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The activity of voltage-gated cation channels underlies the action potentials that allow for 

neuronal signaling and muscle contraction. The canonical family of voltage-gated K+, 

Na+ and Ca2+ channels has been the subject of extensive electrophysiological, 

biophysical, genetic, biochemical and structural characterization since the 1950s. These 

channels all share a conserved six-transmembrane helix topology (S1-S6) in which the 

first four transmembrane helices (S1-S4) form the regulatory voltage-sensor domain and 

the last two transmembrane helices (S5 and S6) comprise the ion-conducting pore 

domain. It was thought that all voltage-gated cation channels shared this conserved 

domain architecture. However, this scheme was challenged by the discovery of the gene 

for the voltage-gated H+ channel. This voltage-gated cation channel has a four 

transmembrane helix topology that is homologous to the voltage-sensor domain of the 

canonical voltage-gated cation channels alone, without a separate pore domain. 

 In this thesis, I present my work, which constitutes the first ever biochemical 

characterization of the human voltage-gated H+ channel (hHV1). First, I demonstrate by 

site-specific cross-linking that hHV1 is a dimer in the membrane and define the 

oligomerization interface.  Then, by developing methods for the heterologous expression, 

purification and reconstitution of hHV1, I establish that the four transmembrane helix 



 

voltage-sensor-domain-like putative channel protein is in fact responsible for H+ 

conduction. Next, I present my work on the structural characterization of hHV1 by X-ray 

crystallography. I solved a low-resolution structure of a chimeric voltage-gated proton 

channel but then demonstrated that although this channel is functional in a membrane, the 

conformation seen in the crystal is non-native. Finally, I present my work on the analysis 

of hHV1 by solution state NMR in detergent micelles. This technique allowed us to define 

the secondary structure of the channel for the first time but full three-dimensional 

structural characterization was determined to be unfeasible. From these studies, I 

conclude that the HV channel structure is dependent on the constraints imposed by the 

lipid bilayer and is destabilized upon detergent solubilization. Future structural studies of 

HV channels will have to focus on channels imbedded within a membrane-like 

environment.         
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CHAPTER 1: INTRODUCTION  

 

In order to support the highly complex processes required for life, cells must be able to 

isolate desired components such as ions, small-molecule nutrients and biological 

macromolecules and precisely control their concentrations such that the chemistry of life, 

which derives from their interactions, can occur. This problem was solved in part by the 

evolution of the cellular membrane; an oily barrier composed of a bilayer of amphipathic 

phospholipids, which envelopes and defines the cell. Unlike the aqueous medium inside 

and surrounding cells, which allows for the free diffusion and interaction of biological 

molecules and ions, the membrane interior excludes water and hence creates an energetic 

barrier for passage of hydrophilic components. In this way, the membrane solves the 

problem of keeping the cells’ contents from diffusing away, allowing for the chemistry of 

life to occur.  

However, the existence of the membrane creates a new problem: it blocks the 

release of waste products from inside the cell and the uptake of nutrients from outside. 

The evolution of “membrane proteins” that express hydrophobic exteriors and therefore 

are able to insert and reside within the cellular membrane, allowed cells to fully exploit 
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the membrane’s properties. Indeed, some membrane proteins have evolved to catalyze 

the specific conduction or transport of hydrophilic ions and molecules across the 

membrane, thus helping the cell gain precise control over its contents.  

Another property of the cellular membrane that cells have evolved to utilize is its 

ability to separate electrical charge, i.e. its capacitance. Cells can store energy across the 

membrane by controlling the relative concentrations of ions inside and outside the cell. 

This energy manifests itself as an electrical potential across the membrane, which the cell 

can then use to do work. In most cells, this work is performed locally on a specific class 

of voltage-sensitive ion channels or enzymes, allowing for the fast transmission of signals 

along the cell membrane. Moreover, in certain organisms, specialized electrogenic organs 

have evolved that use biologically generated electric fields from an organized array of 

cells to detect the electric fields of other organisms, a process known as electroreception. 

In extreme cases, such as the electric knifefish (a.k.a. electric eel) and the electric rays, 

biological electricity is used in hunting to stun or even kill prey. 

In this chapter, I will discuss how cells generate and control electrical potentials 

across the membrane using ion channels and transporters. I will introduce the canonical 

voltage-gated ion channels and how cells can use them to directly tie the membrane 

potential to membrane permeability. Then, I will introduce the biophysics of the voltage-

gated proton channel and discuss its diverse physiological roles. Finally, I will discuss the 

motivation and aims for my research on the human voltage-gated proton channel. 
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1.1 GENERATION AND CONTROL OF CELLULAR ELECTRICITY 

1.1.1 Channeling Ions – the charge carriers of bioelectricity 

The inorganic ions Na+, K+, Ca2+ and Cl- are the major charge carriers used to generate 

electrical potentials across the membranes of cells (Hille 2001). The relative abundance 

of these ions on either side of the membrane is regulated by the activity of two classes of 

membrane proteins: ion channels and ion transporters (a.k.a. ion pumps).  

Ion channels allow only for the passive diffusion of ions down their 

electrochemical gradient and are defined (and named) by two major properties: 

selectivity and gating. Selectivity refers to the fact that different channels show a 

preference for the conduction of specific ionic species. For example, a K+ channel allows 

for the easy passage of K+ ions across the membrane but not the easy passage of Na+ ions. 

Gating refers to the ability of the channels to open and close, that is, to transition between 

conductive and non-conductive states. The stimulus that causes a channel to gate varies 

widely between channels. Some channels are gated by the binding of ligands (for 

example the ATP-gated K+ channel, KATP), others are gated by the transmembrane 

potential (for example the voltage-gated K+ channel, KV), others, by the mechanical state 

of the membrane itself (e.g. tension) and others, by environmental cues such as 

temperature and light (Hille 2001). Many channels are gated to varying degrees by the 

combination of different stimuli, for example the Slo1 K+ channel is gated both by 

transmembrane voltage and by binding of intracellular Ca2+ ions (Barrett et al. 1982). 

Ion pumps use cellular energy (usually in the form of ATP) to pump ions against 

their concentration gradient (Albers 1967). For example, the Na+ K+ ATPase pumps three 
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Na+ ions out of the cell while at the same time pumping two K+ ions into the cell and 

hydrolyzing an ATP molecule to form ADP and inorganic phosphate (Post et al. 1972). 

Since the number of ions pumped in each direction is uneven and the charge on each ion 

is the same, this pumping cycle is electrogenic. Thus, the Na+ K+ ATPase separates 

charge across the membrane, thereby charging the membrane capacitor and contributing 

to the membrane potential (Albers 1967). In the next section, I will describe how the 

activity of ion channels and pumps working in concert can be used to control the 

electrical potential of the cell.  

 

1.1.2 Electro-diffusion – how the membrane voltage is set 

Ion pumps consume cellular energy to pump ions against their concentration gradients 

and thereby establish an uneven distribution of ions across the membrane (Albers 1967). 

For example, in mammalian skeletal muscle the distribution of ions is such that [Na+] is 

high outside relative to inside, [K+] is low outside relative to inside, [Ca2+] is high outside 

relative to inside and [Cl-] is high outside relative to inside (Table 1.1; Hille 2001).  

Because each ion carries a charge, the free diffusion of the ions across the semi-

permeable membrane does not depend solely on the concentration difference and does 

not go to equilibrium when the concentration of the specific ionic species reaches the 

same value on either side of the membrane (Nernst 1888; Nernst 1889; Hille 2001). For 

example, diffusion of a single K+ ion down its concentration gradient removes a positive 

charge from the inside of the cell and adds a positive charge to the outside. Therefore, 

diffusion of ions across the membrane creates an electrical potential resulting in a force 

opposing the further diffusion of similarly charged ions. Equilibrium is reached when the 
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strength of the electrical potential results in balanced diffusion, such that there is no net 

flux of ions across the membrane. The electrical potential at which this balance is reached 

is known as the Nernst equilibrium potential (ES) and is calculated for each ionic species 

(S) using the Nernst equation (equation 1.1), where R is the gas constant, T is the 

temperature, zS is the charge on the ionic species, F is Faraday’s constant, [S]o is the 

external concentration of the ion and [S]i is the internal concentration (Nernst 1888). The 

Nernst equilibrium potentials for each of the four major biologically important inorganic 

ionic species in muscle cells at 37°C are shown in Table 1.1 (Hille 2001). 

 

     {1.1} 

 

Table 1.1 Free ion concentrations and equilibrium potentials for mammalian 

skeletal muscle (adapted from Hille 2001)  

Ion 

Extracellular 

Concentration (mM) 

Intracellular 

Concentration (mM) 
 

Equilibrium 

Potentiala (mV) 

Na+ 145 12 12 +67 

K+ 4 155 0.026 -98 

Ca2+ 1.5 100 nM 15,000 +129 

Cl- 123 4.2b 29b -90b 

H+ c 4 × 10-5 1 × 10-3 0.04 -86 
aCalculated from equation 1.1 at 37°C 
bCalculated assuming a -90 mV resting potential for the muscle membrane and that Cl- is 

at equilibrium at rest. 
cValues from Carter et al. 1967 

  

€ 

ES =
RT
zSF

ln
S[ ]o
S[ ]i

€ 

S[ ]o
S[ ]i
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Because the cell membrane separates many different ionic species, the reversal 

potential (Erev) at which there is no net ion flux across the membrane is not found at the 

Nernst equilibrium potential of a single ion, but at a weighted mean of all the Nernst 

potentials (Goldman 1943; Hodgkin & Katz 1949). The different Nernst potentials are 

weighted by the relative permeability of the different ions according to the Goldman-

Hodgekin-Katz voltage equation, which if K+, Na+ and Cl- are the permeant ions gives 

equation 1.2, where PS is the permeability of the membrane to the specific ionic species 

(S = K+, Na+, Cl-) and all other terms are defined as in equation 1.1 (Goldman 1943; 

Hodgkin & Katz 1949; Hille 2001).  

 

 {1.2} 

 

Equation 1.2 holds only in the simplified case in which there are no active 

electrogenic pumps in the cell and all of the permeant ions carry the same absolute value 

of charge (the equation takes an alternate form when divalent cations such as Ca2+ are 

taken into account; Hille 2001). Although PS is defined as the rate of flux of ion S across 

the membrane (in units of cm/s), it is proportional (though non-linearly) to the 

conductance of ion S across the membrane (gS, with units of Siemens [kg-1·m-2·s3·A2]), 

which is a function of the number of open ion channels that can conduct ion S and the 

driving force for the conduction of that ion (Hodgkin & Huxley 1952c; Hille 2001). If the 

membrane is only permeable to a single ionic species, equation 1.2 simplifies to the 

Nernst equilibrium potential for that ion (equation 1.1).  

€ 

Erev =
RT
F
ln
PK + K+[ ]o +PNa + Na+[ ]o +PCl− Cl

−[ ]i
PK + K+[ ]i +PNa + Na+[ ]i +PCl− Cl

−[ ]o
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In the average resting cell, the presence of inward rectifying K+ channels makes 

the membrane far more permeable to K+ than to any other ionic species; therefore, Erev is 

close to EK (approximately -60 to -90 mV, see Table 1.1; Hille 2001). Through changes 

in the permeability of the membrane to the different ionic species (i.e. opening and 

closing of K+ and Na+ ion channels), the cell can control its Erev, allowing it to set the 

membrane potential to any value between EK ≈ -98 mV and ENa ≈ +67 mV (Table 2; 

Goldman 1943; Hodgkin & Katz 1949; Hille 2001). Voltage-gated cation channels, 

whose open probability is a function of the membrane potential, directly tie the 

permeability of the membrane to K+, Na+ and Ca2+ to the membrane potential, which 

allows for the rapid propagation of electrical signals across the membrane known as 

action potentials (Hodgkin & Huxley 1952a). 

 

1.2 VOLTAGE-GATED ION CHANNELS AND THE VOLTAGE SENSOR DOMAIN 

1.2.1 Discovery and common features of voltage-gated cation channels 

Hodgkin and Huxley first described voltage-gated cation currents in their classical studies 

on the action potentials of the giant squid axon in the 1950s (Hodgkin & Huxley 1952c; 

Hodgkin & Huxley 1952b; Hodgkin & Huxley 1952d; Hodgkin & Huxley 1952a). As 

their name suggests, the opening and closing (i.e. gating) of the voltage-gated cation 

channels is strongly dependent on the transmembrane potential. It wasn’t until the 1980s 

that the first genes of a voltage-gated Na+ (NaV) channel and a voltage-gated K+ (KV) 

channel were identified and cloned (Noda et al. 1984; Tempel et al. 1987). These 
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sequences were then followed by the sequences of many more voltage-gated Na+, K+ and 

Ca2+ channels from many different species (for a review see Yu & Catterall 2004).  

Analysis of these sequences identified a simple pattern: KV channels were made 

up from a short polypeptide subunit, whereas, NaV and CaV channels were made up of a 

longer polypeptide containing four “KV-channel like” domains (Rehm & Tempel 1991; 

Guy & Durell 1994). Each one of the subunits or domains shared a conserved six-

transmembrane-helix (6-TM) architecture (S1-S6) with a conserved series of positively 

charged arginine or lysine amino acid residues along the fourth transmembrane helix 

(S4), as well as conserved negatively charged residues on (S1 and S2; Fig 1.1; Rehm & 

Tempel 1991; Guy & Durell 1994; Yu & Catterall 2004; Bezanilla 2000). For the KV 

channels, it was shown that the last two transmembrane helices (S5 and S6) comprise the 

pore of the channel (Fig. 1.1; Mackinnon & Miller 1989; Mackinnon et al. 1990; 

Mackinnon & Yellen 1990; Yellen et al. 1991). The discrepancy between the length of 

the KV channel and NaV/CaV channel genes was resolved when it was found that four 

identical KV channel subunits come together in the membrane to form a four-fold 

symmetric tetramer (Mackinnon 1991). Based on sequence analysis, the first four 

transmembrane helices (S1-S4) were proposed to fold into a separate domain that was 

thought to be responsible for voltage sensing, and hence was coined the voltage-sensor 

domain (VSD; Fig. 1.1; Greenblatt et al. 1985; Nelson et al. 1999). 
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Fig. 1.1 Topology of voltage-gated channels 

(A) Schematic representation of the six-transmembrane helix topology of KV channels 

which become concatenated to form the topology of the NaV or CaV channels (B). The 

helices that comprise the voltage-sensor domain (S1-S4) in each domain are shown in 

orange while the helices that comprise the pore (S5 and S6) are shown in brown. The 

conserved gating-charge residues on S4 are indicated by “+” signs. Horizontal black lines 

denote the membrane boundaries (cytoplasm side down).  
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One of the most well characterized families of voltage-gated cation channels is 

the voltage-gated K+ channel family KV1.1 (for a review see Fedida & Hesketh 2001). 

This channel is closed at hyperpolarized membrane potentials (negative inside relative to 

outside) and opens upon depolarization (Fig. 1.2). By measuring the instantaneous 

current-voltage relation from the tail currents and plotting the normalized current (I/Imax) 

as a function of transmembrane potential (V), it is possible to get an estimate of the open 

probability of the channel at the different values of V (Fig. 1.2; Hodgkin & Huxley 

1952c; Hille 2001). This normalized current-voltage (IV) curve can be modeled by the 

two-state Boltzmann function shown in equation 1.3, where z is the effective gating 

charge on the channel (see below), Vmid is the voltage at which half the channels are open 

and F, R and T are defined as in equation 1.1.  

 

   {1.3} 

 

As this equation shows, at V greater than Vmid the exponential term approaches 

zero and the ratio I/Imax goes to one, at V less than Vmid the exponential term approaches 

infinity and I/Imax goes to zero, at V equals Vmid the exponential term equals one and I/Imax 

equals 0.5.  

 

€ 

I
Imax

=
1

1+ exp − zF
RT

V −Vmid( )
# 

$ 
% 

& 

' 
( 
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Fig. 1.2 KV1.1 channel activity 
(A) Whole-cell current elicited from CHO cells expressing rat KV1.1 according to the 

voltage-step protocol depicted in the schmatic. (B) Current-Voltage plot (IV curve) of tail 

currents elicited by stepping back to the resting potential of (-80 mV) after each voltage 

step corrected for leak and fitted to the two-state Boltzmann (equation 1.3). Data 

provided by Josefina del Mármol. 

  

In order to sense and undergo conformational changes in response to changes in 

the transmembrane voltage, the channels must contain “gating charges” within the 

membrane interior, which move in response to changes in the transmembrane potential, 

resulting in channel gating (Hodgkin & Huxley 1952a). Gating charges have been 

directly observed during the gating of voltage-gated channels (Armstrong & Bezanilla 

1973; Taglialatela & Stefani 1993; Perozo et al. 1992; Perozo et al. 1993). As equation 

1.3 shows, this gating charge (z) is a scalar multiplier of the voltage difference (V-Vmid). 

Therefore, the gating charge modifies the steepness at which changes in voltage near Vmid 

alter the I/Imax ratio: the larger the gating charge, the smaller the voltage difference (V-

Vmid) is required to bring I/Imax to one or zero. These gating charges were measured to be 

12 to 14 elementary charges per channel (3.0 to 3.5 per subunit) and identified to be the 
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conserved positively charged amino acid residues on the S4 helix with contributions from 

a conserved negatively charged residue on S2 (Seoh et al. 1996; Aggarwal & Mackinnon 

1996). 

 Although these charges are required for the proper functioning of voltage-gated 

cation channels, due to the low electrical permittivity of the membrane interior, charges 

are unstable within its depths (Yaroshchuk 2000). How voltage-gated channels 

circumvent this energetic barrier and stabilize the gating-charge arginines in the 

membrane was not fully understood until the elucidation of the eukaryotic KV channel 

structures (Long et al. 2005; Long et al. 2007). 

 

1.2.2 Structure of the KV channel – the VSD revealed 

The first structures of the prokaryotic KV channel KVAP established the domain 

arrangement of the channel’s fold (Jiang et al. 2003a). As was previously demonstrated, 

the KV channel was seen to be a four-fold symmetric tetramer with the tetramerization 

interface completely comprised of the last two transmembrane helices (S5 and S6) 

(Mackinnon 1991; Jiang et al. 2003a). The S5 and S6 helices from each subunit come 

together to form a central pore, with the ion conduction pathway down the central four-

fold symmetry axis (Fig. 1.3A) (Jiang et al. 2003a). This pore structure was nearly 

identical to the structures of the non-voltage-gated K+ channels that had previously been 

solved (Doyle et al. 1998; Zhou et al. 2001; Jiang et al. 2002).  
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Fig. 1.3 KV channel Structure 

(A) The pore domain of the KV1.2 channel shown in stick representation surrounded by 

translucent atom space filling spheres with carbon grey, nitrogen blue, oxygen red and 

sulfur yellow. VSDs have been removed for clarity (Long et al. 2007). The surface of the 

pore is shown in blue drawn with the program HOLLOW (Ho & Gruswitz 2008). (B) The 

KV channel tetramer looking down from the extracellular medium showing the peripheral 

arrangement of VSDs around the central pore domain, each subunit is colored differently 

with each α-helix represented as a cylinder (Long et al. 2007). 
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The first four transmembrane helices (S1-S4) arrange themselves around the 

periphery of the pore and form the VSD, which is responsible for voltage dependent 

conformational changes (Fig. 1.3B) (Greenblatt et al. 1985; Caprini et al. 2001). 

Although it was demonstrated that the conformation of the VSD seen in the full-length 

KVAP structure was in a non-native conformation (Jiang et al. 2003a; Lee et al. 2005; 

Long et al. 2005; Long et al. 2007), the structure did allow for the identification of the 

functionally important S3-S4 helix-turn-helix motif coined the “voltage-sensor paddle” 

(Jiang et al. 2003a). It has subsequently been shown that this motif is found in all VSD 

containing proteins and that it can be swapped between different VSDs and still result in 

functional voltage-gated channels (Alabi et al. 2007). Structures of the isolated VSD 

from KVAP and, later, the structure of eukaryotic KV channels revealed the native four-

helix bundle fold of the VSD (Fig. 1.4; Jiang et al. 2003a; Long et al. 2005; Long et al. 

2007). These structures allowed the first understanding of how the gating-charge 

arginines are stabilized within the membrane and were later followed by the structures of 

prokaryotic NaV channels (Payandeh et al. 2011; Zhang et al. 2012; Payandeh et al. 

2012).  
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Fig. 1.4 The VSD structure from the KV1.2-2.1 Paddle Chimera 

Structure of the VSD is shown in ribbon representation with the side chains of charged 

amino acid residues within the transmembrane region shown as sticks with carbon grey, 

nitrogen blue and oxygen red (Long et al. 2007). The side chain of F233 is shown in blue. 

The S4 gating-charge residues are numbered according to the equivalent positions along 

the S4 of Shaker (Tempel et al. 1987). Horizontal black lines denote the approximate 

membrane boundaries (cytoplasm side down). The sites of charge compensation within 

the membrane are highlighted by pink circles. 
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Because of the large energy cost of burying a charge in the low permittivity 

medium of the membrane interior, membrane proteins have evolved to minimize the 

number of charged amino acid side chains within their transmembrane segments 

(Eisenberg et al. 1984). However, if —such as in the case of a VSD— the presence of a 

charged residue in the membrane is mechanistically required, then compensation for the 

charge must be provided by the protein structure. In many cases, this compensation is 

provided by the presence of oppositely charged residues protruding from other parts of 

the protein. Charge compensation of this type can readily be seen in the structures of 

VSDs. As shown in Fig. 1.4, all of the positively charged S4 gating charges that are 

buried within the hydrophobic membrane are paired with a conserved negatively charged 

residue from one of the other transmembrane helices (Glu183 on S1, Glu226 and Glu236 

on S2 and Asp259 on S3a). This pairing stabilizes the charges in the membrane, hence 

stabilizing the structure of the VSD itself. 

 

1.2.3 Mechanism of voltage sensing – the charge transfer center  

The internal charge-compensation site occupied by K5 in Fig. 1.4 is known as the charge 

transfer center (Tao et al. 2010). This site differs from the external charge-compensation 

sites by the presence of two negatively charged side chains and the proximity to the 

“phenylalanine gap” (represented by the blue side chain of F233 in Fig. 1.4). This 

phenylalanine gap forms a hydrophobic barrier that separates the external and internal 

charge compensation clusters and is considered the most constrictive point within the 

VSD structure (Fig. 1.3; Tao et al. 2010; Starace & Bezanilla 2004). 
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The structure shown in Fig. 1.4 is the depolarized conformation of the Kv1.2-2.1 

paddle chimera VSD (Long et al. 2007). It is thought that, during gating, the S4 gating 

charge residues that occupy each of the charge compensation sites changes. For example, 

in the hyperpolarized state immediately preceding the depolarized state, R2 would be in 

the external charge compensation site occupied by R3 in Fig. 1.4, R3 would be in the site 

occupied by R4 and R4 will be in the internal charge transfer center occupied by K5. This 

coordinated movement between the sites would allow for sustained charge compensation 

throughout the gating conformational changes of the VSD. In more hyperpolarized 

conformations, it is thought that R2 or even R1 would occupy the charge transfer center 

(Tao et al. 2010). This model of gating charge motion provides a structural and 

mechanistic understanding for the existence of multiple closed states of the VSD, the 

existence of which was first proposed by Cole and Moore in 1960 to explain the observed 

delay in channel activation after prolonged strong hyperpolarizations (Cole & Moore 

1960). The clear mechanistic importance of the pattern of charged residues within the 

transmembrane region of the VSD is demonstrated by the conservation of this pattern of 

charges throughout evolution (Yu & Catterall 2004; Bezanilla 2000).  

 

The HV channel constitutes a unique member of the voltage-gated cation channel 

family. The remainder of this chapter will introduce the properties of this channel, its 

many important physiological roles and the scientific questions it poses. 



 18 

1.3 VOLTAGE-GATED H+ CHANNELS  

1.3.1 Discovery of HV channels  

Voltage-gated H+ channels were first proposed to exist by Fogel and Hastings in 1972 for 

their model of bioluminescence in the single cellular eukaryotic algae Noctiluca miliaris 

(Fogel & Hastings 1972). However, the first biophysical characterization of voltage-gated 

H+ currents was not until ten years later when Thomas and Meech published their 

voltage-clamp studies on snail neurons (Thomas & Meech 1982). Thomas and Meech 

found that, upon depolarization, the membranes of these cells greatly increase their 

permeability to H+, which led them to propose that “H+ channels may be more 

widespread than hitherto suspected” (Thomas & Meech 1982). This proposal was 

confirmed by the subsequent discovery of HV channels in many different cell types from 

a diverse set of organisms (Barish & Baud 1984; DeCoursey 1991; DeCoursey & Cherny 

1993; Kapus et al. 1993; Demaurex et al. 1993; Taylor et al. 2011; Smith et al. 2011).  

The Clapham and Okamura groups published the first genes for HV channels in 

2006. As explained in the previous section, the pattern of evolutionarily conserved 

charges within the VSD makes up a signature sequence. By using the sequences of 

known VSDs, Ramsey et al. and Sasaki et al. searched the human and mouse genomes 

with the aim of identifying any previously unknown VSD containing proteins (Ramsey et 

al. 2006; Sasaki et al. 2006). In 2006, both groups published the discovery of the 

previously unknown gene of the voltage-gated H+ (HV) channel (Ramsey et al. 2006; 

Sasaki et al. 2006).  
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1.3.2 Domain overview of HV channels—not your canonical voltage-gated channel 

The sequence of hHV1 is shown in Fig.1.5A and is very different from all previously 

described voltage-gated cation channels in that it does not have a 6-TM topology (see Fig 

1.1). HV channels contain the first four transmembrane helices (S1-S4) of the VSD but 

lack the last two transmembrane helices that comprise the pore domain in the canonical 

6TM channels (KV, NaV and CaV channels, Fig. 1.1). Nonetheless, when these genes are 

expressed in HEK cells, robust depolarization-dependent, Zn2+-sensitive, H+ currents can 

be measured (Ramsey et al. 2006; Sasaki et al. 2006). 
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Fig. 1.5 Primary structure and transmembrane topology of hHV1 

(A) Amino acid sequence of hHV1. The predicted unstructured N-terminus is underlined 

in red, the predicted transmembrane helices are highlighted in grey and labeled S1-S4, 

the predicted C-terminal coiled-coil (Lupas et al. 1991) is underlined in black, the 

putative short helices within the N-terminus are boxed by blue dashed lines, the two 

known phosphorylation sites are boxed in green (Musset et al. 2010a) and the two 

histidines that are known to bind Zn2+ are boxed in orange (Ramsey et al. 2006). Critical 

residue D112 in S1 is boxed in blue. (B) Transmembrane topology of the hHV1 channel. 

Horizontal black lines denote the approximate membrane boundaries (cytoplasm side 

down). The S4 gating charge residues are represented as “+” signs. 
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Human HV1 (hHV1) is comprised of 273 amino acid residues with both the N- and 

C-termini residing in the cytoplasm (Fig. 1.5B). Secondary structure prediction identifies 

the four transmembrane helices of the VSD fold (highlighted in grey in Fig. 1.5A and 

labeled S1 through S4). Although it is very clear that these four transmembrane helices 

are present in the structure of the channel, the exact boundaries (i.e. the amino acid 

positions at which the helices start and terminate) are unknown. The first ~90 amino acid 

residues of hHV1 are predicted to be mostly disordered (Fig. 1.5A). The high proportion 

of negatively charged glutamate (E) and aspartate (D) residues, as well as the many 

proline (P) residues in the N-terminus, suggest an unstructured random coil. However, 

secondary structure prediction algorithms indicate that two short helices may be present 

in the N-terminus: one spanning residues A18-H27 (distant from the transmembrane 

helices in primary sequence) and the other spanning residues D87-S97, directly preceding 

S1 (Cole et al. 2008). Short amphipathic helices preceding the S1 have been observed in 

the structures of other voltage-sensor domains (VSDs) and have been termed S0 (Long et 

al. 2007; Butterwick & Mackinnon 2010). Therefore, it is possible that hHV1 also 

contains a S0 helix preceding S1. It is also interesting to note that a phosphorylation site 

that affects channel gating has been identified at T29, adjacent to the short predicted N-

terminal helix. This suggests that this region of the protein may interact closely with the 

transmembrane domain (Musset et al. 2010a). The C-terminal end of human HV1 is 

predicted to comprise one half of a coiled-coil structure; a number of structural and 

biochemical studies examining this isolated sequence demonstrate that it forms a 

homodimer coiled-coil structure (Li et al. 2010; Fujiwara et al. 2012; Fujiwara et al. 

2013a). 
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1.3.3 Biophysical features of HV channels 

In addition to exhibiting near perfect selectivity for H+ (DeCoursey 2003b), the voltage-

gated H+ currents measured in a variety of organisms share specific biophysical features, 

as described below. 

 

ΔpH dependence of gating   

Very early on, it was found that the gating of the depolarization activated H+ current was 

not solely dependent on the transmembrane potential, but that it also strongly depended 

upon the pH difference across the membrane (ΔpH, defined as external pH [pHo] minus 

internal pH [pHi]; Byerly et al. 1984). An example of currents elicited from whole-cell 

patch clamp recordings of HEK cells expressing hHV1 is shown in Fig. 1.6 at three 

different values of pHo (Fig. 1.6A pHo = 7.0, Fig. 1.6B pHo = 6.5 and Fig. 1.6C pHo = 

6.0). It is clear from the current recordings that the different pHo has an effect on the rate 

of channel opening and closing (Fig. 1.6A-C). By plotting an IV curve from the 

normalized tail currents, it becomes clear that the different pHos also have a strong effect 

on the voltage dependence of the gating (Fig. 1.6D). Reducing pHo (increasing the 

external concentration of H+) results in a significant shift of the threshold voltage (Vthr, 

defined as the voltage at which you begin to see H+ current) to more depolarized 

potentials (rightward shift on the IV plot; Fig. 1.6D). This ΔpH dependence is also seen 

upon changes of pHi and results in the channels only ever opening at membrane 

potentials more positive than the Nernst equilibrium potential for H+ (EH; Fig. 1.6D; 

Cherny et al. 1995; DeCoursey 2003b).  
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Fig. 1.6 Whole cell patch clamp recording of HEK cells expressing hHV1 channels  
Current recordings from the same HEK cell expressing hHV1 channels at different pHo 

(A) pHo = 7.0, (B) pHo = 6.5 and (C) pHo = 6.0; pHi = 6.5 for each recording. Voltage 

step protocols are represented schematically above each recording. (D) Normalized IV 

curves plotted from tail-currents. The arrows at the bottom indicate the different values of 

EH for each ΔpH shown (calculated by equation 1.1). 
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Through their dependence on ΔpH, these channels become outward rectifiers: 

they only ever open in resting mammalian cells such that the electrochemical potential 

for H+ conduction is outward. In other words, HV channels are acid extruders, only 

opening to allow H+ to leave the cytoplasm. This property defines the many physiological 

roles played by the HV channels (discussed in the next section). Although models have 

been proposed for how this gating behavior could be achieved (Cherny et al. 1995; 

DeCoursey 2003b), the mechanism remains unknown and the amino acid residues 

involved in pH sensing on both sides of the membrane remain to be identified.  

 

Inhibition by Zn2+  

To varying degrees, all HV channels thus far characterized are inhibited by polyvalent 

metal cations, with Zn2+ in general being the most potent inhibitor (Byerly et al. 1984; 

Mahaut-Smith 1989; DeCoursey 2003b). It is thought that the major mechanism of 

inhibition is through the direct binding of Zn2+ to an extracellular receptor site on the 

channel, which stabilizes the hyperpolarized (closed) conformation and thereby shifts the 

voltage-dependence of gating to more depolarized potentials (Cherny & DeCoursey 

1999; DeCoursey 2003b). The binding of Zn2+ was found to be highly sensitive to pHo 

and detailed competition studies indicated that H+ and Zn2+ compete for binding to the 

same site composed of multiple groups (Cherny & DeCoursey 1999). Furthermore, since 

both external H+ or Zn2+ binding stabilize the closed conformation, it was proposed that 

the groups responsible for Zn2+ binding may also be responsible in part for the ΔpH 

dependence of gating (Cherny & DeCoursey 1999). 
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After the discovery of the HV gene, Ramsey et al. identified the Zn2+ binding site 

in hHV1 (Ramsey et al. 2006). The binding site bridges two histidine residues, one at 

position 140 (near the extracellular end of S2) and the other at position 193 (within the 

voltage-sensor paddle motif; see Fig. 1.5A). When either or both of these two histidines 

are mutated to alanine, Zn2+ inhibition is alleviated (Ramsey et al. 2006). However, a 

systematic study of the role of these histidine residues on the ΔpH dependence of gating 

has yet to be published. It is also interesting to note that the HV channel found in 

calcifying coccolithophores (see below) does not have histidine residues at these 

positions and yet remains inhibited by extracellular Zn2+ ions, indicating that an 

alternative receptor exists for Zn2+ in these channels (Taylor et al. 2011). 

 

Conduction via protein mediated hydrogen-bonded chain   

The conduction of H+ both in water and through proteins is dissimilar to that of other ions 

in that it does not occur via simple diffusion but via the formation of transient covalent 

bonds (de Grotthuss 1806; Cukierman 2006; DeCoursey 2003b). Channel-mediated 

conduction of H+ across the membrane has commonly been found to occur by two 

distinct mechanisms: as H3O+, via a continuous water wire as in the gramicidin channel 

(Cukierman 2000), or as H+ via a hydrogen-bonded chain (the transfer of the H+ to a 

titratable amino acid side chain in the channel which then passes it to water on the other 

side of the membrane) as in the influenza M2 channel (Pinto et al. 1992; DeCoursey 

2003b).  

Which mechanism do HV channels utilize for H+ conduction? By measuring the 

effect of buffer concentration, temperature and the deuterium (2H) isotope on proton 
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conduction, DeCoursey and Cherny established that the rate of H+ conduction through HV 

channels is not diffusion-limited (DeCoursey & Cherny 1996; DeCoursey & Cherny 

1998; DeCoursey & Cherny 1997). This indicates that there is a rate-limiting step for H+ 

conduction as it permeates the channel. When comparing the temperature and deuterium 

isotope effects to other channels with established conduction mechanisms, such as the 

gramicidin and influenza M2 channels, the values found for hHV1 are more consistent 

with a hydrogen-bonded chain mechanism, as opposed to a continuous water-wire 

mechanism (DeCoursey 2003b). This titratable residue was later identified in hHV1 to be 

D112 on the S1 helix (Fig. 1.5A; Hille 2001; Musset et al. 2011). Mutation of this residue 

to valine results in a defective H+ channel unable to conduct H+; mutation to other amino 

acid residues results in Cl- leakage through the channel (see Chapter 3 for a more 

complete discussion; Musset et al. 2011). 

 

1.3.4 HV channels diverse physiological roles 

Although the first description of HV channel currents was from snail neurons, the role that 

the channels play in neuronal physiology remains poorly understood. In humans, HV 

channels are mainly found in cells of the immune system and in sperm cells (Barrett et al. 

1982; DeCoursey 2010; Capasso et al. 2010; Lishko et al. 2010). In addition, a 

potentially significant role of HV channel activity is being uncovered in cancer cells 

(Wang et al. 2012; Wang et al. 2013a). In this section I will briefly discuss a selection of 

the physiological roles that HV channels play in humans, as well as some of the important 

roles they play in single-celled eukaryotes. 
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Phagocytes  

HV channels have been best characterized physiologically for the role they play in 

stabilizing the activity of the NADPH oxidase during oxidative bursts in phagocytes’ 

phagosomes (DeCoursey 2010). Upon encountering a bacterium, a phagocyte engulfs it 

into a specialized vacuole known as the phagosome. Through the activity of the NADPH 

oxidase (which transfers electrons from NADPH to molecular oxygen, generating 

NADP+ and H+ in the cytoplasm and the superoxide ion [O2
-] in the phagosome), the 

macrophage attacks the bacterium with reactive oxygen species (ROS; DeCoursey 2010). 

In this way, the activity of the NADPH oxidase results in the depolarization of the 

phagosome membrane (inside negative with respect to the cytoplasm) and the 

acidification of the cytoplasm. Because of the voltage-dependence of NADPH oxidase 

activity, this activity would be self-inhibitory in the absence of any compensatory 

mechanism (DeCoursey et al. 2003). HV channels in the phagosome membrane provide 

the required compensatory mechanism: they open in response to the NADPH-oxidase-

induced membrane depolarization and conduct H+ into the phagosome, simultaneously 

repolarizing the membrane and deacidifying the cytoplasm (DeCoursey et al. 2003; 

DeCoursey 2003a). 

 

Human sperm cells 

The HV channel is integral for regulation of the internal pH of the sperm cell (Lishko et 

al. 2010; Lishko & Kirichok 2010). The pH of the sperm cytoplasm is a major regulator 

of sperm cell motility, capacitation, hyperactivation and the acrosome reaction, all 

essential processes for the fertilization of the egg (Lishko et al. 2012). For example, the 
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capacitation process (by which sperm cells go from a quiescent state to an actively 

swimming state) was known to involve the extrusion of protons out of the sperm 

cytoplasm (Giroux-Widemann & Jouannet 1991; Hamamah & Gatti 1998). In 2010, 

Lishko et al. showed this proton efflux in human sperm cells is facilitated by HV channels 

(Lishko et al. 2010).  

Upon the identification of role played by HV chanels in sperm cell physiology, a 

potential mechanism for the role of Zn2+ in sperm cell activation was proposed (Lishko et 

al. 2010). Since the very early characterization of HV current, it was shown that Zn2+ is a 

potent inhibitor of the channel (see above; Mahaut-Smith 1989). It is telling that the 

highest concentration of Zn2+ in the human body is found in the seminal fluid (Saaranen 

et al. 1987; Lishko et al. 2012). Through inhibition of HV channels, a high concentration 

of Zn2+ would prevent premature sperm capacitation; conversely, removal of Zn2+ would 

promote proton efflux from the sperm cytoplasm. It has been demonstrated in rats that, 

upon entering the female reproductive tract, the Zn2+ from the seminal fluid is rapidly 

diluted (Gunn & Gould 1958). There is also evidence that the lipid-derived hormone 

anandamide present in the human reproductive system (Schuel & Burkman 2005) may 

have a direct activating influence on HV channels (Lishko et al. 2010). 

 

Cancer  

The metabolism of cancer cells is markedly different than that of normal cells (for a 

review see Griffin & Shockcor 2004). Cancerous cells require a large amount of energy 

to fuel their expansive growth. Therefore, many cancers are characterized by increased 

levels of metabolism, specifically increased activity of the glycolytic pathway (Gatenby 
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& Gillies 2007). Furthermore, because of the high cell density of tumors, cancer cells 

tend to be hypoxic (Knowles & Harris 2001). Therefore, due to their high metabolism 

and their hypoxic environment, cancer cells start to accumulate high levels of H+ (a 

byproduct of anaerobic glycolysis) in their cytoplasm (Gatenby & Gillies 2007). Without 

a mechanism for extruding protons out of the cytoplasm, these cells would not be able to 

continue proliferating or to metastasize.  

The discovery of the expression of hHV1 in highly metastatic breast and colorectal 

cancer cells, both from human cancer biopsies and established cancer cell lines, has led to 

the hypothesis that these channels are responsible for the regulation of cytoplasmic pH 

that allows the high proliferation of these cells (Wang et al. 2011; Wang et al. 2012; 

Wang et al. 2013a). Additionally, it has been demonstrated that HV channels are 

overexpressed in the highly metastatic glioma cell SHG-44 and that inhibition of HV 

channel activity by Zn2+ when these tumors are implanted into nude mice results in 

significantly smaller tumor size (Wang et al. 2013b). These findings indicate that HV 

channels might be effective targets for anticancer drugs. 

 

Calcification in Coccolithophores 

Coccolithophores comprise a large group of phytoplankton that is found in all oceans 

around the globe (Winter & Siesser 1994). These unicellular algae generate elaborate 

calcium carbonate scales (coccoliths) of unknown physiological function (Marsh 1999). 

Nonetheless, because of the tendency of coccolithophores to grow into immense blooms, 

they are the most numerous calcifying organisms in the ocean. Coccolithophores 

significantly impact marine biogeochemical cycling and atmospheric chemistry by 
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incorporating inorganic carbon into their coccoliths and carrying it to the bottom of the 

ocean when they die (Rost & Riebesell 2004).  

The process of coccolith formation occurs within an intracellular compartment 

and involves the combination of Ca2+ and bicarbonate (HCO3
-) to produce calcite 

(CaCO3), releasing one mole of H+ for every mole of CaCO3 produced (Marsh 1999; 

Brownlee & Taylor 2004; Paasche 2001). Without a mechanism for H+ removal from the 

cytoplasm, it is predicted that coccolith production would acidify the cell at a rate of ~0.3 

pH min-1 (Taylor et al. 2011). The mechanism of H+ dumping from the coccolithophores 

was not understood until the discovery that these cells express HV channels (Taylor et al. 

2011). The activity of these HV channels allows for the maintenance of calcification by 

regulating cytoplasmic pH homeostasis, thereby influencing the composition of the 

atmosphere on a global scale.  

 

Bioluminescence in dinoflagellates 

In 1972, Fogel and Hastings first proposed the existence of voltage-gated proton channels 

as a component of their theoretical model describing the process of bioluminescence in 

dinoflagellates (Fogel & Hastings 1972). It was not until 2011 that the existence of HV 

channels in dinoflagellates was experimentally confirmed (Smith et al. 2011). The HV 

channels found in these single cellular algae are unique in that they activate at membrane 

potentials negative to the Nernst equilibrium potential for H+, thus allowing for inward H+ 

current (Smith et al. 2011). This feature is necessary for this HV channel to fulfill its 

proposed role in the triggering of bioluminescence by rapid H+ influx into the specialized 

small organelles known as scintillons (Fogel & Hastings 1972). Additionally, this 
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distinctive gating behavior allows these HV channels to participate in the production of 

action potentials that carry the H+ signals along the algal membranes to the scintillon 

organelles (Smith et al. 2011). 

 

 1.4 MOTIVATION AND AIMS OF THESIS RESEARCH 

1.4.1 Many fundamental questions to tackle   

Hv’s significant deviations from the canonical voltage-gated domain structure, namely, 

its lack of separate voltage-sensing and pore domains, raised a number of fundamental 

questions as to its mechanism of gating, conduction and regulation. How does the 

channel conduct H+ without a pore domain? Is the gene identified actually the H+ channel, 

or does the protein associate with some unknown factor in the HEK cell membrane to 

mediate H+ conduction? Given that the pore helices create the multimerization interface 

in the KV channels, what is the multimeric state of the HV channel? 

 I joined the MacKinnon laboratory in 2008, less than two years after the first 

discovery of the HV genes by Ramsey and Sasaki (Ramsey et al. 2006; Sasaki et al. 

2006). At the time, all that was known about the HV channel protein was its sequence and 

the histidine residues that were responsible for Zn2+ binding (Ramsey et al. 2006); many 

of the biophysical and physiological studies mentioned in the previous sections had yet to 

be performed. In this thesis, I describe my efforts on the investigation of the molecular 

mechanisms of HV channel gating and conduction through attempts at functional and 

structural characterization.  
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In Chapter 2, I describe my work on the multimeric state of the hHV1 channel in 

membranes. Together with the postdoctoral fellow Dr Seok-Young Lee, I demonstrated 

that HV channels form dimers in the membrane and we identified the dimerization 

interface to be along the S1 helix in the membrane and along the coiled-coil in the 

cytoplasm (Lee et al. 2008). 

In Chapter 3, I describe our approach of studying the purified HV channels in 

detergent and reconstituted into vesicles. Whereas all other research on HV channels has 

been performed in cells, we decided to biochemically characterize the purified channel, 

taking advantage of the expertise in membrane protein expression and purification in the 

MacKinnon laboratory. By studying the purified protein reconstituted in lipid vesicles, 

we demonstrated for the first time that the hHV1 gene alone is able to conduct H+ (Lee et 

al. 2009b). Furthermore, to identify amino acid residues that play an important role in H+ 

conduction, we purified and reconstituted mutated hHV1 channels and subjected them to 

functional analysis. We identified D112 as a candidate residue involved in H+ conduction 

and showed that the mutation of an equivalent position to aspartate in the isolated VSD of 

the prokaryotic KV channel KVAP increases the rate at which this protein conducts H+.  

In Chapters 4 and 5, I describe my efforts towards the structural characterization 

of HV channels. Determining the atomic resolution structure of a protein and using it to 

generate experimentally testable hypotheses is one of the most powerful ways to produce 

mechanistic understanding. Needless to say, this would be particularly useful for many of 

the poorly understood HV-channel biophysical properties. Encouraged by our 

development of expression and purification methods for hHV1 as well as by our 

colleague’s determination of the KVAP isolated VSD structure (Jiang et al. 2003a), we 
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decided to pursue the structure of hHV1 by x-ray crystallography. Our efforts to this end 

are discussed in detail in Chapter 4.  

In addition to the crystallographic approach, together with postdoctoral fellow Dr 

Joel Butterwick, I also examined HV channels in detergent by solution state NMR. 

Because of its sensitivity to the protonation state of amino acid residue side chains, NMR 

constitutes an ideal methodology for probing the conduction mechanism of HV channels. 

Additionally, NMR can be used to calculate protein structures and since Dr Butterwick 

had solved the structure of KVAP isolated VSD by this method (Butterwick & Mackinnon 

2010), we thought this would be a complementary approach to solving the hHV1 

structure. Our efforts on the NMR of HV channels are discussed in detail in Chapter 5. 

Although the attempts at complete structural characterization of HV both by 

crystallography and NMR have thus far been unsuccessful, we were able to define the 

secondary structure of the channel for the first time and determine that the channel 

requires a lipid bilayer for the stabilization of its three-dimensional fold. Ongoing and 

future research into HV channel structure must focus on membrane like environments. For 

crystallography this includes detergent-lipid mixtures, bicelles and lipidic cubic phase 

crystallography. For NMR solution state studies can be performed on the channel in lipid 

nanodisks or solid state NMR can be attempted on pellets of reconstituted channels. 

Significant progress has been achieved in the last 7 years since the HV genes were 

identified. However, many fundamental questions still remain. Complete mechanistic 

understanding of HV conductance and gating will ultimately require the atomic 

description of the protein in multiple states. As such, structural characterization of HV 

remains a pressing goal for the voltage-gated ion-channel field. Understanding of this 
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unique voltage-gated channel will contribute to our understanding of the diverse 

mechanisms that have evolved which allow voltage-gated cation channels to fulfill their 

diverse and important physiological roles.  

  



 35 

 

 

 

 

CHAPTER 2: HV IS A DIMER IN THE MEMBRANE 

 

Voltage-gated six-transmembrane (6-TM) cation channels (Na+, K+, and Ca2+) contain 

voltage-sensor and pore domains (Hille 2001). In the case of voltage-gated K+ (KV) 

channels, four 6-TM subunits come together in the membrane to form a four-fold 

symmetric tetramer (Mackinnon 1991; Long et al. 2007). The last two transmembrane 

helices (S5 and S6) from each subunit come together to form the pore domain, with the 

ion conduction pathway through the central four-fold access of symmetry (Yellen et al. 

1991; Doyle et al. 1998). The first four transmembrane helices (S1-S4) form the voltage-

sensor domain (VSD); the four VSDs of the tetramer arrange themselves around the 

periphery of the pore (see Fig. 1.3B on page 15; Long et al. 2007). The multimeric 

interface of the KV channel is completely composed of the pore domain (S5 and S6) 

without any contribution from the VSDs (Long et al. 2007).  

Until the cloning of voltage-gated proton (HV) channels, it was thought that all 

voltage-gated cation channels had a 6-TM architecture, containing distinct VSDs and 

pore domain (Yu & Catterall 2004). However, the work of Ramsey et al. and Sasaki et al. 

revealed that the voltage-sensor domain can also exist independently, as the cloned 

sequences showed that HV channels contain only a voltage-sensor domain in the 
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membrane without a separate pore domain (Ramsey et al. 2006; Sasaki et al. 2006). 

Because the pore domain of other voltage-gated cation channels is instrumental in 

generating higher-order structure in the membrane (e.g. the tetramerization of the KV 

channels), the oligomeric state of the HV channel was unknown. This fundamental 

property of the channel can have significant repercussions for our mechanistic 

understanding of the channel’s gating and conduction. It has been shown that in order for 

VSDs to function properly in KV channels two interfaces are necessary between the VSD 

and the pore (Lee et al. 2009a). Do HV channels require support from other protomers in 

the membrane in order to properly function? The conduction pathway for other voltage-

gated cation channels is found at an assembly interface (Yellen et al. 1991; Long et al. 

2007). Where is the conduction pathway of HV channels? Does it form at an oligomeric 

interface or do H+ conduct through the VSD itself? 

In this chapter I will discuss my work carried out together with Dr Seok-Yong 

Lee, which addressed these questions through evaluation of the subunit stoichiometry of 

the human HV1 (hHV1) channel. By site-specific cross-linking in cell membranes we were 

able to demonstrate that hHV1 is a dimer in the membrane and we were able to define the 

dimeric interface (Lee et al. 2008). 
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2.1 HUMAN HV1 IS A DIMER IN THE MEMBRANE 

2.1.1 Non-specific cross-linking in HEK cells 

To probe the oligomeric state of hHV1, cell membranes isolated from HEK cells 

transfected with hHV1 cDNAs were subjected to the amino-group specific bifunctional 

cross-linker disuccinimidyl suberate (DSS) and visualized by western blot analysis using 

antibodies directed against the hHV1 channel coiled-coil. Amino-group specific cross-

linkers have been successful in defining the oligomeric status of several membrane 

proteins (Albright et al. 2007; Aller et al. 2004). Recombinant HV1 makes functional 

channels in HEK cells (Ramsey et al. 2006; Sasaki et al. 2006; Musset et al. 2008). hHV1 

migrated at approximately 35 kDa in SDS-PAGE under reducing conditions, which is 

consistent with the molecular weight of a monomer (32 kDa; Fig. 2.1A). As the 

concentration of the cross-linker (DSS) was increased, a band migrating near 73 kDa 

appeared with a concomitant decrease in the monomer band. Further increase of cross-

linker concentration yielded a series of weak bands corresponding to higher oligomers in 

addition to the strong dimer band. These were probably due to non-specific cross-linking 

with other membrane proteins or cross-linking between the hHV1 dimers. However, the 

appearance of strong dimer bands at low concentrations of DSS suggested that hHV1 

forms a homo-dimer in the membrane.  Dimerization in hHV1 is not a consequence of 

disulfide bond formation because mutants lacking cysteines showed the same DSS-

mediated cross-linking pattern as wild type (Fig. 2.1B).  
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Fig. 2.1 hHV1 is a dimer 

Western blots of membranes from tsA201 cells transfected with (A) wild type and (B) 

cysless hHV1 cDNAs and exposed to increasing concentrations of the amino-group 

specific cross-linker DSS (from left to right: No DSS, 25 µM, 75 µM, 250 µM, 2.5 mM).  

Membrane samples were run on SDS-PAGE under reducing conditions as per methods.  

All the gels that were used are 12 %.  Molecular weight markers are shown on the left 

side of each blot.  

 

2.2 PROBING THE DIMERIC INTERFACE 

2.2.1 Design of site-specific cross-links 

The finding of a dimeric subunit stoichiometry for hHV1 leads to the question of how two 

voltage sensors arrange relative to each other in the membrane.  If the hHV1 homo-dimer 

contains a two-fold rotation axis normal to the membrane, a single cysteine mutation 

close to the dyad axis should form a cross-linked dimer under oxidizing conditions, or in 

the presence of a bifunctional cross-linker. By sequence analysis, hHV1 can be dissected 
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into three subdomains: an N-terminal acid- and proline-rich region, a transmembrane 

voltage-sensor domain, and a C-terminal coiled coil domain (see Fig. 1.5 on page 22 and 

Fig. 2.2). Using the voltage sensor of the KV1.2-KV2.1 paddle chimera structure as a 

reference (Long et al. 2007), we examined both the two naturally existing cysteine 

residues and a series of substituted cysteines on a natural-cysteine-free background (Fig. 

2.2). Positions that were mutated to cysteine included: R100 (preceding S1), C107 and 

L120 (S1), I127 and N132 (S1-S2 loop), T145 and I155 (S2), E164 (S2-S3 turn), L173 

and V187 (S3), Q194 (S3-S4 turn), L203 and I212 (S4), T222 (after S4), and C249 

(putative coiled coil; Fig. 2.2). Limited proteolysis and preliminary biochemical data 

suggested that the N-terminal region is largely unstructured and does not affect the 

oligomeric state of the protein. Therefore, although the full-length hHV1 was used, the N-

terminal region was not investigated in this cross-linking study. 
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Fig. 2.2 Introduction of cysteine mutations into hHV1 

(A) The positions that were mutated to cysteine are indicated by filled circles on the 

voltage-sensor structure of the KV1.2-2.1 paddle chimera (PDB ID: 2R9R). The S1-S2 

loop from the paddle chimera was drawn as a shorter loop to match the length of hHV1. 

(B) The amino acid sequence of hHV1. Predicted transmembrane regions, based on the 

structure of the paddle chimera and hydropathy, are highlighted gray. Residues mutated 

to cysteine are colored red.  C107 and C249 are natural cysteines. The region 

corresponding to the coiled coil was calculated by the program COIL (Lupas et al. 1991).   
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2.2.2 Dimer interface of HV channels 

Each of the 14 cysteine-mutant cDNAs was transfected into tsA201 cells and membranes 

isolated from these cells were subjected to cross-linking reactions.  The oligomeric state 

of each mutant was assessed by western blot analysis. Among the 15 mutants that we 

tested for cross-linking, only R100C failed to be expressed, by western blot analysis. As 

shown in Fig. 2.3A, all mutants migrated as a monomer under reducing conditions on 

SDS-PAGE. However, several mutants migrated as a dimer under non-reducing 

conditions (Fig. 2.3B). I127C, which is located in the loop between S1 and S2, formed an 

almost complete spontaneous disulfide bond, whereas C249—a natural cysteine located 

in the predicted coiled-coil domain—formed a significant quantity of spontaneous 

disulfide bond. N132C and T222C also showed some degree of disulfide bond formation. 

This pattern of disulfide bond formation suggests that S1 and the adjacent loop form a 

dimer interface on the extracellular side of the cell membrane and that the C-terminus, 

through a coiled-coil, forms a dimer interface on the intracellular side of the membrane. 

Oligomer formation was also studied under conditions that ‘force’ cross-linking, 

either by the addition of the oxidant CuSO4 and o-phenanthroline (CuP) or by the 

addition of the bifunctional cross-linker 1,3-propanediyl bismethanethiosulfonate (M3M), 

which has a 13 Å spacer separating the two cysteine-reactive methanethiosulfonate 

functional groups (Fig. 2.3C and D). Both reagents drove cross-links at I127C and at 

C249 nearer to completion. They also produced cross-linked cysteines to a lesser extent 

at positions near I127 (position 120 within S1 and position 132 in the S1-S2 loop) and 

near 249 (position 222 within the C-terminus).  
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Fig. 2.3 Dimer interface of hHV1  

Western blots of membranes from tsA201 cells transfected with 14 individual hHV1 

cysteine-containing mutant cDNAs that were subjected to (A) reducing reagent (5 % 

(v/v) b-mercaptoethanol), (B) air oxidation, (C) CuP-induced cross-linking, or (D) M3M-

mediated cross-linking as per methods. Cross-linked dimers migrate at approximately 73 

kDa while monomers migrate at approximately 35 kDa. Other weak bands probably 

correspond to proteolytic fragments of hHV1. A mutant hHV1 in which the native 

cysteines were removed was included as a control (cysless). The number represents the 

amino acid position of the cysteine residue.  
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Forcing conditions also resulted in weak cross-links in two new regions: the S2-

S3 turn—also known as the membrane interface anchor (positions 164 and 173) (Lee et 

al. 2005)—and the tip of the voltage sensor paddle (positions 187 and 194; Fig. 2.3C and 

D; Jiang et al. 2003a; Jiang et al. 2003b).   

By covalently trapping rare conformations or molecular arrangements, forcing 

conditions can sometimes result in cross-link formation between residues that are only 

rarely in close proximity to each other. An example of this would be intermolecular 

cross-links (in this case inter-dimer cross-bridge formation between pairs of dimers). The 

blot in Figure 2.4A provides evidence for such dimer pairing by cross-linking of 

cysteines at position 173. When combined with a cysteine at 127 (which by itself formed 

a cross-linked dimer to near completion; Fig. 2.3B), cysteine at 173 resulted in the 

appearance of bands near the size of a tetramer (Fig. 2.4A). This observation is explicable 

if cross-links between position 173 cysteines formed between S2-S3 loops from separate 

dimers, because cross-links within a dimer would not produce a tetramer. A similar 

analysis of cysteine at position 194 in the background of a cysteine at 127 produced a 

different, yet equally interesting result. Cysteine at 194 did not produce tetramers in this 

setting, but reduced the degree to which cysteine at 127 formed a cross-linked dimer 

(compare Fig. 2.3C and D with Fig. 2.4A). The location of position 194 at the tip of the 

voltage sensor paddle, which is adjacent to the S1-S2 loop within a single voltage sensor 

of the dimer (see Fig. 2.2A), offers a possible explanation for this cross-linking outcome. 

By forming an intramolecular cross-link with cysteine 127 within the same subunit, 

cysteine at 194 would compete with cysteine 127-mediated dimer cross-linking. These 

more subtle aspects of the blots suggest that the S2-S3 turn and the voltage sensor paddle 
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are not actually part of the tight dimer interface, but that less specific cross-links are 

formed under forcing conditions. 

A more extensive inspection of covalent dimer formation via cysteine residues 

within the S1 and S1-S2 loop showed differential propensities to react (Fig. 2.4B and C). 

Even among amino acids that we expect to reside outside the membrane (positions 124-

128), positions 126 and 127 reacted to a greater extent, as if they were most optimally 

positioned to form a disulfide bridge relative to their molecular symmetry equivalents. 

Position 120, which we expect is buried in the membrane, formed a disulfide partially in 

the presence of CuP. Disulfide formation in a low dielectric environment suggests that 

position 120 is probably very near its molecular symmetry partner (Schwem & 

Fillingame 2006; Yu & Oprian 1999).  
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Fig. 2.4 Further study of the dimer interface.  

(A) Distinguishing intra- from inter-dimer cross-linking. Numbers at the bottom of each 

gel indicate the cysteine position. (B) Specificity of cross-linking in the S1-S1 dimer 

interface. Transmembrane region of S1 (117 to 120) and the adjacent loop (124 to 128) 

were subjected to (B) air oxidation and (C) CuP - mediated oxidation.  
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2.3 DISCUSSION OF RESULTS AND SUBSEQUENT LITERATURE 

2.3.1 Schematic representation of the hHV1 dimer 

These cross-linking data support the conclusion that HV1 exists in the cell membrane as a 

dimer of identical voltage sensor protomers. Two regions of contact between the voltage 

sensors correspond to the extracellular C-terminal side of S1 and the adjoining S1-S2 

loop and intracellular C-terminus, which may form a coiled coil structure. The native 

cysteine at position 249 may help to stabilize the dimer at the coiled coil but a disulfide 

bridge at this position is not essential for holding the dimer together. We conclude that 

two voltage sensor protomers of a dimer come into direct contact at both the extracellular 

and intracellular side of the membrane. A schematic representation of the HV1 dimer, 

based on the known crystal structures of KV channel voltage sensors and the contact 

surfaces identified in this study, is shown in Fig. 2.5 (Jiang et al. 2003a; Long et al. 2005; 

Long et al. 2007). 
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Fig. 2.5 A model of the hHV1 dimer 
(A) Topology diagram showing the dimer arrangement of hHV1 transmembrane regions 

based on the cross-linking data, viewed from the extra-cellular side. An ellipsoid denotes 

the 2-fold rotation axis normal to the membrane. (B) A cartoon representation of the 

hHV1 dimer. Transmembrane helices are labeled. The helical representation of the 

putative interfacial region (after S4) and the predicted coiled coil region are also 

included.  
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Contemporary publications from two groups corroborated and complemented our 

discovery that HV channels are dimers in the membrane (Koch et al. 2008; Tombola et al. 

2008). By expressing two differentially tagged mouse HV channels subunits in HEK cell 

and performing pull-down experiments, Koch et al. showed complex formation between 

the two HV constructs (Koch et al. 2008). Furthermore, they demonstrated that the 

amount of detectable complex is significantly reduced by deletion of the C-terminal 

coiled coil, providing further evidence for the importance of the coiled-coil in stabilizing 

the dimer interface (Koch et al. 2008). Using single molecule photobleaching on GFP-

tagged hHV1, Tombola et al. also demonstrated that HV channels are dimers in Xenopus 

oocyte membranes (Tombola et al. 2008). Our work, together with the work from these 

other two groups, established that HV channels are dimers in the membrane. 

 

2.3.2 Each subunit has a separate H+ conduction pathway 

Many membrane proteins exist as oligomers of identical or similar subunits. In many 

cases, the need for an oligomeric structure is clear: potassium channels, for example, 

require four subunits to form a single ion conduction pathway in between the subunits 

(Doyle et al. 1998). In other membrane proteins, the reason for an oligomeric structure is 

less clear: in aquaporin channels (Murata et al. 2000) and in ClC Cl- channels (Dutzler et 

al. 2002), the water and ion conduction pathways are formed entirely by atoms of a single 

protomer and yet these transport proteins are tetramers and dimers of identical protomers, 

respectively.  

 Into which category does the HV channel fall? Based on electrophysiological 

studies showing that mutant KV channel voltage sensors can themselves conduct ions 
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(Tombola et al. 2005) or H+ (Starace & Bezanilla 2004) across the membrane, and based 

on atomic structural studies showing that KV channel voltage sensors contain protonatable 

chemical groups extending most of the way across the membrane (Long et al. 2007), it is 

not difficult to imagine that H+ flows through individual voltage sensors in HV channels. 

In other words, each sensor might contain its own H+ conduction pathway.  

The contemporary work by Tombola et al. provided evidence for this claim 

(Tombola et al. 2008). By generating tandem hHV1 dimers (i.e., both subunits expressed 

on a single polypeptide) with specific cysteine mutations in each subunit and reacting 

them with a cysteine-specific reagent that disrupted H+ conduction, they demonstrated 

that each subunit contributed approximately 50% of the total H+ current (Tombola et al. 

2008). Moreover, by making a chimeric HV channel in which the N- and C-termini were 

replaced by those of the voltage-sensor phosphatase from Ciona intestinalis (Ci-VSP), 

Tombola et al. were able to monomerize the channel and demonstrate that the 

monomerized channel was still able to conduct H+ (Tombola et al. 2008).  

More recently mutagenesis studies on hHV1 by Musset et al. found that a single 

point mutation, D112V, is able to completely abolish H+ conduction (Musset et al. 2011). 

Further mutagenesis data on hHV1 suggest that D112 interacts with the S4 gating-charge 

arginines, indicating that this side chain is directed into the central cavity of the VSD 

itself and not located at the dimeric interface (Berger & Isacoff 2011). This finding 

further supports the notion that each subunit contains a separate conduction pathway. 
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2.3.3 HV channel dimer and cooperativity 

Sometimes, multiple subunits allow active sites to function in a non-independent manner. 

Hemoglobin is a well known example in which an oligomeric structure underlies 

cooperativity (Perutz 1989), allowing a steep relationship between oxygen saturation and 

oxygen partial pressure. In ClC Cl- channels, one form of gating might arise from its 

dimeric architecture (Bykova et al. 2006). Thus, oligomeric architectures in both soluble 

and membrane proteins can allow for much more than the multiplicity of active sites.  

Electrophysiological studies have demonstrated strong cooperativity between the 

two subunits of the HV channel dimer (González et al. 2010; Tombola et al. 2010; Musset 

et al. 2010b). Using voltage-clamp fluorometry and specifically labeling Ciona 

intestinalis HV channels on S4 with a fluorescent probe, Qui et al. demonstrated that each 

subunit undergoes independent conformational changes prior to a concerted opening of 

the H+ conduction pathway (Qiu et al. 2013). It has also been noted that truncation of the 

channel on the N- and C-terminus (or the C-terminus alone) removes the cooperativity of 

HV channel gating, which has been argued to be due to monomerization of the channel 

(González et al. 2010; Tombola et al. 2010; Musset et al. 2010b).  

Although it is clear from Koch et al.’s pull down experiments that truncating the 

termini of HV channels reduce the proportion of dimer observed, there is still some dimer 

present, indicating that the truncated channel subunits may still be associated in the 

membrane and may only come apart during the many washes of the pull-down protocol 

(Koch et al. 2008). Furthermore, Fujiwara et al. demonstrated that mutation of three 

amino acid residues in the C-terminal coiled coil is sufficient for disruption of the 

cooperative gating without disruption of the dimer (Fujiwara et al. 2012). Therefore, the 
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cooperativity of gating can be modulated independently of channels’ multimeric state in 

the membrane. Hence, simply because deletion of the C-terminus removes cooperative 

gating does not necessarily mean the channel has become monomeric. In fact, evidence is 

mounting that, by affecting the oxidation state of a native cysteine residue in the coiled 

coil, C249 in hHV1 (shown in Fig. 2.3B to be able to spontaneously form a inter-subunit 

disulfide bond), the cell is able to tune the cooperativity of the channel, thereby 

physiologically linking channel activity to the redox state of the cell (Fujiwara et al. 

2012; Fujiwara et al. 2013b).  

 

2.3.4 Mechanistic Implications of the dimer 

In HV1 channels, a dimeric architecture might be related to the mechanics of channel 

gating. It is interesting to note that the location of the extracellular dimer interface in the 

HV1 channel corresponds well to the region of contact between voltage sensor and pore in 

KV channels (Long et al. 2007). In KV channels, the contact between S1 and the pore at 

the extracellular surface is proposed to serve as a mechanical fixed point so that motions 

of the voltage sensor paddle (S3 and S4) are efficiently transmitted to the pore’s gate 

(Long et al. 2007; Lee et al. 2009a). By analogy, contacts between S1 helices in the HV1 

dimer might serve a similar function by fixing S1 and S2, thus permitting the voltage 

sensor to move and open a conduction pathway within each voltage sensor. 

 However, the work of Tombola et al. on the monomerized HV-channel chimera, in 

which both N- and C-termini are replaced by sequences from Ci-VSP, indicates that HV 

channels are able to function in the absence of the dimer (Tombola et al. 2008). 

Additionally, the voltage-sensor phosphatase (VSP) functions as a monomer in the 
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membrane, indicating that not all VSDs require a fixed support at the extracellular side of 

S1 to function (Kohout et al. 2008). If they are able to function as monomers, what 

makes the mechanism of HV channels and VSP different from the 6-TM voltage-gated 

cation channels, which have been shown to require a fixed support at the extracellular 

side of S1 in order to function (Lee et al. 2009a)? 

 All VSDs are able to change conformation in response to changes in the 

transmembrane voltage. However, the VSDs of the 6-TM voltage-gated cation channels 

are electromechanical force transducers: the conformational changes need to be 

transmitted to the pore helix, via the S4-S5 linker and the S6 helix bundle, in order to 

open and close the ion conduction pathway (Long et al. 2007; Lee et al. 2009a). In order 

to efficiently transmit force to the pore domain, a fixed anchor in the membrane is 

required (Lee et al. 2009a). Are the VSDs of HV channels and VSPs electromechanical 

force transducers? The conformational changes of these VSDs are not coupled to opening 

or closing of a separate pore as in the case of the canonical 6-TM voltage-gated cation 

channels. If the role of these non-canonical VSDs were simply to undergo conformational 

changes and not to transmit force, they would not require a fixed anchor in the 

membrane. Since the conduction pathway for H+ in HV channels is located within the 

VSD itself, conformational changes of the VSD without force transduction should be 

sufficient to open the channel. Therefore, the purpose of the HV dimer would not be to 

provide a fixed anchor to allow force transduction but to allow for modulation of gating 

through the regulation of cooperativity discussed in the previous section, and hence the 

channels would still be functional as monomers. 
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2.3.5 Implications of the dimer on future structural studies 

In order to fully understand the mechanism and regulation of cooperativity in HV 

channels structures of both the reduced and oxidized dimers would be required (Fujiwara 

et al. 2013b). However, Tombola et al. show that a monomerized HV-VSP chimera is 

functional as a monomer (Tombola et al. 2008). Therefore, it should be possible to gain 

insight concerning the gating and conduction of HV channels from the structure of a 

monomerized channel. In order to confirm that the monomeric channel is functional, 

constructs that disrupt dimerization should be built in the absence of chimerization and 

functionally characterized. These channels will have to be shown to be monomeric in 

membranes by their inability to form site-specific cross-links along S1. The C-terminally 

truncated channels (discussed above) that lack cooperativity during gating have not been 

experimentally shown to be monomeric and therefore may still exist as dimers in the 

membrane. If the truncated channels are found to still be dimeric in the membrane it may 

be possible to disrupt the dimer by introduction of tryptophan amino acid residues along 

the S1 dimer interface. Due to its large bulky side chain tryptophan has been used 

successfully in other studies to disrupt membrane protein structure (Sharp et al. 1995). 

Alternatively, it has been suggested that due to its lack of a C-terminal coiled-coil the HV 

channel found in the dinoflagellates Karlodinium veneficum may exist as a monomer 

(Smith et al. 2011). However, this has yet to be experimentally verified. As discussed 

above, a definitive demonstration that monomeric HV channels are functional would 

significantly contribute to our understanding of the mechanism of gating and greatly 

improve our confidence in interpretations of structural studies on monomerized channel 

in detergent (see Chapters 4 and 5). 
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CHAPTER 3: FUNCTIONAL RECONSTITUTION OF HUMAN HV1 

Due to the complexity of the proteic component of a cell’s cytoplasm and membrane, it 

can be very difficult to determine the function of each of the individual proteins. When 

Sasaki et al. and Ramsey et al. expressed the putative HV channel proteins in HEK cells, 

they observed the robust generation of voltage-gated H+ currents (Ramsey et al. 2006; 

Sasaki et al. 2006). However, whether this H+ conduction occurred through the putative 

HV gene product was unclear. Given that the HV protein has homology to the regulatory 

voltage sensor domain (VSD) of canonical voltage-gated cation channels, but lacks the 

pore domain responsible for ion conduction, it remained possible that HV was not an ion 

channel at all, but, instead, an accessory subunit for the modulation of a separate, 

unknown endogenous HEK cell membrane protein. In order to determine whether or not 

the putative HV channel is in fact responsible for H+ conduction a reductionist approach 

was necessary; the activity of the putative channel had to be assessed in isolation from all 

other cellular proteins. 

 In this chapter, I will discuss my work in collaboration with Dr Seok-Yong Lee 

addressing this issue (Lee et al. 2009b). Working with the eukaryotic expression vector 

Pichia pastoris, we were able to develop a protocol for the purification and reconstitution 

of human HV1 (hHV1) into lipid vesicles. By assaying the activity of the purified 
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reconstituted channel using a fluorescence-based concentrative uptake assay, we were the 

first to demonstrate that the putative HV channel gene product alone is in fact responsible 

for H+ conduction. By reconstituting the protein at different protein-to-lipid ratios, we 

were able to demonstrate that the majority of the hHV1 channels that we purified were 

functional, validating our purification protocol for use in more detailed biochemical and 

structural studies. As controls, we reconstituted several other voltage-gated channels to 

prove that the H+ flux observed was specific to HV channels and not due to non-specific 

leaks caused by the presence of protein in the membranes. Extensive mutagenesis studies 

of purified and reconstituted hHV1 identified D112 on S1 as an important amino acid 

residue for H+ conduction. Furthermore, mutation of the equivalent position to aspartate 

on the KVAP isolated VSD increased the rate of H+ flux through this protein, indicating 

that this residue is sufficient to promote H+ conduction through VSDs. A model of H+ 

uptake qualitatively recapitulated our experimental results. These findings will be 

discussed in the context of the more recent HV channel electrophysiological literature.   
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3.1 THE PUTATIVE HV CHANNEL MEDIATES H+ FLUX IN VESICLES   

3.1.1 Expression, Purification and Reconstitution of Human HV1 

Heterologous expression of hHV1 channels was attempted in both prokaryotic 

(Escherichia coli) and eukaryotic vectors (Pichia pastoris yeast, Sf9/baculovirus insect 

cells and HEK mammalian cells). Although expression of extractable channel was low in 

each system, it was determined that Pichia pastoris provided sufficient protein for the 

reconstitution experiments. Due to the poor expression, the high affinity C-terminal 1D4-

tag was needed to isolate the low-abundance channel protein from high-abundance 

endogenous contaminants. The channels were extracted from the yeast membranes using 

dodecylmaltoside (DDM) detergent and purified by affinity chromatography on an anti-

1D4 antibody resin, followed by size exclusion chromatography (see Materials and 

Methods for details). Purified protein appeared as a single band corresponding to the 

expected size of a monomer on gel electrophoresis under denaturing and reducing 

conditions (Fig. 3.1A). Reconstitution of HV protein into lipid vesicles was carried out by 

detergent removal from channel-detergent-lipid mixtures via dialysis, using different 

protein to lipid ratios. As a control for tight lipid bilayer formation, reconstitution of 

empty vesicles was carried out in parallel in the absence of protein, allowing us to 

measure any non-specific membrane leakage. 
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Fig. 3.1 H+ flux into vesicles containing recombinant Hv channels 
 (A) SDS-PAGE gel showing purified HV channels. Lane 1: molecular weight marker, 2: 

final wash, and 3: hHV-1D4 eluted with 0.4 mg/ml 1D4 peptide. (B) Fluorescence-based 

H+ flux assay. Vesicles (cyan) loaded with high concentration of K+ are diluted into low 

concentration K+ buffer containing the fluorescence dye ACMA (9-amino-6-chloro-

methoxyacridine). Addition of valinomycin (red), a K+ selective ionophore, results in K+ 

efflux, which generates a driving force for H+ influx. If there is a H+ channel (blue) in the 

vesicle membrane, pH inside the vesicle will decrease. This pH decrease is monitored by 

ACMA because the protonated form, which becomes trapped inside vesicles, loses 

fluorescence whereas unprotonated ACMA diffuses freely across the membrane (Zhang 

& Forgac 1994).  (C) Fluorescence-based H+ flux assay for vesicles with and without 

hHV1 colored blue and red, respectively (n = 5). Error bars indicate standard error of the 

mean. Valinomycin and CCCP are added at the indicated time points.  
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3.1.2 Monitoring HV channel conduction by fluorescence 

To study H+ flux into lipid vesicles containing human HV channels, we used the 

fluorescence-based concentrative uptake H+ flux assay depicted in Fig. 3.1B. This assay 

was originally developed to study H+ flux through V-ATPase (Zhang & Forgac 1994). 

Vesicles were reconstituted in the presence of 150 mM K+ and diluted 20-fold into buffer 

containing 7.5 mM K+ generating a 10-fold K+ gradient across the membranes. Upon 

addition of the K+ selective ionophore valinomycin, the K+ diffuses out of the vesicles, 

generating an electric potential across the vesicular membrane of approximately -60 mV 

(negative inside relative to outside, calculated by equation 1.1). If a H+ conduction 

pathway is present in the membrane, the negative electrical potential inside the vesicles 

will cause H+ to enter, lowering the internal pH. We monitored the changes in pH by a 

H+-induced quenching of the fluorophore 9-amino-6-chloro-2-methoxyacridine (ACMA).  

Fig. 3.1C shows the fluorescence change caused by the addition of valinomycin to 

a sample of empty vesicles and to a sample of hHV1 reconstituted vesicles at a protein to 

lipid ratio of 1:100 (wt:wt). The empty vesicles exhibited a very gradual fluorescence 

change, consistent with there being a very slow non-specific leak for H+ entry until the 

proton ionophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) is added. Vesicles 

containing HV channels showed a robust change in fluorescence upon addition of 

valinomycin, consistent with the HV channel providing a specific pathway for H+ entry. 

The further reduction in fluorescence brought about by the addition of CCCP reflects a 

small fraction of empty vesicles. The ~15% of empty vesicles seen even at high protein-

to-lipid ratios stems from a population of vesicles that appear incapable of incorporating 

functional HV channels (see below).  Similar fractions of reconstitution deficient vesicles 
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have been described previously in studies of other channels and transport proteins (Eytan 

1982; Goldberg & Miller 1991; Heginbotham et al. 1998).  

 

3.1.3 The Majority of Reconstituted HV Channels are Functional 

In order to further investigate the functioning of HV channels, we performed the 

reconstitution at various protein-to-lipid ratios (Fig. 3.2A). The fluorescence-based assay, 

which indirectly measures H+ flux through an unknown relationship between H+ 

concentration and fluorescence, precludes quantitative determination of H+ conduction 

rates (Fiolet et al. 1974). The assay does, however, allow us to estimate the fraction of 

total channels in the reconstitution that are functional, as explained below. 

The fluorescence decay brought about by the addition of valinomycin (FHv) is 

proportional to the number of vesicles that contain at least one functional HV channel. 

The fluorescence decay brought about by valinomycin plus CCCP (Ftotal) is proportional 

to the total number of vesicles. Given that we know the mass protein to mass lipid ratio in 

the reconstitution, and that the reconstitution occurs efficiently (Fig. 3.2B), with a few 

assumptions we can calculate the mean number of channels per vesicle µ from equation 

3.1, where gHv and gL are the grams of Hv channel and lipid added, r is the estimated 

average radius of a vesicle, ML is the molecular weight of the average lipid molecule (754 

Da), σ is the estimated area per lipid molecule and MHv is the molecular mass of the Hv 

channel dimer (70,000 Da). 

 

     {3.1} 
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Fig. 3.2 H+ flux into vesicles containing HV channels at various protein-to-lipid ratios  

(A) Fluorescence-based H+ flux assay for vesicles containing a decreasing number of HV 

channels. Protein-to-lipid ratios of 1:100 (dark blue, n = 5), 1:500 (pink, n = 2), 1:1000 

(orange, n = 3), 1:5000 (yellow, n = 3), 1:10,000 (cyan, n = 4), 1:20,000 (light green, n = 

3), 1:40,000 (green, n =4), 1:60,000 (violet, n = 3) and empty vesicles (red squares, n = 4) 

are plotted (error bars represent the standard error of the mean, range of mean for 1:500). 

(B) Sucrose cushion of vesicles containing HV channels. Numbers denote the fractions 

collected from top to bottom. (C) Determination of the fraction of functional HV 

channels. Plot of µ versus the ratio of fluorescence decay contributed by HV containing 

vesicles over the total fluorescence decay by addition of CCCP where µ is the ratio of the 

number of channels over number of vesicles calculated with equation 3.1. The two curves 

are derived from equation 3.2 with φ (fraction of functional HV) = 1.0, θ (fraction of 

reconstitution deficient vesicles) = 0.15 (red) and φ = 0.5, θ = 0.15 (green).  
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The main assumptions are that the lipid head group area is 63 Å2 (DeCoursey 

2003b; Rand & Parsegian 1989) and that the vesicles are uniform in size with a radius of 

100 nm (Moffat et al. 2008). If incorporation of HV channels into vesicles is random, then 

we expect equation 3.2 to be true, where θ is the fraction of reconstitution deficient 

vesicles (~15%, measured directly from the data) and φ is the fraction of channels that are 

functional (Heginbotham et al. 1998). 

 

   {3.2} 

 

The red curve in Fig. 3.2C corresponds to the curve generated from equation 3.2 

with φ = 1.0. To ensure that this conclusion is not mistakenly based on an incorrect 

assumption of the vesicle radius (which we have not measured but estimate from values 

in the literature), we fit the data using alternative values. At 70 nm, vesicles would be too 

numerous given the number of channels: φ would have to be greater than 1.0, which is 

physically impossible. At 130 nm, the best fit still corresponds to a φ value of 

approximately 0.75. Therefore, even given the degree of uncertainty introduced by our 

assumptions of vesicle radius, uniformity, and lipid molecule surface area, the data 

support the conclusion that the majority of HV channels in the reconstitution are 

functional. 
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3.1.4 H+ Flux is Specific to HV Channels 

The small conductance inferred from this study (see the section on modeling the flux 

below), raises the concern that the H+ flux into the vesicles may be due to a non-specific 

leak resulting from the presence of protein in the membranes. To examine this possibility, 

we expressed, purified and reconstituted three additional proteins at equivalent protein to 

lipid ratios (to match the number of VSDs per vesicle): full-length KVAP (KVAP), KVAP 

isolated VSD (KVAP VSD), and KV1.2-2.1 paddle chimera (paddle chimera). The 

fluorescence-based H+ flux analysis of these proteins showed that vesicles containing 

either KVAP or paddle chimera generated very little fluorescence decay (Fig. 3.3). 

Because both KVAP and paddle chimera contain K+ pores, the K+-driven membrane 

potential may be established before valinomycin addition. Initial fluorescence values with 

vesicles containing these channels were very similar to other vesicle preparations (HV or 

empty), suggesting that no H+ influx occurred before the first point of data collection. 

Interestingly, vesicles containing KVAP VSD exhibited fluorescence decay but at a 

significantly slower rate than vesicles containing HV channels (Fig. 3.3). Sucrose 

cushions of these vesicles confirmed efficient reconstitution of all proteins. These data 

suggest that the H+ flux through HV is not simply a manifestation of membrane protein 

reconstitution into the vesicles: rapid H+ flux is specific to HV. The slower H+ flux 

observed for KVAP VSD might reflect an intrinsic H+ conduction potential of the VSD, 

which is suppressed by its association with the K+ channel pore. 
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Fig. 3.3 Specific H+ permeation through hHV1 
Fluorescence-based H+ flux assay for vesicles containing hHV1 (dark blue, n=5), KVAP 

VSD (green, n=4), KVAP (dark green, n=4), paddle chimera (cyan). Empty vesicles are 

shown in red. Error bars indicate standard error of the mean. Valinomycin and CCCP are 

added at the indicated time points. KVAP, KVAP VSD, and paddle chimera channels were 

expressed and purified according to published procedures (Jiang et al. 2003a; Long et al. 

2007). Reconstitutions were carried out as described in materials and methods with the 

following protein to lipid ratios (wt:wt) 1:200 (KvAP VSD), 1:100 (KvAP), and 1:50 

(paddle chimera). 
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3.2 MUTAGENESIS OF THE HV CHANNEL TRANSMEMBRANE DOMAIN 

3.2.1 H+ flux through mutant hHV1 channels 

In order to find the amino acid residues responsible for H+ conduction through the 

transmembrane domain of HV channels, we conducted extensive mutagenesis studies. 

Because hydrophilic residues are required for specific interaction with ions in the 

hydrophobic interior of the membrane, we focused our mutagenesis on polar and charged 

amino acids within the transmembrane domain. Fig. 3.4 shows the transmembrane 

sequence of hHV1 aligned to the equivalent sequence of the KV1.1 channel Shaker, 

highlighting the 14 positions that were individually mutated to alanine or leucine. Each of 

the mutant channels was expressed, purified and reconstituted into lipid vesicles at a 

protein to lipid ration of 1:100 (wt:wt). To ensure that the mutations did not significantly 

affect the reconstitution efficiency of the channel, we ran sucrose cushion flotation assays 

on each of the reconstituted mutant channels. 

The activity of each mutant was tested by the fluorescence-based concentrative 

uptake flux assay described in Fig. 3.1B and compared to that of reconstituted wild type 

hHV1 and empty vesicles. Mutation of a residue that is required for H+ conduction should 

result in the absence of fluorescence quenching. The data from the reconstituted mutant 

channels presented in Fig. 3.5A-D are organized by the transmembrane helix (S1-S4) on 

which the mutated residue resides. However, the mutants can also be organized by their 

effect on H+-mediated fluorescence quenching and it is in this context that I will discuss 

them below.  
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Fig. 3.4 hHV1 transmembrane residues targeted for mutagenesis 

The transmembrane sequence of hHV1 is shown aligned to the equivalent sequence of the 

KV1.1 channel Shaker. Numbering at the bottom corresponds to the hHV1 amino acid 

position. The putative transmembrane helices are highlighted in grey and labeled S1-S4. 

The sites of the mutations are highlighted in red with the exception of position D112 that 

is highlighted in green. The phenylalanine that corresponds to the phenyalanine gap in S2 

is highlighted in cyan (see Fig. 1.4). 

  

                                                                                      
 
       S1 
Shaker        PESSQAARVVAIISVFVILLSIVIFCLETLPEFK 
hHV1          LRKLFSSHRFQVIIICLVVLDALLVLAELILDLK  
                     100       110       120 
         S2 
Shaker        HYKVF-/-----PFFLIETLCIIWFTFELTVRFLA 
hHV1          IIQPDKNNYAAMVFHYMSITILVFFMMEIIFKLFV 
                 130       140       150       160 
 
        S3  
Shaker        CPNKLNFCRDVMNVID-IIAIIPYFITLATVVAE 
hHV1          F--RLEFFHHKFEILDAVVVVVSFILDIVLLFQE  
                        170       180       190  
       S4 
Shaker        EEAMSLAILRVIRLVRVFRIFKLSRHSKGLQI 
hHV1          HQFEALGLLILLRLWRVARIINGIIISVKTRS                         
                    200       210       220 
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Fig. 3.5 H+ flux into vesicles containing mutant hHV1 channels 

Fluorescence-based H+ flux assay for vesicles containing mutant hHV1 channels 

compared to vesicles containing wild type channels and empty vesicles. (A) Mutations 

along S1. (B) Mutations along S2. (C) Mutations along S3. (D) Mutations along S4. In 

each case valinomycin was added after 150 s and CCCP was added after 450s except in 

the case of D112L were CCCP was added after 900s. For empty vesicles CCCP was 

added at 1350 s (A) and 780 s (B C and D). All channels were reconstituted at a protein-

to-lipid ratio of 1:100 (wt:wt). Each curve corresponds to the average of 3-4 repetitions 

with the error bars indicating the standard error of the mean.  
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3.2.2 Mutations with small or no effect on H+ conduction 

Many of the mutations investigated had little or no effect on the H+ conduction when 

compared to the wild type channel (Fig. 3.5A-D). These included E119L on S1 (Fig. 

3.5A), all residues tested on S2, H140A, S143A, E153A and K157A (Fig. 3.5B), D185A 

and H193A on S3 (Fig. 3.5C), as well as N214A on S4 (Fig. 3.5D). Although many of 

these mutants showed some effect on either the initial rate of H+ conduction (e.g. D185A 

on S3; Fig. 3.5C) or on the fraction of empty vesicles measured (e.g. H140A on S2; Fig. 

3.5B), none of these mutants completely abolished H+ conduction. Differences in the 

fraction of empty vesicles indicated a higher proportion of non-functional channels in the 

vesicles. However, in each case, a significant proportion of the channels remained 

functioning and we are able to clearly observe H+ conduction. Small effects of the 

mutations on the initial rate of fluorescence quenching may indicate a role for those 

amino acids in H+ conduction; however, those roles are not critical, given that conduction 

is only slightly affected. 

 One HV channel mutation that was reported to disrupt H+ conduction in oocyte 

membranes expressing hHV1 channels is N214R (Tombola et al. 2008). However, when 

we expressed purified and reconstituted this mutant at different protein-to-lipid ratios and 

tested it in our flux assay, we did not observe any significant difference in H+ conduction 

compared to wild type hHV1 channels (Fig. 3.6A). Another mutagenesis study on the 

mouse HV (mVSOP) channel expressed in HEK cells and characterized by whole-cell 

patch clamp electrophysiology also found that the equivalent mutation N210R results in 

functional channels (Sakata et al. 2010). 
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Fig. 3.6 H+ flux into vesicles containing additional mutants of the hHV1 channel 
Fluorescence-based H+ flux assay for vesicles containing mutant hHV1 channels 

compared to vesicles containing wild type channels and empty vesicles. (A) Dilution 

series of the N214R mutation on S4. (B) Mutations at position D112 on S1; all channels 

were reconstituted at a protein-to-lipid ratio of 1:100 (wt:wt). In each case valinomycin 

was added at 150 s and CCCP was added where indicated. Each curve corresponds to the 

average of 3-4 repetitions with the error bars indicating the standard error of the mean. 

(C) Sucrose cushion of vesicles containing D112L hHV1 channels demonstrating efficient 

reconstitution. Numbers denote the fractions collected from top to bottom. 
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3.2.2 Mutations that generate leaky vesicles 

Another class of mutations, e.g. E171A and D147A on S3 (Fig. 3.6C); and R205A, 

R208A and R211A on S4 (Fig. 3.6D), showed an initial decrease in fluorescence that was 

followed by a slow recovery. This may be explained by the mutations causing a 

membrane leak that allowed the passage of Na+ or Cl-, both of which are present in high 

concentrations in these experiments. After addition of valinomycin, the membrane 

potential was clamped at the equilibrium potential for K+ (approximately -60 mV, 

negative inside relative to outside, calculated with equation 1.1). This negative potential 

creates a driving force for the entrance of H+ into the vesicles. However, the negative 

electrical potential also creates a driving force for Cl- to exit the vesicles (the 

concentrations of Cl- is nearly symmetric across the vesicular membrane) and an even 

stronger driving force for Na+ entry (there is a large Na+ gradient across the membrane: 

150 mM Na+ outside vs. ~0 mM Na+ inside). Therefore, if the mutation resulted in the 

generation of a leak for either of these ions, they would cross the membrane and dissipate 

the driving force for H+ uptake into the vesicles. 

Depending on the rate of the leak, it might still be possible to see the fast influx of 

H+ followed by a slower dissipation of the H+ driving force caused by the leak, after 

valinomycin addition. This would result in the slow efflux of H+ from the vesicles and a 

slow recovery of the fluorescence signal (see below for a comparison between 

experiment and theory for leaky vesicles). To varying degrees, this is exactly what was 

observed for these mutant HV channels (e.g. R205A in Fig. 3.5D), indicating that the 

mutation resulted in a Cl- or Na+ leak through the VSD. If the leaky VSD were permeable 

to K+ in addition to Na+ or Cl-, a collapse of the K+ gradient would begin prior to addition 
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of valinomycin, resulting in a lower overall fluorescence signal upon addition of 

valinomycin. This is what was observed for the R208A and R211A mutants (Fig. 3.6D). 

In fact, more recent electrophysiological experiments on R211 in hHV1 indicate that 

mutation to Ser or Cys results in the leak of the organic guanidinium cation through the 

channel (Berger & Isacoff 2011).  

Mutations of VSDs that result in a leak current through the VSD itself (the so-

called “omega current”) are relatively common and have been characterized in both KV 

and NaV channels (Tombola et al. 2006; Sokolov et al. 2005). Given the delicate 

structural balance that the VSD must fulfill— compensating the charges of the gating 

residues within the low electrical permittivity of the membrane— it is not surprising that 

mutation of charged residues within the transmembrane domain leads to disruption of the 

structure, producing a leak pathway for the conduction of ions. It is interesting to note 

that all of the mutations that caused significant leak resulted from the removal of a 

charged amino acid side chain (Fig. 3.5C and D).  

 

3.2.3 D112 an interesting position 

A single mutation significantly slowed the H+ flux into the vesicles: D112L on S1 (Fig. 

3.5A). Interestingly, an aspartate at this position on S1 is highly conserved in HV 

channels, but the equivalent position in the VSDs of other voltage-gated cation channels 

is a serine (Fig. 3.5; Musset et al. 2011). If this mutation only affected the rate of H+ 

conduction, we would expect that, given enough time to equilibrate, the same HV 

dependent fluorescence quenching (FHv) would be observed when compared to wild type. 

However, even if the experiment is run over long time courses, the fluorescence 
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quenching seen in the D112L mutation never reached the same levels as wild type (Fig. 

3.6B). Since the D112L reconstitution occurs efficiently (Fig. 3.6C), this indicates either 

that there are a larger proportion of non-functional channels in the vesicles, or that there 

is a leak current that results in partial dissipation of the electrical driving force, resulting 

in a stable steady state level of H+ uptake and fluorescence-quenching (see below for a 

theoretical analysis incorporating Cl- leak).  

To further investigate the potential role of D112 in the mechanism of H+ 

conduction, two additional mutations were made: D112S and D112A, both of which also 

displayed a significant decrease in H+ flux (Fig 3.6B). More recent electrophysiological 

experiments have demonstrated that mutation of D112 can make the channel leak Cl- ions 

(Musset et al. 2011). In that study, both the D112S and D112A mutations were shown to 

have a strong Cl--dependent shift in the reversal potential of the measured current, 

indicating Cl- conduction through the HV channels (Musset et al. 2011). The D112L 

mutation was not investigated in that study; however, Musset et al. did generate D112N 

and D112F, both of which also showed Cl- conduction (Musset et al. 2011). Therefore, it 

is likely that the D112L mutation also results in Cl- leak, which would account for our 

observations in the flux assay that this mutant doesn’t show the same steady state level of 

HV dependent fluorescence quenching (FHv) as wild type channels (Fig. 3.5A and 3.6B).  

Because the D112L mutation alters H+ conduction through the channel in the flux 

assay (Fig. 3.5A and 3.6B) and the D112V mutation, examined by Musset et al., 

completely abolished conduction though the channel (Musset et al. 2011), it has been 

postulated that D112 is critical to both the conduction and selectivity of HV channels. 

However, whether the aspartate is sufficient remained unknown. To determine if an 
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aspartate at the equivalent position as D112 in S1 is sufficient to induce H+ flux through 

VSDs, we generated the S38D mutation in the isolated-VSD of KVAP (Fig. 3.7). As 

shown in Fig. 3.3, removal of the KVAP VSD from the pore domain revealed a possible 

intrinsic potential for H+ conduction: a slow H+ conduction was observed in the 

reconstituted isolated VSD. However, when we made the mutation S38D, we saw a 

significant increase in the rate of H+ conduction through the isolated VSD (Fig. 3.7). This 

indicates that an aspartate at this position on S1 is sufficient to promote H+ conduction 

through the VSD. 
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Fig. 3.7 D112 in S1 is sufficient for H+ conduction  

Fluorescence-based H+ flux assay for vesicles containing the wild type (blue) and S38D 

mutant (brown) KVAP isolated VSD compared to vesicles containing full-length KVAP 

(green) channels, hHV1 channels (cyan) and empty vesicles (orange). Each curve 

corresponds to the average of 3-4 repetitions with the error bars indicating the standard 

error of the mean. Valinomycin and CCCP are added at the indicated time points. KVAP 

channels, KVAP VSD, and KVAP VSD S38D were expressed and purified according to 

published procedures (Jiang et al. 2003a). Reconstitutions were carried out as described 

in materials and methods with the following protein to lipid ratios (wt:wt) 1:100 (KvAP), 

1:200 (KvAP VSD), and 1:200 (KvAP VSD S38D). 
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3.3 MODELING H+ CONDUCTION THROUGH RECONSTITUTED HV CHANNELS 

3.3.1 Understanding the time course of fluorescence decay  

Although we are unable to determine the H+ conduction rate we can ask to what degree 

the time course of fluorescence decay is at least qualitatively consistent with our 

expectation based on theory. We simulated H+ flux into a population of vesicles with a 

mean number of µ channels per vesicle assuming that a vesicle will have n channels with 

subset m facing outside-in with a frequency:  

 

   {3.3} 

 

Upon addition of valinomycin, the membrane potential is driven to very near the 

Nernst equilibrium potential for K+ (about -60 mV inside calculated from equation 1.1) 

because the K+ permeability exceeds H+ conductance under all conditions in the 

simulation (see equation 1.2). We modeled HV voltage-dependent gating with a two-state 

Boltzmann function with midpoint activation voltage Vmid = 40 mV and valence 3 

(Ramsey et al. 2006; DeCoursey 2008).  

The change in internal H+ concentration was calculated using the algorithm 

described in Moffat et al. with slight modifications (Moffat et al. 2008). To account for 

the voltage-dependent gating property of the HV channels, the proton flux (JH) was 

calculated by equation 3.4, where GH is proton conductance, V is the membrane potential, 

EH is the equilibrium potential for H+, F is Faraday’s constant, z is the effective gating 

charge (a value of 3.0 e0 was used; (DeCoursey 2008; Qiu et al. 2013; González et al. 
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2013), Vmid is the midpoint voltage of activation for HV (a value of 40 mV was used; 

Ramsey et al. 2006), R is the ideal gas constant and T is the absolute temperature in 

Kelvin (298 K). 

 

   {3.4} 

 

The algorithm was run successively for a unit volume of one vesicle of radius 100 

nm with n channels (where n = 1, 2, 3,...,30), either facing outside-in or outside-out 

(expressed as a multiplier of either 1 or -1 on the V in the two-state Boltzmann). This 

basic set of 60 time courses representing the internal pH change of the vesicle was 

combined to generate the expected flux of a population of vesicles each containing n 

channels according to equation 3.5, where n signifies the total number of channels and m 

the number of channels facing outside-in. 

 

   {3.5} 

 

Since the flux from channels facing outside-in is much greater than the flux due to 

channels facing outside-out (by more than 3 orders of magnitude), we applied the 

simplifying assumption that flux into any vesicle containing channels in both orientations 

was equal to the flux generated by only the channels facing outside-in. This operation 

results in a new basis set of 30 time courses that correspond to the H+ flux into 
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populations of vesicles with total of n channels in either orientation (where n = 1, 2, 

3,…,30). This new basis set was then applied to the distribution of vesicles with n 

channels at the various protein-to-lipid ratios used according to equation 3.6, where ƒ(n) 

is the fraction of vesicles with n channels, φ is the fraction of functional HV channels (a 

value of 1.0 was used), θ is the fraction of reconstitution deficient vesicles (a value of 

0.15 was used) and µ is the ratio of number of channels to number of vesicles (see 

equation 3.1). 

 

  {3.6} 

 

 All simulations were performed using MATLAB and the code can be found in 

Appendix I. 

 

3.3.2 Comparing Experimental Results and Simulations 

Fig. 3.8A graphs the simulation results for populations of vesicles with channels 

distributed according to equation 3.3. If one focuses on a single vesicle, a value 1.0 on the 

y-axis corresponds to a free (unbound) internal H+ concentration of 10-7 M and a value 0 

corresponds to a free internal H+ concentration of 10-6 M. During the simulation, the free 

internal H+ concentration in the given vesicle changes from 10-7 to 10-6 (approximately), 

following a time course that depends on the number of channels and their orientation in 

the vesicle. The graph shows the weighted sum of time courses for all vesicles (including 

empty) in the population for a 200 s interval. The curves show a fast decay followed by a 

€ 

f n( ) =
φ

(1−θ )
% 

& 
' 

( 

) 
* 
n

µn

n!
exp

−φµ
(1−θ )
% 

& 
' 

( 

) 
* 



 79 

slower one at smaller values of µ: the slower component is attributable mainly to a 

fraction of vesicles with only outside-out channels, which have a very low open 

probability. The curves also show a negative second derivative (curvature) at early time 

points, due to H+ buffering inside the vesicles. These same qualitative features are 

observed in fluorescence decay data (Fig. 3.8B).  

 

 

 

 

 

Fig. 3.8 Comparison of dilution series data with theory 

(A) Theoretical curves for the decrease of internal pH over time at the equivalent protein 

to lipid ratios as in Fig 3.2A, scaled with the theoretical fraction of empty vesicles. 

Curves are colored to match the equivalent experimental traces in Fig 3.8B; a theoretical 

curve corresponding to empty vesicles is not shown. Simulations were all performed 

using MATLAB. (B) Experimental fluorescence traces from Fig. 3.2A highlighting the 

first 200 seconds after the addition of valinomycin.  
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The theoretical and experimental curves are different in two obvious respects. As 

a function of µ, the curves do not exhibit the same spacing between them. We think this 

most likely reflects the nonlinear (and unknown) relationship between free internal H+ 

concentration and fluorescence (Fiolet et al. 1974). We emphasize that this unknown 

relationship prevents us from determining H+ flux rates, but it does not prevent us from 

determining the fraction of vesicles with no channels versus vesicles with at least one 

channel (Fig. 3.2A and equation 3.2). The second difference between theory and 

experiment is a more prominent slow component of fluorescence change in the data, 

which is consistent with channel-independent H+ leak in the vesicles (which we have not 

included in the model). 

In the simulation, the curves correspond to an open channel conductance of 0.1 

fS. This value should not be taken as an accurate determination of HV channel 

conductance for the reasons discussed above. However, this value is smaller than the 

reported conductance measured electrophysiologically – 10-100 fS (Cherny et al. 2003; 

DeCoursey 2008) – by a factor too large to be accounted for by the unknown relationship 

between H+ concentration and fluorescence. One possibility is that the values used for 

Vmid in our two-state Boltzmann distribution (equation 3.4) result in an overestimation of 

the open probability of the channel. Although these values were taken from the literature 

(Ramsey et al. 2006; DeCoursey 2008), it is well established that, due to H+ depletion 

effects and the strong dependence of HV channel gating on the transmembrane pH 

gradient, it is difficult to get an accurate measure of Vmid (DeCoursey 2008). Also, there 

is debate as to what the exact value of the valence of HV channels gating (z) is, with 

experimental values ranging 2-3 (Fujiwara et al. 2012; González et al. 2013). The 
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ambiguity in these values would only have a minor effect on the results from our model; 

however, they are sources of uncertainty that could contribute to underestimation of the 

unitary conductance. Additionally, our model treats each subunit of the dimeric HV 

channels as independently gating, whereas more recent data in the literature has 

established that the subunits behave cooperatively (González et al. 2010; Tombola et al. 

2010; Musset et al. 2010b). Cooperativity would also affect the open probability of the 

channels in our simulation. 

 

3.3.3 Simulating the effect of Na+ and Cl- leak on H+ uptake 

Because some of the mutations we have investigated with the flux assay have been shown 

to cause leak through the hHV1 channel (Berger & Isacoff 2011; Musset et al. 2011), we 

can ask how much does the time course of fluorescence signal observed for these mutants 

agree with theory incorporating a Na+ or Cl- leak in the membrane? Na+ and Cl- leak can 

be easily incorporated into equivalent circuit flux algorithm described in section 3.3.1 

(and by (Moffat et al. 2008) by the addition of flux terms for the permeant ions. These 

flux terms are defined in equation 3.7 for Na+ flux (JNa) and equation 3.8 for Cl- flux (JCl), 

where GNa is the conductance of Na+, ENa is the Nernst equilibrium potential for Na+, GCl 

is the conductance of Cl-, ECl is the Nernst equilibrium potential for Cl- and all other 

terms are defined as in equation 3.4. 

 

     {3.7} 
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     {3.8} 

 

 For simplicity the added Na+ and Cl- leak conductances were modeled as 

independent of HV channel gating. Versions of the algorithm that incorporated HV 

channel state dependence into the leak currents did not alter the shapes of the curves 

calculated but only slightly altered the kinetics and final steady state positions for the 

theoretical pHi. This modified algorithm can be found in Appendix I. 

Fig. 3.9A shows theoretical curves calculated from the algorithm used for 

simulation of the H+ flux into the vesicles with the addition of Na+ leak. These curves 

recapitulate the main features of the data for the leaky mutants E171A, D147A, R205A 

and R208A (compare Fig. 3.5C and D to Fig. 3.9A). Additionally, by increasing gNa in 

the simulation, theoretical curves similar to the data for R211A can also be produced. Fig 

3.9B shows the theoretical curve for the simulation of H+ flux into the vesicles with the 

addition of Cl- leak. The theoretical curve in Fig. 3.9B (bottom) differs from the data in 

that the H+ flux reaches a steady state more quickly than what is seen in the D112L 

mutant fluorescence data. This discrepancy can be understood if the D112L mutation also 

decreased the H+ conductance. In order to reduce bias, the H+ conductance was kept the 

same as for the simulations in Fig 3.8 during the leak simulations (Fig. 3.8). 
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Fig. 3.9 Comparison of mutant data to theory incorporating leak conductances 
(A) Comparison of R205A mutant channel flux data (top) to theoretical curves for the 

decrease followed by slow recovery of internal pH over time incorporating a Na+ 

conductance (GNa) in the membrane of 0.05 fS scaled with the theoretical fraction of 

empty vesicles (0.15, bottom). Simulations were all preformed using MATLAB. (B) 

Comparison of D112L mutant channel flux data (top) to theoretical curves for the 

decrease of internal pH over time incorporating a Cl- conductance (GCl) in the membrane 

of 10 fS scaled with the theoretical fraction of empty vesicles (0.15, bottom). Simulations 

were all preformed using MATLAB according to the protocol described in section 3.2 

with protein-to-lipid ratios of 1:100 (wt:wt). 
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3.4 DISCUSSION AND FUTURE DIRECTIONS 

The data presented in this chapter clearly establish the ability of the putative hHV1 

channel to conduct H+ (Lee et al. 2009b). Furthermore, through mutagenesis studies on 

the transmembrane domain, we identified an interesting amino acid residue position— 

D112 on S1— which, when mutated, impairs the channel’s ability to conduct H+. This 

finding has since been confirmed electrophysiologically by Musset et al., who 

demonstrated that mutation of this position can lead to Cl- leak through hHV1 and that the 

D112V mutant is incapable of conducting ions (Musset et al. 2011). By mutating the 

equivalent position on S1 of the KVAP isolated VSD to aspartate (S38D), we 

demonstrated that an aspartate at this position is sufficient to promote H+ conduction 

through VSDs.  

 Going forward, it would be interesting to generate, purify and reconstitute the 

D112V mutant and to test it for H+ flux in our assay. Given that Musset et al. failed to see 

any conduction through the D112V mutant channel even though it was efficiently 

expressed to the cell membrane (Musset et al. 2011), we would expect that this mutant 

would completely abolish H+ flux in our assay. In order to fully understand the role of 

D112 in conduction, it would be ideal to solve the structure of the channel in both the 

conductive and non-conductive states. Because of the delicate charge balance that is 

found in VSDs, one may expect that mutations of D112 to an uncharged residue may 

disrupt the protein’s stability. However, given that the D112L mutant channel displayed 

greater stability in detergent than wild type hHV1 in our expression and purification 

experiments, we believe that the D112L mutant may constitute a good structural target. 
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 Many of the mutants we characterized in our flux assay show behavior consistent 

with the generation of a leak conductance through the membranes (Fig. 3.9). However, in 

order to confirm whether these mutations cause the production of leaky VSDs these 

mutants will have to be expressed in cell membranes and characterized 

electrophysiologically. The cases in which the indicated mutants or similar mutants have 

been characterized electrophysiologically have demonstrated that leak currents exist 

through the channel (Berger & Isacoff 2011; Musset et al. 2011). 
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CHAPTER 4: CRYSTALLOGRAPHY 

One major goal of my doctoral work was to obtain the structure of the human voltage-

gated H+ channel (hHV1), in order to shed light on the unique properties of HV channels. 

Although structures may not provide direct mechanistic insight, they do provide a model 

for hypothesis generation, which can then be followed up by functional studies. Before I 

joined the lab, Dr Seok-Yong Lee had done initial construct design and crystallization 

screening on hHV1. My work described here follows from Dr Lee’s initial work, and we 

worked as a team for the first three years.  

 In our efforts to crystallize the hHV1 channel, Dr Lee and I generated many 

different constructs (discussed below), which were tested for expression and biochemical 

stability. Biochemical stability here is defined as monodispersity on a size exclusion 

chromatography (SEC) column after remaining in solution undisturbed at high 

concentrations for 5-7 days, as monodispersity on SEC has been shown to correlate well 

with crystallizability (Kawate & Gouaux 2006). Only biochemically stable constructs 

were pursued in crystallization trials.  

 In addition to hHV1, 21 other putative HV channel genes were synthesized and 

screened for biochemical stability. Appendix II contains the sequences of all genes 

synthesized and shows a multiple sequence alignment between all of the putative HV 

channel genes as well as the voltage sensor domain of rat KV1.2. Dr Scott Hansen a 
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postdoctoral fellow in the lab joined Dr Lee and I in this effort, which unfortunately 

failed to identify any other promising functional targets. The putative HV channel from 

the plant genus medicago was biochemically well behaved but when reconstituted into 

lipid vesicles did not result in any H+ conduction and was therefore set aside. 

 

4.1 NATIVE AND FUSION PROTEIN CRYSTALLOGRAPHIC ATTEMPTS 

4.1.1 Crystallography of wild type truncated channels 

Despite many attempts, crystals of the full-length hHV1 never grew. This is not 

surprising, given that the acid-and-proline-rich N-terminus of hHV1 is predicted to be 

disordered. To increase crystallizability by removal of the unstructured regions, Dr Lee 

worked with Dr Qingjun Wang (Laboratory of Mass Spectrometry and Gaseous Ion 

Chemistry at the Rockefeller University) to define the structural core of the hHV1 channel 

by limited proteolysis and by mass spectroscopy. Upon the identification of two trypsin-

sensitive sites (at amino acid R83 in the N-terminus, preceding the transmembrane 

domain, and at K221, between the transmembrane domain and the coiled coil), Dr Lee 

designed two truncated constructs: one with the C-terminal coiled coil removed (hHVΔC) 

and one with both N- and C-termini removed (hHVΔNΔC). 

Expressing these constructs in Pichia pastoris and using the high affinity 1D4-tag 

for purification, Dr Lee was able to purify both constructs and grow small crystals of the 

hHVΔNΔC construct (Fig. 4.1A). These truncated channels crystallized under many 

conditions; however, none diffracted better than ~10 Å (Fig. 4.1B). Nevertheless, this 

was encouraging, since similar diffraction had been previously observed for the isolated 
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voltage-sensor domain (VSD) of the voltage-gated K+ channel KVAP. When an antigen-

binding fragment (Fab) of an antibody raised against the isolated VSD of KVAP was used 

as a crystallization chaperone, Jiang et al. were able to solve the structure of isolated 

VSD to 1.9 Å resolution (Jiang et al. 2003a). Therefore, by analogy, we reasoned that, if 

we could obtain a Fab against the hHV1 channel and use it in crystallization, we should be 

able to obtain crystals with improved diffraction. 

 

 

 

 

Fig. 4.1 Best diffracting crystals of hHVΔNΔC 

(A) Representative crystals of hHVΔNΔC grown in DM/HEGA9 detergent at 30% 

PEG400, 50 mM NaAcetate pH 4.5. (B) Best diffraction from crystals shown in (A), 

resolution extends to 9.6 Å, apparent space group is F23 a=b=c=169.7 Å. Weak 

diffraction is also seen for a unit cell with an alternate orientation indicating possible 

twinning. These crystals were grown and their diffraction tested by Dr Seok-Yong Lee. 
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4.1.2 Raising antibodies against hHV1 

We attempted raising antibodies against both the wild type and truncated (hHVΔNΔC) 

hHV1 channels by mouse injection. The only anti-hHV1 antibodies that were isolated were 

against an intracellular C-terminal coiled-coil epitope, which, according to the limited 

proteolysis studies, is connected to the transmembrane domain by a flexible linker. 

Although these antibodies worked well in Western blots and were used for the 

stoichiometry studies discussed in Chapter 2, no crystals of hHV1-Fab complex grew in 

our crystallization trials. Given that Fabs that were successful for the crystallization of the 

KVAP isolated VSD were targeted towards an extracellular loop of the transmembrane 

domain (the S3-S4 helix-turn-helix motif known as the voltage-sensor paddle), an anti-

hHV1 antibody that targeted the voltage-sensor paddle of hHV1 was desirable. An 

additional round of mouse injections was performed with the hHVΔNΔC doubly truncated 

construct, with injections of the channel reconstituted in lipid vesicles, followed by 

boosters of detergent-solubilized channels. As in the wild type case, we were unable to 

isolate any anti-hHV1 antibodies. 

 Because mouse injection has been very successfully applied in the MacKinnon 

laboratory for raising antibodies against membrane proteins (Zhou et al. 2001; Dutzler et 

al. 2003; Jiang et al. 2003a; Brohawn et al. 2013), a purely technical reason for our 

failure was unlikely. A possible explanation is that, given the human and mouse HV 

channel sequence-similarity (78% identical over the entire sequence and 84% identical 

within the transmembrane domain alone), the hHV1 channel may not be sufficiently 

immunogenic in mice to produce a strong antibody response.  
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In order to address this possible issue, we attempted another round of mouse 

injections using chimeric channels that contained the voltage-sensor paddle of hHV1 

spliced into the KVAP isolated VSD, reasoning that the HV sequence presented in this 

context should increase the immunogenicity. We built and characterized six chimeras 

based on three possible KVAP/hHV1 alignments (Fig. 4.2A and B). Although the chimeric 

channels expressed well and were biochemically well behaved (Fig. 4.2C), they were not 

sufficiently immunogenic for us to be able to isolate any anti-hHV1 Fabs. 

More recent work in the literature has demonstrated that hHV1 channels play a 

physiological role in B-cell receptor signaling: hHV1 knockdown in B-cells results in 

impaired antibody production (Capasso et al. 2010). Thus, it is likely that there is a 

negative selection against B-cells that produce high-affinity anti-HV1 antibodies that are 

able to bind to extracellular epitopes. Such negative selection is a possible explanation as 

to why we were unable to raise any antibodies by mouse injection.  

Despite these setbacks, we still reasoned that it should still be possible to improve 

the diffraction of hHV1 crystals with a crystallization chaperone. Two additional 

strategies were attempted to this end: fusion proteins and epitope-swapped chimera. The 

fusion protein strategy was ineffective and I will only discuss it briefly below. The 

epitope-swapped chimera will be more fully discussed in the following section. 
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Fig. 4.2 Sequences and biochemical stability of KVAP VSD-hHV1 paddle chimeras 

(A) Three possible registers for sequence alignments between the S3-S4 paddle motif of 

KVAP (in black) and hHV1 (in blue). The numbers above the KVAP sequence denote the 

positions of the gating-charge arginines (highlighted red in all sequences) for the first 

alignment. The alignments are named based on the relative position of the first hHV1 

gating-charge arginine with respect to the KVAP gating-charge arginines. For example 

alignment 1-1 aligns the first arginine of hHV1 with the first arginine of KVAP, alignment 

1-2 aligns the first arginine of hHV1 with the second arginine of KVAP etc. (B) Paddle 

sequences of the six chimeric (APHV) constructs built, organized by the alignment that 

was used for their construction. (C) SEC profiles of each chimeric construct organized by 

alignment. Each chromatogram contains the KVAP VSD curve (blue) to allow for 

comparison of expression levels. From these data it is clear that, although all constructs 

are monodisperse, we are able to purify larger quantities of APHV3 and APHV4 from the 

1-2 alignment.  
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4.1.3 Lysozyme Fusion Proteins 

The fusion of the highly crystallizable enzyme lysozyme into the transmembrane domain 

loops of membrane proteins has been used as a chaperone strategy to crystallize difficult 

membrane protein targets. For instance, this strategy was used to determine the structure 

of the first G-protein coupled receptor (GPCR; Rosenbaum et al. 2007). We attempted 

this strategy by splicing lysozyme into both extracellular loops of the hHVΔNΔC 

construct (the S1-S2 and S3-S4 loops). At low concentrations, the lysozyme fusions 

looked promising; however, they readily aggregated at high concentration. Optimization 

of linker length between the hHV1 and lysozyme sequences was carried out, but no 

construct was sufficiently well behaved for large-scale crystallization attempts. Because 

of this tendency for aggregation, the lysozyme fusion strategy was abandoned. 

 

4.1.4 Dimerization Fusion Proteins 

Since we knew from our cross-linking studies that hHV1 is a dimer in the membrane, we 

reasoned that by fusing readily crystallizable dimeric protein onto hHV1 we might be able 

to promote crystallization. A major criterion for the fusion partner would be for it to have 

its N- or C-terminus arranged in the dimer such that it would be positioned to align with 

our experimental model of the hHV1 dimer (see Fig. 2.5 on page 48). Four top candidates 

were identified from the protein data bank: secretion chaperone CsaA (accession code 

2NZH; Shapova & Paetzel 2007), F420H2:NADP+ oxidoreductase (FnO; accession code 

1JAX; Warkentin et al. 2001), the bleomycin resistance determinant (Bleo; accession 

code 1ECS; Maruyama 2000) and 4-diphosphocytidyl-2-C-methylerythritol synthetase 

(CDP; accession code 1INJ; Richard et al. 2001). Two of these proteins were selected for 
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N-terminal fusion (FnO and CDP) and two for C-terminal fusion (Bleo and CsaA) to the 

hHVΔNΔC construct. For each fusion, four or five different constructs were built to 

optimize linker length. After much effort, however, and although some of the constructs 

generated well-behaved dimeric chimera, no fusions gave crystals. Therefore, this 

approach was also abandoned. 

 

4.2 HV1-KVAP EPITOPE-SWAPPED CHIMERA  

4.2.1 Design and selection of hHV1-KVAP paddle chimera 

As discussed in the previous section, by analogy to the KVAP isolated VSD, we reasoned 

that Fab-mediated crystallization would facilitate structure determination of hHVΔNΔC. 

Since we were unable to raise antibodies against wild type hHV1 channels by mouse 

injection or to obtain crystals by the fusion protein strategy, we needed to innovate. It 

occurred to us that it should be possible to make a hHV1-KVAP (HAP) chimera in which 

the paddle epitope that is responsible for binding anti-KVAP Fabs is spliced into the hHV1 

sequence. It has been previously demonstrated that the paddle motif can be swapped 

between different VSD of voltage-gated cation channels and still produce functional 

voltage-gated cation channels (Alabi et al. 2007). In this way, we could generate 

functional chimeric HV channels that would bind to the anti-KVAP Fabs, allowing us to 

use the anti-KVAP Fabs as crystallization chaperones.  

 Due to the ambiguity in the sequence alignment between hHV1 and KVAP 

along the S4 helix, many different constructs needed to be built and characterized before 

crystallization trials could proceed. Based on three different possible hHV1 and KVAP S4 
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alignments, 17 chimeras were constructed (Fig. 4.3) and each was expressed in both full 

length and C-terminally truncated forms (ΔC). Small-scale purification and biochemical 

characterization using size exclusion chromatography (SEC) was carried out to gauge the 

stability of each chimeric channel. Two chimeras each with different alignment— 

HAP5ΔC and nHAP3ΔC—were chosen as the best candidates for structure 

determination, based on their biochemical stability and Fab-binding. When probed for 

binding with the anti-KVAP antibodies 33H1 and 6E9, both chimeras were ELISA- and 

Western-blot-positive, indicating that the antibodies were able to recognize the paddle 

epitope of the chimeric constructs (Fig. 4.4).  

The HAP5ΔC chimera was highly stable, giving a stable monodisperse peak on 

the SEC column after several days at high concentrations at room temperature in DM 

(Fig. 4.5A-C). However, when mixed with anti-KVAP Fabs and run over the SEC 

column, only a small complex peak was formed, with most of the protein eluting at 

positions characteristic of the channel and Fab alone (Fig 4.5D and E). This is in contrast 

to what is observed with wild type KVAP channel or isolated VSD, which elute 

completely as VSD-Fab complex. This indicated that, although HAP5 is ELISA-positive 

for binding to 33H1 and 6E9 Fabs (Fig. 4.4), the interaction is much weaker than the 

binding of the Fabs to the wild type KVAP VSD.  

  



 95 

 

 

 
 
Fig. 4.3 HAP chimera construct sequences 

(Top) Three possible registers for sequence alignments between the S3-S4 paddle motif 

of KVAP (in black) and hHV1 (in blue). The numbers above the KVAP sequence denote 

the positions of the gating-charge arginines (highlighted red in all sequences) for the first 

alignment. The alignments are named as in Fig. 4.2. The first 16 HAP chimeras were 

generated and characterized by Dr Seok-Yong Lee and were all based on the 1-3 

alignment. The “New Chimera” designated with an “n” were constructed based on the 1-

2 and 1-1 alingments. 
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Fig. 4.4 ELISAs and western blots of chimeras using αKVAP paddle antibodies  

(A) Bar graphs of ELISA signal intensity as a function of Ab dilution (indicated on right) 

for KVAP VSD (cyan), nHAP2ΔC (red), nHAP3ΔC (yellow), HAP5ΔC (green) and hHV1 

(purple) using the αKVAP monoclonal antibodies 6E1 (left) and 33H1 (right). The low 

signal seen for the KVAP VSD is due to poor binding of this protein to the plates. (B) 

SDS-PAGE gels and corresponding western blots against the indicated chimera using the 

αKVAP monoclonal antibodies 6E1 (left and center) and 33H1 (right).  
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Fig. 4.5 Biochemical stability of HAP5ΔC and binding of αKVAP paddle antibodies 

(A) SEC chromatogram of rerun single concentrated fraction after initial SEC 

purification. (B) SEC chromatogram of pooled fractions from initial SEC run 

concentrated and left overnight (O/N) at room temperature (RT). (C) SEC chromatogram 

of pooled fractions from initial SEC run concentrated and left for 4 days at RT. (D) SEC 

chromatogram of HAP5ΔC with 6E1 Fab indicating some weak complex formation in 

DM. (E) SEC chromatogram of HAP5ΔC with 33H1 Fab indicating no significant 

complex formation. All SEC runs were done in DM. 
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The nHAP3ΔC chimera was less stable than the HAP5ΔC construct; nHAP3ΔC 

readily aggregated at high concentrations in DM (Fig 4.6A and B). However, in the more 

dispersive detergent LDAO nHAP3ΔC was more stable (Fig4.6C-E) and it eluted 

completely as complex with the anti-KVAP 6E1 Fab on the SEC column (Fig. 4.6F), 

similar to the wild type KVAP VSD. Because of the differences in the biochemical 

behavior of these two chimeras, it was decided that both would be pursued for structure 

determination.  

In order to explore possible crystallization conditions, the detergent-stability 

profiles of the two chimeras was examined. After purification of the constructs in 

decylmaltoside (DM), small volumes of the protein were injected onto a SEC column 

equilibrated in the detergent of interest. Stability in the new detergent was judged based 

on the monodispersity of the protein peak eluting from the SEC column. In this way, 19 

detergents were examined (Table 4.1). Consistent with the differential stability of the 

chimeras in DM (see Fig. 4.5A-C vs. 4.6A and B), the HAP5ΔC chimera was stable in a 

diverse array of detergents, whereas the nHAP3ΔC chimera was only highly stable in 

dispersive and lipid-like detergents (Table 4.1). 
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Fig. 4.6 Biochemical stability of nHAP3ΔC and binding of αKVAP paddle antibodies  

(A) SEC chromatogram of rerun single concentrated fraction after initial SEC 

purification in DM. (B) SEC chromatogram of pooled fractions from initial SEC run 

concentrated and left O/N at RT in DM. (C) SEC chromatogram of detergent exchange 

from DM to LDAO. (D) SEC chromatogram of pooled fractions from (C) concentrated 

and left O/N at RT in LDAO. (E) SEC chromatogram of pooled fractions from (C) 

concentrated and left for 5 days at RT in LDAO. (F) Reducing SDS-PAGE gel (left) of 

SEC chromatogram (right) fractions for nHAP3ΔC with 6E1 Fab indicating complex 

formation in LDAO (right)  
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Table 4.1 Detergent stability profiles of HAP5ΔC and nHAP3ΔC chimeras 

Detergent stability is graded qualitatively from A to F based on peak monodispersity 

during detergent exchange experiments on SEC. A dash (-) indicates that the experiment 

was not done. Inset shows an example A grade (left) vs. an example F grade (right).  

 
 

 Given the diversity of detergent conditions in which the chimeras were stable, 

many conditions needed to be explored for crystallization. Initial crystallization trials of 

HAP5ΔC and nHAP3ΔC with the 6E1 anti-KVAP Fab gave small crystals in the case of 

the HAP5ΔC construct in DM (Fig. 4.7), but did not give any crystals in the case of the 

nHAP3ΔC in DM, LDAO or DHPC. However, crystalline precipitate was seen in many 

drops of the nHAP3ΔC/6E1 crystallization screens, indicating that it might be possible to 

further optimize the conditions to produce crystals. For HAP5ΔC, I was unable to 



 101 

successfully refine the initial hits from 6E1 crystal screens, suggesting that alterations to 

the construct might be required to facilitate efficient crystallization. 

Although the C-terminally truncated wild type hHV1 (hHVΔC) construct gave 

some crystals, truncation of both the N- and C-termini improved crystallizability (Fig. 

4.1). Therefore, we reasoned that removal of the N-terminus might also be required to 

improve crystal formation of the chimeric constructs, as described below.  

 

 

 

 

Fig. 4.7 Initial crystal hits for HAP5ΔC in complex with 6E1 Fab 

Bright field (left) and UV emission (right) images of small crystals that grew in drops 

containing HAP5ΔC/6E1 in DM with 10-30% PEG400, 200 mM CaCl2, 50 mM 

NaAcetate, pH 4.5. The fluorescent signal see in the UV emission image indicates that 

the crystals are protenacious. 
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4.2.2 Construct optimization and improvement of the initial crystals  

In order to optimize the chimeric constructs in an unbiased manner, we performed limited 

proteolysis on both HAP5ΔC and nHAP3ΔC. In this way, any differences in the protease-

resistant regions of the constructs could be examined and compared to wild type hHV1 

channels. By defining the protease resistant core of the chimeras, we would be able to 

redesign the constructs to remove any flexible or unstructured regions that might be 

interfering with crystallization. 

 Limited proteolysis was carried out for each chimera using four proteases: trypsin, 

chymotrypsin, elastase and subtilisin (Fig. 4.8). For both chimera, one hour of 

trypsinization resulted in the smallest stable fragment. These fragments were then 

analyzed by both N-terminal sequencing and mass spectrometry, which revealed that the 

trypsin cleavage site was located between amino acids R83 and A84. This is the same 

position at which limited proteolysis removes the N-terminus of the wild type hHV1 

channel, indicating that the beginning of the structured transmembrane domain is 

unaltered in the chimeric constructs. 
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Fig. 4.8 Example limited proteolysis experiments for nHAP3ΔC in DM 

(A) nHAP3ΔC was mixed with the indicated proteases at ratios ranging from 0.0001 mg 

protease/mg channel to 0.1 mg protease/mg channel for 1 hour at room temperature. 

Digestions were stopped by addition of 5 mM PMSF. (B) Western blot analysis of the 

proteolysis fragments generated at the highest protease concentrations in (A). SDS-PAGE 

gel (left) indicating the presence of each of the fragments as well as wild type hHV1 and 

KVAP VSD controls. Western blot (middle) using the αKVAP-paddle mAb 6E1 as 

primary Ab indicating that each proteolysis fragment contains the paddle epitope 

indicating that the transmembrane region is resistant to proteolysis. The contents of each 

well are indicated in the legend (right). Trypsin fragment was further characterized by N-

terminal sequencing and mass spectrometry.  
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After initial proteolysis experiments, a trypsinization time-course was carried out 

to compare the relative stabilities of HAP5ΔC and nHAP3ΔC (Fig. 4.9). These 

experiments indicated that the trypsin-digested HAP5ΔC was highly stable: no further 

proteolysis was observed after the initial cleavage even at very high trypsin 

concentrations (Fig. 4.9B). In contrast, the nHAP3ΔC continued to degrade over time, 

indicating instability (Fig. 4.9A). However, by stopping the trypsin digestion of 

nHAP3ΔC at an early time point by addition of phenylmethanesulfonylfluoride (PMSF), 

it was possible to isolate the transmembrane fragment before it was further digested (Fig. 

4.9A). 

 Since it was possible to isolate a stable transmembrane fragment of both chimeric 

constructs, preparative trypsinization was attempted as a possible method for protein 

production for crystallization. Using this methodology, the protein was digested by 

addition of trypsin during the purification, the digestion was stopped by addition of 

PMSF, the transmembrane fragment was isolated by SEC, mixed with the anti-KVAP 

Fabs (6E1 or 33H1) and then set up in crystallization screens. This process resulted in the 

growth of crystals of trypsinized-HAP5ΔC (tHAP5ΔC) in complex with 6E1. No crystals 

were observed for the nHAP3ΔC construct with either 6E1 or 33H1 Fabs. 
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Fig. 4.9 Trypsinization time-course to compare stability of chimeric constructs 

(A) nHAP3ΔC in LDAO and (B) HAP5ΔC in DM were subjected to trypsinization at the 

indicated trypsin-to-channel ratios (bottom of gels). At the indicated time points an 

aliquot was taken and quenched with PMSF then run on the SDS-PAGE gel. LDAO was 

used for nHAP3ΔC since the channel is more stable in this detergent than in DM (see 

Table 4.1). 
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Refinement of the tHAP5ΔC/6E1 crystallization conditions resulted in the growth 

of large (~0.4 x 0.2 x 0.1 mm) crystals (Fig. 4.10A). In order to confirm that these 

crystals contained both channel and Fab, crystals were harvested, washed and run on an 

SDS-PAGE gel, which was developed using silver staining (Fig. 4.10B). This gel 

indicated that the crystals contained both Fab and tHAP5ΔC (Fig. 4.10B), demonstrating 

that, even though the interaction between this construct and the Fabs are too weak to 

purify complex on the SEC column, complex does form under crystallization conditions.  

The X-ray diffraction properties of these tHAP5ΔC/6E1 crystals were examined 

at the synchrotron. The crystals diffracted anisotropically to ~3.5 Å in the good direction 

and ~9 Å in the other two directions (Fig. 4.10C). Although I was unable to index this 

data set, it was encouraging to see diffraction from these crystals. We decided it would be 

best to focus efforts on improving this crystal form and to forego working on the 

nHAP3ΔC chimera, which had yet to produce any crystals. 
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Fig. 4.10 Crystals of trypsinized HAP5ΔC in complex with 6E1 

(A) Crystals of trypsinized-HAP5ΔC (tHAP5ΔC) in complex with 6E1 Fab grown in 

30% PEG400, 50 mM potassium phosphate pH 7.0. (B) Silver stained SDS-PAGE gel of 

crystals from these conditions indicating that the crystals contain both 6E1 Fab and 

tHAP5ΔC. (C) Best diffraction pattern generated by crystals from these conditions. 
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To improve the diffraction, I needed to eliminate any source of heterogeneity 

originating from the protein preparation. To generate channel protein for these crystals, 

the construct was expressed as a C-terminal GFP-1D4 fusion, with the channel and GFP-

1D4 tag separated by a PreScission protease cleavage site. The channel was purified by 

1D4-affinity chromatography followed by PreScission protease digestion to remove the 

GFP-1D4 tag, followed by an additional round of 1D4-affinity chromatography to 

separate the cleaved GFP-1D4 from the channel, trypsinization to remove the N-terminus 

and then SEC to isolate the transmembrane fragment. PreScission protease is a highly 

specific protease isolated from human rhinovirus that cleaves the sequence LEVLFQ/GP 

where the “/” indicates the site of cleavage (Cordingley et al. 1990). Because of the eight 

amino acid residue long recognition site and an additional three amino acid residues 

introduced for cloning purposes, removal of the C-terminal GFP-1D4 tag by PreScission 

protease resulted in the presence of nine non-HV derived amino acid residues 

(SNSLEVLFQ) following the final native lysine residue (K221 in wild type channels) on 

the C-terminus of the HAP5ΔC construct. Mass spectrometry of the trypsinized channel 

indicated that not only did the trypsin cut at position R83 on the N-terminus, but it also 

cut much more slowly at the final native lysine residue, producing a mixture of C-termini 

(Fig 4.11). We reasoned that removal of this source of heterogeneity by redesign of the 

expression construct should improve crystal growth. 
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Fig. 4.11 Mass Spectrometry of HAP5ΔC trypsinization time course 

(A) Mass spectrum of undigested HAP5ΔC generated using the ultrathin-layer method 

(Cadene & Chait 2000). The experimental mass agrees well with the theoretical mass for 

the full-length construct with the N-terminal methionine removed. The additional ~42 Da 

mass difference between the theoretical and experimental masses indicates that the 

protein contains a post-translational modification, most likely N-terminal acetylation. (B) 

Mass spectrum of HAP5ΔC after 3 hours of trypsin digestion indicating that the N-

terminus has been completely removed by trypsin digestion at R83. Two distinct peaks 

corresponding to the transmembrane (TM) fragment are visible. The masses of the two 

fragments TM1 and TM2 correspond to within 1 Da of the theoretical masses of the 

HAP5ΔC TM fragment plus/minus the nine non-native amino acid residues left over from 

the PreScission protease site on the C-terminus. (C) Mass spectrum of HAP5ΔC after 

overnight trypsin digestion at 0.1 mg trypsin/mg channel indicating that given enough 

time the nine non-native amino acid residues are completely removed. 
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 To bypass preparative trypsinization, the GFP tag was moved to the N-terminus, 

making the PreScission site N-terminal to the transmembrane domain. Since the N-

terminal site of trypsinization was located between R83 and A84, through overlapping of 

the PreScission cleavage site with this trypsin site, it was possible to generate a final 

PreScission-digested N- and C-terminally truncated chimera that only differed from the 

wild type HVΔNΔC by having a glycine instead of an alanine at position 84 and by 

terminating at the lysine position 221 (and, of course, by having the KvAP paddle swap). 

However, because the 1D4 affinity tag is C-terminal, moving the tag to the N-terminus 

required using a different affinity purification protocol. At first, an N-terminal FLAG tag 

was used, which also allows antibody affinity for the purification of low-yield proteins. 

However, after initial expression and purification trials, it was found that moving the 

GFP tag to the N-terminus greatly improved the protein expression and more than 

doubled the yield. Therefore I was able to switch the affinity tag from a FLAG tag to a 

Deca-His tag and thus use immobilized metal-affinity chromatography (IMAC) in the 

purification.  

 By making the above modifications to the expression construct, I was able to 

simplify the purification protocol by removing the need for preparative trypsinization. 

With this construct, the purification protocol after protein extraction consisted of IMAC 

using Co2+ resin, PreScission digestion to cleave off the His-GFP tag, another round of 

IMAC to separate the cleaved tag and the HAP5ΔNΔC construct, followed by a final 

SEC purification. Mass spectrometry confirmed that this new construct and purification 

protocol resulted in the production of a homogenous protein sample without any 

additional proteolysis or post-translational modifications.  
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 Setting up crystallization screens with this construct in the presence of the 33H1 

Fab in DM resulted in two new crystal forms both of which contained Fab and 

HAP5ΔNΔC (Fig 4.12). After refinement of the crystal growth conditions and initial 

diffraction analysis, it was determined that the crystal form shown in Fig. 4.12A did not 

diffract better than ~9 Å resolution, whereas the other crystal form, shown in Fig. 4.12B, 

displayed greater variability with some crystals diffracting better than 4 Å. Screening of 

many different crystals from these conditions resulted in collection of a complete, though 

anisotropic, data set to 3.9 x 5.1 x 3.8 Å resolution (Fig. 4.13, Table 4.2). 

 Before discussing the structure of HAP5ΔNΔC that I obtained from this data set, I 

will use the following section to describe the functional work that was performed in 

conjunction with the biochemistry described in the previous sections. Throughout the 

design and modification of the chimeras, great care was taken to insure that each new 

construct was a functional voltage-gated proton channel. The functional data presented in 

the next section are essential for interpretation of the structural work.  
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Fig. 4.12 Crystals grown from HAP5ΔNΔC construct in complex with 33H1 Fab 

(A) Crystals grown in 30% PEG400, 50 mM MES pH6.5, 100 mM NaLiSO4. (B) 

Crystals grown in 30% PEG400. The silver stained gels of the crystals (right) indicate 

that the crystals contain both 33H1 Fab and HAP5ΔNΔC. 
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Fig. 4.13 Diffraction from crystals of HAP5ΔNΔC/33H1 complex crystals 

Two diffraction images from the same crystal grown in 30% PEG400 taken at ~90° 

separation clearly showing anisotropy. The concentric circles indicate resolution shells, 

going from the center outwards 20 Å, 8 Å and 4 Å are shown. 

 

Table 4.2 Summary of data collection for HAP5ΔNΔC/33H1 complex 

Data Set HAP5ΔNΔC/33H1 

Resolution (Å) 3.9, 5.1, 3.8 

Space Group P1 

Source BNL X29 

Cell Dimensions: a, b, c (Å) 99.8, 136.1, 148.1 

                            α, β, γ (°) 82.2, 89.4, 76.6 

Unique reflections 53,138 

I/σI 7.33 (2.47) 

Ellipsoid truncation and anisotropic scaling was performed on the data set using the 

UCLA MBI diffraction anisotropy server (Strong et al. 2006). 
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4.2.3 The best candidates for structure determination are functional 

By reconstituting the chimeric channels into lipid vesicles and using the fluorescence-

based concentrative uptake flux assay described in Chapter 3, I determined that HAP5ΔC, 

nHAP3ΔC and the trypsinized HAP5ΔC were able to conduct H+ (Fig. 4.14A and B). In 

each case, the H+ conduction observed from these constructs was qualitatively similar to 

that of the reconstituted wild type hHV1 channel (Fig. 4.14A and B). The fact that the 

fluorescence quenching time courses went to completion without any slow recovery or 

intermediate level of quenching indicated that the chimeric constructs also maintained H+ 

selectivity (see Chapter 3 for a more in depth discussion on implications concerning 

selectivity from this assay). These functional data from the flux assay were sufficient for 

me to pursue these chimeric constructs as possible structural targets; however, once a 

complete data set was obtained for the HAP5ΔNΔC, a more rigorous electrophysiological 

characterization was desired. 
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Fig. 4.14 H+ uptake into vesicles containing the chimeric constructs  

(A) Fluorescence-based H+ flux assay for vesicles containing HAP5ΔC (green), 

nHAP3ΔC (red) compared to empty vesicles (orange) and wild type hHV1 containing 

vesicles (cyan). (B) Fluorescence-based H+ flux assay for vesicles containing HAP5ΔC 

(green) and trypsinized-HAP5ΔC (tHAP5ΔC, brown). In each case valinomycin was 

added after 150s, CCCP was added at 450s and the fluorescence measurements were 

repeated 3-4 times (error bars represent the standard error of the mean). The significant 

fluorescence quenching seen for the empty vesicles in (B) indicate that this batch of 

vesicles was more leaky than usual. 
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To test the voltage-gating properties of the HAP5 chimera, the full-length 

sequence was cloned into a HEK-cell expression vector and the activity of the channel 

was compared to wild type hHV1 in HEK cells by the whole-cell patch clamp method. 

Although both channels generated robust voltage-gated currents, the gating properties of 

the HAP5 chimera are significantly different from that of hHV1 channels (Fig. 4.15A and 

B). Both the rate of opening and closing were significantly faster in the HAP chimeric 

channel (Fig. 4.15B). The rate of closing of the HAP5 chimera was so fast that, when 

using a similar voltage step protocol as for hHV1, tail current was not observable (Fig. 

4.15B). Due to the speed of channel closing when the voltage was stepped to negative 

potentials, the reversal potential of the currents elicited by opening of the HAP5 channel 

could not be accurately measured. This precluded definitive determination of the ion 

selectivity for this channel; however, as mentioned above, the stability of fluorescence 

quenching seen in the flux assay suggests that the HAP5 channel maintained its H+ 

selectivity. 

 Further characterization of the chimeric channel under different external and 

internal pH and ionic conditions may have allowed for accurate measurement of reversal 

potentials; however, further structural and biochemical analysis described in the 

following sections precluded the need for further functional characterization of this 

channel. Although the functional changes elicited by the paddle swap are interesting unto 

themselves (the channel gating actually more resembles that of KVAP than hHV1), my 

major focus was to solve the structure of a HV channel and, thus, only confirmation that 

the HAP5 chimera was a functional voltage-gated H+ channel was needed. The data 

presented in Fig. 4.14 and 4.15 demonstrate that the HAP5 chimera is functional. 
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Fig. 4.15 HAP5 is a voltage-gated H+ channel 

(A) Whole-cell patch clamp recording from a HEK cell expressing hHV1. Voltage-step 

protocol was as indicated in the schematic. (B) Whole-cell patch clamp recording from a 

HEK cell expressing HAP5. Voltage-step protocol was as indicated in the schematic. 

 

4.2.4 Structure of the HAP5ΔNΔC chimera 

Using the separate constant (FC) and variable regions (FV) of the Fab as search models for 

molecular replacement, it was possible to phase the low-resolution anisotropic data set. 

The unit cell (which was the asymmetric unit, since the space group was P1) was large 

enough to fit eight HAP5ΔNΔC/33H1 complexes; however, clear density was observed 

for only five and a half Fabs (6 FVs and 5 FCs), with the remainder of the cell being 

disordered. From the initial molecular replacement solution, tubular density was observed 

extending from the 33H1 binding sites, which unambiguously corresponded to the four 

transmembrane helices of the HAP5ΔNΔC channel (Fig. 4.16).  
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Fig. 4.16 Example of helical electron density observed in a 33H1 Fab binding site 

Stereo image of 1σ electron density from 2Fo-Fc map calculated from 33H1 Fab 

molecular replacement solution prior to any refinement or model building. Strands 

corresponding to 33H1 binding site are shown as green ribbons. Map was generated from 

data set summarized in Table 4.2 at 4 Å. 

 

 

It was possible to fit the transmembrane helices into the density without any 

refinement of the initial search model (Fig. 4.17). Due to the low resolution and internal 

disorder of the data set, it was not possible to unambiguously determine the connectivity 

between the different transmembrane helices. However, due to the known interaction 

between the KVAP paddle sequence and the 33H1 Fab (Jiang et al. 2003a), it was 

possible to identify and register the S3 and S4 helices. Additionally, it was clear from the 

density that the channels were arranged as dimers. 

Comparing the arrangement of the four transmembrane helices of each 

HAP5ΔNΔC subunit it was evident that the observed structure was very different from 

that of known VSDs (Jiang et al. 2003a; Long et al. 2005; Long et al. 2007; Payandeh et 

al. 2011; Payandeh et al. 2012; Zhang et al. 2012). Additionally, the dimer interface in 

the structure was extensive, with the S3 helices wrapping around each other and 
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intercalating between the S3 and S4 helices of the opposite subunit in the dimer, causing 

a splaying of the paddle motif when compared to the KVAP structure (Fig. 4.18). The 

presence of this dimer interface along S3 disagreed with our site directed cross-linking 

studies of the wild type hHV1 in membranes, which demonstrated that the dimer interface 

was along the S1 helix (see Chapter 2 and Lee et al. 2008).  

In spite of these discrepancies seen in the model of HAP5ΔNΔC (Fig. 4.17) and 

the cross-linking data presented in Chapter 2, we knew from the electrophysiology and 

the flux assay of the reconstituted channel that the chimera was functional. However, the 

inconsistency between structural and biochemical data had to be resolved before further 

interpretation and refinement of the structure could be carried out.  

 

 

 

Fig. 4.17 Helical model of HAP5ΔNΔC 

Model of transmembrane helices generated by fitting polyalanine α-helices into the 

electron density found at the 33H1 binding site. Left, side view looking from within the 

expected membrane plane, right, top view looking down from the hypothetical 

extracellular side. The amino acid residues that corresponds to KVAP sequence are 

colored green, whereas hHV1 derived residues are magenta.  
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Fig. 4.18 Comparison of paddle structures between HAP5 and KVAP isolated VSD 

(A) Structural model of the HAP5ΔNΔC paddle colored as in Fig. 4.17. (B) Structural 

model of KVAP paddle from (Jiang et al. 2003a). (C) Overlay of paddle structures 

demonstrating that the paddle motif in HAP5ΔNΔC is splayed open compared to the 

equivalent sequence in KVAP. Also no kink is observed in the S3 helix of HAP5ΔNΔC. 

 

 

4.2.5 Cross-linking indicates HAP5ΔNΔC chimera structure is not native 

To probe the functional dimeric state of the HAP5 chimera, the channel was expressed in 

HEK cells in both full-length and C-terminally truncated forms and the pattern of site 

specific cross-linking was investigated and compared side-by-side with wild type hHV1 

channels. In addition to the positions along S1 that were shown to form robust disulfide 

cross-links in hHV1, the amino acid residue positions along S3 that form the dimer 

interface in the structure (Fig. 4.17) were also mutated to cysteine one at a time and 

probed for cross-linking.  
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 In both cases, the full-length and C-terminally truncated HAP5 chimera showed 

robust spontaneous disulfide bond formation along the top of the S1 helix, exactly 

recapitulating the pattern seen for wild-type hHV1 (Fig. 4.19C). Because of the lack of the 

C-terminus from the truncated channels, the less specific anti-KVAP antibody 6E1 was 

used in the western blots, which resulted in some non-specific signal in spite of which 

clear dimer was observed (Fig. 4.19E and G). Addition of oxidizing reagents and cysteine 

reactive cross-linkers to the membranes pushed cross-linking at these S1 sites to 

completion, just as was seen for the wild type hHV1 channel (Fig. 4.19G; Chapter 2; Lee 

et al. 2008). 

 When the positions along S3 were probed for spontaneous cross-link formation, 

no disulfide bond formation was observed (Fig. 4.19B and F). Furthermore, addition of 

oxidizing reagents and cysteine-reactive cross-linkers still did not result in the 

observation of any cross-linked dimer (Fig. 4.19D and H). These data clearly indicated 

that the HAP5 chimera is a dimer in membranes even in the absence of the C-terminus, 

and that its dimer interface is along the S1 helix (i.e. similar to wild type hHV1), not along 

the S3 helix as seen in the structure. 
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Fig. 4.19 Site-specific cross-linking studies of HAP5 and HAP5ΔC in membranes 

(A) Cross-linking of the native coiled-coil cysteine (position 249) in both wild type hHV1 

and HAP5. Production of a cys-less (CL) construct in which the two native cysteines 

have been mutated to serine precludes disulfide-mediated cross-linking. (B) Cysteine 

mutants of hHV1 CL along the S3 dimer interface seen in the crystal structure of 

HAP5ΔNΔC (C) Cysteine mutants along the S1-S2 loop dimer interface seen in the 

cross-linking studies discussed in Chapter 2 for both hHV1 CL and HAP5 CL constructs 

(D) Same S3 mutants of hHV1 CL as in (B) but under forcing conditions. (E) Compaing 

the effect of C-terminal truncation on the S1-S2 loop cysteine mediated cross-linking of 

HAP5 CL and HAP5ΔC CL (F) Cysteine mutants of HAP5ΔC CL along the S3 dimer 

interface seen in the crystal structure (G) Same S1-S2 mutants of HAP5 and HAP5ΔC 

CL as in (E) but under forcing conditions. (H) Same S3 mutants of HAP5ΔC CL as in (F) 

but under forcing conditions. Symbols in blue on the right on gels indicate the 

approximate positions for the dimer and monomer of the coiled-coil containing constructs 

(circles with tails) and the truncated constructs (circles without tails). (A – D) Use the 

αhHV1-coiled-coil antibody 9C1 as the primary antibody (E – H) Use the αKVAP-paddle 

antibody 6E1 as the primary antibody. 
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4.2.6 Final attempts at chimera strategy  

Here, I will briefly describe my efforts to use the non-native HAP5ΔNΔC structure to 

design improved chimera with the goal of solving a native structure of the channel. The 

main question that needed to be addressed was whether the HAP5ΔNΔC was completely 

disordered in detergent or whether Fab binding was forcing the conformational 

equilibrium of the chimera into a low occupancy non-native conformation. 

Since the Fab was not raised against the HAP5ΔNΔC channel itself but against 

the KVAP channel, if the paddle epitope were not properly presented for Fab recognition 

in the native chimeric construct, we would expect very little binding of the Fab to the 

native chimera. Therefore, four scenarios can be envisioned for binding of a Fab to an 

epitope-swapped chimeric channel: 1) the chimera structure is native and highly stable in 

detergent but does not present the epitope properly. In this case, Fab would not bind and 

we would see no complex on the SEC column. This may be true even if we saw binding 

of antibody in ELISAs and Western blots, since under these conditions we expect a 

higher proportion of unfolded channels. 2) The chimera is native and stable in detergent 

but does not present the epitope properly; however, it is in equilibrium with a low 

occupancy non-native (partially unfolded) state in which the Fab is able to bind to the 

paddle epitope with high affinity. In this case, we may see some incomplete complex 

formation on the SEC column, but high concentrations of Fab would result in the 

accumulation of non-native-chimera-Fab complex, which may then crystallize due to the 

strength of Fab mediated crystal contacts. 3) Although the native chimera doesn’t present 

the paddle epitope properly, the chimera is unstable in detergent and therefore 

significantly occupies a non-native conformation that is able to bind Fab with high 
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affinity. In this case, we would expect the chimera to be unstable in most non-dispersive 

detergents but bind strongly to the Fab resulting in complete complex formation on the 

SEC column. 4) The native chimera is highly stable in detergent and properly presents 

the paddle epitope in a way that is easily accessible to the Fab. In this case we would 

expect a biochemically stable construct and complete complex formation on the SEC 

column.  

To solve the native structure of a chimeric channel we require chimera that fall 

into scenario 4 above. However, based on the evidence presented in this chapter, I 

conclude that HAP5ΔNΔC falls into scenario 2: it is biochemically stable in many 

detergents and it only forms partial complex with Fab on the SEC column. Therefore, the 

33H1 Fab is only binding to a small population of non-native channels on the SEC 

column, but the structure is completely non-native when solved in complex with the 

33H1 Fab. In addition, I categorize the nHAP3ΔC chimera into scenario 3: it is unstable 

in most detergents, but forms complete complex with Fab on the SEC column. The 

question then becomes: can we use what we see in the structure to build a chimera that 

falls into scenario 4, i.e. one that is stable in detergent and binds to the Fab in the native 

conformation?  

By examining the structure, it was clear that the S1 and S2 helices were directly 

adjacent to the Fab; moreover, the S3-S4 helix-turn-helix paddle motif may be buried 

below these two adjacent helices in the native structure (Fig. 4.20A-C). If the paddle 

motif were buried, then Fab binding to the native structure would be prevented by steric 

clash between the Fab and the S1 and S2 helices.  
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Fig. 4.20 Structure based strategy for design of new chimera 
(A) Cartoon representation of KVAP VSD in complex with 33H1 Fab structure showing 

that the S3-S4 paddle epitope is extended relative to the S1-S2 loop. (B) Cartoon 

representation of HAP5ΔNΔC dimer indicating possible source of steric clash between 

the S1 and S2 helices and 33H1 Fab. (C) Schematic demonstrating how steric clash could 

lead to helix splaying. (D) Sequence of hHV1 paddle; underlined portions indicates 

residues that were added to the paddle extension chimera. (E) Sequences of paddle 

extension chimera. (F) Schematic demonstrating how Fab binding could lead to 

disruption of helical packing (G) Sequences of alternate helical register chimera. 
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Looking back over the sequences of all the chimera constructed (Fig. 4.3), it was 

determined that, because of the register used to splice in the paddle sequence, the HAP5C 

construct actually contained the most extended paddle (the longest combined S3-S4 

KVAP/hHV1 sequence) of all the chimeras originally screened. Therefore, four additional 

doubly truncated chimeras that shared the same register as HAP5 but with longer S3 and 

S4 helices were generated (Fig. 4.20E; nHAP8, nHAP10, nHAP11 and nHAP12 were 

constructed). These chimera were expressed, purified and tested for only the two 

scenario-4 properties: biochemical stability and complete complex formation with Fab on 

the SEC column.  

With the exception of nHAP10ΔNΔC (which was approximately one helical turn 

longer on S3 and S4 with respect to HAP5), most of the paddle extensions resulted in 

decreased stability of the chimeric constructs. Although the nHAP10ΔNΔC chimera was 

stable, the alterations did not improve Fab binding. The binding of nHAP10ΔNΔC to 

both 6E1 and 33H1 Fabs looked very similar to that of HAP5ΔNΔC, with only a small 

proportion of complex formation, likely placing it into scenario 2.  

Another possible way in which the paddle epitope may be incorrectly presented 

for Fab binding on the chimeric channel is if the register of the S3 and S4 helices is 

wrong relative to that of native KVAP. If S3 is longer or shorter than S4 in the chimera 

relative to the equivalent positions of the KVAP S3 and S4 helices, then the S3-S4 helix 

turn helix motif may be askew, resulting in poor Fab binding and disruption on helical 

packing when the Fab does bind (Fig. 4.20F). To address this, eight additional chimeric 

constructs were built: four in which successive single amino acid residue deletions were 

carried out in S3 and four in which successive single amino acid residue additions were 
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carried out in S4 (Fig. 4.20G). These deletions/additions were carried out on the 

background of the nHAP10ΔNΔC construct, since it was the most stable chimera with the 

most extended paddle motif. Expression and purification of these eight constructs 

demonstrated that the nHAP10ΔNΔC S3-1, S3-1 and S4+4 constructs (Fig. 4.20G) were 

very stable and monodisperse on the sizing column. However, none of these constructs 

improve binding of either 6E1 of 33H1 Fabs.  

Although there are a great number of possible combinations of amino acid residue 

additions/deletions that could be tested for these paddle chimeras, after failure of this set 

of eight constructs it was decided that it would be more productive to pursue other 

avenues for improved Fab binding. Therefore, the paddle chimera strategy was 

abandoned in favor of raising Fabs against the hHVΔNΔC channel by phage display 

(discussed below) and of nuclear magnetic resonance (NMR) characterization of the wild 

type channel (discussed in the next chapter). 

 

4.3 RAISING FABS BY PHAGE DISPLAY  

4.3.1 Phage display selections overview 

For soluble proteins, phage display selections are done via biotinylation and 

immobilization of the protein of interest onto streptavidin or neutravidin coated 96-well 

plates (Sidhu et al. 2000). In this way, large phage libraries with >1013 sequence diversity 

can be applied to the sample for selection of binders by successive washing steps 

(Persson et al. 2013). In practice, the phage libraries are applied first to a streptavidin-

coated well alone to remove any phage clones with non-specific or streptavidin specific 
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binding, and then the phage are moved to the wells with the immobilized sample (Sidhu 

et al. 2000). After incubation and 4-5 rounds of washing, the bound phage are eluted 

from the sample by addition of acid and are then amplified overnight in bacterial culture. 

This process is repeated in four or five rounds of selection, using higher concentrations of 

phage in each successive round. Increasing the phage concentration as the selection 

rounds progress results in greater competition between the remaining phage, selecting for 

the higher affinity binders (Sidhu et al. 2000). After the final round of selection, phage-

infected bacteria are plated out in order to isolate single clones, which are then expanded 

and tested for binding to the antigen by ELISAs. Positive-binding clones are then 

sequenced and the Fabs present can be easily cloned, expressed and purified for use in 

structural studies (Sidhu et al. 2000).  

This process was very much the same for purified membrane proteins, except that 

each step required the presence of detergents to keep the proteins in solutions. Due to the 

long time course of the selection process (generally 4-5 days), it is necessary that the 

membrane protein of interest be highly stable in detergent over long time spans. For most 

membrane proteins, including hHV1, this is not the case, complicating the phage-display 

selection process. Nonetheless, because of our desire for high-affinity antibodies against 

the hHV1 transmembrane domain, we initiated a collaboration with the laboratory of Dr 

Sachdev Sidhu at the University of Toronto. Before going to Dr Sidhu’s laboratory, I was 

able to show that the hHVΔNΔC construct was efficiently biotinylated using two different 

reagents: one that reacts specifically with cysteine residues and one that reacts with 

primary amines such as the side chains of lysine residues. 
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Working with postdoctoral fellow Dr Yuko Arita, I carried out five rounds of 

phage selections against the hHVΔNΔC channel in diheptanoyl-glycerol-

phosphatidylcholine (DHPC) detergent using two different phage-Fab libraries (Fellouse 

et al. 2007; Persson et al. 2013). After several days of selections, it was clear that the 

channel was becoming unstable, as small amounts of precipitate were seen in the sample 

tubes. Although we were able to prevent the protein from precipitating by diluting our 

stock concentration, we were still unsuccessful in isolating any strong binders from our 

selections. Instead, we obtained a plethora of phage that bound non-specifically to the 

plates and did not express functional Fab domains: PCR and sequencing analysis 

indicated either the presence of no Fab, or of frame-shift or nonsense mutations within 

the complementarity determining regions (CDRs). 

An abundance of non-specific “sticky” binders is common where there are no 

strong specific binders present in the phage library, or if there is heterogeneity in the 

target sample such that the selection pressure for strong binders is low. Because of the 

long time course required for the selections and the inherent instability of hHVΔNΔC 

channel in detergent, we concluded that it would be unproductive to continue attempting 

selections according to this standard protocol. However, due to my experience with 

channel reconstitution and functional analysis (see Chapter 3) it occurred to me that it 

would be beneficial to develop a phage-selection protocol using reconstituted channels. 

The hHVΔNΔC channels in vesicles are highly stable, and reconstituted vesicles 

can be frozen and stored at -80°C until needed. By using the reconstituted channels, the 

buffers needed for selections and ELISAs would no longer require detergents, thereby 

greatly reducing the cost of the entire protocol. Efficient negative selections could be 
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carried out using vesicles that did not contain any hHVΔNΔC channels, thereby removing 

any phage that non-specifically bound to lipids. Furthermore, the activity of the 

reconstituted hHVΔNΔC channels could be tested by the fluorescence-based concentrative 

uptake flux assay described in Chapter 3, thus allowing confirmation that the channels 

were in a functional native state. Therefore, we decided to develop this new phage-

display library selection method for reconstituted membrane proteins. 

 

4.3.2 Vesicle-based selections of reconstituted hHVΔNΔC 

Another benefit of using the vesicle-based selections is that it is possible to incorporate 

biotin-modified lipids into the membrane, thereby bypassing the need for potentially 

structure-altering modifications (biotinylation) of the protein of interest. In the case of the 

hHVΔNΔC, vesicles reconstitution was done in 3:1 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (POPE): 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (POPG) lipids doped with 0.5% 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-N-(cap biotinyl) headgroup modified PE (DPPE-biotin). Assuming 

an average vesicle radius of 100 nm, this concentration of DPPE-biotin would result in 

approximately 30-40 DPPE-biotin molecules per vesicle or 15-20 DPPE-biotin per 

membrane leaflet. Vesicles prepared in this way should be efficiently captured by 

streptavidin-coated plates.  

To test streptavidin binding to the reconstituted DPPE-biotin containing vesicles, 

sucrose flotation assays were carried out on a sample of the vesicles to determine whether 

the streptavidin would migrate with the vesicles in the sucrose gradient. In the presence 

of streptavidin, the DPPE-biotin containing vesicles formed a gel at the interface of the 
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10% and 30% sucrose solutions in the step gradient. This gel phase was not observed 

with the DPPE-biotin containing vesicles in the absence of streptavidin or with normal 

vesicles not containing DPPE-biotin in the presence of streptavidin. Since streptavidin is 

a tetramer in solution, the gel phase is likely formed by cross-linking from the binding of 

multiple DPPE-biotin-containing vesicles by single streptavidin tetramers. These 

observations led me to conclude that the DPPE-biotin was presented on the surface of the 

vesicles in a way that allows for efficient streptavidin capture of the biotin-modified 

headgroup.  

For the selections, the hHVΔNΔC were reconstituted into the DPPE-biotin 

containing vesicles at a protein-to-lipid ratio of 1:100 (wt:wt). At this ratio, there should 

be approximately 20 channels per vesicle on average. To confirm efficient incorporation 

of the channel into the vesicles, a sucrose flotation assay was performed and the 

functional state of the channels was tested with the fluorescence-based flux assay. These 

data showed that the hHVΔNΔC channels were efficiently incorporated into the vesicles 

and that the reconstituted channels were functional (Fig. 4.21). 
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Fig. 4.21 H+ uptake into vesicles containing truncated hHV1 channels 

Fluorescence-based H+ flux assay for vesicles containing hHVΔNΔC (purple) compared to 

empty vesicles (orange) and wild type hHV1 containing vesicles (cyan). Valinomycin and 

CCCP were added at the indicated time points and the fluorescence measurements were 

repeated 3-4 times (error bars represent the standard error of the mean). 

 

When Dr Arita performed the phage selections with DPPE-biotin-containing 

vesicles, the use of empty vesicles for negative selection and of hHVΔNΔC-containing 

vesicles for positive selections markedly improved the results compared to those of the 

detergent-based selections. As opposed to the detergent-based selections (which did not 

produce any potential HV binding Fab clones), the vesicle-based selections generated nine 

Fab clones that showed significant selective binding to hHVΔNΔC-containing vesicles 

(Table 4.3). Dr Arita subcloned these Fab genes into an expression vector and I expressed 

and purified each of the Fabs with the exception of Fab9 (Table 4.3), which did not 

express.  
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Table 4.3 ELISA Data for the best Fabs isolated from vesicle based selections 

 Raw ELISA Data ‡ Ratios * 
Fab ID BSA Empty FLAG hHVΔNΔC FLAG/BSA hHVΔNΔC/Empty 
Fab1 0.087 0.332 0.815 1.197 9.4 3.6 
Fab2 0.082 0.288 0.839 1.236 10.2 4.3 
Fab3 0.086 0.434 0.116 1.664 1.3 3.8 
Fab4 0.100 0.164 0.996 1.433 10.0 8.7 
Fab5 0.079 0.193 1.065 0.647 13.5 3.4 
Fab6 0.075 0.347 0.185 0.856 2.5 2.5 
Fab7 0.092 0.148 0.117 0.430 1.3 2.9 
Fab8 0.094 0.237 0.644 0.604 6.9 2.5 
Fab9 0.086 0.226 0.114 0.695 1.3 3.1 

These ELISAs were performed by Dr Yuko Arita 

‡ Raw ELISA data corresponds to wells containing BSA control (BSA), Empty Vesicles 

(Empty), hHVΔNΔC containing vesicles probed with an αFLAG Ab (FLAG), 

hHVΔNΔC containing vesicles. All wells were probed with αM13 phage Ab unless 

otherwise stated. The Fab gene on the phage contains a C-terminal FLAG-tag therefore 

the αFLAG antibody will only bind to phage that expresses a full-length Fab gene. 

* High FLAG/BSA ratio indicates the presence of a bound phage that expresses a full-

length Fab gene. High hHVΔNΔC/Empty ratio indicates specific phage binding to 

hHVΔNΔC. The two best hHVΔNΔC/Empty ratios are highlighted in green. 

 

The remaining eight Fabs were tested for binding to the hHVΔNΔC channel in 

DHPC. Only Fab2 showed evidence of weak binding to the channel on the SEC column 

in detergent (Fig. 4.22). Although there was almost no complex seen on the SEC column, 

a shift to lower elution volumes of some Fab2 was observed when the fractions were run 

on an SDS-PAGE gel (Fig. 4.22C). This shifting of elution volume was not observed for 

the other best candidate, Fab4 (Table 4.3), indicating that Fab2 did bind weakly to the 

channel in DHPC. However, the binding observed for Fab2 was very weak and was not 

considered significant enough to carry forward into full-scale crystallization trials. 
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Fig. 4.22 Evidence for weak complex formation between Fab2 and hHVΔNΔC 

(A) SEC chromatogram of hHVΔNΔC with Fab2. (B) SEC chromatogram of hHVΔNΔC 

with Fab4. (C) SDS-PAGE reducing gel of SEC fractions showing a shift in the elution 

volume for Fab2 indicating weak binding of Fab2 to hHVΔNΔC. 

 

4.3.3 Future directions 

Although Fab2 showed some evidence of weak binding, stronger-binding Fabs are 

needed to justify full-scale crystallization trials. Therefore, Dr Arita is developing 

affinity-matured libraries based on the sequences of the best binders from the vesicle-

based selections (Fab2 and Fab4; Table 4.3). These libraries are currently being screened 

for Fabs with improved binding to vesicle-reconstituted hHVΔNΔC. If Fabs with a 

significant improvement in binding are identified, they will be tested for Fab-channel 

complex formation by SEC. All promising candidates will be followed up in 

crystallization trials. 
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4.4 CONCLUSIONS 

In this chapter, I described my efforts to obtain the X-ray crystal structure of a HV 

channel. Together with Dr Seok-Yong Lee we attempted crystallization of the wild type 

channel, lysozyme and dimer fusion constructs, and chimeric channels. Although I did 

obtain a crystal structure with the HAP5ΔNΔC chimera, I concluded that this structure 

was non-native. Because of the power of Fab mediated crystallization it is still desirable 

to isolate high affinity antibodies against the transmembrane domain of hHV1. My work 

in collaboration with Dr Yuko Arita in the Sidhu lab at the University of Toronto on the 

isolation of phage display Fabs has the potential to achieve this goal. However, if we are 

unable to isolate high affinity antibodies by this method it may still be possible to get 

high affinity crystallization chaperones by other means. By injecting hHV1 into llamas it 

may be possible to generate hHV1 specific nanobodies. These single-chain camelid 

antibody fragments have been used successfully for the crystallization of membrane 

proteins that lack well-structured soluble domains (Rasmussen et al. 2010). 

As an alternative strategy for structure determination, working with Dr Joel 

Butterwick in the laboratory, I decided to pursue NMR characterization of hHV1ΔNΔC. 

As described in the next chapter, this methodology allowed us to define the secondary 

structure of the channel and we experimentally identified a short N-terminal S0 helix that 

precedes the transmembrane domain. 
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CHAPTER 5: NMR 

During the final stages of the crystallography work discussed in Chapter 4, I set out to 

also study the chimeric HAP5ΔC by nuclear magnetic resonance (NMR) with detergent-

solubilized channels. Together with postdoctoral fellow Dr Joel Butterwick, I planned to 

examine the titratable amino acid residues within the transmembrane domain of the 

channel in order to investigate the conduction mechanism. Because of the sensitivity of 

NMR to the protonation state of amino acid side chains, this technique complements the 

crystallographic studies and can provide additional insight into the mechanism of H+ 

conduction through HV.  

Although our studies began with the chimeric HAP5ΔC channels, after the 

crystallography indicated that this channel might not be properly structured in detergent, 

we decided to work on the wild type truncated hHVΔNΔC channel. In this chapter, I will 

briefly discuss our initial NMR work on the HAP5ΔC channel and will then present our 

efforts to solve the hHVΔNΔC channel structure. 
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5.1 NMR ON THE HAP5 CHIMERA 

5.1.1 Removal of N-terminus allows for detection of transmembrane peaks 

The HAP5ΔC construct was chosen as the best candidate for NMR because of its stability 

at high concentrations at room temperature (required to maintain its homogeneity during 

the multi-day length of the experiments) and because of the progress that its structural 

characterization by X-ray crystallography showed at the time.  

To collect a 1H-15N heteronuclear single quantum coherence (HSQC) spectrum, 

the protein had to be uniformly labeled with the heavy 15N isotope. Since the only source 

of nitrogen during the expression of the channel in Pichia pastoris was from the 

ammonium sulfate added to the media, we were able to uniformly label the protein by 

replacing all of the ammonium sulfate with 15N-ammonium sulfate.  

The original spectra collected on the HAP5ΔC in LDAO channel showed many 

peaks (Fig. 5.1). Since every peak on the 1H-15N HSQC spectrum corresponds to a 

covalently bound 1H-15N pair, the majority of the peaks seen derived from the main chain 

amide bond, with a subset originating from the side chains of asparagine, glutamine and 

tryptophan residues (Cavanagh et al. 2007). Depending on the local environment of the 

amino acid residue, it is sometimes possible to see peaks corresponding to the side chains 

of arginine residues, but it is very rare to see peaks corresponding to histidine and lysine 

side chains because of their fast rate of H+ exchange with the solvent (Cavanagh et al. 

2007).  
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Fig. 5.1 1H-15N HSQC spectrum of 15N labeled HAP5ΔC and tHAP5ΔC in LDAO 

(A) 1H-15N HSQC spectrum of HAP5ΔC in N,N-Dimethyldodecylamine N-oxide 

(LDAO) at 25°C (top) with the glycine resonances highlighted to demonstrate the 

eclipsing effect of the N-terminus. Four glycine resonances, which likely correspond to 

the four glycines in the N-terminus are much stronger than two other glycine peaks 

observed that likely correspond to glycines from the transmembrane segment. (B) 1H-15N 

HSQC spectrum of trypsinized HAP5ΔC (tHAP5ΔC) in LDAO at 25°C (bottom) 

demonstrating that the majority of the intense peaks derived from the N-terminus. 

10 9 8 7
1H  (ppm)

130

125

120

115

110

15
N 

 (p
pm

)

130

125

120

115

110

105

15
N 

 (p
pm

)

4 strong Gly

2 weak Gly
HAP5ΔC

tHAP5ΔC

A

B



 140 

The intensity of the peaks observed on the 1H-15N HSQC is positively correlated 

to the flexibility of the protein; thus, loops and unstructured regions might eclipse the 

more stable parts of the protein (Cavanagh et al. 2007). This can be worse with detergent-

solubilized membrane proteins since the interactions with the detergent micelle can 

further broaden peaks corresponding to the transmembrane domain (Butterwick & 

Mackinnon 2010). Therefore, we suspected that the strong peaks observed in the 1H-15N 

HSQC spectrum of the HAP5ΔC channel originated from residues within the 

unstructured N-terminus (Fig. 5.1A). For example six peaks corresponding to glycine 

resonances can be seen in the 1H-15N HSQC spectrum of the HAP5ΔC (Fig. 5.1A) the 

four intense glycine peaks likely correspond to the four glycines found in the N-terminus, 

whereas the two weaker glycine peaks likely correspond to glycines from the 

transmembrane domain (Fig. 5.1A). 

To isolate the peaks originating from the transmembrane domain, we collected a 

spectrum from trypsinized HAP5ΔC (tHAP5ΔC) channels in which the digested N-

terminus had been purified away (Fig. 5.1B). This spectrum clearly indicated that the 

unstructured N-terminus was indeed eclipsing the transmembrane region in the spectrum 

of the untrypsinized HAP5ΔC and that, if we wanted to examine the titratable residues in 

the transmembrane domain, we would have to work with the doubly truncated 

HAP5ΔNΔC construct.  

To improve to resolution of the spectrum, it was desirable to perdeuterate the 

protein. By using transverse relaxation-optimized spectroscopy (TROSY), it is possible to 

sharpen the line-width of the peaks, making it easier to make out individual 1H-15N peaks 

(Cavanagh et al. 2007). Although the expression levels were greatly reduced by growing 



 141 

the Pichia pastoris in heavy water (2H2O a.k.a. D2O), we were able to purify a sample of 

perdeuterated HAP5ΔNΔC. By perdeuteration and by changing detergents from LDAO to 

the lipid-like detergent 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) 

(LPPG) the resolution of this spectrum was greatly improved (Fig. 5.2). 



 142 

 
 

 

Fig. 5.2 Spectra of HAP5ΔNΔC in LPPG 

(A) 1H-15N HSQC spectrum of 15N-labeled HAP5ΔNΔC in LPPG at 25°C. Peaks that are 

aliased in the 15N dimension are shown in black. All five expected glycines can be seen, 

as well as the side chains of the arginine, asparagine, glutamine and tryptophan (inset) 
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residues. (B) 1H-15N HSQC TROSY of 2H-15N labeled HAP5ΔNΔC in LPPG at 25°C. 

Peaks that are aliased in the 15N dimension are shown in blue. 

5.1.2 Abandonment of the chimeric channel in favor of wild type 

With spectra of perdeuterated, 15N-labeled HAP5ΔNΔC in our hands, we planned to 

begin the assignment of the 1H-15N HSQC spectrum peaks. However, at this time, the 

results from the crystallography experiments indicated that, although the HAP5 chimera 

is a functional H+ channel, its structure might be destabilized by extraction from the 

membrane and solubilization by detergent (see Chapter 4). Therefore we decided that it 

would be best not to pursue further NMR analysis of the HAP5ΔNΔC chimeric construct. 

However, my work with the chimeric proteins, discussed in Chapter 4, required 

the redesign of the protein expression construct, which resulted in greatly improved 

yields after purification. We reasoned that if we were to apply the same changes to the 

wild type hHVΔNΔC construct (i.e. moving the GFP tag and PreScission protease site to 

the N-terminus), we should also improve the yield of purified wild type channel. In 

addition, if detergent conditions could be found in which this channel was highly stable it 

should be possible to examine the wild type hHV transmembrane domain by NMR.  

Dr. Butterwick had previously solved the structure of the isolated voltage-sensor 

domain (VSD) of KVAP by NMR (Butterwick & Mackinnon 2010). Therefore, although 

we were unable thus far to solve the structure of the hHVΔNΔC construct by 

crystallography (see Chapter 4), we reasoned that with improved expression and stability 

it might be possible to solve the structure by NMR.  
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5.2 NMR STUDIES OF HUMAN HV CHANNELS 

5.2.1 Truncated hHV1 channels are functional 

In addition to the functional analysis of the reconstituted hHVΔNΔC channels by the flux 

assay presented in Chapter 4 (Fig. 4.21 on page 133), electrophysiological studies were 

carried out on the truncated versions of the hHV1 channel. In order to confirm that the 

hHVΔNΔC channel construct used for NMR studies was a functional H+-selective 

voltage- and ΔpH-gated channel, whole-cell patch clamp electrophysiology of truncated 

channels over-expressed in HEK cells was performed. Due to the importance of the ΔpH 

gating in the physiological functions of the channel and its poorly understood molecular 

mechanism (see Chapter 1), we wanted to confirm that any construct that we pursued for 

structural analysis maintained this important mode of regulation. For completeness, all 

three truncated channel constructs (hHVΔN, hHVΔC and hHVΔNΔC) were characterized 

and compared to wild type. 

 The electrophysiological recordings clearly indicated that, although the 

truncations altered the gating kinetics, all of the truncated channels were functional 

voltage-gated channels (Fig. 5.3). Furthermore, by perfusion of the external solution with 

buffers at different pH, it was possible to both measure the ΔpH gating and H+ selectivity 

of the channels (Fig. 5.3). These results indicated that, although the truncations did alter 

ΔpH-gating behavior, the truncated channels were still ΔpH-gated (Fig. 5.3). By 

comparing the reversal potentials of the measured currents to what is expected for the 

Nernst equilibrium potential for H+ at the different ΔpHs, it was possible to show that 

each of the constructs maintained wild-type-like H+ selectivity (Fig. 5.4).  
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Fig. 5.3 Electrophysiological characterization of truncated hHV1 channels 
Examples of currents elicited from whole-cell patch clamp recording of HEK cells 

expressing (A) hHV1, (B) hHVΔN, (C) hHVΔC and (D) hHVΔNΔC at symmetric pH (pHo 

= pHi = 6.5; left) according to the voltage-step protocols shown. Average tail current IV 

curves corresponding to the same cell as shown on the right at three different pHo (pHo = 

7.0 blue, pHo = 6.5 brown and pHo = 6.0 green). Each recording was performed 2-3 times 

per cell per pHo with the error bars on the IV curves corresponding to the standard 

deviation are plotted but are smaller than the graph symbols in most cases.  
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Fig. 5.4 H+ selectivity of wild type and truncated hHV1 channels 

Examples of currents elicited from whole-cell patch clamp recordings of HEK cells 

expressing hHVΔNΔC at (A) pHo = 6.0 (B) pHo = 6.5 and (C) pHo = 7.0 according to the 

voltage-step protocols shown. In each case pHi = 6.5. (D) IV plot of average current 

elicited shortly after variable voltage-step for hHV1 (cyan), hHVΔN (red), hHVΔC (green) 

and hHVΔNΔC (purple) according to the same voltage-step protocols show in (A-C) at 

the different values of pHo. Each recording was performed 3-4 times per cell per pHo, 

error bars corresponding to the standard deviation are plotted but are smaller than the 

graph symbols in most cases. (E) Comparison of the reversal potentials for each construct 

(colored as in D) to the Nernst equilibrium potential for H+ (black line) at each pHo. Each 

point represents the average of 3-4 cells with the error bars corresponding to the standard 

deviation.  
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 It is interesting to note the opposite effect that the N- and C-terminal truncations 

have on the gating kinetics and ΔpH-gating. The N-terminal truncation decreased the rate 

of both opening and closing of the channel (Fig. 5.3B). Additionally, truncation of the N-

terminus also shifted the ΔpH-gating of the channel, resulting in channel opening at left-

shifted (more negative) voltages relative to wild type channels at the equivalent ΔpH 

(Fig. 5.3B). Unlike the wild type channel, in which ΔpH-gating ensures that the channel 

is a perfect outward rectifier (see Chapter 1), this left shift of the delta-N channel allows 

small inward H+ currents at high external H+ concentrations (low external pH). In 

contrast, the C-terminal truncation increases the rate of both opening and closing of the 

channel (Fig. 5.3C) and shifts the ΔpH-gating such that channel opening occurs at more 

right-shifted voltages, strengthening the wild-type-like outward rectification (Fig. 5.3A 

and C). Although similar to the C-terminal truncation alone in that the rates of channel 

opening and closing are sped up in the doubly truncated channel (hHVΔNΔC), the ΔpH-

gating more resembles that of wild type channels (Fig. 3D). 

 These data support a potential interaction between the N-terminus and 

transmembrane domain in wild type channels. Such an interaction has been previously 

proposed by Musset et al., based on modulation of the gating of wild type hHV1 by 

phosphorylation of amino acid residue T29 on the N-terminus (Musset et al. 2010a). A 

simple explanation for the changes in channel gating observed upon N-terminal 

truncation or phosphorylation could be that the unphosphorylated N-terminus binds to the 

transmembrane domain and stabilizes the hyperpolarized conformation. If true, this 

would mean that disruption of the interaction between the N-terminus and the 

transmembrane domain by either removal or phosphorylation of the N-terminus would 
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destabilize the hyperpolarized conformation, resulting in the observed left-shift in the 

voltage activation of the channel (Fig. 5.3B; Musset et al. 2010a). 

 More research is required to fully understand the interactions between the termini 

and the transmembrane domain and to identify the amino acids residues involved. 

However, the data presented in Fig. 5.3 demonstrate that the truncated channels are 

functional voltage- and ΔpH-gated H+-selective channels, validating the hHVΔNΔC 

construct as a good structural target for generating insight into these interesting 

biophysical phenomena.  

 

5.2.2 hHVΔNΔC is biochemically stable in two detergents 

Expression of wild type hHVΔNΔC was much improved by the N-terminal decaHis-GFP 

tag. In order to get sufficiently enriched channel for the NMR experiments, it was also 

necessary to alter the purification protocol. Originally, the purification was carried out 

similar to that of the HAP5ΔNΔC construct in DM (discussed in Chapter 4), i.e. via Co2+-

resin immobilized metal affinity chromatography (IMAC), followed by PreScission 

protease digestion, a second round of Co2+-resin IMAC for removal of the cleaved 

decaHis-GFP tag and a by final size exclusion chromatography (SEC). However, 

dialyzing into low salt during overnight PreScission protease digestion and replacing the 

second IMAC step with an anion exchange chromatography step were sufficient to 

significantly improve the purity of the hHVΔNΔC channel.  

 I investigated the detergent stability profile of the truncated channel of this highly 

enriched hHVΔNΔC. The hHVΔNΔC channel was unstable in maltoside detergents, 
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precipitating after one day at room temperature at high concentrations. However, the 

truncated channel was highly stable in the lipid-like detergents DHPC and LPPG. In 

either of these detergents, the truncated channel remained in solution and monodisperse 

on the SEC column at high concentrations after incubation for several days at room 

temperature. 

During detergent exchange into LPPG, a slow timescale detergent-exchange 

phenomenon was observed, which manifested as a significant shift in the elution volume 

of the hHVΔNΔC peak (Fig. 5.5). Specifically, after the ion exchange chromatography 

step in DM the channel was concentrated and run over the SEC column equilibrated in 

LPPG. During this detergent exchange SEC run the hHVΔNΔC channel eluted as a broad 

peak centered at 12.8 mL (Fig. 5.5A). When this peak was pooled, concentrated and re-

run over the SEC column in LPPG, the channel eluted as a doublet with peaks centered at 

12.4 and 13.4 mL respectively (Fig. 5.5B). If the same sample was re-run over the SEC 

column after several hours, the elution profile collapsed into a single sharp peak centered 

at 13.3 mL, which then remained stable for up to a week at room temperature (Fig. 5.5C). 

Such a detergent-exchange phenomenon was not observed for exchange of hHVΔNΔC 

from DM to DHPC. 
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Fig. 5.5 DM to LPPG detergent exchange phenomenon of hHVΔNΔC 

(A) SEC chromatogram of hHVΔNΔC initial detergent exchange from DM to LPPG. (B) 

SEC chromatogram of immediate concentration and rerun of pooled fractions 10-14 mL 

from (A) over SEC column equilibrated in LPPG. (C) SEC chromatogram of rerun of 

pooled fractions 10-14 mL from (A) over SEC column equilibrated in LPPG after 1 day 

incubation at room temperature (RT) at 6 mg/mL. 
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Due to the large change observed when hHVΔNΔC was exchanged into LPPG, we 

were concerned that we were obtaining either incomplete detergent exchange or a 

detergent-dependent refolding of the channel, potentially into a non-native conformation. 

We were able to rule out incomplete detergent exchange as a possible cause by looking at 

the 1H peaks corresponding to the detergent in the NMR spectrum. Due to the high 

concentration of detergent in the concentrated NMR samples, the strongest peaks in the 

one-dimensional 1H spectrum come from the detergent molecules. If there were 

incomplete detergent exchange between DM and LPPG, we would expect to see 1H peaks 

corresponding to DM molecules in the spectrum. However, only peaks corresponding to 

LPPG were observed, indicating that complete detergent exchange had occurred. This is 

also in agreement with the observation that the exchange phenomenon occurs to the 

concentrated hHVΔNΔC samples in the absence of further detergent exchange (i.e. given 

time the sample will convert to the 13.3 mL peak without further runs over a SEC column 

equilibrated with LPPG). 

When we collected a 1H-15N HSQC spectrum of the hHVΔNΔC construct in 

LPPG, we observed a highly disperse set of peaks corresponding to the majority of the 

hHVΔNΔC main chain amides as well as all of the asparagine, glutamine, arginine and 

tryptophan side chains (Fig. 5.6A). Since the quality of the HSQC spectrum is sensitive 

to the dynamics of the protein, this high-quality spectrum indicated that the channel was 

in a well-folded stable confirmation (Cavanagh et al. 2007). We concluded that the 

probability of the channel adopting a well-folded stable non-native conformation was low 

and that, therefore, the conformation of the channel after the detergent exchange 

phenomenon was likely native.  
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Fig. 5.6 Detergent screen 1H-15N HSQC of 15N labeled hHVΔNΔC  

(A) 1H-15N HSQC spectrum of 15N-labeled hHVΔNΔC in LPPG. (B) 1H-15N HSQC 

spectrum of 15N-labeled hHVΔNΔC in LDAO. (C) 1H-15N HSQC spectrum of 15N-labeled 

hHVΔNΔC in DHPC. All spectra were collected at 25°C. Peaks that are aliased in the 15N 

dimension are shown in blue. 
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Although the hHVΔNΔC channel was less stable in LDAO than in LPPG or 

DHPC, we decided to examine the 1H-15N HSQC spectrum in LDAO because of the high 

quality spectrum observed for the chimeric HAP5ΔNΔC in this detergent (Fig. 5.1B). 

However, the 1H-15N HSQC spectrum of hHVΔNΔC in LDAO was very weak with only 

few distinguishable peaks (Fig. 5.6B). 

Detergent exchange of hHVΔNΔC from DM to DHPC did not result in any 

equivalent slow exchange phenomenon. During initial detergent exchange into DHPC 

hHVΔNΔC elutes as a single peak centered at 14.8 mL and this peak position does not 

change significantly with time. However, when we collected a 1H-15N HSQC spectrum in 

DHPC the quality of the spectrum was poor (Fig. 5.6C.). The poor quality of the 1H-15N 

HSQC spectrum in DHPC prohibited any further structural analysis of hHVΔNΔC by 

NMR in this detergent. Therefore, we concluded that structural work by NMR on 

hHVΔNΔC would be pursued in LPPG. 

 

5.2.3 Assignment of the hHVΔNΔC spectra in LPPG 

Resonance assignments for backbone (1HN, 15N, 13C′, and 13Cα) nuclei at 25°C and neutral 

pH were identified using TROSY HNCA, HNCO and HN(CO)CA. Moreover, 15N-edited 

1H–1H nuclear Overhauser effect spectroscopy (NOESY) experiments (Cavanagh et al. 

2007) were recorded using 70% deuterated hHVΔNΔC samples. Isotope labeling of the 

His-GFP-hHVΔNΔC construct was performed according to the same protocol used for the 

HAP5 constructs (see above and Materials and Methods), with the exception that the 

concentration of D2O was lowered from 90% to 70%, greatly improving the expression 
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with no significant reduction in TROSY spectrum quality. Uniform 13C labeling of the 

hHVΔNΔC construct was accomplished by replacing the glycerol in the growth media and 

methanol in the expression media with 13C-labeled glycerol and methanol respectively. 

 In addition to the uniformly labeled samples, we recorded HSQC experiments on 

samples with different combinations of labeled amino acids so that specific amino acids 

could be distinguished in crowded regions of the spectra: A, G, F, D/N, L, I, K, E/Q, V 

and R (for examples see Fig. 5.7A and B). Although bacterial expression had not resulted 

in any extractable channel for the original hHV1 constructs (see Chapter 3), we were able 

to express and purify the His-GFP-hHVΔNΔC construct from Escherichia coli which, due 

to significantly reduced metabolic shuffling of labeled atoms into other amino acids, 

facilitated specific amino acid labeling. Resonance assignments were extended along the 

side chains using H(C)CH-COSY and 13C-edited and 15N-edited NOESY experiments. 

Most ambiguities present among the methyl resonances were resolved by repeating the 

13C-edited NOESY using methyl-specific labeling on Ile, Leu, and Val residues 

(Cavanagh et al. 2007). Complete backbone resonance assignments (H, N, CA, CO) were 

determined for 56% of the 138 residues, whereas 77% of residues have main chain amide 

assignments (Fig. 5.7). Importantly, peaks for 84% have at least some (main chain or side 

chain) assignments, providing easily accessible probes for nearly every residue within the 

hHVΔNΔC construct. 
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Fig. 5.7 Amide resonance assignments for hHVΔNΔC in LPPG micelles 
1H-15N HSQC spectra of (A) 15N-Ile/Gly (15N-Ser is also visible because of metabolic 

scrambling of 15N-Gly label) and (B) 15N-Arg specific amino acid labeled HVΔNΔC in 

LPPG. (C) 1H–15N HSQC TROSY spectrum at 25°C of 2H-15N labeled hHVΔNΔC with 

assignments. Main-chain amide peaks for 106 residues (out of 136 residues expected to 

be observed; 2 Pro) and N132δ, N133δ, N214δ, Q102ɛ, Q128ɛ, Q191ɛ, Q194ɛ and W207ɛ 

side chains have been assigned. Peaks that are unassigned are shown in black. Peaks that 

are aliased in the 15N dimension include G90, G199, G215 and the Argɛ resonances. 
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5.2.4 Secondary structure shows S1-S4 helices plus a S0 helix 

Chemical-shift analysis of the assigned main chain resonances allowed for the 

determination of secondary structure of the hHVΔNΔC construct (Fig. 5.8). Patterns of 

secondary chemical shifts of main chain resonances (Δδ = observed shift – “random coil” 

shift) report on the secondary structure of the protein (Cavanagh et al. 2007; Wishart & 

Case 2001). By comparing the Δδs of the different main chain atoms of the same amino 

acid residue, it is possible to get a robust determination of the secondary structure for that 

residue.  

In addition to observing the four transmembrane helices (S1-S4), by examining 

the Δδs of the hHVΔNΔC construct in LPPG we experimentally confirmed the existence 

of a short N-terminal helix (S0) that precedes the first transmembrane helix S1 

(approximately 10 amino acid residue long, R89-S98; Fig. 5.8). Although an analogous 

S0 helix has been reported in the NMR structure of the isolated VSD of KVAP 

(Butterwick & Mackinnon 2010), this was the first observation of this structural feature 

in HV channels.  

Based on the Δδ observations, we are able to estimate the amino acid residue span 

of each of the transmembrane helices. According to these data, S1 spans residues V103-

D123, S2 starts at residue N133 and continues at least until residue L163, S3 extends at 

least from residue D174 to L188 and S4 spans residues F195-S219 (Fig. 5.8). The 

ambiguity in the start position of helix S3 and stop position of helices S2 and S3 derives 

from the lack of assignments for main chain atoms from amino acid residues within the 

S2-S3 and S3-S4 loops. Nonetheless, it is clear from these data that the secondary 

structure of hHVΔNΔC in LPPG matches what would be expected for a VSD. 
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Fig. 5.8 Secondary structure of hHVΔNΔC 

The VSD helices are identified by the pattern of secondary chemical shifts for 13C′, 13Cα, 

[Δδ(13CX); corrected for 2H isotope shifts (Venters et al. 1996) and graphed from − 5 ppm 

to + 5 ppm] and 1Hα and 1HN [Δδ(1HX); graphed from − 1 ppm to + 1 ppm] (Wishart & 

Case 2001). The helices identified are labeled at the top of the plot and the red arrows to 

the right of each plot indicate the direction of Δδ that correspond to helical structure. 
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5.2.5 Through-space measurements indicate a poorly defined tertiary structure 

In order to solve the three dimensional structure of the channel, we needed to measure 

long-range through-space interactions between the different transmembrane helices. The 

13C-edited and 15N-edited NOESY experiments gave us some distance restraints; 

however, due to crowding in the aromatic region of the spectra, we were unable to assign 

many of the interactions. Therefore, we performed a series of specific labeling 

experiments for paramagnetic relaxation enhancement (PRE), to better constrain the 

overall fold and thereby help with the assignments of the observed NOESY peaks. 

 The electron spin of a stable nitroxide free radical enhances the relaxation of 

nearby nuclei in a magnetic field (Hilty et al. 2004). By introducing a cysteine mutation 

at a specific site in a cysteine-free background (i.e. C107S) and labeling the cysteine with 

a paramagnetic nitroxide-free-radical-containing small molecule, it is possible to measure 

a decrease in the peak intensity of nearby nuclei. This decrease in peak intensity is 

proportional to the distance between the nucleus and the paramagnetic probe. Through 

comparison of the spectrum of the paramagnetic-labeled protein to a control spectrum in 

which the cysteine is modified with a diamagnetic version of the small molecule, it is 

possible to accurately calculate long-range distances (15-20 Å) between the labeled 

position and other parts of the protein. These long-range distances can then be added as 

constraints into a structure calculation. 

 In order to generate long-range distance constraints for the hHVΔNΔC construct, 

we labeled the channel at five different positions: R100C at the N-terminus of S1; I127C 

and Y134C in the S1-S2 loop; L173C in the S2-S3 loop and F190C in the S3-S4 loop 

(Fig. 5.9). The PRE data presented in Fig. 5.9A indicate that the channel was efficiently 
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labeled at each position. However, significant long-range signal suppression was not 

apparent. In contrast, when an equivalent position in the S3-S4 loop was labeled on the 

homologous KVAP isolated VSD, strong signal suppression was seen for nuclei on the 

S1-S2 loop, which is what would be expected for a four-helix bundle (Fig. 5.9C). The 

lack of strong PRE signal for the hHVΔNΔC construct indicates the tertiary structure of 

the channel in LPPG may be poorly defined. In fact, the only suppression observed was 

between positions on the S1-S2 loop (I127 and Y134) and the C-terminus of S4 (Fig. 

5.9A). In the native fold of a VSD, these two regions of the protein should be on opposite 

sides of the membrane and therefore we would not expect to see any PRE signal between 

them. The fact that we did see this suppression at both S1-S2 positions, strongly suggests 

that the hHVΔNΔC construct in LPPG was in a non-native conformation. 

 Our inability to measure strong distance constraints in the hHVΔNΔC construct 

and our observation of likely non-native interactions between the S1-S2 loop and the C-

terminus of S4 led us to conclude that structure determination of the channel by NMR 

under these conditions was infeasible. This approach was therefore abandoned. 
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Fig. 5.9 PRE experiments on hHVΔNΔC 

(A) PRE data for the different specifically labeled positions along the hHVΔNΔC 

construct. Data are presented as the ratio of peak intensity for the spin-labeled sample (Isl) 

over the peak intensity for the diamagnetic-labeled sample (Idia) versus amino acid residue 

number. In each case the red arrow indicates the site of the label. The solid red curves 

indicate the expected intensity drop near the label site for an extended random coil 

structure, whereas the dashed red line indicates the expected intensity drop near the label 

site for a more compact helical structure. (B) Schematic of hHVΔNΔC topology indicating 

the positions of the labeling sites. (C) Data for the KVAP isolated VSD with labels at 

equivalent positions on S1-S2 loop (Y46 in KVAP equivalent to I127 in HV) and S3-S4 

loop (F116 in KVAP equivalent to F190 in HV) demonstrating the expected signal 

suppression between the two “extracellular” loops that would be expected for a four-helix 

bundle structure. KVAP data provided by Dr Joel Butterwick from Butterwick & 

Mackinnon 2010. 
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5.3 THE STRUCTURAL NECESSITY OF THE MEMBRANE 

The biochemical characterization of the different hHV1 and chimeric constructs presented 

in this thesis clearly demonstrates the importance of the lipid bilayer membrane to the 

maintenance of the native structure of HV channels. Before pursuing the structure of each 

of the constructs, we had ensured that they were functional by electrophysiology and 

again after purification by reconstitution and characterization in the flux assay. However, 

in all these functional and cross-linking studies, the channels were embedded within a 

lipid bilayer (either that of a cell membrane or of reconstituted lipid vesicles). In contrast, 

all structural work was performed on detergent-solubilized channels, i.e. in the absence of 

lipid membranes. As described throughout the thesis, in every case, these previously 

functional channels adopted a non-native conformation in detergent. 

 It is clear, then, that although the channel protein is stable in some detergents the 

channel structure is unstable when removed from the membrane and that future directions 

for structural work on HV channels must focus on membrane-like conditions. Additional 

crystallography attempts, including future work using the phage-display Fabs discussed 

in Chapter 4, must focus on detergent-lipid mixtures, bicelle and lipidic cubic phase 

conditions. Any future work by solution state NMR should only be performed on HV 

channels incorporated into lipid nano-disks. It may also be possible to try solid-state 

NMR on pellets of membranes containing reconstituted HV channels.  
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MATERIALS AND METHODS 

Preparation of cDNA and mutations for HEK cell transfections 

Human HV1 cDNA (GI: 34783431, a gift from David Clapham, Havard Universtiy) was 

subcloned into pcDNA4 vector (Invitrogen). Mutations were generated using 

QuikChange kit (Stratagene). Three additional amino acids (ARG) were introduced into 

the C-terminus as a byproduct of cloning into the expression vector. These amino acids 

were later removed for all constructs used for electrophysiological recordings. 

 

Electrophysiological recordings from HEK and CHO cells  

Full-length hHV1 (Fig. 1.6, 4.15 and 5.3), the HAP5 chimera (Fig. 4.15) and the truncated 

constructs (Fig. 5.3) used for crystallization and NMR were cloned into a pcDNA4 vector 

(Invitrogen) for mammalian cell expression. All constructs used for recordings shown in 

Fig. 1.6 and 5.3 contained N-terminal GFP fusions. The hHV1 and HAP5 constructs used 

for recordings in Fig. 4.15 had no GFP fusion but were co-transfected with a GFP 

containing vector in order to facilitate detection of transfected cells. HEK tsA201 cells 

(ATCC) were maintained in DMEM (Gibco) containing 10% FBS. Cells were transfected 

using FuGene (Promega) following the manufacturers protocol then, after ~6 hours, were 

split onto poly-D-lysine-coated glass coverslips (BD BioCoat) and allowed to recover for 
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~12-24 hrs. After 12-48 hrs, coverslips were transferred to the recording chamber. 

Immediately before recording, medium was replaced by bath solution. All recordings 

were performed at room temperature. Recordings were obtained with an Axopatch 200B 

amplifier (Molecular Devices) using standard whole-cell patch-clamp techniques. 

Recordings were filtered at 1 kHz with sampling at 10 kHz. Pipettes of 2-5 MΩ 

resistance were pulled from borosilicate glass and fire polished. Currents were recorded 

according to the voltage step protocols represented schematically in each figure.  

Pipette solution for recordings shown in Fig. 1.6 and 5.3 was: 100 mM 

Tetramethylammonium chloride (TMACl), 2 mM MgCl2, 100 mM MES (pH 6.5) and 5 

mM Glucose (353 mOsm). Bath solutions for recordings shown in Fig. 1.x and 5.x were: 

100 mM TMACl, 2 mM MgCl2, 100 mM MES (pH 6.0) and 25 mM Glucose (352 

mOsm); 100 mM TMACl, 2 mM MgCl2, 100 mM MES (pH 6.5) and 5 mM Glucose (353 

mOsm); 100 mM TMACl, 2 mM MgCl2, 100 mM HEPES (pH 7.0) and 50 mM Glucose 

(356 mOsm). All solutions had pH adjusted using N-methyl-D-glucamine (NMDG).  

Pipette solutions for recordings in Fig. 4.15 was: 64 mM NMDG, 3 mM MgCl2, 1 

mM EGTA and 150 mM MES (pH 6.5). The bath solution was: 75 mM NMDG, 1 mM 

MgCl2, 1 mM CaCl2 and 100 mM HEPES (pH 7.5). These solutions had their pH 

adjusted with methanesulfonic acid and osmotic concentration matched by addition of 

glucose. 

The recordings shown in Fig. 1.2 were provided by Josefina del Mármol and were 

produced by the whole-cell patch clamp technique described above with slight 

modifications. The Rattus norvegicus KV1.1 (GI: 24520) subcloned into a pcDNA3.1 

vector containing an IRES mCherry was used to transiently transfect CHO cells (ATCC) 
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by means of lipofectamine 2000 (Life Technologies) according to the manufacturers 

protocol. Pipette solution was: 150 mM KCl, 10 mM HEPES (pH 7.4), 2 mM MgCl2 and 

5 mM EDTA, pH’ed with KOH. Bath solution was: 135 mM NaCl, 15 mM KCl, 10 mM 

HEPES (pH 7.4), 2 mM MgCl2, and 1 mM CaCl2, pH’ed with NaOH. 

 

Membrane preparation  

cDNAs encoding hHV1 were transfected into tsA201 (HEK293 derivatives) cells using 

Lipofectamine 2000 (Invitrogen) for 36-48 h.  Membranes were prepared as described 

with modifications (Asano et al. 1996). Briefly, cells were washed with phosphate 

buffered saline with 1 mM EDTA and lysed with a tissue grinder (wheaton) in the 

presence of protease inhibitors (1 mM PMSF, 1 mg/ml leupeptin, 1 mg/ml aprotinin, 1 

mg/ml pepstatin).  Lysed cells were briefly sonicated for 10 s in a bath sonicator and then 

centrifuged at 900 g for 15 min.  Supernatants were collected and diluted 4-fold with ice-

cold buffer (20 mM HEPES, pH 7.5, 5 mM KCl, 150 mM NaCl, 5 % glycerol, and 1 mM 

EDTA) and ultra-centrifuged for 90 – 120 min at 130,000 g.  After ultra-centrifugation, 

supernatants were discarded and pellets were resuspended in the same buffer and then 

homogenized with a tissue grinder (wheaton). Samples were maintained at 4°C at all 

times. 

 

Cross-linking and Western blotting 

For non-specific cross-linking experiments, the amino-group reactive bifunctional cross-

linker DSS (Pierce) was used. For each reaction, 20-fold concentrated DSS stocks, 
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dissolved in dimethylsulfoxide (DMSO), were added to prepared membranes and 

incubated at room temperature for 20 min; reactions were quenched by the addition of 

Tris-HCl (pH 8.5) to a final concentration of 100 mM. For copper mediated cross-linking, 

6 mM CuSO4 and 1.8 mM o-phenanthroline in water were added to prepared membranes 

to a final concentration of 300 µM and 900 µM, respectively and incubated at room 

temperature for 20 min; reactions were quenched by addition of 20 mM N-

ethylmaleimide (NEM) and 50 mM EDTA.  For cysteine-directed cross-linking, 1 mM 

stock of 1,3-propanediyl bismethanethiosulfonate (M3M, Toronto Research Chemicals 

Inc) in DMSO was added to the prepared membranes to a final concentration of 50 µM 

and incubated on ice for 1 hr; reactions were quenched with 20 mM NEM. Air-oxidized 

samples, used immediately after membrane preparation, were treated with 10-20 mM 

NEM to prevent cross-linking during electrophoresis. All the samples were mixed with 

equal volume of loading buffers containing 4 % (w/v) SDS and 10 % (v/v) b-

mercaptoethanol (only for reducing condition), then subjected to SDS-PAGE on 12 % 

gels, transferred onto polyvinylidene difluoride (PVDF) membrane, and probed with a 

mixture of two monoclonal antibodies 25H11 and 9C1.  Monoclonal antibodies were 

raised in mice injected with purified hHV1 protein by standard protocols (Harlow & Lane 

1988).  

 

Expresion of hHV1 in Pichia Pastoris  

The gene for the full-length human HV channels (GenBank accession no: 91992153) with 

a C-terminal 1D4 tag (ARAAGGTETSQVAPA) was ligated into the PICZ-c vector 

(Invitrogen Life Technologies). This vector was transformed into a His+ strain of 
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SMD1163 Pichia pastoris and selected as described (Long S. B., et al., 2005). 

Transformed cells were grown in 1 L cultures of BMG media (Yeast Nirtogen Base, 100 

mM sodium phosphate pH 6.3 and 1% glycerol) at 30°C until an optical density of ~20 

was reached. BMG media was exchanged for BMM media (BMG with 0.75-1% MeOH 

instead of glycerol) and grown at 24-27°C for 12-24 hours. Cell pellets were frozen in 

liquid nitrogen and stored at -80°C until needed. This same expression protocol was used 

for the chimeric-1D4 and N-terminal-GFP full-length and truncated chimeric and wild 

type channels. 

 For expression of 15N labeled protein all ammonium sulfate in the media was 

replaced with 15N ammonium sulfate. For 13C labeled samples glycerol in the BMG media 

and methanol in the BMM media were replaced by 13C-glycerol and 13C-methanol 

respectively. In order to promote maximal expression the cells grown in 70-90% D2O 

BMG were only allowed to reach an optical density (measured at 600 nm) of ~5. They 

were then spun down and resuspended into a half volume of 70-90% D2O BMM 

(concentrating the cells twofold) and incubated at 27°C for 16-24 h before harvesting. 

 

Expression of GFP-hHVΔNΔC in E. coli for specific amino acid labeling 

To produce amino-acid-specific and methyl-specific labeling patterns samples, we grew 

XL-1 Blue cells (Stratagene), which were transformed with an expression vector, in LB 

broth at 37°C until the optical density (measured at 600 nm) had reached ∼ 0.8 The cells 

were then centrifuged for 10 min at 3000 x g and resuspended in a half volume of M9 

minimal medium (concentrating the cells twofold) supplemented with and 10 mg/L 

thiamine and the isotopically enriched amino acid (sodium salt) at 50–100 mg/L, and all 
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nonlabeled amino acids were included at 100–200 mg/L. Similarly, to specifically label 

the Ileδ1 and/or Leuδ/Valγ groups (denoted 13Cmethyl), we added 50 mg/L sodium 2-keto-4-

13C-butyrate (for Ile) and 100 mg/L sodium 2-keto-3-methyl-d3-4-13C-butyrate (for 

Leu/Val) in lieu of their respective amino acids (Tugarinov et al. 2006). It should be 

noted that for Leuδ and Valγ methyl groups labeled in this manner, one group within the 

pair is 13CH3, while the other is 12CD3. After 1 h, protein expression was induced by the 

addition of 0.5 mM isopropyl-β-D-thiogalactopyranoside, and the cells were harvested 

12–16 h later. 

 

1D4-purification 

Frozen pellets were lysed with a mixer mill (Retsch, Inc. Model MM301) and 

resuspended in buffer (500 mM NaCl, 50 mM TRIS-HCl, pH 8.5, 2 mM β-

mercaptoethanol, 0.1 mg/ml deoxyribonuclease I, 1 µg/ml pepstatin, 1 μg/ml leupeptin, 1 

μg/ml aprotinin, 1.0 mM phenylmethysulfonyl fluoride and 2.0 mM 

Ethylenediaminetetraacetic acid (EDTA). The pH was adjusted to 8.5 with NaOH, and 

0.15 g DDM (n-dodecyl-β-D-maltopyranoside, Anatrace) per g of cells was added prior 

to a 2-3 hour extraction at room temperature followed by centrifugation at 31000 x g for 

25 min. Supernatant was added to 1D4 antibody-linked sepharose affinity resin 

previously equilibrated with buffer A (500 mM NaCl, 50 mM TRIS-HCl (pH 7.5), 1 mM 

EDTA and 1 mM DDM) and rotated at room temperature for 2 hours. The resin was 

collected on a column, washed with buffer A (4 x 5 column volumes) and eluted with 

buffer A containing 0.4 mg/ml 1D4 peptide. Protein was loaded on a Superdex-200 gel 

filtration column in 20 mM TRIS-HCl (pH 7.5), 150 mM KCl, 50 mM NaCl and 4 mM 
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DM (n-decyl-β-D-maltopyranoside, Anatrace, anagrade; Buffer B). The fractions 

corresponding to Hv channels were pooled. 

 

Reconstitution of hHV1 channels 

A mixture of 6:6:3:3:1 of POPC:POPE:POPS:SM:PI (1-Palmitoyl-2-Oleoyl-sn-Glycero-

3-Phosphocholine, 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoethanolamine, 1-

Palmitoyl-2-Oleoyl-sn-Glycero-3-Phospho-L-Serine, Sphingomyelin, and L-a-

Phosphatidylinositol, obtained from Avanti) was prepared based on the composition of 

human neutrophil plasma membrane (Tamura et al. 1988). A mixture of 3:1 POPE:POPG 

can also be used. The lipid mixture was dried under an Argon stream and then 

resuspended to 10 mg/ml in dialysis buffer (20 mM HEPES (pH 7.0), 150 mM KCl, 10% 

glycerol, 0.2 mM EGTA and 2 mM 2-mercaptoethanol). The lipid mixture was then 

sonicated in a bath sonicator three times for 2 minutes. Decylmaltoside (DM) was added 

to the lipid mixture to 10 mM and rotated at room temperature for 1hr. Protein was added 

to the lipid mixture in a 1:100 (wt:wt) protein to lipid ratio and an additional 10 mM DM 

was added. As a control empty vesicles were made in which only dialysis buffer was 

added to the lipids. The protein-lipid mixture was rotated at room temperature for ~3 

hours then placed into dialysis membrane (molecular weight cut off of 50 KDa) and 

dialyzed in 4 L of dialysis buffer for 5 days at RT exchanging buffer daily. Vesicles were 

then harvested and flash frozen in liquid nitrogen and stored at -80°C  until needed. 
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Fluorescence based flux assay 

The fluorescence data for vesicles containing HV channels was obtained using a published 

procedure with the following modification (Zhang & Forgac 1994). Vesicles were thawed 

in room temperature water and then sonicated once in a bath sonicator for 5 seconds and 

then diluted 20 fold into flux buffer (20 mM HEPES (pH 7.0), 150 mM NaCl, 7.5 mM 

KCl, 10% glycerol, 0.2 mM EGTA, 0.5 mg/ml BSA, 2 mM 2-mercaptoethanol and 2 mM 

ACMA) in a quartz cuvette. Data were collected on a Spex Fluorolog 3-11 

spectrofluorometer in time acquisition mode at 30-second intervals with excitation at 410 

nm, emission 490 nm, with bandwidth 5 nm and an integration time 2 s. A baseline was 

collected for 150 s before the addition of 20 nM valinomycin. After the fluorescence 

stabilized carbonyl cyanide m-chloro phenyl hydrazone (CCCP) was added to 2 mM 

rendering all vesicles H+ permeable and a minimum baseline was collected for 150 

seconds. Data are scaled by (Fi – Fmin)/(Fmax-Fmin), where Fmax is the average value of the 

starting baseline and Fmin is the average value of the minimum baseline. Fmax-Fmin (the 

total reduction in fluorescence after CCCP addition) was ~ 25 % for all vesicles. 

 

Sucrose Gradient Flotation Assay 

Lipid vesicles containing hHV1, with protein to lipid ratio 1: 100 (wt:wt), were layered on 

a sucrose gradient (From top to bottom, 140 µl sample plus 60 µl dialysis buffer, 600 µl 

7% sucrose, and 1 ml 27% sucrose in dialysis buffer).  The gradients were then 

centrifuged at 135,000 x g in a Sorvall RP55-S swinging bucket rotor for 2 hours and 

then fractionated into 8 x ~225 µl fractions.  A 15 ml sample of each fraction was then 
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mixed with 15 ml 2x running buffer and run on a 12% gel (SDS-PAGE) and stained with 

Coomassie blue. 

 

Mass Spectrometry 

Mas spectrometry was performed by the ultra-thin layer method accordind to published 

protocols (Cadene & Chait 2000).  In short protein samples were concentrated to 1 

mg/mL then diluted with FWI (3 parts formic acid, 1 part water, 2 parts isopropanol) into 

10X final concentration aliquots which were further diluted (1 to 10) with saturated a-

cyano-4-hydroxycinnamic acid (4-HCCA) in FWI to final ratios of 1:10, 1:20, 1:50, 

1:100 and/or 1:200. 0.5 µL of each sample was spotted onto a stainless steal MALDI 

sample plate coated with an ultrathinlayer of 4-HCCA. After a visible precipitate had 

fromed on the bottom of the spots the excess liquid was aspirated away and the spots 

were washed with 2 µL of 0.1% trifluoro acetic acid (TFA) solution. The samples were 

then taken for analysis. All spectra were aquired using MALDI time-of-flight mass 

spectrometer Voyager-DE STR (PE Biosystem, Foster City, CA) operating in linear, 

delayed extraction mode. This instrument is equipped with a nitrogen laser delivering 

pulses of ultraviolet light (wavelength 337 nm) at 3 Hz to the matrix spot. Spectra from 

200-500 individual laser shots were averaged (using 2-ns data channel width) with 

software provided by the manufacturer. The spectra were smoothed, calibrated, and 

analyzed using the program M-over-Z (http://www.proteometrics.com and 

http://prowl.rockefeller.edu). For more details see: 

http://prowl.rockefeller.edu/protocols/ultra-thin-layer.html 
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decaHis-GFP- construct purification 

Frozen pellets were lysed with a mixer mill (Retsch, Inc. Model MM301) and 

resuspended in buffer (500 mM NaCl, 50 mM TRIS-HCl, pH 8.5, 2 mM β-

mercaptoethanol, 0.1 mg/ml deoxyribonuclease I, 0.1 mg/ml pepstatin, 1 μg/ml leupeptin, 

1 μg/ml aprotinin and 1.0 mM phenylmethysulfonyl fluoride). The pH was adjusted to 

8.5 with NaOH, and DM (n-dodecyl-β-D-maltopyranoside, Anatrace) was added to a 

final concentration of 80 mM prior to a 1.5 hour extraction at room temperature followed 

by centrifugation at 31000 x g for 30 min. Supernatant was added to Co2+ Talon 

(CloneTech) IMAC resin equilibrated with buffer A (500 mM NaCl, 50 mM TRIS-HCl, 

(pH 7.5) 5 mM imidazole and 4 mM DM) and rotated at room temperature for 2 hours. 

The resin was collected on a column, washed with buffer A (4 x 5 column volumes), 

further washed with buffer A containing 25 mM imidazole and eluted with buffer A 

containing 250 mM imidazole.  

For the decaHis-GFP-HAP5ΔNΔC construct 2 mM DTT and PreScission protease 

were added the elution and the sample was incubated at 4°C overnight followed by a 

second round of Talon resin purification in buffer A from which the flow through was 

collected and concentrated. This sample was loaded on a Superdex-200 gel filtration 

column in 20 mM TRIS-HCl (pH 7.5), 200 mM NaCl and 4 mM DM  (Buffer B). The 

fractions corresponding to HAPΔNΔC channels were pooled and concentrated. 

For the decaHis-GFP-hHVΔNΔC construct 2 mM DTT and PreScission protease 

was added the elution and the sample was incubated on ice for 1 h before being added to 

15 kDa MWCO dialysis membrane (Spectrum Labs) and dialyzed overnight at 4°C into 

low salt buffer (depending on the volume of the decaHis-GFP-hHVΔNΔC sample, 400 
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mL of 12.5-30 mM NaCl, 10 mM BisTris (pH 7.0), 2 mM DTT and 4 mM DM) for a 

final concentration of 50 mM NaCl. The sample was then applied to a Q-sepharose 

column equilibrated in 50 mM NaCl, 10 mM BisTris (pH 7.0), 2 mM DTT and 4 mM 

DM buffer. The flow through from the Q-column was collected, concentrated and loaded 

on a Superdex-200 gel filtration column in 10 mM HEPES, pH 7.0, 50 mM NaCl and 2 

mM LPPG or DHPC. The fractions corresponding to HAPΔNΔC channels were pooled 

and concentrated. 

 

33H1 and 6E1 Fab purification 

Antibodies were prepared as described in Brohawn et al. with slight modifications 

(Brohawn et al. 2013). Briefly, media supernatant from hybridomas was dialyzed against 

two changes of 4 L of 10 mM Tris (pH 8.0), 10 mM NaCl in 8-kDa-MWCO dialysis 

tubing (Spectrum Labs) overnight. Dialyzed samples were spun at 6,000 × g, and the 

supernatant was applied to a 5-mL Q-Sepharose column (GE Healthcare) equilibrated in 

10 mM Tris (pH 8.0), 10 mM NaCl. Antibodies were eluted during a gradient to 10 mM 

Tris (pH 8.0), 1.0 M NaCl. Eluted antibodies were diluted to 3 mg/mL in PBS. Fab 

fragments were generated by reaction with papain (1:100 wt:wt) in PBS with 10 mM β-

mercaptoethanol, 10 mM L-cysteine HCl, and 10 mM EDTA (pH 7.0) at 37°C for 4 h. 

Cleaved antibodies were dialyzed against two changes of 4 L of 10 mM Tris (pH 8.0), 10 

mM NaCl in 8-kDa-MMCO dialysis tubing overnight. Dialyzed samples were spun at 

6,000 × g, and the supernatant was applied to a 5-mL Q-Sepharose column equilibrated 

in 10 mM Tris (pH 8.0), 10 mM NaCl. Fab fragments were collected in the flow-through. 
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Crystallization and structure determination of HAP5ΔNΔC/33H1   

Pure HAP5ΔNΔC was mixed with pure 33H1 Fab and concentrated (10kDa MWCO, 

Millipore) to ~15 mg/mL total protein for crystallization. 0.4 µL protein was added to 0.4 

µL reservoir (30% PEG400) in hanging drops. The largest crystals appeared within 1 

week and grew to full size in 2-3 weeks at 20° C. Crystals were harvested and frozen in 

liquid nitrogen.  

Data were collected at NSLS beamline X29 and processed with HKL2000 (Minor 

et al. 2006). Data were anisotropic and were elliptically truncated and scaled (Strong et 

al. 2006) to 3.9 x 5.1 x 3.8 Å. Molecular replacement solution was found using the 

program Phaser (McCoy et al. 2007) and the 33H1 Fv and Fc as search models. 

Crystallographic programs from the Phenix and CCP4 suites were used throughout 

structure determination (Adams et al. 2010; Winn et al. 2011). Structure figures were 

generated with Pymol (Schrödinger LLC). 

 

Phage Display Selections 

Were performed as described in sections 4.3.1 and 4.3.2 and Sidhu et al. 2000. In brief, 

biotinylation of purified hHVΔNΔC was performed at 1 mg/mL protein in 200 mM NaCl, 

20 mM HEPES (pH 7.0), 5 mM DHPC (Buffer PD). For cysteine specific biotinylation 

final concentration of 2 mM Biotinylcaproylaminocaproyl-aminoethyl 

Methanethiosulfonate (BCAC; Toronto Research Chemicals, Inc.) was added to the 

protein and incubated for 3-4 h at room temperature in the dark, excess BCAC was 

removed by SEC. For amine specific biotinylation N-hydroxylsuccinimidyl d-biotin-15-
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amido-4,7,10,13-tetraoxapentadecylate (NHS-PEO4-Biotin; Thermo Scientific) was 

added in a molar ratio of 1:3 hHVΔNΔC: NHS-PEO4-Biotin and incubated at 4°C, 

samples were used directly without removal of excess reagent.  

Detergent based selections: Pre-absorption (negative selection) and selection 

wells on the 96-well plate (for each selection [positive and negative] the number of wells 

was: round 1, 8 wells; round 2, 6 wells; round 3, 4 wells; round 4, 2 wells; round 5, 2 

wells) were coated overnight at 4°C with 100 µL of 5-25 µg/mL streptavidin or 

neutravidin in 200 mM NaCl, 20 mM HEPES (pH 7.0) then blocked with 200 µL of 0.5% 

BSA for 1 h at room temperature. For selections 100 µL of biotinylated hHVΔNΔC was 

added to the positive selection wells at 10 µg/mL in buffer PD and incubated at 4°C for 

1h at the same time 100 µL phage library at 1012-1013 cfu/mL buffer PD was added to the 

negative selection wells and incubated at 4°C for 1h. hHVΔNΔC solution was removed 

from positive selection wells and unbound phage were transferred from negative to 

positive selection wells and incubated at 4°C for 2h. Phage solution was removed from 

the positive selection wells and the wells were washed with 6X for round 1, 8X for round 

2, 10X for round 3 and 15X for rounds 4 and 5 with buffer PD. Bound phage were eluted 

by adding 100 µL/well of 100 mM HCl and incubating for 5 min at room temperature 

with shaking. The HCl solution was then added to an eppendorf tube containing 25 µL 1 

M Tris-HCl (pH 8) per well (8 wells = 200 µL Tris + 800 µL phage) then 500 µL of this 

phage solution was added to 7.5 mL of actively growing OPTIMAX cells (OD = 0.5-0.8) 

in 2YT. Infected OPTIMAX cells were incubated for 30 min at 37°C with shaking then 

M13K07 helper phage were added to get 1010 cfu/ml final and then further incubation for 

45 min at 37°C with shaking. The culture was transferred to 35 mL final volume 
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2YT/carb100/kan25 medium and incubated overnight at 37°C with shaking. Overnight 

phage cultures were precipitated: spun cultures in 50 ml Falcon tubes 8000 rpm, 15 

minutes, added 8.75 ml (1/5 final volume) PEG/NaCl (20% PEG 8000 w/v, 2.5 M NaCl) 

to supernatant, incubated on ice for 20 minutes, spun 20 min at 24000 g, re-suspended 

pellets in 1.2 mL volume of buffer PD and transfer to eppendorf tubes, spun again (5 min, 

13000 rpm) to remove bacterial debris then transferred supernatant to new tubes (this is 

input phage for next round of selections). After each round input and output phage were 

titered: 10 µL of 10-fold serial dilutions of precipitated phage (10 µL phage+ 90 µL 

2YT), were added to 90 µL OPTIMAX (OD600 0.5-0.8), incubated for 30 min at 37°C, 

and then 5 µL of each dilution were spotted plates (carb, kan, tet), final dilutions of 10-2 

to 10-7 and the 10-6 to 10-11 were used for output and input phage respectively. Plates were 

incubated overnight at 37°C and colonies were counted the next day. 

Vesicle based selections: Performed as for the detergent based selections with the 

following modifications. Antigen buffer (AB) used was 150 mM KCl, 20 mM HEPES 

(pH7.0), 5% glycerol. DPPE-biotin-containing empty vesicles were added to the negative 

selection wells prior to the addition of input phage (see section 4.3.2). The unbound 

phage from the negative selections were mixed with DPPE-biotin-containing hHVΔNΔC 

vesicles for 1 h at 4°C with shaking prior to quick capture of vesicles and bound phage on 

streptavidin or neutravidin coated wells (15 min at 4°C) followed by washing and elution. 

Isolation of positive binders: The output phage from the final round of selections 

were mixed with 7.5 mL of actively growing OPTIMAX cells (OD = 0.5-0.8) in 2YT for 

30 min at 37°C then diluted and plated onto LB plates/carb100 in order to grow single 

colonies and incubated overnight at 37°C. Single colonies were picked (96-192 per 
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library), used to inoculated individual 2 mL cultures of 2YT/carb100 and incubated at 

37°C with shaking until OD600 0.5-0.8, then M13K07 helper phage were added and the 

cultures were incubated overnight at 37°C with shaking. These cultures were spun down 

to pellet bacterial cell debris and the supernatant was used in ELISAs (like the one shown 

in Table 4.3). In brief, ELISA plates were coated with streptavidin and blocked with BSA 

in the same way as the selection plates, four wells were used per the isolated phage clone: 

BSA alone, empty vesicles and two wells containing hHVΔNΔC vesicles. Supernatant 

from isolated phage cultures were diluted 2-fold with 2 X AB and incubated with antigen 

(either in detergent or in vesicles) for 1 hr at 4°C with shaking prior to quick capture of 

biotin on the plates (15 min 4°C with shaking), followed by washes and incubation with 

primary antibody (either αFLAG or αM13 see Table 4.3). ELISAs were then developed 

by standard protocols. Isolated phage clones that were positive for binding were 

sequenced then subcloned into an expression vector for Fab expression and purification.  

 

Phage display Fab expression and purification 

Single colonies from E. coli BL21 DE3 transformed with the phagemid DNA containing 

the Fab sequence was grown at 37°C in 25 mL 2YT/amp medium for ~3 hours then used 

to inoculate 1 L of 2YT/amp media and grown at 37°C until an optical density (measured 

at 600 nm) of 0.6 was reached. Expression was induced by the addition of 1 mM IPTG 

and the cells were left overnight at 37°C. Cells were pelleted by centrifugation for 10 

minutes at 3,000 x g then fozen in liquid nitrogen and stored at -80°C.  

 Cell pellets were resuspended in lysis buffer (100 mM NaCl, 20 mM Tris (pH 

8.0), 0.1 mg/ml deoxyribonuclease I, 0.1 mg/ml pepstatin, 1 μg/ml leupeptin, 1 μg/ml 
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aprotinin, 1.0 mM phenylmethysulfonyl fluoride) and lysed by sonication. Cell debris 

was removed by centrifugation for 40 min at 12,000 rpm. Supernatants were mixed with 

2-3 mL of Talon Co2+ resin (CloneTech) equilibrated in wash buffer (100 mM NaCl, 20 

mM Tris (pH8.0) and 5 mM imidazole) and tumbled for 1-2 h at room temperature. The 

resin was collected on a column, washed with wash buffer (4 x 5 column volumes), and 

eluted with wash buffer containing 250 mM imidazole. Sample was then dialyzed into 

low salt buffer A (10 mM NaCl, 10 mM Tris (pH 8.0)) overnight and then run over a Q-

sepharose column. The Q-spharose flow through was collected and concentrated for use 

in binding experiments. 

 

NMR data collection and analysis 

NMR experiments were performed at the New York Structural Biology Center using 

Bruker Avance or Avance II instruments operating at static magnetic field strengths of 

14.1, 18.8 and 21.1 T, equipped with z-shielded gradient triple-resonance TCI or TXI 

cryogenic probes. The sample temperature was maintained at 25°C during the initial 

screening of detergent and buffer conditions and for all other experiments. NMR spectra 

were processed using the NMRPipe software package (Delaglio et al. 1995) and analyzed 

using the program SPARKY (Goddard & Kneller). 

 

Chemical Shift Assignments 

Resonance assignments for backbone 1HN, 15N, 13C′, and 13Cα, and 13Cβ nuclei were 

identified using three-dimensional (3D) TROSY HNCA (at 21.1 T), HNCO, HN 
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(CO)CA, and HNCACB (at 18.8 T) experiments (Cavanagh et al. 2007; Neri et al. 1989) 

performed on 0.15-0.3 mM 2H, 13C, 15N samples. Also, two-dimensional (2D) TROSY 

HSQC and 3D 15N-edited NOESY (mixing times τmix = 80) experiments (at 21.1 T) were 

recorded on a 0.3 mM 2H, 15N sample. In addition to uniformly labeled samples, 2D 

HSQC, HNCA, and HNCO experiments (at 18.8 T) were recorded on 0.3 mM samples 

with varied amino-acid-specific labeling patterns designed to eliminate ambiguities as 

discussed in section 5.2.3. 

Side-chain resonance assignments were based on 3D HC(C)H-COSY 13C-edited 

(aromatic and aliphatic) and 15N-edited (τmix = 80 ms) NOESY experiments (at 21.1 T) 

recorded on 0.5 mM 13C, 15N samples in 99.9% (vol/vol) D2O and on a 3D 15N-edited 1H–

1H NOESY (τmix = 80 ms) experiment (at 21.1 T) recorded using a 0.4 mM 15N sample. 

To improve resolution within the Val and Leu methyl regions, we recorded a 3D 13C-

edited NOESY (τmix = 100 ms) experiment on a 13Cmethyl-LV sample.  
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APPENDIX I 

This Appendix contains the MATLAB code for my model of H+ flux into vesicles 

reconstituted with hHV1 channels based on the equivalent circuit model found in Moffat 

et al. 2008 (see Chapter 3). Green text that follows a ‘%’ indicate comments which I have 

used to annotate the code. If you are looking at a PDF file it should be possible to copy 

and paste the code along with the other functions below into separate text files and save 

them as simple_flux_V_Na_Cl.m, pt_ffluxbias.m, total_proportional_flux_V.m, 

channel_dist_theta.m and unscaled_plot.m then use MATLAB to execute the code by 

typing the command simple_flux_V_Na_Cl(30) in the command window.  Currently the 

conductances for Na+ and Cl- are set to zero but this can be adjusted by altering the 

highlighted variables GNa and GCl.  

 

function simple_flux_V_Na_Cl(m) 
%calculates the basis set of fluxes for a series of 1 to m  
%channels per vesicle  
%the basis set is to be use in the programs pt_ffluxbias or 
total_proportional_flux_V 
%through their global assignment  
  
global time1                %assigns the time vector as a global variable 
global sflux                %assigns the sflux matrix as a global variable 
global fflux                %assigns the fflux matrix as a global variable 
  
Ki1 = 0.150;                %initial internal concentration of K+ in M 
Ko1 = 0.015;                %initial outer concentration of K+ in M 
Hi1 = 1e-7;                 %initial internal concentration of H+ in M 
Ho1 = 1e-7;                 %initial outer concentration of H+ in M 
Nai1 = 1e-4;                %initial internal concentration of Na+ in M 
Nao1 = 0.150;               %initial outer concentration of Na+ in M 
Cli1 = 0.150;               %initial internal concentration of Cl- in M 
Clo1 = 0.165;               %initial outer concentration of Cl- in M 
Vo = 0.0008;                %bath volume 
Vi = 2.3562e-18;            %volume inside average vesicles (r = 100 nm) 
F  = 96485;                 %Faraday constant 9.6485e4 C/mol 
R  = 8.3145;                %gas constant 8.3145 V*C/mol*K 
T  = 298;                   %absolute temp 298 K 
BKd = 0.000000028183829;    %dissociation constant for HEPES buffer pKa 7.55 
Bi = 0.02;                  %internal concentration of HEPES buffer 
Bo = 0.02;                  %outer concentration of HEPES buffer 
GK = 1e-6;                  %K+ conductance through the membrane 
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Vmid = 0.04;                %V1/2 of voltage sensor Boltzmann 
z = 3;                      %assigns valence for hHv1 voltage sensor Boltzmann 
  
  
n = 2000000;                %number of interations of loop  
dt = 0.001;                 %time step per interation in seconds 
  
%duration of time = n*dt 
  
%builds fflux and sflux matrices  
fflux = zeros(m,n+1); 
sflux = zeros(m,n+1); 
  
for k = 1:m;        %runs this master loop for each of the different number of 
channels 
    GH = k*1e-16;   %the proton conductance is equal to the unitary conductance  
                    %times the number of channels 
     
    GNa = k*0;      %the Na conductance is equal to the unitary conductance  
                    %times the number of channels 
   
    GCl = k*0;      %the Cl conductance is equal to the unitary conductance  
                    %times the number of channels 
                     
    for j = 1:2;    %run this inner loop twice for each number of channels 
         
        %builds vectors and assigns initial values 
        EH = zeros(1,n); 
        EK = zeros(1,n); 
        ENa = zeros(1,n); 
        ECl = zeros(1,n); 
        VM = zeros(1,n); 
        JH = zeros(1,n); 
        JK = zeros(1,n); 
        JNa = zeros(1,n); 
        JCl = zeros(1,n); 
        totHi = zeros(1,n+1); 
        totHo = zeros(1,n+1); 
        Ki = zeros(1,n+1); 
        Ko = zeros(1,n+1); 
        Hi = zeros(1,n+1); 
        Ho = zeros(1,n+1); 
        Nai = zeros(1,n+1); 
        Nao = zeros(1,n+1); 
        Cli = zeros(1,n+1); 
        Clo = zeros(1,n+1); 
        Ki(1) = Ki1; 
        Ko(1) = Ko1; 
        Hi(1) = Hi1; 
        Ho(1) = Ho1; 
        Nai(1) = Nai1; 
        Nao(1) = Nao1; 
        Cli(1) = Cli1; 
        Clo(1) = Clo1; 
        totHi(1) = (BKd + Hi1 + Bi)/(1+(BKd/Hi1)); 
        totHo(1) = (BKd + Ho1 + Bo)/(1+(BKd/Ho1)); 
        
        if j == 1       %changes the value of x for each of the two times 
                        %through the loop 
            x = 1;      %x is used a a multiplier of the membrane voltage Vm 
        else            %depending on the orientation of the channel the 
                        %membrane voltage is 
            x = -1;     %either positive or negative, this has a large impact 
                        %on open probability 
        end 
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        for i = 1:n;    %this loop runs the solver for equivalent circuit 
                        %differential equation 
  
            EH(i) = ((R.*T)./F).*log(Ho(i)./Hi(i));          
            %calculates the equilibrium potential for H+ 
  
            EK(i) = ((R.*T)./F).*log(Ko(i)./Ki(i));          
            %calculates the equilibrium potential for K+ 
  
            ENa(i) = ((R.*T)./F).*log(Nao(i)./Nai(i));   
            %calculates the equilibrium potential for Na+ 
             
            ECl(i) = -((R.*T)./F).*log(Clo(i)./Cli(i));  
            %calculates the equilibrium potential for Na+ 
             
            VM(i) = (GH.*EH(i) + GK.*EK(i) + GNa.*ENa(i) + 

GCl.*ECl(i))./(GH+GK+GNa+GCl);   %calculates the membrane potential 
  
            JH(i) = (GH./F).*(VM(i)-EH(i))./(1+exp(-(z*F*(x*VM(i) - 

Vmid)/(R*T))));         %determines flux for H+ mol/s 
  
            JK(i) = (GK./F).*(VM(i)-EK(i));      %determines flux for K+ mol/s 
             
            JCl(i) = -(GCl./F).*(VM(i)-ECl(i));  %determines flux for Cl- mol/s 
             
            JNa(i) = (GNa./F).*(VM(i)-ENa(i));   %determines flux for Na+ mol/s 
  
            totHi(i+1) = totHi(i)-(JH(i).*dt)./Vi; %determines concentration 
                                                   %change inside for H+ 
  
            totHo(i+1) = totHo(i)+(JH(i).*dt)./Vo; %determines concentration  
                                                   %change outside for H+ 
  
            Ki(i+1) = Ki(i)-(JK(i).*dt)./Vi;    %determines concentration 
                                                %change inside for K+ 
  
            Ko(i+1) = Ko(i)+(JK(i).*dt)./Vo;    %determines concentration 
                                                %change outside for K+ 
             
            Nai(i+1) = Nai(i)-(JNa(i).*dt)./Vi; %determines concentration  
                                                %change inside for Na+ 
  
            Nao(i+1) = Nao(i)+(JNa(i).*dt)./Vo; %determines concentration  
                                                %change ouside for Na+ 
             
            Cli(i+1) = Cli(i)-(JCl(i).*dt)./Vi; %determines concentration 
                                                %change inside for Cl+ 
  
            Clo(i+1) = Clo(i)+(JCl(i).*dt)./Vo; %determines concentration 
                                                %change ouside for Cl+ 
  
            Hi(i+1) = (-(Bi-totHi(i+1)+BKd)+sqrt((Bi-totHi(i+1)+BKd).^2 +          

4.*BKd.*totHi(i+1)))./2; %determines the free H+ concentration 
                                     %inside after buffering 
  
            Ho(i+1) = (-(Bo-totHo(i+1)+BKd)+sqrt((Bo-totHo(i+1)+BKd).^2 + 

4.*BKd.*totHo(i+1)))./2; %determines the free H+ concentration  
                                     %outside after buffering 
        end 
  
        sig = (1e-6 - Hi)/(1e-6 - 1e-7);     %calculates the internal pH change  
         
        if j == 1                            %if the channel is in the slow 
                                             %conducting configuration        
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            sflux(k,:) = sig;                %assign pHi to sflux of k channels 
        else                                 %else 
            fflux(k,:) = sig;                %assign pHi to fflux of k channels 
        end 
    end 
end 
  
  
time1 = 0:1:n;      %time vector 
time1 = time1.*dt;  %standardizes the time to seconds 
  
fflux2 = zeros(m,floor((n+1)/100)); 
sflux2 = zeros(m,floor((n+1)/100)); 
time2 = zeros(1,floor((n+1)/100)); 
  
for r = 1:floor((n+1)/100); %data reduction loop 
    sflux2(:,r) = sflux(:,r*100); 
    fflux2(:,r) = fflux(:,r*100); 
    time2(r) = time1(:,r*100); 
end 
  
sflux = sflux2; 
fflux = fflux2; 
time1 = time2; 
  
figure 
plot(time1,fflux,time1,sflux) %plots all 60 flux time courses 
  
pt_ffluxbias              
%calls and executes the script pt_ffluxbias (see below) 
 
total_proportional_flux_V  
%calls and executes the script total_proportional_flux_V (see below) 
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function pt_ffluxbias 
%builds pascals triangle *(1/2)^(number of elements in row) 
%then if there are any channels in the fast fluxing orientation it takes 
%the flux vector from fflux for however many channels there are in that 
%orientation, if there are only slow fluxing channels it takes the flux vector 
%form sflux for that number of slow fluxing vesicles 
%in each case it multiplies the flux by the ratio given by the probability 
%of that configuration and then sums all of the fluxes for a given total 
%number of channels per vesicle 
  
  
global time1    %retrieves the value of the time vector from simple_flux_V 
global fflux    %retrieves the value of the fflux matrix from simple_flux_V 
global sflux    %retrieves the value of the sflux matrix from simple_flux_V 
global pflux    %assigns the pflux matrix as a global variable 
  
[m n] = size(fflux);    %uses the dimensions of fflux to assign value to script  
                        %components 
  
pflux = zeros(m,n);     %builds pflux matrix 
  
for k = 1:m             %run for each number of channels per vesicle 
                        %k defines the total number of channels in this run 
                         
    cflux = zeros(1,n); %builds cflux vector 
     
    for j = 0:k;        %j defines the number of fast flux oriented channesl 
         
        f = (factorial(k)/(factorial(j)*factorial(k-j)))*(1/2)^k; 
        %f calculates the fraction of vesicles with k channels, j of them 
        %in the fast fluxing orientation and (k-j) in the slow fluxing 
        %orientation 
         
        if j == 0                            
            %if there are no channels in the fast fluxing orientation 
            cflux = cflux + sflux(k,:)*f;    
            %assign the flux as slow flux of k channels 
        else  
            cflux = cflux + fflux(j,:)*f; 
            %assign the flux as fast flux for j channels 
            %this assumes that the contribution to flux from fast fluxing 
            %channels is >> than that from slow fluxing channels 
        end 
    end 
    pflux(k,:) = cflux; %assigns total flux for k number of channels to pflux 
end 
  
figure 
plot(time1,pflux) 
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function y = total_proportional_flux_V 
  
global time1        %retrieves the value of the time vector from simple_flux_V 
global pflux        %retrieves the value of the pflux matrix from pt_ffluxbias 
global totalflux    %assigns the totalflux matrix as a global variable 
global rho 
  
[m,n] = size(pflux);  
%uses the dimensions of fflux to assign value to script components 
  
cp = 0.1; 
%cp = [0.1 0.02 0.01 0.002 0.001 0.0005 0.00025 0.000167]; 
%vector of protein concentration in vescle mixtures 
%currently set for 1:100 ratio of protein-to-lipid (see channel_dist_theta 
%input) but can be set to any/many protein-to-lipid ratios for example see  
%the first comment line directly above.  
  
rho = channel_dist_theta(7.57,100,cp); 
%determines the Poisson distribution of number of channels per vesicle by 
%running the channel_dist function for lipid concentration of 10 mg/ml and 
%average vesicle radius of 50 nm 
  
p = length(cp);  
%uses the length of cp to assign value to script components 
  
rho2 = rho(:,2:m+1); 
%removes empty vesicle component of rho 
  
totalflux = zeros(p,n); %builds totalflux matrix 
  
for j = 1:p; %for each protein concentration 
     
    fluxp = zeros(m,n); %builds fluxp vector 
     
    rho2(j,:) = rho2(j,:)./sum(rho2(j,:));  
    %scales each column of rho2 to its total value 
     
    for i=1:n; %for each column of pflux 
        fluxp(:,i) = pflux(:,i).*rho2(j,:)'; 
        %multiplies dot-wise each column of pflux by the scaled probability 
        %for that number of of channels per vesicle given the protein to 
        %lipid ratio 
    end 
     
    totalflux(j,:) = sum(fluxp); 
    %assigns the total flux for each protein to lipid ratio 
end 
  
  
figure 
plot(time1,totalflux) 
axis([0 max(time1) -0.05 1.05]) 
xlabel('Time /s') 
ylabel('Scaled Vesicle Flux') 
title('Scaled Flux by Vesicles Containing Protein for each Protein:Lipid 
Ratio') 
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function y=channel_dist_theta(cl,r,cp) 
%cl final concentration lipids 
%r radius of vesicles in nm 
%cp final concentration of protein  
  
global  pflux 
  
[m,n] = size(pflux); 
  
p = length(cp); 
  
massl = cl*(10^-3); %mass in grams per 10 mililiter 
%mass = mg/ml*(10^-3 g/mg) = g/ml 
  
numlipid = (massl/753.84)*(6.022e23); %number of lipids in sample 
%numlipid = (mass lipids in g/ average MW lipid)*Avogadros number 
  
  
SAlipid = (numlipid*63e-20)/2;  
%total surface area of lipid head group in m^2  
%factor of 2 remove for bilayer 
  
Nv = SAlipid/(4*pi*(r*1e-9)^2); %calculates the number of vesicles 
  
Np = ((cp*(10^-3))./(2*35000))*6.022e23; %number of channels per ml 
  
f = zeros(p,m); 
  
for i = 0:m; 
    f(:,i+1) = ((((Np./Nv).^i).*exp(-

Np./(Nv*0.85)))./(((0.85)^i)*factorial(i))); 
end  
  
f = f*0.85; 
f(:,1) = f(:,1)+0.15; 
  
  
y = f; 
 
 
function unscaled_plot(tf,rho0) 
global time1 
global slow 
  
p = length(rho0); 
  
for i = 1:p 
    tf(i,:) = tf(i,:)*(1-rho0(i)); 
    tf(i,:) = tf(i,:)+rho0(i); 
end 
  
slow = tf(p,:); 
  
figure 
plot(time1,tf) 
axis([0 max(time1) -0.05 1.05]) 
xlabel('Time /s') 
ylabel('Scaled Total Flux') 
title('Scaled total Flux for each Protein:Lipid Ratio') 
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APPENDIX II 

Sequences of all putative HV channel genes that were synthesized for expression and 

biochemical stability experiments. Each sequence is named according to its GI number 

followed by its species. A multiple sequence alignment done using ClustalW of all 

putative HV channel genes is also shown compared to the sequence of the Rat KV1.2 

voltage-sensor domain (with its transmembrane helices highlighted in cyan). Conserved 

residues of possible functional importance are highlighted in yellow (with outliers 

highlighted in alternate colors). 

 

Sequences of Putative HV channel Genes 

>91992153_Homo_sapiens_(Human) 
MATWDEKAVTRRAKVAPAERMSKFLRHFTVVGDDYHAWNINYKKWENEEEEEEEEQPPP
TPVSGEEGRAAAPDVAPAPGPAPRAPLDFRGMLRKLFSSHRFQVIIICLVVLDALLVLA
ELILDLKIIQPDKNNYAAMVFHYMSITILVFFMMEIIFKLFVFRLEFFHHKFEILDAVV
VVVSFILDIVLLFQEHQFEALGLLILLRLWRVARIINGIIISVKTRSERQLLRLKQMNV
QLAAKIQHLEFSCSEKEQEIERLNKLLRQHGLLGEVN 
  
>118344228_Ciona_intestinalis 
MEGDNCNKSRHKSHNMINPNYASVRCTQPLPSVIQLRSRNKMIGITEDPSSDSEPVSSN
QPLLLTNLSYEVHTFNDNNNHERPAPQEQSTQNTMISMQSEQKSDRFTASNLGMFQYMK
FEIGEDGDDHEEEAILTNREKLRHILHSKPIHVAIIVLVVLDSFLVVGELLIDLKVIIV
PHGNPAPEILHGFSLSILSIFMVEIALKIIADHRHFIHHKVEVLDAVVVVISFGVDIAL
IFVGESEALAAIGLLVILRLWRVFRIINGIIVTVKTKADDRVHEIKKKNSELELQIHNL
EEKLSQKEQDMSRLHEILRCNNIDIPPTVPLTTSVQIHSTTTASADV 
 
>71897219_Gallus_Gallus_(Chicken) 
MSRYLKHFTVVGDDPIQWSNDYQKWENEEEDNGEKDSEIKLEPSRGHVTFQDVMKKLFS
SRRFQIVIVFLVIVDALLVLGELLMDLKIIHPDKYHIAPKVFHYLSLSILTIFLVEVGF
KIFVYGREFFHHKFEVLDSIVVVVSFILDLVLLFREHEFEAVGLLILLRLWRVARIING
IILSVKTRSEQQVSKLKQVNLKLATKVEQLQHSCVEKEQEIERLTRMLKQHGLLSEQT 
 
>6573743_Arabidopsis_thaliana 
MNIINTGTVDNVEFSIQNLIKSWCRRRKWRQLCNFSPKQQQEELISINQQWRITLSNFL
ESYQVHLFTIFLLSLDIILTSLELSSSLLSCTSVKKTETENEWFRWGGTVILSILAVKS
MALVVAMGKSFFKQPGCVMDGTLAIVALILQVLLEKKGTGFIVVVSLWRVLRVVETAFE
LSDEAIEVQIDGIISQFQALSKENRTLLETLAEKDEVIKMLEEELNRFKENGDIPFVKP 
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>116505721_Coprinopsis_cinerea 
MPLQIFIDVVFVLVELGYTLFNPNCSELEPRETPVWMEALSITSLALSALLVTEIPITV
WCMGIQYFNPFGAVHWAALHLFDALINLATFILDLVLRGRERELASLLIILRLWRIAKL
VSSVAVATDSLEEEVEARLEATKQELHRTKEELGKVEEEVFNLRQRLATFETKVVSNSA
V 
 
>329664616_Bos_taurus_(Cow) 
MATWNEKAVTRRARVAPAERMSKFLKHFTVVGDDYHAWNINYKKWENEEEEEEEQPPPT
EASASAEEGRATDPTPAPAPVPRPRLDFRTTLRKLFSAHRFQVIIICLVVLDALLVLAE
LVLDLKIIEPDKNNYAPKVFHYMSLAILTFFMMEIFFKIFVFRLEFFHHKFEILDTIVV
VISFILDLVLLFREHQFEALGLLILLRLWRVARIINGIIISVKTRSERQLLRLKQINIQ
LATKIQHLEFSCSEKEQEIERLNKLLRQHGLLGEVN 
 
>345790859_Canis_lupis_familiaris_(Dog) 
MATWDEKASSRRARVAPAERMSKFLKHFTVVGDDYHAWNVNYKKWENEEDDEEEEQPPP
TAASGEEGRADPTAAPTPRPPLDFRATLRKLFSSHRFQVIIICLVILDALLVLAELILD
LKIIQGDKNNYATKVFHYSSFAILTLFMMEVFLKLFVFRLEFFHHKFEILDTFVVVVSF
ILDLVLLFQKHEFEALGLLILLRLWRVARIINGIIISVKTRSERQLLRLKQMNIQLAAK
IQHLEFSCSEKEQEIERLNKLLRQHGLLGEVN 
 
>148235789_Xenopus_laevis_(Frog) 
MAGCLRHFTSVGDDTKKREWKQEDVEVAYEEPLKNTPHPFIASYSFRGALKWLLSSHKF
QIVIICLVILDALFVLVEVLLDLELLAEKVDHIIPEIFHYLSISVLTFFILEIAGKLYA
FRLEFFHHKFEVFDAAIVVISFIIDIVYISREDIFNAVGLLILLRLWRVARIVNGVIVS
VKTRAEEKMHKLKEQKGSLLEKVAQLEQQCAQQEQEIGRLHKLLQEHNVFPAS 
 
>83774308_Aspergillus_oryzae 
MASPSDPLLHEHTGPRSLRQRPIYLPEEQGQRIIAQWRRAARDFLSSRRGHYLVLLLVS
VDVACTFADFLIELHVCELTKHGSHVAIGWGVTQKVLAIVGLVFSCLFMLELMVTVFSF
GKGYFSSKFHVFDALVIIVAFGVDVALHGIEEELGSLIVVLRLWRVFKIIEELQSANED
TLEEYEHEIERLRQENTYLRQRLNVSLSNADPMD 
 
>124360845_Medicago_truncatula 
MIRVLSILLLTIDLIITILELSSSLVSCKQKINIVEELYFHWIGIGILSIISMKIIALL
VGLGFSFFKHPGYVVDGIVAIGALIMEVFLEKRGGGLLVVVSLWRVIRVVESVFELSDE
AIEAQIEGIVCQFEALKDENIRLLGIINEKDKLIEKLKEELDKCR 
 
>109098724_Macaca_mulatta_(Indian_Monkey) 
MATWDEKAVTRRAKVAPAERMSKFLKHFTVVGDDYHAWNINYKKWENEEDEEEEEQPPP
TPASGEEGRVAGPDAAPAPGPAPRAPLDFRGTLRKLFSSHRFQVIIICLVVLDTLLVLA
ELILDLRIIQPDKKNYAAMIFHYMSIAILALFMMEITFKLFVFRLEFFHHKFEILDAVV
VVVSFVLDVVLLFQEHEFEALGLLILLRLWRVARIINGIIISVKTRSERQLLRLKQMNV
QLAAKIQHLEFSCSEKEQEIERLNKLLRQHGLLGEVN 
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>334327101_Monodelphis_domesticus_(opossum) 
MGPKQWNNNSGSHTGSGQEELSEQHRQWVPLKDGSPRAMSRFLRHFTVVGDDHYKWNTR
YKKWDNEDEDDEQPQVPTGPAPGADVPGTESNAVQVPGETVTPPKAPPDFRTVMRKLFG
SHRFQVIIICLVIMDALLVLAELMLDLKIIQPDKDNYAARVFHYLSIAILTFFMIEVAL
KLYVFRLEFFYHKFEILDAVIVIISFVLDIVLLFQEHAFEALGLLILLRLWRVARIING
IIISVKTRSERQLSRLKLINHQLATKIQHLEFSCTEKEQEIERLNKLLRDHGLLE 
 
>109809754_Mus_musculus_(Mouse) 
MTSHDPKAVTRRTKVAPTKRMSRFLKHFTVVGDDYHTWNVNYKKWENEEEEEEPAPTSA
EGEGNAEGPDAEAGSASTPRQSLDFRSRLRKLFSSHRFQVIIICLVVLDALLVLAELLL
DLKIIEPDEQDYAVTAFHYMSFAILVFFMLEIFFKIFVFRLEFFHHKFEILDAFVVVVS
FVLDLVLLFKSHHFEALGLLILLRLWRVARIINGIIISVKTRSERQILRLKQINIQLAT
KIQHLEFSCSEKEQEIERLNKLLKQNGLLGDVN 
 
>109497399_Rattus_norvegicus_(Rat)     
MRGDTIHARGNRLGKGLEAWNAGRMAKQGEAVTRRTKVAPTKRMSRFLKHFTVVGDDYH
TWNVNYKKWENEEDEEEPAPTSAEGEGSAVGPDAEAGSASTPRPSLDFRSRLRKLFSSH
RFQVIIICLVVLDALLVLAELLLDLRIIEPDLSKYSTKVFHYLSLAILAFFVLEISLKV
FVFRLEFFHHKFEILDAIVVVVSFVLDLILLFKNHHFEALGLLILLRLWRVARIINGII
ISVKTRSERQILRLKQINLQLATKIQHLEFSCSEKEQEIERLSKLLRQNGLLEDVNVN 
 
>187282419_Strongylocentrotus_purpuratus_(sea_urchin) 
MFGFRRLSDTTKPSEGNDQQRVIVKDDSSDSVVSDSHDGHPARTEPLSLREKLHEIMET
QKFHIAILVLVVIDCILVIVELVIDFEVLSQEEGQCNATETDKEEKEVTAANVLHYISI
GILSIFMIELLIKIPVFRMEFFRSKLEVFDGIIIVISFVLDVVSLIYEEQFAVLQLLVL
LRLWRIVRVVNGVILSVETQAKKKIEQQKHLRAEVEHEMEKFRRYCAAQEKEIEVLRNT
LNQHGIQIDDDYVAKKPQFSLNQLNVVVEMNSADKHDTGEDEGEGEEGGGDGNTRRHEK
EREALGEHTITLTTDDNVNTIQADYHPQDTTFT 
 
>50539752_Danio_rerio_(zebra_fish) 
MSRYLKHFTAVGDNKSAVPTWHEEDTSHHVTTLHDAPDGLEVSTGQHLGQLSFRDSLRK
LYSTERFQIVVVCLVVLDAIFVLCELLIDLSIIEADHHRIAPQVFHYLSLALLTFFMVE
LAGKIFAYRLEFLHHKFEVFDGIVVVVSFILDIIYISKEDAFDAMGLLILLRLWRVARI
INGILVSVQNRANHRVEKLKEINESLVHQVNELKEQNTKMDQENVRLRALLKDHSIDF 
 
>156364735_Nematostella_vectensis_(sea_anemone) 
MESDNQQLVGQLVFDTQSLGERAMDKEIEVEVGDGGGDAQVVSSTPCWHILKDRPRLCE
IIHGQKAQYTIIALVIIDCIIVIAELLVDLEILKVHHDNPAPHILHDVSIAILSLFIIE
LIVKIYAMGMEFFHHKLEVFDGIVVIVSFALDIAFSGGNAAEGASLLIILRLWRVTRIV
NGIILSVKMQDEKKIHHLHKVIEELQEELDRLKTRNAELENELKTLKGTKEEPVAEEAT
T 
 
>156374277_Nematostella_vectensis_(sea_anemone_baby) 
MAEKVESVEQTAEDGKRQTFQNLNRRRSTKEWMQGGCGILRTSLGKMLTGITWQFTIIL
LVLVEVAINLVLMCISLNAINDSEQHFASRLLHFVGISILAIFALEVFLKLFALGIEYF
KIEKLEIFDAVIVITALIVEILLSATHTSKAWKSLGFVIGLRLWRVCRVITNIIEFREE
LYELIDESDGRSKRPTSSATETLHTERESLHETK 
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>338727680_Equus_caballus_(Horse) 
MRGASGTEDTKLSAVLGCNYKDTETVTRRPKVAPAERMSKFLRHFTVVGDDYHTWNINY
KKWENEEEEEEEEQAPPAPASGEEGRAAEPTAARVPAPRPPLDFRTMLRKLFSCHRFQV
IIICLVILDALLVLAELILDLKIIEADKNNYVPRVFHYMSLAILTFFMTEVSLKIFVFR
LEFFHHKFEILDAVVVVVSFVLDIVLIFREHEFEALGLLILLRLWRVARIINGIIISVK
TRSERQLLRLKQMNIQLAAKVQHLEFSCSEKEQEIERLNKLLQQHGLLGEVI 
 
>345305006_Ornithorhynchus_anatinus_(Platypus) 
MSTPHLGSARFYHLLRFEVSSRASGLRGLRLVIGDLQNFRVTIVCLVIVDALLVLAELL
LDLRIIHPDEKQVAPKVFHYLSICILTFFVVEVVLKMFVYRLEFFHHKFEVLDAVVVII
SFILDLVLLFREHEFEALGLLILLRLWRVARIINGIIISVKTRSEQQLSRLRQANLQLV
AKVQHLEFSCNEKEQEIERLNALLKQHGLIN 
 
>156059386_Sclerotinia_sclerotiorum_(Fungal_pathogen) 
MSRRNSDISEHAPLIRASSQPISITSELPYHHTPRLSFSRRLSNGYRKSRSYVRSFLST
RGQHYTVLLLVACDLIGIFADIIINLYQCDNDKEGKTDPIWNEVRVGLGIAGLVFSCLF
MLELIASVWAFGWSKFHCFDATVIVAGFVVDVLLHGIVEEVASLVIVLRLWRFFKIIEE
FSVGAQEQMDVLEERIEQLEMENKRLKKELRKRNDNDNDEDLENGERTR 
 
>145234953_Aspergillus_niger 
MRSPSDPLLASESQPLPPGQIYLPDEDDENTQSTEPLIARCRRSARNYLSSRFGHYLVL
FLVSVDVACVFADFLIEIYVCELEKKYKHVPSGWEDAQEALSITGLVFSCLFMLELVVA
VGSFGMSYFSSKFHIFDSAVIIVAFAIDVAMRGLVEELGSLVVVLRLWRVFKIIEELES
ANADSLEEYEREIDRLKEENYLLRRRAEFGSDGVN 
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ClustalW Alignment 

91992153_Human             ---------------------------------------------MATWD 
118344228_Ciona            MEGDNCNKSRHKSHNMINPNYASVRCTQPLPSVIQLRSRNKMIGITEDPS 
71897219_Chicken           -------------------------------------------------- 
6573743_Arabidopsis        -------------------------------------------------- 
116505721_Coprinopsis      -------------------------------------------------- 
329664616_Cow              ---------------------------------------------MATWN 
345790859_Dog              ---------------------------------------------MATWD 
148235789_Frog             -------------------------------------------------- 
83774308_Aspergillus       -------------------------------------------------- 
124360845_Medicago         -------------------------------------------------- 
109098724_Indian_Monkey    ---------------------------------------------MATWD 
334327101_opossum          ---------------------------MGPKQWNNNSGSHTGSGQEELSE 
109809754_Mouse            ---------------------------------------------MTSHD 
109497399_Rat              ----------------------MRGDTIHARGNRLGKGLEAWNAGRMAKQ 
187282419_sea_urchin       -------------------------------------------------- 
50539752_zebra_fish        -------------------------------------------------- 
156364735_sea_anemone      -------------------------------------------------- 
156374277_sea_anemone_baby -------------------------------------------------- 
338727680_Horse            ----------------------------MRGASGTEDTKLSAVLGCNYKD 
345305006_Platypus         -------------------------------------------------- 
156059386_Fungal_pathogen  -------------------------------------------------- 
145234953_Aspergillus      -------------------------------------------------- 
                                                                              
 
 
91992153_Human             EKAVTRRAKVAPAERMSKFLRHFTVVGDDYHAWNINYKKWENEEEEEEEE 
118344228_Ciona            SDSEPVSSNQPLLLTNLSYEVHTFNDNNNHERPAPQEQSTQNTMISMQSE 
71897219_Chicken           ---------------MSRYLKHFTVVGDDPIQWSNDYQKWENEEEDNG-- 
6573743_Arabidopsis        -----------MNIINTGTVDNVEFSIQNLIKSWCRRRKWRQLCNFSPKQ 
116505721_Coprinopsis      -------------------------------------------------- 
329664616_Cow              EKAVTRRARVAPAERMSKFLKHFTVVGDDYHAWNINYKKWENEE-EEEEE 
345790859_Dog              EKASSRRARVAPAERMSKFLKHFTVVGDDYHAWNVNYKKWENEEDDEEEE 
148235789_Frog             ---------------MAGCLRHFTSVGDDTKKREWKQEDVEVAYEEPLKN 
83774308_Aspergillus       ---------------MASPSDPLLHEHTGPRSLRQRPIYLPEEQGQ---- 
124360845_Medicago         -------------------------------------------------- 
109098724_Indian_Monkey    EKAVTRRAKVAPAERMSKFLKHFTVVGDDYHAWNINYKKWENEEDEEEEE 
334327101_opossum          QHRQWVPLKDGSPRAMSRFLRHFTVVGDDHYKWNTRYKKWDNEDEDDEQP 
109809754_Mouse            PKAVTRRTKVAPTKRMSRFLKHFTVVGDDYHTWNVNYKKWENEEEEEE-- 
109497399_Rat              GEAVTRRTKVAPTKRMSRFLKHFTVVGDDYHTWNVNYKKWENEEDEEE-- 
187282419_sea_urchin       ---------------MFGFRRLSDTTKPSEGNDQQRVIVKDDSSDSVVSD 
50539752_zebra_fish        ---------------MSRYLKHFTAVGDNKSAVPTWHEEDTSHHVTTLHD 
156364735_sea_anemone      -------MESDNQQLVGQLVFDTQSLGERAMDKEIEVEVGDGGGDAQVVS 
156374277_sea_anemone_baby ---------------MAEKVESVEQTAEDGKRQTFQNLNRRRSTKEWMQG 
338727680_Horse            TETVTRRPKVAPAERMSKFLRHFTVVGDDYHTWNINYKKWENEEEEEEEE 
345305006_Platypus         --MSTPHLGSARFYHLLRFEVSSRASG----------------------- 
156059386_Fungal_pathogen  ---------MSRRNSDISEHAPLIRASSQPISITSELPYHHTPRLSFSRR 
145234953_Aspergillus      ---------------MRSPSDPLLASESQP--LPPGQIYLPDEDDENTQS 
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rKv1.2                                                                  ARIIA 
91992153_Human             QPPPTPVSGEEGRAAAPDVAPAP---GPAPRAPLDFRGMLRKLFSSHRFQ 
118344228_Ciona            QKSDRFTASNLGMFQYMKFEIGEDGDDHEEEAILTNREKLRHILHSKPIH 
71897219_Chicken           -------------------EKDSEIKLEPSRGHVTFQDVMKKLFSSRRFQ 
6573743_Arabidopsis        QQEELISIN------------------------QQWRITLSNFLESYQVH 
116505721_Coprinopsis      -----------------------------------------------MPL 
329664616_Cow              QPPPTEASASAEEGRATDPTPAP---APVPRPRLDFRTTLRKLFSAHRFQ 
345790859_Dog              QPPPTAASGEEG-----RADPTA---APTPRPPLDFRATLRKLFSSHRFQ 
148235789_Frog             TPHPFIAS-------------------------YSFRGALKWLLSSHKFQ 
83774308_Aspergillus       --R----------------------------IIAQWRRAARDFLSSRRGH 
124360845_Medicago         -----------------------------------------------MIR 
109098724_Indian_Monkey    QPPPTPASGEEGRVAGPDAAPAP---GPAPRAPLDFRGTLRKLFSSHRFQ 
334327101_opossum          QVPTGPAPGADVPGTESNAVQVPGETVTPPKAPPDFRTVMRKLFGSHRFQ 
109809754_Mouse            --PAPTSAEGEGNAEGPDAEAGS---ASTPRQSLDFRSRLRKLFSSHRFQ 
109497399_Rat              --PAPTSAEGEGSAVGPDAEAGS---ASTPRPSLDFRSRLRKLFSSHRFQ 
187282419_sea_urchin       SHDGHPA----------------------RTEPLSLREKLHEIMETQKFH 
50539752_zebra_fish        APDGLEVSTGQH------------------LGQLSFRDSLRKLYSTERFQ 
156364735_sea_anemone      STP--------------------------CWHILKDRPRLCEIIHGQKAQ 
156374277_sea_anemone_baby GCG-------------------------------ILRTSLGKMLTGITWQ 
338727680_Horse            QAPPAPASGEE--GRAAEPTAAR---VPAPRPPLDFRTMLRKLFSCHRFQ 
345305006_Platypus         -----------------------------------LRGLRLVIGDLQNFR 
156059386_Fungal_pathogen  LSN----------------------------GYRKSRSYVRSFLSTRGQH 
145234953_Aspergillus      TEP----------------------------LIARCRRSARNYLSSRFGH 
                                                                              
 
 
rKv1.2                     IVSVMVILISIVSFCLETLPIFRDENEDMHGGGVT-/-GYQQSTSFTDPF 
91992153_Human             VIIICLVVLDALLVLAELILDLKIIQPDKNN-------------YAAMVF 
118344228_Ciona            VAIIVLVVLDSFLVVGELLIDLKVIIVPHGN-------------PAPEIL 
71897219_Chicken           IVIVFLVIVDALLVLGELLMDLKIIHPDKYH-------------IAPKVF 
6573743_Arabidopsis        LFTIFLLSLDIILTSLELSSSLLSCTSVKKT------------ETENEWF 
116505721_Coprinopsis      QIFIDVVFVLVELGYTLFNPNCSELEPRETP-------------VWMEAL 
329664616_Cow              VIIICLVVLDALLVLAELVLDLKIIEPDKNN-------------YAPKVF 
345790859_Dog              VIIICLVILDALLVLAELILDLKIIQGDKNN-------------YATKVF 
148235789_Frog             IVIICLVILDALFVLVEVLLDLELLAEKVDH-------------IIPEIF 
83774308_Aspergillus       YLVLLLVSVDVACTFADFLIELHVCELTKHGS-----HVAIGWGVTQKVL 
124360845_Medicago         VLSILLLTIDLIITILELSSSLVSCKQKIN-------------IVEELYF 
109098724_Indian_Monkey    VIIICLVVLDTLLVLAELILDLRIIQPDKKN-------------YAAMIF 
334327101_opossum          VIIICLVIMDALLVLAELMLDLKIIQPDKDN-------------YAARVF 
109809754_Mouse            VIIICLVVLDALLVLAELLLDLKIIEPDEQD-------------YAVTAF 
109497399_Rat              VIIICLVVLDALLVLAELLLDLRIIEPDLSK-------------YSTKVF 
187282419_sea_urchin       IAILVLVVIDCILVIVELVIDFEVLSQEEGQCNATETDKEEKEVTAANVL 
50539752_zebra_fish        IVVVCLVVLDAIFVLCELLIDLSIIEADHHR-------------IAPQVF 
156364735_sea_anemone      YTIIALVIIDCIIVIAELLVDLEILKVHHDNP-------------APHIL 
156374277_sea_anemone_baby FTIILLVLVEVAINLVLMCISLNAINDSEQH-------------FASRLL 
338727680_Horse            VIIICLVILDALLVLAELILDLKIIEADKNN-------------YVPRVF 
345305006_Platypus         VTIVCLVIVDALLVLAELLLDLRIIHPDEKQ-------------VAPKVF 
156059386_Fungal_pathogen  YTVLLLVACDLIGIFADIIINLYQCDNDKEGK-----TDPI-WNEVRVGL 
145234953_Aspergillus      YLVLFLVSVDVACVFADFLIEIYVCELEKKYK-----HVPSGWEDAQEAL 
                              : ::          .  .                            : 
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rKv1.2                     FIVETLCIIWFSFEFLVRFFACPSKAGFFT-----NIMNIIDIVAIIPYF 
91992153_Human             HYMSITILVFFMMEIIFKLFVFRLEFFHHK-------FEILDAVVVVVSF 
118344228_Ciona            HGFSLSILSIFMVEIALKIIADHRHFIHHK-------VEVLDAVVVVISF 
71897219_Chicken           HYLSLSILTIFLVEVGFKIFVYGREFFHHK-------FEVLDSIVVVVSF 
6573743_Arabidopsis        RWGGTVILSILAVKSMALVVAMGKSFFKQP-------GCVMDGTLAIVAL 
116505721_Coprinopsis      SITSLALSALLVTEIPITVWCMGIQYFNPFGAVHWAALHLFDALINLATF 
329664616_Cow              HYMSLAILTFFMMEIFFKIFVFRLEFFHHK-------FEILDTIVVVISF 
345790859_Dog              HYSSFAILTLFMMEVFLKLFVFRLEFFHHK-------FEILDTFVVVVSF 
148235789_Frog             HYLSISVLTFFILEIAGKLYAFRLEFFHHK-------FEVFDAAIVVISF 
83774308_Aspergillus       AIVGLVFSCLFMLELMVTVFSFGKGYFSSK-------FHVFDALVIIVAF 
124360845_Medicago         HWIGIGILSIISMKIIALLVGLGFSFFKHP-------GYVVDGIVAIGAL 
109098724_Indian_Monkey    HYMSIAILALFMMEITFKLFVFRLEFFHHK-------FEILDAVVVVVSF 
334327101_opossum          HYLSIAILTFFMIEVALKLYVFRLEFFYHK-------FEILDAVIVIISF 
109809754_Mouse            HYMSFAILVFFMLEIFFKIFVFRLEFFHHK-------FEILDAFVVVVSF 
109497399_Rat              HYLSLAILAFFVLEISLKVFVFRLEFFHHK-------FEILDAIVVVVSF 
187282419_sea_urchin       HYISIGILSIFMIELLIKIPVFRMEFFRSK-------LEVFDGIIIVISF 
50539752_zebra_fish        HYLSLALLTFFMVELAGKIFAYRLEFLHHK-------FEVFDGIVVVVSF 
156364735_sea_anemone      HDVSIAILSLFIIELIVKIYAMGMEFFHHK-------LEVFDGIVVIVSF 
156374277_sea_anemone_baby HFVGISILAIFALEVFLKLFALGIEYFKIEK------LEIFDAVIVITAL 
338727680_Horse            HYMSLAILTFFMTEVSLKIFVFRLEFFHHK-------FEILDAVVVVVSF 
345305006_Platypus         HYLSICILTFFVVEVVLKMFVYRLEFFHHK-------FEVLDAVVVIISF 
156059386_Fungal_pathogen  GIAGLVFSCLFMLELIASVWAFG----WSK-------FHCFDATVIVAGF 
145234953_Aspergillus      SITGLVFSCLFMLELVVAVGSFGMSYFSSK-------FHIFDSAVIIVAF 
                              .  .  ::  :    :                     .*  : :  : 
 
 
 
rKv1.2                     ITLGTELAE-/-MSLAILRVIRLVRVFRIFKLSRHSKGLQILGQTLKAS 
91992153_Human             ILDIVLLFQ--EHQFEALGLLILLRLWRVARIINGIIISVKTRSERQLLR 
118344228_Ciona            GVDIALIFVGESEALAAIGLLVILRLWRVFRIINGIIVTVKTKADDRVHE 
71897219_Chicken           ILDLVLLFR--EHEFEAVGLLILLRLWRVARIINGIILSVKTRSEQQVSK 
6573743_Arabidopsis        ILQVLLEKK-------GTGFIVVVSLWRVLRVVETAFELSDEAIEVQIDG 
116505721_Coprinopsis      ILDLVLRGR----ERELASLLIILRLWRIAKLVSSVAVATDSLEEEVEAR 
329664616_Cow              ILDLVLLFR--EHQFEALGLLILLRLWRVARIINGIIISVKTRSERQLLR 
345790859_Dog              ILDLVLLFQ--KHEFEALGLLILLRLWRVARIINGIIISVKTRSERQLLR 
148235789_Frog             IIDIVYISR--EDIFNAVGLLILLRLWRVARIVNGVIVSVKTRAEEKMHK 
83774308_Aspergillus       GVDVALHGI----EEELGSLIVVLRLWRVFKIIEELQSANEDTLEEYEHE 
124360845_Medicago         IMEVFLEKR-------GGGLLVVVSLWRVIRVVESVFELSDEAIEAQIEG 
109098724_Indian_Monkey    VLDVVLLFQ--EHEFEALGLLILLRLWRVARIINGIIISVKTRSERQLLR 
334327101_opossum          VLDIVLLFQ--EHAFEALGLLILLRLWRVARIINGIIISVKTRSERQLSR 
109809754_Mouse            VLDLVLLFK--SHHFEALGLLILLRLWRVARIINGIIISVKTRSERQILR 
109497399_Rat              VLDLILLFK--NHHFEALGLLILLRLWRVARIINGIIISVKTRSERQILR 
187282419_sea_urchin       VLDVVSLIY--EEQFAVLQLLVLLRLWRIVRVVNGVILSVETQAKKKIEQ 
50539752_zebra_fish        ILDIIYISK--EDAFDAMGLLILLRLWRVARIINGILVSVQNRANHRVEK 
156364735_sea_anemone      ALDIA-FSG--GNAAEGASLLIILRLWRVTRIVNGIILSVKMQDEKKIHH 
156374277_sea_anemone_baby IVEILLSATHTSKAWKSLGFVIGLRLWRVCRVITNIIEFREELYELIDES 
338727680_Horse            VLDIVLIFR--EHEFEALGLLILLRLWRVARIINGIIISVKTRSERQLLR 
345305006_Platypus         ILDLVLLFR--EHEFEALGLLILLRLWRVARIINGIIISVKTRSEQQLSR 
156059386_Fungal_pathogen  VVDVLLHGI----VEEVASLVIVLRLWRFFKIIEEFSVGAQEQMDVLEER 
145234953_Aspergillus      AIDVAMRGL----VEELGSLVVVLRLWRVFKIIEELESANADSLEEYERE 
                            :::               ::: : ***. :::           .      
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91992153_Human             LKQMNVQLAAKIQHLEFSCSEKEQEIERLNKLLRQHGLLGEVN------- 
118344228_Ciona            IKKKNSELELQIHNLEEKLSQKEQDMSRLHEILRCNNIDIPPTVPLTTSV 
71897219_Chicken           LKQVNLKLATKVEQLQHSCVEKEQEIERLTRMLKQHGLLSEQT------- 
6573743_Arabidopsis        IISQFQALSKENRTLLETLAEKDEVIKMLEEELNRFKENGDIPFVKP--- 
116505721_Coprinopsis      LEATKQELHRTKEELGKVEEEVFNLRQRLATFETKVVSNSAV-------- 
329664616_Cow              LKQINIQLATKIQHLEFSCSEKEQEIERLNKLLRQHGLLGEVN------- 
345790859_Dog              LKQMNIQLAAKIQHLEFSCSEKEQEIERLNKLLRQHGLLGEVN------- 
148235789_Frog             LKEQKGSLLEKVAQLEQQCAQQEQEIGRLHKLLQEHNVFPAS-------- 
83774308_Aspergillus       IERLRQENTYLRQRLNVSLSNADPMD------------------------ 
124360845_Medicago         IVCQFEALKDENIRLLGIINEKDKLIEKLKEELDKCR------------- 
109098724_Indian_Monkey    LKQMNVQLAAKIQHLEFSCSEKEQEIERLNKLLRQHGLLGEVN------- 
334327101_opossum          LKLINHQLATKIQHLEFSCTEKEQEIERLNKLLRDHGLLE---------- 
109809754_Mouse            LKQINIQLATKIQHLEFSCSEKEQEIERLNKLLKQNGLLGDVN------- 
109497399_Rat              LKQINLQLATKIQHLEFSCSEKEQEIERLSKLLRQNGLLEDVNVN----- 
187282419_sea_urchin       QKHLRAEVEHEMEKFRRYCAAQEKEIEVLRNTLNQHGIQIDDDYVAKKPQ 
50539752_zebra_fish        LKEINESLVHQVNELKEQNTKMDQENVRLRALLKDHSIDF---------- 
156364735_sea_anemone      LHKVIEELQEELDRLKTRNAELENELKTLKGTK----------------- 
156374277_sea_anemone_baby DGRSKRPTSSATETLHTERESLHETK------------------------ 
338727680_Horse            LKQMNIQLAAKVQHLEFSCSEKEQEIERLNKLLQQHGLLGEVI------- 
345305006_Platypus         LRQANLQLVAKVQHLEFSCNEKEQEIERLNALLKQHGLIN---------- 
156059386_Fungal_pathogen  IEQLEMENKRLKKELRKRNDNDNDEDLENGERTR---------------- 
145234953_Aspergillus      IDRLKEENYLLRRRAEFGSDGVN--------------------------- 
                                                                                   
 
 
 
91992153_Human             -------------------------------------------------- 
118344228_Ciona            QIHSTTTASADV-------------------------------------- 
71897219_Chicken           -------------------------------------------------- 
6573743_Arabidopsis        -------------------------------------------------- 
116505721_Coprinopsis      -------------------------------------------------- 
329664616_Cow              -------------------------------------------------- 
345790859_Dog              -------------------------------------------------- 
148235789_Frog             -------------------------------------------------- 
83774308_Aspergillus       -------------------------------------------------- 
124360845_Medicago         -------------------------------------------------- 
109098724_Indian_Monkey    -------------------------------------------------- 
334327101_opossum          -------------------------------------------------- 
109809754_Mouse            -------------------------------------------------- 
109497399_Rat              -------------------------------------------------- 
187282419_sea_urchin       FSLNQLNVVVEMNSADKHDTGEDEGEGEEGGGDGNTRRHEKEREALGEHT 
50539752_zebra_fish        -------------------------------------------------- 
156364735_sea_anemone      ------------------------------------------EEPVAEEA 
156374277_sea_anemone_baby -------------------------------------------------- 
338727680_Horse            -------------------------------------------------- 
345305006_Platypus         -------------------------------------------------- 
156059386_Fungal_pathogen  -------------------------------------------------- 
145234953_Aspergillus      -------------------------------------------------- 
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91992153_Human             ------------------------ 
118344228_Ciona            ------------------------ 
71897219_Chicken           ------------------------ 
6573743_Arabidopsis        ------------------------ 
116505721_Coprinopsis      ------------------------ 
329664616_Cow              ------------------------ 
345790859_Dog              ------------------------ 
148235789_Frog             ------------------------ 
83774308_Aspergillus       ------------------------ 
124360845_Medicago         ------------------------ 
109098724_Indian_Monkey    ------------------------ 
334327101_opossum          ------------------------ 
109809754_Mouse            ------------------------ 
109497399_Rat              ------------------------ 
187282419_sea_urchin       ITLTTDDNVNTIQADYHPQDTTFT 
50539752_zebra_fish        ------------------------ 
156364735_sea_anemone      TT---------------------- 
156374277_sea_anemone_baby ------------------------ 
338727680_Horse            ------------------------ 
345305006_Platypus         ------------------------ 
156059386_Fungal_pathogen  ------------------------ 
145234953_Aspergillus      ------------------------ 
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