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Michael Eric Hahn 
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 Post-translational modification (PTM) of a protein refers to any chemical change 

that occurs to the protein after its ribosomal synthesis. The seemingly endless number of 

PTMs can endow proteins with new functionalities that are not present in the unmodified 

proteins. In order to study the functions of PTMs on a given protein, it is often necessary 

to have access to pure preparations of the modified protein and its analogues. Traditional 

biological methods frequently do not allow for the isolation of significant amounts of 

pure modified proteins, therefore chemical methods are often employed in this regard. 

Protein semi-synthesis is a chemical method that entails the melding of at least two 

protein fragments in which at least one fragment is isolated from a biotic source while 

another fragment is synthesized by chemical methods. This framework enables the 

installation of PTMs into the complete protein through chemical control over the 

synthesized fragment without the need to synthesize the entire protein molecule, which is 

often a practically impossible task. 

This thesis describes efforts employing the protein semi-synthesis technique 

known as expressed protein ligation (EPL) to the study of the cellular signaling protein 

Smad2. Smad2 is activated by phosphorylation, which is the best characterized reversible 

PTM. Once phosphorylated, Smad2 accumulates in the nucleus of cells where it helps to 

direct transcriptional changes that affect cell behavior. Techniques were developed to 



cage Smad2 by directly blocking the activating phosphates on Smad2 with bulky 

photoremovable groups. This affords the investigator control over the timing and 

localization of Smad2 activity by judicious application of light of the appropriate 

wavelength to remove the photocaging group. This approach can be employed to 

generate caged analogues of any phosphorylated protein. A parallel caging approach was 

developed that relies upon indirect blockade of Smad2 phospho-dependent activity 

through the installation of a caging group on the C-terminus of the protein. This approach 

was compatible with a fluorescence reporter that is fluorescent only when the 

photocaging group is removed, thus allowing for selective monitoring of the activated 

form of the protein. This protein was introduced into live cells and upon activation 

allowed for real time visualization of the active protein through fluorescence microscopy. 

  The activity of Smad2 is dependent upon differential protein-protein interactions 

that the phosphorylated protein is able to participate in while the non-phosphorylated 

protein is not. In an effort to identify new binding partners that are sensitive to the 

phosphorylated state of Smad2, methods were developed to install stable phospho-

analogues (phosphonates) into Smad2. These analogues were used to identify a candidate 

Smad2-binding protein, PRMT5, that preferentially binds non-phosphorylated Smad2. 

Studies are ongoing to determine if this interaction has physiological relevance.  
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Chapter 1: Introduction 

All living organisms must respond to changes in their environment to maintain 

homeostasis. The dynamic processes that enable these changes operate on many levels, 

including the molecular level, which is ultimately the locus of control. In the process 

known as signal transduction, information in the form of a molecular signal arrives at the 

outside of a cell and is sensed by a receptor at the cell membrane. In turn, the receptor 

acknowledges receipt of this information by communicating with and influencing other 

molecules inside the cell including proteins, lipids, ions, and small molecules. No matter 

the size or physical properties of each type of signaling molecule, they may all be 

regarded as information packets that relay information for the ultimate goal of 

communicating the original signal so that the cell can respond properly.  

Each step in signal transduction requires interaction between signaling molecules. 

These interactions relay the signal from one molecule to the next, resulting in what is 

often referred to as a signaling cascade. As these interactions ultimately dictate cellular 

behavior, they are subject to regulation by a variety of mechanisms. One major 

mechanism for the regulation of protein-protein interactions is post-translational 

modification (Hunter, 2000; Walsh, 2005). These modifications serve as signaling 

switches that effectively turn protein activity on and off and can operate intermolecularly 

or intramolecularly (Seet et al., 2006). An intermolecular mechanism can allow or forbid 

one protein from interacting with another, whereas an intramolecular mechanism can 

allosterically modulate the activity of a protein. One illustrative example of regulation by 

the post-translational modification of an intramolecular protein-protein interaction is 

provided by the protein kinase Src (Martin, 2001; Sicheri et al., 1997; Xu et al., 1999; Xu 
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et al., 1997). When Tyr527 of Src is phosphorylated, an SH2 domain of the same 

polypeptide binds the pTyr in the context of its adjacent peptide sequence. This leads to 

inactivation of Src, thus shutting down the processes downstream of it. However, the 

phosphate on Tyr527 can be removed by phosphatases, leading to the activation of the 

kinase function of Src, which goes on to transduce this signal by phosphorylating 

downstream effector proteins, initiating a signaling cascade. Mutation of Tyr527, causes 

the kinase domain to become constitutively active, resulting in high level phosphorylation 

of downstream molecules. This in turn can lead to malignant transformation as in the 

famous case of v-Src. This example and others like it underlie the importance of studying 

signal transduction.  

 

1.1. Brief historical framework of protein phosphorylation 

 The best understood type of reversible protein post-translational modification is 

phosphorylation (Cohen, 2002; Pawson and Scott, 2005). As alluded to in the example of 

Src above, protein phosphorylation refers to the installation of a phosphoryl group onto 

an amino acid side-chain of a protein (Figure 1.1). While working at the Rockefeller 

Institute in 1932, Phoebus Levene and Fritz Lipmann reported the discovery that the 

protein vitellin contains serine-O-phosphoric acid (Lipmann and Levene, 1932). 

Prompted by the observation that the pool of phosphoproteins undergoes a high rate of 

turnover in highly metabolic tissues such as tumors, Burnett and Kennedy undertook an 

investigation to determine if the installation of phosphoryl groups into proteins is a direct 

enzyme-mediated process (Burnett and Kennedy, 1954). Using the known 

phosphoprotein casein as substrate, they discovered an enzyme that they termed “protein 
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Figure 1.1. Reversible protein phosphorylation. A protein that is a substrate of a kinase 

is phosphorylated in a reaction involving transfer of the terminal phosphoryl group of the 

co-substrate ATP to the protein to create a phosphoprotein. Phosphatases catalyze the 

reverse reaction, hydrolysis of the phosphate from the phosphoprotein. 
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phosphokinase” that catalyzes the formation of phosphoserine in the context of the intact 

casein molecule. In addition to reporting the first description of a kinase, these insightful 

authors hinted at the root of substrate specificity of kinases: “One may surmise that the 

(phosphorylated) serine residues of casein occur in an amino acid sequence not present in 

other proteins tested…”  

It would take an additional 20 years for Krebs, Kemp, Daile, Carnegie, Engstrom, 

and others to show that the primary determinant of kinase specificity is the sequence 

immediately surrounding the phosphorylation site (Daile et al., 1975; Humble et al., 

1975; Kemp et al., 1976; Kemp et al., 1975; Zetterqvist et al., 1976). One of the major 

reasons for this 20-year delay is that the proper tools were not yet available to dissect this 

problem. Around the same time, the peptide chemist Bruce Merrifield of the Rockefeller 

Institute and his contemporaries were developing methods for the solid-phase synthesis 

of peptides (Merrifield, 1996; Merrifield, 1963). These would prove to be vital reagents 

in the quest to understand the substrate specificity of kinases, since their synthesis 

allowed investigators to systematically vary the amino acid sequence surrounding the 

phosphorylated residue of model peptide substrates. This highlights an important theme 

that still exists today in modern biomedical science: the development of many biological 

concepts must await development of the proper tools to study them. These tools are often 

developed by chemists who apply their knowledge and abilities to the synthesis of 

defined biomolecules and analogues. 

 By the 1940s, Cori, Cori, and Green had determined that the enzyme glycogen 

phosphorylase exists in two interconvertible forms, termed a and b (Cori and Cori, 1945; 

Cori and Green, 1943). This set the stage for the groups of Sutherland, Krebs, and Fischer 
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to investigate the mechanism of conversion between forms a and b (Cowgill and Cori, 

1955; Fischer and Krebs, 1955; Krebs and Fischer, 1956; Rall et al., 1956a; Rall et al., 

1956b; Sutherland and Wosilait, 1955; Wosilait and Sutherland, 1956). These 

investigators determined that glycogen phosphorylase a is phosphorylated while 

glycogen phosphorylase b is generated by dephosphorylation of a. They purified the 

kinase and phosphatase that carries out the cyclical phosphorylation/dephosphorylation of 

glycogen phosphorylase. This was the first time that scientists had in hand a complete 

interconvertible enzyme system, containing the regulated enzyme as well as the two 

enzymes that were responsible for the conversion.  

From these examples grew concepts upon which generations of scientists would 

explore other phosphoproteins, kinases, phosphatases, and their biological role. Protein 

phosphorylation has been found to regulate all aspects of cellular physiology. This 

introduction will focus on chemical approaches to the study of protein phosphorylation. 

 

1.2. Chemistry and protein phosphorylation 

 The progress of understanding signal transduction has been intimately linked with 

developments in chemistry. In fact the contributions of chemists have been central to the 

field and perhaps it is artificial to draw a line between chemists and biologists working in 

this arena. Nevertheless, it is useful to examine the contributions of biological chemists to 

the study of protein phosphorylation. In the past five to ten years, these investigators have 

developed increasingly sophisticated tools enabling the discovery of new insights into the 

mechanism of protein phosphorylation and its consequences. These include tools that 

have clarified the enzymatic mechanism of phosphorylation by kinases, tools to control 
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the function of kinases, phosphatases, and phosphoproteins, as well as tools to monitor 

the function of these proteins. Herein, these advances will be discussed both in terms of 

the chemistry behind them and the biological insight that their use has attained or is 

expected to attain in the future.  

 

1.2.1. Chemical dissection of protein kinase mechanism 

 The groups of Kaiser and Knowles working at the Rockefeller University and 

Harvard University, respectively, performed an elegant experiment to determine that 

kinase-mediated phosphorylation occurred by direct transfer of a phosphoryl group from 

ATP to substrate and did not involve a covalent enzyme-phosphate intermediate (Ho et 

al., 1988). They used chiral ATP containing 16O, 17O, and 18O in the γ-phosphate and a 

synthetic peptide as substrates for the kinase PKA. Once acted upon by the kinase, the 

investigators analyzed the phosphorylated product by dephosphorylation with alkaline 

phosphatase in the presence of the chiral acceptor molecule (S)-butane-1,3-diol. 

Following derivatization and analysis by NMR, the configuration of the phosphate could 

be determined unambiguously and compared to the known configuration of the starting 

material, chiral ATP. The kinase-mediated reaction proceeded with inversion of 

configuration, therefore direct transfer of the phosphoryl group from ATP to the peptide 

substrate was inferred. 

 There are two limiting mechanisms for direct transfer of a phosphoryl group from 

ATP to an acceptor: that involving an associative transition state (SN2-like) and the other 

involving a dissociative transition state (SN1-like; Figure 1.2) (Shen et al., 2005). There 

had been much controversy between different groups working in this field as to whether 
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Figure 1.2. Transition states for phosphotransfer reactions. The phosphoryl group of 

the γ-phosphate of ATP can be transferred to an acceptor by two alternative limiting 

mechanisms. One involves an associative transition state in which the bond between the 

incoming acceptor nucleophile and phosphorous is well-formed. The other involves a 

dissociative transition state in which the bond between the incoming nucleophile and the 

phosphorous is not well-formed and the bond between the phosphorous and the leaving 

group is almost completely absent.  
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the transition state of kinase-mediated phosphorylation reactions is associative or 

dissociative (Kim and Cole, 1997). Cole and his colleagues addressed this problem by 

applying the classical physical organic chemistry technique known as Brønsted analysis 

to the phosphorylation of a peptide substrate catalyzed by the tyrosine kinase Csk (Kim 

and Cole, 1997, 1998). The pKa of the incoming nucleophile (the tyrosine phenol of the 

peptide substrate) of a series of Csk substrates was altered by various fluorine 

substitutions of the ring and the kcat values of Csk-catalyzed phosphorylation of the 

resulting substrates were determined. By plotting the log of the kcat values as a function of 

substrate pKa, the quantity βnuc can be determined. This quantity is a measure of the 

dependence of the transition state on the nature of the incoming nucleophile. A βnuc close 

to unity indicates a large dependence on the nucleophile, thus suggesting the existence of 

an associative transition state. However, Cole and colleagues found that the βnuc for Csk-

catalyzed phosphorylation is close to zero (Kim and Cole, 1997, 1998), indicating that the 

formation of the transition state has very little dependence on the nature of the 

nucleophile, consistent with a dissociative transition state.  

 

1.2.2. Inhibitors and activators of protein kinases and phosphatases 

 Since protein phosphorylation is such a central component of cellular regulation, 

the aberrant activity of protein kinases and phosphatases can lead to a variety of diseases. 

For example, the constitutively active kinase activity of the BCR-ABL oncoprotein drives  

chronic myeloid leukemia (Deininger et al., 2005). The ABL tyrosine kinase inhibitor 

imatinib has proven exceedingly useful for the treatment of CML (Deininger et al., 2005). 

For this reason, there has been a great deal of effort in both academic and industrial 
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settings to develop drugs that modulate the activity of other protein kinases. It is beyond 

the scope of this introduction to exhaustively discuss all of the recent developments in 

this area. Therefore, a small, representative selection of particularly exciting and 

promising developments is presented (for a more comprehensive discussion, see Knight 

and Shokat, 2005). 

 It is quite difficult to design inhibitors specific for one kinase since there are over 

500 kinases in human that each share the same catalytic mechanism. The consequences of 

using non-selective kinase inhibitors may be severe both in scientific investigation and as 

therapeutics. In the case of using kinase inhibitors as research tools, if the inhibitor is not 

specific it is impossible to discern which kinase is responsible for an observed phenotype. 

If a non-specific kinase inhibitor is to be used as a drug, it is likely that it would cause 

toxicity.1 This has inspired researchers to develop methods that would produce more 

specific kinase inhibitors. 

 One promising method is to design bisubstrate inhibitors of kinases. A bisubstrate 

kinase inhibitor consists of a molecule bearing two portions, one that binds the ATP-

binding site and another that binds the protein substrate site. Theoretically, this type of 

                                                             
1 Recent data has shown that some moderately selective kinase inhibitors (termed 

multikinase inhibitors) are useful drugs, calling into question the paradigm that the 

greater the selectivity the better the drug (for example, see Wilhelm et al., 2006). The 

efficacy of multikinase inhibitors is correlated with which kinases they inhibit. For 

example, sorafenib, a kinase inhibitor designed to inhibit Raf, also inhibits VEGFR 1/2/3, 

PDGFRβ, FGFR1, c-Kit, Flt-3, and RET, all of which are implicated in angiogenesis or 

tumorigenesis. Therefore, this drug is useful in treating certain cancers.   
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inhibitor can achieve greater selectivity and potency as compared to a monosubstrate 

inhibitor since it capitalizes on the free energy of both substrate-binding sites. A key 

design feature of a bisubstrate inhibitor is to join the two fragments with a linker of the 

appropriate length to mimic the transition state of the reaction. The work of Cole and 

colleagues discussed above showed that kinase-mediated phosphorylation takes place 

with a dissociative transition state (Kim and Cole, 1997, 1998; Shen et al., 2005). The 

knowledge of the dissociative nature of the transition state has an important implication 

for effective inhibitor design; it suggests that the distance between the incoming oxygen 

of the nucleophile and the phosphorous is approximately 5 Å (Mildvan, 1997). Therefore, 

an effective bisubstrate inhibitor would have to position the phosphorous of the 

nucleotide portion of the inhibitor and the peptide substrate about 5 Å away from each 

other. Exploiting this subtle yet crucially important point, Cole, Hubbard, and colleagues 

designed a bisubstrate inhibitor of the tyrosine kinase IRK with a suitably long spacer 

between the two components of the inhibitor (Parang et al., 2001). This molecule (Figure 

1.3A, compound 1) inhibited IRK with a Ki of 370 nM and showed 100-fold selectivity 

for IRK over Csk. Furthermore, they were able to co-crystallize the bisubstrate inhibitor 

in complex with IRK. This demonstrated that the design principles did indeed aid in the 

function of the inhibitor as the linker distance between the two subunits of the inhibitor 

was 5 Å. Merging the concepts learned in these studies with traditional medicinal 

chemistry approaches may yield highly potent, selective, bioavailable kinase inhibitors. 

 Shokat and colleagues have taken an integrated approach using chemistry, protein 

engineering, and genetics to achieve specific inhibitors of kinases for research purposes 

(Shogren-Knaak et al., 2001). Their strategy makes use of the “bump-hole” approach 
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(Figure 1.3B). This involves mutation of the enzyme of interest to create a hole in the 

active site that will accommodate a bumped inhibitor that does not inhibit wild type 

enzymes of the same class due to steric clash between the bump and the wild type active 

site (Belshaw et al., 1995; Hwang and Miller, 1987; Kapoor and Mitchison, 1999; Powers 

and Walter, 1995). Shokat and colleagues discovered a conserved “gatekeeper” residue in 

the active site of many kinases, which controls access of compounds to the ATP-binding 

site (Bishop et al., 1998). This residue is frequently leucine, methionine, phenylalaninine, 

or threonine, all of which contain a bulky side chain (Zhang et al., 2005). By mutating 

this residue to one with a smaller side chain, such as alanine or glycine, extra space is 

built into the structure of the kinase, sensitizing it to inhibition by a bumped inhibitor, 

where the bump is complementary in size to the hole in the kinase (Bishop et al., 1998; 

Bishop et al., 2000). For example, NM-PP1 (Figure 1.3A, compound 2) is a derivative of 

the broad spectrum kinase inhibitor PP1 in which a napthyl group has been added to the 

exocyclic carbon. This bulky derivative cannot fit inside the active site of wild type 

kinases due to steric clash of the napthyl group with the gatekeeper residue. Mutant 

kinases carrying a gatekeeper mutation rendering them sensitive to inhibition by bumped 

inhibitors are termed analog-sensitive (AS) kinases.  

 The “hole” in many AS kinases (~70% of those tested) does not significantly 

impact the catalytic activity and specificity of the enzyme (Zhang et al., 2005). However, 

up to 30% of kinases do not retain activity when their gatekeeper residue has been 

trimmed from a bulky amino acid to alanine or glycine (Zhang et al., 2005). To extend 

the bump-hole approach to these kinases, Shokat and colleagues performed a genetic 

screen by exploiting the bacterial aminoglycoside kinase APH(3’)-IIIa, which is 
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structurally homologous to protein kinases. They discovered second site suppressor 

mutations that yield active kinase when both the gatekeeper and second site are mutated 

(Zhang et al., 2005). Among the suppressors found, one (N87T) was chosen for further 

study due to its close proximity to the gatekeeper residue in the β-sheet of the N-terminal 

lobe of the kinase. Introduction of β-branched amino acids, such as the threonine of site 

N87T, into β-sheets can stabilize the sheet (Minor and Kim, 1994; Otzen and Fersht, 

1995). The authors reasoned that this stabilization offset the destabilization to the same β-

sheet that occurs upon mutation of the gatekeeper residue and restored activity to the 

double-mutant kinase. This approach has led to the acquisition of active versions of the 

protein kinases Cdc5, MEKK1, GRK2, Pto, and Plk1, each containing a gatekeeper 

residue mutation. Thus far, MEKK1 and Plk1 have been shown to be analog sensitive. 

This approach and similar rationally-designed approaches (Kenski et al., 2005) promise 

to greatly increase the number of kinases accessible to inhibition by the bump-hole 

strategy.    

 Through extensive collaborations, this technology has been widely used and has 

helped to uncover a great deal of kinase biology. A particularly illustrative example is the 

use of AS-kinase inhibition in the study of the temporal requirements for cJun N-terminal 

kinase (Jnk) signaling in mediating survival and apoptosis (Ventura et al., 2006). In 

response to tumor necrosis factor (TNF), Jnk kinase displays a biphasic activation pattern 

with respect to time. The early phase is characterized by robust kinase activity peaking at 

approximately ten minutes. This is followed by a period of Jnk activity that is lower in 

amplitude, but lasts longer; on the order of 12 hours. Paradoxically, under certain 

physiological conditions, Jnk kinase activity signals apoptosis while under other 
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physiological conditions, it acts as a survival factor. Ventura et al. wondered if the two 

different phases of Jnk activity were responsible for this paradox: the same protein is 

involved in two opposite processes, survival and apoptosis. These investigators used 

mutant AS-Jnk that is active and sensitive to the inhibitor 1NM-PP1 to resolve this issue. 

They found that Jnk signaling for longer than 1hour but less than 6 hours is required for a 

full proaptotic response after UV-induced stress. In contrast, they found that only the first 

30 minutes of Jnk activity is required for Jnk-mediated survival signaling in cells treated 

with TNF. This study highlights the power of small molecule approaches to study 

biological problems. The timecourse of a biological response must be greater than the 

time it takes the investigator to perturb the process in order to probe it. While cells 

displaying diminished Jnk activity are readily available by genetic knockout or siRNA-

mediated knockdown, these perturbations take longer than the response of Jnk to TNF in 

survival signaling. Therefore, the role of this rapidly induced Jnk activity would have 

gone unnoticed in experiments using genetic depletion of Jnk activity. Targeting of the 

protein activity directly by small molecule inhibitors affords rapid inhibition of the target. 

In this case, the rapidity was sufficient to distinguish the effects of the same protein 

acting just hours apart. 

 This technology also enabled the discovery of unexpected biochemical properties 

of important kinases that may not have been possible to find with other techniques. The 

unfolded protein response is a transcriptional program that increases the cell’s ability to 

rescue unfolded proteins once they are sensed in the ER lumen (Bernales et al., 2006). 

The transmembrane kinase Ire1 is the central protein of the unfolded protein response. 

When the amount of unfolded proteins in the lumen of the endoplasmic reticulum reaches 
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a threshold level, Ire1 oligomerizes and the subunits trans-autophosphorylate, leading to 

activation of Ire1’s cytoplasmic RNase domain (Bernales et al., 2006). This RNase 

catalyzes the cleavage of a unique mRNA, termed HAC1u, which is the first step in its 

maturation toward becoming HAC1i, a competent template for ribosomal translation. The 

product of HAC1i translation is the Hac1 transcription factor, which induces the 

expression of genes of the unfolded protein response. The kinase activity of Ire1 is 

required for this signaling module to function properly, but the process by which 

autophosphorylation results in activation of the RNase of Ire1 was mysterious. Using AS 

mutants of Ire1 that bind the bumped inhibitor 1NM-PP1, the authors found that the 

kinase activity was required to stabilize the kinase active site in an open conformation 

(Papa et al., 2003). This open conformation allows the kinase to bind ADP, which 

allosterically stimulates the RNase domain’s activity. ADP levels are high when cellular 

energy levels are low. Therefore, Ire1 may function as a node that integrates information 

on the folded state of proteins in the ER and the levels of cellular energy stores. It is 

possible that both conditions need to be satisfied for a complete unfolded protein 

response. 

 Bishop and colleagues recently reported efforts aimed at extending this “bump-

hole” approach to protein phosphatases (Bishop and Blair, 2006; Hoffman et al., 2005). 

These investigators mutated isoleucine 219 of protein tyrosine phosphatase 1B (PTP1B) 

to alanine to create a “hole” in the active site of the enzyme. Addition of a methyl group 

to the six-membered ring of a known generic PTP inhibitor (Andersen et al., 2000) 

yielded the bumped inhibitor 3 (Figure 1.4) that was greater than thirty-fold selective, as 

measured by Ki, for the mutant enzyme versus the wild type enzyme. Surprisingly, 
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Figure 1.4. Phosphatase Inhibitors, their natural product scaffolds, and phosphate 

mimics. 3 = Allele-specific bumped inhibitor. 4 = PTP1B inhibitor. 5 = phosphate mimic 

discovered with tethering technology. 6 = Cytisine. 7 = Furanodictin A. 8 = VE-PTP 

inhibitor based on 6. 9 = Shp-2 inhibitor based on 7. 10 = PTP1B binder (a), inhibitor (b), 

and cell permeable inhibitor (c). 
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compound 4 (Figure 1.4) (Iversen et al., 2000), which was designed to and indeed does 

target wild type PTP1B (Ki=6.0 µM) was more potent for PTP1B with the I219A 

mutation (Ki=230 nM) (Bishop and Blair, 2006). This result is noteworthy because it 

implies that I219 acts as a true gatekeeper for PTPs (Bishop and Blair, 2006). 

Exploitation of this important information will hopefully bring phosphatase chemical 

genetics up to speed with the kinases.  

 In recent years phosphatases have emerged as genuine drug targets, motivating 

interest in the development of inhibitors for wild type phosphatases (Bialy and 

Waldmann, 2005). For example, PTP1B is being targeted for inhibition by many groups 

in academia and industry due to its role in diabetes and obesity (Dube and Tremblay, 

2005). Working at Sunesis, Erlanson and Wells pioneered an approach termed 

“tethering” for the discovery of lead compounds (Erlanson et al., 2003). Tethering 

involves mutating an amino acid in or near to the active site of the enzyme under study to 

cysteine. Then, a relatively small library of disulfide-containing molecules is added to the 

enzyme in the presence of catalytic amounts of reducing agent. A molecule that binds to 

the active site of the protein will be in the vicinity of the engineered cysteine and thus is 

susceptible to disulfide exchange resulting in a covalent bond between the protein and the 

small molecule. In the presence of a catalytic quantity of reducing agent this process is 

dynamic and will ultimately result in labeling of the protein with the molecule from the 

library that has the most free energy of binding. Mass spectrometry of the intact protein-

small molecule conjugate can identify the small molecule, which can serve as a lead 

compound for further optimization. Erlanson et al. used this technique with PTP1B as a 
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template to identify a novel phosphotyrosine mimetic, compound 5 (Figure 1.4), that may 

in the future be a useful constituent of phosphatase inhibitors (Erlanson et al., 2003).  

 Waldmann and colleagues have taken an innovative approach toward the 

synthesis of small molecule libraries and applied these libraries to the identification of 

protein phosphatase inhibitors (Noren-Muller et al., 2006). Their approach, termed 

“biology-oriented synthesis,” takes inspiration from the structural core of well-known 

natural products, which have been refined by evolution to be exceptionally good drugs. 

The skeleton of the natural products Cytisine (Figure 1.4, compound 6) and Furanodictin 

A (Figure 1.4, compound 7) were derivatized with various moieties including alkyl, 

alkenyl, acyl, and aryl chains, and tetrazole and triazole rings. Screening the resulting 

libraries against various protein phosphatases yielded inhibitors 8 and 9 (Figure 1.4) of 

VE-PTP and Shp-2, respectively, with Kis in the low micromolar range. Screening 

libraries derived from biology-oriented synthesis is not limited to phosphatases and 

should prove applicable to a wide range of enzymes. 

 Zhang, Lawrence, and colleagues capitalized on the unexpected finding that 

PTP1B contains a site proximal to the active site that also binds phosphotyrosine (Puius 

et al., 1997). Using similar logic to Cole for the development of bisubstrate inhibitors, 

these investigators reasoned that a small molecule inhibitor that occupies both sites would 

be exceptionally potent and selective due to additivity of binding energy (Shen et al., 

2001). A modestly sized library of phosphotyrosine-containing molecules was 

synthesized and tested for binding to a catalytically inactive mutant of PTP1B that 

maintains the ability to bind substrate (Shen et al., 2001). Compound 10a (Figure 1.4) 

was found to bind with a Kd of ~30 nM to the mutant enzyme. To convert this into a 
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useful inhibitor for wild type PTP1B, the investigators exchanged the labile phosphates 

with non-hydrolyzable difluorinated phosphonate analogues. They generated compound 

10b (Figure 1.4), which inhibits PTP1B with a Ki of 2.4 nM and exhibits remarkable 

selectivity. 

Highly charged molecules such as 10b typically show poor cellular permeability. 

One method to deliver impermeable molecules to cells is by derivatization with a cell 

penetrating peptide (CPP). Lee et al. attached the cell penetrating peptide ((D)-Arg)8 to 

the inhibitor 10b through a disulfide linkage (Lee et al., 2005). The resulting conjugate, 

10c (Figure 1.4), displayed a Ki three orders of magnitude lower than the parent inhibitor 

10b, indicating that it no longer effectively inhibits PTP1B. This is due to a “self-

silencing” effect whereby the negatively charged phosphonates interact intramolecularly 

with the positively charged arginine side chains. Once delivered to cells, the disulfide 

bond linking the parent inhibitor to the CPP is reduced by intracellular thiols. As it is no 

longer intramolecular, the CPP no longer quenches the inhibitor. Thus, the inhibitor 

functions only when delivered to cells. Structural studies of 10b in complex with PTP1B 

showed that the design principles were indeed responsible for the observed potency and 

selectivity; both the active site and proximal site are engaged by 10b (Sun et al., 2003). 

  

1.2.3. Rescue of mutant kinase function by small molecule complementation 

Recently, investigators have succeeded in using small molecules that have the 

opposite effect on protein function as the inhibitors described above; these molecules 

function as direct activators of protein kinases (Qiao et al., 2006; Williams et al., 2000). 

The first step in this approach is to identify and mutate an active site residue that is 
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required for catalysis, thus inactivating the enzyme. A small molecule containing a 

similar functional group as the mutated residue is then added to the enzyme to restore its 

catalytic abilities. Early work showed that this strategy could rescue the activity of 

mutant serine proteases (Carter and Wells, 1987; Craik et al., 1987) and 

aminotransferases (Toney and Kirsch, 1989). Cole and colleagues extended this approach 

to achieve small molecule activation of the tyrosine kinases Csk and Src in living cells 

(Figure 1.5) (Qiao et al., 2006; Williams et al., 2000). They identified a conserved 

arginine in these kinases that forms hydrogen bonds to both the phenolic oxygen of the 

tyrosine to be phosphorylated and the catalytic aspartic acid residue of the enzyme. Since 

this arginine plays a critical role in catalysis, mutating it to alanine resulted in substantial 

loss of activity of both enzymes (~3,000 fold reduction in kcat for Csk and ~200 fold 

reduction in kcat for Src, relative to each wild type kinase). With these inactive enzymes 

in hand, Cole and colleagues screened various small molecules to determine if any of 

them could complement the activity of the mutant kinases. The molecules that were 

found to confer activity all contained two nitrogen atoms capable of donating hydrogen 

bonds and had the potential to have one positive charge, much like the guanidinium side 

chain of arginine. Of these, imidazole led to the largest increase in mutant kinase 

activation (~60 fold increase in velocity for Csk in the presence of 50 mM imidazole and 

~100 fold increase for Src in the presence of 25 mM imidazole, relative to the mutant 

kinase in the absence of imidazole). Importantly, in the presence of 25 mM imidazole, 

mutant Src displayed ~50% of the activity of wild type Src, indicating that robust rescue 

of mutant kinase function can be achieved (Figure 1.5) (Qiao et al., 2006).  
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Figure 1.5. Rescue of mutant kinase function by small molecule complementation. 

A. Hydrogen bonds of an arginine of a wild type kinase help to orient the catalytic 

aspartic acid of the kinase and the tyrosine phenol of the substrate, leading to substrate 

phosphorylation. B. A kinase with a mutation of the arginine to alanine can not catalyze 

substrate phosphorylation. C. Addition of exogenous imidazole to the mutant kinase 

rescues its function, leading to small molecule control over protein phosphorylation.   
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 The successful rescue of Src function in vitro prompted Qiao et al. to explore 

whether mutant Src can be rescued in live cells with imidazole, which is cell permeable 

(Qiao et al., 2006). Addition of imidazole to cells expressing mutant Src resulted in an 

increase in global protein tyrosine phosphorylation as well as an increase in Src 

activation-loop autophosphorylation. Interestingly, just four minutes after washout of 

imidazole, activation-loop phosphorylation was reduced to background, indicating that 

rescue is reversible and providing insight into the kinetics of phosphatase-mediated 

dephosphorylation in cells. Since imidazole treatment of these cells resulted in rapid Src 

activation, the investigators performed a comparative analysis of phosphotyrosine-

containing proteins in the absence of Src activity and after 5 minutes of Src stimulation 

with imidazole. This resulted in identification of 18 previously unknown Src targets, of 

which 8 were confirmed with immunoprecipitation studies. Likewise, gene expression 

changes following rapid Src activation were determined. The expression pattern varied 

significantly from previous results using cells expressing constitutively active Src. These 

results highlight the benefit of using rapidly-acting small molecules to control protein 

function.  

 

1.2.4. Identification of kinase substrates  

 Owing to their importance in cellular regulation, hundreds of researchers have 

focused on identifying substrates of protein kinases. Methods for this purpose, among 

others, include direct enrichment of phosphoproteins with immunochemical or metal 

reagents, mass spectrometry, 2-dimensional gel electrophoresis, and protein chip 
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technology. Here, only those methods that are rooted in organic chemistry will be 

discussed.  

 Several investigators have used chemical reactions to convert phosphorylated 

residues to a new epitope that can be selectively enriched or monitored by downstream 

applications, typically mass spectrometry (Oda et al., 2001; Zhou et al., 2001). In one 

incarnation of this approach, the well-known lability of phosphoserine and 

phosphothreonine to highly basic conditions was used to convert these residues to a 

biotinylated site, enabling enrichment of the phosphorylated proteins or proteolytic 

peptides thereof (Figure 1.6A-C) (Oda et al., 2001). Basic conditions lead to β-

elimination of the phosphate in these residues resulting in a dehydroalanine residue, 

which is a Michael acceptor capable of reacting with nucleophiles, such as thiols. 

Following protection of native cysteine residues by oxidation, Chait and colleagues 

performed β-elimination and then reacted the dehydroalanine residues with ethanedithiol 

to create unique sulfhydryl groups at each site of serine and threonine phosphorylation. 

Then, a compound consisting of biotin linked to a thiol-reactive maleimide group was 

added, resulting in selective biotinylation at sites of former serine and threonine 

phosphorylation. Tryptic digestion followed by avidin affinity chromatography yields 

peptides that can be analyzed by mass spectrometry to determine the protein to which 

they belong and in ideal cases, the site of phosphorylation can be determined.  

 Hathaway and colleagues and Shokat and colleagues took advantage of the β-

elimination pathway to convert sites of serine and threonine phosphorylation to lysine 

analogues, enabling lysine-specific proteolytic digestion at these sites (Figure 1.6A,D-F) 

(Knight et al., 2003; Rusnak et al., 2002). Following base-induced β-elimination, the 
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Figure 1.6. Chemical Approaches for the identification of phosphoproteins. A. 

Strong base induces β-elimination of phosphate at pSer/pThr residues, resulting in a 

dehydroalanine (DHA). B. Installation of biotin at  pSer/pThr sites. C. Enrichment by 

avidin chromatography followed by mass spec analysis. D. Conversion of DHA to a 

lysine isostere. E. Proteolysis results in new peptide fragments. F. Identification by mass 

spec. G. Conversion of phosphates to phospohramidates. H. Enrichment by covalent 

chromatography. I. Cleavage and purification of phosphorylated protein. J. Identification 

by mass spec.  Note: only pSer is shown. Protecting group steps not shown. 
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resulting dehydroalanine is reacted with cysteamine (2-aminoethanethiol) to form the 

lysine isosteres aminoethylcysteine and β-methylaminoethylcysteine at sites of serine and 

threonine phosphorylation, respectively. Cleavage of the resulting proteins with lysine-

specific proteases yields peptides with novel termini, which can be analyzed by mass 

spectrometry. Alternatively, by derivatizing polymer supports with cysteamine through 

an acid-labile carbamate linkage, this strategy can be used to enrich phosphorylated 

proteins on the solid phase (Knight et al., 2003). Following enrichment, strong acid 

liberates formerly phosphorylated proteins or peptides from the solid support, which can 

then be subjected to lysine-specific proteolysis and mass spectrometry. This solid-phase 

strategy is particularly promising as it allows for enrichment and selective proteolysis, 

thus significantly reducing the complexity of the sample.  

 Aebersold and co-workers reported another chemical means to selectively enrich 

phosphorylated proteins (Figure 1.6G-J) (Zhou et al., 2001). After blocking of amines 

and thiols, phosphorylated residues are converted to phosphoramidates by carbodiimide-

mediated condensation of phosphate with an exogenous amine. In this step, carboxylic 

acids of the peptides or proteins under study are converted to acid-stable amides. 

Treatment with strong acid regenerates the phosphates, which are then subjected to 

another round of phosphoramidate formation using cysteamine as the exogenous amine. 

At this stage, the result is conceptually the same as that described above for the sequence 

utilized by Chait, et al. (Oda et al., 2001); the peptides display thiol residues only at sites 

of former phosphorylation. Instead of reacting these thiols with a maleimide linked to 

biotin, these investigators chose to directly conjugate the peptides to a solid support by 

reaction of the thiols with glass beads containing thiol-reactive iodoacetyl groups. 
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Washing the beads and subsequent treatment with strong acid cleaves the 

phosphoramidate, releasing the phosphorylated peptide or protein, which can then be 

analyzed by mass spectrometry. The major advantage of this approach over those 

utilizing β-elimination is that phosphotyrosine is subject to carbodiimide-

phosphoramidation, but not to base induced β-elimination. Therefore, peptides or 

proteins containing phosphotyrosine will be enriched and can be detected. Disadvantages 

include the greater number of required steps, thus reducing the yield of phosphorylated 

peptides or proteins, and the resulting analyte still contains phosphorylated aminoacids, 

which are known to ionize poorly compared to their non-phosphorylated counterparts in 

mass spectrometry. In the β-elimination approaches, the phosphates are permanently 

converted to other moieties, thus increasing their likelihood of identification. 

The approaches described above offer powerful solutions to phosphoprotein and 

modification site identification, but they cannot be used to determine which kinase is 

responsible for each phosphorylation event. Some chemical strategies that link a given 

phosphorylation event to its kinase are discussed below.  

The bump-hole approach to protein kinase inhibition (see section 2.2) can operate 

in an alternative mode to enable discovery of substrates of a kinase of interest (Shah et 

al., 1997; Shogren-Knaak et al., 2001). Instead of creating a bulky inhibitor, a bulky ATP 

analogue that is still capable of transferring the phosphoryl group of its γ-phosphate to 

substrates is used together with the AS-kinase of interest carrying a hole in its active site. 

A single phenyalanine to glycine mutation in the ATP-binding pocket of Cdk1 allowed 

the kinase to utilize N6-(benzyl)-ATP, an analogue not accepted by wild type kinases 

(Ubersax et al., 2003). Incubating yeast extract with Cdk1/Clb2 and N6-(benzyl)-ATP 
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radiolabeled at the γ-phosphate resulted in the specific phosphorylation of many proteins. 

169 new substrates were identified, 11 of which were confirmed with further 

experiments. Among the targets, several regulatory molecules and protein machines 

involved in cell-cycle events were identified, providing a basis for further detailed 

physiological analysis.  

O’Shea, Shokat, and colleagues recently described a proteomic screen using the 

bump-hole approach for the high-throughput identification of yeast protein kinase 

substrates (Dephoure et al., 2005). This strategy used a previously described yeast library 

in which each of 4250 strains expressed an epitope-tagged version of one protein 

(Ghaemmaghami et al., 2003). Upon addition of N6-(benzyl)-[γ-32P]ATP and an analog 

sensitive version of the Pho85-Pcl1 yeast cyclin-dependent kinase complex (containing 

the gatekeeper F82G mutation in the Pho85 subunit) to lysates of each strain, the targets 

of Pho85-Pcl1 were labeled with radioactive phosphate. The tagged protein in each lysate 

was then immunopurified and screened by SDS-PAGE followed by autoradiography and 

immuoblotting to determine the protein targets of Pho85-Pcl1. Subsequent analysis 

confirmed that 24 of the 34 hits in the primary screen were direct substrates. The 

investigators then compared the phosphorylation specificity of the Pho85-Pcl1 complex 

versus Pho85 in complex with a different cyclin, Pho80, using substrates discovered in 

the screen and other previously known substrates. Of these, 13 substrates were 

specifically phosphorylated by one but not the other complex, while 14 substrates were 

phosphorylated with approximately equal efficiency by both complexes.  

Interfacing analog-sensitive kinases with a cellular library containing all known 

proteins fused to an affinity handle to determine kinase substrates is not possible for most 
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model organisms. Shokat and colleagues have described a new method to determine 

kinase substrates in cells from mice expressing endogenous levels of analog sensitive 

kinases via knock-in methodology (Allen et al., 2005; Allen et al., 2007). In place of 

radiolabeled bumped ATP, bumped ATP-γ-S is used as substrate for the kinase. ATP-γ-S 

was added to digitonin-permeabilized mouse embryonic fibroblasts (MEFs) from mice 

expressing AS-Erk2 resulting in thiophosphorylation of Erk2 targets at native sites of 

phosphorylation (Allen et al., 2007). Then, p-nitrobenzylmesylate is added to alkylate the 

thiophosphates to convert them into unique thiophosphodiesters that can be recognized 

by specific antibodies. Importantly, these antibodies do not cross-react with the thioether 

resulting from alkylation of cysteine residues by p-nitrobenzylmesylate. Proteins are then 

immunoprecipitated by the thiophosphodiester specific antibody to purify the proteins 

that had been thiophosphorylated by Erk2. These proteins are then subjected to SDS-

PAGE and mass spectrometry for phosphoprotein identification. This strategy has 

sufficient sensitivity to detect the Erk2 substrate Tpr. It is known that ATP-γ-S is 

generally not as efficient a substrate for kinases as ATP. Therefore, the investigators 

performed preliminary in vitro experiments using 15 different analog sensitive kinases 

for phosphorylation of known protein substrates with bumped ATP-γ-S. Of these, 13 

were able to catalyze sufficient levels of thiophosphorylation to enable detection. 

However, not all of the substrates of Erk2 visualized by immunoblotting could be 

identified by subsequent mass spectrometry, questioning the sensitivity of the approach. 

Perhaps the sensitivity could be improved by interfacing this strategy with either of the β-

elimination-mediated phosphoprotein identification techniques discussed above. For this 

to be successful, a means to perform orthogonal β-elimination at sites of 
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thiophosphorylation while leaving native phosphates intact must be devised. It is very 

likely that a thiophosphodiester will undergo β-elimination under more mild basic 

conditions than that required for native phosphomonoesters due to the better leaving 

group ability of the benzylated thiophosphate compared to phosphate.  

 

1.2.5. Identification of a kinase for a known phosphoprotein  

The techniques discussed above all focus on discovering substrates of protein 

kinases. It is possible that future efforts using these and other phosphoproteomic 

strategies will provide an exhaustive inventory of all kinase substrates matched to their 

kinases. In the meantime, it is of critical importance to be able to perform the reverse 

experiment: the identification of kinases for known protein phosphorylation events. 

Recently, chemistry-inspired strategies have been reported toward reaching this goal.  

Cole and co-workers took advantage of their ability to construct bisubstrate 

inhibitors of protein kinases (discussed in section 2.2) to prepare an affinity bait for the 

identification of the protein kinase responsible for a specific phosphorylation event (Shen 

and Cole, 2003). To increase the chance of success, these authors used the entire protein 

substrate to prepare the bait instead of just a small peptide. Src kinase is itself a substrate 

for phosphorylation by Csk. A bisubstrate inhibitor consisting of epitope-tagged Src 

fused to ATP was prepared by expressed protein ligation (see section 2.8.1.2). Incubation 

of the bisubstrate inhibitor with Csk in the presence of cell extract, followed by pull-

down of inhibitor through its epitope-tag revealed that this method could facilitate the 

detection of protein-protein interaction between Csk and Src.  
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Another strategy from the Cole group is based on the use of a generic kinase-

targeted bivalent photo-crosslinking reagent (Figure 1.7, compound 11) (Parang et al., 

2002). The reagent is an ATP analogue that when bound to a kinase:substrate complex 

positions one of its photoreactive azide groups near the kinase and its other photoreactive 

azide group toward the protein substrate. Upon UV irradiation, crosslinking between the 

azides and proteins converts the ternary complex to one species, capable of being pulled-

down. The authors showed that this molecule can be used to crosslink Csk and Src. For 

future experiments using 11 to discover new kinase-substrate pairs, the fact that the 

crosslink can be reversed enzymatically with phosphodiesterase is quite attractive. In 

addition, the crosslink should be susceptible to simple treatment with acid to cleave the 

phosphoramidate linker.   

 Shokat and co-workers designed and synthesized a mechanism-based crosslinker 

(12) to isolate kinase:substrate complexes for the identification of the kinase responsible 

for a known phosphorylation event (Figure 1.7) (Maly et al., 2004). The generic protein 

kinase inhibitor 5’-fluorosulfonylbenzoyl adenosine (FSBA) occupies the ATP-binding 

site of kinases where it covalently labels the kinase’s catalytic lysine. To convert this 

general covalent inhibitor into a specific crosslinker, Maly et al. replaced the mono-

reactive aryl sulfonyl fluoride in FSBA with a bi-reactive o-phthaldialdehyde (OPA) 

group. The OPA group is capable of forming intermolecular crosslinks by first reacting 

with an amine on one molecule to form an imine. This imine then reacts with a thiol from 

another molecule, resulting in a stable isoindole linkage between the two molecules. 

Kinase substrates are phosphorylated on serine, threonine, and tyrosine, but not cysteine, 

which is the only amino acid that contains the necessary thiol group for crosslinking by 
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Figure 1.7. Bifunctional crosslinkers for isolating kinase-substrate complexes.  

11  = UV-activated crosslinking reagent.  12 = Mechanism-based crosslinking reagent.  
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this reagent. This missing piece is provided by mutation of the serine, threonine, or 

tyrosine of interest to cysteine. Initial studies using the serine/threonine kinases Akt1, 

PKA, p38 MAP kinase, and caseine kinase II together with their corresponding peptide 

pseudosubstrates containing the required cysteine mutation were incubated with 

crosslinker 12. In all cases, crosslinking occurred. The three-piece crosslinking reaction 

carried out with pure components in vitro occurred with a yield of ~25%. The full scope 

of this promising approach for the identification of new interactions awaits further 

evaluation.  

 

1.2.6. Fluorogenic probes of protein kinase function for live cell imaging 

 Traditional enzymology has provided deep insight into biomolecular function 

(Kornberg, 2003). However, it has been difficult to transport enzymological rigor to the 

study of cellular proteins in their native environment. This is because cellular proteins 

exist in a complex milieu whereas traditional enzymology studies are typically conducted 

with well-defined homogenous samples. The successful extension of the practice of 

enzymology to in vivo settings requires tools that are exquisitely specific with regard to 

what they are measuring. Only these tools are able to surmount the obstacle that exists in 

the heterogeneous world that is the living cell. The last decade has witnessed remarkable 

advances that live up to this challenge. For example, green fluorescent protein and its 

derivatives have been used to produce FRET-based sensors that reliably report protein 

activation status in live cells. Using this approach, several investigators have designed 

and utilized fluorescent-protein based FRET reporters of kinase activity (Sato et al., 

2002; Ting et al., 2001). These probes typically consist of a single, genetically encoded 
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polypeptide containing two fluorescent proteins that undergo FRET: a phosphorylation 

substrate sequence for a given kinase of interest and a modular binding domain that 

specifically binds the phosphorylation sequence when it is phosphorylated (for example, 

an SH2 domain for a phosphotyrosine peptide sequence). When the endogenous kinase 

phosphorylates the probe, the distance between the two fluorescent proteins shortens, 

giving rise to an increase in FRET which can be monitored in live cells by fluorescence 

microscopy.  

 Fluorescent-protein based FRET sensors of kinase activity have been extensively 

used owing to their straightforward means of construction (standard molecular cloning), 

ease of delivery to cells (standard plasmid transfection), and ease of portability between 

laboratories. However, these tools do have some limitations, such as the change in FRET 

signal upon phosphorylation is typically only twenty to thirty percent (Sato et al., 2002; 

Ting et al., 2001). While this has been sufficient to monitor the activity of several 

kinases, the small change in signal upon phosphorylation could prove to be problematic 

for measuring particularly low abundance kinases or those that have slow turnover rates. 

Additionally, since each kinase activity probe requires two spectrally distinct fluorescent 

proteins, and hence occupies two optical channels, opportunities for imaging more than 

one event of interest is severely limited. 

 To overcome these limitations, chemists have synthesized peptidic probes of 

kinase activity (Figure 1.8) (Lawrence and Wang, 2007; Rothman et al., 2005b). To 

eliminate the requirement of two fluorophores per molecule of interest, investigators have 

concentrated on probe designs that require only one fluorophore. How then can a 

synthetic peptide probe be constructed with one fluorophore to sense and report kinase 
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Figure 1.8. Peptide-based fluorescent kinase probes. A. Upon phosphorylation, a 

peptide containing the recognition sequence of the kinase of interest and a metal-chelate-

sensitive (MCS) fluorophore chelates a divalent metal ion, leading to enhancement of 

fluorescence. B.i. A probe containing the recognition sequence of the kinase of interest 

and an environmentally-sensitive fluorophore (ESF). The polarity of the local 

environment is altered upon phosphorylation, leading to an increase in fluorescence. ii. 

An intensified increase in fluorescence is obtained upon phosphorylated-probe binding to 

a modular phosphopeptide binding domain. C. Structures of probes discussed in the text. 

13 = MCS probe of PKC. 14 = MCS probe of Akt. 
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activity with a more robust change in signal compared to fluorescent protein FRET 

probes? Phosphorylation turns an uncharged hydroxyl of serine or threonine, or phenol in 

the case of tyrosine, into a negatively-charged phosphate-bearing residue. A properly 

positioned phosphate residue can readily participate in coordination of a divalent metal 

cation. If the phosphorylated peptide contains a properly positioned latent metal-chelate-

sensitive fluorophore, then the phosphate and fluorophore may simultaneously coordinate 

an ion, enhancing the fluorescent properties of the fluorophore (Figure 1.8A). Lawrence 

and colleagues designed and synthesized the peptide-based PKC probe 13 containing a 

metal-chelate sensitive fluorophore  (Figure 1.8C) (Chen et al., 2002). Upon 

phosphorylation of the peptide by PKC, a Mg2+ ion binds to the probe, bridging the 

fluorophore and phosphate. This leads to a fluorescence increase of ~3-fold. Utilizing the 

same principle, Shults and Imperiali have devised probes for the kinases Abl, PKC, PKA, 

MAPK2, Akt, Pim2 and Cdk2 containing the metal-chelate sensitive fluorophore Sox 

(Figure 1.8C, probe 14) (Shults and Imperiali, 2003; Shults et al., 2005;) Shults et al., 

2006). These sensors have demonstrated an impressive fold increase in fluorescence upon 

phosphorylation as high as ~9-fold in the presence of 10 mM Mg2+. In the presence of 

lower concentrations of Mg2+ that better mimic endogenous concentration, the fold 

increase in fluorescence is more modest. Metal chelator based kinase probes have not yet 

been used inside live cells, but have proved useful in characterizing kinase activity in real 

time in cell lysates (Shults and Imperiali, 2003; Shults et al., 2005). For this class of 

sensors to be useful for live cell analysis, the requirement for supra-physiologial levels of 

cations must be addressed and in the case of the Sox fluorophore (λmax,excitation = 360 nm), 
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it would be beneficial if the molecule could be engineered so that its absorbs at a more 

biologically-compatible wavelength. 

 Lawrence and co-workers have presented an alternative class of peptide-based 

kinase activity probes containing environmentally-sensitive fluorophores. An example of 

this class is sensor 15a (Figure 1.8C), which contains the environmentally-sensitive NBD 

fluorophore in close proximity to the residue targeted for phosphorylation by the kinase 

of interest (Yeh et al., 2002). Upon phosphorylation, the local environment changes 

drastically owing to the installation of the negatively charged phosphate (Figure 1.8B). 

This leads to a 2.0-fold increase in the fluorescence of the probe when excited at its 

λmax,excitation of 460 nm and a 2.5-fold increase when excited at 520 nm. This represents a 

substantial improvement over fluorescent-protein based FRET probes. This was the first 

fluorescence-based kinase sensor with a fold increase greater than 100% to be validated 

inside live cells. Upon activation of the PKC pathway in live cells by administration of 

the phorbol ester TPA, sensor 15a reported real-time PKC activity. PKC activity is 

detectable in as little as four minutes and plateaus around fifteen minutes. Importantly, 

specificity of the probe for reporting PKC activity in the background of the greater than 

500 other cellular kinases was demonstrated by the lack of fluorescence increase upon 

co-administration of TPA and a PKC-specific inhibitor. 

For certain applications it is desirable to control when the probe is able to sense 

activity. For example, to monitor kinase activity during different phases of the cell cycle 

without having to continually re-administer the probe to the cells is advantageous. To this 

end, Lawrence and colleagues introduced a caging group on the phosphorylatable 

hydroxyl of sensor 15b (Figure 1.8C) (Veldhuyzen et al., 2003). When the caging group 
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is present, phosphorylation cannot occur and hence the sensor is silent. Irradiation of the 

cells with UV light deprotects the hydroxyl group of the phosphorylatable residue, 

enabling it to be phosphorylated if PKC is active. This caging strategy endows probe 15 

with the ability to monitor PKC more than once per application. 

 For live cell-based sensing of protein kinase activity it is clearly advantageous to 

use a probe that senses in an autonomous fashion, that is, one that does not require 

binding to additional molecules or ions. This is perhaps why Lawrence’s 

environmentally-sensitive fluorescence strategy is the only peptide-based strategy of 

those discussed above that proved to be applicable to imaging kinase activity in live cells. 

Wang et al. recently extended the applicability of this type of sensor to the protein 

tyrosine kinases (Wang et al., 2006a). Probe 16 displayed a 4.7-fold increase in pyrene 

fluorescence upon phosphorylation (Figure 1.8C). This impressive increase without 

requiring any intermolecular interactions post-phosphorylation is explained by the close 

proximity of the phosphorylated tyrosine to the fluorophore. Before phosphorylation, 

non-phosphorylated tyrosine and pyrene interact via π-π stacking, leading to suppression 

of pyrene fluorescence. Upon phosphorylation, the electron density of the aromatic ring 

of the tyrosine side chain is reduced, consequently reducing the interaction between the 

ring and pyrene. This unleashes full fluorophore activity, resulting in the large 

fluorescence increase. In follow-up studies, Wang et al. modified this class of probe to 

produce additional probes, for example probe 17a, containing fluorophores with optical 

properties more suitable for live-cell analysis (Figure 1.8C) (Wang et al., 2006b). In 

addition, this probe was caged on tyrosine as described above for probe 17b (Figure 
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1.8C) (Wang et al., 2006b). This afforded a probe that could sense multiple rounds of Src 

kinase activity in live cells.  

 An additional peptide-based strategy has recently emerged from the Lawrence 

laboratory. This strategy uses an environmentally-sensitive fluorophore conjugated to a 

kinase substrate that binds to a third-party protein upon phosphorylation (Figure 1.8B) 

(Wang and Lawrence, 2005). For example, Wang et al. have described sensor 18 that is 

phosphorylated by Src and binds to the SH2 domain of Lck (Figure 1.8C). When the 

phosphorylated sensor binds the SH2 domain, the fluorophore is now positioned in a less 

polar environment leading to increases in fluorescence of 7.2-fold. Recently, Sharma et 

al. described another sensor (19) using this design strategy that senses PKA activity by 

binding to a 14-3-3 phosphoserine binding domain (Figure 1.8C) (Sharma et al., 2007). 

Additionally, several dye molecules were screened for their ability to quench the 

fluorescence of pyrene in sensor 19 via non-covalent interactions, resulting in the 

identification of Rose Bengal (20) which significantly quenches the fluorescence of 19 

(Figure 1.8C) (Sharma et al., 2007). Upon binding of the phosphorylated sensor to the 14-

3-3 domain, the non-covalent interaction between pyrene and Rose Bengal is disrupted, 

leading to a striking 64-fold increase in fluorescence. While the fold increase of 

fluorescence of these probes upon phosphorylation is impressive, the requirement for a 

third party, and in some cases fourth party, molecule to elicit a robust increase in 

fluorescence is a limitation for cell-based studies. Therefore, it will be highly desirable to 

develop probes that do not require additional molecules yet retain the robust increases 

described above. As this field is moving at a rapid pace, improvements will undoubtedly 

be made in the near future toward this goal. 
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 The probes described above set a solid foundation for future studies aimed at 

monitoring kinase activation in live cells and tissues. Looking forward, it is reasonable to 

expect that these types of sensors will prove to be extremely valuable for clinical 

medicine. Inhibition of kinase activity is proving to be a useful clinical paradigm. 

Lawrence has pointed out that as drugs of this class increase in number and 

sophistication, a parallel increase in methods to determine drug-sensitivity of 

pathological samples will be required. Peptide-based kinase probes will be useful for 

screening new kinase inhibitors and may play a role in molecular pathology and non-

invasive radiology for defining the pathophysiology of individual clinical samples. 

 

1.2.7. Covalent inhibitors as probes of protein kinase and phosphatase activity 

 Activity-based protein profiling (ABPP) combines chemical synthesis with 

proteomics to determine the active enzyme complement of a given biological sample 

(Evans and Cravatt, 2006). Chemical probes designed to covalently label the active sites 

of a class of enzymes are synthesized with an appended reporter tag, such as a 

fluorophore or biotin. Alternatively, the probe may contain a small bio-orthogonal group 

such as an azide or alkyne enabling detection in a second step by reacting the bio-

orthogonal group with an appropriately derivatized group (Ovaa et al., 2003; Speers et 

al., 2003). Incubation of an ABPP-probe with a biological sample results in the covalent 

labeling of the active enzymes of the probe-directed class. The proteins are then separated 

and detected via the reporter tag. Probes of many enzyme classes, including hydrolases 

and oxidoreductases have been synthesized and applied to the characterization of various 
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biological samples. Recently, several groups have synthesized probes for protein kinases 

and phosphatases. 

 Some of the existing strategies for activity based profiling of tyrosine 

phosphatases takes advantage of the ability of these enzymes to dephosphorylate 

substrates resembling phosphotyrosine. One strategy employs fluorinated 

phenylphosphate derivatives 21 and 22 (Figure 1.9) attached to a fluorescent probe (Lo et 

al., 2002; Zhu et al., 2003). The phosphate group of these probes undergoes hydrolysis in 

the active site of protein tyrosine phosphatases. The resulting phenoxide rearranges to 

form a highly electrophilic quinone methide, which can react with a nearby nucleophilic 

side-chain of the phosphatase, thus covalently labeling the phosphatase with a fluorescent 

probe. In another strategy, Zhang and co-workers synthesized α-

bromobenzylphosphonate probe 23 (Figure 1.9) containing either biotin or a rhodamine 

derivative (Kumar et al., 2004; Kumar et al., 2006). This probe covalently binds protein 

tyrosine phosphatases, most likely by labeling the active site cysteine. Using the α-

bromobenzylphosphonate probes, Zhang and colleagues compared global protein tyrosine 

phosphatase activity between a non-transformed cell line and a transformed cell line 

(Kumar et al., 2004). Additionally, they compared global protein tyrosine phosphatase 

activity across six different transformed cell lines (Kumar et al., 2006). The results 

showed that the pattern of protein tyrosine phosphatase activity is different in each cell 

line tested. This information may serve both as a starting point for the determination of 

how the various active phosphatase complements of each cell line contribute to the 

specific cellular phenotype and as a clinically useful marker to categorize disease and 

inform treatment. 
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Figure 1.9. Activity-based probes of protein phosphatases and kinases. 21 through 23 

= Protein tyrosine phosphatase probes. 24 = PP1 and PP2-A probes based on the natural 

product microcystin. 25 = General protein kinase probe. 26 = Clickable RSK probe. 27 = 

Allele selective probe used to study EGFR. These probes are potentially useful for any 

AS-kinase with either a natural or mutant cysteine near to the active site. 
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 Shreder et al. derivatized the known natural product microcystin, an inhibitor of 

class PP-1 and PP-2A protein serine/threonine phosphatases, with a rhodamine-based 

fluorophore (24) (Shreder et al., 2004). These investigators showed that probe 24 

specifically reports on the activity of PP-1 and PP-2A class phosphatases in a complex 

proteome.  

  Very recently, activity based probe methodology has been applied to monitoring 

kinase activity. Ratcliffe et al. derivatized the generic covalent protein kinase inhibitor 

FSBA with biotin to enable detection of active kinases by western blotting with avidin 

(Figure 1.9, compound 25). Thus far, the authors have validated the approach in vitro 

with the purified protein kinases Alk5 and Cdk2 (Ratcliffe et al., 2007). 

The other examples of ABPP probes of protein kinases published thus far have 

focused on the construction of probes specific for one kinase instead of the traditional use 

of activity based protein profiling of an entire family of enzymes simultaneously. In one 

example, Taunton and colleagues generated a probe specific for the C-terminal kinase 

domain (CTD) of wild type p90 RSK (Figure 1.9, compound 26) (Cohen et al., 2007). 

The probe design is based on a previously described irreversible covalent inhibitor of the 

enzyme that targets a cysteine residue in the kinase ATP-binding site. Derivatization of 

the inhibitor with a short alkynyl linker furnished probe 26. The CTD of RSK is known 

to indirectly facilitate the activation of the N-terminal kinase domain (NTD) of this 

tandem kinase domain-containing protein. However, it was unclear whether this CTD-

mediated activation of the NTD was the sole mechanism for NTD activation. To tease 

this apart, Cohen et al. determined the effect of CTD inhibition (probe 26 was used to 

verify that inhibition was complete) on NTD activation by two different stimuli known to 
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activate the NTD, the phorbol ester PMA and the endotoxin LPS. PMA-induced NTD 

activation decreased as a result of CTD inhibition, verifying that the CTD activates NTD 

in response to this stimulus. In contrast, inhibition of the CTD had no effect on NTD 

activation in response to LPS, suggesting that the transduction mechanisms for NTD 

activation downstream of LPS and PMA are distinct. 

 Extending the “bump-hole” approach of kinase inhibition discussed above, Shokat 

and colleagues designed allele specific probes of tyrosine kinases (Blair et al., 2007). 

Inspiration for this came from the development of irreversible covalent inhibitors of a 

small fraction of kinases such as RSK (described above) and EGFR that naturally contain 

a cysteine in their ATP-binding site. These investigators synthesized probe 27 (Figure 

1.9), which contains an acrylamide moiety designed to covalently label this cysteine, a 

bulky group that selectively binds a mutant kinase engineered to contain a hole by 

subtractive mutagenesis of its gatekeeper residue, and a NBD fluorophore. For kinases 

that do not naturally have a cysteine in the required position, it is also necessary to install 

a cysteine by mutation of the spatially-equivalent residue. Using this strategy, Blair et al. 

monitored the activity of the EGF receptor and correlated it with known downstream 

effectors. They yielded direct evidence that downstream pathway activation is 

proportional to the fraction of EGF receptors kinases with available active sites capable 

of phosphorylating targets. 

One potential drawback of these profiling approaches is that correlation of kinase 

or phosphatase activity (as measured by the covalent probe) to downstream cellular 

phenotypes may be hampered since the probe inactivates the enzyme. Therefore, when 

used at saturating conditions, these probes do not provide any information on the effects 

             44



  

of kinase activity after introduction of the probe. For experiments aimed at correlating 

protein kinase activity with downstream cellular changes in real time after probe 

administration, it may be more appropriate to utilize the fluorescence-based peptide 

sensors described in the previous section that do not destroy the activity of the kinase 

under investigation.  

 

1.2.8. Semi-synthesis of defined phosphorylated proteins and their analogues 

Site-directed mutagenesis is invaluable to the study of proteins, both in vitro and 

in vivo. However, such studies are limited by functional groups present within the 20 

genetically-encodable amino acids. Chemical manipulation extends this approach by 

incorporating new functional groups (including unnatural amino acids, non-genetically 

encodable optical and biophysical probes, and post-translational modifications) into 

proteins. Chemical techniques for protein modification range from direct labeling with 

reactive probes to sophisticated strategies involving chemical synthesis merged with 

native or engineered biosynthetic pathways within living cells. These techniques are 

discussed here followed by a review of their application to the study of protein 

phosphorylation. 

 

1.2.8.1. Semi-synthetic methods 

1.2.8.1.1. Targeted modification of intact proteins with reactive probes  
 

This method makes use of reactive amino acid side chains that naturally exist in 

proteins, most commonly the ε-amino group of lysine and the β-thiol group of cysteine 

(Figure 1.10A). These side chains are modified by addition of a probe derivatized to 

             45



B 

N

O

O

R

SH

N

O

O

R

S

+

i.
O

O R

N

O

O

NH2 HN

O

R

+

ii.

 

 

 

 

 

 

Figure 1.10. Protein semi-synthesis techniques. A. Targeted modification takes 

advantage of the reactivity of certain amino acid residues in proteins. Most commonly, 

cysteine and lysine are targeted. i. Cysteines react with maleimides to yield thioethers. ii. 

Lysines react with succinimidyl esters to yield amides. R = probe. B. In expressed protein 

ligation (EPL), two protein fragments of synthetic or recombinant origin are joined by a 

native peptide bond. One fragment contains an N-terminal cysteine which reacts with a 

C-terminal thioester of another fragment via native chemical ligation. Recombinant α-

thioester proteins are produced by expressing the protein fused to a mutant intein, 

resulting in an intermediate thioester that can be intercepted by thiols. Recombinant N-

terminal cysteine proteins are usually produced by proteolytic processing of a fusion 

protein. The corresponding synthetic fragments are readily prepared by solid phase 

peptide synthesis (SPPS) and other synthetic methods. C. In the nonsense suppression 

technique, an unnatural amino acid is inserted site-specifically into a protein of interest 

by infiltration of the protein biosynthetic pathway. A nonsense codon in the mRNA 

encoding the protein of interest is recognized  by a suppressor tRNA charged with an 

unnatural amino acid. The suppressor tRNA can be charged in one of two ways. In the 

chemical approach, the tRNA is aminoacylated in vitro and subsequently delivered to 

cells. In the biosynthetic approach, an orthogonal aminoacyl-tRNA synthetase (aaRS) is 

expressed in cells that charges only a mutant suppressor tRNA.  
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contain an appropriately reactive group, such as an NHS-ester (to label lysine) or 

maleimide (to label cysteine).  

Targeted modification has a rich history owing to its technical simplicity and the 

wide range of appropriately derivatized commercially-available probes. One drawback of 

targeted modification is that all residues of a protein that react with a particular probe are 

subject to being labeled. For example, if a protein contains 5 cysteines and a maleimide-

containing probe is added to it, then all 5 residues are likely to be labeled. In some cases 

greater specificity has been achieved by limiting the concentration of probe relative to 

protein. Specificity can also be achieved by interfacing genetics with targeted 

modification. For example, if all the cysteines in a protein are eliminated except for the 

cysteine at the desired labeling site and the protein remains functional, then that cysteine 

can be selectively labeled (Zou et al., 2002). Finally, specificity can also be achieved in 

some cases by an elegant strategy using a bifunctional molecule consisting of a reactive 

probe fused to a homing moiety. For example, an active site cysteine of an enzyme can be 

selectively labeled by using a thiol-reactive moiety fused to an active site-directed 

substrate (Curley and Lawrence, 1998). It is noted that this mode of achieving specificity 

could also be used as an additional strategy to generate activity based probes of protein 

kinases. 

  

1.2.8.1.2. Expressed protein ligation 

Expressed protein ligation (EPL) elaborates upon the immensely successful native 

chemical ligation method whereby two synthetic peptides are ligated together by a 

peptide bond (Dawson et al., 1994). By taking advantage of the biosynthesis of α-
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thioester and N-terminal Cys protein fragments, EPL readily allows for the addition of 

unnatural functionality to a recombinant protein framework, extending the ligation 

concept to proteins of all sizes (Figure 1.10B) (Muir, 2003). Methods to produce 

recombinant proteins bearing these functional groups have been developed. Erlanson, 

Verdine, and co-workers first described a method to generate recombinant proteins with 

N-terminal cysteines by proteolytic removal of a biosynthetic N-terminal protecting 

group (Erlanson et al., 1996). Since then, many alternative strategies for the generation of 

N-terminal cysteine proteins have been developed, involving proteolysis of fusion 

proteins by inteins (Hackenberger et al., 2006; Mathys et al., 1999; Southworth et al., 

1999), methionine aminopeptidase (Gentle et al., 2004; Iwai and Pluckthun, 1999), and 

leader peptidase (Hauser and Ryan, 2007; Muir, 2003). Muir, Cole, and co-workers first 

described a biosynthetic strategy to produce recombinant proteins bearing C-terminal α-

thioesters and used these to prepare semi-synthetic proteins via EPL (Muir et al., 1998). 

The production of recombinant proteins with C-terminal thioesters is made possible by 

intercepting a thioester intermediate formed in the process of protein splicing (Noren et 

al., 2000) by an exogenous thiol. With the ready availability of recombinant N-terminal 

cysteine and C-terminal α-thioester proteins, it is now possible to generate full-length, 

folded proteins harboring multiple site-specific chemical modifications via EPL (Hahn 

and Muir, 2005; Muir, 2003).  

 

1.2.8.1.3. Suppressor mutagenesis 

Another means of introducing unnatural functionality into proteins is the nonsense 

suppression mutagenesis method pioneered by the Schultz laboratory (Figure 1.10C) 
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(Ellman et al., 1991). This technique has been used extensively in vitro and recent 

improvements to the strategy have enabled its use in vivo (Xie and Schultz, 2005). 

Nonsense suppression allows an unnatural amino acid to be incorporated site-specifically 

into a protein, provided that the amino acid can be accepted by the ribosome. The new 

functionality can be a property of the new amino acid itself or the amino acid can be 

further elaborated by bio-orthogonal derivatization with other molecules (Chin et al., 

2002; Deiters et al., 2003). The latter should dramatically expand the scope of the 

approach by allowing bulky probes to be attached post-translationally. 

 

1.2.8.2. Applications to phosphoproteins 

1.2.8.2.1. Site-specific introduction of phosphorylated residues  

 Investigators requiring phosphorylated proteins have traditionally generated them 

by carrying out enzymatic phosphorylation reactions with the isolated protein of interest 

and the appropriate kinase. This method is not ideal due to the difficulty involved in 

generating active kinases, inability to control the stoichiometry of phosphorylation, and 

the inability to control the site of phosphorylation in proteins that are phosphorylated on 

multiple residues. EPL provides an attractive alternative since it enables site-specific 

installation of phosphates to generate homogenous, well-defined phosphoproteins. 

Indeed, the first published use of EPL was to generate phosphorylated Csk (Muir et al., 

1998). Since then, several phosphorylated proteins have been generated by EPL, some of 

which will be discussed here. The focus of this discussion will be on proteins involved in 

TGFβ signaling due to their relevance to this thesis. 
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Huse et al. prepared a tetra-phosphorylated semi-synthetic type I TGFβ receptor 

(TβRI) using EPL (Huse et al., 2000; Huse et al., 2001). Prior to this study, it was well 

known that hyperphosphorylation of the GS (glycine/serine rich) region of the receptor 

leads to its activation (Wieser et al., 1995; Wrana et al., 1994). However, the physical 

basis for activation by phosphorylation in this system was not known. In principle, 

phosphorylation of TβRI could cause a structural change that results in repositioning of 

active site residues into a catalytically-competent conformation. Alternatively, the 

hyperphosphorylated region could act as a binding surface for the protein substrate 

Smad2/3. These alternatives could not be reconciled with standard mutagenesis 

techniques and required semi-synthesis of TβRI with defined hyperphosphorylation of its 

GS region. Huse et al. succeeded in the synthesis of this extremely challenging protein 

and went on to show that hyperphosphorylation of the GS region enables TβRI to bind 

Smad2 en route to phosphorylation (Huse et al., 2000; Huse et al., 2001). Furthermore, 

when phosphorylated, TβRI no longer binds FKBP12, an endogenous inhibitor of the 

kinase. Thus, hyperphosphorylation of the GS region of TβR1 converts it from a binding 

site for an inhibitor (FKBP12) to a docking site for its substrate (Smad2/3). 

 The protein Smad2 transduces signals received at the cell membrane to the 

nucleus upon TGFβ binding to its receptor (Massague et al., 2005). In the nucleus, 

Smad2 acts as a transcription factor capable of modulating the expression of hundreds of 

genes. Smad2 is activated for this role by phosphorylation of two serine residues near its 

C-terminus. Wu et al. used EPL to prepare the MH2 domain of Smad2 with phosposerine 

at positions 465 and 467 (Wu et al., 2001). The crystal structure of a homotrimer of this 

protein revealed the mechanism of intermolecular phosphoserine binding, thereby 
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formally defining the MH2 domain as a modular phosphoserine binding domain, 

analogous to the SH2 domain for phosphotyrosine. Later work by Chacko et al. applied a 

similar strategy to the Smad2/Smad4 heterotrimeric complex, allowing them to determine 

the crystal structure of a heterotrimer composed of two doubly-phosphorylated Smad2 

molecules and one molecule of Smad4 (Chacko et al., 2004). This study revealed the 

molecular basis of non-phosphorylated Smad4 participation in this trimer. More recently, 

Hill and colleagues used phosphorylated Smad2 prepared by EPL to show that Smad2-

dependent transcription takes place exclusively on chromatin templates and cannot take 

place on naked DNA (Ross et al., 2006). This is in contrast to most other transcription 

factors that can drive transcription from both naked DNA and DNA packaged in 

chromatin. EPL can also be used to generate phosphorylated protein standards used in the 

determination of phosphorylation stoichiometry. This has been accomplished for Smad2 

phosphorylation and will be described in section 4.2 of this thesis. 

  

1.2.8.2.2. Introduction of stable phosphoaminoacid analogues 

In certain circumstances, phosphorylated molecules are not suitable experimental 

reagents to determine the function of a specific phosphorylation event. For example, a 

phosphoprotein will likely not remain phosphorylated throughout the entire time course 

of an experiment in vivo due to the action of endogenous phosphatases. To circumvent 

this problem, biological investigations of serine and threonine phosphorylation have 

frequently used site-directed mutagenesis to create aspartic or glutamic acid at the 

phosphorylation sites. These mutated amino acids mimic phosphoserine and 

phosphothreonine by virtue of their carboxylate-containing side chains. In addition these 
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residues are not subject to the action of phosphatases. However, these are imperfect 

mimics and furthermore, there is no genetically-encodable mimic of tyrosine 

phosphorylation. 

This has inspired investigators to use EPL to install amino acids at 

phosphorylation sites that closely resemble phosphoserine, phosphothreonine, and 

phosphotyrosine. The class of phosphorylation isosteres that are used most frequently for 

this purpose are phosphonates (Schwarzer and Cole, 2005). In phosphonates, the bridging 

oxygen connecting the amino acid side chain to the phosphoryl group is replaced by a 

methylene or fluorinated-methylene group. These phosphonates closely mimic the natural 

phosphates, both in size, charge, and polarity (Figure 1.11). Phosphonates have also been 

used extensively in medicinal chemistry to generate non-hydrolyzable phosphatase 

inhibitors and phosphoamino acid binding domain ligands (Burke, 2006).   

The first application of a phosphonylated protein generated by EPL comes from 

the work of Cole and colleagues in their investigation of the cellular function of 

phosphorylation of the protein tyrosine phosphatase SHP-2 (Lu et al., 2001). Semi-

synthetic SHP-2 was constructed with the non-hydrolyzable phospho-Tyr (pTyr) mimetic 

phosphonomethylenephenylalanine (Pmp, 29) in place of a naturally occurring pTyr 

residue (Figure 1.11). Microinjection of the protein into cells activated the MAP kinase 

pathway, defining a role for this phosphorylation event in cellular regulation. Moreover, 

this is the first investigation to use a protein generated by EPL inside living cells, a theme 

that has been adopted by other groups since publication of this pioneering study. These 

investigators went on to install difluoromethylenephenylalanine (F2Pmp, 30) in Shp-2 

(Figure 1.11) (Lu et al., 2003). This protein, which contains a difluorophosphonate, was 
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Figure 1.11. Phosphoserine, phosphotyrosine, and their unnatural non-hydrolyzable 

analogues.  The number after each abbreviation is the second pKa of the phosphate or 

phosphonate. 28 = phosphotyrosine (pTyr, 5.71), 29 = phosphonomethylenephenylalanine 

(Pmp, 7.11),  30 = difluorophosphonomethylenephenylalanine (F2Pmp, 5.11,2), 31 = p-

carboxymethyl-phenylalanine (pCMF), 32 = phosphoserine (pSer, 5.73), 33 = 

phosphonomethylenealanine (Pma, 7.13), 34 = difluorophosphonomethylenealanine (Pfa, 

5.13). 

                                                        
1 Reference: Domchek, et al., 1992 
2 Reference: Smyth, et al., 1992 
3 Reference: Zheng, et al., 2005 
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~50% more active than the corresponding phosphonate-containing protein. This indicates 

that F2Pmp is a better mimic of pTyr as compared to Pmp. This is expected since the 

difluorophosphonate (F2Pmp) and phosphate (pTyr) are both completely ionized at 

physiological pH (carrying a net charge of -2), whereas the phosphonate (Pmp) is only 

~50% ionized and therefore carries a net charge of -1.5 (Figure 1.11) (Domchek et al., 

1992; Smyth, 1992).  

In another study, Zheng et al. replaced the naturally occurring phosphothreonine 

at residue 31 in the melatonin rhythm enzyme AANAT with phosphonomethylenealanine 

(Pma, 33, Figure 1.11), a non-hydrolyzable pSer/pThr mimetic (Zheng et al., 2003). 

Microinjection of this protein provided direct evidence that phosphorylation results in 

increased stability of AANAT, most likely via a direct interaction with the protein 14-3-

3. Similar results were found when another phosphorylation site of AANAT (serine-205) 

was converted to difluorophosphonomethylenealanine (Pfa, 34, Figure 1.11) (Zheng et 

al., 2005). This suggests that bivalent binding of 14-3-3 to AANAT at sites nucleated by 

phosphorylation of serine-205 and threonine-31 may lead to synergistic stabilization of 

the enzyme. 

 Recently, Schultz and colleagues used nonsense suppression to install the 

phosphotyrosine analogue p-carboxymethyl-L-phenylalanine (pCMF, 31) into Stat1 at 

position 701, which is a natural site of tyrosine phosphorylation (Figure 1.11) (Xie et al., 

2007). Stat1 with pCMF at position 701 bound to a DNA oligonucleotide containing a 

Stat1-responsive element, providing experimental verification for the ability of pCMF to 

mimic phosphotyrosine in intact proteins. Sites of tyrosine phosphorylation that are not 

within close proximity of the N- or C-termini can readily be accessed and no additional 

             54



  

synthesis is required. However, pCMF is likely to be an inferior analogue of 

phosphotyrosine compared to Pmp and F2Pmp, both of which have been successfully 

installed into proteins by EPL. In future applications, when choosing which analogue to 

utilize, one will have to consider this balance of site accessibility and degree of phospho-

mimicry. This example highlights the complimentarity of these two approaches to 

unnatural amino acid mutagenesis of proteins.  

  

1.2.8.2.3. Introduction of caged phosphoaminoacids and analogues into peptides and 
proteins 

 
A ‘caged’ molecule is one that has been modified, usually covalently, in such a 

way that it is rendered inactive, but is readily re-activated upon irradiation with light of 

the appropriate wavelength and intensity (Kaplan et al., 1978; Mayer and Heckel, 2006). 

The use of caged neurotransmitters and metal ions such as Ca2+ has led to the mapping of 

complex inter-neuronal connectivity, the elucidation of the roles of individual 

neurotransmitters at synapses, the determination of specific enzyme activity in vivo, and 

to the better understanding of many other processes (Nerbonne, 1996).  

Employing this strategy of molecular photo-control in the study of peptides and 

proteins has shed new light on the role of enzymes and signaling proteins in their native 

contexts since their activities are under spatial and temporal control (Lawrence, 2005). 

Furthermore, the dose of active peptide or protein is under exquisite control as either the 

intensity or duration of the applied light pulse is easily varied. Light in the far UV range 

has the additional advantages of being non-destructive and non-invasive.  

It is generally simpler to synthesize a peptide than to carry out protein semi-

synthesis, motivating several investigators to prepare caged, bioactive peptides 
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(Lawrence, 2005; Shigeri et al., 2001). Whereas uncaging of a protein is designed to 

activate it, uncaging of a peptide in many cases is used to inhibit a cellular protein. 

Robust methods for the synthesis of caged phosphopeptides have led investigators to use 

them in live cell experiments (Rothman et al., 2002, 2003). The key step in the synthesis 

of a caged phosphopeptide is the installation of the caged phosphate onto the amino acid 

of choice using a phosphoramidite that has a caging group on one of its oxygens. Nguyen 

et al. synthesized a caged phosphopeptide-inhibitor (35) of the cellular 14-3-3 family of 

proteins, which contain a modular phosphoserine/phosphothreonine binding domain 

(Figure 1.12) (Nguyen et al., 2004). Several distinct genes give rise to 14-3-3 proteins 

that have overlapping function. Therefore, ablation of 14-3-3 activity by knockout 

technology is intractable owing to the requirement for deletion of several loci. Since 14-

3-3 proteins carry out their function by binding other proteins, Nguyen et al. designed 

their caged phosphopeptide inhibitor to disrupt these interactions by competitive binding 

upon uncaging. For experiments with live cells, the caged peptide inhibitor was delivered 

by a disulfide-linked peptide from the Antennaepedia protein, which functions as a cell 

penetrating peptide. These experiments showed that 14-3-3 proteins regulate many 

phases and checkpoints of the cell cycle. Caged phosphotyrosine peptides have also been 

validated in live-cell experiments addressing the role of tyrosine phosphorylation of the 

protein FAK in cell migration (Figure 1.12, compound 36) (Humphrey et al., 2005).   

Bastiaens and co-workers took advantage of a caged PTP1B substrate to probe the 

spatial regulation of PTP1B activity in live cells (Figure 1.12, compound 37) (Yudushkin 

et al., 2007). By labeling PTP1B with a fluorophore capable of undergoing FRET with a 

fluorophore on the peptide substrate, the fraction of PTP1B bound to substrate could be 
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Figure 1.12. Caged phosphopeptides. 35 = caged phosphopeptide-inhibitor of 14-3-3 

proteins, 36 = caged phosphopeptide-inhibitor of FAK cellular activity, 37 = caged 

substrate of PTP1B. 
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determined. Using the caged substrate, the investigators discovered that the kcat of PTP1B 

in cells is lower than in vitro. Further experiments indicated that PTP1B activity was 

lower at the cell periphery than the peri-nuclear region of the cell. The elucidation of the 

biochemical mechanism of spatial regulation will have to await further studies. 

Targeted modification has been used to create caged proteins (Curley and 

Lawrence, 1999; Marriott et al., 1998). However, this method generally leads to the 

installation of multiple caging groups at all sites of the protein capable of reacting with 

the caging group. This can be problematic because solubility or folding of the protein of 

interest could be lost when decorated with multiple caging groups. Also, a protein with 

many caging groups may require application of significantly more UV light over more 

time for complete uncaging, thereby limiting the temporal resolution of the approach. 

In the past decade, researchers have attempted to solve these problems by 

devising strategies that furnish proteins with caging groups at specified locations, which 

will be referred to as site-specific caging (Lawrence, 2005). In developing methods to 

cage proteins site-specifically, it is desirable to create a strategy that will be generally 

applicable for use with many different protein families. As nature frequently uses post-

translational modifications to augment protein activity, a caging strategy targeting one of 

these events would be useful in caging any protein regulated by the given modification. 

Phosphorylation is an extremely well-defined and ubiquitous post-translational 

modification that frequently acts as a molecular switch to regulate protein activity 

(Hunter, 2000).  Therefore, a robust method of caging proteins on phosphate will be 

applicable to the caging and study of many proteins. 
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Several groups have reported methods to cage proteins regulated by 

phosphorylation. Bayley and co-workers prepared protein kinase A (PKA) caged on an 

activating phospho-threonine residue by targeted chemical modification of an 

enzymatically-generated thiophospho-Thr (Zou et al., 2002). Importantly, the native 

cysteines of PKA were mutated to alanine so that the only site of modification on the 

protein would be the thiophosphate. Complementary to this approach, Lawrence and 

colleagues designed a strategy for caging proteins that are inactivated by Ser/Thr 

phosphorylation events (Ghosh et al., 2002). This involves site-directed mutagenesis of 

the phosphorylatable Ser/Thr to Cys, which is then reacted with a caging group 

containing a carboxylate to mimic phosphate. Using this method, Ghosh et al. prepared a 

caged version of cofilin, a protein involved in cell motility. Importantly, the native 

cysteines of cofilin did not react with the caging group, presumably because they were 

protected in disulfides. While the enzymatic activities of cofilin were already 

characterized, it was unclear how activation of the protein affects motility in vivo. 

Spatially-localized activation of cofilin resulted in directional migration, thus implicating 

it as a component of the cellular “steering wheel” (Ghosh et al., 2004).  

We have described two strategies for the semi-synthesis by EPL of caged Smad2, 

an intracellular mediator of TGFβ signaling (Hahn and Muir, 2004; Pellois et al., 2004). 

Caged and non-fluorescent Smad2 was prepared in such a way that UV irradiation 

simultaneously triggers protein activation and fluorescence (Pellois et al., 2004). In 

another approach, Smad2 was caged directly on two activating pSer residues (Hahn and 

Muir, 2004). This strategy is well suited to the caging of any protein activated by 

phosphorylation, thus providing an entry point to the study of many signaling pathways. 
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This work forms the majority of this thesis and will be described in detail in later 

chapters. Vogel and Imperiali have also succeeded in preparing a caged phosphoprotein 

by EPL (Vogel and Imperiali, 2007). They chose the phosphotyrosine-containing protein 

paxillin as their target. Semi-synthetic paxillin variants were prepared with tyrosine, 

phosphotyrosine, or caged phosphotyrosine at position 31. Synthetic C-terminal 

α−thioester peptides corresponding to the N-terminus of paxillin (residues 2-36) were 

ligated to a recombinant fragment of paxillin (residues 38-557) containing a N-terminal 

cysteine. The caged phosphotyrosine containing protein could be uncaged with UV light 

at 365 nm as judged by western blotting with a phospho-specific paxillin antibody. This 

study verifies that EPL is generally applicable for caging phosphoproteins since 

phosphotyrosine was successfully caged in an intact protein.  

Rothman et al. used nonsense suppression to generate caged phosphoproteins by 

in vitro translation in rabbit reticulocyte lysates (Rothman et al., 2005a). They found that 

the suppression efficiencies of caged serine, tyrosine, and threonine were lower than the 

parent unphosphorylated and uncaged amino acids. Nevertheless, the authors succeeded 

in the production of VASP containing caged phosphoserine at position 153. Following 

UV irradiation, the protein was uncaged and, therefore, competent for phosphorylation by 

PKA. 

 

1.3. Summary 

 This introduction provides a framework for the use of chemistry to understand 

various aspects of protein phosphorylation. Many key concepts in the history of protein 

phosphorylation required tools that originated in chemistry. The examples described 
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above of chemistry-inspired technologies and their use for the dissection of mechanism 

and consequences of protein phosphorylation are of undoubted utility for future 

investigations. Furthermore, it is expected that several new innovative techniques for 

studying protein phosphorylation will emerge from the chemical biology community.

 The remaining chapters of this thesis will describe several uses of protein semi-

synthesis to the study of phosphorylation of the cellular signaling protein Smad2.  
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Chapter 2: A general strategy for the preparation of caged phosphoproteins and its 

application to Smad21 

 
2.1. Background 

 The ability to activate proteins with spatial and temporal control inside live cells 

allows for quantitative kinetic measurements of protein function to be made in a 

biologically relevant context. Proteins that contain photo-labile protecting groups 

appended to functionalities required for biological activity are light-activatable and 

provide a means to enable such analyses (Figure 2.1A). An increasing number of reports 

describing construction of these reagents, known as caged proteins, have appeared in the 

recent literature (Curley and Lawrence, 1999; Lawrence, 2005). Herein, a semi-synthetic 

route to the preparation of caged phosphoproteins is described. This strategy has been 

applied to the cellular signaling protein Smad2.  

 Various caging groups have been used for the construction of caged compounds. 

The first caged compound described, caged ATP, contains the photolabile o-nitrobenzyl 

(o-NB, 31, Figure 2.1B) group attached to the γ-phosphate of ATP. Upon UV irradiation, 

the nitro group rearranges to form an aci-nitro intermediate that cyclizes and then 

decomposes to release ATP and a nitrosobenzaldehyde by-product (Figure 2.1C). Most 

other caged compounds described to date also contain the o-NB group or one of its 

                                                
1 The work described in this chapter resulted in the following publication: Hahn, M.E., 

and Muir, T.W., Photocontrol of Smad2, a multiphosphorylated cell-signaling protein, 

through caging of activating phosphoserines. Angewandte Chemie International Edition, 

43, 5800-5803 (2004). 
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Figure 2.1. Caged proteins and caging groups. A. A caged protein contains a caging 

group (red) that blocks a residue (X) of the protein that is required for activity, leading to 

protein inactivation. Upon irradiation of light of the appropriate wavelength, the caging 

group is removed and protein activity is restored. B. Examples of caging groups in 

current use. R indicates the compound that is being caged.  31 = o-nitrobenzyl group, 32 

= o-nitrophenylethyl group, 33 = 3,4-dimethoxy-6-nitrobenzyl group, 34 = 4-

hydroxyphenacyl group, 35 = 7-N,N-diethyl aminocoumarin, 36 = 6-bromo-7-

hydroxycoumarin-4-ylmethyl group, 37 = 8-Bromo-7-hydroxyquinoline group. C. 

Mechanism of o-nitrobenzyl group photolysis. Absorption of UV light causes conversion 

of the o-nitrobenzyl group into an aci-nitro intermediate, which cyclizes and decomposes  

to release R and a nitrosobenzaldehyde by-product.  

Caged protein Uncaged protein 
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improved derivatives. Alkylation of the exocyclic methylene of the o-NB group increases 

the rate of photolysis. For example, methylation at this position generates the o-

nitrophenylethyl (o-NPE, 32, Figure 2.1B) caging group that can be photolyzed faster 

than the parent o-NB group (Holmes, 1997). Furthermore, the ketone-containing 

photolysis by-product of the o-NPE group is less reactive and therefore less prone to 

causing damage in cells as compared to the aldeyde-containing photolysis product of the 

o-NB group. Installation of methoxy substituents on the ring of either of these caging 

groups (33, Figure 2.1B) results in red-shift of the absorbance spectrum enabling efficient 

photocleavage at less damaging wavelengths.  

 Many other caging groups have been developed that display different properties 

useful for various applications. The 4-hydroxyphenacyl group (34, Figure 2.1B) displays 

superior photolysis kinetics compared to o-NB based caging groups and has been used to 

cage a thiophospho-protein and a protein phosphatase on sulfur (Arabaci et al., 1999; 

Park and Givens, 1997; Zou et al., 2002). The coumarin-based DECM caging group 35 

(Figure 2.1B) can be photolyzed with non-toxic light in the visible range (Shembekar et 

al., 2005). This is a useful feature for studying processes in exceptionally UV sensitive 

cells. Other coumarin- and quinoline-based caging groups (36 and 37, Figure 2.1B) can 

be photolyzed with two-photon techniques enabling uncaging studies in deep tissue 

(Furuta et al., 2004; Furuta et al., 1999; Goard et al., 2005; Zhu et al., 2006).     

 

2.2. Smad2: a target for phosphoprotein caging 

 Smad2 is a key element of the intracellular response to cytokines of the TGFβ 

superfamily, which are involved in a myriad of normal and disease processes including 
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development, tissue homeostasis, and cancer (Massague et al., 2005; Siegel and 

Massague, 2003). Binding of TGFβ to its cognate receptor complex results in 

phosphorylation of the last two serines of the Smad2 C-terminal sequence CSSMS 

(residues 463-467; Figure 2.2) (Macias-Silva et al., 1996; Wu et al., 2001). These 

phosphorylation events activate Smad2, rendering the protein competent to both homo-

trimerize and interact with Smad4, a binding partner required for many downstream 

functions (Lagna et al., 1996). Activated Smad2 accumulates in the nucleus, where it 

regulates transcriptional programs by interacting with a host of other proteins and target 

promoters.   

 These differential protein-protein interactions and the localization of Smad2 

provide a basis for understanding how this molecule functions in a cell. However, these 

descriptions are static and do not adequately describe the dynamics underlying these 

signaling events. Little is known about where many of these protein-protein interactions 

are initiated and for how long they exist. The kinetics of nuclear import and export as 

well as the importance of signal strength, duration, and localization are all poorly 

understood. Therefore Smad2 was targeted for caging because the ability to activate this 

protein with temporal and spatial control allows one to directly address some of these 

fundamental issues. Furthermore, the caging strategy was designed to be generally 

applicable to other proteins modulated by phosphorylation.  

 

2.3. General strategy for photocaging Smad2 on phosphoserine residues  

 The caging strategy discussed here takes advantage of protein phosphorylation, 

the post-translational modification most often used to regulate protein activity (Hunter, 
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Figure 2.2. The intracellular response of Smads to TGFβ  Signals. A TGFβ family 

ligand engages the TGFβ receptor to induce an active signaling complex of type I and 

type II receptors. This complex can be degraded by the proteasome in a ubiquitin-

dependent manner after endocytosis through caveolin vesicles. The active receptor 

complex can also be internalized via clathrin-dependent endocytosis to early endosomes, 

where it is active. R-Smads can be recruited to the active receptor by SARA where they 

are activated by phosphorylation. Active R-Smads can interact with other active R-Smads 

and the co-Smad, Smad4. These R-Smad containing complexes accumulate in the 

nucleus where they associate with other transcriptional co-factors to modulate the 

expression of TGFβ-responsive genes. General components of the transcription apparatus  

(e.g. the Mediator complex) and chromatin remodeling factors (e.g. the SWI/SNF 

complex) help mediate these transcriptional changes. Activated Smad2 can be 

dephosphorylated in the nucleus by PPM1A to terminate the signal. Smads can be 

degraded following poly-ubiquitination by ubiqutin ligases such as SMURFs. Green and 

red arrows indicate positive and negative regulation of the pathway, respectively. 

Question marks indicate areas under active investigation in the last few years.  
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2000). Much recent effort has been directed at the preparation of caged analogues of 

phosphopeptides and phosphoproteins (Lawrence, 2005). Expressed protein ligation 

(EPL) was used as the center point of a semi-synthetic scheme for the preparation of 

Smad2 caged on activating phosphorylated residues (40; Figure 2.3) (Muir, 2003). This 

approach offers several advantages including the ability to produce caged proteins of any 

size in quantities sufficient for various biological applications without the need for 

mutagenesis (Muir, 2003). Additionally, EPL readily allows for the installation of 

multiple caged phosphates in a homogenous manner (Huse et al., 2000). This 

characteristic is of significant importance since many proteins, including Smad2, are 

controlled by multi-site phosphorylation (Cohen, 2000). 

 Here, we chose to work with the MH2 domain of Smad2 (residues 241-467; MW 

~25 kDa), since its molecular weight enables precise characterization by chromatography 

and electrospray mass spectrometry (ESI-MS). The MH2 domain mediates many of the 

functions of Smad2, including receptor recognition, homo- and hetero-oligomerization, 

and nuclear import (Shi and Massague, 2003).  

 

2.4. Semi-synthesis of Smad2-MH2 caged on phosphoserine residues 

Preparation of the caged phosphoprotein commenced with the synthesis of the 

corresponding doubly-caged phosphopeptide 39 using the 9-fluorenylmethoxycarbonyl 

(Fmoc) strategy (Figure 2.4). Key to the synthesis of 39 was: (1) orthogonal trityl (Trt) 

protection of the side-chains of the two serines to be phosphorylated and (2) 

incorporation of the N-terminal cysteine (Cys) required for EPL as tert-butoxycarbonyl-

1,3-thiazolidine-4-carboxylic acid (Boc-Thz). The latter allowed for the thiol of Cys to be 
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Figure 2.3. Semi-synthesis of caged Smad2-MH2. Expressed protein ligation was used 

to ligate a recombinant Smad2-MH2-α-thioester/SARA-SBD protein complex (38) to the 

doubly-caged phospho-peptide 39, giving the caged Smad2-MH2/SARA-SBD hetero-

dimer (40). Caged Smad2-MH2 is activated by exposure to UV light and subsequently 

releases SARA-SBD and forms a homo-trimer (41). Smad2-MH2 is shown in globular 

form, SARA-SBD is shown in orange, phosphorylated residues are symbolized by yellow 

circles, and caging groups are symbolized by red crescents. 
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Figure 2.4. Synthesis of doubly-caged phospho-peptide 39. a) (i). O-1-(2-nitrophenyl) 

ethyl-O'-β-cyanoethyl-N,N-diisopropylphosphoramidite,4,5-dicyano-imidazole (43, 

shown in caption below scheme), DMF (anhydrous); (ii). 1M tBuOOH, DCM 

(anhydrous); b) 92.5% TFA, 2.5% EDT, 2.5% TIS, 2.5% H2O; c) 1% DBU, DMF then 

0.5 M MeONH2·HCl, H2O; d) fluorescein-5-maleimide. 
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protected during the critical phosphorylation step and provided a convenient method for 

Cys deprotection following cleavage of the peptide from the solid support (Villain et al., 

2001). Following chain assembly and selective unmasking of the two serines, the 

resulting peptidyl-resin 42 was dried extensively and reacted with O-1-(2-

nitrophenyl)ethyl-O'-β-cyanoethyl-N,N-diisopropylphosphoramidite (43) (Rothman et al., 

2002), which contains the o-NPE group. This caging group was chosen since Rothman et 

al. had previously demonstrated its utility for the synthesis of caged phosphopeptides. 

Tert-butylhydroperoxide was then used to oxidize the intermediate phosphites to the 

desired phosphates, yielding 44. Notably, the undesired oxidation of the thioether of 

methionine to the sulfoxide was largely avoided (<5%) by limiting the time of oxidation 

to 20 minutes. Attempted on-resin removal of the β-cyanoethyl protecting groups in the 

setting of two juxtaposed phosphates resulted in significant amounts of β-elimination of 

the protected phosphate moiety (Kuder et al., 2000). Interestingly, this side reaction was 

not found to occur when the deprotection step was carried out on 45 in solution following 

cleavage from the resin. This suggests that the elimination was facilitated by the C-

terminal ester linkage between the peptide and the solid support. Smooth removal of the 

β-cyanoethyl groups was therefore carried out under optimized conditions in solution 

using the hindered amidine 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Methoxylamine 

was then added in situ to convert Thz to Cys. The crude product contained one major 

peak (~75% by reversed-phase high-performance liquid chromatography) (Figure 2.5A), 

which was subsequently purified to homogeneity to give the desired peptide caged on 

two phosphorylated serine residues (39) in ~10% yield (Figure 2.5B). The identity of the 

product was verified by tandem MS (Figure 2.6). 
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Figure 2.5. RP-HPLC characterization of 39. A. RP-HPLC analysis of crude synthetic 

material. A gradient of 0 – 73%B over 30 minutes was used with detection at 214 nm (top 

panel) and 280 nm (bottom panel). In the top panel, the large absorbance before 20 

minutes is due to DMF from the reaction mixture, which does not absorb at 280 nm 

(bottom panel). B. RP-HPLC of purified synthetic material. A gradient of 20 – 30%B 

over 30 minutes was used with detection at 214 nm (top panel) and 280 nm (bottom 

panel). The pure product is separated on this shallow gradient due to the racemic nature 

of the benzylic carbon of the 2-nitrophenylethyl protecting groups. 

             71



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6. Representative mass spectra of 39. A. ESI-MS of 39 with a single 

quadruple mass detector. B. MS2 of the parent ion of 39 at 972 Da was performed on an 

ion trap instrument. C. MS3 of the fragment at m/z 823 was performed on an ion trap 

instrument. MS3 of all major peaks was performed and spectra are consistent with the 

structure of 39. Major fragments identified in the spectra above are listed in the table 

along with a description.  
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 The caged peptide 39 was labeled with fluorescein-5-maleimide (thus generating 

peptide 46) and subjected to low intensity UV irradiation (312 nm, 2 mW/cm2) followed 

by RP-HPLC to determine the kinetics and quantum yield of uncaging (Figure 2.7A,B). 

Interestingly, both possible singly-caged peptides were observed in approximately equal 

amounts after irradiation for an intermediate length of time, indicating that the efficiency 

of photolysis was equivalent for both caging groups (Figure 2.7B,ii). Photolysis followed 

first-order kinetics with a rate constant of 4.9 x 10-3 s-1, corresponding to a quantum yield 

of uncaging of 0.16 per caging group (Figure 2.8). Brief (<5 seconds) exposure of the 

peptide to the output of a He-Cd laser (325 nm, 4.74 W/cm2) resulted in near quantitative 

conversion (>97%) to the uncaged peptide (Figure 2.7C).  

 A recombinantly expressed Smad2-MH2 domain (residues 241-462) bearing a C-

terminal thioester (38) was prepared as previously described (Wu et al., 2001). This 

protein was expressed as a fusion with a modified GyrA intein and chitin binding 

domain. Following affinity purification of the protein over chitin beads, Smad2-MH2-α-

thioester was released by incubation with the thiol 2-mercaptosulfonic acid (MESNa). A 

complex of Smad2-MH2-α-thioester with the minimal Smad binding domain of SARA 

(SARA-SBD, residues 665-721) was formed by incubation with excess SARA-SBD and 

purified by cation exchange chromatography. SARA-SBD binds the MH2 domain in a 

region known as the hydrophobic corridor and was used here to prevent precipitation of 

the MH2 domain during subsequent steps. 

The resulting pure protein complex was concentrated to 0.25 mM and a 4-fold 

molar excess of the caged peptide 39 was added to initiate the ligation reaction (Figure 

2.3). The reaction was monitored by RP-HPLC, ESI-MS, and SDS-PAGE (sodium 
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Figure 2.7. Representative RP-HPLC of 46 before and after photolysis. A. Mass 

spectrum of 46. Expected Mr is 1400.2 Da. B. 46 was irradiated for the times indicated 

with UV light (312 nm, 2 mW/cm2) and analyzed by RP-HPLC (0 – 73%B). The eluting 

species were detected at 443 nm (the absorbance maximum of the fluorescein label in 

RP-HPLC solvents). In the 150 sec trace, the doublet at approximately 20 minutes is 

presumed to be due to the two singly-caged species, as both peaks have the same 

molecular weight. C. 46 was irradiated with the 325 nm laser for 5 seconds and analyzed 

by RP-HPLC. This treatment led to the near quantitative (>97%) conversion of the caged 

peptide to the uncaged peptide.  
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Figure 2.8. Photolysis kinetics of doubly-caged phospho-peptide labeled with 

flourescein-5-maleimide (46). A. A solution of 46 at 10 mM was irradiated with low 

intensity UV light (312 nm, 2 mW/cm2) for the times indicated and subjected to RP-

HPLC for quantitation of the doubly-caged (×), singly-caged (□), and uncaged forms (∆). 

The percentage of each is plotted versus time of irradiation. B. The fraction of caging 

groups remaining was calculated and the natural logarithm at each time point plotted 

versus time of irradiation, along with a line of best fit, which yielded a first-order rate 

constant for photolysis of 4.9 × 10-3 and an R2 of 0.99. For both A and B, the mean of two 

experiments is plotted and for A the standard deviation is represented by error bars. 
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dodecyl sulfate-polyacrylamide gel electrophoresis) and was complete after 12 hours 

(Figure 2.9A). The caged protein 40 was purified by preparative size exclusion 

chromatography (SEC) and its identity was confirmed by HPLC, SEC, and ESI-MS 

(Figure 2.9B-D).   

 

2.5. Characterization of photocaged Smad2 and validation of the caging strategy 

 To be deemed effective, the caged protein should behave as if it was non-

phosphorylated in the absence of UV light and should display all the properties of the 

active, doubly-phosphorylated Smad2-MH2 when uncaged by UV light. We therefore 

proceeded with studies designed to determine the oligomerization state of the caged 

protein before and after UV irradiation. Integration of the RP-HPLC elution peaks 

corresponding to Smad2-MH2 and SARA-SBD allows quantitation of the stoichiometry 

of Smad2-MH2 binding to SARA-SBD. A 1:1 hetero-complex between Smad2-MH2 and 

SARA-SBD would display a ~4:1 peak area ratio (detection at 214 nm) since Smad2-

MH2 is approximately four times larger than SARA-SBD. The caged protein mimicked 

non-phosphorylated Smad2-MH2, as it bound SARA-SBD in a 1:1 molar ratio (Figure 

2.9B). This hetero-dimeric arrangement of Smad2-MH2 and SARA-SBD was verified by 

SEC coupled with multi-angle laser light scattering (MALLS) detection at a loading 

concentration of 5 µM (Figure 2.10B) (Folta-Stogniew and Williams, 1999). At higher 

loading concentrations (25-50 µM), MALLS analysis indicated that the caged protein had 

a slight residual tendency to form homo-trimers (Figure 2.10A,B). Importantly, the 

tendency of the doubly caged protein to homo-oligomerize is concentration-dependent, 

such that at physiologically relevant concentrations (<5 µM), this behavior is no longer 
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Figure 2.9. Characterization of caged Smad2-MH2 (40). A. SDS-PAGE of ligation 

timecourse. B-D. Caged Smad2-MH2 (top panels) was converted to uncaged Smad2-

MH2 (41; bottom panels) by irradiation for 5 seconds with a He-Cd laser (325 nm, 4.74 

W/cm2). B. RP-HPLC of the caged Smad2-MH2(**)/SARA-SBD(*) complex. C. The 

homo-oligomeric status of caged and uncaged Smad2-MH2 (at 5 µM) was assessed by 

SEC with detection at 280 nm. The elution positions of non-phosphorylated Smad2-MH2 

(0P) and doubly-phosphorylated Smad2-MH2 (2P) controls are indicated. D. 

Reconstructed molecular weight from ESI-MS indicates that the caged protein (expected 

MW = 25,818 Da) was assembled successfully. ESI-MS of the uncaged protein (expected 

MW = 25,519 Da) indicates quantitative removal of the caging groups after laser 

irradiation.  
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Figure 2.10. SEC/MALLS analysis of caged Smad2-MH2. A. Caged Smad2-MH2 

(caged), doubly-phosphorylated Smad2-MH2 (2P) and non-phosphorylated Smad2-MH2 

(0P) were applied to a S200 SEC column at a loading concentration of 50 µM. The eluant 

was analyzed by UV, refractive index (RI), and multi-angle light scattering (MALLS) 

detectors. The solid curves correspond to the RI signal and the points represent the 

molecular weight of the eluting species at each second derived from RI and MALLS 

measurements. At a loading concentration of 50 µM, the caged protein elutes in two 

peaks, the majority of which is part of a hetero-dimer with SARA-SBD. B. The 

normalized RI traces for the caged protein at 25 µM and 5 µM and for the non-

phosphorylated protein are shown. The residual tendency of the caged protein to homo-

trimerize at high concentrations is greatly reduced at 5 µM.  
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observed (Figure 2.10B). Brief irradiation (<5 seconds) of the caged protein with the 

output of the He-Cd laser followed by SEC, RP-HPLC, and ESI-MS demonstrated that 

the caging groups were quantitatively removed from the protein and that SARA-SBD was 

released from Smad2-MH2 in favor of homo-trimerization, thus generating protein 41 

(Figure 2.9B-D). 

 As a step toward the ultimate goal of using caged phosphoproteins in live cells to 

study the kinetics of biological signaling and transport processes, we set out to determine 

the behavior of caged Smad2-MH2 in a nuclear import assay. For this, we labeled 

cysteines of the Smad2-MH2 variants with Texas Red C2-maleimide (Figure 2.11A). 

When incubated with digitonin-permeabilized HeLa cells in the presence of SARA-SBD, 

non-phosphorylated Smad2-MH2 (OP) is excluded from the nucleus, whereas 

phosphorylated Smad2-MH2 (2P) accumulates in the nucleus (Figure 2.11B) (Xu et al., 

2000). UV irradiation had no effect on the localization pattern of phosphorylated and 

non-phosphorylated Smad2-MH2 control proteins (Figure 2.11B). In the same assay, we 

found that caged Smad2-MH2 was excluded from the nucleus, whereas uncaging of the 

protein with UV light led to clear nuclear accumulation (Figure 2.11B). This 

demonstrates that the caged and uncaged proteins behave as desired in a biological 

context. 

 

2.6. Summary 

Smad2-MH2 caged on two activating phosphate residues has been prepared by a 

semi-synthetic route. The molecule described represents the first report of a protein caged 

on phosphate. In principle, this approach can be applied to the construction of a caged 
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Figure 2.11. Nuclear import assay of Smad2-MH2 variants labeled with Texas Red 

C2-maleimide (TRM). A. Smad2-MH2 variants (6 µM, 0P = non-phosphorylated, 2P = 

doubly-phosphorylated) were labeled at 4 °C overnight with TRM, purified by SEC and 

analyzed by fluorescence scanning of an SDS-PAGE gel before and after treatment with 

UV light (as in Figure 2.8). B. The proteins were incubated separately at 1.5 µM with 

digitonin-permeabilized HeLa cells for 20-minutes at room temperature in the presence 

of 4.5 µM GST-SARA-SBD, an ATP-regenerating system, and 1 mg/mL BSA. After the 

import reaction, cells were washed, fixed, and analyzed by confocal microscopy for the 

localization of each Smad2-MH2 variant.  
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version of any protein activated by phosphorylation. Further studies using this class of 

reagent can be expected to yield quantitative insight into the kinetics of Smad2 nuclear 

import and export.  
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Chapter 3: A caging strategy for simultaneous triggering of Smad2 activity and 

fluorescence1 

 

3.1. Background 

 In the previous chapter, the successful semi-synthesis of the MH2 domain of 

Smad2 caged on its two C-terminal phosphoserines was described. While this is a useful 

reagent for controlling the time and site of protein activation, it is not possible to 

conditionally visualize the protein only when it is active. The ability to selectively 

monitor only the uncaged active form of the protein would provide a great advantage for 

live-cell imaging of Smad2. This would, in principle, allow for direct measurement of the 

extent of uncaging and activity of Smad2 following a dose of UV light. The fluorescent 

signal from the protein could be followed in time and space to determine the dynamic 

localization of the protein. Furthermore, this measurable fluorescence activity may be 

correlated to downstream cellular events. 

 

 

 

 

                                                
1 The work described in this chapter was completed in collaboration with Dr. Jean-

Philippe Pellois while he was a postdoctoral associate in the Muir laboratory and resulted 

in the following publication: Pellois, J-P., Hahn, M.E., and Muir T.W., Simultaneous 

triggering of protein activity and fluorescence. Journal of the American Chemical 

Society, 126, 7170 (2004). 
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3.2. Design of a caging strategy for Smad2 enabling the simultaneous activation of 

the protein and its fluorescence 

 It is not straightforward to design a protein so that a change in its fluorescence 

occurs upon activation. For inspiration, we turned to previous examples of induced 

fluorescence for measuring biomolecular activity (Figure 3.1). Fluorescence quenching 

methods have been used extensively to create probes that report the activity or presence 

of biomolecules such as proteases and DNA (Tyagi and Kramer, 1996). For example, a 

peptide containing a fluorophore and quencher in close proximity exhibits very little, if 

any, fluorescence due to intramolecular quenching (Figure 3.1A) (Weissleder et al., 

1999). Further, if the peptide contains a protease recognition site between the fluorophore 

and quencher, then proteolysis will result in loss of proximity of the fluorophore and 

quencher. This leads to a large increase in fluorescence, which effectively reports the 

presence of active protease. In another example, probes known as molecular beacons are 

used to detect DNA or other related molecules (Figure 3.1B) (Tyagi and Kramer, 1996). 

A molecular beacon consists of a single-stranded deoxyoligonucleotide containing a 

fluorophore and a quencher forced into close proximity by formation of an engineered 

DNA hairpin structure (Figure 3.1B)  (Tyagi and Kramer, 1996). In the presence of its 

complement, the hairpin structure is lost and the beacon participates in a double-helix in 

which the fluorophore and quencher are far apart, leading to a large increase in 

fluorescence (Figure 3.1B). Thus, a molecular beacon can be used to fluorescently 

monitor the presence of specific nucleic acid sequences.   

We envisioned integrating this concept of induced increase in distance between a 

fluorophore and quencher with protein caging to construct a photoactivatable form of 
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Figure 3.1. Induced fluorescence probes of biomolecules. A. A peptide consisting of a 

protease recognition sequence labeled on either end with a fluorophore and quencher is 

processed by a protease to yield two peptides that can diffuse away from each other. This 

leads to a robust increase in fluorescence of the portion of the peptide labeled with the 

fluorophore. B. A molecular beacon contains a flourophore and a quencher on either end 

of a short DNA stem loop. In the absence of a complementary target, the stem loop is 

stable and the fluorophore is quenched owing to the close proximity of the fluorophore 

and quencher. Upon hybridizing to a complementary target sequence, the molecular 

beacon takes part in a double helix. In this conformation, the fluorophore and quencher 

are no longer close enough in space for efficient quenching, thus fluorescence is restored.  
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Smad2 that becomes fluorescent upon activation. The requirements for this were: (1) 

labeling of Smad2 with a fluorophore and quencher that are close to each other before 

uncaging, (2) installation of a caging group that suppresses protein activity, and (3) 

linking uncaging to an increase in distance between the fluorophore and quencher to 

generate an increase in fluorescence. Inspection of the structure of the trimeric 

phosphorylated Smad2-MH2 domain provided a basis for rational design to satisfy these 

three requirements (Figure 3.2) (Wu et al., 2001). Methionine 466 is solvent exposed and 

does not participate in any protein-protein interactions in the Smad2 trimer (Figure 3.2B). 

Therefore, position 466 was selected as the site of fluorophore installation. The C-

terminal carboxylate of Smad2 at position 467 participates in a network of hydrogen 

bonds that stabilizes the trimer (Figure 3.2C). We reasoned that installation of a bulky 

caging group at this position would prevent the trimerization-dependent activity of 

Smad2. Finally, a quencher could be linked to the caging group such that it would be in 

close proximity to position 466 of the protein while the caging group is intact, but would 

diffuse away with the cleaved caging group upon UV irradiation. In principle, the 

successful synthesis of caged and quenched Smad2-MH2 (47) following this design 

would provide a means to simultaneously activate and visualize the protein (48) (Figure 

3.3A). 

 

3.3. Validation of fluorescent labeling and caging strategies 

 Before preparing a caged and quenched version of Smad2-MH2 containing all of 

the modifications discussed above, we set out to systematically determine if each 

modification performed as expected in isolation. For this, we prepared control proteins 
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Figure 3.2. Structure of the Smad2-MH2 trimer. A. Space-filling model of the Smad2-

MH2 homo-trimer (drawn from pdb code 1khx). Phosphoserine residues 465 and 467 are 

shown in black. B. Close up of methionine 466 shows that it is oriented toward solvent 

and does not make any protein contacts. C. The C-terminal carboxylate participates in 

hydrogen bonds that stabilize the homo-trimer. 
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Figure 3.3. Caged and quenched Smad2-MH2 (47). A. Schematic depicting caged and 

quenched Smad2-MH2. Upon UV irradiation, the caging group and quencher are 

removed, leading to homo-trimerization and fluorescence of the protein. B. Structure of 

peptide 52 ligated to Smad2. Shown in blue is the phosphopeptide skeleton. Shown in 

green is carboxyflourescein. Shown in orange is the caging group-quencher unit.  
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49, 50, and 51 by employing a similar semi-synthetic strategy (using Smad2 residues 

241-462 in complex with SARA-SBD) as was used for the phosphocaged MH2 domain 

discussed in chapter 2 (Figure 3.4A). To determine if Smad2-MH2 is stable to UV light, 

protein 49 was analyzed before and after irradiation at 365 nm. Size exclusion 

chromatography and mass spectrometry demonstrated that 49 was unchanged after 

exposure to UV light (Figure 3.4B). Next, methionine 466 of Smad2 was mutated to 

lysine in protein 50. This lysine was labeled at its ε-amine with the fluorophore 

carboxyfluorescein2 and the protein was analyzed by size exclusion chromatography and 

mass spectrometry (Figure 3.4C). Provided that the modification at position 466 does not 

interfere with the protein structure, then 50 should homotrimerize due to the presence of 

phosphoserine at positions 465 and 467. Indeed, size exclusion chromatography analysis 

of 50 demonstrated that it is homotrimeric (Figure 3.4C,i).  

 Having validated position 466 as a suitable location for fluorescent labeling and 

verifying that Smad2-MH2 is stable to UV light, we went on to test if the caging strategy 

outlined in section 3.2 would be suitable for Smad2-MH2. In addition to containing 

phosphoserine at positions 465 and 467, protein 51 contains a caging group at its C-

                                                
2 Carboxyfluorescein is not the best fluorophore for imaging in living systems. 

Fluorescein derivatives photobleach more readily than other fluorophores. Its use in these 

proteins was motivated primarily by the fact that it is a well-known fluorophore that 

interfaces well with solid phase peptide synthesis. Moreover, several variables and 

unknowns were being evaluated simultaneously during the development of the caging 

and quenching strategy so we wanted to minimize additional unknowns resulting from 

the use of less well characterized fluorophores. 
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Figure 3.4. Verification of fluorescent labeling and caging strategies. A. Control 

proteins used. B. Irradiation of 49 with UV light does not lead to any apparent change in 

oligomeric structure (compare i and iii) or molecular mass (compare ii and iv) as 

demonstrated by ESI-MS and SEC (expected Mr is 25,358.8 Da).  
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50 

51 
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Figure 3.4, continued. C. 50 is homotrimeric (i) and was assembled correctly (ii) as 

judged by ESI-MS (expected Mr is 25,874.1 Da). D. Before irradiation, 51 elutes at a 

retention time consistent with it taking part in a heterodimer with SARA-SBD (i). After 

irradiation, 51 is homotrimeric (iii). Irradiation leads to loss of the caging group as 

demonstrated by mass spectrometry (compare ii and iv; expected Mr of 51 – UV is 

25,928.2 Da and 51 + UV is 25,518.7 Da). UV irradiation in all applicable panels was 

performed for 2 minutes at 365 nm (~ 10 mW/cm2). In all panels showing gel filtration 

traces, homotrimeric Smad2-MH2 elutes at approximately 4.5 minutes whereas the 

heterodimeric complex of Smad2-MH2 and SARA-SBD elutes at approximately 5.5 

minutes. Peaks after ~6 minutes represent buffer components. 

i. 50 - UV ii. 50 - UV 

i. 51 - UV ii. 51 - UV 

iii. 51 + UV iv. 51 + UV 
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terminus. To judge the caging efficiency, 51 was analyzed by size exclusion 

chromatography and mass spectrometry before and after irradiation with UV light (Figure 

3.4D). Before irradiation, 51 participated in a heterodimer with SARA-SBD (Figure 

3.4D, i and iii), as did the inactive, non-phosphorylated protein 49 (Figure 3.4B, i). Upon 

irradiation with UV light, the caging group was removed (Figure 3.4D, iv) and 51 formed 

homotrimers (Figure 3.4D, iii), indicating that uncaging activated the protein. These 

analyses demonstrated that each modification required for the production of caged and 

quenched Smad2-MH2 was independently functional.  

 

3.4. Semi-synthesis of caged and quenched Smad2 

 In section 3.3, each modification required for caged and quenched Smad2-MH2 

was tested individually. Since they all performed as desired, we went on to unite them in 

one protein to prepare caged and quenched Smad2-MH2. Smad2-MH2-α-thioester 

(residues 241-462) in complex with SARA-SBD was prepared and ligated to peptide 52 

to generate caged and quenched Smad2-MH2 (47, Figure 3.3). Peptide 52 is highly 

modification-dense and contains all the elements required for expressed protein ligation 

(N-terminal cysteine), fluorescence (carboxyfluorescein), quenching (dabcyl), caging (4-

[4-(1-hydroxyethyl)-2-methoxy-5-nitrophenoxy]butanoic acid), and activity after 

uncaging (phosphoserine residues). Key to the synthesis of peptide 52 was a series of 

orthogonal protection/deprotection steps enabling installation of the fluorophore and 

quencher (Figure 3.5A). Also, limiting the time of Fmoc deprotection after the 

installation of the phosphoserine residues to 3 minutes minimized piperidine-induced β-

elimination of the phosphate residue. This peptide was extremely challenging to 
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                                                     52 
             

 

Figure 3.5. Synthesis of peptide 52 used to prepare caged and quenched Smad2. A. 

Synthetic scheme and structure of final product. B. RP-HPLC (20-73%B) of 52. C. Mass 

spectrum of 1. Expected Mr is 1744.6 Da. D. UV-VIS spectrum of peptide 52. 
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synthesize owing to the presence of many modifications on a small peptide skeleton. 

Fortunately, synthesis was successful in that the quantity of peptide generated was 

sufficient for expressed protein ligation reactions. Reversed-phase HPLC, mass 

spectrometry, and spectrophotometry confirmed the identity of the peptide (Figure 3.5B-

D). 

 Expressed protein ligation was carried out with the Smad2-MH2-α-

thioester/SARA-SBD complex and peptide 52 to create the caged and quenched protein 

47 (Figure 3.3). The ligation reaction was initiated by adding peptide 52 to a final 

concentration of 1 mM to a solution of Smad2-MH2-α-thioester (38) at 0.25 mM. The 

reaction proceeded for 24 hours at 4 °C (Figure 3.6A) at which point the ligated protein 

was purified by preparative size-exclusion chromatography (SEC).  

 

3.5. Characterization of caged and quenched Smad2-MH2  

Mass spectrometry confirmed the identity of the caged and quenched Smad2-

MH2 protein (Figure 3.6D), which is in complex with SARA-SBD in 1:1 stoichiometry, 

as demonstrated by integration of the Smad2-MH2 and SARA-SBD peaks of the RP-

HPLC traces shown in Figure 3.6B. Analytical size exclusion chromatography 

demonstrated that before irradiation with UV light, the caged and quenched protein exists 

as a heterodimer with SARA-SBD (Figure 3.6C). UV irradiation led to cleavage of the 

caging group and quencher from the protein, as confirmed by mass spectrometry (Figure 

3.6D). The uncaged protein no longer binds to SARA-SBD, but instead forms 

homotrimers, as expected (Figure 3.6B,C). These data indicate that the protein design 
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Figure 3.6. Characterization of caged and quenched Smad2-MH2 (47). A. SDS-
PAGE analysis of ligation reaction at the indicated timepoints. Smad2-MH2-α-COSR is 
indicated by ** and the ligation product is indicated by *.  B. RP-HPLC of caged protein 
before and after UV irradiation, demonstrating release of SARA-SBD upon 
photocleavage. C. SEC demonstrates that caged Smad2-MH2 elutes at an apparent 
molecular weight consistent with it being in a hetero-dimeric complex with SARA-SBD. 
Uncaged Smad2-MH2 elutes at an apparent molecular weight consistent with it being in a 
homo-trimeric complex. D. Reconstructed mass spectrum of caged and uncaged protein. 
Expected Mr of caged protein is 26,590.8 Da and uncaged protein is 25,874.1 Da. 
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principles discussed above were successful for the production of a caged version of 

Smad2-MH2. 

 As the goal of this work was to link protein uncaging to an increase in 

fluorescence, we next monitored the fluorescence of the protein after UV irradiation. 

Upon irradiation with low-intensity UV light at 365 nm, the fluorescence of the protein 

conjugate increased with time (Figure 3.7A). The photolysis was first order with a rate 

constant of 4.0 x 10-3 s-1 and the quantum yield of uncaging was 0.03 (Figure 3.7B). This 

contrasts with the observed quantum yield of 0.16 of photocleavage of the caging groups 

of the phosphocaged protein discussed in chapter 2. Since the two proteins share the same 

core caging group, it is inferred that the lower quantum yield of the caged and quenched 

protein is due to optical and/or electronic interference of the fluorophore or quencher 

with the caging group. However, irradiation at 325 nm for 3 seconds with the output of a 

high-intensity UV laser resulted in complete photolysis and conversion to the uncaged 

protein (Figure 3.7A). The maximal fluorescence increase upon uncaging was 26-fold. 

This is a robust increase that can be used to selectively monitor the uncaged form of the 

protein. Furthermore, since the quantum yield of photolysis was determined, it is possible 

to uncage either a fraction or all of the caged protein at one time, thus uncaging is 

titratable. 
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Figure 3.7. Photoactivation and fluorescence of caged and quenched Smad2-MH2 

(47). A. In the absence of UV irradiation, the caged and quenched protein is essentially 

non-fluorescent due to intramolecular quenching of fluorescein by dabcyl. Low intensity 

UV irradiation leads to an increasing fraction of uncaged protein over time. Irradiation 

with high intensity UV light from a laser completely uncages the protein, resulting in a 

26-fold increase in fluorescence. B. The log plot used to find the rate constant of 

uncaging is shown. 
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3.6. Photoactivation of fluorescence in live cells and Xenopus embryos3 

 Having successfully demonstrated that the caging strategy enables photoactivation 

of fluorescence in vitro, we undertook an investigation to determine conditions for 

photoactivation of fluorescence inside live systems. For these studies, a model protein 

containing glutamic acids in place of the phosphoserines (Smad2-MH2-2E, 53) was used 

for synthetic ease. Peptide 54 (Figure 3.8A) was synthesized in the same manner as 

peptide 52, with the exception of substitution of glutamic acid for phosphoserine at 

positions 465 and 467 of Smad2. The caged and quenched glutamic acid-containing 

protein was prepared in the same manner as described in section 3.4 by chemical ligation 

of peptide 54 to Smad2-MH2-α-thioester.  

 This protein was microinjected into the cytoplasm of live HeLa cells that were 

then irradiated with low intensity UV light (Figure 3.8B). Total cell fluorescence 

intensity increased for the first ten minutes of irradiation and reached a plateau of 

fourteen-fold by twenty minutes of irradiation (Figure 3.8C). The fraction of 53 increased 

in the nucleus following photoactivation. Interestingly, the observed nuclear fluorescence 

after uncaging was not uniform in distribution (Figure 3.8D). Instead, punctate 

fluorescence patterns were observed in the nucleus. While it is not clear why this occurs, 

it is intriguing to speculate that Smad2 clusters at molecular addresses inside the nucleus, 

possibly corresponding to promoter binding sites. However, it is possible that these 

results are artifacts due to lack of part of the linker of Smad2 and its MH1 domain in 53. 

                                                
3 The work described in this section was carried out in collaboration with Ariel Levine of 

the Brivanlou laboratory. 
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Figure 3.8. Photoactivation of caged and quenched Smad2-MH2-2E (53) in live cells. 

A. Structure of peptide 54 used to prepare Smad2-MH2(2E). B. Caged and quenched 

Smad2-MH2-2E was injected into the cytoplasm of live HeLa cells. The cells were 

continuously irradiated with UV light through the microscope’s standard DAPI excitation 

filter. Confocal images were taken at the times indicated. C. The total fluorescence 

intensity of the cell in B was measured at each timepoint and plotted. After 20 minutes of 

continuous irradiation, fluorescence increased 14-fold. D. Grayscale image of the 10 

minute irradiation timepoint shows non-homogenous, punctate Smad2 fluorescence in the 

nucleus and fluorescence at the nuclear envelope. 
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It is also possible that the concentration of 53 once microinjected into cells is higher than 

the endogenous Smad2 concentration.  

 The caged and quenched protein 53 was also microinjected into the animal pole of 

live two-cell stage Xenopus laevis embryos. The embryos were allowed to develop 

overnight. Next, the animal regions were explanted, placed under a coverslip and imaged 

by confocal fluorescence microscopy before and after photoactivation with a 325 nm 

laser. Rhodamine-dextran served as a cytosolic marker. Representative images of caged 

and uncaged Smad2-MH2 in animal region explants clearly indicate that photoactivation 

of fluorescence was achieved in these samples (Figure 3.9). 

 Next, we evaluated the biological activity of semi-synthetic Smad2-MH2 variants 

in live Xenopus laevis embryos by means of an Activin responsive luciferase assay. Like 

TGFβ, stimulation of cells with Activin leads to the phosphorylation of Smad2 and 

Smad3 (Massague et al., 2005). Control studies using non-phoshorylated and doubly-

phosphorylated Smad2-MH2 were undertaken. Each protein was microinjected along 

with an Activin-responsive luciferase construct into embryos, which were allowed to 

develop until the late blastula stage. At this point, their animal poles were explanted and 

lysed and luciferase assays were conducted. Both proteins induced luciferase expression 

above background (Figure 3.10, compare lanes 3 and 4 to lane 1). Injection of Activin 

mRNA served as a positive control. This produced strong luciferase induction as 

compared to both proteins (Figure 3.10, compare lane 2 to lanes 3 and 4). Luciferase 

induction due to doubly phosphorylated Smad2-MH2-2P and non-phosphorylated 

Smad2-MH2-0P injection was not significantly different from one another (Figure 3.10, 

compare lanes 3 and 4). It is possible that the reason for this lack of significant luciferase 
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Figure 3.9. Photoactivation of caged and quenched Smad2-MH2-2E (53) in live 

Xenopus embryos. Frog embryos at the 2-cell stage were injected in the animal pole with 

a solution containing caged Smad2-MH2 and were allowed to develop to the late blastula 

stage. Animal regions were explanted, placed under a coverslip and imaged by confocal 

fluorescence microscopy before and after photoactivation with a 325 nm laser. 

Rhodamine-dextran serves as a cytosolic marker. Each frame is 1.3 mm x 1.3 mm. 
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Figure 3.10. ARE luciferase assays of Smad2-MH2 variants in Xenopus embryos. 2-

cell stage embryos (n=3) were injected with an ARE-responsive luciferase reporter 

(ARE). Embryos were co-injected as indicated above with either Activin mRNA (positive 

control), 5 nM doubly-phosphorylated Smad2-MH2-2P, or 5 nM non-phosphorylated 

Smad2-MH2-0P. Activin mRNA injection leads to a robust increase in luciferase activity 

over background (compare lanes 1 and 2). Injection of Smad proteins also leads to an 

increase in luciferase activity over background (compare lane 1 with lanes 3 and 4) that is 

more modest than that induced by Activin mRNA (compare lane 1 with lanes 3 and 4, see 

inset). The activity of the phosphorylated MH2 is not statistically different (S.D.) than the 

non-phosphorylated protein (compare lanes 3 an 4, see inset).    
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induction of the phosphorylated protein compared to the non-phosphorylated protein is 

related to the fact that only a fragment of the protein was used that does not contain the 

MH1 domain or the full linker region. This led us to pursue methods that would allow us 

to interface our caging strategy with full-length Smad2, the subject of the next chapter. 

 

3.7. Summary 

 Rational protein design led to the semi-synthesis of a protein that upon uncaging 

and protein activation exhibits a robust increase in fluorescence. Therefore, the active 

protein can be monitored selectively by its increased fluorescent signal. Proof of principle 

experiments demonstrated that these proteins can be uncaged and fluorescence can be 

activated in live systems such as HeLa cells and Xenopus embryos. While the results with 

the caged Smad2-MH2 proteins described in this chapter were encouraging, they do not 

necessarily reflect physiological reality since they lacked the MH1 and part of the linker 

of Smad2. In order to achieve more realistic results, we required full-length caged 

Smad2. Therefore, we proceeded to develop a protocol for the production of full-length 

Smad2-α-thioester on the preparative scale. Efforts toward this are detailed in the next 

chapter. 
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Chapter 4: Tunable Photoactivation of a Posttranslationally Modified Signaling 

Protein and its Unmodified Counterpart in Live Cells1 

 

4.1. Background 

Chapter 3 described the development of a caging strategy enabling simultaneous 

activation and fluorescence monitoring of a fragment of Smad2. Biochemical and in vivo 

data demonstrated that implementation of the caging strategy led to the production of a 

Smad2-MH2 analogue that could be activated by UV light. Furthermore, the robust 

increase in fluorescence upon uncaging makes this caging strategy suitable for live-cell 

imaging studies. However, imaging of the caged and quenched Smad2-MH2 protein 47 

after uncaging in the context of intact cells may not provide physiologically relevant 

results since the protein is just a fragment of Smad2. Full-length Smad2 contains an MH1 

domain and an intact linker region that is not present in the caged and quenched Smad2-

MH2 protein 47 (Massague et al., 2005). The MH1 domain of R-Smads is the portion of 

the protein capable of binding DNA at Smad-responsive promoters (Kim et al., 1997; 

Massague et al., 2005). The MH1 domain binds co-factors required for specific, high-

affinity promoter binding (Massague et al., 2005). Smad2 contains a 30-amino acid insert 

                                                
1 The work described in this chapter was completed in collaboration with Dr. Jean-

Philippe Pellois and Dr. Miquel Vila-Perelló while they were postdoctoral associates in 

the Muir laboratory and resulted in the following publication: Hahn, M.E., Pellois, J-P., 

Vila-Perelló, M., and Muir T.W., Tunable Photoactivation of a Posttranslationally 

Modified Signaling Protein and its Unmodified Counterpart in Live Cells. 

ChemBioChem, in press.  

 
             104



of uncertain physiological significance in its MH1 domain (Massague et al., 2005; Yagi 

et al., 1999). Both the MH1 domain and linker region are subject to regulation by 

phosphorylation and other posttranslational modifications (Massague et al., 2005). 

Clearly, it is vital to use full-length Smad2 in any attempt to extract physiologically-

relevant data from imaging studies. Therefore, we sought to apply the semi-synthetic 

caging strategy described in chapter 3 to full-length Smad2.  

 

4.2. Determination of the fractional phosphorylation stoichiometry of Smad2 

following treatment of cells with TGFβ  

Hill and co-workers have studied kinetic aspects of Smad2 nucleocytoplasmic 

shuttling upon phosphorylation (Nicolas et al., 2004; Schmierer and Hill, 2005). The 

general method used in these studies relies upon expression of Smad2 fused to a 

fluorescent protein (FP) in live cells. Smad2 localization is then followed by confocal 

fluorescence microscopy after treatment with TGFβ. This method can be used to 

unambiguously monitor activated Smad2 only if the entire cellular pool of the protein is 

phosphorylated in response to stimulation of the cells by TGFβ since fluorescence of the 

FP is not coupled to Smad2 phosphorylation. This is problematic because most 

posttranslational modifications (PTMs) are thought to be installed substoichiometrically 

(Mann and Jensen, 2003). A potential advantage of our method is that Smad2 

fluorescence is linked to activation via uncaging.  

We sought to measure the extent of Smad2 phosphorylation upon treatment of 

cells with TGFβ. For this purpose, we designed an immunoblotting assay to determine 

the fraction of total Smad2 molecules that are phosphorylated at any given time following 
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TGFβ treatment (Figure 4.1). Extracts of HeLa and HaCaT cells that had been treated 

with TGFβ for 45 minutes were found to contain the maximal amount of C-terminally 

phosphorylated Smad2 relative to uninduced cells (Fig. 4.1A), which is consistent with 

previous studies (Inman et al., 2002). Standards generated using defined mixtures of 

purified non-phosphorylated and phosphorylated Flag-Smad22 (Figure 4.1B) were 

analyzed by Western blotting for both total Smad2 and phosphorylated Smad2 levels 

(Fig. 4.1C). Quantitative analysis of these blots allowed the generation of a standard 

curve (Figure 4.1D) from which we determined the fractional stoichiometry of Smad2 

phosphorylation in various cell lines following treatment with TGFβ for 45 minutes 

(Figure 4.1C). As shown in Figure 4.1E, the fraction of phosphorylated Smad2 varied 

significantly between these cell lines, underlining the key point that PTMs can be present 

at substoichiometric levels depending on the experimental context. These data 

demonstrate that our strategy of selectively monitoring active Smad2 has advantages over 

other methods. We note that this immunoblotting method is a simple alternative to 

existing mass spectrometry approaches for determining phospho-protein levels (Gerber et 

al., 2003) and can indeed be applied to the quantification of other PTMs in cases where 

the modified protein standards and PTM-specific antibodies are available. 

 

 

 

                                                
2 The phosphorylated Flag-Smad2 standard was prepared by EPL. Section 4.3 details the 

preparation of full-length Flag-Smad2-α-thioester. Semi-synthesis was carried out in the 

same manner as described in section 4.4.  
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Figure 4.1. Determination of the fractional stoichiometry of Smad2 C-terminal 

phosphorylation induced by TGFβ . A. Extracts of the indicated cell lines treated with 

TGFβ for the indicated times were analyzed by immunoblotting with antibodies directed 

to phosphorylated Smad2 (P-Sm2) and total Smad2 (Sm2). B. Doubly-phosphorylated 

semi-synthetic Flag-Smad2 standard used in C was analyzed by size exclusion 

chromatography to confirm that it is homotrimeric. Elution positions of molecular weight 

standards (kDa) and a Flag-Smad2/MBP-SARA-SBD heterodimer are indicated. 

Expected Mr of homotrimeric Flag-Smad2 is 165.1 kDa. C. Recombinant non-

phosphorylated Flag-Smad2 was mixed with an increasing fraction of phosphorylated 

Flag-Smad2 and analyzed by immunoblotting alongside extracts of the indicated cell 

lines that had been treated with TGFβ for 45 minutes. D. Comparison of the integrated 

intensities of the bands in panel C resulting from immunoblotting with antibodies for 

total Smad2 and phosphorylated Smad2 yields a standard curve from which Smad2 

phosphorylation stoichiometry can be determined. Error is S.D. (n = 3). E. The fractional 

stoichiometry of Smad2 C-terminal phosphorylation in various cell lines is shown. Error 

is S.D. (n = 3). 
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4.3. Expression and purification of full-length Smad2-α-thioester 

We designed caged Smad2 (55) so that photolysis of a single bond would result in 

both protein and fluorescence activation (Pellois et al., 2004), ensuring that any 

fluorescent signal observed is due to active Smad2 (Figure 4.2). Preparation of a complex 

molecule of this type is non-trivial, but should be possible using the protein semi-

synthesis approach expressed protein ligation (EPL) (Muir, 2003), which is especially 

useful for building complex functionality into polypeptides. For this we required 

recombinant protein-α-thioester building block 57 (Figure 4.3), which corresponds to 

Smad2 lacking the last 5 residues (residues 1-461). Fusing a protein of interest to a 

modified intein and subsequently treating the fusion with exogenous thiol releases the 

protein as an α-thioester. 

Preliminary experiments indicated that simply appending full-length Smad2 to an 

intein did not result in sufficient yield of pure protein for our needs. Therefore, we 

developed a modified expression and purification strategy. Soluble expression of Smad2-

intein in E. coli was greatly enhanced by fusing the protein to a N-terminal SUMO-Flag 

sequence. However, the protein still lacked suitable stability and precipitated during 

purification. We reasoned that performing lysis in the presence of a Smad2 binding 

partner might aid in the stabilization of the protein during subsequent purification steps. 

Indeed, bacterial lysis in the presence of the Smad binding domain (SBD) of SARA 

(Tsukazaki et al., 1998; Wu et al., 2000) fused to Maltose-Binding-Protein (MBP) 

improved the stability of the protein (Figure 4.4A). Thiolysis of the intein and subsequent 

removal of the SUMO domain by selective proteolysis (Mossessova and Lima, 2000) 
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Figure 4.2. Design of caged full-length Smad2 (55). The MH1 domain (pdb code 

1MHD) is modeled in orange and the MH2 domain is in blue in complex with SARA-

SBD in gold (pdb code 1DEV). The linker between the two domains is depicted by a 

dotted line. Before irradiation the protein is non-fluorescent and unable to homotrimerize 

due to the presence of the bulky photolinker-quencher unit (black). Upon irradiation with 

UV light, the photolinker-quencher unit is released, allowing Smad2 to dissociate from 

SARA, form homotrimers and become fluorescent. The phosphoserine residues that 

mediate oligomerization are shown in yellow and carboxyfluorescein is shown in green. 

The MH1 domain is modeled from the crystal structure of the Smad3 MH1 domain. MBP 

= maltose binding protein. The individual MH2 domains of the Smad2 homotrimer are in 

blue, cyan, and red.  

55 
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Figure 4.3. Semi-synthesis of caged full-length Smad2 (55) by expressed protein 

ligation. Full-length Smad2-α-thioester in complex with MBP-SARA-SBD (57) was 

ligated to synthetic peptide 52 to yield caged Smad2 (55). Peptide 52 contains a N-

terminal cysteine for EPL, two phosphoserine residues (highlighted in yellow), 

carboxyfluorescein (green), and a photolinker-quencher unit (black). The linker between 

the two domains is depicted by a dotted line.  

57 52 55 
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Figure 4.4. Cleavage of SUMO from SUMO-Flag-Smad2-α-thioester. A. Chitin 

column fractions containing SUMO-Flag-Smad2-α-thioester were treated (+Ulp) or not  

(-Ulp) with SUMO protease (Ulp) overnight at 4oC and analyzed by SDS-PAGE. 

Identities of the bands corresponding to various forms of Smad2 and MBP-SARA-SBD 

are indicated. B. The protein represented in panel A, lane 2, was further purified by anion 

exchange chromatography and analyzed by SDS-PAGE. The expected Mr of Flag-

Smad2-α-thioester (57) and MBP-SARA-SBD is 54.2 kDa is 48.9 kDa, respectively. 

Gels were stained with coomasie. 
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gave full-length Flag-Smad2-α-thioester/MBP-SARA-SBD (57) in milligram amounts 

following purification (Figure 4.4B).  

 

4.4. Semi-synthesis and characterization of caged full-length phosphorylated Smad2 

Following production of sufficient quantities of purified protein 57, we went on to 

prepare caged full-length Smad2 (55) by EPL (Figure 4.3). For this, we used peptide 

fragment 52, which contains the last five amino acids of Smad2 as well as all of the 

functionalities required for ligation, caging, fluorescence, and quenching (Figures 3.5 and 

4.3). The ligation reaction was initiated by combining purified synthetic peptide 52 and 

recombinant protein complex 57 under physiological conditions at 4 oC (Figure 4.3). The 

reaction was monitored by SDS-PAGE with fluorescence imaging, which indicated that 

the reaction was complete after two days. The ligation product 55 was then purified by 

size-exclusion chromatography and analyzed by SDS-PAGE (Figure 4.5A). 

The purified ligation product 55 exists as a heterodimer with SARA-SBD and was 

able to form homotrimers upon uncaging with UV light (Figure 4.5A,B). Surprisingly, 

some of the Smad2 protein eluted on an SEC column at a volume consistent with it 

remaining in complex with SARA-SBD even though the photolysis reaction was 

essentially complete under the irradiation conditions employed (325 nm at 4.74 W/cm2 

for 3 seconds). We wondered whether the SARA-SBD in the mixture could compete with 

trimerization of the uncaged protein. To test this idea, we treated purified doubly-

phosphorylated full-length Smad23 with increasing amounts of SARA-SBD and indeed 

                                                
3 This protein was prepared by EPL in the same manner as the caged and quenched 

protein described in section 4.4. 
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Figure 4.5. Characterization of caged full-length Smad2 (55). A. SDS-PAGE of caged 

protein 55, which is a complex between semi-synthetic fluorescent Smad2 (*) and MBP-

SARA-SBD (**). Both proteins are detected by coomassie staining of the SDS-PAGE 

gel, whereas fluorescence imaging of the gel detects only the semi-synthetic Smad2 

(through its residual carboxyfluorescein fluorescence). Expected Mr of caged Flag-Smad2 

and MBP-SARA-SBD is 55.1 kDa and 48.9 kDa, respectively. B. Caged full-length Flag-

Smad2 (55) was either irradiated with the output of a laser at 325 nm for 3 seconds 

(+UV) or left in the dark (-UV). The protein was then analyzed by size exclusion 

chromatography. Elution positions of authentic trimeric and heterodimeric (with MBP-

SARA-SBD) standards are shown. C. Phosphorylated full-length Smad2 exists in an 

equilibrium of homotrimer and heterodimer in the presence of SARA-SBD. Each trace 

corresponds to the SEC profile of phosphorylated full-length Smad2 in the absence (a) or 

presence (b-e) of MBP-SARA-SBD. The ratio of Smad2 to Sara is approximately 2:1 in 

b, 1:1 in c, 1:2 in d, and 1:4 in e. D. Fluorescence spectra of caged full-length Flag-

Smad2 (55) in vitro before and after irradiation with UV light at 365 nm. The inset 

indicates the energy of light applied and fold increase of Smad2 fluorescence (520 nm) 

after irradiation.  
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Figure 4.5, continued. 
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observed dose-dependent disruption of the Smad2 trimer, as measured by size exclusion 

chromatography (SEC; Figure 4.5C). This is in stark contrast with the doubly-

phosphorylated MH2 domain alone which forms stable homotrimers even in the presence 

of a large excess of SARA-SBD (Ottesen et al., 2004). 

 A ~12-fold increase in carboxyfluorescein fluorescence was attained upon UV 

photocleavage of the purified caged protein, indicating release of the photolabile unit 

containing the dabcyl quencher (Figure 4.5D). This was lower than the corresponding 

value of 26-fold for the caged Smad2-MH2 domain (47) described in chapter 3 (Figure 

3.7A). Since the same fluorophore/quencher system was utilized in both proteins, it is 

unclear why the fold increase of fluorescence upon photoactivation is different between 

them. It is known that the MH1 and MH2 domains can interact with each other (Hata et 

al., 1997). This may lead to close proximity of the MH1 domain to the C-terminus of the 

same polypeptide where the quencher and fluorophore reside. This in turn may change 

the polarity of the environment immediately surrounding the fluorophore and quencher to 

perturb the quenching efficiency or fluorescence of carboxyfluorescein, potentially 

resulting in the observed difference in fold activation of fluorescence.      

Next we studied the utility of our approach in live cells. Photocaged Smad2 (55) 

was microinjected into the cytosol of live HaCaT cells and monitored by confocal 

microscopy. The fluorescence signal from carboxyfluorescein before photoactivation was 

barely detectable over background, indicating that dabcyl effectively quenches 

carboxyfluorescein inside cells (Figure 4.6A). Application of a continuous low dose of 

UV light allowed us to examine whether photoactivation could be titrated (Figure 4.6B). 

Increasing the dose of UV light led to an increase in fluorescence emission, which 
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Figure 4.6. Titration of phosphorylated Smad2 activity in live cells. A. Caged full-

length Flag-Smad2 (55) and 70 kDa tetrametylrhodamine-dextran (cytosolic marker) 

were microinjected into live HaCaT cells, which were then irradiated with low intensity 

UV light at 360 nm for 10 minutes. Confocal images were obtained at the times 

indicated. B. Quantification of Smad2 fluorescence in the cells from panel A. C. Caged 

full-length Flag-Smad2 (55) and 70 kDa tetrametylrhodamine-dextran (cytosolic marker) 

were microinjected into live HeLa cells, which were then irradiated with low intensity 

UV light at 360 nm for 10 minutes. Confocal images were obtained at the times 

indicated. D. Quantification of Smad2 fluorescence in the cells from panel B. Error bars 

are ± S.D. 
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reached a maximum of 12-fold over the non-irradiated sample (Fig. 4.6B). Similar results 

were obtained in HeLa cells (Figure 4.6C,D). This robust change in signal allows 

discrimination of the caged and uncaged versions of the phospho-protein in live cells, 

thereby validating a key part of our design, namely direct visualization of titratable 

protein activity.  

 

4.5. Kinetic analysis of Smad2 nuclear import in live HeLa cells 

Uncaging provides temporal control over protein function allowing kinetic 

analysis of cellular processes (Lawrence, 2005). As demonstrated above, our system has 

the added benefit that it is possible to selectively monitor the movement of the uncaged 

phospho-protein. To illustrate this point, we monitored the nuclear import of 55 after a 

short (60 s) UV exposure (Figure 4.7A). The mean nuclear fluorescence in each cell was 

normalized to total cell fluorescence at each time point and plotted against time (Figure 

4.7B). The import kinetic curves are sigmoidal in nature with an apparent lag phase 

suggestive of one or more intermediate events. The data were analyzed by non-linear 

least squares curve-fitting to a stretched exponential function (see Methods section 7.31). 

While this analysis does not yield a true rate constant, it does provide a useful empirical 

description of complex kinetic processes (Hamada and Dobson, 2002; Morozova-Roche 

et al., 1999). In particular, the parameter n is a measure of cooperativity in the process 

and was found to be greater than 1 in all cases (Figure 4.7B) consistent with the presence 

of a lag phase in the nuclear import of our fluorescent construct under this experimental 

regime. This lag phase could reflect many intermediate events including dissociation of 

uncaged 56 from SARA-SBD, oligomerization of uncaged 56 and/or interactions of 
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Figure 4.7. Nuclear import kinetics of caged Flag-Smad2 (55) following uncaging. A. 

Caged Flag-Smad2 (55) was microinjected into live HeLa cells, which were then 

irradiated with UV light for 60 seconds. Images were taken every 10 seconds. Images 

before and after UV irradiation (365 nm) are shown. Each cell is identified by a label and 

arrow. B. Mean nuclear fluorescence in each cell was normalized to total cell 

fluorescence at each time point and plotted against time (black dots), where t = 0 refers to 

the time at which the irradiation was switched off. The data were fit to the stretched 

exponential function (Equation 1). Values of ks (s-1) and n with errors (S.E.) for each cell 

are given in the inset of each plot. R2 was greater than 0.95 for all fitted curves. 
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Figure 4.7, continued. 
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uncaged 56 with other cellular components such as microtubules (Dong et al., 2000) or 

the nuclear pore complex (Xu et al., 2002). Regardless of the origins of this lag phase, the 

kinetic data demonstrate that it is possible to resolve discrete kinetic events in complex 

cellular translocation processes using this strategy. 

 

4.6. Simultaneous activation of two different forms of full-length Smad2 in live cells 

In order to better understand the effects of phosphorylation on Smad2 dynamic 

localization, it would be useful to compare the phosphorylated form of the protein to its 

non-phosphorylated counterpart. Other investigators have accomplished this by 

comparing the dynamic properties of GFP-labeled Smad2 in cells treated with TGFβ to 

GFP-labeled Smad2 in untreated cells (Nicolas et al., 2004; Schmierer and Hill, 2005). 

While cells do communicate and interact with one another, each cell is its own unique 

system.  

Cells have variable geometry, may have different protein concentrations, and may be in 

different phases of the cell cycle. These and other phenotypic differences may impact the 

behavior of the same protein in different cells. Therefore, quantitative comparisons 

between proteins residing in different cells may be prone to artifacts.  

To address this issue, we envisioned monitoring the phosphorylated and non-

phosphorylated proteins in the same cell at the same time. We set out to accomplish this 

by preparing a non-phosphorylated caged full-length Smad2 analogue labeled with an 

orthogonal fluorophore (tetramethylrhodamine) followed by simultaneous imaging of the 

phosphorylated and non-phosphorylated forms of the protein in the same cell. To 

demonstrate the potential of this approach, we prepared protein 58 by ligating protein-α-
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thioester 57 to peptide 59 (Figures 4.8 and 4.9). Protein 58 is a caged and quenched 

version of non-phosphorylated Smad2 containing the red fluorophore 

tetramethylrhodamine. The two proteins 55 and 58 differ in two important ways: i. 55 is 

phosphorylated on serine residues 465 and 467 while 58 is not (the serines are replaced 

by alanines in 58), and ii. they contain orthogonal fluorophores. Proteins 55 and 58 share 

the same core caging group and were found to exhibit similar uncaging kinetics (Figure 

4.10A). The maximal increase in fluorescence of the tetramethylrhodamine labeled 

protein 58 after UV photoactivation was 6-fold as compared to 12-fold for the 

carboxyfluorescein labeled protein 55 (Figure 4.5D and Figure 4.9B). The observation 

that dabcyl quenched carboxyfluorescein more efficiently than tetramethylrhodamine 

presumably reflects the greater spectral overlap between carboxyfluorescein emission and 

dabcyl absorbance as compared to that of tetramethylrhodamine emission and dabcyl 

absorbance. 

Encouraged by the in vitro behavior of protein 58, we moved on to ask whether it 

was possible to simultaneously activate proteins 55 and 58 in the same cell. Accordingly, 

proteins 55 and 58 were co-injected into HeLa cells that were then treated with a short 

(60 seconds) UV pulse and then imaged by confocal fluorescence microscopy after a 

further 5 minutes (Figure 4.10B,C). Both proteins were successfully uncaged as judged 

by the increase in fluorescence in both the green (protein 55) and red (protein 58) 

channels. In keeping with the in vitro results, the quenching of protein 58 was not as 

efficient as for protein 55 in cells, although protein fluorescence was clearly activated in 

both channels (Figure 4.10B). In addition, protein 55 could be detected both in the 

nucleus and cytoplasm after uncaging, whereas protein 58 was cytoplasmic. This 
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Figure 4.8. Synthesis of peptide 59. A. Synthetic scheme and structure of final product. 

B. RP-HPLC (30-50%B) of peptide 59. The peptide is a mixture of two regioisomers 

since 5(6)-TAMRA was used in the synthesis. C. ESI-MS of peptide 59. Expected Mr is 

1606.7 Da.  
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Figure 4.8, continued. 
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Figure 4.9. Semi-synthesis and photoactivation of non-phosphorylated 

photoactivatable Flag-Smad2 (58). A. SDS-PAGE of photoactivatable Flag-Smad2 

prepared by EPL in complex with MBP-SARA-SBD. B. Fluorescence spectra of 

photoactivatable Flag-Smad2 in vitro before and after irradiation with UV light at 365 

nm. The energy of light applied and fold increase of Smad2 fluorescence (582 nm) after 

irradiation are indicated. 
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Figure 4.10. Simultaneous activation of two different forms of caged full-caged 

Smad2 in the same live cells. A. In vitro uncaging kinetics of caged phosphorylated 

Smad2 labeled with carboxyfluorescein (55) and its non-phosphorylated counterpart 

labeled with tetramethylrhodamine (58). Proteins 55 (dashed green line) and 58 (solid red 

line) were irradiated with light at 365 nm (Irradiance = 4 mW/cm2) and fluorescence 

spectra were recorded at each time point. The percent of total uncaging was determined 

by dividing the fluorescence emission (at λ =  520 nm for carboxyfluorescein; λ = 582 

nm for tetramethylrhodamine) at each time point by that of the final time point. B and C. 

Phosphorylated (55) and non-phosphorylated (58) caged forms of Smad2 were co-

injected into the cytoplasm of live HeLa cells. Confocal images before (-UV) and 5 

minutes after (+UV) irradiation (60 second pulse) with UV light at 360 nm are shown. 

A 
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observation is consistent with the known localization behavior of phosphorylated and 

non-phosphorylated Smad2 (Macias-Silva et al., 1996; Massague et al., 2005; Schmierer 

and Hill, 2005).  

 

4.7. Summary 

In the experiments presented here, semi-synthetic protein chemistry methodology 

was used to construct the signaling protein Smad2 bearing two activating PTMs, a 

fluorescent donor-quencher pair and a photo-cleavable trigger. The successful semi-

synthesis of this ornately modified ~50 kDa protein illustrates the broad scope of protein 

ligation technology. In principle, this approach can be applied to other proteins that are 

modulated by phosphorylation and their non-phosphorylated counterparts, especially if 

structural information of the protein is known. The requirements are: i. chemical access 

to the phosphorylation sites, ii. installation of a fluorophore at a position where it does 

not significantly affect protein structure and function (typically a location on the surface 

of the protein), iii. installation of a quencher distal to a photolinker near to the site of the 

fluorophore. These moieties can be installed on amino acid side chains or at the termini 

of the protein or even on functional groups of other classes of biomolecules (Tang and 

Dmochowski, 2005).  

The direct comparison of imaging data on different proteins acquired by 

observing them in separate cells is prone to artifacts due to cell-to-cell heterogeneity. To 

eliminate this problem, it is desirable to image different proteins simultaneously in the 

same cell (Schultz et al., 2005). Such multiparameter experiments are often carried out by 

co-expressing two or more proteins fused to different fluorescent proteins (FPs). 
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However, the activation state of a protein is uncoupled from the fluorescence of the FP to 

which it is fused. Therefore, dynamic FRET-based methods that report the activation of 

two or more proteins in the same cell have been devised (Brumbaugh et al., 2006; Peyker 

et al., 2005; Schultz et al., 2005). Our approach uniquely complements these FRET-based 

approaches in that it allows for simultaneous activation and subsequent selective 

monitoring of more than one protein in the same cell. In this report we have demonstrated 

the simultaneous monitoring of the activated form of a posttranslationally modified 

protein and its non-modified, inactive form. In principle, this approach can be extended to 

simultaneous activation and monitoring of more than one differentially 

posttranslationally modified form of the same protein and also to posttranslationally 

modified forms of two or more different proteins. Future studies will be aimed at 

identifying optimal fluorophore/quencher pairs and uncovering new biological insights. 
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Chapter 5: A search for proteins whose interaction with Smad2 is regulated by 

phosphorylation identifies PRMT5 as a potential Smad2 binding partner 

 

5.1. Background 

 Smad2 function is modulated by interaction with other proteins (Massague et al., 

2005). Perhaps the most interesting of these interactions are those that are modulated by 

Smad2 phosphorylation. Since phosphorylation is a dynamic post-translational 

modification, it follows that interactions that are regulated by phosphorylation are also 

dynamic. Dynamic interactions allow cells to respond rapidly to changes in their 

environments and are therefore vital to the maintenance of cellular homeostasis (Pawson 

and Nash, 2003).  

 A variety of protein-protein interaction screens have been applied in the 

identification of novel Smad-interacting proteins. For example, He et al. prepared 

recombinant baits for in vitro interaction assays containing the linker region and MH2 

domain of Smad2 fused to GST (He et al., 2006). The critical serine residues of the 

Smad2 C-terminus that are phosphorylated in response to TGFβ were both mutated to 

aspartic acid (Asp). This mutation was employed to mimic the naturally occurring 

phosphoserines (pSer) since the carboxylate of the Asp side chain resembles the charge, 

polarity, and size of a phosphate. Incubation of this bait with HeLa lysates and its 

subsequent co-precipitation with interacting proteins led to the isolation of TIF1γ. Further 

analysis of the TIF1γ-Smad2/3 interaction revealed a role for TIF1γ as an alternative to 

Smad4 in TGFβ-regulated signaling and showed that this interaction was vital for 

differentiation of hematopoeitic precursors into erythrocytes. 
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5.2. Design of a novel probe for the discovery of phosphorylation-regulated Smad2 

binding partners 

 Taking the general framework of He et al. for the identification of Smad2 

interaction proteins one step further requires incorporation of a more authentic pSer 

mimetic at positions 465 and 467 of Smad2. To accomplish this, EPL was utilized to 

install native pSer (32) in these positions (Figure 5.1A). pSer was chosen since it is the 

natural modification of TGFβ-receptor phosphorylated Smad2. However, pSer suffers 

from the drawback that its phosphate group is labile to phosphatases that are likely to be 

active in the lysates used in interaction screens. This can be minimized to some extent by 

the inclusion of phosphatase inhibitors, but this is not ideal since their inclusion does not 

guarantee that potential Smad2 phosphatases would be completely inhibited. 

Furthermore, at the time this work began, the identity of Smad-phosphatases were 

unknown and their identification was the central motivation in the undertaking of this 

project. In principle, the interaction between Smad2 and a potential phosphatase could 

itself be phospho-specific. It follows that if one or both of the phosphates recognized by a 

potential Smad2 phosphatase were removed, then the binding affinity of the 

Smad2/phosphatase complex would weaken, likely to a degree that would not support 

identification in an interaction screen (Figure 5.1B). 

To surmount this obstacle, the non-hydrolyzable pSer analogue 

phosphonomethylenealanine (Pma; 33) was employed for its superior mimicry of pSer in 

comparison to Asp or Glu and its stability to removal by phosphatases (Figure 5.1A). The 

phosphonate group has been used by others to mimic phosphate on a variety of molecules 
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Figure 5.1. Principle of Phosphonylated Smad2 Protein-Protein Interaction Screen. 

A. pSer and Pma differ only in the replacement of the γ-oxygen of pSer with a methylene 

group. B. Phosphono-Smad2-MH2 (63) may interact more strongly with a putative Smad 

phosphatase (as compared to phospho-Smad2-MH2 (62)) since its phosphono groups can 

not be removed by the phosphatase.  

62 63 
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including, but not limited to, metabolites, enzyme inhibitors, and proteins (Berkowitz et 

al., 2000; Lee et al., 2005; Zheng et al., 2003). The key to its utility is that the bridging 

oxygen linking the biological molecule, in this case serine of Smad2, to phosphorous is 

replaced with a methylene (-CH2-) group, yielding a phosphonate. This substitution does 

not dramatically alter the steric and electronic properties of the resulting phosphonate as 

compared to the phosphate and ensures that the phosphonate is not labile to phosphatases 

(Figure 5.1A,B). 

 

5.3. Synthesis of Pma-containing peptides 

 Cole and co-workers have reported the incorporation of Pma into synthetic 

peptides prepared by Fmoc-based SPPS without protection of the phosphonate moeity 

(Zheng et al., 2003). Commercially available D,L-Pma was obtained and protected with 

Fmoc using Fmoc-succinimidyl carbonate. The resulting Fmoc-D,L-Pma (hereafter 

Fmoc-Pma) was used in an attempted synthesis of NH2-Cys-Ser-Pma-Met-Pma-OH using 

the benzylic hydroxyl of Wang resin as the anchor to the solid support. No attempt was 

made to separate the enantiomers of Fmoc-Pma since the final peptide product would 

contain 25% of the configurationally correct NH2-Cys-Ser-L-Pma-Met-L-Pma-OH. 

Furthermore, an additional 50% of the peptide product would contain L-Pma in one of 

the two positions. This was judged to be sufficient for initial studies. Unexpectedly, 

Wang resin could only be loaded with Pma to 5% of the expected loading stoichiometry, 

making the synthesis by this strategy impractical. This was likely due to intramolecular 

nucleophilic attack of the unprotected phosphonate on the ester linking the carboxylic 
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acid of the loaded Fmoc-Pma to the benzylic hydroxyl of Wang resin, which releases 

Fmoc-PMA from the solid support. 

 As an alternative, the peptide was re-designed to contain a C-terminal amide in 

place of the wild-type carboxylic acid. This substitution is not ideal since the C-terminal 

carboxylic acid is known to make contacts in some, but not all, Smad2 protein-protein 

interactions (Chacko et al., 2004; Qin et al., 2001; Wu et al., 2001). Nevertheless, this 

route was pursued since its successful completion would result in a viable reagent for the 

interaction screen. Using Rink amide resin, the loading of Fmoc-Pma was improved to 

75%, a typical value for loading of peptidyl resins. This was possible in comparison to 

Wang resin since the linkage between Fmoc-Pma and Rink amide resin is an amide, 

which is stable to nucleophilic attack by the unprotected phosphonate.  

 

5.4. Semi-synthesis and in vitro characterization of Smad2-MH2 interaction baits 

containing pSer and Pma 

 Flag-Smad2-MH2 (241-462; hereafter Flag-Smad2-MH2) was expressed as a 

fusion to GyrA-CBD (60 = Flag-Smad2-MH2-GyrA-CBD), purified, and processed as 

described for Smad2-MH2-GyrA-CBD (see section 2.4 and methods) to generate Flag-

Smad2-MH2-COSR (61). The synthetic peptides NH2-Cys-Ser-pSer-Met-pSer-OH (68) 

and NH2-Cys-Ser-Pma-Met-Pma-CONH2 (71) were each ligated to Flag-Smad2-MH2-

COSR (61) to form the corresponding semi-synthetic proteins, hereafter referred to as 

Flag-Smad2-MH2-2P (62) for the doubly phosphorylated protein and Flag-Smad2-MH2-

2Pma (63) for the doubly phosphonylated protein (Figure 5.2A).  

             132



26,851±5 Da 
26,854±4 Da 

26,907±3 Da 
(+Fe3+) 

Flag-Smad2MH2-2Pma (63) 
Expected MW = 26,848 Da 

 

Flag-Smad2MH2-2P (62) 
Expected MW = 26,852 Da 

26,958±3 Da 
(+2Fe3+) 

  

0.0

42.0x10

44.0x10

46.0x10

48.0x10

12.0 14.0 16.0 18.0

M
o
la

r 
M

a
s
s
 (

g
/m

o
l)

Volume (mL)

Molar Mass vs. Volume PMB090105a_01_P_N_Debye_...

 

 
Peak 
1 

 

___  = 
Refractive Index 

Elution Volume (mL) 

Plot of Spectrum from peak of peak

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
m/z, amu

7.0e4

1.4e5

2.1e5

2.8e5

3.5e5

4.2e5

4.9e5

5.6e5

In
te

n
s
it

y
, 

c
p
s

Plot of BioSpec Reconstruct for Spectrum from peak of peak

21600 22400 23200 24000 24800 25600 26400 27200 28000 28800 29600
Mass, amu

4.0e4

8.0e4

1.2e5

1.6e5

2.0e5

2.4e5

2.8e5

3.2e5

In
te

n
s
it

y
, 

c
p
s

Molecular Weight 
(kDa) 

20.8       24.8                           29.6 

Plot of Spectrum from 30-30.9 AGAIN

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
m/z, amu

8.0e4

1.6e5

2.4e5

3.2e5

4.0e5

4.8e5

5.6e5

6.4e5

In
te

n
s
it

y
, 

c
p
s

Plot of BioSpec Reconstruct for Spectrum from 30-30.9 AGAIN

24000 24600 25200 25800 26400 27000 27600 28200 28800 29400
Mass, amu

2.0e4

4.0e4

6.0e4

8.0e4

1.0e5

1.2e5

1.4e5

1.6e5

In
te

n
s
it

y
, 

c
p
s

23.6                        26.5                         
29.4 Molecular Weight 

(kDa) 

Refractive 

M
o

la
r 

M
a

s
s
 (

g
/m

o
l )

 

A 

 

 

 

 

 

 

 

B 
 

 
 
 

 

Figure 5.2. in vitro characterization of Flag-Smad2MH2 baits. A. Flag-Smad2MH2-

2P (62) and Flag-Smad2-2Pma (63) were prepared by EPL and verified by ESI-MS. The 

peaks at 26,907 Da and 26,958 Da in the Flag-Smad2-MH2-2P (62) spectrum represent 

adducts with one and two Fe3+ ions, respectively. B. Flag-Smad2-2Pma (63) was 

analyzed by SEC-MALLS. Peak 1 contained Flag-Smad2-2Pma (63). The expected 

molar mass of a Flag-Smad2-2Pma (63) homo-trimer is 80,544 Da. A molar mass of 

72,610 ± 87 Da  was observed. The smaller peak at ~15.3 mL is not proteinaceous. 
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  These two proteins were analyzed by ESI-MS, which verified that they were 

assembled as expected (Figure 5.2A). SEC analysis of Flag-Smad2-MH2-2P (62) 

confirmed that it formed homo-trimers as previously described for Smad2-MH2-2P (41). 

Surprisingly, SEC analysis of Flag-Smad2-MH2-2Pma (63) suggested that this protein 

formed homo-trimers as well, despite the presence of racemic Pma and a C-terminal 

amide.  

Due to the unexpected nature of this result, Flag-Smad2-MH2-2Pma (63) was 

analyzed by SEC-MALLS to determine the solution molecular weight of the protein 

complex. This analysis confirmed that Flag-Smad2-MH2-2Pma (63) formed higher order 

homo-oligomers. However, the average molar mass of these oligomers was 72,610 ± 87 

Da, while the expected molar mass of a Flag-Smad2-MH2-2Pma (63) homo-trimer is 

80,544 Da (Figure 5.2B). Note, previous SEC-MALLS studies indicated that Smad2-

MH2-2P (41) containing exclusively L-pSer at positions 465 and 467 and a C-terminal 

acid exhibits the expected solution molar mass for a homo-trimer (see section 2.5). The 

solution molar mass determined for Flag-Smad2-MH2-2PMA (63) may indicate that the 

protein exists in a dynamic equilibrium that exchanges quickly between monomeric, 

homo-dimeric, and homo-trimeric forms as compared to the timescale of SEC analysis, 

which is approximately 30 minutes. This feature may be advantageous for discovering 

phospho-specific Smad2 interacting proteins since many of these proteins may bind to a 

transiently formed Smad2-2P monomer or homo-dimer.  
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5.5. Interaction screen using Flag-Smad2-MH2 baits containing pSer and PMA 

identifies PRMT5 as a potential Smad2 interacting protein1 

 HeLa nuclear lysates were mixed with Flag-Smad2-MH2-2P (62) or Flag-

Smad2-MH2-2Pma (63) in the presence of an excess of Smad2-MH2-0P (64). The non-

phosphorylated non-epitope-tagged Smad2-MH2-0P (64) was added as a competitor in an 

attempt to enrich proteins that selectively bind the phosphorylated protein. Proteins 

bound to Flag-Smad2-MH2-2P (62) or Flag-Smad2-MH2-2Pma (63) were then isolated 

by co-immunoprecipitation and were separated by SDS-PAGE (Figure 5.3A). Several 

protein bands were differentially present in alternate lanes. Each lane of the gel was cut 

into pieces and the proteins in each piece were extracted, trypsinized and analyzed by 

MALDI-Qq-TOF mass spectrometry (Figure 5.3A). This analysis revealed a protein that 

appeared in the immunoprecipitates only when Flag-Smad2-MH2-2Pma (63) was used as 

bait. This protein, Protein Arginine Methyltransferase 5 (PRMT5) is a member of the 

PRMT family which contains at least 7 other mammalian members (Figure 5.3B) 

(Bedford and Richard, 2005). These proteins transfer methyl groups from S-

adenosylmethionine to specific arginine residues in proteins (Figure 5.3C).  

PRMT5 is a type II transferase, which indicates that it is able to generate 

symmetrical ω−NG,N’G-dimethyl arginine (sDMA) in proteins (Figure 5.3C) 

(Branscombe et al., 2001; Rho et al., 2001). As an obligate intermediate along the 

pathway from arginine to sDMA is monomethyl arginine, PRMT5 is also capable of 

forming this modified amino acid in proteins. Numerous substrates of PRMT5 have been 

                                                
1 The mass spectrometry analysis was performed in collaboration with Matthew Sekedat 

in the laboratory of Professor Brian Chait. 
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Figure 5.3. Identification of PRMT5 as a potential Smad2 interacting protein. A. 

Flag-Smad2MH2-2P (62) and Flag-Smad2-2Pma (63) were incubated with HeLa nuclear 

extract in the presence of competitor untagged non-phosphorylated Smad2MH2-0P. 

Immunoprecipitation and subsequent MS-based identification revealed PRMT5 in lane 3. 

The region of the gel from which PRMT5 was isolated is highlighted by the dashed 

rectangle. B. Diagram of PRMT5 tryptic peptides (represented by black bars at their 

position in the sequence) identified in the mass spectrometry analysis. The overall 

sequence coverage of this 637 amino acid protein was 23%. C. PRMT5 catalyzes the 

formation of MMA and sDMA at Arg residues in proteins. 
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discovered and, in some cases, their methylation has been linked to a physiological 

function (Bedford and Richard, 2005).  PRMT5-mediated methylation of arginines in the 

Sm ribonucleoproteins is required for their proper integration into snRNPs, components 

of the pre-mRNA splicing machinery (Friesen et al., 2001; Meister et al., 2001). 

Methylation of specific arginines in the N-terminal tails of histones H3 and H4 by 

PRMT5 has been shown to regulate gene expression (Ancelin et al., 2006; Pal et al., 

2004; Pal et al., 2003). PRMT5 also methylates FCPI, a phosphatase that 

dephosphorylates the CTD of RNA polymerase II and is required for proper transcription 

elongation and RNA polymerase II recycling (Amente et al., 2005).   

From these and other studies, it is clear that PRMT5 has a multitude of cellular 

functions. This makes elucidation of the significance of the Smad2/PRMT5 interaction of 

particular interest as it may represent a point of integration for Smad2 with any of these 

other processes.  

 

5.6. Validation of the Smad2/PRMT5 interaction 

 Proteins identified in a MS-based protein-protein interaction screen may be false 

positives. To validate PRMT5 as an authentic Smad2 interacting protein, we turned to co-

immunoprecipitation followed by western blotting. Since PRMT5 was initially identified 

in the MS experiments when FLAG-Smad2-MH2-2Pma (63) was used as bait, it was 

expected that PRMT5 would preferentially bind phosphorylated Smad2 variants over 

non-phosphorylated variants. To test this, co-immunoprecipitation and immunoblotting 

experiments were performed using Flag-tagged Smad2 variants and HeLa nuclear lysates 

(Figure 5.4A). This analysis showed that Flag-Smad2 variants co-precipitated with 
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Figure 5.4. PRMT5 interacts preferentially with non-phosphorylated, full-length 

Smad2. Flag-Smad2MH2 variants (panels A and B) and non-phosphorylated full-length 

Flag-Smad2 (B) were incubated with HeLa nuclear extract and the resulting complexes 

were immunoprecipitated with anti-FlagM2 agarose followed by immunoblotting as 

indicated. The full-length Flag-Smad2 immunoprecipitates were analyzed again at higher 

loading to show that full-length Flag-Smad2-0P was present. No significant modulation 

of the interaction was detected when excess SaraSBD was included. Protein IDs: Flag-

Smad2-MH2-0P = 60, Flag-Smad2-MH2-2P = 62, Flag-Smad2-MH2-2Pma = 63, Full-

length Flag-Smad2-0P = 57. 
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endogenous PRMT5, but that the interaction was strongest with Flag-Smad2-MH2-0P 

(61), weakest with Flag-Smad2-MH2-2P (62), and of intermediate strength with Flag-

Smad2-MH2-2Pma (63). In the mass spectrometry screen discussed in section 5.5, 

PRMT5 was found to co-precipitate with Flag-Smad2-MH2-2Pma (63) in the presence of 

a ten-fold excess of non-tagged Smad2-MH2-0P (64) competitor protein. Perhaps the 

levels of endogenous PRMT5 in the HeLa nuclear lysates used in the screen were high 

enough to saturate the excess binding sites of Smad2-MH2-0P (64), leaving the 

remainder available for binding to Flag-Smad2MH2-2Pma (63). 

 Analogous experiments demonstrated that full length Flag-Smad2 (57) interacted 

considerably stronger with PRMT5 than did Flag-Smad2-MH2 (62; Figure 5.4B). This 

interesting observation has many potential explanations. It is possible that the binding site 

for PRMT5 on Smad2 is bidentate and that one part is found in the MH2 domain while 

the other is found in the linker region or the MH1 domain. Alternatively, the structure of 

the MH2 domain may be modulated in the presence of the remainder of the protein such 

that the binding site for PRMT5 in the MH2 domain is more accessible. This is quite 

possible as it is known that the MH1 and MH2 domains of Smad2 can interact with each 

other directly (Hata et al., 1997). 

 To determine if the MH1 domain of Smad2 is able to interact with PRMT5, His6-

SUMO-Smad2-MH1 (65; containing residues 1–185 of Smad2) was mixed with HeLa 

cell nuclear extracts containing endogenous PRMT5. The four extracts used in this study 

differ from one another. The parent nuclear extract (NE) was prepared in the same 

manner as the nuclear extract used in the interaction screen (section 5.5 and Methods 

section 7.33). The lysate referred to as NEC was further clarified by high-speed 
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centrifugation at 100,000 x g before being added to His6-SUMO-Smad2-MH1 (65). NETX 

and NED were treated with 1% Triton-X-100 or DNAse I, respectively, before being 

added to His6-SUMO-Smad2-MH1 (65). Following co-precipitation of His6-SUMO-

Smad2-MH1 (65) and its interacting proteins with Ni2+-NTA beads, western blotting was 

carried out to determine if PRMT5 interacted with the MH1 domain of Smad2 (Figure 

5.5A). PRMT5 from NE and NEC co-precipitated with the MH1 domain with equal 

efficiency. However, co-precipitation of the MH1 domain with endogenous PRMT5 was 

diminished when NETX or NED were used as the source of PRMT5. This decreased 

efficiency of interaction in the presence of Triton-X-100 indicates that the interaction is 

sensitive to non-ionic detergents, which is a common finding for protein-protein 

interactions. More interesting is the slightly decreased efficiency of interaction with 

PRMT5 from NED. It is possible that an interaction between Smad2 and PRMT5 occurs 

only in the presence of DNA or that DNA serves as a scaffold to increase the efficiency 

of interaction either directly or indirectly. The potential significance of this finding will 

be discussed in chapter 6.  

 All of the above interaction studies used recombinant or semi-synthetic Smad2 

variants as bait to test for Smad2 interaction with endogenous PRMT5. To perform the 

reverse co-precipitation, Flag-PRMT5 was expressed in HEK293T cells. Immuno-

precipitation of total cell lysates of these cells with anti-FlagM2 agarose revealed that 

endogenous Smad2 co-precipitated with Flag-PRMT5 (Figure 5.5B). As a negative 

control, HEK293T cells were transfected with an irrelevant plasmid. Smad2 was not 

detected when lysates from these cells were subjected to anti-FlagM2 

immunoprecipitation. Several attempts were made to co-immunoprecipitate endogenous 
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Figure 5.5. PRMT5 interacts with the MH1 domain of Smad2 and endogenous 

Smad2 co-immunoprecipitates with Flag-PRMT5 expressed in HEK293T cells. A. 

His6-Sumo-Smad2-MH1 (65) or His6-Sumo (66) control proteins and their interacting 

proteins from HeLa cell nuclear extracts were precipitated with Ni2+-NTA beads and 

analyzed by SDS-PAGE and immunoblotting for PRMT5. The parent nuclear extract 

(NE) was alternately centrifuged at 100,000 x g (NEc), treated with 1% Triton-X-100 

(NETX), or treated with DNAse I (NED). B. HEK293T cells were transfected with a 

plasmid encoding Flag-PRMT5 or an irrelevant plasmid (GFP-IN) as a control. Anti-

FlagM2 immunoprecipitates were analyzed by SDS-PAGE and immunoblotting for 

Smad2. 
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Smad2 and endogenous PRMT5 using antibodies against both proteins. Endogenous 

interaction could not be detected in these experiments. In the future, experiments using 

other cell lines or tissues, alternative antibodies for immunoprecipitation, and alternative 

lysis conditions could be performed to verify this interaction for endogenous proteins. 

 

5.7. Attempts to determine if Smad2 is a direct substrate of PRMT5 

 The most straightforward hypothesis regarding the function of this interaction is 

that Smad2 may be a substrate for PRMT5. To test this, the Flag-Smad2MH2 bands were 

excised from the gels originally used for the MS-identification of PRMT5 and submitted 

for further trypsinization and MS-analysis to determine if any of the resulting peptides 

corresponding to Smad2 had the +14 Da signature of methylation. No methylated 

peptides were found that did not exist in controls. Next, Smad variants were tested in an 

in vitro methylation assay using S-Adenosyl-[methyl-14C] methionine as the methyl donor 

in the presence of immuno-purified Flag-PRMT5. Methylation of Smad2MH2 variants 

was not observed.  

 

5.8. Summary  

 A screen for proteins that preferentially interact with phosphorylated Smad2 was 

carried out using Smad2 variants prepared by expressed protein ligation containing 

phosphoserine as well as the stable phosphate analogue phosphonomethylenealanine. 

This resulted in the identification of PRMT5 as a potential interaction partner for Smad2. 

The observation that PRMT5 appears to bind non-phosphorylated Smad2 more efficiently 

than phosphorylated Smad2 is unexpected since the screen was designed for the 
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discovery of phospho-specific binding proteins. It is noted that co-immunoprecipitation 

studies are subject to false positive results. Therefore, more work is required to further 

validate that the interaction between Smad2 and PRMT5 is authentic and physiologically 

significant. The fact that the interaction as studied so far has been shown to be negatively 

modulated by Smad2 phosphorylation is intriguing and suggests that the interaction may 

play a role in TGFβ signaling. The possible implications of these results and experiments 

to be done in the future will be discussed in chapter 6. 
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Chapter 6: Discussion 

6.1. Development of protein caging strategies 

 To measure molecular processes that occur rapidly, investigators require tools that 

allow equally rapid perturbation of the molecules under study. Since the introduction of 

caged ATP in 1978 (Kaplan et al., 1978), numerous studies have used caging strategies to 

quickly activate a molecule of interest, both in vitro and in live systems (Mayer and 

Heckel, 2006). Due to difficulty in their preparation, reports on caged proteins have 

lagged behind that of caged small molecules. In the last decade, protein engineering 

techniques have become increasingly sophisticated and have enabled the preparation of 

increasingly complex proteins bearing several unnatural functionalities. Among these are 

caged proteins, which have yielded insight into several biological systems (Lawrence, 

2005). In this thesis, two protein caging strategies have been described and both were 

applied to the transcription factor and signal transduction protein Smad2.  

 In the first strategy, we took advantage of the fact that Smad2 is activated by 

phosphorylation of serines 465 and  467 (Macias-Silva et al., 1996; Massague et al., 

2005). The phosphoserine residues of one activated Smad2 molecule make important 

contacts to residues in an adjacent Smad subunit in the context of homo- and hetero-

oligomeric Smad complexes (Chacko et al., 2004; Wu et al., 2001). Therefore, if these 

phosphate residues are blocked by covalently attached bulky groups, we expected that the 

protein would behave as if it was not phosphorylated and hence, it would be inactive. To 

examine this, we installed o-nitrobenzyl caging groups onto phosphoserines 465 and 467 

of Smad2-MH2 using the protein semi-synthesis technique expressed protein ligation 

(EPL) (Muir, 2003). In the absence of UV light, the resulting caged phosphoprotein (40) 
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behaved as if it was not phosphorylated (Figures 2.9-2.11). Upon irradiation with UV 

light, the caging groups were removed and the protein had the properties expected of the 

active, doubly-phosphorylated Smad2-MH2 domain (Figures 2.9-2.11). This study was 

the first published report of a protein caged on a phosphoaminoacid (Hahn and Muir, 

2004). 

 In the second strategy we attached a bulky caging group to the C-terminus of 

Smad2-MH2. While the C-terminus of Smad2 is not subject to reversible 

posttranslational modification like serines 465 and 467, it is nevertheless important for 

Smad2 activation as it also makes contacts with residues in adjacent subunits in the 

context of Smad homo- and hetero-oligomers (Figure 3.2) (Chacko et al., 2004; Wu et al., 

2001). Therefore, the presence of the caging group on the C-terminus led to inactivation 

of Smad2 until it was removed by UV light (Figure 3.6). At this point, the uncaged 

protein is identical to and exhibited the properties of the active, doubly-phosphorylated 

protein (Figure 3.6). After demonstrating that this caging method was viable, we 

interfaced it with a fluorescence activation strategy to enable the simultaneous activation 

and fluorescence monitoring of the protein. This involved installation of the fluorophore 

carboxyfluorescein at position 466 of Smad2-MH2 and installation of the quencher 

dabcyl distal to the caging group to quench the fluorescence of carboxyfluorescein while 

the caging group was intact (47, Figure 3.3). Upon irradiation with UV light, the caging 

group and quencher were removed from the protein, leading to both protein activation 

and restoration of robust carboxyfluorescein fluorescence (Figures 3.6 and 3.7).  

 Both of these caging strategies were validated in vitro and in cellular contexts. For 

imaging of Smad2 in live cells, we elected to pursue the C-terminal caging strategy to 
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selectively monitor only the active Smad2 variants. This is the chief advantage of this 

strategy over that of caged phosphates. However, for certain applications it may be 

beneficial to use the caged phosphate strategy. For example, in experiments requiring 

prolonged incubation of a caged protein in a living system, such as the experiments 

involving Xenopus embryos (Figure 3.9), caged phosphates may perform better than the 

C-terminal caging strategy owing to their greater stability to cellular phosphatases. In the 

C-terminal strategy, the activating phosphates are unprotected and, therefore, are subject 

to dephosphorylation by phosphatases. In comparison, caged phosphates are unnatural 

phosphodiesters and, as such, are not substrates for endogenous protein phosphatases that 

catalyze hydrolysis of phosphate from phosphomonoesters in proteins.        

 

6.2. Comparison of caging strategies to protein visualization using GFP and its 

variants 

Fluorescence imaging is the method of choice when observing the subcellular 

localization of a protein in live cells. For this purpose, the investigator has many options 

when choosing a fluorophore. The most commonly used fluorophores are GFP and its 

variants (Shaner et al., 2005). The primary advantage of these fluorophores is that they 

are genetically encodable and, therefore, do not require any chemical synthesis or in vitro 

protein labeling before use. However, these fluorophores are large proteins that may 

impact the behavior of the protein to which they are fused. An important recent advance 

in the fluorescent protein field is the development of photoactivatable GFP (paGFP) and 

other photoactivatable fluorescent proteins (Ando et al., 2004; Patterson and Lippincott-

Schwartz, 2002). These fluorophores allow the investigator to rapidly turn on 
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fluorescence of the probe by irradiation with light of the appropriate wavelength, 

providing a defined starting timepoint for kinetic investigations. However, the activity of 

the protein to which paGFP is fused is uncoupled from the fluorescence activation event.  

In order to enable coincidence of fluorescence activation and protein activation, 

we designed the C-terminal caging and quenching strategy described in chapters 3 and 4 

(Figures 3.3 and 4.2). Upon photolysis of one bond, caged and quenched Smad2 was 

activated and became fluorescent (Figures 3.6, 3.7, and 4.5). This allowed us to monitor 

the kinetics of nuclear accumulation of phosphorylated Smad2 in live cells (Figure 4.7). 

Quantitation of the imaging data revealed a sigmoidal nuclear import kinetic curve 

(Figure 4.7B). This indicated that nuclear accumulation of the uncaged Smad2 molecule 

occurred with at least two kinetically significant steps that are coupled to each other. 

While the exact molecular events that give rise to this kinetic behavior are not clear, the 

observation of discrete kinetic steps in live cells is a noteworthy achievement. In the 

future, it might be possible to define the molecular processes that give rise to these 

individual kinetic components by observing Smad2 nuclear import in cells that have been 

genetically or pharmacologically depleted of known proteins that act in the Smad 

pathway. Another key advantage to our protein visualization system is that it allowed for 

the monitoring of two versions of Smad2 in the same cell at the same time (Figure 4.10). 

This multiparameter imaging allows for the comparison of the behavior of one protein 

with another in live cells because cell-to-cell variability is eliminated (Schultz et al., 

2005). 

Our semi-synthetic construction of caged proteins and their use in live systems 

does have drawbacks. They require significant efforts in chemical synthesis and, 
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therefore, are not as accessible as genetically-encodable fluorophores. However, 

expressed protein ligation methodology has been adopted by many laboratories and has 

proven to be a robust method for the construction of semi-synthetic proteins (Muir, 

2003). Therefore, we feel that laboratories with experience in protein chemistry would 

benefit from the application of the caging strategies discussed in this thesis to their 

proteins of interest.  

Another drawback to our caging strategies is that the caged protein must be 

prepared in vitro followed by delivery to the system under study. In the experiments 

described herein, microinjection was used to deliver caged proteins to live cells and 

Xenopus embryos (Figures 3.8, 3.9, 4.6, 4.7, and 4.10). Microinjection is not an ideal 

delivery system for all applications, but is useful in many instances such as those 

described here. In the future, it may be possible to carry out caged protein semi-synthesis 

inside live cells using previously described approaches (Giriat and Muir, 2003; Lue et al., 

2004; Yeo et al., 2003). This would improve the applicability of caged proteins in living 

systems by obviating the need to deliver the protein after in vitro semi-synthesis since the 

reaction would be carried out directly in the cells under investigation.  

  

6.3. Future improvements to the caging strategies 

 Both caging strategies could undoubtedly benefit from future improvements. For 

example, other caging groups could be used in place of o-nitrobenzyl derivatives that are 

better suited for use in live systems. The coumarin-based caging group DECM (35, 

Figure 2.1) is photolyzed with visible light, which is less toxic to cells than the UV light 

required for o-nitrobenzyl photolysis (Shembekar et al., 2005). Also, many confocal 
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microscopes are now equipped with laser lines in the vicinity of 405 nm; a wavelength 

that will uncage DECM groups. Therefore, the use of DECM would broaden the 

applicability of caged proteins since most investigators have access to microscopes with 

the appropriate lasers for uncaging. Use of the caging groups Bhc and Bhq (36 and 37, 

Figure 2.1) that can be photolyzed with two-photon techniques would allow caged 

proteins to be activated in relatively thick tissue (Furuta et al., 2004; Furuta et al., 1999; 

Goard et al., 2005; Zhu et al., 2006). Also, the use of these caging groups would allow for 

better control over spatial activation of a caged protein since two-photon activation can 

be confined to a specific z-plane.  

 Carboxyfluorescein and tetramethylrhodamine are not the best fluorophores for 

imaging in living systems. Fluorescein derivatives photobleach more readily than other 

flourophores. Tetramethylrhodamine tends to destablize the proteins to which it is fused. 

Their use herein was motivated primarily by the fact that these are well-known 

fluorophores that interface well with solid phase peptide synthesis. Moreover, several 

variables and unknowns were being evaluated simultaneously during the development of 

the caging and quenching strategy (section 3.3) so we wanted to minimize additional 

unknowns resulting from the use of less well characterized fluorophores. Now that the 

caging and quenching strategy has been validated, it could be further optimized.  

Substitution of these fluorophores with brighter, more water-soluble alternatives would 

improve the applicability of the caged proteins. Coupled to the use of alternative 

fluorophores is the use of alternative quenchers. Tetramethylrhodamine was not 

quenched as efficiently by dabcyl as was carboxyfluorescein in proteins 58 and 55, 

respectively (Figures 4.5D and 4.9B). A systematic screen using various fluorophores and 
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quenchers could be employed to identify optimal fluorophore/quencher pairs. Examples 

of alternative commercially available quenchers that could be tested include Atto 

quenchers (Atto-tec), Iowa Black (IDT), QXL (Anaspec), DDQ (Eurogentec), QSY 

(Invitrogen), and BHQ (Biosearch) (Marras, 2006). Perhaps the identification of optimal 

fluorophores/quencher pairs would result in more stable, more efficiently quenched caged 

analogues of full-length phosphorylated and non-phosphorylated Smad2. These could be 

used to more accurately compare the kinetics of nuclear import of these two forms of the 

protein in live cells following the general framework described in sections 4.5 and 4.6.  

 

6.4. Construction of Smad2-MH2 containing phosphonates led to the identification 

of PRMT5 as a potential interacting partner of Smad2 

 We used EPL to prepare semi-synthetic Flag-Smad2-MH2 containing 

phosphonomethylenealanine (Pma) at positions 465 and 467 (Figure 5.1). This protein 

was used as a bait in a protein-protein interaction screen to identify binding partners of 

Smad2. The protein PRMT5 was discovered in this screen and may be a relevant 

interaction partner of Smad2. Preliminary experiments indicated that PRMT5 binds 

preferentially to non-phosphorylated Smad2 (Figures 5.4). In addition, there seems to be 

two binding sites for PRMT5 in Smad2: one in the MH1 domain and the other in the 

MH2 domain (Figures 5.4 and 5.5). However, attempts to detect interaction of 

endogenous PRMT5 and Smad2 have not been successful to date. Therefore, future 

studies should examine the endogenous PRMT5/Smad2 interaction in cells by further co-

immunoprecipitation experiments. We note that it is possible that a true, biologically-

relevant protein-protein interaction may be of low affinity or may be transient and may 

             150



therefore not be possible to detect with co-immunoprecipitation techniques. Such 

interactions require alternative methods for their detection. In this regard, our laboratory 

has recently succeeded in installing cross-linking groups into Smad2 that could 

potentially stabilize transient interactions of Smad2 with other proteins (Vila-Perello et 

al., 2007). This and other cross-linking reagents may be useful in validating the 

Samd2/PRMT5 interaction with endogenous proteins. If this interaction is indeed 

validated for endogenous proteins, it will be of interest to determine whether these 

proteins interact directly or  indirectly. In vitro interaction assays using purified 

preparations of each protein would help to determine if these proteins interact directly or 

indirectly through the intermediacy of one or more other molecules, perhaps DNA 

(Figure 5.5A). 

 Protein arginine methylation has recently gained recognition as a regulatory 

posttranslational modification in signal transduction processes (Bedford and Richard, 

2005).  It remains possible that Smad2 is a substrate of PRMT5. Now that a robust 

bacterial expression system has been developed for full length Smad2 (see section 4.3 

and 4.4), in vitro methylation assays using radioactive methyl donors should be 

performed using full length Smad2 with and without C-terminal phosphorylation. In 

addition, optimized mass spectrometry-based methods have been developed for 

identification of methylated arginine in proteins (Ong et al., 2004; Rappsilber et al., 

2003). These methods could be adapted to Smad2 and other Smad proteins to search for 

arginine methylation in these proteins. 
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6.5. Potential experiments to define the physiological relevance of the Smad2/Prmt5 

interaction 

 In addition to the biochemical assays discussed in the previous section, a focused 

attempt should be made to determine if Smad2 and PRMT5 influence each other’s 

function in vivo. As a starting point, PRMT5 could be overexpressed or knocked-down 

followed by luciferase assays for TGFβ responsiveness or real-time PCR assays of 

endogenous Smad-responsive genes to determine if their expression is altered. PRMT5 

may be directed by Smads to alter histone modifications at the promoters of Smad-

responsive genes, as has been shown for other promoters, including cyclin E1, ST7, 

NM23, and Myogenin (Dacwag et al., 2007; Fabbrizio et al., 2002; Pal et al., 2004). 

Chromatin immunoprecipitation with PRMT5 antibodies or antibodies directed to 

methylated histone H3R8 or H4R3 epitopes (known methylation targets of PRMT5) 

followed by quantitative PCR of selected Smad-responsive genes should be considered in 

experimental evaluation of this possibility (Ancelin et al., 2006; Pal et al., 2004).   

 Detailed studies of Smad2 localization have demonstrated that a small population 

of Smad2 exists in the nucleus even in the absence of phosphorylation (Inman et al., 

2002; Massague et al., 2005; Nicolas et al., 2004; Reguly and Wrana, 2003; Schmierer 

and Hill, 2005; Xu et al., 2002; Xu and Massague, 2004). It appears that C-terminal 

Smad2 phosphorylation does not trigger Smad2 nuclear import per se, rather it influences 

the proportion of Smad2 in the nucleus by altering the affinity of Smad2 for nuclear and 

cytoplasmic retention factors (Massague et al., 2005; Xu and Massague, 2004). What, if 

anything, might be the role of non-phosphorylated Smad2 in the nucleus? One function of 

nuclear non-phosphorylated Smad2 might be to interact with and direct PRMT5 to certain 
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Smad-responsive promoters. Once there, PRMT5 may methylate histones H3 and H4 on 

arginines 8 and 3, respectively. These modifications are typically linked to transcriptional 

repression (Fabbrizio et al., 2002; Pal et al., 2004), but recent studies have shown that 

they may also lead to promoter activation (Dacwag et al., 2007). Is it possible that non-

phosphorylated Smad2 binds to and leads to repression of some of the same genes that 

phosphorylated Smad2 activates? In this regard, it may be insightful to analyze global 

gene expression in wild type cells and in cells lacking Smad2 to differentially identify 

candidate genes whose expression are derepressed upon loss of Smad2. Alternatively, the 

set of genes, if any, that are regulated by non-phosphorylated Smad2/PRMT5 may be 

different than those regulated by phosphorylated Smad2. Regardless of which genes may 

be regulated by Smad2/PRMT5, it is noteworthy that most gene expression regulation by 

PRMT5 acts through histone remodeling mechanisms involving the SWI/SNF 

remodeling complex (Dacwag et al., 2007; Pal et al., 2004; Pal et al., 2003). Furthermore, 

Brg1, an ATPase subunit of the SWI/SNF complex, has been identified as a Smad 

binding partner and plays a crucial role in the expression of certain known Smad2 genes 

(He et al., 2006; Ross et al., 2006). The histone acetyltransferase p300 is recruited by 

active Smad2 to histone H3 at some Smad target genes where is acetylates lysine 9 of H3, 

which correlates with active transcription at these genes (Ross et al., 2006). Since 

PRMT5 is known to methylate the adjacent arginine 8, one can speculate that lysine 9 

acetylation and arginine 8 methylation of histone H3 may be synergistic or antagonistic 

modifications in the activation of Smad-responsive promoters. Further experimentation 

will determine if this is the case or if it is simply a molecular coincidence.        
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 Very recent studies have implicated various phosphatases in the 

dephosphorylation of R-Smads (Chen et al., 2006; Duan et al., 2006; Knockaert et al., 

2006; Lin et al., 2006). One family of these phosphatases, SCP1-3, which 

dephosphorylates the linker region of Smad1, 2, and 3 and the C-terminal phosphates of 

Smad1 (Knockaert et al., 2006; Sicheri et al.), is related to FCP1, which was previously 

identified as a substrate for PRMT5 (Amente et al., 2005). Given this, it is possible that 

FCP1, SCP, or other family members may function in a SCP/PRMT5/R-Smad signaling 

axis. 

 

6.6. A putative side reaction discovered in the synthesis of phosphonate-containing 

peptides suggests a new design for peptide-based fluorescent kinase probes 

 During the development of our protein-protein interaction screen using 

phosphonylated Flag-Smad2-MH2 as bait, we attempted to prepare a peptide acid with 

Pma at the C-terminus by loading Wang resin with Fmoc-Pma that was not protected on 

the phosphonate (see section 5.3). The yield of this loading reaction was extremely low 

(<5%). One possible explanation is that the unprotected phosphonate attacked the ester 

bond linking Pma to the Wang linker, leading to cleavage of the ester bond and removal 

of Fmoc-Pma from the resin as an asymmetric phosphoanhydride (Figure 6.1A). To test 

this explicitly, a peptide could be synthesized on Wang resin containing protected 

phosphoserine as the C-terminal amino acid such that it would be attached to the Wang 

linker by an ester bond. If the proposed mechanism is correct, and assuming that the 

phosphate of phosphoserine has similar nucleophilicity as the phosphonate of Pma, then 

orthogonal deprotection of the phosphate should lead to auto-cleavage of the peptide 
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Figure 6.1. A putative side reaction suggests a new design for a fluorogenic

serine/threonine kinase probe. A. Following loading of Fmoc-Pma onto Wang

resin, the unprotected phosphonate attacks the ester linking Fmoc-Pma to the resin,

resulting in the release of Fmoc-Pma from the resin as an asymmetric

phosphoanhydride, which is subject to hydrolysis to regenerate Fmoc-Pma. B.

Proposed design of a peptide-based fluorogenic kinase probe. The probe contains a

fluorophore and a quencher such that it is non-fluorescent. It also contains a serine

(or threonine) in the context of the recognition sequence of a kinase of interest. The

serine is linked to the amino acid immediately C-terminal to it by an ester bond.

Upon phosphorylation, the ester bond is cleaved by intramolecular attack by the

incipient phosphate group, by analogy to the reaction described in panel A. This

results in peptide cleavage and release of quenching, restoring the fluorescence of the

fluorophore, which can then be monitored.

             155



from the resin. This could be monitored readily by installing a fluorophore N-terminal to 

the phosphoserine and monitoring the increase of fluorescence in the supernatant of a 

resin suspension following deprotection of the phosphate.  

 If this reaction does indeed occur, it suggests a design for a fluorogenic 

serine/threonine kinase probe. In section 1.2.6 of this thesis, fluorescent kinase probes 

were discussed (Figure 1.8). Throughout the development of these probes, investigators 

have attempted to achieve two goals in probe design. First, a large increase in 

fluorescence upon probe phosphorylation by the kinase being monitored is essential. 

Second, a probe that does not require any third-party molecules such as protein binding 

partners or metal ions is favored over one that does require third-party participation for in 

vivo applications. However, the most robust increases in fluorescence have come from 

probes that do require third-party participation (see discussion in section 1.2.6). To 

address this issue, a probe of the general design as shown in Figure 6.1B could be 

synthesized. Like the previously described probes, this hypothetical probe contains a 

kinase recognition sequence and is phosphorylated by a serine/threonine kinase of 

interest. Upon phosphorylation, the phosphate would attack the ester bond present 

between the phosphorylated amino acid and the amino acid immediately C-terminal to it. 

Before phosphorylation, the fluorescence of the fluorophore is quenched by the presence 

of an intramolecular quencher in much the same way as in a molecular beacon and in the 

caged proteins described in this thesis (Figures 3.3 and 4.2). Upon phosphorylation and 

cleavage of the ester bond, the fluorophore and quencher would no longer reside in the 

same molecule so a robust increase in fluorescence would occur. If successful, this class 

of fluorogenic kinase probes would be immensely useful because a large increase in 
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fluorescence could be achieved upon phosphorylation by the kinase being monitored 

without requiring any additional molecular interactions.     

 

6.7. Conclusions 

 The protein semi-synthesis approach expressed protein ligation has been used to 

prepare several analogues of the transcription factor and signaling molecule Smad2. 

These include caged versions of the protein that have been validated both in vitro and in 

vivo. One caging strategy involves direct attachment of caging groups to the 

phosphoserine residues at positions 465 and 467 of Smad2. This technique is 

generalizable to the preparation of other caged phosphoproteins (Vogel and Imperiali, 

2007). The other caging approach was linked to a conditional fluorescence activation 

strategy such that only the active, uncaged protein was fluorescent. This strategy is 

particularly useful for monitoring the localization of proteins upon uncaging. 

 An analogue of Smad2 was created that contains the stable phosphoserine mimic 

phosphonomethylenealanine at positions 465 and 467 of Smad2. Use of this protein as 

bait in a protein-protein interaction screen led to the identification of PRMT5 as a 

potential Smad2 interaction partner. Preliminary experiments indicated that PRMT5 

preferentially interacts with non-phosphorylated Smad2 over phosphorylated Smad2 and 

that there may be two binding sites for PRMT5 on Smad2. These preliminary findings 

require further experimentation for validation. Future experiments have been suggested 

for this purpose as well as to uncover the possible physiological role of the 

Smad2/PRMT5 interaction.  
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 Protein semi-synthesis is a powerful method for the construction of proteins 

containing multiple unnatural groups, as demonstrated herein. In the past decade, many 

investigators have begun to succeed in applying semi-synthetic proteins to biological 

problems. Future efforts in this field will undoubtedly yield new insight into biological 

systems.  
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Chapter 7: Materials and Methods 

 

7.1. Chemicals 

All Fmoc amino acid derivatives, resins, 4-[4-(1-hydroxyethyl)-2-methoxy-5-

nitrophenoxy)-butanoic acid, and dabcyl-OSu were from Novabiochem unless stated 

otherwise (San Diego, CA). tert-butoxylcarbonyl-1,3-thiazolidine-4-carboxylic acid 

(Boc-Thz) was from Bachem (King of Prussia, PA). Boc-Cys(StBu)-OH was purchased 

from Fluka (Milwaukee, WI). O-(1H-benzotriazole-1-yl)-N,N,N',N'-tetramethyluronium 

hexafluorophosphate (HBTU) was from Qbiogene (Carlsbad, CA). O-(7-

Azabenzotriazole-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU) 

was from Fluka. Piperidine and DIEA were from Applied Biosystems (Foster City, CA). 

O-1-(2-nitrophenyl)ethyl-O'-β-cyanoethyl-N,N-diisopropylphosphoramidite was prepared 

as described (Rothman et al., 2002). 4-[4-(1-hydroxyethyl)-2-methoxy-5-nitrophenoxy)-

butanoic acid was from Novabiochem. Complete protease inhibitor tablets were from 

Roche and were used at the manufacturer’s recommended concentration. Tris(2-

carboxyethyl)phosphine hydrochloride was from Strem (Newburyport, MA). All other 

reagents were from Sigma-Aldrich unless stated otherwise (St. Louis, MO). 

 

7.2. Solvents  

Solvents for HPLC and for general synthetic purposes were from Fisher (Fairlawn, NJ). 

Anhydrous solvents were from Aldrich (Milwaukee, WI) or Acros (Morris Plains, NJ).  
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7.3. Fluorophores 

Fluorescein-5-maleimide, Texas Red-C2-maleimide, and fluorescent dextrans were from 

Molecular Probes (Eugene, OR). 6-carboxyfluorescein-OSu and 5(6)-

tetramethylrhodamine were from Anaspec (San Jose, CA).  

 

7.4. Chromatography 

Analytical gradient reversed-phase HPLC was performed on Hewlett-Packard 1100 series 

instruments and a Vydac C18 column (5 micron, 4.6 x 150 mm). Flow rate was 1 mL/min 

and routine UV detection was at 214 and 280 nm. Semi-preparative (Vydac 15-20 

micron, 10 x 250 mm), preparative (Vydac 10 micron, 22 x 250 mm), and process (15-20 

micron, 50 x 250 mm) RP-HPLC were performed on a Waters DeltaPrep 4000 system 

fitted with a Waters 486 tunable absorbance detector. Flow rate was 5 mL/min (semi-

preparative), 16 mL/min (preparative), or 30 mL/min (process). All runs used linear 

gradients of 0.1% aqueous TFA (solvent A) and 90% aqueous acetonitrile plus 0.1% TFA 

(solvent B). Native protein purification was performed on classic and ÄKTA FPLC 

systems (Amersham Biosciences, Piscataway, NJ). Detailed procedures, columns, and 

gradients used for protein purification are included in the sections below describing each 

protein. Analytical SEC of proteins described in chapter 2 was performed on a Superdex 

200 column (Amersham Biosciences) in aqueous running buffer containing 20 mM 

HEPES, 150 mM NaCl, 0.5 mM EDTA, 2 mM DTT at pH 8.0 at a flow rate of 0.5 

mL/min. Analytical SEC of proteins described in chapter 3 was performed on a Zorbax 

GF-250, column (Agilent, Palo Alto, CA). The flow rate was 0.5 mL/min, and the buffer 

contained 1 mM DTT, 150 mM NaCl, 25 mM Tris (pH 7.2). SEC of proteins described in 
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chapter 4 was performed on a TOSOH SuperSW3000 HPLC column at 25 °C at a flow 

rate of 0.35 mL/min. The running buffer was 20 mM HEPES, 150 mM NaCl, 0.05% 

NaN3, pH 7.3. Detection was at 280 nm or 496 nm, which monitors fluorescein 

absorbance. SEC standards (Sigma) included proteins cytochrome c (12.4 kDa), carbonic 

anhydrase (29 kDa), BSA (66 kDa), alcohol dehydrogenase (150 kDa), and blue dextran 

(2,000 kDa). 

 

7.5. Mass spectrometry 

Mass spectrometric analysis was routinely performed on all synthetic peptides and 

expressed proteins on a Sciex API-100 single quadrupole spectrometer or a Micromass 

ZQ single quadrupole spectrometer. For MS/MS experiments, a Finnigan LCQ ion trap 

instrument was used.  Calculated protein masses were obtained using the PeptideMass 

tool on the Expasy server (http://us.expasy.org).  

 

7.6. General peptide synthesis procedures  

All peptides were synthesized manually using standard Fmoc SPPS on Wang resin for 

peptide acids and Rink amide MBHA resin for peptide carboxamides. Standard chain 

assembly was carried out for ~2 hours with HBTU activation using a 4.4-fold excess of 

amino acid over the resin in DMF with DIEA as base. A stream of dry N2 was used to 

agitate the reaction mixture. Fmoc removal was carried out with 20% piperidine in DMF 

(1 x 3 minutes, followed by 1 x 10 minutes, unless stated otherwise). Washing of 

peptidyl-resins between coupling cycles with DMF was carried out with alternating batch 

and flow washes over a 3 minute period. Cleavage of peptides from the resin was 
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achieved with 92.5% TFA, 2.5% triisopropylsilane (TIS), 2.5% ethanedithiol, and 2.5% 

H2O (cleavage cocktail), unless stated otherwise. Crude peptide products were 

precipitated and washed with cold Et2O and dissolved in solvent A. A minimal amount of 

solvent B was added to aid dissolution of any non-dissolved material and peptides were 

lyophilized. Thz in applicable peptides was deprotected by adding 0.5 M methoxylamine 

(aq) to the peptide and agitating the resulting solution for 6 hours at 37 °C. For peptides 

that did not dissolve in 0.5 M methoxylamine (aq), acetonitrile was added to aid 

dissolution. Acetonitrile did not adversely affect the efficiency of the Thz deprotection 

step.  All peptides were purified by RP-HPLC. In addition to the usual washing steps 

between coupling cycles, an additional wash with 10% DIEA in DMF was used for 

peptides containing Fmoc-Ser(PO(OBzl)OH)-OH to ensure complete removal of 

piperidine from piperidine/phosphate counter-ion adducts.  

 

7.7. Data for peptides prepared using standard methods 

For H-CSSMS-OH (67), the protected amino acid building blocks used were: Boc-

Thz-OH for Cys, Fmoc-Ser(tBu)-OH for Ser, and Fmoc-Met-OH for Met. H-CSSMS-OH 

was purified by process RP-HPLC. Identity of the peptide was confirmed by ESI-MS 

(found m/z 514.0, expected 513.6 M+H+). 

For H-CSpSMpS-OH (68), the protected amino acid building blocks used were: 

Boc-Thz-OH for Cys, Fmoc-Ser(tBu)-OH for Ser, Fmoc-Ser(PO(OBzl)OH)-OH for pSer, 

and Fmoc-Met-OH for Met. H-CSpSMpS-OH was purified by semi-preparative RP-HPLC. 

Identity of the peptide was confirmed by ESI-MS (H-CSpSMpS-OH found m/z 674.0, 

expected 673.5 M+H+). 
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For H-CSpSK(Fl)pS-OH (69), the protected amino acid building blocks used were: 

Boc-Cys(Trt)-OH for Cys, Fmoc-Ser(tBu)-OH for Ser, Fmoc-Ser(PO(OBzl)OH)-OH for 

pSer, and Fmoc-Lys(MTT)-OH for Lys. Following chain assembly, the Mtt group of Lys 

was removed with 1% TFA/5% TIS in DCM for 30 minutes. 6-carboxyfluorescein-OSu, 

dissolved in DMF containing DIEA, was then coupled to the Lys. Identity of the peptide 

was confirmed by ESI-MS (H-CSpSK(Fl)pS-OH found m/z 1029.9, expected 1029.8 

M+H+). 

 

7.8. Synthesis of H-CSpS(NPE)MpS(NPE)-OH (39) 

A synthetic scheme for this peptide can be found in Figure 2.4. Resin loading was carried 

out using the method of Sieber (Sieber, 1987). Unreacted hydroxyl functionalities on the 

resin were capped with benzoyl chloride. Double coupling was routinely used to ensure 

quantitative acylations. The two residues to be phosphorylated and caged were 

incorporated as Fmoc-Ser(Trt)-OH. Met was incorporated as Fmoc-Met-OH. The non-

phosphorylated Ser was incorporated as Fmoc-Ser(tBu)-OH. Cys was incorporated as 

Boc-Thz-OH. Following chain assembly, the resin was treated with 2% TFA, 5% TIS in 

DCM for 30 minutes. After extensive washing with DMF and DCM, the resin (~0.04 

mmoles) was dried overnight under high vacuum. All subsequent manipulations were 

carried out in the dark. Phosphitylation was carried out at room temperature by adding O-

1-(2-nitrophenyl)ethyl-O'-β-cyanoethyl-N,N-diisopropylphosphoramidite (43, 0.6 

mmoles, 7.5 equivalents per each free hydroxyl) and 4,5-dicyanoimidazole (1.2 mmoles) 

in 2 mL of anhydrous DMF to the peptidyl-resin. The reaction mixture was stirred gently 

with a magnetic stir-bar. Care was taken to maintain the reaction mixture in an 
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anhydrous, anaerobic environment by carrying out the reaction under argon. After 20 

hours, the resin was washed with anhydrous DMF followed by anhydrous DCM and 

suspended in 5 mL of anhydrous DCM. 1 mL of a 5.5 M solution of tBuOOH in decane 

was added dropwise to the stirred resin suspension. After 20 minutes, the resin was 

drained and washed well with DCM, DMF, Et2O, DMF, and DCM and placed on high 

vacuum overnight. The dry resin was suspended in 2 mL of cleavage cocktail and stirred 

vigorously for 3.5 hours. The cleavage mixture was added dropwise to 35 mL of cold 

Et2O and the resulting suspension was placed at -20 °C. The peptide was collected by 

centrifugation and the Et2O was decanted. Fresh Et2O was added and the centrifugation 

and decanting steps were repeated. The precipitated peptide was dissolved in 20% solvent 

B and lyophilized. To remove the remaining protecting groups, the peptide was then 

dissolved in DMF containing 1% DBU and stirred at room temperature. After 3 minutes, 

methoxylamine in water was added to a final concentration of 0.5 M and the solution was 

agitated for 6 hours at 37 °C. The crude mixture contained 39 as the major product 

(~75%) as determined by RP-HPLC (Figure 2.5). The peptide was purified by preparative 

RP-HPLC and its identity was confirmed by ESI-MS (found m/z 972.0, expected 972.2 

M+H+) and by MS/MS experiments (Figure 2.6). The isolated yield after synthesis and 

purification was ~10%.  

 

7.9. Synthesis of H-CSpSKpS-pl-K-NH2 (70) 

The peptide was prepared with Fmoc-Lys(Boc)-OH, 4-[4-(1-hydroxyethyl)-2-methoxy-5-

nitrophenoxy)-butanoic acid, Fmoc-Ser(PO(OBzl)OH)-OH, Fmoc-Met-OH, Fmoc-

Ser(tBu)-OH, and Boc-Cys(Trt)-OH. The synthesis steps were as follows: 1) coupling of  
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Fmoc-Lys(Boc)-OH and deprotection; 2) coupling of 4-[4-(1-hydroxyethyl)-2-methoxy-5-

nitrophenoxy)-butanoic acid with HBTU; 3) coupling of Fmoc-Ser(PO(OBzl)OH)-OH 

with DIC (290 µL, 1.85 mmol), DMAP (9 mg, 74 µmol), and DIEA (644 µL, 3.7 mmol) 

in DMF/DCM (1:1, v/v) for 4h at 4 °C; 4) capping of unreacted alcohol groups with 

benzoylchloride (155 µL, 1.34 mmol), pyridine (156 µL, 1.93 mmol) in DCM (3.8 mL) 

for 5h; 5) Fmoc deprotection; 6) coupling of Fmoc-Met-OH and deprotection; 7) coupling 

of Fmoc-Ser(PO(OBzl)OH)-OH and deprotection; 8) coupling of Fmoc-Ser(tBu)-OH and 

deprotection; 8) coupling of Boc-Cys(Trt)-OH; 9) TFA deprotection and cleavage. The 

peptide was purified by semi-preparative RP-HPLC. The identity of the peptide was 

verified by ESI-MS (found m/z 1082.9, expected 1084.0 M+H+).  

 

7.10. Synthesis of H-CSpSK(Fl)pS-pl-K(Dab)G-NH2 (52) 

A synthetic scheme for this peptide can be found in Figure 3.5. The peptide was prepared 

with Fmoc-Gly-OH. Fmoc-Lys(Mtt)-OH, 4-[4-(1-hydroxyethyl)-2-methoxy-5-

nitrophenoxy)-butanoic acid, Fmoc-Ser(PO(OBzl)OH)-OH, Fmoc-Ser(tBu)-OH, Boc-

Cys(StBu)-OH, and the succinimidyl esters of dabcyl and 6-carboxyfluorescein. The 

synthesis steps were as follows: 1) coupling of Fmoc-Gly-OH and deprotection; 2) 

coupling of Fmoc-Lys(Mtt)-OH and deprotection; 3) coupling of 4-[4-(1-hydroxyethyl)-2-

methoxy-5-nitrophenoxy)-butanoic acid; 4) coupling of Fmoc-Ser(PO(OBzl)OH)-OH 

with DIC (290 µL, 1.85 mmol), DMAP (9 mg, 74 µmol), and DIEA (644 µL, 3.7 mmol) 

in DMF/DCM (1:1, v/v) for 4h at 4 °C; 5) capping of unreacted alcohol groups with 

benzoylchloride (155 µL, 1.34 mmol), pyridine (156 µL, 1.93 mmol) in DCM (3.8 mL) 

for 5h; 6) deprotection of the Mtt group by treatment of the resin with 1%TFA/5% TIS in 
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DCM for 30 min; 7) coupling of dabcyl-OSu (266 mg, 815 µmol) in DIEA (644 µL, 3.7 

mmol) and DMF for 8 hrs; 8) Fmoc deprotection; 9) coupling of Fmoc-Lys(Mtt)-OH and 

deprotection; 9) coupling of Fmoc-Ser(PO(OBzl)OH)-OH and deprotection; 10) coupling 

of Fmoc-Ser(tBu)-OH and deprotection; 11) coupling of Boc-Cys(StBu)-OH; 12) removal 

of Mtt group; 13) coupling of 6-carboxyfluorescein-OSu (525 mg, 1.1 mmol) in DIEA 

(644 µL, 3.7 mmol) and DMF for 12 hrs; 14) deprotection of the StBu group by treatment 

with PBu3 (1.8 mL, 7.2 mmol), H2O (518 µL, 28.8 mmol), in 11 mL of DMF/DCM (1:1, 

v/v) for 4 hrs; 15) TFA deprotection and cleavage. The peptide was purified by semi-

preparative RP-HPLC. The peptide was characterized by analytical RP-HPLC, UV-Vis 

absorption, and ESI-MS (found m/z 1746.8, expected 1746.6 M+H+). Analytical data is 

presented in Figure 3.5. 

 

7.11. Synthesis of H-CSEK(Fl)E-pl-K(Dab)G-NH2 (54) 

Synthesis of this peptide was carried out in the same manner as described in section 7.10, 

except Fmoc-Glu(OtBu)-OH was used in place of Fmoc-Ser(PO(OBzl)OH)-OH. The 

identity of the peptide was verified by ESI-MS (found m/z 835.7, expected 835.8 

M+2H+). 

 

7.12. Synthesis of H-CSAK(Rho)A-pl-K(Dab)G-NH2 (59) 

Synthesis of this peptide was carried out in the same manner as described in section 7.10, 

except Fmoc-Ala-OH was used in place of Fmoc-Ser(PO(OBzl)OH)-OH and 5(6)-

tetramethylrhodamine was used in place of 6-carboxyfluorescein. 5(6)-
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tetramethylrhodamine was activated with HBTU and DIEA. The identity of the peptide 

was verified by ESI-MS (found m/z 1607.8, expected 1607.7 M+H+) 

 

7.13. Synthesis of H-CSPmaMPma-OH (71) 

Fmoc-D,L-Pma (Pma = phosphonomethylenealanine) was synthesized from D,L-Pma 

(obtained from Tocris) and Fmoc-OSu (obtained from Fluka) as described by Zheng et al. 

(Zheng et al., 2003). Peptide synthesis was initiated by loading of Rink Amide MBHA 

resin (0.167 mmole) using a threefold excess of pre-activated Fmoc-D,L-Pma (0.5 

mmole). Activation of Fmoc-D,L-Pma was accomplished upon the addition of 0.475 

mmole HATU and 1.5 mmole of DIEA to Fmoc-D,L-Pma in DMF. Subsequent chain 

elongation was performed as described in section 7.6 using HATU as the activation agent 

throughout. The peptide was purified by semi-preparative RP-HPLC. The peptide was 

characterized by ESI-MS (found m/z = 681.2, expected 681.2 Da M + H+).  

 

7.14. Preparation of fluorescently labeled peptide 46 

Purified 39 (0.7 mg, 0.72 µmoles) was dissolved to a final concentration of 0.1 mM in 50 

mM Tris-HCl containing 1 mM TCEP at pH 7.5. The solution was allowed to stand at 

room temperature for 1 hour. Fluorescein-5-maleimide was then added to a final 

concentration of 1 mM from a fresh stock solution in DMF. The reaction mixture was 

agitated for 3 hours at room temperature and the fluorescently labeled peptide (46) was 

purified by semi-preparative RP-HPLC. The identity of the peptide was confirmed by 

ESI-MS (found m/z 1399.0, expected 1399.3 Da M+H+). 
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7.15. In vitro photolysis 

Light illumination was performed with a collimated light source from Oriel (Stratford, 

CT) equipped with a 200 W Hg lamp. The irradiance was measured using a 

monochromic photometer (model 840-c, Newport, Irvine, CA). Selective irradiation at 

312 nm or 365 nm was performed using an analytical line filter (11 nm and 9.4 nm 

bandwidths, respectively) obtained from Oriel. Alternatively, photolysis was performed 

by placing the protein solution in the beam of a He-Cd laser (325 nm, 4.74 W/cm2) for 3 

seconds.  

 

7.16. Determination of photolysis kinetics and quantum yield of peptide 46 and 

protein 47  

For peptide 46 (data for the quantum yield determination can be found in Figures 2.7 and 

2.8), light at 312 nm was focused on the sample. An irradiance of 2 mW/cm2 was used, as 

measured with a digital photometer from Newport (Irvine, CA). The concentration of 46 

was 10 µM in an aqueous buffer containing 20 mM Tris-HCl, 100 mM NaCl, 5% 

glycerol, 2 mM DTT at pH 7. Irradiation times were: 0 sec, 20 sec, 37 sec, 75 sec, 150 

sec, 225 sec, 300 sec, 450 sec, and 600 sec. The irradiated solution was injected onto an 

analytical RP-HPLC column and eluted with a linear gradient of solvent B while 

monitoring at 443 nm (the absorbance maximum of fluorescein under acidic conditions). 

The identities of the eluting species were confirmed by ESI-MS (46 found m/z 1399.0, 

expected 1399.3 Da M+H+; 46 – 1 caging group found m/z 1250.0, expected 1250.2 Da 

M+H+, 46 – 2 caging groups found m/z 1101.0, expected 1101.2 M+H+). The two singly-

caged photolysis intermediates were considered as one species for the purposes of 
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photolysis kinetics and quantum yield calculations. The relative amount of each form was 

determined by calculating the ratio of each peak area to the sum of the peak areas for all 

forms. Experiments were conducted in duplicate and the average values were used for all 

subsequent calculations. The half-life for photolysis of each caging group was determined 

by plotting the natural logarithm of the fraction of caging groups remaining on the 

peptide versus time of irradiation. Photolysis quantum yield (Φ) was determined from the 

following equation (Hasan et al., 1997): 

Φ = 0.693 (6.02 × 1020) 
          2.303 t1/2 ελ Ι 
 

where t1/2 is the calculated half-life of the photolysis reaction (sec), ελ is the molar 

extinction coefficient per caging group at the photolysis wavelength λ, and Ι is the light 

intensity (photons cm-2 sec-1). ελ at λ = 312 nm was determined to be 2,613 M-1 cm-1 by 

subtracting the portion of the total extinction coefficient of 46 due to the fluorescein label 

from the total extinction coefficient and dividing the resulting quantity by 2. For protein 

47 (the data for the quantum yield determination can be found in Figure 3.7), the 

quantum yield of photolysis was calculated with the same equation. The half-life (t1/2) 

was calculated from the log plot of protein fluorescence emission at time t divided by 

protein fluorescence emission at time zero versus the irradiation time. The experiments 

were repeated two to three times for each illumination conditions and the mean half-life 

was calculated. The molar extinction coefficients of 4-[4-(1-hydroxyethyl) -2-methoxy-5-

nitrophenoxy)-butanoic acid were determined in 1 mM DTT, 150 mM NaCl, 25 mM Tris 

(pH 7.2) (ε365= 4500 M-1 cm-1). 
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7.17. Generation of Smad2-MH2 α-thioester (38) 

Smad2-MH2 (residues 241-462) was expressed in E. coli BL21(DE3) cells as a fusion 

protein with a modified GyrA intein and a C-terminal chitin binding domain in the 

pTXB1 vector from New England BioLabs (Beverly, MA) as previously described (Wu 

et al., 2001). The expression vector for Smad2-MH2-GyrA-CBD will be referred to as 

pMH2. Transformed cells were grown at 37 °C to an OD600 of 0.65 in LB supplemented 

with ampicillin. Protein expression was then induced by the addition of 0.5 mM IPTG to 

the growth medium. The cells were allowed to grow for an additional 3.5 hours at 37 °C 

at which time they were collected by centrifugation. After this point, all manipulations 

were performed either on ice or at 4 °C. The cell pellet was resuspended in lysis buffer 

(20 mM Tris-HCl, 200 mM NaCl, 200 mM 1,6-hexanediol at pH 7.5) supplemented with 

Complete protease inhibitor tablets from Roche Diagnostics (Mannheim, Germany). 

Following lysis by passage through a French press, the insoluble fraction was removed by 

centrifugation and the soluble fraction was then filtered through a 5 µm filter. The 

clarified soluble fraction was incubated with chitin resin pre-equilibrated in lysis buffer 

for 20 hours. The resin was then poured into a column and washed with 7.5 column 

volumes (CVs) of lysis buffer, followed by 1.5 CVs of cleavage buffer (100 mM HEPES, 

200 mM NaCl, 200 mM 1,6-hexanediol at pH 8.0), followed by 1 CV of cleavage buffer 

supplemented with 50 mM 2-mercaptoethanesulfonic acid (MESNa). The resin was then 

incubated for 20 hours in 2.5 CVs of cleavage buffer supplemented with 50 mM MESNa. 

The protein was eluted from the column with cleavage buffer supplemented with 50 mM 

MESNa. The fractions containing Smad2-MH2 α-thioester (as assessed by SDS-PAGE) 

were combined and 2 molar equivalents of the Smad binding domain of SARA (SARA-
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SBD, residues 665-721) were then added to form the Smad2-MH2/SARA-SBD hetero-

complex. SARA-SBD was prepared by Tev protease catalyzed proteolysis of a bacterially 

expressed GST fusion protein that was purified over GSH resin. The heterocomplex was 

then purified from excess SARA-SBD by cation exchange chromatography at pH 6.0 

using an SP FF column (Amersham Biosciences). A linear gradient from 0 to 1 M NaCl 

was used. The flow rate was 2 mL/min. The heterocomplex was simultaneously buffer-

exchanged into ligation buffer (100 mM HEPES, 200 mM NaCl, 50 mM MESNa) and 

concentrated to 6.25 mg/mL using a 10 kDa molecular weight cut-off ultrafiltration 

membrane from Millipore (Billerica, MA). Proteins were either used immediately in 

expressed protein ligation reactions or flash frozen with liquid N2 and stored at -80 °C.  

 

7.18. Expressed Protein Ligation of Smad2-MH2 domain semi-synthetic proteins 

Expressed protein ligation (EPL) was performed in the dark at 5 °C by adding the 

appropriate N-terminal cysteine-containing synthetic peptide (1 mM, unless otherwise 

specified) to the Smad2-MH2 α-thioester/SARA-SBD heterocomplex (0.25 mM) in 

ligation buffer. The reaction was followed by SDS-PAGE, RP-HPLC, and ESI-MS. Prior 

to RP-HPLC analysis, the protein was reduced with TCEP at pH 7.5. Reactions were 

complete within 24 hours. The semi-synthetic proteins were then separated from 

unreacted peptide by SEC (Superdex 75, Amersham Biosciences) in 20 mM Tris-HCl, 

100 mM NaCl, 2 mM DTT, and 5% glycerol at pH 7.0. Fractions were analyzed by SDS-

PAGE, RP-HPLC, and ES-MS. 
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7.19. Multi-angle Laser Light Scattering (MALLS) 

SEC/MALLS was performed as described at the W.M. Keck Foundation Biotechnology 

Resource Laboratory at Yale University (Folta-Stogniew and Williams, 1999). A 

Superdex-200 column (Amersham Biosciences) was used with a flow rate of 0.5 mL/min. 

MALLS measurements were taken every second. The loading concentration for the 

doubly-phosphorylated Smad2-MH2 standards was 50 µM. Loading concentrations for 

caged Smad2-MH2 (40) were 50 µM, 25 µM, 12.5 µM, and 5 µM.  

 

7.20. Fluorescence Spectroscopy 

Experiments were conducted at 20 °C in a stirred 1 cm-pathlength cuvette using a SPEX 

FL-311C fluorimeter. Excitation was at 488 nm with a 2 nm slit and the fluorescence 

emission was monitored from 498 to 700 nm through a 3 nm slit. Protein solutions were 1 

µM in 20 mM Tris-Cl, 150 mM NaCl, pH 7.5. 

 

7.21. Protein Labeling with Texas Red C2-Maleimide (TRM) and Nuclear Import 

Assay 

Caged (40) and non-phosphorylated control proteins (6 µM in 20 mM Tris-HCl, 150 mM 

NaCl, 30 mM TCEP at pH 7.5) were labeled in the dark at 4 °C for 13.5 hours with 50 

µM TRM added from a 2.5 mM stock solution in DMSO. Doubly-phosphorylated control 

protein was labeled in the same manner, except 75 µM TRM was used to achieve a level 

of labeling equivalent to that of the OP and caged proteins. Excess TRM was removed by 

SEC (Quick Spin Sephadex G-50 columns columns, Roche, Basel, Switzerland) and the 

proteins were simultaneously exchanged into import buffer (20 mM HEPES, 110 mM 
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potassium acetate, 5 mM, sodium acetate, and 2 mM magnesium acetate at pH 7.3). For 

the nuclear import assay, proteins were diluted to 1.5 µM in import mixture (import 

buffer + 2 mM DTT, 0.5 mM EGTA, 1 mM MgATP, 5 mM creatine phosphate, 20 

units/mL creatine phosphokinase, 1 mg/mL BSA, 4.5 µM GST-SARA-SBD, 1 µg/mL 

aprotinin, 1 µg/mL leupeptin, and 1 µg/mL pepstatin). Prior to incubation with cells, 

proteins were either left in the dark (- UV) or irradiated with the He-Cd laser for 5 

seconds (+ UV) as described above. Nuclear import assays with digitonin-permeablized 

HeLa cells were carried using a standard protocol, as previously described (Adam et al., 

1992; Xu et al., 2000). The import reaction was carried out for 20 minutes at room 

temperature. Following the import reaction, samples were washed well, fixed with 4% 

paraformaldehyde, mounted, and analyzed by laser-scanning confocal microscopy (LSM 

510, Carl Zeiss, Thornwood, NY) at the Rockefeller University Bio-Imaging Resource 

Center. 

 

7.22. Semi-synthesis of Smad2-MH2-CSEK(fluorescein)E-pL-K(dabcyl)-G (53) 

This protein was constructed by EPL of Smad2-MH2-α-thioester (38) and H-CSEK(Fl)E-

pl-K(Dab)G-NH2 (54, see sections 7.17 and 7.18). The identity of the protein was 

confirmed by manual reconstruction of ESI-MS data (found 26,521 ± 5 Da, expected 

26,517). 
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7.23. Uncaging of Smad2-MH2-CSEK(fluorescein)E-pL-K(dabcyl)-G (53) in live 

Xenopus laevis embryos 

2-cell stage embryos were microinjected in the animal pole and allowed to develop until 

the late blastula stage. A total of 20 nL/embryo was injected with a solution containing 

the tracer Rhodamine-dextran (70 kDa) with or without protein 53 (3.5 mM). For 

uncaging and imaging studies (Figure 3.9), animal regions were explanted, placed under 

a coverslip and imaged with a Zeiss LSM 5 Pascal confocal microscope before and after 

photoactivation with the 325 nm laser for 3 seconds as described in section 7.15.  

 

7.24. ARE luciferase assays in Xenopus laevis embryos 

A total of 20 nL/embryo was injected containing various combinations (as indicated in 

Figure 3.10) of 20 pg of ARE-luciferase reporter, 40 pg Activin mRNA, non-

phosphorylated Smad2-MH2-0P (5 nM), or doubly-phosphorylated Smad2-MH2-2P (5 

nM). Embryos were allowed to develop until the late blastula stage. At this point, the 

animal regions were explanted and luciferase activity was assayed using the 

manufacturer’s recommended procedure (Promega Luciferase Assay System). Data is 

reported in Figure 3.10 as mean of 3 independent experiments, error bars = ± S.D.  

 

7.25. General cell culture methods, TGFβ stimulation of cells, and western blotting 

to determine phosphorylation stoichiometry of Smad2 

HeLa, HaCaT, HEK293T, and DU145 cells were maintained in DMEM supplemented 

with 10% FBS. NIH3T3 cells were maintained in DMEM supplemented with 10% CS. 

For the data in Figure 4.1, cells were serum starved for 6 hours, then the media was 
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replaced by DMEM containing 100 pM TGFβ-1  (a kind gift from C. Alarcón and J. 

Massagué, MSKCC). Samples of cells were stimulated with TGFβ-1 for 0, 5, 15, 30, 45, 

60, 90, and 120 minutes before harvesting. Cells were washed with DPBS and then lysed 

in 2X SDS-containing loading buffer. Lysates and recombinant phosphorylated 

(generated by EPL, see section 7.29) or non-phosphorylated Flag-Smad2 protein 

standards (standards were added at defined ratios) were separated by SDS-PAGE (4-15%, 

Criterion, BioRad) and transferred to PVDF (0.2 mm, BioRad). Membranes were blocked 

with 5% milk in DPBS, probed for phosphorylated Smad2 (rabbit anti-phospho-Smad2 

Ser465/467, Cell Signaling Technology), washed, and incubated with a fluorescent anti-

rabbit antibody (IRDye 680 goat anti-rabbit, Li-Cor Biosciences). The membrane was 

washed then imaged on an Odyssey scanner (Li-Cor) in the 700 nm mode. The 

membrane was stripped (Western Re-Probe Reagent, Calbiochem), re-blocked, and re-

probed for total Smad2 (mouse anti-Smad2/3, BD Transduction Labs), washed, incubated 

with a fluorescent anti-mouse secondary antibody (IRDye 800CW goat anti-mouse, Li-

Cor), washed, and imaged on an Odyssey scanner in the 800 nm mode. Band intensities 

were quantified with the software included with the Odyssey scanner (Li-Cor). For each 

band corresponding to Smad2, the ratio of phospho-Smad2 intensity to total Smad2 

intensity was determined. A standard curve was generated using this ratio for each 

recombinant sample of known phospho-Smad2 fractional stoichiometry. The endogenous 

phospho-Smad2 fractional stoichiometry was determined by comparing the ratio of each 

unknown sample to the standard curve. Averages and standard deviations were 

determined from three experiments.  
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7.26. Cloning of His6-SUMO-Flag-Smad2 into pTXB1 

The internal SapI restriction site in human Smad2 was removed by site-directed 

mutagenesis (QuikChange II XL, Stratagene) using the 5’ primer (5’- C AAC CAG GAA 

TTT GCT GCG CTT CTG GCT CAG TCT GTT AAT C) and its reverse complement. 

Full length Smad2 cDNA lacking the last five codons was amplified by PCR using the 5’ 

primer (5’-GGT GGT CAT ATG TCG TCC ATC TTG CCA TTC ACG C) and the 3’ 

primer (5’-GA TGA TGC TCT TCC GCA ACG CAC TGA AGG GGA TCC). The PCR 

product was digested with NdeI and SapI, purified, and cloned into pTXB1 (New 

England Biolabs, Ipswich, MA) using the NdeI and SapI sites to create pJM1. The DNA 

encoding yeast SUMO was amplified by PCR from a plasmid containing the Smt3 gene 

from S. cerevisiae using the 5’ primer (5’-GAC GCT CAT ATG GGT CAT CAC CAT 

CAT CAT CAC GGG TCG GAC TCA GAA GTC AAT CAA GAA GCT) and 3’ primer 

(5’-GAC AAC CAT ATG ACC ACC AAT CTG TTC TCT GTG AGC CTC AAT AAT 

ATC). The 5’ primer was designed to introduce an N-terminal His6 tag and both primers 

contained the NdeI restriction site. The PCR product was digested, purified, and cloned 

into pJM1 using the NdeI site to create pJM11. The NdeI site 5’ of  Smt3  was destroyed 

by site-directed mutagenesis using the 5’ primer (5’-GAA GGA GAT ATA CGT ATG 

GGT CAT CAC CAT CAT C) and its reverse complement. Following this, a Flag tag 

was inserted at the remaining NdeI site between Sumo and Smad2 using synthetic 

phosphorylated oligonucleotides (5’-T ATG GGA AGC GAC TAC AAA GAC GAT 

GAC GAC AAG GGA CA) and (5’-TAT GTC CCT TGT CGT CAT CGT CTT TGT 

AGT CGC TTC CCA) to create pMVP7, encoding His6-SUMO-Flag-Smad2(1-462)-
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GyrA-CBD. All clones were verified by DNA sequencing.  

 

7.27. Cloning of MBP-SARA-SBD 

DNA encoding SARA-SBD was amplified from an expression plasmid encoding GST-

SARA-SBD (corresponding to amino acids 665-721 of SARA) by PCR using the 5’ 

primer (5’- CGC GGA TCC ATG AGT GCC TCA AGC CAG AGC) and the 3’ primer 

(5’- AT GCG GTC GAC TTA TCT GGG CTG AGC CAC TTC TGC TCC). The DNA 

was digested with BamHI and SalI and inserted into pMAL-c2X (New England Biolabs) 

digested with the same enzymes to yield pJM6, which encodes MBP-SARA-SBD.  

 

7.28. Expression and purification of full-length Flag-Smad2 α-thioester/MBP-

SARA-SBD complex (57) 

E. coli BL21(DE3) cells (Novagen) transformed with either pMVP7 (encoding His6-

SUMO-Flag-Smad2(1-462)-GyrA-CBD) or pJM6 (encoding MBP-SARA-SBD) were 

grown to an OD600 of 0.6 in LB medium supplemented with ampicillin and induced with 

0.5 mM IPTG at 37 °C for 4 h. Cells were harvested by centrifugation and combined in a 

ratio of 3:2::pMVP7:pJM6 by weight, then resuspended in lysis buffer containing 20 mM 

Tris-Cl, 200 mM NaCl, 10 mM MgCl2, 200 mM 1,6-hexanediol (which stabilizes the 

protein), pH 7.5, supplemented with protease inhibitors (Complete, Roche) and DNAse I 

(Sigma). Following cell lysis using a French press, the soluble fraction was collected by 

centrifugation, filtered through a 5 µm filter, and applied to chitin resin (New England 

Biolabs) pre-equilibrated with lysis buffer and incubated overnight at 4 °C. The beads 

were washed with 10 column volumes of lysis buffer and 10 column volumes of 100 mM 
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Hepes, 200 mM NaCl, 200 mM 1,6-hexanediol, pH 7.3 (buffer A). The SUMO-Flag-

Smad2 moiety was cleaved from the resin by incubation of the beads with 3 column 

volumes of buffer A supplemented with 100 mM MESNa (2-mercaptoethanesulfonic 

acid, Sigma) for 60 hr at 4 °C. This cleavage step yields His6-SUMO-Flag-Smad2 with a 

C-terminal thioester in complex with MBP-SARA-SBD. His6-SUMO protease 

(Invitrogen) was added to a final concentration of 0.006 U/mL and the mixture was 

incubated overnight at 4 °C then passed through a bed of Ni2+-NTA beads (Novagen) to 

remove His6-SUMO protease and His6-SUMO. The Flag-Smad2 α-thioester/MBP-

SARA-SBD complex (57) was further purified by anion exchange chromatography (Q 

Sepharose XL, GE Healthcare) at a flow rate of 2 mL/min. Elution was accomplished 

with a linear gradient of buffer A (20 mM Tris-Cl, 50 mM NaCl, 100 mM 1,6-

hexanediol, 75 mM MESNa, pH 7.5) to buffer B (= Buffer A with 1 M NaCl) over 10 

column volumes. Fractions containing the desired protein were concentrated (10 kDa 

cutoff, PES membrane, Vivaspin, Vivascience) to ~15 µM with respect to Flag-Smad2, 

which was then used in subsequent EPL reactions.  

 

7.29. Expressed protein ligation reactions of full-length Smad2 variants 

Expressed protein ligation was performed at 4 °C by adding the appropriate chemically 

synthesized peptide (52, 59, or 68) at a final concentration 100-300 µM to a ~15 µM 

solution of protein thioester 57. Ligation reactions proceeded for 48–72 hours, then each 

ligated protein was treated with tris(2-carboxyethyl) phosphine hydrochloride (100 mM) 

for 20 min and purified by size exclusion chromatography (Superdex 200, GE 

Healthcare). The flow rate was 0.5 mL/min, and the buffer contained 20 mM HEPES, 
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150 mM NaCl, 1 mM TCEP, pH 7.3. Peak fractions were snap frozen in liquid nitrogen 

and stored at -80 °C. The semi-synthetic protein prepared using peptide 52 is 55 (see 

Figure 4.2). The semi-synthetic protein prepared using peptide 59 is 58 (see Figure 4.9).  

 

7.30. Live-cell Imaging Experiments 

HeLa and HaCaT cells were maintained in DMEM supplemented with 10% FBS. For live 

cell imaging, cells were cultured on separate 35 mm plates (P35G-1.5-7-C-grid, MatTek 

Corp., Ashland, MA). Frozen aliquots of the caged proteins 56 and 58 were thawed on 

ice, concentrated to ~100 µM, and were microinjected in the cytoplasm of cells using a 

commercial microinjection system (Femtojet, Eppendorf). During imaging, cells were 

incubated in Leibovitz’s L-15 Medium and placed under an inverted microscope 

(Axiovert 200M, Carl Zeiss) equipped with a spinning disk confocal apparatus and a 

chamber maintained at 37 °C. Images were collected with a Hamamatsu ORCA-ER 

digital CCD camera mounted on the microscope with a 40× / 1.4 NA oil objective, and 

filter sets with excitation wavelengths of 488 and 568 nm and emission wavelengths of 

525 and 620 nm, respectively. Photolysis of the microinjected protein was performed 

using irradiation from the microscope’s Xenon lamp mounted with a narrow-band filter at 

360 nm (corresponding to the standard DAPI excitation light) or at 365 nm with a 200 W 

Hg lamp fitted with a fiber optic cable (for co-injection experiments involving proteins 

56 and 58).  Integrated whole-cell fluorescence intensities were measured after 

background subtracting the image in a region containing no cells with Metamorph 

software.  
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7.31. Nuclear import of caged full-length Smad2 after UV uncaging in live cells 

Cells were microinjected and imaged as described in section 7.30. Photolysis of the 

microinjected protein was performed using irradiation at 365 nm from a 200 W Hg lamp 

fitted with a fiber optic cable. Integrated whole-cell fluorescence intensities and nuclear 

fluorescence intensities were measured after background subtracting the image in a 

region containing no cells with Metamorph software. The nuclear import curves were 

modeled by the stretched exponential function (Hamada and Dobson, 2002; Morozova-

Roche et al., 1999): 

F = F∞ + ΔF exp(-[ks • t]n) 

Where F and F∞ are the fluorescence intensity at time t and the final fluorescence 

intensity, respectively, and ΔF is the amplitude of the fluorescence change. ks is the 

stretched exponential rate constant and is a useful parameter for characterizing complex 

sigmoidal rate curves. n is a measure of positive cooperativity of the process and was 

found to be greater than 1 in all cases, suggesting import of Smad2 is a cooperative 

process with at least two steps that contribute to ks. The data were fit to the equation 

using Kaleidagraph software.  

 

7.32. Preparation of Flag-Smad2-MH2-α-thioester and expressed protein ligation 

with H-CSpSMpS-OH and H-CSPmaMPma-OH to generate proteins 62 and 63 

Nucleotides encoding a Flag tag were inserted into the vector pMH2 (pMH2 = pTXB1 

containing nucleotides encoding Smad2-MH2(241-462) 5’ to the Smad2-MH2 initiator 

ATG by the same procedure used to insert the Flag tag into full-length Smad2 encoded in 
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plasmid pMVP7 (see section 7.26). Protein expression and purification was carried out in 

an identical manner as for the non-tagged Smad2-MH2-α-thioester (see section 7.17), 

except that SARA-SBD was not added. Expressed protein ligation reactions were carried 

out as described (section 7.18) with the peptides H-CSpSMpS-OH and H-CSPmaMPma-

OH, where pS = phosphoserine and Pma = phosphonomethylenealanine. ESI-MS for both 

of these proteins is shown in Figure 5.2. 

The identities of these proteins were confirmed by manual reconstruction of ESI-MS data 

(pSer-containing protein 62 found 26,854 ± 4 Da, expected 26,852 Da; Pma-containing 

protein 63 found 26,851 ± 5 Da, expected). 

 

7.33. Preparation of HeLa cell nuclear extracts.  

All steps were performed at 4 °C, unless otherwise specified. Pelleted HeLa-S3 cells (7 x 

108 cells) resulting from 5 L of suspension culture (obtained on ice from the National 

Cell Culture Center) were divided into 4 equal portions. Each portion was washed twice 

with 10 mL of PBS and resuspended in 10 mL of TM2 buffer (10 mM Tris, 2 mM MgCl2, 

pH 7.4) containing protease inhibitors (Roche Complete Protease Inhibitor Cocktail 

tablets). The cells were incubated at room temperature for 1 minute and then placed on 

wet ice for 5 minutes. Digitonin (Sigma) was added to a final concentration of 0.1% and 

the cells were mixed gently for 5 minutes. Cells were lysed with 6 strokes of the tight-

fitting type “B” pestle in a Dounce homogenizer. Lysis was complete as determined by 

microscopic observation of a sample of the homogenate. The homogenate was 

centrifuged at 800 RPM for 10 minutes. The pellet containing the nuclei was washed 

once with 5 mL of TM2 buffer. 5 mL of 60% iodixanol (OptiPrep, Axis-Shield) and 5 
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mL of buffer D (0.25 M sucrose, 25 mM KCl, 5 mM MgCl2, 20 mM tricine, pH 7.8) were  

added, followed by centrifugation at 10,000 x g for 20 minutes. The pellet containing the 

purified nuclei was washed with 5 mL of TM2 buffer and resuspended in 1 mL of TM2 

buffer. To the resuspended nuclei, 9 mL of NE buffer (10 mM Tris, 100 mM KCl, 0.5 

mM EDTA, 5% glycerol, 5 mM MgCl2, pH 7.9) was added. The total resuspended nuclei 

were divided into 3 portions. One portion (hereafter referred to as NE) was sonicated 6 

times for 20 seconds at 35% power, aliquoted, flash frozen with liquid N2, and stored at  

-80 °C. Another portion (NETX) was treated with 1% Triton-X-100 before sonication, 

aliquoting, and flash freezing. The last portion (NED) was treated with 10 µg of DNAse I 

(Sigma) for 5 minutes before sonication, aliquoting, and flash freezing. Final protein 

concentration of extracts = 2.5 mg/mL as determined by Bradford assay. For use, all 

extracts were removed from the freezer and placed at 4 °C to thaw.      

 

7.34. Preparative immunoprecipitation of Flag-Smad2-MH2 interacting proteins 

from HeLa cell nuclear extracts 

All manipulations were carried out at 4 °C, unless otherwise specified. HeLa nuclear 

extract (NE) was centrifuged at 13,000 RPM for 10 minutes. The supernatant was 

removed and incubated with Flag-Smad2-MH2 variants. 12 µg of Flag-Smad2-MH2-2P 

(62) or 12 µg of Flag-Smad2-MH2-2Pma (63) were each incubated with 0.4 mL of NE 

(2.5 mg/mL total protein) in the presence of a 10-fold excess of untagged Smad2-MH2-

0P (38) as competitor. The samples and an additional sample (mock) containing only NE 

(not containing any recombinant Smad protein), were then incubated with mild agitation 

on a rotating platform overnight. 5% of each sample by volume was removed for later 
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analysis (inputs). The remainder of each sample was incubated with 100 µL of anti-

FlagM2 agarose beads (Sigma) and agitated by mild rotation for 6 hours. The supernatant 

was removed by centrifugation and the beads were then washed twice with 1 mL of NE 

buffer. The beads were drained and bound proteins were eluted by addition of 0.2 mL of 

a solution containing 3X Flag peptide (Sigma) at 0.2 mg/mL. Following incubation for 1 

hour, the supernatant containing eluted proteins was removed by centrifugation. The 

eluted proteins were precipitated from the supernatant with TCA, washed with ice cold 

ethanol, dried, and re-dissolved in 16 µL of SDS-PAGE loading buffer. Samples were 

then separated by SDS-PAGE and stained with coomassie (GelCode Blue, Pierce). 

Extreme care was taken to minimize contamination of these samples with environmental 

and human proteins, such as keratin, that could interfere with downstream MS 

identification experiments. For example, ultraclean SDS-PAGE running running buffer 

(Biorad) was used. The work bench and all compatible equipment were cleaned with 

Windex before each manipulation. This has been found to be the most effective agent for 

cleaning potentially contaminating proteins from surfaces (personal communication with 

Matthew Sekedat, laboratory of Brian Chait, The Rockefeller University) 

 

7.35. Extraction of proteins from the gel and digestion with trypsin 

Each coomassie-stained gel lane was excised and chopped into 2 mm pieces with a gel 

slicer. Each piece was destained in 55% ammonium bicarbonate (100 mM)/45% 

acetonitrile with serial washes (4 °C). Gel pieces were dehydrated in acetonitrile, then re-

hydrated in 50 mM ammonium bicarbonate, and again dehydrated in acetonitrile. 

Proteins were digested in-gel with 75 ng of trypsin (Roche Diagnostics, Basel, 
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Switzerland) per gel band in 50 mM ammonium bicarbonate for 6 h at 37 °C. Tryptic 

peptides were extracted from the gel pieces with an 8-µl slurry of 1 volume of POROS 

R2 20 reverse-phase resin (Applied Biosystems, Foster City, CA) to 10 volumes of 5% 

formic acid/0.2% trifluoroacetic acid (TFA) at 4°C for 8 h. C18 Ziptips (Millipore, 

Billerica, MA) were conditioned with sequential washes of 0.1% TFA, 50% 

methanol/20% acetonitrile/0.1% TFA, and 0.1% TFA. POROS R2 20 resin was 

transferred to the conditioned Ziptips. The POROS R2 20 resin was washed in the Ziptip 

twice with 0.1% TFA. Tryptic peptides were eluted onto a matrix-assisted laser 

desorption ionization (MALDI) target compact disk (Krutchinsky et al., 2001) with one-

third saturated 2,5-dihydroxybenzoic acid (Lancaster Synthesis, Windham, NH) in 50% 

methanol: 20% acetonitrile: 0.1% TFA.   

 

7.36. Mass spectrometric identification of proteins 

Tryptic peptides were identified by matrix assisted laser desorption ionization (MALDI) 

mass spectrometric analysis for protein identification (Beavis and Chait, 1996). Mass 

analysis of the tryptic peptides was performed with a MALDI-quadrupole-quadrupole-

time-of-flight (mQqTOF) mass spectrometer (Centaur Technology, Austin, TX; MDS 

Sciex, Concord, ON, Canada) modified with a compact disk sample stage as described 

previously (Krutchinsky et al., 2001). The highly accurate MALDI-mass spectrometry 

(MS) data was used to search the National Center for Biotechnology Center non-

redundant protein database with the program ProFound to identify proteins from the 

tryptic peptide masses (Zhang and Chait, 2000). In addition to matching peptide masses 

to proteins, ProFound provides lists of peptide masses that can be used to confirm protein 
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identifications by MS/MS analysis and lists of peptide masses that were not assigned to a 

protein in the MS analysis. To search for more proteins not identified in the MALDI-MS 

analysis and to confirm proteins identified in the single-stage MS analysis, amino acid 

sequence information for the tryptic peptides was obtained by MALDI-MS/MS 

fragmentation. Using the program M-IT sequencer, confirmation and unassigned masses 

obtained in the mQqTOF analysis were used to prepare instrument files for MALDI-

MS/MS analysis (Krutchinsky et al., 2001). MALDI-MS/MS analysis of the same 

samples on the same MALDI target compact disk was performed using a modified LCQ 

Deca XP ion trap mass spectrometer (Thermo Finnigan, San Jose, CA) as described 

previously (Krutchinsky et al., 2001). MALDI-MS/MS data was used to search the 

National Center for Biotechnology Information nonredundant protein database with the 

program Sonar (Genomic Solutions, Ann Arbor, MI) to identify proteins from the tryptic 

peptide fragmentation masses (Field et al., 2002).  Identified proteins were assigned to 

their corresponding band in the Coomassie-stained gel. In addition to PRMT5, other 

proteins found in this screen include various heterogeneous ribonucleoproteins that were 

identified to using both protein 62 and protein 63 as bait. Carbamoyl phosphate 

synthetase I was identified when protein 63 was used as bait, but not when protein 62 was 

used as bait. 

 

7.37. Interaction of endogenous PRMT5 with semi-synthetic and recombinant 

Smad2 variants 

Co-immunoprecipitation was performed as in section 7.34, except that competitor 

untagged protein was not added. In addition to the baits Flag-Smad2-2P (62) and Flag-
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Smad2-2Pma (63), additional samples were prepared using the following proteins as 

baits: Flag-Smad2-MH2-0P (61) and full-length Flag-Smad2-0P (57). The non-

phosphorylated proteins 61 and 57 lack the last five amino acids of Smad2 and were used 

after isolation as C-terminal α-thioesters. Samples were run in separate lanes on SDS-

PAGE gels and analyzed by western blotting for the presence of Flag-Smad2 variants 

using anti-FlagM2 mouse monoclonal antibody (Sigma) and for PRMT5 using a 

monoclonal mouse anti-PRMT5 antibody (BD Trandsuction Labs). Visualization was 

with an anti-mouse secondary antibody conjugated to HRP (Amersham) using the ECL 

reagent (Amersham).  

 

7.38. Preparation of recombinant His6-Sumo-Smad2-MH1 (65) 

The MH1 domain (residues 1-185) of Smad2 was cloned into the pET-Sumo vector 

(Invitrogen) using the TA cloning strategy. Briefly, the MH1 domain was amplified by 

PCR from pMVP7 with Taq polymerase and the primers 5’-TCGTCCATCTTGCCAT 

TCACGCCG-3’ and 5’-TCAATCTCGGTGTGTCGGGGCAC-3’ and then ligated to the 

linearized vector by means of the 3’-A overhangs added by Taq polymerase to obtain the 

plasmid named pMVP14. The His6-Sumo control construct was made by inserting a stop 

codon immediately after the Sumo domain in pMVP14 using the QuikChange kit 

(Stratagene). E. coli BL21(DE3) transformed with the obtained plasmids were grown in 

LB containing 50 µg/mL of kanamycin at 37 °C for 3 h (until A600 = 0.6) and then 

expression was induced for 3 h with 1 mM IPTG. Cells were resuspended in 50 mM 

phosphate buffer, 300 mM NaCl, 10 mM imidazole, 5 mM β-mercaptoethanol, pH 8 and 

lysed by means of a French press. Soluble fractions were purified over a Ni2+-NTA 
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column and purified proteins were eluted with 250 mM imidazole containing buffer after 

extensive washing with lysis buffer and wash buffer (50 mM phosphate buffer, 300 mM 

NaCl, 20 mM imidazole, 5 mM β-mercaptoethanol, pH 8). Purified proteins thus 

obtained were dialyzed against 20 mM Tris-HCl, 150 mM NaCl, 1 mM DTT, pH 8, 

aliquoted and flash frozen. His6-Sumo-Smad2-MH1 is protein 65 and His6-Sumo is 

protein 66. These two proteins were kindly provided by Miquel Vila-Perelló. 

 

7.39. Interaction of recombinant His6-Sumo-Smad2-MH1 (65) with endogenous 

PRMT5 

Aliquots of HeLa nuclear extracts NE, NETX, and NED (section 7.33) were thawed at       

4 °C. Nuclear extract NEC was prepared by high speed centrifugation of NE at 100,000 x 

g for 30 minutes at 4 °C. 45 µL of His6-Sumo-Smad2-MH1 (65) or His6-Sumo (66), each 

at 2 mg/mL, were incubated for 16 hours at 4 °C with each of the four nuclear extracts 

(220 µL of each extract at 2.5 mg/mL total protein). Following incubation, each sample 

was supplemented with 10 mM imidazole to reduce non-specific binding in the next step. 

Each sample was then mixed with 10 µL of Ni2+-NTA beads (Novagen) for 4 hours at     

4 °C with gentle agitation on a nutator. The beads were collected by centrifugation and 

the supernatant was drained. The beads were then washed with 5 x 150 µL of Ni2+-NTA 

wash buffer (Novagen) containing 10 mM imidazole. Bound proteins were eluted into 60 

µL of Ni2+-NTA wash buffer containing 0.5 M imidazole by incubation of the solution 

with the beads for 30 minutes. The eluate was collected by centrifugation and 20 µL of 

4X SDS-PAGE was added followed by boiling for 5 minutes. The samples were resolved 

by SDS-PAGE and analyzed by western blotting for His6-Sumo-Smad2-MH1 with an 
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anti-penta His monoclonal mouse antibody (Qiagen) and for PRMT5 with an anti-

PRMT5 rabbit polyclonal antibody (Upstate). Visualization was performed on an infrared 

fluorescence scanner (Odyssey, Licor) with anti-mouse and anti-rabbit secondary 

antibodies conjugated to infrared fluorophores (Licor). 

 

7.40. Interaction of endogenous Smad2 with Flag-PRMT5 expressed in HEK293T 

cells 

HEK293T cells at ~70% confluency in 10-cm dishes were transfected using Fugene 6 

(Roche) with either 5 µg of Flag-PRMT5 expression vector (a kind gift of Stephen 

Nimer, MSKCC) or 5 µg of mock plasmid encoding EGFP-IN using the manufacturer’s 

recommended transfection procedure. Only one plasmid was used per dish i.e., plasmids 

were not co-transfected. Following transfection, cells were incubated at 37 °C for 46 

hours at which point they were washed with 7 mL of cold PBS and drained. 0.45 mL of 

cold lysis buffer (20 mM Tris, 150 mM NaCl, 1 mM EDTA, 1  mM EGTA, 5 mM NaF, 

10 mM β-glycerophosphate, 5 mM sodium pyrophosphate, 10% glycerol, 2.5 mM DTT, 

1% NP-40, pH 7.5, containing Roche complete protease inhibitors) was added to each 

plate and incubated for 5 minutes on ice. Cells were scraped with a rubber policeman and 

transferred into a 1.5 mL microfuge tube. Cells were homogenized with 10 passes 

through a 2 mL Dounce homogenizer using the tight fitting type “B” pestle. 

Homogenates were sonicated 4 x 3 seconds at 35% power with 5 seconds in between 

each pulse and centrifuged for 15 minutes at 13,000 RPM at 4 °C. The supernatant was 

used in subsequent steps. 5% of each sample was saved for later analysis (inputs). The 

remainder of each sample was incubated with 25 µL of anti-FlagM2 agarose beads 
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(Sigma) in a small column format for 2 hours at 4 °C with gentle agitation on a nutator. 

The beads were drained and washed 7 x 1 mL with lysis buffer. Bound proteins were 

eluted by incubation for 1 hour at 4 °C followed by 10 minutes at room temperature with 

60 µL of a solution containing 3X Flag peptide (Sigma) at 0.4 mg/mL. 20 µL of 4X SDS-

PAGE loading buffer was added to the eluate, which was then boiled for 5 minutes. 

Samples were run in separate lanes on SDS-PAGE gels and analyzed by western blotting 

for the presence of Smad2 using an anti-Smad2 rabbit polyclonal antibody (Upstate) and 

for Flag-PRMT5 using a polyclonal rabbit anti-Flag antibody (Sigma). Visualization was 

performed on an infrared fluorescence scanner (Odyssey, Licor) with an anti-rabbit 

antibody conjugated to an infrared fluorophore (Licor). 
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