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U-Scores for Multivariate Data in Sports∗

Knut M. Wittkowski, Tingting Song, Kent Anderson, and John E. Daniels

Abstract

In many sport competitions athletes, teams, or countries are evaluated based on several vari-
ables. The strong assumptions underlying traditional ‘linear weight’ scoring systems (that the
relative importance, interactions and linearizing transformations of the variables are known) can
often not be justified on theoretical grounds, and empirical ‘validation’ of weights, interactions
and transformations, is problematic when a ‘gold standard’ is lacking. With µ-scores (u-scores
for multivariate data) one can integrate information even if the variables have different scales and
unknown interactions or if the events counted are not directly comparable, as long as the variables
have an ‘orientation’. Using baseball as an example, we discuss how measures based on µ-scores
can complement the existing measures for ‘performance’ (which may depend on the situation) by
providing the first multivariate measures for ‘ability’ (which should be independent of the situa-
tion). Recently, µ-scores have been extended to situations where count variables are graded by
importance or relevance, such as medals in the Olympics (Wittkowski 2003) or Tour-de-France
jerseys (Cherchye and Vermeulen 2006, 2007). Here, we present extensions to ‘censored’ vari-
ables (life-time achievements of active athletes), penalties (counting a win more than two ties)
and hierarchically structured variables (Nordic, alpine, outdoor, and indoor Olympic events). The
methods presented are not restricted to sports. Other applications of the method include medicine
(adverse events), finance (risk analysis), social choice theory (voting), and economy (long-term
profit).

KEYWORDS: statistics, performance, ability, triathlon, baseball, Olympics, soccer, Tour-de-
France, multivariate, ranking, voting
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1. INTRODUCTION 
Most traditional statistical methods for multivariate data are based on linear 
weight (lw) scores. A global score is defined as the linear combination (weighted 
average) of each variable’s score. When sufficiently detailed functional models 
are lacking, as in biomechanics or team interaction (Hughes and Bartlett 2002), 
the assumptions underlying lw scores can often not be justified on theoretical 
grounds, so that the definition of scores typically relies merely on computational 
efficiency, rather than subject matter adequacy. 
 Non-parametric methods, including u-statistics, are particularly well suited for 
ordinal data, where a one-unit difference may not carry the same ‘meaning’ across 
the range of possible values, For instance, running 10 km in 49 instead of 50 min, 
can be achieved with moderate training; improving from 39 to 40 minutes re-
quires considerable effort. 
 µ-Scores (u-scores for multivariate data) cover situations where a one-unit dif-
ference may carry a different ‘meaning’ across variables (Wittkowski et al. 2004) 
and, thus, can integrate information even if the events counted are incomparable 
or the variables’ scales differ, as long as each variable has the same ‘orientation’. 
For instance, when describing a triathlete’s fitness, a one minute difference in bik-
ing may not be directly comparable to a one minute difference in swimming. 
 Recently, µ-scores have been extended to situations, where the ‘importance’ or 
‘relevance’ of a one-unit difference can be ordered (graded) across variables, al-
though the relative importance may be impossible to quantify. Olympic gold med-
als, for instance, are more valuable than silver or bronze medals (Wittkowski 
2003), some Tour de France jerseys are more important than others (Cherchye and 
Vermeulen 2006, 2007), home runs in baseball are more valuable than triples, 
doubles, and singles (in that order), and, in soccer, defensive play is penalized by 
counting a win more than two ties. 
 Subtle differences between the concepts addressed may have important conse-
quences for the choice of a method. Baseball provides an opportunity to discuss 
the importance of distinguishing between ‘performance’, which may depend on 
the situation and ‘ability’ (‘fitness’), which does not.  
 How to score batters in baseball has given rise to extensive discussions (James 
1982). The diversity of scoring systems (Thorn et al. 1985) attests to their subjec-
tive nature. ‘Batting average’ (BA), treating all hits equally, measures a specific 
aspects of ability. i.e., BA does not depend on the context (position in the batting 
order, number of runners on bases, etc.). It’s usefulness as an overall measure of 
ability, however, is limited because it ignores that a home run is clearly more in-
dicative of a batter’s ability to hit for power than merely reaching first base. Con-
versely, home runs (HR) measure primarily the ability to hit for power, but less so 
the ability to run fast. Between these extremes, various sets of relative weights 
have been proposed ranging from 1:1:1:1 (BA) to 1:2:3:4 (‘slugging’, SLG). Even 
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the assumption that these weights should be constant, however, is unrealistic. A 
difference of a few singles may be more indicative of batting ability among 
weaker batters than among all-star players. Running speed contributes to ability, 
except for most home runs. Since the physio- and psychological factors determin-
ing a batter’s ability are not well understood, content validity of lw scoring sys-
tems cannot be established on theoretical grounds. 
 In baseball, team success is not determined by the profiles of hits, but by the 
number of batters reaching home (Albert and Bennett 2003). Thus, one might try 
to justify a particular choice of weights through empirical ‘validation’, choosing 
weights that, when applied to a sample, provide a good fit in terms of ‘least 
squares’ (l.s.) to this ‘gold standard’. However, restricting oneself to linear com-
binations and l.s. optimality virtually guarantees that the best method is missed 
(Bassett 1997). Moreover, by fitting against situation dependent performance 
measures such as runs batted in (RBI) or runs created (RC), the weights also are 
situation dependent. The extent to which a player’s hitting ability contributes to 
the team’s overall performance depends on teammate ability, ballpark design, 
game situation, etc. Finally, to obtain stable estimates, several years of data may 
need to be accumulated, so that the results also depend on changes in rules, train-
ing practices, and pharmacological interventions. Thus, when situation dependent 
assessments are sought and a gold standard exists, lw scores may appropriately re-
flect ‘performance’, but other approaches may be required to measure ability 
when gold standards are lacking. 
 We will draw on extensions to µ-scores for analyzing multivariate ordinal data 
(Wittkowski 2003), which are based on u-statistics (Hoeffding 1948) (see Section 
2.1). The triathlon example demonstrates the distinction between standard µ-
scores for ability and lw scores for performance (Section 3.1). In Section 3.2, we 
apply µ-scores to Major League Baseball data and compare non-parametric ability 
µ-scores with model-based lw performance scores. In Section 3.3, we introduce 
hierarchical µ-scores using Olympic medals as an example. This approach is ex-
tended in Section 3.4 to censored data. Using soccer as an example, we will then 
demonstrate how additional knowledge or requirements can be incorporated (Sec-
tion 3.5). Finally, we will discuss, how µ-scores can be used to derive approxi-
mate lw scores that allow us to compare athletes across events (Section 4) and 
highlight applications to areas other than sports (Section 5). 

 
2. METHODS 

2.1. U-Scores for Multivariate Data 
µ-Scores do not require any assumptions regarding the variables’ functional rela-
tionship with ‘ability’, except that if all other variables are held constant, an in-
crease in this variable is ‘good’ or ‘bad’, so that, after changing signs, if neces-
sary, all variables have the same ‘orientation’. 
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Here, k will index m subjects, each characterized by L variables. A partial order 
among profiles ( )1

', ,k k kLx x x= K  can easily be defined (Wittkowski 1992). Pro-
file k′ is higher than profile k if it is higher in some variable(s) and lower in none 
 1, , 1, ,{ }k k L k k L k kx x x x x x′ ′ ′= =< ⇔ ∀ ≤ ∧ ∃ <l K l l l K l l . (1) 
Thus, µ-scores are ‘intrinsically valid’, i.e., independent of the choice of (non-
zero) weights and (monotonous) transformations assigned to the variables. 
 With (untied) univariate data, all pairwise orderings can be decided. With mul-
tivariate data, a pairwise ordering is ambiguous (xk ~ xk′) if subject k is higher than 
subject k′ in some variable(s), but lower in others. (Variables with missing data in 
either subject are ignored). The µ-score is the number of subjects being lower mi-
nus the number of subjects being higher (w.r.t. the partial ordering (1)). It is unde-
fined if the pairwise order with respect to all other profiles is ambiguous. 

 
2.2. Computational Aspects 
Wittkowski et al. (2004) extended Deuchler’s (1914) univariate algorithm to de-
pict all pairwise orderings as a symmetric matrix (see several Figures below). Al-
ternatively, one can compute these univariate matrices first and then use matrix 
operations to combine them (Morales et al. 2008). Recently (Cherchye and Ver-
meulen 2006) proposed to replace the matrix of pairwise orderings with entries 
‘+1’, ‘0’, ‘?’, and ‘−1’, by a computational simpler ‘GE’ matrix of binary entries 

( )Ikk k ku x x′ ′= ≥ . Combining these two approaches, one can compute univariate 
GE matrices ( )Ikk k ku x x′ ′= ≥l l l  first (see function mu.PwO in Figure 1), and then 
combine them into a multivariate GE matrix (function mu.AND) describing the 
partial ordering. (R and S-PLUS packages are available from http://cran.r-
project.org and http://csan.insightful.com, respectively). 

Figure 1: Simplified code for the core functions of the muStat packages 

mu.PwO <- function(x, y=x) 
if (length(y)>1) apply(rbind(x,y),2,mu.PwO,nrow(x))  

else as.numeric(NAtoZer(outer(x[1:y],x[-(1:y)],">="))) 
 

mu.AND <- function(PwO, frml=NULL)  
if (is.null(frml)) { 
 GE  <- sq.array(PwO); AND <- GE[,,1]^0; nNA <- AND[,1]*0 
 for (i in 1:dim(GE)[3]) { 
  nNA <- nNA + diag(GEi <- GE[,,i])  
  AND <- AND * (GEi + (1-GEi)*(1-t(GEi))) } 
  return(as.numeric(AND * ((c(nNA) %o% c(nNA)) > 0))) } 
else { # … deal with the formula … (code omitted) 
 return(…) } 
 

mu.Sums <- function(PwO) { 
 GE   <- sq.matrix(PwO)  
 wght <- colSums(GE|t(GE))  
 list (score  = (rowSums(GE) - colSums(GE)) *ifelse(wght==0,NA,1), 

    weight = wght) }  
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2.3. Censored Data 

If additional information about the variables is available, more specific partial or-
derings can be defined (Wittkowski et al. 2004). While valuable in itself, having 
separate GE matrices available provides the opportunity to compute the univariate 
GE matrices differently for different variables. In particular, the GE matrix for in-
terval censored variables can be defined by requesting that for two intervals to be 
ordered, the left limit of the higher interval must be larger than the right limit of 
the lower interval. In function mu.PwO the left and right limit of an interval are 
entered x and y, respectively. Thus, the proposed approach allows for scoring 
several censored (or uncensored) variables comprehensively. 

 
2.4. Graded Variables 

Often, a simple transformation of the variables may suffice to reflect additional 
knowledge. For graded variables, where one unit impacts less in a ‘lower grade’ 
than in a ‘higher grade’ variable (Wittkowski 2003; Cherchye and Vermeulen 
2006) one can split each value of variable ( )l  (sorted by grades) into the value of 
the lowest grade variable Δℓ and incremental values of the higher grade variables 
Δℓ′=2…ℓ. 

,(1) ,(1) 1

,(2) ,(2) 1 ,(2) 2

,( ) ,( ) 1 ,( ) 2 ,( )

k k

k k k

k L k L k L k L L

x x
x x x

x x x x

= Δ
= Δ + Δ

= Δ + Δ + + Δ
K

K

 

Thus, the profile of counts sorted by grade ( ),(1) ,(2) ,( ), , ,k k k Lx x xK  can be ex-

pressed as the column sums ( ),( 1) ,( 1) ,( ), , ,k k k Lx x x≥ ≥ =K  where ,( ) ,( )
L

k kx x≥ ′=
=∑l ll l

. 
The partial ordering for graded variables 

 ( ) ( ),(1) ,( ) ,(1) ,( ) 1 ,( ) ,( ) 1 ( ) ( ), , , , L L
k k L k k L k k k kx x x x x x x x′ ′ ′ ′= ≥ ≥ = ≥ ≥< ⇔∀ ≤ ∧ ∃ <l l l l l lK K  (2) 

is equivalent to the regular ordering (1) applied to the cumulative variables xk,(≥ℓ). 
 Although each profile’s outcomes are decomposed into additive components 
Δℓ, substantially weaker assumptions are made than with lw scores, because the 
additive components can be unknown and may even differ between pairs, noting 
that for subjects far apart (subject k is lower than subject k′ for each of the vari-
ables) or incomparable (some variables higher for subject k and some variables 
higher for subject k′) the weights are irrelevant. Thus, the weights only need to be 
‘locally similar’, rather than ‘globally constant’. 
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2.5. Hierarchically Structured Variables 

A downside of µ-scores, in general, is that the number of ambiguous pair-wise or-
derings increases with the number of variables, unless the variables are highly 
correlated. Incorporating additional knowledge, can resolve some of these ambi-
guities. If the variables are related to different ‘factors’ and the order between sub-
jects A and B is ambiguous with respect to variables related to one factor (e.g., 
Nordic), unambiguous results with respect to another factor (e.g., downhill) can 
‘overwrite’ this ambiguity. The advantage of creating the matrices reflecting the 
univariate orderings first (mu.PwO) and combining them in a separate step 
(mu.AND) before compute the scores (mu.Sum), is that incorporating knowledge 
about the sub-factor hierarchy through hierarchically combining the matrices can 
reduce loss of information content (Morales et al. 2008). 

 

3. APPLICATIONS TO SPORTS 

3.1. Scoring Athletes Competing in Several Disciplines (Triathlon) 

With bi- or pentathlon, the advantage of a more objective method is obvious. The 
time or distance of skiing ‘equivalent’ to missing a ring in shooting is as subjec-
tive as is the speed of running to the distance of jumping. Even if all variables 
have the same scale (time), as in triathlon, total time measures the athlete’s rela-
tive performance to cover the particular distance (Olympic: 1500 m swimming, 40 

km biking, 10 km running) under specific environmental conditions (Paton and 
Hopkins 2005). A measure for overall ability, however, should depend neither on 
the 3:80:20 ratio in distance (≈ 1:3:2 in time spent) nor on terrain or weather. 
 Assuming that increasing speed in either category requires a comparable train-
ing effort, overall time favors bikers (≈ 1:15), because they can achieve a one-sec-
ond difference more easily than swimmers (≈ 0:25). Thus, better performing ath-
letes were found to save energy during swimming (Vleck et al. 2006). A moun-
tainous course disfavors swimmers by decreasing the proportion of time spent 
swimming. Averaging within-category rankings (O'Brien 1984), also known as 
‘range’ voting as a special case of ‘utilitarian’ voting (Sen 1986), adjusts for dif-
ferences in scales, but not relevance. By giving the same weight to each category, 
average ranks overrepresent leg muscle fitness, because running and biking 
strength are usually correlated. µ-Scores automatically account for biological cor-
relations and depend less on distance and environmental conditions, thereby scor-
ing ability more objectively, unless the character of the competition is changed 
from endurance to either sprint or ironman. 
 From Figure 2, µ-score ranks (URnk) are similar to total time ranks (SRB) 
among the ‘best’ athletes, except for Nelson, who ranks 3rd (after Starykowicz and  
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Figure 2: Ranking triathletes. Comparison of ranks based on total time with ranks 
based on u-scores (top) and computation of u-scores (bottom) 

Name Run R Swim S Bike B avg sd Sum RSB ▲ ▲URnk #<> Name Legend
Starykowicz¹ 00:19:18 2 01:03:37 1 00:35:55 1 1.3 0.6 01:58:50 1 1 30 Starykowicz¹ ▲: Sort Order
Ahlbach¹ 00:19:53 4 01:15:06 4 00:37:42 3 3.7 0.6 02:12:41 2 2 26 Ahlbach¹
Nelson* 00:26:58 14 01:09:43 2 00:41:19 6 7.3 6.1 02:18:00 3 3 21 Norvall  Run / R
Norvall 00:19:27 3 01:17:59 9 00:41:53 8 6.7 3.2 02:19:19 4 5 18 Dideum     Running Time / Rank
Dideum 00:18:23 1 01:20:13 13 00:41:18 5 6.3 6.1 02:19:54 5 5 22 Brown  Swim / S
Brown 00:22:17 5 01:16:17 6 00:43:02 11 7.3 3.2 02:21:36 6 6 18 Nelson*    Swimming Time / Rank
Angell 00:26:08 12 01:15:57 5 00:41:51 7 8.0 3.6 02:23:56 7 7 19 Angell  Bike / B
Anderson 00:24:30 10 01:16:24 7 00:44:56 15 10.7 4.0 02:25:50 8 8 16 Anderson     Biking Time / Rank
Flores 00:23:01 6 01:23:25 23 00:40:32 4 11.0 10.4 02:26:58 9 9 18 Ingstad  avg (Average)
Ingstad 00:26:46 13 01:18:39 10 00:43:46 12 11.7 1.5 02:29:11 10 10 11 Flores     avg (R, S, B)
Nemani 00:27:03 15 01:20:45 16 00:42:46 10 13.7 3.2 02:30:34 11 11 17 Nemani  sd (Std Deviation)
Masonª 00:30:42 26 01:13:02 3 00:47:21 18 15.7 11.7 02:31:05 12 12 16 Greenblatt     sd (R, S, B)
Greenblatt 00:25:59 11 01:20:14 14 00:45:54 16 13.7 2.5 02:32:07 13 13 13 Dirksen  Sum / RSB
Dragovich 00:27:58 21 01:20:35 15 00:44:18 14 16.7 3.8 02:32:51 14 14 4 Masonª    sum(Run,Swim,Bike) / Rank
Stantonª 00:36:23 32 01:19:47 11 00:36:49 2 15.0 15.4 02:32:59 15 15 1 Stantonª #<
Dirksen 00:23:21 7 01:22:16 20 00:48:28 22 16.3 8.1 02:34:05 16 16 13 Dragovich     Number of better athletes
Cranston 00:31:45 29 01:16:59 8 00:48:07 20 19.0 10.5 02:36:51 17 17 6 Murphy  #>
Murphy 00:23:56 9 01:21:10 19 00:52:57 30 19.3 10.5 02:38:03 18 19 7 Cranston     Number of worse athletes
Atwood* 00:29:48 23 01:20:54 17 00:47:27 19 19.7 3.1 02:38:09 19 19 7 Bush* #<>
Mathieson 00:31:11 28 01:19:51 12 00:48:24 21 20.3 8.0 02:39:26 20 19 7 Hermens*    No. of unambiguous athletes
Ithurralde* 00:30:48 27 01:22:52 21 00:45:59 17 21.7 5.0 02:39:39 21 21 9 Mathieson  UScr / URnk
Moschetti 00:32:19 30 01:23:41 25 00:44:00 13 22.7 8.7 02:40:00 22 23 14 Atwood*    U-score ( #< − #> )  /  Rank
Brockett* 00:28:07 22 01:23:38 24 00:49:27 24 23.3 1.2 02:41:12 23 23 10 Moschetti  
Bush* 00:32:54 31 01:27:01 29 00:42:35 9 23.0 12.2 02:42:30 24 24 15 Siphron     rank:   1.0 ..   8
Siphron 00:27:08 17 01:24:24 27 00:51:04 26 23.2 5.8 02:42:36 25 26 12 Ithurralde*    rank:   9.5 .. 16
Walters 00:27:08 17 01:24:06 26 00:52:21 29 23.8 6.5 02:43:35 26 26 14 Walters     rank: 16.5 .. 24
Henry 00:27:20 20 01:27:48 31 00:48:29 23 24.5 5.9 02:43:37 27 28 13 Henry     rank: 24.5 .. 32
Hermens* 00:23:38 8 01:29:10 32 00:50:58 25 21.7 12.3 02:43:46 28 28 13 Moon  
Moon 00:29:49 24 01:20:59 18 00:53:00 32 24.7 7.0 02:43:48 29 30 14 Brockett* ¹ Top Group
Homesteadº 00:27:20 20 01:24:35 28 00:52:59 31 26.2 6.0 02:44:54 30 30 14 Wallº ª Ill Defined Cases
Wallº 00:30:38 25 01:23:07 22 00:51:36 27 24.7 2.5 02:45:21 31 30 14 Messanaº * | RSB - URnk | > 2
Messanaº 00:27:13 18 01:27:44 30 00:52:15 28 25.3 6.4 02:47:12 32 32 16 Homesteadº º Bottom Group (H/W/M)  

Name R S B avg RSB S A N D B N A A I F N G D M S D M C H B M A M S I W M H B W M H #< #> UScr URng
Starykowicz 2 1 1 1.3 1 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 30 -30 1.0
Ahlbach 4 4 3 3.7 2 1 0 0 0 -1 0 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 25 -24 2.0
Norvall 3 9 8 6.7 4 1 0 0 0 0 0 0 0 -1 0 -1 -1 -1 0 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 20 -19 3.0
Dideum 1 13 5 6.3 5 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 -1 -1 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 18 -18 4.5
Brown 5 6 11 7.3 6 1 1 0 0 0 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 20 -18 4.5
Nelson 14 2 6 7.3 3 1 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 -1 0 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 17 -16 6.0
Angell 12 5 7 8.0 7 1 1 0 0 0 0 0 0 -1 0 -1 0 0 0 0 -1 0 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 17 -15 7.0
Anderson 10 7 15 10.7 8 1 1 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 13 -10 8.0
Ingstad 13 10 12 11.7 10 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 13 -8 9.0
Flores 6 23 4 11.0 9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 -1 0 -1 0 -1 -1 0 -1 -1 2 9 -7 10.0
Nemani 15 16 10 13.7 11 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 11 -5 11.0
Greenblatt 11 14 16 13.7 13 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 10 -4 12.0
Dirksen 7 20 22 16.3 16 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0 -1 0 -1 -1 -1 -1 -1 5 8 -3 13.0
Mason 26 3 18 15.7 12 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 2 2 0 14.0
Stanton 32 11 2 15.0 15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 15.0
Dragovich 21 15 14 16.7 14 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 -1 0 -1 -1 0 0 8 5 3 16.0
Murphy 9 19 30 19.3 18 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 5 1 4 17.0
Cranston 29 8 20 19.0 17 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 19.0
Hermens 8 32 25 21.7 28 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 19.0
Bush 31 29 9 23.0 24 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 19.0
Mathieson 28 12 21 20.3 20 1 1 1 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 9 21.0
Atwood 23 17 19 19.7 19 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 12 2 10 22.5
Moschetti 30 25 13 22.7 22 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10 22.5
Siphron 17 27 26 23.2 25 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 13 2 11 24.0
Ithurralde 27 21 17 21.7 21 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 12 25.5
Walters 17 26 29 23.8 26 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 13 1 12 25.5
Moon 24 18 32 24.7 29 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 13 0 13 27.5
Henry 20 31 23 24.5 27 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 13 27.5
Brockett 22 24 24 23.3 23 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 14 30.0
Wall 25 22 27 24.7 31 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 14 0 14 30.0
Messana 18 30 28 25.3 32 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 14 0 14 30.0
Homestead 20 28 31 26.2 30 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 16 0 16 32.0
corr_avg .68 .81 .82 1. .97 2 4 3 1 5 14 12 10 13 6 15 11 7 26 32 21 9 29 8 31 28 23 30 17 27 17 24 20 22 25 18 20 .97
corr_RSB .58 .84 .83 .97 1. 1 4 9 13 6 2 5 7 10 23 16 14 20 3 11 15 19 8 32 29 12 17 25 27 21 26 18 31 24 22 30 28 .96
corr_URng .67 .76 .81 .97 .96 1 3 8 5 11 6 7 15 12 4 10 16 22 18 2 14 30 20 25 9 21 19 13 26 17 29 32 23 24 27 28 31 1.  
Note: For simplicity and generalization to other sports, times for changing clothes between disciplines are ex-

cluded from all analyses. As they attribute for < 5 % of the total time, this yields essentially the same rank-
ing as splitting transition times 50/50 among the adjacent disciplines (results not shown). 
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Ahlbach) due to his 2nd rank in biking (B), although he ranks only 14th and 6th in 
swimming (S) and running (R), respectively. His URnk is 6th (#>:#< = 1:17) after-
Norvall (20:1), Dideum (18:0), and Brown (20:2). µ-Scores award bronze to Nor-
vall, rather than Nelson (total time) or Dideum (average rank), because Norvall’s 
profile is more ‘typical’, allowing more pairwise orders to be decided (#<>=21) 
than Nelson and Dideum (18 each).  
 Bush and Hermens have better µ-scores, at 19:24 and 19:29, respectively, 
while Atwood, Ithurralde, and Brockett score worse (22.5:19, 25.5:21, and 30:23, 
respectively). As µ-score tend to score profiles with low information content 
(Bush, Hermens) towards the median, an exceptionally fast biker/runner (Nelson) 
with the shortest total time may still loose to a more balanced athlete (Norvall). 
As exemplified by Nelson vs. Hermens, µ-scores assign less weight to biking 
(‘Bike’ time 1:15≈ ), so that swimmers (‘Swim’ time 0 : 25≈ ) and runners (‘Run’ 
time 0 : 45≈ ) are not disadvantaged. Averaging ranks (‘avg’) also has this feature, 
yet implies all disciplines being equally important. However, as biking and run-
ning times are highly correlated (0.58), but less so with swimming (0.29 and 0.25, 
respectively), this disadvantages swimmers. µ-Scores do not suffer from this fal-
lacy. Even including a variable twice would not affect the scores. 

 

3.2. Ranking Baseball Batters by Profiles of Hits 

When evaluating baseball batters, some important (and endlessly debated) ques-
tions are: 
1) Who is the better hitter?  
2) Who contributed more to the team?  
3) Who is more a ‘valuable’ player?  
A formal assessment of the third question, the Most Valuable Player (MVP) award 
is beside the point, because, according to Baseball Writers Association of America 
(BBWAA) ballot rules, “there is no clear-cut definition of what Most Valuable 
means.” With the advent of computers, methods such as the Player Game Percent-
age (Bennett 1993) became available to retrospectively assess how much a player 
contributed to his team’s success (second question), providing managers with in-
formation on his best position in the batting order for this team’s performance.  
 To pick a new player, however, a general manager needs to assess how the 
player’s ability qualifies him to play under different conditions. For specialists, 
HR or BA score ability, but a comparable method to rank versatile players is lack-
ing. Home runs indicate more batting ability than triples (3B), doubles (2B), and 
singles (1B), yet the amount for each additional base reached is a-priori unknown. 
Still, one can translate a (1B, 2B, 3B, HR) profile into counts of making it at least 
to first (BA = 1B+2B+3B+HR), second (2B+3B+HR), or third base (3B+HR) and 
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HR. µ-Scores can then be computed from profiles of these cumulated hits divided 
by at bats (AB). For simplicity, we exclude lower grad variables such as hit-by-
pitch, walks, steals, and sacrifices, thereby replacing the overall performance 
measures OPS and OPA with batting performance measures BPS and OPB. These 
measures happen to be ordered with respect to the relative weight given to hits: 

Batting Average: ( )1.0 1.0 1.0 1.0BA 1B 2B 3B HR AB= × + × + × + ×  
BA plus SLG ( )1.0 1.5 2.0 2.5BPS 1B 2B 3B HR AB= × + × + × + ×  
Offensive Performance ( )1.0 2.0 2.5 3.5OPB 1B 2B 3B HR AB= × + × + × + ×  
Slugging percentage: ( )1.0 2.0 3.0 4.0SLG 1B 2B 3B HR AB= × + × + × + ×  

From the cumulative proportions in Table 1, Barry Bonds played on a level all by 
himself. Hitting home runs in 33.8% of his hits made him the top player in all but 
the first cumulative categories ( c1B BA .341= = ), where Pujols and Helton 
scored first (.359) and second (.358), respectively. Special skills result in different 
ranks in lw scores and cumulative categories. A. Rodriguez, Ortiz, and Edmonds, 
e.g., made it less frequently to first base (.298, .288, and .275), but then often con-
tinued, making home runs in 24%>  of their hits (.077, .069, and .087) compared 
to 24%≈  for Pujols, Sheffield, and Ramirez. Helton and Mueller hit frequently 
(.358 and .326, respectively), but made home runs in 16%<  of their hits. Figure 3 
displays for each batter, sorted by µ-scores, the above four and the ‘LWTS’ 
(Thorn et al. 1985) lw score (see Section 4) as separate symbols. µ-Scores are 
also given as a straight line. 

 A close correlation of the µ-score ability measure with the performance meas-
ures for ‘typical’ players, is to be expected. ‘Specialists’ (top and bottom three ex-
cluded) is identified based on their normalized standard deviation among the 
ranks in the cumulative categories 

 ( ) ( )( ) ( ) ( )( )3
4

1B HR, ..., , 1sd rank c rank c hmean rank u n rank u+ −  (3) 

A total of 32 (top and bottom three excluded) shown as empty (first decentile, 
bold names) and gray (second decentile) circles. The empirically determined ex-
ponent ¾ compromises between a focus on the center (½) and the tails (1). 

 Figure 3 also clearly demonstrates the fundamental differences between the 
existing measures for performance and the novel approach to measure ability. The 
curvature of the relationship between LWTS scores and µ-scores for ‘typical’ bat-
ters confirms that the relationship is not linear. For both extremes, small differ-
ences in the ability score have large effects in terms of performance. Moreover, 
having a novel measure for a different concept is shown to help with identifying 
players with special skills sets. 
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Table 1: Batting statistics and scores for the top 2003 MLB batters sorted by (all 
player) µ-scores 

Player, Team AB H 2B 3B HR BA SLG OPS BPS c1B c2B c3B cHR UScr
B. Bonds, SF 390 133 22 1 45 0.341 (3) 0.749 (1) 1.278 (1) 1.090 (1) 0.341 0.174 0.118 0.115 162 (1)
A. Pujols, StL 591 212 51 1 43 0.359 (1) 0.667 (2) 1.106 (2) 1.025 (2) 0.359 0.161 0.074 0.073 154 (2)
G. Sheffield, Atl 576 190 37 2 39 0.330 (5) 0.604 (5) 1.023 (4) 0.934 (4) 0.330 0.135 0.071 0.068 145 (3)
T. Helton, Col 583 209 49 5 33 0.358 (2) 0.630 (3) 1.088 (3) 0.988 (3) 0.358 0.149 0.065 0.057 138 (4)
M. Ramirez, Bos 569 185 36 1 37 0.325 (8) 0.587 (9) 1.014 (6) 0.912 (5) 0.325 0.130 0.067 0.065 131 (5)
C. Delgado, Tor 570 172 38 1 42 0.302 (34) 0.593 (7) 1.019 (5) 0.895 (7) 0.302 0.142 0.075 0.074 122 (6)
T. Nixon, Bos 441 135 24 6 28 0.306 (28) 0.578 (10) 0.975 (9) 0.884 (9) 0.306 0.132 0.077 0.063 120 (7)
J. Guillen, Oak/Cin 485 151 28 2 31 0.311 (21) 0.569 (13) 0.928 (18) 0.880 (11) 0.311 0.126 0.068 0.064 119 (8)
A. Rodriguez, Tex 607 181 30 6 47 0.298 (43) 0.600 (6) 0.995 (8) 0.898 (6) 0.298 0.137 0.087 0.077 116 (9)
R. Hidalgo, Hou 514 159 43 4 28 0.309 (24) 0.572 (12) 0.957 (12) 0.881 (10) 0.309 0.146 0.062 0.054 112 (10)
V. Wells, Tor 678 215 49 5 33 0.317 (10) 0.550 (17) 0.909 (30) 0.867 (13) 0.317 0.128 0.056 0.049 108 (11)
A. Huff, TB 636 198 47 3 34 0.311 (22) 0.555 (15) 0.922 (22) 0.866 (15) 0.311 0.132 0.058 0.053 107 (12)
M. Ordonez, CWS 606 192 46 3 29 0.317 (11) 0.546 (19) 0.926 (21) 0.863 (16) 0.317 0.129 0.053 0.048 101 (13)
G. Anderson, Ana 638 201 49 4 29 0.315 (13) 0.541 (20) 0.885 (37) 0.856 (17) 0.315 0.129 0.052 0.045 97 (14)
D. Ortiz, Bos 448 129 39 2 31 0.288 (64) 0.592 (8) 0.961 (10) 0.879 (12) 0.288 0.161 0.074 0.069 93 (15)
D. Young, Det 562 167 34 7 29 0.297 (45) 0.537 (23) 0.909 (30) 0.835 (21) 0.297 0.125 0.064 0.052 88 (16)
G. Jenkins, Mil 487 144 30 2 28 0.296 (49) 0.538 (22) 0.913 (26) 0.834 (22) 0.296 0.123 0.062 0.057 86 (17)
L. Gonzalez, Ari 579 176 46 4 26 0.304 (31) 0.532 (26) 0.934 (17) 0.836 (20) 0.304 0.131 0.052 0.045 85 (18)
H. Blalock, Tex 567 170 33 3 29 0.300 (39) 0.522 (35) 0.872 (43) 0.822 (28) 0.300 0.115 0.056 0.051 84 (19)
B. Boone, Sea 622 183 35 5 35 0.294 (52) 0.535 (25) 0.902 (32) 0.830 (25) 0.294 0.121 0.064 0.056 84 (19)
B. Mueller, Bos 524 171 45 5 19 0.326 (6) 0.540 (21) 0.938 (16) 0.866 (14) 0.326 0.132 0.046 0.036 83 (21)
C. Jones, Atl 555 169 33 2 27 0.305 (30) 0.517 (37) 0.920 (24) 0.822 (29) 0.305 0.112 0.052 0.049 81 (22)
M. Giles, Atl 551 174 49 2 21 0.316 (12) 0.526 (30) 0.917 (25) 0.842 (18) 0.316 0.131 0.042 0.038 79 (23)
N. Garciaparra, Bos 658 198 37 13 28 0.301 (36) 0.524 (32) 0.870 (44) 0.825 (27) 0.301 0.119 0.062 0.043 79 (23)
A. Soriano, NYY 682 198 36 5 38 0.290 (59) 0.525 (31) 0.863 (49) 0.815 (32) 0.290 0.116 0.063 0.056 75 (25)
J. Payton, Col 600 181 32 5 28 0.302 (35) 0.512 (43) 0.865 (47) 0.813 (34) 0.302 0.108 0.055 0.047 73 (26)
S. Sosa, ChC 517 144 22 0 40 0.279 (83) 0.553 (16) 0.911 (27) 0.832 (23) 0.279 0.120 0.077 0.077 72 (27)
J. Edmonds, StL 447 123 32 2 39 0.275 (93) 0.617 (4) 1.002 (7) 0.893 (8) 0.275 0.163 0.092 0.087 71 (28)
P. Wilson, Col 600 169 43 1 36 0.282 (76) 0.537 (24) 0.880 (39) 0.818 (31) 0.282 0.133 0.062 0.060 70 (29)
B. Giles, Pit/SD 492 147 34 6 20 0.299 (41) 0.514 (39) 0.941 (14) 0.813 (35) 0.299 0.122 0.053 0.041 69 (30)
S. Rolen, StL 559 160 49 1 28 0.286 (71) 0.528 (28) 0.910 (29) 0.814 (33) 0.286 0.140 0.052 0.050 68 (31)
L. Berkman, Hou 538 155 35 6 25 0.288 (63) 0.515 (38) 0.927 (19) 0.803 (39) 0.288 0.123 0.058 0.046 65 (32)
C. Beltran, KC 521 160 14 10 26 0.307 (26) 0.522 (34) 0.911 (27) 0.829 (26) 0.307 0.096 0.069 0.050 62 (33)
J. Bagwell, Hou 605 168 28 2 39 0.278 (85) 0.524 (33) 0.897 (34) 0.802 (40) 0.278 0.114 0.068 0.064 62 (33)
J. Kent, Hou 505 150 39 1 22 0.297 (47) 0.509 (45) 0.860 (52) 0.806 (38) 0.297 0.123 0.046 0.044 59 (35)
E. Chavez, Oak 588 166 39 5 29 0.282 (75) 0.514 (40) 0.864 (48) 0.796 (43) 0.282 0.124 0.058 0.049 59 (35)
M. Lowell, Fla 492 136 27 1 32 0.276 (91) 0.530 (27) 0.881 (38) 0.807 (37) 0.276 0.122 0.067 0.065 59 (35)
J. Posada, NYY 481 135 24 0 30 0.281 (78) 0.518 (36) 0.922 (22) 0.798 (41) 0.281 0.112 0.062 0.062 58 (38)  

Legend: AB .. HR: batting statistics, Source: http://sports.espn.go.com/mlb/stats/batting?league=mlb, BA, 
SLG, BPS, OPB: linear weight scores (ranks); shading: (above the 10, 50, and 90 percentile), c1B=BA, 
c2B=(2B+3B+HR)/AB), c3B=(3B+HR)/AB, and cHR=HR/AB), UScr: u-scores (ranks) 
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Figure 3: Correlation between µ- and z-transformed lw scores (BA (×), SLG, BPS, 
OPB, LWTS) among 2003 MLB Batters (see Table 1 for sources and text for details) 
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3.3. Ranking Countries by Olympic Medal Profiles 

At the 2002 Winter Olympics, 25m =  countries won at least one medal. Let the 
number of gold, silver, and bronze medals for country kC  be kg , ks , and kb , re-
spectively. Commonly used weighting schemes assign identical weights to all 
types of medals, linear weights, e.g., ( 1b = , 2s = , 3g = ), give gold medals an 
additional bonus point, or rank countries first by gold medals using other medals 
only to break ties. Rewriting the latter hierarchical schemes shows it to be a spe-
cial case of lw schemes where a ceiling x⎡ ⎤⎢ ⎥  is an arbitrary integer larger than x :  

Identical:  IScr g s b= + +  
Linear:  3 2 1LScr g s b= + +  
Exponential:  2 1 02 2 2EScr g s b= + +  
Hierarchical:   ( ) ( )max max maxk k k k k kHScr b s g b s b= + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥  

In Table 2, the ranks IRg, LRg, ERg, and HRg, based on these weighting schemes 
agree only for the most extreme cases, Germany, Slovenia, and Belarus. Austria 
and Finland are ranked 126:  with IRg or 812:  with HRg. Countries differ by as 
much as dRg = 6.5 (Austria) and 7.0 (Sweden) ranks. Comparing the U.S. to 
Norway highlights a shortcoming of hierarchical weights. To have a single gold 
medal more than the U.S. is sufficient for Norway to lead. µ-scores agree with the 
other scores that the U.S., with almost twice as many silver and bronze medals, 
should score better. For Estonia vs. Sweden, however, one might argue that one 
silver and three bronze medals do not compensate for the lack of a gold medal, 
i.e., hierarchical weights are more appropriate than linear scores. Again, µ-scores 
agree with the ‘common sense’ assessment. As these examples show, any fixed set 
of weights to reflect the higher value of gold vs. bronze medals may be difficult to 
justify, while µ-scores, being more flexible, cover a ‘middle ground’. 

 A partial ordering can be depicted as a lattice, i.e., a directional graph, where 
nodes (countries) are connected by edges whenever their pairwise ordering can be 
decided. Unlike trees, lattices can have loops. In Figure 4, one path from Bulgaria 
to Finland passes Sweden, the other Britain, Estonia, Korea, and Croatia. Switzer-
land has more gold medals than Austria, so that it would rank higher with hierar-
chical weights, while Austria has more medals in total, so that it would rank 
higher with identical weights. As the order depends on the choice of weights, 
these two countries are not connected by a line. 

 As with lw scores, countries can be tied (having the same rank) but µ-score 
ties come in two flavors (Wittkowski 1998). Australia and Spain, as well as Italy 
and France, have identical rows of signs (exact tie). Great Britain also has an µ-
score of 18.0, but its pairwise orderings include Bulgaria and Estonia (inexact tie). 
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Table 2: Medals won at the 2002 Winter Olympics by country with scores and ranks 
for u-statistics vs. various linear model weighting schemes (countries sorted by u-
scores) 
Country  G s b IScr IRg LScrLRg EScr ERg HScr HRg  MnRg MxRg dRg
Germany 12 16 7 35 1.0 75 1.0 87 1.0 121607 1.0 1.0 1.0 .0
Norway 11 7 6 24 3.0 53 3.0 64 3.0 110706 2.0 2.0 3.0 1.0
U.S.A. 10 13 11 34 2.0 67 2.0 77 2.0 101311 3.0 2.0 3.0 1.0
Canada 6 3 8 17 4.0 32 5.0 38 5.0 60308 5.0 4.0 5.0 1.0
Russia 6 6 4 16 5.5 34 4.0 40 4.0 60604 4.0 4.0 5.5 1.5
Italy 4 4 4 12 7.0 24 7.0 28 6.5 40404 7.0 6.5 7.0 .5
France 4 5 2 11 8.5 24 7.0 28 6.5 40502 6.0 6.0 8.5 2.5
Austria 2 4 10 16 5.5 24 7.0 26 8.0 20410 12.0 5.5 12.0 6.5
Switzerland 3 2 6 11 8.5 19 9.5 22 9.5 30206 10.0 8.5 10.0 1.5
Netherlands 3 5 0 8 10.5 19 9.5 22 9.5 30500 9.0 9.0 10.5 2.5
Finland 4 2 1 7 12.0 1711.0 21 11.0 40201 8.0 8.0 12.0 4.0
China 2 2 4 8 10.5 1412.0 16 12.0 20204 13.0 10.5 13.0 2.5
Croatia 3 1 0 4 14.5 1113.0 14 13.0 30100 11.0 11.0 14.5 3.5
Korea 2 2 0 4 14.5 1014.0 12 14.0 20200 14.0 14.0 14.5 .5
Estonia 1 1 1 3 17.0 617.0 7 18.0 10101 17.0 17.0 18.0 1.0
Sweden 0 2 4 6 13.0 815.0 8 16.0 204 20.0 13.0 20.0 7.0
Australia 2 0 0 2 21.0 617.0 8 16.0 20000 15.5 15.5 21.0 5.5
Spain 2 0 0 2 21.0 617.0 8 16.0 20000 15.5 15.5 21.0 5.5
Great Britain 1 0 2 3 17.0 519.0 6 19.0 10002 18.0 17.0 19.0 2.0
Bulgaria 0 1 2 3 17.0 420.5 4 21.0 102 21.0 17.0 21.0 4.0
Czech Rep. 1 0 1 2 21.0 420.5 5 20.0 10001 19.0 19.0 21.0 2.0
Poland 0 1 1 2 21.0 322.5 3 22.5 101 22.5 21.0 22.5 1.5
Japan 0 1 1 2 21.0 322.5 3 22.5 101 22.5 21.0 22.5 1.5
Slovenia 0 0 1 1 24.5 124.5 1 24.5 1 24.5 24.5 24.5 .0
Belarus 0 0 1 1 24.5 124.5 1 24.5 1 24.5 24.5 24.5 .0 
Legend: g/s/b: Number of gold,  silver, and bronze medals, respectively. IScr/IRg: Scores and ranks for iden-

tical (1:1:1) weighting. LScr/LRg: Scores and ranks for linear (3:2:1) weighting. EScr/ERg: Scores and 
ranks for exponential (4:2:1) weighting. HScr/HRg: Scores and ranks for hierarchical (10000:100:1) 
weighting. MnRg/MxRg: Minimum and maximum among the four ranks. dRg: MxRg – MnRg 

Figure 4: Lattice 
structure of coun-
tries by Salt Lake 
City medal profiles 
(see Table 2 for 
data). Connecting 
lines indicate the 
pairwise orderings 
that are independ-
ent of the choice of 
the lw scoring sys-
tem. Countries dis-
played next to 
each other, e.g., 
France and Italy, 
are equivalent with 
respect to u-
scores, i.e., they 
have the same 
pairwise orderings 
with respect to all 
other countries. 
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One limitation of µ-scores is that information content tends to decrease as the 
number of variables increases, because it becomes more likely that at least one 
pair of variables has orderings with different directions. In the extreme, all pair-
wise orderings for a given subject could become ambiguous, rendering the result-
ing score for this subject non-informative. On the other hand, some variables 
could be related to the same ‘factor’, i.e., are highly correlated with each other. 
For instance, several of the twelve cross-country disciplines, the 10 downhill dis-
ciplines, and the 10 speed skating disciplines are often won by the same athlete or 
country. In Table 3, the Netherlands and Korea won all their eight medals in speed 
skating and short-track skating, respectively, while Croatia won medals in down-
hill skiing only. Italy and Switzerland, in contrast, won medals in at least three of 
the main categories (Nordic, alpine, outdoor, and indoor).  
Table 3: Number of medals (G: gold, S: silver, B: bronze) by country and hierarchi-
cal structure of disciplines. Nordic (N): Cross-Country (CC: 12), Combination (Cb: 

4), Biathlon (Bi: 8), Alpine (A: 10): Downhill (DH: 10), Freestyle (FS: 4), Snowboard 
(SB: 4), Outdoor (O): Bobsleigh (BS: 3), Luge (Lg: 3), Skeleton (Sk: 2), Ski Jumping 
(SJ: 2), Indoors (I): Curling (Cu: 2), Figure Skating (FS: 4), Ice Hockey (IH: 2), Short 
Track (SH: 8), Speed Skating (SS: 10) 
Country N-CC N-Cb N-Bi A-DH A-FS A-SB O-BS O-Lg O-Sk O-SJ I-Cu I-FS I-IH I-SH I-SS

G S B G S B G S B G S B G S B G S B G S B G S B G S B G S B G S B G S B G S B G S B G S B G
Germany 1 2 1 1 3 3 5 1 1 2 1 1 2 2 1 3 3 2
Norway 3 4 3 4 2 2 1 1 1 1 2
U.S. 2 3 2 1 2 1 1 1 1 1 2 1 1 2 2 1 1 1 3 1 4
Canada 1 1 1 1 1 1 2 2 1 3 1 2
Russia 3 3 1 1 2 2 3 1
Italy 2 2 1 1 1 1 1 1 1 1
France 1 1 2 2 1 1 2 1
Austria 1 1 3 1 2 2 4 1 1
Switzerland 1 1 1 1 1 1 1 2 1 1
Netherlands 3 5
Finland 3 1 1 1 1
China 1 2 2 3
Croatia 3 1
Korea 2 2
Estonia 1 1 1
Sweden 2 1 1 1 1
Australia 1 1
Spain 2
Great Britain 1  1 1
Bulgaria 1 1 1
Czech 1 1
Poland 1 1
Japan 1 1
Belarus 1
Slovenia 1

12 13 11 4 4 4 8 8 8 10 10 10 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 5 3 4 2 2 2 8 8 8 10 10 10  
 

Figure 5 shows how various levels of this hierarchical structure can be repre-
sented using functions from the muStat library. With increasing levels of hierar-
chical order, information content increases from 7.216 to 18.386, indicating the 
validity of the hierarchical structure. (In fact, the level of information content as-
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sociated with hierarchical structures can be used to determine the best ‘factor 
structure’, in cases where the prior information does not suffice to determine the 
relevant ‘factors’). Not surprisingly, Italy and Switzerland rank higher in the hier-
archical model, while the Netherlands, Korea, and Croatia rank lower. 
 
# G <- g, S <- g+s, B <- g+s+b  # gold /silver/bronze 
 
U0 <- mu.score(IR) # equivalent to: 
U0 <- mu.score(IR,"(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,...,45)" 
 

U1 <- mu.score(IR,"("%&%  
 "(1,2,3),(4,5,6),(7,8,9)," %&%  
 "(10,11,12),(13,14,15),(16,17,18)," %&% 
 "(19,20,21),(22,23,24),(25,26,27),(28,29,30)," %&% 
 "(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45)” 
 %&% ")") 
 

U2 <- mu.score(IR,"("%&%  
 "((1,2,3),(4,5,6),(7,8,9))," %&%  
 "((10,11,12),(13,14,15),(16,17,18))," %&% 
 "((19,20,21),(22,23,24),(25,26,27),(28,29,30))," %&% 
 "((31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45)),"  
 %&% ")") 
 
Figure 5: Wrapper (mu.score) around the functions of Figure 1 to allow hierarchi-
cally structured variables to be represented. 

 
3.4. Life-time performance of cyclists 
Each summer, the question is raised, who is the best Tour-de-France cyclist of all 
times and who may take the helm soon. Innumerable rankings, each one more 
subjective than the others, have been proposed, their large number attesting to the 
fact that an answer is not easily found. Based on how often a cyclist has carried 
the yellow jersey along Champs-Elysées to the goal, Lance Armstrong with 7 
wins is the best Tour cyclist of all times. Jacques Anquetil, Bernard Hinault, Mi-
guel Indurain, and Eddy Merckx, all won ‘only’ 5 times. However, other criteria 
also play a role in determining the ability of a cyclist. Most cyclometricians will 
include the number of other victories (e.g., green and red polka dot jerseys). Is 
Armstrong with his 7 final and 22 day victories really better than Merckx with 5 
yellow jerseys, 34 day victories, 3 green, and 2 red polka dot jerseys? 
 Assuming the order: yellow jersey (Y) > second place in the final results (2) > 
third place in the final results (3) > stage victory (S) > green (G) or red (R) polka 
dot jersey (the order of the latter unknown), we account for the different impor-
tance by defining cumulative variables:  
 cY <- nY 
 c2 <- nY + n2 
 c3 <- nY + n2 + n3 
 cS <- nY + n2 + n3 + nS 
 cR <- nY + n2 + n3 + nS + nR 
 cG <- nY + n2 + n3 + nS + nG 
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With this, we can again describe the scores by the formulae used with the muStat 
function mu.score(x,frml). With censored data, mxY is either Y (retired cyclist) 
or 99 (active cyclist): 
 cCurr <- ”cY, c2, c3, cS, cG, cR” 
 cCens <- ”[cY:mxY),[c2:mx2),[c3:mx3),[cS:mxS),[cG:mxG),[cR:mxR)” 

The top part of Figure 6 shows the top 18 cyclists. AI µ-scores rank cyclists by the 
jerseys already won. The first place is shared between Armstrong and Hinault. 
Both dominate 524 cyclists, but are dominated by none. Merckx, who ranks third, 
is also dominated by nobody (not even Armstrong or Hinault), but dominates two 
fewer cyclists (Zoetemelk, Ullrich). Anquetil ranks fourth (dominating 520 cy-
clists but being dominated by Armstrong, Hinault and Merckx). 
 For active cyclists (bottom part of Figure 6), the final counts are not yet 
known. Still, they can be scored by how many cyclists they are already domineer-
ing. By AI µ-scores, Eric Zabel tops the active cyclists by dominating 477 cyclists 
(active cyclists cannot be dominated). The corresponding scores for ‘retired’ cy-
clists appear in the last column under ‘H’. 
 

Rnk 
(adj) 

Cyclist 
(Year of Birth) Ylw 2nd 3rd Stg Grn Red

“worse” 
Cyclists 

“better” 
Cyclists 

µ-score 
AI  ( R / H ) 

1 Armstrong, Lance 7 0 0 22 0 0 524  (526/479)  0  (  1/  0) 524  (525/479) 
1 Hinault, Bernard 5 2 0 28 1 1 524  (526/479)   0  (  1/  0) 524  (525/479) 
3 Merckx, Eddy 5 1 0 34 3 2 522  (524/477)   0  (  3/  0) 522  (521/477) 
4 Anquetil, Jacques 5 0 1 16 0 0 520  (522/475)   3  (  4/  3) 517  (518/472) 
5 Indurain, Miguel 5 0 0 12 0 0 516  (521/472)   4  (  5/  5) 512  (516/467) 
6 Zoetemelk, Joop 1 6 0 10 0 0 513  (520/469)   2  (  6/  3) 511  (514/466) 
7 Van Impe, Lucien 1 1 3 9 0 6 511  (519/467)   4  (  7/  5) 507  (512/462) 
8 Ullrich, Jan 1 5 1 7 0 0 508  (518/464)   3  (  8/  4) 505  (510/460) 
9 Thévenet, Bernard 2 1 0 9 0 0 509  (517/465)   6  (11/  7) 503  (506/458) 
9 Fignon, Laurent 2 1 0 9 0 0 509  (517/465)   6  (11/  7) 503  (506/458) 

11 LeMond, Greg 3 1 1 5 0 0 504  (512/460)   5  (14/  6) 499  (498/454) 
12 Bahamontès, Federico 1 1 1 7 0 6 504  (511/460)   7  (16/  8) 497  (495/452) 
12 Bobet, Louison 3 0 0 7 0 0 503  (511/459)   6  (16/  7) 497  (495/452) 
14 Poulidor, Raymond 0 3 5 7 0 0 496  (509/453)   0  (17/  2) 496  (492/451) 
15 Gaul, Charly 1 0 2 10 0 2 501  (508/457)   7  (18/  8) 494  (490/449) 
16 Janssen, Jan 1 1 0 7 3 0 498  (507/454) 10  (19/11) 488  (488/443) 
17 Pantani, Marco 1 0 2 8 0 0 498  (506/454) 11  (21/12) 487  (485/442) 
18 Gimondi, Felice 1 1 0 7 0 0 495  (504/451) 14  (22/15) 481  (482/436) 

      2 (1) Contador, Alberto (1982) ≥1 ≥0 ≥0 ≥1 ≥0 ≥0 458  (517/499) n/a  (10/  2) 458  (507/497) 
5 (3) Boonem, Tom (1980) ≥0 ≥0 ≥0 ≥6 ≥1 ≥0 442  (503/479) n/a  (18/10) 442  (485/469) 
3 (2) Basso, Ivan (1977) ≥0 ≥1 ≥1 ≥1 ≥0 ≥0 455  (498/479) n/a  (11/24) 455  (487/455) 
3 (5) Klöden, Andreas (1975) ≥0 ≥1 ≥1 ≥0 ≥0 ≥0 455  (490/471) n/a  (12/28) 455  (478/443) 
1 (4) Zabel, Erik (1970) ≥0 ≥0 ≥0 ≥12 ≥6 ≥0 477  (483/477) n/a  (  4/42) 477  (479/435) 
6 (6) Evans, Cadel (1977) ≥0 ≥1 ≥1 ≥2 ≥2 ≥2 435  (488/459) n/a  (22/24) 435  (466/435) 
6 (6) Pereiro, Oscar (1977) ≥0 ≥1 ≥1 ≥2 ≥2 ≥2 435  (488/459) n/a  (22/24) 435  (466/435) 

 

Legend: 
 AI (age-independent): top:  mu.score(x,cCurr) bottom:  mu.score(x,cCens) 
 R (rescoring): mu.score(cbind(mu.score(x,cCens),YOB)) 
 H (hierarchical): mu.score(cbind(x,YOB), “(“ %&% cCens %&% ”), cYOB”) 
 

Figure 6: Top life-time Tour-de-France cyclists 1953–2006 (top), top active cyclists 
2007 (bottom) and their age-independent µ-scores (see text for details) 
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Clearly, age belongs to a different ‘factor’ than the wins. Thus, adding year-of-
birth as another variable in the same category as the various wins may cause loss 
of information content. The ‘R’ µ-scores result from the naïve approach of rescor-
ing the performance scores together with age. When age is accounted for, Conta-
dor takes the helm from Zabel, because he is 12 years younger. However, this ap-
proach has drawbacks, as differences in information content are not accounted for. 
 Hierarchical ‘H’ µ-scores adjust for age without causing this fallacy. Again, 
Contador ranks first among the active cyclists. Still, with only two wins by Conta-
tor, these results have to be taken with a grain of salt, yet the young Contador 
(U.S. team Discovery, current life-time rank: 83 / age-adjusted censored rank: 1) 
may become the next life-time leader when he returns to the Tour in the 2009 sea-
son. 
 
3.5. Scoring Soccer Teams 
With additional information available beyond the variables’ grading and hierar-
chy, µ-scores can be easily extended. In soccer, one tries to discourage conserva-
tive play by scoring a win higher than two ties. Traditionally, from the 1894 
American League of Professional Football to the current FIFA World Rankings, 
this aim has been achieved by assigning 3 :1: 0  weights to wins, ties, and losses. 
µ-Scores based on cumulating wins w and ties t among n games as 2 /w n  and 
( )2w t n+  would more closely resemble the concept of a tie counting <50% of a 
win, rather than specifying a-priori that it should be exactly 33%. Still, when ap-
plied to a set consisting of all 15 possible outcomes of four games, µ-scores based 
on this transformation are equivalent to the 3 :1: 0  lw scores, except that some 
ties are broken, giving a slightly higher advantage to wins (Figure 7).  
 

Figure 7: Computa-
tion of soccer u-
scores (2 ties < 1 win) 
based on the cumu-
lative counts 2W 
(2 × #wins) and 2W+T 
(… plus ties) and 
comparison with 
soccer lw scores 
(tie = 1/3 win) based 
on the sum 3W=T 
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(0,0,4) 0 0 4 0.00 -14 0.00 0.00 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 14 -14
(0,1,3) 0 1 3 0.25 -12 0.00 0.25 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 13 -12
(0,2,2) 0 2 2 0.50 -10 0.00 0.50 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 12 -10
(0,3,1) 0 3 1 0.75 -7 0.00 0.75 1 1 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 10 -7
(1,0,3) 1 0 3 0.75 -7 0.50 0.50 1 1 1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 9 -6
(0,4,0) 0 4 0 1.00 -3 0.00 1.00 1 1 1 1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 4 8 -4
(1,1,2) 1 1 2 1.00 -3 0.50 0.75 1 1 1 1 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 5 8 -3
(1,2,1) 1 2 1 1.25 0 0.50 1.00 1 1 1 1 1 1 1 0 -1 -1 -1 -1 -1 -1 -1 7 7 0
(1,3,0) 1 3 0 1.50 3 0.50 1.25 1 1 1 1 1 1 1 1 0 0 -1 -1 -1 -1 -1 8 5 3
(2,0,2) 2 0 2 1.50 3 1.00 1.00 1 1 1 1 1 1 1 1 0 0 -1 -1 -1 -1 -1 8 5 3
(2,1,1) 2 1 1 1.75 6 1.00 1.25 1 1 1 1 1 1 1 1 1 1 0 -1 -1 -1 -1 10 4 6
(2,2,0) 2 2 0 2.00 8 1.00 1.50 1 1 1 1 1 1 1 1 1 1 1 0 -1 -1 -1 11 3 8
(3,0,1) 3 0 1 2.25 10 1.50 1.50 1 1 1 1 1 1 1 1 1 1 1 1 0 -1 -1 12 2 10
(3,1,0) 3 1 0 2.50 12 1.50 1.75 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -1 13 1 12
(4,0,0) 4 0 0 3.00 14 2.00 2.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 14 0 14  

 

Thus, as in the case of LWTS weights in baseball, µ-scores provide a formal justi-
fication for lw scores based on intuition and experience, yet have significant ad-
vantages. In practice, however, one might want to take advantage of µ-scores be-
ing adaptive to the particular configuration of observed outcomes. 
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4. DISCUSSION 
For Olympic medals (Section 3.3), Morton (2002) suggested a parametric solution 
to account for population size P and gross domestic product D. Fitting u-scores 
based on his model ( ) ( )( )u G S B P Dπ δγ + σ +  against ( ), , , ,µ G S B P D P− −  for 

the Summer Olympics 2000 yields : :1 5 : 2 :1γ σ ≈ , and 1 2π ≈ δ ≈ . Ignoring the 
countries’ characteristics ( 0π = δ = ) yields 4 : 2 :1 (results not shown), the (expo-
nential) weights suggested in Table 2. The counterintuitive result (Morton 2002) 
that gold medals carry no more weight than silver medals ( 2 : 2 :1, 1:1:1 before 
removing the two ‘outliers’ Cuba and India) shows how even small deviations 
from model assumptions affect parameter estimates when the “goodness-of-fit 
surface [is] flat” (ibid).  
 As mentioned in Section 3.1, µ-scores could also be used in biathlon to deter-
mine whether the current penalties of 1 min or 150 m for each ring missed should 
be adjusted. The triathlon example shows how µ-scores fit into the current discus-
sion regarding voting methods. As with utilitarian voting, dropping the require-
ment of “independence of irrelevant alternatives” (IIA) avoids the consequences 
of Arrow’s (1950) improbability theorem. In addition, µ-scores avoid the need for 
the subjective choice of constant weights to be assigned to the variables.  
 Baseball (Section 3.2) is perhaps unique for the effort spent on analyzing the 
contribution of each type of individual success (hit) to the performance of a team. 
Lindsey (1963) analyzed 373 games during 1959/60. His tables yield estimates for 
the expected HR:3B:2B:1B  run value ratio of 3.13:2.35:1.80:1.00 . Thorn and 
Palmer (1985) then developed the LWTS model, which included how many runs 
above average each player contributed indirectly. Using 1901–1977 data, the ratio 

3.043:217:2:1.739:1.000 , the so-called LWTS model (Albert and Bennett 
2003), became a gold standard for measuring performance.  
 A general manager looking to fill the leadoff or number three/cleanup position 
in the batting order, however, would still base his decision on the specialty ability 
measures BA or HR, respectively. Similarly when comparing different candidate 
players he would be less interested in their performance with the previous team 
than in their ability to contribute to the new team. Thus, he would need a measure 
of overall ability when looking for a hitter to be placed later in the batting order, 
where the loading of the bases is less predictable. Developing such a multivariate 
measure for ability, however is fundamentally different from developing perform-
ance measures such as the LWTS, because no gold standard (RC, RBI) is avail-
able against which the model could be fitted empirically. µ-Scores are the first in-
trinsically valid scoring system to generalize univariate measures of ability (BA, 
HR) to multivariate measures of ability, thereby measuring a fundamentally dif-
ferent concept than the existing performance measures. 
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Still, as ability contributes substantially to performance, ability µ-scores and per-
formance lw scores should correlate well, except for players with unusual skills. 
Removing the 32 players with specific skills (white and gray circles in Figure 3) 
results in a nearly perfect rank correlation. The general advantage of nonparamet-
ric approaches in populations whose heterogeneity is not accounted for in the 
model explains, in part, why µ-scores are at least comparable to LWTS scores for 
typical subjects, even though the only information used is the grading of the vari-
ables and the current year’s data. The reason for the µ-scores to be more robust is 
that profiles are only compared to profiles that are, in fact, comparable. With µ-
scores, a profile with many singles, but few home runs has an ambiguous pairwise 
ordering to a profile with few singles, but many home runs. With lw scores, in 
contrast, all profiles are forced to have a projection onto a one-dimensional scale 
before the comparisons are made. The price paid for having all pairwise compari-
sons contribute is that the comparisons between lw scores assigned to incompara-
ble profiles depend heavily on the choice of the weights used. 
 Due to the high correlation between µ- and LWTS scores of 0.986, an evalua-
tion of non-parametric ability scores can draw upon the model based performance 
scores. Among better batters (Figure 3, left), players with specific skills (Helton, 
A. Rodriguez, Ortiz, etc.) contribute more to team success (performance) than 
their overall ability would suggest, because they are strategically placed in the 
batting order. Weak batters with specific skills (Castillo and Pierre with their 
>.300  BA, J. Hernandez and Clayton with their >.023  HR, Figure 3, right), con-
tribute below their overall ability, because they often end up in a position where a 
more balanced skill set is needed.  
 To ensure the significance of our empirical validation, we computed the ‘spe-
cial skills’ index (3) for 2003 and 2004. The 113 players who played in both sea-
sons, had a correlation of 0.45 (p = .0002). As the outliers identified are at least in 
part due to specific skills exhibited over several years, the deviation between 
LWTS and µ-scores could be used to identify players with exceptional skills early 
in their career and place them accordingly in the batting order. 
 The Tour-de-France data provides an opportunity to discuss µ-scores in the 
context of the Impossibility Theorem (Arrow 1950). By definition, µ-scores are 
democratic and universal (all variables and all data contribute), surjective (all 
rankings are possible), deterministic, and monotonic (improving any of the out-
comes cannot worsen this subject’s score). The reason for µ-scores to be possible 
is that the requirement of ‘independent of irrelevant alternatives’ does not apply. 
Consider, for instance, Armstrong and Hinault, who are tied for the first place in 
Figure 6. Their cumulative profiles are 
 Name Ylw, 2nd, 3rd, Stg, Grn, Red 

 Armstrong   7,   7,   7,  29,  29,  29 
 Hinault   5,   7,   7,  35,  36,  36 
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A hypothetical cyclist with 33 stage wins would be dominated by Hinault only 
and, thus, ‘break the tie’ in his favor. On the other hand, a hypothetical cyclist 
with 6 yellow tricots would break the tie in favor of Armstrong. Would either of 
these cyclists be ‘irrelevant’? As have others before (Harsanyi 1953; Callander 
and Wilson 2006) we would argue that an additional cyclist with 6 yellow tricots 
or 33 stage wins would ‘devalue’ the 5 yellow tricots of Hinault or the 29 (im-
plied) stage wins of Armstrong, respectively, because the more cyclists achieve a 
a large number of a particular type of wins, the less exceptional this achievement 
becomes. Thus, the ability of additional cyclists to affect the previous order of cy-
clists is, in fact, a desirable feature. 
 Of course, no statistical approach is a panacea. As there can be no universally 
optimal scoring system, one needs to match scoring systems to the particular ob-
jectives, e.g., use univariate scores (BA, HR) for specialists, LWTS scores for 
overall performance, and µ-scores for overall ability. Moreover, being based on 
pairwise orderings within a sample, µ-scores do not provide an absolute measure 
of ability that could be used across competitions. Still, as we have demonstrated 
in the Olympics and soccer examples, µ-scores can be used as a ‘gold standard’ to 
justify a particular lw score, which then could be used as an absolute measure of 
ability across populations (years, regions, …).  
 Another seeming weakness is that µ-scores based on many poorly correlated 
variables have little information content. This problem can be ameliorated if the 
variables can be grouped hierarchically into several categories and sub-categories 
of better correlated variables. In fact, information content could be used to deter-
mine which of several hypothetical partial orderings is most adequate (Morales et 
al. 2008; Diana et al. submitted). 
 Still, the more assumptions about the underlying model are being made, the 
more the resulting scores depend on the accurateness of these assumptions. µ-
Scores, however, at least have the advantage over (more-or-less) arbitrary weights 
that the assumptions being made are easily explained in terms of the underlying 
model. On the other hand, lw scores can have advantages over µ-scores if the 
choice of linear weights can be substantiated, as in the LTWS scores for baseball 
performance. Thus, the choice between traditional model-based vs. the new non-
parametric scores will ultimately rely on the confidence in making strong model 
assumptions. 

 
5.  CONCLUSIONS 

Multivariate ordinal data (multiple ordered categorical ratings) are frequently ob-
served to assess semi-quantitative characteristics. Both traditional approaches for 
combining different measures into a utility function and ‘utilitarian voting’ require 
that a relative weight is assigned to each measure. However, when the choice of 
such weights is not easily justified, any analysis based on such a utility function 
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may be misleading. In decision tree based methods, objects are separated by the 
most significant criterion first, and each subset is then separated by a subset-
specific variable next in the hierarchy. This approach, of which CART (Breiman 
1984) is an example, has the advantage of resulting in easily communicated deci-
sion strategies. As we have demonstrated, however, these strategies are merely 
special cases of linear weight functions with extreme weights. 
 With µ-scores, no additional assumptions need to be made and validated, as 
long as each variable increases (or decreases) with the unobservable ‘latent’ fac-
tor. By accumulation over various subsets of variables, µ-scores can be general-
ized to ‘graded’ count variables. The proposed scores are valid by construction 
and, thus, no empirical evaluation is needed. In particular, no assumptions need to 
be made regarding the relative importance of or the correlation among the vari-
ables. Relative importance and correlation do not even need to be constant, but 
may vary with the level of the underlying, often unknown, latent factor. Finally, 
adding a highly correlated variable is unlikely to affect any of the existing pair-
wise orderings and, thus, has little or no effect on the scores. 
 If additional knowledge about the nature of the variables is available, this 
knowledge can be easily incorporated, either by modifying the transformation, by 
choosing a different rule to determine pairwise orderings, or be reflecting a hier-
archical factor structure. Of course, if the functional relationship between some 
variables should be known, latent variable models could be used to reduce the di-
mensionality prior to computing u-scores (Bartholomew and Knott 1999). 
 An additional benefit of the proposed method is its computational simplicity. 
From (1), it is clear that the computational effort increases only linearly with the 
number of variables. Table 2 illustrates that an additional subject increases the 
matrix of pairwise comparisons by one row and one column. Thus, the computa-
tional effort increases only with the square of the number of subjects. Having such 
a highly efficient algorithm available allows some analyses to be conducted in en-
vironments better suited for interactive inspection of the data and intermediate re-
sults, providing profound insight into the nature of the algorithm and, thus, into 
the understanding of the results. Spreadsheet programs for small data sets and 
teaching are available from http://mustat.rockefeller.edu. For larger data sets and 
more complex partial orderings, packages for R and S-PLUS are available from 
http://csan.insightful.com, and http://cran.r-project.org, respectively. When vari-
ous combinations of variables and hierarchies need to be explored, e.g., to find the 
factor structure resulting in the highest information content (Diana et al. submit-
ted), even these tools may not suffice. Our Web site http://mustat.rockefeller.edu 
provides access to a grid, where jobs uploaded will be parallelized and executed 
using optimized libraries (Wittkowski et al. 2006; Song et al. 2007)  
 µ-Scores, in general, have provided new insights in the medical fields of toxi-
cology (King et al. 2003), addiction (Spangler et al. 2004), cancer (Paczesny et al. 
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2004), HIV infection (Arrode et al. 2005), immunology (Gottlieb et al. 2005), 
hearing (Schick et al. 2006), behavior (Shelley et al. 2007), diagnostics (Quaia et 
al. 2007), pharmacogenomics (Haider et al. 2008), and fertility (Ramamoorthi et 
al. 2008), but also to machine learning (Sapir et al. 2005). This paper discusses 
the use of µ-scores to score athletes or teams in sports and provides several exten-
sions, including the use of µ-scores for graded variables. 
 µ-Scores for graded variables can also grade outcomes in fields other than 
sports. When investigating the relative contribution of immune system compo-
nents (Oliver 2000), side effects could be graded either as grave > severe > (rela-
tively) benign, or I < II < III < IV < V (death). Similarly, various events indicating 
the risk of terrorist attacks could be graded as imminent, clear, and weak, or as 
green/blue, orange, yellow, and red (Wittkowski 2003). Finally, when determining 
personal traits affecting management decisions (Becker et al. 2005), which may 
themselves be assessed by (ungraded) µ-scores, µ-scores can grade earlier profits 
higher, so that the relative benefit of traits would not depend on the assumption of 
a particular interest rate. 
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