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Role of AID and microRNA-155 in c-myc-IgH translocations 

    Yair Dorsett, Ph.D 

    The Rockefeller University 2008 

 

Chromosome translocations between oncogenes and the immunoglobulin (Ig) region 

spanning the variable (V), diversity (D) and joining (J) genes (Ig V-JH region) are found 

in a number of mature B cell lymphomas in humans and mice.  The breakpoints are 

frequently adjacent to the recombination signal sequences (RSSs) targeted by 

recombinase activating genes 1 and 2 (RAG1/2) during antigen receptor assembly in pre-

B cells, suggesting that these translocations might be the result of aberrant V(D)J 

recombination. However, in mature B cells undergoing AID dependent somatic 

hypermutation (SHM), duplications or deletions that would necessitate a double strand 

break make up 6% of all the Ig V-JH region associated somatic mutations. Furthermore, 

DNA breaks can be detected at this locus in B cells undergoing SHM. To determine 

whether SHM might induce c-myc to Ig V-JH translocations, we searched for such events 

in both IL6 transgenic (IL6 tg) and AID-/- IL6 tg mice. Our experiments demonstrate that 

AID is required for c-myc to Ig V-JH translocations induced by IL6. 

We also investigated the potential role of microRNAs (miRNAs) in AID mediated 

processes. MiRNAs are small non-coding RNAs that regulate vast networks of genes that 

share miRNA target sequences. To examine the physiologic effects of an individual 

miRNA in vivo we created a knock-in mouse that carries a mutation in the putative 

microRNA-155 (miR-155) target site in the 3’UTR of AID (AID155 mice). AID155 causes 

an increase in steady state AID mRNA and protein levels by increasing the half-life of 



the mRNA resulting in high levels of c-myc-IgH translocations. A similar but more 

pronounced translocation phenotype was also found in bic/miR-155-/- mice. Our 

experiments indicate that miR-155 can act as a tumor suppressor by reducing potentially 

oncogenic translocations generated by AID.   
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INTRODUCTION 

 

Antibody Diversification In The Germinal Center  

Germinal center response  

Antibody genes are assembled in developing B cells by RAG1/RAG2 recombinase 

mediated site-specific recombination of immunoglobulin (Ig) variable (V), diversity (D) 

and joining (J) gene segments. Although V(D)J recombination produces a diverse 

repertoire of IgM antibodies, high affinity IgG antibody responses require further Ig 

diversification. During T cell dependent immune responses, structures called germinal 

centers (GC) are formed by rapidly dividing B cells within follicles of several different 

lymphoid tissues. Within this structure, B cell antibody genes are mutated at the rate of 

10-3 mutations per base pair in order to create high affinity antibodies in a process termed 

somatic hypermutation (SHM)(1, 2). Antibody genes undergo further changes within the 

GC in the process of class switch recombination (CSR), in which the effector function of 

antibody genes is diversified through replacement of the heavy chain constant region. 

Somatic mutation and CSR can also occur outside the germinal center in T cell 

independent immune responses.  

 

Activation induced cytidine deaminase  

Both SHM and CSR are initiated by activation induced cytidine deaminase (AID), 

which deaminates cytosine residues and introduces U:G mismatches in transcribed 
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portions of DNA (3, 4). AID was originally identified as a mutated gene associated with 

hyper IgM syndrome (5, 6). Deletion of the gene in mouse also resulted in absence of 

class switch recombination and somatic hypermutation, confirming that AID played an 

essential role in germinal center gene diversification (6). Due to the high homology of AID 

with the RNA editing enzyme Apobec-1, it was originally proposed that AID functioned 

as an RNA editing enzyme that edited the mRNA of a putative mutator enzyme that 

acted directly on DNA to introduce mutations (6). However, several investigations 

showed that AID acts directly on DNA to deaminate cytidine on transcribed portions of 

DNA (7-9).  

The lesions introduced by AID are processed by ubiquitous DNA repair 

pathways and error prone polymerases to produce the somatic mutations or double 

strand DNA breaks, that are obligate intermediates in immunoglobulin class switch 

recombination (3, 4).  AID activity is primarily restricted to Ig genes, but can also 

produce off target lesions in non-Ig sites such as oncogenes (10). In addition, the double 

strand breaks created  by AID can be substrates for translocation (11, 12).  Therefore, the 

regulation of AID is essential to maintain genomic integrity.  

 

Somatic hypermutation 

SHM occurs on transcribed portions of Ig genes in GC activated B cells in order increase 

affinity to antigen(1, 3, 7-9, 13, 14). Mutations are found preferentially at RGYW 

motifs(15), starting 150bp downstream of the transcription start site and extend up to 2 

kb, within an exponential decrease in mutation rate moving away from transcription start 
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site (16). It is thus believed that AID physically interacts with the transcription 

elongation complex to deaminate cytidine (17) and that AID binds to single stranded 

DNA, likely through association with RPA (18, 19), within the transcription bubble.  

Somatic hypermutation occurs through a two-step process (Figure 1,  borrowed 

from (20)), in which lesions in DNA are first generated by cytidine deamination followed 

by the repair of those lesions by a particular error prone DNA repair mechanism. 

Deaminated cytidines create U:G mismatches in DNA that can be replicated to create C 

to T transition mutations. Alternatively, the mismatch can be repaired by either the base 

excision repair pathway (BER) (reviewed in (3)) or by the mismatch repair pathway 

(MMR) (reviewed in(1)). The base excision repair pathway depends on the action of 

uracil DNA glycosylase (UNG), which catalyzes the hydrolysis of the N-glycosylic bond 

between the uracil and sugar, leaving an abasic site in uracil-containing single or double-

stranded DNA. DNA synthesis opposite the abasic site can introduce any nucleotide. 

Thus, BER generates both transition and transversion mutations at the deaminated 

cytosine. The abasic site can also be excised via the APE endonuclease and repaired by 

error free BER.  

Alternatively, dU:dG mismatches can be targeted by the mismatch repair 

machinery by Msh2/Msh6/Exo1 and error prone polymerases (21-23). The action of an 

unidentified endonuclease (possibly Mre11-RAD50-NBS1(24)) and Exo1 create single 

stranded gaps that can then be filled in by error prone polymerases (reviewed in (2)). 

Thus, MMR generates transitions and transversions up to 20nts on either side of the 

deaminated cytidine (25). The action of Exo1 is restricted to the non-transcribed strand, 
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as suggested by the recent observation that MMR occurs asymmetrically, only 

introducing mutations on the non-transcribed strand (25) Deficiencies in several other 

MMR components, including Mlh1, Mlh3 and Pms2, result in an altered spectra of 

mutations at switch-switch junctions, also implicating these factors in SHM (21, 23, 26).   

The potential role of ten different DNA polymerases in SHM has been analyzed. 

These polymerases include pol β, δ, ζ, η, ι, κ, λ, µ, θ and Rev1 (27-45). Of these 

polymerases, pol µ, λ, β, δ and κ are apparently not involved in SHM (reviewed in (46, 

47)).  The rest have different roles in SHM, depending on there activity. Of all these 

DNA polymerases, pol η has the largest role in hypermutation, as deletion of pol η 

results in a two-thirds reduction in substitutions at dA:dT base pairs and increased 

mutations at dC:dG base pairs (48). Pol η is proposed to function with pol ζ and Rev1 in 

SHM, as pol ζ can efficiently extend a DNA strand past mismatches inserted by pol η or 

Rev1 (reviewed in (49)). Mutations at dA:dT base pairs occurring in the absence of pol η 

are likely mediated by pol  θ, since  deficiency in pol  θ results in an overall reduction at 

both dC:dG and dT:dA residues (42). Error free MMR of AID induced lesions occurs at 

specific genes, such as c-myc, and appears to be specifically excluded from the Ig loci 

(10). Thus, targeting of hypermutation may not only depend on targeting of AID, but 

also on excluding high fidelity repair. Finally, mutations in variable regions may also be 

generated through error prone repair of DNA breaks, as up to 6% of mutations contain a 

duplication or deletion that would necessitate a double stranded break and mutating V 

regions are accessible to TdT (50).   
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Class switch recombination 

Class switch recombination (CSR) occurs in activated B cells in-order to switch the 

effector function of a particular antibody (reviewed in(51)). Mechanistically, CSR occurs 

by the joining of two different transcribed IgH switch region sequences via the 

introduction of dsDNA breaks, followed by synapsis and covalent joining of the broken 

DNA ends by non-homologous end joining (NHEJ) or alternative NHEJ (52) (Figure 1). 

This process results in deletion of the intervening DNA and the introduction of a new 

heavy chain constant region. Mechanistically, CSR is initiated by transcription of at least 

two different switch region DNAs, producing spliced “sterile” transcripts upstream of 

two different constant regions (53). Conservation of the structure and splicing of sterile 

transcripts has led some to propose that transcription or perhaps splicing it self, is 

somehow fundamental for targeting of the CSR process (53).  Consistent with this, 

splicing of sterile transcripts is required for CSR(54). 

Mammalian switch regions are unique in that they are composed of repetitive 

sequences that are G rich on the template strand. Both the repetitive nature of switch 

regions and the composition of a C rich non-template strand are required for optimal CSR.  

Non- repetitive G rich template sequences, or inverted switch region sequences do not 

fully recapitulate CSR activity of native switch regions in mouse (55). It is proposed that 

both the repetitive nature of switch regions and the high C content on the non-template 

strand, allow for the formation of R loop structures upon transcription (56, 57).  G-loops 

are composed of a single stranded DNA loop on the non-template strand, and a 
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DNA/RNA hybrid on the template strand (58). This unique structure is proposed to 

yield access of single stranded cytidine residues to AID. The repetitive nature of switch 

region DNA gives it other unique structural properties, such as the ability to form DNA 

hairpin loops (59), R loops (56), G-loops (58) and G-quartet structures (60). R-loops are 

distinct from G-loops in that they do not form co-transcriptionally and instead occur by 

displacement of a DNA strand by insertion of a complementary RNA sequence (58). The 

observation that Xenopus switch regions are A/T rich, are not predicted to form G-loops, 

and can functionally substitute for endogenous murine switch regions suggests that high 

G/C content and G-loops are not the key unique functional characteristics of switch 

regions (61). Instead, the repetitive nature and the presence of RGYW motifs on both 

DNA strands appear to be the fundamental requirements. This observation lends support 

for an alternative model for dsDNA break formation at switch regions in which antisense 

transcription drives deamination on the sense strand. Indeed, antisense transcripts 

originating from switch regions have been identified (62).   
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Figure 1.  Somatic Hypermutation and Class Switch Recombination  

The figure outlines the mechanisms of somatic hypermutation and class switch 

recombination described in the text. Borrowed from (20) 
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DNA Repair during Class Switch Recombination  

Generation and repair of AID dependent DNA breaks  

It is not clear why dsDNA breaks are found more readily in the switch region than the 

variable region. There are several possible explanations that are not mutually exclusive. 

Firstly, switch region DNA may be deaminated to a greater extent on either one or both 

DNA strands, possibly by antisense transcription(62), thus generating more dsDNA 

breaks. Furthermore, deamination events may occur more frequently and in closer 

proximity at the switch region due to the high percentage of GC nucleotides and/or a 

higher rate of transcription at the switch region (63). However, it is likely that the 

repetitive nature of switch regions lends it a structural property that is inherently 

unstable. Consistent with this notion, multiple “fragile” loci are composed of repetitive 

DNA sequences (64-71).  

Transcribed repetitive DNA sequences are readily broken resulting in excised 

epichromosomal circular DNA molecules (64-71). Examples of such loci include 

telomeres, fragile X, ribosomal DNA, histone DNA, major satellite DNA and DNA 

containing SINE and LINE elements. A mechanistic explanation for why repetitive DNA 

sequences are unstable is not well defined. Transcribed repetitive DNA may simply be 

structurally unstable, more prone to internal recombination and/or more difficult to repair 

upon breakage. However, breaks at switch region DNA are AID-dependent, suggesting 

that breaks at switch region DNA occur because they are difficult to repair. For example, 

a broken switch region DNA strand is likely to fold on itself in a GC base paired hairpin 

loop that must be extensively processed before repair. This processing may include the 
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generation of dsDNA breaks since these single stranded breaks may persist for a 

relatively long period of time.  

Both base excision repair and mismatch repair are required for full CSR activity, 

suggesting that both processes are involved in creating dsDNA breaks (23, 72-75) (76). 

Yet, CSR is drastically reduced upon mutation of the base excision repair component 

UNG, while mutations in mismatch repair components do not have the same effect (35-

75% reduction)(23, 73-75). Indeed, it has been shown that UNG is required for 

generation of dsDNA breaks at switch regions(77) and UNG deficiency results in hyper 

IgM(72). Interestingly, it was recently demonstrated that mismatch repair acts by 

introducing A/T nucleotides up to 20nts from a deaminated cytosine on the non-template 

strand, while base excision repair acts to introduce mutations on both DNA strands (25). 

Thus, mismatch repair is restricted to introducing DNA breaks to the non-template strand 

and cannot efficiently create dsDNA breaks on its own. However, since base excision 

repair acts on deaminated cytidine on both DNA strands, it is able to generate double 

stranded DNA breaks without contribution from other repair pathways. This provides a 

simple explanation for why base excision repair is absolutely required for CSR while 

mismatch repair is not. However, this model would exclude the possibility of antisense 

transcription (unless it occurs sequentially after or before sense transcription), since in 

the presence of sense and antisense transcription, mismatch repair would be able to act on 

both DNA strands.  
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Detection, marking and processing of switch region breaks 

DNA breaks at switch regions are primarily repaired by NHEJ in the G1 phase of 

the cell cycle (Figure 2), although a role for components of homologous recombination 

(ATR) have also been proposed (78-80). Broken DNA ends are initially recognized and 

bound by the Ku70/80 heterodimer, which forms a ring around the end of the broken 

DNA molecule (reviewed in (81, 82)). The Ku70/80 heterodimer subsequently recruits 

the signal transducer PI3 kinase DNA-PK to DNA to form the DNA-PKcs holoenzyme. 

Once bound by DNA-PKcs, the Ku70/80 ring makes one helical turn inward, enabling 

other repair components to access the broken DNA end for processing, if necessary, by 

the Artemis enzyme. While Ku is absolutely required for CSR (83, 84), DNA-PKcs are 

required for switching to just a subset of isotypes and Artemis is dispensable for CSR 

(85-87). However, all three components are required for prevention of DNA 

translocations in activated B cells (87, 88). Thus, Ku is required for channeling all switch 

region breaks to the correct repair pathway, while both Artemis and DNA-PK are 

required for processing and channeling only a subset of DNA beaks at switch regions to 

the correct repair pathway. Ku, Artemis and DNA-PK are involved in simple repair and 

joining of DNA breaks and are can thus mediate “fast rejoining” of dsDNA breaks 

(reviewed in (89)).  

Other sensors of DNA damage include the single stranded DNA binding proteins 

RPA and Mre11-RAD50-Nbs1 (MRN), which recruit and activate the signal transducer 

PI3 kinases ataxia-telangiectasia (ATM) and ATM and RAD3 related (ATR) respectively 

(90). While ATM functions thorough out the cell cycle and is required for full activation 
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of ATR(91), ATR activity is restricted to the G2 phase of the cell cycle (92). Thus, 

ATM acts both in NHEJ and homologous recombination (HR), while ATR only has a 

role in HR. Both of these kinases are involved in more complex DNA repair mechanisms 

than DNA-PK and are thus involved in “slow rejoining” of DNA breaks since these 

kinases mediate the recruitment of large DNA complexes to broken DNA and 

phosphorylate a large number of proteins resulting in the inhibition of cell cycle 

progression(93, 94).  

ATM directly  “marks” DNA breaks at switch regions by phosphorylation of the 

variant histone H2AX (gamma H2AX) for up to two megabases from the site of the break 

(78, 93). Although H2AX is not required for initial recruitment of repair factors to 

chromatin, it is required for subsequent assembly of large DNA repair complexes around 

the DNA lesion (93). Both ATM and its activator Nijmegen breakage syndrome1 (Nbs1) 

(95) act directly on DNA and on transmission of DNA damage signals, making them 

potent suppressors of DNA translocations. An outline of the role of different DNA 

repair factors in class switch recombination and c-myc-IgH  translocations is provided in 

(Figure 2).  

 

Synapsis of broken switch regions  

Broken switch regions separated by up to 150 kilobase of DNA sequence are able 

to find and ligate to one another during class switch recombination. Several factors 

involved in the proper repair of DNA breaks during CSR, such as ATM, the p53 binding 

protein (53BP1) and H2AX, are proposed to function in switch region synapsis (96-98). 
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In the absence of any of these repair components, switch regions frequently harbor 

internal deletions, implying that the broken switch regions cannot synapse and instead 

ligate to any proximal broken DNA end. Consistent with this notion, deletion of  ATM, 

H2AX and 53BP1 result in severely diminished class switch recombination (96-98). 

Although the precise role of these factors is undefined, 53BP1 may function in synapsis 

by stabilizing DNA ends. The same may hold true for ATM, as ATM deficient B cells 

stimulated for CSR harbor a high frequency of chromosomes with inverted and duplicated 

portions of the DNA separating broken switch regions (unpublished observations). 

Furthermore, the action of 53BP1 in B cells during CSR appears to occur specifically at 

lesions at IgH because most chromosomal aberrations in 53BP1-/- B cells include IgH (88).  

Although the precise role of DNA repair factors in switch region synapsis is 

undefined, a mechanistic explanation for how this process occurs has been proposed (51, 

99). Using a technique termed chromosome confirmation capture, it was recently shown 

that spleenic B cells are primed for switch region synapsis, since the Eu enhancer is in 

close proximity to the 3’Ealpha enhancers(99). AID was required for association of the 

switch region promoter with the Eu:3’Eapha enhancers, thus stabilizing the interaction.  

This data provides evidence that that switch region synapsis is supported by distantly 

separated transcriptional enhancers and AID.  

 

Resolution of DNA breaks during CSR  

Resolution of switch region junctions during class switch recombination occurs 

through binding of Ku and DNA by XRCC4, which in turn binds and stabilizes DNA 
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ligase four (reviewed in(81, 82)). DNA ligase 4 ligates blunt DNA ends or ends with 

overlapping microhomologies. However, deletion of XRCC4 or DNA ligase four does not 

completely abolish class switch recombination as approximately twenty percent of B 

cells lacking these repair proteins are still able to switch (52). Thus, an alternative non-

homologous end-joining pathway (A-NHEJ) can be utilized to resolve switch region 

breaks.  This alternative repair pathway is error prone, as switch regions are often 

translocated to other chromosomes in XRCC4 or ligase 4 deficient mice (52). Although 

putative components involved in this alternative repair pathway are postulated to involve 

ligase1 or 3, an actual molecular   pathway for this repair pathway as not been defined. 

However, junctions repaired by this alternative NHEJ pathway harbor extensive regions 

of microhomology (52). Thus, in the absence of XRCC4 and DNA ligase four, alternative 

NHEJ utilizes a strict microhomology dependent repair pathway that may also be 

independent of Ku activity, as c-myc –IgH translocations occur in the absence of Ku (88).  

Furthermore, while the signal transducer DNA-PK only has a role in resolving a 

subset of switch translocation, the ATM signal transducer has a more profound impact as 

lack of ATM results in severe deficiency in switching to all switch regions (98). Residual 

switch activity in ATM KO may be mediated by overlapping functions of DNA-PKcs or 

ATR.  

 AID induces c-myc translocations to the IgH switch region by a mechanism that 

resembles class switching in that formation of the initial lesion requires cytidine 

deamination and uracil removal from DNA(88).  However, resolution of the lesion 

proceeds by distinct pathways for switching and translocation (88) (Figure 2). The “core” 
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repair factors, such as XRCC4, ligase 4, Ku80 and DNA-PKcs are required for resolution 

of all or some switch reactions, yet none are required for resolution of c-myc-IgH 

translocations (52, 87, 88). Furthermore, factors that act in cis to promote switch region 

synapsis such as the p53 binding protein 53BP1 and variant histone H2AX (H2AX) have 

no impact on c-myc to IgH switch translocations despite their effects on genomic stability 

(88, 100). In contrast, factors that only transmit damage signals to the nucleus such as the 

p53 tumor suppressor do not appear to affect switching but are essential in suppressing 

Ig switch translocations, possibly by promoting the death of cells that over-express c-

myc (101, 102).  
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Figure 2. DNA repair and protection from DNA translocation during CSR 

 

The figure provides an overview and model of the mechanisms the guide proper repair of 

switch regions ad prevention of c-myc-IgH translocations. Initially, activation induced 

deaminase (AID), protein kinase A (PKA), uracil DNA glycosylase (UNG), APE 

ednonuclease, and components of the mismatch repair machinery initiate DNA breaks at 

Su and Sδ (Sg in figure) and possibly c-myc.  The figure diagrams a looping model that 

brings Su and Sδ into close proximity when interacting with there transcriptional 

enhancers in a transcriptional factory. Generation of DNA breaks stabilizes the loop 

structure by recruiting  53BP1. 53BP1 may also be recruited to c-myc upon breakage 

when c-myc is in the same transcriptional factory as Su and Sδ and may thus stabalize 

broken c-myc in close proximity to broken IgH. The figure also diagrams a magnification 

of the DNA breaks at Su and Sδ  as indicated by dashed lines. The DNA repair factors 

and their putative functions with respect to c-myc-IgH translocations is outlined at the 

bottom of the diagram.  
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Figure 2 
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Mistakes In Antigen Diversification 

Oncogenic translocation 

Chromosome translocations are products of unresolved double strand DNA breaks (79, 

103-105) and therefore occur frequently at Ig genes because these loci undergo 

programmed DNA damage during antigen receptor gene diversification. A hallmark of B-

cell non-Hodgkin’s lymphomas (NHL) is translocation of a proto-oncogene to the 

immunoglobulin heavy or light chain locus. The translocation often activates the oncogene 

by bringing it under the transcriptional control of the immunoglobulin enhancers. The high 

rate of translocations specifically to the immunoglobulin loci in B-cell NHL implies that 

aberrant DNA repair from one or more of several gene diversification processes is the 

cause of these translocations. Depending on the specific location in the Ig locus into 

which a particular chromosomal translocation falls, one can speculate that its occurrence 

is the result of a particular gene diversification reaction.  

In developing T and B cells, RAG1 and RAG2 proteins produce double strand 

breaks at recombination signal sequences (RSSs) found adjacent to variable (V), diversity 

(D) and joining (J) gene segments (106, 107); these RSS sequences are found in close 

proximity or within translocation breakpoints in numerous B cell lymphomas (reviewed 

in (108, 109)). Mice deificient in NHEJ componenets and ATM or p53 develop pro B 

cell lymphomas with RAG dependent DNA translocations  (reviewed in(110)). In mature 

B cells, expression of AID (5, 6, 111) leads to deamination of cytidine residues in Ig V-JH  

and Ig switch regions resulting in U:G mismatches which are processed to produce 

somatic mutations and initiate class switch recombination (reviewed in(112-114)). Like 
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RSS sequences, translocation breakpoints are also found in these regions in numerous 

different types of B cell lymphomas. These observations suggest that DNA breaks or 

lesions initiated by RAG or AID frequently undergo aberrant repair, resulting in IgH 

chromosome translocations among other genomic abnormalities.  

Double strand breaks are obligate intermediates in the class switch reaction and 

translocations involving switch regions are frequently found in sporadic Burkitt’s 

lymphoma, diffuse large B cell lymphoma, and multiple myeloma, suggesting that AID is 

responsible for the lesions that lead to such translocations (115-122).  Consistent with 

this idea, AID induced breaks in the switch region activate the cellular DNA damage 

response machinery (78) and AID is essential for c-myc translocations to the IgH switch 

region in IL-6tg (88, 123). In addition, AID appears to target a number of oncogenes that 

are frequently mutated and often translocated to antibody genes in mature B cell 

malignancies (124-128). In agreement with these observations, deregulated expression of 

AID is associated with malignancy (129-132). 

Double strand breaks are not obligate intermediates in somatic hypermutation of 

the Ig V-JH (133).  Nevertheless, duplications or deletions that would necessitate a double 

strand break make up 6% of all the Ig V-JH region associated somatic mutations and DNA 

breaks can be detected in this region in B cells undergoing mutation (50, 134-139).  In 

addition, endemic Burkitt’s lymphoma,  multiple myeloma, follicular lymphoma, and  

diffuse large B cell lymphoma contain mutated V genes as well as translocations to the Ig 

V-JH  or Ig V-JL regions (reviewed in (108, 109, 140)). This suggests that translocations in 

these malignancies may have occurred in mature B cells which express AID but not 
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RAG1/2 (141), and that some Ig V-JH region associated translocations are byproducts of 

lesions induced by AID during hypermutation. 

 

Hypermutation of non-Ig genes 

Analysis of the mutation load of activated B cells expressing AID has revealed that 

approximately 20% of all highly expressed genes are hypermutated (10). This analysis 

further revealed that hypermutation is specifically targeted to the Ig loci, as they are 

mutated at a level at least 10-100 fold higher than the second most highly mutated gene 

(the Bcl6 oncogene). However, AID is not exclusively targeted to the Ig loci, as numerous 

other genes are also hypermutated by AID. Not surprisingly, many of the genes that 

translocate to IgH during B cell malignancy (Table 1) are hypemutated at a rate 

significantly above backround (10). The translocation breakpoints within these genes 

always map to the hypermutated portion (124). However, some loci never accumulate 

mutations due to selective high fidelity repair, but are still found to translocate to IgH 

(e.g. c-myc). There are also multiple genes that are not established IgH translocation 

partners that are deaminated by AID. This is likely due to the fact that translocation of 

these loci to IgH does not confer a competitive growth/survival advantage to the cell. 

Thus, the overall rate of translocation events or other aberrant genomic rearrangements at 

IgH maybe much higher than what is reported. 

 

AID Regulation 

Under physiological circumstances AID expression is restricted to activated B cells by 



 20 

helix-loop-helix (HLH) E protein transcription factors that bind E-box motifs (142, 143). 

Transcriptional activators of AID include E47 (143) and Pax5 (142) that activate AID by 

binding E-box motifs in the AID intronic enhancer. These transcriptional activators are 

directly antagonized by inhibitor of DNA binding 2 and 3 respectively (Id2 &3)(142, 

143) that prevent activator binding to DNA. Additionally, the transcriptional repressor 

Blimp1, that promotes B cell differentiation into plasma cells, represses both Pax5 (144) 

and AID (145). Calmodulin also represses AID transcription by directly binding E2A 

upon B cell receptor (BCR) activation (146). An additional cis-acting element with a role 

in activating AID expression was recently identified through conservation analysis (147), 

although the protein factors that bind there have not been identified.  

AID transcription is activated in spleenic B cells in vitro is induced by LPS (111) 

and addition of  interleukin 4 (IL4), transforming growth factor (TGFβ)  or CD40 ligation 

(148) can induce switching to different isotypes. These stimuli activate AID via the 

JAK/STAT and Nf-κB signaling pathways (148-150). Several other stimuli and signaling 

pathways that induce AID expression in activated B cells, non-activated B cells or even 

non B cells have recently been identified. These other stimuli are mediated by the 

following molecules: Toll like receptor (TLR), Ebstein Bar virus latent membrane protein 

1 (LMP-1), the B cell activating factor belonging to the TNF family (BAFF) and 

proliferation inducible ligand (APRIL), CD81, CD19, CD21 and tumor necrosis factor 

alpha (TNF-alpha) (reviewed in (151)).  This wide array of mediators used for signaling 

AID activation presumably allows for AID expression in several different cell types upon 

certain stimuli. These cell types include activated B cells, peripheral blood naïve B cells 
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(152), pre-B cells (153), immature bone marrow B cells (154, 155), 

cholangiocarcinoma(156), hepatoma cell lines (132), primary human hepatocellular 

carcinoma(132) and gastric epithelial cells(131). The functional relevance of AID 

expression in these cell types is not well defined. However, it has been shown that AID 

expression can inhibit transformation of primary naïve B cells by virus (153) and can 

result in hypermutation of p53 upon H.pylori infection of gastric epithilium (131). AID 

expression is also reported in oocytes(157), embryonic germ cells(157), embryonic stem 

cells (157) and spermatocytes(158) under physiological conditions. However, these 

observations have yet to be confirmed and there is no evidence of any AID function in 

these cell types.  

AID is also regulated post-translationaly. Its concentration in the nucleus is 

limited by CRM1 mediated active nuclear export (159).  Furthermore, post-translational 

modification by phosphorylation at position S38 is required for interaction between AID 

and replication protein A for optimal AID activity on transcribed DNA (19, 160-162). 

The interaction with AID is proposed to help target AID to single stranded DNA during 

transcription. The presence of additional putative phosphorylation sites makes it likely 

that additional post-transcriptional modifications are present in AID. Additional evidence 

for other mechanisms of post-transcriptional regulation comes from the observation that 

C-terminal deletion mutants of AID are active for SHM but not CSR(163). This suggests 

that the C terminus is required for targeting of AID to switch regions and/or directly 

required for creation of DNA breaks once targeted to switch regions.  
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There is also evidence that AID is regulated post-transcriptionally. Mouse and 

human AID harbor a 3’UTR that is ~ 2Kb in length, making it in the top 5% in length in 

the human genome (Aceview-NCBI). Both the extreme length of the 3’UTR and the 

extent of it’s conservation, suggests it serves a regulatory function. Indeed, microRNA-

155 (miR-155), a small non-coding RNA that acts to inhibit gene expression, is highly 

expressed in germinal center B cells and is predicted to target AID (164, 165). 

Interestingly, expression of both AID and miR-155 are induced by inflammatory 

conditions, even in non-B cells (131, 132, 156, 166). Exposure to LPS or virus (167) 

activates both genes, suggesting that the transcriptional programs of these two genes are 

functionally linked. This idea supported by the observation that both genes are activated 

by NF-Kb(168). However, microRNA-155 has it’s own set of transcriptional activators 

(169). The link between AID and inflammatory conditions and the development of cancer 

suggested that mir-155 may function as a critical tumor suppressor in these tissues by 

inhibiting translation of AID.  However, two critical experiments were needed to address 

this question in vivo: (1) Is endogenous AID regulated by mir-155, and (2) does mir-155 

act as a tumor suppressor? 
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  Table 1. Ig frequent translocation partners 

The table lists genes that frequently translocate to IgH and outlines there function and 
whether or not they hypermutated in mouse or human. 
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RNAi & MicroRNA Mediated Posttranscriptional Regulation 

RNAi 

In 1990, the first indication for the existence of nucleic acid sequence guided gene silencing 

came from scientists who were introducing additional copies of a gene responsible for the 

darkening of flower color into the Petunia genome (170, 171). In addition to creating 

darker flowers, the insertion of multiple copies of the gene created white flowers or 

flowers with patches of white mixed with patches of color (variegated). The white and 

variegated plants had recognized the newly introduced transgenes as foreign and marked 

them as well as the endogenous homologous gene for silencing- a process that became 

known as cosuppression. Subsequent experiments showed that ribonucleic acid (RNA) 

transcribed from the transgenes was the silencing trigger. Andrew Fire and Craig Mello 

discovered in 1998 that injection of double-stranded RNA (dsRNA) into the nematode 

worm Caenorhabditis elegans caused sequence-specific gene degradation of cytoplasmic 

messenger RNAs (mRNAs) containing the same sequence as the dsRNA trigger (172). 

This phenomenon was termed RNA interference (RNAi), and was soon related to the 

cosuppression events described earlier in plants.  

Biochemical data from plants and the fruit fly Drosophila melanogaster revealed 

that the true mediators of RNAi were short interfering RNAs (siRNAs) of distinct length 

(21-28nt ) and structure-one of at least a few types of small RNA produced from cleavage 

of long dsRNA (173). RNAi was rapidly developed as a tool to study gene function and 

was found to naturally occur in all eukaryotes tested, with the exception of budding 

yeast. However, it was not until the discovery of siRNAs that RNAi could be readily 
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applied to mammals, since introduction of long dsRNA into the cells is toxic due to 

induction of the interferon response (174). Genetic and biochemical investigations of the 

mechanisms guiding  RNAi in many different organisms revealed conservation of a cellular 

machinery that cleaves dsRNAs into 21-28nt small siRNAs (175, 176).  

RNAi was initially viewed as a tool that could be used to specifically silence genes 

by introduction of long dsRNAs or siRNAs into cells or organisms of interest. By 

studying the mechanism guiding RNAi, it was determined that cells also produce long 

dsRNAs endogenously within the cell by either bidirectional transcription as seen for 

transposable elements, or by transcription of long hairpin RNAs as seen for both 

repetitive elements and MicroRNA genes (see below). The dsRNAs produced in the cell 

are also processed into 21-28nt small dsRNAs (177). The specific source and cellular 

environment (including cell type) of a small dsRNA determines whether or not it is 

chemically modified and/or incorporated into one or more distinct protein complexes that 

determine the specific effector function of the guiding small RNA. Small RNAs produced 

within the cell can regulate gene expression at the transcriptional or posttranscriptional 

level. More specifically, small RNAs have been found to guide mRNA degradation, 

translational inhibition, translational stimulation, mRNA transport and storage, mRNA 

destablization, transcriptional activation and transcriptional silencing through the guidance 

of chemical modifications of DNA and its physically associated proteins (chromatin) 

(reviewed in(178)).  
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General mechanism 

Most of the work investigating the mechanisms of gene regulation by small RNAs 

processed from dsRNA has utilized Arabidopsis thaliana (a small weed), the roundworm 

C.elegans, D. melanogaster, and human cells. Although some species-specific 

characteristics of small dsRNA mediated gene regulation have evolved, the basic steps are 

conserved. The core pathway can be divided into initiation and effector steps (Figure 3). 

Initiation is mediated by the Dicer nuclease that cleaves long dsRNA molecules into 21- 

to 28-nucleotide (nt) RNA duplexes that contain 2nt 3’ hydroxyl overhangs and 5’ 

phosphates (175, 176, 179, 180). In RNAi, and in some cases of naturally occurring 

microRNA mediated gene regulation, the small RNAs are incorporated into a protein 

complex that contains the Argonaute 2 (Ago2) protein that directly binds the small RNA 

and is the endonuclease the specifically cleaves target mRNAs (181) that contain a 

minimum of 13 nts of complementarity from the 5’ phosphate of the small RNA guide 

(182). MiRNA and siRNAs bound to Ago2 that have extensive complementarity to their 

target mRNAs are able to guide multiple rounds of sequence-specific cleavage (183). In D. 

melanogaster, Dicer processing of very long dsRNA occurs asymmetrically from both 

ends and determines which strand of a siRNA will guide a small RNA containing effector 

complex to the complementary target mRNA (176).  The active silencing complex 

contains only one strand of the siRNA bound to Ago2 (184), allowing the single-stranded 

siRNA to pair with its complementary sequence in the target mRNA. The targeting 

effector complex cleaves a target RNA only once, 10 nt from the 5’ phosphate of the 

antisense (noncoding) guide RNA(180).  Incorporation of siRNAs into the silencing 
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complex containing Ago2 and removal of one of the RNA strands is a relatively complex 

and well understood process and will not be discussed further here.   

 

MicroRNAs (miRNAs) 

The RNAi machinery has functions beyond protection against invaders. Plants and 

animals have genes that produce noncoding RNAs that are processed by components of 

the RNAi pathway to regulate expression of endogenous genes (177). MicroRNAs 

(miRNAs) are a class of ~22 nt non-coding RNAs produced from genes encoding RNAs 

with a hairpin secondary structure (reviewed in(178, 185). The primary products of these 

non-coding RNA genes are long transcripts termed pri-microRNAs that contain one or 

more hairpin structures. In the nucleus, these hairpin structures are cleaved at their base 

by the RNAse III enzyme Drosha to produce ~70nt pre-microRNAs (186, 187). Pre-

microRNAs are exported out of the nucleus by Exportin5 (188) where they are processed 

by another RNAse III enzyme termed Dicer (179) to produce ~22nt duplex RNAs. 

Duplex RNAs are concomitantly unwound to produce ~22nt single stranded mature 

microRNAs, predominantly derived from the strand containing the less 

thermodynamically stable side at its 5’ end (189).  A mature single stranded microRNA is 

incorporated into protein complexes termed miRNPs that contain one of several different 

Argonaute proteins with distinct effector functions (190).  

Most animal miRNAs are partially complementary to sequences in the 3’ 

untranslated regions of their target mRNAs. Complementarity between the mRNA and 

nucleotides 2 through 8 (what is called the seed) of the miRNA are essential for miRNA 
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targeting (164). This observation has allowed for the bioinformatic prediction of miRNA 

targets (164, 165). Relatively recent reports have revealed that microRNA mediated post-

transcriptional regulation can occur through multiple mechanisms that can result in 

multiple outcomes. MicroRNAs target messenger RNAs (in some cases reversibly(191)) 

in order to inhibit translation and/or destabilize the mRNAs (178). It has also been 

proposed that miRNAs can silence genes by possibly targeting proteases that degrade the 

nascent polypeptide (192). It was recently found that miRNA mediated repression can be 

reversed in response to extracellular stimuli (191). It was also found that miRNAs are 

used to store and transport RNAs (193) and in some cases even stimulate translation in a 

cell cycle dependent manner(194). The details of how a microRNA ends up following a 

particular path for regulation is unclear. However, it is clear that the cell type and the 

environment of the cell can play crucial roles in affecting which pathway for regulation a 

microRNA will take. The mechanism(s) by which miRNAs are postulated to repress gene 

expression are outlined in Figure 3.  

To date, more than 440 microRNAs have been identified in human cells (195). 

However, bioinformatics indicates that humans probably have thousands of miRNA 

genes, as some miRNAs may be expressed at low levels or in rare tissue or cell types 

making them difficult to clone. New techniques developed for validating these 

bioinfomatic predictions have identified new miRNA genes, indicating that there may 

indeed be thousands of miRNAs to be identified (196, 197).  
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MicroRNA-155 

The non-coding RNA BIC was originally identified in an experimental screen to identify 

proto-oncogenes that might function (in cooperation with c-myc) to induce late stages of 

progression in Avian Leukosis Virus induced B cell lymphomas (198). Upon the 

discovery of miRNAs, it became clear that BIC is processed to produce microRNA 155 

(miR-155), a vertebrate-specific miRNA that is predominantly expressed in activated 

leukocytes and germinal center B cells (198-202), thymus, and to a lesser extent in other 

immune cell types and tissues. Bic deletion (miR-155-/- mice) results in deregulated 

expression of hundreds of mRNAs, some of which are direct targets of miR-155, resulting 

in abnormalities in the germinal center reaction and antibody responses in vivo (201, 203, 

204).  

It is now established that miR-155 is an oncogenic miRNA that is deregulated in a 

number of different cancers, most of which are of B cell origin (168, 195, 198, 205-219).  

Over-expression of miR-155 in transgenic mice leads to pre-leukemic pre-B cell 

proliferation in bone marrow and spleen, followed by lymphoblastic leukemia/lymphoma 

(207). Conversely, the mature form of miR-155 is absent in primary cases of Burkitt’s 

lymphoma (168, 195, 214) due to specific defects in BIC processing. MiR-155 is 

predicted to target a host of genes that are highly expressed in germinal center B cells, 

many of which are involved in the generation of B cell lymphomas (164). A subset of 

these predicted targets including AID, Bcl6, and likely TP53INP1are involved in the 

generation and/or prevention of c-myc to IgH translocations; the primary transforming 

event in Burkitts lymphoma. Although the precise role of miR-155 in promoting 
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lymphomagenesis has not been determined, it is possible that AID dependent c-myc-IgH 

translocations in Burkitts lymphoma result from high levels of AID expression in the 

absence of miR-155. Thus, ablation of miR-155 may result in high frequencies of AID 

dependent translocations. Of special interest with regards to links between AID and miR-

155, cells exposed to EBV or LPS co-induce both AID and miR-155 and both genes are 

activated by NF-Kb(132, 168, 200). This suggests that activation of AID and miR-155 is 

mechanistically linked and further implies that miR-155 plays a critical role in AID down-

regulation.  

 

To better understand the pathological roles of AID, we undertook an analysis of 

the role of AID in translocations to regions prone to somatic hyperutation, and how this 

role is regulated by MicroRNA-155. 
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Figure 3. RNAi 

The figure outlines the mechanisms by which small RNAs may regulate gene expression. 

Small RNAs can repress gene expression by targeting mRNAs with 14nts of 

complementarity from the 5’end for cleavage by Argonaute 2. Alternatively, different 

Argonaute proteins of both he Piwi and Ago subfamilys may target chromatin/DNA 

modifications and translation repression or mRNA destablization.  
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Experimental Approach  

Chromosome translocations between oncogenes and the immunoglobulin (Ig) 

region spanning the variable (V), diversity (D) and joining (J) genes (Ig V-JH region) are 

found in a number of mature B cell lymphomas in humans and mice.  The breakpoints are 

frequently adjacent to the recombination signal sequences (RSSs) targeted by recombinase 

activating genes 1 and 2 (RAG1/2) during antigen receptor assembly in pre-B cells, 

suggesting that these translocations might be the result of aberrant V(D)J recombination. 

However, in mature B cells undergoing AID dependent somatic hypermutation (SHM), 

duplications or deletions that would necessitate a double strand break make up 6% of all 

the Ig V-JH region associated somatic mutations (50, 135). Furthermore, DNA breaks can 

be detected at this locus in B cells undergoing SHM (136). To determine whether SHM 

might induce c-myc to Ig V-JH translocations, we searched for such events in both IL6 

transgenic (IL6 tg) and AID-/- IL6 tg mice. IL6 attenuates apoptosis and promotes 

proliferation and differentiation of late stage B cells. Thus, IL6 tg mice develop 

hyperplastic lymph nodes that contain switched plasmacytes that harbor c-myc-IgH 

translocations, a portion of which express GL7 and CD138 (12, 220, 221). A majority of 

the translocations involve the switch region, yet a small portion involve the V-Jh region. 

Here we find that AID is required for c-myc to Ig V-JH translocation, which is the primary 

transforming event in endemic Burkitts lymphoma. 

The idea that miRNAs regulate mRNA translation and stability has been tested by 

over-expression and deletion experiments which result in global effects on vast networks 

of genes that share microRNA target sequences. Such studies do not take into account off 
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target or indirect effects of miRNA overexpression and deletion. Thus, the physiologic 

effects of targeting an individual miRNA to a mRNA has not been tested directly in vivo. 

To this end we created a knock-in mouse that carries a mutation in the putative mir-155 

target site in the 3’UTR of activation induced cytidine deaminase (AID155 mice), an 

enzyme required for immunoglobulin gene diversification in B lymphocytes, but which 

also promotes chromosomal translocations {Harris, 2002 #8; Muramatsu, 2000 #4; 

Muramatsu, 1999 #5; Ramiro, 2006 #7; Ramiro, 2004 #6; Revy, 2000 #3. We also 

analyzed the miR-155 knockout mouse to determine to what extent does regulation of 

AID by miR-155 contribute to the overall microRNA phenotype. Using these two 

approaches we were able to determine that miR-155 downregulates AID expression by 3 

fold by destabilizing the transcript, resulting in a 3 to 6 fold increase in translocation 

frequency and a small increase in CSR and SHM. The levels of translocation suppressed 

by AID represent just 15 to 30 % of the total number of translocations present in the 

miR-155-/-. Thus, miR-155 regulation of additional mRNA targets aids in maintaining 

genomic integrity.  
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MATERIALS AND METHODS  

 

Animals 

Balb/c IL6tg  and Balb/c IL6tg AID-/- mice were created as described previously {Ramiro, 

2004 #6}. Onset of development of hyperplastic lymphnodes was monitored by 

palpitation of mice until the development of large lymph nodes, taking up to 9 month. 

Sick mice were sacrificed and hyperplastic lymph nodes were removed for DNA 

preparation.  

 

Mutation of the putative miR-155 binding site in AID 

AID nucleotides AGCATTAA, located in the AID 3’ UTR, 468bp downstream of the  

stop codon, were replaced with GCGCGCGC by gene targeting (Figure 9).  The long arm 

of the targeting vector was 6.9kb long with  3’ within the intron between AID exons 4 and 

5 (Figure 10). The short arm was a 1.5 kb fragment extending downstream of the 3’UTR.  

A LoxP-flanked neomycin-resistance gene was used for positive selection, and a 

diphtheria toxin gene for negative selection (222). The targeting construct was linearized 

and transfected into C57Bl/6 embryonic stem cells.  ES cell clones were screened and 

seven positive clones were injected into C57Bl/6 blastocysts, and one produced chimeric 

mice that transmitted the mutation. The genotype was confirmed by amplifying the 

mutation with a primer external to the targeting construct and proximal to the end of the 

short arm. The resulting amplification product was verified by sequencing and digesting 

with AsceI resulting in a digested WT allele amplification product and non digested 

AID155 product. The identity of the resulting AID transcript was confirmed by reverse 
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transcribing total RNA from activated B cells followed by amplification of the AID 

transcript from the 5’UTR to the 3’UTR at the end of the short arm followed by 

sequencing. To produce AID155/-  mice, heterozygous AID155/+ mice were crossed to AID-/-

C57Bl/6 mice and littermate AID+/-  were used as controls.  bic/miR-155–/– were 

previously described (201). All mice were maintained under specific pathogen free 

conditions and experiments performed under Rockefeller University IACUC approved 

protocols.  

 

DNA preparation and PCR 

Hyperplastic lymph nodes from individual male and female transgenic for human IL6 

(IL6tg) (14) & AID-/-IL6tg (12) mice were combined into 4 pools. Total DNA was 

prepared from 2x107 cells for each pool. 0.5x106 cells from each of the9 four pools for 12 

different mice was assayed for derivative 12 translocations by PCR using primer set #1 

and 2.5X106 cells using primer set #2 (see below). For derivative 15 translocations, 

0.5x106 cells from each of the four pools from 12 different mice was amplified using set 

#3. (see below). 

For derivative 12 translocations from c-myc to the IgH variable region we 

performed nested PCR (Long Expand PCR system, Roche) using the following primers: 

Primer set #1: first round with 5-gcaatgactgaagactcagtccctcttaag-3 (IgH) and 

acttagccctgcagacgcccaggaatcgcc (c-myc) followed by nested PCR with 

taccatttgcggtgcctggtttcggagagg (IgH) and ttggcttcagaggctgagggaggcgactg (c-myc); Primer set 

#2: first round with gtgccccactccactctttgtccctatgc (IgH) and 
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gaaataaaaggggagggggtgtcaaataataagag (c-myc) followed by nested PCR with 

atcatccagggactccaccaacaccatcac (IgH) and cctcccttctacactctaaaccgcgacgccac (c-myc). 500ng 

of DNA (105 cells) were amplified in each 20 µl first round PCR reaction ;1 µl of the first 

reaction was template for the nested PCR reaction. PCR conditions for the first round 

were 94C for the first 2min followed by 10 cycles of 94oC, 30sec; 61oC, 30sec; 68oC, 

7min followed by 19 cycles of 94oC, 30sec; 61oC, 30sec; 68oC, 7min + 20 sec per cycle. 

The conditions for the nested PCR was as follows: 94oC, 15sec; 61oC, 30sec; 68oC 4min 

followed by 15 cycles of 94oC, 30sec; 61oC, 30sec; 68oC, 4min + 20 sec/cycle. The 

combined total number of cycles of amplification was 45.  

Conditions for amplification of derivative 15 translocations from c-myc to the IgH 

variable region were the same as those for derivative 12 with the exception of a 2 min 

extension time in the first round PCR and a 1 min extension time in the nested PCR. 

Amplification of derivative 15 translocations was done using the following primers 

(primer set #3): GTTGAGACATGGGTCTGGGTCAGGGAC (IgH) and 

ATCAGCGGCCGCAACCCTCGCCGCCGC (c-myc) followed by a nested PCR 

reaction with CTCTGCCTGCTGGTCTGTGGTGACATTAG (IgH) and 

GAAGGCTGGATTTCCTTTGGGCGTTGG (c-myc). 

For amplification of derivative 12 c-myc to switch region translocations, primers 

previously described (12) were used following the PCR conditions described above for 

primer set #1.  
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Lymphocyte cultures and translocation assays 

Resting B lymphocytes were isolated from the spleen using CD43 microbeads (Miltenyi 

Biotech), cultured in RPMI supplemented with L-glutamine, sodium pyruvate, 50µM 2-

Mercaptoethanol and 10% FBS (GIBCO-BRL) and where indicated cells were labeled 

with CFDA-SE (5 µM, Molecular Probes). The B cells were stimulated with LPS (25 

µg/ml) and IL-4 (5 ng/ml, Sigma) alone or together with IL-5 (15ng/ml, Pharmingen) and 

BAFF (10ng/ml, R&D systems) for production of plasmablasts (223).  For the plasma 

cell experiment, CD138+ B cells were sorted and FACS done on day 5. Transloaction 

assays were exactly as previously described (11, 88). Briefly, PCR of WT, AID-/-,  miR-

155-/-,  AID155/-or AID155/155  was performed with total DNA prepared from day 3 or 4 LPS 

+ IL4 cultures.  Data shown for AID155/- and AID155/155  were from day 4 cultures without 

dead cell removal prior to DNA preparation. Data for mir-155-/- mice were from day 3 

cultures with dead cell removal prior to DNA preparation. Approximate cell number for 

each sample was determined by DNA quantitation on an ethidium bromide stained 

agarose gel (500 ng DNA = ~100,000 cells).  Subsequent amplification of c-myc to IgH 

switch region translocations was done as previously described. Amplification products 

were verified with Southern blots by probing for c-myc and IgH as previously described 

(12). Bands that probe for both c-myc and IgH represent c-myc to IgH chromosomal 

translocations.  

 

Southern blot analysis 

PCR products from primer set #1 were separated on 0.8% agarose gels and denatured for 
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15min in 0.4M NaOH before transfer to nylon membranes and probing with 32P 

radiolabeled primers. The IgH probe sequence is 

GGTGGCAGAAGCCACAACCATACATTCCCA and the c-myc probe sequence is 

gcgcctcggctcttagcagactgtat.  

 

Sequencing 

The PCR reactions were separated on 0.8% agarose gels, the bands were gel extracted 

using the Qiagen gel extraction kit according to the manufacturer’s instructions and sent 

for direct sequencing. Translocations were sequenced with the nested PCR primers. If the 

translocation breakpoint was not identified with the first round of sequencing, we 

designed new primers for sequencing to walk along the translocation until we reached the 

breakpoint.  

  

Sequence analysis  

For c-myc translocation to Ig variable region, PCR products were sent directly for 

sequencing, without cloning, so that we could discount the error rate of the polymerase in 

our analysis. Mutations that arose during early PCR cycles could be identified by 

chromatogram analysis by the presence of more than one base signal for the same 

nucleotide. Such nucleotides were discounted from our analysis. All sequenced 

translocations were aligned using both SeqMan from DNA Star and the Codon Code 

Aligner software (CodonCode Corp). Overlapping traces from all the translocation 

sequences allowed for distinction between real mutations and single nucleotide 
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polymorphisms (SNPs).  In the case of c-myc, we also amplified and sequenced the first 

intron from the an  IL6 tg mouse to verify the c-myc mutations identified were not SNPs. 

 

For mutation analysis of AID155 mice, genomic DNA from sorted CD19+Fas+GL7+ 

germinal center cells of NP-KLH immunized mice was PCR-amplified in 50ul with 

PfuTurbo (Stratagene) for 30 cycles from 10-100,000 sorted cell equivalents in four 

independent reactions that were pooled for cloning experiments. For 5’ Sµ the primers 

and PCR conditions have been described (97, 224). The JH4 intron was amplified with  

(5’GGAATTCGCCTGACATCTGAGGACTCTGC) and 

(5’CTGGACTTTCGGTTTGGTG) 14 cycles 94°C (30 s), 55°C (30 s), 72°C (90 s) and 

then (5’GGTCAAGGAACCTCAGTCA) and (5’TCTCTAGACAGCAACTAC) 21 

cycles  94°C (30 s), 55°C (30 s), 72°C (30 s). Statistical significance was determined by a 

two-tailed t test assuming unequal variance.  Bcl6, primers were p369 5'-

CTTTCTTGGTTGGAGTCGAGG-3' and p370 5'-CGGGCTTGAGGTCATTTCTC-3', 

as previously described in (225). PCR reactions were performed in triplicates, the 

products pooled, and bands at the expected size gel-extracted and cloned with TOPO-TA 

(Invitrogen). Bacterial colonies were sequenced by Biotic Solutions, NY, and analyzed 

with CodonCode Aligner software (CodonCode Coporation, MA). Only good quality 

sequence was considered, as determined by inspection of the chromatograms. 

 

Flow cytometry 

Single cell suspensions from bone marrow, spleen or lymph node were stained with 

streptavidin FITC, PE, APC or biotin-conjugated monoclonal antibodies anti-CD43, anti-
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IgM, anti-B220, anti-CD95, anti-GL7, anti-CD19, anti-FAS or  anti-IgG1 (BD 

Biosciences).  GC cells were CD19+, Fas+, GL-7+ lymph node cells sorted 14 days post 

immunization.  Data was collected with a FACSCaliburTM and analysed using 

CellQuestTM  and FloJo software.  Cell sorting was on a FACSAria TM and FACSVantage 

TM. 

 

Immunizations and ELISA 

Age- and sex-matched 8- to 12-week-old mice were immunized by footpad injection with 

50 µg of alum precipitated NP21-CGG (both from Biosearch Technologies). To measure 

serum antibody levels we used goat anti-mouse Ig (H+L) for capture and HRP-conjugated 

goat anti-mouse isotype-specific antibodies (Southern Biotechnology) for detection. 

Values were calculated by comparison with mouse immunoglobulin standards (Southern 

Biotechnology). Serial dilutions were performed for each sample and readings were taken 

within the linear range for each sample, and adjusted for dilution. Results reflect relative 

absorbance for each sample compared with the standard control. All plates were 

developed using a Peroxidase Substrate Kit (Bio-Rad) and absorbance was measured at 

415 nm. 

 

Western Blotting 

Anti-AID antibody was an affinity purified polyclonal against the carboxyl terminus 

(EVDDLRDAFRMLGF) of AID and was previously described (159).  For western blot 

assays cells were lysed in 20 mM Tris pH 8.0, 200mM NaCl, 1 % NP-40, 0.5% 
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Deoxycholate, 0.1% SDS, 1mM DTT, 0.5mM EDTA, 1mM PMSF, Protease inhibitor 

cocktail (Sigma).  50 µg of protein was detected by western blot using the anti-AID 

antibody or anti-tubulin antibody (Abcam).  Band densities were quantified using ImageJ 

software and relative AID level is a comparison of AID/tubulin ratios within each gel.   

 

Quantitative PCR 

Real Time Quantitative  RT-PCR (qRT-PCR) Analysis.  Total RNA was isolated from 

sorted or LPS and IL4 activated cells using Trizol reagent (Life Technologies) according to 

the manufacturer’s instructions. The first-strand cDNA synthesis was performed with 200 

ng of total RNA primed with random primers using the RT reaction protocol provided by 

the manufacturer (Invitrogen). qPCR was performed  with Brilliant SYBR Green QPCR 

master mix (Stratagene) containing 500 nM primers using standard amplification 

procedure. All samples were analyzed in triplicate, normalized to GAPDH levels, and the 

result expressed as fold induction compared to WT day 4 control. Primers for AID were: 

forward 5’gaaagtcacgctggagaccg3’ and reverse 5’tctcatgccgtcgcttgg3’ and primers for 

GAPDH were: forward 5’TGAAGCAGGCATCTGAGGG3’ and reverse 

5’CGAAGGTGGAAGAGTGGGAG3’. Actinomycin D (Sigma) was used at 10 ug/ml.  

 

Calculation of translocation P values and AID RNA half-life 

P value was calculated using a 2-Tail Fisher’s exact test with a program available at 

http://www.matforsk.no/ola/fisher.htm. Comparison between genotypes of the number of 

translocations per number of PCR reactions was used to do the calculations. To determine 

the AID RNA half-life we used an exponential regression model of the data generated by 

Excel. That exponential decay models the data correctly is supported by high r^2 values 
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(.93 for 155/- and .94 for AID +/-) in the regression and the finding that the log plot of 

the normalized data is linear. The half life was determined from the slope of the resulting 

lines.  
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RESULTS  

 

PART I: AID DEPENDENT Ig-V-JH REGION TRANSLOCATIONS 

 

AID accelerates lymph node hyperplasia in interleukin 6 transgenic (IL6tg) mice 

IL6 tg mice develop hyperplastic lymph nodes that contain large numbers of class 

switched plasmacytes, a portion of which express GL7 and CD138 (12, 220, 221).  

Plasmacytosis is believed to develop in these mice because IL6 attenuates apoptosis and 

promotes proliferation and differentiation of late stage B cells allowing for the 

accumulation of translocations between IgH and c-myc (220).  Although a majority of the 

c-myc translocation breakpoints are at the IgH switch region, a small fraction occur in the 

region spanning the variable (V), diversity (D) and joining (J) gene segments (V-JH region) 

(221).  Translocations of c-myc to the V-JH region (c-myc-Ig- V-JH  translocations) 

resemble the translocations found in endemic Burkitt’s lymphoma (reviewed in (108, 

109)).  To determine whether AID is required for translocations between the Ig V-JH 

region and c-myc we generated AID deficient IL-6 tg mice (AID-/-IL-6 tg) by breeding (12).  

AID-/-IL6 tg mice developed lymph node hyperplasia and plasmacytosis  with a slightly 

delayed onset compared to IL6 tg mice and there was no detectable class switching in the 

AID-/-IL6tg mice ((12) Figure 4A and B). 
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c-myc to Ig-V-JH translocations are AID dependent, reciprocal and less frequent 

than those to the switch region  

To document translocations between the V-JH  region and c-myc, we developed PCR 

assays for these events and examined cells from hyperplastic lymph nodes from IL6 tg 

and AID-/- IL6 tg mice (Figure 5A). Southern blotting and DNA sequencing were used to 

verify candidate translocations (Figure 5 and 6).  Assaying four different lymph node 

pools per mouse for derivative 12 and derivative 15 translocations (Figure 5A), we 

identified 37 unique translocations in 14 IL6 tg mice, but none in 12 AID-/-IL6 tg mice 

(p=.0025) (Figure 5C). Derivative 12 and 15 translocations were similar in both the 

number of translocations identified (21 and 16 respectively) as well as their breakpoint 

distribution along the chromosome (Figure 6), providing strong evidence that variable 

region translocations are reciprocal. As expected, c-myc to IgH switch region 

translocations were far more frequent (Figure 5B, (12, 221)). We conclude that 

translocations between c-myc and the Ig V-JH region are AID dependent in IL6 tg mice.  

 

Characterization of c-myc – Ig-V-JH  translocation breakpoints  

To gain further insight into the etiology of the identified translocations, we analyzed and 

mapped the breakpoints.  Sequence analysis revealed that the majority of the breakpoints 

were in or around JH segments, as commonly seen for oncogenic translocations in B cell 

non-Hodgkin’s lymphoma (reviewed in (108, 109)) (Figure 6). Junction sequences 

resembled those previously characterized for c-myc-IgH switch region translocations from 

IL6 tg mice (12) in that they involved either blunt ends or 1-3 nucleotide stretches of 
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micro-homology or nucleotide insertions (Table 2), implying that non- homologous end 

joining (NHEJ) resolves these breaks. Finally, the translocation breakpoints in c-myc were 

all in the first intron, which differs from those to the IgH switch region in IL6 tg mice, 

where a majority of the breakpoints are in the first exon of c-myc (Figure 6 (12)). 

Interestingly, c-myc harbors a transcriptional attenuation site at the end of the first exon, 

suggesting that translocation of c-myc to IgH variable vs. switch regions may be 

influenced by the transcriptional states of c-myc.  

 

c-myc to Ig-V-JH translocations occurs after or during somatic hypermutation 

Although there was no correlation between the position of the breakpoints and the 

RGYW motifs which are the preferred targets of AID, the translocated Ig V-JH genes were 

somatically mutated at a frequency of  ~0.6X10-3 mutations per base pair (Figure 7). This 

rate of mutation is similar to that reported for Ig V-JH genes B cells undergoing 

hypermutation (226).  Derivative 12 and 15 IgH sequences had a similar frequency of 

hypermutation, suggesting that SHM must have occurred before or during translocation. 

Interestingly, the overall position of the mutations mirrored the positions of the 

translocation breakpoints (compare Figures 6 and 7), supporting the idea that regions 

prone to SHM are susceptible to translocations. Excluding nucleotide insertions at the 

breakpoint, the rate of mutation within 20bps of either side of the translocation 

breakpoints was almost ten fold higher (5.4X10-3) than that seen overall for IgH in our 

translocations. This implies that c-myc/IgH translocations are resolved through error 

prone repair or that translocations breakpoints occur at or immediately adjacent to 
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hypermutated sequences. Discounting mutations within 20 bp of the breakpoint, we 

identified three mutations in c-myc, resulting in a mutation rate that is above background 

(~0.2 X10-3), but approximately three-fold lower than the rate observed for IgH (Figure 

7). These results suggest that c-myc translocations to the Ig V-JH region in IL6 tg mice 

occur during or after Ig V-JH region somatic hypermutation (126, 226, 227).  
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Figure 4. Characterization of IL6tg and AID-/- IL6tg mice.   

A. Flow cytometry analysis of cells from hyperplastic lymph nodes from IL6tg and AID-

/-IL6tg mice. Numbers indicate percentages of cells in a given quadrant.  B. AID 

accelerates the development of disease in IL6tg mice.  IL6tg mice and AID-/-IL6tg mice 

were euthanized when they developed enlarged lymph nodes. The average time of 

euthanasia for IL6tg was 5.5 months, n=8 and 9.2 months for AID-/-IL6tg mice, n=8 

(p=.0001476 using a two tailed students T test assuming unequal  variance). Each point 

represents one mouse and the black bars indicate the average time of euthanasia. 
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Figure 5. C-myc to Ig V-JH region.   

A. Diagram of translocation assay for detecting derivative 12 & 15 chromosomal 

translocations from c-myc to the Ig V-JH region.  

Primer set #1 is indicated in the diagram for derivative 12 (see material and methods). The 

circles at the end of each chromosome represents the centromere. B.  Comparison of c-

myc translocations to the IgH V-JH vs. switch region. Representative PCRs from 3 IL6tg 

and 1 AID-/-IL6tg mouse. Primer set #1 was used to detect translocations to the variable 

region. Each lane represents amplification products from 105 cells. The EtBr stained gels 

at the top were probed for c-myc, stripped and then probed for IgH to verify 

translocations. C. Graph shows the number of unique c-myc to Ig V-JH region 

translocations identified in 14 IL6tg mice. No translocations were identified in the same 

analysis of 12 AID-/-IL6tg mice (p=.00284 using a two tailed students T test assuming 

unequal variance.).  
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Figure 5 
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Figure 6. Translocation breakpoints.  

Diagram of translocation breakpoints from c-myc to the Ig V-JH region.  Only primer set 

#1 is indicated for derivative 12 (see material methods). The translocations are annotated 

as the mouse number followed by the  translocation number for that mouse. For example 

“2 #2” is mouse 2 translocation number two amplified from that mouse.  
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Figure 7. Somatic mutations in translocated IgH.  

Analysis of 32,654 bp of IgH sequence from c-myc/IgH translocations identified 20 

different mutations (mutation frequency = .61 *10^-3), excluding the two mutations 

found within 4nts of breakpoints. Excluding the three mutations within 3nts of the 

breakpoint, analysis of 16,960 bp of c-myc identified 3 different mutations (mutation 

frequency = .18 * 10^-3). The overall mutation rate within 20nts of a breakpoint on either 

side of the translocation was 5.4 * 10^-3.  Asterics indicate mutations within 20nts of a 

breakpoint.  

           

 



 52 

 

Table 2. Translocation junctions between c-myc and Ig-V-JH 

Sequences of all of the translocation breakpoints for derivative 12 and 15. Junction 
sequences are those that cannot be definitively assigned to c-myc or IgH. Lower case 
letters indicate mutations, and insertions are in italics. The translocations are annotated as 
the mouse number followed by the translocation number for that mouse. For example “2 
#2” is mouse 2 translocation number two amplified from that mouse. “jnc” stands for 
junction.   
 

Derivative 15 

 
Derivative 15 
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Part II: MicroRNA-155 SUPPRESSION OF AID MEDIATED c-myc-IgH 

TRANSLOCATIONS 

 

AID155  knock-in mice  

Like AID, miR-155 appears to have emerged in evolution in bony fish (Figure 8 and 

Figure 11A and 11B), and the 3’ UTR of AID contains a candidate miR-155 binding site 

that is conserved between fish and humans, suggesting the two may have co-evolved ( 

Figure 11A, and (112, 164, 228-231). To examine the effects of miR-155 on AID 

expression directly, we replaced the conserved miR-155 target sequence (seed match 

nucleotides 1-8) in the 3’ UTR of AID with a GC rich sequence that does not match the 

seed sequence of any known miRNAs (Figure 9A, 9B and Figure 10).  The mutation was 

confirmed by sequencing the AID mRNA from the mutant mice (not shown).  AID155/+ 

mice were bred to C57Bl/6 AID-/- mice to produce AID155/- mice that were born at normal 

frequencies (not shown).  When compared to wild type or AID+/- controls by flow 

cytometry,  AID155/- showed normal B cell development in the bone marrow and normal 

numbers of peripheral B cells in spleen (Figure 11A).  In addition, the level of serum 

immunoglobulin isotypes was normal as measured by enzyme-linked immunoassays 

(Figure 11B).  

 

AID155 and bic/miR-155-/- mice express higher levels of AID protein 

To determine whether the AID155 mutation altered AID protein expression, we stimulated 

B cells with lipopolysacharide (LPS) and interleukin 4 (IL-4) in vitro to induce AID and 

miR-155, and measured AID protein levels over 4 days (Figure 9C and 9D). In control B 
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cells, AID protein expression was initially detected 2 days after stimulation, and 

increased on days 3 and 4 in culture (Figure 9C, 9D and not shown). AID155/- showed a 

similar expression pattern, but in all cases the levels were 2-3 fold higher than in AID+/- 

controls, as determined by western blot (Figure 9C and 9D). Similar effects were also 

found in bic/miR-155 -/-  B cells (Figure 9E and 9F). We conclude that miR-155 regulates 

the level of AID protein in stimulated B cells. 

 

miR-155 destabilizes AID mRNA 

Consistent with elevated levels of AID protein, the corresponding mRNA was elevated in 

AID155/- when compared to AID+/- controls beginning 2 days after stimulation with LPS 

and IL-4 (Figure 9G). Similar results were found with miR-155-/- mutant B cells, which 

show a 2.5 fold increase in AID mRNA after 4 days (Figure 9H). Increased AID mRNA 

levels suggest that miR-155 regulates the expression of this gene by altering messenger 

stability. To determine whether miR-155 regulates AID mRNA stability, we stimulated B 

cells with LPS and IL-4, blocked transcription with Actinomycin-D, and measured the 

decay of AID mRNA (Figure 9I and 9J).  We found that the half-life of AID transcripts 

was increased from 1.05 hrs in control to 1.94 hours in the mutant as determined by linear 

regression analysis of two mice assayed in triplicate, indicating that miR-155 regulates 

the level of AID mRNA by increasing its turnover (Figure 9I and 9J and Figure 12).  
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Class switching in AID155 and miR-155-/- mice 

To examine the effects of AID155 on class switch recombination we labeled B cells with 

5-(6)-carboxyfluorescein diacetate succinimidyl diester (CFSE), a reporter dye for cell 

division, and stimulated with LPS and IL-4.  Cell surface IgG1 expression was monitored 

by flow cytometry over a time course of 4 days in culture. Although cell division was 

normal, class switching was enhanced in AID155/- when compared to AID+/-  B cells, and 

was similar to AID+/+ controls (Figure 13A). A similar increase in switching was seen in 

AID155/155 when compared to AID+/+ (Figure 14A). This effect was most pronounced 

early in the culture period when the number of IgG1-expressing AID+/+ and AID155/- cells 

was nearly double that of AID+/- controls (Figure 13A). In contrast, miR-155-/- mutant B 

cells showed subnormal levels of class switching despite increased levels of AID 

expression (Figure 9E, 9F and 13B and (201, 203, 204)). We conclude that a 2-3 fold 

increase in AID protein expression leads to increased class switching in vitro in AID155/- 

but not miR-155-/- B cells. 

 

Somatic hypermutation in AID155 mice 

Class switching is associated with AID-induced somatic mutations in the 5’ of switch µ 

region (78).  To determine whether AID155 also alters the production of AID-mediated 

lesions in the IgH switch regions, we measured the mutations that occur 5’ of the switch 

µ region in LPS and IL-4 stimulated B cells that had undergone 5 cell divisions (78). The 

small increase in mutations in AID155/- B cells 5’ of the switch µ region was not 

statistically significant but corresponded to the increase in class switching at the same 

time point (Figure 13C).  
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AID expression is also necessary to induce somatic hypermutation of immunoglobulin 

genes (5, 6, 232).  To examine the effects of AID155 on somatic mutation in vivo, we 

immunized mice and purified germinal center B cells which actively mutate their Ig 

genes. Like LPS and IL-4 activated B cells,  AID155/- germinal center B cells contained 

higher levels of AID mRNA than controls (Figure 15). Similar to 5’ of the switch µ 

region, we found a small but statistically insignificant effect on somatic hypermutation of 

the non-coding DNA region 3’ of IgJH4 which cannot be selected for or against during 

the germinal center reaction (224) (Figure 13C and 15B). Although Bcl6 is also mutated 

during the germinal center reaction (10), we found no increase in mutation at this locus in 

AID155/- germinal center B cells (Figure 16). In conclusion, neither miR-155-/- (201, 204) 

nor AID155 mutation significantly increases somatic hypermutation despite elevated AID 

expression, and therefore this process is likely regulated by additional mechanisms. 

 

AID155 mRNA and protein do not persist in plasmablasts 

To determine whether AID155 would result in persistence of AID mRNA in plasmablasts, 

where it is not normally transcribed, we cultured B cells under conditions where they 

undergo class switching and develop into CD138 plasmablasts (223) (Fig. 13D). As in 

LPS and IL-4 cultures, AID155 enhanced switching to IgG1 but did not alter plasmablast 

development (Figure 13D).  Furthermore, the level of AID mRNA expressed in 

plasmablasts was two orders of magnitude less than in B cells stimulated with LPS and 

IL-4 (Figure 13E). Thus, AID155 increases AID expression in developing B cells, yet it 

does not extend AID expression into the plasmablast stage.  
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c-myc-IgH translocations in AID155 and miR-155-/- B cells 

In addition to class switch recombination and somatic mutation, AID induces potentially 

oncogenic reciprocal chromosome translocation between IgH and c-myc (c-myc-IgH) (11, 

12, 88). To examine the effect of AID155 on these translocations, we assayed stimulated B 

cells for aberrant juxtaposition of the chromosomes that carry c-myc and IgH (12, 233) 

(Figure 17A).  In contrast to the modest effects on somatic mutation,  AID155/- B cells 

showed a 3-6 fold increase in translocation frequency compared to AID+/- controls 

(Figure 17B, 17C and not shown).  A similar fold increase in translocation was seen in 

AID155/155 compared to wild type controls (Figure 14). Therefore, the mechanisms that 

restrict somatic mutation in cells expressing elevated levels of AID do not limit 

translocation. 

 

Accumulation of c-myc-IgH translocations is normally prevented by expression of p53 

which is repressed by Bcl6 (88, 204, 230, 234). Both Bcl6 and the proapoptotic p53 

target gene TP53INP1 are predicted miR-155 targets (164, 218), implying that miR-155 

may act as both a tumor suppressor and oncogene respectively. To determine whether 

deregulation of miR-155 might further increase the frequency of AID dependent c-myc-

IgH translocations we assayed miR-155-/- B cells.  We found an ~15-fold enhanced 

translocation frequency in the absence of miR-155 compared to matched controls (Figure 

16D and 16E).  Thus, miR-155 expression in activated B cells suppresses c-myc-IgH 

translocations.  
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Figure 8. miR-155 conservation in evolution.   

Figure shows the predicted folding or hairpins corresponding to precursors of miR-155 in 

the indicated species.  The mature miR-155 is highlighted in yellow.  The microRNAs 

indicated as “verified” have been found by cloning, and those shown as “predicted” were 

identified using miRBASE at http//microrna.sanger.ac.uk or in the case of Fugu, 

Stickleback, Tetraodon, Medaka using mfold version 3.2 http//frontend.bioinfo.rpi.edu.  

A search of the database for jawless fish and lower chordates failed to find miR-155.  
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Figure 9. AID155 knock in mice.   

(A) Diagram shows the sequence of human (h-miR-155), mouse (m-miR-155), chicken 

(c-miR-155), zebra-fish (z-miR-155) miR-155 and their predicted binding site in the 3’ 

UTR of AID from those species. Conserved residues are in grey.  The sequence of the 

mutated miR-155 seed in AID155 mice is shown below in blue.  

(B) Table indicates the co-emergence of miR-155 and AID in evolution (see sequences in 

Figure 8).   

(C) Western blots for AID protein and tubulin loading controls on extracts of B cells 

from two separate wild type (+/+), AID155/-, AID+/- and AID-/- mice after stimulation with 

LPS and IL-4 for the indicated times in hours. Numbers indicate relative amounts of AID 

determined by AID/tubulin ratio within each blot measured by densitometry. * indicates 

the position of AID protein.  

(D) Combined data for Western blot analysis for AID protein from 5 separate mice. 

Numbers indicate average relative AID protein expression of AID155/- vs AID+/-  for each 

time point.  

(E) As in (C) but for matched wild type (WT), and miR-155-/- B cells.   

(F), as in (D) but for miR-155-/- vs +/+ B cells (n=3 independent mice).  

(G) Quantitative PCR analysis for AID mRNA from wild type (WT), AID155/-, AID+/- and 

AID-/- B cells after stimulation with LPS and IL-4 for 1, 2, 3 or 4 days.  Lines show 

means from two separate mice each indicated as a separate symbol (WT = diamond, 

AID155/- triangle, AID+/- square, and AID-/- circle).  
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(H) Quantitative PCR analysis for AID mRNA from matched wild type (WT), and miR-

155-/- mice after stimulation with LPS and IL-4 for 1, 2, 3 or 4 days. Data from three 

separate mice is shown.  

(I) Quantitative PCR analysis, as in (G), for AID mRNA from AID155/-or AID+/-  B cells 

stimulated with LPS and IL-4 for 3 days, after  treatment with Actinomycin-D for the 

indicated time.  

(J), Linear regression analysis of the data in (I) shown as ln[RNA] vs. time of 

Actinomycin-D treatment.  
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Figure 10. Targeting construct.  

Diagram shows the endogenous AID locus (top, WT), targeting construct (2nd from top 

TV), and the targeted locus (3rd from top, ES T), and floxed AID155 (bottom). Boxes 

labeled with E1-E5 indicate exons, thin box at 3’ end, contiguous with E5 indicates 3’ 

UTR.  Probe, diagnostic Ase1, and Pst1 sites are indicated (A, and P respectively), and 

position of miR-155 seed are shown. A LoxP-flanked neomycin-resistance gene (ACN) 

was used for positive selection and diphtheria toxin gene (DTA, not shown) for negative 

selection (235, 236). 11 positive clones were obtained from 200 colonies of which 7 were 

injected into B6 blastocysts and transferred into pseudo pregnant females. Resulting 

chimeras were bred to C2J mice.  The founders were bred to AID-/- B6 mice to generate 

mice hemizygous for either the wild type AID or AID155. Founder genotype was 

confirmed by amplifying the knocked-in mutation from founder mice with a primer 

external to the targeting construct. The resulting amplification product was verified by 

sequencing and digested with AseI resulting in a digested WT allele amplification product 

and non-digested AID155 product. 
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Figure 10 
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Figure 11.  B cell development and serum isotype levels.  

(A) Contour plots show B cell development in bone marrow (top) and relative numbers of 

B cells in spleen (bottom) as assessed by staining with anti-B220 and IgM for two 

separate wild type (WT), AID155/-, AID+/- and AID-/- mice.  Numbers indicate percentages 

of cells in gate.  The bone marrow gates indicate B220high IgM+ recirculating mature B 

cells, B220lowIgM- pre- and pro-B cells, and B220lowIgM+ immature B cells. (B) ELISA 

results for steady state serum isotype levels.  Each symbol represents serum from an 

individual AID155/- (triangle), AID+/- (square) or AID-/- (circle) mouse.  Filled in symbols 

indicates the mean values. 
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Figure 12.  Quantitave PCR for AID RNA half life. 

To determine the half-live of AID155/- mRNA we treated B cells cultured with LPS + 

IL-4 for 72 hours when Actinomycin D was added to the culture medium at 10µg/ml final 

concentration for 0.5, 1, 1.5, 2, 3, ad 4 hours. First-strand cDNA synthesis was performed 

with 200 ng of total RNA primed with random primers (Invitrogen).  Graph shows 

triplicate AID Q-PCR for two mice normalized to GAPDH.  Each bar represents one of 

the six samples.  Genotypes and time points are indicated below the graph. 
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Figure 13.  Class switch recombination by AID155 and bic/miR-155-/- B cells.  

(A) Contour plots show IgG1 expression and CFSE dye dilution by B cells from pairs of 

wild type (WT), AID155/-, AID+/- and AID-/- mice after stimulation with LPS and IL-4 for 

3, 4 or 5 days. Numbers indicate percentage of cells in the gate. (B) As in (A) but for 

pairs of matched wild type (WT), miR-155-/- mice after stimulation with LPS and IL-4 for 

3, 4 or 5 days. (C) Mutations in 5’ region of Su in wild type (WT), AID155/-, AID+/- and 

AID-/- B cells stimulated to undergo CSR in vitro with LPS and IL-4 and sorted for five 

cell divisions IgM expression. Segment sizes in the pie charts are proportional to the 

number of sequences carrying the number of mutations indicated in the periphery of the 

charts. The frequency of mutations per basepair sequenced and the total number of 

independent sequences analyzed is indicated underneath and in the center of each chart, 

respectively. The total number of mutations per number of bases analyzed was as 

follows: WT 44/97,240 bp; AID155/- 33/97,240 bp; AID+/- 27/95160 bp; and AID-/-  

8/47320 bp.  (D) Contour plots show CD138 expression and CFSE dye dilution by B 

cells from pairs of wild type (WT), AID155/-, AID+/- and AID-/- mice after stimulation with 

LPS and IL-4, IL-5, and BAFF for 5 days. Numbers indicate percentage of cells in the 

gate. (E) Q-PCR analysis for AID mRNA from purified CD138 expressing plasmablasts 

from cultures of wild type (WT), AID155/-, AID+/- and AID-/- B cells after stimulation as in 

(D).  Data are relative to B cells stimulated with LPS and IL-4 for 4 days (100%) and 

represent three separate mice, each indicated as a separate symbol.   
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Figure 13 

 

 

 

 

 

 

 

 

 

 



 67 

Figure 14. Class switching and translocations in AID155/155 mice.  

(A) Contour plots show IgG1 expression by B cells from matched pairs of wild type (WT) 

and AID155/155 mice after stimulation with LPS and IL-4 assayed after 4 days. Numbers 

indicate percentage of cells in the gate. (B) c-myc-IgH translocations.  B cells from 

AID155/155  and AID+/+ were stimulated with LPS and IL4 for four days. Ethidium bromide 

agarose gels (EtBr, upper gels), and Southern blots of candidate translocations with IgH 

or myc oligonucleotide probes collected from representative samples (3 independent 

spleens 3.6X106 cells per genotype). (C) Total number of translocations obtained from 

AID155/155 (p=.00879 vs. AID+/+) and AID+/+ B cell. P value was determined using a two 

tailed Fishers exact test.  
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Figure 15.  AID mRNA expression and somatic hypermutation in germinal center 

B cells from AID155 mice  

(A) Quantitative PCR analysis for AID mRNA pooled from germinal center B cells 

purified from three immunized AID155/-, and AID+/- mice  compared with values obtained 

with wild type B cells stimulated with LPS and IL-4 for 4 days (WT LPS/IL4 set to 

100%).  (B) Mutation analysis of the JH4 intron (27) cloned from purified germinal 

center B cells (CD19+,Fas+,GL-7+) obtained from the lymph nodes of immunized wild 

type (WT), AID155/-, AID+/- and AID-/- mice. Pie charts and statistic are as in Figure 13C. 

The total number of mutations per number of bases analyzed was as follows: WT, 

107/58644 bp; AID155/- 89/61359 bp; AID+/- 65/62445 bp; and AID-/-5/34752 bp.  
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Figure 16. Frequency of mutations in Bcl6. 

Pie-charts show the fraction of sequences with a specific number of mutations. The total 

number of sequences and the mutation rates are also shown. Statistical analysis was 

performed with the Student's T-test with two samples unequal variance and two-tailed 

distribution. 
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Figure 17.  IgH to c-myc translocations in stimulated B cells from AID155 mice.  

(A) Schematic representation of PCR assay for c-myc-IgH translocations. Primers used to 

detect derivative chromosome 12 (derChr12) and derivative chromosome 15 (derChr15) 

translocations are represented as horizontal black and grey arrows, respectively. Internal 

oligonucleotide probes used in southern blot experiments are shown as horizontal black 

and grey bars. (B) c-myc-IgH translocations.  B cells from AID155/-  and AID+/- (AID-/- mice 

not shown) were stimulated with LPS and IL4 for four days. Ethidium bromide agarose 

gels (EtBr, upper gels), and Southern blots of candidate translocations with IgH or myc 

oligonucleotide probes collected from representative samples (3 independent spleens 

6X107 per genotype).  (C) Total number of translocations obtained from AID155/-   ( P 

=.000139 vs. AID+/- using a two tail Fishers exact test for representative data shown), 

AID+/- and AID-/- B cell. (D) c-myc-IgH translocations assayed as in (B) except B cells 

were from miR-155-/-  and WT mice (5 separate spleens assayed and representative 

samples shown, 2X107 cells assayed per genotype ).  (E) As in (C) except shows total 

number of translocations obtained from miR-155-/-  and WT mice.(P =.0003 vs. WT  using 

a two tailed Fishers exact test for representative data shown).  
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Figure 17 
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DISCUSSION 

 

Translocations to Ig varibable region 

Molecular characterization of translocations found in lymphomas showed that in addition 

to Ig switch regions, many breakpoints are near recombination signal sequences (RSSs) 

suggesting a role for aberrant V(D)J recombination in their etiology.  This idea is 

supported by experiments in mice deficient in DNA damage response and apoptosis 

pathways that develop spontaneous lymphomas harboring oncogenic translocations 

involving the T-cell receptor (TCR) or IgH locus (103, 104, 237-241).  For example, 

ataxia telangectasia mutated mice (ATM-/-) develop thymic lymphomas with T cell 

receptor gene translocations (242-246). These translocations can be ascribed to V(D)J 

recombination because they fail to occur in the absence of RAG expression(239, 241). 

Similarly, mice deficient in p53 and non-homologous end joining factors or histone variant 

H2AX develop RAG dependent translocations that lead to pro-B cell lymphomas ((103, 

104, 237, 238, 240, 247-251). 

However, some translocation breakpoints in proximity of recombination signal 

sequences are found in mature B cell tumors such as endemic Burkitt’s lymphoma, diffuse 

large B cell lymphoma, and multiple myeloma (reviewed in(108, 109, 140)). These 

translocations are believed to arise during or after the germinal center reaction because the 

Ig genes involved in the translocations are usually somatically mutated (108).  

Nevertheless, they could be mediated by V(D)J recombination if RAG1/2 were re-

expressed in the germinal center. An alternative possibility is that the translocations to 
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the Ig V-JH region in mature B cells are byproducts of double strand DNA breaks created 

by AID during somatic hypermutation.  

Although double strand breaks are not obligate intermediates in somatic 

hypermutation, a measurable fraction of all Ig hypermutations involve deletions or 

insertions that require repair of double strand breaks (134, 135).  A region spanning 1-2 

kb downstream of Ig VH genes undergoes somatic mutation at a rate of 10-3 per base pair 

per generation in germinal center B cells (226) (reviewed in (252)). Given the large 

numbers of B cells in the germinal center and their rapid rates of division, AID induced 

double strand breaks in the Ig V-JH  region are not infrequent events (50, 134-136). 

However, to date there has been no direct evidence for the role of AID dependent Ig V-JH  

region breaks in chromosome rearrangement.  

We have shown that mature B cells in IL-6 tg mice develop translocations 

involving c-myc and the Ig V-JH  region and that they are AID dependent. These 

rearrangements closely resemble those found in endemic Burkitt’s lymphoma, multiple 

myeloma, and diffuse large B cell lymphoma in that both of the translocated genes are 

hypermutated (reviewed in (108, 109)). Ig V-JH regions are direct targets of AID, which is 

likely to produce the DNA double strand break intermediates in the translocation 

reaction. Although translocated c-myc was also mutated, c-myc is not thought to be a 

target for AID do to a lack of mutations in germline c-myc(126). However, it was recently 

shown that mice deficient in uracil DNA glycosylase (UNG) and the mismatch repair 

protein msh2 accumulate mutation at c-myc in germinal center B cells(10). Thus, AID 

generated mutations at c-myc undergo high fidelity repair. Given that we observed a 
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substantially lower mutation rate at c-myc than the Ig partner, we speculate that c-myc 

mutation may have occurred after the translocation when it was under the control of Ig 

regulatory elements (126, 253-255). However, mutations within 20 nt of the breakpoint 

may have been generated prior to translocation during repair at the native locus (10) or 

during non-homologous end-joining at the IgH locus.  

 

Repair of c-myc to Ig V region translocations 

The 10-fold higher level of mutation we found proximal to the translocation breakpoints 

is analogous to what is observed for switch region junctions (256). Unlike switch region 

junctions, the mutations proximal to the c-myc to Ig V-JH region translocation breakpoints 

are not RGYW hotspot biased and differ from breakpoint distal mutations in that they are 

not enriched for transitions. Thus, while many of the mutations further away from the 

breakpoint are AID induced, the higher mutation frequency within 20 nt of the junction 

are likely the result of error prone MMR prior to translocation and/or by NHEJ after the 

creation of dsDNA breaks. It was recently shown that mismatch repair occurs on the 

non-template strand and creates imutations up to 20 nt from the deaminated cytidine 

(10). Given that both c-myc and IgH are targeted by AID and subject to mismatch repair, 

it is likely that mutations around the breakpoint may have occurred at the native locus 

after an aberrant repair event. The MMR event may have initiated the dsDNA break, 

allowing for DNA translocation. It is also possible that these mutations were introduced 

after the introduction of a dsDNA break by error-prone polymerases during NHEJ.  

Breakpoint analysis has revealed that translocations of c-myc to the Ig V or the Ig 
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switch region(12) are resolved by NHEJ. However, considering that DNA breaks have 

evolved to occur at switch regions, it is likely that the two loci utilize two distinct DNA 

repair pathways. For example, the DNA repair mechanisms operating at the variable 

region have evolved to be error prone, possibly by excluding high fidelity polymerases 

during MMR. Switch regions on the other hand utilize a DNA repair pathway that 

specifically resolves DNA breaks by synapsis of two broken switch regions. Deletion of 

the switch region sequences and insertion of IsceI endonuclease sites followed by 

introduction of artifical DNA breaks by IsceI cleavage is sufficient for CSR (257). 

However, the efficiency of CSR using IsceI is low, suggesting that the deleted switch 

region sequences are required for efficient CSR, possibly by promoting synapsis. In 

support of this, 53BP1 binds to switch region DNA and is required for CSR, possibly by 

promoting synapsis of switch region DNA(258-260). 53BP1 has not been detected at 

variable region DNA. Several other DNA repair factors that function to promote CSR and 

suppress DNA translocations (e.g. ATM, 53BP1and H2AX) do not seem to affect SHM, 

suggesting they do not function in repair of deaminated DNA at the variable region(96-

98). However, 6% of all mutations at the variable region are created by dsDNA breaks 

(50, 135), implying that the repair factors mentioned above do indeed act at this region to 

suppress aberrant repair through DNA translocation. In support of this, both variable and 

switch region histones harbor histone modifications that may act to recruit DNA repair 

factors (e.g phosphorylated H2B) (261, 262). However, there are different types of 

histone modificiation present at the switch and variable regions (262). For example, 

switch region DNA contains phosphorylated histone H2AX. Additional specific histone 
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modifications at switch region DNA may recruit specific factors that help in synapsis and 

repair of switch regions, while histone modifications at the variable region may function 

to recruit error prone polymerases. The difference in histone modifications between the 

two Ig regions may be due to a greater number of DNA breaks at the switch region and/or 

the differential recruitment of repair factors at these loci. Sterile transcription and splicing 

through switch region DNA may recruit factors that modify histones. Indeed, splicing 

factors that bind primary transcripts are known to recruit histone modifying enzymes.  

 

Position of translocation breakpoints in c-myc  

C-myc translocates to the Ig V region in endemic Burkitts lymphoma (EBV postitive) as 

well as the Ig switch region in sporadic Burkitts lymphoma (EBV negative). Ig gene 

analysis revealed that EBV positive vs. EBV-negative Burkitts lymphoma originate from 

two distinct cells of origin, with a higher levels of V region hypermutation in EBV 

positive cells (263).  Our observation regarding the difference in translocation breakpoints 

within c-myc, depending if it translocates to the Ig V vs. switch region in IL6tg mice has 

also pointed to two cells of origin for the two types of translocations. When translocated 

to the Ig V-Jh region or switch region, breakpoints were present in the first intron or exon 

of c-myc respectively (Chapter 1). The border for the translocation breakpoints in the 

two types of translocations occurs exactly at the transcriptional attenuation site at the 

end of the first exon (264, 265). This implies that translocation of c-myc to the IgH 

variable vs switch region in IL6 tg mice occurs during different transcriptional states of c-

myc. Indeed, c-myc is expressed in germinal center centroblasts undergoing V region SHM 
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but downregulated in centrocytes undergoing CSR (266). Consistent with a role of 

transcription in determining breakpoint position within c-myc, it was recently uncovered 

that c-myc accumulates AID-dependent mutations in UNG-/- Msh2-/- mice (10). Thus 

AID may only access the first exon of c-myc in centrocytes but also the first intron in 

centroblasts where c-myc is expressed. Lack of breakpoints in the first exon in 

translocations to the V region (there was only one) may be due to transcription at 

alternative promoters at the end of the first exon such as found in human c-myc (267). 

One possible way to confirm the position of DNA breaks in c-myc, is to sort 

centroblasts and centrocytes and conduct ligation medated PCR on their DNA. However, 

such a correlation in breakpoint positions within c-myc has not been reported for B cell 

lymphomas and c-myc-IgH translocations in pristane induced plasmacytomas do not 

show this correlation(268). The difference in c-myc breakpoints in IL6 vs. pristane 

induced plasmacytomas maybe due to the transient nature and timing of plasmacytoma 

induction by pristane as opposed to IL6 tg.  

 

MicroRNA-155 suppresses c-myc-IgH translocations 

The aberrant action of AID is a threat to genomic integrity, resulting in mutations and 

chromosomal translocations that promote development of several types of B cell 

lymphomas (108). Germinal center B cells have evolved several different mechanisms that 

act to restrict AID-mediated mutations to Ig loci (151). We have an uncovered an 

additional layer of AID regulation in posttranscriptional regulation, as well as a novel 

mechanism for inhibiting AID mediated chromosomal translocations in expression of miR-
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155. By mutating just a single miR-155 binding site in the 3’ UTR of AID, we isolated the 

effects of miR-155 on a single mRNA and determined that it destabilizes the AID mRNA, 

which in turn reduces the level of AID protein and the frequency of c-myc-IgH 

translocations. The relatively frequent number of translocations found in bic/miR-155 

mutant mice suggests that miR-155 targets additional mRNAs that cooperate to prevent 

AID induced translocation.  We speculate that miR-155 acts as both an oncogene and 

tumor suppressor by balancing the relative expression of AID, TP53IN1, Bcl6 and other 

predicted targets that include DNA repair factors, tumor suppressors and oncogenes. 

The impact of this network of genes on translocation suggests a molecular 

rationale for the development of human Burkitt’s lymphoma, a malignancy that lacks 

expression of mature miR-155, and harbors AID dependent oncogenic c-myc-IgH 

translocations (3, 109, 168). Thus, in lymphocytes, miR-155 may act as a tumor 

suppressor, as other miRNAs have been postulated to do (269). We further speculate 

that the emergence of miR-155 and AID in vertebrates and the conservation of their 

interaction through evolution is related to minimizing chromosome translocations.  

 

Physiological effects of a single miRNA-mRNA interaction in-vivo 

Our study of miR-155 regulation of AID sheds light on the true physiological significance 

of post- transcriptional regulation by a single miRNA binding site in vivo. Immunized 

mice carrying a mutation in the single endogenous miR-155 binding site have two fold 

higher levels of AID mRNA in germinal center B cells. This increase in AID mRNA 

corresponds to a ~3 fold increase in AID protein levels in activated spleenic B cells.  
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Functionally, this increase in AID levels results in slight increases in class switch 

recombination and somatic hypermutation, and a substantial 3-6 fold increase in c-myc-

IgH translocations. Thus, natural regulation by just a single miRNA binding site can have 

profound physiological effects. 

 

Upregulation of AID-mediated cellular processes in AID155  mice and miR-155-/- 

mice 

The increased levels of CSR, SHM and c-myc-IgH translocations in AID155  mice reveals  

that the level of AID within the cell is limiting for these processes.  Yet, the 

disproportionate increase in c-myc–IgH translocations implies that the mechanisms that 

limit the levels of CSR and SHM are not the same as those that limit c-myc to IgH 

translocations. This disparity in the increase in mutation frequency and translocation 

frequency is likely due to the different DNA repair mechanisms that function to resolve 

these two distinct types of lesions (discussed above).  

Thus, it is likely that a portion of AID-generated mutations in the c-myc or the 

IgH  loci are faithfully repaired by MMR, while a greater portion of AID induced 

dsDNA breaks are repaired aberrantly through translocation. This notion is supported by 

recent work demonstrating that Msh2/Ung knockout mice with defects in mismatch repair 

harbor a relatively high frequency of AID-induced mutations in IgH and c-myc (10). 

Given that c-myc does not normally accumulate somatic mutations, but translocates to 

IgH, suggests that MMR of lesions at c-myc does not prevent formation of dsDNA 

breaks and possibly may even result in generation of dsDNA breaks. AID-mediated 
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lesions that result in dsDNA breaks in the IgH switch region during CSR, and to a lesser 

extent in the variable region during SHM, are prone to aberrant repair through covalent 

joining to DNA breaks at c-myc, and likely other loci, through non-homologous end 

joining (NHEJ) or by the recently discovered alternative NHEJ pathway (52). Both of 

these DNA repair mechanisms covalently join two free dsDNA ends in close proximity.  

MiR-155 is likely a master regulator that coordinates the expression of hundreds 

of genes in GC B cells. The observation that ablation of miR-155 results in a substantial 

increase in translocation frequency and a decrease in levels of CSR and SHM, implies that 

miR-155 acts to promote natural AID mediated processes while actively suppressing the 

aberrant action of AID. It is likely that AID is only one of many of genes that is targeted 

by miR-155 to suppress oncogenic translocations. In support of this, many factors 

known to suppress DNA translocations or are involved in tumor development are 

predicted targets of miR-155(164). Since it is observed that miRNAs target multiple 

factors in the same biological pathway, it is likely that genes other than AID, that act to 

initiate SHM or CSR, are also regulated by miR-155.  

 

MiRNA-155 and cancer 

A thorough study analyzing the correlation of miR-155 and AID expression levels to AID 

dependent translocations and/or mutations in mature B cell lymphomas has not yet been 

done. However, a recent study looking at the expression of miRNAs in different types of 

B cell lymphomas, some of which frequently harbor translocations to the IgH locus, has 

shown that many tumor samples express variable and relatively low levels of miR-155 
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(195). The data revealed that the expression levels of miR-155 in particular types of B 

cell lymphomas is not absolute and can vary between samples. Our findings, in 

combination with the fact that the stoichiometric ratio of miRNA to mRNA is critical for 

mRNA repression (270), suggests that GC derived B cell tumors expressing lower levels 

of miR-155 are more likely to harbor AID-dependent mutations such as oncogenic 

translocations, than tumors expressing high levels of miR-155. Indeed, Burkitts 

lymphoma is characterized by c-myc-IgH translocations and lack of miR-155 expression 

due to a defect in bic processing (168). Because general defects in miRNA processing have 

recently been established as a hallmark of cancers, it is often difficult to identify which 

miRNAs act to suppress tumor formation (271). However, by specifically interrupting 

the interaction between a single microRNA and single target, our experiments suggests a 

new molecular rationale for the generation of Burkitts lymphoma. We propse that miR-

155 functions as a tumor suppressor and that loss of proper miR-155 processing may 

precede the generation of AID generated oncogenic c-myc-IgH translocations.  

A negative correlation between miR-155 expression levels and the generation of  

AID-induced lesions was also found for another mature B cell lymphoma: miR-155 is 

expressed at higher levels in the activated B cell (ABC) type of diffuse large B cell 

lymphoma (DLBCL) than in the germinal center B-type of DLBCL(212). The high and 

low levels of miR-155 in these lymphomas corresponds to low and high levels of Bcl6 

expression respectively(272). Deregulated Bcl6 expression in DLBCL is caused by AID 

mediated hypermutation and/or translocation to Ig loci (273). Since Bcl6 is also a 

predicted miR-155 target, low levels of miR-155 may result in further increases in Bcl6 
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expression, besides those induced by AID. However, the simple correlation between miR-

155 expression and presence of AID induced lesions may not hold true for all mature B 

cell lymphomas.  

 

Medical relevance of miR-155 as a potential tumor suppressor  

MiR-155 is an oncogenic miRNA product of the bic gene which is deregulated in a 

number of different cancers, most of which are of B cell origin (168, 195, 198, 205-219).  

Over-expression of miR-155 in transgenic mice leads to pre-leukemic pre-B cell 

proliferation in bone marrow and spleen, followed by lymphoblastic leukemia/lymphoma 

(207). Conversely, the mature form of miR-155 is absent in primary cases of Burkitt’s 

lymphoma (168, 195, 214).  Although the precise role of miR-155 in promoting 

lymphomagenesis has not been determined, this miRNA is an important immune 

modulator whose expression is induced along with AID in activated leukocytes and 

germinal center B cells (198-202). Bic deletion (miR-155-/- mice) deregulates expression of 

hundreds of mRNAs, some of which are direct targets of miR-155, resulting in 

abnormalities in the germinal center reaction and antibody responses in vivo (201, 203, 

204).   

The observation that miR-155, as well as other miRNAs, may act as an oncogene 

has spurred the development of antisense miRNA therapeutics (274). Numerous groups 

have developed antisense molecules that inhibit miRNA function and have also developed 

technologies to deliver these molecules in-vivo (275).  Our data, along with the miR-155 

overexpresson data, implies that the relative concentration of miR-155 is critical for 
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maintaining genomic integrity, lending caution to those who hope to harness antisense 

molecules to specifically silence miRNAs. Specifically silencing miRNAs like miR-155 to 

a significant extent or long periods of time can create complicated and unintended effects 

such as allowing cancerous B cells to adopt new genomic abnormalities. In practice, it 

may be a better strategy to target the miRNA sequences in individual mRNAs(276). 

 

Deregulation of predicted miR-155 targets in cell types expressing AID and 

maintenance of genomic integrity 

The numerous genes involved in the maintenance of genomic integrity that are predicted 

targets of miR-155 (164), and the broad action of AID on numerous genes (10), suggests 

that the high frequency of c-myc-IgH translocations in AID155  and  miR-155-/- mice 

represent just a portion of the total genomic instability that is actually present. The high 

proportion of oncogenes, tumor suppressors and other genes related to cancer on the 

miR-155 target list suggest that any perturbation in miR-155 expression results in a 

critical imbalance in gene expression, eventually leading to loss of genomic integrity. 

Many of the prominent putative cancer related targets are expressed in tissues that can 

also express AID. AID ESTs are present in pancreas, kidney, pharynx, kidney tumor, 

blood, lymph, bone marrow, lymph nodes, memory B cells, lymphomas and tonsils. 

Interestingly, both AID and miR-155 are induced in naïve B cells upon infection with 

DNA virus (167) and both are induced by treatment with LPS (166, 201), suggesting that 

the transcriptional programs for both AID and bic are mechanistically linked. In support 

of this notion, both genes are activated by NF-Kb(148, 200). It will be interesting to 



 84 

investigate the significance of mirR-155 mediated regulation of AID in tissues and cell 

types other than the GC, especially in light of cancers linked to AID expression such as 

in malignant hepatocytes (132), Kidney tumor (pub-med ests) and during H.pylori 

infecton of gastric epithiium resulting in TP53 hypermutation (131). AID repression by 

miR-155 outside the GC may have a greater impact on the maintenance of genomic 

integrity than in GC B cells, considering that it may be the sole mechanism for 

suppressing AID activity in these cell types (277, 278). In this regard, we have stumbled 

upon evidence of an additional mechanism that suppresses AID in GC B cells with the 

observation that the increase in AID155 RNA levels does not correlate with the increase in 

AID protein levels. Future studies of AID will clarify the mechanism for this mode of 

AID regulation.  
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