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 THE ROLE OF POT1 IN TELOMERE PROTECTION AND MAINTENANCE 

 

Dirk Hockemeyer, Ph.D. 

The Rockefeller University 2007 

 

POT1 is a single stranded telomeric DNA binding protein implicated in telomere length 

regulation in human cells. To address the role of POT1 in telomere protection we used 

RNAi in human cells. We confirmed that POT1 acts as a negative regulator of telomerase 

and showed that POT1 is required to protect telomeres. Reduced levels of POT1 elicited 

a strong telomere DNA damage response and a growth arrest in primary cells; the 3’ 

telomeric overhang shortened and the sequence of the 5’ terminus changed from its 

precise sequence (ATC-5’) to a randomized ending. 

In order to determine the phenotype of complete POT1 loss, we used conditional 

gene deletion in the mouse. Unexpectedly, we identified two POT1 orthologs in the 

mouse and rat genomes, whereas other mammals have one. As both proteins (POT1a and 

POT1b) localized to telomeres based on IF and ChIP, we targeted both genes for Cre-

mediated deletion. POT1a/b double-knockout (DKO) cells exhibited a telomeric DNA 

damage signal and senescence. DKO cells also displayed a novel telomere dysfunction 

phenotype, extensive endoreduplication. However, POT1a/b were largely dispensable for 

repression of telomere fusions, which is a prominent outcome of inhibition of another 

telomere binding protein, TRF2. Previous structural analysis of POT1 and its binding 

partner TPP1 predict that they act interdependently. Consistent with this, we found that 

TPP1 is essential for the telomeric function of both mouse POT1 proteins. 



Single knockouts and complementation experiments revealed that POT1a and 

POT1b have distinct functions. POT1a was found to be primarily responsible for 

repression of the DNA damage signal at telomeres, while POT1b had a unique role in 

repressing an activity that creates extended telomeric overhangs. POT1b KO cells 

showed accelerated telomere shortening indicating that POT1b controls exonucleolytic 

degradation of the C-rich strand. The enhanced telomere shortening of POT1b KO cells 

explains our finding that POT1b KO mice display aging phenotypes reminiscent of late 

generation telomerase knockout mice. 

My results argue that a gene duplication event gave rise to two functionally 

distinct POT1 proteins in rodents. Such a divergence is unprecedented in chromosome 

biology and has implications for modeling telomere biology and telomere-related disease 

states in the mouse. 
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1. Introduction 

 
Telomeres 
Maintenance of genomic information is vital to the preservation of all organisms.  During 

the evolution of multi-cellular organisms, the packaging of hereditary information into 

linear chromosomes proved to be a successful strategy.  Nevertheless, the fact that linear 

chromosomes have “ends” presents an important problem, demanding a specialized 

machinery to protect and stabilize the chromosome ends. Telomeres are the DNA-protein 

complex at the end of linear chromosomes, which provide this specialized function. 

Understanding of the telomere is important, as research over the past decades has shown 

that telomeres are vital in maintaining genomic integrity and preserving proper function 

of the cell and organism.  Telomere dysfunction results in a wide array of cellular 

problems and ultimately can cause human disease 1-3.  

Telomere function relies on several proteins that specifically recognize DNA 

sequences at the chromosome end 4,5. Recent studies have determined the role of many of 

these proteins in telomere function.  In this work, I will study in detail one of the most 

recently discovered telomere binding proteins, POT1, whose function had not yet been 

fully characterized.  The study of POT1 requires an understanding of the overall function 

of the telomere as well as the composition of the telomeric complex. In my introduction I 

will discuss first the essential cellular functions of telomeres telomere, then I will 

introduce the individual components of the telomeric complex, and finally describe how 

these components regulate telomere length and protection. 
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Maintenance of genomic integrity by telomeres 
First described by Barabara McClintock and Herman Muller 6,7, the telomere has distinct 

properties, which allow the cell to distinguish between natural chromosome ends and 

internal DNA breaks 4. Telomeres are not recognized by the DNA damage surveillance 

machinery and therefore cause neither the activation of DNA damage checkpoints nor the 

induction of DNA repair.  When the protective function of telomeres is compromised, 

cells arrest due to a DNA damage signal and can enter senescence or apoptosis. Cells 

with deprotected telomeres can accumulate telomere-telomere fusions, telomere 

recombination events, or degradation of telomeric DNA, each due to inappropriate DNA 

repair reactions. 

 

The end replication problem 
The ends of linear chromosomes also present a difficulty during DNA replication 8,9. This 

so-called “end-replication-problem” originates from the properties of DNA polymerases. 

DNA polymerases use RNA primers to initiate DNA synthesis and these primers are 

degraded and replaced by DNA by 5’ to 3’ DNA polymerases. On the lagging strand, the 

terminal RNA primer cannot be replaced by DNA, as the DNA polymerases lack a 3’OH 

to prime replacement. This process, if not counteracted, leads to a terminal sequence loss 

of linear chromosomes in every round of DNA replication. Noncoding telomeric repeats 

at the end of chromosomes serve as a reservoir of DNA that can be lost over consecutive 

rounds of replication without immediate loss of genomic information. In order to 

maintain long-term genomic integrity, telomeric DNA has to be replenished. This 

function is fulfilled in almost all organisms by an enzyme called telomerase (see below) 

10,11. In human cells the expression of telomerase is limited to germ cells and highly 
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proliferative tissues. Therefore, telomeres shorten over time in somatic human cells that 

are telomerase deficient 12-16. This telomere shortening limits the replicative lifespan of 

somatic cells 17.  After a limited number of divisions, telomeres of somatic cells become 

critically short and loose their protective function. These cells enter a permanent growth 

arrest termed replicative senescence. This proliferation barrier, known as the Hayflick 

limit 18, is thought to be a tumor suppressor mechanism. Germline cells and tumor cells 

express telomerase and evade this arrest by maintaining a stable telomere length 13,19. 

Expression of telomerase, which is reactivated in 94% of all tumors 13,20,21, is sufficient 

for primary cells to overcome telomere-induced senescence 19,22. 

 

Telomeric DNA 
Although telomeric DNA differs in sequence and length among different species, 

telomeric DNA is usually composed of double stranded tandem repeats. Human 

telomeres contain double stranded TTAGGG arrays and their length ranges from about 4 

to 20 kilobases (kb) 23,24. Telomeres of Mus musculus share the human telomeric 

sequence TTAGGG, but are longer, ranging from 20 kb to 150 kb 25. Telomeres are 

heterogeneous in length. Telomere length can differ on individual chromosome ends 

within one cell and can also differ according to cell type and age of the organism. 

The telomeric double stranded repeats end in a single stranded 3’overhang that is 

about 150 to 300 bases long 26,27. The length of the telomeric overhang is largely 

independent from the length of the double stranded part of the telomere and also 

independent of cell type and age of the organism. The 5’ end of human and mouse 

telomeres ends predominantly on the sequence ATC-5’ and therefore the transition from 
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double stranded to single stranded telomeric DNA is defined precisely 28. In human 

telomerase positive cells, the 3’ end of the telomeric overhang shows a preference for the 

sequence TAG-3’, while it appears to be almost random in telomerase negative cells 28. 

Internal to the telomere are sequences known as subtelomeric sequences or telomere-

associated sequences (TAS) 29. These sequences are highly polymorphic repetitive 

sequences, can be extensively methylated, and are organized as heterochromatin. TAS 

can be megabases long and some classes contain telomeric TTAGGG repeats. In humans 

and mice, TAS are not essential for proper telomere function and there are no known 

proteins that bind specifically to the subtelomeric regions. 

 Telomeric DNA, like other sequences containing arrays of guanidine residues, 

can fold into four-stranded conformations composed of structural elements called G-

quartets 30. G-quartets can form intra- and intermolecularly and are stabilized through 

hydrogen bonding between four guanidines. G-quartets can stack to form a four-stranded 

structure, called G4 DNA, which is stabilized by monovalent cations such as Na+ and K+ 

that bind in the middle of the planar G-quartets. Once formed, G-quartets are 

thermodynamically and kinetically stable. G-quartets have only been studied in vitro and 

it is not established whether G4-DNA occurs in vivo. Although the relevance of G-

quartets is still poorly understood, they have been suggested to affect binding of 

telomeric binding proteins and may impede telomere replication 31-33. 

Telomeres of many species are organized in a tertiary structure called the t-loop 

(Griffith et al., 1999). Electron microscopic analysis of telomeric DNA isolated from 

Homo sapiens, Mus musculus, Trypsosoma brucei, Oxytricha fallax, and Pisum sativum 

(garden pea) 34-36 shows that the chromosomes end in a loop structure. Initial experiments 
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were performed after fixation with psoralen, which introduces inter-strand cross-links at 

A-T steps. As these cross linking events enhanced the number of loops seen in electron 

micrographs, it has been proposed that t-loops are formed by the invasion of the 

telomeric overhang into the double stranded part of the telomere. This strand invasion 

event displaces the G-rich strand of the double stranded part of the telomere. The 

displaced strand then forms a structure known as the displacement loop (D-loop). The 

presence of a D-loop is consistent with the finding that Escherichia coli single stranded 

binding protein (SSB) can coat the base of isolated t-loops 35. Studies by Woodcock 

demonstrated that t-loops could be isolated without cross-linking if mild extraction 

conditions were used 37. The size of the t-loop is variable for individual telomeres and 

also varies between organisms. T-loops found in Pisum sativum can consist of up to 50 

kb 34 whereas t-loops of Trypsosoma brucei are on average 1 kb long 36. It is also not 

clear if the t-loop is the only structural conformation of the telomere. It has been 

proposed that telomeres can acquire an open conformation that allows telomere extension 

and modifications and that the closed t-loop structure represents the protected 

configuration of chromosome ends. Although little is known about the formation and 

dynamics of the t-loop, it has been suggested that one of the telomeric binding proteins is 

necessary for its establishment (reviewed in) 4. 

 

Telomere replication and maintenance of telomeric DNA 
In most eukaryotic cells, the enzymatic activity of telomerase is necessary to synthesize 

de novo telomeric DNA at the end of linear chromosomes. Telomerase was first purified 

from Euplotes aediculatus and shown to be a reverse transcriptase 14,15,38. Telomerase has 

an RNA component and uses this as a template to add repeats to the ends of telomeres 
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10,11. The catalytic activity of telomerase is characteristic for Non-LTR retro transposon 

reverse transcriptases 39. This is because telomerase extends a 3’ DNA end directly as 

opposed to using an RNA primer like other transcriptases 40. Comparison of telomerase 

template RNA (TRs) sequences from divergent organisms reveals the rapid evolution of 

this RNA 15. TRs are of heterogeneous length ranging from 1200 bases in yeast, to 450 

nucleotides in mammals to 150-200 bases in ciliates. Although TRs are divergent in 

sequence and length, distinct structural elements are conserved. Among these elements is 

the single stranded template region in the catalytic center of the enzyme, which allows 

telomerase to anneal to the overhang and add nucleotides to the chromosome end 41,42. 

Telomerase is a processive enzyme in vitro. Repeated reverse transcription of the 

template leads to the repetitive nature of the telomeric sequence. In order for telomerase 

to add multiple repeats without dissociating from its substrate, the protein translocates 

processively after each repeat addition to the 3’ end of the newly formed DNA. In yeast, 

telomerase reverse transcriptase (est2) and the telomerase RNA (tlc) component are 

sufficient for the detectable telomerase activity in cell extracts 43,Lingner et al., 1997, Proc Natl Acad 

Sci U S A, 94, 11190-5. Similarly, telomerase activity can be generated in vitro with human 

hTert and hTR. However, human telomerase is a multiprotein complex of about 1.5 MDa. 

In addition to hTert and hTR, it contains Est1a and b which are homologues of the yeast 

Est1 gene, and the telomerase RNA interacts with the Ku protein 44-46. Telomerase RNA 

is also associated with several ribonucleoproteins (RNPs) that are necessary for 

telomerase maturation and stability. One of these factors, dyskerin, is discussed below in 

detail because of its clinical relevance 47. The in vivo mechanism of telomere elongation 

by telomerase is still poorly understood. Telomerase has been found to be present in cells 
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as a dimer 48-50, but the significance of telomerase dimerization for its catalytic activity 

has not been defined.  

Telomerase is only capable of synthesizing the G-rich strand of telomeric DNA. 

C-strand synthesis is likely achieved by the conventional DNA replication machinery 

coupled to telomerase activity 51-53. In humans, telomeres are replicated throughout S-

phase 54, but the mechanism that coordinates this event with telomerase activity is 

unclear. Under conditions where telomerase is forced to add telomeric repeats and 

telomeres elongate with a rate of 300 bp per population doubling (PD), no strong increase 

in telomere overhang length can be detected 55. This result suggests that the elongation of 

the overhang by telomerase is translated rapidly into double stranded telomeric DNA and 

provides evidence that telomere elongation in human cells is coupled to DNA replication. 

Several major questions regarding telomere replication have yet to be addressed. Does 

telomerase act before or after telomere replication? How can telomerase act on the 

leading strand if it is blunt after replication, and therefore a poor substrate for elongation? 

It is important to note that two telomerase-independent mechanisms can maintain 

telomere length. One is used in Drosophila melanogaster, which lack telomerase and 

where the telomere DNA consists of long retrotransposable elements. In this case 

endogenous retrotransposons sporadically transpose to the end of the chromosome and 

thereby counteract terminal sequence loss 56-58. Another telomerase-independent method 

of telomere elongation has been observed in S. cereviasiae. In strains lacking telomerase 

activity, telomeres shorten and the culture arrests and undergoes senescence. Two types 

of survivors overcome this arrest by activating a recombination pathway. In Type I 

survivors, subtelomeric DNA is amplified, while in Type II survivors telomeric repeats 
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are amplified at the chromosome end. Both survivor types are dependent on the 

recombination gene Rad52. 

In human cells telomeres can also be maintained through recombination in a 

telomerase independent manner. This pathway termed Alternative Lengthening of 

Telomere (ALT) allows short telomeres to be elongated by recombination mediated DNA 

synthesis. Using this pathway cells can be propagated indefinitely without telomerase. It 

has been proposed that the ALT recombination mechanism can either use two telomeres, 

the t-loop structure, or the extra chromosomal telomeric DNA found in ALT cells as a 

recombination template (reviewed in) 59,60. 

 

Overhang generation 
Although telomerase uses the telomeric overhang to elongate telomeres, generation of the 

overhang is telomerase independent 61. The process that creates the overhang is not 

understood in detail, but it has been suggested that in human cells, the overhang is 

generated by nucleolytic degradation of telomeric DNA 27. This hypothesis is based on 

the fact the telomeric overhangs can be found on both chromosome ends. As leading 

strand synthesis is predicted to result in blunt ends, overhang generation requires the 

resection of the telomeric C-strands. This theory is further supported by the rate of 

telomere shortening in telomerase negative cells. In many organisms, telomeres in cells 

deficient for telomerase shorten with only a few nucleotides per cell division, the rate 

predicted form the end replication problem 62-66. In contrast, in human and mouse cells 

that are deficient for telomerase, telomeres shorten at a rate of about 50-150 bp/PD 17,67,68. 

This fast shortening rate suggests additional telomere sequence loss by degradation of 

telomeric DNA through nucleases. Furthermore the telomeric overhang in mammals is 
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significantly longer than in other organisms 27,69,70. These results indicate that a yet 

unidentified nuclease may be responsible for generating the overhang in mammalian 

cells. 

Interestingly, it has been shown that the overhang on telomeres generated by 

lagging strand synthesis is longer than the leading strand counterpart. In the presence of 

telomerase, the leading strand overhang becomes slightly elongated and thereby the 

preference for a longer lagging strand overhang is diminished 71. These findings suggest 

that leading and lagging strands are generated differently. 

 

 Shelterin 
The protein complex bound to telomeric DNA is called shelterin. Shelterin is 

characterized by its selective localization to chromosome ends, its presence at the 

telomere throughout the cell cycle, and its exclusive telomeric function. Shelterin 

determines telomere structure and function. It is implicated in the formation of t-loops, is 

necessary to determine the telomere terminus, and regulates the addition of telomeric 

repeats by telomerase (reviewed in) 72. 

 The shelterin complex consists of six proteins that are found exclusively at the 

end of mammalian chromosomes (Figure1.1). Three members of shelterin are DNA 

binding proteins. TRF1 and TRF2, bind double stranded telomeric DNA 73-76, while 

POT1 has binding activity for single stranded telomeric DNA. POT1 is connected to the 

other shelterin components through a protein-protein interaction. This interaction is 

thought to be the main mechanism of POT1 recruitment to the telomere, despite its ability 

to bind ss telomeric DNA in vitro. DNA. The other three proteins, TIN2, TPP1 and 



 10

RAP1, are tethered to the telomere exclusively through protein-protein interactions with 

the DNA-binding proteins (Figure1.1).  

Shelterin is a stable complex that can be isolated in absence of telomeric DNA 77,78. 

Shelterin is abundant on telomeric DNA and more than 100 copies are thought to be 

associated with the duplex telomeric repeats of each chromosome end. Very little is 

known however, about the spatial distribution of shelterin on telomeric DNA.  

Recruitment of shelterin to telomeres is correlated with telomere length. Long 

telomeres recruit more shelterin than short telomeres 55,79. These characteristics allow 

shelterin to “measure” telomere length and a counting model was proposed to explain 

how shelterin mediates telomere length homeostasis in mammalian cells (see section 

about telomere length regulation). 

Shelterin also regulates the telomere terminus by protecting the integrity of 

telomeric DNA. It has been shown that shelterin loss can lead to nucleolytic degradation 

of the 3’ end of the telomere resulting in the loss of the telomeric overhang 76,80,81. 

Shelterin also protects telomeric DNA from covalent telomere-to-telomere fusions, which 

are the product of non-homologous end joining (NHEJ) (see section about telomere 

protection). It has been proposed that these functions of shelterin result to some extent 

from the ability of shelterin components to promote t-loop formation. 
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TRF1 

TRF1 (Telomere repeat binding factor 1) was the first member of shelterin to be isolated. 

TRF1 was purified as a protein with specific binding affinity for telomeric double 

stranded DNA 82,83. Human TRF1 is a 439 aa protein that is ubiquitously expressed and 

 

Figure 1.1 Shelterin the protein complex at mammalian telomeres 

(A) Schematic overview of shelterin bound to the telomere (B) Diagram of the binding domains between 

shelterin proteins and between shelterin proteins and telomeric DNA 
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present at all telomeres throughout the cell cycle. TRF1 consists of an N-terminal acidic 

domain, a central protein-protein interaction domain, and a C-terminal MYB-domain. 

The central domain allows TRF1 to homodimerize and recruit TIN2 to the telomere, 

while the MYB-domain enables TRF1 to bind telomeric DNA 73,82,84. Homodimerization 

of TRF1 is necessary for efficient DNA binding to two TRF1 5’-YTAGGGTTR-3’ half 

sites 74,85. TRF1 binding in vitro has been shown to be very flexible, allowing TRF1 to 

bend and pair telomeric DNA 74.  Depletion of TRF1 from cells using RNAi techniques 

not only results in the loss of its binding partner TIN2 from the telomere but also depletes 

telomeres of TRF2 and RAP1 78. These findings point to a central role of TRF1 in 

assembling and stabilizing shelterin. Although the specific function of TRF1 is not very 

well understood, TRF1 is known to be essential, as targeted deletion of TRF1 results in 

early embryonic lethality in the mouse 86,87. 

 

TRF2 and RAP1 

TRF2 (Telomere repeat binding factor 2) was the second telomeric repeat binding factor 

to be characterized 88,89. It is a small ubiquitously expressed protein that localizes to 

telomeres throughout the cell cycle. TRF2 consists of an N-terminal basic domain, a 

central protein-protein interaction domain, and a C-terminal MYB-domain. Similar to 

TRF1, the central domain allows TRF2 to homodimerize and to interact with TIN2. 

TRF2 homodimerizes and binds DNA using its C-terminal MYB-domain. TRF2 does not 

form heterodimers with TRF1 and appears to be approximately 10-fold more abundant 

than TRF1. Although TRF2 dimerization is sufficient for DNA binding in vitro, TRF2 
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can form higher order oligomers. The in vivo relevance of oligomerization of TRF2 is not 

understood 75,90.  

RAP1 (Repressor activator protein1) is a constitutive binding partner of TRF2 and 

they from a 1:1 stoichiometric complex 91,92. RAP1 contains a MYB-like DNA binding 

domain and a BRCT protein-protein interaction domain in its N-terminus. RAP1 does not 

bind DNA on its own and has no known interacting partners other than TRF2 91. RAP1 

protein stability is dependent on TRF2 and as a result cells that are deficient for TRF2 

also loose RAP1 protein 80. 

 

POT1 

POT1 (Protection Of Telomeres) is the single stranded binding protein found at 

telomeres. Pot1 was first identified in S. pombe and shown to protect telomeres by 

preventing telomere degradation 93. 93 The protein structure of spPOT1 shows that it 

binds the telomeric overhang using a structurally conserved 

oligonucleotide/oligosaccharide binding fold (OB-fold). Sequence homology in this OB-

fold with an OB-fold in the Telomere End Binding Protein (TEBP) of oxytricha nova 

served to identify spPot1. 

TEBP, a protein complex consisting of two subunits TEBPα and TEBPβ, binds 

the 16 nucleotide long telomeric overhang of oxytricha nova telomeres. TEBPα can bind 

telomeric DNA alone, but this binding affinity is greatly enhanced upon binding to 

TEBPβ. As a heterodimer this complex binds ss telomeric DNA with high affinity and 

specificity, forming a very stable ternary complex. In this complex the 3’ end of the 

telomere is hidden in a hydrophobic pocket, which has several contacts to the last 
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guanidine residue containing the 3’ end. It has been proposed that this mode of binding to 

the 3’ end of the overhang functions as a physical cap protecting the telomere. 

Human POT1 is a 632 aa protein and immunofluorescence as well as chromatin 

immunoprecipitation of telomeric DNA shows that POT1 is a telomere associated protein 

and a member of the shelterin complex. POT1 contains three OB-folds. The first of these 

OB-folds served to identify human POT1 through its homology to SpPot1 and to relate 

human POT1 to the telomere end binding protein α (TEBPα) 93,94. POT1 uses its two N-

terminal OB-folds to recognize the minimal binding site 5’-TAGGGTTAG-3’ 94,95. POT1 

has two binding modes in which it recognizes this sequence. POT1 can either bind 

directly to the 3’ end or to an internal site of the overhang 96. Although POT1 can bind 

directly to the 3’ end of telomeres, structural analysis suggests that POT1 does not 

function like TEBP by capping the chromosome end. This is mostly because direct 3’-

binding requires that the overhang ends in GGTTAG-3’, a sequence that is found only on 

a subset of telomeres 28. 

POT1 is ubiquitously expressed and localizes to the telomere throughout the cell 

cycle 55,97. The human POT1 gene is differentially spliced resulting in five different 

mRNA of POT1. Variant form 1 of POT1 (V1) is the message used to make the full-

length protein, while the variants V2, V3 and V5 are predicted to result in C-terminal 

truncated deletions of POT1. V4 variant of POT1, which skips exon 8, was predicted to 

result in an unstable, 5 kD long N-terminal fragment of POT1.  

POT1 interacts via its C-terminus with TPP1 98,99. This interaction with TPP1 is 

thought to be essential for the recruitment of POT1 to telomeres 55, as a truncated form of 

POT1, POT1ΔOB, which lacks its DNA binding affinity, can still be targeted to the 
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telomere by its interaction with TPP1. The expression of POT1ΔOB leads to strong 

telomere elongation possibly by suppressing the endogenous levels of POT1 95. 

 

TIN2 

TIN2 (TRF1-interacting nuclear protein 2) is a ubiquitously expressed protein found to 

directly interact with TRF1, TRF2 and TPP1 78,84,100,101. TIN2 makes contact at its N-

terminal domain to the C-terminus of TPP1 and TRF2, while a central peptide of TIN2 is 

thought to bind the homodimerization domain of TRF1. The interaction of TIN2 with 

TRF2 appears to be significantly weaker than its interaction with TRF1 based on 

quantitative yeast two-hybrid analysis and has been shown to be salt sensitive. As a result 

of its protein interactions, TIN2 resides in the center of shelterin and mutation analysis 

reveals its crucial role in shelterin assembly. Overexpression of an N-terminal truncated 

form of TIN2, which still interacts with TRF1 but not TRF2 or TPP1, leads to the loss of 

TRF2 from telomeres. Similarly, depletion of TIN2 in cells using RNAi results in 

reduced levels of telomeric TRF2. The finding that over-expression of a C-terminal 

fragment of TIN2, which still interacts in vitro with TRF2 and TPP1 but not TRF1, leads 

to a reduction of both TRF1 and TRF2 telomere binding could indicate that TIN2 is 

necessary to allow the cooperative DNA binding of shelterin through TRF1 and TRF2. 

 

TPP1 

TPP1, formerly known as PIP1, PTOP, TINT1 and acd, was the last member of shelterin 

to be identified 98-100,102. Like POT1, TPP1 has recently been shown to be an OB-fold 

containing protein 103. This OB-fold has strong structural similarity to the one found in 
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the β-subunit of the telomere end binding protein of oxytricha nova (TEBP). This 

similarity led to the proposal that the POT1/TPP1 complex is the homologue of TEBPα/β 

complex. TPP1 interacts at its central domain with POT1, while its C-terminal domain 

interacts with TIN2. Through these two protein interactions, TPP1 bridges the double 

stranded telomere-binding proteins and the single stranded binding protein POT1 98,99. 

Biochemical analysis of TPP1’s role in shelterin assembly suggests that TPP1 has the 

ability to enhance the binding of TIN2 to TRF2 and weaken the association of TRF1 with 

the TRF2 complex. TPP1 uses its OB-fold to interact with telomerase. In one study this 

interaction was proposed to be necessary for telomerase recruitment and in a second 

study it was implied to enhance telomerase processivity 103,104. 

Recently, a splicing mutation within the mouse TPP1 gene was reported to cause 

a developmental defect in the acd mouse strain (adrenocortical dysplasia) 102. This 

mutation, which arose spontaneously in the Jackson laboratories, leads to adrenocortical 

dysplasia and defects in organs derived form the urogenital ridge. Acd mice grow to 

adulthood but are infertile. The finding that acd mice are viable was at first somewhat 

surprising because null mutations for all other shelterin components were shown to be 

lethal early during mouse development. As discussed later in the results section, the acd 

mutation does not lead to the complete loss of TPP1 function, but to a hypomorphic allele 

of TPP1. 

 

Telomere length regulation 
Although the size of an individual telomere is variable, the average telomere length of 

cells that express telomerase is maintained within a confined and species-specific range. 
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This finding suggests that the addition of telomeric repeats by telomerase is a regulated 

process, which establishes equilibrium between telomere attrition and elongation by 

telomerase. This hypothesis is further supported by the observation that chromosome 

ends that lack telomeric DNA can be stabilized through telomere repeat addition by 

telomerase. In these so-called “chromosome-healing events” the newly formed telomere 

is elongated to and then maintained at a length appropriate for the host cell. Additionally, 

in tumor cells lines the activation of telomerase counteracts telomeres attrition and 

individual tumor cell lines maintain a constant average telomere length. These 

observations suggest that the length of individual telomeres regulates repeat addition by 

telomerase in cis. Experiments in human tumor cells established that this cis-regulation is 

mediated through a counting model in which the amount of double stranded repeats are 

“measured” by telomere binding proteins which then restrict telomere elongation by 

telomerase. 

This counting model was first established in human cells for the shelterin protein 

TRF1 105. Overexpression of TRF1 in a telomerase positive fibrosarcoma cell line 

(HTC75) caused gradual telomere shortening, while overexpression of a dominant 

negative form of TRF1 induced telomere elongation. These experiments show that TRF1 

is a negative regulator of telomere length. Telomere length regulation by TRF1 is 

telomerase dependent, as telomere length is not altered by TRF1 changes in telomerase 

negative cells. TRF1 acts in cis and does not influence the overall enzymatic activity of 

telomerase, as TRF1 specifically targeted to one telomere by Gal4 binding sites changes 

only the length of this modified telomere 12. 
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Several experiments show that TRF2 is involved in telomere length regulation in 

a similar manner. Overexpression of TRF2, like TRF1, leads to telomere shortening in 

HTC75 telomerase positive cells 79. A role of TRF2 in telomere length homeostasis is 

also supported by the finding that cells depleted for TRF2 using RNAi show rapid 

telomere elongation (Takai and de Lange unpublished). The telomere length regulation 

functions of the other components of shelterin have been confirmed in a similar fashion. 

Depletion of TIN2, TPP1 and POT155,84,98-100 (see also chapter 2) using RNAi techniques 

results in telomerase dependent telomere elongation in HTC75 cells.  

These experiments established that shelterin acts as negative regulator of telomere 

length and led to the current model of telomere length regulation. Long telomeres recruit 

more shelterin, which through a cis-acting mechanism reduces the likelihood for the 

telomere to be elongated by telomerase. On a short telomere the reduced binding of 

shelterin releases suppression and telomerase will elongate this telomere preferentially. 

Telomere length homeostasis is reached in cells when telomere shortening and 

telomerase elongation reach equilibrium, depending on the amount of shelterin that is 

bound.  

Recently a mechanism was proposed by which the amount of shelterin bound to 

the double stranded part of the telomere can be translated into the regulation of 

telomerase activity on the single stranded overhang. The finding that a mutant form of 

POT1, lacking the first OB-fold of its DNA binding domain, causes telomere elongation, 

led to the proposal that POT1 acts as the terminal transducer of telomere length 

information from the double stranded part of the telomere to the overhang 55. Since long 

telomeres recruit more POT1 through shelterin than short telomeres, there is an increased 
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chance on long telomeres that POT1 will associate with the telomeric overhang and 

inhibit telomerase. The finding that cells depleted for TRF1, TRF2 or TPP1 (55 and 

shown in the result section) recruit less POT1 to telomeres supports this model.  

Direct competition for the 3’ end of the single stranded overhang between POT1 

and telomerase has been suggested to account for the ability of POT1 to inhibit 

telomerase. In vitro data shows that POT1 bound to the 3’ end of the overhang can block 

telomerase access 96,106. Interestingly, these studies also found that POT1 can bind in two 

positions on the telomeric overhang. In one conformation POT1 is bound at the 3’ end 

and blocks telomerase; in the other POT1 is bound internal to the overhang, which allows 

telomerase access. In the latter position POT1 appears to promote telomerase activity on 

the 3’ end 96. This in vitro data suggests that POT1 may have a dual role in telomere 

length regulation. A dual role is not unprecedented, as it has also been suggested for 

Cdc13, the single-strand telomeric DNA protein of S. cerevisiae.  

Another way in which POT1 could stimulate telomerase activity is by changing 

the telomeric overhang into a conformation that is favored as a substrate by telomerase. 

This hypothesis is supported by data showing that POT1 can eliminate G-quartets from 

single stranded telomeric DNA. Oligos that are able to form G-quartets are known to be a 

poor substrate for telomerase elongation in vitro, but become a better substrate for 

telomerase upon internal binding of POT1 33. An additional line of evidence for a positive 

role of POT1 in telomere length regulation emerged form the finding that TPP1, the 

protein that brings POT1 to the telomere, can stimulate telomerase activity and might 

even directly interact with telomerase. As TPP1 has no intrinsic affinity for DNA, it 

seems possible that TPP1 in complex with POT1 could positively regulate the access of 
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telomerase to the overhang 103,104. In the results section I will present data confirming the 

role of POT1 as a negative regulator of telomere length, while leaving open the 

possibility for an additional function of POT1 in telomerase recruitment. 

 

Telomere protection and the function of TRF2 
In addition to regulating telomere length, shelterin is essential for the protective function 

of telomeres. Telomeres become deprotected either if they become critically short or if 

shelterin function is impaired. The consequences of both forms of telomere deprotection 

have been studied intensively and have been found to result in similar outcomes. As my 

studies on POT1 are mostly concerned with telomere deprotection as a result of loss of 

shelterin function, I will first discuss the cellular consequences of shelterin loss. I will 

discuss the consequences of telomere shortening in a later section in the context the 

telomerase mouse knockout. As most of our knowledge about telomere protection came 

from experiments that focus on the function of TRF2, I will illustrate the paradigms of 

telomere protection by describing the phenotypes arising from the loss or overexpression 

of TRF2.  

 

Cellular responses to telomere dysfunction 
The first insight into the role of TRF2 in telomere protection came from experiments in 

which a dominant negative form of TRF2 was expressed in human cells. This dominant 

negative form of TRF2, called TRF2ΔBΔM, lacks the MYB-DNA binding and basic 

domain of TRF2 but retains its dimerization domain. TRF2ΔBΔM has the ability to form 

heterodimers with endogenous TRF2, but this heterodimer cannot bind DNA as is lacks 
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one of the two necessary MYB-DNA binding domains. Therefore, overexpression of 

TRF2ΔBΔM strips the endogenous TRF2 molecules from the telomere and acts as a 

dominant negative allele 76. Cells expressing TRF2ΔBΔM exhibit cell cycle arrest and 

undergo premature senescence or apoptosis, indicating the essential role of TRF2 for 

cellular viability 76,107. Several lines of evidence indicate that these outcomes are the 

result of telomeres being sensed as double stranded breaks. Loss of TRF2 results in the 

activation of the DNA damage checkpoint kinase ATM (Ataxia-Telangiectasia Mutated). 

Activation of ATM by double stranded breaks leads to the rapid autophosphorylation of 

ATM at serine residue 1981 108. ATM then phosphorylates the chk2 kinase, which actives 

p53. Depending on the cell type, p53 up-regulation induces either a cell cycle arrest 

through the Cdk2 inhibitor p21, or apoptosis. 

Cytological studies confirmed the finding that telomeres depleted for TRF2 are 

recognized as double stranded DNA breaks. When telomeres become deprotected due to 

the expression of TRF2ΔBΔM, DNA damage factors including 53BP1, γ-H2AX, Rad17, 

ATM, and Mre11 localize to telomeres in large aggregates 109. These foci were termed 

Telomere Dysfunction-Induced Foci (TIFs) and can also be found in cells that have 

reduced TIN2, TPP1 and POT1 levels and in cells that have entered replicative 

senescence 78,101,104,110-112 (see also chapter 3). Thus, the DNA damage machinery 

recognizes deprotected telomeres induced both by gradual telomere shortening and by 

interference with shelterin.  
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Telomere fusions as a result of telomere dysfunction 
In parallel with these signaling events, telomeres that are deficient for TRF2 are subject 

to processing by the DNA repair machinery. When TRF2 function in cells becomes 

impaired, telomeres fuse to each other. Theses fusion events are covalent links between 

two telomeres and are mediated by the Non-Homologous-End-Joining (NHEJ) pathway. 

Cells that are deficient for DNA Ligase IV, the ligase that rejoins broken ends after DNA 

breaks, show a marked reduction of telomere fusions after the inhibition of TRF2 81. A 

conditional TRF2 mouse knockout model recently confirmed the findings that were 

derived from studies of TRF2ΔBΔM expression. After deletion of TRF2, mouse cells 

stop proliferating and almost all telomeres become fused 80.  

Telomere end-to-end fusions are a prominent outcome of telomere deprotection 

and can be found not only after the deprotection of TRF2 but also once telomeres become 

critically short. If telomeres fuse before S phase, the result will be a chromosome-type 

dicentric chromosome whereas fusions that happen after DNA synthesis result in 

chromatid-type dicentric chromosomes in which only one chromatid of a chromosome 

participates in the fusion event. A third form of telomere fusions, is generated by the 

union of sister telomeres. Dicentric chromosomes can lead to anaphase bridges and 

bridge-fusion-breakage (BFB) cycles. BFB cycles can cause chromosome nondisjunction, 

translocations, and changes in chromosome number. These karyotypic changes are seen 

in cells entering crisis and can explain the genome instability of tumor cells that 

overcome crisis (reviewed in) 113,114. 
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Overhang processing of deprotected telomeres 
In addition to telomere fusions, TRF2 loss compromises the integrity of the telomeric 

overhang. Whereas the double-stranded part of the telomere remains intact after the 

expression of TRF2ΔBΔM, the telomeric overhang is partially lost 76. Mouse cells 

deficient for TRF2 completely lose the overhang 80. This loss of overhang can be partially 

attributed to the fact that overhang processing precedes covalent telomere-to-telomere 

fusions, but it is also the result of nucleolytic degradation of overhang DNA independent 

of telomere fusions. After the inhibition of TRF2, the telomeric overhang becomes a 

substrate for the ERCC1/XPF nuclease complex 115. While human cells that express 

TRF2ΔBΔM show a 50% reduction of the telomeric overhang, cells that are also deficient 

for XPF retain normal overhangs. Interestingly, cells that are deficient for the NHEJ 

pathway also do not show overhang loss as a consequence of TRF2 deficiency, although 

these cells present TIFs at almost all telomeres indicating that they are sites of DNA 

damage 80. This finding shows that overhang degradation is not a prerequisite for 

recognition of unprotected telomeres, and also provides evidence for a coupling between 

overhang processing by ERCC1/XPF and the NHEJ pathway. 

 

The dual role of DNA-damage response proteins for telomere function 
Although the recognition of telomeres by the DNA damage machinery presents an 

imminent threat to telomeres, some DNA damage and repair proteins paradoxically 

localize to unperturbed and functional telomeres. A small fraction of the cellular 

Mre11/NBS1/ RAD50 (MRN) complex, which is involved in sensing DNA double 

stranded breaks, localizes to intact telomeres 92. This finding might imply that the DNA-

damage machinery serves additional functions on mammalian telomeres. Experiments 
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that address the function of these proteins put forward the idea that they are involved in 

telomere processing steps occurring after the replication of the telomeres 92,116-118. 

Similarly, the Ku protein, which is necessary for efficient NHEJ can be found at 

normal telomeres. Ku seems to have a dual role in telomere biology 119,120: on the one 

hand it is necessary for the efficient fusion of deprotected telomeres, on the other hand it 

is involved in the suppression of a telomere recombination pathway 119. Cells that are 

double deficient for TRF2 and Ku show a ten fold increase in rare recombination events 

called sister telomere exchanges (STE) 119, which are the result of homologous 

recombination between the telomeres of two sister chromatids. 

Another protein that is necessary to maintain the integrity of telomeres, but has 

additional nontelomeric functions, is the Werner protein (Wrn). Wrn is a helicase, 

implicated in the resolution of abnormal DNA structures (reviewed in) 121. During S 

phase Wrn localizes to telomeres and this is likely mediated through a direct interaction 

with TRF2 122-124. Human cells deficient for Wrn display sporadic loss of telomeric DNA. 

Analysis of metaphase chromosomes shows that this loss is restricted to lagging strand 

telomeres, suggesting that Wrn is necessary to resolve aberrant DNA structure during 

replication of lagging-strand telomeres. It has been proposed that these observations 

explain the symptoms of patients with mutations in Wrn 122. 

Several other proteins with additional nontelomeric functions have be found at 

telomeres of unperturbed cells, including Tankyrase 1 and 2, Apollo, Rad51D the 9-1-1 

complex, the BLM helicase, and XPF/ERCC1 115,125-131. 
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Suppression of the telomeric DNA damage response by TRF2 
In addition to experiments addressing loss of TRF2 function, overexpression of TRF2 

revealed important aspects of telomere function. Overexpression of TRF2 is capable of 

blunting an irradiation induced ATM DNA damage response by directly inhibiting ATM 

kinase activity 132. Interestingly, it has been shown that TRF2 binds directly to ATM This 

interaction occurs within the region where activated ATM auto-phosphorylates itself 108. 

It has been suggested that due to this interaction and the high local concentration of 

TRF2, ATM activity at telomeres is blocked by TRF2. This model provides molecular 

insight into how TRF2 could function in telomere protection 132.  

 

Homologous recombination of telomeres and t-loop formation 
T-loops are thought to be formed by the invasion of the telomeric overhang into the 

double stranded part of the telomere. The resulting D-loop structure at the base of the t-

loop is reminiscent of Holiday-junctions (HJ) formed during homologous recombination. 

During DNA repair by homologous recombination these HJs are resolved releasing the 

two recombined DNA strands. However, resolution of the t-loop HJ is predicted to lead 

to loss of telomeric DNA. This process, called t-loop homologous recombination (t-loop 

HR), can be detected in unperturbed cells and might contribute to telomere shortening in 

primary human cells. It has been proposed that t-loop HR is regulated by shelterin. This 

hypothesis is based on the finding that overexpression of TRF2 or an allele of TRF2 

lacking the basic domain (TRF2ΔB) induces these intramolecular telomere homologous 

recombination events 133. As TRF2 can promote the deletion of t-loops through t-loop HR 

and conversely is known to promote t-loop formation in vitro, the amount of TRF2 

appears to be critical for regulation of t-loop formation 35,75,90,133. Additionally, these 
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observations could explain how overexpression of TRF2 can lead to accelerated telomere 

shortening in telomerase negative cells. 

 

Telomerase function in human disease 
The replicative capacity of normal human cells is limited and as a result cultured cells 

eventually enter a terminal growth arrest called senescence 17. Most human tumors have 

reactivated telomerase suggesting that counteracting telomeres shortening is a 

requirement for indefinite proliferation 13,20,21. Direct evidence for this hypothesis came 

from the demonstration that ectopically expressed telomerase allows human fibroblasts to 

overcome senescence and become immortal 19,22. Although it has not been established 

that normal telomere attrition affects human health, recent data has corroborated the 

potential contribution of telomerase loss to human disease. Patients with the rare genetic 

disorder dyskeratosis congenita (DC), also known as Zinsser-Cole-Engman-syndrome 

were found to have two types of mutations that affect telomerase (reviewed in)134,135. 

Patients with the autosomal dominant form of DC have mutations in the telomerase RNA 

(hTR) 3, and patients with the X-linked form of DC have mutations in the dyskerin gene 

47. Dyskerin is a protein in the telomerase complex that is thought to associate with and 

stabilize telomerase. These mutations in the telomerase complex can account for 50% of 

DC cases. Cells from DC patients have reduced levels of hTR, low levels of telomerase 

activity, and short telomeres 47. DC is associated with an increase in tumor incidence, but 

most patients die of bone marrow failure and immunodeficiency. Other symptoms of DC 

are cutaneous pigmentation, nail dystrophy, anemia, mucosal leukoplakia, and in most 

cases testicular atrophy. Affected tissues in DC are generally highly proliferative, which 

is consistent with accelerated telomere erosion.  The progressive telomere shortening also 
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explains the generational anticipation of the DC symptoms found in families carrying a 

DC allele. 

 

The telomerase knockout mouse 
The consequence of telomerase loss and telomere shortening were studied extensively 

using mice deficient for the telomerase RNA component (mTR). Later studies showed 

that mice, in which the mouse telomerase protein (mTert) was knocked out, display 

essentially the same phenotypes as the deletion of mTR 136. Telomeres of telomerase 

knockout (KO) mice shorten by approximately 80-100 bp/PD, a rate consistent with the 

attrition rate in telomerase negative human cells 67. This telomere shortening does not 

result in a phenotype in early mouse generations, but consecutive intercrosses of mice 

deficient for telomerase lead to critically short telomeres and telomere dysfunction 67. 

The genetic anticipation of these phenotypes in later generations can be explained by the 

long telomeres of Mus musculus, which need to be shortened over several consecutive 

generations before the phenotype is manifested. Progressive telomere shortening also 

occurs in mice heterozygous for mTR showing that like the human autosomal dominant 

DC disease, telomerase is haplo-insufficient in mice 137-139. 

Late generation telomerase KO mice display a stem cell depletion phenotype and 

symptoms of premature aging 140,141. In particular these mice suffer from infertility, hair 

loss, decreased wound healing, reduced lymphocyte counts, bone marrow failure and an 

overall reduced lifespan. Histological analysis of these mice revealed that highly 

proliferative tissues such as testis and intestines show an increase in apoptosis 140,141. This 

increase in apoptosis is caused by the accumulation of critically short telomeres, telomere 

fusions, anaphase bridges and genomic instability 141-143. 
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As expected from the tumor suppressing capacities of telomere shortening, late 

generation telomerase KO mice have a lower tumor frequency in tumor promoting mouse 

models such as the INK4a KO 144. However, when telomerase KO mice with short 

telomeres are crossed into a background that abrogates the p53 DNA damage pathway, 

the tumor incidences increases. This difference has been attributed to ability of p53 to 

induce a growth arrest in response to dysfunctional telomeres. While cells that maintain a 

functional p53 pathway can sense short telomeres, p53 deficiency renders cells resistant 

telomere dysfunction signals. These cells will continue to proliferate and can accumulate 

secondary mutations through the genomic instability arising from dysfunctional 

telomeres 142,145. 
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2. Identification of POT1-55 and the role of POT1 in telomere 

length regulation 

 

Introduction 
Shortly after the initial study by Baumann et al. 93, on the discovery of human POT1, two 

studies implicated POT1 in telomere length regulation. The first study determined the 

length of telomeres in a clonal cell population overexpressing transfected POT1 and 

found that ectopic expression of full-length or POT1V2, a C-terminal truncation leads to 

telomere elongation 146. The authors of this study concluded that POT1 is a positive 

regulator of telomere length. In contrast, experiments conducted in the de Lange lab 

showed that the overexpression of POT1ΔOB, a form of POT1 lacking its DNA binding 

domain, leads to telomere elongation, indicating that POT1 is a negative regulator of 

telomere length 55. In this study telomere length did not change after the retroviral 

transduction of a pool of cells with full-length POT1. 

To further investigate the role of POT1 in telomere length control, I determined 

the protein levels of the putative POT1 protein variants and then studied their role in 

telomere length regulation using an RNAi based approach. Some data and text presented 

below was published and were used for this section 99,147. 
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 Results 
Two forms of human POT1 generated by alternative splicing 

In order to study the phenotypes of POT1 depletion induced by RNAi, we first assessed 

the protein products generated by the human POT1 gene. Based on the structure of five 

alternatively spliced transcripts (variants V1–5), five potential polypeptides were 

predicted 97. Antibodies raised against a peptide present in all putative variants of POT1 

reacted with the 71 kDa POT1 expressed from V1 mRNA, but the polypeptides predicted 

to be encoded by mRNA V2, V3, and V5 were not detectable 55 (Figure 2.1A). Instead, a 

POT1 polypeptide with an MW of 55 kDa (Figure 2.1A), referred to as POT1–55, was 

detected. Although POT1–55 was not a predicted product 97, we noticed that the V4 

mRNA, lacking exon 8, could encode a 55 kDa protein starting with an inframe ATG in 

exon 9 (Figure 2.1A). Consistent with this, POT1– 55 migrated closely to POT1ΔOB, an 

N-terminal truncation mutant that starts five amino acids upstream of POT1–55 55 (Figure 

2.5). Retroviral expression of V4 mRNA led to the overexpression of a protein that 

comigrated with the putative 55 kDa POT1 species (Figure 2.1A).  
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Figure 2.1 POT1 and POT1–55 and their depletion with RNAi  

(A) Schematic of two POT1 mRNAs and the proteins they encode. The immunoblot to the right 

shows HTC75 cells infected with the pLPC vector or the same vector expressing POT1–55 from 

the V4 mRNA. Dark fill: OB-folds. Light fill: TPP1 interacting domain. (B) Quantitative 

immunoblot to determine the level of POT1 knockdown in HelaS3 cells. Serial dilutions of vector 

protein extract were compared to the indicated relative cell equivalents of ex18 and ex8a 

knockdown cell extracts. (C) Schematic of POT1 mRNAs variant 1 and 4 and the si/shRNAs target 

sites used in this study. (D) Immunoblot of HeLa cells transfected with the indicated siRNAs and 

BJ/hTERT cells infected with the indicated shRNA vectors.  HeLa cells were analyzed 2 days (top 

panel) or at the indicated time points  (middle panel) after transfection. BJ/hTERT cells were 

analyzed 5 days after infection and selection 
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In order to verify that POT1–55 was derived from V4 mRNA, we used RNAi 

target sites in exons shared by V1 and V4 mRNAs (exons 7 and 18), target sites in exon 8 

(absent from V4), the junctions of exons 7/9 (only found in V4), and the junction of 

exons 7/8 (present in all POT1 mRNAs but V4) (Figure 2.1B and 2.1C). The results 

established that the human POT1 gene encodes two main products, the 71 kDa POT1 and 

the smaller POT1–55 encoded by an mRNA lacking exon 8 (Figure 2.1 A and D). Using 

an antibody raised against a peptide present in both forms of POT1, we estimate that 

POT1 is approximately 10-fold more abundant than POT1–55 (Figure 2.1B). POT1-55 is 

present in all cell types investigated, including tumor cells, primary cells and primary 

cells immortalized with telomerase. 

 

Telomere elongation in cells with reduced POT1 levels 

To investigate the role of POT1 and POT1-55 in telomere length control, we used RNAi 

to diminish the expression of POT1 in HTC75 cells, a subclone of the telomerase positive 

fibrosarcoma cell line HT1080, widely used for telomere length regulation studies 105. 

Three retrovirally-expressed shRNAs directed against POT1 resulted in a significant 

reduction of POT1 or POT1-55 expression compared with the vector control. There was 

no detectable change in the growth rate of cells infected with POT1 shRNAs, indicating 

that HTC75 cells tolerate the reduced levels of POT1. Consistent with this, POT1 levels 

remained stably reduced for >50 population doublings. Telomere length analysis showed 

significant telomere elongation in cells that have reduced levels of full-length POT1 

(Figure 2.2). This telomere elongation is also seen in cells with simultaneous reductions 

of full-length POT1 and POT1-55. As these results clearly showed that full-length POT1 
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can function as a negative regulator of telomere length, we next focused on investigating 

the role of POT1-55 in telomere length regulation.  

 

Cells that had reduced levels of POT1-55, due to the expression of an shRNA 

targeting the exon 7/9 junction, showed a slower telomere elongation rate than cells 

infected with a vector control (Figure 2.2). This finding could indicate that reduced levels 

of POT1-55 lead to telomere shortening. In order to confirm these results we decided to 

reduce POT1-55 levels in a different cell type. HTC75 cells have relatively short 

telomeres of an average length of about 4-5 kb. We reasoned that the telomere shortening 

 

Figure 2.2 Telomere elongation induced by RNAi-mediated reduction of POT1 

(A) Telomeric restriction fragment blot of HTC75 cells expressing the indicated shRNAs (vector control 

represents cells infected with the empty virus) at the indicated population doublings (PDs). The molecular 

mass in kilobases of HindIII-digested   DNA fragments is shown on the left. (B) Graph of the mean 

telomeric restriction fragment length of the indicated cell lines plotted versus PD. Elongation rates of the 

telomeres are indicated. 
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effects caused by reduced levels of POT1-55 might be better detectable in cells that 

maintain longer telomeres. Therefore, we targeted POT1 in Hela 1.2.11 cells, which have 

an average telomere length of approximately 12 kb (Figure 2.3). As expected from the 

findings in HTC75 cells, reduction of full-length POT1 in Hela1.2.11 cells results in 

telomere elongation regardless of the levels of POT1-55. The reduction of POT1-55 

alone in Hela1.2.11 cells resulted in a modest telomere shortening compared to vector 

control cells (Figure 2.3). 

 

 

 

Figure 2.3 Telomere elongation induced by RNAi-mediated reduction of POT1  

(A) Telomeric restriction fragment blot of Hela 1.2.11 cells expressing the indicated shRNAs (vector 

control represents cells infected with the empty virus) at the indicated population doublings (PDs). The 

molecular mass in kilobases of HindIII-digested l-DNA fragments is shown on the left. (B) Graph of the 

mean telomeric restriction fragment length of the indicated cell lines plotted versus PD. Elongation rates of 

the telomeres are indicated. (C) Immunoblot of Hela 1.2.11 cells expressing the indicated shRNAs (vector 

control represents cells infected with the empty virus) at PD50 post selection. POT1 was detected with Ab 

978. 
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The RNAi target sites in the 7-9 exon junction resulted only in a mild knockdown 

of POT1-55. We reasoned that a better knockdown of POT1-55 could result in stronger 

telomere length changes. As the specific knockdown of POT1-55 is limited to the 7/9 

exon junction we decided to deplete POT1-55 through an alternative approach. We 

retroviraly transduced cells with a full-length POT1 cDNA carrying a silent mutation in 

the targeting site of the exon 18 shRNA and thereby rendering this cDNA resistant to the 

ex18 shRNA. Then we depleted endogenous POT1 and POT1-55 proteins using the ex18 

shRNA (Figure 2.4C). We expected that this approach would result in the selective 

depletion of POT1-55 from the cells, as full-length POT1 was expressed exogenously 

from the shRNA resistant cDNA. Surprisingly, we detected by western blot analysis the 

presence of an additional band with a size similar to POT1-55 in cells expressing mutated 

full-length POT1 (Figure 2.4A). This additional band was previously not seen in cells 

expressing full-length POT1 and we could only detect this POT1 product when POT1 

was expressed using the pBabe retroviral vector in HTC75 cells. In order to address 

whether this protein is POT1-55 made from the exogenous POT1 cDNA, we mutated the 

ATG in exon 9 that is used as the translational start of POT1-55 in the V4 variant (Figure 

2.4C). As mutation of this ATG did not abrogate the presence of the additional band 

(Figure 2.4B), we conclude that this band is not POT1-55. Nevertheless, we could not 

exclude that this band represents an additional POT1-fragment, which could retain some 

function of POT1. We therefore assumed that studying telomere length control by POT1-

55 using this approach would not yield interpretable data. Further experiments and a 

different experimental approach will be necessary to address the telomere length 

phenotype of POT1-55 depletion. 
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Figure 2.4 Knockdown of POT1-55 using the non degradable POT1* and ex18 

(A) Immunoblot of HTC75 cells infected with human POT1 carrying a silent mutation in exon 18 

rendering it resistant to POT1siRNAs. Cells were additionally infected with the indicated shRNAs to 

deplete cells for endogenous POT1 and POT1-55. (B) As in panel (A); In addition to the silent 

mutation in the shRNA target site the POT1 cDNA contained a mutation in the ATG encoding for the 

methionine of POT1-55. (C) Schematic of POT1 mRNAs variant 1 and 4 and the exogenous mRNA 

mutated in the ex18 target site and in the ATG encoding the POT1-55 starting methionine. 
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In order to further investigate the function of POT1-55 we determined the 

telomere length changes in HTC75 cells overexpressing POT1-55. Although expression 

of POT1-55 from the V4 splice variant1 was mild, it partially suppressed the endogenous 

full length POT1 protein (Figure 2.1A) and resulted in telomere elongation, as expected 

from its similarity to POT1ΔOB (Figure 2.5)  

 

The fact that telomere elongation resulting from the overexpression of POT1-55 

was less severe than in cells expressing POT1ΔOB may be explained by the lower 

expression of POT1-55 compared to POT1ΔOB. This hypothesis is supported by 

experiments performed by Diego Loayza. When POT1-55 is translated from a strong 

 

Figure 2.5 Telomere elongation induced by expression POT1-55 form the V4 mRNA  

(A) Telomeric restriction fragment blot of HTC75 cells expressing vector of POT1-55 from the V4 mRNA 

(Δexon8) at the indicated population doublings (PDs). The molecular mass in kilobases of HindIII-digested 

DNA fragments is shown on the left. (B) Graph of the mean telomeric restriction fragment length of the 

indicated cell lines plotted versus PD. Elongation rates of the telomeres are indicated. 
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Kozak starting directly with the ATG in exon 9, POT1-55 levels are similar to the levels 

of POT1ΔOB. Under these conditions POT1-55 overexpression causes telomere 

elongation with rates equal to POT1ΔOB overexpression (Diego Loayza, personal 

communication). 

 

Regulation of POT1 

Western blot analysis shows POT1ΔOB overexpression results in the suppression of 

endogenous POT1 55. The finding that both POT1ΔOB expression and POT1 

knockdown, result in telomere elongation, supports the proposed model that POT1ΔOB 

acts mainly as a dominant negative protein by suppressing levels of endogenous POT1 

protein. How this suppression works is still unclear, but several observations shed light 

on the mechanism. Down regulation of endogenous POT1, as in the case of POT1ΔOB 

overexpression, is also seen after the overexpression of MYC-tagged full-length POT1 55 

(Figure 2.7 and 2.8). However, a remarkable difference in the level of overexpression 

between full-length POT1 and POT1ΔOB can is observed, when both are expressed from 

the same promoter and Kozak sequence (Figure 2.7). Whereas POT1ΔOB is over 

expressed about 30-fold compared to endogenous POT1 levels, overexpression of full-

length POT1 results only in a three-fold increase of POT1 levels 55. This finding suggests 

that the N-terminus of POT1 inhibits its cellular accumulation and that the endogenous 

protein levels of POT1 are tightly regulated.  

In order to determine the mechanism by which POT1ΔOB reduces full-length 

POT1 levels, we determined the mRNA levels of endogenous POT1 in the presence of 

POT1ΔOB. Using semi-quantitative RT-PCR we found that POT1 mRNA levels remain 
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unchanged upon the expression of POT1ΔOB or full-length POT1 compared to control 

cells (Figure 2.6). This result indicated that POT1ΔOB does not regulate endogenous 

POT1 on the transcriptional level. 

We next tested whether POT1ΔOB overexpression changes the stability of 

endogenous POT1 protein. Using cyclohexamide to inhibit de novo protein synthesis we 

determined the protein half live of POT1 and POT1-55 after the overexpression of either 

 

Figure 2.6 POT1 mRNA levels in POT1ΔOB expressing cells 

Ethidium-bromide staining of semi-quantitative RT-PCR analysis of POT1 mRNA isolated from 

HTC75 cells expressing either vector controls, MYC-POT1 or MYC-POT1ΔOB. To show the 

approximate linearity of the PCR amplification, PCRs were performed with increasing numbers of 

cycles. As an internal control for the cDNA synthesis, GAPDH was amplified using standard primers. 

RNA extractions and RT reactions were preformed in duplicates. The amplification of the correct 

PCR product was confirmed by restriction digest and RT reactions without reverse transcriptase did 

not result in product amplification. 
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POT1ΔOB or full-length POT1. In control cells POT1 levels were relatively stable with 

an approximate half-life of 6-8 hours, while the half-life of POT1-55 was somewhat 

shorter (about 4 hours). As expected, cells that overexpressed POT1ΔOB were depleted 

for endogenous full-length POT1 and interestingly, overexpression of full-length POT1 

reduced the abundance of POT1-55 (Figure 2.7).  

 

 

 

Figure 2.7 The stability of POT1 variants  

Immunoblot analysis of HTC75 cells expressing the indicated POT1 constructs or a vector control. 

POT1 translation was either driven from a strong Kozak consensus sequence or from its endogenous 

Kozak as indicated. Cells expressing these constructs were treated with cyclohexamide and proteins 

lysates were prepared after the time indicated above the lanes. POT1 and POT1-55 were detected with 

Ab 978. 
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In these cells, both POT1ΔOB and overexpressed full-length POT1 were found to 

have also a slightly reduced half-life of approximately four hours (Figure 2.7). This result 

could indicate that excessive amounts of full length POT1 are subjected to an increased 

turnover rate. 

Next, we asked whether proteasome-mediated degradation is responsible for the 

shorter half-lives of POT1ΔOB, POT1-55 and over expressed full length POT1 (Figure 

2.8). 

 

Figure 2.8 Degradation of POT1 protein variants by the proteasome 

Immunoblot analysis of HTC75 cells expressing the indicated POT1 constructs or a vector control. 

POT1 translation was either driven from a strong Kozak consensus sequence (MYC-POT1 and MYC-

POT1ΔOB) or from its endogenous Kozak as indicated. Cells expressing these constructs were treated 

with lactostatine or MG132 (+) or DMSO vehicle (-) for 3.5 hours. POT1 and POT1-55 were detected 

with Ab 978. The DNA vector constructs used in this experiment were generated by Diego Loayza. 
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While inhibition of the proteasome with MG-132 or lactacystin leads only to a 

small increase of full-length endogenous POT1 in unperturbed cells, a greater 

accumulation of POT1 is detectable in cells that overexpress POT1ΔOB. Furthermore, in 

cells overexpressing full-length POT1 stabilization of POT1-55 can be detected after 

inhibition of the proteasome (Figure 2.8). Together these results could indicate that POT1 

is regulated on the protein level and that POT1ΔOB increases the amount of POT1 that is 

targeted for degradation by the proteasome. 
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Discussion 
  

Telomere length regulation by POT1 

The finding that depletion of POT1 by RNAi leads to telomere elongation confirms that 

full-length POT1 is a negative regulator of telomere length and suggests that POT1ΔOB 

acts in telomere length regulation by displacing the endogenous POT1 protein.  Our 

results indicate that displaced POT1 protein becomes unstable and is degraded. The 

model that POT1 is degraded when it is not bound to chromatin is consistent with the 

finding that cellular POT1 levels correlate strictly with telomere length. These results 

confirm that POT1 negatively regulates telomere length and allow us to elaborate the 

current model of telomere length regulation by POT1. In this model endogenous POT1 is 

targeted to the telomere by its interaction with shelterin and is thus protected against 

protein degradation. POT1 when not bound to telomeres seems to be actively degraded, 

and thereby unable to affect telomere length. As a consequence, all cellular POT1 is 

telomere bound and its abundance on individual telomeres is tightly correlated with the 

individual telomere length. Long telomeres bind more POT1 than shorter telomeres and 

through the ability to inhibit telomerase, POT1 renders these long telomeres less likely to 

be elongated. Thus, POT1 transduces the information about the length of the telomere to 

the telomere terminus and establishes telomere length homeostasis. The ability of POT1 

to inhibit telomerase is dependent on its DNA binding domain, as POT1ΔOB fails to 

repress telomerase after displacing endogenous POT1 from the telomere. 

One main characteristic of this model is the inhibition of telomerase in cis. Cis-

inhibition has formally only been shown for TRF1 and TRF2, but not for POT1. But, as 
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TRF1 and TRF2 recruit POT1 to telomeres through TPP1, a cis-acting mechanism has 

been implied also for POT1. It is possible that inhibition of telomerase by POT1 in cis is 

partially a consequence of its active degradation when it is not bound to telomeres. If 

POT1 were stable in a telomere non-bound form, POT1 might be able to accumulate in 

the nucleus resulting in an increased local concentration of POT1 around telomeres. If 

POT1 were able to bind under these conditions directly to the overhang and inhibit 

telomerase, cis-regulation by shelterin would be circumvented. The hypothesis that POT1 

degradation is necessary to establish its cis-inhibition predicts that overexpression of an 

undegradable form of POT1 would lead to the permanent inhibition of telomerase on all 

telomeres. 

Although the presented experiments clearly identify the negative role of POT1 in 

telomere length regulation, they do not exclude that POT1 can also act as a positive 

regulator. In both experimental approaches, shRNA knockdown of POT1 and 

overexpression of POT1ΔOB, some residual POT1 remains on the telomere 95. It is 

possible that this residual POT1 is sufficient to positively regulate telomere length. The 

recent finding that TPP1, the interacting protein of POT1, is the ortholog of oxytricha 

nova TEBPβ and is able to stimulate telomerase activity supports this hypothesis 103,104. 

As TPP1 and POT1 are predicted to form TEBP like complex on the telomeric overhang, 

it will be interesting to determine whether POT contributes to telomerase activation and 

recruitment. 
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The role of POT1-55 

In addition to the full-length form of POT1, cells express POT1-55, which is an N-

terminally truncated splice variant of POT1. As POT1–55 is virtually identical to 

POT1ΔOB, it is expected to have the same properties: association with telomeres through 

protein–protein interaction, lack of DNA-binding activity in vitro, and the capacity to 

block the negative regulation of telomerase when over expressed 55. The finding that the 

specific knockdown of POT1-55 leads to mild telomere shortening and its overexpression 

to telomere elongation supports this claim. It suggests that POT1-55 could have a positive 

role in regulating telomere length by a mechanism similar to POT1ΔOB.  As the 

knockdown of full length POT leads to telomere elongation regardless of the presence of 

POT1-55, POT1-55 is probably not essential for telomerase elongation. However, it is 

not proven that POT1-55 or POT1ΔOB influence telomere length exclusively through 

competition with full-length POT1. It is not ruled out that POT1ΔOB partially acts as a 

gain of function mutation that mimics a stimulating role of POT1-55 on telomere length 

regulation. As POT1-55 is thought to be able to interact with TPP1, and as TPP1 appears 

to be able to stimulate telomerase activity, it appears prudent to investigate POT1-55 in 

the context of the function of TPP1. 
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3. POT1 protects telomeres from a transient DNA damage 

response and determines how human chromosomes end 

 

Introduction 
The mechanism by which the telomeric complex protects chromosome ends from being 

recognized as sites of DNA damage is not understood in detail. As interference with 

members of the shelterin complex leads to the activation of DNA-damage pathways, it is 

generally assumed that shelterin functions to protect natural chromosome ends (reviewed 

in)72. In particular the shelterin protein TRF2 has been found to be a key player in the 

suppression of telomere dysfunction. Most insights into the signaling pathways that are 

repressed at natural chromosome ends come from studies addressing the events at 

dysfunctional telomeres induced by the loss of TRF2. These studies have revealed that 

chromosome ends are threatened by the nonhomologous end-joining (NHEJ) pathway 

76,80,81. NHEJ-mediated chromosome end fusions are a prominent consequence of TRF2 

inhibition and can also occur when telomeres become critically short. In addition, 

dysfunctional telomeres can induce the ATM kinase and become associated with DNA 

damage response factors such as 53BP1, γ-H2AX, and the Mre11 complex 109,110.  When 

these DNA damage response factors localize to the telomere they form detectable 

cytological structures called Telomere dysfunction Induced Foci (TIF). Concurrent with 

these signaling events, the loss of TRF2 function leads to partial degradation of the 

telomeric overhang by the XPF/ERCC1 nuclease 76,115. 

How does shelterin suppress these events? How does TRF2, which binds along 

the double stranded part of the telomere, prevent the processing of the telomeric 
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overhang? One mechanism that has been proposed for how TRF2 protects the 

chromosome terminus is by facilitating t-loop formation. T-loops are large duplex DNA 

lariats and formed through the invasion of the telomeric overhang into the double 

stranded part of the telomere 35. Although the t-loop could be a protective configuration, 

the t-loop in its proposed form still contains DNA structures, such as the single stranded 

D-loop and the 3’ and 5’ DNA ends, that might activate a DNA damage response. 

Furthermore, during replication the t-loops might be resolved into a linear structure with 

an accessible telomeric overhang. As POT1 has the ability to bind the telomeric overhang 

in vitro and can potentially recognize structures generated by the t-loop is seems possible 

that POT1 binding can contribute to telomere protection 94,95. The finding that loss of the 

single stranded binding proteins in other organisms leads to telomere deprotection 

supports this notion 93,148,149. The crystal structure of the POT1 OB-folds in complex with 

their DNA-recognition site suggests that POT1 might physically protect 

TTAGGGTTAG-3’ ends 94. However, only a fraction of the telomeres in primary human 

cells end on this sequence 28, arguing that physical capping by POT1 is not the main 

mode of telomere protection. In order to study the protective role of POT1 in telomere 

protection, POT1 levels were reduced by RNAi induced knock down of POT1 in human 

cells. I will summarize my finding on POT1 protection below. Part of the text and data in 

this chapter is published 147. 
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Results 
 

TIFs without telomere fusions 

The effects of lowered POT1 and POT1–55 levels on telomere protection were 

determined using retroviral delivery of shRNAs into primary human fibroblasts (IMR90 

and BJ), fibroblasts immortalized with hTERT (BJ/hTERT), and telomerase- positive 

tumor cell lines (HeLa, cervical carcinoma, HTC75 fibrosarcoma, and HCT116, colon 

carcinoma). The RNAi reagents were named for the exons or exon junctions they target 

(e.g. ex18 targets exon 18; see Figure 2.1). Both forms of POT1 were targeted with ex7 

and ex18; ex7/8 and ex8a and b affected POT1 but not POT1–55, and ex7/9a and b 

partially depleted POT1–55 without affecting POT1 (Figure 2.1). Quantitative 

immunoblotting showed that the residual POT1 levels in HeLaS3 cells were about 5–10% 

for shRNAs ex18 and ex8a (Figure 2.1B). Similar knockdown effects were observed in 

BJ fibroblasts and HCT116 cells, RNAi for POT1 was less efficient in HTC75 and 

HT1080 cells (Figures 2.1, 3.6, 3.7). Western blotting analysis of synchronized HeLa 

cells indicated that the knockdown of POT1 was stable through the cell cycle. Telomeric 

ChIP confirmed that HeLa cells expressing shRNA ex18 (targeting both forms) or ex8a 

(specific for POT1) had reduced levels of POT1 at telomeres (Figure 3.1). The average 

reduction of telomeric DNA recovered in the POT1 ChIP was 6.7-fold (n=3; SD +/− 1.5-

fold). There was no loss of the duplex telomeric repeats and other components of the 

telomeric protein complex (TRF1, TRF2, RAP1, and TIN2) remained associated with 

telomeric DNA (Figure 3.1). Thus, RNAi can remove more than 90% of POT1 from the 

telomeric complex. 
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RNAi knockdown experiments have obvious limitations, since there is residual 

POT1 expression and localization. Nevertheless, RNAi depletion of POT1 is still 

informative not only because it allows analysis of human cells but also because partial 

inhibition of other human telomeric proteins has identified important hallmarks of 

telomere dysfunction in previous studies 76. As telomere fusions are a pervasive signature 

of telomere dysfunction, metaphase chromosomes were examined for this defect. In 

HTC75 and HeLa cells, the frequency of chromosome end fusions after stable POT1 

knockdown was increased less than two-fold compared to the control cultures (Figure 

 

Figure 3.1 Diminished telomeric accumulation of POT1, but not other telomeric 

proteins upon POT1 knockdown 

(A-C) ChIPs with the indicated antibodies using HeLa cells expressing the indicated POT1 shRNAs. 

DNA in the IPs was dot-blotted and hybridized with a probe for telomeric DNA (from pSP73.Sty11) 

or Alu repeats. Total DNAs and precipitated telomeric DNA (TTAGGGn) samples were blotted in 

parallel. Antibodies are indicated above each row. PI is pre-immuno sera from the rabbit that 

generated serum 1048. (D) Bargraph of quantification of the data in (C). The reduction of POT1 at 

telomeres in panels (C) is less than in the other two experiments. The average reductions is ~7-fold 

(see text). There was no significant reduction of the accumulation of other telomeric proteins. 
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3.2A and B), resulting in approximately one telomere fusion event in 25 cells. A similar 

result was obtained when cells were examined after transient transfection with siRNAs 

directed to POT1 or when chromosome fusions were evaluated without telomeric FISH. 

Others also recently reported this frequency of chromosome end fusions for cells with 

similar or milder POT1 knockdown levels 111,112. The significance of this phenotype was 

evaluated by comparing it to partial inhibition of TRF2 using the dominant-negative 

allele (TRF2ΔBΔM). Expression of this allele of TRF2 increased the frequency of 

telomere fusions by 10–100-fold, and fusions are observed in 50% of the cells (Figure 3.2 

A and B; 76). Thus, in comparison to partial inhibition of TRF2, the telomere fusion 

phenotype of POT1 depletion is marginal.  

The absence of significant telomere fusions could indicate that normal POT1 

levels are not required for this aspect of telomere protection. Alternatively, POT1 could 

be necessary for both telomere protection and for the processing of telomeres by NHEJ. 

While counterintuitive, this situation is not unprecedented, as the Ku heterodimer is 

required for both the protection of chromosome ends and their fusion by NHEJ Bailey et al., 

1999, Proc Natl Acad Sci U S A, 96, 14899-904.,119. As a consequence, Ku-deficient cells have a very 

low number of telomere fusions even when TRF2 is absent 119. In order to test whether 

this scenario pertains to POT1, we asked whether POT1 shRNA lowered the frequency of 

telomere fusions in cells expressing TRF2ΔBΔM, the dominant-negative allele of TRF2. 

The results showed that POT1 depletion does not inhibit telomere fusions in this context 

(Figure 3.2B). On the contrary, POT1 depletion slightly increased the incidence of 

telomere fusions after TRF2 inhibition. The significance of this increase remains to be 

determined.   
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Figure 3.2 POT1 depletion does not induce significant levels of chromosome end 

fusions  

(A) Metaphase spreads of the indicated HeLa cells with telomeric DNA detected by FISH (green). 

HeLa cells stably expressing the indicated shRNAs were infected with adenovirus expressing the 

TRF2 dominant-negative allele (AdTRF2ΔBΔM) or a control adenovirus (Adβgal), and processed for 

chromosome analysis after 2 days. M indicates a marker chromosome with internal TTAGGG repeats. 

The inset shows an enlarged image of one chromosome-type fusion from the AdTRF2ΔBΔM/POT1 

shRNA panel. (B) Summary of the frequency of chromosome fusions in HeLa cells and HCT75 cells 

stably expressing POT1 shRNA and treated with the AdTRF2ΔBΔM adenovirus to inhibit TRF2. 

Chromosomes were analyzed 2 days after introduction of AdTRF2ΔBΔM and 15 days after 

knockdown of POT1. 
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As a second index for telomere dysfunction, we analyzed the formation of TIFs in 

POT1 knockdown cells. Cells treated with shRNA to POT1 ex18 had significant levels of 

TIFs, as shown by the colocalization of 53BP1 and γ-H2AX with TRF1 (Figure 3.3). In 

asynchronous populations of BJ fibroblasts and HeLa cells, up to 40% of the cells had 

more than 10 TIFs and, in these TIF-positive cells, the majority of the TRF1 signals 

coincided with 53BP1 (Figure 3.3B and C). Telomerase expression did not affect this 

phenotype (Figure 3.3C; Wilcoxon test on the distribution of TIF frequencies in BJ and 

BJ/hTERT cells indicated that the difference is not statistically significant, P=0.3). 

Synchronization of HeLa cells by double-thymidine block (Figure 3.3D and E) or 

elutriation showed that TIFs were particularly prominent in G1, but rare or undetectable 

in S and G2 cells. POT1 knockdown resulted in TIF formation in ATM deficient cells 

and ATR deficient Seckel cells suggesting that redundancies in the pathways the sense 

telomeres after POT1 deprotection. 

In order to verify that this cell cycle dependent occurrence of TIFs is not due to a 

cell cycle variation in POT1 knockdown, we analyzed residual POT1 levels in POT1 

knockdown cells. ChIP analysis and immunoblotting in different stages of the cell cycle 

separated by elutriation showed that the residual levels of POT1 were the same in G1, S, 

and G2/M (Figure 3.4). Therefore, the transient telomere damage response indicated that 

normal POT1 levels were required to repress a DNA damage signal at telomeres in G1, 

but not in S and G2. This phenotype is different from that of TRF2 inhibition, as 

conditional deletion of mouse TRF2 generates TIFs in all interphase cells 80 and 

expression of a dominant-negative allele of TRF2 in HeLa cells can generate TIFs in S 

and G2 phase 109.  
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Figure 3.3 Transient telomere damage response upon POT1 depletion  

(A) TIFs induced by POT1 shRNA ex18. BJ/hTERT cells were processed for TIF analysis 8 days after 

infection and selection of the ex18 vector or the vector control by IF for TRF1 (red) and 53BP1 (green) 

or γ-H2AX (green). Merged images are shown with DAPI. (B) Quantification of the induction of TIFs 

by POT1 ex18 shRNA. IF for TRF1 and 53BP1 (see (A)) was used and randomly selected groups of 

cells were evaluated for the number of TRF1 signals per cell that contained a 53BP1 signal. The bars 

show the percentage of cells containing 10 or more TIFs. (C) The majority of the telomeres in TIF-

positive cells colocalize with 53BP1. TIF positive BJ and BJ/hTERT cells were selected and imaged 

using deconvolution software. Each point in the graph represents one TIF positive cell and shows the 

number of TRF1 signals plotted versus the number of TRF1 signals containing 53BP1. Points above the 

line represent cells in which more than 50% of the TRF1 signals contained 53BP1. (D) Transient TIFs 

in G1. HeLa cells expressing POT1 shRNA ex18 or vector control were released from double-

thymidine block and processed for IF at the indicated time points. FACS profiles are shown below the 

IF images. Top: 53BP1 signal (green) merged with DAPI (blue). Bottom: 53BP1, TRF1 (red), and 

DAPI signals merged. (E) Quantification of cell cycle dependence of TIF-positive cells. Quantification 

as in (B), using the cells shown in (D). 
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ChIP analysis also revealed that the amount of telomere associated Mre11 protein 

was increased throughout the cell cycle in cells that were depleted for POT1 compared to 

control cells (Figure 3.4). In contrast, ChIP analysis of other DNA-damage proteins like 

53BP1 failed to precipitate detectable amounts of telomeric DNA (Figure 3.4). Mre11 has 

a dual role in telomere biology, it binds to functional telomeres through its interaction 

with TRF2 92, and also localizes to dysfunctional telomere after telomere deprotection 109. 

Therefore, enhanced Mre11 association with telomeres after POT1 knockdown is of 

potential interest. 

 

Impaired proliferation of primary, but not transformed, cells  

Despite the occurrence of frequent TIFs in G1, HeLa cells did not show significant 

growth defects after knockdown of POT1 (Figure 3.5A). Consistent with their 

 

Figure 3.4 Lack of cell cycle variation of POT1 knockdown  

ChIP with the indicated antibodies using HeLa cells at different stages of the cell cycle separated by 

elutriation after POT1 knockdown or asynchronous vector control cells. DNA in the IPs was dot-blotted 

and hybridized with a probe for telomeric DNA (from pSP73.Sty11) or Alu repeats. Total DNAs and 

precipitated telomeric DNA (TTAGGGn) samples were blotted in parallel. Antibodies are indicated above 

each row. PI is pre-immuno sera from the rabbit that generated serum 1048. The table to the right indicated 

% of telomeric DNA recovered in the IP compared to total telomeric DNA. The FACS analysis of POT1 

knockdown cells after elutriation is shown in Figure 3.7 C. 
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unimpaired proliferation, synchronized cells did not reveal an obvious delay in the cell 

cycle, and the FACS profile of POT1 shRNA cells was indistinguishable for vector 

control cells (Figure 3.5B). We considered that the lack of a cell cycle arrest might be due 

to selection of a subpopulation of cells that can tolerate low POT1 levels. To address this, 

we examined the proliferation of HeLa cells treated with siRNA, allowing the detection 

of immediate effects occurring in the first few days after POT1 depletion. Also, in this 

setting, the HeLa cells treated with POT1 siRNA behaved identically to cells treated with 

a control (luciferase) siRNA (Figure 3.5C; see for Western analysis Figure 2.1). 

Furthermore, no growth defect was observed in HTC75 and HCT116 cells. We conclude 

that the depletion of POT1 does not significantly affect the proliferation of these tumor 

cell lines, despite the presence of telomere damage detectable by the TIF assay. In 

contrast to tumor cell lines, primary human fibroblasts responded to POT1 depletion with 

strongly reduced proliferation and induction of a senescent phenotype in a subset of the 

cells (Figure 3.5D and E). This phenotype was largely rescued by overexpression of a 

POT1 cDNA with a silent mutation in the shRNA ex18 target site (Figure 3.5E), arguing 

that it is due to lack of full-length POT1 rather than reflecting a function of POT1–55. 

Induction of senescence was also observed for BJ fibroblasts and telomerase-positive 

BJ/hTERT cells, indicating that telomerase status does not determine how cells respond 

to POT1 depletion. In contrast, abrogation of the p53 and p16/Rb pathways with SV40 

large T improved the proliferation of cells with diminished POT1 levels (Figure 3.5F). 

However, SV40LT-expressing cells still had a slightly diminished growth rate when 

POT1 was inhibited (Figure 3.5F).   

 



 56

 

Figure 3.5 Differential effect of POT1 shRNA on proliferation of primary and 

transformed cells 

(A) Graph showing growth curves of HeLa cells with and without POT1 shRNA. The inset shows the 

growth rate (PD/day) of these and additional HeLa cells with lowered POT1 level. (B) Graph showing 

proliferation of HeLa cells transfected with POT1 siRNA or control siRNA. (C) FACS profiles of 

BrdU-labeled HeLa cells infected with the indicated shRNA viruses. Insets show the % cells in G1, S, 

and G2/M. (D) Phase-contrast microscopic images of IMR90 cells 7 days after infection and selection 

with the indicated shRNA viruses stained for SA-β-galactosidase activity (Dimri et al, 1995) for 10 h. 

(E) Graph showing the effect of POT1 shRNA ex18 on the proliferation of IMR90 cells. The inset 

shows the growth rates (PD/day) in cells infected with the indicated shRNAs and a vector expressing 

a POT1 cDNA resistant to ex18 shRNA (POT1*). (F) Graph showing the effect of POT1 shRNAs on 

IMR90 cells transformed by introduction of SV40 large T antigen (pBabeNeoLT). The inset lists the 

growth rate of the cells. 
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Protection of telomeric overhangs by POT1, but not POT1–55 

Whereas fission yeast that lack POT1 undergo an immediate loss of all telomeric DNA 93, 

the duplex part of human telomeres persisted after depletion of POT1 (Figure 3.6). 

However, a quantitative assay for the amount of ss TTAGGG repeat DNA showed that 

POT1 inhibition affected the maintenance of the 3’ telomeric overhang (Figure 3.6). The 

ratio of ss to ds TTAGGG repeats of IMR90 telomeres (measured by an in-gel 

hybridization assay 150) was reduced by 30–40% within a week after introduction of three 

different shRNAs (Figure 3.6A and B). Similar reduction of the overhang signal was 

observed upon POT1 knockdown in BJ and BJ/hTERT cells, showing that the effect is 

not counteracted by telomerase (Figure 3.6C–H).  

The loss of overhang signal was also observed in HeLa and HCT116 tumor cell 

lines. In these settings, overhang reduction was a stable phenotype that persisted for at 

least 40 PD (Figure 3.7D). Ex7/9 shRNAs, which did not affect POT1 and only mildly 

reduced POT1–55, did not alter the ss TTAGGG signal (Figure 3.6C–H). The overhang 

phenotype could be rescued by coexpression of a version of POT1 resistant to shRNA 

ex18 (Figure 3.7A-C). Since the rescuing construct did not express POT1–55, POT1 was 

sufficient to protect the overhangs. Furthermore, one of the shRNAs (ex8a) that resulted 

in overhang loss did not affect POT1–55 (Figure 3.6A), consistent with the phenotype 

being due to diminished full-length POT1. Nevertheless, it cannot be excluded that 

POT1–55 also plays a role in the regulation of telomere overhang formation or overhang 

protection.  
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Figure 3.6 POT1 is required for the maintenance of the 3’ overhang  

(A, C, F) In-gel assay for ss TTAGGG repeats with the indicated cell lines expressing the indicated 

shRNAs. DNA was isolated 7–10 days post-infection, cut with MboI and AluI and processed by in-

gel hybridization to a (CCCTAA)4 probe to detect ss TTAGGG repeats (left panels). The DNA was 

subsequently denatured in situ and rehybridized to the probe to detect the total TTAGGG repeat signal 

(right panels). (B, D, G) Bar graphs representing quantified overhang signals. Overhang signals in 

each lane were normalized to the total TTAGGG signal. The values are expressed relative to the value 

obtained with mock or vector (B) infected cells. The values in (B) represent averages of three 

experiments (SDs indicated). Below the bargraph, + and - indicate whether the shRNA targets POT1 

and/or POT1–55. (E, H) Immunoblots of POT1 and POT1–55 levels in BJ (E) and BJ/hTERT (H) 

cells infected with retroviruses expressing the indicated shRNAs. 
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Telomeres shorten in telomerase deficient human cells due to the end replication 

problem and due of the nucleolytic degradation of telomeric DNA during overhang 

generation 8,9,27. Accordingly, the shortening rate of telomeres is thought to be correlated 

with overhang length.  

 

 

 

 

Figure 3.7 Loss of overhang signal can be rescued by expression of full length 

POT1 and persists during long-term culturing  

(A) Autoradiographs of G-strand overhang assay on BJ fibroblast expressing the indicated shRNAs in 

combination with a version of POT1 (POT1*) that is resistant to shRNA ex18 or the empty retroviral 

vector. Cells were analyzed at 5 PDs after introduction of the shRNA. (B) Bargraph representing 

quantified data from (A). (C) Immunoblot of POT1 levels in the cell lines used in (A) using antibody 

#978. (D) Bargraph of G-strand show the relative overhang signal in long-term cultures of HeLa cells 

expressing the indicated shRNAs. Methods are described in (A) and (B). 
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Therefore, we speculated that the reduced overhang length in POT1 knockdown cells 

could lead to slower telomere shortening rate in telomerase negative cells. In order to test 

this hypothesis, we determined the telomere shorting rate of telomerase negative SV40 

transformed IMR90 cells with reduced POT1 levels. These experiments revealed that 

telomeres in cells depleted for POT1 shortened slightly slower than telomeres in vector 

 

Figure 3.8 Telomere shortening rates in SV40 transformed IMR90 cells after 

the knockdown of POT1  

(A) Autoradiographs of telomere length analysis of IMR90 cells infected with the indicated shRNAs 

or vector control at the indicated population doublings (PD) and days after selection. The * indicates a 

lane were the genomic DNA was not completely digested. This data point was therefore excluded 

from the analysis. (B) Growth curve of cells shown in panel (A). (C) Quantification of telomere 

shortening shown in panel (A). (D) FACS analysis of cells shown in panel  (A) and (B) at PD 30. 

Numbers to the left of the G1-peak indicate the % of cells with a sub-G1 DNA content, which is 

indicative of cells undergoing apoptosis. 
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control cells (Figure 3.8A and C).  

However, in the process of this experiment it became apparent that, although 

SV40 transformation abrogates most of the growth phenotype of primary cells after 

POT1 knockdown, a slight growth arrest remains (Figure 3.8B). This slight growth 

disadvantage of cells with reduced POT1 levels results in lower accumulative cell 

numbers over time (Figure 3.8A). This difference makes the presented result of a slower 

telomere shortening rate difficult to interpret as the number of cell divisions that POT1 

knockdown cells underwent can not be precisely determined. If the lower cumulative cell 

number of POT1 deficient cells is the result of an increased cell death it is likely that the 

surviving cells underwent the same amount of cell division as control cell. But, if the 

lower numbers are caused by a cell cycle delay, without an increase of cell death, cells 

with POT1 knock down underwent less cell divisions. Although, FACS analysis and 

frequency of BrdU incorporation does not indicate a cell cycle arrest in these cells 

(Figure 3.8D), it can not be excluded that over the length of the experiment a minor 

difference in the cell cycle profile, not detected by this analysis, would be sufficient to 

lead to this growth difference. Therefore, the presented data is only suggestive and has to 

be confirmed with a different experimental approach that circumvents the inherent 

problem of altered proliferation in primary cells after POT1 knockdown.  

The observations that SV40 transformed IMR90 cells respond to reduced levels of 

POT1 with a growth disadvantage, while Hela cells do not, suggests that reduced levels 

of POT1 affect a p53 and Rb independent pathway. IMR90 cells and Hela cells differ 

significantly in their chromosome number, while IMR90 cells are diploid, Hela cells are 

genomically unstable and aneuploid. In cells that are depleted for POT1 using shRNAs 
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we find a significant increase in extranuclear chromosomes. These exrtranuclear 

chromosomes, which are most likely the product of chromosome miss-segregation 

events, become apparent as DAPI staining material of inter phase nuclei staining for four 

telomeres in telomeric FISH. This increase of chromosome miss-segregation events can 

explain why SV40 IMR90 respond with diminished growth after POT1 knockdown. 

Reduced telomere overhang length is also seen in cells that overexpress a 

dominant negative from of TRF2 (TRF2ΔBΔM), and it has been shown that this 

overhang loss is dependent on the XPF nuclease 115. In order to address if loss of 

overhang signal after knockdown of POT1 is also mediated by this nuclease, POT1 levels 

were reduced in XPF deficient cells and overhang length was measured by in-gel-

hybridization. While XPF proficient cells show a mild reduction of telomeric overhang 

after the knockdown of POT1, no significant decrease of overhang length is detectable in 

XPF deficient cells (Figure 3.9 A and B). This suggests that, similarly to the expression 

of TRF2ΔBΔM, the telomeric overhang becomes a substrate for the XPF nuclease after 

POT1 knockdown. It has to be mentioned that XPF deficient cells grow very slowly 

(doubling time >42 hours) compared to isogenic XPF proficient cells (doubling time ~24 

hours).  For this reason control cells underwent more cellular divisions than XPF 

deficient cells after the knock down of POT1. If cell cycle progression is a prerequisite 

for the induction of overhang loss, the lack of overhang processing in XPF cells could 

simply be caused by their slow growth. Although this seems unlikely, because the same 

cells were used to establish the role of XPF after TRF2 dysfunction 115, further 

experiments will be necessary to establish the involvement of ERCC1/XPF in overhang 

processing after POT1 loss. 
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POT1 reduction leads to a DNA damage response and the induction of TIFs 

predominantly in G1 of the cell cycle. In order to determine if changes in overhang length 

are triggering this cell cycle dependent TIF formation, we monitored overhang length at 

different stages of the cell cycle. Hela cells depleted for POT1 and cells infected with a 

vector control were separated by elutriation and their overhang length was determined by 

in-gel hybridization.  As cells were in culture for more than 3 weeks before sufficient 

cells could be collected to perform the elutriation protocol, the long-term depletion of 

POT1 resulted as expected in a detectable telomere elongation. Consequently, POT1 

knockdown cells contained more double stranded telomeric DNA than control cells. This 

increase of total telomeric DNA is detectable in the in-gel hybridization under denaturing 

conditions by the increase of the total signal in each lane (Figure 3.10). Therefore, 

overhang signals from control cells and POT1 knockdown cells had to be normalized 

 

Figure 3.9 Overhang changes after POT1 knockdown in XPF deficient cells  

(A) Autoradiographs of G-strand overhang assay on XPF proficient and XPF deficient cells 115. Cells were 

analyzed at 10 days after introduction of the shRNA. (B) Bargraph representing quantified data from (A). 
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separately and only relative changes in the overhang profile between POT1 depleted and 

control cells were compared. This comparison shows that the overhang cell cycle profile 

of POT1 depleted cells and vector control cells are similar (Figure 3.10). In both cases a 

slight increase in single stranded telomeric DNA can be detected in cells that are in S-

phase, compared to cells that are in G1 and G2 (Figure 3.10). A similar cell cycle profile 

of overhang length was found in experiments performed by Jeffrey Ye in unperturbed 

cells (personal communication).  

As the in-gel overhang assay determines the amount of single stranded telomeric 

DNA, it is possible that the increase of single stranded DNA reflects replication 

intermediates during S-phase rather than longer overhangs. Furthermore, the in-gel  
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overhang assay determines the average overhang length of a cell population. Therefore, 

the assay does not allow the detection of very small overhang length changes (<5%), and 

does not discriminate for example between leading and lagging strand overhangs. 

Because of these limitations, the presented results do not rule out that cell cycle 

 

Figure 3.10 Cell cycle variation of single-stranded telomeric DNA after POT1 

knockdown 

(A) Autoradiographs of G-strand overhang assay on Hela cells infected either with a control vector of 

sh18 after elutriation. The numbers above the graph indicate the faction collected by elutriation. (B) 

Bargraph representing quantified data from (A). (C) FACS analysis of the factions collected after 

elutriation and used for overhang analysis in panel (A). 
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dependent changes of the overhang length or its structure are causing the induction of 

TIFs.  In order to test this possible relationship it will be necessary to develop molecular 

tools that allow simultaneous analysis of overhang integrity and protective state of 

individual telomere over the cell cycle.  

 

POT1 determines the last nucleotide of human chromosomes 

The 5’ end of human chromosomes is remarkably specific, ending more than 80% of the 

time with the sequence ATC-5’ 28. To test whether POT1 is required to define this precise 

ending, we used the recently developed ligation-mediated PCR assay. In this assay, 

oligonucleotides (5’ telorettes) representing the six different phases within the 3’-

AATCCC-5’ telomeric repeat sequence are ligated to the 5’ end of the chromosome, 

using the telomeric overhang as an annealing platform (Figure 3.11A). The product is 

amplified with two nontelomeric primers, one that anneals to a sequence common to the 

5’ telorettes and the other that anneals to a subtelomeric site in the pseudo-autosomal 

region of the X and Y chromosomes. Prior to amplification, the DNA is diluted to the 

point where individual molecules are amplified to give discrete bands, so that the number 

of bands is proportional to the number of ligated telomeres. This assay previously 

established that both ends (the lagging and the leading end) of each human chromosome 

have the same 5’ terminal sequence and that this sequence is not influenced by 

telomerase activity 28. The 5’ telorette assay showed the expected predominance of the 

sequence ATC-5’ in vector control HeLa cells (Figure 3.11B). Depletion of POT1 with 

two different shRNAs had a striking effect, leading to nearly random ends representing 
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all six possible terminal nt (Figure 3.11C and D). Similarly, BJ cells lost their prevalence 

for ATC-5’ ends upon  

 

Figure 3.11 POT1 determines the sequence at the 5’ end of human chromosomes 

(A) Schematic of the ends of human chromosomes and the 5’ telorette assay. The six telorettes and the 5’ ends to 

which they can ligate are shown. PCR primers used for amplification are shown schematically. (B–F) Products of 

the 50 telorette assay using the indicated cell lines. Each telorette was used for 2–5 independent assays and the 

products were run in separate lanes. The sequences of the 5’ end detected with each telorette is shown above the 

groups of lanes. POT1* is a vector expressing full-length POT1 mutated to create resistance to the ex18 target site. 

The MWs of the detected products range from 1 to 8 kb. The assays were performed by Agnel Sfeir.
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knockdown of POT1 (Figure 3.11E). BJ fibroblasts showed some residual predominance 

of ATC-5’ ends, most likely because they were analyzed within a week after POT1 

depletion. A POT1 cDNA mutated to create resistance to the shRNA reverted the 

structure of the 5’ end to its normal ATC-5’ setting (Figure 3.11F), indicating that POT1 

alone, in the absence of POT1–55, is sufficient to restore the 5’ end sequence. We 

conclude that POT1 is required for the precise determination of the sequence at the 5’ 

ends of human chromosomes.  
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Discussion 
 
As anticipated from the function of fungal POT1-like proteins, human POT1 is required 

for telomere integrity. RNAi to human POT1 leads to an aberrant structure of the 

telomere terminus and the induction of TIFs. Unexpectedly, POT1 inhibition did not 

result in telomere fusions and cells with prominent TIFs continued to proliferate 

unimpeded. When TRF2 is inhibited, telomeres not only have altered telomere termini 

and TIFs, but also undergo fusions in G1 and G2 and induce cell cycle arrest. Therefore, 

the deprotected telomeres resulting from POT1 inhibition are distinct from those lacking 

sufficient TRF2. The difference is not due to fewer telomeres being affected by POT1 

RNAi, because the structural and functional defects occurred at many more telomeres; 

yet, cells proliferated normally and chromosome ends remained protected from the NHEJ 

pathway. We conclude therefore that telomeres can escape NHEJ despite having an 

aberrant structure that elicits the DNA damage response. In addition, the POT1 RNAi 

data indicate that TIFs are not necessarily harbingers of impending cell cycle arrest. The 

analysis of synchronized cells showed that these TIFs are present every time a cell exits 

mitosis. This is a stable phenotype in HeLa cells, arguing against the detrimental effects 

of TIFs on cell proliferation, and there is no indication that the TIFs induce a cell cycle 

arrest in G1. One possibility is that the type of telomere damage induced by lowered 

POT1 levels is repaired in G1 before a cell cycle arrest is induced. Unraveling these 

distinct aspects of telomere protection illuminated by inhibition of TRF2 and POT1 is 

pertinent to the question of how telomere attrition induces senescence in primary human 

cells. Although the reduced presence of TRF2 on short telomeres can explain many 

aspects of critically shortened telomeres, concomitant reduction in POT1 may well 
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contribute to the behavior of cells as they approach the end of their replicative lifespan. In 

this regard, the partial inhibition of POT1 achieved with RNAi may be more informative 

than the null phenotype.  

 

Definition of the 5’- end 

Our data show that normal POT1 levels determine the ultimate 5’-end of human 

chromosomes. When POT1 is diminished, the 5’-ends terminate at all positions in the 3’-

AATCCC-5’ repeat strand; when POT1 is fully functional, human chromosomes end 

with ATC-5’. How does POT1 set the end? Two general models can be envisaged. In 

one, POT1 recruits a nuclease that specifically cleaves the C-strand at the 3’-AATC^CC-

5’ position. Nuclease trimming of the C-strand has been invoked to explain the formation 

of 3’ overhangs and the high shortening rate of human telomeres 27. Perhaps the 

diminished recruitment of a C-strand nuclease in cells with diminished POT1 results in 

incomplete processing of telomeres that have just been replicated. This could explain 

both the lack of specific C-strand ends and the diminished amount of ss TTAGGG 

repeats seen upon POT1 shRNA. In a variation of this model, POT1 does not recruit the 

nuclease, but stimulates it. POT1 could act similarly to another OB-fold ss DNA-binding 

protein, RPA, which directs the nuclease ERCC1/XPF in NER 151. A second possibility is 

that POT1 protects the sequence ATC-5’, but not other ends, from nucleolytic attack. In 

this model, the nuclease that generates telomeric overhangs need not be specific for the 

sequence ATC-5’ and degradation would continue until an end is generated that POT1 

can protect. The ATC end is very close to the first POT1 recognition site (5’-

(T)TAGGGTTAG-3’) in the 3’ overhang, perhaps allowing protection. The tethering of 
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POT1 to the TRF1(2)/ TIN2/TPP1 complex, lodged on its nearby duplex 5’-

YTAGGGTTR-3’ half-sites 74, could also contribute to the protection of the 5’ end. 

Biochemical and structural studies may be able to clarify these issues. The idea that 

human POT1 acts to protect the end from further nuclease attack is attractive because 

budding yeast Cdc13, a telomeric protein of substantially similar structure, protects the 

C-rich strand of yeast telomeres from degradation 148.   Furthermore, in pot1- fission 

yeast, all telomeric DNA, including the C-rich strand, disappears rapidly 93. Although 

human cells treated with POT1 shRNA does not show a similar dramatic loss of the C-

rich strand, it will be interesting to determine whether more extensive degradation of the 

C-rich strand will take place in POT1 null cells.  

 

A transient postmitotic telomere damage signal  

Cells with diminished POT1 accumulate γ-H2AX and 53BP1 at telomeres, indicating the 

activation of a DNA damage response at natural chromosome ends. This response was 

observed in cells entering G1 and had disappeared by the time cells entered S phase. The 

transient nature of this signal might explain why cells do not arrest upon induction of this 

form of telomere damage. Why does the telomere damage signal disappear? We favor the 

possibility that the DNA damage signal is extinguished by a process that restores the 

protected state of telomeres. One possibility is that POT1 is normally required to re-

establish the fully protected state during or after mitosis and that the process is delayed or 

slow when POT1 levels are low. It is tempting to link the transient DNA damage 

response to the defect in the structure of the telomere termini. If POT1 generates the 

correct 3’ overhang by recruiting or activating a specific nuclease that leaves ATC-5’ 

ends, a DNA damage response could ensue as long as the termini have insufficient or no 
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3’ overhang. Early in G1, other nucleases, possibly stimulated by the DNA damage 

response, may also be able to generate a 3’ overhang ensuring telomere protection. These 

nucleases would leave the telomeres with a 3’ overhang of different length and with 5’ 

ends with an altered sequence. This process may be slow, inaccurate, and unregulated, 

but eventually could extinguish the telomere damage signal, allowing cells to progress 

into S phase. 
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4. Recent expansion of the telomeric complex in rodents: Two 

distinct POT1 proteins protect mouse telomeres 

 

Introduction 
Specific knock down of human POT1 using RNAi techniques revealed that POT1 

functions in telomere protection and telomere length regulation. However, as these 

experiments involved a partial (<10-fold) reduction of POT1, the consequences of 

complete loss of function remained to be determined. To study the complete loss of 

function of POT1, we used targeted deletion in mouse cells. Mouse knockouts proved 

previously to be an invaluable approach to understanding the function of telomerase and 

shelterin components 67,80,87,119,145. All shelterin components have been identified in 

mouse cells and generally share high sequence similarity with their human homologues.  

Embryonic lethality of conventional gene knockout mice for TRF1, TIN2 and RAP1 

indicated the essential role of these shelterin components for cellular viability 80,86,87,152. 

Later, Cre-mediated conditional gene disruption of TRF2 provided a molecular tool to 

study the consequences of shelterin dysfunction 80. Furthermore, crosses between the 

TRF2 knockout mice and mice deficient for components of the NHEJ machinery 

confirmed previous findings on TRF2 in human cells 80,119. This body of work indicates 

that mouse cells are a legitimate system to study the role of POT1 in telomere biology. 

Nevertheless, significant differences in telomere biology exist between mouse and human 

cells. Not only are mouse telomeres longer than human telomeres 25, mouse cells also 

constitutively express telomerase 153 while human somatic cells have no significant 

telomerase activity. Mouse and human cells also respond differently to can be found in 
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their response to telomere dysfunction 154,155. Mouse cells arrest after telomere 

dysfunction predominantly through the activation of p53, while in human cells the 

inactivation of both p16 and p53 are necessary to suppress cellular arrest. Together, these 

differences between mouse and human cells can explain why cellular senescence in 

mouse and human cells results from different cellular events. Under optimal growth 

conditions human primary fibroblast enter replicative senescence as a consequence of 

progressive telomere shortening19. In contrast, mouse fibroblasts taken into culture enter 

senescence earlier through a process called “culture shock”. Culture shock results in the 

activation of p53 by ambient oxygen levels and is independent of telomere length 

(reviewed in)156.  

An additional difference in the organization of human and mouse telomeres 

became apparent when we found that mouse telomeres contain two POT1 paralogs, 

POT1a and POT1b, while only one POT1 gene exists in the human genome. We 

addressed the function of POT1a and POT1b individually, using conditional gene 

deletion. To address the phenotypes of the complete loss of POT1 we generated 

POT1a/POT1b double deficient cells. The result presented in this section were in part 

published 157. 
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Results 
 
Two Distinct POT1 Proteins at Mouse Telomeres  

The human genome contains only one gene with significant homology to the ciliate 

telomere terminus proteins 93, and a single POT1 gene is present in the primate, dog, and 

cow genomes (Figures 4.1 B, and Figure 4.2). In contrast, we identified two POT1 

orthologs (POT1a and POT1b) in the mouse and rat genomes (Figures 4.1A and B). 

Mouse POT1a and POT1b show 71%–75% amino acid identity to human POT1 and to 

each other (Figures 4.1C and D). The mouse POT1a locus on chromosome 6 is syntenic 

with the human POT1 locus on chromosome 7; POT1b is located on mouse chromosome 

17. The most likely origin of the two rodent POT1 genes is a recent gene duplication 

(Figure 4.1). 

Both POT1 mRNAs are represented in the EST databases (POT1a: AK036052; 

POT1b: XM_355022) and appeared ubiquitously expressed based on RT-PCR analysis 

(Figure 4.3A). The embryonic expression pattern of POT1a was examined using mice 

derived from a gene-trap ES cell line containing a β-galactosidase-neo (GEO) fusion 

gene inserted after the 8th coding exon in the POT1a locus (POT1a8GEO; Figure 4.3C). 

Heterozygous POT1a8GEO/+ E13.5 embryos had β-galactosidase activity in the developing 

tissues (Figure 4.3B), indicating (near) ubiquitous expression during embryonic 

development. 
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Figure 4.1 Two POT1 proteins in the mouse  

(A) Schematic of the human and mouse POT1 proteins, dark fill: OB-folds, light fill: TPP1 interacting 

domain. (B) Phylogenetic tree of vertebrate POT1 proteins based on the sequences given in Figure 4.2 

using the Multalin website and default settings (http://prodes.toulouse.inra.fr/multalin/).  

(C) Alignment of mouse POT1a and POT1b with human POT1 showing sequence identifies in 

functional domains and landmarks relevant to the altered mouse alleles. Identical amino acids are 

boxed black. Inferred OB-folds are boxed blue and the putative TPP1 interaction domains are boxed 

in yellow. Amino acids known from the crystal structure of human POT1 essential for DNA binding 
94 are shaded yellow and amino acids known in human POT1 to be essential for the interaction with 

TPP1 55,98,99,111,112,147 are shaded red. Indicated are the truncation sites in POT1a and POT1b STOP 

alleles, POT1a and POT1b Δex3 alleles and the truncation site of POT1a in the POT1a8GEO allele.  

(D) Schematic overview of sequence similarity between hPOT1, POT1a and POT1b. Boxes as in (C).  
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 Both POT1 proteins were detectable in immunoblots of extracts from mouse 

embryo fibroblasts (MEFs), ES cells, and NIH3T3 cells (Figure 4.4A). Two anti-sera 

raised against POT1a peptides detected a protein of 70 kDa apparent MW whose 

abundance was significantly reduced by shRNAs specific to POT1a. Similarly, two anti-

 

Figure 4.2 Comparison of POT1 proteins  

(A) Alignments of the POT1 proteins of Mus musculus (mouse), Rattus norvegicus (rat), Homo 

sapiens (human), Pan troglodytes (chimpanzee), Canis familiaris (dog, boxer), Gallus gallus 

(chicken), and Bos taurus (cow). For part of the sequences (dog POT1, rat POT1b, and cow POT1) no 

EST information was available. These POT1 sequences were derived from BLAST searches of 

genomic DNA and spliced together based on identification of exon-intron boundaries using the 

human POT1 sequence as a guide. Alignments were generated by CLUSTALW using the Multialin 

website (http://prodes.toulouse.inra.fr/multalin/) and default setting for all parameters. Identical amino 

acids in red; similar amino acids in blue. 
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sera raised to POT1b peptides reacted with a protein of 75 kDa apparent MW, that was 

identified as POT1b based on shRNA knockdown. Immunoblots and 

immunoprecipitation experiments indicated that the POT1a and POT1b antibodies were 

specific to the respective POT1 proteins (Figure 4.4A). Semiquantitative immunoblotting 

experiments using recombinant proteins as a standard suggested that POT1a and POT1b 

are expressed at similar levels (Figure 4.4 B).  

Indirect immunofluorescence (IF) for POT1a and POT1b revealed the punctuate 

nuclear pattern typical of telomeres and many of the POT1 sites coincided with TRF1 

 

Figure 4.3 Expression analysis of POT1a and POT1b 

 (A) Expression of POT1a and POT1b mRNAs in the indicated tissues and embryonic stages 

determined by RT-PCR. (B) β-galactosidase staining of E13.5 embryos. (C) Schematic representation 

of the POT1a8GEO allele. Shown are the wt POT1a locus on chromosome 6 and a schematic of the wt 

POT1a protein. Below the POT1a locus of Baygenomics clone RRA096 is shown and a schematic 

overview of the truncated POT1a8GEO protein.  
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signals (Figure 4.4B). Telomeric localization was also observed for MYC-tagged POT1a 

and POT1b (Figure 4.4C). Furthermore, chromatin immunoprecipitation (ChIP) with 

POT1a and POT1b antibodies recovered approximately the same amount of telomeric 

DNA but no chromosome-internal sequences, confirming that both proteins are 

specifically associated with telomeres (Figure 4.6). RNAi-mediated partial (70%) 

depletion of POT1a or POT1b demonstrated the specificity of the antibodies used in these 

experiments (Figures 4.6A and B).  

 

 

 

Figure 4.4 POT1a and POT1b protein levels in mouse fibroblasts 

(A) Immunoblots for POT1a and POT1b on extracts from NIH3T3 cells with shRNAs to POT1a (a1 or a3) or 

POT1b (b1-3). vec: vector control; a*: ineffective POT1a shRNA. (B) Quantitative analysis of expression levels of 

POT1a and POT1b. POT1a and POT1b signals obtained in MEF extract were compared to signals obtained with 

identical amounts of recombinant GST-POT1a and GST-POT1b fusion protein. Loading of equal amounts 

(“units”) for the two GST fusion proteins was based on Coomassie staining as shown on the right. The experiment 

in (A) was performed by Jan-Peter Daniels. 
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Figure 4.5 Telomere localization of POT1a and POT1b 

 (A) IF for POT1a and –b in NIH 3T3 cells. IF with mouse anti-POT1a and POT1b sera (green) and rabbit 

anti-TRF1 (644) (red). (B) MYC IF showing telomeric localization for overexpressed MYC-POT1a and 

MYC-POT1b. MEFs were infected with the indicated retroviruses and processed for IF (MYC, red) and 

TRF1 (green). 
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Lack of POT1a Results in Embryonic Lethality, whereas POT1bSTOP/STOP Mice Are 

Viable and Fertile 

Whereas ES cells and mice heterozygous for the genetrap allele POT1a8GEO had no 

apparent phenotype, intercrosses of POT1a8GEO/+ mice failed to yield homozygous 

offspring (Figure 4.10B). POT1a8GEO/8GEO blastocysts failed to yield ES cells and cultured 

E1.5–E3.5 embryos did not form an inner cell mass and died around E6.5 (Figure 4.7). 

According to these data, POT1a is essential in early embryonic development and ES 

cells, even though POT1b is expressed (Figures 4.10A and 4.3A), suggesting that POT1a 

and POT1b are not redundant. We therefore generated mice carrying targeted alleles 

allowing conditional deletion of the third coding exon of POT1a, POT1b, or both. 

 

Figure 4.6 Telomere binding of POT1a and POT1b 

(A) Telomeric DNA ChIP for POT1a and POT1b. ChIPs with the indicated antibodies on NIH3T3 cells 

infected with shRNAs described in panel E. Left: TTAGGG signal. Right: Bulk DNA detected with the 

BamHI repeat. (B) Bargraph of quantification of ChIP analysis show in (A). The assay was performed by 

Jan-Peter Daniels 
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Analysis of the mouse POT1 loci and rationale for the targeting strategy 

Analogous strategies were used for the POT1a and POT1b loci (Figures 4.9A and B). In 

both genes, the third coding exon was deleted based on several considerations. For 

simplicity, the details below only refer to POT1a. According to the NCBI modelmaker 

tool (http://www.ncbi.nlm.nih.gov/mapview/modelmaker.cgi?QSTR=pot1&QUERY= 

uid(18408376)&taxid=10090&contig=NT_039340.6&gene=Pot1), deletion of the first  

 

Figure 4.7 Early embryonic lethality of POT1a deficient mice 

Phase-contrast microscopic images show in vitro blastocysts growth at the indicated times after 

fertilization. Blastocysts were isolated from POT1a8GEO/+ heterozygous intercrosses. One fourth of 

isolated blasocycst failed to form an inner cell mass (ICM). This is in agreement with the mendelian 

distribution expected for embryonic lethality of POT1a8GEO/8GEO. Embryo1 is a wt embryo while 

embryo2 is a POT1a8GEO/8GEO (determined by the lack of POT1a wt PRC product). The pictures of day 

3.5 to 6.5 were taken with a 40x magnification and the pictures of day 6.5 to 10.5 were taken with a 

10x magnification. 
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two coding exons (exons 5 and 6 in the NCBI site) generates an N-terminally truncated 

POT1a protein lacking about one third of the first OB-fold (Figure 4.8). The truncated 

allele is predicted to start on an ATG in the 5’UTR, brought in frame with coding exon 3 

by the normal splicing pattern of the POT1a mRNA. The Kozak score for this ATG is 

0.401 (out of 1.0) and the resulting open reading frame is 607 aa. This ATG is closely 

followed by a second in-frame ATG with a score of 0.517, better than the natural POT1a 

ATG (0.497). Thus, truncation proteins of 600 and 607 aa might be generated if these 

ATGs are used in the context of deletion of the first two protein coding exons. These N-

terminal deletions of POT1a will lack the ability to bind to single-stranded telomeric 

DNA but retain the ability to interact with the TPP1 component of shelterin. They are 

therefore expected to have a dominant negative effect, which has been documented for 

similar truncations of human POT1 55. Furthermore, an N-terminal truncation allele of 

POT1a might be expected to affect POT1b function and vice versa.  

 

Figure 4.8 Schematic overview of targeting strategies for the mPOT1a locus deleting 

either exon 1 and 2 or deleting exon 3 

The schematic gives the amino acid and exon information for the POT1a locus and the Kozak score values 

for the pertinent ATGs as well as the length of the predicted open reading frames. 
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Given these considerations, we opted for a targeting strategy that would allow 

conditional deletion of the third coding exon (exon 9 in the NCBI nomenclature) while 

preserving the first two coding exons. Upon deletion of exon 3, the protein initiated on 

the first ATG of POT1a will terminate early due to a frame-shift at position 41 which 

generates an in-frame stop codon four amino acids downstream. After this stop codon, 

there is no in-frame ATG until the methionine at aa position 112 in coding exon 4. 

Initiation on this ATG is predicted to yield a 528 aa truncation allele lacking DNA 

binding activity. However, use of this ATG is rendered less likely since there is a 

favorable ATG upstream and therefore the generation of the 528 aa protein most likely 

requires reinitiation. Anticipating this possible protein product, we also employed an 

alternative strategy to disrupt POT1. We introduced an FRT-flanked STOP cassette 158 

after the second coding exon, interrupting the first OB-fold of the DNA binding domain 

(Figure 4.1D) allowing us to study the complete loss of function phenotype of POT1a and 

POT1b independent of the exon 3 deletion. Through the expression of the FLPe 

recombinase the STOP cassette is removed to generate the conditional targeted allele 

(FLOX) (Figure 4.9 A and B). No significant differences were detected in the phenotypes 

observed by the disruption of the POT1 loci using these two different strategies. 

Cells heterozygous for the STOP allele showed 50% less POT1a (or POT1b) 

protein (Figures 4.11A and C), consistent with previous data on the STOP cassette 158. 

Intercrosses of POT1aSTOP/+ mice confirmed that POT1a deficiency is incompatible with 

mouse development (Figure 4.10B) 
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Figure 4.9 Targeting the mouse POT1a and POT1b loci 

(A) Targeting strategy for POT1a. Coding exons 1-5 of the POT1a genomic locus (chromosome 6), 

the targeting construct, and the POT1a alleles generated are shown. Yellow: probes used for 

genotyping by genomic blotting of BamHI digested DNA used in panel (C); green boxes: FRT sites; 

blue: LoxP sites; SA: splice acceptor. (B) Conditional knockout strategy used to target the POT1b 

gene. Given are the genomic locus on mouse chromosome 17 containing the coding exons 1-4 of the 

POT1b gene, the targeting construct, and the POT1b alleles generated. Yellow boxes: probes used for 

genotyping by genomic blotting of BamHI digested DNA used in panel (C); green boxes: FRT sites; 

blue: LoxP sites; SA: splice acceptor of the STOP cassette. (C) Autoradiogram of genomic blotting 

analysis of BamHI digested DNA from ES-cells targeted with POT1a targeting construct (left panel) 

and POT1b (right panel) using the probes indicated panel A and B (above) located proximal to exon 

3. 
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Figure 4.10 Conditional deletion of POT1a and POT1b 

(A) Genotyping PCR for POT1a and -b using DNA from MEFs. (B) Table of the genotypes found in the 

offspring of heterozygous intercrosses of indicated POT1a or –b mutant mice at weaning (top) or at E13.5 

(bottom). (C) RT-PCR analysis of POT1a mRNA isolated from MEFs with the indicated genotypes after 

infection with pWzl-Cre or control vector and 4 days of selection. (D) Photograph of POT1bSTOP/+ (left) 

and POT1bSTOP/STOP (right) mice. 
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Figure 4.11 Efficient depletion of POT1a and POT1b proteins in MEFs 

(A) Immunoblot POT1b extracts from MEFs of the indicated genotypes and 129SV/J ES-cells using 

antibody 1223 detecting POT1b (top band). For the +Cre lane, POT1bSTOP/FLOX MEFs were 

infected with H&R-Cre virus and analyzed 5 days later. (B) ChIP using the indicated antibodies on 

MEFs with the indicated genotype. (C) Genotyping PCR and immunoblot analysis of POT1a mutant 

MEFs of the indicated genotype. Immunoblots with POT1a antibody 1221 and POT1b antibody 1223. 

Cells were infected with H&R-Cre virus were analyzed 5 days post infection (+Cre). (D) Immunoblot 

for POT1a and POT1b (E) in control cells and after Cre-mediated deletion. Note that no new lower 

MW products are detected after Cre treatment. 
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However, POT1bSTOP/STOP mice appeared healthy and fertile (Figures 4.10B and 4.10D). 

MEFs isolated from POT1bSTOP/STOP embryos lacked POT1b (Figure 4.11A), and ChIP 

confirmed that POT1b was not present at telomeres whereas POT1a, TRF1, and TRF2 

remained bound (Figure 4.11B). The targeting strategy was such that floxed alleles of 

POT1a and POT1b could be generated allowing the isolation of MEFs from which the 

third protein coding exon (referred to as exon 3) of either gene could be deleted with Cre 

recombinase. Multiple independent POT1aSTOP/FLOX and POT1bSTOP/FLOX MEFs were 

isolated and immortalized with SV40 large T antigen (SV40-LT). Cre recombinase 

efficiently excised exon 3 as shown by PCR and RT-PCR and resulted in the expected 

loss of POT1a and POT1b protein (Figures 4.10C and 4.11 A-E). It has to be noted that 

the RT-PCR result also indicated that the deletion of exon 3 resulted in a stable POT1a 

mRNA (Figure 4.11C). Upon Cre-mediated deletion of either POT1 gene, the other 

POT1 paralog, TRF1, TRF2, and RAP1 remained associated with telomeres (see Figures 

4.13A, 4.14A,C and 4.16A).  

 

Redundant Roles for POT1a and POT1b in Cell Proliferation  

Cre-mediated deletion of either POT1a or POT1b from SV40-LT immortalized MEFs did 

not lead to a growth arrest (Figure 4.12A). Both cell types continued to proliferate with 

unaltered cellular morphology although POT1a-deficient cells grew slightly slower than 

the controls. Similarly, deletion of POT1a from primary MEFs did not result in a growth 



 89

arrest; POT1b deficiency is tolerated in the context of the whole animal, indicating that 

POT1b is also not required for proliferation of nontransformed cells. In contrast,  

simultaneous Cre-mediated deletion of POT1a and POT1b from 

POT1aSTOP/FLOXPOT1bSTOP/FLOX MEFs resulted in a rapid proliferative arrest (Figure 

4.12A). These double-knockout (DKO) cells appeared to undergo senescence, as deduced 

from their enlarged and flattened morphology and their expression of SA-β-galactosidase 

(Figure 4.12B). The cultures were eventually overtaken by the small fraction of cells in 

which the Cre-mediated deletion of POT1a and/or POT1b was incomplete (Figure 

4.12B), hampering long-term analysis of DKO cells. POT1aSTOP/FLOXPOT1bSTOP/FLOX 

MEFs, which contain half the normal level of POT1a and POT1b, showed no growth 

defect (Figure 4.12A and B), nor did NIH3T3 cells in which POT1a and POT1b were 

simultaneously knocked down to 30% with shRNA.  Thus, immortalized cells can 

proliferate normally without either POT1a or POT1b or when the total POT1 level is 

lowered 2- to 3-fold but not in the complete absence of both POT1a and POT1b.  
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Repression of the Telomere DNA Damage Signal by POT1a and POT1b  

The role of POT1a and POT1b in the repression of the DNA damage signal at telomeres 

was assayed based on the formation of telomere dysfunction-induced foci (TIFs) 109, 

which are cytological foci of DNA damage response factors, such as 53BP1 and γ-H2AX, 

at chromosome ends. When both POT1a and POT1b were deleted, 70%–80% of the 

nuclei contained γ-H2AX and 53BP1 foci at most of the telomeres (Figures 4.13 A-C), 

indicating that the majority of chromosome ends had lost protection. Cells lacking only 

POT1b or cells heterozygous for POT1a and POT1b did not show this phenotype 

(Figures 4.13A,C, and D). A TIF response was also observed upon deletion of POT1a 

alone but the phenotype was limited to 30% of the cells (Figures 4.13A and C), indicating 

Figure 4.12 POT1a/b double deficient cells arrest and enter senescence 

(A) Graph showing growth curves of SV40-LT immortalized MEFs targeted for either POT1a, or both 

POT1 genes after infection with pWZL-Cre or vector control viruses. Cells were selected with 

hygromycin for 96 hours and proliferation was monitored over the next 7 days in medium without 

hygromycin. (B) Phase-contrast microscopic images of MEFs with the indicated genotypes with or 

without the infection with Cre adenovirus 7 days after infection (stained for SA-β-galactosidase). 
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that POT1b contributed to the protection of telomeres. The data suggest that POT1a is 

sufficient to repress DNA damage signaling at telomeres even when POT1b is absent. 

However, POT1b contributes to telomere protection and a complete telomere DNA 

damage response is only observed when both proteins are removed from the telomeres. 

DKO cells retained TRF2 and its interacting factor RAP1 at their telomeres (Figure 

4.14A). Inspection of large numbers of nuclei before and after introduction of Cre 

showed no obvious change in the IF patterns and intensity of TRF2 and RAP1. In 

addition, there was widespread colocalization of TRF2/RAP1 signals with γ- H2AX in 

the DKO cells (Figure 4.14A). Thus, while TRF2 contributes to the recruitment of POT1 

55, POT1a/b are not needed for the accumulation of TRF2 and RAP1 at telomeres. 

Furthermore, the results indicate that telomeres lacking POT1a/b have lost the ability to 

prevent activation of a DNA damage signal, even though TRF2 is still present. Whereas 

both POT1a and POT1b contribute to the repression of the DNA damage response at 

telomeres, the data suggested that POT1a and POT1b are not interchangeable in terms of 

this function. 
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Figure 4.13 DNA damage signal at telomeres lacking POT1 function  

(A) MEFs of the indicated POT1 genotypes were infected either with pWZL-Cre retroviruses or control 

vector, selected for 5 days with hygromycin and analyzed by IF for TRF1 (red), γ-H2AX (green) and 

counter stained with DAPI (blue). (B) FISH-IF analysis of POT1 DKO cells treated as in (A) stained for 

telomeric DNA (red) and 53BP1 (green) and DAPI (blue). (C) Quantification of TIF positive cells. Cells 

with 10 or more TRF1 signals co-localizing with γ-H2AX foci were scored. Grey bars: no Cre, control 

vector; green bars: pWZL-Cre. (D) TIF analysis as shown in Figure 3 (panel A) using MEFs with the 

indicated genotypes and Cre infection. 



 93

In order to further explore the possibility that POT1a and POT1b differ in their 

ability to repress the telomere DNA damage response, we monitored the ability of 

overexpressed MYC-tagged POT1a and POT1b to repress the formation of TIFs in 

POT1a -/- cells. Both proteins were overexpressed and localized to telomeres (Figures 

4.14B and C) but differed in their ability to protect the telomeres. Overexpression of 

 

Figure 4.14 Telomere dysfunction induced foci are a phenotype of POT1a, but not of 

POT1b loss 

(A) POT1aSTOP/FLOX POT1bSTOP/FLOX examined before and after Cre expression as in Figure 4.12 (A) but 

using antibodies to TRF2 (1254, red) or RAP1(1252, red) and γ-H2AX (green) for IF. The images of nuclei 

– and +Cre are not shown at the same magnification. Cre-treated nuclei are considerably larger. (B) 

Suppression of the DNA damage response in POT1a-/- cells by POT1a but not POT1b. POT1aSTOP/FLOX 

cells were treated with Cre to delete POT1a and subsequently infected with retroviruses expressing N-

terminally MYC-tagged POT1a or POT1b (or the empty pLPC-MYC vector) as indicated. TIFs were 

detected and scored as in panels A and C. (C) Immunoblot detection of POT1a and POT1b overexpression 

in POT1a or POT1b deficient cells. Genotypes and overexpression as indicated above the lane. MYC-

tagged POT1a migrates slightly slower than the endogenous POT1a.  
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POT1a diminished the frequency of TIF positive cells by 10-fold, whereas 

overexpression of POT1b had only a minor effect (Figures 4.14B and C). These data 

point to a functional difference between POT1a and POT1b and argue against the 

possibility that the distinct phenotypes of POT1a and POT1b deletion are due to slight 

differences in the level of expression of the two genes.  

 

Infrequent Chromosome-End Fusions in DKO Cells  

Although many metaphases from the DKO cells showed no aberrations (Figure 4.15A, 

panel I), approximately 60% of the metaphases contained one or a few aberrant 

chromosomes (Figures 4.15A and B). Metaphase spreads in which telomeres were 

detected using FISH revealed the occurrence of chromosome-type fusions with telomeric 

DNA at the fusion site (Figure 4.15A, panels II–VI). These fusions affected 2% of the 

chromosomes, which is 30- fold more frequent than in control cells (Figure 4B). The 

increase in fusions in DKO cells was significant and depended on the introduction of Cre 

(Figure 4.15B). However, the phenotype is much less pronounced than the nearly 

complete fusion phenotype of cells lacking TRF2 in which each chromosome undergoes 

one or two fusion events 80. Furthermore, whereas TRF2 null cells have long trains of 

fused chromosomes, fusions of more than two chromosomes were rare in POT1 DKO 

cells (Figure 4.15A, panels II, III, and VI). The chromosometype fusions occurred on 

both the short and long arm and in some cases clearly involved two different 

chromosomes (e.g., Figure 4.15A, panel IV). The fusions of two chromosomes always 

involved both chromatids, suggesting that most fusions occurred before DNA replication. 

In addition to chromosome-type telomere fusions, DKO cells contained a significant 
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number of chromosome fusions without detectable telomeric DNA at the fusion site 

(Figures 4.15A, panel IX, and 4B), which  

could be a consequence of breakage-fusion-bridge cycles. Consistent with this possibility, 

 

Figure 4.15 Mild telomere fusion phenotype associated with POT1 deficiency 

(A) Metaphase spreads of SV40LT MEFs with telomeric DNA detected by FISH (green) and stained with 

DAPI (false-colored in red). POT1aSTOP/FLOX POT1bSTOP/FLOX MEFs were infected with AdCre and 

analyzed 78 hours later. Representative metaphase (I). Examples of the chromosomal aberrations found in 

the POT1 DKO: chromosome-type fusions with and without telomeric DNA at the site of fusion (II-VI), 

sister telomere fusions (VII-VIII), chromosomes with multiple internal TTAGGG signals (IX) and two 

interphase nuclei connected with multiple chromatin bridges containing with telomeric signal.  

(B) Frequencies of aberrant chromosomes in metaphases (as in (A)) of POT1a and/or -b deficient MEFs. 

Fusions of short arm sister telomeres were not scored. 
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anaphase bridges were observed and occasionally, chromatin bridges containing 

telomeric signals persisted after reformation of the nuclear envelope (Figure 4.15A, panel 

X). DKO cells also contained a few complex chromosomal rearrangements as well as 

chromosomes with multiple TTAGGG repeat FISH signals separated by large segments 

of nontelomeric DNA (Figure 4.15A, panel IX). The origin of these rare abnormalities is 

not clear. POT1 DKO cells appeared to have an unusual propensity to fuse or associate 

sister telomeres (Figures 4.15A, panels VII and VIII, and 4.15B). Although sister 

telomere fusions have been observed in cells lacking TRF2 81, they are rare and the vast 

majority of fusions involve nonsister telomeres 159. In order to distinguish sister telomere 

fusion from spurious juxtaposition, we only analyzed the q arm telomeres of 

chromosomes with clearly separated long arms. These long-arm sister telomeres of DKO 

cells showed a rate of sister fusion of 1%–2% of the chromosomes per cell division 

which is comparable to the rate of nonsister fusions. Each of the chromosomal 

abnormalities observed in DKO cells were also present in POT1a-deficient cells but at 

significantly reduced frequency (Figure 4.15B).  In contrast, POT1b-deficient cells 

showed no increase in telomere fusions or other chromosomal abnormalities (Figure 

4.15B). Thus, POT1a appears to be sufficient for the protection of telomeres from 

inappropriate fusion and in its absence POT1b can partially, but not fully compensate for 

this function. However, the telomere fusion phenotype of DKO cells is minor compared 

to the phenotype of TRF2 -/- cells, indicating POT1 function is largely dispensable for 

the repression of NHEJ at telomeres.  
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Endoreduplication with Formation of Diplochromosomes  

POT1a/b DKO cells displayed extensive endoreduplication (Figures 4.16A,B and 4.17). 

As a result, some of the DKO interphase nuclei had an increased size and contained 

 

Figure 4.16 Endoreduplication with diplo- and quadruplochromosomes in DKO 

cells 

(A) Example of enlarged DKO nuclei with supernumerary telomeres. Top panel: TRF1 IF (red) in POT1 

DKO cells counter stained with DAPI (blue). The nucleus on the left is enlarged and shows increased 

numbers of telomeric TRF1 foci and telomere clustering around heterochromatin. The nucleus on the right 

is of normal size. Bottom: Telomeric FISH (green) in DKO cells counter stained with DAPI (blue). 

Enlarged nucleus with supernumerary telomeres on the right shown next to a nucleus of normal size.  (B) 

Telomeric FISH on DKO metaphase chromosomes showing diplochromosomes and 

quadruplochromosomes.  (C) FACS profiles of POT1aSTOP/FLOX POT1bSTOP/FLOX MEFS infected with 

pWZL-Cre or vector control, selected for 5 days and analyzed 2 days after selection. Sub-G1 cells are not 

shown. (D) MEFs were treated as in (C) and incubated in BrdU for 1 hour prior to harvesting. FACS 

profiles represent BrdU content and DNA content. Numbers represent % of cells in each compartment. 

 



 98

supernumerary telomeric signals (see for example Figure 4.16A). In these nuclei, the 

telomeres tended to cluster around regions of more intense DAPI staining, which is 

expected since half of the mouse telomeres abut the centromeric heterochromatin. 

Metaphase spreads revealed a high frequency (17%) of endoreduplicated karyotypes in 

which all chromosomes were present as diplo- or quadruplochromosomes (Figures 4.16B 

and 4.17). Endoreduplication with formation of diplochromosomes is rare in 

immortalized control MEFs (%3% of metaphases; Figures 4.17 A and B). FACS analysis 

showed that POT1a/b DKO induced an increase in cells with 8N and 16N DNA content 

(Figures 4.16 C and D), consistent with one and two rounds of endoreduplication, 

respectively.  The repression of endoreduplication by POT1 proteins followed the pattern 

seen for repression of the DNA damage signal and (rare) telomere fusions. POT1a-

deficient cells exhibited endoreduplication with formation of diplochromosomes in 

approximately 17% of the metaphase spreads (Figure 4.17B). However, FACS analysis 

indicated that their extent of endoreduplication was somewhat less than the DKO cells 

and metaphases with quadruplochromosomes were not observed (4.17A). FACS analysis 

and inspection of metaphase spreads showed that endoreduplication was not induced in 

POT1b-deficient cells (Figures 4.17A and B). Thus, also with regard to 

endoreduplication, POT1a is primarily responsible for repression of this phenotype. The 

mechanism by which loss of POT1 function induces endoreduplication is not known. 

Chromosome-end fusions are not a likely culprit since they are thought to impede the 

progression of mitosis after resolution of the centromeric cohesin and hence do not 

explain the occurrence of diplochromosomes which retain cohesion at the centromeres. 
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Figure 4.17 Cell cycle profile changes after deletion of POT1a or POT1b  

(A) FACS profiles MEFs with the indicated genotypes and BrdU incorporation as in Figure 5 panels 

C and D.  (B) Frequency of diplochromosome-containing metaphases in MEFs with the indicated 

genotypes. Metaphases were generated as in Figure 4.15 
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POT1b Controls Telomerase-Independent Processing of the Telomere Terminus  

The structure of the telomeres in cells lacking POT1a and/ or POT1b was examined by 

genomic blotting of telomeric restriction fragments (Figures 4.18-4. 21). Although each 

mouse embryo has a different pattern of telomeric restriction fragments, the size of the 

bulk telomeres can be assessed when the DNA is fractionated on CHEF gels. 

This analysis indicated that deletion of POT1a or POT1b did not result in a rapid loss or 

elongation of telomeric DNA. Furthermore, the size of the telomeric fragments of 

second- generation POT1b-deficient mice was unaltered (Figure 4.18A, 4.19 and 4.20A). 

In addition, DKO cells had telomeres in a normal size range, consistent with the retention 

 

Figure 4.18 POT1b loss leads to an increase in single stranded telomeric DNA  

(A) DNA from MEFs of the indicated genotypes was analyzed using the in-gel telomere overhang assay. 

Phenotypes were analyzed 7 days after infection with H&R-Cre or without infection at the same time 

point. The left image shows hybridization signal using the TelC probe ([CCCTAA]4) under native 

conditions detecting the telomeric 3’ overhang. The right image shows the total telomeric hybridization 

signal obtained with the same probe after in-gel denaturation of the DNA. MEFs are derived from 

littermate embryos and were analyzed one week after introduction of Cre. (B) Quantification of overhang 

changes based on three independent experiments as shown in (A). Bar-graphs represent quantified 

overhang signals normalized to the total telomeric signal in the same lane. For each genotype, % 

overhang changes induced by Cre are depicted. Error bars represent one SD. 
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of the telomeric FISH signals in interphase cells and metaphase spreads (Figures 4.13- 

4.16). The status of the telomere terminus was examined by quantitative analysis of the 3’ 

telomeric overhang. The single-stranded telomeric DNA was detected in native DNA gels 

using a single-stranded [CCCTAA]4 probe. After quantification of the signal, the DNA 

was denatured in situ and the total amount of telomeric DNA was determined in the same 

lane by rehybridization with the [CCCTAA]4 probe. The ratios of single-stranded to total 

telomeric DNA signals were compared between samples in order to evaluate changes in 

 

Figure 4.19 ExoI and C-strand control experiments for extended overhang phenotype of 

POT1b deficiency  

(A) In-gel hybridization analysis on DNA from MEFs with the indicated genotypes treated as in Figure 6. Before 

digest of genomic DNA plugs were incubated with ExoI nuclease as indicated. Top panel shows the native overhang 

signal, bottom panel shows the denatured total telomeric DNA. (B) In-gel hybridization of MEFs with the indicated 

genotypes treated as in Figure 6. Top panel: the single-stranded and total telomeric DNA signals obtained with a 

[CCCTTA]4 probe. Bottom panel: the single-stranded and total telomeric DNA signals obtained with a [TTAGGG]4 

probe. 
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the single-stranded TTAGGG repeat DNA. The relative amount of single-stranded 

TTAGGG repeats was not altered upon deletion of POT1a (Figures 4.18A and B).  

 In contrast, loss of POT1b resulted in increased single-stranded telomeric DNA signals 

(Figures 4.18A and B). The increased signal was derived from a 3’ overhang since it was 

sensitive to the E. coli 3’ exonuclease ExoI and was specific for the telomeric overhang 

sequence, as no signal was detected in hybridazations using a TTAGGG single stranded 

probe.  (Figures 4.19A and B). POT1bSTOP/STOP mice showed a 7- to 11-fold increase in 

the overhang signal in liver, kidney, and spleen, and this phenotype was stable over two 

generations (Figures 4.20A). It appeared that the overhangs in POT1b-deficient MEFs 

gradually increased with proliferation, consistent with the greater amount of ss TTAGGG 

DNA in vivo. Cells lacking both POT1a and POT1b had a similar overhang extension 

phenotype as POT1b-deficient cells (Figures 4.18 A and B and 4.19). 
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 Due to the rapid arrest of the DKO cells, we could not determine whether POT1a loss 

exacerbates the phenotype. The DKO cells contained a class of overhang-bearing 

telomeric restriction fragments that migrated throughout the lane, suggesting an unusual 

DNA structure. The smearing of the signal into the higher MW fractions and beyond was 

not prominent when the total telomeric DNA was examined after denaturation of the 

DNA, indicating that these molecules were relatively rare and only detectable due to their 

longer overhangs. In order to establish whether the elongation of the overhangs was a 

specific phenotype of loss of POT1b, we determined to what extent exogenously 

expressed POT1a and POT1b were able to suppress this phenotype of POT1b-deficient 

 

Figure 4.20 POT1b loss results in increased single stranded telomeric DNA in 

mice and overexpression of POT1a is not able to complement the loss of POT1b 

(A) In-gel overhang assay of cells isolated from liver and kidney from mice with the indicated 

genotype. Left panel shows the native overhang signal, right panel shows the denatured total 

telomeric DNA. Relative overhang signals are indicated below the lanes. (B) Repression of the 

overhang phenotype by overexpression of POT1b, not POT1a. POT1bSTOP/+ or POT1bSTOP/FLOX cells 

were treated with Cre and infected with retroviruses expressing MYC-tagged POT1a or POT1b as 

shown in Fig. 3F. Telomeric overhang signals were determined as in Figure 4.18. 
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cells. As shown above, both proteins were overexpressed and localized to telomeres. 

POT1b was able to reestablish a normal telomere terminus structure, whereas POT1a 

overexpression had no effect (Figure 4.20 B). 

We conclude that the control of the telomeric overhang is primarily dependent on 

POT1b. We next asked whether the extended telomeric overhangs are due to deregulation 

of telomerase at the telomere terminus. POT1b mutant mice were crossed with mice that 

lack telomerase due to deletion of the mTERC gene encoding the RNA component of 

telomerase 67. MEFs that lacked mTERC and had a conditional POT1b allele were 

established and immortalized with SV40-LT. Cre-mediated POT1b deletion resulted in 

comparable extension of the 30 overhang in both mTERC+/- and mTERC -/- cells, 

indicating that telomerase is not responsible for the elongation of the 30 ends (Figure 

 

Figure 4.21 POT1b controls a telomerase-independent telomere terminus 

processing step 

In-gel overhang assay of MEFs either heterozygous or null for mTerc and conditionally targeted for 

POT1b with or without H&R-Cre infection. Left panel shows the native overhang signal, right panel 

shows the denatured total telomeric DNA. All MEFs are derived from littermates embryos.  MEFs 

were examined one week after introduction of Cre. MEFs in lanes (from left) 3, 4, 5, 6, 9, and 10 were 

POT1aFLOX/+. 

 



 105

4.21). We conclude that POT1b maintains the integrity of the telomere terminus by 

regulating a telomerase independent processing step. 
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Discussion 
Our results reveal an unexpected difference between human and rodent shelterin. Human 

shelterin contains a single POT1 protein, whereas the mouse version of this complex is 

more elaborate, containing roughly equal levels of two functionally distinct POT1 

proteins, POT1a and POT1b. Since their duplication, the two mouse POT1 paralogs 

diverged to the extent that full protection of the telomeres requires both factors. For 

example, POT1a is necessary to fully repress a DNA damage signal at telomeres. POT1b 

can partially compensate for the loss of POT1a, but its ability to repress the telomere 

damage response is incomplete. Conversely, POT1b has a specific role in regulating the 

structure of the telomere terminus, leading to deregulation of the telomeric overhang in 

POT1b-deficient cells, despite the presence of POT1a. Thus, while POT1a and POT1b 

are relatively recent additions to shelterin, they have distinct functions and are both 

required for the protection of mouse telomeres. Within the context of fundamental 

aspects of mammalian chromosome biology, the rodent duplication of the POT1 gene and 

functional divergence of the two resulting POT1 paralogs is unprecedented. No 

comparable case has emerged from comparisons of human and mouse genes involved in 

kinetochore function, origin firing and regulation, or DNA damage detection and repair. 

Other genes relevant to telomere biology, such as those for telomerase components and 

the genes for the other shelterin proteins are present at single copy in all sequenced 

mammalian genomes. Previous findings revealed substantial differences between the 

telomeric proteins in budding yeast on the one hand and fission yeast and mammals on 

the other. The current results provide evidence for much more recent changes in the 

telomeric complex and attest to the rapid evolution of the telomere/telomerase system.  
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POT1a and POT1b Play a Key Role in Repressing the Telomere DNA Damage 

Response 

POT1a/b DKO cells lack the ability to distinguish telomeres from sites of DNA damage. 

Most of their telomeres become associated with DNA damage response factors and the 

cells arrest, most likely due to a permanent DNA damage signal. The severity of this 

telomere damage phenotype is similar to that of mouse cells lacking TRF2 80.Yet, TRF2 

is not removed from telomeres lacking POT1a/b. This finding raises the possibility that 

the POT1 proteins contribute to the mechanism by which TRF2 prevents DNA damage 

signaling at chromosome ends (Figure 4.22). The recruitment of POT1 to telomeres is 

thought to depend on both TRF1 and TRF2, which bring the POT1 interacting factor 

TPP1 to the telomere (reviewed in) 72. In the next chapter I will present experiments that 

show that this interaction is conserved in the mouse and that both POT1a and POT1b are 

recruited to the telomere through TPP1. Thus, the DNA damage phenotype of TRF2 null 

mouse cells could be solely due to insufficient POT1 at the chromosome ends but other 

possibilities have not been excluded.  
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The Repression of NHEJ at Telomeres 

When TRF2 is deleted, most telomeres are processed by the NHEJ pathway, leading to 

nearly complete fusion of the genome 80. In contrast, telomeres lacking POT1a and 

POT1b remain largely protected from this type of inappropriate repair. This result 

 

Figure 4.22 Summary of the roles of TRF2, POT1a and POT1b at mouse 

telomeres 

Mouse shelterin is depicted as a complex of TRF1, TRF2, RAP1, TIN2, TPP1, and POT1a and –b. 

The details of the protein interactions are in part based on information form human shelterin. It is 

not known whether POT1a and –b are present in the same complex or in two different versions of 

shelterin. Repression of the DNA damage signal at telomeres requires TRF2, POT1a and –b. 

Repression of NHEJ is largely independent of POT1a and –b but requires TRF2. NHEJ is proposed 

to be repressed through sequestration of the telomere terminus in the t-loop. POT1a and –b are 

proposed to repress NHEJ at telomeres that are not in the t-loop configuration. POT1b is required to 

prevent generation of inappropriately long telomeric 3’ overhangs.  
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indicates that POT1 is not required for the repression of most NHEJ events and is 

consistent with NHEJ being blocked by the formation of t-loops, a process ascribed to 

TRF2 (Figure 4.22). However, a small fraction of the chromosome ends in POT1 DKO 

cells do undergo fusions, pointing to an important, albeit minor role of POT1a/b in the 

repression of NHEJ. One possibility is that POT1a/b aids in repression of NHEJ when t-

loops are resolved (Figure 4.22), for instance when the replication fork progresses 

through the strand-invasion site. We imagine that the presence of POT1a/b on the single-

stranded overhang might interfere with efficient loading of Ku70/80 or prevent cleavage 

of the overhang, thereby thwarting NHEJ.    

 

POT1b Blocks Formation of Excessive Single-Stranded Telomeric DNA 

The maintenance of the normal structure of the telomere terminus is dependent on 

POT1b. In its absence, cells contain up to 10-fold more single-stranded TTAGGG repeat 

DNA. Although we do not know whether the increase in overhang sequences affects all 

telomere equally, if it does, the overhangs may be as long as 2 kb. The total amount of 

single-stranded TTAGGG repeat DNA could be in excess of 200 kb in the nuclei of liver 

cells lacking POT1b. This type of alteration has not previously been observed in 

mammalian cells, nor does it occur in fission yeast lacking POT1 (Baumann and Cech, 

2001). However, in the budding yeast cdc13-1 mutant, inactivation of the POT1-like 

Cdc13 protein results in excessively long 3’ overhangs 148. The long single-stranded 

regions are thought to activate the MEC1/RAD9 pathway, explaining the lethality of 

cdc13-1. In contrast, the excess single-stranded DNA of POT1b-deficient cells did not 

appear to activate a DNA damage checkpoint and mice lacking POT1b are healthy and 
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fertile. In the cdc13-1 mutant, the long 3’ overhangs are generated by exonucleolytic 

degradation of the C-rich telomeric DNA strand in an Exo1- and Rad24-dependent 

manner 160. A similar mechanism may well be responsible for the excess single-stranded 

telomeric DNA in POT1b-deficient cells (Figure 4.22). In this context, it is possible that 

the randomization of the 5’ end of the C-rich telomeric strand after RNAi-mediated 

knockdown of human POT1 could be caused by diminished control of a 5’ exonuclease 

(see chapter 3 and Figure 3.11).  

 

More Than One Pathway for Telomere Protection 

The results argue against models in which all telomere protection is simply based on the 

loading of one protective protein. Rather, different shelterin components have distinct as 

well as overlapping roles in preventing inappropriate DNA damage signaling and repair 

at chromosome ends (Figure 4.22). POT1b is required for the maintenance of a normal 

telomere terminus structure. Neither POT1a nor TRF2 have the ability to control this 

pathway when POT1b is absent. On the other hand, complete repression of DNA damage 

signaling at telomeres requires POT1a. POT1b is insufficient to fully protect telomeres in 

this regard although its contribution to this pathway is inferred from the more severe 

telomere damage phenotype of the DKO cells. TRF2 is also required for repression of the 

telomere DNA damage signal although it remains to be determined whether its function 

is independent of POT1a/b. In contrast, the protection of telomeres from NHEJ involves a 

pathway that requires TRF2 but is largely independent of the POT1 paralogs. The 

simplest interpretation of these findings is that telomere protection is achieved through at 

least three distinct pathways: POT1b-dependent control of the terminus structure; 
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repression of a DNA damage signal involving TRF2, POT1a, and POT1b; and TRF2-

dependent repression of NHEJ. In addition, telomeres are protected from inappropriate 

homologous recombination, but the genetic requirements for this aspect of telomere 

function remain largely undefined 133. 

 

Implications 

The unusual divergence of mouse shelterin has implications for the use of mouse models 

for human telomere related disease states. Deletion of essential telomerase components 

has allowed the establishment of mice with shortening telomeres that ultimately become 

dysfunctional and mimic aspects of telomere dysfunction in human cells 67,161. These 

systems have been used to study the impact of telomere dysfunction on tumor genesis, 

revealing that telomere dysfunction can limit tumor progression in some settings while 

promoting genome instability in others 114,144,145. Furthermore, the telomerase-knockout 

mouse has been used to model aspects of the human telomerase disease, dyskeratosis 

congenita 137, and to study interactions between shortening telomeres and genetic defects 

such as Ataxia Telangiectasia and Werner syndrome 162,163. Similarly, we have used a 

mouse TRF2-knockout model to dissect the signaling pathway activated by dysfunctional 

telomeres 80. Interpretation of these and other experiments rely on the assumption that 

mouse and human telomeres are structurally and functionally identical. The finding of an 

altered shelterin at mouse telomeres challenges this assumption. As more refined mouse 

models are developed, the potential pitfalls of working within the context of a different 

shelterin complex will have to be taken into account and the principles gleaned from 

work on mouse telomeres will require detailed verification in human cells. 
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5. Cooperative telomere protection by TPP1 and POT1 

provides functional evidence for their correspondence to ciliate 

TEBPα/β 

 

Introduction 
The POT1 protein family was identified based on the sequence similarity between the ss 

DNA binding domain of POT1 and the first OB-fold in TEBPα. TEBPα and its binding 

partner TEBPβ form a tight complex with the short protrusion of ciliate macronuclear 

telomeres suggesting a protective role. Recently, crystallography showed that the 

telomeric protein TPP1 carries an OB-fold with structural similarity to TEBPβ and 

biochemical evidence indicated that, like TEBPα/β, POT1 and TPP1 bind DNA 

cooperatively in vitro 103,104. In human cells TPP1 and POT1 are linked to the duplex 

telomeric DNA binding proteins through TIN2 55,99,100. Thus, POT1 can accumulate along 

the duplex telomeric repeat array. As the single-stranded DNA binding domain of POT1 

is not required for its telomere association, it has been suggested that the interaction with 

TPP1 is the main mechanism for the telomere recruitment of POT195.  

If POT1 and TPP1 act analogous to TEBPα and -β, it is predicted that POT1 

function requires TPP1. This prediction is borne out by observations on telomere length 

regulation by TPP1 and POT1. The finding that reduced levels of TPP1 lead to telomere 

elongation is consistent with TPP1 being necessary for POT1 to inhibit telomerase. 

However, with regard to the protection of telomeres, it has not been excluded that POT1 

acts independently of TPP1. Indeed, partial depletion of TPP1 by RNAi did not result in 
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the telomere deprotection phenotypes induced by POT1 knockdown. The hypothesis that 

TPP1 is necessary for telomere protection by POT1 is further challenged by the finding 

that a mouse strain with a mutation in the TPP1 gene, the acd (adrenocortical dysplasia) 

mouse, has a phenotype that is strikingly different from the phenotypes associated with 

deletion of the mouse POT1 genes 102 (see previous chapter). Although the acd mutation 

leads to developmental defects and the mice die postpartum on certain genetic 

backgrounds, it elicits neither the early embryonic lethality nor the telomere deprotection 

phenotypes of the POT1a/b DKO. These findings raised the possibility that POT1 might 

protect telomeres independent of TPP1 and the other shelterin components, which would 

argue against POT1 functioning as a TEBPα/β-like dimer with TPP1. In order to address 

this possibility we determined the role of TPP1 in telomere protection in mouse cells. The 

results in this chapter indicate that depletion of TPP1 from mouse cells results in a 

telomere deprotection phenotypes similar to the ones found in POT1 DKO cells.  
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Results 
 
Discrepancy between the two POT1a knockout phenotypes 

At the same time as we reported on the POT1a and POT1b knockout phenotypes, the 

group of Sandy Chang 164 reported their findings on POT1a deficient mouse cells. The 

observations by Wu et al. were significantly different from my findings on POT1a and -b. 

As my experiments on the function of TPP1 directly address some of these differences, I 

will discuss the data of Wu et al. here. Wu et al used a conditionally gene targeting 

approach, which deletes the first two exons of POT1a, while our targeting strategy 

deletes exon3 (see chapter 4). They find that POT1a deletion results in a DNA damage 

response at telomeres (TIFs) and a growth arrest 164, whereas we document TIFs but no 

inhibition of proliferation after deletion of POT1a. Furthermore Wu et al. document and 

an increase in overhang signal and report telomere elongation, whereas neither of these 

phenotypes occur in our experiments. Overall the phenotypes of Wu et al. report are 

reminiscent of the phenotypes we find for the simultaneous loss of POT1a and POT1b 

164. As the Wu et al. POT1a phenotype is more severe, their strategy might result in a 

dominant negative allele of POT1a or my strategy creates a hypomorphic POT1a allele. 

Below I will discuss data that argues against the possibility that my KO strategy 

generates a hypomorphic allele. 

As discussed in detail in chapter 4 and outlined in Figure 4.8, both the deletion of 

exon 1 and 2 as well as the deletion of exon 3 could generate an N-terminally truncated 

POT1 fragment. 
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RNAi depletion of residual POT1 proteins in POT1 deficient cells 

In order to test whether our targeting strategy generates a hypomorphic allele of POT1a 

and POT1b we used RNAi depletion. If the Wu et al. allele represents the null allele and 

our strategy creates a hypomorph, we expect that RNAi to POT1a in our POT1a KO cells 

would elicit the severe phenotypes reported by Wu et. al: increased overhang length, 

 

Figure 5.1 Deletion of exon 3 of POT1a and POT1b does not result in a hypomorphic allele  

(A) In-gel overhang assay of POT1a-/- (Δ3/Δ3) and POT1b-/- (Δ3/Δ3) cells after the infection with POT1a shRNAs 

(A1 and A3), POT1b shRNAs (B1 and B3) and vector control either 6 days or 8 days after selection. Prior infection 

with the indicated shRNAs, POT1a S/F and POT1b F/Δ cells were infected with pWzl-Cre and selected with 

hygromycin to generated POT1a-/- and POT1b -/- cells. The left panel shows the single stranded telomeric signal 

and the right panel shows the total telomeric signal after denaturation of the same gel (B) TIF analysis of the cells 

described in panel (A) 5 days after selection. 
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growth arrest and a two-fold increase in TIFs 164. However, reduced levels of POT1a 

mRNA in POT1a deficient cells did not result in an increase in overhang length (Figure 

5.1A), or increase the fraction of TIF positive cells (Figure 5.1B). These data strongly 

argue against the possibility that deletion of exon 3 results in a hypomorphic POT1a 

allele. 

As our POT1a and POT1b knockout strategies are essentially identical, similar 

arguments can be made for POT1b. If our POT1b knock out strategy created a 

hypomorphic allele, depletion of POT1b mRNA using RNAi would be expected to 

change the phenotype. However, the telomeric overhang in POT1b deficient cells 

remained unchanged upon the expression of POT1b shRNAs. Furthermore, POT1b 

shRNA did not induce other telomere dysfunction phenotypes (TIFs, telomere fusions) in 

POT1b KO cells. As expected, RNAi depletion of POT1a in POT1b-/- cells and the 

knockdown of POT1b in POT1a-/- cells resulted in phenotypes that are reminiscent of 

POT1a/b dKO cells. These data argue against our KO strategy generating hypomorphic 

alleles. 
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TPP1 mediates telomeric association of POT1a and POT1b 

In order to address the functional dependence of POT1 on TPP1, we analyzed acd mutant 

mouse cells. The acd phenotype is caused by aberrant splicing of the gene encoding 

TPP1, which carries a G-A transition 5 nt beyond the splice donor site of exon 3 102. This 

mutation results in the use of a cryptic splice donor site and is predicted to generate a 

 

Figure 5.2 Dependence of POT1a/b telomeric localization on TPP1  

(A) Telomeric DNA ChIP on MEFs that are wild type, heterozygous or homozygous for the TPP1 acd allele. The 

numbers next to the radiograph specifies the antibodies used. The antibodies are specific for telomeric ChIP as 

indicated by absence of non-specific sequences (BamHI repeat) in the ChIPs (data not shown). The cells used for the 

ChIP had been cultured for less than 10 PD. (B) Quantification of the % of the total telomeric DNA recovered in the 

ChIPs shown in (A). (C) Immunoblots for POT1a and POT1b in wild type and acd/acd cells with antibodies 1221 

and 1223, respectively. The non-specific band in the POT1a blot serves as a loading control. (D) Telomeric DNA 

ChIP on wild type or acd/acd MEFs transduced with TPP1 sh3 as indicated. The numbers next to the radiograph 

specifies the antibodies used. ChIP was performed after 5 days of puromycin selection for the retroviral shRNA 

vector. The acd/acd cells used in this ChIP analysis had been cultured for more than 30 PD. 
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truncated TPP1 protein lacking part of the OB-fold, the POT1 binding domain, and TIN2 

binding domain. Due to lack of appropriate antibodies we were so far unable to determine 

the effects of this splice mutation on the TPP1 protein level and therefore do not know if 

a truncated protein or other potential TPP1 fragments are expressed in acd/acd cells. To 

examine the effect of the acd mutation on telomere structure and function, acd/acd mouse 

embryo fibroblasts (MEFs) were isolated from E13.5 embryos generated by heterozygous 

intercrosses and immortalized with SV40 large T antigen (SV40-LT). Chromatin 

immunoprecipitation (ChIP) using TPP1 antibodies recovered about >10-fold less 

telomeric DNA in the acd/acd cells compared to wild type cells, whereas ChIPs with 

antibodies against TRF1, TRF2, and Rap1 showed only minor changes (Figure 5.2A and 

B). In acd/acd cells telomere association of POT1a and POT1b was reduced about 4 fold 

based on telomeric this ChIP analysis, indicating that a significant fraction of POT1a and 

–b remained associated with the telomeres of acd/acd cells. Consistent with this result, 

the acd/acd cells expressed significant levels of POT1a and –b although the protein levels 

were lower than in wild type cells (Figure 5.2B inset). We noted that acd/acd cells 

cultured for prolonged periods (>30 PD) had close to wild type levels of POT1 at the 

telomeres (Figure 5.2C and D). Such improved POT1 recruitment may be associated with 

a selective growth advantage (see below). 

The residual POT1a and POT1b at acd/acd telomeres could be explained if 

POT1a/b has the ability to associate with telomeres in a TPP1-independent manner. 

Alternatively, the acd mutation might generate an unexpected hypomorphic allele that 

still retains the POT1 and TIN2 binding domains and can recruit POT1a/b to telomeres. 

We tested the latter possibility with three shRNAs that target the TPP1 mRNA at 
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positions downstream of the acd mutation. ChIP analysis showed that TPP1 shRNA 3 

efficiently reduced the levels of telomere associated TPP1 in wild type MEFs (Figure 5.2 

C and D). TPP1 knockdown in acd/acd cells that were grown for >30 PD significantly 

lowered the telomeric binding of POT1a and POT1b, indicating that the residual 

POT1a/b at telomeres of acd/acd was recruited by TPP1. In addition to its effect on 

POT1a/b, TPP1 knockdown reduced the association of TIN2 and TRF1 with telomeres 

by ~2 fold. This finding is in agreement with the previous report that TPP1 is necessary 

to stabilize shelterin 165. Collectively, the TPP1 shRNA data argue that acd represents a 

hypomorphic allele of TPP1. The TPP1 expression in acd/acd cells is most likely due to 

the fact that TPP1 cells remain about 1% of the correctly spliced wild type TPP1 mRNA 

(Garry Hammer personal communication).  

 

Localization of C-terminal truncation mutants of POT1b 

According to a report by He et al. mouse POT1b (POT1bN aa 1-341) lacking the TPP1 

binding domain accumulates at telomeres 166. Furthermore, an analogous fragment of 

human POT1 (often referred to as splice variant V2 97) was reported to affect telomere 

length, a phenotype that is presumed to require the localization of V2 at telomeres 146. 

These results appear in conflict with the data described in Figure 5.2, which indicate that 

POT1 relies primarily on TPP1 for its telomeric localization. To test the requirement for 

TPP1 interaction further, we generated two POT1b alleles, one representing aa 1-352 

(POT1b-V2) and one lacking the last 17 aa, including amino acids implicated in TPP1 

binding (POT1b-623) (Figure 5.3A).  According to the genome databases, POT1b-V2 

and POT1b-623 could be generated by alternative splicing. While retrovirally transduced 
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POT1b-V2 and POT1b-623 were detectable in immunoblots, neither protein was 

detectable at telomeres of wild type or POT1b KO MEFs by immunoflourescence. 

Furthermore, cellular fractionation experiments showed that most of POT1b-623 and all 

POT1b-V2 was recovered in the cytoplasmic fraction (Figure 5.3B). 

As expected, full length POT1b was predominantly nuclear (Figure 5.3B). The non-

telomeric localization of POT1b-V2 and POT1b-623 is consistent with the observed lack 

of telomeric binding of a human POT1 with a point mutation in the TPP1 binding 

domain. Together the data argue that the OB-fold domain of POT1 proteins does not 

 

Figure 5.3 Potential products of the POT1b locus and their subcelllular localization 

(A) Schematic of potential alternatively spliced mRNAs derived from the POT1b locus.  Primers used for RT-PCR 

reactions are indicated. No products were obtained with RT-PCR for POT1b-623 or POT1b-V2 whereas POT1b-640 

was readily detectable in the  same RNA samples from mouse cells.  (B) Subcellular localization of ectopically 

expressed POT1b. MYC-tagged versions of the POT1b alleles shown in (A) were expressed in POT1b KO MEFs 

using retroviral transduction. An antibody to the MYC tag was used to detect the POT1b alleles in immunoblots of 

cytoplasmic and nuclear fractions as indicated. The nuclear control represents an unknown nuclear protein of ~100 

KDa detected with our Ab1252. The same result was obtained in wild type cells. Wilhelm Palm and Jan-Peter 

Daniels performed the experiments. 
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support telomeric accumulation in absence of TPP1 interaction. These findings contradict 

the reports by He et al.  

Occasional telomere deprotection in TPP1-hypomorphic acd/acd cells 

We next addressed the contribution of TPP1 to telomere protection by analyzing the 

telomeres of newly-derived (<10 PD) acd/acd cells. We did not observe a significant 

change in telomere length in these or older cells nor was there an increase in the relative 

abundance of the single-stranded telomeric DNA (see Figure 5.4 and 5.8B and C). 

The normal structure of the acd/acd telomeres contrasts with the 2-3 fold excess in ss 

TTAGGG repeat DNA observed in POT1b KO cells. However, acd/acd cells did show a 

mild telomere deprotection phenotype based on the occasional occurrence TIFs. 

As expected, wild type cells and cells heterozygous for the acd mutation did not 

 

Figure 5.4 Reduced levels of TPP1 result in increased telomere overhang signals 

 (A) In-gel overhang assay of MEFs of the indicated TPP1 genotypes (wild type (wt) and acd/acd (ac)) infected 

with the indicated TPP1 shRNAs or vector control retrovirus. (B) Quantification of overhang signals from three 

different wild type or acd/acd cell lines infected with the indicated shRNAs. Error bars indicate the standard 

deviation of the mean of three experiments. 
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contain a significant number of TIFs (<1% of cells have ≥10 TIFs; Fig. 2a and b and data 

not shown). However, a small fraction (2-3%) of acd/acd MEFs contained 10 or more 

TIFs (Figure 5.5A and B). This level of TIFs is significant yet very minor compared to 

the phenotype of POT1a KO and POT1a/b DKO cells (>70% of cells with ≥10 TIFs). 

Similarly, acd/acd cells show a significant increase in the frequency of telomere fusions 

(~10 fusions/1000 chromosomes in acd cells compared to ~1 fusions/1000 chromosomes 

in wild type cells) but this phenotype was less pronounced than in POT1a/b DKO cells 

(35 fusions/1000 chromosomes) (Figure 5.6 A and B). Furthermore, the acd mutation was 

associated with the occasional occurrence of tetraploid metaphases with 

diplochromosomes, a phenotype that is prominent in POT1a KO and POT1a/b DKO 

cells. Tetraploid metaphase spreads composed of diplochromosomes occurred in ~5% of 

the acd/acd cells. Thus, acd/acd MEFs displayed a significant but relatively infrequent 

telomere deprotection phenotypes consistent with the diminished presence of POT1a/b at 

their telomeres. Despite being mild, the telomere phenotype of acd/acd cells might result 

in the selection for enhanced POT1 recruitment, explaining the presence of nearly wild 

type POT1a/b levels at telomeres of acd/acd cells cultured for >30 PD (see Figure 5.2). 
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TPP1 knockdown with RNAi results in a POT1a/b DKO phenotype 

RNAi was used to target TPP1 in wild type and acd/acd cells and the knockdown 

efficiency was determined by telomeric ChIP. Knockdown of TPP1 resulted in a very 

strong telomere deprotection phenotype. Cells with TIFs became very frequent (Figure 

5.5), there was a higher frequency of telomere fusions (~20% of chromosomes showing a 

telomere fusion (Figure 5.6), and the amount of single-stranded telomeric DNA was 

increased 2-3 fold (Figure 5.4). All three phenotypes were most prominent in acd/acd 

cells treated with TPP1 shRNA 3 but also occurred when TPP1 was knocked down in 

wild type cells. TPP1 shRNAs 1 and 2 also resulted in TIFs, telomere fusions, and 

increased telomeric overhang signals (Figure 5.4-5.6). Strikingly, the frequency of 

 

Figure 5.5 TIFs in cells with reduced TPP1 levels  

(A) Occurrence of TIFs upon TPP1 knockdown. MEFs of the indicated TPP1 genotypes were infected 

with TPP1 sh3 or control vector (pSuperior), selected for 4 days with puromycin and analyzed by IF 

for TRF1 (red), γ-H2AX (green) and counterstained with DAPI (blue). In agreement with the ChIP 

data, TRF1 levels are reduced in some acd/acd MEFs infected with TPP1 shRNAs. (B) Quantification 

of TIF positive cells shown in (A). Cells with 10 or more TRF1 signals co-localizing with γ−H2AX 

foci were scored as TIF positive. At least 120 cells were analyzed for each experiment. 
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telomere fusions in acd/acd cells treated with TPP1 shRNA3 is 3-4 fold higher than in 

POT1a/b DKO cells. Therefore, it appears that TPP1 loss, perhaps due to concomitant 

changes in the shelterin complex has a more severe effect on the protection of telomeres 

from NHEJ than POT1a/b deficiency. This is in agreement with the in vitro finding that 

TPP1 is necessary for shelterin assembly 165. 

 

 

 

 

 

Figure 5.6 Telomere fusions in cells with reduced TPP1 levels 

(A) Telomeric FISH on metaphases derived from cells of the indicated TPP1 genotypes infected with TPP1 

shRNA3 or vector control. Telomeric hybridization signal is shown in green and DAPI counterstained 

chromosomes are false colored in red. (B) Quantification of telomere fusion frequency in MEFs of the indicated 

TPP1 genotypes infected with the indicated shRNAs or control vector. 
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N-terminal truncation mutants of POT1a and -b act as dominant negative alleles 

Finding that the phenotypes of TPP1 loss closely reassemble the loss phenotypes of 

POT1 suggests that TPP1 and POT1 function through the same telomere protection 

pathway. To test to what extent the single stranded binding activity is necessary for 

telomere protection by POT1 we expressed N-terminal truncation mutants of POT1a and 

POT1b, lacking the first OB-folds. We previously generated the corresponding human 

mutant and found that it displaces the endogenous human POT1 form telomeres. This 

allele retains the TPP1 interaction domain and acts as a dominant negative allele in the 

context of telomere length homeostasis. However, a telomere deprotection phenotype was 

not observed upon overexpression of human POT1ΔOB. Analogous POT1aΔOB and 

 

Figure 5.7 Overexpression of N-terminal truncation mutants of POT1a and -b 

lead to TIF formation 

(A) MEFs of the indicated TPP1 genotypes were infected with pLPC N-MYC-POT1a, pLPC N-MYC-

POT1b, pLPC N-MYCPOT1aΔOB, pLPC N-MYC-POT1bΔOB or vector control retrovirus (pLPC-N-

MYC), selected for 4 days with puromycin and analyzed by IF for TRF1 (red), γ-H2AX (green) and 

counter stained with DAPI (blue). (B) Quantification of TIF positive cells shown in (A). Cells with 10 

or more TRF1 signals co-localizing with γ−H2AX foci were scored as TIF positive. More that 120 cells 

were analyzed.  
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POT1bΔOB alleles were generated and found to accumulate at telomeres as predicted 

from the retention of their TPP1-binding domains (Fig. 5.7A).  

The expression level of POT1aΔOB was somewhat higher than POT1bΔOB. Both 

proteins showed diminished expression in acd/acd cells, consistent with their dependence 

on TPP1 (Figure 5.8A). POT1bΔOB induced a strong increase in the amount of single-

stranded telomeric DNA (Figure 5.8B and C) as expected if POT1b depends on TPP1 for 

 

Figure 5.8 Pleiotropic effects of dominant negative alleles of POT1a and POT1b 

 (A) Immunoblots for MYC epitope tagged POT1aΔOB and POT1bΔOB in extracts of MEFs of the 

indicated TPP1 genotypes infected with pLPC POT1aΔOB, pLPC POT1bΔOB or vector control 

(pLPC N-MYC). Antibodies used are: MYC: 9E10, POT1a: 1221, POT1b: 1223. (B) In-gel overhang 

assay of MEFs of the indicated TPP1 genotypes (wild type (wt) and acd/acd (ac)) infected with pLPC 

N-MYC-POT1ΔOB, pLPC N-MYC-POT1bΔOB, TPP1 sh1, TPP1 sh3 or the vector control. 

Overhang assay was performed 5 days after selection with puromycin. (C) Quantification of the 

overhang signals from three different wild type or acd/acd MEF cell lines infected with pLPC N-

MYC-POT1aΔOB, pLPC N-MYC-POT1bΔOB or vector control retrovirus. Error bars indicate the 

standard deviation of the mean of three experiments.  
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its ability to limit the length of the 3’ overhang. The phenotype of POT1aΔOB was the 

induction of TIFs, suggesting that POT1aΔOB displaced POT1a from its TPP1 binding 

sites (Figure 5.7A and B). Interestingly, POT1bΔOB expression also elicited a TIF 

response (Figure 5.7A and B), which is a phenotype not observed in POT1b KO cells. 

Conversely, POT1aΔOB induced aberrantly high overhang signals, which is a phenotype 

specific for POT1b loss (Figure 5.8 B and C). The simplest interpretation of these data is 

that POT1a and POT1b both require TPP1 for telomere protection and that the TPP1 

binding domains of POT1a and –b can displace the endogenous POT1a and –b from the 

telomeres.  

Furthermore, these findings could explain the phenotypes observed in the POT1a 

KO generated by the Chang laboratory 164. If their knockout strategy creates the predicted 

N-terminal truncated POT1a fragment (Figure 4.8), this protein would act as a dominant 

negative allele that impedes the function of POT1a and -b. This scenario is supported by 

the similarities between of Wu et al. the POT1a KO and our DKO phenotypes 164.  

Additionally, the finding that N-terminal truncated forms of POT1b can act as a 

dominant negative on POT1a can explain another observation of the Chang laboratory 

166. They showed that overexpression of a POT1b allele bearing a point mutation in the 

DNA binding domain induces telomere fusions and the activation of a DNA damage 

response 166. Contrary to our findings, they conclude that POT1b is necessary to prevent 

these phenotypes. Our finding that a dominant negative allele of POT1b can affect 

POT1a suggests that their phenotypes are primarily due to inhibition of POT1a, not 

POT1b. 
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Human POT1 requires human TPP1 to bind mouse telomeres 

 

Figure 5.9 Human POT1 can be targeted to mouse telomeres by human TPP1  

(A) Immunoblots for MYC epitope tagged human POT1 and Flag tagged human TPP1 on extracts 

from wt MEFs infected with pWzl-N-MYC-hPOT1 (hygromycin), pLPC-N-FLAGhTPP1 

(puromycin), or vector control (pLPC). Antibodies used are: MYC (9E10), 1151 (TPP1) and 978 

(hPOT1). Because the cells used in this experiment were already resistant to puromycin before the 

transduction of TPP1, TPP1 was introduced without subsequent selection. TPP1 infection efficiency 

was greater than 80% in all infections. (B) Immunofluorescence on cells described in (A). After 

selection with puromycin cells were analyzed by IF for TRF1 (Ab 644; red) and MYC and FLAG 

epitope tags of hPOT1 and TPP1 respectively (green) and counter stained with DAPI (blue). 
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As a further tool to test the dependence of POT1 on TPP1, we used the introduction of 

human proteins into mouse cells. Epitope tagged versions of human POT1 and TPP1 

(hPOT1 and hTPP1) were expressed in wild type MEFs. Immunoblotting showed that the 

steady state level of hPOT1 was improved by co-expression of hTPP1 whereas the 

expression level of hTPP1 was independent of hPOT1 (Figure 5.9A). IF showed that 

hTPP1 by itself had the ability to accumulate at mouse telomeres whereas hPOT1 

expressed alone did not localize to telomeres (Figure 5.9B). Presumably, the divergence 

in the pertinent regions of TPP1 and POT1 (approximately 30% and 10% changes among 

the relevant amino acid in TPP1 and POT1 respectively) has abrogated the ability of 

human POT1 to interact with the heterologous partner. However, hPOT1 accumulated at 

telomeres when it was co-expressed with hTPP1 (Figure 5.9B). 
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Figure 5.10 Human POT1 can suppress the growth defect and endoreduplcation of 

POT1 DKO cells when Co-expressed with human TPP1  

(A) Growth curve of MEFs conditionally targeted for both POT1a and POT1b (POT1aSTOP/FLOX 

POT1bSTOP/FLOX) infected with the indicated retroviral constructs and with adenoviral Cre. The POT1 

DKO cellular arrest and senescent morphology (data not shown) is rescued in cells infected with both 

hPOT1 and hTPP1. (B) FACS profiles of POT1aSTOP/FLOX POT1bSTOP/FLOX MEFs infected with 

pWzl-N-MYC-hPOT1, pLPC-N-FLAG-hTPP1, or vector control. Cells were infected with a hit-and-run 

Cre retrovirus to delete POT1a and POT1b. Cells were gated to remove sub-G1 peaks. 
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Human POT1/TPP1 can protect mouse telomeres from the DNA damage response 

We next asked whether the combined expression of human POT1 and TPP1 resulted in 

repression of the phenotypes associated with the loss of POT1a and POT1b. SV40-LT 

 

Figure 5.11 Human POT1 can suppress TIF formation in mouse POT1Ko cells 

when Co-expressed with human TPP1 

(A) Cells from Figure 5.x-1 transduced with the indicated genes were analyzed by IF for TRF1 (red), γ-

H2AX (green) and counter stained with DAPI (blue). Cells were also co-stained for the FLAG epitope 

tagged TPP1 (red) and γ-H2AX (green) to detect cells that were successfully transduced with TPP1 yet 

contained 53BP1 foci at their telomeres. (B) Quantification of TIF positive cells shown in (A). Cells with 

10 or more TRF1 signals co-localizing with γ−H2AX foci were scored and more that 120 cells were 

analyzed. The quantification of TIF positive cells is shown in the left graph for POT1a KO cells and in the 

middle graph for POT1 DKO cells. The right graph shows the quantification of TPP1 foci colocalizing with 

53BP1 in hTPP1 transduced DKO cells with and without the presence of hPOT1 (right graph). 
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immortalized mouse embryo fibroblasts carrying the conditional KO alleles of POT1a 

and POT1b were infected with retroviruses expressing human POT1 or human TPP1 (or 

both). After retroviral transduction, the cells were infected with adenoviral Cre-

recombinase to delete POT1a and POT1b. The presence of human POT1 and TPP1 

largely rescued the proliferation defect of the DKO cells, whereas DKO cells containing 

either human POT1 or TPP1 alone proliferated as poorly as the vector control (Figure 

5.10A). 

The combined expression of human POT1 and TPP1 also repressed the 

endoreduplication phenotype associated with the loss of POT1a and –b, based on FACS 

analysis (Figure 5.10B) and the increased total telomeric DNA signals in genomic blots 

loaded with equal cell equivalents (Figure 5.12A). In contrast, expression of hPOT1 or 

hTPP1 alone was not sufficient to suppress this phenotype (Figure 5.10B and 5.12A).  

Finally, co-expression of human TPP1 and POT1 largely abrogated the formation 

of γ- H2AX and 53BP1 TIFs at mouse telomeres (Fig. 5.11 A and B), indicating that the 

presence of human TPP1/POT1 at telomeres allows mouse cells to make the distinction 

between DNA breaks and natural chromosome ends. In contrast to the complementation 

of the DNA damage response phenotypes of the POT1a/b DKO, the combined expression 

of human TPP1 and POT1 did not exert appropriate control over the structure of the 

telomere terminus. POT1a/b DKO cells expressing both human TPP1 and POT1 

continued to carry an excess of single-stranded telomeric DNA (Figure 5.12 A and B). 

The lack of overhang control by human POT1 and by mouse POT1a indicates that the 

binding of POT1 to single-stranded DNA is not sufficient to execute this function. 

Perhaps the control of the overhang length requires a specific interaction between POT1b 
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and a mouse protein that can not be bound by POT1a or human POT1. These 

complementation analyses indicate the human POT1 can suppress phenotypes associated 

with the loss of POT1a, but not with the loss of POT1b. Further experiments will be 

necessary to determine why human POT1 fails to complement the POT1b KO and to 

address the relationship between human POT1 and POT1b. 
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Figure 5. 12 Human POT1 does not suppress the increase of single 

stranded telomeric DNA in POT1b KO and DKO cells 

(A) In-gel overhang assay of POT1b, POT1a, and POT1a/POT1b conditionally targeted cells 

retrovirally transduced with pWzl-N-MYC-hPOT1, pLPC-N-FLAG-hTPP1 or vector. POT1 

genes were deleted using H&R-cre and overhang length was determined 5 days after infection. 

The increase of telomeric DNA seen in the lanes 10,12, and 14 (from the left) are the result of 

endoredupliaction of POT1 DKO cells. Equal cell numbers were loaded in each lane (B) 

Quantification of telomeric overhang assay shown in (A).  
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Deletion of TRF2 results in diminished telomeric association of POT1a/b 

The data presented above argue in favor of the correspondence of POT1/TPP1 to 

TEBPα/β. However, TEBPα/β is thought to bind telomeres by itself, whereas the 

proposed structure of shelterin predicts that TPP1 and POT1 are bound to the duplex part 

of the telomeric DNA through TIN2. As TIN2 interacts with both TRF1 and TRF2, it is 

expected that deletion of TRF2 would reduce the presence of TIN2, TPP1, and POT1 at 

telomeres but not fully remove these proteins. In human cells, inhibition of TRF2 with a 

dominant negative allele indeed results in partial loss of POT1 but the interpretation of 

the data was confounded by the fact that inhibition of TRF2 also removes part of the 

telomeric overhang. Therefore, it was not possible to distinguish between effects on the 

Figure 5.13 Diminished telomeric accumulation of POT1a and POT1b upon loss 

of TRF2  

(A) Telomeric ChIP on cells lacking TRF2. The listed genotypes refer to the genotype at the time of 

the ChIP experiment which was done after infection with pWzl-Cre and 5 day selection with 

hygromycin B. The pre-recombination (floxed) genotypes were from left to right: TRF2F/+, TRF2F/-, 

and TRF2F/-Ku70-/-. Proteins and antibodies used in the ChIPs are indicated next to the dot-blots. (B) 

Quantification of the % of the total telomeric DNA recovered in the ChIPs shown in (A).  
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protein interactions of POT1 and its binding to the single-stranded telomeric DNA. 

In order to further examine the contribution of TRF2 to the recruitment of TIN2, 

TPP1, and POT1 to telomeres, we used TRF2F/- MEFs from which TRF2 can be deleted 

with Cre. When TRF2 is deleted in Ku70-/- cells, the telomere fusion phenotype typical 

of TRF2 deficiency is largely abrogated and, importantly, the telomeric overhang remains 

intact. Therefore, in this setting, the effect of TRF2 on the telomeric recruitment of POT1 

can be determined without the confounding aspects of overhang loss. ChIP on TRF2F/- 

Ku70-/- cells showed the expected loss of TRF2 and its interacting factor Rap1 from 

telomeres (Figure 5.13). TRF1 was not significantly affected but the telomeric 

association of TIN2, TPP1, POT1a and POT1b were reduced (Fig. 5.13). These data 

indicate the telomeric accumulation of the TIN2-TPP1-POT1 complex is in part 

dependent on TRF2. Previous data on human cells argued for a role of TRF1 in the 

telomeric association of POT1. Mouse cells lacking both TRF1 and TRF2 will be 

required to establish whether recruitment of POT1a and -b is entirely dependent on the 

duplex telomeric DNA binding proteins.      
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Discussion 
 

Previous data argued that POT1a and POT1b have different functions at mouse 

telomeres. Our current work indicates that both proteins interact with shelterin and 

require TPP1 for their function. In addition overexpression of truncated forms of POT1a 

and POT1b that do not bind the telomeric overhang, result in POT1 DKO phenotypes, 

suggesting the function of POT1on the telomeric overhang is TPP1 dependent. 

Furthermore, our data suggest that POT1a and POT1b can compete for binding to TPP1. 

This cross-competition can explain the results that He et al. obtained with overexpression 

of a POT1b allele deficient in DNA binding. This allele induced end-to-end fusions and 

elicited a telomere DNA damage response, which are hallmarks of loss of POT1a, not 

POT1b. We propose that the POT1b allele used in those studies diminished the telomeric 

binding of POT1a, acting similar to the POT1bΔOB alleles described here. Similarly, the 

cross-competition of a dominant negative allele of POT1a with POT1b can explain the 

phenotypes of POT1a KO found by the Chang laboratory. The knockout strategy 

employed in that study is predicted to generate an N- terminal deletion with similar 

dominant effects as POT1ΔOB and may therefore elicit a phenotype similar to the 

POT1a/b DKO. 

The data reported here argue against the view that POT1 proteins act alone to 

protect telomeres. Several lines of evidence indicate that POT1 requires an interaction 

with TPP1 to fulfill its function. Mouse POT1a and POT1b are dependent on TPP1 for 

recruitment to telomeres and removal of TPP1 from mouse telomeres results in telomere 

deprotection phenotypes similar to the POT1a/b DKO. Human POT1 by itself does not 

bind or protect mouse telomeres. But when co-expressed with human TPP1, human 
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POT1 can complement the essential functions of mouse POT1a/b. Finally, neither mouse 

nor human TPP1 is capable of protecting telomeres when POT1 is not present. 

Collectively the findings indicate that neither POT1, nor TPP1 are functional without 

their partner and that full telomere protection requires the interaction of both proteins at 

telomeres. It remains to be determined whether this cooperative telomere protection 

simply reflects TPP1’s ability to position POT1 at telomeres or involves additional 

attributes of TPP1. The functional relationship of POT1 and TPP1 is consistent with the 

proposal that these factors are related to TEBPα/β. In vertebrates, the TEBPα/β orthologs 

are embedded within the shelterin complex which anchors POT1/TPP1 on the 

doublestranded part of the telomere. Although our data do not exclude the possibility that 

TPP1 and POT1 function as a heterodimer independent of the other shelterin 

components, we consider this unlikely because TPP1 interacts with TIN2 and its TIN2 

binding domain is required for its telomeric accumulation. Furthermore, as we show here, 

the telomeric binding of TPP1 (and POT1a and b) is strongly diminished upon deletion of 

TRF2, one of the two proteins that anchor shelterin to the double-stranded telomeric 

DNA. Previous work showed that POT1 accumulation at telomeres is also diminished 

when TRF1 is removed. Therefore, we favor the view that TPP1/POT1 protects telomeres 

in the context of shelterin. The ciliate TEBPα/β complex appears to function without 

assistance of duplex telomeric DNA binding proteins.  

 

Despite their relatedness to ciliate and fission yeast telomeric proteins, the 

mammalian POT1 proteins diverge rapidly. The preeminent example of this divergence is 

the acquisition of a second POT1 gene in rodents. The copy number difference between 
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rodents and other mammals is unlikely to be due to a gene deletion which would have 

had to occur more than once to explain the single POT1 gene of chicken, Xenopus, and 

most mammals. We also consider it unlikely that the sequenced nonrodent genomes 

contain an unrecognized second POT1 gene because the missing   POT1 is expected to 

have at least 70% sequence identity to its homologs. Thus, the most parsimonious 

interpretation is that the two POT1 proteins of rodents originate from a recent (~75 My) 

gene duplication. In addition to the POT1 gene duplication, the divergence of human and 

mouse POT1 apparently prohibits a cross-species interaction with TPP1. In contrast, 

human TPP1 is capable of interacting with mouse TIN2. Our data also hints at a 

functional divergence of human and mouse POT1. Whereas human TPP1/POT1 appears 

to effectively complement the loss of POT1a, the human proteins fail to take on the role 

of POT1b in limiting the amount of single-stranded telomeric DNA. The question 

whether POT1b has evolved a new function not represented by human POT1 will require 

further analysis. Together the data illuminate recent (75 Mya) variations on a telomere 

theme that has played a major role at chromosome ends for at least 1.5 Gya. 
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6. The role of POT1b in telomere overhang generation and 

maintenance 

 

Introduction 
Although it has been previously shown that shelterin is necessary to maintain the 

telomeric overhang, the finding that POT1b loss leads to longer telomeric overhangs 

shows for the first time that shelterin also prevent the excessive elongation of overhangs. 

Since POT1b loss induces overhang extension independent of telomerase activity, we 

reasoned that this process could either be the result of elongation by a DNA polymerase 

other than telomerase, nucleolytic degradation of the C-rich telomeric strand, or 

incomplete C-rich-lagging-strand DNA synthesis. Degradation of the telomeric C-rich 

strand as well as the untimely uncoupling of leading and lagging strand synthesis is 

predicted to result in the overall loss of telomeric DNA. If this loss of telomeric DNA is 

not counteracted by telomerase, both processes would lead to telomere shortening. By 

contrast, if a DNA polymerase generates the extended overhangs, telomere shortening is 

not anticipated. These possibilities can be distinguished by determining the telomere 

shortening rate in cells that lack both POT1b and telomerase. If the telomere shortening 

of telomerase negative cells were accelerated by POT1b deficiency, we would conclude 

that the longer overhangs in POT1b KO cells are generated at the expense of double 

stranded telomeric DNA. 

 The hypothesis that loss of POT1b leads to C-strand resection seems possible, as a 

similar phenotype can be found in yeast after the loss of Cdc13, the single stranded 

telomeric binding protein of S. cerevisiae 149,167. Cdc13 deficient cells accumulate single 
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stranded telomeric DNA generated by exonucleolyitc degradation of the C-strand 

telomeric DNA. This excess of single stranded DNA leads to the activation of a Rad9 

andRad24 dependent DNA-damage checkpoint and a cell cycle arrest in G2 148,149,168. The 

generation of single stranded DNA was found to be partially dependent on the 5’ to 3’ 

exonuclease, Exo1. In addition to Exo1, at least two other nucleases are proposed be 

involved in this pathway. Although these other nucleases are not yet identified, it is 

known that their activity is controlled by Rad24, a clamp loader for the yeast homologue 

of the 9-1-1 complex, and by Rad9 160. 

 In this chapter, I provide evidence to support the notion that POT1b controls a 

nuclease. I show that loss of POT1b leads to accelerated telomere shortening that is not 

fully counteracted by telomerase. As a consequence POT1b deficiency results in delayed 

phenotypes in vitro and in vivo. Finally, I report on a preliminary search for the culprit 

nuclease. 
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Results 
 

POT1b loss results in accelerated telomere shortening regardless of the telomerase 

status 

In order to distinguish between extension by the overhang by a polymerase or C-strand 

resection by a nuclease, POT1-/- MEFs were cultured for more than 100 PDs and 

changes in telomere length monitored. The results in Figure 6.1 show progressive 

telomere shortening in POT1-/- cells. The data also document the persistence of 

elongated overhangs in POT1b -/- cells in long-term cultures (Figure 6.1).  

Based on telomere length measurements at the different time points we calculated a 

telomere shortening rate of about 300-500 bp/PD for POT1b deficient cells, while 

telomeres of control cells maintained a constant length. As telomeres of telomerase 

deficient cells shorten with about 60-80 base pairs per population doublings, telomere 

shortening in POT1b deficient cells is accelerated as the result of active telomere 

degradation. This telomere shortening phenotype is specific for POT1b, as the loss of 

POT1a does not result in any detectable telomere length changes (Figure 6.2). This 

finding is in contrast to the data of Wu et al. 164 that show that loss of POT1a leads to 

telomere elongation after only a few PDs. It remains unclear if this telomere elongation 

can also be explained by a dominant negative effect (see chapter 5). 
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Figure 6.1 POT1b loss leads to progressive telomere shortening 

Telomere overhang and telomere length analysis of POT1b S/F, POT1a F/wt MEFs infected with 

pWzl-Cre or the pWzl control vector. DNA from MEFs of the indicated accumulative population 

doublings was analyzed using the in-gel telomere overhang assay. The top image shows hybridization 

signal using the TelC probe ([CCCTAA]4) under native conditions detecting the telomeric 3′ 

overhang. The bottom image shows the total telomeric hybridization signal obtained with the same 

probe after in-gel denaturation of the DNA. 
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Telomeres of MEFs are normally maintained at a constant length through the 

constitutive expression of telomerase. In order to address if telomerase is capable of 

partially counteracting the telomere shortening in cells lacking POT1b, we monitored 

telomere length changes in POT1b deficient MEFs that are either heterozygous or 

homozygous deleted for the telomerase RNA component, mTR. As heterozygosity for 

mTR is haploinsufficient, analysis of mTR heterozygous cells can already reveal effects 

caused by reduced telomerase activity. We found that telomeres in cells heterozygous 

(Figure 6.3) or deleted for mTR (Figure 6.2-6.4) shorten after POT1b deletion with 

similar rates as telomerase proficient cells. This result suggests that telomerase is not 

compensating for POT1b loss induced telomere erosion. 
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Figure 6.2 Telomere shortening in wild type and POT1b telomerase double 

deficient cells 

Telomere overhang and telomere length analysis of MEFs with the indicated genotypes. MEFs were 

infected with pWlz-Cre or the pWzl control vector. DNA from MEFs of the indicated accumulative 

population doublings was analyzed using the in-gel telomere overhang assay. The left image shows 

hybridization signal using the TelC probe ([CCCTAA]4) under native conditions detecting the 

telomeric 3′ overhang. The right image shows the total telomeric hybridization signal obtained with 

the same probe after in-gel denaturation of the DNA. 
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POT1b loss accelerates telomere length induced crisis 

To determine the consequences of telomere shortening after POT1b loss, we monitored 

the growth of telomerase negative cell clones after the deletion of POT1b. Long-term 

culture of these clones reveals that cells deficient for POT1b and telomerase enter crisis 

earlier than cells lacking only telomerase (Figure 6.5A). This growth defect is caused by 

the loss of POT1b, as retroviral infection with a POT1b cDNA restores the proliferation 

of these cells (Figure 6.5B). In-gel overhang analysis shows that the telomeric overhang 

of these clones is still elongated after several months in culture and that telomeres, which 

 

Figure 6.3 Telomere shortening in POT1b cells heterozygous or deficient for 

telomerase 

Telomere overhang and telomere length analysis of MEFs with the indicated genotypes. MEFs were 

infected with pWlz-Cre or the pWzl control vector. DNA from MEFs of the indicated accumulative 

population doublings was analyzed using the in-gel telomere overhang assay. The left image shows 

hybridization signal using the TelC probe ([CCCTAA]4) under native conditions detecting the telomeric 3′ 

overhang. The right image shows the total telomeric hybridization signal obtained with the same probe 

after in-gel denaturation of the DNA. 
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are already very short, continue to shorten (Figure 6.5C). Cells that are POT1b/mTR 

double deficient enter crisis after approximately 40-50 days after POT1b deletion.  

Metaphases of these cells contain a high number of very short telomeres as indicated by 

the lack of hybridization of a telomere specific FISH probe (Figure 6.6A). Furthermore, 

cells deficient for mTR and POT1b accumulate Robertsonian fusions, which are stable in 

mitosis. Robertsonian fusions are indicative of critically short telomeres. POT1b deficient 

cells that retain telomerase activity also present Robertsonian fusions but at a lower 

frequency suggesting that telomerase can partially counteract the telomere shortening 

after POT1b loss. 

 

Figure 6.4 Telomere shortening in POT1b telomerase double deficient cells 

Telomere overhang and telomere length analysis of MEFs with the indicated genotypes. MEFs were 

infected with pWlz-Cre or the pWzl control vector. DNA from MEFs of the indicated accumulative 

population doublings was analyzed using the in-gel telomere overhang assay. The left image shows 

hybridization signal using the TelC probe ([CCCTAA]4) under native conditions detecting the telomeric 3′ 

overhang. The right image shows the total telomeric hybridization signal obtained with the same probe 

after in-gel denaturation of the DNA. 
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Figure 6.5 POT1b deficiency exacerbates effect of telomere shortening in telomere 

knockout cells 

 (A) Growth curve of individual cell clones from POT1bF/F mTR-/- isolated either after the deletion of 

POT1b with pWzl-Cre (1C3, 1C5, 1C9, 1C13 and 1C14) or after the infection with pWzl vector control 

(1V1). The growth curve was started about 60 days after plating the cells for sub-cloning and about 120 

days after the retroviral infections with pWzl or pWzl-Cre (B) Rescue of POT1b loss induced growth 

defect w by retroviral infections with the POT1b cDNA. Cells described in (A) were infected either with 

POT1b cDNA (POT1b) or an empty vector control (vector). The clones 1V1 (POT1b+/+), 1C3 (clone1) 

and 1C9 (clone2) shown in panel (A) were analyses. (C) Telomere overhang and telomere length analysis 

of the clones shown in panel (A) and panel (B). For each clone two time points are loaded in lanes next to 

each other. The first time point corresponds to day 30 of the growth curve shown in (A), while the second 

time point corresponds to day 39. The left image shows hybridization signal using the TelC probe 

([CCCTAA]4) under native conditions detecting the telomeric 3′ overhang. The right image shows the total 

telomeric hybridization signal obtained with the same probe after in-gel denaturation of the DNA. 
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Figure 6.6 POT1b loss leads to a increase of Robertsonian fusions in telomerase 

deficient cells  

(A) Metaphase spreads of cell clones shown in Figure 6.5 with telomeric DNA detected by FISH (green); DNA 

stained with DAPI (in blue). The clones 1V1 (POT1b+/+, mTR-/-), 1C3 (POT1b-/-, mTR-/-) and 1C5 (POT1b-

/-, mTR-/-) were analyzed at day 40 of the growth curve shown in panel (A) of Figure 6.5. (B) Frequencies of 

aberrant chromosomes in metaphases shown in (A). 
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POT1b deficient mice show phenotypes associated with critically short telomeres 

The finding that POT1b loss in MEFs results in telomere shortening, led us to investigate 

the phenotypes of POT1b deficient mice in more detail.  The phenotypes discussed below 

are found in mice in which the POT1b gene was disrupted by either homozygous deletion 

of exon 3 (POT1bΔ/Δ) or by the presence of a STOP cassette on both POT1b alleles 

(POT1bS/S). Most results presented here came from the analysis of POT1bS/S mice. 

Nevertheless, experiments on POT1bΔ/Δ mice MEFs suggest that the POT1b STOP 

allele and the POT1b Δexon 3 allele are equivalent and both represent a POT1b null 

allele.  

 

Figure 6.7 Reduced bodyweight and hyperpigmentation of POT1bS/S mice 

(A) Bodyweight of POT1bS/S and control animals older than 3 month, separated by gender. (B-D) 

Pictures of POT1b mice and control animals showing the hyperpigmentation of the ears and snout (B) 

the paws (C) and the tails (D) of POT1bS/S animals.   
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Although POT1b KO mice are alive, we observed that POT1b deficient animals 

do not grow to the same size and weight as their littermates. (Figure 6.7A). Furthermore, 

while littermate controls have normal pigmentation, POT1b knockout animals show 

hyperpigmentation of the paws (Figure 6.7C), snout, ears (Figure 6.7B) and tail (Figure 

6.7D). This defect is progressive and becomes prominent after three to four month of age. 

Interestingly, POT1bS/S mice show generational anticipation of this phenotype, as 

consecutive generations of homozygous intercrosses of POT1bS/S mice show 

hyperpigmentation at progressively earlier age. Hyperpigmentation is also a phenotype of 

the TPP1 mutant acd mice and can be seen in patients suffering from dyskeratosis 

congenita, a disease that is caused by lack of telomerase activity. 

In addition to these external phenotypes of the POT1bS/S mice, we noticed that 

POT1bS/S mice become infertile at young age (approximately 6 month after birth). 

Preliminary data suggest that this phenotype also shows anticipation, as later generations 

of POT1bS/S mice show male sterility with an earlier time of onset. In the sixth 

generation (G6) of POT1bS/S intercrosses the males fail to impregnate wild type females. 

Gross examination shows that testis of age matched wild type control animals are about 

three times larger than testis of POT1bS/S males (Figure 6.8A and B). Histological 

analysis of testis from POT1bS/S males reveals that POT1b deficient mice suffer from 

testicular atrophy (Figure 6.8C). Testicular atrophy is a marked phenotype of the acd 

mice and of late generation telomerase KO mice.  

Given the similarities between the POT1b KO and late generation telomerase KO 

mice, we investigated other highly proliferative organs known to be affected by loss of 

telomerase. We found that POT1bS/S mice have reduced numbers of peripheral white 
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blood cells and a pronounced lymphopenia. Moreover, we noticed a strong increase in 

apoptotic cells based on TUNEL in the small intestine of POT1bS/S mice compared to 

wild type control animals. This finding could suggest that POT1b loss results in the 

depletion of the stem cell compartment of highly proliferative tissues in a similar fashion 

as it is seen in the late generation of the telomerase KO. 

 

Figure 6.8 Testicular atrophy in POT1bS/S mice 

(A) Photograph of testis from POT1b S/S and control animals. (B) Quantification of testis volume of 

POT1b S/S and control animals. Histological analysis of testis from POT1b S/S and control animals 

stained with Haematoxilin and eosine shown at two magnifications (10x left and 40x right)  
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Figure 6.9 POT1b loss leads to lymphopenia 

(A) Quantification of peripheral white blood cell (WBC) counts of POT1b S/S, POT1b S/S mTR+/- 

and control animals. Shaded in blue and labeled “normal” is the range of WBC counts that are 

expected in healthy animals according to the literature. “Not normal” and shaded in red is the range of 

WBC counts that are below the literature values. (B) Quantification of peripheral blood lymphocyte 

counts of POT1b S/S, POT1b S/S mTR+/- and control animals. Shaded in blue and labeled “normal” 

is the range of lymphocyte counts that is expected in healthy animals. “Not normal and shaded in red 

is the lymphocyte counts that are below the literature values expected for healthy animals. (C) 

Histological analysis of bone marrow section (femur) form POT1b S/S, mTR+/- and control animals 

stained with Haematoxilin and eosine shown at two magnifications (10x top and 40x bottom) 
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In order to determine the relationship between the phenotypes caused by 

telomerase loss and POT1b loss we crossed mTR KO mice with POT1b KO mice. 

Kaplan-Meyer analysis revealed the POT1b and telomerase are not epistatic (Figure 

6.9A). While G5 POT1bS/S mice do not show a premature lethality, mice that are 

heterozygous for mTR and deficient for POT1b die untimely. These POT1bS/S mTR+/- 

mice are the offspring of crosses between generation 5 POT1S/S mTR+/+ mice and 

POT1bS/wt mTR-/- mice. The offspring of this cross is born with the expected 

Mendelian distribution: 50% being POT1bS/S mTR +/-, 50% being POT1b S/wt mTR+/-. 

We conclude that POT1b deficiency is responsible for the premature lethality of the 

POT1bS/S mTR+/- mice, as their POT1b S/wt mTR +/- littermates do not die early 

(Figure 6.9A). POT1bS/S mTR+/- mice have a white blood cell count that is lower than 

the POT1bS/S mice (Figure 6.8A and B). Furthermore, histological analysis shows that 

POT1bS/S mTR+/- mice suffer from bone marrow depletion, a phenotype that is less 

severe in the POT1bS/S and not found in control animals (Figure 6.8A and B). As mTR 

is haplo-insufficient, this result suggests that reduced telomerase activity enhances the 

phenotype of POT1b loss. 

In order to determine the consequences of POT1b loss in telomerase null mice, we 

inter-crossed POT1bΔ/+ mTR+/- mice. The offspring of this cross did not show a 

Mendelian distribution of genotypes (Figure 6.9 B). Out of a total of 91 live offsrings, 1, 

rather than 6, had the POT1bΔ/Δ mTR-/- genotype. This mouse was small, nude, failed to 

thrive, and died at three weeks of age (Figure 6.9C-E). 
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Figure 6.10 Increase apoptosis in the small intestine and testis of POT1bS/S 

mice 

 (A) Immuno-histochemical TUNEL staining of small intestine of wild type and POT1b S/S mice 

counterstained with Haematoxilin (B) Immuno-histochemical TUNEL staining of testis of wild 

type and POT1b S/S mice counterstained with Haematoxilin. The left images show staining of 

testis of wild type mice; the middle image shows the staining of testis from a 3 month old POT1b 

S/S mice, while the right image shows the staining of a 1 year old POT1b S/S mouse. The lack of 

apoptosis in these mice is due to the complete loss of sperm progenitor cells. 
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Figure 6.11 Telomerase is in POT1b mice 

(A) Kaplan-Meyer analysis of generation 5 POT1bS/S mice and the offspring of intercrosses 

between generation 5 POT1bS/S and POT1bS/wt mTR-/- and control animals. (B) Mendelian 

distribution the offspring of POT1b Δ/wt mTR+/- intercrosses. Black numbers give the numbers 

born for each of the genotypes and the numbers in blue indicate the numbers expected for a 

normal Mendelian distribution (C) Photograph of the only POT1b-/- mTR-/- mouse born (D) 

form the cross described in panel (B) shown in size comparison to its littermates (C) and its 

mother (E). The POT1b-/- mTR-/- mouse is indicated with a red >*. 
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Exonuclease 1 is implicated in the degradation of telomeric DNA upon POT1b loss 

In order to understand the process that leads to the increased overhang after POT1b loss 

and presumably to the telomere shortening of POT1b deficient cells, we designed a 

candidate screen to identify the putative nuclease that resects the telomeric C-strand after 

POT1b loss. In this screen, we retrovirally transduced POT1b KO cells with three 

independent shRNAs for each candidate gene. We reasoned that not only the knockdown 

of the nuclease itself but also the knockdown of proteins essential for its function would 

result in a decrease of overhang length in POT1b deficient cells. Therefore we not only 

included nucleases in this screen, but also determined the effects of candidate helicases 

and other genes implied in telomere DNA metabolism. Using in-gel hybridization we 

compared the amount of single-stranded telomeric DNA of POT1b KO cells infected 

with shRNAs targeting these candidate genes with cells infected with either a vector 

control or with a rescuing POT1b cDNA. An example of these experiments is shown in 

Figure 6.10.  

As expected, we found that transduction of POT1b deficient cells with the POT1b 

cDNA restored the normal telomere overhang length (Figure 6.10 A and B). We did not 

note a decrease of overhang signal after the knockdown of the nucleases Mre11, Apollo, 

Artemis, Ercc4, Ercc5, EME1, Mus81, and Fen1. We also did not find a decrease in 

overhang signal in POT1b deficient cells that were depleted for the helicases Wrn, PIF1 

and DNA2L or in cells with diminished protein levels for the members of the 9-1-1 

complex (Rad1, Hus1a, Hus1b, Rad9a and Rad9b). Furthermore, we did not find an 

effect on overhang signal after inhibition of Brca2 and Brca1, genes involved in the 

recognition of single to double strand DNA transitions homologous recombination.  
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Figure 6.12 Candidate screen to identify the nuclease generating excessive single 

stranded telomeric DNA in POT1b KO cells 

 (A) Example for the overhang analysis of POT1b deficient cells after of shRNA knockdowns of candidate 

genes. POT1b deficient cells were infected with three independent shRNAs (1-3) targeting the indicated 

genes. As controls cells were infected in parallel with a POT1b cDNA or with a vector control (shown in 

the last two lanes). The top image shows hybridization signal using the TelC probe ([CCCTAA]4) under 

native conditions detecting the telomeric 3′ overhang. The bottom image shows the total telomeric 

hybridization signal obtained with the same probe after in-gel denaturation of the DNA. (B) Quantification 

of relative overhang signal of the gel shown in (A). 
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We did not validate the knockdown efficiency for any of these genes and therefore can 

not exclude the possibility that some of these genes might be involved in POT1b induced 

C-strand resection. 

Interestingly, analysis of POT1b cells that were depleted for Exo1 showed a slight 

but reproducible reduction of telomeric overhang signal. While two shRNAs against 

Exo1 reduced the telomeric overhang signal in POT1b cells by about 10%, one shRNA 

resulted in an average reduction of 25% (Figure 6.10 A, B and 6.11). As the reduction of 

ss telomeric DNA by knockdown of Exo1 is relatively small compared to the complete 

rescue by POT1b, it is likely that Exo1 is not the only nuclease that is capable of 

resecting the telomeric C-strand after POT1b loss. It is also possible that the level of 

knockdown is not sufficient to completely abrogate Exo1 function. Therefore, the 

involvement of Exo1 in C-strand resection after POT1b loss has to be confirmed with 

different shRNA target sites and has to be correlated to the knockdown efficiencies of 

these shRNAs by western blotting analysis. Alternatively, analysis of cells from 

POT1bΔ/Δ Exo1Δ/Δ double knockout cells could be used to verify this result. The 

preliminary result that Exo1 might be responsible for overhang processing after the loss 

of POT1b is supported by the finding that knockdown of MutL, a protein that can 

stimulate the activity of Exo1, results in a similar overhang reduction (Figure 6.11). This 

result was reproduced with two independent shRNAs targeting MutL. In addition to Exo1 

and MutL, we find that shRNA knockdown of one member of the Keops protein complex 

resulted in a slight reduction of telomeric overhang in POT1b KO cells (Figure 6.11). The 

Keops proteins were identified as a protein complex that mediates the cellular response to 

the loss of Cdc13 in S. cerevisiae. 
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It should be mentioned here that the average overhang signal of all knockdowns 

taken together is slightly lower than the one seen in cells infected with the empty vector. 

As knowledge of the RNAi mechanism is still limited, the significance of this potentially 

interesting finding remains to be determined.  

 

Figure 6.13 Exo1 and MUTL are implicated in the generation of increased 

overhang signals in POT1b KO cells 

Quantification of telomere overhang changes in POT1b-/- cells after the knockdown of Mre11, Exo1, 

MutL and Keops3 compared to the rescue by a POT1b cDNA. The overhang signal found in the 

vector control infections was set to 100%. The numbers at the base of the graph indicate the number 

of independent experiments performed. 



 162

Discussion 
 

Mechanism of overhang generation 

We found that loss of POT1b leads to progressive telomere shortening and therefore 

shelterin is needed to protect against the excessive loss of telomeric DNA. As telomere 

shortening in POT1b deficient cells exceeds the telomere shortening in telomerase 

negative cells, POT1b loss either impairs the proper synthesis of telomeric DNA during 

replication, or results in the excessive degradation of telomeric DNA. In the first scenario 

telomere shortening and overhang extension could be caused by the incomplete synthesis 

of the lagging strand. If this were the case, it is predicted that extended overhangs in 

POT1b deficient cells would be found exclusively on telomeres that were generated by 

lagging strand synthesis. Measuring the overhang of individual telomeres by electron 

microscopy can test this prediction. In ongoing experiments in collaboration with the 

laboratory of Jack Griffith, telomeric DNA was isolated from POT1b KO liver cells and 

the telomeric overhang was coated in vitro with the E. coli single stranded binding 

protein (SSB). As the amount of SSB on the chromosome end can be measured by 

electron microscopy and correlated with overhang length, this technique would allow us 

to determine if the telomeric overhang is elongated preferentially on one chromosome 

end. Until this analysis is completed, we can not exclude that the POT1b overhangs are 

caused by the uncoupling of leading and lagging strand telomere synthesis.  

Based on the results presented here we favor the view that POT1b loss causes the 

degradation of the C-strand by affecting a nuclease rather than by misregulating telomere 

replication. C-strand degradation is a phenotype that is caused by the loss of Cdc13 in S. 

cerevisiae as well as after the knockdown of human POT1. Depletion of human POT1 
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leads to the randomization of the otherwise precise ATC-5’ ending of the telomeric C-

strand, a process that requires the action of a nuclease. Furthermore, we find that 

depletion of the Exo1 nuclease, which is partially responsible for elongated overhangs in 

S. cerevisiae, reduces overhang signal in POT1b deficient MEFs. This result is supported 

by the finding that knockdown of MutL, an endonuclease that that is known to stimulate 

the activity of Exo1, results in a similar reduction of overhang length as the knockdown 

of Exo1. 

Interestingly, we find that the knockdown of one member of the mouse Keops 

protein complex results in reduced overhang length in POT1b deficient cells. Both the 

Keops proteins and Exo1 are implicated in processing after the loss of Cdc13 function in 

S. cerevisiae; it is therefore possible that the mechanism by which Cdc13 and POT1b 

protect the telomere against degradation is conserved between S. cerevisiae and mice. 

 Our screen to find genes that regulate overhang length in POT1b KO cells does 

not discriminate between a nonspecific and a specific process that generates the 

overhang. It is possible that the extended overhangs after loss of POT1b do not simply 

reflect unspecific degradation by nucleases but are the result of a deregulation of a 

process that generates the telomeric overhang in normal cells. If POT1b loss resulted in 

the enhancement of this natural telomere processing step, it would be predicted that genes 

found in the screen would also have a telomere overhang phenotype in POT1b proficient 

cells. Therefore, it will be of interest to determine the function of Exo1 in a POT1b wild 

type setting. As we screened only a limited number of genes, a genome-wide screen 

could be used to identify other genes that are involved in overhang generation. 
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The consequences of telomere shortening in POT1b deficient cells 

Loss of POT1b leads to telomere shortening regardless of the presence of telomerase. 

While telomeres in telomerase KO cells shorten, telomeres of wild type cells are 

maintained at a constant telomere length, showing that telomere length homeostasis in 

wild type cells is established through the constitutive action of telomerase. Therefore, the 

short telomeres found in POT1b deficient cells would be elongated by telomerase in a 

POT1b proficient setting. Several possibilities could explain why telomerase does not 

efficiently compensate for the telomere sequence loss in POT1b KO MEFs. Either 

POT1b is directly involved in the recruitment of telomerase to telomeres, or the elongated 

overhangs in POT1b KO cells are not a suitable substrate for telomerase elongation, or 

telomerase activity is limited and not sufficient to counteract shortening in POT1b KO 

cells. The option that POT1b might be involved in the recruitment of telomerase is 

attractive, because of recent reports that imply TPP1 in telomerase recruitment. TPP1 

lacks DNA binding affinity, and its interaction with POT1 is thought to be necessary for 

overhang binding. As telomeres in POT1b knockout cells shorten with a rate comparable 

to telomeres of POT1b and telomerase double deficient cells, telomerase recruitment by 

POT1b is not excluded.  

Furthermore, we find that POT1b loss leads to phenotypes in the mouse that are 

characteristic for late generation telomerase KO mice indicating that POT1b deficient 

mice are impaired in their telomere maintenance. However, crosses between the 

telomerase and POT1b knockout excluded that POT1b is the exclusive telomerase 

recruiter, as the outcome of telomere shortening in POT1b-/- cells and POT1b-/- mTR-/- 

cells is different. Cells that lack both genes enter telomere length induced crisis and 
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accumulate significantly more fusions than POT1b knockout alone. Furthermore, 

telomerase deficiency exacerbates the phenotypes found in POT1b KO mice. Both 

findings suggest that under conditions where telomeres become very short telomerase can 

maintain telomeres in a POT1b independent manner. Although we did not find any 

telomere length changes in POT1a knockout cells, it is possible that POT1a has the 

ability to partially compensate for POT1b in telomerase recruitment once telomere 

become very short. In future experiments it has to be determined if overexpression of 

telomerase in POT1b deficient cells can counteract telomere shortening. If we were to 

find that increased telomerase activity maintains the telomeres of POT1b knockout cells, 

it would suggest that telomerase could use elongated overhangs as a substrate. 
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7. Conclusion 

 

Telomere length regulation by human POT1 
Telomere shortening limits proliferation of most human somatic cells and can thereby 

function as a tumor suppressor mechanism. The indefinite propagation of the human 

germline requires telomere length maintenance by telomerase. This differential regulation 

of telomere maintenance is achieved by restricting expression of telomerase. A second 

level of regulation is required in the germline to ensure that the telomeres of the zygote 

are, on one hand, long enough to allow sufficient cellular proliferation for the 

development and life-span of the organism, but on the other hand, not too long to 

circumvent the tumor suppressor function of telomere shortening. Studies of telomere 

length regulation in tumor cells, in which telomerase is reactivated, suggest that telomere 

length homeostasis is based on a cis-acting mechanism that links the length of an 

individual telomere to the likelihood of this telomere being elongated by telomerase. This 

cis-regulation is mediated by shelterin through the quantitative binding of TRF1 and 

TRF2, and their ability to recruit the telomerase inhibitor POT1. The molecular details of 

POT1’s effect on telomerase have not been fully established 

A major unresolved issue is how telomerase is actively recruited to the 3’ end of 

the overhang. One candidate for this function appears to be the POT1/TPP1 complex that 

bears similarity to the TEBPα/β complex of Oxytricha. Our finding that both proteins are 

essential for telomere protection calls for further detailed structure-function analysis of 

these proteins to dissect their possible role in telomerase recruitment and telomere 

protection. Our results showed that POT1b could be involved in the recruitment of 



 167

telomerase, as telomerase fails to fully compensate telomere shortening in POT1b KO 

cells. However, our data also argue against POT1b being the only telomerase recruiter, as 

telomerase deficiency exacerbates the loss of POT1b phenotypes in the mouse. One 

obvious possibility is that POT1a partially compensates for the loss of POT1b. 

 

Telomere protection by POT1 
Our understanding of the function of mammalian telomeres is based largely on studies 

that addressed the consequences of loss of either the telomeric DNA or the proteins that 

bind to the double stranded part of the telomere. Both approaches revealed the essential 

function of telomeres for genomic integrity and cellular survival. Nevertheless, the 

molecular mechanisms that underlie the coordinated interplay between the telomeric 

DNA and its binding proteins are not completely understood. Ultimately, it is the 

terminus that is modified by telomerase, or by DNA repair activities when telomeres lose 

their protected status. Therefore, studying the function of POT1, given its ability to bind 

both to the telomeric overhang as well as along the double stranded part of the telomere, 

seemed a promising approach to obtain an understanding of telomere function as a whole. 

It was tempting to speculate that proteins that bind to the double stranded part of the 

telomere, in particular TRF2, would ultimately protect the telomere end through a 

pathway that involves POT1. However, our finding that the loss of POT1 confers some 

phenotypes that are quite different from the loss of TRF2 suggests that the mechanism of 

telomere protection is more complex and involves several pathways. TRF2, for example, 

is essential in preventing telomere fusions, while POT1 protects both the 5’ and the 3’ 

end of the chromosome against degradation. Now, the task is to understand the 

relationship between the various mechanisms of telomere protection, to find the sensors 
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that detect telomere dysfunction, and to determine the role of these pathways in human 

disease. 

 

Genesis of the telomeric overhang 
Normal telomere shortening in telomerase deficient human and mouse cells exceeds the 

telomere sequence loss that is predicted from the end replication problem. It has been 

proposed that the C-strand resection needed to generate the telomeric overhang is 

responsible for the shortening rate detected in telomerase deficient cells.  

Several observations suggest that C-strand resection is a regulated process. The 

telomeric overhang is established shortly after or during DNA replication on both 

chromosome ends and has a constant length throughout the cell cycle. Furthermore, C-

strand resection results in a precise product, with the 5’ end of the telomere terminating in 

the sequence ATC. Our finding that reduced levels of human POT1 results in the 

randomization of the 5’ chromosome end as well as the finding that loss of mouse POT1b 

leads to excessive resection of the telomeric C-strand, suggest that POT1 is essential for 

the proper generation of telomeric overhangs. Once the nuclease that degrades the 

telomeric C-strand in POT1b deficient cells has been identified, it will be possible to 

determine whether this nuclease is normally responsible for overhang generation. So far, 

we identified Exo1 in an shRNA knockdown screen as a candidate nuclease that could be 

partially responsible for the extended overhangs in POT1b KO cells and therefore might 

contribute to overhang generation in normal cells. In future experiments, we will 

determine the role of Exo1 in telomere processing. Ultimately, identification of the 

nuclease(s) that generate the overhang will provide insights into the process of telomere 
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shortening in human cells and more importantly, into the mechanism responsible for the 

tumor suppressing capacity of telomeres.  

 

Two POT1 genes in the mouse 
My results suggest that a gene duplication event gave rise to two functionally distinct 

POT1 proteins in mice whereas humans have only one POT1 gene. This kind of 

divergence is unprecedented in chromosome biology and has implications for modeling 

telomere biology and telomere-related disease states in the mouse.  

The two functionally distinct mouse POT1 proteins can be used to experimentally 

dissect different aspects of telomere function. In the first place, the finding that human 

POT1 is able to complement several of the mouse POT1 KO phenotypes shows that our 

study of mouse POT1 will be beneficial for understanding the function of human POT1. 

Secondly, by generating mutants of human and mouse POT1 through domain 

swapping/chimeric protein designs, we will be able to address specific structure-function 

questions. Did the DNA binding domains of the two mouse POT1 proteins diverge to 

fulfill separate roles? Alternatively, are the different functions of the two mouse POT1 

proteins based on their differential binding affinity for known or unknown telomeric 

proteins? The POT1 knockout model that we generated could facilitate the identification 

and characterization of these potential POT1 interacting proteins.  
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POT1b deficient mice: an alternative model to study the consequences of 

telomere shortening 
The finding that POT1b loss induces telomere shortening that is not fully counteracted by 

telomerase shows that shelterin is necessary to maintain telomere length through a 

telomerase independent pathway. Loss of POT1b leads to phenotypes that are reminiscent 

of the ones found in the late generation telomerase KO and reminiscent of the symptoms 

found in patients suffering from DC. These findings could have clinical relevance as in 

about 50% of all cases of DC the disease causing mutation has not been identified. It 

seems possible that mutations in POT1 could result in accelerated telomere shortening 

that exceeds the counteracting capacity of telomerase. 

Inhibition of telomerase has been proposed to be a viable approach to inhibit 

tumor progression, as tumor cells require telomerase for long-term growth. The efficacy 

and specificity of telomerase-targeting drugs may be increased by the fact that telomeres 

of tumor cells are generally shorter than telomeres of the neighboring normal tissue. Our 

finding that POT1 suppresses a pathway that can enhance telomere shortening after 

telomerase inhibition might lead to approaches that can complement and enhance the 

therapeutic opportunities of telomerase drugs. 
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Materials and Methods 

 

Mammalian cell culture 

Transformed human mouse cells were grown in DMEM supplemented with 10% bovine 

calf serum, 100 U/ml penicillin (Sigma), 0.1 μg/ml streptomycin (Sigma), 2.0 mM L-

glutamine (Invitrogen), and 0.1 mM non-essential amino acids (Invitrogen). If not 

indicated otherwise, primary human cells were cultured in DMEM supplemented with 

15% fetal bovine serum, 100 U/ml penicillin, 0.1 μg/ml streptomycin, 2.0 mM L-

glutamine, 0.1 mM non-essential amino acids. Primary mouse embryonic fibroblasts 

(MEFs) were obtained from E13.5 embryos using standard techniques and grown in 

DMEM containing 15% heat-inactivated fetal bovine serum, 100 U/ml penicillin, 0.1 

μg/ml streptomycin, 2.0 mM L-glutamine, 0.1 mM non-essential amino acids, 1 mM 

sodium pyruvate and 50 μM β- mercaptoethanol. SV40 large T antigen immortalized 

MEFs were cultured in the same media without pyruvate and β-mercaptoethanol. MEFs 

were immortalized at passage 2 with pBabeSV40LT (a gift from G. Hannon) using the 

retroviral infection protocol given below. BJ and BJ/Tert cells were cultured in 4:1 

DMEM/199medium supplemented with 15% fetal bovine serum 0.1 μg/ml streptomycin, 

2.0 mM L-glutamine, 0.1 mM non-essential amino acids, and 1 mM sodium pyruvate. All 

Cells were passaged using 0.25% trypsin, 0.1 M EDTA and standard tissue culture 

techniques and grown at 37°C, 5% CO2 and 95% relative humidity. 
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Growth curve and long-term culture for telomere length experiments 

0.5x106 cells were plated on a 10 cm cell culture dish and grown for 72 hrs. Cells were 

recovered in 6 ml medium and the total cell number was determined. 0.5x106 cells were 

plated in a new culture dish. Cumulative population doublings were calculated using 

these cell counts. The remaining cells were used to isolate genomic DNA for analysis of 

telomere length in human cells or to generate plugs used in pulsfield gel electrophorsis 

(PFGE) to analysis telomere length in mouse cells. 

 

RNAi 

Double-stranded siRNA was generated to target human POT1 or luciferase (purchased 

from Darmacon). HeLa cells were transfected using Oligofectamine (Invitrogen) using a 

protocol supplied by the manufacturer. Specifically, 16-24 hrs before transfection, 3.5-

5x106 cells were seeded into 6-well plates. On the day of transfection, 10 µl 

oligofectamine were mixed with 28 µl Opti-MEM by vortexing and incubated for 10 min 

at RT. During this time, 25 µl of 20 µM siRNA and 440 µl Opti-MEM were combined 

and mixed. Next, 38 µl of the oligofectamine/Opti-MEM were added to the siRNA 

solution. The tube was vortexed and incubated for 20 min at room temperature (RT). The 

target cells were rinsed with 3 ml DMEM without additives and afterwards the cells were 

provided with 2 ml of DMEM. The siRNA solution was added dropwise to the cells, and 

incubated for 4 hrs, after which 1 ml of 30% FBS in DMEM without additives was 

added. 24 hrs later, the transfection was repeated. 48-72 hrs after the first transfection, 

cells were harvested for immunoblot lysate. 
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Calcium phosphate transfection of mammalian cells 

16-24 hours before transfection, 4-6x106 cells (PhoenixE/A: 4.3x106, 293T: 6x106) were 

plated on a 10 cm cell culture dish. Right before transfection, 2X DNA mix was prepared 

in a 1.5 ml Eppendorf reaction tube: ddH2O (500µl final volume), 62 µl 2 M CaCl2, 15 

µg of plasmid DNA. The samples were mixed and the 2X DNA mix was added drop wise 

to 500 µl 2X HBSS (50 mM HEPES, pH 7.05, 10 mM KCl, 12 mM dextrose, 280 mM 

NaCl, 1.5 mM Na2PO4) in a 15 ml conical tube while bubbling the mixture with a 2 ml 

pipette. The resulting 1 ml was added dropwise onto the cells. The medium was changed 

5-12 hours after transfection.    

   

Retroviral infection of mammalian cells 

The day before the infection, cells were seeded on a 10 cm cell culture dish. The number 

of cells that were plated was dependent on the cell type. Generally, cells were plated so 

that they reached confluence about three days after plating.  PhoenixE/A cells were 

transfected with a retroviral vector, following the calcium phosphate transfection 

protocol. 48 hrs after transfection, the virus-containing medium was collected in a 50 ml 

conical tube. Cells were given fresh pre-warmed medium and used for consecutive 

rounds of infections. The virus was passed through a 0.45 µm filter into a fresh 50 ml 

conical tube. Next, polybrene was added to a final concentration of 4 µg/ml and mixed by 

inverting the tube. This solution was then used to replace the medium of the cells to be 

infected. Cells were infected with this protocol four times in 12-hour intervals. 12 hrs 

after the last infection, the infected cells were provided with fresh medium. 12 hrs later, 

the cells were split into selection marker containing medium. As a control for successful 
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infection and selection, uninfected cells were included with the same medium. If not 

indicated otherwise, cells were selected for 4-5 days with 4µg/ml puromycin, 5-6 days 

with 90µg/ml hygromycine or 8-10 days with 300µg/ml neomycin and 8µg/ml 

blastocidine, respectively. 

 

Lentiviral infection of mammalian cells 

Three days before the infection, 293T cells were transfected with 3.5 µg of each helper 

plasmid (pMDLg/RRE, pRSV-rev and pCMV-VSVG) and 7 µg of lentiviral vector per 

10 cm cell culture dish by calcium phosphate transfection. Cells were plated the day 

before the infection. The number of cells plated and lentiviral titiers were determined 

beforehand in separate experiments. 72 hrs after changing the medium on the transfected 

cells, the virus-containing medium was collected in a 50 ml conical tube. The tubes were 

centrifuged for 5 min at 1x103 rpm at 4°C in a clinical centrifuge.  The virus was passed 

through a 0.45 µm filter and a final concentration of 4 µg/ml of polybrene was added. 

Half of the virus-containing medium was used for infections. The remaining virus was 

kept on ice and used for a second infection 3 hrs later. 3 hrs after this second infection, 

the virus-containing medium was replaced with fresh medium. 

 

Expression of Cre recombinase 

Cre was introduced into immortalized MEFs using pMMPHit&Run Cre-GFP (Silver and 

Livingston, 2001), pWzl-Cre (containing the hygromycin resistance gene), or Ad5 CMV 

Cre (Resource center, The University of Iowa Carver College of Medicine GTVC, Iowa 

City, USA). For all experiments, Cre-mediated gene deletion was monitored by PCR. For 
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retroviral gene delivery, 4x106 PhoenixE cells were transfected with 15 μg of retroviral 

construct DNA using a standard calcium phosphate transfection protocol, and the 

medium was changed 6 hrs after transfection. Virus containing medium was collected at 

48, 60, 72 and 84 hours post-transfection and used in 4 sequential infections of MEFs. 

For adenoviral Cre delivery, 0.5x106 SV40 transformed MEFs were infected in 

suspension with adenovirus at 0.8-1pfu/cell. The effective adenoviral titer was 

determined in GFP-LacZ 293T reporter cells ((Brown and Baltimore, 2003); a gift from 

E. Brown). The infection was repeated after 6 hours and 12 hours later the medium was 

replaced with virus-free medium. Using this protocol, re-adherence of the cells was 

efficient (>95%) and cell death was minimal prior to Cre-mediated deletion.  Deletion 

efficiency was >80% at 78 hours post infection.  

 

Adenoviral expression of TRF2DBDM 

HeLa cells (2x106) were infected in suspension with adenovirus at 20 pfu/cell. Medium 

was changed 12 hours later and 48 hours post-infection the cells were treated with 

demecolcine (100 ng/ml; Sigma) for 1 hour. Cells were harvested and prepared for 

metaphase spreads and FISH analysis as described below. 

 

Synchronization of Hela cells 

HeLa cells (0.5x106) were plated in a 10 cm culture dish and treated with 2 mM 

thymidine 24 hours later. After 14 hrs, cells were washed 3 times with pre-warmed PBS 

and given fresh medium for 11 hours before adding 2 mM final concentration of 

thymidine. After 14 hrs, cells were washed with pre-warmed PBS and again provided 
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with fresh medium. Cells were fixed at the indicated time points for immunoflourescence 

staining using 2% formaldehyde in PBS, or in cold 70% ethanol for FACS analysis. 

 

FACS analysis 

For FACS analysis, 1*106 cells were plated on 10 cm cell culture dishes and grown for 

24 hrs. BrdU was added directly to the culture medium to a final concentration of 10 μM 

60 min prior harvesting. Cells were collected, washed in PBS, and fixed in ice cold 70% 

ethanol for 30 min while mixing on ice. Cells were recovered by centrifugation and the 

DNA was denatured in 1 ml of 2N HCl in 0.5% Triton X-100 (v/v) added dropwise while 

mixing. After 30 min at RT, cells were recovered by centrifugation and samples were 

neutralized with 1 ml of 0.1 M sodium-tetraborate, pH 8.5. Cells were washed once with 

0.5% BSA in PBS and re-suspended in 100 μl of 0.5% BSA in PBS. 10 μl of FITC-

conjugated α-BrdU antibody (Becton Dickinson) was added and samples were incubated 

for 30 min at RT in the dark. Cells were washed twice with 0.5% BSA in PBS and re-

suspended in 0.4 ml of 0.5% BSA in PBS containing 5 μg propidium-iodide and 100 μg 

RNAseA per ml. The samples were analyzed on a FACScalibur flow cytometer (Becton 

Dickinson). Data analysis was performed using FlowJo software.  

 

Senescence associated β-galactosidase staining 

For the SA-β-galactosidase assay (Dimri et al., 1995), 1*105  cells were plated on a 6-

well cell culture dish and 48 hrs later, the cells were washed twice in PBS for 5 min. The 

cells were fixed for 3 min in 2% formaldehyde and 0.2% glutaraldehyde in PBS and 

washed twice in PBS for 5 min. The staining reaction was performed with 3 ml staining 
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solution (1 mg/ml 5-bromo-4-chloro-3-indolyl β-D-galactoside (X-Gal), 40 mM citric 

acid/sodium phosphate, pH 6.0, 5 mM potassium ferrocyanide, 5 mM potassium 

ferricyanide, 150 mM NaCl, 2 mM MgCl2) at 37°C for 8 to 14 hrs in the dark. Cells were 

washed twice with PBS and photographed   

 

Indirect immunofluorescence (IF) 

Cell were grown on glass coverslips, fixed for 10 min at room temperature with PBS 

containing 2% paraformaldehyde and permeabilized for 10 min in PBS containing 0.5% 

Nonidet P-40. Non-specific interactions were blocked by incubation for 30 min in PBS 

with 0.2% coldwater fish gelatin and 0.5% BSA (PBG). Thereafter cells were incubated 

with primary antibody for 2 h at room temperature. Cells were washed 3 times for 5 

minutes using PBG and incubated 45min with rhodamine- or fluorescein-conjugated 

secondary antibodies in PBG (The Jackson Laboratory, Bar Harbor, Maine 04609 USA). 

After two washes in PBG, one wash in 100 ng/ml DAPI in PBS, and one wash in PBS for 

5 min each, cover slips were mounted on microscope slides and analyzed using a Zeiss 

Axioplan II (Thornwood, CA, USA) fluorescence microscope in combination with a 

Hamamatsu digital camera (C474295) (Bridgewater, MA, USA). Cells were randomly 

chosen by screening the slides with a ZEISS Plan Apochroma 63X/1.40 Oil DIC 

objective in the DAPI channel of the fluorescence microscope. For all dual IF 

experiments, bleed-through controls were performed by leaving out one of the two 

primary antibodies.  
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Telomeric FISH (fluorescence in situ hybridization) 

Metaphase spreads: 

Cells were grown to 50 -70% confluence and incubated for 60-75 min in medium 

containing colcemide (human cells: 0.1 mg/ml colcemide, mouse cells: 0.2 mg/ml 

colcemide). The medium was collected and cells were trypsinized and combined with the 

supernatant culture medium. Cells were pelleted by centrifugation in a clinical centrifuge 

at 1x103 rpm at 4°C. The cell pellet was gently resuspended in 2 ml of 75 mM KCl and 

incubated for 7 min in a 37°C waterbath. Cells were then spun down in a clinical 

centrifuge. The cell pellet was loosened by tapping and , 1 ml of 4°C cold fixative (75% 

v/v methanol, 25% v/v glacial acetic acid) was added dropwise while vortexing. 

Afterwards, an additional 4 ml of cold fixative were added and the tubes were stored at 

4°C overnight (o/n) or longer. Fixed cells were centrifuged for 5 min at 1x103 rpm and 

4°C and most of the supernatant was removed. Cells were resuspended in the remaining 1 

ml of fixative by tapping. 150 µl of the cell suspension were dropped from approximately 

30 cm onto a tilted microscope slide pre-wetted in cold water. Next, the slide was rinsed 

twice with 1 ml of cold fixative and then placed on a humidified 80°C heating block for 1 

minute. 

Hybridazation: 

Metaphase spreads slides were aged overnight and rehydrated for 5 min in PBS. Samples 

were fixed in 4% formaldehyde in PBS for 2 min. Slides were then washed 3 times for 5 

min in PBS. The spreads were treated with freshly prepared 1 mg/ml pepsin in 10 mM 

glycine, pH 2.0, at 37°C for 10 min. The slides were then washed twice for 2 min in PBS. 

Next, the samples were fixed again in 4% formaldehyde in PBS for 2 min and washed 3 
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times in PBS for 5 min. The slides were then sequentially dehydrated for 5 min each in 

70%, 95% and 100% ethanol. After air-drying the slides, 85 µl of hybridization mix (10 

mM Tris-Cl, pH 7.2, 70% formamide, 0.5% blocking reagent for nucleic acid 

hybridization, 0.1 µM FITC-TelC) was placed onto each slide. The samples were then 

immediately denatured for 3 min on a 75°C humidified heating block. For hybridization, 

the slides were incubated for 2-3 hours in a dark, humid atmosphere at RT. Subsequently, 

the samples were washed twice for 15 min in 10 mM Tris-Cl, pH 7.2, 0.1% BSA, 70% 

formamide, and the washed for 5 min in 0.1 M Tris-Cl, pH 7.5, 0.15 NaCl, 0.08% Tween 

at RT in the dark with agitation. DAPI was added to the second to the last wash at a final 

concentration of 0.5 µg/ml. Slides were then dehydrated as above and air-dried. The 

slides were mounted with 80 µl embedding medium, coverslipped, and sealed with nail 

polish. Microscope slides were stored at -20°C in the dark. 

 

Preparation of total RNA from mammalian cells  

RNA was isolated using the RNeasy Mini kit (QIAGEN). In order to remove possible 

DNA contaminants, 12 µg of RNA were incubated 30 min at 37°C with 500 U RNase-

free DNaseI in a total volume of 20 µl (including 2 µl 10X DNaseI buffer, adjusted with 

RNase-free water). The DNase was heat-inactivated for 20 min at 65°C and RNA was 

quick-frozen in liquid nitrogen and stored at -80°C. 
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Immunoblotting 

Preparation of cell lysates for POT1 immunoblotting: 

Cells were harvested, spun down for 5 min at 1x103 rpm at 4°C in a clinical centrifuge. 

Cells were washed in 500 µl PBS and transferred into a 1.5 ml Eppendorf reaction tube. 

Next, cells were recovered by centrifugation, resuspended in immunoblot lysis buffer (50 

mM Tris-Cl pH 7.4, 1% TritonX-100 , 0.1% SDS, 150 mM NaCl, 1 mM EDTA, 1 mM 

PMSF and protease inhibitor tablets (Boehringer)) (50 µl/ 2x106 cells) and briefly 

vortexed. After incubation on ice for 5 min, 2.5 µl of 5 M NaCl were added per 2x106 

cells and the tubes were briefly vortexed. The lysate was incubated on ice for at 10 min. 

For every 2x106  cells, 50 ul of cold water were added to each sample followed by 

vortexing and centrifugation at 13.2x103 rpm for 10 min at 4°C in a tabletop centrifuge. 

Next, 90% of the supernatant was mixed with 2X Laemmli buffer (100 mM Tris-HCl pH 

6.8, 200 mM DTT, 3% SDS, 20% glycerol), and the cell lysates were stored at -20°C. 

Immunoblotting: 

Protein samples in Laemmli buffer were denatured at 100°C for 5 min and briefly 

centrifuged. An equivalent of 0.15x106 to 0.2x106 cells and 7.5 µl of Precision Plus 

protein standard size marker (Bio-Rad) were loaded on a 10% SDS polyacrylamide gel. 

Proteins were separated for 20 min at 40 V and subsequently at 90 V. The proteins were 

transferred onto a nitrocellulose membrane in cold transfer buffer for 2 hrs at 90 V by wet 

blotting at 4°C. Immunoblots detecting POT1 were processed following the guanidine 

protocol. 
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Guanidine protocol: 

The membrane was incubated at RT in 25 ml 6 M guanidine-Cl solution for 30 min, 

followed by incubation in 50 ml 3 M guanidine-Cl solution for 30 min. Next, the 

membrane was incubated at 4°C for 30 min in 50 ml of each of the following buffers: 1 

M guanidine-Cl, 0.1 M guanidine-Cl, and 2% M. P. solution. Unless stated otherwise, 

only blots probed for POT1 were treated with this guanidine protocol. 

 

guanidine-Cl 6 M 3 M 1 M 0.1 M 2% M.P. 
glycerol 50% 2.5 ml 

(100%)
5 ml 5 ml 5 ml 5 ml

NaCl 5 M 0.5 ml 0.5 ml 0.5 ml 0.5 ml 0.5 ml
Tris 1 M pH7.5 0.5 ml 0.5 ml 0.5 ml 0.5 ml 0.5 ml
EDTA 0.5 M 50 µl 50 µl 50 µl 50 µl 50 µl
Tween 20 10% 250 µl 250 µl 250 µl 250 µl 250 µl
Guanidine-Cl 
8M 

18.75 ml 9.30 ml 3.13 ml 0.31 ml 0

milk powder 0.5 g 0.5 g 0.5 g 0.5 g 0.5 g
DTT 1 M 25 µl 25 µl 25 µl 25 µl 25 µl
H2O dd 2.45 ml 10.32 ml 15.57 ml 18.39 ml 18.70 ml
total 25 ml 25 ml 25 ml 25 ml 25 ml 
 

 

Membranes were blocked with 5% milk in PBS with 0.1% Tween-20 (PBS-T) for 30 

min. at RT.  Membranes were then incubated with primary antibody in 5% milk in PBST 

overnight at 8°C. The following day, membranes were washed 4 times in PBST for 10 

min at RT and then incubated in 1:5x103 diluted horseradish peroxidase-conjugated α-

rabbit or α-mouse IgG antibody in 5% milk/PBS-T for 45 min at RT. Again, the 

membrane was washed 4 times in PBS-T for 10 min at RT. Antibody binding was 

visualized by incubation with ECL solution and exposured to a film for 30 sec, 2 min, 10 

min and 1 hr. 
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Human telomere length analysis and overhang in-gel assay 

Telomere Length Analysis: 

Genomic DNA was isolated from HTC75 cultures grown as described previously (van 

Steensel and de Lange 1997) except that Phase Lock Gel tubes (Eppendorf) were used for 

phenol extraction. DNA was digested with AluI and MboI, quantified using Hoechst 

fluorimetry, separated on a 0.7% agarose gel, and transferred to a Hybond-N membrane 

for hybridization using an [α-32P]dCTP Klenow-labeled 800-bp telomeric DNA probe 

from pSP73Sty11 (de Lange et al. 1990; de Lange 1992). Blots were exposed to 

PhosphorImager screens, and mean telomeric restriction fragment lengths were 

determined using ImageQuant software. Rates of telomere length changes were 

determined by linear regression. 

In-Gel G-Overhang Assay: 

The In-gel G-overhang assay was done essentially the same as described in Hemann and 

Greider, 1999. Following electrophoresis, gels were dried at RT and prehybridzed at 

50°C for 1 hr in Church mix (0.5 M Na2HPO4 [pH 7.2], 1 mM EDTA, 7% SDS, and 1% 

BSA), followed by hybridization at 50°C overnight with an end-labeled (CCCTAA)4 

oligonucleotide. After hybridization, gels were washed three times with 4x SSC (20X 

SSC :3 M NaCl, 0.3 M sodium citrate) for 30 min and once with 4x SSC/0.1% SDS. Gels 

were exposed on Phosphoimager screens. Following the G-overhang assay, gels were 

alkali denatured (0.5 M NaOH and 1.5 M NaCl), neutralized (3 M NaCl and 0.5 M Tris-

HCl [pH 7.0]), rinsed with dH2O, and reprobed with the (CCCTAA)4 oligonucleotide at 

55°C and processed as described previously. To determine the relative overhang, the 
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signal intensity for each lane was determined before denaturing and after denaturing 

using ImageQuant software. The ratio of these intensities is the overhang intensity. The 

relative overhang intensity was determined relative to the vector control. 

 

Mouse telomeric overhang/telomere length assay 

Preparation of plugs for mouse telomeric overhang/telomere length assay: 

Cells were washed with 1 ml PBS, taken up in 50 µl PBS and pre-warmed at 50°C. An 

equal volume of melted 2% agarose in PBS was added at 50°C and the suspension was 

mixed carefully with a cut pipette tip. 100 µl of the cell-agarose suspension were 

transferred into a well of a labeled Biorad CHEF disposable PFGE (pulsed-field gel 

electrophoresis) plug mold (Catalog Number 1703706). The plug was left for 10 min at 

RT to solidify. Each plug was then incubated in 500 µl of proteinase K digest buffer (100 

mM EDTA, pH 8.0, 0.2% sodium desoxycholate, 1% sodium lauryl sarcosine and 1 

mg/ml proteinase K) at 50°C overnight. The next day, the plugs were washed 4 times in 

T10E1 pH 8.0 for 1 hr at RT. In the last wash, PMSF was added to a final concentration 

of 1 mM in order to inactivate residual proteinase K activity and plugs were stored at 4°C 

in this solution. If not indicated otherwise each plug contained 0.5x106 cells. 

Pulse field-gel-electrophoresis PFGE: 

The PFGE plugs were washed at RT with T10E1 pH 8.0 for 1 hr, with sterile water for 20 

min., and with 500 µl MboI enzyme restriction buffer (NEB 3) for 1 hour. Genomic DNA 

was digested with 60 U MboI in NEB3 buffer o/n at 37 °C. The plugs were washed for 1 

hr in T10E1 pH 8.0 at RT and then equilibrated in 0.5X TBE for 20 min. The plugs were 

loaded into the wells of a 1% 0.5X TBE agarose gel. One well was loaded with high 
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molecular weight marker. The gel was run in a Biorad CHEF-DR pulsed-field gel 

electrophoresis apparatus in 0.5X TBE (initial pulse 5 sec, final pulse 5 sec, voltage 6 

V/cm, 14°C, for 24 hours). The DNA in the gel was stained with ethidium bromide in 

ddH2O, destained in ddH2O and photographed. The gel was dried with a vacuum pump 

at 30°C and then pre-hybridized in 25 ml Church Mix for 30 min at 50°C. The gel was 

hybridized with 25 ml probe in Church Mix at 50°C overnight. The hybridization mix 

was recovered and stored at RT. The gel was then washed three times for 30 min 4X SSC 

at 50°C, once for 30 min in 4X SSC/0.1% SDS at 50°C and subsequently exposed on a 

phosphoimager screen. Next, the DNA in the gel was denatured for 30 min in denaturing 

solution (1.5 M NaCl, 0.5 M NaOH) and washed twice for 15 min in neutralizing solution 

(3 M NaCl, 0.5 M Tris-Cl, pH 7.0). The gel was pre-hybridized for one hour at 55°C and 

then hybridized with the same probe at 55°C overnight. The gel was then washed as 

above and exposed for 2 hrs on a phosphoimager screen. Screens were scanned on a 

Molecular Dynamics Storm 880 Scanner. The relative overhang length was determined 

by dividing the native signal of one lane (ss stranded telomeric DNA) by its signal in the 

denaturing gel (total telomeric DNA). 

 

Chromatin Immunoprecipitation (ChIP) 

Preparation of cell lysates for ChIP: 

Cells were grown on a 15 cm cell culture dish under optimal conditions and processed 

before reaching confluence. Cells were recovered in a 50 ml conical tube, counted, spun 

down for 5 min at 1x103 rpm at 4°C in a clinical centrifuge and washed once in 20 ml 

PBS. The cells were then resuspended in 36 ml PBS. 1 ml of 37% formaldehyde was 
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added dropwise to the cell suspension, inverting the tube after each few drops. Cells were 

fixed for 1 hr at RT and the tube was inverted a few times during incubation. Cells were 

washed in 10 ml PBS, transferred into a 15 ml conical tube, and recovered by 

centrifugation. Cells were then resuspended in ChIP lysis buffer (50 mM Tris-Cl, pH 8.0, 

10 mM EDTA, 1% SDS (w/v), 1 mM PMSF and protease inhibitors tablets (Boehringer)) 

to achieve a final cell concentration of 20x106 cells/ml. The cell lysate was kept on ice 

for 15 min and afterwards the lysate was sonicated on ice (10 cycles of 20 sec each, 50% 

duty, 0.5 sec on/off, power 5). After sonication, the tube was centrifuged for 5 min at 

3x103 rpm at 4°C in a clinical centrifuge. The supernatant was then divided into 1.2 ml 

aliquots in 1.5 ml Eppendorf reaction tubes and spun down in tabletop centrifuge for 10 

min at 13.2x103 rpm at 4°C. Supernatants were pooled into a 15 ml conical tube. 

Immunoprecipitation (IP): 

200 µl of lysate were used per IP and 1.2 ml of IP dilution buffer (16.7 mM Tris-Cl pH 

8.0, 150 mM NaCl, 1.2 mM EDTA, 0.01% SDS (w/v),1 mM PMSF and prtease 

inhibitors tablets) were added. A 50ul aliquot of the lysate from each cell population was 

taken at this step to be used later in the analysis as the total fraction.  The tubes were 

gently inverted a few times and incubated on ice for 10 min. Specific antibodies or pre-

immune serum was then added to the IPs. The pre-immune serum served as a control for 

the specificity of the antibody and was obtained from rabbits before they were injected 

with an immunogenic peptide. 4 µl of purified antibody or 20 µl of crude serum were 

used for the IP’s.  The lysate/antibody mixture was incubated overnight at 8°C on a 

spinning wheel.  The following day protein G Sepharose beads were prepared the 

following way: 30 µl of Protein G Sepharose beads, 5 µg sonicated E. coli DNA and 30 
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µg BSA per IP were mixed with a cut pipette tip. The lysate, antibodies, and beads were 

incubated another 45 min at 4°C on a spinning wheel.  The beads were washed once with 

1 ml of ChIP buffer A (20 mM Tris-Cl, pH 8.0, 150 mM NaCl, 2 mM EDTA, pH 8.0, 1% 

Triton X-100 (v/v), 0.1% SDS (w/v) and protease inhibitor tablets) on ice and 

sequentially with ChIP buffers B (20 mM Tris-Cl, pH 8.0, 500 mM NaCl, 2 mM EDTA, 

pH 8.0, 1% Triton X-100 (v/v), 0.1% SDS (w/v)), C (10 mM Tris-Cl, pH 8.0, 0.25 M 

LiCl, 1 mM EDTA, pH 8.0, 1% NP-40 (v/v), 1% sodium deoxycholate (w/v)) 

and D (10 mM Tris-Cl, pH 8.0, 1 mM EDTA, pH 8.0) at RT. Between the washes, beads 

were vortexed and placed on ice. They were spun down in a tabletop centrifuge for 1 min 

at 5x103 rpm. After the last wash, beads were resuspended by vortexing in 250 µl of 

freshly made 1% SDS/0.1 M NaHCO3 and incubated at RT for 10 min. The beads were 

centrifuged and the eluate was transferred into a fresh tube. The beads were eluted again 

with 250 µl of 1% SDS/0.1 M NaHCO3 and the eluates were combined. In order to 

reverse the crosslinking, 20 µl of 5 M NaCl were added to each eluate and the samples 

were incubated o/n at 65°C. The saved total fractions were brought up to 500 µl by 

adding 450 µl of 1% SDS/0.1 M NaHCO3 and 20 µl of 5 M NaCl. The total fractions 

were also incubated o/n at 65°C and from this step on processed like the IP samples. 

Next, 10 µl of 0.5 M EDTA, 20 µl 1 M Tris-Cl, pH 6.5, and 20 µg RNase A, DNase-free, 

were added and mixed without vortexing. The samples were then incubated for 30 min at 

37°C. After further addition of 40 µg Proteinase K, the mixtures were kept at 37°C for 1 

hr. The samples were placed into Phase Lock Gel tubes and were thoroughly mixed with 

0.5 ml of phenol/chloroform/isoamylalcohol (25:24:1 v/v). The tubes were then 

centrifuged in a tabletop centrifuge at RT for 5 min at 13.2x103 rpm. The upper phase 
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was transferred into a fresh 1.5 ml Eppendorf tube and mixed with 20 µg of glycogen by 

vortexing at 1.4x103 rpm. 1 ml of ethanol was added to precipitate the DNA. The tubes 

were then inverted and stored o/n at -20°C. The precipitated DNA was pelleted the next 

day in a tabletop centrifuge for 10 min at 13.2*103 ??? rpm at 4°C. The final pellet was 

resuspended in 100 µl of ddH2O. DNA was stored at -20°C. 

Hybridazation: 

The DNA was thawed and boiled in a sandbath for 1 min, then incubated on ice for 5 min 

and briefly spun down in a tabletop centrifuge. 200 µl 2X SSC were loaded into a well of 

the assembled S&S Minifold I dot blot apparatus. 30 µl of DNA were mixed with the 200 

µl 2X SSC for the TTAGGG membrane and the vacuum was applied. For the BamHI 

repeat control membrane, 10 µl DNA were used. The membranes were denatured by 

floating them on lab bench paper wetted with 1.5 M NaCl, 0.5 M NaOH for 10 min. 

Next, the membranes were neutralized with 1 M NaCl, 0.5 M Tris-Cl, pH 7.0, for 10 min. 

DNA was cross-linked to the dried membranes in the Stratagene UV cross-linker 

(0.12x106 µJ/cm2). After rinsing the membranes in 2X SSC, the membranes were pre-

hybridized in a medium-sized Hybaid-bottle with 7 ml Church Mix for 30 min at 65°C. . 

It was heated in a 100°C sandbath and spun down briefly. 200 µl of the denatured probe 

were added to the membrane in the Hybaid-bottle. Hybridization was performed o/n at 

65°C in the Hybaid incubator. The next day, the membrane was washed 3 times for 5 min 

in 2X SSC at RT. The membrane was then exposed for a few hours to a phosphoimager 

screen. The signals were developed on a Molecular Dynamics Storm 880 Scanner and 

counts for each sample were determined by Imagequant software.  
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Altered POT1 alleles 

POT1a8GEO/+ mice were generated from the Baygenomics clone RRA096 using protocols 

supplied by Baygenomics website (http://baygenomics.ucsf.edu/). Chimeras were 

generated by blastocyst injections of C57BL/6J blastocysts and founder chimeras were 

backcrossed to female C57BL/6J mice obtained from Jackson laboratory, USA. SA-β- 

galactosidase staining of E13.5 mouse embryos was performed as described on the 

Baygenomics website. For gene-targeting of POT1a and POT1b, BAC clones of genomic 

DNA were isolated form the CT7 male CJ7/129SV BAC library (Research Genetics) 

using the first coding exons of POT1a and POT1b as probes. Appropriate restriction 

fragments (POT1a: HindIII/SacI fragment; POT1b XhoI/NheI fragment) were subcloned 

into pSL301 (Invitrogen) next to the negative selection (DTA) cassette. A STOP cassette 

(Jackson et al., 2001) flanked by FRT sites was introduced into the KpnI and NdeI sites 

for POT1a and –b, respectively. The constructs contained a puromycin resistance gene 

next to the STOP cassette and a neomycin resistance gene flanked by LoxP sites. A third 

LoxP site was introduced by inserting an oligonucleotide into an NheI site for POT1a and 

an ApaI site for POT1b. This oligonucleotide introduced a BamHI restriction site used for 

the analysis of targeting in ES cells. The vector was linearized with SalI, and gene 

targeting was performed following standard techniques using the E14 ES cell line derived 

from 129P2/Ola. Genomic blotting with probes positioned outside of the targeting 

constructs were used to identify the diagnostic BamHI restriction fragment in correctly 

targeted ES cells. A probe specific for neo showed that there was only one integration 

event and confirmed the presence of the STOP cassette. ES cell clones that fulfilled these 

criteria were selected for C57BL/6J blastocyst injection and resulting chimeric founders 
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were crossed to C57BL/6J females. Mice were kept in a mixed 129/ C57BL/6J mixed 

background. FLOXed alleles were generated by removing the STOP cassette using the 

129S4/SvJaeSor-Gt(ROSA)26Sortm1(FLP1)Dym/J FLPe deleter mouse stain (Jackson 

Labs). mTERC deficient mice (Blasco et al., 1997) were obtained form R.A. DePinho 

and C.W. Greider. MEFs were isolated from a cross of a male POT1bSTOP/FLOX 

mTERC-/- mice and a female POT1bFLOX/FLOXmTERC+/- mice.  

 

Genotyping PCRs 

Genotyping PCRs were preformed using standard DNA isolation techniques and Takara 

Taq polymerase (Madison, WI, USA).  

POT1a wt PCR: 6-wtfw-1 CCAGCCTCCCCTCCACCAAGTC; 6-FRTbw-1 

ACAAACCCACCCCGTCAGAGTAAG.  

POT1a FLOX PCR: 6-FRTfw-2 TGAGCCCAGAAAGCGAAGGAG; 6-FRTbw1 

ACAAACCCACCCCGTCAGAGTAAG.  

POT1a Δex3 PCR: 6-allfw-2 CTTCCCTGTTTGCCCTCCTTTACT; 6-allbw-2 

TTCCCCCTTTCATTTTCTTTTCTC.  

POT1b wt PCR: 17-wtfw-1 CGCTGGGGAGGGTATCGTAG; 17wtbw- 

1TCCCTGCCCTGACTTCCATC.  

POT1b FLOX PCR: 17wtfw-1 CGCTGGGGAGGGTATCGTAG; 6-FRTfw-2 

TGAGCCCAGAAAGCGAAGGAG.  

POT1b Δex3 PCR: 17-allfw-1 GTTGCCCCTATCATCCTACACG; 17-FRTbw-2 

TGTGTTGGGAGAGGAAGTGAAAGA.  
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These PCRs were performed for 32 cycles (94°C for 45 s, 60°C for 45 s, 72°C for 60 s). 

POT1a and POT1b STOP PCR: 6-FRTfw-2 TGAGCCCAGAAAGCGAAGGAG and 6-

Neobw-1 CCCCCTTCCCTGTTTGCCCTCCTT at 32 cycles (94°C for 30 s, 58°C for 30 

s, 72°C for 60 s). Restriction endonuclease digestion and/or DNA sequencing confirmed 

identity of the PCR products.   

 

Purification of PCR products 

 QIAquick PCR Purification Kit was used to purify PCR-products 

 

DNA sequencing 

The GENEWIZ sequencing service (http://lims-genewiz.com) was used for DNA 

sequencing 

 

Restriction digest of plasmid DNA and PCR products with endonucleases 

Restriction digests were performed using New England Biolabs restriction enzymes and 

the protocol recommended by this company.   

 

Agarose gel electrophoresis 

DNA fragments were separated in 0.7 to 2% agarose gels in 1X TAE (40 mM Tris-

acetate, 1 mM EDTA), depending on the expected sizes of the fragments. For UV-

detection of DNA, ethidium bromide was added to a final concentration of 0.4 µg/ml into 

the gel. Samples were loaded with 4x loading buffer (50% glycerol (v/v), 0.5% orange G 

(w/v)). As a molecular weight marker 0.5 to 2 µg of a mixture of equal volumes of NEB 
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Lambda DNA-HindIII digest and fX174 DNA-HaeIII digest was used. Gels were run in 

1X TAE with approximately 10 V/cm unless indicated otherwise. 

 

Gel extraction of DNA fragments  

DNA fragments were purified from agarose gels using the QIAquick Gel Extraction Kit. 

 

DNA ligation 

DNA ligation reactions were performed using T4 DNA ligase from New England Biolabs 

with a protocol recommended by this company.   

 

Mini and Maxi preparation (QIAprep Spin Miniprep Kit Protocol) 

Plasmid purifications were performed using the QIAprep Spin Miniprep Kit and 

QIAGEN Plasmid Maxi kit using protocols provided by the manufacturer. Bacmids were 

purified using the QIAGEN Plasmid Maxi kit and a protocol for large DNAs provided by 

Qiagen. 

 

Transformation of competent E. coli cells 

50 µl of competent TOP10 were transformed with 1 ng of DNA by heat shock of 42°C 

for 70 sec followed by incubation on ice for 10 min. Cells were plated on selective LB 

plates and incubated at 37°C o/n. After the heat shock, large constructs, bacmids and 

kanamycin containing plasmids were incubated for 60 min in non-selective LB Medium 

at 37°C prior to plating.  
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RT-PCR 

For expression analysis of mouse POT1a and POT1b, RT-PCR was performed using a 

mouse cDNA panel form Research Genetics. cDNA was amplified using standard PCR 

techniques. POT1a primers: fw: TGGTTTCAACAGCTCCCTATA, 

bw:CCCTACAGTCCCTTCAAATG; POT1b primers: 

fw:CGGCCCCAGTAGCACCTTCTAC, bw:TCTCTTGCTTAAAGTACGCAG. RT-

PCR was performed using the oligo-dT ThermoScript RT-PCR system, (Invitrogen). 

RNA was isolated from approximately 106 cells using Qiagene RNAeasy kit. 1 μg RNA 

was reverse transcribed using the thermoScript RT-PCR system (Invitrogen,USA) using 

oligo dT priming and the protocol provided by the manufacturer. To detect the 

recombined POT1a locus, fw: TGGTTTCAACAGCTCCCTATA and bw: 

CTTAGAAAGCATCCAACCTCG were used as primers.    

 

Generation of [32P] labeled oligonucleotides with Klenow polymerase  

20-100 ng of double stranded DNA fragments were mixed with 5 µl of 1 ng/µl oligo 

(specific priming) or random hexamers and 29 µl ddH2O. DNA was boiled in a 100°C 

sandbath for 5 min, centrifuged very briefly in a tabletop centrifuge and cooled down on 

ice. Next, 5 µl OLB-C (0.5 M Tris-Cl, 0.1 M MgOAc, 1 mM DTT, 0.5 mg/ml BSA, 0.18 

µM dNTPs (dATP, dTTP, dGTP)), 5 µl 3x103 Ci/mmol [32Pα]dCTP and 1 µl 2 U/µl 

Klenow polymerase were added, mixed, and the tubes were incubated for at least 90 min 

at RT. 50 µl TNES (10 mM Tris-Cl, pH 7.4, 10 mM EDTA, 100 mM NaCl, 1% SDS) 

were added and the mixture was loaded onto a 3.5 ml G50 column, equilibrated with 1 ml 

TNES. The column was washed with 1 ml TNES and eluted with 800 µl TNES. 
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[γ-32P] labeling of oligonucleotides with T4 polynucleotide kinase (PNK) 

2 µl ddH2O, 1 µl 10X NEB T4 DNA PNK buffer, 1 µl 10 U/µl NEB T4 DNA PNK, 1 µl 

of 50 ng/µl oligonucleotide and 5 µl 10.0 mCi/ml [γ-32P]ATP were mixed in a 1.5 ml 

Eppendorf reaction tube by pipetting and incubated for 45 min at 37°C. 80 µl of TES (10 

mM Tris-Cl, pH 8.0, 10 mM EDTA, pH 8.0, 0.1% SDS) were then added to the tube to 

stop the reaction. The probe was loaded onto a 3 ml G25 Sephadex column that had 

previously been equilibrated with 1 ml TNES. The column was washed with 700 µl 

TNES and then eluted with 600 µl TNES. 

 

siRNA/shRNA design 

siRNA/shRNAs were designed by utilizing the software provided on  

http://jura.wi.mit.edu/siRNAext/. The mRNA sequence of the targeted gene was screened 

for possible target sites using the algorithm: NNSANNNNNNNNDNANNAWNN 

(personal communication with Markus Landthaler, Tuschl laboratory, Rockefeller 

University, New York City). Target sequences were used for a UNIGene BLAST 

analysis through the mouse genome in order to detect possible off-targets. Off-targets 

were identified according to Jackson et al. 2003. Target sites in the 5’ or 3’ UTR were 

preferentially chosen, because they provide the opportunity to rescue their effects by 

overexpressing the unmutated ORF of the gene. 

shRNAs were designed in the following format: 

sense 5’-GATC4(19mer)T2CA2GAGA(19mer reverse complement)T5G2A4-3’ 

antisense 5’-AGCT4C2A5(19mer)TCTCT2GA2(19mer reverse complement)G2-3’. 
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Target sequences were: 

Luciferase: 5'- CGTACGCGGAATACTTCGA-3' (Dharmacon). 

human POT1: 

Ex7: 5’-GGGTGGTACAATTGTCAAT-3’  

Ex7/8: 5’-GGAACTGATTATTGCTCAG-3’ 

Ex7/9a: 5’-GGAACTGATTCAAGTATAT-3’ 

Ex7/9b: 5’-CAAAGGAACTGATTCAAGT-3’ 

Ex8a: 5’-GATATTGTTCGCTTTCACA-3’ 

Ex8b: 5’-GCCCTTCCAATAATTTATA-3’ 

Ex18: 5’-GTACTAGAAGCCTATCTCA-3’ 

mouse POT1: 

POT1a-1: 5’- GCATCACTATGGATGTAAA-3’ 

POT1a-3: 5’- GCATTTCTCTACAACATTA-3’ 

POT1b-1: 5’- GCAGCTGCTTTGAAGATTA-3’ 

POT1b-3: 5’- GGAGAAGGGTGATCCTGTA-3’ 

mouse TPP1 

mTPP1-1: 5’- GTAGCTTGGGCCTTGAATA-3’ 

mTPP1-2: 5’- GAACCGGGCAGCTGCTCAA-3’ 

mTPP1- 3: 5’- GGACACATGGGCTGACGGA-3’ 

shRNA target used in nuclease screen (all against mouse proteins): 

mMre11-1: 5’- GGACCAGAAGGGTCTTATA-3’ 

mMre11-2: 5’- GCACCCTGCTTGTTATCAA-3’ 

mMre11-: 5’- GCAGTTAGAGGAAATGATA-3’ 
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mEXO1-1: 5’- GGAGACGGGACTAAGTTAA-3’ 

mEXO1-2: 5’- GCATTTGGCACAAGAATTA-3’ 

mEXO1-3: 5’- GGAAGCTGGTCCCTCTGAA-3’ 

mSnm1-a-1: 5’- GCAGCTTTCGGTCTAGGAA-3’ 

mSnm1-a-2: 5’-GCACTTACTGCATCGGAAA-3’ 

mSnm1-a-3: 5’- GGAGACTGGAAGCCGGATA-3’ 

mSnm1-b-1: 5’- GGAGACACTACTTTGTTAA-3’ 

mSnm1-a-2: 5’-GCACATGGCAAATTGTTTA-3’ 

mSnm1-b-3: 5’-GGATGTAACTACATGTTAA-3’ 

mSnm1-c-1: 5’- GGATCACATGAAAGGATTA-3’ 

mSnm1-c-2: 5’- GGAAATACAGGAAGAGAAA-3’ 

mSnm1-c-3: 5’- GGAGACTTCAGACTGGCAA-3’ 

mWrn-1: 5’- GGAACAGCAAGCTAAAGAA-3’ 

mWrn-2: 5’- GCAAGAGGAGGTTGATGTA-3’ 

mWrn-3: 5’- GCACTCTCCGCTACTGCAA-3’ 

mRad17-1: 5’- GCACGACCGGGACACTTTA-3’ 

mRad17-2: 5’- GGAGTTACTTAGTTTAGAA-3’ 

mRad17-3: 5’- GGAAAGACAACTACTATAA-3’ 

mPIF1-1 NM_172453: 5’- GGAGCAGCCTGTCTTATTA-3’ 

mPIF1-2 NM_172453: 5’- GGAGCGCAGGGACAGGAAA-3’ 

mPIF1-3 NM_172453: 5’- GCACGCACAGCATATTGTA-3’ 

mRAD9-1: 5’- GTAGCTGCTGGGACTCATA-3’ 

mRAD9-2: 5’- GGACTCATAATATGTCCTA-3’ 
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mRAD9-3: 5’- GAAGGACGGGCTCTCCCTA-3’ 

mRAD9b-1NM_144912: 5’- GGACAGAGCTGGCAGCATA-3’ 

mRAD9b-2NM_144912: 5’- GAAGTCACCTTCTCTGTTA-3’ 

mRAD9b-3NM_144912: 5’- GAAAGCAGTACAAACGCTA-3’ 

mRAD1-1: 5’- GCACCAATGTTATGAATAA-3’ 

mRAD1-2: 5’- GCAGCACCAATGTTATGAA-3’ 

mRAD1-3: 5’- GCACTAGCTTTATCCTGTA-3’ 

mHUS1-1: 5’- GGAGCTGCCTCACCCTAAA-3’ 

mHUS1-2: 5’- GCAGGCACTGTGTGCCAAA-3’ 

mHUS1-3: 5’- GCAGTGATGTAATATCATA-3’ 

mHUS1b-1: 5’- GCAGTCATGTGCTGGTGGA-3’ 

mHUS1b-2: 5’- GTAGAAACTGATAGAGTGA-3’ 

mHUS1b-3: 5’- GCATGGAGGGTGCCTCGCA-3’ 

mMUTL-1: 5’- GGAGCACATTATCTATAAA-3’ 

mMUTL-2: 5’- GGAGGACTCTGATGTGGAA-3’ 

mMUTL-3: 5’- GCATTAGTATCTCAGTTAA-3’ 

mDNA2L-1: 5’- GGAGATCAGAGGACTATTA-3’ 

mDNA2L-2: 5’- GGAGCTGAAGACCGGCAAA-3’ 

mDNA2L-3: 5’- GGAGTCAGGTGGTCCTGTA-3’ 

mKeops1-1 (BC091757.1 Mosgep): 5’- GCACAGGACTCCTCTCAAA 

mKeops1-2 (BC091757.1 Mosgep): 5’- GGACCCTATATAAGGCTTA 

mKeops1-3 (BC091757.1 Mosgep): 5’- GGAGGGACTAACACCATCA 

mKeops2-1 (BC024858.1 mTP53rkbp): 5’- GGACATAGTGACAGTCAAA 
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mKeops2-2 (BC024858.1 mTP53rkbp): 5’- GGAGGGCAGAGAAACCTAA 

mKeops2-3 (BC024858.1 mTP53rkbp): 5’- GGAAAGTCTTCCAGAAATA 

mKeops3-1 (BC017155.1 mTP53rk-1): 5’- GCAAAGCATGGGTTGTTAA 

mKeops3-2 (BC017155.1 mTP53rk-1): 5’- GTAGAATCTGCCATATGGA 

mKeops3-3 (BC017155.1 mTP53rk-1): 5’- GGATTAAAGGTGTATGTCA 

mERCC4-1 (NM_015769.1): 5’- GGAGCGTGCTTCCGCCAAA 

mERCC4-2 (NM_015769.1): 5’- GCACCTCCATGTTTGTGAA 

mERCC4-3 (NM_015769.1): 5’- GCACCGACCGGCTCCTCTA 

mERCC5-1 (NM_011729.1): 5’- GCACCTCCGACGACAAGAA 

mERCC5-2 (NM_011729.1): 5’- GCATCCATTGACTCGAGAA 

mERCC5-3 (NM_011729.1): 5’- GCAATGAGTAACTTAGAAA 

mFEN1-1(NM_007999.3): 5’- GGAGGAGAGGTGACTAGAA 

mFEN1-2(NM_007999.3): 5’- GGACTCCAAACCACTGCTA 

mFEN1-3(NM_007999.3): 5’- GCATTAAGTGTGCCACTGA 

mMus81-1 (NM_027877.2): 5’- GCAGGACACAGGCCAGAAA 

mMus81-2 (NM_027877.2): 5’- GGACCCTGTACCAGTTGTA 

mMus81-3 (NM_027877.2): 5’- GCACCCATCTTCATCTCTA 

mEME1-1(NM_177752.2): 5’- GGAGCTGGCAGTCTCCAAA 

mEME1-2(NM_177752.2): 5’- GCAACCAGATCTCATCTTA 

mEME1-3(NM_177752.2): 5’- GCAGCACCGAGAAAGGGAA 

mBRCA1-1 (NM_009764.2): 5’- GCAGGAGCCAAATCTATAA 

mBRCA1-2 (NM_009764.2): 5’- GGAGACCTGATTATATAAA 

mBRCA1-3 (NM_009764.2): 5’- GCAGCGTTCAGAAAGTTAA 
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mBRCA2-1(NM_009765.1): 5’- GGAGCTGTGGCACGAAATA 

mBRCA2-2(NM_009765.1): 5’- GGACCCTTCTGCTCAAGTA 

mBRCA2-3(NM_009765.1): 5’- GCAGCATCCTGAATATGAA 

 

Cloning of shRNAs into pSUPER/pSUPERIOR vectors 

59-64mer oligos were obtained from FISHER oligos, annealed, phosphorylated and 

cloned into pSUPERIOR-Puro. Plasmids were sequenced with 5’-

GGAAGCCTTGGCTTTTG-3’ and 5-’CGAACGCTGACGTCATC-3’ to confirm 

integrity of the plasmid and shRNA target-sequence. 

 

POT1 expression constructs 

POT1-55 was cloned into the pLPC retroviral vector by PCR using POT1 variant 4 

mRNA (EST Id aa66fo8.s1). This construct retained the Kozak sequence and the first 

POT1 ATG in exon 6.  The POT1* construct was generated by PCR mutagenesis of 

POT1 cDNA and expressed from pBabeNeo expression vector. The silent change was at 

position: +1660 to 1678 to generate the sequence: GTACTAGAAGCTTACTTGA, 

conferring resistance to ex18 shRNA. pBabeSV40Tag was a gift from G.Hannon. The 

human POT1 cDNA was also subcloned using BamHI and XhoI restrictions sites ligated 

to BamHI/ SalI digested pWzl-Myc retroviral vector.. The ΔOB versions of POT1a and –

b were cloned into pLPC-N-Myc using the following PCR primers: POT1aΔOB fw: 

ACCTGGATCCCCTCAGGACCAAAAAATGGTAG, POT1aΔOB rev: 

ACCTCTCGAGCTAGACAACATTTTCTGCAACTG, POT1bΔOB fw: 
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ACCTGGATCCGCTCAGGACTACAGTATGGTAG, POT1bΔOB rev: 

ATGCGTCGACATCATAGTTACTTTCTGGTAAG.  

 

Lentiviral shRNA constructs 

POT1 proteins were stably knocked down in NIH3T3 cells using pSicoR-GFP vector 

technology ((Ventura et al., 2004); a gift from T. Jacks). The following target sequences 

were cloned into pSico and confirmed by DNA sequencing: a1: 

GCATCACTATGGATGTAAA; a* (inactive): GGAACTCCCAAATAAAGTA; a3: 

GCATTTCTCTACAACATTA; b1: GCAGCTGCTTTGAAGATTA; b2: 

GGAGTGTCATTTCTCCTAA; b3: GGAGAAGGGTGATCCTGTA. Three days before 

the infection, 293T cells were transfected with 3.5 μg of each helper plasmid 

pMDLg/RRE, pRSV-rev and pCMV-VSVG and 7 μg of lentiviral vector per 10 cm dish 

using calcium phosphate transfection. 72 hrs after changing the medium on the 

transfected cells, half of the virus-containing medium supplemented with 4 μg/ml 

polybrene was used to infect 75,000 NIH3T3 cells. After 3 hrs, the infection was repeated 

and 3 hrs later, the virus containing medium was replaced by pre-warmed fresh medium. 

The infection efficiency was >90% as determined using lentiviral vectors carrying the 

GFP gene (pSicoR-GFP and derivates) and quantification of cells that exhibited GFP 

fluorescence 48 hrs after infection. Cells used in ChIP analysis were generated by two 

rounds of infection with the indicated lenti-viruses separated by approximately one week 

of culture.  
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Immunological reagents 

 
ID antigen source/type dilution origin 
644 mTRF1 

(peptide) 
rabbit 
polyclonal 

IF 1:2000 
ChIP 1:350 

J. Karlseder/de Lange 
lab 

647 hTRF2 
(baculoviral 
full-length) 

rabbit 
polyclonal 

ChIP 1:70 (serum) X. Zhu/de Lange lab 

1253/4 mRAP1 (GST 
full-length) 

rabbit 
polyclonal 

ChIP 1:70 (serum) G. Celli/de Lange lab 

978 hPOT1 
(peptide) 

rabbit 
polyclonal 

Immunoblot 1:1000 D. Loayza/de Lange lab 

1220 mPOT1a 
(peptide) 

rabbit 
polyclonal 

Immunoblot 1:1000 
ChIP 1:350 

D. Hockemeyer/de 
Lange lab 

1221 mPOT1a 
(peptide) 

rabbit 
polyclonal 

Immunoblot 1:1000 
ChIP 1:350 

D. Hockemeyer/de 
Lange lab 

1222 mPOT1b 
(peptide) 

rabbit 
polyclonal 

Immunoblot 1:1000 
ChIP 1:350 

D. Hockemeyer/de 
Lange lab 

1223 mPOT1b 
(peptide) 

rabbit 
polyclonal 

Immunoblot 1:1000 
ChIP 1:350 

D. Hockemeyer/de 
Lange lab 

αmPOT1a mPOT1a (GST 
full-length) 

mouse 
polyclonal 

IF 1:1000 D. Hockemeyer/de 
Lange lab 

αmPOT1b mPOT1b-V2 
(GST full-
length) 

mouse 
polyclonal 

IF 1:1000 D. Hockemeyer/de 
Lange lab 

αγH2AX hγH2AX 
(Ser139 
phospho) 

mouse 
monoclonal 

IF 1:1000 upstate (05-636) 

16 MRE11 rabbit 
polyclonal 

ChIP 1:140 (serum) J. Petrini lab, Memorial 
Sloan Kettering Cancer 
Centre, New York City 

95 NBS1 rabbit 
polyclonal 

ChIP 1:140 (serum) J. Petrini lab 

9E10 human c-Myc 
(peptide) 

mouse 
monoclonal 

IF 1:1000 
Immunoblot 1:1000 

oncogene (OP10) 

GTU88 γ-Tubulin 
(peptide) 

rabbit 
polyclonal 

Immunoblot 1:1000 Sigma (T3559) 

hTRF1 human TRF1 rabbit 
polyclonal 

IF 1:2000 
 

de Lange Lab 

h53BP1 human 53BP1 mouse 
monoclonal 

IF 1:50 
 

generously provided by 
T. Halazonetis, The 
Wistar Institute, 
Philadelphia, 
Pennsylvania); 

864 h-Mre11 rabbit ChIP hMRE11 
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polyclonal de Lange Lab 
M2 Flag-epitope-

tag 
mouse 
monoclonal 

IF 1:5000 
Immunoblot 1:10000 
 

Sigma 

53BP1 γ-Tubulin 
(peptide) 

rabbit 
polyclonal 

Immunoblot 1:1000 (Novus, (NB 100-304) 

978 hPOT1 
(peptide) 

rabbit 
polyclonal 

Immunoblot 1:1000 D. Loayza/de Lange lab 

 

POT1a antibodies 1220 and 1221 were raised in rabbits against a POT1a peptide 

representing amino acids 395-421. POT1b antibodies 1222 and 1223 were raised against 

a POT1b peptide representing amino acids 285-307. POT1a IF was performed using an 

antibody raised in mice against recombinant GST-tagged full-length POT1a protein. 

POT1b IF was performed using an antibody raised in mice against GST-tagged POT1b 

protein from amino acid 1 to 342 ( the C-terminus contained the additional amino acids 

SKPFSSVVTDT). TRF1 IF was performed with Ab 644 (Karlseder et al., 2003). 

 

Secondary antibodies 

Rhodamine (TRITC)-conjugated Donkey Anti-Rabbit IgG (Jackson ImmunoResearch  

711-025-152) 

Fluorescein (FITC)-conjugated Donkey Anti-Rabbit IgG (Jackson ImmunoResearch 711- 

 095-152) 

Rhodamine (TRITC)-conjugated Donkey Anti-Mouse IgG (Jackson ImmunoResearch  

715-025-150) 

Fluorescein (FITC)-conjugated Donkey Anti-Mouse IgG (Jackson ImmunoResearch 715- 

095-150) 

Horseradish Peroxidase-conjugated Sheep Anti-Mouse IgG (Amersham NA931V)  

Horseradish Peroxidase-conjugated Donkey Anti-Rabbit IgG (Amersham NA934V) 
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