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Mary Abraham, Ph.D. 
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The most intensively studied form of programmed cell death (PCD) is apoptosis, 

which is characterized by stereotypical morphological features including 

chromatin compaction and by a requirement for the activity of caspase proteases, 

which are controlled by conserved gene pathways. Although non-apoptotic, 

caspase-independent programmed cell death pathways have been postulated, 

there is little evidence to convincingly prove their existence, and few insights 

regarding their molecular basis or possible in vivo functions. To investigate this 

question, we have studied the developmentally regulated PCD of the 

Caenorhabditis elegans linker cell.  

We have carried out transmission electron microscopy studies of dying 

linker cells, which revealed non-apoptotic features, including nuclear crenellation 

in the absence of chromatin condensation, swelling of mitochondria and 

endoplasmic reticulum, and accumulation of cytoplasmic single- and multi-

layered membrane-bound structures. Similar morphological changes occur 

during the normal developmental death of some vertebrate neurons in the spinal 

cord and ciliary ganglia, suggesting that this is a highly conserved cell death 

program.  



 Our genetic studies demonstrate that linker cell death is a non-apoptotic 

programmed cell death. This cell death is independent of the ced-3 caspase, 

other C. elegans caspase homologs, and can occur even when a broad-spectrum 

caspase inhibitor is expressed. We have found that the engulfment of the linker 

cell is independent of the known C. elegans engulfment genes. We tested and 

found no evidence for the involvement of autophagic, necrotic, or Wallerian 

degeneration genes in linker cell death.  

By ablating cells neighboring the linker cell, and by examining mutants in 

which the linker cell is abnormally positioned, we demonstrated that the linker cell 

employs a cell-autonomous program to promote its demise. Using a candidate 

gene approach, we showed that linker cell death is controlled by the microRNA 

let-7 and by the zinc finger transcription factor lin-29, both components of the 

main developmental timing pathway in the animal.  

  Conducting a genome-wide RNAi screen, we have identified new 

candidate regulators of linker cell death. Characterization of these genes may 

uncover the molecular mechanism driving this new type of programmed cell 

death in C. elegans. 
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Chapter One  

 

INTRODUCTION: The Evolution and Control of Cell Death 

 

We could probably not live without death. Regulated cell death gives shape to a 

developing embryo, is necessary for homeostasis, and when initiated in response 

to abnormalities can preserve an individual organism. Multifaceted death enlivens 

multicellular life.  

 

Scientific Identification and Characterization of Cell Death 

The first microscopy observations of cell deaths were made in the 1800s. For 

example, Carl Vogt observed neurons dying in toad embryos (Vogt, 1842). Some 

of the earliest work in the twentieth century came in the 1930s from the 

laboratory of Kallius in Heidelberg (Hamburger, 1992). He and his colleagues 

Ernst and Glücksmann published a few papers describing vertebrate cell death, 

detailing reproducible patterns of cell death. In 1949, studying chick embryos, 

Viktor Hamburger and Rita Levi-Montalcini published the first paper that revealed 

cell death to be a necessary process during normal development (Hamburger 

and Levi-Montalcini, 1949). With this paper, cell death was no longer a 

phenomenon that was just being described, it was now beginning to be 

understood. In 1965, Lockshin introduced the phrase programmed cell death 

(PCD) (Lockshin and Williams, 1965) for cell deaths that occur naturally during 
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development. In 1972, Kerr and colleagues invented the word apoptosis to define 

a type of programmed cell death with a characteristic morphology of cell death 

that included chromatin and cytoplasmic compaction (Kerr et al., 1972). Soon, 

genetic experiments in C. elegans (Ellis and Horvitz, 1986) and Drosophila 

(White et al., 1994) began to illuminate the genes, pathways, and mechanisms 

regulating programmed cell death. By two decades after the term apoptosis was 

coined, the molecular identity of the key executioner of apoptosis—namely the 

protease known as a caspase—was discovered, and a molecular criteria was 

added to the morphological criteria used to define apoptotic programmed cell 

death (Yuan et al., 1993).  

 

Cell Death as a Vital Force for Life 

Cell death plays many varied and essential roles during development. Cell death 

can remove unwanted or unnecessary structures, for example, removing the 

human tail during week seven of embryonic development (Sapunar et al., 2001). 

Cell death may be required to modify or remove primary transitional structures, 

cellular scaffolds that are necessary for the formation of a final structure. This can 

be seen when a tooth forms, as waves of apoptosis occur in spatially restricted 

regions to remove transitory structures like enamel knots (Matalova et al., 2004).  

Cell death can carve the shape of an organism, which is beautifully 

outlined in the regulation of cell death to create digits or webbing, processes 

which have been observed and investigated across many species (Weatherbee 
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et al., 2006). A study of rat embryonic development revealed that apoptosis 

separates the upper and lower eyelids which are initially fused together 

(Mohamed et al., 2003).  

Removal of cells can be used to separate or create boundaries between 

cellular regions, something that may have profound consequences for the action 

of developmental signals. In mammalian eye development, apoptosis at the 

boundary between the lens vesicle and the ectoderm has been suggested as a 

means of separating the two structures (Mohamed and Amemiya, 2003).  

Cell death can edit the organism with precision at the level of a single 

specific cell, which represents the focus of research of this thesis. However, 

cellular doom can be unleashed on epic scales. It has been hypothesized that 

sometimes large amounts of cell death occur during development because more 

cells are formed than are needed, and these cells must compete to survive. If the 

fittest cells triumph, this will improve the fitness of the organism. One example of 

a cell type that is subject to extremely high attrition is female germ cells. In mice, 

rats, and humans, it has been estimated that two-thirds of all potential female 

germ cells die by the end of fetal development, and it has been calculated that for 

humans, greater than 99.9% of all female germ cells will die (Morita et al., 1999).  

In post-embryonic life, cell death is an integral part of day-to-day life—it 

has been estimated that 10 billion cells die every day in a human being 

(Heemels, 2000). Cell death is an essential requirement for homeostasis of the 

immune system (Bidere et al., 2006), and the intestine (Edelblum et al., 2006) 
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where apoptosis removes cells at a rate that balances the constant proliferation 

there (Hall et al., 1994). The entire cellular surface of the intestine, covering an 

area of approximately 20 m2, is renewed every 3-5 days in man (Hall et al., 

1994). 

A particularly vibrant area of current research is a body of work 

illuminating the relationship and direct connections between cell death and cell 

proliferation at the tissue level, which can be necessary both for development 

and for homeostasis. In some normal human systems, a balance between cell 

proliferation and cell death may be critical for normal cellular homeostasis—for 

example, in healthy bone and bone marrow (Weinstein et al., 2000). Studies in 

Drosophila have shown that apoptotic cells can induce compensatory cell 

proliferation (Ryoo et al., 2004), and many genes have been identified in flies that 

affect both proliferation and cell death. In Xenopus, it has been recently shown 

that apoptosis appears to be an important requirement for tail regeneration 

following lesion (Tseng et al., 2007), and apoptosis has also been observed in 

regenerating planarians (Hwang et al., 2004). Planarians shrink when they are 

starved and can regrow again when their feeding conditions improve. As they 

change size, how they maintain their organ systems in functional proportion by 

regulating the balance between proliferating and dying cells is not understood 

(Oviedo et al., 2003).  

Defective cell death can lead to diseases. Faulty cell death can allow 

precancerous or cancerous cells to survive (Green and Evan, 2002), 



 5 

inappropriate cell death may contribute to some neurodegenerative disorders 

(Culmsee and Landshammer, 2006), and if self-reactive immune cells are not 

destroyed, the result is autoimmunity (Navratil et al., 2006).  

 

The Morphology of Apoptotic Programmed Cell Death 

The earliest studies of cell death mainly focused on the classification of cell death 

based on morphological criteria, particularly using histological and transmission 

electron microscopy (TEM) imaging. In 1972, Kerr et al. coined the term 

apoptosis for a type of programmed cell death defined by morphological criteria 

seen by TEM. Hallmarks of apoptosis included chromatin compaction (dark 

regions of heterochromatin begin to condense at the periphery of the nuclear 

envelope, and eventually the entire nucleus succumbs to chromatin compaction), 

dramatic loss of cytoplasmic volume, and features like cell blebbing (Kerr et al., 

1972). Phagocytosis of the cell corpse—complete ingestion of the corpse by 

another cell—was another characteristic of this type of cell death (Kerr et al., 

1972), which seemed to frequently occur in isolated dying cells. Apoptosis could 

be observed in many different organisms and in many different cell types.  

 

The Morphology of Autophagic Programmed Cell Death 

Autophagy, a process of lysosomal mediated cellular destruction, is a part of 

normal cellular homeostasis, a process by which the cell can recycle cytoplasmic 

and organelle contents. Autophagy can be upregulated in response to cellular 
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stress, and extensive autophagy can sometimes be seen associated with cell 

death. Whether autophagy is initiated as a last resort to try to maintain cellular 

survival or is initiated to kill the cell, remains a matter of debate (Debnath et al., 

2005). In development, some cell deaths are seen associated with extensive 

autophagy. The best known example is the Drosophila larval salivary gland 

(Jiang et al., 1997), where the simultaneous destruction of many cells occurs in 

response to a hormonal cue.  

Visual recognition of autophagic cell death is by the formation of many 

autophagosomes—membrane-bound vesicles en route to the lysosome 

(Schweichel and Merker, 1973). They are formed when cytoplasmic material is 

enveloped in a vesicle with a characteristic double membrane (Arstila and Trump, 

1968). After fusion with the lysosome, dark material is visible inside the vesicle 

as destruction proceeds. 

 When autophagic cell death was observed in large scale cell deaths in 

developmental contexts such as larval salivary gland cell death, such cell deaths 

were not always observed associated with phagocytosis, although recent data 

shows that a marker of phagocytosis is expressed at the time of Drosophila 

salivary gland cell death (Lee and Baehrecke, 2001).  

 

The Morphology of Type III Programmed Cell Death 

In Schweichel and Merker’s morphological characterization of cell death, they 

also mentioned a third category of cell death (Schweichel and Merker, 1973). 
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This type of cell death was described as a cellular disintegration or fragmentation 

associated with organelle swelling that was non-lysosomal in nature, and led to 

the formation of empty spaces that connected with extracellular material. This 

death did not involve phagocytosis by neighboring cells. The in vivo examples 

given of this death were in regions of cartilage during mineralization, and also 

sometimes in mesenchymal tissues (Schweichel and Merker, 1973).  

Later analysis by other scientists began to add to the description and 

examples of this category, and the definition was subdivided to include what has 

been described as “cytoplasmic” or type IIIB cell death—a cell death associated 

with organelle swelling and rounding, nuclear envelope dilation, lack of early 

nuclear condensation, and clearance of the corpse by phagocytosis (Clarke, 

1990). It has been noted that this type of cell death shares some features with 

necrosis such as organelle swelling, suggesting that these processes may have 

something in common (Clarke, 1990).   

 

The Morphology of Necrotic Cell Death 

Necrosis is generally thought of as a death by misadventure, a type of cellular 

collapse from an unendurable trauma. Electron microscopy studies of a C. 

elegans necrotic cell death model showed early stage events including 

involutions and membrane whorls derived from the plasma membrane. This was 

followed by cellular swelling, the nucleus became distorted and chromatin 

clumped, vacuoles formed, and eventually there was a complete breakdown of 
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cellular structures (Hall et al., 1997). Across other systems, the general 

characteristics of necrotic death that have been observed include mitochondrial 

abnormalities, ATP depletion, perturbations in calcium levels, lysosomal rupture, 

organelle clustering, and plasma membrane rupture (Golstein and Kroemer, 

2007). 

 

Bacterial Origins of Cell Death 

About 4 billion years ago when unicellular life began to arise on this planet, the 

first cellular deaths were probably just chaotic collapses of cellular viability. 

However, it seems likely that once the first bacteria emerged with a capacity to 

regulate death, the useful potential of this property was enormous. Just as for 

multicellular creatures, bacteria could use death for growth or defense.  

Today, we can observe some bacterially regulated forms of cell death 

associated with morphological or developmental changes of a colony. In 

Myxococcus xanthus, a so-called “differentiating bacteria,” autolysis occurs in the 

fruiting body formation prior to spore formation (Wireman and Dworkin, 1997). 

Cell death can be observed in biofilm formation in Pseudomonas aeruginosa 

(Webb et al., 2003). In the biofilm formed by Pseudoalteromonas tunicata, the 

protein AlpP has been identified as responsible for the cell death of a fraction of 

the cellular population (Mai-Prochnow et al., 2004). A mutant of AlpP has a 

detrimental effect on dispersal of cells from the biofilm, and the cells that did 

disperse were less metabolically active than the wild-type, leading to the 
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hypothesis that the dead cells may be releasing nutrients that increase the 

fitness of the surviving neighboring cells (Mai-Prochnow et al., 2006).  

Many examples soon emerged of the regulation of cell death as a means 

of defense or attack. Addiction modules, plasmid maintenance systems that 

comprise a toxin and an antidote (with a much shorter half-life than the toxin), 

can kill off cells that have lost the plasmid. These systems can be found in 

archae, in bacteria, and as well as functioning on plasmids, such genes have 

also been identified at chromosomal locations (Engelberg-Kulka et al., 2006). In 

response to phage infection, suicidal bacterial cell death could limit virus infection 

(Hazan and Engelberg-Kulka, 2004).  

At a molecular level, bacterial cell death genes are not related to 

eukaryotic cell death genes (Koonin et al., 2002). 

 

Yeast and Programmed Cell Death 

Yeast lack a caspase homolog or homologs of the key intrinsic cell death genes. 

However, more distantly related paracaspases and metacaspases have been 

identified from whole genome sequence analysis (Uren et al., 2000), and a 

potential yeast metacaspase homolog was put forward (Madeo et al., 2002). 

Questions remain about whether the substrate specificity of this gene would be 

the same as a standard caspase, and whether yeast undergo a bona fide 

apoptosis remains controversial (Váchová and Palkova, 2007).  
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Plants and Programmed Cell Death 

Cell death can be important for many aspects of plant development, for example 

the regulation of the death of a petal may be tightly controlled (Rogers, 2006). 

Many examples of programmed cell death in plants appear to be autophagic (van 

Doorn and Woltering, 2005). In response to pathogens, plant cells can die in 

what is termed the hypersensitive response. These deaths do not appear to be 

occurring via autophagy, and the dying cells do not get engulfed (van Doorn and 

Wolterling, 2005). It is possible that some of these deaths fall into a non-

apoptotic, non-autophagic, type III category of cell death. Unfortunately, not a 

great deal of ultrastructural work has been completed on such dying cells (van 

Doorn and Woltering, 2005), and the genes regulating the hypersensitive 

response remain unknown (Patel et al., 2006).  

 

Eukaryotic Origins of Cell Death 

How did the first cell deaths arise in multicellular organisms? Considering the 

central role that some mitochondrial genes have in eukaryotic apoptotic 

programmed cell death, some commentators have suggested that endosymbiosis 

of mitochondria, perhaps coupled with a form of cellular homicide by secreted 

proteases from the endosymbionts, could have laid the primordial foundation of 

eukaryotic cell death (Frade and Michaelidis, 1997). Caspases and apoptosis 

have been identified in Hydra, one of the simplest multicellular creatures (Cikala 

et al., 1999). Nematodes, based on 18sRNA analysis were recently placed in a 
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clade Ecdysozoa with Drosophila (Aguinaldo et al., 1997), so Hydra appears to 

be a more primitive metazoan. A fascinating question is which type of eukaryotic 

cell death is the most ancient: apoptosis, autophagy, type III PCD, or necrosis?  

 

Evolution of Cell Death and Limited Cellular Destruction 

In the evolution of cell death, an interesting possibility to consider is that cells first 

evolved the capacity for partial and limited cellular degradation, before being able 

to regulate complete cellular destruction. This capacity could be used to remodel 

a cell, as occurs when cytoplasmic volume is lost during sperm formation (Arama 

et al., 2003). Another important example of selective cytoplasmic destruction is 

Wallerian degeneration, the process of axonal destruction distal to the site of 

lesion or injury (Waller, 1850). There are many examples of selective axon 

pruning occurring naturally during development (Luo and O’Leary, 2005). Not 

only cytoplasm can be selectively destroyed. Red blood cells can selectively lose 

organelles such as their nucleus, but leave other cellular components intact. This 

activity may represent a modified use of cell death genes (Testa, 2004).  

 

The Genetic Pathway of Apoptotic Programmed Cell Death  

The most profound contribution that has been made to the field of cell death was 

from the invertebrate systems of Caenorhabditis elegans and Drosophila in which 

the genetic basis of cell death was established. This work proved that cell death 

was not a random disintegration of cellular function from wear and tear, but rather 
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a controlled process, regulated by a highly conserved pathway of genes leading 

to caspase activation (Figure 1.1).  

The first work seeking a genetic understanding of cell death used the 

model system of C. elegans. This transparent self-fertilizing hermaphrodite with a 

rapid lifecycle had been chosen as a model system because of its suitability for 

use in genetic screens (Brenner, 1974). The publication of the worm lineage 

analysis, a microscopy study detailing the stereotyped development of the worm, 

revealed that there was an invariant pattern of somatic cell death and division 

that was reproducible from worm to worm (Sulston and Horvitz, 1977; Sulston et 

al., 1983). In C. elegans, specific cells die at specific times in specific locations. 

During hermaphrodite development, 1090 somatic cells are born, and 131 of 

these cells undergo programmed cell death, with 113 of the programmed cell 

deaths occurring during embryonic development (Sulston and Horvitz, 1977; 

Sulston et al., 1983). In the C. elegans germline, over 300 germ cells undergo 

programmed cell death (Gumienny et al., 1999). Most C. elegans cells destined 

to die during development do so within 30 minutes after they are born (Sulston 

and Horvitz, 1977; Sulston et al., 1983).  

Using a visual genetic screen, one of the first cell death genes to be 

identified was ced-1 in C. elegans (Hedgecock et al., 1983). This gene did not 

block programmed cell death, but was required for engulfment of dying cells in 

the worm. It was identified as a mutant which had persistent unengulfed cell 

corpses in the larvae (Hedgecock et al., 1983). Using the ced-1 mutant to screen 
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Figure 1.1  Pathways That Regulate Caspases in Apoptotic Cell Death 
This figure summarizes three major pathways leading to caspase activation 
based on evidence from genetic epistasis and biochemical studies in mammals, 
Drosophila, and C. elegans. Membrane receptor complexes, such as Fas or TNF 
receptor complexes, can activate caspases directly following receptor 
aggregation. Mitochondrial proteins, including members of the Bcl-2 family, 
control caspase activity by regulating caspase activators such as the C. elegans 
protein CED-4 or its mammalian homolog Apaf-1. CED-4 and Apaf-1 promote 
caspase activation by acting as scaffolds, thereby allowing cross-activation of 
adjacent caspase zymogens. IAP (inhibitor of apoptosis) proteins inhibit 
apoptosis by binding to and inactivating mature caspases. 
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for animals that did not have persistent cell corpses, identified a mutant in which 

cell corpses were absent. In this mutant, ced-3, a caspase protease, virtually no 

programmed cell death occurred, and the first intrinsic or “core pathway” 

regulator of cell death was identified (Ellis and Horvitz, 1986; Yuan et al., 1993). 

Other screens at the time identified the genes ced-4 and egl-1 (Ellis and Horvitz, 

1986), which act as part of the same pathway. The other key “core pathway” 

regulator of programmed cell death is ced-9 which was identified as an allele with 

blockage of cell death in the NSM cells, and which was revealed to also cause a 

substantial block in programmed cell death (Hengartner et al., 1992). Subsequent 

extensive genetic and biochemical experiments are consistent with a general 

pathway (Figure 1.2) in which ced-3 is the most downstream gene, the key 

executioner of cell death. ced-3 is activated by ced-4. ced-4 is prevented from 

activating ced-3 by ced-9, and this repression of ced-9 can be relieved by egl-1 

or ced-13 (for a review of the data supporting this model see Lettre and 

Hengartner, 2006). This simple pathway is, of course, not always the full picture. 

For example: ced-4 has a splice form that is anti-apoptotic (Shaham and Horvitz, 

1996a); the death of the tail-spike cell is largely regulated by transcriptional 

 

 

 

 
Figure 1.2  A Conserved Core Pathway of Genes Intrinsic to Apoptotic 
Programmed Cell Death  
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upregulation of ced-3, with only a minor role for ced-9 or egl-1 (Maurer et al., 

2007); and Pn.p hypodermal cells can die in a ced-3-dependent, ced-4-

independent manner (Joshi and Eisenmann, 2004). Some additional 

programmed cell death genes have been identified in C. elegans which act as 

upstream cell-specific regulators of the core pathway: for example, ces-1 and 

ces-2 are transcription factors that regulate egl-1, and thus the cell death of NSM 

sister neurons (Ellis and Horvitz, 1991), and the transcription factor tra-1 

regulates expression of egl-1 in HSN neurons (Conradt and Horvitz, 1999). 

Genetic screens in flies identified some additional regulators of the 

caspase-dependent apoptotic program including the genes reaper (White et al., 

1994), hid (Grether et al., 1994), and grim (Chen et al., 1996), and inhibitors of 

apoptosis genes (IAPs) (Hay et al., 1995). It has been shown that reaper, hid, 

and grim act through inhibition of IAP function (Goyal et al., 2000). MicroRNAs 

can also regulate cell death in Drosophila (Leaman et al., 2005).  

Following the identification of cell death genes, as their homologs in other 

systems were discovered, this led to the appreciation of the deep conservation of 

the cell death machinery in metazoans. ced-3 was found to be homologous to a 

mammalian cysteine protease known as a caspase (Yuan et al., 1993), and 

caspases were soon found to be important for cell death in Drosophila (Chew et 

al., 2004; Daish et al., 2004), and mammals (Kuida et al., 1995). ced-4 was 

homologous to mammalian Apaf-1 which participates in human cell death (Zou et 

al., 1997), and to a Drosophila gene that also plays a similar role in cell death 
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(Rodriguez et al., 1999; Zhou et al., 1999; Kanuka et al., 1999). ced-9 was 

homologous to mammalian Bcl-2 (Hengartner and Horvitz, 1994), a gene which 

had previously been suggested might contribute to lymphoma by facilitating cell 

survival (Vaux et al., 1988). egl-1 has several homologous mammalian pro-

apoptotic counterparts such as Bad, Bim, and Puma (Willis and Adams, 2005). 

Smac/Diablo is the mammalian counterpart to reaper, hid, and grim, which also 

inhibits mammalian IAPs (Du et al., 2000; Verhagen et al., 2000).  

 

The Fate of “Undead” Cells in Cell Death Mutant Backgrounds 

ced-3 mutant animals in which almost all programmed cell death is blocked are 

generally healthy, of normal lifespan, but with low fertility (Ellis and Horvitz, 

1986). An electron microscopy study of surviving “undead” cells in a ced-3 

mutant background showed that the cells were largely normal and had mainly 

adopted neuronal cell fates similar to those of their surviving siblings (White et 

al., 1991). It was shown that an “undead” cell could even take over the function of 

a cell that had been removed by ablation (Avery and Horvitz, 1987). The 

“undead” cells could form structures such as synapses or neuromuscular 

junctions: however, often, the fate of these cells could be variable, and there 

were some differences in synaptic structure compared with synapses in wild-type 

cells (White et al., 1991). Studies of extra “undead” cells in flies blocked in 

programmed cell death revealed that these extra cells could also have 
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differentiated cell fates, for example, forming extra abdominal neuroblasts (White 

et al., 1994).  

 

Evidence for the Role of Caspases in Programmed Cell Death  

In worms carrying a mutation in the ced-3 gene, which encodes a caspase, 

virtually all cells normally fated to die by apoptosis survived (Ellis and Horvitz, 

1986). Epistasis studies between mutations in ced-3 and mutations in other 

genes encoding cell-death regulators suggested that ced-3 was the most 

downstream regulator of apoptosis known in C. elegans (Shaham and Horvitz, 

1996b). 

Genetic studies in other organisms also suggest that caspases are at the 

heart of the apoptotic program. Mutations in several mammalian caspases 

disrupt apoptosis (Table 1.1). However, in contrast to ced-3 mutants, in which 

virtually all apoptosis is prevented, mammalian caspase mutants often display 

tissue-specific defects in apoptosis, probably because of redundancy as 

mammals possess a greatly expanded repertoire of caspases (Table 1.1). For 

example, mice homozygous for knockout alleles of either caspase-9 (Kuida et al., 

1998; Hakem et al., 1998) or caspase-3 (Kuida et al., 1998) died shortly after 

birth and had excess brain tissue, which appeared to be a consequence of 

defective apoptosis (Kuida et al., 1998; Hakem et al., 1998). Cell death in other 

major organs was, however, less prominently affected. In human beings, two 

different alterations in caspase-10 are associated with type II autoimmune 
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Table 1.1  Known Mutations in Caspase Genes and Their Phenotypes 

 

 

 

 

 

 

Organism Caspase Mutations Mutant Phenotype Cell Death Defects or Other Roles References
Available?

C. elegans ced-3 yes normal development almost all somatic cell death blocked Ellis and Horvitz, 1986
csp-1 yes normal development none reported Abraham et al., 2007
csp-2 yes normal development none reported Abraham et al., 2007
csp-3 no

Drosophila dcp-1 yes larval lethality + tumors oogenesis McCall et al.,1998
dredd yes normal development innate immune system function Leulier et al., 2000
dronc yes arrest as pupae no damage induced cell death Chew et al., 2004

arrest as pupae no damage induced cell death Daish et al., 2004
drice yes some morphological defects resistant to damage induced cell death Muro et al., 2006

role in spermatid differentiation Arama et al., 2003
strica/dream no
damm no
decay no

Mouse caspase-1 yes-knockout normal development defects in receptor mediated apoptosis Kuida et al., 1995
defects in production of IL-1! and IL-1" Li et al., 1995

caspase-2 yes-knockout excess oocytes oocytes reistant to cell death Bergeron et al., 1998
caspase-3 yes-knockout perinatal lethality defects in brain apoptosis Kuida et al., 1996

skeletal muscle differentiation Fernando et al., 2002
caspase-6 yes-knockout normal development none determined Zheng et al., 1999
caspase-7 yes-knockout perinatal lethality defects in cardiac development Lakhani et al., 2006

resistant to damage induced cell death Lakhani et al., 2006
caspase-8 yes-knockout embryonic lethality impaired heart development Varfolomeev et al.,1998

decreased hematopoietic precursors Varfolomeev et al.,1998
defects in receptor mediated cell death Varfolomeev et al.,1998
role in T cell function Salmena et al., 2003

caspase-9 yes-knockout perinatal lethality defects in brain apoptosis Kuida et al., 1998
resistant to damage induced cell death Hakem et al., 1998

caspase-11 yes-knockout normal development defects in production of IL-1! and IL-1" Wang et al., 1998

cell migration Li et al., 2007
caspase-12 yes-knockout normal development defects in ER stress induced apoptosis Nakagawa et al., 2000

Human caspase-8 familial mutation immundeficiency defects in receptor mediated cell death Chun et al., 2002
caspase-10 familial mutation autoimmunity defects in receptor mediated cell death Wang et al., 1999
caspase-14 no terminal differentiation of keratinocytes Eckhart et al., 2000

terminal differentiation of keratinocytes Lippens et al., 2000
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lymphoproliferative syndrome—a condition characterized by defective apoptosis 

of lymphocytes (Wang et al., 1999). The altered Caspase-10 proteins exhibited 

decreased apoptotic and enzymatic activities, suggesting that the alterations 

might cause the disease (Wang et al., 1999). In Drosophila, mutants exist in only 

three of the seven genes encoding caspases. Neither dcp-1 (Song et al., 1997) 

nor dredd mutants (Leulier et al., 2000) have an overt cell death phenotype. 

However, a mutation in dronc shows that it is required for programmed cell death 

during Drosophila development, and flies with mutations in dronc die during larval 

development (Chew et al., 2004; Daish et al., 2004). 

Another approach taken to investigate the role of caspases in a 

mammalian system was the use of cell permeable caspase inhibitors. These 

were shown to be able to block mammalian cell death (Jacobson et al., 1996). 

The fact that many viruses encode proteins such as p35, which directly  

inhibit caspases (Bump et al., 1995) and thus block cell death of an infected cell, 

underscores the centrality of caspases to apoptotic programmed cell death. 

 

Biochemical and Structural Studies of Caspase Activity  

A number of biochemical studies have elucidated how caspases carry out their 

function. Caspases are cysteine proteases that cleave substrates after specific 

aspartate residues. The specificity of target sites seems to be determined by a 

four-amino-acid recognition motif, as well as by other aspects of the three-

dimensional structure of the target protein. Caspase are synthesized as 
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proenzymes that are activated through cleavage at internal aspartate residues by 

other caspases; however, caspases might also have weak catalytic activity in 

their unprocessed form. Proteins such as C. elegans CED-4 or its mammalian 

homolog Apaf-1 can bind to procaspases and can also multimerize. 

Multimerization might support cross-activation of adjacent caspase zymogens. 

Activated caspases consist of dimers of a large and a small subunit that, 

together, form the active site of the enzyme. Structures obtained by X-ray 

crystallography suggest that these heterodimers themselves dimerize to form an 

enzyme with two active sites. Procaspases are often divided into two classes; 

those with long N-terminal domains are termed initiator caspases, and those with 

short N-terminal domains are called executor caspases. Long prodomains can 

bind to activator molecules, such as Apaf-1, or adaptor molecules associated 

with membrane receptors, such as Fas. It is thought that long prodomain 

caspases activate short prodomain caspases; however, this assertion is only 

supported by a limited number of experiments. 

The proteolytic activity of caspases has been shown in vitro, however, the 

key in vivo targets of caspases that irrevocably doom the cell, have not been 

determined (Timmer and Salvesen, 2007). Some proteomics approaches in C. 

elegans have suggested some candidates for important targets such as 

cytoskeletal genes like actin, tubulin, and the ER chaperone calreticulin (Taylor et 

al., 2007). Activated caspases can cleave multiple targets, and cell death may 

arise from destruction of a combination of essential cellular components, rather 
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than from just one or two key targets. 

 

Non-Apoptotic Caspase Activity 

Although caspases most frequently act as the chief executioners of cell death, 

sometimes caspase activation does not progress to cell death. Somewhat 

paradoxically, deadly caspases play an important role at the beginning of life 

itself, during sperm formation in Drosophila. Caspases aid the process of sperm 

individualization through which spermatids become separated from syncytia and 

lose the bulk of their cytoplasm (Arama et al., 2003). During individualization a 

cytoskeletal membrane complex, known as the individualization complex, 

translocates along spermatids, disconnecting cytoplasmic “bridges” between 

them and expelling spermatid cytoplasm and unnecessary organelles into a 

membrane bag called the cystic bulge. Immunostaining for the activated caspase 

drice marked the pre-individualized part of the spermatid and the cystic bulge 

(Arama et al., 2003). Synthetic and viral pan-caspase inhibitors severely impaired 

movement of the individualization complex and prevented removal of bulk 

cytoplasm from the spermatids (Arama et al., 2003). It is unclear whether 

caspases have a direct role in exclusion of cytoplasm from the spermatid, 

although it is reasonable to hypothesize that caspase activity might aid the 

degradation of expelled cytoplasm in the cystic bulge. The morphological defects 

and sterility of Drosophila sperm treated with caspase inhibitors strikingly 

resemble a common abnormality in human sperm (Hollanders and Carver-Ward, 
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1996); mouse knockouts of some apoptotic genes also cause male sterility. Thus, 

although these mammalian defects are largely uncharacterized, they might also 

point to a non-lethal role of caspases. 

In red blood cells and lens fiber cells, caspase activation leads to a subset 

of apoptotic morphological changes without causing cell death. As embryonic 

erythroid cells differentiate into adult red blood cells, they show signs of 

apoptosis, including chromatin compaction, nuclear destruction, and caspase 

activation (Morioka et al., 1998). Lens fiber cells develop from epithelial cells that 

express caspases and degrade their organelles and nuclei during differentiation, 

presumably to allow cellular transparency (Ishizaki et al., 1998). In transgenic 

mice that overexpressed Bcl-xL, the lens fibers did not lose their nuclei (Wride et 

al., 1999). In both examples, it is unclear how caspase activity is controlled to 

trigger only non-lethal aspects of the apoptotic program. 

There are also examples of caspase activation promoting differentiation in 

the absence of any morphological signs of apoptosis. For example, during 

infection, human monocytes differentiate to form macrophages. The 

differentiation process does not show morphological features of apoptosis; 

however, antibody staining showed caspase activation at the time of the switch 

and the monocyte to macrophage switch was blocked by caspase inhibitors 

(Sordet et al., 2002). Caspase-8 might also play a role in differentiation because 

caspase-8 knockout mice exhibit defects in the development of heart muscle and 

also have a dramatically decreased pool of hematopoietic precursors 
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(Varfolomeev et al., 1998).  

Immune functions are probably the best-characterized examples of non-

lethal roles for caspases that do not involve apoptotic changes. Murine knockouts 

of caspase-1 (Li et al., 1995; Kuida et al., 1995) and caspase-11 (Wang et al., 

1998) show defects in the production of IL-1α and IL-1β in response to the 

bacterial compound lipopolysaccharide. A human family pedigree showed that 

caspase-8 mutations are linked to defects in the activation of T, B, and NK cells 

(Chun et al., 2002), and mice studies corroborated a role for caspase-8 in T cell 

function (Salmena et al., 2003). It has been shown that Caspase-11 regulates 

cell migration in the immune system (Li et al., 2007). The link between caspases 

and the immune system also extends to Drosophila. A fly screen to identify 

mutants defective in innate immunity revealed that a mutant of the caspase dredd 

mounted a defective immune response when challenged with Gram-negative 

bacteria (Leulier et al., 2000). 

 

Regulation of Apoptotic Programmed Cell Death 

The genes responsible for cell death—also known as the “core pathway” 

genes—act cell-autonomously in the cells that will undergo programmed cell 

death. If ced-3 is expressed in cells that normally don’t undergo programmed cell 

death, such as the touch cell neurons, then these cells can be driven to undergo 

programmed cell death shown by electron microscopy to have a normal apoptotic 
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morphology (Shaham and Horvitz, 1996b). Work in other systems has confirmed 

this cell-autonomous model of action for core apoptotic genes. 

The key requirement for intrinsic execution of apoptosis is regulation of 

caspase activity, which can be achieved in a number of ways and in response to 

a number of different signals. For example, DNA damage can trigger up-

regulation of p53, which can eventually lead to apoptosis, depending on the 

severity of the cellular perturbation, by engaging Bcl-2 or BH3-only proteins 

(Chipuk and Green, 2006). An interesting question is whether most cells are 

poised to die at any moment if trouble looms and the whole cell death machinery 

is ready on a hairline trigger, or if the death program has to be activated from 

dormancy or from scratch. Some studies in C. elegans (Maurer et al., 2007) and 

Drosophila (White et al., 1994) point to examples of transcriptional control of 

programmed cell death. A mammalian study showed that in response to a cell 

death stimulus, cells could die even when protein synthesis had been blocked, 

indicating that the cell death machinery was already present and poised to act in 

the cell prior to the death stimulus (Weil et al., 1996). In C. elegans, ced-9 loss-

of-function mutations have the phenotype of massive cell death and early 

embryonic lethality (Hengartner and Horvitz, 1994). ced-9 loss-of-function could 

be causing widespread ced-3 activation, suggesting that ced-3 is expressed and 

ready to act in cells that don’t normally die, and that in these cells it is normally 

held in check by ced-9. However, damage induced somatic apoptotic cell death 

has not been reported in C. elegans. In response to irradiation, increases in cell 
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death in the C. elegans germline can be seen, but irradiation does not affect 

somatic cell death when monitored by standard assessments like corpse 

formation in an engulfment mutant background or by counting cells in the anterior 

pharynx (Deng et al., 2004).  

One early concept to emerge for a mechanism of regulation of 

programmed cell death came from pioneering studies on chick embryos 

illustrating the idea of cells requiring survival factors to keep them alive—more 

nerve cells are made than are needed, and only the cells that can migrate to the 

right place, make the right connections, and have access to survival factors, such 

as Nerve Growth Factor, will be able to avoid their demise (Hamburger and Levi-

Montalcini, 1949). In oligodendrocytes it has been shown that cells may compete 

for growth factor for their survival, and increasing the growth factor can decrease 

oligodendrocyte cell death (Barres et al., 1992).  

The best evidence to date of extrinsic signaling regulating apoptotic 

programmed cell death comes from mammalian systems, particularly in the 

immune system, where signaling through the Fas ligand (Suda et al., 1993) to the 

Fas receptor (Itoh et al., 1991) triggers apoptosis. It has been shown that a 

defect in Fas-mediated apoptosis was responsible for the lymphoproliferation 

associated with autoimmunity in the mouse lpr model, in which the animals suffer 

a lupus-like syndrome because they fail to remove autoreactive T cells 

(Watanabe-Fukunaga et al., 1992). 
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Extrinsic signaling through the Fas receptor can be used to spatially 

regulate immune system activity. A fascinating example occurs in the mammalian 

eye, which is a site of immune privilege because an immune response there 

could result in impaired vision or even blindness. The eye is protected from an 

immune response by expression of Fas ligand. Griffith and colleagues showed 

that when mice had herpes simplex virus injected into the anterior eye chamber, 

there was extensive apoptosis, detected by TUNEL staining of the recruited 

immune cells. However, in mice mutant for Fas receptor or ligand, this cell death 

did not occur (Griffith et al., 1995). The Fas ligand appeared to be required in the 

eye itself: expression of Fas ligand in the eye was shown by staining, and wild-

type immune cells from a bone marrow transplant did not undergo PCD in a Fas 

ligand mutant background (Griffith et al., 1995).   

 

Engulfment of Apoptotic Cells 

In early studies of the morphology of cell death it was noted that dying apoptotic 

cells are usually engulfed by other cells. These may be cells whose primary role 

is engulfment—professional phagocytes like macrophages or dendritic cells 

which play an important role in immune system function—or sometimes less 

highly specialized cells can phagocytose dying corpses. A study in a mammalian 

system showed that professional phagocytes such as microglia could rapidly 

recognize and ingest dying cells, but non-professional phagocytes such as BHK 

cells will show signs of recognition of the dying cell, such as process extension, 
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but they do not ingest the cell until a much later stage in the death process (if 

pre-aged dying cells were presented to the non-professional phagocytes they 

were rapidly engulfed), perhaps because they only respond to more advanced 

signs of cell death from the dying cell (Parnaik et al., 2000).  

In the case of C. elegans, which does not have professional phagocytes, 

cells are engulfed by neighboring cells. With the fixed lineage of C. elegans, the 

engulfing cell may always be the same, or it may be variable, as shown in 4D 

reconstructions of engulfment of dying cells during wild-type embryonic 

development (Hoeppner et al., 2001). In C. elegans development, some 

engulfments can happen very early in the cell death process, for example, in the 

death of certain hypodermal cells in which one of a pair of sibling cells die, 

engulfment of the dying cell can already begin before the cell division creating the 

cell has completed (Robertson and Thompson, 1982).  

 

Engulfment Can Enhance Cell Death 

Engulfment mutants in C. elegans do not block cell death, but instead result in 

persistent cell corpses (Hedgecock et al., 1983). However, there is some genetic 

evidence that engulfment can facilitate cell death. In a weak ced-3 mutant 

background in which some cells that would usually die now survive, the number 

of surviving cells can be increased by adding in engulfment mutations (Reddien 

et al., 2001; Hoeppner et al., 2001). Various models have been proposed for why 

this might be case. Perhaps when the dying cell starts to express ced-3, it could 
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also signal to the neighboring engulfing cell, which in response could return some 

signal that will facilitate cell death.  

In higher vertebrates, studies of macrophages have suggested that in 

some contexts these engulfing cells are required for programmed cell death to 

occur. In a mouse model in which subsets of macrophages were removed by 

transgenic expression of diptheria toxin, two transient structures in the eye—the 

hyaloid vasculature (capillaries that connect up with the lens) and the pupillary 

membrane (a single layer of cells in front of where the pupil will form)—were not 

removed and remodeled on schedule, but instead persisted (Lang and Bishop, 

1993). Subsequent studies have shown that macrophages activate Wnt signaling 

to trigger apoptosis in the hyaloid vasculature (Kato et al., 2002; Lobov et al., 

2005). There are human counterparts to these conditions, although the genes 

responsible have not been identified.  

 

Caspase-independent Cell Death 

Digit formation, the iconic image of the necessity of programmed cell death, may 

in some circumstances become an iconoclastic example of programmed cell 

death. In an Apaf-1 knockout mouse, digit formation is slightly delayed in about 

25% of the animals, with delayed forelimb removal of interdigital webs in 4 out of 

16 animals at E13, and delayed hindlimb webbing removal in 4 out of 12 animals 

at E14.5 (Yoshida et al., 1998). However, by E15.5 normal digit formation and 

removal of interdigital webbing was visible in all embryos (Yoshida et al., 1998). 
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Another study of removal of interdigital webbing in Apaf-1 knockout mice, 

characterized the process as caspase-independent with signs of necrotic 

morphology (Chautan et al., 1999).  

Early cell death studies in C. elegans hinted that PCD could occur in the 

absence of caspases. Characterization of C. elegans ced-3 mutants using light 

microscopy revealed that the migratory leader cell of the male gonad, the linker 

cell, underwent PCD even in the absence of ced-3 (Ellis and Horvitz, 1986). 

Subsequent findings were consistent with the existence of ced-3-independent 

PCD, including reports that in the anterior pharynx some cells died even in 

animals harboring a deletion of the entire protease-encoding domain of ced-3 

(Shaham et al., 1999). The C. elegans genome contains three other caspase-

related genes—csp-1, csp-2, and csp-3 (Shaham, 1998). Investigation of these 

caspases by RNAi in either wild-type animals or animals homozygous for loss-of-

function alleles of ced-3 has failed to reveal a role for them in PCD (See Chapter 

Four). Thus, ced-3 might be the only caspase associated with PCD in C. elegans. 

One hint about how a ced-3-independent pathway might promote PCD came 

from genetic studies. When CED-4 was overexpressed in the ALM neurons of C. 

elegans, it could kill these cells, however, killing was reduced but not completely 

blocked in a ced-3 mutant background (Shaham and Horvitz, 1996b). This result 

suggests that ced-4 can kill cells independently of ced-3; however, it is not clear 

whether the ced-3 alleles used in these experiments completely eliminated ced-3 

activity or whether overexpressed CED-4 exhibited a novel toxicity. Consistent 
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with the ability of CED-4 to kill ALM neurons in the absence of CED-3, Rothman 

and colleagues (Bloss et al., 2003) showed that inactivation of a gene they 

termed icd-1 (inhibitor of cell death) by RNAi promoted ced-4-dependent, but 

ced-3-independent death of a range of cell types including neurons and male ray 

cells (Bloss et al., 2003). ICD-1 protein is similar to both the Drosophila protein 

bicoid and the β subunit of the nascent polypeptide associated complex. TEM 

analysis of a dying cell in an icd-1(RNAi); ced-3 double mutant revealed 

morphological changes characteristic of apoptosis, including compacted 

chromatin and membrane blebbing (Bloss et al., 2003). Furthermore, although 

overexpression of proteins rarely promotes cell survival, global overexpression of 

ICD-1 resulted in the survival of some embryonic cells in C. elegans that would 

have normally died by apoptosis (Bloss et al., 2003). Regardless of whether icd-1 

normally inhibits apoptosis in C. elegans, these studies suggest that the caspase 

CED-3 is not required for some types of cell death in this organism. The 

mechanism for these ced-4-dependent, ced-3-independent cell deaths is 

unknown, neither is it clear whether these deaths are truly caspase-independent. 

It would be interesting to know whether a broad-spectrum caspase inhibitor, such 

as baculovirus p35, could block the icd-1-dependent cell deaths or whether any 

of the other caspase homologs in C. elegans play a role there. 

In mammals, there is evidence for caspase-independent PCD. Genetic 

studies on PCD induced by BH3-domain-only proteins, such as tBID, BIM and 

BAD showed that these proteins, which have been shown to promote caspase 
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activation and apoptosis, can also kill cells independently of Apaf-1 and 

downstream caspases. Specifically, Apaf-1−/− mouse embryonic fibroblasts 

(MEFs) could still die in response to the over-expression of BH3-domain-only 

proteins (Cheng et al., 2001). Although death was reported as apoptotic because 

dying cells stained with Annexin V, a marker for external exposure of the 

normally intracellular membrane lipid phosphatidylserine, such staining also 

might indicate non-apoptotic dying cells with membrane damage. Caspase 

activation was not detected in the dying cells when assayed with fluorogenic 

substrates for caspase-2, -3, -6, or -7, nor could cell death be blocked by the 

pan-caspase inhibitor zVAD.fmk (Cheng et al., 2001). Although it is possible that 

another known mammalian caspase that was not assayed for is the cell death 

executioner in these cells, the results are intriguing and suggestive of caspase-

independent cell death. A clue to possible mediators of this potentially caspase-

independent death came from studies of mice lacking the Bcl-2-related genes 

bax and bak. bax -/-bak−/− mice died just after birth and showed a brain overgrowth 

defect, lymphoid-cell accumulation, and retained interdigital webs—all defects 

associated with lack of PCD. Interestingly, MEFs derived from these mice and 

overexpressing BH3-domain-only proteins were almost completely resistant to 

death (Wei et al., 2001). These results suggest that the PCD pathway induced by 

BH3-domain-only proteins bifurcates downstream of Bax and Bak, with one 

branch being caspase- and Apaf-1-dependent and the other not. In mammary 

gland duct morphogenesis, recent work with a Bim (BH3-domain-only gene) 
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knockout revealed that cells in the luminal space were cleared, in a slightly 

delayed fashion, by a mechanism that did not show any signs of caspase 

activation (Mailleux et al., 2007). Activated caspase-3 was identified as being 

immunohistochemically localized in regions of apoptosis associated with mouse 

tooth formation (Shigemura et al., 2001), however, in caspase-3 knockout mice, 

although there were some defects in the primary enamel knot formation, the adult 

molar teeth formed normally (Matalova et al., 2006), and in caspase-9 or Apaf-1 

knockout embryos, again tooth development appeared to have proceeded 

normally (Setkova et al., 2007). These results raise the question of what is the 

caspase replacement in these systems. 

Other support for caspase-independent PCD comes from numerous in 

vitro studies demonstrating that cell death can proceed even in the presence of 

broad-spectrum caspase inhibitors.  

It has been shown that the autophagic programmed cell death of the 

Drosophila salivary gland has some requirement for activity of apoptotic core 

pathway genes and caspases, even though morphologically the cell death 

doesn’t resemble apoptosis (Martin and Baehrecke, 2004).  

 

The C. elegans Linker Cell as a Model System to Study Programmed Cell 

Death 

C. elegans with its known cell fate lineage offers an excellent system to study 

programmed cell death in vivo. No other current model organism offers the 
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possibility of following a programmed cell death at the level of an individual cell 

that is predictably fated to die. The linker cell, a cell that undergoes a 

developmentally regulated programmed cell death in the male, was chosen 

because it offered the potential to investigate many profound and fascinating 

questions about programmed cell death.  

There was the indication in the literature that linker cell death might offer a 

model for a ced-3, and potentially caspase-independent programmed cell death 

(Ellis and Horvitz, 1986). Because of the redundancy of caspases in other 

systems, only in a simple genetic system like C. elegans can the question of 

whether caspase-independent programmed cell death occurs be satisfactorily 

addressed. And if caspase-independent programmed cell death does occur, C. 

elegans is a worthy system to try to quickly identify some of the unknown genes 

that facilitate the process.  

Another intriguing anecdote about the linker cell was a report that it was 

killed (or more sensationally described as “murdered”) by its engulfing cell U.l/rp, 

because in the absence of U.l/rp, the linker cell survived (Sulston et al., 1980). 

This suggested that the linker cell might offer the first example of cell-to-cell 

extrinsic signaling regulating programmed cell death in C. elegans, and again the 

possibility of uncovering unknown genetic regulators of such a process.  

Finally, as a large, differentiated cell that undergoes cell death after a long 

lifespan, the C. elegans linker cell could possibly offer some different challenges 

for programmed cell death that could lead to new discoveries and insights. Most 
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of the studied programmed cell deaths in C. elegans are the embryonic 

programmed cell deaths of small, undifferentiated cells that die after a very short 

lifespan. The fact that the linker cell is such a large cell means that it offers an 

excellent system for subtle observation of cell morphological changes during cell 

death.  Most C. elegans cells destined to die during development do so within 30 

minutes after they are born (Sulston and Horvitz, 1977; Sulston et al., 1983). 

Three C. elegans cells that die during normal development live much longer than 

most cells fated to die. Little is known about the function or death of one of these 

cells, MSpppaaa, the sister cell of the somatic gonad precursor cell, Z1. 

However, the other two long-lived cells, the tail-spike cell and the linker cell, 

exhibit obvious differentiated features (Sulston et al., 1980; Sulston et al., 1983). 

The onset of tail-spike cell death is regulated by transcriptional activation of the 

ced-3 caspase, a previously unappreciated form of cell death timing control 

(Maurer et al., 2007). Our studies of linker cell death are presented here.  
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Chapter Two 

 

Characterization of Wild-type Linker Cell Death 

 

BACKGROUND 

 

Birth of the Linker Cell 

After the C. elegans embryo hatches, it progresses through four larval stages, 

known as L1, L2, L3, and L4, and on the final molt it becomes an adult. The life 

cycle takes about three days at 20°C. 

The linker cell is born in the male at the second larval stage (L2) (Kimble 

and Hirsch, 1979). It arises from either Z1.paa or Z4.aaa, and the decision is 

made through a lateral signaling event. The cell that does not become the linker 

cell instead becomes a vas deferens precursor cell (Kimble and Hirsch, 1979). 

The lateral signaling acts through genes including sys-1, a novel gene with 

Armadillo repeats (Miskowski et al., 2001), pop-1, a TCF/LEF-1 transcription 

factor (Siegfried and Kimble, 2002), and there is also input via Wnt and MAPK 

pathways. A forkhead gene, fkh-6, is required for the linker cell to form (Chang et 

al., 2004). In the hermaphrodite, Z1.paa doesn’t exist, and Z4.aaa can 

sometimes give rise to the anchor cell or divide further to form uterine cells 

(Kimble and Hirsch, 1979).  
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The Role of the Linker Cell 

The linker cell plays an essential role as the migratory leader cell of the male 

gonad, since if it is ablated prior to completion of its migration there are severe 

defects in gonadal development and the gonad does not complete its normal 

migration to the posterior of the animal (Kimble and White, 1981). The linker cell 

undergoes a complex migration (Figure 2.1) that lasts for over 30 hours at 20 

degrees. The genes regulating linker cell migration have not been extensively 

characterized. When the linker cell reaches the posterior of the worm at the end 

of the fourth larval stage (L4), around the time the animal is about to undergo the 

final molt to become an adult, the linker cell dies and is engulfed and removed by 

either the cell U.rp or the cell U.lp (hereafter in this thesis both these cells 

together will be referred to as U.l/rp)(Sulston et al., 1980). These U cell 

descendants are frequently fused with their anterior sibling cells (Sulston et al., 

1980). Around the time the linker cell dies, the gonad is connected to the cloaca, 

and thus to the exterior (Sulston et al., 1980). Gonadal connection to the cloaca 

enables sperm to exit the animal (Figure 2.2). It has been hypothesized that 

linker cell death is required for fertility, since a surviving linker cell, positioned like 

a plug at the top of the vas deferens would presumably form a major obstruction 

preventing sperm exit (Figure 2.2).  
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Figure 2.1  Stages of Linker Cell Migration and Death 
(A-D) Diagrams depicting stages of linker cell migration and death.  
(A) L2 animal. The linker cell has migrated anteriorly on the ventral side.  
(B) Early L4 animal. The linker cell is migrating posteriorly on the dorsal side.  
(C) Late L4 animal. The linker cell has reached the cloacal region, begins to die, 
and is engulfed by U.l/rp.  
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(D) Adult animal. The linker cell has died and disappeared. U.l/rp, which now has 
an extended morphology, connects to the vas deferens. 
(E) An L4 male worm roughly corresponding to the stage B drawn above. DIC, 
top. Fluorescence, bottom. The linker cell (arrow) expresses a lag-2::GFP 
transgene. The vas deferens is outlined in black, as is the cloaca (arrowhead). 
The location of U.l/rp, the cells that engulf the linker cell, is indicated with an 
asterisk. Anterior, left. Dorsal, top. Scale bar, 10 µm. 
(F) A late L4 male worm corresponding to the stage C drawn above. The gonad 
has been outlined in black and the red arrows trace the path of migration taken 
by the linker cell as the gonadal migratory leader cell. Asterisk denotes the 
location where the linker cell and U.l/rp are located. The cloaca, outlined in black, 
is indicated with an arrowhead. Scale bar, 10 µm. 
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Figure 2.2  The Importance of Linker Cell Death For Fertility 
(A) Schematic showing the necessity of regulated linker cell death for fertility. 
(i) Depicts a normal worm at the early L4 stage.  
(ii) If the linker cell in (i) dies too early or is ablated, the gonad cannot migrate 
further, does not connect to the exterior, and sperm cannot exit the animal. 
(iii) If the linker cell in (i) migrates to the normal location and dies, the gonad 
develops normally and is connected to the exterior allowing sperm exit in the 
adult. 
(iv) If the linker cell in (i) migrates normally, but doesn’t die, the linker cell sits at 
the end of the vas deferens like a plug preventing sperm exit.  
(B) DIC image of an animal with a gonadal migration problem that could arise if 
the linker cell died too early. Note the sperm (arrowhead) trapped in the middle of 
the animal. Cloacal region indicated with asterisk. Anterior, left. Scale bar, 10 µm. 
(C) DIC image of linker cell (arrow) surviving in the adult and sperm (arrowheads) 
building up behind the linker cell in the vas deferens. Cloaca (arrowhead) 
outlined in black. Anterior, left. Dorsal, top. Scale bar, 10 µm. 
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Previous Reports About the Linker Cell 

A few anecdotal observations have been made in the published literature about 

linker cell death. Focusing a laser microbeam can be used to selectively destroy 

specific cells in C. elegans (Bargmann and Avery, 1995). Using this cell ablation 

technique at the L1 stage, Sulston removed U, the precursor of the cells (U.l/rp) 

that engulf the linker cell (Sulston, 1980). Sulston reported that in this background 

the linker cell then survived, and he cited anecdotal results that the linker cell 

survived in a migratory mutant (Sulston et al., 1980). This led to the model of 

linker cell “murder” via a signal from a U cell descendant.  

 In work from the Horvitz lab it had been reported that the linker cell could 

still die in a ced-3 mutant background (Ellis and Horvitz, 1986) raising the 

possibility that this cell death was caspase-independent, although three other 

caspase homologs exist in the worm genome (Shaham, 1998).  

 

RESULTS 

 

Microscopy Imaging of Linker Cell Death 

The advent of GFP technology (Chalfie et al., 1994) has been a particularly 

monumental advance for research in the transparent C. elegans, facilitating types 

of experimental approaches previously impossible. Fluorescent markers enable 

easy identification and observation of a single cell in a living animal. Using a cell-

specific fluorescent marker vastly improves cell identification, which had 
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previously relied on cell identification based on cell positioning in animals that 

were mounted on glass slides and observed by Differential Interference Contrast 

(DIC). The ability to use cell-specific fluorescent markers, and thus to not be 

reliant on cell identification by DIC optics alone, has enabled marked cells in 

animals crawling on plates to be observed using epifluorescent dissecting 

microscopes, a major advance for rapid genetic screens.  

A GFP marker—a lag-2 promoter fused to GFP—had been previously 

reported as showing linker cell expression (Siegfried and Kimble, 2002). This tool 

was the starting point used to embark upon studies of linker cell death.   

The lag-2 promoter was found to be an excellent tool for observation of the 

linker cell in a living organism. The marker is expressed in young male animals 

as soon as the linker cell is born, and apart from expression in some readily 

distinguishable cells, such as small cells in the ventral nerve cord, the expression 

is specific enough, given the large size of the linker cell, to make the linker cell 

readily distinguishable (Figure 2.1E). Because GFP has a long half-life and 

persists for quite a while after it is made (Corish and Tyler-Smith, 1999), even if a 

cell is dying and has impaired transcription, the GFP already present will still be 

stable, making the fluorescent marker also useful for visualizing the linker cell 

corpse.  
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The Stages of Wild-type Linker Cell Death 

The first study we carried out was an observation of wild-type linker cell death 

using an epifluorescent dissecting microscope. Doing population studies we 

could see that at the late L4 stage, the ovoid linker cell began to round up and 

divide into two parts, and that the cell had been completely removed or was a 

round corpse by the time that the animal had completed the molt to adult. These 

dissecting microscope studies suggested that the approximate timing of this 

process is about 2 to 4 hours from when the cell first begins to die until it is no 

longer visible.  

Using DIC optics on a compound microscope, we observed at higher 

resolution the changes in cell morphology during wild-type linker cell death 

(Figure 2.3). A wild-type healthy migrating linker cell is ovoid in shape, with a high 

cytoplasmic to nuclear ratio, the nuclear envelope is round and smooth, and the 

cytoplasm has a characteristic mottled texture (Figure 2.3A). Among the early 

changes we notice are signs of shape changes to the nucleus such as 

indentation (or “crenellation”) of the nuclear envelope (Figure 2.3B) or partial 

nuclear envelope breakdown. Another early change is a loss of cytoplasmic 

volume and a marked reduction of the cytoplasmic to nuclear ratio (Figure 2.3C). 

This loss of volume is a consequence of a blebbing process, in which 

approximately half of the cytoplasmic volume of the cell is separated from the half 

of the cell still containing the nucleus (Figure 2.3D). Occasionally smaller blebs  
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Figure 2.3  Stages of Wild-type Linker Cell Death 
(A-F) Linker cell expresses a lag-2::GFP transgene. DIC and fluorescence images. 
(A) A healthy migrating linker cell at the L3 larval stage. Note the smooth nuclear 
envelope and distinct nucleoplasm, prominent nucleolus, and large cytoplasmic to 
nuclear ratio. Scale bar, 2 µm. 
(B) A linker cell beginning to die at the late L4 stage. The nuclear envelope has become 
indented or crenellated. The crenellated shape of the nuclear envelope has been 
outlined in the image on the right. Scale bar, 2 µm. 
(C) A linker cell beginning to die at the late L4 stage. The cell membrane of the linker cell 
denoted with arrowheads. Note the loss of cytoplasmic to nuclear ratio. Scale bar, 2 µm. 
(D) Image of linker cell blebbing into two parts at the late L4 stage. Scale bar, 2 µm. 
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(E) Image of the linker cell (arrow) forming a refractile button-like corpse in a late L4 
animal. Vacuoles (arrowheads) are visible beside the linker cell corpse. Scale bar, 5 µm. 
(F) The linker cell has gone in a young adult worm, less than 2 hours after becoming an 
adult. Note the absence of GFP and absence of the linker cell in the region marked with 
an arrow. Cloaca (arrowhead) outlined in black. Anterior, left. Dorsal top. Scale bar, 10 
µm. 
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can be observed, but the main and consistent form of blebbing is into two equal 

sized parts. At the stage when the cell has blebbed into two parts, initially the 

part of the cell containing the nucleus may still be of an ovoid shape. Cytoplasmic 

abnormalities or appearance of the cell membrane may also be apparent. The 

nuclear half of the linker cell then becomes completely round (Figure 2.3D), the 

nucleus continues to degrade and deform, and the nucleolus is often one of the 

last structures to disappear. When neither the nuclear envelope nor the nucleolus 

is visible, a later stage of degradation is when the linker cell forms a round 

refractile button-like corpse (Figure 2.3E). The round button-like corpse is similar 

to a classic apoptotic morphology seen during wild-type development (Sulston 

and Horvitz, 1977). Then the linker cell is completely removed (Figure 2.3F). 

Some population studies of wild-type linker cell death were undertaken to 

determine a normal time course of these changes (Table 2.1). 

 

Linker Cell Blebbing Into Two Parts 

Our initial characterization of the wild-type death revealed several unusual 

features. We observed the linker cell consistently blebbing into two parts when 

studying individual worms under the epifluorescent dissecting microscope and 

with population studies under the compound microscope (Figure 2.3D). In our 

TEM studies, detailed later in this chapter, we present an image (Figure 2.8H) 

which may represent the cytoplasmic bleb: adjacent to the linker cell corpse, a 

large circular structure was visible which lacked a nucleus in serial sections. 
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Table 2.1  DIC Study of Wild-type Morphology of Linker Cell Death 
 
Animal Age % Healthy 

Linker Cell  
(n)a 

% Early 
Abnormal 
Linker Cell 
(n)b 

% Late  
Abnormal 
Linker Cell 
(n)c 

% Linker Cell 
Completely 
Gone  
(n) 

     
Early L4  100(30) 0(30) 0(30) 0(30) 
     
Late L4 Rays  
Visible  

0(30) 3(30) 83(30) 13(30) 

     
0-2-Hr-Old 
Adult 

0(30) 0(30) 13(30) 87(30) 

     
2-4-Hr-Old 0(30) 0(30) 6(30) 94(30) 
Adult     
     
4-6-Hr-Old 
Adult 

0(30) 0(30) 6(30) 94(30) 

     
6-8-Hr-Old 
Adult 

0(30) 0(30) 3(30) 97(30) 

     
n, number of animals scored.  
Males containing the him-5(e1467) mutation for high incidence of males and a 
genomically integrated lag-2::GFP reporter transgene were scored by DIC and 
fluorescence microscopy to assess linker cell morphology. In this population 
study each animal was scored once at one timepoint. 
a A healthy linker cell morphology was scored if the linker cell was of normal 
shape and size and had normal nuclear architecture. See Figure 2.3A for an 
example. 
b An early abnormal linker cell corpse was recorded if the linker cell had lost 
substantial volume, or started large scale blebbing, or had nuclear envelope 
abnormalities such as abnormal indented (or crenellated) nuclear envelope 
shape or signs of nuclear envelope breakdown. See Figure 2.3B or 2.3C for an 
example. 
 c A late abnormal linker cell corpse was recorded if the linker cell had lost 
substantial volume and had assumed a completely round shape. Such linker cell 
corpses invariably had major nuclear abnormalities and in many cases the 
nucleus had completely broken down. See Figure 2.3D or 2.3E for an example.      
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We were curious about the fate of the cytoplasmic bleb that was detaching 

from the nuclear half of the cell. Using a lin-48::GFP marker for U.l/rp (Johnson et 

al., 2001) and an RFP marked linker cell, we observed that as the linker cell 

divided into two parts, each of the parts was taken up by one of the U cell 

descendants—so that both U.lp and U.rp each engulfed a part of the linker cell 

(Figure 2.4). It had not been reported that both U.lp and U.rp each took up part of 

the linker cell. This is probably because without a fluorescent marker, the non-

nuclear bleb is difficult to follow. This large-scale division into two parts has not 

been previously described for any other cell deaths in C. elegans or for 

programmed cell deaths in other systems. The blebbing that is normally 

described associated with apoptosis occurs on a much smaller scale—tiny 

fragments of the cytoplasm bleb off from the dying cell. This blebbing process is 

not dependent on the U cell descendants, and may be a cell-intrinsic property of 

the linker cell, as it can also occur in a linker cell migratory mutant background 

such as him-4 (Vogel and Hedgecock, 2001), in which the linker cell does not 

reach the vicinity of U.l/rp (Figure 2.5A). What appears to be an intrinsic linker 

cell blebbing process can also be consistently seen in daf-12 animals (Antebi et 

al., 2000), in which the non-nuclear half of the bleb appears to be able to migrate 

a significant distance in the correct direction, even though it is not attached to the 

nuclear half, or attached through a long cytoplasmic process (Figure 2.5C). 

Perhaps because it is such a large cell, the linker cell divides into two parts to 

facilitate its engulfment.  
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Figure 2.4  The Linker Cell Blebs into Two Parts, Each Part is Engulfed by 
Either U.lp or U.rp. 
(A) DIC (top), GFP fluorescence (middle), and combined GFP + mCherry 
fluorescence (bottom) images of a linker cell (arrow) expressing a lin-29 
promoter::mCherry reporter transgene being divided into two parts as it is being 
engulfed by U.lp (top cell) and U.rp (bottom cell) expressing a lin-48 
promoter::GFP reporter transgene. Ventral view. Scale bar, 3 μm. 
(B) Fluorescence and DIC merge (top), and fluorescence merge (bottom) of 
images taken at two different focal planes in the same animal in which the 
nuclear half of the linker cell bleb (arrow) is completely engulfed by U.rp, and the 
cytoplasmic half of the linker cell bleb (arrowhead) is completely engulfed by U.lp. 
The linker cell expresses a lin-29 promoter::mCherry reporter transgene and 
U.l/rp expresses a lin-48 promoter::GFP reporter transgene. Cloaca outlined in 
black. RFP bleed-through of the linker cell cytoplasmic half is visible in the image 
of the linker cell nuclear half. Anterior, left. Dorsal, top. Scale bar, 5 μm. 
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Figure 2.5  Linker Cell Blebbing into Two Does Not Require U.l/rp  
(A) Combined GFP + DIC (top), and GFP fluorescence (bottom) images of a 
linker corpse (arrow) expressing a lag-2::GFP transgene, which has given off a 
bleb (arrowhead) in a him-4(e1267) migratory mutant in which the linker cell has 
migrated adjacent to the pharynx at the head of the worm. Anterior, left. Dorsal, 
top. Scale bar, 5 μm. 
(B) An image of linker cell blebbing in progress. Scale bar, 5 μm. 
(C) Combined GFP + DIC (left), and GFP fluorescence (right) images of a linker 
corpse (arrow) expressing a lag-2::GFP transgene, which has given off a bleb 
(arrowhead) in a daf-12(rh61rh411) migratory mutant. Note the considerable 
distance that the bleb has migrated away from the nuclear half of the cell. Scale 
bar, 5 μm. 
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Linker Cell Death and the Cell Cycle 

The observation of linker cell division into approximately two roughly equal sized 

parts led to the speculation that the cell death program might be utilizing aspects 

of the cell division machinery, for example, the cytokinesis apparatus. No 

fluorescent markers for cytokinesis have been described in C. elegans, however, 

we were able to check a fluorescent marker for cell differentiation—a promoter 

fusion of the gene cki-1 (cyclin dependent kinase inhibitor) to GFP. cki-1 is a G1 

cyclin dependent kinase inhibitor whose expression is associated with post-

mitotic or developmentally regulated G1 arrested cells (Hong et al., 1998). We 

could see cki-1::GFP expression in 44/45 linker cells at the late L4 stage when 

the linker cell had reached the region where it dies. We also checked for 

expression of the ribonucleotide reductase gene rnr, which is an S phase specific 

reporter (Hong et al., 1998). A transgenic strain with the rnr promoter fused to 

GFP (Hong et al., 1998) did not show fluorescent expression in the linker cell in 

35/35 larvae examined around the time of linker cell death.  

 

Linker Cell Death and Vacuolar Formation 

Another striking feature of linker cell death was the appearance of vacuoles 

associated with the linker cell corpse as it degrades (Figure 2.3E). These 

structures were not a consequence of non-specific anesthetic damage, as they 

could be seen in linker cells mounted in simple buffer alone, such as S-Basal or 

M9. In a study in which linker cell death was observed in wild-type animals 
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anesthetized with levamisole, a muscle blocker, we could observe the vacuolar 

structures forming in vivo (Figure 2.6A). These vacuoles seem similar to 

structures that are observed by DIC optics during necrotic cell death in C. 

elegans (Hall et al., 1997). The vacuoles appear to be located inside the 

engulfing U cell descendants, and can be consistently observed during the 

process of linker cell death (Figure 2.6). With our fluorescently marked linker cells 

we can see that these vacuolar structures appear to be derived of material of 

linker cell origin (Figure 2.6). Sometimes by DIC optics we can see small 

unidentified particles moving rapidly about inside the vacuoles (Figure 2.6C). 

Interestingly, a study of wild-type aging C. elegans worms noted, “Necrotic 

cavities of various sizes appeared, often containing vibrating particles that 

appeared to display Brownian motion,” which is a description that could be 

applied to linker cell associated vacuoles (Garigan et al., 2002). 

We have also carried out transmission electron microscopy (TEM) studies 

of these vacuolar structures (TEM work by Yun Lu). The vacuoles appear to be 

empty apart from flocculent material, somewhat similar to vacuoles seen in late 

necrotic cells (Figure 2.7A). They may be possibly formed from swollen 

endoplasmic reticulum. In one animal, smaller swollen vesicles with similar 

content to the large vacuole could be seen (Figure 2.7B; Figure 2.7C). An image 

of medium-sized vacuoles apparently merging can be seen in the Appendix 

(Appendix Figure 3). 
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Figure 2.6  Linker Cell Death is Associated With Vacuolar Formation  
(A) Time course of vacuolar formation by the linker cell in a single wild-type late 
L4 animal observed at different timepoints. The worm expresses a lag-2::GFP 
reporter in the linker cell. DIC and fluorescent (inset) images. Vacuole formation 
indicated with asterisks. The worm was anesthetized with levamisole and kept on 
the slide between imaging. Under anesthetic treatment, development proceeds 
more slowly than normal, so the times between the different stages of cell death 
observed here are probably longer than in an unanesthetized wild-type animal. 
Scale bar, 3 μm. 
At T=0, the linker cell (arrow) is completely round and its cell membrane is 
visible. The nuclear envelope of the linker cell nucleus is still partially visible 
(arrowheads), and very small vacuoles can be noted to the right of the linker cell 
corpse. 
At T= + 1 hr, the linker cell nucleus is no longer visible and the cell has assumed 
a refractile button-like corpse morphology.  
At T= +2 and +3 hr, vacuoles (asterisk) form which contain GFP derived from the  
linker cell. 
(B) DIC (top) and fluorescence (bottom) images of a clear vacuole (asterisk) 
containing mCherry, in an animal expressing lin-29 promoter::mCherry (arrow, 
linker cell corpse) and lin-48::GFP (U.l/rp) transgenes, late during linker cell 
death. Arrowheads, nuclei of engulfing cell. Scale bar, 5 μm. 
(C) DIC (top) and fluorescence (bottom) images of a linker cell corpse in a wild-
type animal expressing a lag-2::GFP reporter. Note the small particles visible in 
the vacuole (arrowhead). Scale bar, 5 μm. 
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(A) Two vacuoles containing flocculent material (asterisks) are shown within the 
U.l/rp cell. Arrow, U.l/rp nucleus. Such vacuoles may be engulfed linker cell 
components that have been degraded. Vacuoles flank a disintegrating linker cell 
(arrowhead) also engulfed by U.l/rp. IG, intestinal granule. Scale bar, 1 μm. 
(B) In another animal, another example of a vacuole (asterisk). Smaller vesicles 
appear to be contributing material to the vacuole. Scale bar, 0.5 μm. 
(C) Same animal as in (B), but a later section in which the vacuole (asterisk) is 
larger and there are substantially less smaller vesicles. Scale bar, 0.5 μm. 
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Electron Microscopy Studies of Wild-type Linker Cell Death 

By DIC optics, we could see some morphologies of linker cell death that were 

characteristic of apoptotic programmed cell death—the button-like corpse (Figure 

2.3E), and some morphologies that were novel, like large-scale blebbing (Figure 

2.3D) or the necrotic-like vacuolar structures (Figure 2.3E). To try to determine 

the exact nature of linker cell death, in particular to try to discover if linker cell 

death showed the characteristic electron microscopy morphological features of 

apoptosis such as chromatin and cytoplasmic compaction or if it had different  

characteristics of cell death, we decided to conduct transmission electron 

microscopy studies of wild-type animals around the time of linker cell death (I 

started the TEM studies with initial help from Ken Nguyen, Gloria Stephney, and 

David Hall in the Hall laboratory, and then the vast majority of the TEM work was 

carried out by Yun Lu when she joined the Shaham laboratory). 

The images we obtained of the earliest stage of linker cells undergoing 

programmed cell death showed comparatively healthy linker cells with normal 

nuclear architecture and chromatin, and normal cytoplasm. However, although 

the cell looked healthy, it was already being engulfed (Figure 2.8A).  

Later stage images of cell death showed more dramatic changes to the 

nuclear architecture and much more extreme indentation of the nuclear envelope, 

also known as nuclear crenellation (Figure 2.8C). However, in the corpses where 

the nucleus was visible, we never saw any indications of dark regions of 
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chromatin compaction, a characteristic and defining hallmark of apoptotic 

programmed cell death. 

The most dramatic phenotype visible in a dying linker cell was 

abnormalities in the cytoplasm, especially formation and aggregation of 200 nm 

wide single-membrane cytoplasmic vesicles (Figure 2.8F), some of which may 

be swollen mitochondria (Figure 2.8J). The accumulation of vesicles within the 

linker cell raised the possibility that these may be autophagosomes, however, the 

vesicles that we observed were morphologically distinct from previously 

described double membranous autophagosomes (Baehrecke, 2003; Baehrecke, 

2005; Levine and Yuan, 2005) since they contained either single or multiple 

membranous layers, they did not appear to contain the dark material 

characteristic of lysosomal destruction, and they were substantially larger than 

typical autophagosomes. Swollen and degraded mitochondria within large 

multilayered membrane-bound structures could also be clearly seen (Figure 

2.8J). Small electron-translucent “empty” membrane-bound cytoplasmic 

structures were abundant during linker cell death, and these structures may be 

derived from the endoplasmic reticulum (Figure 2.8H). These white swollen 

structures were also visible in a dying linker cell in a migratory mutant 

background of him-4 (Vogel and Hedgecock, 2001), in which the linker cell 

migration is defective and the linker cell ends up at the head of the animal and is 

not engulfed by U.l/rp (Figure 2.8G).  
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Figure 2.8  Linker Cell Death is Not Apoptotic by Electron Microscopy 
Analysis 
(A) Image of a linker cell at the beginning of the cell death process before an 
obvious corpse structure is seen by DIC microscopy. Note that, although 
engulfed, the linker cell displays normal morphology, including a well-defined 
nucleus and a prominent nucleolus (black circular structure). Scale bar, 1 μm.   
(B) A tracing of the image in (A).                                                                                
(C) A highly invaginated (“crenellated”) nuclear membrane (arrow) of a dying 
linker cell. Scale bar, 0.5μm.                                                                                     
(D) A linker cell at a later stage of death. Note the accumulation of 200 nm 
vesicles (black arrow), possibly degraded mitochondria, within the linker cell. 
Note absence of condensed chromatin in the nucleus (white arrow). The darkly 
staining material in the middle of the cell was only seen in 1/11 linker cells that 
we examined. Scale bar, 1 μm.                                                                              
(E) A tracing of the image in (D).                                                                                    
(F) The vesicles shown in (D) at higher magnification. Scale bar, 100 nm.  
(G) Dying linker cell cytoplasm in a him-4(e1267) male in which the linker cell 
migrates to the anterior of the animal and the linker cell is not engulfed by U.l/rp.  
Black arrows, swollen endoplasmic reticulum. Scale bar, 500 nm.   
(H) Another linker cell at a late stage of death. The nuclear envelope is 
crenellated (indented). Black arrow indicates 200 nm vesicles. Arrowhead, a 
large membrane-bound structure that may correspond to the GFP-labeled bleb 
seen in Figure 2.3D. Note the “empty” clearings within the cytoplasm (white 
arrows). Scale bar, 1 μm.                                                                                         
(I) A tracing of the image in (H).                                                                                  
(J) A late stage dying linker cell. Note multilayered membrane structures 
surrounding mitochondria (arrow), the dilation of mitochondrial cristae (white 
arrowhead), and small clearings in the cytoplasm (black arrowheads). Scale bar, 
200 nm. 
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 Strikingly similar morphologies have been ascribed to the little studied 

third class of programmed cell death, also known as type III—the non-apoptotic, 

non-autophagic programmed cell death (Clarke, 1990). This type of cell death, 

characterized predominantly by cytoplasmic abnormalities, involves nuclear 

crenellation (indentation) in the absence of chromatin compaction, accompanied 

by cytoplasmic changes characterized by “dilation of ER, nuclear envelope, Golgi 

and sometimes mitochondria, forming ‘empty’ spaces” (Clarke 1990). Several 

researchers have reported observing cell death with similar features in 

vertebrates. For example, Pilar and Landmesser (1976) described such 

morphological features during the normal death of neurons in developing chick 

ciliary ganglia, and this publication also contains images of vesicles strikingly 

similar to the 200nm vesicles we see in linker cell death. A type III morphology 

was described in chick retinal ganglion cells that have been axotomized (Borsello 

et al., 2002), and in motor neurons that normally die in the chick spinal cord 

(Chu-Wang and Oppenheim, 1978). Some cells have been reported to die with 

the type III morphology during human tail retraction (Sapunar et al., 2001). 

Intriguingly, spinal motor neurons in mice lacking caspase-3 or caspase-9 die as 

in normal development, and display mitochondrial swelling and electron-

translucent cytoplasmic structures similar to those seen in dying linker cells, so 

perhaps the vertebrate pathway for type III PCD is caspase-independent 

(Oppenheim et al., 2001). 

(For additional linker cell TEM images, and published images of similar cell 
deaths in vertebrates, see the Appendix.) 
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The Linker Cell and the Gonad 

It had been previously reported that the linker cell is required as a migratory 

leader cell of the male gonad, and loss of the linker cell by ablation prevents the 

gonad from developing properly (Kimble and White, 1981). We repeated these 

experiments (n=2), and confirmed that when the linker cell is ablated there is 

abnormal gonadal development and the gonad does not migrate further or 

connect to the exterior of the animal. We also wanted to assess if the gonadal 

cells adjacent to the linker cell could be providing some positive signal that was 

necessary for linker cell survival. To assess this possibility, we carried out laser 

ablations (Bargmann and Avery, 1995) of the gonadal cells adjacent to the linker 

cell in animals in which the linker cell was still at the migratory stage of its life. 

We performed these ablations in an egl-5 background in which most of the gonad 

does not migrate with the linker cell, making it easier to ablate the few gonadal 

cells that migrate adjacent to the linker cell (Chisholm, 1991). In 5/5 animals in 

which we had ablated the gonadal cells, the linker cell did not die, but appeared 

to be capable of migrating normally on its path. In rare instances in other mutant 

backgrounds, we have occasionally seen healthy linker cell cells migrating 

normally apparently in the absence of adjacent vas deferens cells, although in 

these cases we did not have a fluorescent marker to confirm absence of vas 

deferens cells, which were identified based only on DIC optics.    
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CONCLUSIONS 

The biological importance of the correct regulation of linker cell death is 

underscored by linker cell ablation experiments, which confirmed that the linker 

cell plays an essential role as a migratory leader cell of the male gonad. When 

the linker cell is ablated, the gonad cannot migrate or connect to the exterior of 

the animal. So premature death of the linker cell would render a male sterile.  

By light and fluorescence microscopy investigation we have been able to 

uncover some previously undescribed features of linker cell death. We have 

identified a range of morphological changes that characterize linker cell death, 

and identified two new features of linker cell death: a blebbing of the dying cell 

into two parts, each of which is taken up by either U.lp or U.rp, and a necrotic-like 

vacuolar formation in which a vacuole arises from linker cell derived material. 

 Transmission electron microscopy studies of dying linker cells reveal that 

the cell appears to die by a new type of programmed cell death in C. elegans; 

linker cell death is neither apoptotic, autophagic, nor necrotic, but most closely 

resembles type III PCD (Clarke, 1990). In TEM images, the nucleus of the dying 

linker cell undergoes shape changes such as indentation or crenellation of the 

nuclear envelope, but not chromatin compaction. The cell shows a range of 

cytoplasmic abnormalities including formation of many large vesicular structures 

that may be swollen organelles. Similar morphological features have been seen 

associated with a number of other vertebrate cell deaths, suggesting that this 

form of programmed cell death may be conserved.  
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Chapter Three 

 

Engulfment and Linker Cell Death 

 

BACKGROUND 

 

Identification of the Process of Engulfment 

In 1908, Ilya Metchnikov was awarded the Nobel Prize in Physiology or Medicine 

for his discovery of the process of phagocytosis and his subsequent work 

elucidating its importance in the functioning of the immune system. He and others 

had observed motile cells in organisms that appeared to have digestive capacity. 

His breakthrough came in 1882, when working on a transparent starfish larvae, 

he introduced a splinter of wood from a rose thorn and observed phagocytic cells 

swarming around the foreign object. He hypothesized that this was a defensive 

action by the cells (Tauber, 2003). He also recognized a role for phagocytosis in 

normal development, for example, citing the role of phagocytosis in removal of a 

tadpole’s tail (Tauber, 2003), and he speculated that dysfunctional or aging cells 

could be targeted for removal by phagocytosis (Tauber, 2003). Metchnikov was 

interested in the theory that an organism is formed from competing groups of 

cells that have to somehow cooperate as a whole, and that perhaps phagocytes 

act as one of the mechanisms that can keep things in check, by removing cells 

that end up in the wrong place.  
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The Immune System and Phagocytosis of Dying Cells  

Phagocytosis may be very important for correct immune system function, for 

example, in presentation of antigens by the phagocyte when an immune 

response needs to be triggered (Skoberne et al., 2005). What determines 

whether or not an immune response is launched is a major question and an 

active field of research. Usually phagocytosis of apoptotic cells is associated with 

an anti-inflammatory response, however, in cases of autoimmunity, through 

mechanisms unknown, an immune reaction may be triggered (Ren and Savill, 

1998). 

 When a cell dies necrotically, this may be a consequence of disease or 

infection, circumstances where it may be advantageous to elicit an immune 

response. Some signals have recently been identified that may govern whether a 

necrotic cell triggers an immune response, such as the release of HMGB1, a 

nuclear protein associated with chromatin (Scaffidi et al., 2002). An in vitro study 

of human cells suggested that signals that triggered a necrotic form of cell death 

did not prevent the cells from being phagocytosed (Hirt et al., 2000), and in C. 

elegans, necrotic cells are engulfed using the same engulfment machinery used 

for apoptotic cells (Chung et al., 2000). In mammals, necrotic cells may not 

necessarily be taken up in the same way as apoptotic cells. In one study of an in 

vitro system of macrophage engulfment, apoptotic cells were taken up complete, 

whereas necrotic cells were taken up by a means of macropinocytosis (Krysko et 

al., 2006b).  
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Phagocytic Target Recognition—“Eat Me” Signals 

Phosphatidylserine exposure is the classic example of a recognition signal given 

by a dying cell when it is engulfed by a macrophage (Fadok et al., 1992). 

However, the identity of the phosphatidylserine receptor remains to be 

conclusively determined (Bose et al., 2004). A number of ligands and receptors 

for engulfment have been identified in mammalian systems (Krysko et al., 

2006a). For example, in a healthy cell CD31/PECAM-1 mediates detachment 

from macrophages, but this CD31-based detachment does not occur in an 

apoptotic cell, leaving the cell vulnerable to attachment by macrophages (Brown 

et al., 2002). SIRPα (a inhibitory receptor for phagocytosis on macrophages) and 

its ligand CD47 can interact and prevent phagocytosis—it has been shown that 

red blood cells lacking CD47 are rapidly cleared by macrophages (Oldenborg et 

al., 2000).    

 

C. elegans Studies of Engulfment 

Early studies of C. elegans development noted that dying cells could be engulfed 

by their sister cells during early development (Sulston et al., 1983), during later 

development by hypodermal cells (Robertson and Thompson, 1982), or by 

gonadal sheath cells in the germline (Gumienny et al., 1999). C. elegans does 

not have a dedicated class of specialized motile engulfing cells.   

In vivo studies of engulfment are perhaps most advanced in C. elegans. 

Some of the first cell death genes isolated in C. elegans were the engulfment 
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genes ced-1 and ced-2 (Hedgecock et al., 1983). In these two mutant 

backgrounds one of the first observations made was that even though 

engulfment was impaired when observed by electron microscopy, this did not 

prevent cell death from occurring, and the main phenotype of the mutations was 

persistence of dead cell corpses (Hedgecock et al., 1983). In general, in C. 

elegans and in most studied systems, engulfment appears to be a process more 

important for clearance of corpses than being required for execution of cell death. 

Although there are indications that engulfment may have some role in facilitating 

cell death in C. elegans (Hoeppner et al., 2001; Reddien et al., 2001). A few 

examples have even been found where engulfment may be required for cell 

death to occur. This has been reported for the B.a(l/r)rapaav cell in the C. 

elegans male (Hedgecock et al., 1983), and a few such examples have also been 

given for vertebrates including macrophages being required for some cell deaths 

during eye development (Griffith et al., 1995). 

In C. elegans, a total of seven engulfment genes have been cloned and 

identified, most of which act in the engulfing cell, and several of which appear to 

be cytoskeletal regulators (Table 3.1). Analysis of double engulfment mutants 

have shown that they appear to fall into two partially redundant pathways, one 

pathway defined by ced-1, ced-6, ced-7, and the other by ced-2, ced-5, ced-10, 

and ced-12 (Ellis et al., 1991; Gumienny et al., 2001). Animals combining 

mutations in both pathways have a stronger engulfment block.   
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Table 3.1  Molecular Identity of Known C. elegans Engulfment Genes 
    
Gene Molecular Identity Site of Action Reference 
    
ced-1 Transmembrane 

protein. Homologous 
to human CD91.  

Engulfing cell Zhou et al., 2001 

    
ced-2 SH2 and SH3 

containing adaptor 
protein. Homologous 
to human CrkII. 

Engulfing cell Reddien and Horvitz, 
2000 

    
ced-5 SH3 domain 

containing protein. 
Similar to human 
DOCK180. 

Engulfing cell Wu and Horvitz, 1998 

    
ced-6 Contains SH3 and 

phosphotyrosine 
binding domain. 
Homologous to human 
CED-6/GULP. 

Engulfing cell Liu and Hengartner, 
1998 

    
ced-7  ABC transporter. 

Similar to human ABC 
transporters. 

Dying cell and 
engulfing cell 

Wu and Horvitz, 1998 

    
ced-10 GTPase. Homologous 

to human RAC1. 
Engulfing cell Reddien and Horvitz, 

2000 
    
ced-12 PH domain protein. 

Similar to human 
ELMO. 

Engulfing cell Gumienny et al., 
2001 
Zhou et al., 2001 
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Drosophila Studies of Engulfment  

In Drosophila, macrophages can ingest both invading bacteria and apoptotic 

cells. The receptor Croquemort, similar to CD36—a human scavenger receptor, 

which is expressed on macrophages, was identified as being important for 

engulfment of apoptotic cells (Franc et al., 1999). Ubiquitous expression of 

Croquemort did not permit cells to engulf that were not macrophages, so 

Croquemort is not sufficient for phagocytic behavior (Franc et al., 1999).  

 

Engulfment and Human Disease 

The autoimmune disease lupus has been associated with defective engulfment in 

mouse models of the disease (Potter et al., 2003), and macrophages from lupus 

patients have impaired engulfment capacity (Hermann et al., 1998). Impaired 

engulfment of apoptotic cells has been associated with some chronic 

inflammatory lung disease (Vandivier et al., 2006).  

 

Engulfment, With a Limited Appetite 

There are some suggestions from the literature that engulfment may also be 

regulated in some circumstances to devour only partial regions of a cell, for 

example, in axon pruning during development in Drosophila (Awasaki et al., 

2006; MacDonald et al., 2006), or another fascinating process is the daily 

phagocytosis in the vertebrate eye of rod outer segments by the adjacent retinal 

epithelium (Nguyen-Legros and Hicks, 2000).  
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RESULTS 

 

Microscopy Analysis of Wild-type Linker Cell Engulfment 

Using the lin-48::GFP marker for U.l/rp (Johnson et al., 2001), and an RFP 

marker we created for the linker cell, we were able to observe linker cell 

engulfment in vivo (Figure 3.1). The linker cell approaches (Figure 3.1A), and 

then reaches U.l/rp (Figure 3.1B). It does not appear that U.l/rp reaches forward 

to contact the linker cell before the two cells meet. U.l/rp then begins to engulf the 

linker cell, forming a sort of “candy scoop” around it, even though the linker cell is 

of a healthy morphology (Figure 3.1C). The linker cell blebs into two parts, one 

nuclear and one non-nuclear (see Figure 2.3D; Figure 2.8H), which are engulfed 

by U.lp and U.rp and the linker cell is completely engulfed (Figure 3.1D). This 

process is accompanied by vacuole formation from linker cell derived material 

(see Figure 2.6; Figure 2.7). After engulfment and destruction of the linker cell, 

U.l/rp subsequently elongate and adhere to the vas deferens (Sulston et al., 

1980).  

 

Engulfment by U.l/rp is Not Required For Linker Cell Death 

It has been reported that linker cell death may depend on a signal from its 

engulfing cell (Sulston et al., 1980). To test this hypothesis, at the L1 stage we 

used a laser microbeam to ablate U (Bargmann and Avery, 1995), the U.l/rp  



 72 

 
 

 
 

 
 

 
 
Figure 3.1  Wild-type Linker Cell Engulfment by U.l/rp 
Animals express a lin-29 promoter::mCherry in the linker cell and a lin-48 
promoter::GFP in U.l/rp. Left, DIC and fluorescence merge. Right, fluorescence 
only. Scale bar, 5 µm.  
(A) At late L4 stage, the linker cell (arrow) begins to approach U.l/rp. Ventral 
view. 
(B) The linker cell reaches U.l/rp. Cloaca outlined in black. Anterior, left. Dorsal, 
top. 
(C) The linker cell begins to be engulfed by U.l/rp. Note the processes 
(arrowhead) starting to envelope the linker cell. Cloaca outlined in black. Anterior, 
left, Dorsal, top.  
(D) The linker cell is completely engulfed by U.l/rp. Cloaca outlined in black. 
Anterior, left. Dorsal, top. 
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grandparental precursor cell. Linker cell fate in operated animals containing a 

genomically integrated lag-2 promoter::GFP transgene, expressed in the linker 

cell, was followed until 2 hr after the L4 to adult transition. By this time, linker 

cells in wild-type animals have already died (Table 2.1). In 18/18 operated 

animals and 17/18 mock-ablated animals, linker cell death occurred, as assessed 

by disappearance of GFP expression or appearance of a GFP-labeled cell 

corpse. This suggests that linker cell death does not require the U.l/rp cells. 

 

Linker Cell Death Can Occur in a Migratory Mutant Background 

To test whether other local cues instead of U.l/rp might promote linker cell death, 

we examined a him-4(e1267) background in which linker cell migration is 

abnormal and the cell often migrates only to the anterior of the animal (Vogel and 

Hedgecock, 2001). The linker cell died in most animals observed (Table 3.2), 

suggesting that linker cell death can occur cell autonomously and doesn’t require 

any short-range extrinsic spatial cue from the cloacal region to initiate its death. 

Linker cell death also occurs in other migratory backgrounds. However, the cell 

did survive in 16% of him-4 animals examined 6 hr after the L4 to adult molt. 

Furthermore, a dying linker cell corpse was still visible in 73% (n = 30) of him-4 

mutants 2 hr after the molt, while corpses at this stage were seen in only 13% (n 

= 30) of wild-type animals (Table 3.2; Table 2.1). These results suggest that a 

local signal from the cloacal area, or the engulfment capabilities of U.l/rp may 

increase the efficiency with which linker cell death or engulfment proceeds.  
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Table 3.2  DIC Study of Linker Cell Death Morphology in him-4(e1267) 
 
Animal Age % Healthy 

Linker Cell 
(n)a 

% Early 
Abnormal 
Linker Cell 
(n)b 

% Late  
Abnormal 
Linker Cell 
(n)c 

% Linker Cell 
Completely 
Gone  
(n) 

     
Early L4  100(15) 0(15) 0(15) 0(15) 
     
Late L4 Rays  
Visible  

20(25) 8(25) 68(25) 4(25) 

     
0-2-Hr-Old 
Adult 

13(30) 3(30) 70(30) 13(30) 

     
2-4-Hr-Old 7(30) 17(30) 46(30) 30(30) 
Adult     
     
4-6-Hr-Old 
Adult 

16(32) 6(32) 31(32) 47(32) 

     
n, number of animals scored.  
Males containing a genomically integrated lag-2::GFP reporter transgene were 
scored by DIC and fluorescence microscopy to assess linker cell morphology. In 
this population study each animal was scored once at one timepoint. 
a A healthy linker cell morphology was scored if the linker cell was of normal 
shape and size and had normal nuclear architecture. See Figure 2.3A for an 
example. 
b An early abnormal linker cell corpse was recorded if the linker cell had lost 
substantial volume or started large scale blebbing or had nuclear envelope 
abnormalities such as abnormal indented (or crenellated) nuclear envelope 
shape or signs of nuclear envelope breakdown. See Figure 2.3B or 2.3C for an 
example. 
 c A late abnormal linker cell corpse was recorded if the linker cell had lost 
substantial volume and had assumed a completely round shape. Such linker cell 
corpses invariably had major nuclear abnormalities and in many cases the 
nucleus had completely broken down. See Figure 2.3D or 2.3E for an example.      
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Linker Cell Death in an Animal With Two Linker Cells 

The conclusion that death of the linker cell is more efficient in the normal location 

compared with a linker cell migratory mutant background, is consistent with 

experiments in which we observed linker cell death in animals with two linker 

cells. mig-5, a Dishevelled family member regulates cell fate decisions, and in a 

mig-5 mutant background, the two cells with the potential to become the linker 

cell can both give rise to linker cells (Walston et al., 2006). When we carried out 

RNAi experiments targeting mig-5, we found that the two linker cells formed 

could have different migratory fates. Usually one linker cell would go to the 

normal cloacal region, and the other linker cell might also go to the cloacal region 

or could end up in the middle of the animal or in the head region. We examined 

19 mig-5 RNAi animals with two linker cells to determine the effect of linker cell 

location on linker cell death and corpse formation. We noted the approximate 

positions of the linker cells under the dissecting microscope, and when the 

animals were adults we assessed the linker cells using a compound microscope. 

In 8 of the animals (42%), the more anterior linker cell—the one further away 

from U.l/rp—was less advanced in the death program, for example, it was at an 

earlier stage of corpse formation compared with the linker cell that was beside 

U.l/rp. In 9 of the animals (47%), the stage of the death program seemed roughly 

equivalent for the linker cell beside U.l/rp and for the linker cell that was further 

away. In only two animals (11%), did the linker cell being engulfed by U.l/rp 
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appear less advanced in the death program compared with the linker cell dying 

elsewhere. 

 

Linker Cell Death is Independent of Known Engulfment Genes 

Two partially redundant pathways have been described in C. elegans for the 

phagocytosis of both apoptotic (Gumienny et al., 2001; Mangahas and Zhou, 

2005) and necrotic (Chung et al., 2000) cells. One pathway consists of the genes 

ced-1, ced-6, and ced-7, and the other of the genes ced-2, ced-5, ced-10, and 

ced-12. Since it has been suggested that engulfment may facilitate programmed 

cell death (Reddien et al., 2001; Hoeppner et al., 2001), we assessed the effect 

of known engulfment genes on linker cell death and we found that these 

mutations had no effect on survival (Table 3.3). For example, within a 2 hr period 

after the L4 to adult transition, the linker cell died in 29/30 animals defective for 

both the ced-1 and ced-5 engulfment genes. 

 

Linker Cell Engulfment Is Independent of Known Engulfment Genes 

The result that engulfment genes do not block linker cell death suggests either 

that engulfment is not necessary for linker cell death, or that the known 

engulfment genes do not participate in linker cell engulfment, or both. To 

distinguish between these possibilities, we assessed the efficiency of linker cell 

engulfment by the U.l/rp in animals carrying mutations in known engulfment 

genes. The marker lin-48 is expressed in the U.l/rp cells (Johnson et al., 2001),  

and using this marker we can visualize engulfment in vivo, which is not readily  
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Table 3.3  Role of Engulfment Genes in Linker Cell Death 

Genotypea % Linker Cell 
Survival in 0-2-Hr- 
Old Adults(n)b  

% Linker Cell 
Survival in 4-8-Hr-
Old Adults(n) 

No. Extra Cells  
Anterior Pharynx  
(n) c 

    
Wild-type 0(30) 0(30) 0.2±0.4(15) 
 
ced-1(e1735) 

 
7(30) 

 
0(29) 

 
0.1±0.3(15) 

 
ced-2(e1752) 

 
0(30) 

 
3(30) 

 
ND 

    
ced-5(n1812) 3(30) 0(30) 0.3±0.5(15) 
    
ced-6(n2095) 0(30) 3(30) ND 
    
ced-7(n1892) 3(30) 0(30) 0.1±0.3(15) 
    
ced-10(n1993) 0(30) 3(30) 0.3±0.5(15) 
    
ced-12(k149) 0(30) 0(30) ND 
    
ced-1(e1735);  
ced-5(n1812) 

3(30) 3(30) 0.1±0.3(10) 

    
ced-7(n1892);  
ced-10(n1993) 

0(30) 3(30) 0.3±0.5(13) 

    
n, number of animals scored. ND, not determined. 
a Males containing a genomically integrated lag-2::GFP reporter transgene were 
scored by DIC and fluorescence microscopy to assess linker cell morphology. All 
strains described also contained either the him-5(e1467) or him-8(e1489) 
mutations for high incidence of males. In this population study each animal was 
scored once at one timepoint. 
b Linker cell survival was scored if a healthy linker cell morphology was visible 
and the cell was of normal shape and size and had normal nuclear architecture. 
See Figure 2.3A for an example of a healthy linker cell. 
c Number of extra cells in the anterior pharynx of males of indicated genotype 
was assessed as described in the Materials and Methods section. Mean ± SD. 
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discernible without use of a fluorescent marker, since cell membranes in   

C. elegans are not usually visible by DIC optics. Specifically, GFP-labeled U.l/rp 

cells of males undergoing the L4 to adult molt were examined for cellular 

extensions completely surrounding the linker cell (Figure 3.1D). Surprisingly, we 

found that engulfment still proceeded at high efficiency in these mutants (Table 

3.4). For example, 30/31 linker cells were still engulfed in ced-1(e1735); ced-

5(n1812) double mutants (Figure 3.2A). By comparison, the NSM sister cell that 

dies during development is not engulfed in 52% of ced-1(e1735); ced-5(n1812) 

double mutants (Ellis et al., 1991), and the tail-spike cell is not engulfed in 94% of 

ced-5(n1812) mutants (Maurer et al., 2007). We also investigated any possible 

effect of dyn-1, a GTPase that is expressed and active in engulfing cells that are 

removing apoptotic corpses (Yu et al., 2006), but no effect was seen (Table 3.4). 

 

The Linker Cell is Engulfed by a ced-1-independent Mechanism 

In C. elegans, the CED-1 transmembrane protein, homologous to human 

scavenger receptors, is expressed in engulfing cells and clusters around dying 

cell corpses to promote engulfment (Zhou et al., 2001). A translational fusion of 

CED-1::GFP shows bright clustering around corpses being engulfed and this 

construct can rescue ced-1 loss-of-function (Zhou et al., 2001). Consistent with 

our finding that known engulfment mutants do not block linker cell engulfment, we 

never detected CED-1 clustering around the linker cell in wild-type animals, 

despite expression of the transgene in U.l/rp cells (n = 30) (Figure 3.2B).  
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Table 3.4  Mutants of Known Engulfment Genes Do Not Block Linker  
                   Cell Engulfment 
 
Genotype % U.l/rp Cells Extending Processes  

to Surround the Linker Cell (n) a 
  
Wild-type 96(27) 
 
ced-1(e1735) 

 
100(30) 

  
ced-5(n1812) 100(30) 
  
ced-7(n1892) 97(30) 
  
ced-10(n1993) 93(30) 
  
ced-10(n3417)b 92(13) 
  
ced-1(e1735);  
ced-5(n1812) 

97(31) 

  
dyn-1(ky51ts)c 100(32) 
  
n, number of animals observed. 
 a Animals were scored at the late L4 stage just prior to the molt to adult to provide 
enough time for complete engulfment, if it occurred, to become obvious.  
b Homozygous mutants of this allele from a homozygous ced-10 mother are 
embryonic lethal; therefore, we scored homozygous ced-10 males from ced-10/+ 
mothers (homozygosity confirmed by PCR). Maternally rescued ced-10 
homozygotes are not embryonic lethal, but show engulfment defects at later 
stages of development (Kinchen et al., 2005).  
c Animals shifted to the nonpermissive temperature (25°C) at least 12 hr prior to 
scoring. 
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Figure 3.2  Linker Cell Engulfment and the Role of CED-1 
(A) A linker cell corpse (arrow) is completely engulfed by U.l/rp in a ced-1(e1735); 
ced-5(n1812) mutant. Scale bar, 5 μm.                                                                       
(B) A linker cell (outlined with asterisks) dying in its normal position does not 
induce CED-1::GFP clustering, even though CED-1::GFP is expressed on the 
engulfing cell membrane (arrows). Arrowheads, nuclei of U.l/rp. DIC (top) and 
fluorescence (bottom) images. Scale bar, 5 μm.                                            
(C) Top: DIC image of a dying linker cell (arrow) in a him-4(e1267) male. Note 
that the cell has failed to complete its normal migration, and ends up in an 
anterior ventral position beside the pharynx. Bottom: close-up DIC (left) and 
fluorescence (right) images of the linker cell showing linker cell engulfment by a 
neighboring cell expressing CED-1::GFP. Note GFP clustering around the linker 
cell appears brighter at one side suggesting that engulfment has just partially 
commenced. Anterior, left. Dorsal, top. Scale bar, 5 μm. 
(D) Top: DIC image of a dying linker cell (arrow) in a him-4(e1267) male. Note 
that the cell has failed to complete its normal migration, and ends up in an 
anterior ventral position beside the pharynx. DIC (top) and fluorescence (bottom) 
images of the linker cell showing linker cell engulfment by a neighboring cell 
expressing CED-1::GFP. Note that the GFP clustering around the linker cell 
corpse appears more uniform than in (C), perhaps indicating the cell is more fully 
engulfed. Anterior, left. Dorsal, top. Scale bar, 5 μm. 
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Taken together, these results suggest that linker cell engulfment proceeds, at 

least in part, by a previously undescribed mechanism. 

The fact that there might be an alternative engulfment pathway has 

already been hinted at from other published experiments. During embryogenesis 

and L1 larval development of a hermaphrodite, 93 cells die in the head region of 

the worm (Sulston et al., 1983). However, when the head of a ced-1(e1735); ced-

5 (n1812) worm, with mutations in both of the partially redundant engulfment 

pathways, is observed at the L1 stage, only 44 persistent cell corpses are visible 

(Zhou et al., 2004). While some of the missing corpses could have been extruded 

into the fluid surrounding the developing embryo, it is also possible that some of 

the cells were engulfed by other mechanisms.  

One possible explanation for why U.l/rp does not use the normal 

programmed cell death engulfment machinery is that it has to use a more 

efficient engulfment system to avoid possible linker cell engulfment by the vas 

deferens. In the hermaphrodite, gonadal sheath cells can engulf germline 

corpses (Gumienny et al., 1999). We have noticed that in migratory mutant 

backgrounds, the linker cell corpse frequently ends up engulfed inside the vas 

deferens, which appears to be fused together at its end and closed up upon itself 

(Figure 3.3A). It appears that the vas deferens expresses CED-1 in the region 

adjacent to the dying linker cell (Figure 3.3D). If the linker cell was taken up by 

the vas deferens, this would trap the linker cell corpse in a position that would 
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Figure 3.3  Linker Cell Engulfment by the Vas Deferens 
(A) Image of a him-4(e1267) animal in which the linker cell migrated abnormally 
and was engulfed by the male gonad. Scale bar, 5 μm.  
(B) Tracing of image in (A). 
(C) Linker cell corpse apparently floating free in the vas deferens. Scale bar, 1 
μm. 
(D) CED-1 may be expressed on the vas deferens adjacent to the linker cell 
(arrow) when it reaches the cloacal region. The vas deferens is outlined in white. 
The engulfing cell U.l/rp is outlined in red. The cloaca is outlined in black. 
Arrowheads indicate the region of the vas deferens contacting the linker cell. 
Anterior, left. Dorsal, top. Scale bar, 5 μm. 
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likely block sperm exit, and the process of engulfment of the linker cell may fuse 

the vas deferens closed. Perhaps U.l/rp is better at engulfing than the vas 

deferens, and U.l/rp is like a professional mammalian phagocyte that can 

recognize earlier signs of cell death (Parnaik et al., 2000).   

 

In Linker Cell Migratory Mutants, Engulfment is by a ced-1-dependent 

Mechanism 

We did find, however, that CED-1::GFP protein clusters around and encircles the 

linker cell when the cell died at an abnormal location in a him-4 mutant (Figure 

3.2C and 3.2D). In these abnormal positions the linker cell is probably engulfed 

by the nearest neighboring hypodermal cell.  

 

Is Engulfment Required for Linker Cell Death? 

Engulfment of the linker cell begins at a very early stage of linker cell death, 

when the linker cell still appears to have a healthy morphology (Figure 2.8A; 

Figure 3.1C). Since known engulfment mutants do not block the linker cell from 

being engulfed (Table 3.4), we cannot assess the role of engulfment in wild-type 

linker cell death. Does the linker cell require engulfment to die? We found that 

CED-1::GFP protein did cluster around and encircle the linker cell when the cell 

died at an abnormal location in a him-4 mutant (Figure 3.2D). However, at this 

location, morphological changes similar to those observed during normal linker 

cell death may precede complete engulfment of the cell (Figure 3.2C), since we 
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can sometimes observe partial regions of CED-1 clustering around a corpse. In 

linker cell migratory mutants, we can occasionally observe a linker cell corpse 

apparently floating free in the vas deferens (Figure 3.3C), clearly not within 

another cell, although we can not rule out the fact that it may have been 

surrounded by another layer of membrane when it entered the vas deferens. 

These results may suggest that in some circumstances linker cell death can be 

uncoupled from engulfment.  

 

CONCLUSIONS 

We have developed a system where death and engulfment can be studied in vivo 

with fluorescent markers. This is the only such system to date in C. elegans 

where a predictable death and engulfment can be studied in such a way. By laser 

ablation we have found that U.l/rp, the usual engulfing cells of the linker cell, are 

not required for linker cell death. We have found that the engulfment of the linker 

cell surprisingly begins when the cell has a healthy morphology. Known C. 

elegans engulfment genes are not required for linker cell death, and they do not 

block linker cell engulfment by U.l/rp. U.l/rp does not use the transmembrane 

receptor CED-1 in linker cell engulfment. In a linker cell migratory mutant 

background, the linker cell still dies, suggesting that the death of the linker cell 

does not require a short range spatial cue from the location of its normal death. In 

a migratory mutant context, the linker cell corpse is engulfed using CED-1, and 

the corpse clearance is lower efficiency than in wild-type.  
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Chapter Four 

 

Known Cell Death Genes and Linker Cell Death  

 

BACKGROUND 

 

Apoptotic Programmed Cell Death in C. elegans  

The first gene identified that affected programmed cell death in C. elegans was 

nuc-1, which resulted in abnormalities in cell corpses in the ventral nerve cord of 

the worm (Sulston, 1976). When the gene was cloned, it was revealed to be 

homolog of mammalian DNase II, and worms carrying the mutation were unable 

to complete the normal process of DNA degradation during cell death (Wu et al., 

2000). A number of genetic screens identified a core pathway of conserved 

genes (Figure 1.2) required for apoptosis in C. elegans. In mutants in ced-3 (loss-

of-function), ced-4 (loss-of-function), ced-9 (gain-of-function), or egl-1 (loss-of-

function) (Conradt and Horvitz, 1998), virtually all of the somatic programmed cell 

death that normally occurs is blocked (Ellis and Horvitz, 1986; Hengartner and 

Horvitz, 1994), and cells that would normally die will survive and can adopt a 

differentiated cell fate. However, Ellis and Horvitz (1986) reported that linker cell 

death occurred in 3/5 ced-3 mutant males, 2/6 ced-4 mutant males, and 1/6 ced-

4(n1162); ced-3(n717) males that they examined, suggesting that, while linker 

cell death was dependent on ced-3 and ced-4, it could proceed in their absence. 
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In C. elegans, four caspase-related genes exist: ced-3, csp-1, csp-2, and 

csp-3 (Shaham, 1998; Yuan et al., 1993); but only ced-3 seems to be required for 

programmed cell death (Abraham and Shaham, 2004; Yuan et al., 1993), and 

only ced-3 and csp-1 are proteolytically active (Shaham, 1998). The CSP-2 

caspase lacks key active-site residues, and csp-3 encodes only a C-terminal 

caspase domain, entirely lacking the active site (Shaham, 1998). In somatic cells, 

CED-3 caspase activity is controlled by a conserved pathway consisting of three 

proteins: EGL-1 (BH3-only), CED-9 (Bcl-2-related), and CED-4 (Apaf-1). In living 

cells, CED-9 protein is thought to bind to and sequester CED-4, preventing 

activation of CED-3. EGL-1 is expressed in some cells destined to die, and can 

bind to CED-9, releasing CED-4 and allowing it to promote CED-3 activation 

(Metzstein et al, 1998). The EGL-1-related protein, CED-13, may act similarly in 

the C. elegans germline (Schumacher et al., 2005) (Figure 1.2).  

The genes required for apoptotic programmed cell death in C. elegans 

appear to act in a cell-intrinsic manner in the dying cell. Transgenic expression of 

these core pathway genes in cells that don’t normally die, such as the touch 

receptor neurons, can induce these cells to undergo programmed cell death with 

a normal apoptotic morphology as demonstrated by electron microscopy analysis 

(Shaham and Horvitz, 1996b). Mosaic studies of ced-3 and ced-4 mutant animals 

in which ced-3 or ced-4 was rescued by an extrachromosomal array also pointed 

towards their cell-autonomous action (Yuan and Horvitz, 1990).  
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Autophagic Cell Death in C. elegans 

Autophagic programmed cell death has not been described in C. elegans, 

although it has been reported that the beclin homolog bec-1 may regulate 

apoptotic cell death (Takacs-Vellai et al., 2005). Another study of bec-1 in C. 

elegans suggested that it plays a role in dauer formation and lifespan extension 

(Melendez et al., 2003). There has been a recent report that autophagic genes 

may regulate necrotic cell death in C. elegans (Toth et al., 2007). 

 

Necrotic Cell Death in C. elegans 

A study of neurodegeneration of touch cells in C. elegans, identified dominant 

mutations in mec-4, a member of the degenerin gene family of ion channels, as 

being responsible for the degeneration of the cells in a manner similar to necrosis 

(Driscoll and Chalfie, 1991). deg-1 also induces necrosis (Chalfie and Wolinsky, 

1990). mec-4 and deg-1 are similar to the vertebrate amiloride-sensitive epithelial 

Na+ channel (Canessa et al., 1993). The mec-4 degeneration-inducing mutant is 

an amino acid substitution, and later work in a human system indicates that this 

mutation is likely to cause hyperactivity of the ion channel (Waldmann et al., 

1996). Similar degenerating phenotypes have been found with a Gα protein 

(Korswagen et al., 1997). The death of these and mec-4 necrotic degenerating 

cells does not require the known apoptotic core pathway genes (Berger et al., 

1998; Chung et al., 2000). Some genes that are required for the execution of 

necrosis in C. elegans have been identified, including aspartyl and calpain 
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proteases (Syntichaki et al., 2002), regulators of calcium release (Xu et al., 

2001), components of the lysosomal pathway (Artal-Sanz et al., 2006), and the 

autophagic pathway (Toth et al., 2007). 

 

RESULTS 

 

Linker Cell Death Appears to Be Caspase-independent 

Although a dying linker cell resembles other apoptotic dying cells in the animal by 

forming a button-like corpse seen with DIC optics when the cell dies (Figure 

2.3E), the dependence of this death on known C. elegans cell death genes has 

not been extensively studied. Surprisingly, we found that the linker cell died just 

after the L4/adult transition in 30/30 ced-3(n717) loss-of-function (lf) mutant 

males examined, suggesting that linker cell death does not require ced-3. We 

could also see that the linker cell corpse was engulfed normally by U.l/rp in a 

ced-3 mutant background, indicating that the linker cell was undergoing its 

normal process of cell death (Table 4.1; Figure 4.1). One possible reason for the 

stronger block in linker cell death compared with that reported previously for this 

allele, may be that in previous studies the linker cell was not followed during and 

after the L4 to adult molt (Ellis and Horvitz, 1986). Thus, scoring the state of the 

cell too early may have been misleading. Another possibility is that, after the 

transition to the adult, the linker cell becomes more difficult to distinguish from 

nearby cells. Therefore, we always used lag-2::GFP or mig-24::GFP reporter 
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Table 4.1  Role of Caspases in Linker Cell Death 
 
Genotypea % Linker Cell 

Survival in 0-2-Hr- 
Old Adults(n)b  

% Linker Cell 
Survival in 4-8-Hr-
Old Adults(n) 

No. Extra Cells  
Anterior Pharynx  
(n) c 

    
Wild-type 0(30) 0(30) 0.2±0.4(15) 
    
ced-3(n717) 0(30) 0(30) 10.5±1.4(15) 
    
ced-3(n2452) 5(18) ND ND 
    
ced-3 (RNAi) 3(30) 3(30) ND 
    
csp-1(tm917) 7(30) 0(30) 0.1±0.4(15) 
    
csp-1(RNAi) 4(26) ND ND 
    
csp-2(tm1079) 3(30) 3(30) 0.1±0.3(15) 
    
csp-3(RNAi) 7(30) 0(30) 0.1±0.4(15) 
    
ced-3(717); csp-1(tm917) 2(50) 0(30) 10.8±1.7(15) 
    
HS-p35d 0(31) ND 3.9±4.2(15) 
 
n, number of animals scored. ND, not determined. 
a Males containing a genomically integrated lag-2::GFP reporter transgene were 
scored by DIC and fluorescence microscopy to assess linker cell morphology. All 
strains described also contained either the him-5(e1467) or him-8(e1489) 
mutations for high incidence of males. In this population study each animal was 
scored once at one timepoint. 
b Linker cell survival was scored if a healthy linker cell morphology was visible 
and the cell was of normal shape and size and had normal nuclear architecture. 
See Figure 2.3A for an example of a healthy linker cell. 
c Number of extra cells in the anterior pharynx of males of indicated genotype 
was assessed as described in the Materials and Methods section. Mean ± SD. 
d p35 expression was induced by applying a 45 minute heat shock to L4 males, 
or during early embryogenesis to assess pharyngeal cell survival. 
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Figure 4.1  The Linker Cell Dies and is Engulfed Normally in a ced-3 
Mutant Background                                                                                     
(A) A dying and fully engulfed linker cell (arrow) in a ced-3(n717) male 
expressing a lin-48 promoter::GFP reporter in the engulfing U.l/rp cell. 
Arrowheads, nuclei of the engulfing U.l/rp. Scale bar, 5 µm.                          
(B) A linker cell button-like corpse (arrow) in a 2-hour-old adult ced-
3(n2452) animal lacking the entire protease domain of ced-3. The linker 
cell is marked with a lag-2 promoter::GFP. Anterior, left. Dorsal, top. 
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Cloaca outlined in black. Scale bar, 5 µm.                                                   
(C) By DIC optics, a linker cell corpse (arrow) appears to be engulfed in a 
2-hour-old adult ced-3(2452) animal. Arrowheads, nuclei of the engulfing 
U.l/rp. Cloaca outlined in black. Anterior, left. Dorsal, top. Scale bar, 5 µm. 
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transgenes to facilitate scoring linker cell presence. We observed linker cell death 

occurring in a ced-3(n2452) mutant with a deletion of the entire protease domain 

of the caspase (Table 4.1; Figure 4.1B), and in males subjected to ced-3 RNA 

interference (RNAi) (Table 4.1).  

To examine whether the other C. elegans caspases may be required for 

linker cell death, we assessed linker cell death in males with deletions in the csp-

1 and csp-2 genes, or subjected to RNAi directed toward csp-1 or csp-3. The 

csp-1(tm917) mutation is a 749 bp deletion in sequences encoding the N-terminal  

non-catalytic domain of the protein. Since the csp-1 gene has an alternative start 

site downstream of the region targeted by the tm917 deletion, we also tried to 

knockdown this gene’s function using an RNAi construct targeting the C-terminal 

region of csp-1 where the protease domain is located. The csp-2(tm1079) 

mutation consists of a 680 bp deletion in sequences encoding the N-terminal 

non-catalytic domain of the protein and a duplication of a small portion of this 

domain. As shown in Table 4.1, none of these mutants or RNAi experiments 

affected linker cell death. Furthermore, linker cell death still occurred in csp-1; 

ced-3 double mutants, and in males in which the broad-spectrum caspase 

inhibitor, p35 (Clem et al., 1991), was overexpressed using a heat shock 

promoter (Sugimoto et al., 1994) (Table 4.1). Taken together, these data suggest 

that linker cell death is ced-3-independent, and likely caspase-independent.  

Known Apoptotic Cell Death Genes Are Not Required for Linker Cell Death          

ced-3-independent but ced-4-dependent cell death has been previously reported 
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in C. elegans embryos carrying mutations in the icd-1 gene (Bloss et al., 2003). 

To determine whether linker cell death proceeded using a similar mechanism, we 

examined linker cell death in ced-4 (loss-of-function) mutants. We found that 

linker cell death still occurred within 4–8 hr of the L4 to adult transition in 30/30 

ced-4(n1162) males that we examined (Table 4.2). Likewise, linker cell death still 

occurred in males carrying an egl-1 (loss-of-function) mutation or a ced-9 (gain-

of-function) mutation, both of which prevent the deaths of most somatic C. 

elegans cells destined to die (Conradt and Horvitz, 1998; Hengartner et al., 1992) 

(Table 4.2). Furthermore, linker cell death still occurred in the large majority of 

animals carrying combinations of mutations in ced-3, ced-4, him-4, and the 

engulfment-promoting genes ced-1, ced-2, ced-5, ced-7, and ced-10, 

demonstrating that, even in these highly sensitized genetic backgrounds, linker 

cell death could still proceed efficiently (Table 4.2). Although a slight delay in 

linker cell death occurred in ced-4(n1162) and ced-9(n1950) mutants, this may 

be attributable to a slight developmental delay in these mutants, rather than a 

direct effect on linker cell death per se. Taken together, the results presented 

here suggest that linker cell death must be regulated, at least in part, by a 

previously undescribed cell death program. 
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Table 4.2  Role of Apoptotic Programmed Cell Death Genes in Linker Cell Death 
 

Genotypea % Linker Cell 
Survival in 0-2-hr- 
Old Adults(n)b  

% Linker Cell 
Survival in 4-8-hr-
Old Adults(n) 

No. Extra Cells  
Anterior Pharynx  
(n) c 

    
Wild-type 0(30) 0(30) 0.2±0.4(15) 
    
ced-3(n717) 0(30) 0(30) 10.5±1.4(15) 
    
ced-4(n1162) 13(30) 0(30) 11.1±1.4(15) 
    
ced-9(n1950) 16(32) 0(30) 10.9±1.6(10) 
    
egl-1(n1084n3082) 3(30) 3(30) 10.6±1.9(15) 
    
ced-13(sv32) 0(30) 0(30) 0.1±0.4(15) 
    
ced-8(n1891) 0(30) 0(30) ND 
    
nuc-1(e1392) 0(30) 0(30) ND 
    
ced-1(e1735); ced-3(n717) 0(30) 0(30) 10.8±2.6(15) 
    
ced-2(e1752); ced-3(n717) 0(30) 0(30) 10.3±1.4(15) 
    
ced-7(n1892); ced-
10(n1993); ced-3(n717)d 

18(44) 15(33) 10.3±1.9(15) 

    
ced-1(e1735); ced-
4(n1162); ced-5(n1812) 

7(30) 7(30) 10.2±1.3(10) 

    
ced-3(n717); him-4(e1267) 16(32) 9(32) 11.0±1.4(10) 
    
ced-4(n1162); him-
4(e1267) 

16(32) 3(29) 9.9±1.5(10) 

    
ced-7(n1892); ced-
10(n1993); ced-3(n717); 
him-4(RNAi) 

38(29) 29(41) 10.2±2.0(15) 

    
ced-1(e1735); ced-
4(n1162); ced-5(n1812); 
him-4(RNAi) 

28(29) 20(30) 9.9±1.7(10) 

    
n, number of animals scored. ND, not determined. 
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a Males containing a genomically integrated lag-2::GFP reporter transgene were 
scored by DIC and fluorescence microscopy to assess linker cell morphology. All 
strains described also contained either the him-4(e1267), him-5(e1267), or him-
8(e1489) mutations for high incidence of males. In this population study each 
animal was scored once at one timepoint. 
b Linker cell survival was scored if a healthy linker cell morphology was visible 
and the cell was of normal shape and size and had normal nuclear architecture. 
See Figure 2.3A for an example of a healthy linker cell. 
c Number of extra cells in the anterior pharynx of males of indicated genotype 
was assessed as described in the Materials and Methods section. Mean ± SD. 
d Unlike the other strains in this table, this strain was, for unknown reasons 
particularly unhealthy and grew very slowly. Therefore, any survival seen may 
reflect these developmental defects.  
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Known Apoptotic Genes May Facilitate Efficient Corpse Clearance In 

Linker Cell Death 

We did make one observation concerning a possible role for core pathway genes 

in aiding efficient corpse clearance during linker cell death. In a wild-type worm 

within 2 hours of becoming an adult, the linker cell is a corpse in only about 13% 

of animals. We noticed that in some apoptotic mutant backgrounds, the linker cell 

would die normally, and show the same morphological characteristics that occur 

in wild-type linker cell death—loss of cytoplasmic volume, blebbing, nuclear 

envelope breakdown etc. However, in these backgrounds the corpses tended to 

persist longer, for example compare Table 4.3 showing ced-3 corpse persistence 

with Table 2.1 for the wild-type. This could represent a weak late role for these 

genes in clearance of the corpse or could be some secondary consequence of 

the general developmental delay in these animals. 

 

Known Autophagy, Necrosis, or Wallerian Degeneration Mutants Are Not 

Required for Linker Cell Death 

To determine if autophagy could be playing a role in linker cell death we followed 

linker cell death in animals carrying mutations in the bec-1 and unc-51 genes, 

homologs of the autophagy genes beclin (Melendez et al., 2003; Takacs-Vellai et 

al., 2005) and APG1 (Matsuura et al., 1997), respectively. We saw no effects on 

linker cell survival in these mutants (Table 4.4). We also examined expression in 

the linker cell of an LGG-1::GFP protein, a marker for autophagosomal 
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Table 4.3  DIC Study of Linker Cell Death Morphology in ced-3(n717) 
     
Animal Age % Healthy 

Linker Cell 
(n)a 

% Early 
Abnormal 
Linker Cell 
(n)b 

% Late  
Abnormal 
Linker Cell 
(n)c 

% Linker Cell 
Completely 
Gone  
(n) 

     
Early L4  100(15) 0(15) 0(15) 0(15) 
     
Late L4 Rays  
Visible  

0(30) 10(30) 73(30) 17(30) 

     
0-2-Hr-Old 
Adult 

0(30) 23(30) 33(30) 43(30) 

     
2-4-Hr-Old 3(30) 13(30) 23(30) 60(30) 
Adult     
     
4-6-Hr-Old 
Adult 

0(30) 20(30) 13(30) 67(30) 

     
6-8-Hr-Old 
Adult 

0(30) 3(30) 20(30) 77(30) 

     
n, number of animals scored.  
Males containing a genomically integrated lag-2::GFP reporter transgene were 
scored by DIC and fluorescence microscopy to assess linker cell morphology. In 
this population study each animal was scored once at one timepoint. 
a A healthy linker cell morphology was scored if the linker cell was of normal 
shape and size and had normal nuclear architecture. See Figure 2.3A for an 
example. 
b An early abnormal linker cell corpse was recorded if the linker cell had lost 
substantial volume or started large scale blebbing or had nuclear envelope 
abnormalities such as abnormal indented (or crenellated) nuclear envelope 
shape or signs of nuclear envelope breakdown. See Figure 2.3B or 2.3C for an 
example. 
 c A late abnormal linker cell corpse was recorded if the linker cell had lost 
substantial volume and had assumed a completely round shape. Such linker cell 
corpses invariably had major nuclear abnormalities and in many cases the 
nucleus had completely broken down. See Figure 2.3D or 2.4E for an example.      
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Table 4.4  Autophagy, Necrosis, or Wallerian Degeneration  
               Mutants Do Not Block Linker Cell Death 
 

Genotype % Linker Cell Survival (n)a  
  
bec-1(ok700) 0(20) 
  
unc-51(e369) 0(19) 
  
clp-1(RNAi) 0(22) 
  
tra-3(RNAi) 0(22) 
  
asp-3(RNAi) 0(23) 
  
asp-4(RNAi) 0(23) 
  
Wlds Expressionb 0(60) 
  
n, number of animals scored.  
Males containing a genomically integrated lag-2::GFP reporter  
transgene were scored by DIC and fluorescence microscopy to  
assess linker cell morphology. 
a Animals were scored 2–4 hr after the L4 to adult molt, apart from the  
bec-1 animals, which die at late L4, and were scored just around the  
molt to adult.  
b Expression driven from the mig-24 promoter, which is only  
expressed in the linker cell; results are combined data from three  
independent transgenic lines observed.  
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Figure 4.2  Linker Cell Death Does Not Appear to Be Autophagic                                      
(A) Table showing the number of LGG-1::GFP puncta at different stages of linker cell 
development.  n, number of animals scored. Mean ± SD  
(B) A migrating linker cell (outlined) expressing a transgene consisting of the lgg-1 
promoter driving expression of a LGG-1::GFP fusion protein. Top, DIC image. Bottom, 
fluorescence image. Autophagosomal puncta marked with an arrowhead. Scale bar, 2 
µm.   
(C) A linker cell (outlined) beginning to be engulfed by U.l/rp (asterisk) in a late L4 stage 
animal expressing LGG1::GFP. Top, DIC image. Bottom, fluorescence image capturing 
most puncta (arrowhead) marking autophagosomes. Scale bar, 2 µm.   
(D) Same as (C), except in a more completely engulfed linker cell. Asterisk marks U.l/rp. 
Scale bar, 2 µm.   
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membranes (Melendez et al., 2003; Roudier et al., 2005). LGG-1::GFP puncta 

could be seen in migrating linker cells; however, their abundance only increased 

by about 1.5-fold as the cells proceeded to die (Figure 4.2).  

 The vacuoles characteristic of necrosis that we could observe during 

linker cell death raised the question whether necrotic genes could be playing a 

role in linker cell death, even though in general necrosis is not considered a 

programmed cell death. However, reducing the functions of the proteases clp-1, 

tra-3, asp-3, or asp-4, which promote the necrotic morphology of C. elegans 

neurons expressing the constitutively open DEG/ENaC channel MEC-4 

(Syntichaki et al., 2002; Xu et al., 2000), did not affect linker cell death (Table 

4.4), suggesting that the program promoting linker cell death differs, at least in 

some respects, from MEC-4-induced necrosis. 

 It is of note that some of the conserved morphological features 

characterizing linker cell death, such as mitochondrial swelling and clustering, 

and the appearance of “empty” cytoplasmic membrane-bound structures, are 

also seen in Wallerian degeneration of axons (Griffin et al., 1996; Raff et al., 

2002; Vial, 1958; Webster, 1962). This caspase-independent degenerative 

program (Finn et al., 2000) occurs after axon transection, and may be used for 

normal pruning that takes place in the developing nervous system. Thus, 

molecular components promoting this form of cytoplasmic degeneration may be 

similar to those promoting linker cell death. However, expression of the Wallerian 

degeneration inhibitor gene Wlds (Mack et al., 2001) in the linker cell failed to 
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prevent linker cell death (Table 4.4). This suggests that linker cell death employs 

a program distinct, at least in part, from Wallerian degeneration, although we 

were unable to monitor directly the levels of Wlds expression in this experiment. 

 

CONCLUSIONS 

Linker cell death appears to be a caspase-independent programmed cell death, 

since it can occur in mutant or RNAi backgrounds for ced-3 or the other C. 

elegans caspases, and it can also occur even when a broad-spectrum caspase 

inhibitor is expressed. Linker cell death can still occur in backgrounds mutant for 

other core intrinsic apoptotic genes, and in mutants for the processes of 

autophagy, necrosis, and Wallerian degeneration. 
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Chapter Five 

 

Linker Cell Death Requires Developmental Timing Genes 

 

BACKGROUND  

 

Timing of Cell Death 

In 1962, Saunders and colleagues were studying the chick wing bud, and using 

grafting experiments they showed that even when cells were excised and moved 

elsewhere, regardless of the developmental age of the new host, the cells died 

on their own intrinsic schedule as if they had remained at their original location. 

Saunders described this process as the setting of the “death clock” (Saunders 

and Gasseling, 1962). This experiment suggests that in some contexts, cells may 

have intrinsic regulation determining when they die. However, very few examples 

have currently been unraveled of the mechanism that regulates when a cell will 

undergo programmed cell death during development (Maurer et al., 2007).  

 

Temporal Control of Development 

Temporal control of development is just as important as spatial control of 

development, and mutations affecting temporal patterns of development are a 

possible means of driving evolutionary change (Slack and Ruvkun, 1997). 
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Developmental timing mutants are also known as heterochronic mutants. 

In the nineteenth century, Ernst Haeckel proposed that the term heterochrony 

could be used to describe examples where developmental events appeared 

displaced from their expected time. A classic example of heterochrony is the 

Mexican Axolotl. This adult aquatic salamander resembles a salamander larvae 

in its somatic tissue, which remains in the gilled aquatic form, however, its 

germline reaches normal adult maturity. A simple model for how this creature 

reaches sexual maturity without undergoing metamorphosis to the land dwelling 

form is that the development of its somatic tissue is retarded, perhaps by altered 

expression of a steroid hormone (Slack and Ruvkun, 1997). It is known that some 

salamanders can be converted to the air breathing form by treatment with thyroid 

hormone (Huxley, 1920).   

 

Genetic Studies of Heterochrony in C. elegans 

The first genetic mutations in heterochronic genes were found in C. elegans in 

1984 (Ambros and Horvitz, 1984). The fixed lineage and stereotyped 

development of C. elegans, in which characteristic cell divisions and cell fates are 

reproducibly associated with particular larval stages, makes this model system 

eminently suitable for investigation of this phenomenon. In developmental timing 

mutants, a subset of cells show cell fate transformations to cell fates 

characteristic of earlier or later times in development relative to other cells in the 

organism. The key point is that the change is relative to other cells or tissues in 
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the organism, which develop normally on cue. Heterochronic mutants in C. 

elegans do not block progression through each of the larval molts, which occur 

normally. A worm raised at 25 degrees will develop faster than one raised at 20 

degrees. However, the animal at 25 degrees does not show a heterochronic 

phenotype because all the cells develop together at the same speed.  

One classic example of developmental timing in C. elegans is regulation of 

the seam cells, which secrete the cuticle. Seam cells normally undergo rounds of 

cell division until the end of the L4 larval stage when they stop dividing, fuse 

together, and secrete an adult specific cuticle known as the alae. In 

heterochronic mutants, the seam cells can show either precocious or retarded 

development. In a precocious mutant the seam cells fuse together at an earlier 

larval stage than normal, and in a retarded mutant they undergo an extra round 

of cell division instead of fusing together. Both precocious and retarded 

developmental cell fate transformations can be observed for gain-of-function and 

loss-of-function mutants of the same heterochronic genes, for example, a lin-14 

gain-of-function mutant causes retarded seam cell development, a loss-of-

function mutant in the same gene causes precocious seam cell development 

(Ambros and Horvitz, 1984). Not all heterochronic mutations govern cell division 

events, lin-14 controls a neuronal rewiring event that occurs around the end of 

the L1 stage (Hallam and Jin, 1998).  

The first C. elegans heterochronic mutants were identified as cell lineage 

mutants that affected egg laying behavior—lin-14, lin-28, and lin-29 (Ambros and 
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Horvitz, 1984). These mutants showed many lineage defects including in the 

seam cells, however, they still reached adult maturity normally, the gonad 

developed and the first fertilized oocytes appeared on schedule (Ambros and 

Horvitz, 1984). To date, heterochronic mutants have not been identified in C. 

elegans that block the normal time course of gonadal development. A number of 

genes affecting heterochronic development in C. elegans have been identified 

and their activities ordered based on genetic or expression studies data.  

 

Drosophila and Heterochrony 

Genes equivalent to the heterochronic genes in C. elegans that affect cell lineage 

in development have not been identified in Drosophila. However, one study of 

Drosophila development showed changes in the timing of hairy expression in D. 

melanogaster, D. simulans, and D. pseudoobscura, which may be indicative of a 

heterochronic change between these species (Kim et al., 2000). The main genes 

identified that affect the normal progression of development in Drosophila have 

come from studies on the effect of ecdysone pulses on the progression of 

development (Thummel et al., 2001). For example, the E93 gene is responsive to 

ecdysone and required for larval salivary gland death (Lee et al., 2000). The C. 

elegans genome does not have an ecdysone receptor homolog, however, the C. 

elegans genome encodes 270 nuclear receptors, the vast majority of which are 

orphan receptors (Sluder and Maina, 2001).  
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C. elegans Heterochronic Genes Regulating the L4 to Adult Transition 

Several heterochronic genes have been identified that affect the L4 to adult 

transition: let-7, a highly conserved (Pasquinelli et al., 2000) 21-nucleotide 

microRNA (Reinhart et al., 2000); lin-41 an RBCC gene (Slack et al., 2000); lin-

29, a zinc finger transcription factor (Ambros and Horvitz, 1984), and dre-1, an F 

box protein that may act as part of an SCF ubiquitin ligase complex (Fielenbach 

et al., 2007). From epistasis analysis, lin-29 is the most downstream gene in the 

heterochronic pathway that acts at the L4 to adult transition. Its activity is held in 

check by lin-41, which may act by RNA binding or by protein degradation (Slack 

et al., 2000), and also by dre-1, which may act by targeting lin-29 for protein 

degradation (Fielenbach et al., 2007). The microRNA let-7 appears to negatively 

regulate the expression of lin-41 through binding to the lin-41 3’UTR (Reinhart et 

al., 2000; Slack et al., 2000).  

 

 

 

 

 

 

 

Figure 5.1 C. elegans Pathway of Heterochronic Genes Acting at the L4 to 
Adult Transition 
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lin-29 

LIN-29 is required for the transition from L4 to adult. lin-29 loss-of-function 

mutants show retarded development, in which even though the animal has 

completed the molt to adult and has formed adult-specific structures, some cells 

show cell fates associated with earlier larval stages. For example, lin-29 is 

required for terminal differentiation of the hypodermal seam cells (Rougvie and 

Ambros, 1995) and has been shown to be required for vulval differentiation 

(Bettinger et al., 1997; Newman et al., 2000). lin-29 is a zinc finger transcription 

factor belonging to the Cys2His2 family (Rougvie and Ambros, 1995). The only 

known transcriptional target of lin-29 that has been demonstrated experimentally 

is a collagen gene, col-19 (Rougvie and Ambros, 1995). Antibody studies of LIN-

29 expression showed that it was expressed in seam cells, hypodermal nuclei in 

the head, in vulval cells, in ventral nerve cord nuclei, in the linker cell, probably in 

VA and DA motor neurons, and in B cell progeny that give rise to the male mating 

structures known as spicules (Bettinger et al., 1997; Euling et al., 1999).  

 

RESULTS 

 

lin-29 is Required For Linker Cell Death 

Linker cell death occurs at a specific place and time in developing C. 

elegans males. Given that spatial cues may only partially regulate linker cell 

death because we could observe linker cell death in a linker cell migration mutant 
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background (Table 3.2; Figure 3.2C; Figure 3.2D), we considered whether 

developmental timing genes might be used to control the initiation of linker cell 

death. We took a candidate approach, and since it had been previously reported 

that lin-29 was expressed in the linker cell (Euling et al., 1999), we decided to 

investigate this gene. We examined linker cell survival in lin-29(n333) mutant 

males, and found that linker cell death was blocked in about half of these 

animals, even though the animals undergo a normal transition from L4 to adult 

and make adult specific structures including the spicules. Specifically, 16/30 lin-

29(n333) males that we scored possessed a healthy looking linker cell at its 

normal position within 2 hr of the transition to the adult, and 12/30 animals that 

we scored possessed a healthy linker cell 4-8 hr after the transition (Table 5.1; 

Figure 5.2). Even after 24 hr, 7/20 linker cells still survived in lin-29(n333) 

animals. Similar effects were seen in lin-29(n836) males, and in males in which 

lin-29 had been inactivated by RNAi (Table 5.1).  

Several observations suggest that lin-29 does not function as a general 

regulator of linker cell fate. In lin-29(n333) mutants the linker cell displays normal 

morphology, expresses the lag-2 and mig-24 transgenes appropriately, and can 

lead gonad migration. Although migration of the linker cell is defective in about 

30% of lin-29 animals (Euling et al., 1999), the linker cell death defect is still 

evident in normally migrating lin-29 mutant linker cells (see Table 5.1 footnotes). 

Thus, lin-29 is likely to have specific roles during linker cell development 

including, perhaps, transcription of genes promoting linker cell death. 
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Table 5.1.  Role of Developmental Timing Genes in Linker Cell Death 
 
Genotypea % Early Linker 

Cell Death in 
L3/L4 Animals 
(n)  

% Linker Cell 
Survival in 0-
2-Hr-Old 
Adults(n)b  

% Linker Cell 
Survival in 4-
8-Hr-Old 
Adults(n) 

No. Extra 
Cells Anterior 
Pharynx (n) c 

     
Wild-type 0(30) 0(30) 0(30) 0.2±0.4(15) 
 
Empty Vector 
(RNAi) 

 
ND 

 
0(30) 

 
0(30) 

 
ND 

 
Wild-type (25°C) 

 
ND 

 
0(30) 

 
0(30) 

 
ND 

     
lin-29(n333) d ND 53(30) 40(30) 0.3±0.5(12) 
     
lin-29(n836) d ND 76(21) 54(13) 0.2±0.4(10) 
     
lin-29 (RNAi) d ND 50(30) 24(29) 0.2±0.6(15) 
 ND 52(27) 48(29) 0.2±0.4(15) 
     
let-7(n2853ts)e ND 20(30) 17(30) 0.2±0.4(15) 
     
lin-41(n2914) 3(179) ND ND ND 
     
lin-41(RNAi) 2(56) ND ND ND 
     
lin-42(ve11) 0(45) ND ND ND 
 
n, number of animals scored. ND, not determined. 
a Males containing a genomically integrated lag-2::GFP reporter transgene were 
scored by DIC and fluorescence microscopy to assess linker cell morphology. All 
strains described also contained either the him-5(e1467) or him-8(e1489) 
mutations for high incidence of males. In this population study, each animal was 
scored once at one timepoint. 
b Linker cell survival was scored if a healthy linker cell morphology was visible 
and the cell was of normal shape and size and had normal nuclear architecture. 
See Figure 2.3A for an example of a healthy linker cell. 
c Number of extra cells in the anterior pharynx of males of indicated genotype 
was assessed as described in the Materials and Methods section. Mean ± SD. 
d In about 30% of lin-29 mutants, the linker cell exhibited migration defects. We 
only scored males in which the linker cell reached U.l/rp on schedule. 
e let-7 animals were scored at 25°C. 
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Figure 5.2  The Linker Cell Survives in a lin-29 Mutant  
(A) A surviving linker cell in an 8-hr-old lin-29(n333) mutant adult. The linker cell 
(arrow) is marked with a lag-2 promoter::GFP reporter (see inset). Sperm cells 
(arrowheads) are visible in the vas deferens. Anterior, left. Dorsal, top. Cloaca 
outlined in black. Scale bar, 10 μm. 
(B) A surviving linker cell (arrow) in a 6-hr-old lin-29 RNAi treated adult. The 
linker cell is marked with a lag-2 promoter::GFP reporter (see inset). Anterior, left. 
Dorsal, top. Cloaca outlined in black. Scale bar, 10 μm. 
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lin-29 is Expressed in the Linker Cell 

To determine whether lin-29 was required in the linker cell or in the engulfing cell 

to promote linker cell death, we examined GFP localization in males carrying a 

transgene containing 3.5 kb of lin-29 promoter sequences fused to GFP. This 

transgene was strongly expressed in the linker cell and was not observed in any 

neighboring cells, including the U.l/rp cells (Figure 5.3A) consistent with previous 

studies of LIN-29 protein localization (Euling et al., 1999). We could also see 

expression in one unidentified neuron nearby. The linker cell expression of lin-29 

could be seen in early L3/L4 animals (Figure 5.3B), suggesting that lin-29 was 

expressed earlier than the time of linker cell death, again consistent with 

previously published antibody staining (Euling et al., 1999). However, as the 

transgenic marker is a promoter driving GFP, the expression pattern may not 

mimic the protein expression in vivo, since lin-29 may be regulated at the protein 

level (Slack et al., 2000; Fielenbach et al., 2007). These experiments suggest 

that lin-29 may function within the linker cell to promote cell death, and support 

the model that at least part of the program leading to linker cell death is cell 

autonomous. 

 

lin-29 is Required Cell Autonomously For Linker Cell Death 

To try to determine the site of action of lin-29 for linker cell death, we examined 

rescue of inappropriate linker cell survival in lin-29(n836) mutants carrying an  
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Figure 5.3  lin-29 is Expressed in the Linker Cell 
(A) A transgene containing a 3.5 kb lin-29 promoter fragment fused to GFP 
is expressed in the linker cell (arrow) at the L4 stage, but not in 
neighboring cells. Left, DIC image. Right, fluorescence image. Arrowheads 
indicate engulfing U.l/rp nuclei. Scale bar, 5 μm. 
(B) A transgene containing a 3.5 kb lin-29 promoter fragment fused to GFP 
is expressed in the linker cell (arrow) at the L3/L4 stage when the linker 
cell is still migrating. An asterisk indicates the cloacal region where the 
linker cell will die. Anterior, left. Dorsal, top. Scale bar, 5 μm. 
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unstably transmitted extrachromosomal array of the wild-type lin-29 gene. As 

expected, the linker cell died in 19/20 animals in which both the linker cell and the 

surrounding cells (including U.l/rp) received the wild-type lin-29 gene. Similarly, 

the linker cell died in 9/10 animals in which the linker cell received the wild-type 

lin-29 gene but surrounding cells did not, supporting the idea that lin-29 functions  

cell autonomously to regulate linker cell death. In agreement with this, the linker 

cell survived in 14/19 animals in which neither the linker cell nor the surrounding 

cells received the wild-type lin-29 gene, and in 5/10 animals in which the linker 

cell lacked the wild-type lin-29 gene but the surrounding cells had the gene 

(Figure 5.4). 

 

lin-29 Linker Cell Survivors Are Not Engulfed by U.l/rp 

We also found that U.l/rp cells failed to extend phagocytic processes around the 

linker cell when the linker cell inappropriately survived in adult lin-29 mutant 

males (Figure 5.5), even though U.l/rp still properly elongated. This suggests 

either that lin-29 also regulates linker cell engulfment, or that initiation of lin-29-

dependent linker cell death is a prerequisite for engulfment to occur. 

 

let-7 Regulates Linker Cell Death 

To determine whether lin-29 functions within the linker cell in the context of the 

developmental timing program, we examined linker cell death in a let-7(n2853) 

temperature-sensitive mutant. As shown in Table 5.1, at 25°C the linker cell 
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Figure 5.4  lin-29 is Required Cell Autonomously For Linker Cell Death 
A surviving linker cell (arrow) in an adult mosaic animal that lacks lin-29 in the 
linker cell (hence the prominent nucleolus), but has lin-29 in neighboring cells 
(which have normal nucleoli). Anterior, left. Dorsal, top. Cloaca outlined in black. 
Scale bar, 10 μm. 
 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.5  A lin-29 Surviving Linker Cell is Not Engulfed 
A surviving linker cell (arrow) in a lin-29(n333) adult male is not engulfed by the 
U.l/rp cell. DIC (top) and fluorescence (bottom) images. The engulfing cell is 
marked with a lin-48 promoter::GFP transgene. Note that obvious extensions 
encircling the linker cell are absent. Anterior, left. Dorsal, top. Cloaca outlined in 
black. Scale bar, 10 μm. 
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lin-29(n333) 

DIC 



 117 

inappropriately survived in these mutants. The extent of survival was lower than 

in lin-29 mutants, presumably because let-7(n2853) mutants still retain some let-

7 function. This result supports the idea that linker cell death is regulated by 

components of the C. elegans developmental timing pathway.  

 

Precocious Heterochronic Mutants Do Not Cause Precocious Linker Cell 

Death 

lin-41 negatively regulates lin-29, and a lin-41 loss-of-function mutant has a 

phenotype of precocious development. We therefore examined lin-41 genetic 

mutants or animals subjected to RNAi against lin-41 for precocious programmed 

cell death. We could not see any significant evidence for linker cell death prior to 

the normal time (Table 5.1). Another gene associated with a precocious 

phenotype is lin-42, a homolog of the period family of circadian rhythm genes, 

which can affect gonadal migration in the hermaphrodite and some stage-specific 

cell division events such as those of the seam cells (Abrahante et al., 1998; 

Tennessen et al., 2006). We could not see any evidence for precocious linker cell 

death in a lin-42 mutant background (Table 5.1).  

A lin-41 mutant has been reported to cause precocious expression of LIN-

29 (Slack et al., 2000). We do not know if the mutants tested here cause 

precocious lin-29 expression in the linker cell. If lin-29 expression is sufficient to 

drive linker cell death, precocious expression of lin-29 should drive precocious 

linker cell death. If lin-29 was precociously expressed in the linker cell in these 
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backgrounds, then it was not sufficient to drive linker cell death. This may not be 

surprising, considering the fact that many cells that express lin-29 do not die. 

Either these cells all have some activity that represses the action of lin-29, or lin-

29 is required along with some other factor to cause cell death. 

 

lin-29 Does Not Affect Embryonic Apoptotic Programmed Cell Death  

As lin-29 acts at the L4 to adult transition, it seemed unlikely that the gene would 

be required for embryonic apoptotic programmed cell death, however, we did 

check if it had a role by determining whether there were extra surviving cells in 

the anterior pharynx. lin-29 did not have any effect on embryonic programmed 

cell death using this assay (Table 5.1).  

 

CONCLUSIONS 

We have shown that the zinc finger transcription factor lin-29 is required in a cell-

autonomous fashion for linker cell death. In lin-29 mutants approximately half of 

the linker cells survive in adult worms, and these surviving linker cells have the 

morphology of a healthy linker cell and are not engulfed. We have shown that lin-

29 is expressed in the linker cell and not in the engulfing cell. let-7 is also 

required for linker cell death. lin-29 is probably required but not sufficient for 

linker cell death, since other cells that express lin-29 do not die, and removing lin-

41, which may cause precocious expression of lin-29, did not cause precocious 

linker cell death.  
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Chapter Six 

 

Screening to Identify New Linker Cell Death Genes 

 

BACKGROUND 

 

Visual Screens to Find Linker Cell Death Genes 

Using a transgenic strain with a GFP marked linker cell we can carry out a visual 

screen, with an epifluorescent dissecting microscope, to identify mutants with 

defects in linker cell death in which the cell does not undergo programmed cell 

death at the late L4 stage, but instead survives and is present in adult males. 

Adult males can be easily distinguished from L4 larvae because the adult male 

tail has a distinctive fan structure. In such a screen we could anticipate identifying 

mutants that prevent the initiation or execution of linker cell death, resulting in a 

healthy linker cell surviving into the adult. We might also identify mutants that 

affect more downstream events in the death of the cell, such as efficient linker 

cell corpse clearance.   

 

Chemical Mutagenesis  

One of the necessary triumphs of C. elegans as a model system is the ease with 

which one can create and study genetic mutants of a chosen biological pathway 

(Brenner, 1974). Ethylmethanesulfonate (EMS) is a chemical mutagen that 
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introduces point mutations or small deletions in DNA. At standard concentrations 

of use for C. elegans mutant screens it generates an average mutation frequency 

of 5 × 10-4 per gene (Anderson, 1995). Therefore, in a standard EMS screen in C. 

elegans, any given gene is theoretically predicted to be mutagenized once per 

2,000 genomes screened. Once a mutant in a given process has been isolated, 

the nature and the location of the genetic lesion is typically identified by mapping 

techniques such as standard genetic two or three factor crosses or single 

nucleotide polymorphism mapping (Wicks et al., 2001). When the region of the 

mutation has been sufficiently narrowed down by mapping, the final stage of 

mutant identification usually comes from cosmid rescue experiments followed by 

sequencing of candidate genes. Determining the location of an unknown genetic 

mutation can take several weeks or even months.  

 

RNAi  

An alternative approach to chemical mutagenesis in C. elegans is the use of 

RNAi to knockdown gene expression. This technique avoids the necessity of 

mapping mutations, since the identity is already known of the gene used to 

produce the double-stranded RNA in any given experiment.  

 

Identification of RNAi in C. elegans 

In 1998, Fire and colleagues described the discovery of RNAi, a phenomenon in 

which introduction of exogenous double-stranded RNA results in specific targeted 



 121 

depletion of endogenous mRNA which has the same sequence (Fire et al., 

1998). The phenomenon was shown to have a systemic spreading effect; 

introduction of double-stranded RNA to one part of the animal could produce a 

potent effect in other tissues (Fire et al., 1998). Some genes facilitating systemic 

RNAi in C. elegans have been identified including sid-1 (Tijsterman et al., 2004), 

which encodes a transmembrane receptor that enables cellular uptake of double-

stranded RNA (Winston et al., 2002; Feinberg et al., 2003). 

 

RNAi as a Widespread Phenomenon 

RNAi is not unique to worms, it can occur in many organisms and has been 

shown to act on mammalian cells (Elbashir et al., 2001a). In the nine years since 

the discovery of RNAi, many aspects of how the mechanism works have been 

determined. The long double-stranded RNAi is cleaved by an enzyme known as 

Dicer into smaller 21-25 double-stranded RNAs, also known as small interfering 

RNAs (siRNAs) (Hutvagner et al., 2001; Bernstein et al., 2001; Elbashir et al., 

2001b). Secondary siRNAs, created by an RNA-directed RNA polymerase, may 

contribute to the response (Pak et al., 2007; Sijen et al., 2007). siRNAs are 

bound by the RISC complex (Hammond et al., 2000), which contains members of 

the Argonaute family (Tabara et al., 1999), whose role is cleavage of the 

endogenous mRNAs being targeted by the siRNAs (Liu et al., 2004; Song et al., 

2004).  
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It has been suggested that RNAi may represent an endogenous 

mechanism to silence transposons or viruses, both of which can potentially 

create double-stranded RNA, which is not a normal cellular product (Tabara et 

al., 1999; Ketting et al., 1999; Li et al., 2002). It has been shown in the C. 

elegans germline that a Tc1 transposon is normally silenced in a process that 

depends on RNAi (Sijen and Plasterk, 2003).   

 

Practicalities of Using RNAi in C. elegans 

Germline injection of double-stranded RNA was the technique first used to carry 

out RNAi in C. elegans (Fire et al., 1998). This method of RNA introduction is 

very labor intensive, however, it was discovered that C. elegans could ingest 

bacteria expressing double-stranded RNA under an IPTG inducible promoter, 

resulting in a potent RNAi effect (Timmons and Fire, 1998). A commercially 

available bacterial RNAi feeding library for C. elegans has been constructed with 

16,757 clones, which offers 86% coverage of the predicted total genes in the C. 

elegans genome (Kamath et al., 2003). Some missing additional bacterial RNAi 

clones have been generated by another group, which brings the percentage of 

the C. elegans genome that can be targeted by RNAi up to 94% (Kim et al., 

2005).  

A study of the systemic effectiveness of RNAi to target all tissues, by 

observing loss of GFP expression in a strain expressing a transgenic somatic 

GFP reporter, revealed effective knockdown in all tissue types, although neuronal 
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cells appeared to be less effectively targeted (Kamath et al., 2001). The gene eri-

1, may act as a negative regulator of RNAi in neurons (Kennedy et al., 2004). A 

mutation in rrf-3, a gene encoding an RNA-directed RNA polymerase, has also 

been shown to enhance general sensitivity to RNAi, including in the neurons 

(Simmer et al., 2002), and a lin-35 mutant background has a similar RNAi 

enhancement phenotype (Lehner et al., 2006).  

RNAi appears to be able to give a functional gene knockdown that can be 

of very high efficiency. In a study of 14 known maternal effect embryonic lethal 

genes, 13 of the RNAi clones showed 97 to 100% embryonic lethality and one 

clone showed 55% lethality (Kamath et al., 2001). A genome-wide screen using 

the RNAi feeding library on wild-type animals and scoring major categories of 

visible defects such as embryonic lethality, sterility, growth or motility defects, 

revealed phenotypes for 1,722 clones (10% of the total clones analyzed) 

(Kamath et al., 2003). 323 known loss-of-function mutations had a phenotype 

that should have been detected in this screen, 205 (63.5%) of the corresponding 

bacterial RNAi clones produced the same phenotype (Kamath et al., 2003). 

Some of the bacterial clones that did not reproduce the mutant phenotype may 

have been neuronal genes, which are more difficult to target by RNAi.  
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RESULTS 

 

An EMS Screen to Isolate Linker Cell Death Mutants 

Using a transgenic strain with a GFP marked linker cell we can carry out a visual 

screen using an epifluorescent dissecting microscope to identify mutants in which 

the linker cell does not undergo its normal programmed cell death at the late L4 

stage, but instead survives and is present in adult males. Because an adult male 

with a surviving linker cell would presumably be sterile due to linker cell 

obstruction of sperm exit from the vas deferens (Figure 2.2C), any male mutants 

identified with an inappropriately surviving linker cell could not be used to 

propagate the mutation. Therefore the only way to recover such a mutation is if 

hermaphrodite siblings of the male can be isolated. One way to do this is to carry 

out an F1 clonal screen in which Po parents are mutagenized with EMS, their F1 

progeny are individually picked to single plates, and the F2 progeny are scored 

for linker cell survival in the adult male. Each F1 picked clonally has two sets of 

mutagenized chromosomes. For any given mutation at a particular locus in the 

F1 parent, only one quarter of the F2 progeny will be homozygous for the 

mutation and therefore should show a phenotype if it is a recessive mutation. If 

any plate of F2 worms shows a linker cell survivor phenotype for adult males, the 

hermaphrodite siblings on the same plate could be used to homozygose and 

propagate the mutation.  
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Pilot EMS Screen Results 

A standard EMS mutagenesis (Sulston et al., 1988) was carried out on a strain 

with a him mutation for high incidence of males and a genomically integrated lag-

2::GFP marker for the linker cell. A pilot F1 clonal screen was performed. In four 

rounds of mutagenesis, 1,100 mutagenized F1s were picked to individual plates 

and their F2 progeny scored, representing 2,200 mutagenized genomes.  

From this screen we identified 5 mutants with linker cell survival 

phenotypes, and an image of one of the linker cell survivors identified is shown 

here (Figure 6.1). These genes all represent a new class of cell death mutants in 

C. elegans as they did not block embryonic apoptotic programmed cell death 

when scored by assessing survival of neurons in the anterior pharynx at the L4 

stage (Table 6.1). However, these mutants appeared to have a low penetrance of 

linker cell survival, and they have not been mapped or further characterized.  

 

Difficulties With the Pilot EMS Screen  

A number of problems arose with the pilot EMS screen. An F1 clonal screen in 

which F1s have to be picked individually is highly labor intensive compared with a 

standard screen in which F2 hermaphrodites with a desired phenotype can be 

recovered directly. In a standard F2 screen, the genome can be screened several 

times in one week. Apart from the slower rate of progress with an F1 clonal 

screen, the greatest difficulty arising with this particular screen was the problem  
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Figure 6.1  Linker Cell Survivor Mutant Identified  
From Chemical Mutagenesis 
A surviving healthy linker cell of normal morphology  
(arrow) is shown here in an adult male with the ns26  
mutant allele. The linker cell expresses a lag-2::GFP  
transgene. Cloaca outlined in black. Anterior, left.  
Dorsal, top. Scale bar, 10 µm. 

 

 
Table 6.1  Linker Cell Survival Mutants Do Not Block Embryonic Apoptotic 
                  Programmed Cell Death 
 
Genotypea     No. Extra Cells in Anterior Pharynx(n)b 
 
Wild-type    0.2±0.4(15) 
 
ns26     0.1±0.3(10) 
 
ns28     0.3±0.7(10) 
 
ns33     0.1±0.3(10) 
 
ns34     0.1±0.3(10) 
 
ns36     0.1±0.3(10) 
 
n, number of animals scored 
aAll strains described also contained the him-5(e1467) mutation for high 
incidence of males and a genomically integrated lag-2::GFP linker cell reporter 
transgene. 
b Number of extra cells in the anterior pharynx of males of indicated genotype 
was assessed as described in the Materials and Methods section. Mean ± SD. 
 
 

DIC 
lag-2::GFP 

ns26 
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of decreased fertility resulting from the mutagenesis. The F2 plates frequently 

had insufficient males to confidently score the genome assessed on that  

particular plate. C. elegans hermaphrodites normally have about 300 offspring. 

Males normally represent less that 0.5% of the population, however this 

percentage can be increased to around 30% by use of a high incidence of males 

(him) mutation that usually creates more males by affecting the X chromosome 

during meiosis (Philips et al., 2005). A hermaphrodite with a standard him 

mutation will have roughly 90 male progeny. The him mutation itself can 

sometimes decrease fertility by a few percent, and a similar reduction can also 

occur due to transgene introduction. Of the F2 plates screened, a high 

percentage of the plates had a major reduction in fertility, resulting in 

substantially less than 90 males being present on the plate. For example, if less 

than 30 F2 males were present on a given plate, at best only one quarter of the 

worms—8 in total—would be homozygous for any given mutation. If a 

homozygous recessive mutation had incomplete penetrance, the number of 

worms with a phenotype would decrease further. 

Another efficiency of screening issue was isolation of false positives. 

Using this visual screen, the goal is to note adult males with a GFP linker cell. 

Even in wild-type there is a low background level of GFP that can be visible in the 

adult from a few dead corpses that are still being degraded (Table 2.1). 

Sometimes these corpses can be distinguished under the dissecting microscope 

because they have rounded up. However, in the context of a screen, it is not 
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possible to take the time to carefully inspect each linker cell for signs of 

rounding—plates are simply scored as positive if they have above background 

levels of GFP linker cells in adult males. Therefore, the screen can also isolate 

mutations that affect corpse clearance but do not block initiation of linker cell 

death. Since the process of engulfment requires a good deal of cytoskeletal 

reorganization, any mutation that weakly perturbs general cellular or cytoskeletal 

function is likely to result in more GFP cells being visible in the adult. We saw a 

number of false positives in which plates were scored as positive for GFP linker 

cells in the adult, but the phenotype did not repeat in the next generation, and 

was probably due to minor perturbations in linker cell removal.  

 

Advantages of Using a Genome-wide RNAi Screen 
 
Because of the problems detailed above with the EMS screen, we decided to 

embark on a genome-wide RNAi screen instead. Since the creation of the 

genome-wide RNAi feeding library, many groups have already used the complete 

library to successfully identify new genes required for a range of biological 

processes as diverse as embryonic development (Labbe et al., 2006) and 

longevity (Hamilton et al., 2005). As detailed above, this technique has been 

shown to be capable of efficiently knocking down gene function to provide a 

similar phenotype to that obtained using a genetic mutant (Kamath et al., 2001; 

Kamath et al., 2003).   
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For our purposes, the RNAi screen offered several advantages over the 

EMS screen. Firstly, as we could add as many worms as we wanted to the RNAi 

feeding plate, the problem of having insufficient males to score a phenotype with 

confidence was removed. An RNAi screen would be a much faster way to  

assess the complete genome, compared with the length of time it would take to 

complete and map a clonal screen to near saturation. In an RNAi screen we 

could theoretically score nonessential embryonic lethal genes if we could subject 

larvae to RNAi and score the animal when it reached the adult stage. Unless an 

EMS screen was used with a temperature shift to find temperature sensitive 

mutations, all embryonic lethal genes—approximately 5% of the genome 

(Kamath et al., 2003)—could not be scored.  

In an RNAi screen, the ability to add synchronized worms would improve 

our screening efficiency. In the EMS screen, F2 progeny are scored that 

represent a range of ages. Adding synchronized worms would allow adult males 

to be scored a few hours after the molt. This timepoint would decrease the false 

positives because the majority of corpse clearance would have occurred (Table 

2.1), and it would also decrease the false negatives because scoring older adults 

is more challenging since they have increased background fluorescence from gut 

autofluorescence and more GFP expression in additional smaller cells, making 

the linker cell harder to distinguish.  
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The Linker Cell Can Be Targeted by RNAi  

To determine if the linker cell can be effectively targeted by RNAi, we 

investigated if the fluorescence in a GFP marked linker cell could be effectively 

knocked down if the animal was fed RNAi bacteria targeting GFP. We found that 

GFP could be efficiently knocked down in the linker cell to a level at which no 

linker cell fluorescence was visible under the dissecting microscope in 18/18 

males. We saw this effect in animals that had been added to RNAi feeding plates 

as L1 worms. Knockdown was apparent when plates were observed 11 hours 

after animals were added. If animals older than L1s were added, the RNAi 

appeared much less effective when the same animal was observed at a later 

stage. Fortunately, it is easy to obtain a large synchronous population of only L1 

stage worms—if C. elegans embryos are collected by a bleaching procedure and 

allowed to hatch in the absence of food, all the worms will arrest at the L1 stage 

(Hope, 1999). We also tested lin-29 RNAi feeding clones and found that they 

offered a similar effect on linker cell survival as seen for the lin-29 genetic 

mutants, showing that in principle the screen should work (Table 5.1).  

 

U.l/rp Are Less Effectively Targeted by RNAi 

Although we know from ablation studies (see Chapter Three) that U.l/rp are not 

required for linker cell death, that does not mean that they are an uninteresting 

part of the system and unworthy of exploration. The communication between the 

morphologically healthy linker cell and the engulfing cell that leads to engulfment 
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is mysterious and does not use known engulfment genes (See Chapter Three). 

Therefore, it would be interesting to discover the nature of the signaling between 

the linker cell and its engulfing cell. To determine if we could target the U.l/rp by 

RNAi, a lin-48::GFP marked linker cell strain was subjected to RNAi against GFP. 

We found that fluorescence was still visible in U.l/rp under the dissecting 

microscope. The RNAi against GFP did have some effect in the U.l/rp, as we 

could see that the GFP was somewhat diminished by comparing images of 

control and GFP RNAi treated animals taken with the same exposure time under 

the compound microscope. Since U.l/rp seemed more resistant to RNAi than the 

linker cell, we decided to conduct the RNAi screen in a strain which included an 

rrf-3 mutation that enhances sensitivity to RNAi (Simmer et al., 2002). However, 

even in this sensitized background, the knockdown of GFP expressed in U.l/rp is 

still only partial.   

 

New Candidate Regulators of Linker Cell Death 

In an equal collaboration with Elyse Blum, we have completed a genome-wide 

RNAi feeding screen to identify new regulators of linker cell death. Using a strain 

with an rrf-3 mutation (Simmer et al., 2002) to enhance RNAi sensitivity, a 

genomically integrated transgene of lag-2::GFP to mark the linker cell, and a him 

mutation to increase the frequency of males, with an epifluorescent dissecting 

microscope we scored RNAi clones for linker cell survival in the adult. With the 

feeding libraries available from the Ahringer laboratory (Kamath et al., 2003) and 
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some additional clones that are available from the Vidal laboratory (Kim et al., 

2005), we covered 94% of the genome, which is about 18,000 genes.  

 The screening procedure used is shown in schematic (Figure 6.2). We 

added synchronized L1 to plates with bacteria expressing double-stranded RNA 

and then scored the same animals two days later when they were adults. On 

each day of RNAi screening we also did positive controls of GFP and lin-29 

RNAi, which always gave a robust and reproducible phenotype. We also noticed 

that some of the RNAi clones tested had highly penetrant visible phenotypes 

such as lethality or extreme slow growth, suggesting that, at least for those 

particular clones, the RNAi procedure was working with high efficiency.  

Although by adding L1 worms we could try to bypass problems in missing 

genes who play an essential role in embryonic development, there were still 

some clones that we could not assess for a role in linker cell death because they 

were either lethal or produced a larval growth arrest. For that reason, in the half 

of the total plates that I screened, 178 clones (approximately 2% of the total) 

were unscoreable for linker cell death. There were also many clones that were 

slower growing but not arrested, and these were scored on the next day when 

they had reached adulthood.  

Every well where we thought we could see above background levels of 

linker cell GFP was recorded, along with a rough estimate of the number of linker  

cells visible. If the phenotype was striking, we would usually note if the linker 

cells looked mainly healthy (ovoid) or corpse (round). We had about 100 clones 
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Figure 6.2  Schematic of RNAi Screening Procedure 
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that had looked most promising as worth retesting. Looking at the molecular 

identify of the genes that we retested, there was no particularly obvious pattern of 

any families of genes or genes associated with a particular function that 

appeared to be overrepresented (See Appendix for a list of genes retested). For 

each of the clones we wanted to investigate further, we did a first round of retests 

by repeating the RNAi under the dissecting microscope. This time the clone was 

assessed in three or four wells to determine if there was a consistent linker cell 

survival phenotype across each well of a given clone. If there appeared to be a 

consistent phenotype, the RNAi was repeated again and the next time the 

animals were used for observation under the compound microscope to determine 

if these clones were really producing a healthy surviving linker cell or if they were 

just producing corpse clearance defects. From these retests we have identified 5 

clones that had promising levels of healthy linker cell survival under the 

compound microscope (Figure 6.3; Table 6.2). In 3 out of the 5 clones, the linker 

cell migrates normally to the cloaca. In the other two clones, the linker cell has a 

migratory defect and never reaches the cloaca.  

 

pqn-41 is Expressed Specifically in a Dying Linker Cell Corpse 

For one of the genes identified in the screen, pqn-41, a prion-like Q/N rich gene, 

a promoter GFP fusion transgene was created to assess its expression pattern. 

Interestingly the gene is not expressed in migrating linker cells (Figure 6.4A), but 

only appears to be expressed in linker cell corpses (Figure 6.4C). The expression  
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Figure 6.3  Linker Cell Survival in the Adult With Clones Identified From the 
Genome-wide RNAi Screen 
A surviving healthy linker cell of normal morphology (arrow) is shown here in 2-
hour-old-adult males subjected to RNAi against the genes indicated. The cloaca 
is outlined in black. nhr-67 and let-70 had migration defects and never reached 
the cloaca. The linker cell expresses a lag-2::GFP transgene. Anterior, left. 
Dorsal, top. Scale bar, 10 µm. 
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Table 6.2  Genes Identified in the RNAi Screen That Block Linker Cell Death 

 
Clone Identity Gene Description % Linker Cell Survival  

in 0-3-Hr-Old Adults (n) a 
    
Empty RNAi vector  0(30) 
   
tir-1 TIR domain protein 27(30) 
   
pqn-41 Q/N rich protein 20(30) 
   
C33H5.7 Histone H3 lysine  23(30) 
 methyltransferase  
   
nhr-67 b Nuclear hormone 67(30) 
 receptor  
   
let-70 b Ubiquitin conjugating  

enzyme 
67(30) 

 
n, number of animals scored.  
Males containing a genomically integrated lag-2::GFP reporter transgene were 
subjected to RNAi by feeding and scored by DIC and fluorescence microscopy to 
assess linker cell morphology. 
a Linker cell survival was scored if a healthy linker cell morphology was visible 
and the cell was of normal shape and size and had normal nuclear architecture. 
See Figure 2.3A for an example of a healthy linker cell. 
b In these clones the linker cell had a migration defect and did not reach U.l/rp. 
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Figure 6.4  pqn-41 is Expressed in a Dying Linker Cell Corpse 
The animals shown all express a 2.5kb promoter of pqn-41 fused to GFP. Scale 
bars, 10µm. 
(A) In a migrating linker cell (arrow) at the L3 stage, pqn-41 is not expressed. 
(B) At the late L4 stage, as the linker (arrow) cell approaches the cloaca (outlined 
in black), pqn-41 begins to be weakly expressed (The linker cell is faintly visible 
here). Cloaca outlined in black. Anterior, left. Dorsal, top.  
(C) In the late L4 stage as the linker cell (arrow) becomes a rounded corpse, pqn-
41 shows stronger expression. (Images B and C taken with similar exposure 
times.) Anterior, left. Dorsal, top.  
(D) pqn-41 is also expressed in an unidentified neuron (arrowhead) in the male 
tail. The linker cell corpse (arrow) is also visible in this late L4 worm. Ventral 
view. Anterior, left.  
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pattern of this gene appears highly specific in the male, it is only expressed in the 

linker cell corpse as well as in one neuron in the vicinity of the male tail (Figure 

6.4D).  

 

CONCLUSIONS 

Using EMS mutagenesis, 5 mutants have been isolated that can block linker cell 

death with a low penetrance. These mutants do not affect embryonic apoptotic 

programmed cell death. They have not been mapped or extensively 

characterized. Following completion of a genome-wide RNAi screen, we have 

identified and confirmed the role of 5 new genes in regulating linker cell death. 

The first promoter GFP study that we carried out of one of the genes identified 

from the RNAi screen, pqn-41, showed that it was specifically expressed in the 

linker cell as it starts to die.  
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Chapter Seven  

 

Discussion 

 

The Morphology of Linker Cell Death is Non-Apoptotic, but is Conserved in 

Vertebrates 

Our characterization of wild-type linker cell death has revealed that this cell death 

has many unusual features not previously described for programmed cell death 

in C. elegans. The most striking finding was the observation that by transmission 

electron microscopy (Figure 2.8), the linker cell does not have an apoptotic 

morphology such as chromatin compaction, nor an autophagic morphology in 

which autophagosomal formation is the dominant theme. Instead, the features of 

linker cell programmed cell death that we observed were most similar to type III 

PCD (Clarke, 1990) in which the cellular perturbations associated with cell death 

appear to be initiated in the cytoplasm. The most striking changes we see 

associated with linker cell death are nuclear crenellation or indentation, formation 

of small white vesicles—apparently “empty spaces” in the cytoplasm, and 

formation of 200nm vesicles, of heterogeneous appearance which may represent 

swollen organelles. The “empty spaces” or white regions, sometimes around 

which a membrane is visible, might represent swollen endoplasmic reticulum. It is 

possible that these small white vesicles can connect together to form the large 

vacuoles associated with linker cell death (Figure 2.7).  
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The TEM morphological similarities between dying linker cells and the few 

published examples of type III PCD during normal development in some 

vertebrates are striking (Figure 2.8; Appendix Figure 4). This suggests that what 

we are studying is a widespread phenomenon. The fact that some morphologies 

characteristic of linker cell death could also be seen in dying vertebrate spinal 

cord motor neurons in a caspase-knockout background lends credence to the 

model that this cell death, which has a non-apoptotic morphology, is a caspase-

independent cell death. No vertebrate genes have been identified to date which 

are required for type III PCD, the molecular mechanisms of which remain 

mysterious. The linker cell provides a tractable system to try to unravel the 

nematode pathway, and it is not an unreasonable hope that the genes and 

mechanisms uncovered may also be conserved in vertebrates.  

What might be the role and significance of type III PCD? Circumstantial 

evidence is consistent with the existence of an alternative vertebrate 

developmental cell death program. For example, despite the pervasiveness of 

programmed cell death during early murine development, none of the mutations 

known to affect cell death in the mouse block the gross progression of 

development, and in many cases, mutant mice live to birth or beyond (Honarpour 

et al., 2000). Furthermore, mutations in caspase-3 and casapse-9, which play 

important roles in apoptotic cell deaths in mice, do not block motor-neuron death 

in the developing spinal cord (Oppenheim et al., 2001). In addition, none of the 

mutations affecting cell death in the mouse seem to affect the total number of 
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cells in the immune system to an extent that might be predicted given the large 

numbers of cells eliminated during normal T and B cell development. Finally, it 

has been previously demonstrated that the death of interdigital cells during 

murine development can proceed in the absence of Apaf-1, with a necrotic 

morphology (Chautan et al., 1999). Although all of these examples could be 

explained by feedback control of cell numbers, and/or redundancy within caspase 

and other cell death gene families, it is also possible that an entirely different 

pathway similar to the one regulating linker cell death regulates these cell deaths. 

If this is the case, this alternative mode of cell death must, therefore, play a major 

role during normal vertebrate development.  

Linker cell death and type III PCD have some features that are reminiscent 

of necrotic cell death, for example, in the case of the linker cell—vacuolar 

formation and some organelle swelling. Necrosis is generally thought of as a 

more primitive and less sophisticated way to die, although it is clearly not simply 

cellular collapse, but a regulated process that has a pathway of genes required 

for its execution. As it seems less advanced, necrosis could perhaps represent 

the ancestral form of programmed cell death that got usurped by the more 

ruthlessly efficient program of apoptotic cell death. Where kinetics of an 

alternative type of non-apoptotic programmed death have been reported, the 

consensus is that it is less efficient than apoptotic programmed cell death. Linker 

cell death is also slower than embryonic apoptotic programmed cell death in      
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C. elegans, which can occur in around 30 minutes, while linker cell death takes at 

least roughly 2 hours to complete. 

 If type III PCD represents a regulated form of programmed cell death that 

has evolved from necrotic beginnings, it is easy to imagine advantages and 

disadvantages for this type of cell death. For example, a cell death that is 

substantially slower than apoptosis might make it easier for neighboring cells to 

adapt to the loss of the dying cell—if the dying cell played an important role in the 

tissue architecture or if the cell was highly connected to neighboring cells, such 

as a neuron. A slower and a more necrotic style of death might provide a better 

platform for the immune system to trigger a response, in the case of cell death 

caused by an outside agent. Retaining this type of cell death could also be a 

great advantage for places where the normal apoptotic cell death pathway has 

been blocked: for example, in viral infection if the virus is expressing a form of 

caspase inhibitor, or in cancer if the apoptotic cell machinery was disabled due to 

mutation, or to allow cell death in places where the apoptotic cell death 

machinery was deliberately inhibited, in circumstances in which caspases act in 

non-apoptotic roles. This type of cell death could also be important for killing cells 

that are large and more differentiated, two criteria that apply to the linker cell. 

One model that has been frequently put forth in favor of alternative death 

programs is that as cells get more differentiated, they are more difficult to kill. A 

study of conditional transgenic use of caspases for targeted cell deletion in C. 

elegans noted that the killing efficiency decreased as the animals got older, and 
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the killing efficiency of caspases in adults was only about half the level of 

efficiency observed in embryos (Chelur and Chalfie, 2007). This could have been 

because the heat shock promoter used was less efficient in adults, or because 

the adult cells were more resistant to caspase-mediated cell death.   

Of course, there are many possible disadvantages to this type of cell 

death too. A slower cell death process could be highly detrimental during 

development because if cell corpses weren’t cleared rapidly, their presence could 

obstruct and hinder normal cell migrations. The large vacuoles that form 

associated with linker cell death could also possibly be more challenging 

substrates for the phagocytic cell to neutralize.  

 Observing the morphology of type III PCD, it is interesting to speculate 

about the possible mechanism. In particular, the endoplasmic reticulum (ER) 

swelling is one early, and possibly primary, cellular pathology observed. An 

interesting question is whether this is related to normal pathways involved in ER 

stress response. If a cell begins to experience difficulties in effective protein 

folding in the ER—for example, if it is making a mutant protein, is having 

problems such as energy supply, or is experiencing calcium perturbation—this 

starts an ER stress response known as the unfolded protein response (UPR). 

This response enlists genes that can remedy the situation, such as ER folding 

chaperones or genes that will downregulate translation. However, if the cell is 

unable to regain its equilibrium despite the efforts of the UPR, it will undergo 

apoptosis (for a review of UPR, see Bernales et al., 2006). UPR has recently 
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been shown to be involved in a Drosophila neurodegenerative model of 

autosomal dominant retinitis pigmentosa (Ryoo et al., 2007).  

As the linker cell migrates, it secretes hemicentin, an extremely large 

(5,198 amino acid) extracellular protein that has immunoglobulin superfamily 

repeats (Vogel and Hedgecock, 2001). The secreted hemicentin is believed to be 

deposited as a track that acts as a guidance cue for the gonad that is following 

behind it (Vogel and Hedgecock, 2001). One speculation to ponder is whether 

the secretion of hemicentin or other extracellular factors that act as guidance 

cues for the trailing gonad means that the linker cell has a comparatively high 

secretory output. If then, for example, the cell transcribed a gene that could 

interact and cause misfolding of the hemicentin or other secreted factors—

possibly a prion-like gene—or if an inappropriately spliced version of one of these 

highly expressed genes was made, this could suddenly cause a major challenge 

for normal ER function, leading to catastrophic ER stress. This type of ER stress 

could also be a consequence of rapid engulfment of cell with a comparatively 

high secretory capacity—once a cell gets engulfed, the vesicles that would 

normally get secreted are now trapped and cause a backlog in the secretory 

system. However, swollen endoplasmic reticulum in the linker cell is not 

dependent on U.l/rp engulfment, as it also occurs in a linker cell migratory mutant 

where the cell is not engulfed by U.l/rp (Figure 2.8G). 
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Engulfment and Linker Cell Death 

We have shown that the wild-type linker cell death shows some unusual 

engulfment characteristics. The linker cell is engulfed while it is still comparatively 

healthy, and it does not use the normal engulfment machinery that can work for 

both apoptotic and necrotic cells in C. elegans. It is likely that the linker cell 

signals to U.l/rp to engulf it, since U.l/rp do not engulf any other neighboring cells, 

suggesting that they are not constitutively activated for nonspecific engulfment. 

This unusually fast engulfment might need to occur to prevent the linker cell from 

being engulfed by the vas deferens (see Chapter Three for details). The cell 

probably also needs to be engulfed and taken out of the way swiftly to prevent it 

hindering the complex morphological changes that occur in the male tail at this 

time when the vas deferens is connected to the cloaca. Whatever signaling the 

linker cell is using may represent a very early or different signaling module from 

the normal signals used in apoptotic programmed cell death. This might also offer 

one explanation for why the linker cell doesn’t show CED-1 clustering around the 

corpse in the wild-type location. The linker cell corpse might not be associated 

with this surface marker because it dies and is engulfed too swiftly. Another 

interesting possibility to consider is if this rapid engulfment of a healthy cell might 

be necessary for U.l/rp to take up or recycle some contents of the linker cell, for 

example, something that might facilitate U.l/rp at the post linker cell death stage 

when these cells connect up to the vas deferens. It is tempting to speculate 

whether some of the genes involved in linker cell engulfment could be similar to 
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those involved in the daily phagocytosis of portions of rod cells in the vertebrate 

eye, presumably a process in which the phagocyte is recognizing a target that is 

not dead.   

 

Known Cell Death Genes and Linker Cell Death 

Our transmission electron microscopy images of linker cell death look very 

different from apoptotic, autophagic, and necrotic cell death, a finding that is 

consistent with our genetic data showing that known cell death genes are not 

required for linker cell death, which therefore must represent a new pathway of 

programmed cell death. A very interesting question to consider is why the known 

cell death genes do not appear to be required for linker cell death. Apoptotic 

death appears to be swifter than linker cell death in its execution. However, in 

this case, the key may be not how fast the cell is cleared, but how fast the cell 

can get engulfed. If the linker cell can start to die in a way that can trigger an 

engulfment process that is faster than the apoptotic one, this could swiftly remove 

the cell from the top of the vas deferens and prevent linker cell interference of 

morphogenesis or inappropriate engulfment of the linker cell by the vas deferens. 

However, we do see a minor role for some of the core pathway genes in corpse 

clearance. Perhaps they can play a late role at the final stages of cell destruction. 

They could be activated specifically, or could be turned on in response to general 

cellular dysfunction, although the present thinking in the field is that only the 

germline in C. elegans shows damage or dysfunction induced programmed cell 
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death. Another possibility is that ced-3 could play a role in linker cell migration 

and it could be expressed in the linker cell. In the mammalian system, caspase-

11 has been shown to play a role in regulating cell migration in the immune 

system via regulation of Aip1-Cofilin mediated actin depolymerization (Li et al., 

2007). In RNAi against ced-3, a low percentage of linker cell migratory mutants 

were seen. If ced-3 was active in regulating the cytoskeleton for migration, ced-3 

might be otherwise engaged and unable to kill the cell. When migration stops and 

the cell starts to die, ced-3 could redirect its energies towards its usual apoptotic 

targets. There are other examples of caspases playing a role in migration. In 

Drosophila ovarian border cell migration, it was found that Drosophila DIAP1 

promotes cell migration. Clonal loss-of-function of this IAP gene did not produce 

apoptosis as might have been expected, and further experiments suggested that 

DIAP1 may act by inhibiting the caspase Dronc, since the cell migration is 

affected by mutants of Dark, the upstream activator of Dronc (Geisbrecht and 

Montell, 2004). It had been previously been shown that Rac can be a caspase 

target in lymphocytes (Zhang et al., 2003), and other studies have shown that 

caspases can target cytoskeletal components. In C. elegans, actin may be a 

target of CED-3 (Taylor et al., 2007). Caspase involvement in cell migration 

seems an elegant way to prevent inappropriate cell survival of a rogue migratory 

cell. A system could be envisioned in which during cell migration a cell uses a 

caspase activity for migration, and then if it stops migrating but ends up at an 
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inappropriate location, it will not receive the signals necessary to shut down the 

caspase and the cell would die. 

 

Cell Migration and Cell Survival 

There are several indications from the literature that there may be a relationship 

between cell migration and cell survival. For example, in mammalian systems 

Rho family GTPases are required for survival of primary cerebellar granule 

neurons (Linseman et al., 2001). FRL, a human formin related gene, binds Rac 

and regulates cell motility, and can block apoptosis (Yayoshi-Yamamoto et al., 

2000). In Drosophila, germ cells undergo a migration pathway that has been well 

characterized. Only half of germ cells that form will make it to the correct gonadal 

location and eventually contribute to the germline (Underwood et al., 1980). Germ 

cells that migrate inappropriately will die, and this phenomenon of excess germ 

cell formation has been observed in a number of other species including 

mammals (Underwood et al., 1980). Interestingly, in the Drosophila study, some 

of the labeled germ cells that that migrated to inappropriate locations were 

observed to die with a necrotic morphology (Underwood et al., 1980). The cell 

death pathway that leads to the death of ectopic germ cells remains poorly 

understood. It is not known if these cells die in an apoptotic or autophagic 

fashion, however, since they show some necrotic features, this raises the 

possibility they could represent type III PCD. Some genes that regulate the cell 
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death and migration have been identified (Coffman et al., 2002; Zhang et al., 

1996).  

It is certainly possible that linker cell death could be initiated as a direct 

consequence of the fact that the linker cell stops migrating. At present, this idea 

is challenging to address experimentally, as genetic backgrounds that would 

enable manipulation of linker cell migration to allow it to continue beyond the end 

of the L4 stage have not been reported. 

 

Developmental Timing Genes and Linker Cell Death 

Linker cell death in C. elegans must be tightly regulated to ensure male fertility. 

Death of the linker cell prior to completion of its migration results in severe 

defects in gonadal elongation, as has been demonstrated by ablation of the linker 

cell during its migration (see Chapter 2; Kimble and White, 1981). It has been 

postulated that once the linker cell has completed its migration, cell death must 

ensue to allow fusion of the gonadal and cloacal tubes of the male. Our studies 

suggest that this may indeed be the case, since we have shown that in lin-29 and 

let-7 mutants, the connection between these tubes fails to form, and sperm 

accumulates within the male reproductive system (see Figure 2.2C which shows 

sperm build up in a lin-29 animal). 

The studies described here also suggest that even though linker cell death 

is cell intrinsic, both spatial and developmental inputs contribute to the cell's 

demise. Specifically, proximity to the cloaca seems to promote efficient linker cell 
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death, helping to ensure that the cell dies at the right place. The developmental 

timing pathway provides information ensuring that linker cell death occurs at the 

right developmental stage. 

Although lin-29 is required for linker cell death, it is probably not sufficient 

to promote cell death. The gene is normally expressed in other cells that do not 

die, and is expressed within the linker cell itself during the L3 and early L4 stages 

when the cell is still migrating (Euling et al., 1999; Figure 5.3B). These 

observations suggest that additional genes must exist that co-operate with lin-29 

to promote linker cell death. 

Why might developmental timing genes be used as part of the pathway to 

regulate linker cell death? It is important that the linker cell dies at a specific time 

for normal fertility, which is one reason to enlist developmental timing genes in 

regulating the death (Figure 2.2). Or these genes might be enlisted to regulate 

linker cell death simply because they are expressed in the linker cell. Their linker 

cell expression might be because of an earlier role—they may guide linker cell 

migration, which executes specific turns in its migratory pathway at specific larval 

stages. In the distal tip cell, the hermaphrodite gonadal migratory leader cell, 

heterochronic mutations can regulate the migration of the cell (Tennessen et al., 

2006), and lin-29 animals have linker cell migration defects in approximately 30% 

of animals (Euling et al., 1999).  

Many cell deaths must be regulated to occur at specific times during 

development, such as the hormonally triggered destruction of the larval salivary 
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gland during Drosophila development. The linker cell is the first described 

example that can link developmental timing genes to the regulation of 

programmed cell death. An interesting example of massive cell death regulated 

on the whole organismal level at a specific time in development is the death of 

Pacific salmon which die very rapidly after spawning, even though they are 

comparatively young and healthy. The morphology of cell death is described as a 

rapid degeneration of tissues and cells (Robertson and Wexler, 1960), and 

perhaps it could be type III PCD. This cell death appears to be under hormonal 

regulation from the gonad (Robertson and Wexler, 1962). There are some other 

examples of animals that die rapidly once they have completed their reproductive 

functions.  

  As lin-29 is required, but probably not sufficient for linker cell death, and 

as the linker cell can die in a migratory mutant background, there is probably 

some additional long-range cue that is the key initiator of linker cell death. By 

analogy with other systems, such as Pacific salmon or Drosophila larval salivary 

glands, that cue may be hormonal. If we envision a model of a hormonal 

regulator expressed at the L4 to adult transition that works with lin-29 to trigger 

linker cell death in C. elegans, the question still remains how this might 

specifically target the linker cell. It has recently been shown in Drosophila salivary 

glands that ecdysone mediated loss of the transcription factor forkhead is 

sufficient and required for cell death to proceed in the salivary gland (Cao et al., 

2007). In C. elegans there are 15 forkhead transcription factors (Hope et al., 
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2003), and fkh-6 is required for the formation of the linker cell (Chang et al., 

2004). Perhaps some linker cell specific gene like fkh-6 is required as part of the 

pathway leading to linker cell death. Another possibility is that the linker cell could 

be singled out for death because it is a migrating cell, since there are no other lin-

29 expressing migrating cells in the male at that time.   

 

Towards a Model For Linker Cell Death 

Figure 7.1 illustrates our current model for linker cell death. The most important 

questions that remain to be addressed are what are the signals that initiate linker 

cell death and what are the executioner molecules for this death. Some of the 

missing genes may have been identified from the RNAi screen.  
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Figure 7.1  A Model for Linker Cell Death 
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Chapter Eight 

 

Future Directions 

 

Further Characterization of Positive Hits From the RNAi Screen  

Having completed the screen, a number of experiments readily suggest 

themselves. The genes identified should be confirmed, since off-target effects 

can occur for RNAi, as has been shown in human cell studies (Jackson et al., 

2003). A number of approaches are recommended to confirm an RNAi 

phenotype such as testing a scrambled RNAi construct, targeting another region 

of the RNA under investigation, or testing if there is an effect in loss-of-function 

genetic mutants (Echeverri et al., 2006). Promoter expression studies, such as 

the one for pqn-41, can be carried out to see where the genes are expressed. If 

the expression pattern looks particularly interesting, antibodies could be made 

against the gene of interest. 

For a gene like pqn-41, which appears to be expressed specifically as the 

linker cell starts to die, there is the possibility that it could function as a killer 

gene. Therefore, it would be interesting to test whether expression of such a 

gene in other cells, for example in the touch cells under a touch cell specific 

promoter, could be sufficient to kill those cells with a morphology characteristic of 

linker cell death as determined by transmission electron microscopy. We can also 

start to investigate interactions between linker cell death genes to try to 
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determine if there are any hierarchies between them. For example, we could 

check in a lin-29 mutant background to see if expression of any of the new genes 

identified are downregulated, indicating that these genes are potential targets of 

lin-29. 

 

Some Additional Screening Approaches 

If further characterization of the hits from the RNAi screen suggests that these 

genes are not the key regulators or executioners wanted, there are a range of 

alternative screening approaches available. Linker cell death represents a form of 

ced-3-independent programmed cell death in C. elegans, so one possibility to try 

to find other genes involved would be to screen directly for ced-3-independent 

cell death genes. For example, in a ced-1; ced-3 background, any cells that die 

would be visible as persistent corpses. You would expect to see a few such 

corpses, since even in a strong ced-3 mutant, not every single somatic cell death 

is blocked if you count additional surviving “undead” cells in the anterior pharynx. 

If these corpses represent the ced-3-independent pathway of cell death, then the 

genes involved could be identified if such a strain was mutagenized and 

screened for mutants in which the corpses were no longer present.  

Another approach to try to find candidate genes involved in linker cell 

death is to look for mutations that cause precocious linker cell death, for 

example, by loss-of-function of a cell-specific inhibitor of linker cell death, if a 

such a hypothetical inhibitor of linker cell death exists. This is not beyond the 
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realms of possibility as apoptotic cell death pathways have many inhibitors that 

hold cell death in check. In the case of linker cell death where the correct timing 

of the death is likely to be so crucial for fertility, it does not seem unreasonable to 

suppose that the initiation of linker cell death may be poised on a hairline trigger. 

This screen would additionally pick up mutants where the cell doesn’t form, due 

to a cell specification or lineage defect. Early linker cell loss could be easily 

recognized under a dissecting microscope as abnormalities in gonad 

development, as the clear patch visible if the gonad doesn’t grow normally. If this 

negative regulator was already expressed in the linker cell as soon as it was 

born, this would be more difficult to tease out, as such as mutant would have a 

phenotype of no linker cell birth. Nonetheless, this might be an interesting and 

straightforward screen to undertake.  

Other possibilities for screening include screens for male steriles (due to 

blockage of linker cell death), or a repeat of the EMS screen for linker cell 

survival, this time carried out as an F2 clonal screen. This is more labor intensive 

than an F1 clonal screen, but would have the advantage that plates are screened 

in which all the animals are homozygous for particular mutations, thus preventing 

the problem of not having enough males to score to adequately assess a 

homozygous mutation that is only represented by one quarter of the animals on 

the plate.  
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What Does lin-29 Transcribe in the Dying Linker Cell?  

What is the target of lin-29 required for linker cell death? Another possible way to 

uncover the linker cell death pathway is to try to determine what is expressed in a 

surviving linker cell by a Microarray study. The ideal system would be to isolate a 

lin-29 surviving linker cell and compare it with a linker cell that has just begun to 

die in a wild-type animal. However, the worm’s cuticle represents a substantial 

obstacle to removing a cell by laser capture microdissection (Emmert-Buck et al., 

1996). To break open the worm and try to isolate fluorescent cells by FACS 

sorting for subsequent use by Microarray analysis has only been done for 

embryos (Colosimo et al., 2004). The simplest type of comparison that could be 

tried would be to Microarray profile a lin-29 mutant worm and compare it with 

wild-type. However, as lin-29 is expressed in many other cells in addition to the 

linker cell, this approach may not be entirely satisfactory in offering a good 

prospect of identifying linker cell specific lin-29 targets. One possibility would be 

to compare lin-29 mutant males with lin-29 mutant hermaphrodites to find lin-29 

regulated male specific genes, and then also compare wild-type adult males with 

lin-29 males. Any genes that were downregulated in lin-29 males compared with 

wild-type males, but were not downregulated in lin-29 mutant hermaphrodites are 

good candidates for lin-29 male specific regulated genes. Another possibility 

would be to tag ribosomes in a linker cell specific fashion and then try to isolate 

the ribosomes and profile the genes being transcribed.  
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Investigating the Role of ER Stress in Linker Cell Death 

ER swelling is a characteristic morphology of linker cell death by electron 

microscopy. A number of genes involved in UPR, the ER stress response, have 

homologs in C. elegans such as ire-1, xbp-1, atf-6, and pek-1 (Shen et al., 2001; 

Shen et al., 2005) and construction of these mutant strains with a GFP marked 

linker cell is currently underway. Interestingly, gene expression profiling of worms 

with an xbp-1 mutation, identified a class of genes that are upregulated in 

response to UPR and these genes were named abu genes for activated in 

blocked upr (Urano et al., 2002). They were subsequently identified as members 

of the pqn family.  

 

Gonadal Cues and Linker Cell Death 

It might be interesting to investigate if a signal from the gonad could be regulating 

linker cell death, since the gonad can provide a cue for death in salmon. 

Determining if linker cell death can occur in a background in which the male 

germline does not develop normally could assess this. 

 

Why Does the Linker Cell Divide into Two Parts During Cell Death?  

What is the nature and role of linker cell blebbing, which appears to be a cell-

autonomous process, and how might it be regulated? Blebbing associated with 

cell death is not inhibited by caspase-inhibitors in cell culture, suggesting that this 

is a caspase-independent process (Xiang et al., 1996; McCarthy et al., 1997). 
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The linker cell blebbing appears strikingly reminiscent of a cell division, in which 

the cell is divided into roughly two equal halves. One possibility is that linker cell 

blebbing is regulated by some sort of cytokinesis. Interestingly, bir-1, the C. 

elegans IAP homolog, is associated with a cytokinetic defect, and this might be 

an interesting candidate gene to investigate for a role in linker cell blebbing.  

Does the linker cell have a program to divide into two because as it is such 

a comparatively large cell in the animal, it could not physically be engulfed by just 

one cell on its own? In the absence of mig-5, two linker cells form instead of one. 

Our strain with an RFP marked linker cell and GFP marked U.l/rp cell strain could 

be used to investigate whether U.lp and U.rp can each take up one whole linker 

cell alone, when there are two linker cells present in a mig-5 RNAi background.  
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Chapter Nine  

 

Materials and Methods 

 

Strains and Alleles 

Strains were handled using standard methods (Brenner, 1974). All strains were 

maintained and scored at 20°C unless otherwise indicated. Most strains included 

mutations promoting a high incidence of males (him-4(e1267), him-5(e1467, 

e1490), him-8(e1489)) as indicated. Alleles used in this study were described in 

the indicated references (alleles first reported here are unreferenced). Linkage 

group (LG) I: ced-1(e1735) (Hedgecock et al., 1983), ced-12(k149) (Gumienny et 

al., 2001), lin-41(n2914) (Slack et al., 2000); LG II: lin-29(n333, n836) (Ambros et 

al., 1984), csp-1(tm917), lin-42(ve11) (Tennessen et al., 2006), rrf-3(pk1426) 

(Simmer et al., 2002); LG III: ced-4(n1162) (Ellis and Horvitz, 1986) ncl-1(e1865) 

(Hedgecock and Herman, 1995), unc-36(e251) (Brenner, 1974), ced-7(n1892) 

(Ellis et al., 1991a), ced-9(n1950) (Hengartner et al., 1992), ced-6(n2095) (Liu 

and Hengartner, 1998), egl-5(n486) (Chisholm, 1991); LG IV: ced-2(e1752) (Ellis 

et al., 1991a), ced-10(n1993) (Ellis et al., 1991a), ced-10(n3417) (Lundquist et 

al., 2001), bec-1(ok700) (Takacs-Vellai et al., 2005), csp-2(tm1079),  
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ced-5(n1812) (Ellis et al., 1991b), him-8(e1489) (Hodgkin and Brenner, 1977), 

ced-3(n717) (Ellis and Horvitz, 1986), ced-3(n2452) (Shaham, et al., 1999); LG 

V: egl-1(n1084n3082) (Conradt and Horvitz, 1988), him-5(e1467, e1490) 

(Hodgkin and Brenner, 1977), unc-51(e369) (Brenner, 1974); LG X: ced-13(sv32) 

(Schumacher et al., 2005), him-4(e1267) (Hodgkin and Brenner, 1977), let-

7(n2853) (Reinhart et al., 2000), dyn-1(ky51) (Clark et al., 1997), ced-8(n1891) 

(Ellis et al, 1991a), daf-12(rh61rh411) (Antebi et al., 2000), nuc-1(e1392) 

(Sulston, 1976). nT1 qIs51 (Belfiore et al., 2002) IV; V was used as a balancer for 

bec-1(ok700). Integrated transgenes used were: qIs56 [lag-2 promoter::GFP] 

(Siegfried and Kimble, 2002), enIs7 [ced-1 promoter::ced-1::GFP + unc-76(+)] 

(gift from Z. Zhou), nsIs1 [lag-2 promoter::GFP], nsIs65 [mig-24 promoter::GFP], 

adIs2122 [lgg-1 promoter::lgg-1::GFP + rol-6(su1006)] (gift from L. Avery), and 

saIs14 [lin-48 promoter::GFP] (gift from H. Chamberlin). The following 

extrachromosomal arrays were used: nEx1049 [ced-1 promoter::ced-1::GFP + 

unc-76(+)] (gift from Z. Zhou), nsEx1265 [lin-29 promoter::mCherry + rol-

6(su1006)], nsEx905-908 [lin-29 promoter::GFP + rol-6(su1006)], nsEx2000-

2002 [mig-24 promoter::WldS + rol-6(su1006)], nsEx1696-7 [pqn-41 

promoter::GFP + rol-6(su1006)], wEx15 [Heat-shock promoter::p35 + rol-

6(su1006)] (Sugimoto et al., 1994), and vEx112 [lin-29(+) ncl-1(+) unc-36(+)] 

(Euling et al., 1999). 
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Microscopy Analysis of Linker Cell Death 

Animals were examined by epifluorescence using either a fluorescent dissecting 

microscope (Leica), or by epifluorescence or DIC on an Axioplan II compound 

microscope. When observed using the compound microscope, the animals were 

placed on a slide on an agar pad with a drop of 30 mM sodium azide to 

anesthetize the worm. Except for an experiment with levamisole to follow 

individual worms through time, all DIC population study results reported here 

represent studies in which individual worms were scored at one timepoint. 

Rescoring the same worm at later timepoints was avoided in case of possible 

effects of sodium azide on development. To have an approximately similarly 

aged group of worms for population studies, late L4 males were picked at the 

stage just prior to the molt to adult, in which the rays and the cuticle around the 

tail are visible under the dissecting microscope. These animals were then scored 

at specific times after they had become adults. The worms were not observed for 

linker cell fluorescence before they were scored under the compound 

microscope, to avoid any possible sampling bias.  

To assess linker cell survival under the compound microscope, the GFP 

marked linker cell was identified using DIC and fluorescence, and characteristics 

of the cell noted: size, shape, nuclear architecture, blebbing etc. These 

observations can then be classified into four categories: healthy normal surviving 

linker cell, linker cell corpse with abnormalities characteristic of early stages of 

cell death (nuclear envelope crenellation or partial breakdown, blebbing, or loss 
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of cytoplasmic volume), linker cell corpse with abnormalities characteristic of later 

stages of cell death (a completely round linker cell, usually with severe nuclear 

abnormalities), and linker cell gone.  

 

Cell Ablation Experiments 

lin-48 promoter::GFP-marked U cells were ablated in L1 animals anesthetized in 

a drop of M9 on 5% agar pads containing 5 mM sodium azide using standard 

methods (Bargmann and Avery, 1995). Ablations were scored as successful if on 

the following day the U cell was absent, as observed by DIC and fluorescence 

microscopy. Mock-ablated animals provided controls. The strain used for U cell 

ablation contained a lag-2 promoter::GFP-marked linker cell to facilitate scoring 

of linker cell fate. 

 For ablations of the gonadal cells in egl-5 mutants, the gonadal cells were 

identified based on DIC optics and ablated in L3 or L4 worms.  The GFP marked 

linker cell was then observed at least 4-6 hours later.  

 

Plasmid Constructions and Germline Transformation 

Germline injections were used to create extrachromosomal arrays (Mello et al. 

1991); 3.5 kb of the lin-29 promoter was fused to GFP or mCherry and injected at 

20 ng/μl with the rol-6(su1006) coinjection marker; 1 kb of the mig-24 promoter 

was fused to WldS and injected at 10 ng/μl with the rol-6(su1006) coinjection 

marker; 2.5 kb of pqn-41 promoter was fused to GFP and injected at 20 ng/μl 
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with the rol-6(su1006) coinjection marker.  

 

Scoring Anterior Pharynx Cell Survival 

L4 stage males were mounted on a 5% agar pad in a drop of 30 mM sodium 

azide and extra cells in the anterior pharynx were scored using DIC (Ellis and 

Horvitz, 1991).  

 

Transmission Electron Microscopy Analysis 

12 animals with a linker cell GFP marker were observed under a fluorescence 

dissecting microscope or by DIC microscopy to determine the approximate stage 

of linker cell death. The animals observed were all late L4 or just around the molt 

to adult. For the him-4 linker cell migratory mutant, the animals were all 0-2-hour-

old adults. To obtain worms in which the linker cell vacuole was present, late L4 

worms in which the rays were visible were mounted in a simple S-Basal buffer 

and observed by DIC. None of the animals used for electron microscopy were 

treated with anesthetic prior to fixation. Animals were fixed, stained, embedded in 

resin, and serially sectioned using standard methods (Lundquist et al., 2001). 

Photographs were taken with an FEI Tecnai G2 Spirit BioTwin transmission 

electron microscope equipped with a Gatan 4K × 4K digital camera.  
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Mosaic Analysis 

Mosaic analysis was carried out by scoring animals of the genotype lin-29(n836); 

ncl-1(e1865) unc-36(e251); qIs56 him-5(e1490) for loss of the extrachromosomal 

array, vEx112, containing lin-29(+), ncl-1(+), and unc-36(+)(Euling et al., 1999). 

unc-36 loss in the AB.p lineage, which gives rise to all the proctodeal cells that 

are in the vicinity of the linker cell at the time of its death (including the U.l/rp 

cells), confers an uncoordinated mobility phenotype. unc-36 loss in the P1 

lineage, giving rise to the linker cell, does not affect mobility. ncl-1 loss results in 

large nucleoli. Mobility was assessed in L4 animals to determine whether array 

loss had occurred in the AB.p lineage. Animals were then mounted in S-Basal 

medium, and nucleolar size was used to confirm the presence or absence of the 

array in the U.l/rp and neighboring cells, and to determine if the array was 

present in the linker cell. Subsequent survival of the linker cell was followed in 

individual animals to determine whether the linker cell died, and whether death 

proceeded with normal kinetics. Only animals in which the linker cell migrated 

correctly were scored. 

 

EMS Mutagenesis 

qIs56(lag-2::GFP) him-5(e1490) animals were mutagenized with 30 mM 

ethylmethansulfonate (EMS) (Sulston and Hodgkin, 1988). 1,100 F1 mutagenized 

progeny were plated individually, and their F2 progeny scored under an 

epifluorescent dissecting microscope (Leica) for linker cell survival in the adult. 
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RNAi Assays  

RNAi was carried out by feeding bacteria expressing double-stranded RNA 

(dsRNA) corresponding to the gene of interest to animals (Timmons and Fire, 

1998). Plasmids used were obtained from the Ahringer library (Kamath et al., 

2003), the Vidal library (Kim et al., 2005), and the csp-1 plasmid was obtained 

from Open Biosystems. Bacterial RNAi clones were grown up overnight at 37°C 

for 12-17 hr and then seeded onto NGM plates with IPTG. Induction of dsRNA 

expression preceded the addition of animals to plates by 2–12 hr. A synchronous 

population of L1 larvae was obtained by hypochlorite treatment followed by 

growth in M9 for approximately 24 hr. The synchronized L1s were added to 

plates containing bacteria expressing dsRNA. An empty vector was used as a 

control, and positive controls for RNAi such as GFP or lin-29 were also used to 

verify successful double-stranded RNA induction. 

For the genome-wide library screen, bacteria grown overnight in 96-well 

plates were seeded onto 12-well NGM plates using a PerkinElmer Multiprobe 

machine. The plates were left to induce for 2 to 8 hours at room temperature and 

then 250 synchronized L1 worms were added per well from a strain with rrf-3 (to 

enhance RNAi sensitivity), lag-2::GFP (to mark the linker cell), and him-5 (to 

enhance the number of males in the population). The plates were scored using 

an epifluorescent dissecting microscope (Leica) about 48 hours after the L1 

worms were added, when the males were approximately 2 to 4 hour-old adults.  
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This is a list of the most promising clones (in addition to the 5 positive hits already identified), all of which 
have been retested again under the dissecting microscope. Four clones highlighted (arrows) may be worth 
testing under the compound microscope, as they appeared to have some extra linker cell GFP in the 
dissecting microscope retests. The remaining clones didn’t repeat with a strong phenotype under the 
dissecting microscope, or if tested under the compound didn’t give healthy linker cell survival.  

Appendix Table 1.  Additional Hits From the RNAi Screen Retested 
Gene Gene name/identity if known

ZC123.2 homeboxznfinger

F47G6.1 dyb-1 (alpha dystobrevin homolog)

B0285.2 unknown gene

C45G9.2 tRNA-dihydrouridine synthase 

ZK1098.4 Translation initiation factor 2B

F57B9.5 byn-1 (adhesion protein related)

C07A9.5 calcium binding, actin bundling motif

F54C8.2 cpar-1 (Histone)

Y79H2A.3 Q/N rich (pqn class)

Y75B8A.8 unknown gene

F58B3.2 lys-5 (lysozyme)

D2096.10 unknown gene

T09A12.2 Glutathione peroxidase

T26A8.4 Polyadenylation factor I complex,

W03G1.7 Acid sphingomyelinase and PHM5 phosphate metabolism protein 

F48G7.10 Serine/threonine protein kinase

T21D12.4 pat-6 (ortholog of alpha parvin, required for muscle assembly)

Y24F12A.a Predicted small GTPase involved in nuclear protein import

Y76B12C_66.c mRNA cleavage and polyadenylation factor II complex, subunit CFT1 

Y105C5A.m unknown gene

W03F9.2 unknown gene

R11G11.3 proteinase inhibitor/serpin

W08A12.3 unknown gene

T27C4.4 egr-1 (homolog of human MTA1- acts in chromatin remodelling

F09F3.1 srx-130 (serpentine receptor)

F21C10.2 unknown gene

T23B12.8 unknown gene

ZC443.5 UDP-glucuronosyl and UDP-glucosyl transferase

F35E12.5 CUB like domain

F53F4.9 srd-11 (7TM receptor)

C34D1.5 zip-5 (Transcription factor)

F55B12.4 tRNA nucleotidyltransferase/poly(A) polymerase

C06B3.4 17 beta-hydroxysteroid dehydrogenase type 3

F55B12.8 srx-17 (serpentine receptor)

R10D12.8 unknown gene

F57A10.4 unknown gene

F11A1.3 daf-12 (steroid receptor hormone)

R12H7.3 skr-19 (ubiquitin ligase related)

F59C12.2 ser-1 (serotonin receptor)

F01G12.5a let-2 (collagen)

T27A8.1 Zinc carboxypeptidase 

H03G16.1 unknown gene

Y119D3B.17 pes-4 (KH and RNA binding domains)

Y39G10AL.3 cdk-7 (cyclin dependent kinase)

R06C1.2 Polyprenyl synthetase

Y62E10A.13 unknown gene

C45E5.1 p-Nitrophenyl phosphatase

K04F1.12 predicted receptor

C24G7.2 Non voltage-gated ion channels (DEG/ENaC family)

F40H3.4 fkh-8 (transcription factor)

D2013.2 wdfy-2 (WD40 and FYVE domains)

R166.4 pro-1 (ribosome biogenesis, + role in germline)

C09G5.3 col-79 (collagen)

Y119D3_465.o unknown gene

Y55D5A_391.c unknown gene

Y45F10C.4 unknown gene

Y47G6A.20 rnp-6 (splicing regulation)

F29G9.7 contains F box

C29A12.6 unknown gene

ZK836.3 unknown gene

F44G3.8 contains F box

C31A11.6 srxa-7 (serpentine receptor)

F21E9.3 uncharacterized gene with conserved cysteine

T16G1.1 pqn-67 (Q/N rich) 

F48D6.1 Taf11.1 TFIID

T04F8.6 unknown gene

F08B12.2 prx-12 peroxisome organization

C30E1.8 unknown gene

C30G4.3 gcy-11 (guanylyl cyclase)

C48D1.2 ced-3

R1E3.6 eor-1 (transcription factor)

C02H7.1 microtubule binding protein

F52E1.3 unknown gene

F09F9.3 unknown gene

Y77E11A-3443.e predicted kinase

C15A11.3 sol-1 (suppressor of lurcher)

F57A10.4 unknown gene

C01F6.1 unknown gene

C42C1.10 mitochondrial solute carrier protein

ZC142.2 7 transmembrane receptor

F28D1.11 Dolichol-phosphate mannosyltransferase

Y46H3C.e DNA topoisomerase

Y44A6D.6 unknown gene

T23B12.3 mitochondrial ribosomal protein



Appendix Figure 1. 
TEM Image of a Healthy Linker Cell in the Process of Engulfment.

Nuclei of U.l/rp

linker cell

168

1 µm



Appendix Figure 2. 
TEM Image of a Round Linker Corpse Being Engulfed. 

Nuclei of U.l/rp Linker cell corpse.
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Appendix Figure 3.
TEM Image of Linker Cell Associated Vacuoles Merging Together.
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Appendix Figure 4. Published TEM Images of Vertebrate Cell Deaths with 
Morphological Features Similar to Linker Cell Death  
(A-C) Reproduced with permission from: Pilar, G., and Landmesser, L. (1976). 
Ultrastructural differences during embryonic cell death in normal and peripherally 
deprived ciliary ganglia. The Journal of Cell Biology 68, 339-356. Copyright 1976, 
The Rockefeller University Press.  
(D) Reproduced with permission from: Borsello, T., Mottier, V., Castagne, V., and 
Clarke, P. G. (2002). Ultrastructure of retinal ganglion cell death after axotomy in 
chick embryos. J Comp Neurol 453, 361-371. Copyright 2002, The Journal of 
Comparative Neurology. Reprinted with permission of Wiley-Liss, Inc. a 

subsidiary of John Wiley & Sons, Inc. 
(E & F) Reproduced with permission from: Oppenheim, R. W., Flavell, R. A., 
Vinsant, S., Prevette, D., Kuan, C. Y., and Rakic, P. (2001). Programmed cell 
death of developing mammalian neurons after genetic deletion of caspases. J 
Neurosci 21, 4752-4760. Copyright 2001, by the Society for Neuroscience. 
 
(A) Figure 13 from Pilar and Landmesser (1976). Original legend reads: "Early 
stages of normally occurring cell death involving primarily swelling of 
mitochondria (asterisks). GC, ganglion cell; N, nucleus". Scale bar, 1µm. 

(B) Figure 14 from Pilar and Landmesser (1976). Original legend reads: 
"Degenerating profile containing mostly greatly dilated mitochondria (asterisks) 

with a clump of chromatin (arrow). SC, satellite cell. Double arrow points to 
dilated cisternae of satellite cell RER (rough endoplasmic reticulum) containing 
floccular material". Notice similarity to the 200 nm vesicles seen in the linker cell 
(Figure 2.8F). Scale bar, 1µm. 

(C) Figure 10 from Pilar and Landmesser (1976). Original legend reads: "The 
nucleus (N) retains a normal appearance in this ganglion cell (GC) undergoing 
degeneration during normal development, although the RER is extremely dilated 
(asterisks)." Notice similarity to "empty" cytoplasmic clearings seen in linker cell 
(Figure 2.8G, 2.8H and 2.8J). Scale bar, 1µm. 
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(D) Fig. 3C of Borsello et al. (2002). Original legend reads: "Invaginated nuclei in 
axotomized retinal ganglion cells at 3 days after an embryonic day 12 tectal 
lesion." Notice similarity to crenellated nucleus of the linker cell (Figure 2.8C). 
Scale bar, 2 µm. 

(E & F) Figures 4D, F, respectively, of Oppenheim et al. (2001). Original legend 
reads: "Photomicrographs of degenerating spinal cord neurons from E14.5 
caspase-3 KO -/- embryos showing the distinct morphology of dying neurons in 
the caspase KO. These cells exhibit reduced chromatin condensation and 
nuclear pyknosis, marked cytoplasmic vacuolization, and dilation of mitochondria 
and RER compared with neurons from the caspase-3 +/+ embryos...the arrows in 
F indicate mitochondria, and the arrowheads in D indicate the cell boundary of 
this degenerating motoneuron. Note the numerous vacuoles and abnormal 
organelles in the cytoplasm of the cells in D and F." Scale bar (E & F), 1 µm. 
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