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A b s t r a c t 

The excitability of nerve and muscle cells depends on the number and the types of 

ion channels expressed at the plasma membrane. This work examines aspects of 

biogenesis and traffic of the Shaker voltage-gated potassium channel. Shaker is an 

oligomeric, polytopic membrane protein and, as such, its biogenesis begins at the 

endoplasmic reticulum (ER). I have studied (i) targeting of Shaker to the ER and stable 

integration into the lipid bilayer, (ii) N-linked glycosylation, assembly and folding of 

Shaker in the ER, and (iii) export of Shaker from the ER and subsequent traffic to the cell 

surface. 

Targeting to the endoplasmic reticulum, integration into the lipid bilayer and 

assembly into tetramers occurs efficiently for Shaker translated in vitro. The first 

transmembrane domain (TM1) is most likely the earliest ER targeting signal on the 

growing Shaker polypeptide. TM1 that has adequately emerged from the ribosome is 

sufficient to initiate targeting to the ER in the absence of additional transmembrane 

domains. Further, efficient integration of Shaker into the bilayer is promoted by a 

glycoprotein fraction of ER microsomes, in which the active component was the 

translocon associated membrane protein (TRAM). Shaker is N-glycosylated on two 

consensus sites in the first extracellular loop. The importance of glycosylation at this 

location for Shaker biogenesis has not been previously studied. Elimination of the two 

consensus sites for N-linked glycosylation yields a channel that targets to the ER, 

integrates and tetramerizes normally, but is transported at a reduced rate to the surface of 

the cell. This is due at least in part to a retardation of the unglycosylated channel at an 

early (i.e. pre-Golgi) step in its secretory traffic. Lastly, we attempted to develop assays 



to determine the efficiency at which the Shaker channel acquires its final, folded, 

conduction-competent state in the endoplasmic reticulum. 



1. I n t r o d u c t i o n 

1.1. General introduction to the ion channels 

A century ago, Julius Bernstein (1902) postulated the existence of a selective 

potassium permeability in the resting membrane of the cell. He proposed that the 

membrane is an insulating medium that separates solutions of different ionic 

concentration on the inside and the outside of the cell. The selective potassium 

permeability, it was theorized, sets the resting membrane potential of cells close to the 

equilibrium potential for potassium. Further, the phenomenon of excitability in nerve and 

muscle cells was proposed to be the result of "membrane breakdown", in which 

permeability to other ions transiently increases. This theory has been largely borne out, 

in its broadest terms, by research over the past hundred years. I begin this dissertation 

with a simplified, and necessarily very abridged, description of the work that has 

culminated in our present understanding of the potassium channels and their role in 

physiology. 

1.1.1. History 

1.1.1.1. Ion flux is central to cell excitability 

The idea that ion fluxes play a role in the excitability of nerve and muscle was 

based on work in the late nineteenth century. Ringer (1881 - 1887) showed that the heart 

of a frog, ex vivo, continues to beat for a substantial period only if bathed in a solution 

with a fixed proportion of sodium, potassium and chloride. Nemst (1888) studied the 

diffusion of electrolytes in solution, and his mathematical descriptions of the electrical 



potentials that result are fundamental to the understanding of biological potentials 

generated by ion flux across cell membranes. More importantly, from a historical point 

of view, his work supported the possibility of an ionic basis for biological potentials. 

Contemporary with these scientists, Hermann (1872) hypothesized that excitability is a 

phenomenon of "electrical self-stimulation". He proposed, in other words, that local 

excitation of the membrane results in electrical currents that stimulate nearby unexcited 

regions of the membrane, thus propagating the excitation along the length of the cell. It 

is worth noting that this theory was formulated at a time when the centrality of the 

membrane in excitability was far from established, and when electrical events were 

considered by many to be merely an epiphenomenon of putative chemical processes 

fundamental to the propagation of the nervous impulse. 

1.1.1.2. The classical period : description of the action potential 

It was to be several decades before these ideas were experimentally tackled. The 

years between 1935 and 1952, in one sense arguably the darkest period of human history, 

were nevertheless a glorious time for biophysics. This period (sometimes referred to as 

the classical period of biophysics) was propelled by the work of Curtis and Cole, and 

Hodgkin, Huxley and Katz. Working in large part on the giant axon of the squid, these 

scientists studied both the passive electrical properties of the axonal membrane as well as 

the changes that occur during the propagation of an action potential. It was these studies 

that experimentally established excitability as indeed based upon ion permeability 

changes, and that laid the foundation for work that continues until today. 

Cole and Curtis, in 1923, began to study the passive electrical properties of cells. 

Using a Wheatstone bridge on a wide variety of cell types, they established that cells 



have a high conductance cytosol surrounded by a high resistance membrane(Cole, 1968). 

The experimental demonstration of these properties was necessary for Bernstein's theory. 

On studies of both the squid axon (Cole and Curtis, 1939)as well as of the giant alga 

Nitella (Cole, 1938), Cole and Curtis showed that the conductance of the membrane 

increases dramatically (40-50 fold) during an action potential, thus further confirming the 

"membrane breakdown" hypothesis of excitability. When axonal voltage changes during 

an action potential were directly measured with an intracellular micropipette (Curtis and 

Cole, 1940; Hodgkin and Huxley, 1939), it was found that the cell does indeed transiently 

depolarize1 during this process. However, instead of a depolarization to electrical 

neutrality (0 mV), as would be expected to result from a membrane that "breaks down" 

and becomes briefly permeable to all ions, the depolarization was seen to overshoot zero 

and to become positive by 10-20 mV. This was the first indication that the action 

potential is the result of a transient increase in sodium permeability of the cell membrane. 

The influx of sodium ions (down their concentration gradient) that would result from 

such a permeability increase would carry the overall membrane potential closer to the 

reversal potential for sodium (~ + 60 mV in physiological solutions). Experiments in 

which the action potential was observed in the (partial) absence of sodium ions later 

proved this idea to be correct, since the membrane potential overshoot was smaller and 

the propagated action potential was substantially reduced (Hodgkin and Katz, 1949). 

Increased influx of radioactive tracer sodium ions during the action potential further 

confirmed this idea (Keynes, 1951). 

The development of the voltage clamp (Marmont, 1949; Cole, 1949; Hodgkin et 

al., 1949; Marmont, 1949) made possible the detailed study of the currents that flow 

'in depolarization, the membrane potential becomes more positive than at rest. 
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across the cell membrane during a propagated action potential. Simply stated, the voltage 

clamp allows the potential across a cell membrane to be fixed at some desired value. 

This is achieved with the following combination. An intracellular electrode measures the 

potential across the cell membrane, a feedback amplifier amplifies the difference between 

this measured voltage and the voltage at which the cell is to be clamped, and another 

intracellular electrode injects current to maintain the cell at the clamped voltage. Thus 

the current required to clamp the cell at the desired voltage is known, and this is a 

measure of the current that flows across the membrane, at that voltage. Hodgkin and 

Huxley used this technique to define two major components of the current that flows 

across the cell membrane during a propagated action potential (Hodgkin and Huxley, 

1952b; Hodgkin and Huxley, 1952c). Depolarization of the cell produces a rapid, initial 

inward current, followed by a more prolonged outward current. The reversal potential of 

these currents suggested that they were carried by sodium and potassium ions 

respectively, and this was proven in experiments that specifically replaced these ions in 

the external solution. Studies of ion fluxes at different voltages showed that the sodium 

and potassium currents were voltage-dependent. This led to the concepts of activation 

and inactivation of ionic currents as a function of voltage, as well as to the development 

of an empirical model (the Hodgkin-Huxley model) that describes these processes as a 

function of voltage and time (Hodgkin and Huxley, 1952a). Based on their kinetic 

measurements, the potassium channel was modeled as an oligomer of four identical 

subunits. 

The classical period of biophysics culminated in the description of the propagated 

action potential. A local depolarization results in a voltage-sensitive inward sodium 



current. This influx of sodium ions further depolarizes the cell and brings nearby 

unexcited regions above the firing threshold, resulting in a regenerative spread of the 

excitation along the length of the axon. The sodium currents rapidly inactivate, which is 

a voltage-dependent process. At approximately the same time, depolarization gives rise 

to voltage-sensitive potassium currents, and the resulting outward flow of potassium ions 

repolarizes the membrane. 

1.1.1.3. Ion flux occurs through distinct channels 

Until the 1960s, the concept of the ion channel as a specific pore-like molecule 

through which ions flow across the membrane was only one of several possible models to 

explain permeation. Other mechanisms considered at this time include direct movement 

through the membrane bilayer or transport via carriers (Hille, 1984). The mechanistic 

nature of the ion permeation "passageway" notwithstanding, it was not clear whether 

different ions flowed through molecularly distinct passages, or whether selective 

permeability of the membrane was regulated in some other way. Several lines of 

experiment were important in establishing the notion that distinct pore molecules 

function to effect the flux of a particular type of ion across the cell membrane. First, 

certain pharmacological agents were seen to block certain ion currents but not others. 

Specifically, puffer fish tetrodotoxin (TTX) (Narahashi et al., 1964) and marine 

dinoflagellate saxitoxin (STX)(Narahashi et al, 1967) block the sodium current during an 

action potential, but leave the potassium current unaffected, whereas the reverse is true of 

the tetraethylammonium ion (TEA+)(Hagiwara and Saito, 1959). This supported the idea 

that specific pore molecules were indeed involved in the movement of specific ions 

across the membrane. Second, the development of a technique for studying proteins 



reconstituted into a planar lipid bilayer (Mueller et al., 1962)led to the demonstration that 

these formed aqueous pores that opened in a discrete all-or-nothing manner (Ehrenstein et 

al., 1970). Third, the development of the patch clamp and gigaseal methods (Neher and 

Sakmann, 1976; Hamill et al., 1981) further advanced the study of individual channels. 

Briefly, it was discovered that a micropipette pressed against the cell membrane could be 

induced, by gentle suction, to form a seal of extremely high electrical resistance and 

mechanical stability with the underlying membrane. This enabled the study of few (or 

even single) ion channels within the small area of the underlying "patched" membrane. 

The unitary steps recorded by patch clamping constituted further support for the unique 

molecular nature of ion channels. 

Once it had been accepted that ions flow across the membrane through discrete 

channels, it did not take long until these molecules were defined as being proteinaceous 

in nature. The tools of protein chemistry, in the 1970s, and then of molecular genetics, in 

the next decade, were used to firmly establish this fact. The first channel to be cloned 

was the nicotinic acetylcholine receptor (nAChR)(Noda et al., 1983). The approach used, 

later also successful for the sodium channel, the GABA receptor and the glycine receptor, 

involved purifying the protein from a rich source (in the case of AchR the Torpedo 

electric organ) (Weill et al, 1974), chemically identifying protein sequences (Raftery et 

al., 1980), and then preparing probes for the identification of the corresponding mRNA. 

This depended on the availability of high affinity ligands that could be used for 

purification of the channel. At the time, the known potassium channel ligands TEA+ and 

4 - aminopyridine (4-AP) lacked the affinity and the specificity to be useful purification 

reagents. The first potassium channel to be cloned was the Shaker channel, the fruits of a 



coalescence of Drosophila behavioral genetics, electrophysiology and molecular cloning 

approaches. The Shaker channel has been the subject of intense study since that time, 

and is also the focus of this work. 

1.1.1.4. The potassium channels : the Shaker locus in Drosophila 

Several behavioral mutants in Drosophila melanogaster were important for the 

identification of ion channels involved in excitability. The Drosophila nervous system is 

similar to that of other arthropods (Tanouye et al., 1986). Propagated action potentials 

are regenerative sodium spikes, and potassium channels are critical for repolarization of 

the excited cell membrane. Putative excitability mutant flies showed uncontrolled leg-

shaking under ether anesthaesia, as compared to wild type Drosophila, which are 

immobile when etherized (Trout and Kaplan, 1973; Kaplan and Trout, III, 1969). Of the 

loci linked to the leg-shaking phenotype, Shaker was initially the most intensively 

studied. The other loci were ether-a-go-go (eag) and hyperkinetic (hk) (Kaplan and 

Trout, III, 1969; Wu et al, 1983), both later also found to encode potassium channel 

components. 

Evidence began to accumulate that the Shaker locus indeed encoded a potassium 

channel. The larvae of mutant flies were seen to have abnormally large and 

asynchronous neurotransmitter release at the neuromuscular junction (Jan et al., 1977). 

This was determined to be the result of a prolonged calcium influx at the nerve terminal, 

which in turn was shown to be due to abnormally slow potassium-based repolarization 

after the action potential (Jan et al., 1977). Alternative possible explanations, such as 

slowed repolarization due to inactivation defects in sodium channels, or increased 

calcium influx due to inactivation defects in calcium channels, were ruled out. Further, 



the potassium channel blocker 4-AP was shown to mimic the mutant phenotype, at the 

wild type larval neuromuscular junction (NMJ) (Ganetzky and Wu, 1983). Intracellular 

recordings of the axonal action potentials in the cervical giant fibres of Sh flies also 

indicated a delay in action potential repolarization (Tanouye and Ferrus, 1985). Again, 

this could be mimicked in the wild type fly by blocking potassium channel activity. 

Voltage clamp experiments on the pupal flight muscle (Salkoff and Wyman, 

1981a; Salkoff and Wyman, 1981b) showed that the normal development of specific 

potassium currents was inhibited. In these experiments, wild type and Sh mutant pupal 

flight muscle was voltage clamped at different times post-pupation. As will be discussed 

in more detail in the following section, different types of potassium currents (but not the 

underlying channels) had been identified and characterized by this time, based on their 

activation and inactivation kinetics, and their voltage-dependent properties. The 

developing wild type pupal flight muscle shows a well-defined temporal sequence of 

potassium current appearance (Tanouye et al., 1986). In a normal fly, transient IA 

currents are at their maximal levels after 72 hours of pupal development at 25 °C. The 

delayed rectifier (IK) appears more slowly, reaching a peak at -90 hours, at which time 

calcium channels (ICa) begin to appear as well. For certain Sh mutant pupae (Sh ), no 

IA currents were seen at 72 hours post-pupal development, but the IK and ICa currents 

developed normally. Similar results were obtained in voltage clamp experiments on adult 

and larval muscle (Salkoff and Wyman, 1983; Wu et al., 1983). Importantly, other 

mutant alleles (S7z5) did exhibit a transient A-type channel, but with altered (speeded-up) 

kinetics of inactivation, further supporting the idea that Shaker does indeed encode a 

structural component of the transient potassium channel (Wu and Haugland, 1985). In 

10 



summary, different mutant alleles of Shaker were seen to differ somewhat in the degree 

to which they resulted in a perturbed potassium current. However, the net effect tended 

in all cases to result in a defect or a delay in the repolarization of an excitable cell. This 

correlates well with the hyperexcitability phenotype of the mutant flies. 

1.1.1.5. The Shaker gene encodes a transient potassium channel 

The implication of the Shaker locus in encoding a structural component of a 

potassium channel resulted in a concerted effort to clone the Shaker gene. This was 

accomplished by chromosome walking. In 1987, several groups had obtained fragments 

of the gene, which were then used to identify complete cDNA clones (Tempel et al., 

1987; Papazian et al., 1987; Kamb et al., 1987) that were verified as encoding transient 

A-type channels by heterologous expression in Xenopus oocytes. Several aspects of the 

Shaker gene were of immediate interest. First, the sequence and the predicted protein 

structure showed unmistakable resemblance to the voltage-gated sodium and calcium 

channels, except that the latter channels (i.e. Na+ and Ca++) contain four repeats of the 

motif that appears singly in Shaker. Not only did this give an early indication that the 

Shaker channel is tetrameric, but it suggested the existence of a family of evolutionarily 

related voltage-gated ion channels, within which the potassium channel is a comparably 

ancient relative. Second, the Shaker gene was seen to undergo alternative splicing to 

generate cDNAs that encoded four kinetically distinct ion channels (Tempel et al., 1987; 

Papazian et al., 1987; Pongs et al., 1988; Schwarz et al., 1988; Kamb et al., 1988). All 

splice forms (named ShA, ShB, ShC and ShD) have the same central regions (encoded by 

eight common exons), but differ at their N- and C- termini. Localization of message and 

11 



protein in Drosophila indicated that the splice forms are expressed in a tissue-specific 

manner (Schwarz et al., 1990). 

1.1.1.6. Cloning of genes that encode other potassium channels 

The availability of the Shaker sequence made it possible to subsequently clone 

several related genes both from Drosophila and from mammals (Butler et al., 1989; Wei 

et al., 1990; Tempel et al., 1988; Douglass et al., 1990; Christie et al., 1989). The 

additional genes that encode voltage-gated potassium channels from Drosophila have 

been named Shal, Shab and Shaw. Heterologous expression in Xenopus oocytes (Wei et 

al., 1990) showed that the channels encoded by Shaker, Shal, Shab and Shaw produce 

currents that inactivate progressively more slowly. Thus the Shab and Shaw channels are 

delayed rectifier-type channels, as opposed to the transient Shaker and Shal. Homology 

to the Drosophila genes has been used to define gene families in the several mammalian 

voltage-gated potassium channels that have since been cloned. The Shaker-type 

mammalian channels are the Kvl, the Shal-type are Kv2, the Shab-type are Kv3 and the 

Shaw type are Kv4 (Chandy and Gutman, 1995). Each of these familes has multiple 

members (for instance Kvl.l - Kvl.7, in the Shaker-type channels). As will be discussed 

in more detail later, this classification based on sequence homology does not always 

translate into neatly defined electrophysiological categories. 

1.1.2. The potassium channels 

1.1.2.1. Classification based on gating properties 

Current gating characteristics were initially used to define different potassium 

channel types. Very broadly speaking, the potassium channels can be classified into the 
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delayed rectifiers (K), the transient, rapidly inactivating channels (KA), the inward 

rectifiers (Kir) and the calcium-activated potassium channels K(Ca) (Hille, 1984). 

K : The term "delayed rectifier" was first used to describe the voltage-gated potassium 

channels of axons, since they show delayed opening in response to depolarization during 

the action potential. The name is somewhat misleading, since many other potassium 

channels also show delayed activation in response to voltage. Nevertheless, the name is 

apparently retained for historical reasons. The delayed rectifiers are expressed in 

excitable cells, where they open in response to depolarization and help to keep action 

potentials short. The Drosophila Shab and Shaw are delayed rectifier potassium 

channels. 

KA : The transient KA channels are characterized by rapid, voltage-dependent activation 

followed by rapid inactivation. Moreover, hyperpolarization2 is required to remove the 

channel inactivation. So, KA channels can be opened by depolarization after a period of 

hyperpolarization. Drosophila Shaker encodes a KA type channel. Curiously, only one of 

the known Shaker-like mammalian channels (Kvl.4) encodes a transient KA channel 

(Chandy and Gutman, 1995). In other words, although the other Kv 1 (Kvl.l -Kv 1.3, 

Kvl.5) and Kv2 (Kv2.1 & Kv2.2) channels are homologous to the transient Shaker and 

Shal in Drosophila, their inactivation is nevertheless that of delayed rectifiers. 

At steady state, the KA channels conduct in the -65 to -40 mV range, and are 

thought to function at sub-threshold voltages in the interspike interval of excitable cells, 

where they help to regulate action potential frequency. Specifically, since outward 

potassium flux tends to repolarize the cell, and carry it away from the firing threshold, KA 

channels tend to act as a damper in the interspike interval. 
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Kir : The inward rectifier channels are characterized by steep voltage-dependent 

opening. The difference, in this case, from K and KA is that the inward rectifiers tend to 

open upon hyperpolarization. This feature, as well as regulation by a large number of 

intracellular signals and modifiers, constitute the biophysical signature of the inward 

rectifiers, and result in physiological roles that range from maintenance of the cell resting 

potential to control of potassium secretion and homeostasis. 

Kca: The calcium-gated potassium channels Kca open in response to raised intracellular 

calcium. These channels are expressed in almost every excitable cell. They have some 

voltage-dependence both as a result of the voltage-dependence of calcium entry, as well 

as (in some sub-types) due to an intrinsic property. The kinetics of this channel are thus a 

complex mixture of the kinetics of calcium entry, buffering, diffusion, extrusion and 

sequestration, combined with the binding kinetics of the calcium to Kca and voltage-

dependent changes in the channel itself. 

1.1.2.2. Classification based on structure 

The potassium channels may also be classified according to structural motifs 

(Miller, 2000)(Figurel.l). There are three broad classes of potassium channel structural 

motif, with some variations and combinations that will doubtless become only more 

plentiful as research continues. The first is the voltage-gated, six-transmembrane (TM) 

domain class (Kv), to which the Shaker channel belongs. The N- and C- termini of these 

channels are in the cytosol. The highly conserved region between TMs 5 and 6 is often 

called the P-loop and is thought to form part of the lining of the pore (Heginbotham et al., 

1994). Another highly conserved region is the predicted voltage sensor in TM4, in which 

2 In hyperpolarization, the membrane potential becomes more negative than at rest. 
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several positively charged residues (K/R) occur at every three or four amino acids 

(Papazian et al., 1995). For the Shaker channel, epitope-tagging combined with 

immunofluorescence microscopy has been used to verify the predicted topology of the 

channel expressed in Xenopus oocytes (Shih and Goldin, 1997). In a different approach, 

glycosylation of a reporter construct placed at different locations in mammalian Kvl .3 (a 

Shaker-type channel expressed in lymphocytes) was used to verify topology of the in 

vitro translated protein (Tu et al., 2000). 

The second class of channels consists of the two-transmembrane domain inward 

rectifiers (Kir) (Ho et al., 1993). Here too, both the N- and the C-termini are in the 

cytosol, but the core domain consists only of two, rather than of six, TM domains. The 

P-loop is present in between these two TM domains. Tandem '2P' channels that are 

either hybrids of a Kv module and a Kir module, or that consist of two Kir modules, as 

well as a calcium-gated voltage channel with an extra TM domain near the N-terminus 

have been reported (Miller, 2000). The third class of channels are the cardiac I(ks) 

channels, which are formed by coassembly of KvLQTl and the single transmembrane 

domain protein minK (Sanguinetti et al., 1996; Barhanin et al., 1996). Both 

stoichiometry and structure of these channels are controversial. 

1.1.2.3. Voltage-gated potassium channels are tetramers 

Based on the fact that the structural motif of the voltage-gated potassium channels 

(Kv) is clearly homologous to each of the four internal repeats of the voltage-gated 

sodium and calcium channels, Kv channels were long predicted to function as tetramers. 

Upon co-expression (in Xenopus oocytes) of voltage-gated channels that could be clearly 

distinguished based on their rates of inactivation or their sensitivity to TEA or peptide 
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toxins, the currents seen could not be adequately described by a simple summation of 

each of the component currents (Isacoff et al., 1990; Ruppersberg et al., 1990; Christie et 

al., 1990). The intermediate currents suggested that the channel did indeed form 

multimers. The tetrameric nature of the Shaker channel was first proven in experiments 

where wild type and (D431N) mutant Shaker channels were co-expressed in Xenopus 

oocytes (MacKinnon, 1991). These channels differ significantly in their sensitivity to 

block by the scorpion peptide toxin charybdotoxin3, with the mutant being relatively 

insensitive. Hybrid channels were generated by injecting various ratios of WT:mutant 

mRNA, and the kinetics of charybdotoxin block of these channels were analysed. The 

analysis yielded a channel subunit stoichiometry of four. This was later confirmed by 

biochemical cross-linking experiments in oocytes, mammalian tissue culture cells and 

insect cells (Schulteis et al., 1996). 

1.1.3. Diversity of potassium currents 

The potassium channels are the most diverse group of ion channels. More than 30 

distinct potassium currents have been characterized based on their biophysical properties 

alone and, when differences in pharmacology are included in the picture, this diversity 

grows to an even higher number. Variability is seen between organisms for the same 

channel class and cell type, as well as between cell types for the same channel class in a 

given organism. This almost dizzying diversity is likely to derive from a few 

fundamental sources. These are (i) the presence of several potassium channel genes, (ii) 

3 It was later discovered that the high affinity toxin in the preparation was not charybdotoxin but a 
contaminating peptide, but since this does not alter the interpretation of the experiment, the paper is here 

taken at face value. 
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alternative splicing, (iii) heterotetramerization, (iv) post-translational modifications and 

regulation and (v) auxiliary subunits. 

1.1.3.1. Potassium channel genes and the regulation of gene expression. 

The cloning of Shaker led the way to the discovery not only of related genes in 

Drosophila (Shal, Shab, Shaw), but also to the cloning of- 30 vertebrate voltage-gated 

potassium channels, primarily in mammals (Wei et al., 1990). The list of these genes is 

constantly growing, and it is clear that the potassium channels constitute a large gene 

family. The situation is made considerably more complex by the discovery that 

potassium channels show both developmental and tissue-specific regulation of gene 

expression. 

Tissue-specific gene expression : Vertebrate voltage-gated potassium channels are all 

expressed in the brain, but in addition show variable expression in other tissues (Table 1). 

In Drosophila, Shaker is expressed in muscle and photoreceptor cells, as well as in 

neurons (Sole et al., 1987; Hardie, 1991). The molecular mechanisms that result in tissue 

and cell-type specific expression of potassium channels are not well understood. There is 

some understanding of enhancer and silencer elements that control tissue specific 

expression in the voltage-gated sodium channels (Maue et al., 1990). In contrast to the 

situation for potassium channels, the sodium channels expressed in nerve and muscle 

cells appear to be encoded by different genes (Trimmer et al., 1989). 
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Developmental regulation of gene expression : There are several examples of 

developmental regulation of voltage-gated potassium channels, the molecular bases for 

which are largely unclear. During development of the rat heart, ventricular Kvl .5 

message is downregulated, but atrial expression does not change (Matsubara et al., 1991). 

In developing spinal cord neurons, Kvl.l and Kv2.2 transcriptional upregulation results 

in a significant reduction in action potential duration (Gurantz et al., 1996). Further, 

overexpression of these genes interferes with normal neuronal development (Jones and 

Ribera, 1994) indicating that developmental control of potassium channel expression 

levels can indeed be physiologically important. 

Control by hormones/external stimuli: Potassium channel expression is affected by a 

variety of intracellular molecules and external stimuli (Table 2) (Levitan and Takimoto, 

1998). For instance, glucocorticoid hormone treatment results in the up-regulation of 

Kvl.5 message and protein, with a consequent increase in potassium current, in the GH3 

pituitary cell line as well as in primary anterior pituitary cells (Takimoto et al., 1993; 

Attardi et al, 1993; Levitan et al, 1991). Cyclic AMP treatment, on the other hand, 

decreases Kvl.5 transcript levels in GH3 cells (Mori et al., 1993), but increases it in 

cardiac myocytes. The 5' UTR of Kvl. 5 is known to contain a cAMP response element 

(CRE) and a potential glucocorticoid response element (GRE) that may be involved in 

these transcriptional responses (Mori et al., 1995). Sequences in the 3' UTR of the Kvl.4 

gene have been shown to affect Kvl.4 channel expression in Xenopus oocytes, most 

probably by affecting translation efficiency (Wymore et al., 1996). Based on the fact that 

these 3'UTR sequences are absent in one of the two Kvl.4 transcripts expressed in mouse 
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brain and heart, these sequences are predicted to affect endogenous translation levels as 

well, but this has not been experimentally tested. 

Table 2 : Regulation of K* Channel Gene Expression (Levitan and Takimoto, 1998) 

Stimulus 

Glucocorticoids (stress) 

Thyrotropin-releasing hormone 

Membrane depolarization 

Morphine 

Myelination 

Thyroid hormones 

Myocardial infarction 

Renovascular hypertension 

Atrial fibrillation 

IGF-I 

Chronic hypoxia 

Genes 

Kv1.5T 

Kv1.5lKv2.1 4-

Kv1.5i 

Kv1.5lKv1.6i 

Kv1.5tKv1.6t 

Kv1.1 TKv1.2 t 

Kv4.2 t Kv4.3 t 

Kv1.4 4-Kv4.2t 

Kv2.1 1 Kv4.2 4-

Kv4.2 4- Kv4.3 4-

Kv1.5l 

Kv1.5 t 

Kv1.24-Kv1.5l 

Tissues and Cells 

GH3 cells, Anterior pituitary Ventricles, Skeletal 
muscle 

GH3 cells 

GH3 cells 

Striatal neurons 

Spinal cord neurons 

Schwann cells 

Ventricles 

Neonatal ventricular myocytes 

Ventricles 

Ventricles 

Atria 

Neonatal ventricular myocytes 

Pulmonary arterial smooth muscle cells 

1.1.3.2. Alternative splicing 

The Shaker gene has multiple exons covering 120 kB of DNA, and can be 

alternatively spliced to produce at least five different transcripts that encode kinetically 

distinct channels (Pongs et al., 1988; Schwarz et al., 1988). The voltage-gated 

mammalian Shaker-like channels, on the other hand, have uninterrupted, intron-less 

coding regions (Chandy and Gutman, 1995). The only exception to this is Kvl.7, which 

has an intron in the loop linking its first two TM domains. The variable splicing of a 

small intron in the 5' UTR of Kvl.l has been proposed to affect translation initiation of 

this channel, since it contains three potential initiation codons that could delay arrival of 

scanning ribosomes at the true start site (Tempel et al., 1988; Chandy and Gutman, 1995). 
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1.1.3.3. Heteromultimerization 

As in the case of the ShA and ShB Shaker splice forms (Isacoff et al., 1990), co-

expression of two different Shaker-like mammalian channels (Kvl.l and Kvl.4) in 

Xenopus oocytes yielded currents that could not be described as the algebraic sum of 

those produced by individual mRNAs (Ruppersberg et al, 1990; Christie et al, 1990). 

This was interpreted to mean that hetero-oligomers were formed. Moreover, Drosophila 

Shaker and the homologous rat Kvl.l were also seen to form heteromultimers in 

Xenopus oocytes (Isacoff et al., 1990). 

In contrast, fly Shaker and ether-a-go-go channels do not oligomerize (Tang et al., 

1998). Likewise, it has been shown both by electrophysiology (Salkoff et al., 1992; 

Covarrubias et al., 1991) and by co-immunoprecipitation experiments (Shen and 

Pfaffinger, 1995) that channels from different sub-families of the voltage-gated 

potassium channels do not hetero-oligomerize. Sequences that are important for sub­

family-specific channel assembly have been identified in the amino termini of several 

channels (Tu et al., 1995; Shen and Pfaffinger, 1995; Babila et al., 1994). 

Importantly, heterooligomers of voltage-gated potassium channels have been 

shown to exist in vivo. Kvl .2 and Kvl .4 have distinct but overlapping expression 

patterns in rat brain. They can be co-purified and co-immunoprecipitated with subunit-

specific antibodies (Sheng et al., 1993). Similar results were obtained for Kvl.l and 

Kvl.2 in mouse brain (Wang et al., 1993). Since then, several studies have confirmed the 

existence of heteromeric channels in vivo. It is worthwhile to point out, however, that 

despite the apparent promiscuous assembly (within sub-families) of heterogously 

expressed channels, specific Kvl heteromers predominate in the brain, and some possible 

combinations are not detected. 
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1.1.3.4. Post-translation modification and/or modulation 

Voltage-gated potassium channel activity may be modulated by a wide variety of 

post-translational mechanisms. These include covalent modifications such as 

glycosylation and phosphorylation, potential allosteric effects of lipids, nucleotides, other 

ions, or G proteins, and even direct effects of the mechanical or biophysical environment. 

Since glycosylation is dealt with in detail in the following section, it will not be described 

here. Two of the several modulators of channel function are summarized in the 

following. 

Phosphorylation : Shaker and its homologues have a conserved potential tyrosine 

kinase site in the amino-terminus. However, deleting this region had no effect on Kvl .3 

channel function (Aiyar et al., 1993), so the physiological relevance is unclear. In 

contrast, there is evidence for the significance of the PKC site(s) present in the cytosolic 

loop between TM domains 4 and 5 of all voltage-gated potassium channels. Several 

channels, specifically Kvl.3, Kv3.1, Kvl.4, Kv 4.2 and Shaker, are phosphorylated by 

PKC (Chandy and Gutman, 1995). Mutation of the Shaker PKC sites has been reported 

to produce a non-functional channel (Isacoff et al, 1992). 

Effect of nucleotides : The ATP-gated potassium channels are expressed in heart and 

skeletal muscle, pancreatic beta cells, kidney and brain (Babenko et al., 1998; Ashcroft et 

al, 1988). These channels function in the pancreatic islets to control the secretion of 

insulin. Beta cells secrete insulin in response to depolarizing calcium action potentials 

when there is glucose in the bloodstream and high ATP levels in the cells. The K(ATP) 

channels are kept closed by intracellular ATP. When serum glucose levels and 

consequently cellular ATP levels fall, the K(ATP) channels tend to open and to 

22 



hyperpolarize the cell, thus preventing calcium spikes and the consequent secretion of 

insulin. The function of the K(ATP) channels at the other locations is not known. 

1.1.3.5. Auxiliary subunits : the cytosolic KvP subunit 

The association of potassium channels with auxiliary subunits can affect the 

biophysical, pharmacological or cell biological properties of the channel. The best-

studied example is the cytosolic Kvp subunit of the voltage-gated potassium channels 

(Trimmer, 1998). Kvfiwas first cloned using sequence from a protein that co-purified 

with the a-dendrodotoxin binding complex of bovine brain (Scott et al., 1994). Since 

then, at least four mammalian genes encoding beta subunits have been identified 

(Trimmer, 1998). The hyperkinetic (Hk) gene was found to encode the Kvp homologue 

in Drosophila (Chouinard et al., 1995). 

Kvfi subunits are peripheral membrane proteins that themselves form tetramers, 

and are stably associated with the channel in the stoichiometry a4p4. They are members 

of the NAD(P)H-dependent oxidoreductase superfamily. The catalytic NADPH-binding 

site has been retained, and the protein is seen to possess the characteristic oxido-reductase 

fold (Gulbis et al., 1999). Kvpi, 2 and 3 interact with members of the Kval Shaker-like 

sub-family both in heterologous expression systems as well as (for KvP 1 and 2) in the 

brain (Rhodes et al, 1995; Rhodes et al., 1996). However, the KvP2 isoform is 

significantly more abundant in the mammalian brain and has been shown to 

predominantly colocalize with the alpha subunits in native channels (Rhodes et al., 1997). 

Kvp 1 and 2 have also been shown to interact with heterogously expressed Kvoc4 

(Nakahira et al, 1996; Perez-Garcia et al., 1999), however, only Kvp2 is found in 
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association with endogenous brain K v a 4 channels. The beta subunits vary in the nature 

of their modulatory effects on potassium channels. 

Kvpi and KvP3. In co-expression studies on Xenopus occytes, Kvpi and Kvp3 result in 

an acceleration of the macroscopic inactivation rates of several channels (Aldrich, 1994). 

The mechanism of this effect is thought to be similar to that seen in the rapidly 

inactivating alpha subunits (for instance, Shaker). In Shaker, the distal N-terminal region 

of the alpha subunit (residues 5 - 44; the "ball") is linked to the channel by the rest of the 

flexible N -terminus (the "chain") and is thought to rapidly plug the pore on the cytosolic 

face of the channel upon depolarization, resulting in fast (N-type) inactivation and a 

transient potassium current (Zagotta et al, 1990; Hoshi et al., 1990). Kvpi subunits have 

an amino-terminal domain with structural and possible functional similarity to the 

inactivating "ball" of the alpha subunits (Heinemann et al., 1994; Rettig et al., 1994) and 

are therefore proposed to effect rapid inactivation in a similar manner. 

Kvp2. The KvP2 isoform lacks the inactivation domain, despite high overall amino acid 

identity with Kvpi, and has no effect on channel inactivation kinetics. Rather, it 

increases the cell surface expression levels of several channel alpha subunits, including 

Kval.l, Kval.2, Kval.4 and Kva4.3 (Yang et al., 2001). This has been shown by 

electrophysiological measurements on channels expressed in Xenopus oocytes (Accili et 

al, 1997; Accili et al., 1998), by radioligand binding studies on channels in transfected 

tissue culture cells (Shi et al., 1996) and by immunofluorescence staining of transfected 

primary neurons with antibodies directed towards extracellular epitopes (Manganas and 

Trimmer, 2000). A combination of voltage clamp and single channel patch clamp studies 

on Kvl.2a expressed in Xenopus oocytes showed that, whereas macroscopic current 
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amplitude was increased six-fold by Kvp2 co-expression, there was no effect on single 

channel properties (Accili et al., 1997). This argues strongly for an effect of Kvp2 on 

functional surface channel number. This effect is not seen for all voltage-gated 

potassium channels, however. In fact, Kvp2 co-expression reduces the surface levels of 

Kvl.5a (Accili et al, 1997). The mechanism by which Kvp2 promotes increased surface 

channel expression is not known. 

Drosophila Hk. The only study, to date, of native beta subunit modulation of potassium 

channels has been carried out in Drosophila (Wang and Wu, 1996). As mentioned 

earlier, the Drosophila beta subunit is encoded by the Hyperkinetic gene. The relevance 

of this protein for Shaker physiology is manifest in the leg-shaking phenotype, very 

similar to that of Sh mutants, exhibited by Hk mutant flies (Chouinard et al., 1995). 

Voltage clamp analysis of the Drosophila larval body wall muscle showed diverse effects 

of Hk mutations. The mutations specifically affected the IA current while leaving I« and 

lea unchanged, thus confirming the specific interaction of the beta subunit with the 

Shaker channel in Drosophila. The kinetics of IA current inactivation as well as recovery 

from inactivation were accelerated in flies with mutant Hk alleles. Interestingly, the IA 

current amplitude was also reduced (by about 60 %) in Hk fly muscle, possibly due to an 

effect on channel surface levels similar to that seen in homologous mammalian systems. 

The hyperexcitability of mutant Hk neurons (Stern and Ganetzky, 1989) as well as the 

leg-shaking phenotype of mutant flies (Kaplan and Trout, III, 1969) corresponds well to 

the fact that the encoded beta subunit modulates IA. 

There are other auxiliary subunit proteins that are known to affect potassium 

channel activity and surface expression, and therefore to contribute to channel diversity. 
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As already mentioned, the sulfonylurea receptor (SUR) subunit of the K(ATP) channel 

confers upon an inward rectifying potassium channel (Kir6.2) the property of gating by 

intracellular ATP Further, a yeast two-hybrid screen was used to identify a putative 

chaperone protein KChap (Wible et al., 1998), which interacts with voltage-gated Kval 

and Kva2 subunits and increases current amplitude three-fold when co-expressed with 

these channels in Xenopus oocytes. Since single channel properties were not affected by 

KChap, it was proposed to increase the cell surface levels of functional channel. 

To briefly summarize what has been discussed so far : the voltage-gated 

potassium channels constitute one of several classes of potassium-conducting pores, and 

are expressed in all organisms examined so far. The first channel of this class to be 

cloned was the Shaker channel of Drosophila melanogaster, which encodes the transient, 

rapidly-inactivating IA current of Drosophila neurons and muscle. Based on homology to 

Shaker, several other families of voltage-gated channels were identified in Drosophila. 

Homology to these channels has been used in the classification of most subsequently 

identified vertebrate voltage-gated channels. Potassium currents are extraordinarily 

diverse, probably due to the converging influence of several aspects of potassium channel 

structure, expression, regulation, and cell biology. 

1.1.4. Frontiers of potassium channel biology 

1.1.4.1. High resolution structure 

The determination of high-resolution structure of potassium channels by X ray 

crystallography has only been accomplished recently. Native channels are expressed in 

relatively low abundance. Moreover, they are multi-spanning membrane proteins and, as 
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such, pose difficulties in generating crystals that diffract at atomic resolution. The early 

era of structure-function analysis, in the decade or so that followed cloning of the 

channels, was largely indirect. Structure was inferred from the pharmacological and 

biophysical effects of specific channel mutations, as well as from the accessibility of 

certain channel residues to externally applied modifying reagents. Nevertheless, a great 

deal was learned about potassium channel structure in this way. Very simply 

summarized, these approaches helped define the amino acids that line the conduction 

pore, that make up the voltage sensor, that constitute the binding sites of several 

pharmacological agents and toxins, and that contribute to selectivity of the channel for 

potassium over other cations. However, confirmation of this plethora of indirect 

information required a high-resolution structure. The discovery and cloning of a simple, 

two-TM domain bacterial potassium channel (KcsA) with very similar properties and 

extremely high homology to the TM5-P loop-TM6 pore region of eukaryotic channels 

(Schrempf et al., 1995) eventually culminated in a high-resolution structure of the 

potassium channel pore (Doyle et al., 1998). 

KcsA. The channel is a highly asymmetric structure proposed to resemble an "inverted 

teepee" (if the outside of the cell is defined as "up") with four transmembane helices, one 

from each subunit, acting as the "poles" of the teepee. The helices are tilted (-25°) 

relative to the membrane. The pore is narrowest close to the extracellular aspect of the 

channel, with a width of ~3A. This region corresponds to the signature sequence or P-

loop of the potassium channel, and is what constitutes the selectivity filter. It is lined by 

polar residues, the carbonyl oxygen atoms of which are proposed to function as 

"surrogate water" to compensate for dehydration of a potassium ion as it enters the filter. 
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thus providing evidence for predictions made early on (Hille, 1975). A ring of aromatic 

residues is positioned around the selectivity filter, and is proposed to function as a spring­

like "cuff, which holds the filter open at precisely the dimensions to accommodate a 

potassium ion. The pore widens to ~10A deeper into the channel, thus forming an 

aqueous cavity within the membrane, a strategy that would tend to counter the 

electrostatic destabilization that results from moving a charged ion across the 

phospholipid bilayer. 

KvP2 . The cytosolic Kvp2 subunit of mammalian voltage-gated channels has been 

crystallized and the structure solved (Gulbis et al, 1999). The beta subunit is tetrameric 

under native conditions and, as predicted from its sequence, is structurally similar to 

other members of the aldo-keto reductase enzyme family. Based on the fact that the 

cofactor NADP+ is seen tightly bound in the active site of Kvp2, and that the active site 

residues are appropriately positioned to effect catalysis, the beta subunit of mammalian 

voltage-gated channels is proposed to be a competent aldo-keto reductase, and to 

putatively function in linking channel activity to the redox state of the cell. 

Tl domain. Lastly, the structure of a cytosolic amino-terminal domain (the Tl assembly 

domain) of the Kvl.l channel from Aplysia californica has been solved (Kreusch et al., 

1998; Gulbis et al., 2000). The Tl tetramer is oriented coaxial with the transmembrane 

portion of the channel, and has been proposed to form a "hanging gondola" structure in 

the cytosol. At its membrane-proximal face, this structure is separated by ~20A from the 

rest of the channel, and it is through these 20A openings, lined by negatively charged 

residues, that potassium ions are proposed to approach the conduction pore. At its 

membrane-distal face, the Tl tetramer is seen to engage the beta subunit. However, it has 
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been proposed that the structure of the isolated cytosolic domain may not be identical to 

that in the native channel (Kobertz and Miller, 1999). 

For all its power, X-ray crystallography is a technique that necessarily provides 

static structures, such that information about the molecular bases of dynamic behavior is 

largely inferential. Still, some predictions can be made. In the structure of KcsA, the 

poles of the inverted tepee are bundled together at the intracellular face of the channel, 

creating an occlusion that is predicted to be the closed gate of the channel (Doyle et al., 

1998; Miller, 2000). Presumably, preparations of channels that can be manipulated into 

specific states (open or inactivated, for instance) will provide direct structural evidence 

for such predictions. Likewise, crystallization of the more complex eukaryotic channels 

could provide direct insight into structural transitions during voltage sensing. Clearly 

however, the power of crystallographic structure determination is limited to probing those 

states of the channel that can be stably and predictably maintained. 

1.1.4.2. Regulation of gene expression 

This aspect of potassium channel biology was summarized in the previous section 

and will not be dealt with in detail here. Potassium channel genes are indeed regulated at 

the transcriptional level, and the potential importance of such regulation is clear at the 

levels of development, cell and organismal physiology. For the potassium channels, as 

for all protein superfamilies, deciphering the molecular bases of gene expression is a pre­

requisite for a synthetic comprehension of the complex role that they play in the biology 

of living creatures. 
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1.1.4.3. Cell biology 

The voltage-gated potassium channels function, according to all existing 

knowledge, at the plasma membrane of the cell. Both the localization of channels to the 

cell surface and the distribution of channels once at the cell surface are not uniform, but 

vary with channel- and cell-type and, as such, are possibly the result of regulated 

processes in vivo. The generation of accurately localized and distributed channels may 

be broken down, cell biologically speaking, into (i) biogenesis of the channel, which 

includes translation of the protein, targeting to the endoplasmic reticulum, integration 

into the ER membrane, post-translational modification, folding and assembly; (ii) 

transport of the channel through the secretory pathway and the endocytic recycling 

pathway; and (iii) localization or immobilization of the channel at specific cell surface 

domains. Perturbations in one or other of these processes has been implicated, for several 

ion channels, in human pathology (Jurkat-Rott and Lehmann-Horn, 2001; Bockenhauer, 

2001). The "channelopathies" are manifest ubiquitously through human physiology, 

affecting kidney and pulmonary epithelia (ENaC in Liddle's syndrome, CFTR in cystic 

fibrosis) (Snyder et al., 1995; Qu et al., 1997), cardiac function (HERG in long QT 

syndrome) (Zhou et al, 1998) and the nervous system (Kvl in episodic ataxia) (Adelman 

et al., 1995; Manganas et al., 2001). 

1.2. Ion channel cell biology 

The experiments presented in this thesis deal principally with aspects of Shaker 

channel cell biology. The following therefore also serves as a more specific introduction 

to the work. 
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1.2.1. Biogenesis of oligomeric m e m b r a n e proteins in the E R 

1.2.1.1. Targeting to the endoplasmic reticulum 

The synthesis of channel proteins bound for the cell surface begins, as for most 

other integral membrane proteins, in the cytosol. The ribosome-nascent chain complexes 

are rapidly targeted to the ER, in a process that is initially thought to be very similar to 

the targeting of secreted proteins. Nascent chain competition experiments showed that a 

membrane protein, but not a cytosolic protein, was able to compete for binding sites at 

the ER membrane with a signal sequence-bearing secreted protein (Lingappa et al., 

1978). This suggested that translocation and integration utilize a common initial pathway 

for movement across or into the ER membrane. Further, proteins such as 

immunoglobulins are generated in either secreted or membrane-integrated forms, again 

suggesting a common pathway for biogenesis (McCune et al., 1980). Indeed, yeast 

secretion mutants that are unable to translocate proteins into the ER lumen are also 

defective in protein integration (Stirling et al., 1992). Very simplistically stated, the 

process occurs as follows (Fig. 1.2) (Walter and Johnson, 1994) (Matlack et al., 1998). 

The cytosolic ribonudeoprotein signal recognition particle (SRP) recognizes a 

hydrophobic targeting sequence on the membrane protein as it emerges from the 

ribosome, and temporarily arrests translation. The arrest is relieved upon engagement of 

SRP with the SRP receptor (SRP-R) at the ER membrane. Translation then resumes, the 

targeted ribosome associates with the protein conducting pore (sec61 or 'translocon') and 

the membrane protein is inserted into the translocon and integrated, in a poorly 

understood process, into the ER membrane. With a few noteworthy exceptions (e.g. the 

nicotinic acetylcholine receptor) (Karlin and Akabas, 1995; Anderson and Blobel, 1981), 
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integral membrane proteins lack the N-terminal hydrophobic signal sequence necessary 

for targeting of secreted proteins to the ER. Instead, the transmembrane (TM) domains 

are thought to function in this capacity. This was initially based on experiments on the 7-

TM protein opsin, which lacks an amino-terminal signal sequence (Schechter et al., 

1979). Several transmembrane domains (including TM1) of opsin were shown to target a 

reporter protein to the ER in an SRP-dependent manner, but there was no targeting 

information in the protein amino terminus (Friedlander and Blobel, 1985). 

Targeting of the voltage-gated channels has been studied for Kvl. 1 and Kvl .3. In 

vitro translation of truncated Kvl.l constructs in the presence of dog microsomes 

suggested that, indeed, TM1 was required for targeting to the ER (Shen et al., 1993). 

Surprisingly, both TM1 and TM2 were required for targeting Kvl.3 (Tu et al., 2000). 

The prokaryotic potassium channel KcsA, which is highly homologous to eukaryotic 

channels in the pore region, is targeted to the bacterial inner membrane by an SRP-

dependent mechanism (van Dalen et al., 2002). Initial ER targeting of the Shaker 

channel is assumed to require TM1, but this has not been studied. We have addressed 

this question in our work. 

1.2.1.2. Integration into the lipid bilayer 

The minimum 'integration machinery' in the mammalian ER is thought to be the 

same as the minimum 'translocation machinery', namely the SRP receptor and the sec 61 

trimer or translocon (sec 61 a, p and y). Proteoliposomes reconstituted with only these 

four proteins were seen to integrate a test membrane protein (Heinrich et al., 2000; 

Gorlich and Rapoport, 1993). Since the efficiency of reconstituted systems is inevitably 

extremely low, however, it is difficult to predict how relevant the concept of the 
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"minimum machinery' is for either translocation or integration in vivo. Membrane 

protein nascent chains (i.e. translation intermediates that are still attached to the 

ribosome) of any desired length may be generated by translating mRNA that lacks a stop 

codon. This is a commonly used method to 'freeze' translation at specific points along 

the length of the protein being studied, with the aim of analyzing the protein and lipid 

environment of the growing nascent chain. As is the case for secreted proteins, nascent 

chains of single-pass and polytopic membrane proteins can be cross-linked to sec61 a, 

sec 61P and to a third ER protein named the translocon associated membrane protein 

(TRAM) (Gorlich et al., 1992; High et al., 1991; High et al., 1993; Mothes et al., 1997; 

Do et al., 1996; Knight and High, 1998; Laird and High, 1997). 

Mechanistically, membrane protein integration is not completely understood. The 

schematic version of this process is that, at some point during translocation, the TM 

domain(s) of an integral membrane protein stop moving along the translocon axis 

perpendicular to the plane of the bilayer, but rather move laterally, perpendicular to the 

translocon axis and into the lipid bilayer. Several models have been proposed as to how 

exactly this process takes place. Specifically, the debate focuses on two issues. First, 

whether or not the ribosome remains tightly associated with the membrane during the 

synthesis of cytosolic loops of a polytopic membrane protein. Second, the degree to 

which N-terminal TM domains can stably integrate into the bilayer while the C-terminus 

of the protein is still being synthesized, and, in polytopic proteins, whether the integration 

occurs one TM domain at a time, or in groups of two or more. 

Cross-linking of membrane protein nascent chains to lipid has been demonstrated 

(Heinrich et al., 2000; Mothes et al., 1997; Martoglio et al., 1995), supporting the idea of 
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individual T M domain integration prior to release from the ribosome. In contrast, 

nascent chains of the 12-TM domain P-glycoprotein were seen to remain urea-extractable 

unless released from the ribosome (Borel and Simon, 1996), arguing against co-

translational integration of single TM domains. The argument for post-translational (or 

post-ribosome release) integration is that it would allow for co-operative folding of the 

TM domains, possibly within the translocon lumen, to form tertiary structure(s) that may 

be required for stable integration and for eventual protein function. However, the 

intriguing fact that "half molecules" of several membrane proteins, including transporters 

(Ste6) (Berkower et al., 1996) and channels (CFTR) (Chan et al., 2000), are able to 

assemble into functional proteins within the lipid bilayer is a strong indication that 

productive interactions between TM domains need not be limited to the pre-integration 

aqueous environment. Further, experiments that combine the lipid cross-linking and urea 

extraction approaches show that cross-linkability to lipid and extractability from the 

membrane are not necessarily mutually exclusive scenarios. In other words, nascent 

chains that could be cross-linked to lipid could also be extracted from the bilayer 

(Heinrich et al., 2000). The integration process may be more dynamic than has 

previously been appreciated, such that a TM domain on a nascent membrane protein may 

have reversible access to the bilayer before it is inextractably integrated. Indeed, the fact 

that membrane proteins destined for degradation are 'reverse translocated' via the 

translocon (i.e. sec61) makes this suggestion far from untenable (Kopito, 1997). 

Nevertheless, it is quite possible that different membrane proteins vary in the details of 

their integration process, and that this is reflected in the results obtained for different 

model proteins. 
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Integration of potassium channels has been studied for the Kvl.3 channel, which 

requires both TM1 and TM2 for stable integration. This is the case in the context of the 

complete channel, whereas individual TM domains can integrate in isolation (Tu et al., 

2000). Surprisingly, the prokaryotic KcsA channel associated as efficiently with pure 

lipid vesicles as with microsomes derived from the bacterial inner membrane or with 

proteoliposomes containing the bacterial translocon secYEG (van Dalen et al., 2002). 

Integration of the KcsA channel into lipid vesicles was not explicitly examined. 

However, since tetramerization was very efficient in pure lipid membranes, a result 

speculatively attributed to the relief from "molecular crowding' in microsomes, 

integration was assumed to have occurred normally. Since the targeting of KcsA is SRP-

dependent, efficient channel formation in pure lipid is an intriguing, if somewhat 

inexplicable, result and will require more careful examination. Integration of the Shaker 

channel has not been studied. We have examined integration of truncated Shaker as well 

as of full-length channel in TRAM-depleted microsomes. 

1.2.1.3. Oligomerization, folding and topogenesis 

Oligomeric membrane proteins must assemble into their final quaternary structure 

(Fig. 1.2). The ion channels, in particular, present an intriguing case, since assembly 

necessarily results in the generation of an aqueous passage at the core of the fully 

assembled multi-subunit protein. This passage is lined, it is thought, by one face of 

amphipathic transmembrane helices contributed by each subunit of the channel (Unwin, 

1989; Imoto et al, 1988; Leonard et al., 1988; Akabas and Karlin, 1995). With a few, 

sometimes controversial, exceptions (Musil and Goodenough, 1993), assembly of 

oligomeric membrane proteins occurs in the ER (Hurtley and Helenius, 1989). This is 
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true for the Shaker channel (Nagaya and Papazian, 1997a; Schulteis et al., 1998) as well 

as for mammalian and squid voltage-gated potassium channels (Babila et al., 1994; Shen 

et al., 1993; Deal et al., 1994). Association between potassium channel a and P subunits 

also occurs in the ER (Nagaya and Papazian, 1997a). 

An N-terminal region (the tetramerization or Tl domain) of voltage-gated 

potassium channels (Figure 1.1) may be involved in the tetramerization process. It is 

generally well accepted that the Tl domain is responsible for the specificity of 

heteromultimerization, whereby only channels from the same sub-family assemble into 

tetramers (Shen and Pfaffinger, 1995; Deutsch, 2002). This is likely to be crucial for 

maintenance of the cellular potassium current repertoire. The role of Tl in assembly per 

se has been more complicated to define. Deletion of the Shaker Tl domain (Schulteis et 

al., 1998) or specific mutations of conserved Tl residues (Liu et al., 2001; Minor et al., 

2000; Cushman et al., 2000) have been shown to result in unassembled, non-functional 

channels. In contrast, Tl-less versions of Kvl.3 (Tu et al., 1995; Tu et al., 1996), Kvl.l 

(Babila et al., 1994) and Shaker (Kobertz and Miller, 1999) are functional cell-surface 

channels, but may be formed at a reduced rate and efficiency. Further analysis shows that 

mutations that disrupt Kv Tl-Tl association, although they do not completely prevent 

assembly, produce elevated levels of channel monomer (Strang et al., 2001). Further, the 

resulting tetramers are more susceptible to denaturation, and there is an overall 

redistribution of the channel to a perinuclear location that possibly corresponds to the ER. 

In addition to its function in maintaining sub family-specific heteromultimerization, 

therefore, the Tl domain may aid channel assembly and probably increases the stability 

of the tetrameric state, but is not absolutely required. Consistent with its proposed 
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function in promoting potassium channel assembly, Tl forms a tetramer in solution, as 

seen in the Xray crystal structure (Pfaffinger and DeRubeis, 1995). Additionally, the 

transmembrane domains of Kv channels (Sheng et al., 1997), and the C-terminal domains 

of the inward rectifier channels (Tinker et al., 1996), have been implicated in assembly. 

It is worth pointing out that, by virtue of its position at the N-terminus of the 

voltage-gated potassium channels (Kv), the Tl domain is ideally placed to promote rapid 

assembly. It could begin to fold, and perhaps even to assemble with neighboring 

channels, early in translation. Co-translational folding has been suggested to occur on 

nascent proteins (Kolb et al., 2000; Nicola et al., 1999; Chen and Helenius, 2000). Kv 

channel tetramerization occurs more rapidly than can be measured using standard 

biochemical or cell biological techniques (Deal et al., 1994; Shen et al., 1993). It has 

been suggested that assembly is a co-translational process and, indeed, nascent chains of 

the Kvl.3 channel may be cross-linked to each other via the Tl domain (Lu et al., 2001). 

This is somewhat surprising, since the dimensions of the ribosome relative to the 

translated protein should theoretically preclude association between two nascent channel 

subunits. Nevertheless it is quite possible that, here too, the cartoon version of the world 

does not apply, and that exit sites in adjacent translating ribosomes are closer together 

than has previously been imagined. Nascent chains of influenza haemagglutinin (HA) 

have also been shown to be competent for trimerization when still attached to the 

ribosome, although in this case, association was between the nascent chain, on one hand, 

and ribosome-released, integrated subunits, on the other (Chen and Helenius, 2000). 

The ER is the cellular location at which all membrane proteins, including the ion 

channels, are thought to fold, although it is not clear that the final, ion-conducting 
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architecture of a channel is indeed attained in this organelle. Folding is often presented 

as a process distinct from translocation, integration and assembly, but it is likely that 

channel biogenesis is a continuum of events that are cooperative to one or other degree. 

There is not a great deal known about folding of potassium channels. Point mutations 

that neutralize positive charges in the Shaker voltage sensor (S4) have been shown to 

block maturation of the channel, suggesting that the protein is improperly folded 

(Papazian et al., 1995; Schulteis et al., 1998; Tiwari-Woodruff et al., 1997). Second-site 

mutations that reverse negative charges on adjacent transmembrane domains rescue 

maturation of the S4 mutants, implicating intra-subunit electrostatic interactions in 

folding of the protein. Oxidative inter-subunit cross-linking of cytosolic cysteines (N-

terminal C96 and C-terminal C505) was seen to occur in wild type Shaker, but not in the 

folding mutants (Schulteis et al., 1998). Therefore, proximity of the N- and C-termini of 

adjacent subunits was proposed to be a hallmark of folded Shaker, and, since it occurred 

in non-tetramerizing "Tl-less" channels, was proposed to occur independent of channel 

assembly. 

1.2.2. N-linked glycosylation : role in protein folding and structure 

1.2.2.1. Core glycosylation 

N-linked glycosylation occurs at asparagine residues on secreted and 

transmembrane proteins in the context Asn-X-Ser/Thr, where X is any amino acid other 

than proline (Helenius and Aebi, 2001; Kornfeld and Kornfeld, 1985). Most (~ 90%) 

extracellular consensus sites are thought to indeed be glycosylated, although with 

variable efficiency. A 14-saccharide "core" unit (Glc3Man9GlcNac2) (Figurel.3) is 
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assembled as a lipid-linked, dolichylpyrophospate precursor at the ER membrane, in a 

series of sequential reactions catalyzed by enzymes on both faces of the membrane. It is 

the first step of this assembly process (i.e. the transfer of GlcNac-1-P from UDP-GlcNac 

to dolichylphospate) that is blocked by the glycosylation inhibitor tunicamycin. The core 

oligosaccharide is coupled via an N-glycosidic linkage to the asparagine residue of the 

growing nascent polypeptide (Nilsson and von Heijne, 1993) by the action of the 

oligosaccharyl transferase in the ER lumen (Silberstein and Gilmore, 1996). The core 

glycan is identical for all proteins in a given organism. The great structural diversity of 

mature glycans results from modifications that occur later in the secretory pathway. Core 

glycosylation is, further, almost identical in all eukaryotes. The N-linked core moiety 

added in S. cerevisae, C. elegans, D. melanogaster and S. pombe is the same 14-

saccharide unit as in mammals. The only organisms known to transfer unglucosylated 

oligosaccharides (i.e Man6-9GlcNac2) to nascent proteins are the trypanosomes (Parodi, 

2000;Parodi, 1993). 

1.2.2.2. Processing and maturation of the core glycans 

In the ER, core glycosylation is rapidly followed by "trimming", in which the 

three glucose and some mannose residues are removed by ER-glucosidases I and II 

(GLU), and by mannosidases I and II (MI/IT) (Figure 1.4) (Helenius and Aebi, 2001; 

Dennis et al, 1999). A single glucose residue may be re-added by the action of the UDP-

glucose:glycoprotein glucosyl transferase (GT), which is important for glycoprotein 

folding, as will be discussed later. Upon traffic to the cis-Golgi, the mannoses are further 

trimmed by Golgi mannosidases, followed by the addition of GlcNac by N-acetyl-

glycosaminyl transferase I (Tl) in the medial Golgi. The activity of Tl, found in all 
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metazoan animals and plants but not in yeast or protozoa, is required for generation of the 

complex-type oligosaccharides. These are formed by further elaboration of the now 

"branched" sugar, by the action of additional GlcNAc transferases (TII-V), and the 

galactosyl- (Gal-T), fucosyl- (Fuc-T) and sialyl- (ST) transferases, in the trans-Golgi. 

Mature glycoproteins contain a mixture of complex and "high mannose" sugars, the latter 

having been incompletely processed in the Golgi. There is great diversity between 

complex glycans themselves, sometimes even between those at two glycosylation sites on 

the same protein. Glycan diversity is thought to be the result of the protein context, the 

tissue-specific gene expression of Golgi glycosylation enzymes, and the metabolic state 

of the cell. It results in the generation of several possible protein "glycoforms" with, in 

some cases, demonstrably different properties. In principle, this has a potentially 

enormous impact on the complexity of the protein repertoire in multicellular organisms. 

In vertebrates, proteins known to be involved in some aspect of oligosaccharide 

biosynthesis and processing constitute 0.5 1% of the translated genome (Dennis et al., 

1999). It is perhaps not surprising, then, that the only gene in which humans and 

chimpanzees have, to date, been shown to differ, is CMP-sialic acid hydroxylase, which 

modifies N-acetyl neuraminic acid to create Neu5Gc (Varki, 2001). Chimpanzees have 

this gene, as do all other mammals examined so far, but humans do not. The significance 

of this observation, if any, remains to be determined. 

1.2.2.3. Two broadly defined roles for glycosylation 

The sequence of events that generates mature glyoproteins may be regarded as 

somewhat inefficient, since it involves building a large core sugar unit, then trimming it 

down, then building it up further, trimming again, and so on. This is likely to reflect the 
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fact that glycosylation plays two types of roles, broadly speaking, in biology. First, it 

plays a role in protein folding in the ER. Addition of the hydrophilic, soluble core sugar 

to nascent polypeptides promotes efficient folding either via direct effects on protein 

stability/ conformational flexibility or via interaction with glycosylation-dependent 

chaperones. It is worth noting that sugars are rarely required to maintain the folded state 

of the protein, once it has been achieved (Helenius and Aebi, 2001; Imperiali and 

O'Connor, 1999; Olden et al., 1982). Thus, the role of glycosylation in protein folding is 

a transient one, occurring early in the life of a protein, and generally played out by the 

time traffic to the Golgi apparatus has occurred. 

Second, glycans have multiple effects on the structure and function of mature 

proteins. Because of the diversity of complex sugars, these effects may not be 

summarized as easily, and must be more generally described. A single complex glycan is 

thought to extend about 3 nm away from the protein surface, and is thus of the 

appropriate dimensions to function as a separate domain and to affect protein-protein 

interactions. Complex sugars are known to extend the serum half-life of several 

hormones (erythropoeitin, follicle stimulating hormone, luteinizing hormone) and 

coagulation factors (anti-thrombin, protein C, protein S, factor XI, VIII and IX)(Aebi and 

Hennet, 2001), to possibly regulate the specificity of protein-protein interactions at the T-

cell immunological synapse(Dustin et al., 1997), to protect lysosomal membrane proteins 

from proteolysis (Kundra and Kornfeld, 1999), to mediate intracellular sorting of the 

lysosomal hydrolases (Hille-Rehfeld, 1995) and to effect the adhesion and extravasation 

of circulating leukocytes (Rudd et al., 2001). 
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It has been speculated that the distinct roles played, on the one hand by core 

glycosylation early in protein biogenesis, and on the other, by complex glycans in mature 

proteins, reflect the different evolutionary origins of the ER and the Golgi glycosylation 

machineries (Helenius and Aebi, 2001). N-linked glycosylation has most likely evolved 

from enzymes involved in synthesis of the N-glycan-containing archaebacterial cell wall 

(Bugg and Brandish, 1994). Archaeal genomes have oligosaccharyl transferase 

homologues, and glycans are transferred from dolichylphosphate/pyrophosphate 

precursors to the same Asn-X-Ser/Thr consensus sequence as in eukaryotic cells 

(Lechner and Wieland, 1989). Golgi enzymes, in contrast, show highest sequence 

homology to cytosolic enzymes involved in sugar nucleotide metabolism (Wiggins and 

Munro, 1998; Helenius and Aebi, 2001), and may thus have evolved quite differently. 

1.2.2.4. Complex sugars are essential 

In keeping with the diverse and plentiful roles of complex sugars, deficiencies in 

glycosylation enzymes often have diverse and plentiful effects. As one might expect, the 

more upstream the enzyme that is deficient, the more severe the disorder that results. For 

example, mice lacking GlcNac-Tl die in utero with defects in multiple organs, whereas 

animals without a2,6-sialyl transferase are defective in B cell activation, but are 

nevertheless viable and fertile. Likewise, the congenital disorders of glycosylation 

(CDG) in humans present with varying severity, depending on the enzyme affected and 

the nature of the mutation (Table 3) (Aebi and Hennet, 2001). Phosphomannomutase is 

42 



Table 3 : Congenital disorders of glycosylation (Aebi and Hennet, 2001). 

N a m e 

CDG-Ia 

CDG-Ib 

CDG-Ic 

CDG-Id 

CDG-Ie 

CDG-If 

CDG-lia 

CDG-hb 

LADII/CDG-Ilc 

Ehlers-Danlos syndrom 

(progeroid form) 

Galactosemia I 

Galactosemia I 

Galactosemia II 

Gene (yeast) 

PMM2 

PM1 

ALG6 

ALG5 

DPMI 

LEC35 

MGA T2 

GLS1 

GDP-Fuc 
transporter 

XGPT 

GALT 

GALE 

GALK 

Activity 

Phosphomannomutase (Man-6-P -> Man-l-P) 

Phosphomannose isomerase (Fru-6-P -y* Man-6-P) 

a 1-3 Glycosyltransferase 

a 1-3 Mannosyltransferase 

Dolichyl-phosphate-mannose synthase (GDP-Man -> Dol-
P-Man) 

Unknown 

P1 -2 N-acetylglycosaminyltransferase 

a 1-2 Glucosidase 

Import of GDP-Fuc into Golgi and export of G M P 

Xylose pi-4 galactosyltransferase 

Gal-l-P uridyltransferase (Gal-l-P + UDP-Glc <-» UDP-
Gal + Glc-1-P) 

Galactose epimerase (UDP-Gal <-» UDP-Glc) 

Galactokinase (Gal -> Gal-l-P) 

required for synthesis of an indispensable precursor of the oligosaccharide core, and is 

the most frequently deficient enzyme in CDG (CDG-Ia). The effects range from early 

death due to cardiac or liver failure to frequent stroke-like episodes and severe 

coagulopathy. Deficiency in the Golgi GDP-fucose transporter results in hypo-

fucosylation, problems of leukocyte adhesion and consequent immunodeficiency (CDG-

IIc). Female CDG patients often do not go through puberty, which has been linked to the 

serum instability of unglycosylated FSH/LH. At the other end of the spectrum, people 

with reduced xylose P1,4-galactosyl transferase activity have glycan-deficient 

proteoglycans, leading to fragile skin and a progeroid appearance. 
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1.2.2.5. Direct effects of N-linked glycosylation on protein folding 

The development and maintenance of the multicellular organism clearly requires 

complex oligosaccharides. At the cellular level, it is the early effects of glycosylation on 

protein folding that are more obviously disrupted upon inhibition of this process. Global 

inhibition results in misfolded and aggregated proteins and is toxic for the cell, but the 

importance of core glycans for folding of specific proteins varies. In some cases, folding 

and subsequent export from the ER are absolutely dependent on glycosylation; for 

instance in the nicotinic acetylcholine receptor (Gehle et al., 1997; Ramanathan and Hall, 

1999), rhodopsin (Kaushal et al., 1994), CD4 (Tifft et al., 1992) or the high affinity IgE 

receptor (Albrecht et al, 2000). In other proteins, for example the Via vasopressin 

receptor (Hawtin et al., 2001) and the human choriogonadotropin receptor (Davis et al., 

1997), traffic has been reported to be independent of glycosylation. The oligosaccharide 

moiety may have a direct effect on the folding process. Calorimetric and spectroscopic 

studies comparing glycosylated and unglycosylated forms of the same protein indicate 

that sugar groups tend to improve solubility and increase folding rate, the latter perhaps 

by limiting the conformational options of the polypeptide close to the glycosylation site. 

Chitobiose (GlcNAc-pi,4-GlcNAc), for instance, has been shown to induce a P-turn in a 

test substrate (Wormald and Dwek, 1999). The hydrophilic sugar groups would also 

presumably direct the adjacent polypeptide chain to the surface of the folding protein. 

Alternatively, core glycans affect protein folding by mediating interactions with the 

lectin-based quality control machinery of the ER. 
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1.2.2.6. Chaperone-mediated effects of glycosylation on protein folding 

Calnexin (CNX) and calreticulin (CRT) are ER resident lectins that bind 

specifically to monoglucosylated core glycans (Cannon and Helenius, 1999; Hammond et 

al., 1994; Hebert et al., 1995). The two chaperones show some difference in the spectrum 

of cellular proteins with which they interact (Peterson et al., 1995), but this is thought to 

be largely the result of the difference in their disposition in the ER lumen, since CNX is 

membrane bound and CRT soluble (Wada et al., 1995). Specifically, if CRT was fused 

to the transmembrane domain of CNX, it associated with a set of nascent polypeptides 

very similar to those bound by CNX. There have been several reports of protein-based 

CNX/CRT interactions with de-glycosylated substrates in vitro, but they will not be 

discussed here (Ware et al., 1995). Monoglucosylated glycans are generated in the ER 

initially by the sequential action of membrane-bound ER glucosidase I (GI) and lumenal 

ER glucosidase II (GIF) (Figure 1.4) (Helenius and Aebi, 2001). Further GII activity 

cleaves off the last glucose residue, resulting in release of the substrate protein from CNX 

or CRT. Re-glucosylation is effected by a remarkable ER lumenal enzyme, the glucosyl 

transferase (GT), which preferentially re-attaches a single glucose to incompletely folded 

proteins (Parodi, 2000). This results in re-binding of CNX/CRT, thus retaining the 

substrate protein in the ER, possibly to allow folding to proceed to completion. The 

binding specificity of the chaperones, as well as the importance of de-glucosylation/ re-

glucosylation cycles and consequently of chaperone unbinding/re-binding cycles, in 

productive protein folding, were initially studied using VSVG (vesicular stomatitis virus 

glycoprotein) and influenza HA (Ellgaard et al., 1999; Hammond et al., 1994; Hammond 

and Helenius, 1994a). The list of glycoproteins subsequently found to interact with these 

chaperones, however, is extensive (Tatu and Helenius, 1999; van Leeuwen and Kearse, 
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1996; Vassilakos et al, 1996; Gelman et al, 1995) and the folding of several proteins 

requires this interaction to proceed efficiently (Vassilakos et al., 1996; Bass et al., 1998; 

Hebert et al., 1995). 

How exactly GT functions as a 'folding sensor' is incompletely understood. In 

vitro experiments have shown that purified GT prefers to glucosylate partially folded 

RNaseB over either completely folded or completely unfolded protein (Trombetta and 

Helenius, 2000). The prediction is that GT recognizes global features of partially 

unfolded proteins, such as hydrophobic patches. Indeed, GT interacts much more readily 

with hydrophobic than with hydrophilic peptides, although no functional significance of 

this interaction has been shown (Sousa and Parodi, 1995). Lastly, GT recognizes 

partially deglycosylated substrate proteins that still retain the innermost GlcNAc of the 

core oligosaccharide, but not completely deglycosyalted proteins. This has been 

interpreted to suggest a specific recognition by GT of this GlcNAc in the context of 

unfolded polypeptide, since the sugar is largely buried in folded proteins, and so not 

available for interaction with external macromolecules (Sousa and Parodi, 1995). 

Overall, the observation is that productive folding of a glycoprotein makes it a poor 

substrate for re-glucosylation by GT, as a result of which it exits the CNX/CRT cycle, 

and is exported from the ER. 

Proteins that are unable to fold are eventually eliminated, in a process called ER-

associated degradation (ERAD). Briefly, ERAD has been shown to occur in the 

proteasome, and requires ubiquitination of the substrate protein and retrograde 

translocation out of the ER, although not necessarily in that order (Kopito, 1997). 

Sequestration of proteolysis away from other folding intermediates in the ER lumen is a 
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satisfying mechanism for the selective removal of unfolded proteins. Retrograde 

translocation of both lumenal and membrane proteins is thought to occur through the 

same channel used for forward translocation i.e. sec61 (Wiertz et al, 1996), although 

there are some substrates that are degraded by a sec61-independent pathway (Walter et 

al., 2001). The current ERAD model is supported by genetic interaction between sec61 

and ubiquitin-conjugation enzymes (Sommer and Jentsch, 1993), by the retro-

translocation-defective phenotype of some sec61 mutants (Wilkinson et al., 2000), and by 

the accumulation of de-glycosylated, ubiquitinated substrate proteins upon inhibition of 

the proteasome (Gelman et al., 2002; Yu et al., 1997). Inhibition of ER mannosidase I 

activity, which removes a single al,2-linked mannose from the core sugar, has been 

shown to block ERAD of several substrate proteins (Su et al., 1993; Liu et al., 1999). 

However, properly folded proteins are not degraded as a result of mannose trimming, so 

it is not itself sufficient to promote degradation. Since it is a relatively slow process, 

mannose trimming has been proposed to serve as a "timer" in the ER, such that older (i.e. 

less recently synthesized) proteins are segregated away from the CNX/CRT cycle and, if 

still unfolded, are targeted for degradation (Jakob et al., 1998). 

CNX itself binds to the thiohprotein oxido-reductase Erp57, and thus can 

indirectly promote disulfide bond formation in the nascent glycoprotein (Oliver et al., 

1997). Deglucosylation-mediated functional Erp57 interactions have been shown to 

occur for both secreted and membrane proteins (Oliver et al., 1999; Molinari and 

Helenius, 1999). If a protein is glycosylated within its first 50 amino acids, interaction 

with CNX/CRT is thought to occur co-translationally (Molinari and Helenius, 2000). 

Moreover, this is thought to "shunt" the glycoprotein into interactions with 
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CNX/CRT/Erp57 rather than with the E R lumenal ATPase Bip, and its associated oxido-

reductase PDI (protein disulfide isomerase). Inhibiting glycosylation has been shown to 

result in increased interaction with Bip/PDI, suggesting that there are several, possibly 

redundant pathways for the productive folding of proteins. 

Perhaps reflecting this redundancy, the CNX/CRT cycle may not be absolutely 

required for protein folding in the ER. Both S. pombe and mammalian cells are viable if 

ER glucosidases I and II are inhibited, but Bip and other ER chaperones are seen to be 

up-regulated, in this case (D'Alessio et al., 1999). Under ER stress, however, S. pombe 

requires mono-glucosylated glycans to grow normally (Fanchiotti et al., 1998). S. 

cerevisiae has no GT (Fernandez et al., 1994), and its CNX differs quite considerably 

from the mammalian and S. pombe homologue (Parlati et al., 1995), yet budding yeast is 

able to fold glycoproteins normally. However, disruption of the S. cerevisiae CNX-like 

gene results in increased secretion of heterologously expressed mammalian al-

antitrypsin and of a ts mutant a-pheromone receptor (ste2-3p) that is normally ER-

retained at the restrictive temperature (Parlati et al., 1995). Therefore, there may indeed 

be some participation of the CNX-like chaperone in quality control in S. cerevisiae ER. 

The infectivity of some viruses (HIV, for instance) absolutely requires mono­

glucosylated glycans, presumably for the proper folding of surface glycoproteins (Gruters 

etal., 1987). 

The impact of lectin-based quality control at the organismal level is also 

somewhat unclear. CRT-null mice are embryonic lethals with severe defects in 

development of the heart (Mesaeli et al., 1999). Since CNX is expressed in these mice, 

the effect may be due to involvement of CRT in a process unrelated to glycoprotein 
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folding (for instance, in intracellular calcium storage). Alternatively, the chaperones are 

not functionally redundant, and CRT-mediated glycoprotein folding is indeed essential 

for cardiac development. Mice that are homozygous null for the testis-specific protein 

calmegin, 54 % identical to CNX and with similar lectin properties, are sterile, although 

spermatogenesis proceeds normally. Sperm from these mice do not adhere to the ovum 

extracellular matrix in vitro, and it has been speculated that calmegin is required as a 

chaperone for sperm glycoprotein(s) that must interact with the egg for fertilization to 

occur (Ikawa et al., 1997). In humans, a fatal congenital disorder of glycosylation has 

been reported to result from deficiency in glucosidase I (De Praeter et al., 2000). 

However, it is not clear whether this is due to a global problem in glycoprotein folding, or 

due to the sluggish generation of complex sugars. That complex sugars form at all, in the 

absence of ER glucosidase trimming activity, is due to the presence of a Golgi 

endomannosidase that is able to cleave mannoses from untrimmed core oligosaccharides, 

albeit at a reduced rate (Moore and Spiro, 1992; Moore and Spiro, 1990). 

1.2.2.7. N-linked glycosylation of potassium channels 

The mammalian voltage-gated potassium channels of rat, mouse and human 

(except for Kvl.6, in each case), as well as the Kvl channel of Aplysia, all have a single, 

conserved glycosylation site in the first extracellular loop (Chandy and Gutman, 1995). 

The Drosophila Shaker channel has two consensus sites at this position. It is worth 

pointing out that this conserved glycosylation site occurs in a region of the 

Shaker/Shaker-like channels (i.e. the TM1-TM2 loop) that is otherwise very divergent 

(Stuhmer et al., 1989), suggesting that sugars at this location are important. Rat brain 

Kvl.l, Kvl.2 and Kvl.4, but not Kvl.6, have been shown to bear complex 
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oligosaccharides (Shi and Trimmer, 1999). Shaker is glycosylated at both sites when 

expressed in mammalian, Xenopus and insect cells (Santacruz-Toloza et al, 1994a; 

Schulteis et al., 1998). It binds transiently to calnexin in a glycosylation-dependent 

manner (Nagaya et al., 1999), but no functional significance of this binding has been 

demonstrated. Shaker 'folding mutants' that fail to acquire mature Golgi glycosylation 

due to misfolding and prolonged residence in the ER, are not actively retained by 

calnexin since their association with the chaperone was seen to remain transient. It is not 

known whether Shaker is O-glycosylated, or whether it shows O-GlcNac modifications 

(Wells et al., 2001) on its cytosolic domains. 

Expression of Kvl.l in Lec8 or Lec2 mutant CHO cells, which produce hypo-

sialidated proteins, was seen to induce a positive shift in the voltage-dependence of 

channel activation (Thornhill et al., 1996). This effect could be mimicked by sialidase 

treatment of channel expressed in control cells, further implicating sialic acids in channel 

physiology. Both voltage-gated sodium and potassium channels are thought to be 

unusually heavily sialidated. Sodium channel voltage-dependent gating is also reported 

to be sensitive to channel sialic acid content (Recio-Pinto et al., 1990), possibly via an 

electrostatic mechanism (Bennett et al., 1997). Further, the scorpion peptide agitoxin 

exhibits high affinity binding to Shaker expressed in mammalian cells, but does not bind 

at all to the Drosophila channel. Although alternative explanations are quite possible, 

differences in insect and mammalian complex glycosylation have been speculatively 

invoked as being suggestive of glycan-specific differences in channel pharmacology. 

Surprisingly, given the extremely conserved nature of TM1-TM2 loop glycosylation, no 

gross folding or expression defects were reported for mutant Shaker channels in which 
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both asparagines had been changed to glutamine (N259Q+N263Q) (Santacruz-Toloza et 

al., 1994a). This mutant could be expressed in heterologous systems and appeared to be 

electrophysiologically normal, although detailed biophysical analysis was not performed. 

In contrast, glycosylation is required for normal expression of the voltage-gated sodium 

channel in neuroblastoma cells (Waechter et al., 1983). 

We further analysed the folding and traffic kinetics of the unglycosylated mutant 

Shaker channel. During the course of this work, two closely related reports were 

published. First, glycosylation was shown to increase the stability and surface expression 

of Shaker expressed in HEK293T cells (Khanna et al., 2001b), with degradation of the 

mutant proposed to occur in the cytosolic proteasome. Second, glycosylation was shown 

to increase the rate of surface delivery, but not the surface levels, of Aplysia Kvl 

expressed in Xenopus oocytes (Liu et al., 2001). 

1.2.3. Export from the endoplasmic reticulum (ER) 

1.2.3.1. Organization of the early secretory pathway 

In addition to the classical compartments of the early secretory pathway i.e. the 

ER and the cz's-cisternae of the Golgi apparatus, new structural elements have recently 

been defined. The ER-Golgi-intermediate compartment (ERGIC) consists, at the 

ultrastructural level, of vesiculo-tubular elements that are often seen to be continuous 

with the fenestrated cls-most cisterna of the Golgi (Klumperman et al., 1998). The 

ERGIC is defined by marker proteins (such as ERGIC 53) and by temperature and 

pharmacological treatments that block either anterograde ERGIC-Golgi traffic, retrograde 

ERGIC-ER traffic, or both (Hauri et al., 2000). ERGIC proteins are thought to cycle 
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constantly between the ER, ERGIC and c/s-Golgi (Schweizer et al., 1990; Klumperman 

et al., 1998; Saraste and Svensson, 1991). Whether the ERGIC is a stable compartment, 

or whether it is dynamically maintained by fusion and maturation of ER-derived vesicles, 

is still unresolved. If the Golgi serves as an example, this is likely to remain a hotly 

disputed topic for some time to come. 

1.2.3.2. The COPII coat 

Export from the ER requires the COPII coat (Barlowe et al., 1994), whereas both 

forward and retrograde traffic away from the ERGIC require COPI (coatomer) 

(Schekman and Orci, 1996). The COPII coat is a polymer of several cytosolic proteins 

that can together intrinsically effect the deformation of the lipid bilayer required for 

vesicle formation (Barlowe et al., 1994; Matsuoka et al., 1998). Sarl-GTP (a GTPase) 

binds directly to the lipid, and sequentially recruits the Sec23/24p and the Secl3/31p 

complexes (Aridor et al., 2001). The Sarl-GEF Secl2p is resident at the ER membrane, 

and thus localizes the COPII budding reaction to this site in the cell. Putative pre-

assembly complexes of Sarl-GTP, Sec23/24 and cargo are relatively stable at the ER 

membrane, but addition of Sec 13/31 to the complex greatly accelerates the Sari-GAP 

activity of Sec23 (Antonny et al., 2001) resulting in GTP hydrolysis and coat 

disassembly. Thus, it is thought, complete COPII polymer assembly is intrinsically 

unstable. This would result in rapid shedding of the coat upon vesicle budding, such that 

the transport vesicle is rendered competent for fusion with its target membrane (Antonny 

and Schekman, 2001). The details of this process are still under investigation. For 

instance, the role of cargo molecules, if any, is not clearly understood. 
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At the ER, the COPII complex accumulates at specific ribosome-free sites, which 

have been termed the transitional elements (TE) or ER exit sites. These are mostly at the 

perinuclear ER, facing the ERGIC and the cis-Golgi, although some are also seen in the 

periphery of cells (Klumperman, 2000). At the ultrastructural level, the exit sites appear 

as -350 nm protrusions of the ER membrane, often with several COPII-coated bud-like 

structures (Sesso et al., 1994; Barlowe et al., 1994). In time-lapse fluorescence 

microscopy on GFP-tagged VSVG ts045, transient accumulation at the exit sites is seen 

after release of the high temperature ER export block (Hammond and Helenius, 1994b). 

1.2.3.3. Models for selective ER export 

Essentially two different models have been proposed to describe the fundamental 

operating principle of ER export (Antonny and Schekman, 2001; Klumperman, 2000). 

As the process is studied for an increasing number of substrates, it appears that all 

proposed models may be valid in one or other case. First, the bulk flow model proposes 

that all proteins passively diffuse into export vesicles and that the ER resident proteins 

constitute a specific cadre that is actively retained or retrieved (Wieland et al., 1987). 

Alternatively, the active transport model proposes that cargo proteins are actively 

recruited into COPII-coated vesicles (Warren and Mellman, 1999). Support for the bulk 

flow model has been generated by quantitative immunoelectron microscopy on secreted 

amylase and chymotrypsinogen in exocrine pancreatic cells (Martinez-Menarguez et al., 

1999). These proteins are seen to be at the same concentration at ER exit sites as in the 

rest of the organelle, although they are subsequently significantly concentrated in the 

ERGIC lumen. This was interpreted to be inconsistent with the active transport model. 

Since pancreatic enzymes are likely to be at a high concentration in the ER of dedicated 
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secretory cells, it is not clear how applicable these observations are to export of less 

abundant substrates. 

Active recruitment into export vesicles could occur by several mechanisms. 

Membrane protein cargo could interact with COPII coat components directly via 

cytoplasmic domains, or such an interaction could be mediated by a 'transport receptor'. 

Lumenal cargo would necessarily require a transmembrane transport receptor. Cytosolic 

ER export sequences (i.e. a sequence that is necessary for export of the protein and that 

can effect export of a reporter) that directly interact with components of COPII have been 

identified in several 'frequent flyers' proteins that routinely shuttle between ER, ERGIC 

and cz's-Golgi. These include ERGIC 534 (Kappeler et al., 1997), the yeast ER-Golgi 

SNAREs Betlp and Boslp (Springer and Schekman, 1998), sed5p (Peng et al., 1999), 

and members of the p24 family (Dominguez et al., 1998), all of which have themselves 

been implicated in ER - Golgi traffic. Sequences that promote ER export have also been 

identified in other proteins, for instance in VSVG (the DXE motif) (Nishimura and 

Balch, 1997; Sevier et al., 2000), in the dopamine receptor (the FxxxFxxxF motif) 

(Bermak et al., 2001) and in several potassium channels, as described below. However, 

none of these proteins are known to directly interact with COPII components. 

A few putative transport receptors or adaptors have been identified. The yeast 

protein Shr3p mediates complex formation between amino acid permeases and COPII, 

suggesting that it may be an adaptor protein for traffic of the permeases out of the ER 

(Gilstring et al., 1999). ERGIC53 is a mannose-binding lectin that could be cross-linked 

to a soluble cathepsinZ-like molecule (Appenzeller et al., 1999), making it a potential 

4 The C-terminal FF motif of ERGIC53 does not effect export of a reporter, suggesting that it may be part 
of a larger export sequence. 
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glycoprotein transport receptor and the first putative adaptor for a lumenal cargo 

molecule. That this lectin is significant in the traffic of soluble glycoproteins is evident 

from the severely deficient coagulation factor V/VIII secretion seen in humans with 

truncated ERGIC53 (Nichols et al., 1999; Nichols et al., 1998; Neerman-Arbez et al., 

1999)(Nichols et al, Cell 93, 61; Nichols et al, Blood 93, 2261; Neerman-Arbez et al, 

Blood 93, 2253). 

Although it seems clear that active transport does occur for some proteins, it is not 

obvious whether a few central receptors and universal signals mediate this process, or 

whether there are dedicated factors and pathways for different classes of proteins. 

Indeed, a yeast GPI-linked protein (Gaslp) was shown to enter a distinct population of 

(presumably COPII-coated) vesicles compared to pro-a-factor, lending credence to the 

notion that different types of proteins may be sorted differently at the ER membrane 

(Muniz etal., 2001). 

1.2.3.4. ER export signals in potassium channels 

There has been a surge of interest in potassium channel export signals, in recent 

years, as a potential control mechanism for the cell surface channel profile (Griffith, 

2001). This was perhaps initiated by the discovery that traffic of the K(ATP) channel 

subunits, the Kir6.2 inward rectifier and the sulfonylurea receptor (SUR1), is regulated 

by novel ER retention signals (Zerangue et al., 1999). Both Kir6.2 channels and SUR1 

have C-terminal cytosolic RKR sequences that serve to retain the unassembled subunits 

in the ER (Zerangue et al., 1999), but also see (Makhina and Nichols, 1998). Assembly 

into the complete octamer (4:4) is thought to mask these sequences and allow traffic out 

of the ER, although additional regions of the subunits are also important (Hough et al., 
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2000; Sharma et al., 1999). The factors that decode R K R at the cytosolic face of the ER 

are not known. 

Individual members of several potassium channel families are seen to attain very 

different cell surface levels when expressed in heterologous systems such as Xenopus 

oocytes and COS cells. For instance, the Kir2.1, Kir2.2, Kir2.3 and Kirl.l inward 

rectifier channels are present at easily measurable surface levels in oocytes, whereas 

Kir3.1 and Kir 6.1 are not. The variable nature of the cytosolic C-termini of these 

channels led to a search for ER export sequences in the C-terminal tails of high surface 

expressors. Indeed, the FCYENE motif in the cytosolic tail of the Kir2 channels has all 

the features of an export sequence, being both necessary for Kir2.1 export and sufficient 

to promote that of a reporter protein (Ma et al., 2001). The sequence is reminiscent of the 

diacidic ER exit sequence of VSVG (Nishimura and Balch, 1997). Similarly, several 

sequences in the cytosolic amino- and carboxyl termini of the Kir3 channels have been 

shown to promote cell surface expression, probably via an effect on ER export (Ma et al., 

2002). In an interesting new development, additional sequences in the Kir3 channels 

have been implicated in the regulation of exit from a different intracellular location, 

possibly the endosomal recycling compartment (Ma et al., 2002). However, validation of 

the role that these sequences play in neuron or muscle channel traffic is still in its 

preliminary stages. 

The voltage-gated potassium channels (Kv) also show differences in their 

propensity to traffic to the cell surface, either of COS cells or hippocampal neurons 

(Manganas and Trimmer, 2000). Kvl.4 is present robustly at the cell surface, Kvl.l is 

largely in the ER, and Kvl .2 is intermediate in its distribution. Co-expression can change 
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the distribution of individual subunits, in a dose-dependent manner. ER export of the Kv 

channels has not been studied in detail. The VXXSL motif was shown to be important 

for the efficient cell surface expression of Kvl.4 (Li et al., 2000). However, mutating 

this sequence in the Shaker channel does not affect traffic (Khanna et al., 2001a), and 

replacement of the Kvl.l C-terminus with that of Kvl.4 generated a chimaera that did 

not traffic (Zhu et al., 2001). We have generated C-terminal truncated versions of the 

Shaker channel to begin to define regions that may be important for export from the 

endoplasmic reticulum. 

1.2.4. Immobilization of ion channels at the cell surface 

In contrast to some membrane proteins, such as rhodopsin in photoreceptor cells 

(Poo and Cone, 1974), voltage-gated channels at the surface of neurons and muscle are 

not free to diffuse in the plasma membrane. In experiments on adult frog skeletal muscle, 

a combination of loose-patch clamp and UV photodestruction through the patch pipette 

was used to measure the diffusion of sodium and potassium channels at the cell surface 

(Weiss et al., 1986). When compared to the average diffusion of muscle glycoproteins, 

measured by FRAP (fluorescence recovery after photobleaching) of fluorescently labeled 

lectins bound to the cell surface, the sodium channels and a large fraction (75%) of the 

potassium channels, were seen to be immobile. Some degree of immobility is practically 

a requirement for the very specific sub-cellular distributions maintained for various 

channels. In muscle, voltage-gated sodium channels are distributed in patches on the 

sarcolemma, are excluded from transverse tubules, and are present in high concentrations 

at the end plate (Roberts et al., 1986). In myelinated axons, sodium channels are present 

at high concentration in the nodes, but not in the internodal regions (Hille, 1984). Even 
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different voltage-gated potassium channels show marked variations in cell surface 

distribution. For instance, the Shaker-like Kvl.4 channel is densely localized to the pre­

synaptic swellings at nerve terminals, and also present along some axonal shafts (Cooper 

et al, 1998). In contrast, Kvl.l and Kvl.2, which are members of the same sub-family 

as Kvl.4, are found in the juxtaparanodal regions of myelinated axons and in terminal 

fields of unmyelinated CNS axons (Wang et al., 1993; Rhodes et al., 1997; Rasband et 

al, 1998). 

The PSD-95 family of the membrane-associated guanylate kinases (MAGUKs), 

are putative molecular effectors of potassium channel immobility and localization. PSD-

95 was the earliest-identified member of this family, isolated in a yeast two-hybrid screen 

for proteins that associate with the voltage-gated potassium channel (Kim et al., 1995). It 

binds to the distal C-terminus of several potassium channels, including Shaker, via its 

amino terminal PDZ (PSD95/Dlg/Z01) domains. Co-expression of PSD-95 with Shaker 

or Shaker-like potassium channels in transfected cells leads to clustering of the channels 

at the cell surface (Kim and Sheng, 1996). The degree of clustering depends on the 

intrinsic cell surface levels of the channel in question (Tiffany et al., 2000) and requires 

palmitoylation of PSD-95 at two N-terminal cysteines (El Husseini et al., 2000). 

Importantly, Drosophila with mutations in discs large (dig), the homologue of PSD-95 

(Woods and Bryant, 1991), have abnormal synapse structure (Lahey et al., 1994), and fail 

to cluster Shaker at the fly neuromuscular junction (Tejedor et al., 1997). Other cell 

surface receptors, adhesion molecules and signaling proteins have been shown to interact 

with the PSD-95 family of MAGUKs , making these proteins good candidates for 

scaffolds or organizers of multimolecular complexes at the cell surface. 



K 

K 

Figure 1.1 : Membrane topologies of the 1^ and K^ potassium channel subtypes. 
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Figure 1.3 : The core N-linked glycan. 
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2 . M a t e r i a l s a n d M e t h o d s 

2.1. Materials 

Unless otherwise stated, chemicals were purchased from Sigma Chemical Co (St. Louis, 

MO) or Roche (Indianapolis, IN). 

2.1.1. Antibodies and antibody-conjugates 

Mouse and rabbit oc-HA (HA.l 1) antibodies were from Covance (Richmond, CA), rat a-

HA (3F10) and mouse a-MYC (9E10) antibodies were from Roche, mouse monoclonal 

a-GFP (C163) and a-huTfr (H68.4) were from Zymed (So. San Francisco, CA) and 

polyclonal a-GFP was from Clontech (Palo Alto, CA). Antibodies to ER markers (oc-

calnexin, a-calreticulin, a-PDI) were from Stressgen Biotechnologies (Victoria BC, 

Canada), a-p58 and a-actin were from Sigma, oc-GOS28 was a gift from J. Rothman 

(Memorial Sloan Kettering Cancer Center, NYC) and cc-preprolactin was a gift from V. 

Lingappa (UCLA). Secondary antibodies and blocking goat serum used in 

immunofluorescence were from Jackson Immunoresearch Labs (West Grove, PA). 

Alkaline phosphatase-conjugated secondaries for Western blotting were from Sigma. 

2.1.2. Molecular biology 

Restriction enzymes were from New England Biolabs (Beverly, MA), DNA ligase was 

from Gibco (Rockville, MD), dNTPs were from AmershamPharmacia (Piscataway, NJ) 
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and Pfu D N A polymerase from Stratagene (La Jolla, CA). The PCR-Blunt kit 

(Invitrogen, Carlsbad, CA) was used for PCR cloning. 

2.1.3. Conjugation reagents 

Sulfo-NHS-LC-biotin, Sulfo-NHS-SS-biotin, NHS-biotin, biotin-PEO-maleimide, FITC-

maleimide and rhodamine-maleimide were from Pierce (Rockford, IL). 

Methanethiosulfonate reagents (MTSET-biotin, MTSEA-biotin) were from Toronto 

Biochemicals (Ontario, Canada). Alexa 488- and Alexa 594-maleimides were from 

Molecular Probes (Eugene, OR). 3H-N-ethyl-maleimide was from New England Nuclear 

(Boston, MA). 

2.2. Methods 

2.2.1. Constructs 

Shaker cDNA was obtained from R. Aldrich (Stanford, CA) and N259Q+N263Q Shaker 

cDNA was obtained from D. Papazian (UCLA). Both constructs were expressed in 

mammalian cells from pcDNA3 (Invitrogen) and in Xenopus oocytes by injection of 

mRNA constructs transcribed off the pGEM-HE vector (Liman et al., 1992). All tagged 

constructs (Sh-HA, Sh-MYC, HA-Sh, Sh-FLAG, Sh-RKR-HA, Sh-DEKKMP-HA) were 

prepared by standard PCR techniques. T3ATM2 was prepared by overlap extension 

PCR. All PCR products were checked by sequencing (Rockefeller University PDTC). 

Constructs lacking stop codons, where necessary, were prepared by site-directed 

mutagenesis (Kunkel et al., 1991) and sub-cloned into eGFP-Nl and eGFP-Cl vectors 

(Clontech) for expression of GFP fusions. Agitoxin2D20C-T7 phage gene9 cDNA was 
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obtained from R. Mackinnon and sub-cloned into the pQE31 vector (Quiagen, Valencia, 

CA) for fusion to the His6 tag. 

2.2.2. Cell culture and transient transfection 

COS-1 and HeLa cells (ATCC, Manassas, VA) were maintained in Dulbecco's MEM 

(Cellgro, Herndon, VA) supplemented with 10 % FBS in a humidified incubator at 37°C 

and 5 % CO2. For biochemical experiments, cells were transiently transfected using 

Fugene6 (Roche) or Lipofectamine 2000 (Invitrogen). For microinjection and imaging, 

cells were plated on acid-washed glass coverslips pre-coated for an hour at 37°C with 50 

ug/ml bovine plasma fibronectin (Gibco). 

2.2.3. Gel electrophoresis and analysis 

Gel electrophoresis was carried out under standard denaturing and reducing conditions on 

6%, 7%, 8%, 10% or 12% polyacryalmide gels. For non-denaturing gels, in vitro 

translations were solubilized in the desired detergent; 0.1-1% C12M (Calbiochem), 0.1-

1% Ci2E9 (Calbiochem) or 0.1-2 % CHAPS for 1 hour at 4°C, the insoluble material 

removed by centrifugation (19000 x g, 5 min, 4°C) and the samples mixed directly with 

sample buffer without SDS. Non-denaturing gels were prepared by omitting SDS from 

the standard recipe. Agitoxin was run on 20% Tricine gels, to improve resolution 

(Schagger and von Jagow, 1987). Gels were visualized by autoradiography by exposing 

to a phosphor screen and scanning on a Molecular Dynamics Phosphorimager 

(Amersham). Quantification, where relevant, was done using ImageQuant software 

(Amersham). Typically, a band was quantified as follows. The band was demarcated 
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with a box that included all signal pixels, the intensity within the box determined, and the 

background signal from an adjacent box of identical size subtracted. 

2.2.4. Preparation of cell lysates 

Cells were mechanically dislodged into ice cold PBS, spun briefly to pellet, and 

resuspended in the desired volume of solubilization buffer (150 mM NaCl, 50 mM Tris 

pH 7.5, 1 mM EDTA) with lOmM iodoacetamide, 0.25 mM PMSF, protease inhibitor 

cocktail (Complete™, EDTA-free, Roche) and either 2% CHAPS, 1% Zwittergent 3-14 

(Calbiochem, San Diego, CA), or 1% SDS. Solubilization was carried out either for 1 

hour at 4 °C (CHAPS, Zwitt.) or for 5 minutes at 100°C (SDS). Lysates were cleared by 

centrifugation (19000 X g, 5 min, 4 °C) to remove insoluble material. 

2.2.5. Western blotting 

Samples were separated by SDS-PAGE and transferred to PVDF (AmershamPharmacia) 

or nitrocellulose (Osmonics Inc., Westborough, MA) at 100V for 1 hour. All subsequent 

manipulations were in Tris-buffered saline with 0.1 % Tween (TBS-T). Blots were 

blocked in 5 % nonfat dry milk (NFDM) and incubated in 1° antibody/1% NFDM either 

for 1 hr /RT or overnight /4°C. Standard antibody concentrations for Western blots were 

a-HA (lug/ml), a-MYC (5 ng/ml), a-GFP (1 ng/ml), a-actin (6 ng/ml), a-TfR (1 ng/ml). 

All a-ER 1° antibodies were used at a 1:1000 dilution of the manufacturer's preparation. 

Blots were washed (5x) over 30 min., incubated with alkaline phosphatase-conjugated 2° 

antibody (1:20000) for 1 hour /RT, washed again as above and visualized by enhanced 

chemifluorescence (ECF) (AmershamPharmacia). For ECF, blots were incubated with 

the Vistra™ alkaline phosphatase substrate (5 sec - 5 min), dried, and scanned using the 
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450 nm laser line of a Molecular Dynamics Storm Phosphorimager (Amersham). For a-

biotin blots, alkaline phosphatase-conjugated avidin-biotin complexes (ABC kit, Pierce) 

were added instead of antibodies, for 30 min/ RT. 

2.2.6. Metabolic labeling , immunoprecipitation and EndoH digestion 

Cells were incubated in cysteine/methionine/serum -free DMEM (Sigma) for 30 min at 

37 °C, 24-26 hours post-transfection. Unless stated otherwise, labeling was carried out 

for 20 min at 37 °C with 0.25 mCi/ml EXPRE35S35Slabel (NEN) in cys/met/serum-free 

media, using 1.2 ml per 6 cm dish. The cells were chased at 37 °C in DMEM, 10 % FBS 

(or, where relevant, at 20°C in MEM, 5 % FBS) supplemented with 5 mM 

cysteine/methioine for various times, washed in cold PBS+ ( PBS with 2 mM Ca++, 1 

mM Mg++) and resuspended in solubilization buffer (150 mM NaCl, 50 mM Tris pH 7.5, 

1 mM EDTA) with 2% CHAPS, lOmM iodoacetamide, 0.25 mM PMSF, and a protease 

inhibitor cocktail (Complete™, EDTA-free, Roche). Solubilization was carried out for 

45 minutes at 4°C, and the insoluble material spun away at 19000 x g for 5 min, 4°C. 

Lysates were pre-incubated with protein A/G sepharose beads (Santa Cruz 

Biotechnology, Santa Cruz, CA) for 30 min. at 4°C to eliminate non-specific binding. 

Incubation with primary antibody was carried out overnight (10 ng/ml f°r HA.l 1; 1-3 

ng/ml for 3F10) and with protein A/G beads for a further 2 hours, both at 4°C. Beads 

were washed with 3 ml of solubilization buffer with 1 % CHAPS, 1 % Triton and 

0.25mM PMSF. The precipitated sample was eluted off the Protein A/G sepharose beads 

by heating to 100 °C for 5 minutes in 0.5% SDS, 0.1 M (3-mercaptoethanol, and then 

recovered by centrifugation. Eluted samples were split into two equal aliquots, adjusted 
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to 75 m M sodium citrate pH 5.5 and incubated with or without Endoglycosidase H 

(0.05U/ml)(Roche) and with protease inhibitors for 12 hours at 30°C. Samples were 

boiled for 5 minutes in SDS-PAGE loading buffer, separated by SDS-PAGE, and 

visualized by autoradiography on a Molecular Dynamics Storm Phosphorimager 

(Amersham). 

2.2.7. Surface biotinylation 

Transiently transfected COS cells were rinsed in PBS+, 48 hours post-transfection, and 

labeled with freshly prepared 0.5 mg/ml Sulfo-NHS-LC-biotin (Pierce) in PBS+ for 1 

hour at 4 °C. The reaction was quenched with Tris (50 mM), and the samples washed 

(X5) in cold Tris-buffered saline. Where applicable, the cells were labeled with 2.5mM 

freshly prepared MTSEA-biotin for 10 min at RT, and then quenched with cysteine (25 

mM). The cells were lysed in solubilization buffer with 1 % SDS as described above. A 

fraction of the cleared lysate (usually 10%) was removed as the total sample (T) and the 

rest of the lysate incubated with Softlink™ avidin beads (Promega, Madison, WI) for 1 

hour at RT. A fraction of the unbound sample equivalent to 10 % of starting material was 

removed (U), and the remaining re-bound to Softlink™ avidin beads. Beads from both 

precipitations were washed with 5 ml cold solubilization buffer supplemented with 1 % 

CHAPS, 1 % Triton, 0.1 % SDS, 0.25 mM PMSF and the samples were eluted by 

incubation at 100°C for 10 min (B & B2). Equal fractions of each sample (typically 

corresponding to 10 % of starting material) were subjected to Western blotting as 

described above. Quantification (only non-saturated blots) was done using ImageQuant 

software (Amersham). 
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2.2.8. Surface biotinylation of newly synthesized proteins 

Transfected cells were pulse-labeled as described above, and chased for various times (0-

3 hours). Brefeldin A, when added, was present at 5 pug/ml during the chase only. 

Castanospermine, when added, was present at 1 mM during the starvation, pulse and 

chase. At the end of the chase period, cells were rapidly cooled to 4°C, and then 

biotinylated as above. After washing in cold Tris-buffered saline (X5), the cells were 

scraped off, solubilized in 2% CHAPS, and the Shaker-HA immunoprecipitated. 

Immune complexes were eluted off the Protein A/G sepharose beads by incubation in 

elution buffer (50 mM glycine-HCl pH 2.5, 150 mM NaCl, 0.1 % Triton) at 4°C for 10 

minutes (X2). Eluted samples were collected by centrifugation, neutralized with Tris, 

and then subjected to a second affinity precipitation with Softlink™ avidin beads 

(Promega) at 4°C, to determine the biotinylated fraction. The unbound sample and the 

first wash were recovered by TCA precipitation. Equal fractions of bound and unbound 

(the wash was not quantified as preliminary experiments indicated minimal sample in this 

fraction) were run on SDS-PAGE, and the gels scanned as above. Band intensities were 

quantified using ImageQuant software (Amersham) and the biotinylated fraction 

calculated as {B/(U+B)}*100. 

2.2.9. Determination of channel half-time 

Transfected cells were pulse-labeled as described above and chased for 0-24 hours at 

37°C or 0-4 hours at 20 °C. At each time point, cells were solubilized as described 

above. Equal cpm (determined in triplicate) for each lysate were subjected to 

immunoprecipitation as described and separated by SDS-PAGE. The gels were 
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visualized by autoradiography using a Molecular Dynamics Storm Phosphorimager and 

the band intensities quantified using ImageQuant software (both Amersham). 

2.2.10. Immunostaining 

Cells plated on acid-washed, fibronectin-coated glass coverslips were fixed in methanol 

(10 min, -20°C), rinsed in PBS (10 min, x3), and blocked in 5 % normal goat serum 

(NGS) in PBS (30 min, RT). Coverslips were incubated in 1° antibody diluted in 1% 

NGS/PBS (lh, RT), rinsed as above, incubated in fluorescent 2° antibody (lh, 4°C, dark), 

rinsed as above, and imaged. 1 ° antibodies were used at the following working 

concentrations; mouse a-HA (1 ng/ml), rat a-HA (200 ng/ml), a-MYC (5 ng/ml), a-

GOS28 (1 ng/ml). All a-ER markers were diluted 1:200, and a-p58 was diluted 1:50 

from the manufacturer's preparation. All 2° antibodies were used at 8 ng/ml. 

2.2.11. Epifluorescence microscopy 

Microscopy was done on an IX-70 inverted microscope (Olympus, Melville, NY) with a 

40 X UplanApo (N.A. = 1.0) or a 60 X PlanApo (N.A. = 1.4) lens. FITC was imaged 

using an HQ485/10 excitation bandpass, a 505DCLP dichroic and an HQ515/30 emission 

bandpass filter (Chroma Technology Corp., Brattleboro, VT). TexasRed was imaged 

using a D560/40 excitation bandpass, a 595DCLP dichroic and a D630/60 emission 

bandpass filter (Chroma). The fluorescence illumination source was a 150-W xenon 

lamp (Optiquip, Highland Mills, NY). Images were acquired with a 12-bit Orca-ER 

cooled CCD (Hamamatsu, Bridgewater, NJ) controlled by our own software written in 

Labview 5.1 using the IMAQ Vision package (National Instruments, Austin, TX). 
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2.2.12. Microinjection and imaging of ER-Golgi traffic 

Cells were microinjected using micropipettes pulled from borosilicate glass (1 mm outer 

diameter, 0.78 mm inner diameter) (Sutter, Novato, CA) on a P-87 puller (Sutter). The 

DNA was diluted to 30 ng/ml in nuclear injection buffer (140 mM KC1, 10 mM Hepes 

pH 7.4), centrifuged to remove insoluble material, back-loaded into the micropipette, and 

injected into cell nuclei under constant pressure. Cells were maintained in Hank's 

Balanced Salt Solution during the 10 minute injection period. Following this, the 

medium was exchanged for pre-warmed DMEM, 10 % FBS, and the cells were incubated 

at 37 °C for 2 hours to allow for expression. The medium was exchanged for pre-cooled 

(20 °C) MEM, 5 % FBS + 50 ng/ml cycloheximide, and the cells were maintained at 

20°C for various times (0-4 hours). At the end of each traffic period, the cells were fixed 

in methanol and stained for Shaker (a-HA mouse monoclonal, anti-mouse TexasRed) and 

for the Golgi apparatus (a -GOS 28 rabbit polyclonal, anti-rabbit fluorescein). All 

imaging used a 40 X UplanApo lens (N.A. = 1.0). 

2.2.13. Image analysis 

All images for the quantitative experiment were acquired using identical parameters (i.e. 

exposure times and filters). Image analysis was done using Metamorph software 

(Universal Imaging, Downington, PA). For wild type as well as mutant channel, cells 

with a visible rim-stain were excluded from the analysis to minimize the confounding 

effect of surface channel on the data. Apart from this criterion, all cells with visually 

distinguishable signal over background were included in the analysis. The background 

was defined for each image as the average fluorescence signal from a region without 

cells. All images were background-subtracted in Metamorph. The area corresponding to 
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the Golgi signal was demarcated in the GOS28 fluorescence image and then transferred 

to the corresponding Shaker fluorescence image. Shaker fluorescence within this area 

was compared to total Shaker fluorescence, for each cell. Thresholding, region 

demarcation and analysis were done on a cell-by-cell basis. 

2.2.14. In vitro transcription 

mRNA was transcribed using T7, T3 or SP6 RNA polymerase (Ambion, Austin, TX) for 

3 hours at 37°C, precipitated with lithium chloride, washed in 70 % ethanol and 

resuspended at 1 ng/ml in RNase-free water. The template for transcription was either 

restriction-digested plasmid DNA or a Pfu-generated PCR fragment. Shaker truncations 

(the T2-T5 series) were all transcribed off PCR products, into which had been engineered 

0-4 stop codons, as desired. 

2.2.15. In vitro translation 

Shaker mRNA (1 ng Per 25 nl translation) was translated in Flexi™ rabbit reticulocyte 

lysate (RRL)(Promega) supplemented with amino acids lacking methionine, S-

methioine (NEN) and 60-100 mM KC1. All other mRNA was translated in regular RRL 

with amino acids as above. To improve the signal in translations of truncated Shaker 

(T2-T5), amino acids lacking both cysteine and methioine were used, supplemented with 

EXPRE35S35S label (NEN). Microsomes, when added, were at 1 eq (1 nl at 50A28o /ml) 

per 25 nl translation reaction. Tripeptide to competitively inhibit glycosylation (see 

section 2.2.24 below) when added, was at 0.3 mM, freshly diluted into the translation 

reaction from a 40 mM stock in DMSO. Translations were typically done at 30°C for 60 

- 90 min, and then treated with 2 mM puromycin (5 min, 25°C+5 min, 37°C) unless 
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stated otherwise. Samples were prepared for separation on SDS-polyacrylamide gels by 

precipitation (2 volumes 3M ammonium sulphate, 20 min, 4°C) followed by 

centrifugation (19000 x g, 20min, 4°C) to recover the precipitated protein. 

2.2.16. Sedimentation harvest of targeted proteins 

In vitro translations were layered onto a 150 nl cushion of 1.0M buffered sucrose (140 

mM KOAc, 2 mM Mg[OAc]2, 20mM Hepes, pH 7.5) and centrifuged (20min, 163000 x 

g, 4°C). Material in the supernatant was recovered by ammonium sulfate precipitation. 

The pellet was directly resuspended in SDS sample buffer. 

2.2.17. Floatation harvest of targeted proteins 

In vitro translations were adjusted to 2.1 M sucrose, placed (50 \if) in an ultracentrifuge 

tube, and overlayed with a step gradient of 1.9M (125 nl) and 0.25M (25 \x\) buffered 

sucrose (140 mM potassium acetate, 2 mM magnesium acetate, 20 mM Hepes, pH 7.5, 

0.2 mM PMSF). The gradients were centrifuged (2h, 217000 x g, 4°C). The top half 

(100 ul) was removed as the supernatant, and the lower half as the pellet. The protein 

was recovered from both fractions by ammonium sulfate precipitation. 

2.2.18. Membrane integration assessed by alkali extraction 

In vitro translations were harvested by sedimentation. The membrane pellets were 

resuspended in ice cold NaOH (100 mM, 30 min, 4°C) and centrifuged (30 min, 189000 x 

g, 4°C). The extracted material was recovered by TCA precipitation of the supernatant, 

and the unextracted material in the pellet was directly resuspended in SDS sample buffer. 
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2.2.19. Preparation of in vitro translated material for sucrose gradients 

In vitro translations were harvested by sedimentation and the membrane pellets 

solubilized in 2% CHAPS, unless otherwise specified. Solubilization was carried out for 

1 hour at 4°C, and the lysates cleared by centrifugation (19000 x g, 5 min, 4°C) to remove 

insoluble material. 

2.2.20. Sucrose density gradient centrifugation 

Continuous gradients of 5 - 20 % sucrose in solubilization buffer + 1 % CHAPS, 

0.25mM PMSF were prepared using a Buchler Auto-Densi Flow II C (Haake Buchler 

Instruments, Saddle Brook, NJ), to a final volume of 11 ml per gradient. Cleared lysates 

from in vitro translations or pulse-labeled cells were loaded onto a pre-chilled gradient, 

and centrifuged for 20 hours at 36000 rpm (160000 x g) in an SW41 Ti rotor (Beckman 

Instruments, Palo Alto, CA) at 4°C. The gradients were fractionated and the fractions 

either TCA precipitated with 30 ng/ml BSA as a carrier or subjected to 

immunoprecipitation, as appropriate. Size markers (Boehringer Mannheim) were BSA, 

aldolase and catalase. 

2.2.21. Lumenal depletion of ER microsomes by alkali extraction 

Lumenal depletion was carried out according to (Nicchitta and Blobel, 1993). 

Microsomes were diluted 5-fold at high pH (50 mM Hepes, 50 mM CAPS pH 9.5), 

incubated 30 min/ice, overlayed on 100 nl 0.5M sucrose (50 mM TEA, pH 7.5) and 

centrifuged (20 min, 163000 x g, 4 °C). Microsomal pellets were resuspended (0.25M 

sucrose, 50 mM TEA pH 7.5) at the same volume as the starting material. All solutions 

contained freshly added DTT (1 mM) and PMSF (0.25 mM). 
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2.2.22. L u m e n a l depletion of E R microsomes by saponin treatment 

Lumenal depletion was carried out according to (Bulleid and Freedman, 1990). Purified 

saponin was obtained from R Hegde (NIH). Microsomes were adjusted to 1 % saponin, 

layered onto a cushion of 0.5M sucrose (with 100 mM KOAc, 50 mM Hepes, pH 7.5), 

and centrifuged (20 min, 163000 x g, 4 °C). Membrane pellets were washed once (0.25M 

sucrose, 50 mM KOAc, 50 mM Hepes, pH 7.5), re-centrifuged as above, and then 

resuspended (0.25M sucrose, 50 mM KOAc, 50 mM Hepes, pH 7.5) at the starting 

volume. All solutions contained freshly added DTT (1 mM) and PMSF (0.25 mM). 

2.2.23. Preparation of glycoprotein-depleted microsomes 

All glycoprotein-depleted and TRAM-reconstituted microsomes were prepared by R. 

Hegde (NIH) (Hegde et al., 1998). 

2.2.24. Preparation of competitor tripeptide 

The N-acetylated-(Asn-Tyr-Thr)-NH2 tripeptide was prepared (Rockefeller University 

PDTC) according to (Kelleher et al., 1992) and stored at 40 mM in DMSO. 

2.2.25. Agitoxin purification 

The His6-AgTx2-D20C-gene 9 fusion was expressed in E.coli (XL 1 Blue or Ml5) from 

the pQE31 vector (Quiagen). Bacteria were harvested 4 hours post-induction with IPTG, 

and lysates prepared under native conditions were applied to a Ni-NTA agarose column 

(Quiagen). The protein was eluted with 250 mM imidazole, dialysed overnight (4°C) into 

10 mM Tris-HCl, pH 7, adjusted to ImM CaCl2, 100 mM NaCl, and then incubated with 

TPCK-treated trypsin (5 mg/ml per A28o unit)(Worthington Biochem. Corp., Lakewood, 

NJ) for 2.5 hours at RT. The trypsin digest was treated with TLCK (40 ng/ml), filtered 
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(0.2 nm), applied to a Mono S FPLC column (AmershamPharmacia), equilibrated with 

20 mM sodium phosphate, pH 8 and bound material eluted with a linear gradient of NaCl 

(0.75M/h) over 80 min. at a flow rate of 2ml/min. Peaks eluting later than 50 min were 

collected and further purified by HPLC (Waters, Milford, MA) on a reversed phase semi­

preparative C8 column (10 nm particle size, 250 x 4.6 mm) (Vydac, Hesperia, CA). 

Under standard RP-HPLC conditions, the column was equilibrated in 0.1 % TFA, and the 

sample separated using a gradient of 0.1% TFA/5% acetonitrile/10% isopropanol over 80 

minutes, at a flow rate of 0.5 ml/min. Agitoxin dimer elutes at 75 minutes. The FPLC 

peak that demonstrated the characteristic retention time was collected, the material (75') 

dried down under vacuum and resuspended in 50 mM sodium phosphate, pH 7. The A235 

was measured, the concentration determined using e = 8.88 mM'1cm'1, and the toxin 

stored in aliquots at -80°C. 

2.2.26. Labeling of agitoxin 

Agitoxin dimer was reduced with DTT (10 mM, lhr, RT) and separated on HPLC under 

standard conditions. The monomer had a characteristic retention time of 45 minutes. 

The material was collected and immediately evaporated under vacuum, to just short of 

complete dryness. The monomeric toxin was reacted with freshly prepared N-ethyl 

maleimide, 3H-N-ethyl maleimide or biotin-PEO-maleimide (0.5 mg/ml in 50 mM 

sodium phosphate, pH 7) for 2 hr/37°C and separated on RP-HPLC under standard 

conditions. Labeled material eluted at 46 - 47 minutes (NEM-conjugated toxin) or at 53 -

54 min (biotin-conjugated toxin). Peak and baseline (just before and after peak) fractions 

were collected, evaporated to dryness under vacuum, resuspended in water, the A?35 

measured, the material dried down again and resuspended in 50 mM sodium phospate, 
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pH 7. For tritiated agitoxin, serial dilutions of the labeled material were counted in a 

scintillation counter, and the specific activity determined. 

2.2.27. Toxin binding assay 

Sh-HA was translated in vitro under standard conditions, scaled up five to ten-fold. 

Targeted material was harvested by sedimentation and resuspended in toxin binding 

buffer (150 mM NaCl, 50 mM Tris, pH 7.5) with 0.5 % saponin. Bacterial membrane 

preparations -/+ the KcsA channel were obtained from A. Kuo and R. Mackinnon. The 

protein/membrane content was not determined. Equal volumes of the two preparations 

were bound to tritiated toxin in parallel with binding to in vitro-translated Shaker. 3H-

AgTx (24nM, 10-25 Ci/mmole) was bound to samples (1 h/RT) in duplicate, with cold 

toxin (2.4 nM) added to one aliquot. GF/C filters (Whatman) were pre-soaked in 

polyefhylenemine in binding buffer. Binding reactions were applied to filters on a 

suction apparatus. Filters were washed (lx) with ice cold binding buffer, dried, and 

scintillation counted. 
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3. G l y c o s y l a t i o n a f f e c t s S h a k e r c h a n n e l t r a f f i c 

The Shaker channel is glycosylated on two asparagines (N259 and N263) in the 

first extracellular loop. Elimination of glycosylation by mutation of these residues 

(N259Q+N263Q) generates a functional channel that is expressed at 

electrophysiologically measurable levels at the surface of Xenopus oocytes and 

HEK293T cells (Santacruz-Toloza et al., 1994a). In order to more closely examine 

possible effects of glycosylation on Shaker cell biology, we have carried out a study of 

the kinetics of traffic of the wild type (WT) and mutant (N259Q+N263Q, also referred to 

as NQ) channel through the secretory pathway. 

3.1. Heterologous expression of Shaker in mammalian cells 

We have used heterologous expression of wild type and NQ mutant channels in 

COS-1 and HeLa cells for our experiments. Both channels have been tagged at the 

carboxyl terminus with an HA epitope for convenient manipulation. Two-electrode 

voltage clamp measurements indicate that the epitope tag does not detectably disrupt 

structure, since the wild type tagged construct generated voltage-gated channels when 

expressed in Xenopus oocytes (data not shown). Cells transfected with the wild type Sh-

HA channel showed two bands on an a-HA Western blot (Fig. 3.1 A). The 

unglycosylated NQ mutant channel expressed as a single, slightly smaller band (Fig. 

3.1 A). Metabolic pulse labeling of transfected cells with 35S cysteine+methionine 

followed by immunoprecipitation (IP) with an a-HA antibody is shown (Fig. 3.IB). 

Identical bands were seen using MYC-tagged Shaker and a-MYC antibodies for IP or 

Western (not shown). We determined the time course of Shaker expression in transiently 
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transfected C O S (Fig 3.2A) and HeLa cells (Fig 3.2B). Unless otherwise mentioned, all 

subsequent steady-state experiments were done at 48 hours post-transfection. 

Radioactive label ( Scysteine+methionine) incorporation was also monitored at various 

times post-transfection (12 -60 hr) (not shown). All subsequent kinetic studies that 

required metabolic pulse labeling were done at 24 hours post-transfection, which was the 

earliest time at which robust labeling was reproducibly detected. 

Pulse-chase metabolic labeling of transfected COS cells, followed by 

Endoglycosidase H (EndoH) digestion and immunoprecipitation, was used to characterize 

the wild type and mutant channel expressed in COS cells (Fig. 3.3 A). In the case of the 

wild type, a 3 hour chase resulted in the appearance of a higher molecular weight EndoH-

resistant band and the concomitant disappearance of the lower molecular weight EndoH-

sensitive band (lanes 1-4), which indicates traffic of this glycosylated protein from the 

ER to the Golgi. In contrast, the NQ mutant showed no shift in molecular weight after 

this chase period, and was endoH-resistant at all chase times, as one would expect of an 

unglycosylated protein (lanes 5-8). The channels displayed a very similar profile in HeLa 

cells (Fig. 3.3B). This is consistent with the electrophoretic mobility patterns that have 

been reported in Xenopus oocytes and HEK293T cells (Santacruz-Toloza et al., 1994a; 

Schulteis et al., 1998). Lower expression levels in HeLa cells resulted in more prominent 

background bands. 

3.2. Shaker tetramerization 

The oligomerization state of wild type and mutant channel expressed in COS cells 

was assayed by sucrose density gradient centrifugation (Fig. 3.3C). At least some of the 

mutant would be expected to form normal tetramers since its electrophysiological 

80 



behavior is normal (Santacruz-Toloza et al., 1994a). However, two-electrode voltage 

clamp would not report the presence of additional misfolded channels (such as aggregates 

of channels) either at the plasma membrane or at intracellular locations. Since 

tetramerization occurs in the ER, and since this is also the site of quality control, we were 

interested in comparing the channels in the ER-localized state. Transiently transfected 

cells were pulse-labeled for a brief enough period to allow no post-ER traffic (20 min), 

and solubilized in 2 % CHAPS or Zwittergent 3-14. Zwittergent, unlike CHAPS, is 

known to disrupt the quaternary structure of both Shaker and its mammalian counterpart 

Kvl.l and render the channels monomeric (Nagaya and Papazian, 1997b; Shen et al., 

1993; Santacruz-Toloza et al., 1994b; Nagaya and Papazian, 1997a; Santacruz-Toloza et 

al., 1994b). The lysates were run on a 5-20% sucrose gradient (Fig. 3.3C). There was no 

discernible difference between the wild type and mutant channels. Specifically, there 

was no indication of increased aggregation of the mutant channel. We conclude that 

glycosylation plays no significant role in the oligomerization of the Shaker channel, at 

least as assayed by density gradient centrifugation. 

It is worth noting that, based on comparison to size markers, both the lighter and 

the heavier peaks of wild type Shaker migrate slightly smaller than expected. At -75 kD, 

the glycosylated monomer would be expected to co-migrate with BSA (66kD), whereas 

the ~ 300 kD tetramer should be slightly larger than catalase (240kD). It is possible that 

the sedimentation properties of Shaker are slightly different from those of the marker 

proteins used. Importantly, detergents known to distinguish between the monomeric (as 

observed previously in Zwittergent) and the tetrameric (as observed previously in 

CHAPS) states of the Shaker channel result in peaks (Fig. 3.3C) that, relative to each 
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other, migrate in a manner consistent with tetramerization. A comparison of channel 

solubilization in CHAPS and in standard RIPA buffer indicated that CHAPS efficiently 

solubilized the Shaker channel (not shown). 

3.3. Shaker traffic to the cell surface 

We next compared the glycosylated and unglycosylated channels in terms of their 

rate of delivery to the cell surface. In order to exclusively label surface proteins, we 

made use of a membrane impermeant, 1° amine-directed biotinylating agent (Sulfo-NHS-

LC-biotin). We first tested if this reagent was indeed membrane impermeant, under the 

conditions of our experiment (Fig. 3.4A). Upon surface biotinylation a fraction of both 

wild type (upper panel) and NQ mutant (middle panel) Shaker, but not of cytosolic actin 

(lower panel), could be precipitated by avidin beads. This precipitation depended upon 

biotinylation, and was therefore specific (compare lanes 3 and 6). Moreover, re-

precipitation of the unbound fraction (lane 7) indicated that the precipitation was 

complete, since there was no further material recovered. Lastly, probing for the 

endogenous transferrin receptor (TfR) in biotinylated HeLa cells yielded a TfR surface 

fraction (-30 %) consistent with that reported by other methods (Fig. 3.4B) (Johnson et 

al., 1998). In contrast to the Sulfo-NHS-LC-biotinylating agent, an impermeant cysteine-

directed reagent (MTSEA-biotin) was unable to biotinylate Shaker expressed in COS 

cells (Fig. 3.4C), in keeping with the predicted topology of the channel. Post-lysis 

treatment with MTSEA-biotin resulted in channel that bound completely to avidin beads, 

presumably as a result of biotinylation on intracellular cysteines (Fig. 3.4C, lanes 7-9). 
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The rate of surface delivery of wild type and mutant channel was quantified using 

1° amine-directed surface biotinylation at various chase times after a pulse of radioactive 

cysteine/methionine. We employed a double precipitation protocol (Fig. 3.5A), in which 

the radiolabeled channel was first immunoprecipitated out of a CHAPS lysate (PI), then 

eluted from the protein A-sepharose at low pH, and finally re-precipitated with avidin to 

determine the biotinylated fraction (P2). We established conditions under which the 

precipitation reagents were not limiting, to ensure that both PI and P2 were complete. 

This was tested by re-precipitation of the unbound material with the appropriate reagent, 

followed by a-HA Western blotting. Re-precipitation of the unbound material from PI 

with a-HA and protein A/G beads (Fig. 3.5B, lane 2) or with beads alone (Fig. 3.5B, lane 

3) yielded a very low signal (< 5%) compared to that in PI (Fig. 3.5B, lane 1). Avidin re-

precipitation of the unbound material from P2 also yielded a low to nonexistent signal 

(Fig. 3.5C, compare lanes 2 &3). These optimizations were also done on HeLa cells (not 

shown). 

The unbound and bound fractions (P2) from a few time points of a representative 

pulse-chase experiment are shown (Fig. 3.6A). It is clear that the signal in the bound 

fraction increases at longer chase times for both the WT (upper panel) and the mutant 

(lower panel) channel, which is what would be expected as the channel traffics through 

the secretory pathway to the cell surface. Quantification of data from three independent 

experiments shows that the rate and extent of surface biotinylation was markedly higher 

in the wild type channel as compared to the mutant, at chase times of 1.5 - 3 hours (Fig. 

3.6C). Surface fractions of the channel were compared at 0 and 3 hours of chase in HeLa 

cells (Fig. 3.6D) and a similar trend was seen. If brefeldin A (BFA), which blocks traffic 
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through the secretory pathway, was included during the chase period, the biotinylated 

fraction of wild type at 2 hours of chase was at background levels (Fig. 3.6B, lane 4; 

3.7C). This strongly suggests that the experiment does indeed report on Shaker traffic 

through the secretory pathway to the cell surface. Moreover, when we assessed the 

avidin-bound fraction of radiolabeled actin, it was found to be vanishingly small at all 

chase times (< 0.5%, 3 hour chase; Fig. 3.6B, lane 6). This further confirms that the 

biotinylation is surface specific. 

Representative data from an independent set of pulse chase/surface biotinylation 

experiments done for longer chase times is shown (Fig 3.7A). The WT ER-localized (*) 

and Golgi-localized (**) bands, as well as the mutant (<) have been indicated, to 

distinguish them from background bands seen in this experiment. Again, there was a 

difference in the initial rate of surface delivery of the two channels. However, at longer 

chase times (> 5 hours), the unglycosylated mutant Shaker attained surface levels 

indistinguishable from wild type (Fig. 3.7B). Combined data from all experiments at all 

time points is shown (Fig 3.7C, n varies for different time points), again emphasizing that 

the initial difference between WT and mutant channel is no longer apparent after - 5 

hours of chase. This is consistent with the fact that the surface fractions of wild type and 

mutant channel at steady state, as measured by surface biotinylation at steady state, are 

not significantly different from each other (Fig. 3.7D). 
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3.4. Shaker traffic through the early secretory pathway 

We set out to identify the step in Shaker traffic that is affected by glycosylation. 

The observation that the fraction of glycosylated channel at the surface increases more 

quickly than that of the non-glycosylated channel could be attributed to faster transport 

through the secretory pathway. Delivery to the cell surface may be crudely broken down, 

in traffic terms, into ER-Golgi and Golgi-plasma membrane traffic. Exit from the ER has 

been shown to be the rate-limiting step in transport of other membrane proteins through 

the secretory pathway, since it is the location at which folding and quality control occur 

(Helenius and Aebi, 2001; Lodish et al., 1983; Helenius and Aebi, 2001). Thus this was 

the transport step we examined. 

3.4.1. Quantitative imaging of ER-to-Golgi traffic 

Standard biochemical assays for ER-to-Golgi traffic rely upon changes in 

glycosylated moieties as the protein moves through the secretory pathway. Since this 

was not possible for the unglycosylated mutant channel, we used quantitative imaging to 

compare ER-to-Golgi traffic rates of wild type and mutant Shaker. The experiment is 

schematically depicted, and may be done either by imaging of GFP-tagged channel in 

live cells (Fig. 3.8B) or by imaging of HA-tagged channel with immunofluorescence 

staining in fixed cells (Fig. 3.8A). Briefly, intranuclear microinjection of cDNA was 

used to generate a synchronous population of cells expressing either wild type or mutant 

channel. Injection was limited to a period of (<) ten minutes to maximize synchronicity. 

The cells were then incubated at 37 °C for 2 hours to allow for expression of the channel. 

This expression time was the shortest possible, balancing the requirement for a 
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reasonable signal against that for minimal traffic out of the ER. After this period, cells 

were treated with cycloheximide to inhibit further protein synthesis, and shifted to 20 °C 

to block any post-Golgi traffic. The cells were allowed to traffic at 20 °C for various 

times (between 0 and 4 hours). In the case of Sh-GFP imaging, the cells were allowed to 

traffic on a temperature-controlled microscope stage, and fluorescence images taken at 

appropriate intervals to monitor changes in the sub-cellular distribution of the channel 

over time. In the case of Sh-HA imaging, the cells were fixed at various traffic times, 

stained and then imaged. The Sh-HA channels were imaged by immunofluorescence 

staining using a monoclonal antibody against the carboxyl terminus HA tag. The Golgi 

apparatus was stained with affinity-purified polyclonal antibody to GOS 28, a Golgi 

SNARE with a fixed distribution throughout the cis-, medial- and trans-Golgi (Hay et al., 

1998; Orci et al., 2000; Orci et al., 2000). The rate at which wild type and mutant 

channel moved from ER to Golgi was compared. 

The value of intranuclear microinjection as the method of DNA introduction into 

the cell is that a synchronously expressing population of cells can be generated. 

Combined with the possibility to block protein synthesis after a certain expression period 

and to restrict post-Golgi traffic (with the 20 °C temperature block), this makes it 

possible to study a synchronously synthesized population of protein as it traffics through 

the early secretory pathway. Quantitative kinetic imaging is more often used to study 

traffic of GFP-tagged proteins in live cells, and this is the approach that we initially 

wished to use. Not only is the experiment simpler, as the cells do not have to be fixed or 

stained, but since traffic is monitored in a single cohort of cells over time, this approach 

limits the variation due to differences between cells. 
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3.4.2. Characterization of GFP-tagged Shaker 

We generated Shaker constructs tagged with GFP either at the amino terminus 

(GFP-Sh-HA) or the carboxyl terminus (Sh-YFP) (Fig. 3.9A). Lysates from transfected 

COS cells were probed on a-GFP Western blots (Fig. 3.9A). As predicted, both 

constructs generated two bands, presumably corresponding to the immature (ER) and 

mature (Golgi) forms of the protein, each of which is -30 kD heavier than the 

corresponding band for the untagged Shaker channel. Sh-YFP is specifically present in 

lysates from transfected cells (Fig. 3.9B) and can be labeled with a cell-impermeant 

amine-directed biotinylating agent, indicating that it is present on the cell surface (Fig. 

3.9C, lane 3). Although Sh-YFP- transfected COS cells do appear to have surface GFP 

by fluorescence microscopy, diffuse cytosolic GFP is sometimes also seen (Fig. 3.9D, 

TF, upper panel), predominantly in cells with high expression levels. When Sh-YFP was 

expressed by microinjection of cDNA, which typically results in much lower expression 

levels than transfection (at early times post-injection), no cytosolic GFP fluorescence was 

seen (Fig. 3.9D, INJ, lower panel). Since our experiment required expression by 

microinjection, we continued characterizing Sh-YFP despite the presence of cytosolic 

YFP in transfected cells. Surprisingly, no YFP-containing lower molecular weight band 

was detected on an a-GFP Western (Fig. 3.9E). 

GFP-Sh-HA expressed in COS cells was immunoprecipitated with a-HA, 

followed by Western blotting either with a-GFP or a-HA (Fig. 3.10A). A lower 

molecular weight (-46 kD) band was seen on the a-GFP (Fig. 3.11 A, lane 2), but not the 

a-HA (Fig. 3.11 A, lane 4), Western blot. Since the material had first been 

immunoprecipitated with an a-HA antibody, the source of this band was not initially 
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obvious. The GFP and H A tags are at two opposite ends of the > 75 kD Shaker protein, 

so they do not exist in cis other than on the full-length molecule. An explanation that 

accounts for all observations is that the 46 kD band represents an amino-terminal 

fragment of the protein, containing the GFP coding sequence (27 kD) as well as part of 

the Shaker amino terminus. Since Shaker tetramerization is promoted via amino-terminal 

domains, and since this can occur in solution (Pfaffinger and DeRubeis, 1995), it is 

possible that the 46 kD amino-terminal fragment was co-precipitated with full length 

channel in the a-HA IP. Indeed, fluorescence microscopy on GFP-Sh-HA-transfected 

(Fig. 3.1 OB, TF, left panel) or microinjected (Fig. 3.1 OB, INJ, middle panel) HeLa cells 

showed abundant cytosolic GFP, although fixation and immunofluorescence staining 

with a-HA indicated that the full-length channel was appropriately targeted to internal 

membranes (Fig. 3.1 OB, INJ, right panel). As a result, GFP-Sh-HA was not useful for 

imaging experiments. Consequently, experiments to conclusively establish the identity of 

the 46 kD band were not pursued further. Instead, we continued to characterize the Sh-

YFP construct. 

We performed pulse-chase experiments on transfected COS cells to compare the 

traffic of Sh-HA and Sh-YFP from the ER to the Golgi. Representative experiments are 

shown (Fig. 3.11 A). Traffic of Sh-HA to the Golgi, as indicated by chase to the higher 

molecular weight form of the channel, is almost complete by 3 hours of chase. In 

contrast, traffic of Sh-YFP is very inefficient, over the same time period. The rate of 

appearance of the higher molecular weight Golgi band was quantified for multiple 

experiments (Fig. 3.1 IC). Sh-YFP transits more slowly from ER to Golgi than Sh-HA. 

Sh-YFP was therefore not considered optimal for an experiment in which traffic of 



glycosylated and unglycosylated channel were to be compared. Specifically, we 

reasoned that an already depressed rate of ER export as a result of the C-terminal YFP 

could mask a putative difference between wild type and NQ mutant forms of this 

construct. GFP-Sh-HA trafficked from ER to Golgi with intermediate kinetics (not 

shown). 

3.4.3. ER-to-Golgi traffic of WT and NQ mutant Shaker channel 

The live cell experiment thus thwarted, we compared traffic of wild type and 

mutant forms of the Sh-HA channel, according to the alternative protocol (Fig. 3.8A). 

Although imaging of kinetics using fixed cells is more laborious and prone to error, we 

found that a large sample size and a rigid adherence to a short (< 10 min) injection period 

served to limit the spread of the data for a given protein in several independent 

experiments. A large sample size (n > 40 cells) and triple-blind experiments (at the 

injection, imaging and quantification stages) gave us confidence in the result. We used 

HeLa cells for these experiments, for two reasons. First, COS cells were found to be 

extremely sensitive to microinjection. A frustratingly small fraction survived this process 

and went on to show protein expression, in our hands. Second and more important, 

biochemical pulse-chase experiments at 20°C indicated that Sh-HA (WT) did not chase 

into the high molecular weight Golgi form within 3 hours, in COS cells (Fig 3.12A). 

This was also true at 6 hours of chase at 20°C (not shown). It is not clear whether this 

was due to a problem in traffic or due to inefficient activity of the Golgi glycosylation 

enzymes at the lower temperature. However, Sh-HA expressed in HeLa cells did chase 

into the high molecular weight Golgi form at 20°C, albeit at lower rates (predictably) 
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than observed at physiological temperature (Fig. 3.12B, lanes 4 -6). A short-lived 

background band (o) is present at ~93kD, inconveniently close to the immature (*) and 

mature (**) Sh-HA bands. Untransfected HeLa cells have been shown for comparison 

(Fig. 3.12B, lanes 1-3). 

In preparation for the imaging of Shaker traffic from ER to Golgi, we were 

required to empirically determine two parameters. First, the optimum expression time 

post-injection was found to be 2 hours at 37 °C (not shown). This was the minimum time 

required for adequate Sh-HA fluorescence levels, upon immunostain. Second, a suitable 

chase time (at 20 °C) was determined. Preliminary experiments showed that the 

fluorescence pattern of wild type channel did not change a great deal after - 4 hours at 

20°C, in the presence of cycloheximide. Thus, all subsequent experiments employed an 

expression period of 2 hours at 37°C (the "pulse") and a traffic period of 4 hours at 20°C 

(the "chase"). 

The images shown (Fig. 3.13A) represent the beginning and end-point of a 

complete kinetic imaging experiment for WT and NQ mutant Shaker channel. For both 

channels, the fluorescence pattern shifted from more diffuse and reticular to more 

localized and juxtanuclear, over time. Moreover, the juxtanuclear Shaker fluorescence at 

later times co-localized with Golgi fluorescence (shown in the lower row, in each case). 

We used antibodies against three different ER resident proteins PDI (not shown), 

calnexin (CNX, Fig. 3.14A, upper panel) and calreticulin (CRT. Fig. 3.14A, lower panel) 

to stain cells at early traffic times, in order to confirm that the reticular pattern did indeed 

colocalize with the ER. This indicates that, as is expected for a membrane protein, the 

channel moved from an ER to a Golgi location over time. Staining of uninjected cells 
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(Figure 3.13B) shows that there was no detectable bleedthrough from the Golgi 

fluorescence into the Shaker fluorescence signal. Moreover, if BFA was included during 

the 20°C chase period, WT channel remained largely reticular after 3 hours of traffic 

(Figure 3.13C). This is consistent with the conclusion that the change in fluorescence 

pattern is the consequence of transport out of the ER to the Golgi. 

It is qualitatively evident from the images shown (Fig 3.13A), that the residual 

reticular non-Golgi stain after 4 hours of traffic was consistently higher in cells that 

expressed the unglycosylated mutant channel when compared to cells expressing the wild 

type. Immunofluorescence staining for a resident ER protein (CNX) after 3 hours of 

traffic at 20°C shows that this residual non-Golgi Shaker colocalized to some extent with 

the ER. This is shown for both wild type (Fig 3.14B, upper panel) and mutant (Fig 

3.14B, lower panel) Shaker. The marked cell (Fig. 3.14B upper panel, indicated with 

arrow) is pointed out as an example of a cell that has undergone some traffic, yet 

nevertheless shows substantial Shaker fluorescence in the ER. Although there is punctate 

perinuclear Shaker fluorescence that does not significantly overlap with the ER stain, and 

almost certainly represents Golgi (red in merge, immediate upper-left of nucleus, also 

upper-right of nucleus but slightly further away from nuclear edge), there is a significant 

amount of Shaker that does co-localize with calnexin in this cell (along the right edge of 

the nucleus). 

To quantify these data, we determined the fraction of Shaker fluorescence that co-

localized with the Golgi at various traffic times after addition of cycloheximide and shift 

to 20 °C. For each cell, the signal in the Golgi fluorescence channel was used to delineate 

the boundary of the organelle, and the Shaker fluorescence intensity in this area was 
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quantified relative to the total Shaker fluorescence intensity in the same cell. 

Quantification of >40 cells for each time point is shown (Figure 3.15). The fraction of 

WT or NQ Shaker fluorescence in the Golgi area is shown over time. Although there is 

some increase in the Golgi fraction for the mutant channel, it is clear that the rate at 

which it moved from ER to Golgi is markedly slower than that of the wild type, at 20°C. 

Traffic of the WT channel was also incomplete, at the lower temperature. When this was 

monitored by pulse-chase of metabolically labeled HeLa cells, the mean estimated Golgi 

fraction (30% +1-1; n = 3) was roughly comparable to that measured by the imaging 

experiment, over a 3 hour chase period (Fig 3.12B). It should be emphasized that this is 

only an estimate, since a background band (see lanes 1-3, Fig 3.12B) close to the Shaker 

bands of interest made quantification difficult. 

3.4.4. Imaging of ER-to-Golgi traffic : further controls and caveats 

We attempted to create Sh-HA constructs that were retained in the ER by 

attaching ER retention sequences (DEKKMP or RKR) to the channel carboxyl terminus. 

This was for the purpose of testing the extent to which Shaker fluorescence that co-

localizes with the Golgi does indeed represent protein that has trafficked to the Golgi. 

The constructs were expressed in COS cells and examined on a-HA Western blots (Fig. 

3.16A) and by pulse-chase of metabolically labeled cells (Fig. 3.16B). Neither sequence 

functioned to retain Shaker in the ER, as evidenced by efficient chase to the Golgi form 

of the channel. Further, the DEKKMP-tagged channel was detected at very low levels. 

This approach was abandoned. Instead, we performed the identical image analysis on 

uninjected cells that had been stained for just ER and Golgi markers (Fig. 3.16C), and 

92 



determined the fraction of a protein in the E R that is reported, by our analysis method, to 

colocalize with the Golgi. This was found to be 5 % (+/- 2, n = 13) for the resident ER 

protein PDI. Since the fraction of Shaker fluorescence that co-localized with the Golgi at 

later traffic times was significantly higher, we conclude that we are measuring 

fluorescence from Shaker that has, indeed, trafficked to the Golgi and is not merely 

juxtaposed to it. Moreover, the mean fractional Golgi signal that was reported for 

uninjected cells that had been stained for Shaker and Golgi was also 5 % (+/- 1.5, n = 11). 

This latter signal is the overall background of the experiment, and would be a sum of 

cellular autofluorescence (which tends to be slightly higher in the perinuclear region than 

in the rest of the cell), any bleedthrough from the Golgi immunofluorescence channel, 

and non-specific fluorescence background. The fraction of an ER resident protein that is 

reported to co-localize with the Golgi, therefore, is at background levels. For the purpose 

of comparison, the identical analysis on cells stained for two different Golgi markers (p58 

and GOS28), both of which maintain a uniform Golgi distribution, yields a co-

localization of 85-90%). We conclude that unglycosylated mutant Shaker traffics more 

slowly from ER to Golgi than wild type, at 20 °C. We would predict that at least part of 

the observed difference in the surface delivery rate of the two channels stems from a 

difference in their ER-to-Golgi traffic. 

As a caveat to this interpretation, the following must be considered. The method 

of image analysis we have employed makes the assumption that all non-Golgi 

fluorescence in the cell can be attributed to Shaker that has not as yet trafficked to the 

Golgi (i.e Shaker that is at a pre-Golgi location in the secretory pathway). This 

assumption is likely to be inaccurate. Specifically, there is most probably some Shaker 
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on the cell surface at all times measured, resulting both from delivery during the initial 2 

hour expression period, when the cells are incubated at 37 °C, and from some "leakage" 

during the 0 - 4 hour traffic period at 20 °C. This would underestimate the Golgi fraction 

for both WT and mutant Shaker, at all times. However, biotinylation experiments 

suggest that wild type Shaker traffics faster than the mutant. Thus, the measured wild 

type Golgi fraction is likely to be a greater underestimation than the mutant fraction. If 

anything, therefore, the differences between the mutant and wild type transport rates are 

likely to be greater than those observed here. We engineered a FLAG epitope into the 

third extracellular loop of the channel in an attempt to directly measure the surface 

fraction at different traffic times. Although the FLAG epitope was clearly detected on a 

Western blot (not shown), immunoreactivity in both permeabilized and unpermeabilized 

cells was low to nonexistent, respectively. Attempted optimizations were unsuccessful, 

although these were not extensively done. 

A fraction of injected cells (both WT and mutant) showed a clear "rim stain", 

suggesting that these cells had significant amounts of Sh-HA channel on the cell surface. 

Some selected fields are shown (Fig 3.17A), including rim stained, non-rim stained 

(marked with arrows) and non-expressing cells. As would be predicted, analysis of the 

rim stained cells reported an unusually low fraction of Shaker fluorescence in the Golgi, 

when compared to other cells at the same time point. For very flat cells, such as the 

HeLa used in our imaging experiments, a low level of surface protein need not manifest 

as a clear rim stain. It is therefore not possible to assume that the non-rim stained cells 

have no cell surface protein. However, we consider it likely that the levels, if any, are 

lower than in the rim-stained cells. We consistently removed all obviously rim-stained 
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cells, whether wild type or mutant-injected, from the analysis. This was done blind i.e. 

we did not know whether wild type or mutant cells were being looked at. Interestingly, 

the fraction (of all cells) that showed a rim stain was significantly higher for the wild 

type-injected, when compared to the mutant-injected cells, at all time points. Composite 

data for six independent experiments is shown (Fig. 3.17B). Since the fluorescence 

staining (a-HA) is against an intracellular epitope, the rim stain is by no means 

unequivocal evidence of surface channel. However, this observation is consistent with 

other previously described experiments that demonstrated more rapid transit of the 

glycosylated channel to the cell surface. 

3.4.5. Stability of WT and NQ mutant Shaker 

Since significant differences in stability of the WT and mutant channel could 

confound comparisons of surface or Golgi fractions, we compared the degradation of the 

two channels under the conditions in which our experiments were done. The stability of 

WT and mutant channel was compared over 24 hours at 37°C in COS cells (Fig. 3.18A, 

B), and was found to be very similar. Since our experiment to measure initial rates of 

surface delivery was terminated at 3 hours, it is reasonable to conclude that stability 

differences of the channels did not contribute to the perceived difference in surface 

delivery. There was no significant difference between stability of the WT and mutant 

channel over 4 hours at 20 °C in HeLa cells (Fig. 5.18C). 

3.4.6. Do ER lectins contribute to the difference between channels ? 

One of several possible explanations for the slowed ER-Golgi traffic of the 

unglycosylated N259Q+N263Q mutant is that, as a consequence of reduced (or 
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abolished) interaction with lectin-like E R chaperones, the mutant requires a longer initial 

lag time to fold to an export-competent conformation. Shaker is known to interact with 

the ER membrane chaperone calnexin in a glycosylation-dependent manner (Nagaya et 

al., 1999). As for most glycoproteins this interaction presumably occurs via calnexin 

binding to Shaker mono-glucosylated glycans, which initially arise due to trimming of 

the core Glu3Man9GlcNAc2 sugar by ER-glucosidases I and II. Blocking the activity of 

the ER glucosidases with castanospermine (CST) prevents generation of the calnexin-

binding moiety on the substrate glycoprotein, and consequently prevents interaction of 

the protein with the chaperone, in most cases. We tested the effect of CST on the 

delivery of wild type Shaker to the surface of transfected COS cells. 

CST-treated proteins are predicted to have two extra glucose residues per 

glycosylated moiety in comparison to untreated proteins, and would consequently shift to 

a slightly slower mobility on SDS-PAGE. For a relatively large protein like Shaker, this 

shift is onlyjust discernible (Fig. 3.19A, lanes 1-2). Shaker channel translated in vitro in 

the presence of CST does indeed co-immunoprecipitate less efficiently with calnexin than 

untreated channel (Fig. 3.19B). In vivo, treatment with CST was seen to reduce the rate 

of Shaker maturation (defined as appearance of a high molecular weight Golgi band), but 

did not affect the secretion of an unglycosylated protein (preprolactin). Representative 

pulse-chase experiments as well as composite data from several independent experiments 

are shown for Shaker (Fig. 3.19C) and secreted preprolactin (Fig. 3.19D). That CST-

treated proteins mature at all is due to the existence of a Golgi endomannosidase. The 

retardation in Shaker maturation can be explained based on the fact that this enzyme, 

although able to cleave off core mannoses in the presence of the terminal glucose 
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residues, does so at a sluggish rate (Moore and Spiro, 1992; Moore and Spiro, 1990). 

Thus, CST had a predicted effect on Shaker association with calnexin in vitro, and on 

Shaker traffic in vivo. In preliminary experiments (n = 2), the rate of Shaker delivery to 

the cell surface was not significantly affected by treatment with castanospermine (Fig. 

3.19E). 

3.5. A method to monitor endocytosis 

We attempted a comparison of the endocytic rates of the WT and the NQ mutant 

channel from the cell surface (Fig. 3.20A). In this experiment, a reversible biotinylation 

of surface proteins (the "pulse") was followed by incubation at 37°C for various lengths 

of time (the "chase"). At the end of each chase period, the cells were rapidly cooled to 

4°C to stop all traffic and the surface biotin then stripped off with the cell-impermeant 

reducing agent glutathione. The remaining biotinylated fraction was determined. 

Depending on the degree of endocytosis during the chase, variable amounts of 

biotinylated protein would be expected to become resistant to stripping by extracellular 

glutathione. The remaining biotinylated fraction at each chase time, therefore, 

presumably represents the intracellular fraction at that time. We tested this approach on 

the transferrin receptor (TfR), the recycling of which has been extensively characterized. 

In another mammalian cell line (HEp2), the TfR is endocytosed constitutively with a half 

time of-4 minutes, and is recycled back to the surface with a half time of-7 minutes 

(Ghosh et al., 1994). The steady-state surface fraction of the TfR is estimated at - 30 % 

of total, in mammalian cells (Johnson et al., 1998). Indeed, 30.5 % (+1-3,; n = 3) of the 

unstripped sample is seen to bind avidin beads (Fig 3.20B, lane 3), but this is reduced to 

3% (+1-2; n = 3) when the cells are stripped with glutathione (Fig. 3.20B, lane 6). If the 
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cells are allowed to traffic for 5 minutes at 37°C prior to stripping, the biotinylated 

fraction increases again to 18 % (+/-4; n = 2) (Fig 3.20B, lane 9). At longer chase times, 

the biotinylated fraction again drops (not shown). So, to a first approximation, the 

biotinylation approach adequately reports the endocytosis of the TfR. However, we have 

been unable to consistently monitor endocytosis of the Shaker channel. This is most 

likely the result of an insufficient starting signal. 
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Figure 3.1 : Shaker expression in C O S cells. (A) C O S cells transfected as indicated 

were solubilized (2%> CHAPS) and the lysates probed on an anti-HA Western blot. (B) 

C O S cells transfected as indicated were pulse-labeled with 35Scysteine+methioinine, 

solubilized as above and the lysates subjected to anti-HA IP. 
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Figure 3.2 : Time course of Shaker-HA expression. Transfected COS (A) or HeLa (B) 

cells were lysed (2% CHAPS) at the indicated times post-transfection, and the lysates 

probed on an anti-HA Western blot. 
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Figure 3.3 : Shaker assembly and traffic in mammalian cells. COS (A) or HeLa (B) 

cells transfected as indicated were pulse-labeled with Scysteine+methioinine, chased (0-

3h, 37°C), lysed (2 % CHAPS) and the lysates subjected to anti-HA IP and endoH 

digestion. (C) W T or N259Q+N263Q mutant Shaker-transfected C O S cells were pulse-

labeled as above, lysed (2%> C H A P S or 1%> Zwittergent) and the lysates centrifuged 

through a 5 - 20 % sucrose gradient. Sucrose density increases with increasing fraction 

number. The arrowheads above the plot indicate the peak migration of, from left to right, 

B S A (66 kD), aldolase (160 kD), and catalase (240 kD). 
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Figure 3.4 : Surface biotinylation of Shaker channel in C O S cells. (A) W T - or N Q 

mutant-transfected C O S cells were surface biotinylated and the cell lysates bound to 

avidin beads. To ensure that the avidin precipitation was complete, unbound material 

was re-incubated with avidin beads. Equal fractions of the total (T), unbound (U), bound 

(B) and re-bound (B2) samples were probed for wild type Shaker-HA (upper panel), 

mutant Shaker-HA (middle panel) or actin (lower panel) on Western blots. (B) HeLa 

cells were surface biotinylated and processed as above, and probed for the transferrin 

receptor (TfR, upper panel) or actin (lower panel). (C) Sh-HA-transfected COS cells 

were surface biotinylated with external (lanes 4-6) or internal (lanes 7-9) MTSEA-biotin 

and processed as above. 
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Figure 3.5 : Surface biotinylation of newly synthesized Shaker - controls. (A) 

Summary of experimental steps. (B) To ensure that IPs were complete, the unbound 

material from PI was re-precipitated with either anti-HA antibody (lane 2) or with 

protein A beads alone (lane 3) and probed on an anti-HA Western blot. (C) To ensure 

that avidin precipitations were complete, unbound material from P2 was re-precipitated 

with avidin beads and probed on an anti-HA Western blot. 
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Figure 3.6 : Surface biotinylation of newly synthesized Shaker. 

(A) Transfected C O S cells were pulse-labeled with 35Scysteine+methioinine, chased (0-

3h), and surface biotinylated. The channel was IP'd, eluted off the protein-A beads at 

low pH and then affinity precipitated with avidin beads. The T C A precipitated unbound 

material U and the avidin-bound material B from the avidin precipitation were separated 

by SDS-PAGE. Selected time points from a representative experiment have been shown 

for W T (upper panel) and mutant (lower panel) Shaker. For clarity, the relevant bands 

have been indicated as follows (WT immature: *, W T mature: **, mutant: < ). (B) The 

above protocol was carried out in the absence of biotinylating agent (lanes 1-2), on W T 

channel chased in B F A (lanes 3-4), or with a-actin IP in place of a-HA (lanes 5-6). (C) 

The biotinylated fraction of Shaker (B/{U+B})*100 was plotted over time. Data 

represent the mean +/- S E M (n = 3). The biotinylated fraction at time zero was 

subtracted as background, for each experiment. (D) The above protocol was carried out 

on HeLa cells transfected with W T (upper panel) or mutant (middle panel) Shaker, or on 

untransfected cells (lower panel). 
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Figure 3.8 : Imaging Shaker traffic from E R to Golgi. Schematic of an experiment 

for monitoring traffic of (A) HA-tagged Shaker in fixed cells or (B) GFP-tagged Shaker 

in live cells. 
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Figure 3.9 : Sh-YFP expressed in COS cells. (A), (B) and (E) Lysates of transfected 

C O S cells were probed on a-GFP Western blots. (C) Sh-YFP-transfected COS cells 

were surface biotinylated at steady state and the cell lysates bound to avidin beads. Equal 

fractions of total T, unbound U and bound B were probed on an a-GFP Western blot. 

(D) C O S cells transfected (upper panel) or micro injected (lower panel) with the Sh-YFP 

construct were imaged for GFP by epifluorescence microscopy. 
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Figure 3.11 : ER-Golgi traffic of Sh-YFP. COS cells transfected with Sh-HA (A) or 

Sh-YFP (B) were pulse-labeled with 35Scysteine+methioinine, chased for the indicated 

times, and the lysates subjected to a-HA or a-GFP IP. (C) The mean immature (ER) or 

mature (Golgi) fractions +/- SEM (n = 3) are plotted over time, for both constructs. 
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Figure 3.12 : ER-Golgi traffic at low temperature in mammalian cells. Sh-HA-

transfected C O S (A) or HeLa (B) cells were pulse-labeled with 35Scysteine+methioinine 

chased for the indicated times at 20°C, and the lysates subjected to a-HA JP. 

Untransfected HeLa cells have been show (lanes 1-3) to indicate the position of a 

background band. Immature Sh-HA (*), mature Sh-HA (**) and the background band 

(o) are indicated. 
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Figure 3.14 : Co-localization of Shaker with the ER at early and late traffic times. 

HeLa cells were intranuclearly microinjected as indicated, incubated at 37°C to allow for 

expression, chased for Oh (A) or 3h (B) at 20°C, fixed and stained for Shaker (a-HA, red) 

or ER (a-CNX or a-CRT, green). 
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Figure 3.15 : ER-Golgi traffic of W T and N259Q+N263Q mutant Shaker. The 

fraction of W T or mutant Shaker fluorescence co-localizing with the Golgi after 0-4h of 

chase at 20°C was determined in several independent experiments (n > 40 cells; in most 

cases, n = ~ 60 cells) and plotted as the mean +/- S.D. 
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Figure 3.16 : Controls for quantitative imaging experiment. C O S cells transfected as 

indicated were lysed and probed on a-HA Western blots (A), or pulse-labeled with 

35Scysteine+methioinine, chased for 0-2h (37°C) and the lysates subjected to a-HA IP 

(B). (C) Uninjected HeLa cells were stained for ER (a-PDI, green) and Golgi (a-p58, 

red) and the fraction of ER fluorescence that co-localized with the Golgi was determined. 
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Figure 3.17 : "Rim-stained" cells. (A) Representative a-HA immunostains of W T 

injected HeLa cells are shown. Non-rim-stained cells are marked with arrows. (B) The 

fraction of W T or mutant-injected cells that shows a visible rim stain is plotted. The 

mean +/- S E M of three independent experiments is shown, with a total of 200 - 250 cells 

counted, for each construct. 
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Figure 3.18 : Stability of the Shaker channel. (A) C O S cells transfected with W T 

(upper panel) or N Q mutant (lower panel) Shaker were pulse-labeled with 

35Scysteine+methioinine, chased (0-24h) and equal cpm of each lysate subjected to a-

H A IP. For clarity, the W T immature (*), W T mature (**), and mutant (<) bands have 

been indicated. (B) Mean signal intensities +/- S E M were quantified and plotted over 

time (n = 3). The band intensity at 0 hours is taken as 100 %, for each experiment. (C) 

Shaker channel stability in HeLa cells was determined (0-4h chase, 20°C) and plotted as 

above (n = 2). 

116 



B 

+ C S T 

93_, 

66-" 

93-

66-

1 2 
1 

C 0 20 45 90 180 chase 
(min.) 

93- -*» H*m m-

66-

93-> 

66-

-CST 

+ C S T 

1 2 3 4 5 

+ 

+ 

+ 

+ 

+ 

C S T ( 1 m M ) 

- a n t i - C N X 

+ prot. A b e a d s 

3 4 

50 100 150 
chase time (min.) 

0 

C M 
20 

C M 

30-, 

45 

C M 

100 chase 

C M (min.) 

30- + C S T 

1 2 3 4 5 6 7 8 

g40 
c 
| 30 

•o 20 
c 
3 
O 
^10 
o 
o 
2 o 

_0_ -CST 
-O- + 1 mM CST 

H = ^ 

n = 2 

> 

20 40 60 80 
chase time (min.) 

0 50 100 150 
chase time (min.) 

Figure 3.19 : Shaker traffic in castanospermine (CST)-treated cells. (A) Immature 

Shaker in C O S cells -/+ C S T (lanes 1-2). (B) a-calnexin co-IP of Shaker translated in 

vitro either without (lanes 1-3) or with (lanes 4-6) C S T . Shaker (C) or pre-prolactin (D) 

transfected C O S cells were pulse-labeled with 35Scysteine+methioinine, and chased (0-

3h) either in the absence (upper panel) or presence (lower panel) of C S T . T h e fraction of 

total protein in the immature/mature form (Sh) or in the cell-associated/secreted form 

(ppl) is plotted over time. (E) Surface biotinylation of newly synthesized W T Shaker in 

C O S cells pulse-chased -/+ C S T . T h e m e a n biotinylated fraction +/- S E M has been 

plotted over time (n = 2). 
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Figure 3.20 : A method to monitor endocytosis. (A) Schematic of the approach. 

(B) Reversibly surface-biotinylated HeLa cells were allowed to traffic (0-5 min, 37°C) 

and then left unstripped (lanes 1-3) or glutathione-stripped (lanes 4-9). Cell lysates were 

precipitated with avidin beads, and equivalent fractions of total T, unbound U and bound 

B were probed on an a-transferrin receptor Western blot. 
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4. T a r g e t i n g o f t h e S h a k e r c h a n n e l t o t h e E R 

In vitro transcription, translation and translocation constitute a commonly used 

system to study the requirements for targeting of proteins to the endoplasmic reticulum 

(ER). The use of translocation-competent ER microsomes and well-characterized assays 

for protein modification by lumenally disposed ER enzymes allows the study of reactions 

that take place exclusively at/in this organelle. However, there are drawbacks inherent to 

the in vitro system, most notably the low efficiency at which all but the simplest reactions 

occur, when compared to the situation in the living cell. 

The Shaker channel is a multi-spanning membrane protein with six 

transmembrane (TM) domains and no predicted N-terminal hydrophobic signal sequence. 

The -220 amino acid N-terminal domain is topologically intracellular. Based on analogy 

to opsin, another membrane protein without a cleaved amino-terminal signal sequence, it 

is predicted that the earliest ER targeting information in Shaker is transmembrane domain 

1 (TM1). However, this has not been investigated. In this chapter, the following topics 

are covered. 

1) Characterization of the rabbit reticulocyte lysate/canine pancreatic microsome system 

for in vitro translation and translocation of the Shaker potassium channel. 

2) Determination of the sequence requirements for targeting of Shaker to the ER. 

3) Examination of Shaker truncated constructs in mammalian cells. 

119 



4.1. Characterization of S h a k e r translation/translocation 

Shaker channel translated in rabbit reticulocyte lysate (RRL) yielded a major band 

at ~ 70 kD (Fig 4.1 A, lane 1), approximately in keeping with the predicted size of this 

656 amino acid protein. Epitope-tagged channels (Shaker-HA & Shaker-MYC) showed 

the identical band, and could be immunoprecipitated with the corresponding antibodies 

(Fig 4. IB). A prominent 30kD band was also seen (not shown here); the origin of this is 

unknown and will be discussed later (chapter 7). Optimal Shaker translation was seen 

with the addition of 60-100 mM K+ and no Mg ++ to commercially available rabbit 

reticulocyte Flexi™ lysate (Promega). Addition of DTT (1-2 mM) also stimulated 

translation, but was not added in most cases so as to maintain the normal oxidizing 

environment of the ER. A viral 5' untranslated CITE (cap-independent translation 

enhancer) sequence has been previously reported to increase translation efficiency of the 

Kvl.l channel in vitro (Shen et al., 1993) but had no effect on the translation of Shaker 

(not shown). 

When Shaker was translated in the presence of canine microsomal membranes, a 

slightly higher molecular weight band appeared (Fig 4.1 A, lane 2). This is predicted to 

result from N-linked glycosylation of the channel at the two consensus sites in its first 

extracellular loop. Translation of the channel in the presence of microsomes treated with 

the N-Ac-Asn-Tyr-Thr-NH2 tripeptide, which contains a consensus sequence for N-

linked glycosylation and therefore functions as a competitive inhibitor of this process, 

abolished this higher molecular weight band (Fig 4.1 A, lane 3). Thus, this slower 

moving band is the glycosylated channel. As expected, the N259Q+N263Q (NQ) mutant 

channel, where both consensus glycosylation sites have been eliminated, does not show 
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the corresponding changes in mobility on S D S - P A G E when translated in the presence or 

absence of microsomes (not shown) and/or competitor tripeptide (Fig 4.1C). Shaker 

translation was assessed at different incubation times (Fig 4.2A) and temperatures (Fig 

4.2B). All subsequent translations were done at 30°C for 60 - 90 minutes. 

4.1.1. Targeting of Shaker to ER microsomes 

Targeting of an in vjYro-translated protein to the ER membrane is typically 

assayed by separating the translation reaction into membrane and cytosol fractions, and 

then assessing the fractionation profile of the protein. The separation may be achieved in 

one of two ways. Centrifugation through a 1 .OM sucrose cushion results in pelleting of 

the ribosome-studded rough ER microsomes, while cytosolic proteins remain in the 

supernatant. When this was done on in v/rro-translated Shaker, most of the channel was 

seen to be associated with the pelleted fraction when translated in the presence (Fig 4.3A, 

upper panel, lanes 3-4) but not in the absence (Fig 4.3 A, upper panel, lanes 1-2) of 

microsomes. Further, for Shaker translated in the presence of microsomes, 

unglycosylated form of the protein was selectively enriched in the supernatant (i.e. 

untargeted) fraction. Parallel sedimentation of [3-lactamase, an unglycosylated, signal 

peptide-containing protein that is completely translocated into the ER lumen, confirms 

the validity of the approach (Fig. 4.3 A, lower panel). Again, pelleting occured only in 

the presence (lanes 3-4), but not in the absence (lanes 1-2) of microsomes, and the non-

signal peptide cleaved form (<, Fig. 4.3A) of the protein was selectively enriched in the 

untargeted fraction. Occasional small incongruities in size are due to the fact that the 

samples were run on different gels. 
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A potential problem with membrane harvesting by sedimentation is that 

aggregates or polysome-associated proteins may also sediment under these centrifugation 

conditions. This may be avoided by instead harvesting the membranes via flotation 

through high-concentration sucrose. The translation reaction is adjusted to 2.1M sucrose, 

overlayed with 1.9 M sucrose, and then centrifuged. The buoyancy of the microsomes 

causes them to float up to an intermediate sucrose concentration, whereas both cytosolic 

proteins and aggregates remain at the bottom of the tube. Again, in vitro translated 

Shaker harvested largely with the membranes (in this case, the supernatant fraction) when 

translated in the presence (Fig 4.3B, lane 7) but not in the absence (Fig 4.3B, lane 3) of 

microsomes. This was also true for the P-lactamase control (Fig 4.3, lanes 1 & 5). 

4.1.2. Integration of Shaker into the lipid bilayer 

Having established that in v/?ro-translated/translocated Shaker targets efficiently 

to ER membranes, we wanted to determine whether the channel was stably integrated 

into the lipid bilayer or merely peripherally associated with it. Membrane integration is 

assayed by extraction with alkali (100 mM NaOH), as a result of which all but stably 

integrated proteins are stripped away from the membrane. The Shaker channel was not 

extractable from the bilayer with alkali and sedimented with the membranes, while a 

lumenal control protein (P-lactamase) was completely extracted (Fig 4.4A). This 

sedimentation is not due to aggregation of the channel, since it did not occur when Shaker 

was alkali-treated in the absence of microsomes (Fig 4.4B). 
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4.2. S e q u e n c e requirements for S h a k e r targeting 

4.2.1. Truncated Shaker constructs (T-series) 

To identify the minimum ER targeting information in the Shaker primary 

sequence, we generated a series of shortened constructs (the T-series) by introducing stop 

codons at various points in the coding region. The location of the stop codons relative to 

full-length channel is shown schematically (Fig. 4.5). In vitro translation of these 

constructs in the presence and absence of ER microsomes (Fig 4.6A) and competitor 

tripeptide (Fig 4.6B) resulted in bands of approximately the expected sizes (multiple 

bands for T2 are discussed below). Increasing signal intensity with increasing length can 

be explained by the fact that the methionines in Shaker are predominantly in the C-

terminal half of the molecule. 

T2 was seen to produce three bands upon in vitro translation in the absence of 

microsomes (Fig. 4.7A). The smallest band (*) is predicted to be unglycosylated T2. 

This is based on three observations. First, it is appropriately smaller (by ~3 Kd) than the 

unglycosylated T3. Second, it is appropriately smaller (by ~6 Kd) than the faint 

glycosylated T2 band (<>) that results upon addition of membranes and that is abolished 

by tripeptide treatment. Third, it was present in all T2 translations, unlike the slightly 

larger species (**), which was only sporadically seen (for example, it is almost absent in 

Fig 4.7B). The largest band (***) exactly co-migrates with that produced by translation 

of a construct of the same length, but lacking a stop codon (T2Astop) (Fig 4.7B, compare 

lanes 1 & 3). The T2Astop construct ends (with no subsequent nucleotides) at the 

penultimate codon of the T2 construct. The (***) species was therefore hypothesized to 

represent T2 that failed to release from its final tRNA and that remained spuriously 
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associated with the t R N A and/or the ribosome. Indeed, post-translational RNase 

treatment abolished the (***) band (Fig 4.7C, compare lanes 1 & 2), consistent with the 

idea that it represents protein bound to the terminal tRNA. Treatment with the 

aminoacyl-tRNA analogue puromycin partially released T2Astop and T2 from the 

ribosome (Fig 4.7B). Since release by puromycin requires that the nascent chain is a 

substrate for the ribosome peptidyl transferase, this suggests that the (***) form of T2, 

while still attached to the tRNA, was partially no longer associated with a functional 

ribosome. This is not uncommon for truncated constructs lacking stop codons, in our 

experience. In an attempt to eliminate the (***) band we generated a T2 construct with 

multiple stop codons (T2MS), but this did not have the desired effect (Fig 4.7C, lane 3). 

A glycosylated band is defined here as one that results upon addition of 

microsomes, and that is abolished in microsomes that have been treated with competitor 

tripeptide. All constructs except for the shortest (T2) were quite efficiently glycosylated 

(Fig. 4.6C), suggesting that they targeted to the ER membrane. This is confirmed by a 

flotation harvest, in which T3, T4 and T5 floated efficiently into the supernatant in the 

presence (Fig 4.8A, lower panel) but not in the absence (Fig 4.8A, upper panel) of 

microsomes. T2 however, remained predominantly in the (untargeted) pellet fraction 

even in the presence of microsomes (Fig 4.8A, lower panel, lane 1). As seen for full-

length Shaker, the glycosylated forms of all the truncated proteins (T2 - T5) were 

recovered primarily in the membrane fraction (S), whereas the unglycosylated forms 

remained predominantly untargeted (P). 

Quantification of the glycosylated fraction {G/(U+G)}(Fig 4.6C) and the targeted 

fraction {S/(S+P)}(Fig 4.8C) for each construct shows that, relative to the full-length 

124 



channel, the truncated constructs T3, T4 and T5 were efficiently targeted to the ER. T2, 

on the other hand, was inefficiently targeted as reported both by glycosylation and by 

fractionation with the membrane. Quantification of T2 membrane targeting was done 

either exclusive or inclusive of the putative tRNA-attached band. This was found to 

affect the reported targeted fraction to only a small degree, and did not change the overall 

trend relative to the other truncated constructs. RNase treatment prior to harvesting 

yielded no increase in the T2 membrane-targeted fraction (Figure 4.8B). Alkali 

extractions indicated that, once targeted, all constructs were stably integrated into the ER 

membrane (Fig. 4.9). 

4.2.2. Is TM2 necessary for Shaker targeting ? 

T2 is truncated in the loop between TM1 and TM2, while T3 is truncated at the 

very end of TM2 (Fig. 4.5). One possible explanation for the difference in targeting 

efficiency of T2 and T3 is that the additional sequence in T3 (part of extracellular loop 1 

+ TM2, amino acids 273-299) is important for this process. T2 is truncated 26 amino 

acids after TM1. Since the ribosome 'tunnel' is thought to enclose ~ 40 amino acids of a 

nascent polypeptide, an alternative explanation is that, in T2, TM1 is simply not far 

enough out of the ribosome to effect successful targeting. We tested this by assessing the 

targeting efficiency of two additional constructs (Fig 4.10A). T2.1 is truncated 40 amino 

acids after TM1, so that most of TM1 should have emerged from the ribosome. This 

construct includes only part of TM2 (the first 9 amino acids), and would consequently be 

predicted not to target efficiently if there is a specific requirement for TM2. T3ATM2 is 

approximately the same length as T3, but was created by fusing a random sequence from 

the Shaker C-terminus to the T2 construct. This should address the question of a specific 
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requirement for the last 5 amino acids of extracellular loop 1 and/or T M 2 in targeting of 

Shaker to the ER. 

4.2.3. Translation and targeting of T2.1 and T3ATM2 

In vitro translation of these test constructs resulted in major bands of 38 - 40 kD 

(for T2.1) and ~ 42 kD (for T3A)(Fig. 4.10B). Since T2.1 is 14 amino acids shorter than 

T3, its migration is slightly slower than would be predicted based on size alone. We 

cannot explain this, beyond speculating that the presence of the second (half) TM domain 

affects migration in some non-linear fashion. T3A is expected to migrate slightly slower 

than T3, as is seen to be the case (Fig. 4.1 OB, compare lanes 3 & 5, or 4 & 6). The 

significant improvement in T3A signal, compared to T3, is likely due to two additional 

methionines in the added C-terminal sequence, rather than to improved translation 

efficiency. 

Translation of T2.1 or T3A in the presence of microsomes resulted in 

glycosylation (Fig. 4.10B,D), which could be inhibited by treatment of the membranes 

with competitor tripeptide (Fig. 4.IOC), thus suggesting that these constructs targeted 

more efficiently than T2. This was confirmed by a membrane floatation harvest. Both 

T2.1 and T3A were harvested with the membrane fraction when translated in the presence 

(Fig. 4.11 A, lanes 5-10) but not in the absence (Fig.4.11 A, lanes 1-4) of ER microsomes. 

Although the targeting of T2.1 and T3A was not quite at wild type levels, it was 

significantly improved over that of T2 (Fig. 4.1 IB). Further, the targeted T2.1 and 

T3ATM proteins were seen, by alkali extraction, to be stably integrated into the ER 

membrane (Fig. 4.1 IC). 
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W e conclude that insufficient emergence of T M 1 from the ribosome is most likely 

to be the reason for inefficient targeting of T2 to the ER. To re-iterate, this is based on 

two observations. First, the intermediate-length construct T2.1, in which TM1 is 

predicted to have fully emerged from the ribosome, targets much more efficiently than 

T2. Since T2.1 does not have a complete TM2, there is unlikely to be a specific 

requirement for this second transmembrane domain for targeting to the ER. Second, a 

construct of similar length as T3, but where all protein sequence downstream of amino 

acid 272 (i.e. the end of T2) has been replaced by random sequence, targets almost as 

efficiently as T3. Since the construct (T3A) does not have amino acids 273 - 299, which 

is the region that distinguishes T2 from T3, this suggests that these amino acids (i.e. 273 

- 299; 5 aa of extracellular loop 1 + TM2) are not specifically important for the initial 

targeting (i.e. of TM1). 

4.3. Expression of Shaker T2 and T3 in mammalian cells 

Although T2 was targeted and glycosylated inefficiently with respect to full-

length Shaker, both processes did occur at a level measurably above background. We 

expressed T2 and T3 in COS cells and assessed targeting to the ER in this system. Full-

length channel is efficiently targeted in COS cells, as evidenced by the complete 

EndoglycosidaseH (EndoH) sensitivity of pulse-labeled immature (i.e. ER-localized) 

protein (Chapter 3). Cells transfected with HA-tagged T2 and T3 showed bands of 35-40 

kD and 40^15 kD respectively (Fig. 4.12A) on an a-HA Western blot, similar in size to 

those produced by in vitro translation. In addition, T2 lysates showed a fuzzy, higher 

molecular weight band (#) (Fig. 4.12A, lane 2). EndoH digestion of immunoprecipitated 
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protein indicated that both T2 and T3 target quite efficiently to the ER in C O S cells (Fig. 

4.12B). 

4.3.1. The EndoH-resistant fraction of T2 Shaker 

The fact that the higher molecular weight form of T2 (#) was not affected by 

EndoH treatment could mean one of two things. First, its sugars could have matured to 

an EndoH resistant form, which would mean that the protein has trafficked to the Golgi. 

This is an unlikely scenario for a protein that is so drastically truncated relative to its 

native form, especially since the slightly longer T3 clearly does not traffic. Also, much 

less severe truncations of Shaker (175 aa versus the 384 aa removed in T2) serve to retain 

the channel in the ER (chapter 6). However, the topology that T2 assumes in the ER 

cannot be presumed to be the native one (for instance, it could be completely translocated 

into the lumen) and it is possible that, as such, it could have very different traffic 

characteristics from those of full-length Shaker. Second, the EndoH-resistant fraction 

may be unglycosylated, and the increased molecular weight may be due to aggregation or 

modification. Theoretically, this could occur as a result of inefficient targeting, followed 

by ubiquitination or some other cytosolic modification. Preliminary a-ubiquitin Western 

blots have been unsuccessful. 

4.3.2. Immunolocalization of T2 and T3 Shaker in mammalian cells 

We performed immunofluorescence staining on T2- and T3-transfected cells. 

Representative cells are shown (Fig. 4.13). In keeping with the biochemical data (in vitro 

and in vivo), T2 did indeed show aberrant targeting to the ER (Fig. 4.13 A, upper panel). 

Some cells clearly did have T2 in the ER, as indicated by co-localization with the resident 
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E R protein calnexin (Fig. 4.13 A, lower panel). A significant number of cells (~ 7 0 % ) , 

however, additionally showed a diffuse staining that could be characteristic of either 

cytosolic or low-level cell surface distribution. In contrast, T3 co-localized almost 

perfectly with calnexin (> 95% of cells) (Fig. 4.13B). Untransfected cells were stained in 

parallel (Fig. 4.13C) to control for specificity and fluorescence bleed-through. 

We conclude that targeting of T2 Shaker channel, truncated 26 amino acids after 

TM1, to the ER is significantly more efficient in cells than in vitro. We suggest that this 

emphasizes the pitfalls of relying exclusively on in vitro data to understand protein 

targeting and biogenesis. Nevertheless, some aspect of T2 biogenesis is likely to be 

compromised, relative to longer Shaker proteins. 

4.3.3. Further experiments on EndoH-resistant T2 Shaker 

First, PNGase treatment of Shaker T2 would show whether or not the high 

molecular weight form of T2 (#) is glycosylated. Depending on the outcome of this 

treatment, some of the following experiments would be more relevant than others. 

Second, pulse-chase experiments to compare the relative stability of the two constructs 

would indicate whether T2 is more quickly degraded than T3, and whether it is 

selectively the T2 high molecular weight material (#) that is unstable. Third, the effect of 

proteasome inhibitors on the ratio of ER-glycosylated T2 (o) to high molecular weight T2 

(#) could indicate whether the proteasome is involved in the putative degradation process. 

Fourth, cell fractionation could determine whether the protein is membrane bound or 

soluble. Lastly, surface biotinylation could be used to determine whether there is 

measurable T2 on the plasma membrane. 

129 



+ + R M 

+ T P (0.3 m M ) 

2 2 0 -

93-

66-

B S h S h - S h -

H A M Y C 

93-

66-

W T 

+ 

m u t 

+ 

m u t 

+ 

+ 

R M 

T P (0.3 m M ) 

2 2 0 -

93-

66-

Figure 4.1 : Shaker channel translated in vitro. (A) Shaker was translated in R R L in 

the absence (1) or presence (2,3) of microsomes, with (3) or without (2)competitor 

tripeptide, separated by SDS-PAGE, and visualized by autoradiography. (B) Untagged or 

epitope-tagged Shaker was translated in the absence of microsomes and processed as 

above. (C) Wild type or N259Q+N263Q mutant Shaker was translated in 

RRL/microsomes -/+ competitor tripeptide and processed as above. 
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Figure 4.2 : Shaker translation conditions. (A) Shaker m R N A was translated in 

RRL/microsomes (30 °C) for various times, separated on SDS-PAGE (12%) and 

visualized by autoradiography. (B) Shaker m R N A was translated (90 min) at the 

indicated temperatures and processed as above. 
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Figure 4.3 : Shaker targeting to E R microsomes. (A) Shaker (upper panel) or beta-

lactamase (lower panel) was translated in R R L -/+ microsomes and sedimented through a 

1.0M sucrose cushion. The untargeted material was in the supernatant (S) and the 

targeted material was in the pellet (P). (B) Translations as above were adjusted to 2.1 M 

sucrose, layered at the bottom of a 0.25M/1.9M sucrose step gradient, and centrifuged. 

The untargeted material was in the pellet (P) and the targeted material was in the 

supernatant (S). Non-signal-cleaved beta-lactamase has been indicated in each case (<). 
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Figure 4.4 : Shaker integration into E R microsomes. (A) Shaker or beta-lactamase 

was translated in RRL/microsomes, the targeted material harvested by sedimentation, 

alkali-extracted (100 m M NaOH) and re-pelleted. The unextracted material was in the 

pellet (P) and the extracted material in the supernatant (S). (B) Shaker was translated 

with (lanes 3-4) or without (lanes 1-2) microsomes, and alkali extracted without a prior 

membrane harvest. Half the translation reaction was reserved (R) and is shown for 

comparison to the unextracted material (P), in each case. 
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Figure 4.5 : Short constructs of the Shaker channel. The position of the stop codon is 

indicated as a red bar, in each case. 
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Figure 4.6 : Translation of Shaker short constructs. (A) Truncated Shaker was 

translated in R R L -/+ microsomes, separated by SDS-PAGE, and visualized by 

autoradiography. (B) Truncated Shaker was translated in RRL/microsomes -/+ 

competitor tripeptide and processed as above. (C) Band intensities on the gel were 

determined on a phosphorimager and the mean glycosylated fraction {G/(U+G)}*100 

(n = 3) plotted for the indicated constructs. Data represents the mean +/- SEM. 
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Figure 4.7 : Multiple bands upon translation of the T2 construct. (A) Shaker T2 was 

translated in R R L -/+ microsomes, separated by SDS-PAGE and visualized by 

autoradiography. (B) Shaker T2 m R N A with (lanes 1-2) or without (lanes 3-4) a stop 

codon was translated as above, treated with puromycin post-translationally, and then 

processed as above. (C) Shaker T2 m R N A with either a single stop codon or multiple 

stop codons was translated and processed as above. Where indicated, RNase was added 

post-translationally. The tRNA-attached (***), released-glycosylated (o), released-

unglycosylated (*) and unidentified (**) bands have been indicated. 
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Figure 4.8 : Targeting of short Shaker constructs. (A) Truncated Shaker was 

translated in R R L without (upper panel) or with (lower panel) microsomes and the 

targeted material harvested by floatation. The targeted (S) and untargeted (P) fractions 

are shown. (B) Shaker T2 was translated and processed as above, except that the 

translation was treated with RNase prior to floatation. (C) Band intensities on the gel 

were determined on a phosphorimager and the targeted fraction {S/(S+P)}*100 was 

plotted. Data represents the mean +/- S E M (n=3). 
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Figure 4.9 : Integration of short Shaker constructs. (A) Truncated Shaker was 

translated in RRL/microsomes, the targeted material harvested by sedimentation, and 

alkali-extracted (100 m M NaOH). The extracted (S) and unextracted (P) fractions are 

shown. (B) Band intensities were determined on a phosphorimager and the integrated 

fraction {P/(S+P)}*100 was plotted, for the indicated constructs. Data represents the 

mean +/-SEM (n = 2). 
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Figure 4.10 : Is T M 1 sufficient for Shaker targeting ? (A) Design of the T2.1 and T3-

del-TM2 constructs. (B) Truncated Shaker was translated in R R L -/+ microsomes, 

separated by SDS-PAGE and visualized by autoradiography. (C) Truncated Shaker was 

translated in RRL/microsomes -/+ competitor tripeptide and processed as above. (D) 

Band intensities were determined on a phosphorimager and the mean glycosylated 

fraction {G/(U+G)}*100 was plotted. Data represents the mean -/+ S E M (n=3). 
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Figure 4.11 : Targeting and integration of T2.1 and T3-del-TM2. (A) Truncated 

Shaker was translated in R R L -/+ microsomes, and the targeted material harvested by 

membrane floatation. The targeted (S) and untargeted (P) fractions are shown. (B) Band 

intensities were determined on a phosphorimager and the targeted fraction 

{S/(S+P)}*100 was plotted. Data represents the mean +/-SEM (n = 3). (C) Translations 

as above were harvested by sedimentation and the targeted material was alkali-extracted 

(100 m M NaOH). The extracted (S) and unextracted (P) fractions are shown. 
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Figure 4.12 : Shaker short constructs expressed in COS-1 cells. COS cells transfected 

as indicated were lysed, and the lysates probed directly on an anti-HA Western blot (A) 

or subjected to anti-HA IP and endoH digestion prior to anti-HA Western blotting (B). 
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5. B i o g e n e s i s o f t h e S h a k e r c h a n n e l 

Protein targeting to the endoplasmic reticulum (ER), translocation into the ER 

lumen, and integration into the ER membrane have been widely studied using established 

assays. A method that reports on folding/biogenesis of a particular membrane protein 

may arguably require a more 'tailor-made' approach. We are interested in the biogenesis 

of the tetrameric, multi-transmembrane (TM) domain Shaker channel. To this end, we 

attempted to develop a method that monitored Shaker folding in the ER, to apply this 

method to Shaker translated/translocated in vitro, and thus to begin to dissect out the ER 

factors that may be required for this process. Our attempt to develop a new assay for 

Shaker folding was unsuccessful. However, since Shaker biogenesis has been so 

sparingly examined, even established approaches can provide novel information. In this 

chapter, the following topics are presented. 

1. Biogenesis (i.e. targeting, integration and assembly) of the Shaker channel in ER 

microsomes depleted of glycoproteins. 

2. Biogenesis of unglycosylated Shaker channel. 

3. Biogenesis of Shaker in ER microsomes depleted of lumenal proteins. 

4. Shaker folding assay - attempts. 

5.1. Assembly of in vitro translated Shaker 

The methods used to assay Shaker targeting and integration were described 

previously (chapter 4). Assembly of the channel into homotetramers had not been 

monitored, for in vitro translated Shaker, prior to this work. We characterized the 
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migration of Shaker on sucrose density gradients. Whereas the small, secreted control 

protein P-lactamase (Fig. 5.1 A, panel 1), and the monomeric membrane protein opsin 

(Fig. 5.1 A, panel 2) migrated at the top of a 5 - 20 % sucrose gradient, Shaker migrated 

deeper into the gradient (Fig. 5.1 A, panel 3), when solubilized in CHAPS. Relative 

signal intensities on the autoradiographs are shown below, normalized to peak signal, for 

each gradient (Fig. 5.IB). In vitro synthesized Shaker migrated indistinguishably, within 

experimental error, from channel expressed in mammalian cells (COS-1) (Fig. 5.1 A, 

panel 4, Fig. 5.1C). Solubilization in Zwittergent, which is known to render the channel 

monomeric, shifted the Shaker peak to the top of the gradient (Fig. 5.1 A, panel 5, Fig. 

5.1C). Lastly, a comparison to size markers shows that the material in the light (i.e. 

Zwittergent) and heavy (i.e. CHAPS) peaks sediments roughly as predicted for 

monomeric and tetrameric forms of the channel. That Shaker migrates slightly smaller 

than theoretically expected was discussed previously (chapter 3). We conclude that in 

vitro-translated/translocated Shaker channel assembles into tetramers. Unless otherwise 

mentioned, all subsequent sedimentations were done on channel solubilized in CHAPS. 

Two peripheral observations were made. First, the secreted protein preprolactin (ppl), 

perhaps the most commonly used reporter for in vitro translocation studies, was 

repeatedly seen to smear throughout a 5 - 20 % gradient, indicating aggregation (Fig. 

5.2A). This has previously been reported (Haynes et al., 1997), and is presumably an 

aberration of the in vitro system. Second, different preparations of ER microsomes 

showed varying abilities to promote Shaker tetramerization. Shaker was translocated 

separately into two canine microsomal preparations indistinguishable in both targeting 

and integration efficiency (not shown). The channel was then sedimented on parallel 
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sucrose gradients. In one case, a normal tetramer peak was seen (Fig. 5.2B, R M 1 , upper 

panel); in the other, the channel was predominantly aggregated (Fig. 5.2B, RM2, lower 

panel). In all subsequent studies, care was taken to begin with tetramerization-competent 

microsomal preparations, and to always use the 'parent' preparation as a standard for 

comparison with subsequently modified membranes. 

5.2. Shaker biogenesis in glycoprotein-depleted microsomes 

5.2.1. Rationale for glycoprotein depletion 

The three protein components of the mammalian translocon (sec 61a, P and y) as 

well as the signal recognition peptide (SRP) receptor a and p subunits are thought to be 

required for the translocation and integration of all proteins. The translocon-associated 

membrane protein (TRAM) is a glycosylated ER protein that can be cross-linked to 

secretory and transmembrane nascent chains as they traverse the bilayer (Do et al., 1996). 

A functional significance of TRAM-translocon-nascent chain proximity, however, 

remains to be established. Lectin affinity chromatography may be used to deplete ER 

microsomes of glycoproteins, including TRAM, leaving behind the non-glycosylated 

core components of the translocation machinery (i.e. the sec 61 complex and the SRP 

receptor) (Hegde et al., 1998). We compared Shaker targeting, integration and assembly 

in 'parent' porcine microsomes (RM), concanavalin A-depleted microsomes (cRMs), 

mock-depleted microsomes (rRMs) and conA-depleted microsomes reconstituted with 

purified TRAM (cRM+). All membranes were prepared by R. Hegde (NIH). 
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5.2.2. A possible role for T R A M in Shaker biogenesis 

The targeting efficiency of Shaker was significantly reduced in glycoprotein-

depleted cRMs compared to untreated porcine RMs (Fig. 5.3A, B). However, the mock-

depleted rRMs showed similarly low targeting levels and reconstitution of the cRMs with 

TRAM had no amelioratory effect. In contrast, the fraction of Shaker stably integrated 

into the bilayer was significantly reduced in cRMs, compared to untreated RMs (P = 

0.01, Student's t-test), but not in mock depleted rRMs (Fig. 5.3 C, D). Three independent 

preparations of cRMs that had been reconstituted with TRAM were reproducibly seen to 

support Shaker integration at control levels. Possibly, TRAM plays a role in the efficient 

integration of Shaker, and perhaps of other membrane proteins, into the bilayer. A 

secretory control is also shown (Fig. 5.3C, lanes 9-10). 

Lastly, assembly of Shaker prepared in different microsomes was compared by 

sucrose gradient centrifugation. Shaker translocated into the glycoprotein-depleted cRMs 

migrated aberrantly. However, sedimentation of Shaker prepared in control rRMs was 

equally perturbed, thus absolving TRAM in the effect. In either case, the channel showed 

no clear peak, but smeared through the denser part of the gradient (Fig. 5.4A). 

Apart from their effect on Shaker assembly, the rRMs and the cRMs showed two 

obvious deficiencies, both of which are predictable consequences of solubilization and 

reconstitution. First, the membranes did not glycosylate, as is clearly seen with a control 

protein, preproafactor (Fig. 5.4B). Translation in the presence of untreated RMs resulted 

in the appearance of a 30 kD glycosylated band (*) in the targeted fraction (Fig. 5.4B, 

lane 2), whereas rRMs (Fig. 5.4B, lane 6) or cRMs (Fig. 5.4B, lane 4) generated no 

glycosylated band in the targeted fraction. Second, the rRMs and cRMs would be 
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predicted to have lost much of their lumenal protein content through dilution upon 

solubilization. Indeed, Western blots against the ER lumenal chaperone protein disulfide 

isomerase (PDI, Fig. 5.4C, lower panel) showed that it is present at 5 to 10-fold lower 

levels than in untreated microsomes, when equivalent amounts of membrane were 

compared. As one might expect, the membrane protein calnexin (CNX, Fig. 5.4C, upper 

panel) was not significantly depleted in the rRMs and cRMs. It is plausible that either the 

failure to glycosylate or the loss of lumenal chaperones or both resulted in aberrant 

migration of Shaker on sucrose gradients. However, it is equally possible that a third 

factor (or even several factors) were perturbed in the solubilized microsomes and 

contributed to the effect on the channel. Nevertheless, we mimicked the two obvious 

deficiencies in rRMs and cRMs by independent methods, and examined the 

sedimentation of in vzYrotranslated Shaker under these conditions. 

5.3. Biogenesis of unglycosylated Shaker channel 

Glycosylation was blocked by treatment with a competitor tripeptide (Fig. 5.5A) 

or by using the N259Q+N263Q mutant channel (Fig. 5.5B), in which both glycosylated 

asparagines have been mutated to glutamine. Neither treatment had an effect on Shaker 

targeting (Fig. 5.5C). Further, the N259Q+N263Q mutant integrated efficiently 

compared to a secretory control (Fig. 5.5D), and at levels comparable to wild type. 

Neither tripeptide-treated channel (Fig. 5.6A) nor unglycosylated mutant channel (Fig. 

5.6B) migrated differently from wild type on a sucrose gradient. For the N259Q+N263Q 

mutant channel, this was tested for channel prepared in vitro (Fig. 5.6B) as well as for 

pulse-labeled channel expressed in COS cells (Fig. 5.6C). In the case of tripeptide-

treated Shaker (Fig. 5.6A), separate Shaker translations with or without tripeptide were 
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mixed post-solubilization, and then sedimented on the same gradient. The results were 

very similar if the material was sedimented separately. An experiment to control for 

post-solubilization subunit assembly is shown later in this chapter. 

5.4. Shaker biogenesis in RM depleted for lumenal proteins 

5.4.1. Preparation of depleted microsomes 

A brief alkali treatment (pH 9.5) of rough microsomes (RM) has been shown to 

selectively remove ER lumenal proteins (Nicchitta and Blobel, 1993). Depletion may 

also be effected by treatment with the detergent saponin, followed by repeated washing 

(Bulleid and Freedman, 1990). Since saponin is reversible, this results in a re-sealing of 

the microsomal membrane around a significantly depleted lumen. We prepared depleted 

microsomes by both methods. Western blots against a lumenal marker (PDI) and a 

membrane marker (CNX) showed that lumenal protein levels were reduced to <5% of 

that in the starting material in saponin-extracted microsomes, while membrane proteins 

remained at similar levels (Fig. 5.7A). This was also true for alkali-extracted 

membranes. Curiously, porcine microsomes were reproducibly recalcitrant to alkaline 

"wash-out" (Fig. 5.7B, lanes 1-3), as a result of which we switched to canine membranes 

(Fig. 5.7B, lanes 4-6) for all subsequent experiments. Further satisfying evidence for 

lumenal protein depletion was the apparent loss of lumenal ER-glucosidase II activity, 

but not membrane-bound ER glucosidase I activity, in depleted microsomes. This was 

manifest in the size difference and castanospermine-induced gel shift of ppaf 

translocated into depleted microsomes, relative to control (not shown). 
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5.4.2. S h a k e r biogenesis in the absence of lumenal proteins 

Shaker targeting was tested by membrane sedimentation and was found to be 

slightly reduced by both alkali washout (Fig. 5.8A, lanes 1-4; B) and saponin extraction 

(Fig. 5.8 A, lanes 5-8; B). Shaker integration was tested by hydroxide extraction and was 

found to be unaffected in both preparations of depleted microsomes (Fig. 5.8C, D). 

Initial assessments of Shaker assembly showed significant tendencies, in both depleted 

preparations, towards channel aggregation (Fig. 5.9). Some increase in high molecular 

weight material was also seen for opsin in depleted microsomes (Fig 5.10A), but this 

material was mostly the unglycosylated protein (<), which preferentially pellets in control 

membranes as well, and which was quite substantially increased in depleted membranes. 

The effects on Shaker sedimentation proved difficult to reproduce, in part because 

lumenal depletion increased the variability of the sedimentation. However, we could not 

completely rule out that increased variability was due to technical problems. 

Co-sedimentation (i.e. sedimentation on the same gradient) of differentially 

epitope-tagged channels, followed by immunoprecipitation of the gradient fractions with 

different antibodies, significantly improved the reproducibility of our centrifugation 

experiments. We compared Sh-HA and Sh-MYC that had been translocated into 

different microsomes, solubilized in CHAPS, and then mixed prior to centrifugation on 

the same gradient. To control for hetero-oligomerization in the gradient, we attempted to 

co-immunoprecipitate Sh-HA and Sh-MYC from post-translationally mixed CHAPS 

lysates. The signal from in vitro translated protein on Western blots was quite low, and 

although no co-immunoprecipitation was seen above background, we were concerned 

that we were too close to the detection limit. Indeed, even co-translated channels were 
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seen to co-IP only marginally above background, if at all. Therefore, w e compared co-IP 

of Sh-HA and Sh-MYC either co-expressed in COS cells, or expressed separately, 

solubilized in CHAPS, and then mixed post-lysis. Co-expressed Sh-HA and Sh-MYC 

channels showed significant co-IP (Fig. 5.1 OB, lane 6), while channels mixed post-lysis 

did not (Fig. 5.1 OB, lane 4). 

The results of a co-sedimentation experiment, with three pair-wise combinations 

of Sh-MYC/ Sh-HA translocated into A) control/control, B) control/alkali washed-out, or 

C) control/saponin-extracted microsomes, are shown (Fig. 5.11A-C). There was no 

detectable signal on lanes 1 - 4, for all gradients; only lanes 5-16 have been shown on 

the gels. It is additionally informative to compare the three parallel control 

sedimentations (Sh-MYC, in this case)(Fig. 5.12A & C) with the three parallel "test" 

sedimentations (Sh-HA, in this case)(Fig. 5.12B & D). This has been shown for two 

independent experiments. The effects of lumenal depletion by either method on Shaker 

sedimentation are not dramatic. Nevertheless, the relatively good reproducibility of the 

control gradients makes possible a conservative interpretation of the data. Treatment 

with alkali or saponin results in greater variability in channel sedimentation, with the 

trend being towards species that sediment heavier than the tetramer peak. We were not 

able to reconstitute lumenal proteins to a high enough level to establish conclusively that 

the effect on Shaker is indeed causally related to the loss of lumenal chaperones in the 

depleted microsomes. Further, the aberrant sedimentation in depleted microsomes is far 

less drastic than in the original rRMs and cRMs, relative to control. Thus it is likely that 

loss of lumenal chaperones alone was not the cause of Shaker aggregation in the rRMs 

and cRMs. 
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5.5. S h a k e r folding assays - attempts 

5.5.1. Oxidation of cytosolic cysteines 

Oxidative inter-subunit crosslinking of cytosolic cysteines (C96 and C505) has 

been shown to occur for Shaker channel expressed in oocytes or tissue culture cells, upon 

treatment with oxidising agents such as iodine (Schulteis et al., 1996). Putative folding 

mutants of Shaker lose the ability to form these cross-links, suggesting that proximity of 

C96 and C505 on adjacent subunits may be useful as an experimentally tractable 

hallmark of channel folding. We attempted oxidative cross-linking of Shaker translated 

in vitro. Oxidation resulted in the formation of DTT-sensitive aggregates, which for the 

most part did not enter a non-reducing polyacrylamide gel (Fig. 5.13A). Similarly, 

attempts at using a homobifunctional cysteine-directed crosslinker (DSP) resulted in 

aggregated channel (not shown). Lastly, we manipulated the redox conditions of the 

translation reaction using various ratios of reduced and oxidized glutathione 

(GSH/GSSG), in an effort to promote disulfide bond formation without the addition of an 

exogenous cross linker (not shown). This was based on the observation that Shaker 

expressed in cells also forms disulfides between C96 and C505 if the cells are lysed in the 

absence of a reducing agent or a protecting group (such as a maleimide or acetamide). 

Although initial results were promising, disulfide bond formation proved too variable to 

be a useful folding assay in the in vitro system. 

5.5.2. Native gel electrophoresis 

This approach has been successfully used to examine the assembly of other 

oligomeric membrane proteins (Tu and Deutsch, 1999). Under most conditions, in vitro 
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translated Shaker channel was aggregated and did not enter the gel (Fig. 5.13B, lane 1). 

Under conditions in which it did not aggregate, the Shaker channel ran either as a 

monomer (Fig. 5.13B, lane 2) or as two bands (Fig. 5.13B, lane 3) on a 6 % native gel. 

In the latter case, the predominant band was also the -75 kD monomer. The second band 

migrated at ~ 220 kD, and accounted for 10% of the total signal, at best. We examined 

translations done for varying lengths of time (1-21 hours), and solubilized under several 

conditions (4 - 42°C; 1 hour to overnight). We were unable to find conditions under 

which the 200 - 220 kD band was generated at higher levels, in the absence of channel 

aggregation. 

5.5.3. Agitoxin binding 

The peptide agitoxin binds with high affinity to the extracellular face of the 

Shaker pore, at a stoichiometry of one peptide molecule per Shaker tetramer. Single 

amino acid changes at the toxin-channel binding interface can disrupt this interaction. 

We reasoned that high affinity binding of agitoxin to the Shaker channel could be 

considered evidence for a folded channel pore. We asked whether or not the toxin binds 

to Shaker translated in vitro and translocated into ER microsomes. We prepared 

radiolabeled agitoxin by conjugation of 3H-N-ethyl maleimide to D20C mutant agitoxin 

according to (Aggarwal and MacKinnon, 1996). This was previously shown to be 

compatible with toxin binding to the Shaker channel. Agitoxin D20C dimerizes via an 

inter-molecular disulfide bond at cysteine20. In addition, the toxin bears three native 

intra-molecular disulfide bonds. Labeling of cysteine20 requires reduction of the toxin, 

and depends upon the more rapid formation of the intra-molecular bonds, relative to the 

inter-molecular bond, upon removal of the reducing agent. 
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His6-tagged agitoxin2 D20C was expressed in bacteria as a fusion protein, and 

purified by nickel column chromatography, cation exchange FPLC and reversed-phase 

HPLC (Fig. 5.14A-C). The dimer had a characteristic retention time of-75 minutes on 

RP-HPLC under the conditions used (Fig. 5.14C). The chromatogram shown (Fig. 

5.14C) is the final purification step. Material in the indicated peak (AgTx dimer) was 

collected, concentrated and quantified. Reduction with DTT generated monomeric toxin, 

which shifted to a retention time of 45 minutes under the same HPLC conditions (Fig. 

5.14D). Upon reaction with 3H-N-ethyl maleimide, the peak was delayed by 1-2 minutes 

(Fig. 5.14E). In the absence of NEM, the toxin re-dimerized upon removal of the 

reducing agent, and the 75' peak reappeared (not shown). The identity of the toxin dimer 

and cold NEM-labeled monomer was confirmed by MALDI-TOF mass spectrometry 

(Rockefeller University Protein Resource Center). Agitoxin was tritiated at a specific 

activity that ranged from 10-25 Ci/mmole, for different preparations. 

In a filter-binding assay, 3H-agitoxin D20C gave no signal when bound to Shaker 

channel translated in vitro and translocated into ER microsomes (Fig. 5.15A). Shaker-

HA was indeed translated, as verified by a Western blot on an aliquot of the material used 

for toxin binding (Fig. 5.15B). The toxin was active, since it bound specifically to a 

membrane preparation from bacteria expressing the bacterial KcsA channel. Since the 

agitoxin binding site of Shaker is topologically extracellular, and therefore in the lumen 

of ER microsomes, binding to in vitro translated channel was done in the presence of the 

detergent saponin. In a separate experiment, we verified that saponin treatment does not 

inhibit toxin binding to bacterial KcsA membranes (not shown). Binding assays on in 

vitro translated Shaker that had been solubilized in (one of) various detergents and 

153 



immobilized on beads via the C-terminal epitope tag were also negative (not shown). W e 

cannot rule out that there was insufficient protein synthesized in vitro to generate a 

detectable signal. We were additionally interested in whether or not the toxin binds to 

immature Shaker channel (i.e. the ER form of the channel) in cells. In binding assays on 

intact and saponin-permeabilized cells, the signal was again at insufficient levels to 

justify interpretation (not shown). Possibly the expression system yielded inadequate 

levels of folded Shaker. 

In an alternative approach, we prepared biotinylated agitoxin D20C. This was 

intended as an affinity precipitation reagent, in order to determine the fraction of in vitro-

translated Shaker, or of immature cellular Shaker, which has a "folded" pore region. We 

labeled reduced D20C toxin with biotin-PEO-maleimide. This resulted in significant 

diminution of the monomer peak (45', fig. 5.16A) on RP-HPLC. Two new peaks 

appeared, with retention times of 53' and 54' (Fig. 5.16B). The two major earlier eluting 

peaks (at -30') contain no peptide, and most likely represent excess labeling reagent. 

Material from peaks 53 and 54 was collected, run on a 20% Tricine gel, and either silver 

stained (Fig. 5.16C) or transferred to nitrocellulose and probed for biotin (Fig. 5.16D). 

Both peaks contained biotinylated material that migrated at the appropriate size for 

monomeric toxin. MALDI-TOF mass spectrometry indicated that both peaks contained 

material consistent with monomeric agitoxin labeled with a single biotin-PEO-maleimide. 

Lastly, preliminary two-electrode voltage clamp measurements on Shaker expressed in 

Xenopus oocytes indicated that both peaks contained material that reversibly blocked the 

channel (data not shown). 
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The nature of the difference between the material in peaks 53 and 54 is not clear. 

Due to the poor resolution in our current preparations, it is possible that there is cross-

contamination between them, and that some or all of the above properties (i.e. a single 

biotin-PEO-maleimide, blocking activity) are characteristic of one, but not both, peaks. 

Specifically, peak 53 is reproducibly more abundant, and has probably contaminated 

peak 54. Clarifying this issue would require efforts to resolve the two peaks on HPLC 

for preparation of pure material. We did not pursue this line of work, because of time 

pressure. Affinity precipitation with biotinylated agitoxin may be a viable future avenue 

to study folding of the Shaker pore either in vitro or in vivo. 

Attempts to conjugate fluorescent molecules (FITC, rhodamine, Alexa 488 and 

Alexa 594) to D20C agitoxin were unsuccessful. Efforts to use unlabeled agitoxin to 

compete with methanethiosulfonate reagent biotinylation of an engineered cysteine in the 

Shaker pore (T449C) were also unsuccessful. 
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Figure 5.1 : Sucrose gradient centrifugation of Shaker. (A) P-lactamase, opsin or 

Shaker m R N A was translated in RRL/dog microsomes, harvested by sedimentation, 

solubilized and centrifuged on a 5 - 20 % continuous sucrose gradient. C H A P S or 

Zwittergent lysates of transfected and pulse-labeled C O S cells were centrifuged as above. 

(B) & (C) The signal intensity in each fraction was determined on a phophorimager and 

plotted. For a given gradient, the signal in each fraction was normalized to the signal in 

the peak fraction (set as 100 % ) . 
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Figure 5.2 : Sucrose gradient centrifugation - peripheral observations. (A) Pre­

prolactin m R N A was translated in RRL/dog microsomes, harvested by sedimentation, 

solubilized and centrifuged on a 5 - 20 % continuous sucrose gradient. The signal 

intensity in each fraction was determined on a phosphorimager and plotted. The signal in 

each fraction was normalized to the signal in the peak fraction (set as 100 % ) . (B) Shaker 

m R N A was translated in RRL, translocated into two different batches of dog microsomes 

and further processed as above. 
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Figure 5.3 : Shaker targeting and integration in glycoprotein-depleted microsomes. 

(A) Shaker m R N A was translated in R R L with untreated microsomes (RM), 

glycoprotein-depleted microsomes (cRM), mock-depleted microsomes (rRM), or 

glycoprotein-depleted microsomes that had been reconstituted with T R A M (cRM+), and 

harvested by sedimentation. Targeted material is in the pellet (P) and untargeted material 

in the supernatant (S). (B) Signal intensities on the gel were determined on a 

phosphorimager and the mean targeted fraction {P/(S+P)} +/- S E M was plotted. (C) In 

vitro translations of Shaker or (3-lactamase were harvested, alkali extracted (100 m M ) and 

sedimented. Extracted material is in the supernatant (S) and unextracted material is in the 

pellet (P). (D) Signal intensities on the gel were determined on a phosphorimager and the 

mean integrated fraction {P/(S+P)} +/- S E M was plotted. 
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Figure 5.4 : Shaker assembly in reconstituted microsomes. (A) Shaker m R N A was 

translated in R R L with untreated microsomes (RM), glycoprotein-depleted microsomes 

(cRM) or mock-depleted microsomes (rRM). Targeted material was harvested by 

sedimentation, solubilized, and centrifuged on 5 - 20 % sucrose gradients. The signal 

intensity in each gradient fraction was plotted relative to peak intensity. (B) Preproa 

factor was translated in the presence of R M , rRM or c R M and harvested by 

sedimentation. Targeted material was in the pellet (P) and untargeted material was in the 

supernatant (S). The glycosylated band is indicated (*). (C) Equivalent amounts of R M , 

rRM and c R M were probed on an a-calnexin (CNX, upper panel) or an ot-protein 

disulfide isomerase (PDI, lower panel) Western blot. 

159 



93-

66-

0 

+ 

0 

+ + + R M 

.03 .16 1.6 m M T P 

^W^WiiiMttMkii^ mm^m^^^mjSm* >4H>jWNiiHbitiîiiiiV' ,,,attittrM**il̂k-
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Figure 5.5 : Targeting and integration of unglycosylated Shaker. (A) Shaker was 

translated in R R L -/+ microsomes and with increasing concentrations of competitor 

tripeptide (TP). (B) W T or N Q mutant Shaker was translated in RRL/dog microsomes. 

Mutant Shaker translations were done -/+ competitor TP. (C) Translations were 

harvested by sedimentation. Untargeted material remained in the supernatant (S) and 

targeted material was recovered in the pellet (P). (D) The targeted fraction of mutant 

Shaker or P-lactamase was alkali extracted (100 m M NaOH) and sedimented. 

Unextracted material was in the pellet (P), extracted material was in the supernatant (S). 
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Figure 5.6 : Assembly of unglycosylated Shaker. (A) Shaker was translated in R R L 

and microsomes -/+ competitor tripeptide. Targeted material was harvested by 

sedimentation, solubilized, and centrifuged on a single 5 - 2 0 % sucrose gradient. The 

signal intensity in each fraction was plotted relative to peak intensity. (B) W T or N Q 

mutant Shaker was translated in vitro and processed as above. (C) W T or mutant Shaker-

transfected C O S cells were pulse-labeled and then processed as above. Gradient 

fractions were subjected to a-HA IP and the data plotted as above. 
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Figure 5.7 : Depletion of microsome lumenal proteins. (A) Saponin-treated 

microsomes were probed, in parallel with serial dilutions of untreated starting material, 

on a-protein disulfide isomerase (PDI, upper panel) or a-calnexin (CNX, lower panel) 

Western blots. (B) The supernatant (S) and pellet (P) fractions of alkali-extracted porcine 

(lanes 1-3) or canine (lanes 4-6) microsomes were probed as above, in comparison to 

unextracted microsomes. 
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Figure 5.8 : Targeting and integration of Shaker in lumenally-depleted microsomes. 

Shaker was translated in R R L with untreated, alkali-extracted or saponin-treated 

microsomes. (A) Translations were harvested by sedimentation. Targeted material was 

in the pellet (P) and untargeted material in the supernatant (S) fractions. (B) Signal 

intensities on the gel were determined on a phosphorimager and the mean targeted 

fraction |P/(S+P)} +/- S E M was plotted. (C) Targeted material was extracted (100 m M 

NaOH) and sedimented. Extracted protein was in the supernatant (S) and unextracted 

material was in the pellet (P) fraction. (D) Signal intensities were determined as above 

and the mean integrated fraction {P/(S+P)} +/- S E M was plotted. 
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Figure 5.9 : Shaker assembly in depleted microsomes. (A) Shaker was translated in 

R R L in the presence of untreated, alkali-extracted or saponin-treated microsomes. 

Targeted material was harvested by sedimentation, solubilized and centrifuged on 5 -

20%> sucrose gradients. (B) The signal intensity in each fraction was determined on a 

phosphorimager and plotted relative to peak intensity. 
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Figure 5.10 : (A) Opsin sedimentation in depleted microsomes. Opsin was translated in 

R R L in the presence of untreated, alkali-extracted or saponin-treated microsomes. Targeted 

material was harvested by sedimentation, solubilized and centrifuged on 5 - 20 % sucrose 

gradients. The signal intensity in each fraction was determined on a phosphorimager and 

plotted relative to peak intensity. 

(B) Control for post-lysis assembly of Shaker subunits. Lysates of COS cells co­

transfected (lanes 5-6) or separately transfected (lanes 3-4) with Sh-HA and Sh-MYC were 

subjected to a-HA or a-MYC IP and probed on an a-HA Western blot. 
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Figure 5.12 : Co-sedimentation of Shaker prepared in control and lumenally-

depleted microsomes. Sh-MYC /Sh-HA were translated separately in R R L in the 

presence of either untreated/untreated, untreated/alkali-extracted, or untreated/saponin-

treated microsomes, mixed together post-solubilization, and then co-sedimented on 5-

20%o sucrose gradients. The plots show two independent sets of three parallel 

sedimentations of Sh-MYC prepared in untreated microsomes (A) & (C) and two 

independent sets of three parallel sedimentations of Sh-HA prepared in untreated, alkali-

extracted and saponin-extracted microsomes (B) & (D). 
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Figure 5.13 : Attempted Shaker assembly assays. Shaker was translated in RRL/ 

microsomes. Translations were either (A) post-translationally treated with 1 m M iodine 

and separated by non-reducing SDS-PAGE (6% gel), or (B) solubilized as indicated and 

separated by reducing, non-denaturing P A G E (6%> gel). 
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Figure 5.14 : Preparation of tritiated agitoxin D20C. (A) Agitoxin was expressed in 

bacteria as a His6-tagged fusion protein and purified b y nickel-chelate affinity 

chromatography. (B) Trypsin digests of the fusion protein w e r e separated o n cation-

exchange F P L C . ( C ) Disulfide-bonded agitoxin dimer eluted with ~ 7 5 m i n retention 

time on RP-HPLC. (D) Reduced dimer eluted with -45 min retention time on RP-HPLC. 

(E) Reaction of monomer with 3H-N-ethyl-maleimide generated tritiated toxin, which 

eluted slightly later than monomer (46-47 min) on RP-HPLC. 
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Figure 5.15 : Attempted binding of H-AgTx to Shaker translated in vitro. 

(A) Sh-HA was translated in RRX/microsomes without 35S-methionine and targeted 

material was harvested by sedimentation. A control translation (- m R N A ) was identically 

processed. 3H-AgTx (24nM) -/+ excess cold toxin (2.4 uM) was incubated with targeted 

Shaker in the presence of 1%> saponin, or with bacterial membranes -/+ the KcsA channel. 

Each reaction was bound to a filter, washed, dried and counted in a scintillation counter. 

Raw bound counts (cpm) have been plotted for each sample. (B) Aliquots of the in vitro 

translations were probed on an a-HA Western blot. 
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Figure 5.16 : Preparation of biotinylated agitoxin. (A) Reduced agitoxin dimer eluted 

with -45 min retention time on RP-HPLC. (B) Agitoxin monomer was reacted with 

biotin-PEO-maleimide and the reaction separated on RP-HPLC. Material in the peaks at 

53 and 54 minutes was collected and dried down. A fraction of this material was run on a 

20%) Tricine gel and silver stained, with reduced agitoxin for comparison (C), or 

transferred to nitrocellulose and probed for biotin (D). 
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6. E R - T O - G O L G I T R A F F I C O F T H E S H A K E R C H A N N E L 

The cytosolic carboxyl termini of several membrane proteins, including potassium 

channels, have been implicated in directing ER export. We generated C-terminal 

truncations (CTR) of the Shaker channel and monitored their ER-to-Golgi traffic as well 

as their steady-state distribution compared to full-length channel. The 177 amino acid 

Shaker carboxyl terminus tail contains two short stretches of residues that have been 

implicated in the export of other proteins from the ER. The diacidic DQE motif (aa 488-

490), very close to transmembrane domain 6, is necessary for transport of the VSVG 

protein from ER to Golgi (Nishimura and Balch, 1997; Sevier et al., 2000). The VASSL 

motif (aa 564-568), about halfway down the C-terminal tail, has been implicated in 

transport of the mammalian voltage-gated Kvl.l channel (Levitan and Takimoto, 2000), 

although this sequence was recently reported not to be required for Shaker traffic 

(Khanna etal., 2001a). 

6.1. Shaker truncated at the carboxyl terminus : CTR series 

The constructs are shown schematically (Fig. 6.1 A). The red bar indicates the 

position of the stop codon, in each case. The HA epitope tag was switched to the amino 

terminus of the protein, in order to avoid possible confounding effects of this extraneous 

sequence at the carboxyl terminus of truncated proteins. Full length channels with HA 

epitope tags at the N- and C-termini trafficked with very similar kinetics, as measured by 

pulse-chase and EndoH digestion in metabolically labeled cells (not shown). The CTR1 

truncation has lost essentially the entire C-terminal tail, including the DXE and the 

VSSNL motifs. The CTR2 truncation retains DXE, but lacks VSSNL. The CTR3 
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truncation contains both D X E and VSSNL, but has lost the last third of the C-terminal 

tail. This membrane distal portion of the Shaker carboxyl terminus is characterized by 

long stretches of glutamine residues the function of which, if any, remains to be 

determined. 

Western blots on the CTR constructs (Fig. 6.IB) indicated that the shortest 

(CTR1) is retained in the ER. Both CTR2 and CTR3, but not CTR1, showed the fuzzy, 

higher molecular weight band that is characteristic of the mature, Golgi-modified form of 

an N-glycosylated protein. In most cases, the smaller immature band was also seen. The 

CTR constructs migrated at the appropriate sizes, relative to the full-length channel. In 

immunoprecipitations from metabolically pulse-labeled cells, only the immature band 

was seen, in all cases (Fig. 6.1C). 

6.2. ER-to-Golgi traffic of truncated Shaker constructs 

Traffic of the CTR constructs was monitored by metabolic pulse labeling, 

followed by a chase of up to 2 hours and EndoH digestion. In keeping with the pattern 

seen at steady state, the CTR1 construct remained EndoH-sensitive after up to 2 hours of 

chase (Fig. 6.2A). This is also true after 3 hours of chase (not shown). Quantitative 

analysis of the longer constructs (Fig. 6.2B) is unfortunately complicated by the presence 

of the 93kD background band (labeled **, Fig. 6.2B, panel 1). This background protein 

was EndoH- sensitive and unstable, being virtually undetectable after 2 hours of chase 

(panel 1, Fig. 6.2B). We compared the EndoH-resistant fraction {R/(R+S)}*100 (where 

R is resistant and S is sensitive) of the CTR constructs at 2 hours of chase in several 

independent experiments. CTR3 (panel 3, Fig. 6.2B; 81 % +/- 4, n = 3) was 

indistinguishable from full length Shaker (panel 4, Fig. 6.2B; 83 % +/- 2, n =3). 
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However, CTR2 (panel 2, Fig. 6.2B; 62 % +/- 3, n = 3) trafficked more slowly, as is also 

evident from a visual inspection of the remaining EndoH sensitive fraction at 2 hours of 

chase, relative to that of CTR3 or full length Shaker. 

6.3. Immunolocalization of Shaker truncated constructs 

We examined the steady state distribution of the CTR truncations in transfected 

COS cells by immuofluorescence microscopy against the N-terminal HA tag. The full-

length channel (Fig. 6.3) was present throughout the cell, presumably partly on the cell 

surface. Clear rim staining was seen in most cells. Co-staining of calnexin as a marker 

for the ER (Fig. 6.3 A) and of GOS28 as a marker for the Golgi (Fig. 6.3B) have been 

shown. Although there is some spatial overlap between Shaker and the ER, the 

fluorescence patterns are clearly different. Likewise, full-length Shaker does not, for the 

most part, have the same fluorescence pattern as a Golgi marker, although in the cases 

where there is significant intracellular staining, co-localization with the Golgi is often 

seen (middle cell, Fig. 6.3B). This is not unexpected for a membrane protein that must 

transit through the secretory pathway. In stark contrast, the CTR1 protein is localized to 

the ER at steady state (Fig. 6.4). 

The CTR2 truncation was quite variable in its sub-cellular distribution (Fig. 6.5). 

While CTR2 in some cells looked very similar to full length channel, ER localization was 

also seen, albeit to varying degrees. In some cases (e.g. cell 1, Fig. 6.5B, perinuclear 

stain), although the fluorescence was predominantly non-ER, some ER stain could be 

seen. In other cases (e.g. cell 5, Fig. 6.4B), what appears to be ER stain was 

predominant. This data is extremely qualitative, but it is not inconsistent with the 

inefficiency in ER export reported by pulse-chase of the CTR2 construct relative to full-

174 



length channel (Fig. 6.2). Further, CTR2 frequently showed a juxtanuclear speckled 

pattern (e.g. cell 2, Fig 6.5A or cells 2, 3 &4, Fig. 6.5B). This pattern did not overlap 

with either the ER or the Golgi, but was often seen to "interlace" with the Golgi. 

Speculatively, the pattern is reminiscent of ER exit sites, but further experiments are 

needed to test this. As for full length Shaker channel, CTR3 fluorescence (Fig. 6.6) was 

for the most part distinct from the ER and the Golgi, although intracellular Shaker co-

localizing with the Golgi was occasionally seen (e.g.. cell 3, Fig. 6.6B). 

6.4. Further experiments on CTR1 

Because of the unique nature of the ER as a "quality-controlled" folding 

compartment, the failure of a protein to traffic out of this organelle need not be the result 

of an export defect, per se. Misfolding can also result in retention in the ER, a situation 

for which there is extensive precedent. Further experiments were initially designed to 

elucidate the nature of the CTR1 defect since it was the most blatant, relative to full 

length Shaker. Specifically, we wished to distinguish between a problem in the folding 

versus the export of the truncated CTR1 channel. We co-expressed HA-tagged CTR1 

with MYC-tagged full-length Shaker, and asked whether the latter, by virtue of assembly 

with CTR1, could "rescue" the export deficiency of CTR1 to any degree. Since the 

efficient assembly of the Shaker channel is promoted by amino-terminal domains, the 

truncated channel would be expected to assemble with full length. 

Indeed, HA-CTR1 co-immunoprecipitated with co-expressed Sh-MYC (Fig. 

6.7A, anti-HA blot, lane 5), but not with Sh-MYC that had been separately expressed and 

mixed with the CTR1 post-solubilization (Fig. 6.7A, lane 4). Full length Sh-HA was also 

co-immunoprecipitated with co-expressed Sh-MYC (lane 6), as was shown previously 
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(chapter 5). A comparison of CTR1 expressed either on its own (Fig. 6.7B, lanes 1 & 2) 

or co-expressed with full length Sh-MYC (Fig. 6.7B, lane 3) showed no evidence of 

enhanced ER export of the truncated construct. In other words, no additional putative 

mature band appeared upon co-expression of CTR1 with full length Shaker. On the other 

hand, an examination of full length Sh-MYC expressed either alone (Fig. 6.7C, lanes 1 & 

2) or together with CTR1 (Fig. 6.7C, lane 3; also Fig. 6.7A, anti-MYC blot, lane 5) 

indicated that the mature (Golgi) fraction of the full-length protein may be reduced, upon 

co-expression with CTR1. 

It is possible that the fraction of co-LP'd CTR1 (relative to total) is small, and that 

the fraction of any putative "rescued" mature CTR1 is smaller still and therefore below 

the detection limit. We imaged co-expressed CTR1 and Sh-MYC in order to assess, by a 

different method, whether the export phenotype of the full length or the truncated 

construct is dominant. The fluorescence pattern of the CTR1 channel has already been 

discussed, but is shown again in individually expressing COS cells that have been stained 

for both HA and MYC (Fig. 6.8A). The distribution of full-length Sh-MYC is very 

similar to that of the full-length HA-tagged channel (Fig. 6.8B). There was no evidence 

for rescue of CTR1 export by co-expression with full-length Shaker channel. In contrast, 

in every case of high CTR1 expression, full-length Sh-MYC was seen to redistribute to 

the ER, to some degree. There is still clearly non-ER (presumably surface)Sh-MYC 

channel in all cases, as evidenced by the fluorescent halo that surrounds the ER stain and 

extends to the edge of the cell, but a significant amount of full length channel is 

redistributed to the ER, to an extent never seen for Sh-MYC expressed alone. 
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Simply interpreted, the dominant effect of the C T R 1 construct could mean one of 

two things. The truncated channel could be misfolded and consequently, as a result of 

heteromultimerization, could retain the full-length channel in the ER. Alternatively, there 

may indeed be a key ER export signal in the membrane proximal first third of the Shaker 

C-terminus, but this signal may be necessarily present on all four subunits of the tetramer 

in order to efficiently effect export. Nevertheless, our present data cannot rule out 

misfolding of the CTR1 construct. Since the defect of the CTR2 construct is subtler, 

productive co-expression experiments will require the re-establishment of a dependable 

quantitative trafficking assay. 

6.5. Controls and future experiments 

(i) Although co-IP of the CTR1 truncated construct with full length Shaker suggests 

that it assembles into tetramers, sucrose gradient centrifugation is needed to 

definitively determine this. Additionally, spurious aggregated forms of CTR1, if 

present, may be detected by this method. 

(ii) Preliminary observations indicate that the CTR1 construct is not particularly 

unstable, relative to full length, arguing against a folding defect. Stability 

comparisons would need to be extended and quantified. 

(iii) Analysis of ER-Golgi traffic of ADXE Shaker to specifically investigate the role 

of this sequence in the transport process. 

(iv) Analysis of ER-Golgi traffic of ShakerAregionl, where regionl is the membrane-

proximal sequence that is present in CTR2 and absent in CTR1. If misfolding of 

CTR1 is merely due to the lack of any cytosolic sequence following TM6, then 
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the addition of the distal Shaker C-terminus (or of random sequence from any 

other protein) would be expected to restore export out of the ER. 

(v) ER-Golgi traffic of full-length Shaker co-expressed with the cytosolic carboxy-

terminal tail. Fragments of membrane proteins that contain ER export sequences 

have been shown to block ER export of the full-length forms of the same protein, 

presumably by competition with necessary cytosolic factors. The effect of a co-

expressed C-terminal fragment on the traffic of Shaker itself, as well as of other 

secreted and membrane proteins, could be informative with regard to both the 

existence and the potential specificity of ER export sequences in the Shaker 

carboxyl terminus. 
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Figure 6.1 : Shaker C-terminal truncations (CTR) expressed in C O S cells. 

(A) Construct design. The red bars indicate the position of the stop codon for each 

truncation. (B) a-HA Western blot on CTR constructs expressed in COS cells. 

(C) a-HA IP on transfected C O S cells pulse-labeled with "Scysteine+methionine. 
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Figure 6.2 : ER-Golgi traffic of Shaker C-terminal truncations (CTR). (A) CTR1-

transfected COS-1 cells were pulse-labeled, chased as indicated (0-2h), and the lysates 

subjected to a-HA IP and EndoH digestion. (B) Untransfected (panel 1) or CTR2-, 

CTR3- and full length Shaker-transfected COS cells (panels 2-4) were pulse-chased and 

processed as above. A background band at 93kD is indicated in panel 1 (**). 
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Figure 6.3 : Immunofluorescence microscopy on full-length Shaker. Shaker-

transfected COS-1 cells were fixed and stained for Shaker (a-HA, red) and ER (a-CNX, 

green) (A) or Golgi (a-GOS28, green) (B). Fields including untransfected cells have 

been shown. 
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Figure 6.4 : Immunofluorescence microscopy on Shaker C T R L C T R 1-transfected 

COS-1 cells were fixed and stained for Shaker (a-HA, red) and ER (a-CNX, green) (A) 

or Golgi (a-GOS28, green) (B). Fields including untransfected cells have been shown. 

Yellow or orange color in the merge indicates co-localization. 
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Figure 6.5 : Immunofluorescence microscopy on Shaker CTR2. CTR2-transfected 

COS-1 cells were fixed and stained for Shaker (a-HA, red) and ER (a-CNX, green) (A) 

or Golgi (a-GOS28, green) (B). Fields including untransfected cells have been shown. 

(C) Enlarged regions of cells 3 and 4 from (B). 
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Figure 6.6 : Immunofluorescence microscopy on Shaker CTR3. CTR3-transfected 

COS-1 cells were fixed and stained for Shaker (a-HA, red) and ER (a-CNX, green) (A) 

or Golgi (a-GOS28, green) (B). Fields including untransfected cells have been shown. 
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Figure 6.7 : Co-expression of CTR1 with full length Shaker. (A) Transfected COS-1 

cells were lysed (2% CHAPS), the lysates subjected to a-MYC IP, and then probed either 

on a-MYC (upper panel) or a-HA (lower panel) Western blots. (B) & (C) Transfected 

COS-1 cells were lysed as above and equal fractions of the lysates probed on a-HA (B) 

or a-MYC (C) Western blots. 
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Figure 6.8 : Immunofluorescence microscopy on co-expressed C T R 1 and full length 

Shaker. COS-1 cells expressing either (A) HA-CTR1 alone, (B) full length Sh-MYC 

alone, or (C) HA-CTR1 and Sh-MYC, were fixed and stained with a-HA (red) and a-

M Y C (green) antibodies. 
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7. D i s c u s s i o n 

In the work presented here, we have studied the process by which a voltage-gated 

potassium channel attains its final form, function and location in the cell. We have 

focused on certain aspects of this complex series of events, namely, targeting to the 

endoplasmic reticulum (ER), integration into the ER membrane, glycosylation and 

folding within the ER, and traffic out of the ER to the cell surface. 

7.1. N-linked glycosylation in Shaker folding and traffic 

7.1.1. Secretory delivery to the cell surface 

Given the conserved nature of the N-linked glycosylation site(s) in the first 

extracellular loop of the voltage-gated potassium channels, it is surprising that all studies 

to date suggest only slight, if any, effects of partially or completely blocking the 

glycosylation process. To the extent it has been studied, this is true both for the effect of 

sugar groups on the biophysical properties of the mature channel, as well as on its 

intracellular folding and traffic. Glycans in mature proteins at the cell surface commonly 

affect adhesion properties, protein-protein interactions or serum stability. In addition, for 

an ion channel that responds to changes in membrane potential, the charged nature of 

many complex sugars could be expected to modulate gating. That Shaker-like channels 

without sialic acid show a depolarized shift in voltage-dependent activation is in keeping 

with this prediction (Thornhill et al., 1996). Since this has been studied only in 

heterologous cells, however, it is unclear to what extent it impacts physiology. 
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The same criticism holds true for our own and other work on Shaker channel 

traffic through the secretory pathway. We have studied the effects of glycosylation on 

traffic of the Shaker channel. The initial rate of delivery of unglycosylated 

N259Q+N263Q (NQ) mutant Shaker to the surface of COS cells is slowed, compared to 

that of wild type, but the fraction of either channel on the surface at steady state does not 

measurably differ. At least part of the retardation in mutant Shaker is due to slowed 

traffic early in the secretory pathway, possibly at the level of transport out of the 

endoplasmic reticulum. Aplysia Kvl (sqKvl A) channels that had been rendered 

unglycosylated by mutation showed a similar retardation in initial arrival at the surface of 

Xenopus oocytes, whereas the steady state surface levels, determined 

electrophysiologically, were indistinguishable from wild type (Liu et al., 2001). Given 

the sequence similarity (Chandy and Gutman, 1995) of the Drosophila and Aplysia 

channels, the identical location of the glycosylation site, and the very similar 

consequences of mutating this site for traffic of either channel, it is reasonable to assume 

that the sqKvlA channel is also retarded in the ER-Golgi traffic step. It is worth noting 

that the experiment in oocytes was done at a lower temperature than in mammalian cells 

(20°C versus 37°C). If the basis for slower surface delivery of the squid and fly channels 

is indeed the same, then it appears that the putative folding defect of the unglycosylated 

channel is not completely rescued at lower temperature. This is consistent with the fact 

that we measured a difference between wild type and mutant Shaker traffic in the early 

secretory pathway at 20°C. 

In contrast to our results, others have reported a 3 to 5-fold decrease in the surface 

fraction of unglycosylated Shaker relative to wild type in HEK293T cells (Khanna et al., 



2001b). Traffic kinetics were not measured in these experiments, but it is not implausible 

that slowed traffic of mutant Shaker affects its steady state surface level to a greater or 

lesser degree, depending on the cell type. Curiously, unglycosylated channel was also 

more rapidly degraded than wild type in HEK293T cells, in a lactacysin-sensitive and 

brefeldin A (BFA)-insensitive manner. This led to the interpretation that mutant 

degradation occurred in the cytosolic proteasome, directly from the ER. All other things 

being equal, increased degradation of the mutant from an intracellular location should 

result in lower total protein levels, compared to wild type, but a higher surface fraction, at 

steady state. They did not compare overall protein levels. Possibly, degradation in the 

prolonged (36 hr) presence of BFA is not a reliable indicator of the situation in actively 

trafficking cells. Selective degradation of surface unglycosylated channel or retarded 

delivery to the cell surface would be more consistent with the steady state surface levels 

reported in (Khanna et al., 2001b). 

7.1.2. Endocytic retrieval from the cell surface 

The surface level of a protein may depend upon the relative rates of several 

processes, including surface delivery via the secretory pathway, surface delivery via the 

recycling pathway, internalization from the cell surface and degradation. All other rates 

being equal, since WT and NQ channels are delivered to the cell surface at different 

initial rates, there should theoretically be a difference in the steady state surface fraction, 

in our experiments. Since the difference in initial surface delivery rate is not large, 

however (about two fold), it is possible that any difference at steady state is within the 

experimental variation. This (theoretical) difference in steady state levels would shrink 

further if the endocytic rate, of both channels, is slow in comparison to secretion. 
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Alternatively, similar surface levels of W T and N Q Shaker could be the result of a 

compensatory difference in endocytic or recycling rates. Although the oligosaccharide 

groups are topologically extracellular, there is substantial precedent for transmembrane 

lectin-mediated regulation of glycoprotein traffic in the cell. Specifically, interactions 

with transmembrane lectins have been suggested as a mechanism for targeting 

glycosylated proteins to the apical surface of polarized cells (Zafra and Gimenez, 2001; 

Scheiffele et al., 1995). Our attempts to compare WT and NQ mutant Shaker endocytic 

rates were unsuccessful. 

7.1.3. Traffic in the early secretory pathway 

We further dissected Shaker channel secretory traffic in mammalian cells. Using 

intranuclear microinjection and quantitative imaging, we compared the ER-Golgi traffic 

rates of wild type and mutant unglycosylated Shaker. We found that unglycosylated 

Shaker appeared more slowly in the Golgi than the wild type, at 20°C. We would predict 

that this difference contributes at least partially to the difference in surface delivery rate 

of the two channels, at 37°C. We cannot formally distinguish between an effect of 

glycosylation on retrograde (ERGIC-ER or cis Golgi-ER as compared to forward (ER-

Golgi) secretory traffic. Based on the fact that first, retrograde traffic is coatomer-

mediated and, second, coatomer does function in forward secretory traffic at 20°C, the 

prediction is that retrograde traffic also does occur at the lower temperature. In principle, 

if loss of glycosylation speeded up channel retrograde movement, this would also result 

in apparently slower traffic from ER to Golgi. However, the net effect would be the 

same, namely slower traffic through the secretory pathway to the cell surface. 
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Similarly, since our experiment only monitors Shaker co-localization with the 

Golgi, we cannot theoretically distinguish between effects of glycosylation on ER-

ERGIC versus ERGIC-Golgi traffic. The ERGIC is a dynamic compartment at the 

functional interface of the ER and the Golgi, and is regarded by some as representing a 

maturation of ER-Golgi transport intermediates, rather than as a discrete organelle. The 

fact that proteins that cycle between ER, ERGIC and cw-Golgi can be blocked at the ER-

ERGIC (Appenzeller et al., 1999; Pryde et al., 1998; Shima et al., 1998; Andersson et al., 

1999), ERGIC-ER or ERGIC-Golgi (Lippincott-Schwartz et al., 1990; Klumperman et 

al., 1998; Palokangas et al., 1998) stages of this cycle suggests that the compartments are, 

in fact, distinct. At the ultrastructural level, the ERGIC is seen to form vesiculo-tubular 

clusters that are morphologically distinguishable from both the ER reticulum and Golgi 

cisternae (Aridor et al., 1995; Klumperman et al., 1998). At the level of light 

microscopy, however, the ERGIC may not be entirely distinguishable from the ER and 

the cis-Go\gi (Hammond and Glick, 2000; Hauri et al., 2000). We have not examined the 

degree to which a protein in the ERGIC could contribute to our Golgi-localized 

fluorescence signal. Even if the ERGIC were 100% co-localized with the Golgi in our 

images, however, this would not invalidate the experiment. Rather, it would be 

suggestive of an effect of Shaker glycosylation at a pre-ERGIC stage of secretion. The 

fact that ER resident proteins did not significantly co-localize with the Golgi is far more 

central for our interpretation of the experiment, namely, that exit of the unglycosylated 

mutant Shaker channel from the ER occurs slower than than of wild type. 

Lastly, it is possible that in addition to the effects on transport from the ER to the 

Golgi, there is a difference between mutant and wild type in terms of their Golgi-plasma 
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membrane transport rates. A similar imaging experiment to compare these rates, 

although theoretically feasible, becomes complicated by the fact that the two channels 

differ markedly in the extent to which traffic out of the ER occurs, even after 4-5 hours of 

traffic at 20°C. This makes quantitative interpretation of a "Golgi exit" experiment very 

difficult. Importantly, inhibition of Golgi glycosylation enzymes seems to have little 

effect on the transport of a number of proteins (Elbein, 1991; Stanley, 1984). 

7.1.4. Possible explanations for retarded N259Q+N263Q traffic 

The most obvious explanation for slowed ER-Golgi traffic of unglycosylated 

Shaker is that the absence of the carbohydrate moiety results in a reduced rate of channel 

folding, slower acquisition of an ER export-competent conformation, and consequently 

slower ER export. As already mentioned, this could be through a direct effect of the 

sugar groups on folding rate, as has been demonstrated in vitro on other proteins 

(Imperiali and O'Connor, 1999; Wormald and Dwek, 1999; Kern et al., 1993). 

Alternatively, but not necessarily exclusively, the effect of glycosylation could be 

indirect, via interaction with a chaperone, the obvious candidates being the lectin-like 

chaperones calnexin and calreticulin (CNX/CRT). Surface delivery of the WT channel is 

not significantly affected by the ER-glucosidase inhibitor castanospermine, which greatly 

reduces interaction of Shaker with calnexin. This does not, of course, rule out a role for 

the chaperone in Shaker biogenesis, but it does indicate that such a role, if any, is not rate 

limiting in the glycosylation-dependent effect that we report here. Alternatively, this 

could merely be yet another example of redundancy in ER chaperone function, as has 

been previously demonstrated (Zhang et al., 1997; Braakman and van Anken, 2000; 

Gaudin, 1997). We have not determined whether abolishing glycosylation leads to 

192 



increased association of mutant Shaker with the lumenal ATPase BiP, as has been shown 

for some other proteins (Molinari and Helenius, 2000). BiP levels are not increased in 

COS cells expressing NQ mutant Shaker, relative to WT, suggesting that the mutant 

channel does not induce a stress response (data not shown). This is consistent with the 

apparently rather mild effect of the NQ mutations on channel assembly, traffic and 

mature structure. Finally, it is possible that there are other glycosylation-dependent 

chaperones that promote either folding or export of the Shaker channel. We have not 

determined whether or not the putative "glycoprotein transport receptor" ERGIC 53 

(Appenzeller et al., 1999) interacts with Shaker. It is certainly conceivable that it, or 

some other unidentified ER-Golgi transport factor, affects Shaker channel traffic out of 

the ER in a glycosylation dependent manner. 

7.1.5. Does Shaker glycosylation matter ? 

Since the activity of an excitable cell is determined by the type and number of ion 

channels on its cell surface, factors that affect one or other of these parameters could 

affect cell and organismal physiology. An authentic understanding of whether or not 

voltage-gated potassium channel glycosylation is important will require experiments in 

homologous systems. As it stands, we do not know (i) if the rate differences observed in 

tissue culture also exist in neurons and/or muscle, either of Drosophila or of mammals, 

(ii) if such rate differences, if any, have an effect on channel surface levels, and (iii) if the 

difference in surface levels, if any, has an effect on physiology. A transgenic Drosophila 

line expressing the unglycosylated channel could be extremely informative. Reduced 

channel surface levels in fly muscle would be predicted to result in a classical Shaker 

phenotype, with uncontrolled leg-twitching under ether anesthesia. Indeed, reduction in 
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channel surface levels contributes partially, if not completely, to the hyperexcitability of 

mutants at the hyperkinetic locus (Chouinard et al., 1995), and of some mutants (e.g. 

ShE62) at the Shaker locus (Jan et al., 1983). 

7.2. Regulation of ion channel traffic 

7.2.1. Regulation of channel levels at the plasma membrane 

The cell surface levels of several pumps, transporters and channels are 

dynamically regulated by varying the rates of exocytosis/ endocytosis at the plasma 

membrane (Al Awqati, 1985; Rea and James, 1997). For instance, the levels of the 

H ATPase at the apical surface of bladder epithelial cells increase substantially in 

response to carbon dioxide, thus effecting increased trans-epithelial proton flux (Cannon 

et al., 1985). Likewise, insulin treatment causes net translocation of the glucose 

transporter GLUT4 from an intracellular location to the surface of the cell, as a result of 

increased exocytic and decreased endocytic rates (Jhun et al., 1992). Phosphorylation-

based modulation of cell surface expression has been suggested for the gap junctions 

(Musil et al., 1990) and for CFTR (Weber et al., 1999; Weber et al., 2001), although 

differing conclusions have been reached in other studies of CFTR (Moyer et al., 1998). 

7.2.2. Do ER export sequences regulate K+ channel surface levels ? 

In addition to, and most likely interfacing with, the effect of extracellular stimuli, 

regions within the polypeptide itself are often important for directing sub-cellular traffic. 

In the case of the potassium channels, the recent identification of ER export sequences in 

the C-termini of mammalian Kir channels (Ma et al., 2002; Ma et al., 2001) has led to 

speculation that regulated ER exit may be a mechanism for adjusting channel surface 
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profiles. This could, broadly speaking, occur in one of two ways. First, accessibility of 

the export sequence to decoding factors (for instance, coat proteins or transport receptors) 

could be regulated, depending on the needs of the cell. Second, since 

heteromultimerization can occur between channel sub-family members with very 

different intrinsic tendencies to traffic out of the ER, changes in the relative levels of 

different monomers could vary the surface channel profile of the cell. Although 

heterologous co- expression of voltage-gated channels with inherently different surface 

expression levels (Kvl.l< Kvl.2< Kvl.4) was seen to produce heteromultimers with 

intermediate properties (Manganas and Trimmer, 2000), intrinsic cellular regulation of 

the surface repertoire in this manner has not been reported. 

7.2.3. The Shaker carboxyl terminus in traffic out of the ER 

Putative ER export sequences in the voltage-gated channels have not been 

extensively characterized. We carried out preliminary experiments on C-terminal 

truncations of Shaker (CTR), to begin to define regions of the cytosolic tail that may be 

required for ER export. Removal of the last 60 amino acids of Shaker (CTR3) had no 

deleterious effect on ER-Golgi traffic. If a further 50 amino acids were deleted (CTR2), 

pulse-chase experiments as well as immunostain indicated that traffic out of the ER 

occurred slower. Further experiments are required, including a more statistical 

comparison of the CTR2 and FL Shaker immunofluorescence pattern, before any 

definitive statement can be made. Nevertheless, in the event that there is an ER export 

signal in the central region of the Shaker C-terminal tail (aa 539-592), it is clearly not 

absolutely required, but rather, increases the rate of the ER export process. In contrast, 

Shaker that entirely lacks the C terminal tail (CTR1) is completely retained in the ER. 
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W e cannot as yet distinguish between a folding defect or a transport defect of CTR1. 

This has been discussed in chapter 6, and will therefore not be repeated here. 

7.3. Biogenesis of Shaker in the endoplasmic reticulum 

7.3.1. Characterization of Shaker translated in vitro 

In vitro translation of the Shaker channel had not been well characterized prior to 

this work. Shaker translated in rabbit reticulocyte lysate (RRL) targets efficiently to 

canine and porcine pancreatic microsomes, stably integrates into the bilayer and 

assembles into tetramers. The RRL/pancreatic microsome system reproduces the 

glycosylation-dependent interaction between Shaker and the chaperone calnexin seen in 

the ER of tissue culture cells. Efficient targeting and integration do not preclude aberrant 

assembly, since certain preparations of microsomes were seen to produce entirely 

aggregated, albeit targeted and integrated, channel. 

The Shaker monomer is a 656 amino acid protein and migrates on SDS-PAGE 

with an apparent molecular weight of 70-75 kD. In translations of Shaker in reticulocyte 

lyate, there is consistently an additional prominent band at ~ 30 kD. The 30 kD band is 

recognized by antibodies to an HA epitope tag at the carboxyl terminus of the channel, 

indicating that it is a C-terminal fragment of the Shaker protein. Interestingly, this band 

is also seen on Western blots of Shaker transfected into COS, HeLa or HEK293T cells 

(not shown), and a similar C-terminal fragment has recently been reported for the 

mammalian Kvl.l channel expressed in COS. The amino-terminal end of the 30K 

fragment is not known. Further it is not clear whether it is generated by internal initiation 

or by proteolytic cleavage, and if it is of any significance for Shaker physiology. In vitro, 
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the 30K band was targeted and integrated efficiently, but it was neither glycosylated nor 

tetramerized (not shown). Since the glycosylation sites are in the amino-terminal half of 

Shaker, this is again consistent with the 30K band being a carboxyl terminus fragment. 

Presumably, it contains at least one TM domain, by which it targets and integrates into 

the ER. Essentially, then, the 30K fragment must consist of at least TM6 (and possibly 

TM5) together with the (177 aa) cytosolic carboxyl terminus. Especially if it turns out 

that there is indeed ER export information in the Shaker cytosolic tail, it is tantalizing to 

speculate that this 3 OK fragment may be involved, in some currently non-obvious way, in 

the regulation of channel traffic out of the ER. 

7.3.2. Targeting of Shaker to the endoplasmic reticulum 

Using a series of truncated constructs, we showed that Shaker TM1 

(transmembrane domain 1) is likely to be the earliest targeting information in the nascent 

Shaker polypeptide. Further, when TM1 has adequately emerged from the ribosome, it is 

also sufficient to effect this process. However, a major caveat to this interpretation is 

discussed in the next section. The T2 construct (23 amino acids after TM1) does not 

target to the ER whereas T2.1 (40 amino acids after TM1) does, as do all longer 

constructs. It is the added length of the nascent chain in T2.1, and not the specific 

sequence, that is most probably important, since replacement of all amino acids after T2 

with random sequence produces a construct that is still able to target efficiently. Our 

observations are in keeping with previous studies on Kvl.l channel targeting in vitro 

(Shen et al., 1993). In this case, too, TM1 was found to be minimally required for 

efficient ER targeting. In contrast, the lymphocyte Kvl .3 channel was shown to require 

TM1 and TM2 for efficient targeting to the ER (Tu et al., 2000). However, the 
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possibility that this reflected a requirement for sufficient polypeptide length after T M 1 , 

and not TM2 per se, was not addressed. 

Although we have not precisely defined the minimum length of the TM1-TM2 

loop that must be synthesized in order that TM1 emerges sufficiently from the ribosome, 

we have narrowed it down to between 23 and 40 amino acids after TM1. This is in 

keeping with current understanding of the ribosomal "tunnel", which estimates that 30 -

40 nascent chain amino acids are protected by the ribosomal subunits (Malkin and Rich, 

1967; Blobel and Sabatini, 1970; Matlack and Walter, 1995), and are therefore not free to 

interact with cytosolic factors. In contrast, studies on the seven-TM domain membrane 

protein rhodopsin have shown that nascent chains truncated immediately after TM1 are 

still able to target to co-translationally added ER microsomes (S.M. Simon, unpublished 

experiments). This requires that opsin TM1, which by conventional wisdom is buried 

within the ribosomal tunnel, can direct targeting of the ribosome-nascent chain complex 

to the ER. There is no evidence for this in the case of Shaker. This may reflect the fact 

that opsin and Shaker are topologically different proteins. The Shaker N-terminus is 

cytosolic whereas the opsin N-terminus is translocated to the ER lumen. Possibly, the 

targeting program varies for these two proteins. 

T2, but not T2.1 - T5, shows an aberrantly prolonged association with the tRNA. 

The partial puromycin insensitivity of this association indicates that it is (partially) not in 

the context of a functional ribosome. We cannot completely rule out that this prolonged 

tRNA association is causally linked to inefficient T2 targeting. The argument against this 

interpretation is that, in our analysis of T2 targeting, we have only taken into account the 

released (ie non-tRNA attached) form of the protein. In our experience with truncated 
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constructs lacking stop codons, a certain (unpredictable) fraction does show an increased 

propensity to remain tRNA-attached even after puromycin treatment, as seen for T2. If 

targeting of only the puromycin-releasable protein is assessed, there is typically no 

correlation with a targeting problem. However we do not really know when, in the 

course of our experiment, release of T2 from the tRNA occurred. In other words, it is 

possible that fully synthesized (272aa), ribosome-released T2 was never present during 

incubation with ER microsomes, but only as an aberrant, targeting-incompetent complex 

with the tRNA. In this scenario, the released protein that is seen on the gel (and 

quantified to assess targeting) could have been generated during post-translational 

processing of the sample. Experiments that assess targeting of puromycin-released 

constructs (T2-T5) lacking stop codons could be informative. Specifically, it would be 

interesting to know whether the existing trend in targeting efficiency persists for 

truncated constructs that have been specifically released by puromycin in the presence of 

ER microsomes. 

In part as a consequence of this alternative interpretation of our data, we 

examined the ER targeting of the T2 and T3 constructs expressed in COS cells in order to 

validate (or invalidate) the in vitro data at the cellular level. Targeting of the T2 construct 

was much more efficient than seen in vitro. However, immunostain of transfected cells 

clearly showed diffusely localized (probably cytosolic) T2 in about 70% of cells, whereas 

T3 was tightly co-localized with the ER. This suggests that inefficient T2 targeting in 

vitro reflects to some degree, although not with precision, the situation in the cellular 

milieu. 
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7.3.3 M e m b r a n e integration of Shaker : a role for T R A M ? 

The translocon associated membrane protein (TRAM) has remained functionally 

somewhat engimatic. As the name suggests, it associates with the translocon, and has 

been shown to cross-link to a number of protein nascent chains. In one case, cross-

linking intensity to sec 61a (the translocon) and TRAM was seen to vary inversely for 

membrane protein nascent chains of different lengths, leading to the suggestion of a 

"hand-off of the nascent protein from the translocon to TRAM (Do et al., 1996). While 

cross-linking does suggest proximity of the protein nascent chain to TRAM, a functional 

significance of this proximity remains to be established. TRAM has been implicated in 

translocational pausing of a secreted protein (Hegde et al., 1998) and in early steps of 

translocation for some signal sequences (Voigt et al., 1996). 

In experiments designed to further investigate a possible role for this poorly 

understood protein in channel biogenesis, we examined the targeting, integration and 

tetramerization of Shaker in microsomes that had been depleted of glycoproteins. The 

rationale was that none of the proteins that comprise the "basal" translocation/integration 

machinery are glycosylated, whereas TRAM is. The specificity of the effect was tested 

by comparison with solubilized, mock-depleted microsomes and with depleted 

microsomes that were reconstituted with purified TRAM. Targeting of Shaker was 

reduced in the depleted microsomes. Further, the Shaker that was targeted proved to be 

incompletely integrated into the bilayer. Lastly, the Shaker that was integrated was seen 

largely in high molecular weight complexes, under non-denaturing conditions, suggesting 

that it was aberrantly assembled and/or folded. The effects on Shaker targeting and 
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assembly were not specific to T R A M . The efficient integration of Shaker into the 

membrane, however, significantly and specifically correlated with TRAM. 

It is worth noting that, in our experience, integration of targeted membrane 

proteins is a difficult process to disrupt (although integration in the correct topology may 

be another issue entirely). Targeting is easily abrogated with many different 

perturbations (i.e. various treatments of ER microsomes, mutations or truncations of the 

substrate protein itself). However, all targeted membrane protein almost always 

integrates into an alkali-inextractable form. TRAM depletion is the only treatment that 

we have seen to affect Shaker integration beyond any effects it has on ER targeting. 

Interestingly, TRAM has been reported to remain in prolonged proximity, as 

measured by cross-linking, to nascent chains of a membrane protein in which charged 

residues were introduced into the TM domain, and which was consequently impaired in 

its ability to stably integrate into the bilayer (Heinrich et al., 2000). TM4 of Shaker, 

which constitutes the channel voltage sensor, contains seven positively charged residues 

(Papazian et al., 1991; Jan and Jan, 1992; Liman et al., 1991). Charged voltage sensing 

TM domains are not only present in all voltage-sensitive ion channels (Catterall, 1988), 

as might be expected, but in the cyclic nucleotide-gated channels as well (Kaupp et al., 

1989). Moreover, pore-lining TM domains of many ion channels, by virtue of the fact 

that they must face both a hydrophobic and an aqueous environment, tend to be 

amphipathic, rather than hydrophobic. It is interesting to speculate that there exists a 

specific ER machinery to assist in the integration of sub-optimal transmembrane domains 

such as these. A systematic examination of the integration of proteins of varying 
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hydrophobicity in the presence and absence of T R A M may prove informative, in this 

regard. 

7.3.4. Folding of Shaker in the endoplasmic reticulum 

We attempted to further dissect the misassembly (i.e. the aggregation on sucrose 

gradients) of the Shaker channel translocated into solubilized, reconstituted microsomes. 

Since these microsomal preparations were (i) glycosylation-deficient and (ii) significantly 

depleted for lumenal proteins, we examined whether either of these treatments (or a 

combination, not shown) also caused Shaker aggregation. Neither block of Shaker 

glycosylation nor depletion of microsome lumenal content could reproduce the extent of 

Shaker aggregation seen in solubilized microsome preparations, although a lack of ER 

lumenal chaperones was correlated with a slightly increased tendency of Shaker to 

aggregate. 

Taken at face value, ER lumenal chaperones appear virtually dispensable for 

Shaker channel assembly. However, it has been shown that depletions of ER lumenal 

proteins (either by alkali extraction or by saponin treatment) require the presence of ATP 

for effective removal of the lumenal hsp70 homologue BiP (Hebert et al., 1998). Since 

we were trying to mimic preparation of the reconstituted membranes (i.e. the rRM and 

cRM), our depletions were done in the absence of ATP. We have not tested BiP levels of 

our alkali- and saponin-treated preparations, but the chaperone is likely to be measurably 

present. So, we cannot broadly rule out a role for all ER lumenal factors in channel 

assembly, based on these experiments. Depletion of protein disulfide isomerase (PDI) to 

less than 5% of normal levels, however, has minimal consequences for Shaker 

tetramerization. 
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7.3.5. D o ion channels conduct ions at intracellular organelles ? 

Sucrose gradient centrifugation shows that Shaker channel prepared in vitro 

assembles into tetramers, in a manner indistinguishable from Shaker prepared in the 

cellular ER. However, it is not clear to what degree immature (ie ER-localized) channels 

are functional for the conduction of ions, and if so, whether conduction does indeed occur 

at this intracellular location en route to the plasma membrane. This aspect of Shaker cell 

biology is additionally interesting since it applies to ion channels in general. The 

presence of large numbers of promiscuously open ion channels in the limiting membranes 

of various intracellular organelles is likely to be an undesirable proposition for the cell. 

In the case of the voltage-gated potassium channels, since there is probably no potential 

difference across the ER membrane, the channels are likely to be in the inactivated state. 

The HVA voltage-gated calcium channels, however, would not inactivate rapidly at 0 mV 

(Hille, 1984). It is quite possible that unregulated activity of large numbers of calcium 

channels at the ER membrane would be deleterious to the cell. On the other hand, it is 

also possible that the extensive cellular machinery that has evolved to lower cytosolic 

calcium levels following signaling events is also capable of counteracting a basal "leak" 

of the ion from various organelles into the cytosol. 

Speculation notwithstanding, very little is known about when in its biogenesis, an 

ion channel or a receptor typically attains its fully functional form. In principle, there are 

several ways in which the function of a receptor or channel could be restricted to the 

plasma membrane, such that deleterious intracellular effects are avoided. In the simplest 

model, the protein may not acquire function until it has reached the plasma membrane. 

The EGF receptor is thought to acquire the ability to bind EGF in the Golgi, although 
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there was no requirement shown for exit from the E R per se (Gamou et al., 1989). 

Similarly, the connexins have been reported to assemble into functional gap junctions 

only in the Golgi apparatus (Musil et al., 1990), although this view has been challenged 

by the fact that connexins translated in vitro and translocated into ER microsomes were 

seen to be functional channels when fused to a planar lipid bilayer (Falk et al., 1997). In 

an alternative model for the prevention of harmful intracellular activity, a channel or 

receptor could fold to a functional state in the ER, but remain inhibited. Such inhibition 

could be active, via interaction with a negative regulator, or passive, resulting from the 

absence of the appropriate stimulus (i.e. potential difference, in the case of a voltage-

gated channel, or ligand, in the case of a receptor). Notably, the RAP chaperone/escort 

protein has been proposed as a negative regulator of ligand binding to members of the 

LDL receptor family, until traffic of the receptor past the medial Golgi has occurred (Bu 

et al, 1995; Moestrup and Gliemann, 1991; Herz et al., 1991; Biemesderfer et al, 1993; 

Bu and Schwartz, 1998). 

Perhaps the best evidence for the fact that ion channels can attain their functional 

form in the ER comes from the reconstitution of in vitro translated/translocated Shaker 

and gap junctions into planar lipid bilayers (Rosenberg and East, 1992; Falk et al., 1997). 

However, the sensitivity of the electrophysiological approach (a single channel per 

microsome could theoretically be detected), precludes an assessment of the extent to 

which the functional pores were representative of the majority of channels. This caveat 

also applies to the report that ion channels with the properties of voltage-gated channels 

of the neuronal plasma membrane were identified in vesicles isolated from squid 

axoplasm (Wonderlin and French, 1991). We wished to examine whether or not ER-
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localized Shaker binds the peptide toxin agitoxin, or in other words, whether the pore of 

the ER-localized channel has attained its characteristic extracellular fold. Unfortunately, 

our attempts to establish this assay, either in microsomes or in the cellular ER, did not 

reach fruition. 
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