-086). Anti-H3K4me3 was purchased from Millipore (17-614), while 

Anti-RNA Pol II CTD (Ab5408) was purchased from Abcam. GST antibody was from 

Roche (RPN1236V). 

 

2.15 Differential salt extraction  

A549 cells were seeded and subsequently infected with influenza virus.  Cells were 

then collected and nuclear pellets were prepared. Nuclear proteins were extracted from 

these pellets by using increasing concentrations of NaCl from 10 mM up to 2 M in BC 

buffer. Eluted materials were resolved on PAGE and immune-blotted with the specific 

antibody. 
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2.16 Chromatin-immunoprecipitation 

We used a slightly modified version of described protocols to perform crosslinking 

ChIP (Barski et al., 2007; Lee et al., 2006). Approximately 10 million cells were used for 

each ChIP (5 times more material was used for Flag assay due to reduced performance of 

anti-Flag antibody on cross-linked material). In brief, uninfected or influenza infected 

A549 cells were fixed with 1% formaldehyde. The cross-linking reaction was stopped 

after 10 min by the addition of 2.5M glycine to a final concentration of 0.125M in the 

reaction. Cells were collected via scraping in ice cold PBS supplemented with protease 

inhibitor cocktail (Sigma). Cross-linked chromatin was subjected to sonication with the 

Biorupter (Diagenode), where we optimized sonication conditions to generate DNA 

fragments approximately 300-500 bp in length. Immunoprecipitations were carried out 

using antibodies pre-bound to either Invitrogen Dynal magnetic beads (Invitrogen 

Dynabeads anti-mouse M-280 #112-02, or Dynabeads anti-rabbit M-280 #112-04, or 

Dynabeads Protein A #100-02D). Following an overnight incubation, chromatin bound 

beads were washed 8 times in a modified RIPA wash buffer (50 mM HEPES-KOH pH 

7.6, 100 mM LiCl, 1 mM EDTA pH 8.0, 1% NP-40, 0.7% Na-Deoxycholate) before 

being eluted into TE buffe containing 1% SDS 50 mM Tris-HCl pH 8.0, 10 mM EDTA 

pH 8.0, 1% SDS). Protein bound chromatin complexes were then subject to overnight 

cross-link reversal at 65°C. After RNase and proteinase K digestion, ChIP DNA and 

input DNA were purified using the QIAquick PCR purification kit. DNA was eluted in 

TE buffer before being subject to downstream analyses. 
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2.17 ChIP-Sequencing 

To prepare ChIP-sequencing libraries, we used 30ul of ChIP DNA and repaired 

DNA ends to generate blunt-ended DNA using the Epicenter DNA ENDRepair kit 

(Epicenter Biotechnologies, cat# ER0720). End-repaired DNA was purified using the 

QIAquick PCR purification kit (28104). Following DNA end Repair, we added A bases 

to the 3′ end of the DNA fragments using Klenow Fragment (NEB M0212L), and 

purified DNA using the QIAGEN MinElute kit (28004). We ligated Illlumina/Solexa 

adapters (#FC-102-1003) to DNA fragments overnight, using T4 DNA ligase (NEB 

M0202L). Following overnight ligation, we purified adaptor-ligated DNA fragments with 

the QIAGEN MinElute kit. To generate the final libraries for sequencing, we performed 

18 cycles of PCR with Illumina/Solexa primers 1.0 and 2.0. We checked for fragment 

size by loading 1/10 of our amplified library on a 1% agarose gel, and purified the 

remaining ChIP-seq library using the QIAGEN MinElute kit. Purified library DNA was 

used for cluster generation on Illumina/Solexa flow cells, and sequencing analysis was 

performed on an Illumina/Solexa Genome Analyzer II following manufacturer protocols. 

 

2.18 GRO-sequencing 

Transcriptionally active nuclei from infected or untreated A549 cells were prepared 

after swelling for 5 minutes the cells in  ice-cold swelling buffer (10mM Tris (pH = 7.5), 

2mM MgCl2, 3mM CaCl2). Pelleted cells were re-suspended in 1ml lysis buffer (10mM 

Tris (pH = 7.5), 2 mM MgCl2, 3mM CaCl2, 10% glycerol, 0.5% NP40, 

2U/ml−1 SUPERaseIN (Ambion) and pipetted 20 times with a P1000 tip with the end cut 

off to reduce shearing. Volume was brought to 10 ml with lysis buffer and nuclei were 
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pelleted at 600g for 5min. Nuclei were washed in 10ml lysis buffer and re-pelletted. A 

small aliquot was taken for Trypan blue staining to check that lysis occurred and nuclei 

were still intact. Nuclei were resuspended in 1ml freezing buffer (50mM Tris-Cl (pH = 

8.3), 40% glycerol, 5mM MgCl2, 0.1mM EDTA) using a P1000 tip with the end cut off 

and re-pelletted and re-resuspended in 500μl of freezing buffer and aliquoted into 100μl 

aliquots and frozen in liquid nitrogen.  GRO-Seq libraries were then prepared as 

described previously (Core et al., 2008).  

SSPE, NaCl, KCL, EDTA, and water are DEPC treated, while SDS, Sarkosyl, DTT, 

Tween, Tris buffers, PVP, NaOH were made with DEPC treated water, then filter-

sterilized. Buffers used for immunoprecipitation contain superRNAsIN (1μl  per 5 ml 

buffer) (Ambion) to block degradation that can occur during the experimental procedure.   

 

2.19 Transcription Assay 

In vitro transcription assays were done as previously described (Kim et al., 2010). 

In brief, we used an highly purified transcription factors (Pol 

II, TFIID, TFIIA, TFIIB, TFIIE, TFIIF, TFIIH, PC4, and Mediator) and a  pML array 

template that contains p53-binding sites nearby the core promoter and generates 390-

nucleotide transcription products. This system previously was shown to effect activator-

dependent transcription (Kim et al., 2010). Purified proteins used for this assay were 

expressed recombinantly in a Baculovirus system in SF9 cells. Baculoviruses were 

generated according to the manufacturer's instruction (GIBCO-Invitrogen). To get 

purified proteins and/or complexes, SF9 cells were infected with combinations 

of baculoviruses. Proteins/complexes were then affinity purified on M2 agarose. 
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2.20 Bioinformatics used with high-throughput sequencing assays 

Samples were sequenced in accordance with manufacturer protocols on GAIIx and 

HiSeq2000 instruments. Image data was analyzed in real-time by the onboard RTA 

software package. 

Raw Data Analysis 

Bcl files produced by RTA were converted to qseq files by Illumina’s OLB 

software package, and qseq files converted to fastq for subsequent analysis. 

ChIP-Seq Alignments 

Sequencing reads were aligned to the Human March 2006 (NCBI36/hg18) 

assembly using the short-read aligner Bowtie (Langmead et al., 2009). Reads were 

aligned at 36bp allowing for 2 mismatches to the reference, reporting unique alignment 

locations only. RefSeq annotation data was downloaded from the UCSC table browser. 

RNA-Seq Analysis 

Sequencing reads were processed using Tophat (Trapnell et al., 2009), a junction 

mapping alignment program designed to identify splice junctions from RNA-Seq reads. 

Briefly, the program aligns reads to a reference genome, identifying regions of coverage 

that correspond to transcribed RNA. The underlying sequence of adjacent regions is 

joined together to create a spliced reference, and reads that did not initially align to the 

reference genome are aligned to identify sequencing reads that originated from potential 

splice junctions (e.g. exon-exon junctions).The Cufflinks (Trapnell et al., 2010) software 

package was used to perform gene expression level calculations and comparisons 

between RNA-Seq libraries prepared from uninfected cells and infected cells. 
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GRO-Seq Analysis 

All sequencing reads were 51bp long. Reads that passed the internal Illumina 

quality filter were processed for adapter trimming, and reads which were longer than 

15bp after adapter removal were retained. This subset of reads was aligned allowing 2 

mismatches to the reference. Reads which were not trimmed of adapter sequence were 

truncated by 6bp at the 3’end to allow for potential incomplete adapter trimming, and 

aligned allowing 3 mismatches to the reference. Duplicate alignment positions were 

condensed to a single alignment entry to account for potential amplification biases. The 

adapter-trimmed and no-adapter alignments were merged for all subsequent analyses. All 

reads were aligned using the short-read aligner bowtie to the Human March 2006 

(NCBI36/hg18) assembly. 

Strand-specific coverage files were generated to differentiate between sense and 

antisense transcripts and to facilitate proper assignment of enrichment information for 

gene profiling.  

GRO-Seq FPKM values were obtained by calculating the number of reads in the 

transcriptional unit and reporting per kilobase of gene length per million mapped reads.  

Integrated profiles (see the following Integrated ChIP-profile) were made reflecting 

3kb upstream from the TSS and 3kb downstream from the TES and 300 internal 

windows.  

1000 genes were selected randomly from a group of 16,806 genes that had similar 

gene body enrichment level ranges relative to genes in Table 2. The GRO-Seq data from 

WT 12H was used for this selection.  
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Integrated ChIP-Seq profiles 

Genes were profiled 2.5kb upstream of the TSS, through the gene body and 2.5kb 

downstream of the transcriptional end site (TES). Read counts were calculated in 100bp 

windows up and downstream of the TSS and TES, and each gene was segmented in 300 

internal windows. Plots were made using a 1kb moving average. Values are read-

normalized and reflect the number of reads observed in each averaged window. 

Genes were selected by requiring a log2 fold-change increase in expression of 

greater than 2, PolII-Total ChIP-Seq enrichment increase throughout the gene body 

(600bp downstream of the TSS to 3kb downstream of the TES) of greater than >1.4-fold 

at 12 hours post infection compared to uninfected cells, and an H3K4me3 peak in either 

uninfected cells or cells 12 hours post-infection (as determined by MACS (Zhang et al., 

2008) using custom settings for H3K4me3) within 3kb of the TSS. Additionally, genes 

passing these criteria were filtered out if the TES of genes with higher than 2 FPKM 

within 10kb of their TSS in an effort to minimize the effect of high RNA Pol II at the 

TES of highly transcribed genes.  

For NS1 ChIP-Seq in A549 infected siPAF1, siCHD1 and siCtrl conditions, 

enrichment data was calculated for all RefSeq genes 5kb +/- TSS in 50bp windows, and 

anti-Flag ChIP-Seq enrichment values from uninfected cells was calculated similarly and 

subtracted. Values are read-normalized and reflect the number of reads observed in each 

window.  
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Peak Calling 

To identify regions of ChIP enrichment, we used a custom JAVA/python/R peak 

calling algorithm that is based on the well known SPP (Kharchenko et al., 2008) and 

MACS2 (Zhang et al., 2008) algorithms. We first maximized the difference between the 

input and IP signal over the transcription start sites (TSS) regions of the reference 

genome to minimize false positive rates. A time series analysis of multiple time points of 

the PAF1 and Pol II ChIP-seq libraries was then perform to achieve the final list of Pol II 

or PAF1 bound regions.  
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CHAPTER 3: SUPPRESSION OF THE ANTIVIRAL RESPONSE BY AN 

INFLUENZA HISTONE MIMIC 

3.1 Identification of putative histone mimics 

The histone tails are composed of numerous overlapping short motifs that different 

effector proteins can recognize and bind to. In order to address our hypothesis that 

pathogens might have evolved similar motifs to interfere with host cellular regulation or 

to gain selective advantages, we designed an in silico screen. We focused on viral 

pathogens since they are obligate parasites which are known to rely heavily on host 

machinery. We focused our efforts on a set of known human viruses (Table 3.1) 

For the screen, we first compiled a series of short overlapping motifs between 4 to 

10 amino acids long deriving from the N-terminal histone H3 tail (Figure 3.1). The 

design and sequence of these motifs were influenced by the two following criteria:  

(1) Search motifs were centered on known post-translational modification sites on the 

histone H3 tail. We reasoned that these residues were most likely to be 

encompassed within any putative motifs due to the fact that such sites often serve 

as important docking and regulatory sites for effector proteins.   

(2) Residue charge and propensity to be modified were factored in the design of the 

putative motifs. For example, we allowed conservative serine –threonine 

substitutions since several known histone kinases are able to modify both serine 

and threonine residues on other substrates. 
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Table 3.1: List of Viruses used for the in silico screen.  Shown here are the viral 
families, the genome type and the replication compartments of the viruses we used in our 
in silico screen. 
 

  

 
 

Genome Type Family Replication 
Compartment

Virus

dsDNA (RNA intermediate) Hepadnaviridae Nucleus Hepatitis B virus

Adenoviridae Nucleus Human adenovirus 1,2,35,5,54,7, A,B,C,D,E,F

Poxviridae Cytoplasm Vaccinia virus, Variola virus

Herpesviridae Nucleus Human herpesvirus 1,2,3,4,5,6A,6B,7,8

Papillomaviridae Nucleus
Human papillomavirus (types 
116,10,101,103,108,109,112,121,126,128,129,131,132,134,135,
136,137,140,144,16,166,26,32,34,4,41,48,49,5,50,53,60,63,6b,7
,88,9,90,92,96)

Polyomaviridae Nucleus BK polyomavirus, JC polyomavirus, KI polyomavirus, 
Merkel cell polyomavirus, WU Polyomavirus

ssDNA Parvoviridae Nucleus
Human parvovirus 4, Human parvovirus B19, Adeno-
associated virus (1,2,3,4,5,6,7,8), Human bocavirus 
(1,2,3,4)

Hepatitis delta virus Nucleus Hepatitis D virus

Rhabdoviridae Cytoplasm Rabies virus

Filoviridae Cytoplasm Ebola virus - Mayinga  Zaire  1976

Paramyxoviridae Cytoplasm
Measles virus, Mumps virus, Hendra virus, Nipah virus, 
Human respiratory syncytial virus, Human 
metapneumovirus

Bunyaviridae Cytoplasm Bunyamwera virus, Hantaan virus, Sin Nombre virus, Rift 
Valley fever virus

Arenaviridae Cytoplasm
Lymphocytic choriomeningitis virus, Lassa virus, Junin 
virus, Machupo virus, Guanarito virus, Tacaribe virus, 
Sabia virus, Lujo virus, Mopeia Lassa virus reassortant 29

Orthomyxoviridae Nucleus

Influenza A virus (A/Hong Kong/1073/99(H9N2)), 
Influenza A virus (A/Korea/426/1968(H2N2)), Influenza A 
virus (A/Korea/426/68(H2N2)), Influenza A virus (A/New 
York/392/2004(H3N2)), Influenza A virus (A/Puerto 
Rico/8/1934(H1N1)), Influenza B virus, Influenza C virus 
(C/Ann Arbor/1/50)

Coronaviridae Cytoplasm Human coronavirus (229E, HKU1, NL63, OC43), Human 
enteric coronavirus strain 4408, SARS coronavirus

Flaviviridae Cytoplasm

Dengue virus (1,2,3,4), Hepatitis C virus, Hepatitis C virus 
(genotypes 2,3,4,5,6), Tick-borne encephalitis virus, 
Yellow fever virus, Modoc virus, Japanese encephalitis 
virus, West Nile virus, St. Louis encephalitis virus, 
Alkhumra hemorrhagic fever virus, Langat virus, 
Powassan virus, Wesselsbron virus, Usutu virus, Murray 
Valley encephalitis virus, Omsk hemorrhagic fever virus

Togaviridae Cytoplasm
Semliki forest virus, Sindbis virus, Venezuelan equine 
encephalitis virus, Western equine encephalitis virus, 
Eastern equine encephalitis virus, Chikungunya virus, 
Rubella virus

Picornaviridae Cytoplasm
Human enterovirus (100,107,98), Human rhinovirus B14, 
Theilovirus, Foot-and-mouth disease virus (types A, Asia 
1, C, O, SAT1, SAT2, SAT3), Hepatitis A virus

Caliciviridae Cytoplasm Sapovirus C12, Sapovirus Hu/Dresden/pJG-Sap01/DE, , 
Sapovirus Mc10

Hepeviridae Cytoplasm Hepatitis E virus

ssRNA (DNA intermediate) Retroviridae Nucleus Human T-lymphotropic virus (1,2,4), Human 
immunodeficiency virus 1 (1,2)

dsRNA Reoviridae Cytoplasm Mammalian orthoreovirus 3, Adult diarrheal rotavirus 
strain J19, Rotavirus A, Rotavirus C

ssRNA ( neg. polarity)

dsDNA

ssRNA (pos. polarity)
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Figure 3.1: Strategy for in silico screen for putative histone mimics.  A series of 
motifs deriving from the histone H3 N-terminal tail domain were compiled. This library 
of motifs was screened against a database of proteins derived from known human 
pathogens. We allowed certain conservative serine/threonine amino acid substitutions. 
Potential histone-mimics were scored for motif proximity to the protein terminus and 
manually curated for nuclear localization, structure and function in hosts. Histone 
diagram adapted from Zhang and Reinberg, 2001 
 
 

This compilation of motifs was then screened against a database of proteins derived 

from known human pathogens (Figure 3.1, Table 3.1) in order to identify potential viral 

histone mimics. Candidate proteins were ranked using a series of criteria. They were 

ranked by similarity of the identified motif to the original H3 sequence, as well as the 

proximity of the motif to either the carboxyl or amino terminus of the protein. In 

addition, the top hits for each motif were manually scored for known cellular localization 

as well as predicted or known function and structure. A list of some of our top candidate 

hits for H3K4-, H3K9- and H3K27-like motifs can be found in Table 3.2. 

 

 

HitsCompare
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Table 3.2: Putative histone-like sequences found in known human pathogens.  The 
table shows the top candidate viral proteins that bear histone H3K4-, H3K9- or H3K27-
like motifs. The sequence of the identified motif and its distance from either the carboxyl 
(C-) or amino (N-) terminal is indicated. 

 

 

3.2 Influenza Non-Structural Protein 1 (NS1) from H3N2 subtype bears a histone 

mimic 

One of our top candidate hits was the Non-Structural Protein 1 (NS1) sequence 

derived from the A/New York/392/2004(H3N2) strain of influenza A virus. Our screen 

showed that the NS1 protein carried the sequence 226-ARSK-229. This sequence 

strongly resembled the first 4 amino acids of the histone H3 protein 1-ARTK-4 (Figure 

3.2). Strikingly, comparison of H3 and NS1 structural data showed that both these 

sequences were localized to the unstructured terminal tails of their respective proteins, 

indicating that the NS1 histone-like sequence was located in a similar structural context 

as the histone H3 tail.  

Accession VIRAL PROTEIN MOTIF Distance from 
terminal

Terminal Localization

H3K4- like sequences
YP_308845.1  nonstructural protein 1 [Influenza A virus (A/New York/392/2004(H3N2))] ARSK 4 C Nuclear
NP_042931.1  DNA polymerase catalytic subunit [Human herpesvirus 6A] ARSK 72 N Nuclear
NP_819006.1  E2 protein [Semliki forest virus] ARSK 31 C Membrane
YP_012612.1  attachment glycoprotein G [Human metapneumovirus] ARSK 23 N Membrane/Cytoplasm
YP_006390078.1  truncated structural polyprotein [Semliki forest virus] ARSK 106 C Membrane/Cytoplasm
YP_001491557.1  NS5b [Hepatitis C virus genotype 3] ARSK 97 N Perinuclear
YP_081514.1  envelope glycoprotein B [Human herpesvirus 5] ARSK 257 N Membrane/Perinuclear
YP_001469632.1  HCV polyprotein [Hepatitis C virus genotype 4] ARSK 494 C Varied
YP_001469633.1  polyprotein [Hepatitis C virus genotype 5] ARSK 494 C Varied
YP_001469630.1  polyprotein [Hepatitis C virus genotype 2] ARSK 494 C Varied

H3K9- / H3K27-like sequences
AP_000576.1  pol [Human adenovirus 35] ARKS 28 N Nuclear
YP_002213842.1  DNA polymerase [Human adenovirus B] ARKS 28 N Nuclear
NP_040515.1  encapsidation protein IVa2 [Human adenovirus C] ARKT 5 C Nuclear
AP_000165.1  IVa2 [Human adenovirus 2] ARKT 5 C Nuclear
AP_000201.1  IVa2 [Human adenovirus 5] ARKT 5 C Nuclear
AP_000502.1  IVa2 [Human adenovirus 1] ARKT 5 C Nuclear
YP_001672011.1  E2 protein [Human papillomavirus type 88] ARKS 52 N Nuclear
YP_001974427.1  single-stranded DNA-binding protein [Human adenovirus D] ARKT 72 N Nuclear
YP_001129382.1  ORF29 [Human herpesvirus 8] ARKT 126 N Nuclear
YP_401712.1  BALF5 [Human herpesvirus 4] ARKT 60 C Nuclear
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Figure 3.2: H3N2 Influenza A NS1 contains a histone mimic. The homologous 
carboxy-terminal NS1 and the amino-terminal histone H3 sequences are shown (red 
letters). The table displays C-terminal NS1 sequences of the influenza A subtypes. 
 

We were also particularly intrigued by the NS1 protein it does not play a structural 

role in the influenza virion. Rather, its main function is to suppress the immune response 

during infection (Egorov et al., 1998; Garcia-Sastre et al., 1998; Kochs et al., 2007) and 

viruses lacking a functional NS1 protein are highly attenuated in immune-competent 

hosts (Garcia-Sastre et al., 1998). Depending on the Influenza virus subtype, it can vary 

from between 230 to 237 amino acids long (Palese P, 2007; Suarez and Perdue, 1998), 

although C-terminal truncations of 15-30 amino acids have also been reported (Suarez 

and Perdue, 1998). The protein can be divided into three functional domains: an N-

terminal RNA binding domain (residues 1-73) (Chien et al., 1997; Hale et al., 2008b; 

Hatada and Fukuda, 1992), a C-terminal effector domain (residues 74-210) (Bornholdt 

and Prasad, 2006; Hale et al., 2008a). As alluded to earlier, the last 20 amino acids 

(hereafter referred to as NS1 ‘tail’) of the effector domain (residues ~207-230) appear to 

be disordered, and are not observable in crystal structures of the NS1 effector domain 

(Hale et al., 2008a). 

Strain Year of appearance NS1 COOH-terminal

H3N2 1968-2011 216 PKQKRKMARTARSKV 230

H1N1 1933-2011 216 PKQKRKMARTIRSEV 230

H5N1 2003 216 PNQKRKMARTIESEV 230

H1N1 1918* 216 PKQKRKMARTIKSEV 230

H1N1 2009* 216 PKQK----------- 219

* Influenza pandemic strains

COOH

NS1 221 KMARTARSKV 230
Histone H3 1 ARTKQTARKS 10

NH2 Histone H3
Influenza NS1
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To understand whether the NS1 histone-like sequence was well conserved amongst 

influenza A virus isolates, we obtained 2753 unique full-length NS1 sequences from the 

NCBI influenza virus resource. Of these sequences, 1737 were derived from avian 

isolates, 250 were from swine isolates and 766 were from human isolates. Multiple 

sequence alignment of these proteins showed that the RNA binding, and C-terminal 

effector domain of the NS1 protein is generally very well conserved between viral 

isolates. In contrast, the C-terminal ‘tail’ domain, where the NS1 histone mimic was of 

the NS1 protein displayed poor sequence conservation (Figure 3.3A). 

Influenza A viruses are typically categorized into subtypes based on hemagglutinin 

and neuraminidase serotype on their viral envelopes (Bouvier and Palese, 2008; Palese P, 

2007). As such, when we broke our analyses down to subtype, we found that the NS1 

histone-like sequence was highly conserved among influenza A isolates of subtype 

H3N2, but was not found in other subtypes (i.e. H1N1, H5N1) of human influenza A 

virus (Figure 3.2 and Figure 3.3C). This sequence was not found in any of the avian 

strains of influenza virus (Figure 3.3B). Altogether, this suggested that the NS1 histone-

like sequence could be a strain- and human-specific virulence factor.  
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Figure 3.3: Conservation of NS1 histone-like sequence. A. Conservation of NS1 
proteins within human, avian and swine isolates of influenza A virus. Green: High 
conservation score, Red: Low conservation score. B. Percentage of unique human, swine 
or avian NS1 sequences that carry the H3N2 NS1 tail (“KMARTARSKV”) or the histone 
H3-like sequence (“ARSK”) C. Abundance of NS1 histone-like sequence within different 
Influenza A subtypes.  
 

3.3 NS1 is recognized by histone modifying enzymes 

We hypothesized that the similarity of the NS1 tail to the histone H3 N-terminal tail 

would allow it to be recognized and modified by cellular histone modifying enzymes. To 

address this, we utilized three different approaches. In our first approach we incubated 

NS1 tail-peptides with known histone modifying enzymes and complexes. Notably, NS1 
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was methylated by the recombinant Set9 and Set1 complexes (Figure 3.4A), which 

specifically modify H3K4. Recombinant NS1 that carried a lysine to arginine mutation 

on residue 229 could not methylated by either Set1 or Set 7/9, showing that methylation 

occurred site-specifically.  Similarly, acetyltransferase assays revealed that NS1 could 

also be acetylated at residue 229 by Tip60 complex, another known H3K4 

acetyltransferase (Xhemalce and Kouzarides, 2010) (Figure 3.4A, top panel) In a similar 

vein, recombinant full-length NS1 expressed in bacteria incubated with the same cellular 

histone modifying enzymes and complexes was post-translationally modified in vitro. 

These modifications were also dependent on lysine 229 on the NS1 tail and mutation of 

lysine into an arginine resulted in the loss of post-translational modification (Figure 3.4A, 

middle panel). 

We next sought to determine whether NS1 is modified in the context of a viral 

infection. To determine if methylation and acetylation of NS1 occurs during infection, 

cells were infected with either wild type (WT) virus or a virus bearing a lysine to arginine 

mutation at residue 229 in NS1 (K229R). NS1 methylation was detected with an NS1-

methyl specific antibody that we raised (Figure 3.4B), whereas NS1 acetylation was 

detected by a pan-acetyl antibody. These experiments showed that NS1 is indeed 

methylated and acetylated in cells during viral infection. As expected, methylation and 

acetylation occurred on lysine 229 on the NS1 protein. NS1 isolated from K229R 

infected cells was not methylated or acetylated (Fig 3.4A, bottom panel). Together, these 

data show that NS1 is recognized by site-specific histone modifying enzymes, and can be 

post-translationally modified by these proteins. 
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Figure 3.4: NS1 is modified by histone modifying enzymes. A. Methylation or 
acetylation of the NS1 peptide (top panel), the GST–NS1 protein (middle panel) or of 
viral NS1 in infected A549 cells (bottom panel) are shown. B. Characterization of the 
K229 methyl-specific anti-NS1 antibodies. Unmodified (un), or synthetically methylated 
(K229me1, me2 or me3) NS1 peptides were serially diluted at indicated concentrations 
and spotted on a nitrocellulose filter. The binding specificity was tested by dot-blot 
analysis using affinity purified methyl-specific rabbit NS1 antibody. The results show the 
specificity of the NS1K229 di-methyl specific antibody (anti-NS1me2). WT: wild-type 
NS1 sequence; KR: NS1 substrates where K229 is replaced by arginine; me1: Mono-
methylation; me2: Di-methylation; me3: Tri-methylation; ac: Acetylation 
 

3.4 NS1 is bound by PAF1 complex 

Based on these results, we hypothesized that histone mimicry in NS1 would allow 

NS1 to interact with host histone-binding proteins, which in turn could be important for 

NS1 function. We thus sought to identify NS1 tail interactors by performing an unbiased 

peptide pull down screen. Briefly, nuclear extracts from HEK293 cells were fractionated 

over a heparin column and each resulting fraction was incubated with a peptide carrying 

the NS1 tail sequence. A scrambled control peptide, which had an identical amino acid 

composition to the NS1 tail, was used as a binding control.  NS1 tail binding proteins 
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were separated by PAGE and visualized on a gel. Protein bands that were differentially 

bound between the NS1 tail peptides and its scrambled control peptide were than excised 

and subjected to tandem mass spectrometry (Figure 3.5A, left panel).  A large number of 

peptides we found belonged to proteins that were derived from several complexes known 

to be associated with transcription and co-transcriptional activities. These included 

members of the human PAF1 transcription elongation complex (PAF1C), as well as the 

CHD1 chromatin-remodeling complex (Figure 3.5A, right panel).  

 

 

Figure 3.5: Identification of NS1 tail interacting proteins. A. Schematic depicting of 
affinity purification of NS1 “tail”-binding nuclear proteins (left panel). NS1 binding 
proteins were identified by affinity purification of HEK293 nuclear extracts and NS1 
bound proteins were separated by PAGE and visualized by colloidal coomassie staining. 
Proteins that displayed differential binding to the NS1 "tail" and scrambled control 
peptides were extracted from the gel and analyzed by mass spectrometry. Association of 
the NS1 histone mimic with the PAF1C subunits and CHD1 in nuclear extracts (right 
panel). wt: Wild-type NS1 sequence; IP: Immunoprecipitation B. NS1 histone mimic 
binds to CHD1. Unmodified (un) or methylated (me) NS1 or H3(K4) peptides were 
incubated with recombinant full length CHD1 or the CHD1 double-chromodomain. 
Peptide binding was revealed by either silver staining or Coomassie staining.  
 

We next used in vitro assays to reveal the primary binder of the NS1 protein. Of the 

proteins we identified, only CHD1 was previously shown to interact, albeit in a 
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methylation-dependent fashion to histone H3 (Sims et al., 2005). In support of the histone 

mimicry within the NS1 tail, CHD1 protein did not appear to directly interact with the 

unmodified NS1 tail peptide (Figure 3.5B). Instead, we saw that methylated forms of the 

NS1 tail peptide were able to interact well with human CHD1 protein, which had been 

identified as a reader of di- and tri- methylated H3K4 (Sims et al., 2005). Both full length 

human CHD1 and its purified chromodomain were found to interact with methylated NS1 

tail peptide, but not to the unmodified or acetylated NS1 tail (Figure 3.5B).  

We thus turned our attention to PAF1C because of several factors. The PAF1C has 

been shown to coordinate several steps in RNA polymerase II mediated transcription 

(Chen et al., 2009; Kim et al., 2010; Kim and Roeder, 2009; Mueller et al., 2004; Nordick 

et al., 2008), and has been shown to be a platform through which many other critical 

transcription regulatory factors may bind to (including CHD1) (Jaehning, 2010). PAF1C 

had also previously been implicated in the regulation of stress-induced genes in yeast 

(Betz et al., 2002; Kim and Levin, 2011), suggesting that it had a role in inducible gene 

expression. We were thus interested in further exploring the interactions between PAF1 

and NS1 

 

3.5 The PAF1 complex binds to the NS1 histone-like sequence 

To prove that NS1 tail was directly binding to the PAF1 complex, we first assessed 

the ability of biotinylated NS1 tail peptides to bind to purified PAF1 complex in vitro. 

Our assay showed that the NS1 tail was sufficient to pull-down the PAF1 complex by 

immunoprecipitation (Figure 3.6B) 
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The human PAF1C is composed of six subunits – PAF1, CTR9, LEO1, RTF1, 

CDC73 and SKI8 – that bind together cooperatively to form the complex (Kim et al., 

2010) (Figure 3.6A). However, both loss-of-function and mutational studies have 

suggested that there are distinct roles for the specific subunits within the complex, with 

each subunit binding to and interacting with different cellular partners(Betz et al., 2002; 

Mueller et al., 2004; Piro et al., 2012). Thus, to assess the primary binder(s) of the NS1 

tail within the PAF1C, we incubated the biotinylated NS1 tail peptide with individual 

purified, Flag-tagged PAF1C subunits. The results of this experiment indicated that the 

PAF1 subunit is the primary binder of the NS1 tail. This binding was specific to the NS1 

tail sequence, as a scrambled version of this peptide did not promote PAF1 binding. NS1-

PAF1 association was also not strongly affected by methylation of K229 in the NS1 

peptide, but was ablated by acetylation (Figure 3.6C).  
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Figure 3.6: NS1 tail binding to recombinant hPAF1C and individual PAF1C 
subunits. A. Schematic of the human PAF1 complex (adapted from Kim et al., 2010) 
showing the binding interactions between the individual PAF1C subunits. Solid lines: 
stable associations; dotted lines: weak interactions B. Binding of NS1 peptides to 
recombinant hPAF1 complex. C. Binding of NS1 peptides to individual Flag-tagged 
hPAF1C subunits to NS1. For pull-downs, hPAF1 complex and individual hPAF1C 
subunits were prepared as described previously and incubated with the biotinylated NS1 
peptides. Binding was assessed by western blotting.  IP: immunoprecipitation; in: Input, 
ctrl: Control scrambled peptide; un: Non-modified; me1: mono-methylated; me2: di-
methylated; me3: tri-methylated; ac: acetylated 
 

Our experiments with the NS1 tail peptide also suggested that histone H3 might 

have similar interactions with PAF1C. Indeed, we found that unmodified and methylated 

H3 tail peptides, but not the scrambled control or acetylated peptides could bind to 

purified PAF1C or the PAF1 protein (Figure 3.7). Altogether these results highlight the 

similarity between the NS1 tail and the histone H3 tail.  

 



55 
 

 

Figure 3.7: Histone H3 tail binding to recombinant PAF1C and its individual 
subunits. A. Binding of H3 peptides to recombinant hPAF1 complex. B. Binding of 
individual Flag-tagged hPAF1C subunits to H3. IP: immunoprecipitation; in: Input, ctrl: 
Contrl scrambled peptide; un: Non-modified; me1: mono-methylated; me2: di-
methylated; me3: tri-methylated; ac: acetylated 
 

3.6 NS1 is co-localizes with PAF1 on chromatin 

In infected cells, NS1 is expressed with a predominantly nuclear localization 

(Figure 3.8A). It is expressed at high levels, with an estimated 5x105 molecules per cell 

(Figure 3.8B). While it was possible that NS1 retains a nucleoplasmic role in the infected 

cell, the presence of the histone-like sequence in NS1, together with its ability to bind to 

complexes involved in transcription elongation, suggested that NS1 could also have 

chromatin related functions. Indeed, nuclear salt-extraction profiles of NS1 from infected 

cells revealed that NS1 is associated with chromatin (Figure 3.8B).  
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Figure 3.8: Nuclear localization and expression of NS1 protein in infected cells  A. 
Immunostained NS1 (red) co-localizes with DAPI-positive (blue) nuclei in A549 cells at 
12h after infection. B. The amounts of NS1 in serially diluted nuclear extracts of A549 
cells were determined by Western blotting and compared to defined amounts of 
recombinant NS1. The amount of NS1 protein per cell was calculated based on 
Avogadro’s equation (NA = N/n). C. The NaCl-elution profiles of NS1, β-actin and 
histone H3 are shown. The amount of indicated proteins in eluates was measured by 
Western blotting.  

 

To facilitate further biochemical analysis of the NS1 protein, we knocked-in a Flag 

allele into NS1 using A/Wyoming/2003(H3N2) strain as a background (Flag-NS1) 

(Figure 2.1). This virus was infectious, and did not display any overt growth defects 

when compared to its untagged wild-type background, indicating that the 3X-Flag on the 

NS1 protein did not interfere significantly with viral biology (Figure 3.9). 
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Figure 3.9: Flag-NS1 virus is infectious and displays no overt growth phenotype 
Flag-NS1 recombinant virus supports infection and replication. A549 cells were infected 
with the wild-type or recombinant influenza virus that expresses Flag-tagged NS1. The 
virus functionality in single-cycle experiments was determined by expression of the viral 
nucleoprotein (NP) and NS1 in infected A549 cells (upper panel), by degree of up-
regulation of the ISG15 and MX1 virus-induced genes in infected cells (middle panel) or 
yields of viruses propagated in MDCK cells (lower panel). 

 

We infected cells with the Flag-NS1 virus and performed genome-wide chromatin 

immune-precipitation sequencing (ChIP-seq) experiments on Flag-NS1 binding. Since 

PAF1 has been implicated in transcription elongation, we reasoned that NS1 binding was 

likely to coincide with active gene transcription. We thus prepared ChIP-seq libraries for 

Pol II, PAF1 and H3K4me3 in the infected and non-infected cells. In addition, in order to 

identify genes that were induced upon infection, we performed RNA-sequencing. By 

cross-referencing the Pol II ChIP-seq libraries and the RNA-seq libraries, we were able to 

identify the subset of genes that were inducibly transcribed upon Influenza A infection.  

Assessment of NS1 binding on infection inducible genes revealed that NS1 binding 

was enriched at the transcription start sites (TSS), with slight enrichments within the gene 
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body (Figure 3.10, top panel). This paralleled the enrichment profiles of both RNA 

polymerase II (Pol II) and PAF1 protein on these genes, indicating that NS1 was co-

localized with those two factors (Figure 3.10). 

 

 

 

Figure 3.10: NS1 co-localizes with Pol II and PAF1 on chromatin The ChIP-seq 
profiles show the distribution of indicated proteins at inducible genes before (black line) 
and after (red line) infection. The induced genes were revealed by RNA-seq and ChIP-
seq analysis of infected A549 cells. TSS and TES, the transcriptional start and end sites, 
respectively. 
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3.7 PAF1-binding activity of NS1 impacts hosts transcription elongation 

The presence of NS1 at the antiviral genes suggested that NS1 would be in position 

to interfere with the recruitment and/or activity of PAF1 and Pol II at these loci. To 

differentiate between these possibilities, we performed ChIP experiments for Pol II and 

PAF1 in cells that were infected with either the wild type or ΔPAF viruses. Pol II and 

PAF1 abundance was then assayed at the transcriptional start sites (TSS) and 

transcriptional end sites (TES) of two known NS1-bound genes, IFIT1 and IFI6. In 

general, Pol II and PAF1 levels at these two genes were lower in wild-type infected cells, 

compared to ΔPAF-infected cells (Figure 3.11). However, the differences in Pol II and 

PAF1 binding between wild-type and ΔPAF virus infected cells were much more 

pronounced at the TES than at the TSS of these genes. Larger reductions of Pol II at the 

TES compared to the TSS are usually indicative of inhibition of transcription elongation, 

suggesting that this process could be impaired in wild-type infected cells.  
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Figure 3.11: NS1 histone mimic is required for PAF1 and Pol II recruitment to 
chromatin PAF1, RNA Pol II and H3K4me3 levels at the TSS and TES of the induced 
genes in uninfected (ui) cells, cells infected with the wild-type (WT) or PAF1-binding 
mutant virus (ΔPAF). Data are representative of three independent experiments; error 
bars show the s.e.m. 
 

ChIP experiments are useful for quantifying the amount of bound Pol II on the 

DNA, but they are unable to distinguish between transcriptionally engaged and inactive 

forms of Pol II. In fact, the decreased accumulation of Pol II at the at the IFIT1 and IFI6 

TES as compared to the TSS, may either reflect inefficient transcription elongation, or be 

a result of an accumulation of transcriptionally paused and/or arrested Pol II at the TSS of 

the gene.  

As such, to better understand the impact that the NS1 tail mimic had on antiviral 

gene transcription, we performed Global Run-on sequencing (GRO-seq) experiments on 

cells infected with either the wild-type or ΔPAF viruses. Metagene profiles of our GRO-

seq data showed that in the absence of infection, the majority of the anti-viral genes are 
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transcriptionally silent, with low levels of active polymerases accumulating downstream 

of the TSS (Figure 3.12A). Many of these genes also retain a 5’ peak of promoter 

proximal paused polymerase. Upon infection with either the wild-type virus or the ΔPAF 

virus, we saw an increase of active Pol II accumulate at both at the TSS and within the 

gene bodies of the antiviral genes. However, increase of active Pol II was significantly 

lower in wild-type infected cells as compared to that in ΔPAF infected cells (Figure 

3.12A).  

The differences in active Pol II accumulation between wild-type and ΔPAF infected 

cells also appeared to be specific to antiviral genes. Metagene profiles comparing wild-

type and ΔPAF infected cells displayed no differences in Pol II accumulation at non-

inducible genes, suggesting that the NS1-PAF1 interaction might be specific to infection-

inducible genes only (Figure 3.12B). 
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Figure 3.12: NS1 suppresses antiviral gene transcription in infected cells A. Left: the 
GRO-seq-measured RNA transcripts in uninfected (ui) A549 cells (black line) or cells 
infected with wild-type or ∆PAF virus (green and red lines, respectively) . Right: GRO-
seq profile of IFIT1 and IFI6 genes in uninfected and infected cells. B. GRO-seq profile 
of A549-expressed genes that are not affected by virus infection (left panel) or of the 
HPRT1 gene (right panel). Reads from either DNA strands are indicated as +/− . The y 
axes display reads per million mapped reads per 25 bp. 
 

3.8 NS1 histone like sequence affects antiviral gene expression 

Our experiments with ChIP and GRO-seq suggested that transcription elongation 

might be impaired in cells that were infected with virus expressing wild-type NS1. To 

determine whether this defect was specific to the interaction between PAF1 and NS1, we 

performed in vitro transcription elongation assays where purified general transcription 

factors, transcription factors, co-activators and Mediator (Pol II, TFIID, TFIIA, TFIIB, 
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TFIIE, TFIIF, TFIIH, PC4 and Mediator) are used in conjunction with a chromatinized 

DNA template in vitro (Kim et al., 2010) (Figure 3.13A). In these assays, transcription 

elongation efficiency is measured by the generation of the full-length 390-nucleotide (nt) 

product from template.  

Results from this assay indicated that NS1 strongly inhibited transcription 

elongation activity of PAF1C. As expected, addition of PAF1C to the reaction results in 

the accumulation of the 390 nt transcription elongation product (Figure 3.13B, lanes 1 

and 2). This accumulation is reduced upon addition of purified NS1 to the reaction. In 

contrast, use of purified NS1 that lacks the PAF-binding (NS1(∆PAF )sequence had little 

effect on PAF1c mediated transcription (Figure 3.13B, lanes 3). Altogether these results 

support the notion that NS1 tail sequence may function to interfere with PAF1C activity 

(Figure 3.13B, lanes 4). 

 

 

Figure 3.13: NS1 inhibits transcriptional elongation in vitro A. The full-length NS1 
protein (NS1) or NS1 lacking the PAF1-binding sequence (NS1(∆PAF)) was added to the 
RNA elongation reaction as indicated. B. The amount of the 390-nt RNA elongation 
product was quantified by ImageJ. The results of two independent experiments are 
shown.  
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3.9 PAF1 is required for the induction of the inflammatory response 

The results in GRO-seq suggested that PAF1C might be involved in the up-

regulation of the antiviral response. As such, we sought to study the impact that the 

PAF1C has on influenza-induced gene expression. To do so, we infected PAF1 deficient 

cells with NS1-null influenza virus (PR8/ΔNS1). We selected this virus as a precaution 

against potential NS1-PAF1 cross talk. This virus was also particularly useful because it 

induces an extremely strong antiviral response in host cells (Garcia-Sastre et al., 1998), 

allowing more subtle effects of regulatory factors on the antiviral response to be 

visualized easily (Shapira et al., 2009). For these sets of experiments, we chose to use a 

high multiplicity of infection (MOI) to reduce potential paracrine signaling events. We 

also limited our experiments to single-cycle infections. 

Unexpectedly, despite being commonly thought of as a general transcriptional 

activity in the cell, PAF1 deficiency does not cause overt changes to gene expression in 

cells at steady state with expression levels of most housekeeping genes remaining 

unchanged between PAF1 siRNA (siPAF) treated and non-targeting control siRNA 

(siCtrl) treated cells (Figure 3.14). 
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Figure 3.14: PAF1 is not essential for housekeeping gene expression. Expression 
levels of indicated housekeeping genes were determined by microarray analysis of RNA 
derived from un-transfected (ut), siPAF or siCtrl transfected cells. Results for individual 
probesets are shown for genes that are represented by multiple probesets on the 
microarray. 
 

Infection of siCtrl and siPAF treated cells with PR8/ΔNS1 infection revealed that 

there were similar numbers of up- and down-regulated genes in both the siCtrl and siPAF 
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to PAF1 depletion. These genes, which were highly enriched in key antiviral genes 
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(including IL28A, IL28B, IL29, DDX58/RIGI), were induced to lower levels in siPAF 

treated cells as compared to siCtrl treated cells (Figure 3.15A). Further qPCR analysis on 

several of these genes validated our findings in microarray (Figure 3.15B).  

 

Figure 3.15: PAF1 controls antiviral response.  A. The expression levels of mRNAs in 
influenza infected control (siCtrl) or PAF1-deficient (siPAF) A549 cells. The table shows 
top siPAF-affected gene categories as identified by IPA. ut, untreated with siRNA. B. 
qPCR analyses of anti-viral genes in siCtrl, siPAF and ut cells. The fold difference 
between levels of hPAF1 mRNA (upper panel) and host mRNA up-regulation were 
measured by quantitative real time PCR of RNA isolated from infected A549 cells. 
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and viral genomic RNA in siPAF and siCtrl cells. We found no significant changes in the 

expression of virally-derived RNAs, suggesting that the differences we saw in antiviral 

gene expression were not likely to be a result of an altered potential of the virus to induce 

the inflammatory response in siPAF and siCtrl cells (Figure 3.16).  

 

Figure 3.16: PAF1 does not control production of viral RNAs in PR8/ΔNS1 infected 
cells. The levels of the indicated influenza genomic (upper panel) or messenger RNAs 
(lower panel) were measured by qPCR analysis of RNA derived either from uninfected 
(ui), PAF1-deficient (siPAF1) or control (siCtrl) A549 cells infected with PR8/ΔNS1 
viruses. Data are representative of 3 independent experiments. Error bars represent the 
S.E.M. 
 

Similar to PR8/ΔNS1 infected cells, we found that antiviral gene expression was 

reduced during infection with the NS1 bearing parent strain of PR8/ΔNS1, A/PR/8/34 as 

well as during infection with a non-related virus vesicular stomatitis virus (VSV) (Figure 

3.17). These results suggested that PAF1 requirement in the antiviral response was not 

specific to influenza virus. Thus, to understand if active viral replication was required for 

siPAF1 mediated effects on gene expression, we treated PAF1 deficient cells with 

defined amounts of either IFNβ (a major cytokine regulating the antiviral response) or 

Poly(I:C) (chemical mimetic of viral genomic RNA). (Figure 3.17) Analysis of these 
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experiments showed that similar to infected cells, the expression of IFNβ and Poly(I:C) 

induced genes was reduced in PAF1 deficient cells. Altogether, these data suggested that 

PAF1 was required for the proper induction of stimulus responsive genes.  
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Figure 3.17: hPAF1C controls antiviral gene expression in response to various 
stimuli. The expression levels of antiviral genes were measured by microarray analysis 
of RNA isolated from wild-type influenza H1N1 (left panel), vesicular stomatitis virus 
(VSV) (middle panel), IFNB1 treated (top right panel) or Poly(I:C) treated (lower right 
panel) A549 cells that were either not transfected (ut) or transfected with control (siCtrl) 
or hPAF1 (siPAF) specific siRNAs. The tables show the top five functional categories of 
the siPAF affected genes as identified by IPA. 
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The inability of siPAF1 treated cells to mount a full antiviral response during 

infection suggested that siPAF1 deficient cell populations would be highly susceptible to 

viral infection. Accordingly, when siPAF1 and siCtrl treated cells were infected at an 

m.o.i of 0.01 with PR8/ΔNS1 in a multi-cycle infection; we saw a log fold increase of 

viral yield (Figure 3.18). On the other hand, depletion of CHD1, which we had also found 

in our screen, had little effect on viral growth (Figure 3.18). 

 

 

Figure 3.18: Dynamics of virus replication in control or PAF1-deficient A549 cells.  
Shown are the viral growth kinetics of Influenza infected cells. p.f.u. plaque-forming 
units. Data are representative of three independent experiments. Error bars show the 
s.e.m. 
 

3.10 Conclusions 

In summary, we found that the NS1 protein of the H3N2 subtype of Influenza virus 

carries a histone H3-like sequence in its C-terminal tail domain. This sequence is required 

for the virus to interact with the host PAF1C, and in doing so limit the host anti-viral 

response by impairing PAF1C function (Figure 3.19). Lastly, we have used this host-
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pathogen interaction to uncover the central role of transcription elongator complex PAF1 

in the proper induction of the immune response.  

 

 

Figure 3.19: Putative Model of NS1: PAF1C interaction. NS1 histone-like sequence is 
required for NS1 to interact with the PAF1C. PAFC1 function is inhibited upon NS1 
binding, resulting in reduced production of anti-viral genes, and increased viral spread. 
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CHAPTER 4: DYNAMICS OF PAF1 RECRUITMENT ON CHROMATIN 

DURING THE ANTIVIRAL RESPONSE 

4.1 Preamble 

Our studies involving Influenza NS1 and its histone mimic highlighted the specific 

role of PAF during viral infection. In fact, even though the PAF1C is considered to be a 

general RNAPII associated elongation factor, our analysis showed that the depletion of 

PAF1 in cells only had a very selective impact on the expression on anti-viral genes. As 

such, the goal of this part of the study was the elucidate characteristics of these PAF1-

target genes. For these studies, we chose to use infection with PR8/∆NS1 as our 

experimental system. This system was specifically chosen because this virus is a very 

potent inducer of the antiviral response, and whose selective impact on the antiviral genes 

can be ascribed efficiently. We predicted that PAF1 recruitment and activity is 

differentially regulated on the induced anti-viral genes compared to non-induced, non-

infection related genes. 

 

4.2 Dynamics and Specificity of PAF1 binding during infection 

In order to understand the specific requirements of PAF1 recruitment to chromatin 

during infection, we performed ChIP-sequencing analysis of PAF1 binding sites from 

uninfected and PR8/∆NS1 infected cells. We chose to use both early (4 hours post 

infection) and a late (12h hours post infection) time points in this analysis to gain better 

understanding of the dynamics of PAF1 binding.  
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To determine the effects of infection on genome-wide PAF1 binding we took an 

unbiased approach and used a customized peak caller program (see Methods) to identify 

all PAF1 bound regions across the genome. We did encounter some limitations in the 

program for detecting very broad regions of binding on chromatin and were unable to 

completely avoid instances where a single large region of PAF1 binding was broken into 

several smaller regions. Despite this, our approach appeared to be robust, with 98% of 

genes that were bound by PAF1 being associated with a maximum of three PAF1 peaks 

per gene. Two examples of the input raw sequence reads and the regions that have been 

identified as PAF1 bound is shown in Figure 4.1A.  

  Overall, we were able to map at least 9550 loci across the genomes which are 

associated with PAF1 binding in infected or uninfected cells. A majority (86%) of these 

loci were associated with genic regions, with 46% of the called peaks localized to intra-

genic sites (i.e. within the gene body); 5% localized to areas around the transcription 

termination sites and 32% localized to areas around the transcription start sites and 

promoter regions of genes (Figure 4.1B). In contrast, only about 17% of these PAF1 

bound loci were found in inter-genic regions. The mostly genic association of PAF1 is 

consistent with the known association of PAF1 with RNA polymerase II, and its function 

as a key player in transcription elongation and other co-transcriptional processes.  

Next, we investigated the overall regulation of PAF1 binding throughout the course 

of infection. PAF1 localization across the genome appeared to be fairly stable during 

infection, with only 2 to 4% of loci showing differential recruitment of the PAF1 protein 

during infection (Figure 4.1C). In fact, only a total of 198 loci at 4 hours post-infection, 

and 403 sites at 12 hours post-infection showed at least a 2-fold change in PAF1 binding. 
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Of these sites, the majority of the changes occurred in intragenic regions and was 

associated with an increased level of PAF1 binding at the loci. On the other hand, the 

numbers of sites that lost or gained PAF1 binding within the TES, TSS and intergenic 

regions were similar to each other (Figure 4.1C).  

 

Figure 4.1: Genome-wide distribution of PAF1 binding. A. Genome browser view of 
PAF1 binding at the IFIT locus (top panel) and the HIST1H1C locus (bottom panel) in 
uninfected cells, and infected cells 4 hours (4h) and 12 hours (12h) post infection. PAF1 
bound regions that were called using our customized peak finder program are highlighted 
in black boxes above the genes. B. Classification of PAF1 bound regions based on their 
overlap with transcription start sites (TSS), transcription termination sites (TES), 
intragenic regions (including introns and exons), as well as intergenic regions. C. 
Numbers of PAF1 bound loci that display at least a 2 fold increase in PAF1 binding at 4 
hours or 12 hours post infection. PAF1 bound loci are classified as described in B. 

 

4.3 PAF1 is strongly enriched on antiviral genes upon infection 

We next scrutinized the PAF1 bound loci that displayed differential recruitment of 

PAF1 during infection. Since the majority of sites that show changes in PAF1 binding 
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during infection occur within genic regions (TSS, intragenic, TES), we decided to focus 

our efforts on gene-associated PAF1 bound regions.  

At 4 hours post infection, genic loci that displayed at least a 2-fold change in PAF1 

binding were associated with a total of 59 genes (Figure 4.2A). Of these 59 genes, 58 

displayed an overall increase in PAF1 binding, whereas 1 gene displayed a loss in PAF1 

binding. Similarly, a total of 126 genes were associated with a change in PAF1 binding at 

12 hours post infection. Of these genes, 116 genes were associated with an increase in 

PAF1 binding, whereas 8 genes displayed a loss of PAF1 binding upon infection (Figure 

4.2B, Left and Right panels).  

To determine if genes that lose or gain PAF1 upon infection belong to identifiable 

groups, we carried out pathway analyses on these genes. Genes that displayed an increase 

in PAF1 binding either at 4 hours and/or a 12 hours post infection were highly enriched 

in genes associated with inflammatory and antimicrobial response (Figures 4.2C and 

4.2D), which are both impacted by Type I interferon signaling(Stetson and Medzhitov, 

2006) . Consistent with this, we also saw the presence of many known interferon 

stimulated genes (Schoggins et al., 2011) amongst the genes that actively altered PAF1 

binding during infection (Figures 4.2A and B). In addition, we found an 

overrepresentation of NF-κB and IRF binding sites at the promoters of genes that had 

altered PAF1 binding during infection (Figure 4.2E). In contrast, these factors were not 

identified in a set of randomly chosen genes (Figure 4.2E). Since both IRFs and NF-κB 

are important for the activation of inflammatory genes, this observation further 

underscored the specific recruitment of PAF1 to anti-viral and inflammatory genes during 

infection.  
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Figure 4.2: Changes in PAF1 recruitment at genes during infection. A. Genes that 
display ≥2 fold change in PAF1 binding at 4 hours post infection. Increased PAF1 
binding is shown in red and decreased PAF1 binding is shown in blue. ISGs (Schoggins 
et al., 2011) are indicated by grey boxes on the right of the heatmap. B. Same as in A, but 
for PAF1 binding at 12 hours post infection. C. Top five functional categories associated 
with genes that are differentially bound by PAF1 (>2 fold) at 4 hours post infection as 
identified by IPA analysis. D. Same as in C, but for 12 hours post infection. E. 
Overrepresentation of transcription factor binding sites (TFBS) found -5kb to +5kb 
around the TSS. TFBS that received Z-score values >10 and p-values < 0.01 were 
considered to be significant, and are indicated by green circles. All TFBS associated with 
the 136 genes associated with differential PAF1 binding are displayed as black circles; 
All TFBS associated with a set of 136 randomly selected PAF1 binding genes are shown 
as white circles.  
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4.4 PAF1 recruitment is correlated with gene expression and Pol II recruitment 

Our data on PAF1 binding indicate that the dynamics of PAF1 recruitment on 

chromatin during infection is highly specific and is strongly dominated by genes 

belonging to type I interferon signaling and hallmark genes of the antiviral response. 

Given the important role that the PAF1C plays as a transcription elongation factor, we 

hypothesized that PAF1 recruitment to these genes is critical for their expression. To 

address this, we utilized two independent approaches to confirm whether an increase in 

PAF1 binding at these genes was positively correlated with transcriptional activity of 

genes during infection.  

The abundance of Pol II at a gene, particularly within its gene body, can be used as 

in indicator of transcriptional activity of a gene. We first wanted to determine if PAF1 

binding was correlated with Pol II abundance across the genome. To do so, we prepared 

Pol II ChIP-sequencing datasets from uninfected and infected cells at 4 hours and 12 

hours post infection. In doing so, we found that infection induced changes in PAF1 

recruitment were also accompanied by changes with Pol II recruitment to the same genes 

(Figures 4.3A and 4.3B). Metagene profiles of Pol II recruitment across genes that 

displayed altered PAF1 binding (PAF1-target) against all PAF1-bound genes showed that 

Pol II was also specifically recruited to PAF1 dependent, but not PAF1 independent 

genes (Figure 4.3C).  
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Figure 4.3: Pol II binding correlated to PAF1 binding. A. Cumulative distribution 
function (CDF) plots of classes of Pol II or PAF1 bound genes at 4 hours post infection. 
The logged fold change in Pol II binding between infected cells at 4 hours post infection 
and uninfected cells are shown. Grey line: All Pol II bound genes; Black line: All PAF1 
bound genes; Red line: All PAF1 bound genes that display differential recruitment (> 2 
fold) during the course of infection. B. Same as for A, except displaying logged fold 
change in Pol II binding between infected cells at 12 hours post infection and uninfected 
cells. C. Metagene profiles of Pol II and PAF1 binding profiles at all genes that show 
differential recruitment of PAF (Solid lines) or all genes that bind PAF1 during infection 
(dotted lines). Shown are Pol II (red) and PAF1 (grey) binding profiles at their respective 
classes in uninfected cells (top panels) and in infected cells at 4 hours (middle panels) 
and 12 hours (lower panels) post infection.  

 

While changes in abundance of PAF1 and Pol II binding at a gene suggest 

transcriptional competence, it may not necessarily reflect overall changes in gene 

expression. Instead, a myriad of other co-transcriptional processes can also impact the 
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formation of functional transcripts. As such, one approach of determining the impact of 

PAF1 binding on gene expression changes would be to quantify levels of mature, poly-

adenylated transcripts in cells. We thus decided to perform microarray analyses on cells 

that had been infected with the PR8/∆NS1virus. When we compared changes in fold 

expression for PAF1 dependent and PAF1 independent genes, we found that genes that 

actively recruited PAF1 during infection tended to show an increase in expression levels 

(Figure 4.4). On the other hand, when we considered all PAF1 bound genes across the 

genome, the majority of these had more stable expression levels (Figure 4.4) That is, their 

cumulative distributions were centered around a Log2(fold change in expression) value of 

zero. 

 

Figure 4.4: Inducible-recruitment of PAF1 genes correlates to an increase in gene 
expression. A. CDF plots of expression changes within different subsets of PAF1 bound 
genes at 4 hours post infection. Genes that inducibly recruit PAF1: solid red line, all 
genes that bind PAF: solid black line, genes that do not bind PAF1: broken black line, 
and all genes: solid grey line B. CDF plots of expression changes within different subsets 
of PAF1 bound genes at 12 hours post infection.  

 



80 
 

4.5 PAF1-target genes in infection are sensitive to PAF1 depletion 

Our data suggest that the expression of the anti-viral genes is related to the active 

recruitment of PAF1. This was interesting, in the light of some of our previous 

observations that PAF1 depletion during infection specifically inhibited the expression of 

anti-viral genes, but not of housekeeping genes. Active recruitment of PAF1 to these 

genes might represent a rate limiting step in the activation of the genes that is exacerbated 

during PAF1 deficiency. This could account for why PAF1, despite its role as a general 

transcription elongation factor, only impacts the infection regulated genes during 

infection.  

We thus re-did microarray analyses on uninfected and PR8/∆NS1 infected cells 

treated either with siRNA against PAF1 (siPAF) or with a control, non-targeting siRNA 

(siCtrl). Consistent with our previous results, PAF1 deficiency had a limited impact on 

gene expression in uninfected cells, with 46 genes showing greater than 2 fold change. 

The expression of housekeeping genes was also stable. Also, as we had shown 

previously, the impact of PAF1 deficiency was much greater in infected cells, with a total 

of 367 genes displaying siPAF1 sensitivity over the course of infection (Figure 4.5A). 

There were two subgroups of siPAF1 sensitive genes. These were (1)genes that were up-

regulated upon PAF1 depletion, and (2) those that were down-regulated upon PAF1 

depletion. Overall, we found that PAF1 had strong impact on about 7.5% infection 

regulated genes at 4 hours post infection, and 5.0% of infection regulated genes at 12 

hours post infection, indicating that PAF1 depletion only affected a subset of genes 

(Figure 4.5A). Consistent with what we observed previously, the genes that were 
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sensitive to PAF1 depletion were enriched with inflammatory genes and anti-viral 

effector genes (Figure 4.5B).  

 

 

Figure 4.5: siPAF1 sensitive genes in infection. A. Overlap of PAF1 sensitive genes 
and infection regulated genes at 4h and 12h post infection. B. Top five functional 
categories associated with siPAF1 sensitive genes as identified by IPA analysis 

 

We next determined the pattern of PAF1 binding on siPAF1 sensitive genes during 

infection. To do so, we cross-referenced our microarray data to our PAF1 ChIP-seq data. 

We were able to map 45-50% of our siPAF1 sensitive genes at 4 and 12 hours post 

infection to PAF1 bound regions during infection. When we examined PAF1 levels on 

these genes however, we saw that there was a direct correlation between genes affected 

by PAF1 depletion and its active recruitment during infection (Figures 4.6A and B 

middle and right panels). In fact, by 12 hours post infection, PAF1 binding levels at these 

genes were significantly higher than other PAF1 bound genes genome-wide (Figure 4.6B, 

right panels). In addition, comparison of these loci against genome wide PAF1 bound loci 

revealed that the majority of these siPAF1-sensitive loci were initially associated with 

lower PAF1 binding levels as compared to that of other genes (Figures 4.6A and B, left 
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panels). In contrast, genes that were up-regulated upon PAF1 depletion showed little or 

no change in PAF1 binding throughout the infection. The changes in PAF1 binding 

associated with these genes could not be attributed to a general loss of PAF1 binding at 

other genes, as the levels of PAF1 on the majority of PAF1 bound loci remained constant 

throughout infection (Figure 4.6C). 

We were concerned that the quantitative aspect of our bioinformatics analysis could 

have been skewed due to inherent limitations of our peak-calling program. As such, we 

also examined metagene profiles PAF1 binding at siPAF1 sensitive and all genes in the 

genome. Consistent with our previous results, we found that siPAF1 sensitive genes were 

associated with increasing levels of PAF1 during the course of a normal infection (Figure 

4.6D). In contrast, metagene profiles genes throughout the whole genome revealed 

limited change in PAF1 binding during infection. Altogether, these data suggest that 

siPAF1 sensitive genes tend to actively recruit PAF1 during infection. 
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Figure 4.6: PAF1 levels are dynamically regulated in siPAF1 down-regulated genes. 
A. CDF plots PAF1 binding intensity at genes that were identified to be dysregulated by 
siPAF at 4 hours post infection. Left panel: PAF1 levels at siPAF downregulated (blue), 
siPAF upregulated (red) and PAF levels at all genes in uninfected (0h) cells; Middle 
panel: PAF1 levels at the same genes at 4 hours post infection; Right panel: PAF1 levels 
at the same genes at 12 hours post infection. Note how the amount of PAF associated 
with the siPAF downregulated genes shift over time.  The overlap between siPAF 
sensitive genes and all PAF1 genes is indicated in the venn diagram. B. Same as in A, 
except comparing PAF1 binding in genes that were dysregulated by siPAF treatment at 
12 hours post infection. C. Overall levels of PAF1 across the genome remains the same 
throughout the course of infection. D. Metagene profiles showing PAF1 binding in genes 
that are dysregulated by siPAF at 4 hours (left panel) and 12 hours (middle panel) during 
infection. The PAF1 binding profiles of all genes is also shown (right panel). For each 
class of gene, PAF1 binding levels in uninfected cells are shown as solid grey lines, 
whereas PAF1 binding levels for genes at 4 hours post infection and 12 hours post 
infection are shown in yellow and green respectively. 
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4.6 Conclusions 

In summary, we have shown that in contrast to the rest of the genome, PAF1 is 

actively recruited to anti-viral and inflammatory genes. PAF1 recruitment to this subset 

of genes coincides with the recruitment of Pol II and their expression. We also found that 

genes that are sensitive to PAF1 depletion during infection have low initial levels of 

PAF1 bound, but actively recruit PAF1 as the infection progresses. We therefore propose 

that PAF1 sensitivity is likely to result from an inability to recruit optimal levels of PAF1 

to target genes during infection.  
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CHAPTER 5: DISCUSSION 

Starting from an unbiased bioinformatics screen, we were able to show a novel 

means by which influenza virus can use a histone H3K4-like sequence in its NS1 protein 

to specifically target inflammatory gene expression. This is achieved through the 

inhibition of transcription elongation activity of the PAF1C in host cells. In addition, we 

show that the PAF1C is an important regulator of the inflammatory response, and its 

active recruitment to anti-viral genes is required for their expression.  

 

5.1 PAF1C and its associated activities are important targets for pathogens 

By using chromatinized in vitro transcription assays, we were able to show that the 

binding of NS1 to PAF1 was able to block the transcription elongation activity of PAF1. 

This corroborated and further explained our in vivo genome-wide analysis of 

transcriptional elongation dynamics (GRO-seq) in infected cells, where we saw a defect 

in transcription elongation in wild-type NS1 infected cells as compared to deltaPAF1 

infected cells. Our results suggest that the NS1 protein specifically targets the 

transcription elongation activity of the PAF1C in cells.  

However, aside from its role as a transcription elongator, the PAF1C has been 

shown to participate in several other co-transcriptional processes. These include 

promoting transcription-coupled histone modifications (Hahn et al., 2012; Kim and 

Roeder, 2009; Wood et al., 2003) as well as regulation of mRNA 3’ end processing 

(Mueller et al., 2004; Nagaike et al., 2011; Nordick et al., 2008; Penheiter et al., 2005; 

Rozenblatt-Rosen et al., 2009). For instance, the PAF1C has been shown to impact 

monoubiquitylation of histone H2BK120 in human cells, by promoting recruitment of the 
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ubiquitin-conjugating enzyme Rad6 and the ubiquitin protein ligase hBre1 to chromatin 

(Kim and Roeder, 2009; Wood et al., 2003). Rad6/Bre1 mediated monoubiquitylation of 

H2BK120 facilitates H3K4 tri-methylation and H3K79 di-methylation by the Set1/MLL-

1 and Dot1 complexes respectively (Dover et al., 2002; Kim et al., 2009; Nakanishi et al., 

2009; Sun and Allis, 2002). In turn, these modifications can influence the recruitment 

and/or activities that further impact chromatin structure and transcriptional competence of 

the gene.  

Given the multiple roles that the PAF1C plays in regulating transcription and in 

enhancing inflammatory gene transcription, it is no wonder that the complex and its 

associated activities are subject to manipulation by several other pathogens besides the 

Influenza A virus. Indeed, the human immunodeficiency virus (HIV) TAT protein was 

previously shown to recruit the PAF1 complex, along with P-TEFb and other elongation 

factors (specifically the super elongation complex, comprising of AFF4, AF9, ELL and 

ENL) (Sobhian et al., 2010) to the virus promoter during infection. This was thought to 

promote the formation of a permissive chromatin environment and allow viral replication. 

In further support of this, independently conducted studies have shown that PAF1 over-

expression results in overall reduced levels of pro-viral integration during HIV infection, 

highlighting the importance of PAF1 expression in the HIV viral life cycle (Liu et al., 

2011).  

Interestingly, the human adenovirus (HAdV) has also been shown to require 

PAF1C activity to replicate. This is mediated via the HAdV virulence factor E1A, which 

binds to and inhibits Bre1 protein, which, as mentioned previously, also interacts with the 

PAF1C. During infection, E1A recruits the PAF1C to the viral genome via Bre1, thus 
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promoting viral early gene expression (Fonseca et al., 2013). In support of this, 

knockdown of PAF1 results in reduced viral early gene transcription. The interaction of 

E1A to Bre1 was also shown to inhibit the expression of IFN and ISGs, suggesting that 

Rad6/Bre1 mediated ubiquitylation of H2BK120 was important for the expression of 

these genes (Fonseca et al., 2012). Given that Rad6/Bre1 activity is also facilitated by the 

PAF1 complex, these data support the notion that the PAF1C and its related activities are 

key regulators of the inflammatory response.  

 

5.2 Differential Susceptibility of stress-response genes to PAF1 depletion 

We were interested to note that despite the general association of PAF1 with Pol II 

genome-wide, only a subset of genes within the cell are sensitive to PAF1 depletion. This 

phenomenon was not restricted to our experimental system. In yeast, PAF1 knockout 

(PAF1∆) cells behave normally under homeostatic conditions, but are hypersensitive to a 

variety of stress-inducing conditions (Betz et al., 2002; Costa and Arndt, 2000; Kim and 

Levin, 2011; Squazzo et al., 2002). Altogether, these data suggest that the PAF1C serves 

a function in stress-induced gene expression. 

Our studies imply that genes that are most sensitive to PAF1 depletion are genes 

that have low initial levels of PAF1 bound and require active recruitment of PAF1 to 

become active. Reduced or inhibited PAF1 recruitment to these genes by siRNA-

mediated depletion of PAF1 thus inhibits gene activation. Many of the stress response 

genes can impact normal biological processes of the cell, such as protein folding, 

translation or pre-mRNA splicing. As such, these genes are tightly regulated and silenced 

under homeostatic conditions, since their constitutive activation is could be detrimental to 



88 
 

the cell. Given the central role of PAF1 in transcription, its recruitment is likely to affect 

several regulatory steps in the activation of these genes.  

PAF1 has been implicated in several events that control the efficiency of 

transcription elongation of its target genes. As mentioned earlier, an important activity of 

the PAF1 complex is the promotion of histone H2B ubiquitylation, which has been 

shown to be critical for the transcription of several inducible genes (including GAL1, 

SUC2 and PHO5) in yeast (Kao et al., 2004). In the absence of ubiquitylated H2b, 

transcription of these genes is severely impaired. Also, as mentioned previously, HAdV 

mediated inhibition of the hBre1 complex results in reduced H2B ubiquitylation and an 

impaired IFN response in infected cells (Fonseca et al., 2012). H2B ubiquitylation may 

also affect promoter clearance and release of Pol II into productive elongation. In yeast, 

H2B de-ubiquitylation by Ubp8 is required to recruit Ctk kinase complex to the 

gene(Henry et al., 2003). In turn, Ctk phosphorylation of the serine 2 in the Pol II CTD 

facilitates Pol II entry into productive elongation (Zhou et al., 2009). Given that the 

PAF1C facilitates the recruitment and activation of the Rad6/Bre1 complex to 

ubiquitinate histone H2B, it may be that this activity contributes to the reliance of stress 

induced genes on PAF1C recruitment. It will thus be interesting to investigate how 

Rad6/Bre1 and H2B ubiquitylation is affected during infection.  

Besides its interactions with histone modifying enzymes such as Rad6/Bre1, the 

PAF1C has also been shown to interact with a number of transcription elongation 

complexes, including DSIF, FACT, TFIIS and SEC (Super Elongator complex) (Chen et 

al., 2009; Dawson et al., 2011; Kim et al., 2010; Qiu et al., 2006; Squazzo et al., 2002). 

PAF1C has been shown by several groups to stimulate transcription of target genes 



89 
 

through cooperative interactions with these complexes. These complexes have all been 

implicated in different regulatory steps during inducible transcription. In fact, loss of 

PAF1 results in reduced association of DSIF and FACT on chromatin (Mueller et al., 

2004; Pruneski et al., 2011), suggesting that it is required for these factors to maintain 

association with their targets and promote transcription. 

Finally, the PAF1 complex has been shown to directly stimulate transcription 

elongation rates on chromatinized template (Kim et al., 2010). Indeed, our results suggest 

that it is this PAF1 dependent activity that is targeted by NS1 during the suppression of 

the inflammatory response. This implies that transcription elongation efficiency of stress 

response genes is in itself important for their full induction. This has been similarly 

suggested in other inducible transcription systems (Danko et al., 2013; Hah et al., 2011). 

Further support for the role of transcriptional elongation in the regulation of the stress 

response has been shown in studies of a PAF1C independent transcription elongation 

factor Elongin A. Elongin A is a component of a multisubunit transcription elongation 

complex comprising of Elongin A, Elongin B and Elongin C. Like the PAF1 protein, 

previous studies have shown that Elongin A is not generally required for transcription in 

vivo under homeostatic conditions (Gerber et al., 2005; Kawauchi et al., 2013). However, 

during the induction of the heat shock response, induction of the heat shock responsive 

genes ATF3 and HSP70 were abrogated. Taken together, these studies strongly support 

the notion that transcription elongation is an important component for the efficient 

induction of stress response genes. An important implication of these studies is that 

inhibition of transcription elongation activity could allow for a targeted way of 

manipulating stress response genes. Given that many diseases are manifested by over-
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activation of stress responses, these findings could have important implications in the 

development of therapeutics aimed at balancing the out of control stress response.  

 

5.3 Mechanisms of PAF1C recruitment to target genes 

Our data show that the active recruitment of PAF1 to a subset of anti-viral genes 

coincides with and is critical for their expression during infection. This is likely to 

contribute to their sensitivity to PAF1 depletion during infection. However, the 

mechanisms by which PAF1C is recruited to its target genes on chromatin is not well 

understood in mammalian cells. In yeast, recruitment of the yeast PAF1C (yPAF1C) to 

chromatin is mediated primarily by its yRTF1 and yCDC73 subunits (Amrich et al., 

2012; Warner et al., 2007). yRTF1 interaction with chromatin is thought to be mediated 

by a conserved Plus3 domain. Loss of this domain in yRTF1 results in the impaired 

chromatin association of yPAF1C (Warner et al., 2007). In addition, yRTF1 has been 

shown to play an important role in mediating histone H2B ubiquitylation, and a small 

histone modification domain present on the protein is sufficient to substitute the entire 

yPAF1C for promoting H2B ubiquitylation in the absence of PAF1(Piro et al., 2012). On 

the other hand, yCDC73 was also shown to be important yPAF1C recruitment to genes. 

This is thought to be mediated by a Ras-like domain in the C-terminal of yCDC73. 

Truncation of almost the entire domain in yCDC73 impairs yPAF1C recruitment to 

chromatin without disrupting the integrity of yPAF1C(Amrich et al., 2012). Independent 

studies confirmed a role of yCDC73 in binding to the phophorylated C-terminal domain 

(CTD) of elongating Pol II and also to the phosphorylated C-terminal region (CTR) of 
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yeast Spt5 (subunit of the yeast Spt4/Spt5 complex, and yeast ortholog of the mammalian 

DSIF) (Qiu et al., 2012; Qiu et al., 2006).  

Another group of candidates that have been implicated in PAF1C recruitment to 

chromatin is the bromodomain and ET domain (BET) family of proteins. The BET 

proteins are a family of reader proteins that bind to acetylated histones. Members of the 

family, which include BRD2, BRD3, BRD4 and BRDT, share similar structural 

properties, each comprising of two tandem bromodomain modules, an extra-terminal 

domain and a C-terminal domain (Belkina and Denis, 2012). Interestingly, recent 

proteomic screens have identified that the PAF1C may interact and function 

cooperatively with members of this family (Dawson et al., 2011). In fact, these studies 

showed that inhibition of BET binding activity by I-BET, resulted in reduced PAF1 

recruitment to chromatin (Dawson et al., 2011). In addition to this, similar to PAF1 

depletion, inhibition of BET protein recruitment to chromatin results in the selective 

repression of inflammatory genes during lipopolysaccharide (LPS) stimulation of bone-

marrow derived macrophages (Hargreaves et al., 2009; Nicodeme et al., 2010). These 

studies, taken together with our findings that PAF1 recruitment is essential for the proper 

induction of the anti-viral response, suggest that the BET proteins could be critical for 

maintaining optimal levels of PAF1C on chromatin. It remains to be seen how the BET 

proteins and PAF1C interact to coordinate the transcriptional response in infection.  

Finally, a recent study revealed that histone H3 asymmetrically di-methylated on 

arginine 17 (H3R17) could promote the recruitment of PAF1C to chromatin(Wu and Xu, 

2012). Consistent with our results, this study demonstrated that an unmodified histone H3 

tail is sufficient to bind PAF1C, but that this interaction is enhanced upon methylation of 
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H3R17.  Loss of the CARM1 methyltransferase, the primary mediator of H3R17 

methylation, results in greatly reduced PAF1 recruitment to chromatin. In contrast, loss 

of depletion of PAF1C components had no impact on H3R17me2a abundance, indicating 

that CARM1 and H3R17me2a act upstream of PAF1C. Taken together with our findings 

on PAF1, this result not only suggests a potential cross talk between H3K4 and H3R17, 

but also strongly implies a role for CARM1 in the control of the inflammatory response. 

Indeed, CARM1 has previously been implicated as a co-activator for NF-kB dependent 

genes, and was shown to enhance their activities during stimulation (Miao et al., 2006). 

Further investigation will be required to uncover the role of the CARM1 and the PAF1C 

in regulating the inflammatory response. 

 

5.4 Histone mimicry is a viable strategy for pathogens to manipulate host 

processes 

This study has demonstrated that histone mimicry can be a viable strategy for 

pathogens to modulate host function. We were also able to confirm that the histone H3 

protein can interact with PAF1C. Altogether, these data support the idea that the histone 

H3 motifs can function as discrete informational units in signaling. It will be interesting 

to investigate if other viral pathogens that we found in our in silico screen also carry 

functional histone-motifs.  

A key feature of the histone tails is their ability to switch between different 

functional states via post-translational modifications (see Introduction). Indeed, we show 

that PAF1 binding to the histone H3 tails can be abrogated by acetylation, but not 

methylation. The same appears to be true for the NS1 histone-like sequence, although we 
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were regrettably not able to fully investigate the functional consequences of NS1 or 

Histone H3 acetylation and PAF1 binding. However, it may be that in addition to 

inhibiting PAF1 activity to suppress the immune response, NS1 could also use the 

PAF1C to locate its other binding partners. Indeed, the PAF1C has been shown to bind to 

another known NS1 target, the cleavage and polyadenylation factors complex (CPSF) 

(Rozenblatt-Rosen et al., 2009) through its CDC73 subunit.   

Modification of NS1 could thus play a role in “re-purposing” the NS1 protein, and 

allow it to switch between binding partners during infection. For example, both CHD1 

and PAF1C, which have been shown to interact with each other (Simic et al., 2003), were 

able to bind to the NS1 histone-like sequence, albeit in a modification-dependent ways. 

Moreover, there is increased interaction of the NS1 protein with host CHD1 upon 

methylation of the NS1 histone-like sequence. Since CHD1 has also previously been 

shown to interact with spliceosomal components and impact efficacy of pre-mRNA 

splicing (Sims et al., 2007) (in addition to its role as a chromatin remodeler (Tran et al., 

2000)), this could potentially be a way for the virus to gain access to the spliceosome and 

impact pre-mRNA splicing in the host cell (Lu et al., 1994; Qiu et al., 1995; Wang and 

Krug, 1998). NS1 interaction with the host splicing machinery may also play an 

important role in regulating viral mRNA splicing, which is also important for the viral 

lifecycle (Chua et al., 2013).  
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5.5 Short linear motifs occurring in the NS1 C-terminal domain are virulence 

factors 

The NS1 C-terminal tail domain has previously been implicated as a virulence 

factor for some avian influenza A viral isolates. In fact, several studies have shown that 

the majority of NS1 sequences derived from these viruses carry PDZ ligand (PL) motifs 

(consensus: X-[S/T]-X-VCOOH; where X represents any amino acid, and COOH 

represents the C-terminal) in their C-terminal domain (Figure 5.1) (Obenauer et al., 

2006). PDZ domains are protein-protein recognition motifs that are found widely in 

proteins involved in cell-signaling. These proteins specifically recognize and bind to 

short 4 to 5 amino acid long PL motifs, which are almost always found at the C-terminus 

of the protein. Avian PL motifs (including EPEV, ESEV) are not commonly observed in 

human isolates of virus, but have been strictly associated with several highly pathogenic 

human isolates. In particular, NS1 sequences from the H5N1 1997 and H5N1 2003 

human pandemic viruses were shown to contain avian-like C-terminal PL domains ESEV 

and EPEV respectively (Jackson et al., 2008; Obenauer et al., 2006; Thomas et al., 2011). 

These PL motifs were necessary for the interaction of the virus with PDZ proteins such as 

Dlg, scribble (Golebiewski et al., 2011), Magi-I (Kumar et al., 2012). In particular, H5N1 

NS1 PL-mediated binding to scribble and Dlg1 was required to protect infected cells 

from apoptosis, thus contributing to viral virulence (Golebiewski et al., 2011). 

On the other hand, common-circulating, low pathogenic human viruses 

predominantly contain PL motif sequences RSKV (H3N2 isolates), and RSEV (H1N1 

isolates). Despite being canonical PLs, these motifs do not appear to bind well to known 

PDZ domain containing proteins (Obenauer et al., 2006; Thomas et al., 2011). In fact, 
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viral virulence can be increased if these “human” PL motifs are replaced with those 

derived from avian isolates. Despite this, overall loss of the NS1 C-terminal tail from 

low-pathogenic viruses still results in viral attenuation(Jackson et al., 2008). This 

suggests that the C-terminal domain of NS1 is an important contributor to the overall 

virulence of the virus, although its specific function remains unknown. In this study, we 

show that the H3N2 virus utilizes its NS1 C-terminal domain to interact with host PAF1C 

instead. This is mediated by a histone H3-like motif A-R-S/T-K also present in the C-

terminal domain. NS1 interaction with PAF1 was necessary for the virus to repress the 

host immune response, and replicate well. Altogether, these studies confirm the role of 

the role of the Influenza A NS1 C-terminal domain as an important virulence factor that 

as likely evolved to interact in a species-specific way with pivotal regulators of the cell 

response. 

 

5.6 Influenza Adaptation and Virulence 

It is interesting to note that the histone H3-like sequence is predominantly found in 

the low-pathogenic human influenza viruses. Historically, low virulence has often been 

argued as a way for parasites to avoid overexploitation of the host resources, and improve 

transmissibility (Frank, 1996). This theory postulates that given enough time, pathogens 

would eventually become avirulent and achieve symbiosis with their hosts. In the light of 

this, it is tempting to speculate that the interaction of the H3N2 NS1 constitutes an 

adaptation of the virus to maintain a virus pool circulating in the human population. 

However, the truth is that virulence of the influenza virus is a multi-genic trait that 

is not dependent on NS1 alone (Fukuyama and Kawaoka, 2011; Tscherne and Garcia-
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Sastre, 2011; Wasilenko et al., 2008). Several studies have indicated that influenza viral 

proteins are functionally linked, and exert epistatic effects on one another (Kaverin et al., 

2000; Twu et al., 2007). In fact, NS1 protein function has been shown to be tightly linked 

to the identity of viral polymerase genes(Kuo and Krug, 2009). Notably, artificially 

engineering reassortant viruses, where the cognate NS segment is replaced with a NS 

gene from more virulent strains of virus, has been shown to have minimal effects on viral 

pathogenicity (Kuo and Krug, 2009; Sarmento et al., 2010; Shelton et al., 2012). 

Furthermore, large scale sequencing analysis of avian influenza isolates has also 

indicated that many of the core influenza protein co-segregate with one another 

(Obenauer et al., 2006).  

The lower pathogenicity of the human influenza viruses (including H3N2 and 

H1N1) also do not necessarily indicate a trend towards avirulence and symbiosis of the 

Influenza A virus within human populations. This model assumes that viral transmission 

is a function of host mortality (i.e. viruses that kill their hosts quickly have a poorer 

chance of survival), while ignoring other factors, such as the geographical distribution of 

host populations, or potential competition between related strains of the same virus. In 

fact, several groups have argued that local distributions and intrinsic susceptibility of host 

populations are more important factors for determining viral virulence (Boots and Sasaki, 

1999; Frank and Schmid-Hempel, 2008; Palese and Wang, 2011; Pfennig, 2001; Wild et 

al., 2009). The correlation between NS1-PAF1 interaction and poorer viral virulence 

could indeed be an evolutionary step towards achieving optimal viral fitness, but must 

ultimately be considered in the context of NS1 interactions with other viral and host 

proteins, as well as pathogen specialization within host populations.   
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