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Tuning of the Active Hair Bundle

Omar Ahmad, Ph.D.
The Rockefeller University 2008

The organs of the inner ear rely upon a population of several thousand

sensory hair cells to amplify and transduce acoustic, seismic, and kinesthetic

signals. Each hair cell detects mechanical disturbances by means of its hair

bundle, a motile organelle consisting of actin-filled, villous projections (called

stereocilia) endowed with assemblies (called adaptation motors) of mechano-

sensitive ion channels and myosin molecules that power both spontaneous

and evoked movements. Active hair-bundle motility serves two functions: it

mechanically amplifies sensory stimuli; and it regulates their transduction

into electrical signals that drive the hair-cell synapse. To characterize these

two functions, we consider here a model of the mechanical and electrical

dynamics of the hair bundle of the bullfrog sacculus. Under simplifying

assumptions, we reduce this model to a two-dimensional dynamical system

resembling the Hill model of a muscle fiber, and outline a procedure for

estimating its parameters from experiment. We delineate the bifurcation

structure of this simplified model, and analyse by perturbation methods its

behavior in various dynamical regimes, notably in the relaxation-oscillation

regime that displays prominently the hair bundle’s active process; and in

the near-Hopf-bifurcation regime at which auditory hair cells are thought to

operate in vivo. We find close similarities between the dynamics of the active

hair bundle and those of simplified models of a spiking neuron. In light of

this analysis, we offer an account of the biophysical mechanisms underlying



the spontaneous oscillations, frequency specificity, nonlinear gain, and self-

tuning predicted for auditory hair bundles poised near a Hopf bifurcation.
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Chapter 1

Introduction

Animal nervous systems use both static tuning and feedback to regulate

the allocation of scarce physiological resources to mechanisms for sensing,

processing, and responding to natural stimuli. A hunting bat, for instance,

adjusts through cortical feedback both the electro-mechanical tuning of its

auditory organ [22] and the emission pattern of its echolocating cries to

match the physical features of its acoustic environment and its prey [18].

The mantid that it hunts, with its single cyclopean ear tuned to the ultra-

sound range of the bat’s vocalizations [20], discerns by audition the stalking

tactics of its pursuer as it times its escape.

Hair cells of the vertebrate inner ear transduce mechanical signals that

vary greatly in their frequency, intensity, and duration. The microbat

cochlea, for instance, detects sounds as high as 100 kHz [16], with a hearing

threshold of -20 dB at mid-range frequencies. At the opposite end of the

frequency range, the sacculus of the white-lipped toad responds to seismic
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accelerations as faint as 10−6m.s−2 [15].

Despite the breadth of signals detected by the inner ear, data on the de-

velopment, morphology, physiology, and molecular constitution of the hair

bundle point to a core, conserved set of mechanisms operating in this or-

ganelle throughout the organs of the inner ear and across vertebrate species.

This suggests that the same core mechanisms of the hair bundle are appro-

priately tuned in each organ of the inner ear to suit the signals for which

that organ is specialized. For instance, cochlear hair bundles may self-tune

to near an oscillatory instability called a Hopf bifurcation [7, 3], a setting

that would confer the frequency specificity, non-linear gain, and propensity

for spontaneous activity manifested by this organ.

Below, we consider three questions: 1) How do the mechanical, electri-

cal, and biochemical properties of the hair bundle give rise to the nonlinear

oscillations it exhibits in vitro? 2) How do these properties shape the non-

linear response of the hair bundle to mechanical stimulation? 3) Which of

these properties might the hair cell regulate in vivo to adjust the proximity

of its hair bundle’s dynamics to a Hopf bifurcation?

To address these questions, we elaborate a biophysically detailed model

of the hair bundle of the bullfrog sacculus, a system that has been extensively

characterized both experimentally and theoretically. The detailed model in-

corporates assumptions about the mechanics of the stereocilia; the kinetics

of the transduction channels; the mechanics of the adaptation motors; and

2



the electrophysiology of the hair cell.

Under plausible simplifying assumptions, the detailed model reduces to

a dynamical system with two degrees of freedom, which we call the simplified

model. We consider two mechanistic forms of the simplified model that rep-

resent, variously, the hair bundle’s internal dynamics and its input-output

structure. From this pair of mechanistic forms, we derive a phenomeno-

logical form of the simplified model that resembles the van der Pol-Duffing

equation, and that corresponds to an analysis of the hair bundle into a

passive, linear second-order system coupled through feedback to an active

nonlinear amplifying element.

This phenomenological description yields a biophysical interpretation for

the conditions of a Hopf bifurcation; at a Hopf bifurcation, the active mech-

anism of the hair bundle ensures both that the contractile force triggered by

a weak mechanical disturbance exactly counterbalances the effective viscous

force acting upon the bundle; and that the effective elastic force upon the

bundle is restorative, despite the observed negative stiffness of the nonlinear

elastic elements that gate the bundle’s transduction channels.

In addition, the phenomenological form of the model allows us to explain,

in terms of the interplay of effective viscous, elastic, and inertial forces, the

biophysical mechanisms that give rise to the spontaneous oscillations, fre-

quency specificity, nonlinear gain, and self-tuning hypothesized to occur in

auditory hair bundles.
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In section 2 below, we describe in outline a detailed model of the hair

bundle, and explain its reduction to the simplified model that we subse-

quently analyse. In section 3, we characterize the bifurcation structure of the

simplified model, and demonstrate its ressemblance to that of the Fitzhugh-

Nagumo model of a spiking neuron. In section 4, we apply asymptotic and

numerical methods to characterize the self-induced, nonlinear oscillations of

the active hair bundle observed in vitro. In section 5, we study the response

of the stable, active bundle to sinusoidal mechanical forcing. In section 6,

we examine the hypothesis that the auditory hair cell tunes its bundle to a

supercritical Hopf bifurcation by regulating the drag coefficient of the bun-

dle’s adaptation motor. In section 7, we discuss our results.
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Chapter 2

A model of the active hair

bundle

2.1 Detailed model and its simplification

The detailed model that we analyse comprises seven coupled ordinary

differential equations describing four aspects of the hair bundle, namely:

i) the mechanics of the stereocilia; ii) the kinetics of the mechanosensitive

transduction channels; iii) the mechanics of the adaptation motor; and iv)

the electro-physiology of the hair cell. In section (1) of the supplementary

material, we discuss at length the variables, parameters, and dynamical

equations of the detailed model, and the procedure by which we simplify

it. Here, we enumerate the detailed model’s key assumptions, and the addi-

tional assumptions required to obtain the simplified form that we analyse.
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2.1.1 Assumptions of the detailed model

Stereociliary mechanics: The stereocilia behave as cantilevered beams

immersed in a viscous fluid. The beams pivot about their bases and are

mechanically coupled to one another in parallel [11] . The compliance of

the hair bundle is a nonlinear function of the extension of elastic elements,

called the gating springs [8], that stretch upon deflection of the bundle, and

that set the transduction channels’ propensity to conduct cation.

Transduction-channel kinetics: Each transduction channel possesses two

states, an open state in which it conducts cation, and a closed state in which

it is impermeable. The transition rates between the open and closed states

obey Arrhenius relations [5], for which the activation energies vary linearly

with the stretch imposed upon the gating springs.

Mechanics of the adaptation motor : The adaptation motor consists of

an assembly of myosin molecules that climb and slip along the actin cores of

the stereocilia. The affinity of the adaptation motor for actin decreases with

increasing intracellular Ca2+ concentration. The adaptation motor affects

the mechanics of the stereocilia through the stretch that it imposes upon

the gating spring. Its movement within the bundle is constrained both by

an extent spring and a non-linear limiting element [17].

6



Electrophysiology of the hair cell : The electrical response of the cell

provides feedback by adjusting the Ca2+ concentration in the vicinity of

the adaptation motor. The Ca2+ current is determined by an electro-

chemical gradient driving the entry of Ca2+ into the hair cell, and satisfies

the Goldman-Hodgkin-Katz equation [14]. The flow of K+ ion affects the

driving force for the entry of Ca2+ through its influence upon the membrane

potential [2].

2.1.2 Simplification of the detailed model

The detailed model is challenging to investigate both because of techni-

cal limitations in measuring experimentally the many biophysical quantities

that enter into it; and because of the mathematical complexity of analysing

a dynamical system involving many parameters and variables. For these rea-

sons, we seek to approximate it with a simplified model whose parameters

may be measured directly from in vitro experiments, and whose mathe-

matical structure is amenable to phase-plane methods and to perturbation

analysis.

To reduce the detailed model, we introduce six simplifying assumptions:

7



1. The system operates at low Reynolds number;

2. The dynamics of four rapidly-evolving variables of the detailed model

(related to the dynamics of the channels and motors) may on slow

time-scales be regarded as effectively always at steady-state;

3. The reverse electro-mechanical coupling between the voltage and the

force of the adaptation motor is negligible;

4. The motor drag depends only weakly on the Ca2+ concentration;

5. The fraction pb of motors bound to the actin core of the hair bundle

varies linearly with the local Ca2+ concentration in the vicinity of the

adaptation motor.

6. The nonlinearity in the motor force that limits adaptation associated

with negative displacements ofthe bundle is absent within the range

of bundle motion considered.

Under assumption (1), we neglect the mass of the hair bundle. Under

assumption (2), we replace the dynamical equations for the rapidly-evolving

variables with algebraic or transcendental equations that describe their de-

8



pendence at steady state upon the remaining slow variables. Under assump-

tion (3), we neglect the dynamical equation for the voltage when consider-

ing the hair bundle’s mechanical response. Assumptions (4)-(6) simplify the

form of the nonlinearity in the dynamical equation for the adaptation motor.

9



2.1.3 Mechanistic forms of the simplified model

Extension-resetting form of the simplified model

The preceding six assumptions reduce the detailed model to a simpli-

fied model, illustrated in Figure 2.1. This simplified model consists of two

dimensionless ordinary differential equations that govern a fast activating

variable χ representing the (scaled) extension of the gating spring, and a

slow resetting variable Xa representing the (scaled) position of the adapta-

tion motor:

d

dt

 χ

Xa

 =

 ΦFN,χ

ΦFN,Xa

 =

 (κ− εκa) (Ψχ −Xa)

εκa (Ψa −Xa)

 (2.1)

Ψχ and Ψa are the χ- and Xa-nullcline functions, along which the veloc-

ities of χ and Xa, respectively, vanish, and po is the (quasi) steady-state

open probability of the transduction channels:

Ψχ ≡ Ψχ (χ) =df
1

κ− εκa
(− (1 + ε)χ+ (η − εηa) po(χ) + C) (2.2)

10



Xa
Position of the adaptation motor

Position of the hair bundle

χ
Extension of the gating spring

X

Cp + Fext

 

Passive linear bundle mechanics

Fbundle drag

1

(1−κ)−ηpo(χ)

Fpivot

 κ

 κa

 ε−1

 pbfm

Adaptation motor

Transduction channel

Figure 2.1: Mechanistic description of the simplified model
The diagram shows a nonlinear elastic element (labeled transduction

channel) in series with a contractile element (labeled adaptation motor).
The adaptation motor consists of a force-generating element (indicated by

the ”active walker” caricature of a myosin molecule) in parallel with a
Hookean extent spring. In parallel with the adaptation motor and the

transduction channels are the stereociliary pivots of the hair bundle, which
have linear elastic properties. Energy dissipation occurs both through
hydrodynamic drag upon the hair bundle (indicated by the dashpot in

parallel with the pivots) and through internal dissipation by the
adaptation motor, (labeled with a dashpot in parallel with the active
walker). Symbols with arrows indicate forces; the remaining symbols

denote parameters of the model.
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Ψa ≡ Ψa (χ) =df
1
κa

(χ+ ηapo(χ)) (2.3)

po(χ) =df
1

1 + exp(−χ)
(2.4)

The six dimensionless parameters ε, η, ηa, κ, κa, and C that occur in

(2.1)-(2.3) satisfy the constraints:

0 < ε , 0 < κ < 1 , 0 < κa , 0 < η , −η < ηa, , −∞ < C <∞

(2.5)

We refer to equations (2.1)-(2.5) as the extension-resetting form (or

(χ,Xa)–form) of the simplified model.

It follows from equation (2.1) that at fixed Xa, the velocity of χ is given

by the negative gradient of the elastic potential function U :

dχ

dt
= −dU

dχ
(2.6)
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U(χ,Xa) =df −Cχ+(κ−εκa)χXa+(1+ε)
χ2

2
−(η − εηa) (ln (1 + eχ)− ln(2))

(2.7)

where we have chosen by convention the constant term in (2.31) such that

U vanishes at the point (χ,Xa) = (0, 0).

We can assign physical interpetations to the six parameters (ε, η, ηa, κ,

κa, and C) of the simplified model:

ε : The time-scale parameter ε corresponds to the ratio of the time-scale

of fast movement of the bundle to the time-scale for the slow move-

ment of the adaptation motor. This ratio varies inversely with the

drag coefficient of the adaptation motor.

η : The gating nonlinearity parameter η determines the influence upon

χ of the non-linearity due to the gating compliance. η varies directly

with the stiffness of the gating springs, and inversely with the tempera-

ture. η > 4 corresponds to the regime of negative hair-bundle stiffness.

ηa : The motor nonlinearity parameter ηa determines the influence upon

Xa of the non-linearities arising from the gating compliance and from

the Ca2+ sensitivity of the adaptation motor. It varies directly both

13



with the sensitivity of the motors to Ca2+ and with the maximal climb-

ing force of the adaptation motors. The condition ηa = 0 corresponds

to the regime in which the slipping force due to a Ca2+-induced change

in the fraction of motor associated with actin exactly counterbalances

the change in elastic force due to length changes of the nonlinear gat-

ing spring. ηa = −η corresponds to the motors being either inactive

or insensitive to Ca2+. The sum η + ηa is the maximal force that can

exerted by the adaptation motor.

κ : The pivot stiffness coefficient κ determines the influence upon the gat-

ing extension χ of the motor position Xa; κ corresponds to the fraction

of the total stiffness of the bundle contributed by the stereociliary piv-

ots.

κa : The extent-spring stiffness coefficient κa describes elastic elements in-

ternal to the bundle that constrain the movement of the adaptation

motor.

C : The scaled static force C is proportional to the difference between the

static force on the stereociliary pivots and the maximal climbing force

of the adaptation motor.

The nullcline functions Ψχ and Ψa may be inferred from the force-

14



displacement and current-displacement functions measured under displace-

ment clamp:

Ψχ

(
Xclamped +X∗a,ref

)
=

1
(κ− εκa)

F0 (Xclamped) (2.8)

Ψa

(
Xclamped +X∗a,ref

)
=

1
κa

(
Xclamped − Log

(
IHB/Imax

1− IHB/Imax

))
(2.9)

where F0 represents the scaled instantaneous force-displacement function

measured under displacement clamp; Xclamped denotes the scaled displace-

ment imposed upon the bundle by the displacement clamp; and X∗a denotes

the scaled steady-state position of the adaptation motor at rest. The shape

of the nullclines can be shown to yield estimates of the five structural pa-

rameters η, ηa, κ, κa, and C. The remaining time-scale parameter ε can be

measured by fitting the temporal trajectories of the force or current mea-

sured under displacement clamp.

Section (2) of the supplementary material discusses in greater depth the

problem of parameter estimation.

Force-displacement form of the simplified model

An alternative formulation of the simplified model takes as variables the

15



fractional active force φ of the adaptation motor; and the scaled displace-

ment X of the hair bundle:

φ =df 1− po =
exp[−χ]

1 + exp[−χ]
(2.10)

X =df χ+Xa (2.11)

The change of variables specified by equation (2.10), applied to the dy-

namical equation (2.1), yields the force-displacement form, or ((φ,X)– form)

of the simplified model:

d

dt

 φ

X

 =

 ΦHill,φ

ΦHill,X

 =

 − (κ− εκa)φ (1− φ) (Hφ −X)

κ (HX −X)


(2.12)

where Hφ is the φ-nullcline function, along which the rate of change of the

active force vanishes, and HX is the X-nullcline function, along which the

velocity of X vanishes:

16



Hφ(φ) =df
1

κ− εκa

[
C + (η − εηa) + (1 + ε(1 + κa)− κ) ln

[
φ

1− φ

]
− (η − εηa)φ

]
(2.13)

HX(φ) =df
1
κ

[
(C + η) + (1− κ) ln

[
φ

1− φ

]
− ηφ

]
(2.14)

To arrive at the force-displacement form, consider the relation between

the open probability po and the activity of the adaptation motor. The mo-

tor is at its most active when po = 0 (i.e.: the transduction channels are

completely shut), and the Ca2+ concentration in the stereocilia drops into

the nanomolar range; the motor falls to its minimal level of activity when

po = 1 (i.e.: the channels are completely open), and the stereocilia are

flooded with Ca2+. In general, the active process contributes a force term

φu proportional to the fraction pb = 1−Spo of myosin motors bound to the

actin cores of the stereocilia:

φu = (1− Spo)fm (2.15)

where we have introduced the parameters fm, S, and Cp to represent, re-

spectively, the motor force, the motor sensitivity to Ca2+ and the passive

static force:
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ηa = Sfm − η C =
κ

κa
fm + Cp (2.16)

We normalize the active force φu to define the fractional active force φ:

φ =df
φu − φu,min

φu,max − φu,min
= 1− po (2.17)

φu,min = df lim
χ→−∞

φu = (1− S) fm , lim
χ→∞

φu,max = Sfm (2.18)

The force φu exerted by the motor at a given value of po is thus the

maximal active force (η + ηa) times the fractional active force φ = 1− po:

φu = (η + ηa) (1− po) = (η + ηa)φ (2.19)
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2.1.4 Phenomenological forms of the simplified model

For each of the two mechanistic forms of the model presented above,

we can construct an equivalent phenomenological form involving a single

variable and its rate of change. Our approach will be to define effective

viscous and elastic coefficients corresponding to the decay and oscillation

time-scales arising in the linearized dynamics of the corresponding mech-

anistic form. The phenomenological forms of the model make possible a

simple description of the system’s energetics and feedback structure.

The extension-resetting form of the simplified model, comprising equa-

tions (2.1) - (2.5), is equivalent to a system (viz. (A.66) - (2.23) below)

governed by a single, second-order nonlinear differential equation in χ:

d2χ

dt2
+ µ(χ)

dχ

dt
+ ω2

κχ− ω2
κdκpo(χ)− εκaC = 0 (2.20)

where the effective drag coefficient µ(χ) in the differential equation above is

given by:

µ(χ) =df (1 + ε+ εκa)− αεpo(χ) (1− po(χ)) (2.21)
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The parameters αε, ωκ, and dκ introduced above are related to the pa-

rameters of the extension-resetting form by the equations:

αε = η − εηa , ωκ =
√
ε (κ+ κa) , dκ =

κκa
κ+ κa

(
η

κ
− ηa
κa

)
(2.22)

The six dimensionless parameters (αε, ε, κa, ωκ, C, and dκ) occurring

in (A.66) - (A.67) satisfy the constraints:

−ω
2
κdκ
εκa

< αε < dκ(1+ε) , 0 < ε , 0 < κa ,
√
εκa < ωκ <

√
ε(1 + κa)

(2.23)

We refer to equations (A.66) - (2.23) as the phenomenological form in χ

of the simplified model.

To depict the dynamics of the simplified model on the (χ, dχdt ) phase

plane, we resolve the second-order equation (A.66) into a pair of first-order

equations involving the variable χ and its velocity v:
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d

dt

 χ

v

 =

 v

µ(χ) (Ψv(χ)− v)

 (2.24)

The function Ψv corresponds to the v-nullcline function, the locus of

points in the (χ, v) state space at which the acceleration of the gating ex-

tension χ vanishes.

Ψv(χ) =df
−ω2

κχ+ ω2
κdκpo(χ) + εκaC

µ(χ)
(2.25)

2.1.5 Force-balance and power-balance relations

The second-order differential equation (A.66) for the dynamics of χ, and

hence the equivalent first-order equation (2.24), may be regarded as a force-

balance equation for the gating elements. To make this explicit, we define

effective inertial, viscous, and elastic forces:
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Finertial =df
dv

dt
, Fviscous =df −µ(χ)v , Felastic =df µ(χ)Ψv(χ)

(2.26)

By equation (2.24), these forces obey the relation:

Finertial = Fviscous + Felastic (2.27)

Although, at low Reynolds number, the hair bundle’s mass negligible,

its internal active force φu can act as a source of substantial acceleration;

it is acceleration due to this force that gives rise to the term Finertial. In

light of this, we can interpret the v-nullcline function Φv as a terminal veloc-

ity function, in the sense that when Finertial is negligible, Fviscous balances

Felastic, and v = Ψv. The defining equation (2.26) for Fviscous corresponds

to a constitutive relation between this force and the velocity v, in which µ

occurs as a susceptibility.

µ = −dFviscous
dv

(2.28)
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Integration of µ with respect to χ yields the viscous force-velocity char-

acteristic Fµ(χ) for the lumped resistive elements of the hair bundle:

Fµ(χ) =df

∫ χ

χ∗
µ(χ′)dχ′ = (1 + ε(1 + κa)) (χ− χ∗)− αε (po(χ)− po(χ∗))

(2.29)

The function Fµ is the mechanical analog of the current-voltage charac-

teristic describing the resistive elements of an electrical circuit.

Just as we defined an effective drag, so we can define the effective stiff-

ness ke as the susceptibility of the force −Felastic with respect to the variable

χ:

ke =df −
dFelastic
dχ

(2.30)

Integration of Felastic with respect to χ yields a potential-energy function

describing the effective elastic energy as a function of the gating extension χ:
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Uelastic(χ) =df −εκaCχ+
1
2
ω2
κχ

2 − ω2
κdκ (ln (1 + eχ)− ln(2)) (2.31)

where we have chosen the constant in the above equation such that

Uelastic(0) = 0

In sum, the effective drag, stiffness, viscous force, elastic force, elastic

potential, and viscous force-velocity characteristic are interrelated by virtue

of their nonlinear dependence on χ:

ke =
d2Uelastic
dχ2

= −dFelastic
dχ

= − d

dχ
[µ Ψv] = − d

dχ

[
dFµ
dχ

Ψv

]
=

d

dχ

[
dFviscous

dv
Ψv

]
(2.32)

Since v is related to the extension and resetting variables χ and Xa

through the potential function U given by equation (2.31), we can express

the effective forces entirely in terms of χ and Xa:

Finertial(χ,Xa) = − d

dt

(
∂U

∂χ

)
, Fviscous(χ,Xa) = µ

∂U

∂χ
, Felastic(χ) = µ(χ)Ψv(χ)

(2.33)
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Accordingly, the force-balance equation (2.27), expressed in terms of χ

and Xa, takes the form:

d

dt

[
dU

dχ

]
= µ

(
dU

dχ
−Ψv

)
(2.34)

Just as we defined phenomenological inertial, viscous, and elastic forces,

so we can define corresponding phenomenological kinetic, viscous, and elastic

power functions associated with the gating extension χ:

Pkinetic(v) =
d

dt

[
1
2
v2

]
, Pkinetic(χ,Xa) =

d

dt

[
1
2

(
∂U

∂χ

)2
]

(2.35)

Pviscous(χ, v) = Fviscousv , Pviscous(χ,Xa) = −µ(χ)
(
∂U

∂χ

)2

(2.36)

Pelastic(χ, v) = Felasticv , Pelastic(χ,Xa) = −Felastic
∂U

∂χ
(2.37)
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Like the phenomenological force functions, the power functions above

satisfy a balance equation:

Pkinetic = Pviscous + Pelastic (2.38)

The force-balance and power-balance relations derived above prove use-

ful (as accounting devices) in later sections, where we carry out an asymp-

totic analysis of the hair bundle’s spontaneous and stimulated dynamics.

By virtue of the systematic relations (e.g.: equation (2.34)) between the

mechanistic and phenomenological forms of the model, any description of

the system’s dynamics in terms the effective force and power functions above

may readily be translated into a corresponding explanation in terms of the

hair bundle’s biophysical mechanisms.

2.2 Relations between the mechanistic and phe-

nomenological forms
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2.2.1 Extension-resetting form and the phenomenological form

in χ

To clarify the relation between the mechanistic and phenomenological

forms of the model, let us consider the linear operator A defined by the

linearization of the dynamical system in equation (2.1):

A =df=

 d
dχΦFN,χ

d
dXa

ΦFN,χ

d
dχΦFN,Xa

d
dXa

ΦFN,Xa

 =

 (κ− εκa)∂Ψχ
∂χ εκa − κ

εκa
∂Ψa
∂χ −εκa


(2.39)

The operator A has eigenvalues:

λ± =
1
2

[
TrA ±

√
Tr2

A − 4DetA

]
(2.40)

where TrA and DetA are, respectively, the trace and determinant of A:

TrA ≡ TrA(χ) = κ
∂Ψχ

∂χ
− εκa(1 +

∂Ψχ

∂χ
) (2.41)

= 1 + ε(1 + κ)− αεpo(1− po)
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DetA ≡ DetA(χ) = εκaκ

(
∂Ψa

∂χ
− ∂Ψχ

∂χ

)
− ε2κ2

a

(
∂Ψa

∂χ
− ∂Ψχ

∂χ

)
(2.42)

= ω2
κ (1− dκpo(χ)(1− po(χ)))

Thus, in terms of the functions TrA and DetA, equation (A.66) assumes

the form:

d2χ

dt2
− TrA

dχ

dt
+
∫ χ

0
DetA(χ′) dχ′ −

(
εκaC +

ω2
κdκ
2

)
= 0 (2.43)

It follows that the function −TrA(χ) corresponds to the effective drag

function µ(χ) associated with the motion of χ, while DetA(χ) corresponds

to the phenomenological stiffness:

TrA = −µ , DetA = ke (2.44)

DetA and TrA are interrelated by the equation:
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DetA = −εκa
(
TrA + κ

∂Ψa

∂χ

)
− (εκa)

2

(
1 +

∂Ψa

∂χ

)
(2.45)

Or, more succinctly,

d

dχ
[TrAΨv] = DetA (2.46)

The functions DetA and TrA above help us to interpret the parameters

αε, ω2
κ, and dκ. We observe that

αε = 4 (µ∞ − µ0) , ω2
κ = k∞ , dκ = 4

(
k∞ − k0

k∞

)
(2.47)

where

k0 =df DetA(0) , k∞ =df lim
|χ|→∞

DetA(χ) (2.48)
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µ0 =df −TrA(0) , µ∞ =df − lim
|χ|→∞

TrA(χ) (2.49)

Thus, αε is linear in the maximal increment of the phenomenological

drag coefficient; ω2
κ represents the asymptotic phenomenological stiffness

DetA; and dκ is proportional to the maximal relative increment in the phe-

nomenological stiffness DetA.

2.2.2 Force-displacement form and the phenomenological form

in φ

Similar relations obtain between the force-displacement model and a

phenomenological model in the variable φ. Let B denote the linearized evo-

lution operator for the equations (2.13)-(2.14)

B =df

 d
dXΦHill,X

d
dφΦHill,X

d
dXΦHill,φ

d
dφΦHill,φ

 =

 (κ− εκa) d
dφHφ −(κ− εκa)

κ d
dϕHφ −κ


(2.50)
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Let TrB and DetB denote, respectively, the trace and determinant of B.

Just as we did above for the gating extension χ, we can give a phenomeno-

logical description of the models dynamics in terms of the active force φ and

its rate of change ζ.

d

dt

 φ

ζ

 =

 ζ

TrB (ζ −Ψζ(χ))

 (2.51)

dζ

dt
= TrB (ζ −Hζ(φ)) (2.52)

where Hζ is the ζ− nullcline function. DetB and TrB are related to one

another by:

d

dφ
[TrBHζ ] = DetB (2.53)

Integration of the state function for φ gives a potential function Uφ whose

derivative is related to the rate of change of φ according to

ζ = −
dUφ
dφ

(2.54)
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2.3 Physical interpretation of the phenomenolog-

ical form

The phenomenological form of the model allows us to regard the system

as consisting of a passive linear sub-system involving χ coupled through

feedback to an active non-linear sub-system involving the fractional active

force φ. To demonstrate this, we cast the phenomenological equation in the

form:

d2χ

dt2
+ µ∞

dχ

dt
+ k∞χ = FPh,active (φ, ζ) (2.55)

FPh,active (φ, ζ) =df −µfζ − kfφ+ Cf (2.56)

where the effective passive parameters µ∞ and k∞ are defined by:

µ∞ = lim
χ→∞

µ(χ) = 1 + ε(1 + κa) , k∞ = lim
χ→∞

k(χ) = ω2
κ (2.57)
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and the effective active parameters µf , kf , and Cf are defined by:

µf =df
dµ

dζ
= αε , kf =df

dκ

dφ
= ω2

κdκ , Cf = εκaC (2.58)

A schematic of the phenomenological form of the model is shown in Fig-

ure 2.2.

The analysis of the simplified model into a linear passive subsystem cou-

pled through feedback to a nonlinear active subsystem brings into relief the

hair bundle’s similarity to both the van der Pol nonlinear electrical oscillator

and the Duffing mechanical oscillator. In van der Pol’s design, a linear RLC

circuit is inductively coupled to an active nonlinear element (such as a vac-

uum tube or tunnel diode) that introduces an effective negative resistance

for weak currents. In Duffing’s apparatus, a horizontal metal rod with lin-

ear elastic properties clamped at both ends is coupled to an electromagnet

that introduces an effective nonlinear stiffness for weak displacements. The

hair-bundle model, as formulated in equation (2.55) can be seen to consist

of an effective passive linear subsystem coupled to an active mechanism that

introduces both effective nonlinear drag (through the term µfζ) and effec-

tive nonlinear stiffness (through the term kfφ).
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χ
Extension of the gating spring

E�ective inertia

E�ective passive bundle mechanics
µ∞

 κ∞

 κf

 µf

 Cf

Active feedback

1

Finertial
Fext

Fviscous,∞

Felastic,∞

dφ
dχ

dφ
dχ Factive

Figure 2.2: Phenomenological form of the simplified model
The phenomenological form of the simplified model can be seen to consist

of a linear passive system (labeled effective passive bundle mechanics)
coupled thorugh feedback to an active nonlinear mechanism (labeled acitve

feedback)
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These analogies to the van der Pol and Duffing oscillators motivate a

physical interpretation for the six parameters αε, ε, κa, ωκ, C, and dκ of the

phenomenological form of the model.

Three of these parameters– namely, the time-scale parameter ε, the

extent-spring coupling coefficient κa, and the static force parameter C– are

interpreted as in the case of the mechanistic forms. Regarding these pa-

rameters, we see that ε and κa together set the effective passive drag µ∞,

while the product εκaC constitutes the offset force Cf of the effective active

system.

Below, we consider the remaining three parameters: αε, ωκ, and dκ:

αε : The slipping parameter (or viscous coupling parameter) αε consists

of a weighted difference between the gating nonlinearity parameter η

and motor nonlinearity parameter ηa, and is the coefficient µf of the

effective active term dφ
dt . It sets the slipping condition at which the

effective viscosity vanishes (i.e.: µ = 0), which at fixed χ∗ occurs at

the critical value αε,slipping:

αε,slipping ≡ αε,slipping(χ∗) = −µ∞
(
dφ

dχ

)−1

χ=χ∗
(2.59)
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For αε > αε,slipping, the effective viscosity at the operating point χ∗

becomes negative, and hence χ∗ becomes unstable.

ωκ : The natural frequency parameter ωκ varies as the square-root of both

the time-scale parameter ε and the sum of the coupling parameters

κa + κ, and its square corresponds to the stiffness k∞ of the effective

passive subsystem.

dκ : The buckling parameter (or elastic coupling parameter) dκ, also a

weighted difference between the gating and motor nonlinearity pa-

rameters, occurs as the coefficient kf of the force variable φ, rescaled

by ω2
κ. It sets the condition at which the effective stiffness ke vanishes.

dκ,buckling ≡ dκ,buckling(χ∗) = −
(
dφ

dχ

)−1

χ=χ∗
(2.60)

Thus, both the slipping parameter αε and the buckling parameter dκ

describe the balance between the gating nonlinearity η and the motor non-

linearity ηa, and correspond to couplling coefficients determining the inter-

action between the effective active and passive subsystems that compose the

simplified model. From equations (2.59) - (2.60), the critical slipping and

buckling parameters (at a fixed operating point χ∗) are related by:
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αε,slipping = µ∞dκ,buckling (2.61)

2.3.1 Pade approximation of the simplified model

To further simplify the model, we use Pade approximation to replace the

transcendental nullcline functions Ψχ and Ψa with rational functions.

The nullcline functions Ψχ and Ψa in the simplified model behave as

linear functions in χ at large χ:

Ψχ,Ψa ∼ χ as |χ| → ∞ (2.62)

In addition, Taylor expansion of Ψχ and Ψa about χ = 0 gives, to cubic

order:

Ψχ(χ) =
1

κ− εκa

(
− (1 + ε)χ+

1
48

(η − εηa)χ3 +O(χ4)
)

(2.63)
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Ψa(χ) =
1
κa

(
χ+

1
48
ηaχ

3 +O(χ4)
)

(2.64)

These properties suggest approximating Ψχ and Ψa with rational func-

tions that vary linearly with χ as |χ| → ∞ but exhibit a cubic nonlinearity

near χ = 0.

To obtain such functions, we construct the Pade approximants for Ψχ

and Ψa of order (3, 2) expanded about χ = 0. The Pade approximant [1] of

order (n,m) of a function f about χ = χ0 is a rational function R =df
P
Q

(where P is a polynomial of degree n and Q is a polynomial of degree m)

whose Taylor expansion about χ0 agrees with the Taylor expansion of f

about χ0 up to order n + m + 1. We denote by Nχ and Na the Pade ap-

proximants for Ψχ and Ψa, respectively.

Under the Pade approximation, the dynamical equations of the simplified

model (i.e.: equation (2.1)) assume the form:

dχ

dt
= (κ− εκa) (Nχ (χ)−Xa) (2.65)

dXa

dt
= εκa (Na (χ)−Xa) (2.66)
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where

Nχ (χ) =
1

κ− εκa

[(
η − εηa

2
+ C

)
−
(

(1 + ε)− 1
24

(η − εηa)
(

1 +
50

10 + χ2

))
χ

]
(2.67)

Na(χ) =
1
κa

(
ηa
2

+
(

1 +
1
24
ηa

(
1 +

50
10 + χ2

))
χ

)
(2.68)

Within the physiological range for the bundle’s variables and parameters,

the Pade-approximated nullcline functions Nχ and Na agree closely with the

transcendental functions Ψχ and Ψa. The accuracy of the approximation de-

rives from fact that the Pade approximation places poles at ±i
√

10, while

the poles of the nullcline functions are at integral multiples of iπ. As we will

see in section (3.1), within the range of parameters and variables over which

the Pade approximation is useful –which appears to include the whole phys-

iological range of the system– the problem of determining the fixed points,

eigenvalues, conditions for bifurcation, and normal-form coefficients for the

system reduces to the problem of solving cubic and quadratic equations.

Section (3) of the supplementary material shows plots illustrating the

quality of the Pade approximation.

39



2.4 Summary

In sum, we have reduced a detailed mechanistic model of the active hair

bundle to two simplified mechanistic forms variously ressembling the Hill

model of a muscle fiber and the Fitzhugh-Nagumo model of a neuron.

The extension-resetting form describes the dynamics of the hair bundle

in terms of the internal variables χ and Xa. The force-displacement form,

on the other hand, corresponds to an input-output description of the sys-

tem. Sensory stimulation disturbs the position X of the bundle; this, in

turn, induces a change in the transduction current, a quantity that varies

linearly with the open probability po, and hence also with φ. Thus, force-

displacement form, can equally be regarded as a current-displacement input-

output form of the model.

The phenomenological forms ressemble the van der Pol and Duffing os-

cillators. Like the van der Pol and Duffing systems, the phenomenological

forms of the simplified model allow us to regard the hair bundle as com-

prising a passive linear subsystem coupled through feedback to an active

nonlinear subsystem.

In the sequel, we make use of the phenomenological form of the model to

standardize our explanation of the role of various biophysical mechanisms
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at play in the hair bundle. In view of the systematic relations (e.g.: equa-

tion (2.34)) between the phenomenological descriptions and the mechanistic

descriptions from which they derive, the problem of explaining the bundle’s

mechanisms reduces to that of cataloguing its phenomenology.

41



Chapter 3

Bifurcation structure of the

simplified model

The simplified hair-bundle model has a bifurcation structure that closely

ressembles that of the Fitzhugh-Nagumo model of a neuron. Like the latter,

the hair-bundle model variously exhibits excitability, bistability, and spon-

taneous oscillations.

Both models consist of nonlinear ordinary differential equations describ-

ing two variables, a fast (activating) and a slow (resetting) variable. The

activating variable in the Fitzhugh-Nagumo model represents the membrane

potential of the neuron and the gating variable for Na+-channel activation,

while the resetting variable represents the gating variables for both the neu-

ron’s K+ channels and the inactivating mechanisms of its Na+ channels.

In the simplified hair-bundle model, the gating extension χ is the activating
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variable while the motor position Xa is the resetting variable.

Inherent to both models are three distinct dynamical regimes: excitabil-

ity, bistability, and spontaneous oscillations. Within the physiological range

of parameters, the hair-bundle model can have either one, two or three fixed

points. In each of these cases, the system can have a either no limit cycles,

a single stable limit cycle, or an unstable limit cycle enclosed by a stable

limit cycle.

In the basin of attraction of a stable fixed point in either model, three

kinds of transients can occur: i) over-damped movements, in which the per-

turbed system decays exponentially back to the fixed point. ii) underdamped

oscillations, in which the perturbed system undergoes nearly harmonic os-

cillations of decaying amplitude as it returns to the fixed point. iii) excitable

dynamics, in which a sufficiently strong perturbation of the bundle produces

a large excursion of the system, with its return to the steady state occurring

through a slow resetting mechanism powered by the active process.

In the single-fixed-point regime, the fixed point can either be globally sta-

ble, in which case the system is excitable; or the fixed point can be unstable,

in which case the system oscillates spontaneously. In the single-fixed-point

excitable regime, both the hair-bundle model and the FitzHugh-Nagumo

model show: i) an absence of all-or-none spikes and of true thresholds; ii)

anodal break excitation, which in the hair bundle corresponds to fast adap-

tation; iii) spike acommodation; and iv) excitation block.
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In the three-fixed-point regime, the system can have zero, one or two

stable fixed points. In the case in which none of the three fixed points is

stable, the system has a single stable limit cycle. In the case of a single

stable fixed point, the system can either be excitable, with a true threshold;

or it can exhibit spontaneous oscillations in which a stable limit cycle is

separated from the stable fixed point by an unstable limit cycle. Finally,

the system in the three-fixed point regime can have zero stable fixed points

and a stable limit cycle; or it can have a single stable fixed point, and be

either excitable or oscillatory; or it can be bistable, in which one of the fixed

points is a saddle node and the other two are stable.

In contrast to the one and three fixed-point cases, which are structurally

stable, the two-fixed-point case always corresponds to the point of a saddle-

node bifurcation in the model.

Figure 3.1 shows phase portraits of the various dynamical regimes the

simplified model can occupy.

Section (5) of the supplementary material considers in depth the ex-

citable regime whose subthreshold behavior is underdamped, This regime

illustrates many of the key features of the active hair bundle’s nonlinear

dynamics.
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Name Color Definition

χ-nullcline Black Xa = Nχ(χ)

Xa-nullcline Red Xa = Na(χ)

v-nullcline Blue dv
dt = dNχ

dχ
dχ
dt −

dXa
dt = 0

va-nullcline Green d
dtXa = dNa

dχ
dχ
dt

X-nullcline Dashed black dX
dt = dχ

dt + dXa
dt = 0

u-nullcline Dashed blue d2X
dt2

= d2χ
dt2

+ d2Xa
dt2

= 0

Forward-time integral curve Orange Forward integration of eqn. (2.1)

Backward-time integral curve Gray Backward integration of eqn. (2.1)

Table 3.1: Legend for phase portraits.
For phase portraits on the (χ, v) plane, Xa is treated as a function of χ and
v through the smooth correspondence: Xa(χ, v) = Ψχ − (κ− εκa)−1v
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Figure 3.1: Dynamical regimes of the hair bundle
Phase portraits in the (χ,Xa)-plane corresponding to simulation of

equation (2.1), in various dynamical regimes. The legend for this figure is
given in Table 3.1. The parameter values are given in Table 3.2. a)
Single-fixed-point excitable regime; b) Bistable regime; c) Weakly
nonlinear oscillatory regime; d) Relaxation oscillation regime; e)

Three-fixed-point excitable regime; f) Three-fixed-point oscillatory regime
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Parameter regime ε η ηa κ κa C

a. Single-fixed-point excitable 0.05 8 2 0.5 0.4 −4.68

b. Bistable 0.05 8 −1 0.5 1.5 −4

c. Weakly nonlinear oscillatory 0.1 4.9 0 0.5 1 −2.45

d. Relaxation oscillation 0.1 8 0 0.5 0.3 −4

e. Three-fixed-point excitable regime 0.05 8 −1 0.6 0.7 −4.3

f. Three-fixed-point oscillatory regime 0.05 8 −1 0.5 0.5 −4.5

Table 3.2: Parameter values for Figure 3.1 depicting the model’s dynamical
regimes.
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Figure 3.2 illustrates saddle-node, super-critical Hopf, and sub-critical

Hopf bifurcations of fixed points.
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Figure 3.2: Bifurcations of fixed points
a. Saddle-node bifurcation b) supercritical Hopf bifurcation. c.)

Sub-critical Hopf bifurcation.The legend for this figure is given in Table
3.1.

For the Pade-approximated model described above, we can calculate

analytically the entire codimension-1 bifurcation structure (i.e.: the bifur-

cations involving variation of a single parameter) in all parameter regimes.

Specifically, we can calculate the fixed points, eigenvalues, normal-form coef-

ficients, and conditions for bifurcation of the model in all parameter regimes.

48



3.1 Bifurcations of fixed points

3.1.1 Calculation of fixed-point coordinates

The system’s fixed points χ∗ satisfy:

Felastic(χ∗) = ε(κ+ κa)χ∗ − ε(ηκa − ηaκ)po(χ∗)− εκaC = 0 (3.1)

We can determine the fixed points (χ∗, Nχ (χ∗)) of the Pade-approximated

system exactly by the solving the rational equation

Nχ(χ∗)−Na(χ∗) = 0 (3.2)

corresponding to the condition that the velocities of χ and Xa vanish. Al-

ternatively, we can construct the order (3,2) Pade approximation of Felastic

(which we call Fe,P )
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Fe,P = −ω2
κχ+

ω2
κdκ
24

χ

(
1 +

50
10 + χ2

)
+
(
εκaCstatic +

ω2dκ
2

)
(3.3)

and solve for its roots, which satisfy the cubic equation:

Fe,0 − k0χ+
1
10
χ2 − 1

10
(
ω2
κ − 2knl

)
χ3 = 0 (3.4)

where

Fe,0 = Felastic(0) = εκaC+
1
2
ω2
κdκ , k0 = DetA(0) = ω2

κ−
1
4
ω2
κdκ , knl =

1
48
ω2
κdκ

(3.5)

Thus, the Pade-approximated model admits generically either three fixed

points, corresponding to case of three real roots, or a single fixed point, cor-

responding to the case of a single real root and a pair of complex conjugate

roots.
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The eigenvalues λ+ and λ− of the Jacobian A are determined by TrA

and DetA according to the equation:

λ± =
TrA

2
± 1

2

√
Tr2

A − 4DetA (3.6)

Substituting the approximate solution for a fixed point into equation

(3.6) gives an approximate solution for the eigenvalues of A at the fixed

point χ∗ .

3.1.2 Saddle-node bifurcation

Two kinds of co-dimension-1 bifurcations of a fixed point can occur in the

hair-bundle model (and in two-dimensional dynamical systems generally): a

saddle-node bifurcation and a Hopf bifurcation.

At a saddle-node bifurcation, two fixed points collide and disappear. The

eigenvalues of the jacobian A at each fixed point approach zero, and past

the bifurcation, the fixed point disappears. At the bifurcation point, the

Felastic function is non-monotone.

The condition for a repeated root (and hence two fixed points) is that

the discriminant of the cubic equation (3.4) vanish:
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1
500

(
−135F 2

e,0

(
ω2
κ − 2knl

)2 − 2Fe,0
(
1− 90k0

(
ω2
κ − 2knl

))
+ 5k2

0(1− 80k0

(
ω2
κ − 2knl

))
(3.7)

This corresponds to the condition for a saddle-node bifurcation in the

model. This condition is cubic in k0, and quadratic in ω2
κ, Fe0 , and knl;

thus, fixing any three of these parameters, the value of the fourth parameter

at which a saddle-node bifurcation (if it exists) occurs can be determined

analytically by checking for real solutions.

Equivalently, the saddle-node bifurcation occurs in the Pade-approximated

model when a real root of the fixed-point equation (3.4) also satisfies, DetA,P =

0:

−1 + ω2
κdκ

(600− 30χ2 + χ4)
24(10 + χ2)2

= 0 (3.8)

whose solutions are the roots of d
dχFe,P .
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3.1.3 Hopf bifurcation

At a Hopf bifurcation, the matrix A at the fixed point admits a pair of

complex-conjugate eigenvalues whose real parts transition from negative to

zero at the bifurcation. Past the bifurcation, the fixed point becomes un-

stable, and the system tends toward a limit cycle. At the Hopf bifurcation,

the Felastic curve is monotone.

An approximate analytic condition for a Hopf bifurcation at a fixed point

in the simplified model is that the order-(3,2) Pade-approximated function

TrA,P of TrA vanish at a fixed point, while DetA remains non-negative.

This occurs when a real solution to the approximate fixed-point equation

(3.4) also satisfies both the equation corresponding to TrA,P = 0 and the

inequality corresponding to DetA,P ≥ 0:

−(1 + ε+ εκa) + αε
(600− 30χ2 + χ4)

24(10 + χ2)2
) = 0 (3.9)

−1 + ω2
κdκ

(600− 30χ2 + χ4)
24(10 + χ2)2

≥ 0 (3.10)
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3.1.4 Bogdanov-Takens instability

Finally, for the Pade-approximated model, the condition for a codimention-2

Bogdanov-Takens instability, in which a saddle-node and Hopf bifurcation

occur concurrently (i.e.: the bifurcating fixed point has two zero eigenval-

ues), is that a real root of the fixed-point equation (3.4) satisfy both (3.8)

and (3.9), the conditions for a saddle-node and a Hopf bifurcation, respec-

tively.

3.1.5 Physical interpretation of bifurcation conditions

In physical terms, tuning to the critical point of a Hopf bifurcation corre-

sponds to the condition that at the fixed point χ∗, the effective drag co-

efficient µ vanish, while the effective stiffness ke remain positive (i.e.: the

effective elastic force remain restorative):

µ(χ∗) = 0 , ke(χ∗) > 0 (3.11)

The condition for a saddle-node bifurcation is that

ke(χ∗) = 0 (3.12)
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The condition µ(χ∗) = 0 is equivalent to the critical slipping condition

in equation (2.59) above. Similarly, ke(χ∗) = 0 is equivalent to the critical

buckling condition in equation (2.60).

−
(
dφ

dχ

)
χ=χ∗

=
µ∞

αε,slipping
(3.13)

Thus, the slipping and buckling conditions give precise biophysical in-

terpretations for the conditions for a Hopf and saddle-node bifurcation.

3.1.6 Bifurcations of limit cycles

Just as the system’s fixed points appear, disappear, and change stability

as parameters of the system are varied, so too do its limit cycles. We have

already seen the birth of limit cycles by a super-critical Hopf bifurcation.

Here we describe two other mechanisms by which limit cycles change; the

saddle-homoclinic bifurcation and the fold bifurcation. Figure 3.3 shows ex-

amples of each of these bifurcations.
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Figure 3.3: Bifurcations of limit cycles
a.) Fold bifurcation b) Big-saddle homoclinic bifurcation. The legend for

this figure is given in Table 3.1.
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3.1.7 Homoclinic bifurcation

At a saddle homoclinic bifurcation, a homoclinic orbit emanating from a

saddle node gives rise to a limit cycle as a parameter of the system is tuned.

Close to the big-saddle homoclinic bifurcation seen in simulations of the hair-

bundle model, the period of the limit cycle is dominated by the time spent

by the system near the saddle node; accordingly the unstable eigenvalue of

the saddle node gives a reasonable estimate of the frequency of oscillation.

Fold bifurcation

In the fold bifurcation, a pair of limit cycles –one stable and one unstable–

appear, with the stable limit cycle surrounding the unstable one. The

Poincare section of the saddle homoclinic orbit undergoes a saddle-node

bifurcation. As the bifurcation parameter is tuned, the unstable limit cycle

shrinks until it coallesces with the stable fixed point it encloses. This fixed

point undergoes a subcritical Hopf bifurcation, losing its stability, and the

system jumps abruptly to a finite amplitude limit-cycle oscillation.
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Chapter 4

Spontaneous oscillations of

the hair bundle

The saccular hair-bundle operates at low Reynold’s number. For objects of

its size, viscosity overwhelms inertia, precluding even damped oscillations in

the absence of an active mechanism. The hair bundle’s active process coun-

teracts both the viscous damping of the bundle due to hydrodynamic drag

and the molecular friction due to interactions between the motors and the

actin cores. If sufficiently powerful, the active process can overcome linear

damping altogether; the hair bundle will begin to oscillate spontaneously,

and its fixed point will become unstable to small perturbations.

In this section, we study by asymptotic methods the dynamics of the

hair bundle in the weakly nonlinear and strongly nonlinear single-fixed-point

regimes. For simplicity of exposition, we confine our analysis to the case in
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Figure 4.1: Nonlinear oscillations of the hair bundle
Trajectories and phase portrait for the simplified model in the weakly
nonlinear (a,b) and strongly nonlinear (c,d) oscillatory regimes. a), b)

Weakly nonlinear oscillations. Shown in black is the numerical solution to
equation (2.1), for the parameter regime: (ε = 0.1, η = 4.84374,
ηa = 0.087394, κ = 0.5, κa = 1 C = −2.4). Shown in purple, the

multiple-scales solution (given by equation (4.34)) for the same parameter
values and initial conditions. The ellipse in blue in b) depicts the

approximate limit cycle described by equation (4.36). c), d) Strongly
nonlinear oscillations. Trajectory (c) and phase portrait (d) for the

simplified model undergoing relaxation oscillations. Parameter values for
the relaxation oscillation parameter regime: (ε = 0.01, η = 8, ηa = 0,
κ = 0.5, κa = 0.5, C = −6). Shown in orange in figure d), the integral

curve calculated by numerical simulation of the simplified model; In blue,
the approximation to the integral curves calculated by boundary-layer
methods. The blue curves joining in D to A, B to C correspond to the

outer solution given by equation (4.57). The blue curves joining A to B, C
to D correspond to approximate solutions given by the inner equation

(4.91). The portion of the orange curve emanating from near the origin
corresponds to the transient approach to the limit cycle. Boundary-layer

calculations in the oscillatory regime yields TAB = TCD ∼= 6.7,
TDA = TBC ∼= 127.9, and an estimated amplitude A ∼= 4.2.
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which the open probability p∗o at the fixed point χ∗ is 1/2, corresponding to

χ∗ = 0. More precisely, we assume that:

C ≡ ηκa − κηa
2κa

=
ω2
κdκ

2εκa
(4.1)

Under this assumption, the phenomenological equation (2.55) reduces

to:

d2χ

dt2
+ (1 + (ε(1 + κa))

dχ

dt
+ ω2

κχ = αεφ(1− φ)
dχ

dt
− ω2

κdκ

(
φ− 1

2

)
(4.2)

In the weakly nonlinear oscillatory regime in the vicinity of a Hopf bi-

furcation, the method of multiple scales yields an approximate analytic de-

scription of both the rapid sinusoidal dynamics of the phase and the slow

monotonic dynamics of the amplitude of the bundle’s trajectory. In the

strongly nonlinear oscillatory regime boundary-layer analysis gives a uni-

form approximation to the bundle’s limit cycle.
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4.1 Weakly nonlinear regime

4.1.1 Heuristic analysis

The weakly nonlinear regime is characterized by a small effective damping

term. Taylor expansion of the phenomenological equation about χ∗ = 0

yields as an approximate description the van der Pol-Duffing equation:

d2χ

dt2
+
[
µ0 + µnlχ

2
] dχ
dt

+ k0χ+ knlχ
3 +O(χ3) = 0 (4.3)

µ0 =df µ(0) = 1 + ε+ εκa −
αε
4

µnl =
1
2
d2µ

dχ2
|χ=0 =df

αε
16

(4.4)

k0 = ke(0) = ω2
κ(1− dκ

4
) , knl =

1
2
d2ke
dχ2
|χ=0 =

ω2
κdκ
48

(4.5)

As in the van der Pol equation, the nonlinear dissipation coefficient µ0 +

µnlχ
2 depends quadratically on χ. It will assume negative values (arising

from the injection of energy by the active process) provided µ0 is negative,

and will assume positive values for sufficiently large excursions in χ, provided

µnl is positive. As in the Duffing equation, the elastic force −k0χ − knlχ3

has both a linear and cubic dependence on the state variable χ, and will be

restorative near the fixed point provided k0 is positive.
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Thus, assuming µnl and k0 positive, the system passes through a su-

percritcal Hopf bifurcation as the parameter µ0 is varied. For µ0 > 0, the

system is linearly damped. At µ0 = 0, the system is poised at the super-

critical Hopf bifurcation; the eigenvalues of the linearized system are purely

imaginary. For µ0 < 0, the linear term in dχ
dt is explosive; the growth of

bundle’s amplitude of movement is restricted by the nonlinear dissipative

term µnlχ
2 dχ
dt ; and, since the effective elastic force is restorative, the system

oscillates spontaneously.

Three time-scales appear in the oscillatory regime past the supercritical

Hopf bifurcation: i) a fast time-scale of oscillation O(k−1/2
0 ) on which the

system undergoes nearly sinusoidal oscillations; ii) a slow time-scale O(µ−1
0 )

on which the amplitude of oscillation approaches the limit-cycle amplitude.

iii) an ultra-slow time-scale on which the phase shift varies due to the non-

linear elastic term.

Near the Hopf bifurcation the dynamics of the phase and of the amplitude

are approximately independent of one another. A clear indication that this

is the case appears in the analytic solution to the transient dynamics of the

under-damped (i.e.: µ0 > 0) van der Pol-Duffing system, linearized about

the fixed point χ∗ = 0:

χ(t) = χ(0) exp
[
−1

2
µ0t

]
cos

((
k0 −

(µ0

2

)2
)1/2

t+ φ0

)
(4.6)
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We observe, in equation (4.6), that the amplitude |A| of the damped

oscillations decays on a time-scale O(µ0), independent of the parameter k0:

|A| = χ(0) exp[−1
2
µ0t] (4.7)

and, provided µ0 � k
−1/2
0 , the phase varies with a frequency O(

√
k0), ap-

proximately independent of the parameter µ0.

By analogy to the linearized dynamics, we expect that in the oscillatory

regime near the Hopf bifurcation, the rapid phase dynamics will proceed

nearly sinusoidally, with the frequency ∼
√
k0:

χ ∼ |A| cos(
√
k0t) (4.8)

The growth or decay of the amplitude |A| will take place on the slow

time-scale set by µ0, where, by assumption, µ0k
1/2
0 � 1. Since the viscous

terms in µ0 and µnl control the dynamics of |A|, we expect the equation

describing the evolution of |A| to imply:

63



β
d|Ã|
d(µ0t)

∼ β|Ã| −
(
µnl
µ0

)
β3|Ã|3 (4.9)

where β is a function of the parameter µ0 that vanishes as µ0 tends to zero

(corresponding to the contraction and disappearance of the limit cycle as

µ0 → 0−) and |Ã| is the amplitude of oscillation normalized to the ampli-

tude of the limit cycle.

|A| = β|Ã| (4.10)

lim
µ0→0

β = 0 (4.11)

To determine β, observe that the limit-cycle amplitude |A|s.s. is reached

when the explosive linear term balances the non-linear dissipative term:

−µ0β
∣∣∣Ã∣∣∣

s.s.
∼ µnlβ3

∣∣∣Ã∣∣∣3
s.s.

(4.12)

whence:
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β
∣∣∣Ã∣∣∣

s.s.
∼
√
−µ0

µnl
(4.13)

Choosing

β =
√
−µ0

µnl
(4.14)

scales Ã to the limit-cycle amplitude:

χ ∼
√
−µ0

µnl
|Ã(µ0t)| cos(

√
k0t) (4.15)

Finally, in view of the relation (4.9), whose corresponding ordinary dif-

ferential equation has an analytic solution, we expect the trajectory of χ to

satisfy:

χ ∼
√
−µ0

µnl

 exp
(
−1

2µ0t
)√

exp (−µ0t)− 1 + ρ−2
0

 cos(
√
k0t) (4.16)
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4.1.2 Multiple-scales analysis

The multiple-scales procedure renders explicit the hypothesis that the

dynamics in the weakly nonlinear regime are determined through effectively

independent processes unfolding concurrently on several time-scales. the

procedures replaces the single time variable t in an ordinary differential

equation with separate time variables t1, t2, etc. that are treated as inde-

pendent of one another. Correspondingly, the original ordinary differential

equation in t is replaced by a partial differential equation in the variables

t1, t2, etc. Perturbation of this partial differential equation generates a hi-

erarchy of equations whose solutions, when subject to the requirement that

secular terms (i.e.: terms diverging in time) vanish, together provide a uni-

form approximation to the original dynamical equation.

Motivated by the heuristic analysis in section (4.1.1) above, we intro-

duce the perturbation parameter εp; a time variable tp corresponding to t

rescaled by the period k
−1/2
0 of the limit cycle; and appropriate rescalings

of the system’s parameters:

εp =df
−µ0

µnl
=
(
µf − αε,slipping

µf

)
(4.17)
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tp =df

√
k0t (4.18)

µ0,p =
µ0√
k0

, µnl,p =
µnl√
k0

, knl,p =
knl
k0

(4.19)

Having introduced a rescaling of the parameters and of the independent

variable, we seek, next, a rescaling of χ that casts the dynamical equations

into the scaled form:

d2χp
dt2p

+ χp = εp fp

(
χp,

dχp
dtp

)
(4.20)

fp

(
χ,
dχp
dtp

)
=df −µnl,p(1 + χ2

p)
dχp
dtp

+ knl,pχ
3
p (4.21)

where εp and fp satisfy the scaling assumptions characteristic of the

weakly nonlinear regime:

εp � 1 , fp = O(1) (4.22)
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To this end, we define the rescaled extension variable χp:

χp =df
χ

β
(4.23)

in terms of the variable χ and an unspecified amplitude factor β ≡ β(εp)

whose asymptotic dependence upon εp we determine by dominant balance.

Since the limit cycle vanishes as εp → 0, we require, minimally, that:

lim
εp→0

β(εp) = 0 (4.24)

Substituting (4.23) into (4.20) gives:

β = ε1/2 (4.25)

With β now specified, we posit the perturbation expansion:

χp = χp,0 + εpχp,1 +O(ε2
p) (4.26)
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and introduce the slow time-scale τp:

τp =df εpt (4.27)

We are now in a position to apply the multiple scales procedure; we

assume that the variables χp, χp,0, χp,1, ... are functions of both t and τp;

accordingly, we replace the ordinary derivatives in the dynamical equation

with partial derivatives in the variables t and τp:

d

dt
=

∂

∂t
+ ε

∂

∂τp
(4.28)

With these substitutions, we obtain a hierarchy of perturbation equa-

tions whose solutions give estimates of the phase and amplitude dynamics.

The O(1) and O(εp) perturbation equations are:

O(1) :
∂χp,0
∂t

+ χp,0 = 0 (4.29)
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O(εp) :
∂2χp,1
∂t2

+ χp,1 = −2
1
∂τp

(
∂χp,0
∂t

)
+ fp(χp,0) (4.30)

Solving the O(1) equation for χp,0 gives:

χp,0 = A (τp) exp
(
i
√
k0t
)

+A∗ (τp) exp
(
−i
√
k0t
)

(4.31)

Substituting this solution for χp,0 into the O(εp) equation, and enforcing

the requirement that secular terms vanish, yields a differential equation in

the complex amplitude function A(τp), of modulus ρ and argument θ:

dA

dτp
=

1
2
A+

(
i
3
2
knl −

µnl
2

)
|A|2A (4.32)

A = ρ(τp) exp[θ(τp)] (4.33)

The dynamical equation for ρ derived from the amplitude equation (4.32)

can be solved analytically, by noting that the equation for 2ρdρdt is a logistic

equation. The corresponding solution in terms of χ vindicates the heuristic

analysis that led to equation (4.16), and is given by:
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χ(t) = 2
(
−µ0

µnl

)1/2
 exp

(
−1

2µ0t
)√

exp (−µ0t)− 1 + ρ−2
0

 cos(√k0t+ φ0

)
(4.34)

where ρ0 and φ0 set, respectively, the initial amplitude and phase of the

system according to:

(χ(0), v(0)) = (ρ0 cos(φ0), ρ0 sin(φ0)) (4.35)

We see from this solution that the limit cycle in the (χ, v)-plane is an

ellipse described by:

 χ

2
√
−µ0µ

−1
nl

2

+

 v

2
√
−k0µ0µ

−1
nl

2

= 1 (4.36)

or, equivalently, by the total-energy equation:

1
2
k0χ

2
l.s. +

1
2
v2
l.s. = −2k0µ0µ

−1
nl (4.37)
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Figure 4.1 shows that the perturbative solutions given by (4.34)-(4.36)

are in close agreement with the solution calculated by numerical integration

of equation (2.1). As discussed in the section (4) of the supplementary

material, for the choice of parameters that puts the operating point at χ =

0 as in this example, the multiple scales solution agrees exactly with the

normal form approximation.

4.2 Strongly nonlinear regime

Saccular hair bundles whose active movements have been characterized

in vitro appear to operate far from the Hopf bifurcation; they typically ex-

hibit relaxation oscillations characteristic of a strong nonlinearity. Presently,

we derive from the simplified model, using boundary-layer analysis, an ex-

planation for the biophysical mechanisms underlying these oscillations.

We again assume for simplicity (as in equation (4.1) above) that the dy-

namical equation is symmetric about an unstable fixed point at χ = 0. We

make the additional simplifying assumption regarding the motor nonliearity

parameter ηa, that:
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ηa ≡ 0 (4.38)

This condition (or, equivalently, the condition φu,max = Sfm = η) cor-

responds to the circumstance in which the change in the elastic force upon

the adaptation complex due to gating of the transduction channels is just

balanced by the Ca2+-induced change, opposite in sign, in the climbing force

generated by the adaptation motors.

Strong nonlinearity refers to any condition in which the highest-order

derivative (in the case at hand, the acceleration term in χ) is multiplied

by a small parameter. Consider, for instance, εp = −µ0

µnl
introduced in the

multiple-scales analysis above. If ε−2
p � 1, then the change of time variable

t1 = t
εp

shows that this condition gives rise to a strong nonlinearity. Be-

low, on the observation that the time-scale parameter ε is a natural small

parameter of the simplified model, we consider another strongly nonlinear

regime, characterized by the assumption:

ε� 1 (4.39)

Accordingly, the asymptotic relations for the boundary-layer analysis

presented in this section hold in the limit ε→ 0.
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In the strongly nonlinear regime, the system can undergo relaxation os-

cillations, in which its trajectory alternates between slow outer phases of

motion (scaled to be of duration ∼ O(1)) and fast inner phases of motion

(of duration ∼ O(ε)). Between the outer and inner phases, the system passes

through a transition phase of intermediate duration ∼ O(ε2/3).

To carry out the boundary-layer analysis, we introduce for each of the

outer, transition, and inner layers, appropriate time-scales on which to ex-

amine the dynamics. From a consideration of the dominant balance among

the elastic, viscous, and inertial forces, we obtain approximations for the

dynamics in each layer that match asymptotically the approximations con-

structed for adjacent layers. Piecing together the approximations for the

limit cycle’s succession of layers yields a uniform approximation to the sys-

tem’s course through the state space.

We define the outer time variable τ , the transition time variable ttr and

the inner time variable tin by:

τ =df εt , ttr =df ε
−2/3t , tin = t = ε−1t (4.40)

With respect to the outer time variable τ , which will serve as the ref-
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erence (i.e.: O(1)) time variable for the boundary-layer analysis, the phe-

nomenological equation assumes the form:

ε
d2χ

dτ2
+
[
1 + ε(1 + κa)−

η

4

] dχ
dτ

+ (κ+ κa)χ− η κa
(
po −

1
2

)
= 0 (4.41)

or, separated into effective active and passive terms:

ε
d2χ

dτ2
+ [1 + ε(1 + κa)]

dχ

dτ
+ (κ+ κa)χ = −η

[
dφ

dτ
+ κa

(
φ− 1

2

)]
(4.42)

We see from equation (4.41) that the acceleration term is multiplied by

the small parameter ε, and so the system is, indeed, strongly nonlinear.

The points A, B, C, and D delimiting the inner, transition, and outer

layers of the trajectory are illustrated in Figure 4.1, and their coordinates

are given by:
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A =df (χA, XaA) , B =df (χB, XaB) , C =df (χC , XaC) , D = (χD, XaD)

(4.43)
dΨχ

dχ
(χA) = 0 ,

d2Ψχ

dχ2
(χA) > 0 (4.44)

dΨχ

dχ
(χC) = 0 ,

d2Ψχ

dχ2
(χC) < 0 (4.45)

χB > 0 , Ψ(χB) = XaA , XaB = XaA (4.46)

χD < 0 , Ψ(χD) = XaC , XaD = XaC (4.47)

The dependence of these coordinates upon the parameters can readily be

determined analytically under the Pade approximation.

4.2.1 Outer phase ∼ O(1)

During the slow outer phase, of duration ∼ O(1), the effective viscous

and elastic forces balance one another and the acceleration of χ is negligi-

ble. More precisely, if we rescale the effective forces as well as the v-nullcline

function:
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finertial =df ε
−1Finertial , fviscous =df ε

−1Fviscous , felastic =df ε
−1Felastic

(4.48)

ψv =df
felastic
µ

=
Ψv

ε
(4.49)

then the dominant-balance relations for the outer layer are:

finertial � fviscous ∼ felastic ∼ 1 (4.50)

To obtain the outer approximation, let us perturb the force-balance equa-

tion (4.41) in ε. To accomplish this, we first introduce perturbation expan-

sions for the state variables χ and Xa:

χ = χ0 + εχ1 +O(ε2) (4.51)

Xa = Xa,0 + εχ1 +O(ε2) (4.52)
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The drag coefficient µ, the v−nullcline function Ψv, and the elastic force

felastic, will then have the corresponding perturbation expansions:

µ(χ) = µ̃0 + ε µ̃1 +O(ε2) (4.53)

Ψv(χ) = Ψv,0 + ε Ψv,1 +O(ε2) (4.54)

felastic(χ) = felastic,0 + ε felastic,1 +O(ε2) (4.55)

where we have used tildes, where necessary, to distinguish terms in the per-

turbation expansions from constants defined previously.

Substituting the expansions (4.51)-(4.53) into the dynamical equation

(4.41), we see that, to leading order, the system crawls in the outer layer

at approximately the (χ− dependent) ”terminal velocity” described by the

leading-order term of the rescaled v−nullcline ψv,0:

µ̃0
dχ0

dτ
= felastic,0 (4.56)

or, equivalently,
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dχ0

dτ
= ψv,0(χ0) (4.57)

Integrating the outer equation (4.57) by separation of variables gives the

durations TDA and TBC of the outer portions of the limit cycle:

TBC =

χC∫
χB

1
ψv,0(χ′)

dχ′ , TDA =

χA∫
χD

1
ψv,0(χ′)

dχ′ (4.58)

TDA and TBC are, respectively, the duration of the relaxed (or down)

and excited (or up) phases of the relaxation oscillations.

An approximation consistent with the preceding analysis emerges if we

instead carry out the boundary-layer calculations with respect to the state

variables χ and Xa. Rescaling to the outer time variable τ the dynamical

equation (2.1) for the extension-resetting form, we obtain:

ε
dχ

dτ
= (κ− εκa) (Ψχ −Xa) (4.59)

dXa

dτ
= κa (Ψa −Xa) (4.60)
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Perturbing these equations in ε gives to leading order:

Xa,0 = Ψχ,0(χ0) (4.61)

indicating that the system’s trajectory in the (χ,Xa) phase plane approxi-

mately follows the χ nullcline. The velocity of Xa in the outer layer is given

by:

dXa,0

dτ
= κa (Ψa,0 −Ψχ,0) (4.62)

The durations TDA and TBC of the relaxed and excited phases of oscil-

lation are thus:

TBC = −
χB∫
χC

1
(χ′ −Ψχ,0 (χ′))

dΨχ,0 (χ′)
dχ′

dχ′ (4.63)

TDA =

χA∫
χD

1
(χ′ −Ψχ,0 (χ′))

dΨχ,0 (χ′)
dχ′

dχ′ (4.64)
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Finally, replacing Ψχ,0 with its Pade approximation Nχ gives estimates to

these integrals that can be computed analytically.

As the system approaches the turning points of the function Ψχ (namely

the points A and C), the approximate velocity dχ0

dτ diverges, marking the

breakdown of the outer approximation.

4.2.2 Transition phase ∼ O(ε2/3)

During the transition phases of the limit cycle, which correspond to lay-

ers encompassing the turning points A and C, the effective inertial, viscous,

and elastic forces are all of comparable magnitude:

Felastic ∼ Fviscous ∼ Finertial (4.65)

The A→ B and C → D transitions, as viewed from the O(1) time-scale

of the outer approximation, appear discontinuous and instantaneous, as sig-

nalled by the divergence of the ”terminal velocity” Ψv at the turning points.

To refine our account of the dynamics in the transition layers, we seek
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an appropriate rescaling of the time and state variables that corresponds to

the distinguished limit in which the transition solution matches asymptot-

ically both the inner and outer solutions. To determine the properties of

this limit, we first consider the A → B transition, and apply a perturba-

tion expansion in the unspecified functions ν1 and ν2 of the small parameter

ε, and a rescaling of time by the unspecified function νtr of ε. The precise

dependence of ν1, ν2, and νtr upon ε we determine next by dominant balance:

χ = χA + ν1χ1 +O
(
ν2

1

)
, Xa = XaA + ν2Xa1 +O

(
ν2

2

)
, ttr = νtrt

(4.66)

Within the transition layer,

d2χ

dt2
∼ d2(ν1χ)
d(νtrt)2

, µ
dχ1

dt
∼
(
dµ

dχ
|χA
)
ν1χ1

d(ν1χ1)
d(νtrt1)

, felastic = O(1)

(4.67)

Thus,
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ε ν1

ν2
tr

=
ν2

1

νtr
= 1 (4.68)

from which it follows that

ν1 = ε1/3 , νtr = ε2/3 (4.69)

Near the turning points A and C, dχ
dt depends quadratically upon χ:

dχ

dt
= (Ψχ (χ− χA)−XaA) ∼ (χ− χA)2 (4.70)

Thus, equation (4.70), along with the perturbation (4.66), gives:

(
εν1ν

−1
2

) dχ1

dXa1
=
(

κ

χA −Ψχ (χA)

)(
1
2
N ′′ (χ0) ν2

1χ
2
1 − ν2Xa1

)
(4.71)

The matching conditions, and dominant balance, mandate a rescaling of
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the state variables such that all terms in equation (4.71) are O(1):

εν1ν
−1
2 = ν2

1 = ν2 (4.72)

whence,

ν1 = ε1/3 , ν2 = ε2/3 (4.73)

With the expansion parameters ν1 amd ν2 in hand, we see that to order

O(ε2/3) in the perturbation parameter ε, the integral curve in the (χ,Xa)

phase plane is governed by the Ricatti equation (4.71) that admits a general

analytic solution in terms of Airy functions. The particular solution to the

Riccati equation that applies to the present case must satisfy the matching

requirement that the asymptotic dynamics of the outer and inner solutions

agree.

To determine this particular solution, let us first rescale equation (4.71)

and the related equation for the integral curve in the vicinity of C:
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dyL
dxL

= −y2
L + xL ,

dyR
dxR

= −y2
R − xR (4.74)

where

xL =df
Xa

ψxL
, yL =df

χ

ψyL
(4.75)

ψxL =df
1(

a2
LbL
)1/3 , ψyL =df

1(
aLb2L

)1/3 , ψxR =df
1(

a2
RbR

)1/3 , ψyR =df
1(

aRb2R
)1/3

(4.76)

aL =df
−κ

χA −XaA
, bL =df

1
2
N
′′
χ (χA) , aR =df

κ

χC −XaC
, bR = −1

2
N
′′
χ (χC)

(4.77)

To solve the above Riccati equations, we consider the related Airy equa-

tion:

d2u

dx2
− xu = 0 (4.78)
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Focusing first on the dynamics near A, let us note that the Riccati equa-

tion in yL is satisfied by:

yL =
1
u

du

dx
(4.79)

Equation (4.78) solves in terms of a linear combination of the Airy func-

tions Ai and Bi, the linearly independent solutions of this differential equa-

tion. Thus, the corresponding Riccati equation (4.74) in yL admits as its

general solution:

yL (xL) =
Ai′ (x) + C1Bi

′ (x)
Ai (x) + C1Bi (x)

(4.80)

The constant C1 is determined by the asymptotic matching condition:

lim
xL→∞

yL (xL) ∼ x1/2 (4.81)
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This fixes C1 = 0. The solution is thus:

yL (xL) =
Ai′(xL)
Ai(xL)

(4.82)

where Ai (x) has the integral representation:

Ai (x) =df
1
π

∫ ∞
0

cos
(
t3

3
+ xt

)
dt (4.83)

The solution to the equation (4.74) in yL given above has the property

that it diverges as xL approaches the the first negative root α0 of Ai. The

location of this root thus determines the O(ε2/3) correction to the change

in Xa as the integral curve sweeps from the left to the right branch of the

χ-nullcline.

By symmetry, it follows that

yR (xR) = −Ai
′(−xR)

Ai(−xR)
(4.84)
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solves the Riccati equation for yR given in (4.74), which describes the sys-

tem’s trajectory in the turning regime near C.

Integration of the transition-layer equation (4.57), (again by separation

of variables) gives the durations TAB and TCB of the outer portions of the

limit cycle:

TAB =

XaA+ε2/3α0ψxL∫
XaA

1

ε
(
ψyLAi

(
X′a
ψxL

)
−X ′a

)dX ′a (4.85)

TCD =

XaC−ε2/3α0ψxR∫
XaC

1

ε
(
ψyRAi

(
− X′a
ψyR

)
+X ′a

)dX ′a (4.86)

where α0 is the first negative root of the Airy function Ai.

4.2.3 Inner phase ∼ O(ε)

During the fast inner phase, the viscous drag coefficient µ(χ) plummets,

becoming negative, and the effective inertial and viscous forces balance,

while the effective elastic force is negligible:
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Finertial ∼ Fviscous , Felastic � Fviscous (4.87)

The dissipation coefficient µ becomes negative and large, and the veloc-

ity v grows explosively:

dv

dt
∼ −µ v (4.88)

Since the acceleration dv
dt is related to the slope dv

dχ of the integral curve

in the (χ, v) plane by:

dv

dt
= v

dv

dχ
= Felastic − µv (4.89)

we obtain, upon neglecting Felastic in the above approximate equation:

dv

dχ
= −µ (4.90)
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Integrating (4.90) with respect to χ gives the velocity v explicitly as a

function of χ:

vupstroke(χ) = −
∫ χ

χinit

µ(χ′)dχ′ = (1+ε+εκa)(χ−χinit)+[po(χ)− po(χinit)]+vinit

(4.91)

where the constants are determined by matching at t→ −∞ with the tran-

sition layer.

In the (χ,Xa) phase plane the inner portion of the integral curve follows:

Xa(χ) ∼ Ψχ(χ)− 1
κ− εκa

∫ χ

µ(χ′)dχ′ (4.92)

Having constructed an asymptotic approximation to the limit cycle of

system, we can deduce estimates of both the period and amplitude of the

limit cycle as a function of the parameters of the system. The estimates are

accurate to O(ε2/3)

T = TAB + TBC + TCD + TDA , Aχ =
1
2

(χC − χA) (4.93)
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4.2.4 Electrically-evoked otoacoustic emissions

Sinusoidal electrical stimulation produces three distinct patterns of mechan-

ical response [2] (Figure 4.2). At driving frequencies below the intrinsic fre-

quency of the oscillating bundle, the bundle’s movement exhibits bursts of

rapid oscillations separated by periods of quiescence. At driving frequencies

near the intrinsic frequency of oscillation, the bundle’s movement shows a

biphasic response. At frequencies above the intrinsic frequency, the bundle’s

movement is sinusoidal and phase-locked to the stimulus. In experimental

studies, phase-locking is lost at very high frequencies; the phase-locked state

is destroyed by noise when the response amplitude falls below the amplitude

of intrinsic fluctuations in the bundle’s dynamics.

The electrically evoked oscillations of the hair bundle can be explained

under the hypothesis that the motor nonlinearity parameter is a linear func-

tion of the cell’s membrane potential Vm:

ηa = ηa,0 + αVm (4.94)

Simulations incorporating this hypothesis agree qualitatively with ex-

perimental data on the response of the hair bundle to sinusoidal electrical
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Figure 4.2: Response of the oscillating hair bundle to sinusoidal electrical
stimulation

a), b) Infra-resonant stimulation; c,d) resonant stimulation; e),f)
supra-resonant stimulation. The red curve shows the electrical stimulus

Vm, where ηa ≡ ηa(Vm) = ηa,0 + αVm.
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stimulation.
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Chapter 5

The hair bundle’s response

to mechanical stimulation

In this section, we examine the response of the active hair bundle to si-

nusoidal mechanical stimulation. In particular, we investigate the frequency

specificity and nonlinear gain that may underlie mechanical amplification

by auditory organs.

5.1 Response to weak forcing

If the hair bundle is initially prepared away from its steady state and
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then released; or if, as we consider in this section, it is acted upon by a

weak sinusoidal mechanical force, its behavior, to linear order in the state

variables, can be studied by Laplace transformation of its dynamical equa-

tions. Laplace transformation yields complex transfer functions that can be

interpreted as the system’s gain, giving the ratio of system’s output to its

input as a function of the frequency with which it is forced. More precisely,

if ΓL denotes the complex transfer function of a system L, the sinusoidal re-

sponse A(t) of the system to a forcing F cos(ωt) of amplitude F and driving

frequency ω is given by:

A(t) = |ΓL|F cos[ωt+ φ(ω)] , φ(ω) = arctan
[
Im[ΓL]
Re[ΓL]

]
(5.1)

We derive by Laplace transformation of equation (2.55), the complex

transfer functions Γload, Γfb, Γamp,and ΓPh:

Γload =df
1

s2 + sµ∞ + k∞
, Γfb =df (sµf+kf )

dφ

dχ
, Γamp =df

1
1 + ΓloadΓfb

(5.2)
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δφfb = Γfbδχ , δχ = Γload (−δφfb + F ) (5.3)

ΓPh = ΓampΓload =
1

s2 − sTrA +DetA
(5.4)

Block diagrams depicting the linear response properties of the passive

and active subsystems of the hair bundle are given in Figure 5.1.

The Pade approximation to the simplified model allows for an analytic

solution to the complex transfer functions above.

We analyse four properties related to the complex transfer function: 1)

the quality factor Q; 2) the maximal gain |Γmax| and 3 )frequency at max-

imal gain (or best frequency) ωb, and the gain-bandwidth product (GBP).

For the transfer function ΓPh, these are defined as:

QPh =df

√
ke
µ

, ωPh,max =

√
ke −

1
2
µ2 (5.5)
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b. Open-loop amplfier-load description with input Fext and output δχ 

  
 δχFext

  1
s2+s    +kΓload  = μ∞ ∞

Γamp =
1+Γload Γfb 

1

Fext

a. Closed-loop description with input Fext, output χ, and feedback signal  φfb 

δφfb

 δχ
 

Γfb = Γφ   

  1
s2+s    +kΓload  = μ ∞∞

dφ
    dχ 

Figure 5.1: Linear response of the simplified model
a. Feedback description of the simplified model. b. Equivalent cascade

circuit for the linearized feedback system.
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|ΓPh,max| =
1√

µ2
(
ke − µ2

4

) , GBPPh =
1√

ke

(
ke − µ2

4

) (5.6)

To illustrate the analysis of these linear response properties, consider

the problem of characterizing the hair bundle’s frequency specificity. The

hair bundle may be said to exhibit frequency specificity to weak forcing if

its stable fixed points have eigenvalues with non-zero imaginary parts. The

condition ensuring this (i.e.: the condition that the eigenvalues have an os-

cillatory component) is:

µ2 < 4ke (5.7)

or, equivalently,

QPh >
1
2

(5.8)

Because it gives analytic estimates of µ and ke, the Pade approximation al-

lows us to demarcate the region of frequency specificity for which condition

(5.8) obtains.

Near a Hopf bifurcation, the bundle’s response depends nonlinearly upon
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the stimulus amplitude. Consider again the van der Pol-Duffing oscillator

at the operating point χ∗ = 0 and suppose µ0 small but positive. In this

case, for weak forcing (i.e.: for forcing amplitudes ∼ O(µ0µ
−1
nl )), the nonlin-

ear response function may be calculated by the Poincare-Lindstedt method,

which amounts to the assumption that most of the energy of the forced sys-

tem’s response will be concentrated at the driving frequency rather than at

its harmonics. By this method, the complex transfer function is found to be:

Γh = |Γh| exp[iψh] (5.9)

where

|Γh|2 =
∣∣∣∣AF
∣∣∣∣2 =

1(
ω2
h − ω2

)2 + µ2
hω

2
, ψh = arctan

[
µh ω

kh − ω2

]
(5.10)

kh ≡ kh(A) =df k0 +
3
4
knlA

2 , µh ≡ µh(A) =df µ0 +
1
4
µnlA

2 (5.11)

As a function of the forcing amplitude and frequency, we define response

properties analogous to the linear response properties given above:
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Qh =
√
kh
µ

, ωmax,h =

√
kh −

µ2
h

2
(5.12)

|Γmax,h|2 =
1

µ2
h

(
kh −

µ2
h
4

) , GBPPh =
1√

kh

(
kh − µ2

4

) (5.13)

The relative sensitivity to forcing is given by the equation:

F

A

dA

dF
= 1 +

F

Γh

dΓh
dF

(5.14)

Thus, the nonlinear response in the weak forcing regime resembles in

form the linear response; at fixed forcing amplitude, the response function

is of the same form to as a linear response function; the effective stiffness

kh and drag µh that enter the response function depend upon the squared

amplitude of the response. The Poincare-Lindstedt method provides an ap-

proximation to the dependence upon the forcing amplitude.
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Figure 5.2: Nonlinear response to weak forcing
a. Response amplitude as a function of frequency in the parameter regime:

(ε = 0.11, η = 4.9, ηa = 0, κ = 0.5, κa = 1, C = −2.45 ). As Fext is
increased from 0.005 to 0.03, the gain and quality factor of the response
decreases. b. Response amplitude at fixed forcing amplitude for various

values of ε in the parameter regime: (Fext = 10−3, η = 4.9, ηa = 0, κ = 0.5,
κa = 1, C = −2.45). As ε is lowered from 0.15 to 0.11, the peak response at
constant forcing amplitude increases, and the natural frequency diminishes
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5.2 Full nonlinear response

For strong stimuli, the Taylor approximation above leads to inaccurate

results, since it fails to capture adequately saturation of the hair bundle’s

active response. However, we can apply the Poincare-Lindstedt method di-

rectly to the Pade-approximated model; analysis of the resulting amplitude-

forcing relations for strong reduces to solving cubic and quadratic equations.

As shown in Figure 5.3, the approximate nonlinear response function agrees

well with the nonlinear response calculated by numerical simulation.

How does the active process affect the compressive nonlinearity seen in

the hair bundle’s response to sinusoidal mechanical stimulation? To examine

this issue, we consider the dynamics of the system under the locked-motor

condition in which all motion of the Xa variable is abolished. The force-

balance relation for this regime involves viscous, elastic, and external forces:

0 = Fviscous + Felastic + Fext (5.15)

where
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Figure 5.3: Nonlinear response to weak and strong forcing
The points indicate values computed by numerical integration of the
dynamical equations. The solid line indicates the nonlinear response

function calculate by the Poincare Lindstedt method from the
Pade-approximated model.
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Fviscous = −dχ
dt

, Felastic = −χ+ηpo+(C−Xa,locked) , Fext = G1cos[ωt]+G2 sin[ωt]

(5.16)

Both simulation and analytic calculations show that tthe nonlinear gat-

ing compliance term η po is sufficient to produce a prominent compressive

nonlinearity, even in the absence of an active process.
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Figure 5.4: Nonlinear response compression of the hair bundle’s dynamics
in the locked-motor regime.
Log response (a, b) and sensitivity (c,d) as a function of logarithm of the

stimulus amplitude Fext and stimulus frequency ω. The motor-locked
model, with parameter Clocked chosen so that the po(χs.s.) = 1/2. As the
parameter η sweeps between 0.5 and 3.9, the system’s response becomes
increasingly nonlinear. a) The amplitude response curves (a,c) show, at

fixed frequency (ω = 0.1), the response and sensitivity of the system as a
function of stimulus amplitude, for varying values of the non-linearity

parameter η and the operating point po(χ). The frequency response curves
show, at fixed stimulus amplitude (Fext = 0.01), calculate the response and

sensitivity of the system as a function of stimulus frequency, for varying
values of the non-linearity parameter η and the operating point po(χ).
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Chapter 6

Control of the hair bundle’s

tuning

6.1 Tuning to a Hopf bifurcation through regula-

tion of the motor drag

In the previous section, we explored the biophysical mechanisms under-

lying the hair bundle’s response to sinusoidal mechanical stimulation. We

characterized how the gain, natural frequency, and quality factor varies with

the system’s proximity to a Hopf bifurcation. In this section, we consider

the hypothesis that the hair bundle’s proximity to the Hopf bifurcation is

regulated in vivo by adjustment of the drag coefficient λa of the hair bun-

dle’s adaptation motor.
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The drag coefficient λa enters into a single dimensionless parameter of

the model, namely the time-scale parameter ε, with which it varies inversely:

λa ∼
1
ε

(6.1)

In view of this relation, we study the problem of tuning ε in the simplified

model. Figure 6.1 shows the dependence of the quality factor (at best linear

frequency) and the maximal gain (at best linear frequency) ofnthe forcing

amplitude and the parameter ε.

Below, we discuss four observations supporting the hypothesis that reg-

ulation of λ adjusts the tuning of the hair bundle in vivo.

1. The operating point is independent of ε.

The motor drag parameter λa is the only biophysical parameter entering

into the simplified model to leave the location of the system’s fixed points

unperturbed; all other biophysical parameters enter as factors into the di-

mensionless structural parameters (namely η, ηa, κ, κa, and C) that set the

operating point. That the fixed points are independent of ε follows at once

by inspection of the fixed-point equation (3.1), from whose right-hand side

ε may be removed by division.
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Figure 6.1: Nonlinear response to weak forcing as a function of the time-scale
parameter ε

a. Quality factor at best linear frequency as the stimulus amplitude F is
varied from 1 10−3 to 1.5 10−3. At fixed ε, the quality factor diminishes for

increasing F. b. Maximal gain at best linear frequency. At fixed ε, the
maximal gain diminishes for increasing F. Parameter regime: (η = 4.9,

ηa = 0, κ = 0.5, κa = 1, C = −2.45 )
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2. The stability of the cubic term in the amplitude equation near the

Hopf bifurcation depends only weakly on ε

For the case of a bundle whose operating point is at χ∗ = 0, the sign σε

of the cubic term in the amplitude equation for χ, is given by:

σε =df sign
[
(η − εηa)

d2po
dχ2

]
(6.2)

If σε is positive, the cubic term in the amplitude equation will be stabi-

lizing.

So long as the critical value εslipping at which the drag coefficient van-

ishes is far from εsub at which σε changes sign, tuning to the Hopf bifurcation

will leave unchanged the direction of the Hopf bifurcation (that is, will not

change whether the bifurcation is supercritical or subcritical):

εsub =
η

ηa
, εslipping =

η − αε,slipping
ηa

(6.3)

3. Under weak restrictions on the form of the feedback, slow feedback
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of the system’s activity upon the parameter ε tunes the simplified model ro-

bustly to the Hopf bifurcation.

A feedback mechanism in ε, insofar as it involves the activity of the

hair bundle’s variables (e.g.: χ or φ), need depend only minimally, if at all,

upon the bundle’s structural parameters. Thus, the same tuning mechanism

could be used by hair cells ranging widely in the values of their structural

parameters.

Moreover, simulations show that feedback schemes in ε tune the bundle

to the Hopf bifurcation even under circumstances in which the assumptions

of the simplified model fail. For instance, If inertial effects are signifiant,

tuning in ε nevertheless succeeds in bringing to the system to a Hopf bifur-

cation.

4. In vitro data are consistent with the hypothesis that the motor-drag

parameter constitutes the hair bundle’s control parameter.

Pharmacologic experiments on oscillating hair bundles suggest that as

the phosphorylation state of the myosin motor is raised the frequency of

oscillation diminishes and the amplitude of oscillation is increased [14]. Sim-

ulations and analysis shows that these effects can be explained by the hy-

pothesis that phosphorylation of the adaptation motor increases the drag

parameter λa.
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On the basis of these observations, we propose that hair cell regulates

biochemically the parameter λa to adjust the bundle’s proximity to the Hopf

bifurcation.
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Chapter 7

Discussion

Tuning in the organs of the inner ear arises from three kinds of mechanism:

i) mechanical and electrical processes internal to the hair cell; ii) static or

slowly-varying mechanisms of supporting mechanical systems that constrain

the motion of the hair-cell soma and the hair bundle; and iii) neural mech-

anisms that relay signals to the brain, and that provide feedback from the

brain to the periphery.

Coupling between active hair-bundle motility and the electro-mechanical

processes of the hair-cell soma is likely to influence the tuning of some hair

cells. In outer hair cells of the cochlea, for instance, the interaction between

the active hair bundle and the prestin-mediated electromotile mechanism is

likely to underlie mechanical amplification by of acoustic signals. The elec-

trical resonance observed in the hair cells of some reptiles and amphibians

filters the mechano-electrical signal transduced by the hair bundle, and may

also influence the bundle’s mechanics [10, 9, 12, 6].
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Static features of the inner ear contribute to tuning by helping to fo-

cus the flow of stimulus energy upon the sensory epithelium. Both the

hydrodynamic properties of the fluid that fills the bony chambers of the

inner ear, and the geometry of the chambers themselves, shape the mechan-

ical responses of the ear’s sensory epithelia. The geometry of mammalian

semi-circular canals, for instance, appears to be near optimal, given the me-

chanical constraints on the materials of the organ [19]. Similarly, the spiral

geometry of the cochlea may enhance mechanical amplification in this organ

by favoring the concentration of cochlear travelling-wave energy toward the

outer cochlear wall [13] .

The tissues and acellular structures of that support hair cells play a

prominent role in tuning the inner-ear organs. In the cochlea, hair cells

rest upon Deiter cells and proteinaceous matter that constitutes the basi-

lar membrane. Mechanical stimulation by the middle ear engenders a the

travelling-wave upon the cochlear partition whose dynamics are set by the

mechanics of the fluid and the tissue of the basilar membrane. Longitudinal

variation in the stiffness of the basilar membrane is among the principal

determinants of tuning in the cochlea. [21].

The acellular structures that overlie the hair bundle, such as the tectorial

membrane in the cochlea and the otolithic membrane in the sacculus, alter

the mechanics of the hair bundle, by imposing upon it an inertial load and

possibly a static tensile force.

113



Finally, the afferent fibers that contact the hair cells themselves are

tuned; in the cochlea, afferent fibers vary in their thresholds and dynamic

range. Efferent innervation modulates the electrical activity of both afferent

fibers and hair cells.

The analysis presented in this paper has a number of limitations. First,

it neglects interactions between the hair bundle and the tuning mechanisms

just described, namely those of the hair-cell soma, the supporting mechan-

ical structures, and the neural mechanisms of the inner ear. Second, the

adiabatic-elimination assumption at the heart of the procedure leading to

the simplified model is invalid for hair bundles responding to signals of fre-

quencies greater than ∼1kHz, a mid-range frequency for many auditory or-

gans. As the stimulus period approaches the time-scale for the opening and

closing of the mechano-sensitive channels, the channel population can no

longer be approximated as being in thermodynamic equilibrium, and hence

the open probability po enters as an additional degree of freedom. It is both

an experimental and theoretical open problem to characterize the hair bun-

dle’s response to high-frequency signals.

Two additional features of inner-ear organs complicate the tuning prob-

lem. First, many auditory organs and possibly other inner-ear organs have

distinct sub-populations of hair cells specialized either for the transduction

of sound or for its amplification [4]. This division of labor is likely to be

associated with differences in tuning mechanism. Second, the coding scheme
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employed by the inner-ear organs depends upon the activity of the entire

population of hair cells. This means that the effectiveness of an individual

hair cell’s tuning depends upon the tuning of the other hair cells in the organ.

These considerations lead to a fundamental problem about the tuning

of the inner ear: How could local feedback mechanisms, such as those of

the active process, tune hair cells effectively, when the condition for optimal

tuning of each hair cell is both causally (i.e.: through mechanical coupling

of hair cells) and functionally (i.e.: through the population coding scheme)

contingent upon the tuning properties of the entire population of hair cells

in the organ? Are global mechanisms, such as neurally-mediated coupling

through efferent feedback, essential for effective tuning in the inner ear, or

could such tuning occur purely through self-organization of the sensory ep-

ithelium?
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Appendix A

Model Formulation

In section (A.1) of this supplement to ”Tuning of the Active Hair Bundle,”

we present a detailed model of the saccular hair bundle and simplify this

model to arrive at a pair of nonlinear dynamical equations in the gating

extension χ and the position Xa of the adaptation motor. In section (A.2),

we describe how to estimate from data the parameters of the simplified

model. In section (A.3), we discuss the accuracy of the Pade approximation

to the simplified model. In section (B.1), we apply the method of normal

forms to calculate the dynamics of the hair bundle in the near-bifurcation

regime. In section (??), explore the dynamics of the saccular hair bundle in

the excitable regime.
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A.1 Model formulation

A.1.1 Detailed model

Force-balance equation for the hair bundle:

mHB
d2x

dt2
+λHB

dx

dt
+κSP (x−xSP ) +NGSγ κGS(γx−xa +xc− pod) = FExt

(A.1)

Kinetic equation for gating of the transduction channel :

dpo
dt

= kC→O(1− po)− kO→Cpo (A.2)

Force-balance equation for the adaptation complex :

λa
dxa
dt

+pbNmfm−NGSκGS(γx−xa+xc−pod)+κESxa+ Flim = 0 (A.3)

Kinetic equations for interaction of the adaptation motor with Ca2+ and

with actin.

dpb,0
dt

= km,41 pb,Ca + km,21 pu,0 − ( km,14 c+ km,12) pb,0 (A.4)
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dpu,0
dt

= km,12 pb,0 + km,32 pu,Ca − ( km,23 c+ km,21) pu,0 (A.5)

dpb,Ca
dt

= km,14 c pb,0 + km,34 pu,Ca − ( km,41 + km,43) pb,Ca (A.6)

Current-balance equation for the hair cell :

Cm
dVm
dt

= −NGSgHBpo(Vm − EHB)− gbaso(Vm − Ebaso) (A.7)

Kinetic coefficient for the open-to-closed transition of the transduction

channel :

kO→C ≡ kO→C(x, xa) =df κtrans exp

−∆E∅C→B + δ κGS γd
(
x− xa

γ

)
kB T


(A.8)

Kinetic coefficient for the closed-to open transition of the transduction

channel :

kC→O ≡ kC→O(x, xa) =df κtrans exp

−∆E∅O→B + (1− δ) κGS γd
(
x− xa

γ

)
kB T


(A.9)
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Limiting force on the motor:

Flim = Uaexp (Za(la − xa)) (A.10)

Stereociliary mechanics

Equation (A.1) describes the balance of forces acting upon the hair bundle

[14]. Mechanically, the hair bundle behaves as a damped, cantilevered beam

with non-linear elastic properties. mHB denotes the mass of the bundle and

λHB its drag coefficient. The stereociliary pivots have a combined stiffness

κSP ; xSP denotes the rest position assumed by the bundle upon severing

its gating springs; NGS is the number of gating springs, each of which has a

stiffness κGS . The geometric gain factor γ relates displacements along the

bundles axis of excitability to displacements in the direction of movement

of the adaptation motor [?]; thus, the displacement x of the bundle along

its axis of excitability corresponds to a displacement γx in the direction of

stretch of the gating springs and of motion of the adaptation complex. The

gating length d is the distance by which a gating spring shortens upon the

opening of its associated transduction channel [5].

The mean slackening of the gating springs due to opening of the trans-

duction channels is thus −pod, and the extension of the hair bundles gating
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springs is given by (γx−xa− pod) . By virtue of their mechanically parallel

configuration, the gating springs of the hair bundle exert upon it a combined

force NGSγ(γx− xa − pod).

An experimental probe or a sensory stimulus subjects the bundle to an

external force Fext. Balancing against Fext are the inertial force of the bundle

mHB
d2x
dt2

; the hydrodynamic drag force λHB dx
dt that resists its motion; and

two elastic forces acting in parallel: i) the linear restoring force κSP (x−xSP )

due to the elasticity of the stereociliary pivots; and ii) the non-linear force

NGSγ(γx−xa−pod) contributed by the parallel array of gating springs that

couple to the bundles mechanosensitive transduction channels [14].

Transduction-channel kinetics

Equation (A.2) describes the kinetics of the open probability of the trans-

duction channels. The kinetic coefficients kO→C and kC→O, as described by

equations (A.8) and (A.9), are postulated to be Arrhenius relations [5, ?],

whose form is:

ka→b = κtrans exp
(

∆Ea→b
kBT

)
(A.11)

where ∆Ga→b is the energy change associated with surmounting the energy

barrier separating a from b.
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We assume that the transduction channel has two states, open and

closed, separated by a transition state at which the channel gate, whose

swing has length d, is open by the amount δd, where δ lies between 0 and

1[5]. We denote the energies associated with these states as E∅O, E∅C , and

E∅B, respectively, and assume them to vary quadratically in the stretch of

the gating spring. Accordingly, the energy differences vary linearly:

∆EC→B =df δ κGSγ d

(
x− xa

γ

)
+ ∆E∅

C→B (A.12)

∆E∅
C→B =

(
E∅B − E

∅
C

)
(A.13)

∆EO→B =df (1− δ) κGSγ d
(
x− xa

γ

)
+ ∆E∅O→B (A.14)

∆E∅
O→B =

(
E∅B − E

∅
O

)
(A.15)

∆EC→O = ∆EGS + E∅C→O (A.16)

The total energy difference ∆EO→C between the open and closed states

is thus the sum of the intrinsic energy difference E∅C→O with the gating en-

ergy difference ∆EGS .

∆E∅C→O =df

(
E∅O − E

∅
C

)
(A.17)
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∆EGS =df κGS γd (x− xa
γ

) (A.18)

Extension of the gating spring changes linearly the relative energy dif-

ference between the metastable states of the transduction channel.

Mechanics of the adaptation motor

The motion of the adaptation complex is governed by the balance of forces

described in equation (A.3). We adopt the convention [14] that downward

displacements of the adaptation complex correspond to positive changes in

xa. The viscous force λa dXadt upon the adaptation complex, whose drag co-

efficient we denote by λa, is balanced against both elastic forces and an

active climbing force exerted by the adaptation motor. Three elastic forces

act upon the adaptation motor: i) a restoring force κESxa due to an extent

spring of stiffness κES that lies in parallel with the gating spring array; ii)

the non-linear elastic force NGS(γx− xa− pod) due to the gating-spring ar-

ray; and iii) the term Uaexp(Za(la− xa)) corresponding to the force felt by

the adaptation motor from a limiting element at the upper boundary of the

hair bundle that strongly impedes its ascent above the height lb. In addi-

tion to these passive forces, the energy-consuming myosin-based adaptation

motor exerts a force pbNmγfm. This climbing force is the product of three

factors: i) the force per motor fm; ii) the number of adaptation motors Nm;

iii) and the fraction pb of motors bound to the actin cores of the stereocilia.
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Electro-physiology of the hair cell

Equation (A.7) describes the balance of currents for the hair cell[2]. The

total current spent in capacitative charging of the membrane must match

the currents flowing into the cell across conductive paths through mem-

brane. Four currents flow into the cell: i) the transduction current IHB =

αpo(V − EHB); ii) current through the voltage-dependent Ca2+ channels

at the hair-cell synapses; iii) synaptic current through Ca2+-dependent K+

channels; and iv) the hair cells leak current. For simplicity, we model the

basal currents ii)-iv) collectively as a simple voltage-dependent current.

The concentration c of Ca2+ in the vicinity of the adaptation motor

affects both the climbing force exerted by the motors upon the adapta-

tion complex and the drag associated with the adaptation complex. This

concentration is determined by the instantaneous Ca2+ current ICa whose

magnitude is approximately linear in the product of the open probability

po, and the voltage Vm.

To derive this dependence of c upon po and Vm, we consider the effects

of three mechanisms that determine the Ca2+ dynamics in the hair bundle

[?]: 1) influx into the cell; 2) diffusion away from the transduction complex;

and 3) buffering of Ca2+ in the vicinity of the complex.

On the assumption that 1) the current flowing through the channel
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rapidly reaches steady state; and that 2) buffering does not substantially

influence c, so that a force-flux relation determines the local Ca2+ concen-

tration [?], the time constant for the decay in the Ca2+ concentration due

to diffusion in the vicinity of the motor is approximately:

τc,diff ≈
r2
m

DCa
=

(
50. 10−9m

)2
6.10−10m2s−1

≈ 10−6s−1 (A.19)

The time-scale for decay of the Ca2+ concentration is thus τc,diff ≈ 1µs.

This time-scale is fast relative to that of signals detected by the sacculus,

indeed even relative to the time-scales of high-frequency acoustic stimuli.

The likelihood for a Ca2+ ion to bind to a buffer molecule before first dif-

fusing away from the adaptation complex depends upon the concentration c

of Ca2+, and the amount of buffer near the transduction channel. The mean

time-to-capture of a Ca2+ ion by buffer is such that the root mean-square

distance that the molecule moves is greater than the linear extent of the

adaptation complex. The mean-time-to-capture of Ca2+ by buffer is given

by:

τbuffer =d f
1

kon,buffer[B]
(A.20)
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where kon,buffer is the rate constant for binding of Ca2+ to buffer, and

[B] is the concentration of Ca2+ buffer in the hair bundle. The root-mean-

squared distance that Ca2+ diffuses over the duration τbuffer is:

yrms ∼
√
DCa τbuffer =

√
(6 .10−10m2s−1) (10−6 s) ∼ 20nm (A.21)

It follows that it is highly probable for a Ca2+ ion in the vicinity of the

adaptation complex to diffuse away from the complex before it encounters a

buffer molecule. Accordingly, the effect of buffer upon c may be neglected,

and integration of the diffusion equation yields c [?], on the assumption that

Ca2+ diffuses into a hemisphere centered about the channel pore:

c = − 1
DCa

∫
J

1
1
2 (4π r2)

dr (A.22)

J is the Ca2+ flux and rm is the radial distance from the pore of the

transduction channel that represents the linear extent of the adaptation

complex. The assumption here is that the Ca2+ flux changes slowly rela-

tive to the time-scale for diffusion away from the adaptation complex. The
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relation between the flux J and the Ca2+ current into the hair cell is:

J = − ICa
zCa F

(A.23)

This implies that:

c = − ICa
2π zCa F DCa r

(A.24)

We assume that the Ca2+ current ICa satisfies the Goldman-Hodgkin-

Katz equation [14]. PCa is the permeability of the channel times the area

across which flux into the bundle occurs, e is the unit electrical charge, zCa

is the valence of Ca2+, and DCa is the diffusion coefficient of Ca2+ in water.

Thus, at low membrane potentials, we see that ICa, and hence c, is propor-

tional to both the external Ca2+ concentration, and the open probability po.

If Vm � kBT
ezCa

, then c is also approximately linear in the electrical potential

Vm:

c = α
[
Ca2+

]
ext

po (Vm − ECa) (A.25)

α =df
PCa

2πDCarm

1
(kBT/ezCa)

(A.26)
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Equations (A.4)-(A.6) describe the kinetics of the adaptation motors

interactions with Ca2+ and with the actin cores of the stereocilia. These

equations assume that the myosin motors are in one of four possible states:

1) dissociated from the actin core but unbound to Ca2+ (Mb,0); 2) associ-

ated with the actin core and unbound to Ca2+ (Mb,Ca); 3) associated with

the actin core and bound to Ca2+ (Mb,Ca); 4) dissociated from the actin

core and bound to Ca2+ ( Mu,Ca). The fractions of motors in each of these

states are, respectively: pu,0, pb,0, pb,Ca, and pu,Ca.

Let Nm represent the total number of myosin motors in the hair bun-

dle. We assume Nm to be constant, so that a conservation relation obtains

among the dynamical variables describing the fraction pb of motors in each

of the four possible states:

pu,c = 1− (pu,0 + pb,0 + pb,Ca) (A.27)

A.1.2 Simplified model

In this section, we address the problem of simplifying the detailed model

presented above, in order to facilitate both comparison with experiment ad

mathematical analysis. To this end, we make use of two procedures: 1) adi-

abatic elimination of the fast variables of the system; and 2) scaling of the
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dynamical equations. Adiabatic elimination reduces the number of dynami-

cal equations and eliminates four parameters, namely the time-scales of the

fast variables. Scaling further reduces the number of parameters by group-

ing them into combinations that consistently recur throughout the analysis

of the dynamical equations.

Adiabatic Elimination

Adiabatic elimination is a perturbative approach that involves distinguish-

ing rapidly-evolving from slowly evolving variables, and then assuming that

on slow time-scales, the dynamics of the rapidly-evolving variables are al-

ways approximately at steady-state. By this assumption, the dynamical

equations for the rapidly-evolving variables may be replaced with equations

that describe their dependence at steady-state upon the slow variables. In

the model of the hair bundle presented above, we adiabiatically eliminate

four of the seven dynamical variables, namely po, pu,0, pb,0, and pb,Ca. This

leaves us with a dynamical system involving three variables: x, xa, and Vm.

Transitions between the open and closed configurations of the channel

occur rapidly relative to the time-scales of motion of the bundle and of its

adaptation motor. On these slower time-scales, the transduction channels

are approximately in thermodynamic equilibrium, varying quasi-statically

with x and xa.

If the inertial force of the bundle is small compared to the viscous and
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elastic forces acting upon the bundle, we can approximate the force-balance

equation with a first-order differential equation.

At steady state, po satisfies the Boltzmann relation:

po ≡ po(x, xa) =
1

1 + exp[E0−κGS γ d (γ x−xa+xc− d2 )

kB T ]
(A.28)

At steady-state, with Ca2+ concentration c, the fraction pb of motors

bound to the stereocilia is:

pb =
1 + k14

k43
c

1 + (k14k21
+ k14

k32
+ k14

k43
)c

(A.29)

To simplify still further, we suppose that:

c� k43

k14
and c� 1

(k14k21
+ k14

k32
)

(A.30)

This implies that
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pb ≈
1

1 + (k14k21
+ k14

k32
)c

= 1−
(k14k21

+ k14
k32

)c

1 + (k14k21
+ k14

k32
)c

(A.31)

Thus, at low values of c, pb will be linear in c:

pb ≈ 1−
(
k14

k21
+
k14

k32

)
c (A.32)

Substituting

c = α
[
Ca2+

]
ext
po (Vm − EHB) (A.33)

gives

pb = 1− Spo (A.34)
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where S, the motor sensitivity, is defined as:

S =df (
k14

k21
+
k14

k32
)α
[
Ca2+

]
ext

(Vm − ECa) (A.35)

Under these approximations, we can express force-balance equation for

the motor as:

(λa+(1−Spo)λm)
dxa
dt

+ (1−S po)Nmfm−NGSκGS(γx−xa+xc−pod)+κES (xa − xES)+Fl = 0

(A.36)

To put the model in a form amenable to perturbation analysis, we ren-

der the dynamical equations dimensionless. We choose scales such that the

nonlinear open probability po is a function of the scaled extension χ of the

gating spring, and has no explicit parameter dependence. This corresponds

to choosing an offset constant for χ such that po is centered about zero; and

choosing a length scale for χ such that the standard deviation of probability-

density function dpo
dχ is π√

3
.
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Dynamical equation for the scaled extension χ of the gating spring:

dχ

dts
= GHB (χ,Xa,s)− εGa (χ,Xa,s, Vm,s) (A.37)

Dynamical equation for the scaled position Xa of the adaptation motor:

dXa,s

dts
= εaGa (χ,Xa,s, Vm,s) (A.38)

Dynamical equation for the scaled membrane potential Vm:

dVm,s
dts

= −εVGV (χ, Vm,s) (A.39)

State-function for χ:

GHB (χ,Xa,s) =df −χ+
κNGS,s
σ

p (χ)− (1− κNGS,s)Xa,s − CHB + Fext,s

(A.40)
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State-function for Xa:

Ga (χ,Xa,s, Vm,s) =df
1

1− Sλm,spo
[χ− (1− Sfm,s) po − κES,s σXa,s − Ca + Fl,s]

(A.41)

State-function for Vm:

GV (χ, Vm,s) =df gHB,spo (Vm,s − EHB,s) + (Vm,s − 1) (A.42)

Open probability:

po ≡ po (χ) =df
1

1 + exp[−χ]
(A.43)

Motor senstivity:

S ≡ S (Vm,s) =df So + αSVm (A.44)
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Limiting force:

Fl,s ≡ Fl,s (Xa,s) =df Ua,s exp [Zl,s (ls −Xa,s)] (A.45)

Vm,s =df
Vm
Ebaso

(A.46)

ls =df
l

ψxaσ
, Zl,s =df

Zl

(ψxaσ)−1 (A.47)

Fext,s =df
Fext

σκmaxψx
, fm,s =df

fm
NGSκGSd

(A.48)

Ua,s =df
Ua

NGSκGSd
(A.49)

Scaled motor drag parameters:

λa0,s =df
λa0

ψλa
, λm,s =df

λm
ψλa

(A.50)
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A.1.3 Scaled model

Equations

dχ

dts
= (κ− εκa) (Ψχ(χ)−Xa,s) (A.51)

dXa,s

dts
= εκa (Ψa(χ)−Xa,s) (A.52)

Ψχ (χ) =df
1

κ− εκa
(− (1 + ε)χ+ (η − εηa) po(χ)− C) (A.53)

Ψa (χ) =df
1
κa

(χ+ ηapo(χ)) (A.54)

po(χ) =df
1

1 + exp(−χ)
(A.55)

0 < ε , 0 < κ < 1 , 0 < κa , 0 < η , −η < ηa, , −∞ < C <∞

(A.56)

Variables

χ = Xs −Xa,s (A.57)
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ts =
t

ψt
, Xs =

X

ψX
+
[(

fm,s − E0,s

κa,s
− E0,s

)]
, Xa,s =

Xa

ψXa
+
(
fm,s − E0,s

κa,s

)
(A.58)

Parameters

ε =
λHB,s
λa,s

, η =
1− κ
σ

, ηa = Sfm,s − η , (A.59)

κ =
κSP
ψκ

, κa =
κES
ψκa

, C =
κ

κa
fm,s + Cp (A.60)

Auxiliary Parameters

λa,s =
λa

ψxaψt
, λHB,s =

λHB
ψxψt

, σ =
kBT

κGSd2
(A.61)

Cp = κ

(
XSP,s −

(
κκa
κ+ κa

)−1

E0,s

)
(A.62)

E0,s =
E0

kBT
+
η

2
− xc
ψXa

, fm,s =
fm

ψκaψXa
, XSP,s =

xSP
ψX

(A.63)

Scales

ψκ = NGSκGSγ
2 + κSP , ψκa = NGSκGS (A.64)

ψt =
λHB
ψκ

, ψx =
kBT

κGSγd
, ψxa =

kBT

κGSd
(A.65)
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Second-order equation

d2χ

dt2s
+ µ(χ)

dχ

dts
+ ω2

κχ− ω2
κdκpo(χ)− εκaC = 0 (A.66)

µ(χ) =df (1 + ε+ εκa)− αεpo(χ) (1− po(χ)) (A.67)

αε =df η − εηa , ωκ =df

√
ε (κ+ κa) , dκ =df

κκa
κ+ κa

(
η

κ
− ηa
κa

)
(A.68)

−ω
2
κdκ
εκa

< αε < dκ(1+ε) , 0 < ε , 0 < κa ,
√
εκa < ωκ <

√
ε(1 + κa)

(A.69)
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A.2 Parameter Estimation

The nullcline functions Ψχ and Ψa may be inferred from the force-displacement

and current-displacement functions measured under displacement clamp:

Ψχ

(
Xclamped +X∗a,ref

)
=

1
(κ− εκa)

F0 (Xclamped) (A.70)

Ψa

(
Xclamped +X∗a,ref

)
=

1
κa

(
Xclamped − Log

(
IHB/Imax

1− IHB/Imax

))
(A.71)

where F0 represents the scaled instantaneous force-displacement function

measured under displacement clamp; Xclamped denotes the scaled displace-

ment imposed upon the bundle by the displacement clamp; X∗a denotes the

scaled steady-state position of the adaptation motor at rest.

Below, we describe how to estimate the parameters required to scale

the simplified model; and some approaches for estimating the time-scale

parameter ε.

A.2.1 Estimating the passive parameters

In this section, we consider the estimation of the parameters κGS , κSP ,

d, E0, NGS , xc, and xSP . We denote with a hat the experimentally-derived

estimators of the these quantities; thus, for instance, κ̂SP denotes an esti-

mator of κSP . Also we use the symbol =est to signify the relation being an
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estimator of : thus A =est B means A is an estimator of B.

The instantaneous stiffness κbundle of the hair bundle is given by:

κbundle ≡ κbundle(x, x∗a) =df NGSκGSγ
2[(1− κGSd

2

kBT
po(1−po)]+κSP (A.72)

The maximum value κbundle,max of the stiffness is:

κbundle,max =df NGSκGSγ
2 + κSP (A.73)

We can estimate NGSκGSγ
2 by measuring the bundle stiffness upon dis-

rupting the tip-links. The difference in stiffness between the intact bundle

and the disrupted bundle in the linear regime is NGSκGSγ
2.

We define the relative bundle stiffness as:

∆κbundle =df κbundle,max − κbundle =
NGS (κGS γ d)2

kBT
po(1− po) (A.74)
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The open probability po is a cumulative distribution function whose

derivative is po(1 − po). Thus, scaling ∆κbundle by NGS(κGSγd)2

kBT
yields the

probability distribution ∆κbundle,s:

∆κbundle,s =df
∆κbundle(

NGS (κGS γ d)2

kBT

) = po (1− po) (A.75)

Thus, the empirical normalization factor for ∆κbundle gives an estimate

of the stiffness scale for the system. The ∆κbundle,s probability distribution

has the property that its peak is:

ψ̂κ,peak =
1
4
NGS (κGS γ d)2

kBT
(A.76)

The distribution ∆κbundle,s also has the property that, if the displace-

ment is scaled to kBT
κGSγd

, its width varies inversely with its peak height.

Noting that:

140



∫ ∞
−∞

χ2 d

dχ

(
1

1 + exp (−χ)

)
dχ =

π2

3
(A.77)

we obtain an exact relation between width and the peak height of ∆κbundle,s:

(width)× (peak) =
π

4
√

3
≈ 0.45345 (A.78)

The geometric gain factor γ has been estimated from electron-microscopic

measurements of hair-bundle morphology. The temperature T is set exper-

imentally, and kB, the Boltzmann constant is a universal constant. NGS is

the number of stereocilia.

The instantaneous current-displacement function provides an indepen-

dent estimate of the probability density function ∆κbundle,s, since:

po =
IHB

IHB,max
(A.79)

The relation between the width and peak of the distribution thus yields

an independent estimate of the length-scale.
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In sum, the estimators for the passive parameters of the hair bundle that

can be extracted from the instantaneous force-displacement curves are:

κ̂max =est κNGS+κSP , ψ̂κ,peak =est
1
4
NGS(κGSγd)2

kBT
, ψx,ch =est

kBT

NGSκGSγd

(A.80)

κ̂NGS =df (κ̂max − κ̂SP ) , N̂GS =df 4
ψ̂κ,peakψ̂

2
x,ch

β̂
(A.81)

κ̂GS =df
κ̂NGS

N̂GS γ̂2
, ψ̂x =df

κ̂NGS

N̂GS ẑ
(A.82)

A.2.2 Estimating the drag coefficient λHB

An analysis of the dynamics of the hair bundle yields an estimate of the

drag coefficient λHB.

Suppose we sever the gating springs so that all of the elastic properties

of the bundle are due to the stereociliary pivots. The force-balance equation

for the stereocilia under this condition reduces to:
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dx

dt
= − κSP

λHB
x+

κSP
λHB

xSP + Fext (A.83)

The time-scale estimated from this experiment for relaxation of the bun-

dle to steady-state following a mechanical perturbation is thus:

ψt,severed =est
λHB
κSP

(A.84)

It follows that λHB may be estimated by:

λ̂HB =df
κ̂SP

ψ̂t,severed
(A.85)

We can thus construct an estimate of ψt:

ψ̂t =df
λ̂HB

κ̂NGS + κ̂SP
(A.86)
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The preceding analysis has outlined a procedure for obtaining experimentally-

derived estimates of all parameters required to scale the dynamical equa-

tions. In light of this, we may deal exclusively with scaled quantities in the

analysis that follows. Accordingly, we omit the subscript indicating that the

quantities are scaled; unless otherwise noted, all quantities are assumed to

be scaled as described above.

A.2.3 Estimating the time-scale parameter ε

Suppose we block the channels with amiloride so that po ≡ 0.

dX

dt
= GHB (X −Xa, Xa) (A.87)

dχ

dt
= GHB,blocked − εGa,blocked (χ,Xa) (A.88)

dXa

dt
= εGa (χ,Xa) (A.89)

where
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Ga,blocked (X −Xa, Xa) =df [(X −Xa − κESσXa)− Ca + Fl] (A.90)

GHB,blocked (X −Xa, Xa) =df −(Xs−Xa)−[(1− κNGS)Xa + CHB] (A.91)

We now have a linear dynamical system:

d

dt

 δX

δXa

 =

 −1 κNGS

ε −ε (1 + κNGSσ)


 δX

δXa

 (A.92)

The eigenvalues of the system are:

Λblocked =
1
2

[
(−1 + ε+ εκNGSσ)±

√
(1− ε− εκESσ)2 + 4ε (1 + κNGS + κESσ)

]
(A.93)

If ε is small, then a series expansion in ε about 0 to linear order yields:
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Λblocked = −1− κNGSε+O
[
ε2
]

(A.94)

This gives an estimate of ε:

Λ̂blocked =df

(
ψ̂t,blocked

ψ̂t

)−1

(A.95)

A.2.4 Relations between the observable and internal vari-

ables

The phenomenological equation for the the hair bundle’s displacement is

X = χ+Xa (A.96)

d2X

dt2
+ µX

dX

dt
+ εWfX,elastic = 0 (A.97)
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dχ

dt
= (κ− εκa)(Nχ(χ) + χ−X) (A.98)

where

µX(χ) =df 1 + ε+ εκa −
(
η + ε

1 + κa
1− κ

)
po(χ)(1− po(χ)) (A.99)

W (χ) =df −
(

1− κ
κ

)
Nχ

dχ
= 1−

(
η

1− κ

)
po(χ)(1− po(χ)) (A.100)

fX,elastic(X,χ) =df (κ+ κa)X − [(1 + κa)η − (1− κ)ηa]po(χ)− (1 + κa)C

(A.101)

Thus, the variable X and u are related to the variable χ and v by the
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equations:

X(χ, v) = χ+ Ψχ −
1

κ− εκa
v (A.102)

u(χ, v) =
dX

dt
= v + εκa(Ψa −X + χ) (A.103)

For small amplitudes of movement, this coordinate transformation is ap-

proximately linear:

 δX

u

 = M

 δχ

v

 (A.104)

where

M =

 1 + dΨχ
dχ − 1

κ−εκa
dΨa
dχ −

dΨχ
dχ 1 + 1

κ−εκa

 (A.105)

We note that IHB/Imax = po = (1 + exp[χ])−1 is in one-to-one corre-
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spondence with the variable χ. Thus,

χ = ln

(
po

1− po

)
(A.106)

v =
1

po(1− po)
dpo
dt

(A.107)

For given parameter values, we can use the Pade approximation to the

coordinate-transformation equations to infer the position and velocity of the

gating extension χ from the position X and velocity u = dX
dt of the bundle

beyond the linear response range.

In sum, from the dynamics X and u, the dynamics of χ and v can be

inferred; conversely, from the dynamics of χ and v the dynamics of the X

and u can be inferred. Since Xa = X − χ, the dynhamics of any two of the

variables χ, v, X, and u suffice to determine the dynamics of X and dXa
dt
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Figure A.1: Coordinate transformations in the excitable regime
a. Dynamics of the χ inferred from the dynamics of X and u = dX

dt In solid
black, the solution derived analytically from the Pade-approximated

model, given the trajectories of X and u. The horizontal lines show the
values of χ at which the coordinate transformation is not locally invertible
(i.e.: Det(M) = 0); at these lines, the Pade-approximated solution for χ

jumps from one cubic branch to another. b. χ of X and u = dX
dt c. v as a

function of X and u. d) X as a function of χ and v. e) u as a function of χ
and dχ

dt in the excitable underdamped parameter regime150



A.3 Accuracy of the Pade approximation

Figure (A.2) shows that the error introduced by the Pade approximation

remains small within the physiological range of the state variables, though

a systematic discrepancy in the derivatives of the nullcline functions arises as

|χ| → ∞. Nevertheless, within the physiological range, the Pade-approximated

model affords an excellent approximation of the simplified model.
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Figure A.2: Accuracy of the Pade approximation
Error associated with the order- (3,2) Pade approximation about zero of

various functions of χ: a) Φχ; b) Φa; c) DetA; and d) TrA. The parameter
values for the error calculations illustrated here are: (ε = 0.05, η = 8,

ηa = 2, κ = 0.5, κa = 0.4, CStatic = −4.68)
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Appendix B

Bifurcation Structure

B.1 Normal-form approximation to the near-bifurcation

dynamics

In this section, we undertake a perturbation analysis of the weakly nonlinear

oscillations of the simplified model, using the method of normal forms.

Let Λ denote the matrix of eigenvalues of the simplified model, and let

r1 , r2 denote the associated eigen-variables. We introduce the complex

variable w

w =df ν (r1 + ir2) (B.1)
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where ν is some function of µ that tends to 0 as µ tends to 0. We then

construct a near-identity transformation of the variables wi to the variables

ui:

wi = ui +
N∑
j=1

N∑
k=1

νjµkTjk (u1,, . . . , un) (B.2)

Consider a perturbation expansion in ν and µ of the dynamical equation

for the variables:

dui
dt

= U i00 + νU i10 + µU i01 + ν2U i20 + µνU i01 + µ2U i02 (B.3)

We assume that the Tij have the form:

Tjk =df

2∑
l=0

ajklu
l
1u

2−l
2 (B.4)

Finally, we set the coefficients ajkl of the transformation such that, wher-

ever possible, the non-linear terms are assigned a coefficient of zero in the
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dynamical equation.

Figure B.1 shows predictions of the normal form approximations near a

saddle-node bifurcation; and a supercritical Hopf bifurcation.
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b. Limit-cycle amplitude near a supercritical Hopf bifurcationa. Fixed points near a saddle-node bifurcation

|χ|l.s.χ

ε

Figure B.1: Predictions of saddle-node and Hopf normal-form approxima-
tions

a.) Fixed points as a function of the parameter C, predicted by the
saddle-node normal-form equation (purple) and the Pade approximation

(blue). The remaining parameters have the values ε = 0.05, η = 8, ηa = 0,
κ = 0.6, and κa = 0.7 b.) Limit-cycle amplitude as a function of the
parameter ε, as predicted by the normal-form equation (purple), and

calculated numerically (blue points). the remaining parameters have the
values: (η = 4.84374, ηa = 0.087394, κ = 0.5, κa = 1 C = −2.4)
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B.1.1 Saddle-node normal form

The topological normal form for the dynamics in the vicinity of a saddle-node

bifurcation can readily be calculated for the various bifurcation parameters;

For instance, for the static force parameter C the normal form is:

dχ

dt
= εκa (C − Ccrit) +

1
2
ω2dκ

∂2po
∂χ2

(χ− χcrit)2 (B.5)

B.1.2 Hopf normal form

Under the condition that the operating point is χ = 0, the topological

normal form at a Hopf bifurcation gives identical results to the multiple-

scales solution below,

dz

dt
= (

µ0

2
+ i
√
k0)z − µnl

8
|z|2z (B.6)

where

z = reiθ (B.7)

χ = r cos(θ) , Xa = −
(

1 + ε− αε
4

κ− εκa

)
r cos(θ)−

√
ε(κ+ κa −

κaη

4
) sin(θ)

(B.8)

µ0 = −TrA(0) = 1+ε+εκa−
αε
4

, µnl =
αε
16

, k0 = DetA(0) = ω2(1−dκ
4

)

(B.9)
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