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NOTE Communicated by Carl van Vreeswijk

The Approach of a Neuron Population Firing Rate to a New
Equilibrium: An Exact Theoretical Result

B. W. Knight
Rockefeller University, New York, NY 10021, and Laboratory of Applied Mathematics,
Mount Sinai School of Medicine, New York, NY 10029, U.S.A.

A. Omurtag
Laboratory of Applied Mathematics, Mount Sinai School of Medicine, New York, NY
10029, U.S.A.

L. Sirovich
Rockefeller University, New York, NY 10021, and Laboratory of Applied Mathematics,
Mount Sinai School of Medicine, New York, NY 10029, U.S.A.

The response of a noninteracting population of identical neurons to a
step change in steady synaptic input can be analytically calculated exactly
from the dynamical equation that describes the population’s evolution in
time. Here, for model integrate-and-fire neurons that undergo a fixed finite
upward shift in voltage in response to each synaptic event, we compare
the theoretical prediction with the result of a direct simulation of 90,000
model neurons. The degree of agreement supports the applicability of the
population dynamics equation. The theoretical prediction is in the form of
a series. Convergence is rapid, so that the full result is well approximated
by a few terms.

1 Introduction and Results

A population-dynamics approach has been introduced as a means for the ef-
ficient simulation of the activity of large neuron populations (Knight, Manin,
& Sirovich, 1996). Recent studies support and verify the power of this new
approach (Omurtag, Knight, & Sirovich, 2000; Sirovich, Knight, & Omurtag,
forthcoming; Nykamp & Tranchina, 2000). A general treatment of this ap-
proach with further analytic exploration appears in Knight (2000). In this
article we follow up on one such feature.

It is commonly the case that a dynamical system, which is not disturbed
by any time-varying external inputs, will possess a time-independent equi-
librium configuration. It also is typically the case that when a dynamical
system is in a state near—but not at—that equilibrium, we may describe
the early evolution of its subsequent motion in terms of the changing am-
plitudes of a set of normal modes that in effect impose a privileged set of
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coordinates on the system’s state-space in the neighborhood of the equi-
librium point. Normal modes come as either singles, whose amplitudes
change exponentially with time, or natural pairs, whose coordinated am-
plitudes change together in time as sine and cosine multiplied by an en-
velope that changes exponentially with time. An arbitrary initial condition
near equilibrium will yield a time evolution that is a superposition of these
motions.

The dynamical equation that describes the time evolution of a noninter-
acting neuron population density conforms to the general rule just quoted.
However, there is an important additional feature: because the neurons are
noninteracting, superposition of component probabilities is respected by
the time evolution of their density function, and so the dynamical equation
is linear in the population density. Because of this, the general rule quoted
above is exact for the population dynamics equation: the rule describes the
nature of our system’s evolution toward equilibrium even if we do not con-
fine our initial condition to the neighborhood of the equilibrium point.

If the neuron population receives an input signal that is time indepen-
dent at one value and then jumps abruptly to a new value, where it holds
steady again, the prejump equilibrium point becomes a specific postjump
nonequilibrium point from which the system will proceed to evolve to the
new equilibrium point in accordance with our rule, and the transient re-
sponse of the population firing rate will reflect this dynamics. All of this we
have reasoned out here without so far having to define a specific neuron
model and without having to turn to any explicit mathematics. To proceed
to quantitative predictions, we must have an explicit neuronal model and,
from the dynamical equation for its population density, calculate the fol-
lowing things:

1. The equilibrium points before and after the jump in input.

2. The normal modes for the postjump equilibrium point, and their char-
acteristic exponential decay rates and sinusoidal frequencies.

3. The coefficients that express the prejump equilibrium point as a su-
perposition of those normal modes.

4. As the calculations above yield an explicit expression for the popula-
tion density’s time course, all that remains is to express the population
firing rate in terms of that density.

The result of these steps is an explicit expression (Knight, 2000) stating
that under common circumstances, the new equilibrium firing rate is ap-
proached with a time course that is an exponentially decaying sinusoid,
whose oscillation rate is near to the single-neuron firing rate at the new
equilibrium.

We compare the analytic result with a direct simulation of a population of
90,000 neurons. These are integrate-and-fire neurons with firing threshold
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Figure 1: Prediction of simulation results by theory. A population of 90,000
neurons was simulated and per-neuron firing rate (irregular thin line) calculated
from impulses in each millisecond. Theoretical equilibrium levels are 4.54, 11.92,
24.79 sec−1. For comparison, the damped transients have theoretical principal-
mode frequencies of 5.77, 11.50, 24.70 sec−1.

voltage scaled to unity, with an ohmic shunt that gives a decay rate constant
of γ = 20 sec−1, and for which each synaptic event advances the dimen-
sionless scaled voltage variable toward threshold by an instantaneous step
of h = .03. These nominal values are representative of realistic measures.
The input to each neuron is a Poisson process with a common specified
mean rate. To simplify comparison with the more familiar nonstochastic
limit (h→ 0) it is more convenient to specify the scaled mean input current
s
(
sec−1)which is the mean input rate times the synaptic step h. (In the non-

stochastic limit and without ohmic leakage, s would be equal to the neuron
firing rate; however, with the presence of ohmic leakage, the nonstochastic
neuron’s firing rate drops to zero when s is moved to less than γ . For large s,
the firing rate of the nonstochastic neuron with leakage approaches s− 1

2γ

from below. The following section furnishes some theoretical details.)
Figure 1 shows the results of four direct simulation numerical experi-

ments in which s is jumped to the three steady values 18, 24, 36 sec−1 and the
firing rates find equilibrium at 4.54, 11.92, 24.79 sec−1. The larger two values
are not far below their nonstochastic-and-large-s estimated values

(
s− 1

2γ
)

of 14 and 26 sec−1. However the lowest input
(
s = 18 sec−1 < γ = 20 sec−1)

is below the corresponding nonstochastic firing threshold, and the firing
that we see depends on unusually closely spaced clusters of synaptic events
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which are permitted by the Poisson arrival statistics. In Figure 1, for graphic
presentation the neuron firings have been averaged over 1 millisecond bins.

The transients that lead to equilibrium in Figure 1 convey further infor-
mation. In each case the exact analytical solution is given by the smooth line,
which passes centrally through the slightly noisy direct simulation result.
There is no indication of any systematic departure of the exact analytical
solution from the results of the direct simulation.

In each of the four cases, after a fraction of a cycle, the return of the
transient to equilibrium takes the form of a damped sinusoid. Although it
is hard to see in the highly damped case of the lowest equilibrium firing
rate, in each case the frequency of the sinusoid lies close to the mean firing
rate at equilibrium.

In Figure 1, the amplitude of the residual noise in the simulation re-
sults is inversely proportional to the square root of the number of neurons
simulated. We see that to approach the precision of the theoretical curves,
simulation of about 9 million neurons would be required.

2 Some Further Theoretical Details

The exact analytical solution of the return-to-equilibrium problem follows
directly from the general population dynamics theory and has been pre-
sented in some detail in Knight (2000). Here we give a brief general de-
velopment and then discuss the specifics of the case that was used in the
simulation.

The momentary state of a model neuron is specified by values of inter-
nal variables such as its transmembrane potential and the channel variables
that determine its various transmembrane ionic conductances. The neuron’s
state may be thought of as a point in a state-space in which the possible val-
ues of the internal variables specify a coordinate system. As time advances,
the neuron’s point in the state-space moves in accordance with a specified
dynamics. A set of similar neurons corresponds to a set of points, and typi-
cally their motions will depend on a mean external input s, which they share
in common, and also on stochastic inputs, which they receive independently.
The momentary state of a large population of similar neurons can be de-
scribed by a population density ρ, which specifies the likelihood that a neuron
blindly picked at random will be found in the vicinity of any specified point
in the state-space. The population density thus integrates to unity. It evolves
in time in accordance with a dynamical equation of the general form

∂ρ/∂t = Q(s)ρ, (2.1)

where the right-hand side is specified by the law of motion of the individual
neurons and is a function, over the state-space, that depends linearly on ρ.
Thus Q (s) is technically a linear operator, which depends on the common
input s.



Approach of a Neuron Population Firing Rate 1049

In our situation, s remains fixed after an abrupt jump. In this circumstance
it is a generic property (essentially a commonly occurring feature) of linear
operators that in the state-space we can find a set of eigenfunctions, φn, such
that the action of the linear operator on these is simply to multiply by an
eigenvalue λn according to the relation

Qφn = λnφn. (2.2)

The eigenfunctions have the further important property that any function in
the state-space may be expressed as a weighted sum of them. In particular
we can do this for the population density ρ, though we must observe that
ρ evolves in time according to equation 2.1, and so the weightings in its
eigenfunction sum must evolve as well. Equation 2.1 in fact demands that
ρ must be of the form

ρ =
∑

n
aneλntφn. (2.3)

Substitute equation 2.3 in 2.1. Perform the time differentiation on the left,
and use equation 2.2 on the right to confirm that 2.3 is indeed a solution.
Below we will see that a few terms of equation 2.3 furnish a close approxi-
mation to the full sum.

Now equation 2.1 has an equilibrium solution that is independent of
time. From either equation 2.1 or 2.3, the equilibrium solution is clearly an
eigenfunction φ0 of equation 2.2 with the eigenvalue

λ0 = 0. (2.4)

(See Sirovich et al., forthcoming, for a general treatment of the equilibrium
problem.)

From equation 2.3, we note that all the other eigenfunctions have the
properties that were discussed in Section 1 as the properties of normal
modes. In fact the eigenvalues λn of equation 2.2 typically will be complex
numbers with negative real parts and which arise in complex conjugate
pairs. It is convenient to assign integers to them in the order of increasing
negativity of their real part, and corresponding negative integers to those
eigenvalues that are the complex conjugates of eigenvalues whose imagi-
nary parts are positive. The eigenfunctions typically will be complex and
occur in conjugate pairs; similarly their coefficients in the sum for ρ, equa-
tion 2.3, will be complex conjugates, so that the sum breaks up into natural
pairs of terms. Each pair is real, and as the time t advances, the nth pair
decrements exponentially and oscillates sinusoidally according to the rate
and the radian frequency, which are expressed by the real and imaginary
parts of the nth eigenvalue.

To determine the population density ρ, we have still to evaluate the
constants an in equation 2.3. If we set t to zero in equation 2.3, the summation
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must give us the equilibrium distribution of the population density before
the input s underwent its abrupt jump. Let us call this equilibrium density
φ
(−)
0 ; we must expand it in terms of the eigenfunctions after the jump.

Pairs of complex-valued functions that are supported by our state-space
have a natural bilinear inner product. If x denotes a point in the state-space,
and v (x) and u (x) are functions, their natural inner product is

(v,u) =
∫

dx (v (x))∗ u (x) , (2.5)

where the integral extends over the state-space. The set of eigenfunctions
from equation 2.2 determines a companion set φ̂n of biorthonormal functions
that satisfy the inner product relations,(

φ̂m, φn
) = δmn, (2.6)

where δmn is unity if m = n and zero otherwise. This biorthonormal set
are determined by equation 2.6 and may be constructed from the φn by
straightforward procedures of linear algebra. Alternatively, if equation 2.1
is discretized for computational purposes, standard software will compute
the φ̂n as the eigenvectors of the matrix transpose of Q.

If t is set to zero in equation 2.3, we have

φ
(−)
0 =

∑
n

anφn. (2.7)

With a prejump steady-state distribution φ(−)0 on hand, we may evaluate the
as-yet-unknown coefficients an by

am =
(
φ̂m, φ

(−)
0

)
; (2.8)

if we substitute equation 2.7 into 2.8 and use 2.6, we confirm 2.8 as an
identity. The postjump time course of ρ, given by equation 2.3, now is fully
evaluated.

The methodology just reviewed is classical. Stability near equilibrium
in nonlinear systems is extensively discussed by Iooss and Joseph (1980).
The eigenvalue theory of linear operators, with applications, is discussed in
much detail by Morse and Feshbach (1953) and more briefly by Page (1955).

To find the time course of the population firing rate, as implied by the
dynamics that we have solved, we need some further structure of our neuron
model. As we follow the trajectory of a neuron in its state-space, at some
point on that trajectory we can say that the neuron has just fired an impulse.
As we look at the set of all trajectory lines, each has a firing point. The
rate (on a per-neuron basis) at which the noninteracting neurons of a large
population pass their firing points must depend in a linear way on the
population density function. We may write

r = R {ρ} ; (2.9)
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the firing rate r is a linear functional of the population density ρ. If we
substitute ρ from equation 2.3 into 2.9, we obtain

r (t) =
∑

n
aneλntR {φn}

=
∑

n

(
φ̂n, φ

(−)
0

)
R {φn} eλnt. (2.10)

Once we have the prejump equilibrium distribution, the postjump eigen-
functions and eigenvalues and the firing-rate linear functional, this is an ex-
plicit and exact evaluation. Equation 2.10 was used to calculate the smooth
lines in Figure 1.

The neurons in our simulation follow the dynamical equation,

dx/dt = −γ x+
∑

n
hδ (t− tn) , (2.11)

where x is the dimensionless voltage, and the synaptic input times, tn, are
drawn from a Poisson process with mean rate s/h, and are independently
chosen for each neuron. When a synaptic input jumps a neuron beyond
x = 1, the neuron is reset to x = 0 and a nerve impulse is registered. If we
hold s fixed and let h go to zero, equation 2.11 goes to

dx/dt = −γ x+ s, (2.12)

which is the familiar equation for the forgetful or “leaky” integrate-and-fire
neuron. We note that if γ is larger than s, then

x = s/γ (2.13)

gives an equilibrium solution to equation 2.12 that is below the firing thresh-
old. Equation 2.12 may be rearranged to the form

dt = dx/ (s− γ x) or

T =
1∫

0

dx/ (s− γ x) = − 1
γ

ln
(

1− γ
s

)
(2.14)

for the firing period, unless small s makes s/γ less than unity. The firing rate
is the reciprocal firing period

r = 1/T→ s− 1
2
γ for large s, (2.15)

as mentioned in section 1.
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The dynamical equation for the population density that follows from
equation 2.11 is

∂ρ (x, t)
∂t

= ∂

∂x
[γ xρ (x, t)]+ s

h

[
ρ
(
x− h, t

)− ρ (x, t)
]
. (2.16)

The first right-hand term corresponds to backward advective drift in volt-
age as the current γ x leaks back through the ohmic shunt; the second term
(absent if x < h) corresponds to density accumulation as neurons jump in
from voltage x − h. The third term similarly corresponds to density deple-
tion as neurons jump away from the voltage x. The s-dependent right-hand
side expresses a linear transformation upon ρ, and so defines the linear
operator Q (s) in equation 2.1 for this particular case. Equation 2.16 was
studied by Wilbur and Rinzel (1982) and in further detail by Omurtag et
al. (2000), and Sirovich et al. (forthcoming). As shown in Omurtag et al.
(2000), equation 2.16 follows rigorously from equation 2.11 and the Poisson
specification of synaptic input times, without introduction of free parame-
ters.

(If in equation 2.16 we were to expand the term that is offset in h, as a Tay-
lor series in h, and keep terms through h2, we would reduce the equation to
a second-order partial differential equation that describes the dynamics of
the probability density in terms of advection and diffusion in state-space.
Such an approximate dynamical equation for the probability density is tech-
nically known as a Fokker-Planck equation and is extensively discussed by
Risken, 1996. Application of the Fokker-Planck equation to the integrate-
and-fire neuron model is discussed by Tuckwell, 1988.)

The population firing rate linear functional R {ρ} in the present case is the
rate at which neurons make a final synaptic jump that carries them beyond
x = 1. It is proportional to the synaptic rate s/h and also clearly depends
equally on ρ (x) for all values of x larger than 1− h. It is

r (t) = R {ρ} = s
h

1∫
1−h

dxρ (x, t) . (2.17)

The specific case of the eigenvalue equation, 2.2, which corresponds to
the dynamical equation, 2.16, is

d
dx

[γ xφn (x)]+ s
h

[
φn
(
x− h

)− φn (x)
] = λnφn (x) . (2.18)

We have discretized this equation into 200 compartments. We have dis-
cretized equation 2.17, which serves as the input into the first compartment
of the discretized equation, 2.18. The resulting system we have solved for its
eigenvalues and eigenfunctions. These compare well with corresponding



Approach of a Neuron Population Firing Rate 1053

−0.05

0

0.05

0.1

0.15

0.2

0.25

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4

t

x

ρ(
x,

t)

Figure 2: Evolution of the population density following a change of mean input
current from 18 sec−1 to 24 sec−1.

eigenvalues and eigenfunctions obtained by approximate analytic meth-
ods (Omurtag et al., 2000; Sirovich et al., forthcoming). These eigenvalues
and eigenfunctions (including φ(−)0 ) and the discretized evaluation of R {φn}
from equation 2.17 have been used in equation 2.10 in order to calculate the
smooth lines in Figure 1.

Figure 2 gives a perspective view of the evolution of the population den-
sity, as time advances from the back of the figure toward the viewer, in the
case where the average current suddenly shifts from its lowest setting of
18 sec−1 up to 24 sec−1. Initially the population density is mostly concen-
trated in the upper end of the range, where forward jumping and backward
advection approximately balance. With the onset of more frequent forward
jumping, at time t = 0, this accumulation is swept away and is returned to
the low-voltage region. Then it is swept forward as it disperses and arrives
once more at the high-voltage end after about 1/10 sec, which is consistent
with the new single-neuron firing rate of 11.92/ sec . We are able to follow
this still-dispersing concentration through about one additional round trip,
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Figure 3: Convergence of partial sums to the full theoretical result.

consistent with the corresponding firing response in Figure 1, which goes
through about two visible decrementing oscillations.

The high peaks of probability concentration at low voltages arise because
of the discrete voltage jump of h = .03, and wash out because the irregularly
timed jumping is not synchronized with the steady advective backward
drift, which is due to capacitor-discharge as ohmic current leaks through
the model nerve membrane. The choice above of 200 voltage divisions for
the numerical work was made to resolve these peaks adequately in the
population density.

Figure 3 addresses the convergence of the series in equation 2.10. For the
case of s = 24 sec−1, we plot the partial sums for both the ascending and de-
scending transients. After the second passage across the equilibrium value,
the first pair of eigenfunctions yields an accurate description of the transient
in both cases. Between the first and second passage, the descending transient
is fairly well fit by two pairs of eigenfunctions, while four pairs give a result
indistinguishable from the full result. For the ascending transient in the same
span, only two pairs are needed to replicate the full solution visually. In sum-
mary, we see that the exact analytic solution for the transient to a new equilib-
rium accounts well for the results of the direct simulation, and after the first
equilibrium crossing, the full analytic result is excellently approximated by
a short, truncated sum that may be expressed in terms of a few parameters.
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The manner in which this same sort of treatment may be applied to more
detailed neuron models, such as that of Hodgkin and Huxley (1952), is
given some discussion in Knight (2000). The effect of feedback (where the
output contributes to the input and the population dynamics consequently
becomes nonlinear in the population density) is also discussed in Knight,
and with a somewhat different emphasis in Sirovich et al. (forthcoming).
These publications are available at our web site.
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