
Rockefeller University
Digital Commons @ RU

Student Theses and Dissertations

2012

Protein Phosphatase 1 at the Kinetochore
Regulates Chromosome Segregation
Jessica Scott Rosenberg

Follow this and additional works at: http://digitalcommons.rockefeller.edu/
student_theses_and_dissertations

Part of the Life Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and
Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact mcsweej@mail.rockefeller.edu.

Recommended Citation
Rosenberg, Jessica Scott, "Protein Phosphatase 1 at the Kinetochore Regulates Chromosome Segregation" (2012). Student Theses and
Dissertations. Paper 173.

http://digitalcommons.rockefeller.edu?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations/173?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mcsweej@mail.rockefeller.edu


 

 

PROTEIN PHOSPHATASE 1 AT THE KINETOCHORE REGULATES 

CHROMOSOME SEGREGATION 

 

 

A Thesis Presented to the Faculty of 

The Rockefeller University 

in Partial Fulfillment of the Requirements for 

the degree of Doctor of Philosophy 

 

 

 

by 

Jessica Scott Rosenberg 

June 2012  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Jessica Scott Rosenberg 2012 



PROTEIN PHOSPHATASE 1 AT THE KINETOCHORE REGULATES 

CHROMOSOME SEGREGATION 

 

Jessica Scott Rosenberg, Ph.D. 

The Rockefeller University 2012 

 

Two regulatory mechanisms exist to ensure proper chromosome 

segregation in mitosis.  First, improper kinetochore-microtubule attachments are 

destabilized through the error correction machinery.  Second, the spindle 

assembly checkpoint (SAC) delays anaphase onset until all kinetochores have 

achieved bioriented microtubule attachments.  Both of these mechanisms are 

mediated by several centromeric and kinetochore kinases, including Aurora B.  

Protein Phosphatase 1 (PP1) plays a counteracting role to Aurora B to stabilize 

kinetochore-microtubule attachments and silence the SAC.  The regulation of 

PP1 to modulate these functions, however, remains enigmatic.   

Using the biochemical tools available in the Xenopus egg extract system, I 

show here that PP1 binds to the protein KNL1 (Spc105, Blinkin, CASC5) through 

an evolutionarily conserved RVxF motif.  KNL1 is a member of the KMN network 

that forms the microtubule binding interface at the kinetochore.  Using the genetic 

tools of Saccharomyces cerevisiae, I show that this interaction is essential for 

silencing the SAC, but has only a minimal effect on kinetochore-microtubule 

stability.  Although phosphorylation of KNL1 by Aurora B can abrogate the KNL1-



PP1 interaction, constitutive recruitment of PP1 by KNL1 is insufficient to 

prematurely silence the SAC.  However, the amount of PP1 recruited to the 

kinetochore is tightly tuned, as targeting just one extra copy of PP1 to KNL1 is 

lethal.   

The data presented here leads to a model in which the KNL1-PP1 

interaction acts to couple microtubule attachment with SAC signaling.  Specific 

properties of the N-terminus of KNL1 may modulate this coupling, possibly 

though conformational changes upon microtubule attachment.  In addition, there 

have been several other proteins found to recruit PP1 to the kinetochore, and 

how these regulatory subunits might cooperate to mediate the functions of PP1 

will be discussed.   
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CHAPTER 1: BACKGROUND 

 

Cellular division 

The cell cycle 

One of the most fundamental properties of a cell is the ability to self-

replicate through the process of the cell cycle.  This cycle consists of an ordered 

series of events that duplicate the genetic material of the cell and then segregate 

it to two daughter cells.  This process and its regulation are essential for the 

propagation of all cells, both of single-cell organisms such as yeast and within 

multi-cellular organisms such as humans. 

The cell cycle is broadly broken up into two phase, interphase and mitosis.  

Interphase is further broken up into two growth phases, G1 and G2, separated by 

S-phase in which the DNA is replicated.  In mitosis, the replicated DNA is 

segregated and then two separate daughter cells containing the full genomic 

complement are formed.  The duration of all phases, particularly G1 and G2, 

varies greatly among organisms and cell types; however, the order of events is 

tightly controlled and conserved in most cells.   

A network of kinases called cyclin-dependent kinases (CDKs) and their 

activators, cyclins, regulate the ordering and timing of cell cycle events (Norbury 

and Nurse, 1992).  Most organisms have between one and four CDKs, but they 

all must bind a cyclin to be active.  Cyclins bind to CDKs to both activate the 

catalytic activity and confer substrate specificity.  The protein levels of cyclins 
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oscillate with the cell cycle, and cyclins are broadly classified by the cell cycle 

phase or transition during which they show peak abundance: either G1, G1/S, S, 

or M.  The cyclin/CDK complex that forms during each phase regulates the 

execution and timing of specific events.  The proper production and destruction of 

cyclins, therefore, is essential to cell cycle control and progression.   

 

The mitotic spindle 

The essential function of mitosis, the segregation of duplicated 

chromosomes, is achieved by the mitotic spindle.  The spindle, formed during 

metaphase, is made up of a network of proteins and microtubules surrounding 

the DNA.  The plus ends of the microtubules attach to the chromosomes, while 

the minus ends gather together on either side in spindle poles (Figure 1-1A).  The 

duplicated chromosomes, individually referred to as sister chromatids, are 

connected to each other by a protein complex called cohesin (Michaelis et al., 

1997).  In order to ensure that each daughter cell gets a full complement of the 

genome, each sister chromatid must be attached to microtubules emanating from 

opposite poles (Figure 1-B).   

 

Anaphase 

Anaphase is the stage of mitosis during which sister chromatids are pulled 

to opposite poles.  Biochemically, the transition from metaphase to interphase is 

characterized by the activation of the Anaphase Promoting Complex/Cyclosome 
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Figure 1-1: Biorientation on the mitotic spindle.  (A) Immunoflorescence of a 
mitotic spindle assembled in Xenopus laevis egg extracts.  Microtubules are in 
green, DNA is in blue, and centromeres are in red.  (B) Schematic representation 
of a bioriented chromosome.  (C) Schematic representation of the kinetochore 
components important for this study in the state of microtubule attachment.   
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(APC/C), an E-3 ubiquitin ligase that targets proteins for destruction.  One major 

target is the mitotic cyclin, Cyclin B.  Cyclin B proteolysis in metaphase reduces 

CDK activity, allowing eventual progression out of metaphase and into the 

subsequent interphase (Irniger et al., 1995).  Another essential target of the 

APC/C is Pds1/securin, the destruction of which triggers the dissolution of sister 

chromatid cohesion (Ciosk et al., 1998).  This allows sister chromatids to be 

pulled by spindle microtubules to opposite poles, thus segregating the genome.   

 

Achieving proper genomic segregation 

Centromeres 

On each chromosome there is a specific region, called the centromere, 

upon which is built the machinery that facilitates attachment to microtubules 

(reviewed in Verdaasdonk and Bloom, 2011).  Centromeres are distinguished 

from the rest of the chromosome by the presence of a histone variant, CENP-A, 

incorporated into the nucleosomes (Sullivan et al., 1994).  In budding yeast, the 

location of the centromere is defined by a specific DNA sequence (Clarke and 

Carbon, 1980, 1983).  In many higher eukaryotes, however, the DNA at the 

centromere is characterized by arrays of satellite repeats (Choo, 2001; Schueler 

et al., 2001).  DNA sequence alone can contribute, but is not sufficient to 

determine the location of the functional centromere.  There are several histone 

modifications that are associated with centromeres, and at least one of these 

marks directly facilitates CENP-A deposition (Bergmann et al., 2011).  
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Furthermore, it has been hypothesized that there is a “memory” to propagate 

centromere identification that acts during DNA replication.  This could act through 

epigenetic marks, the presence of licensing factors, or chromatin structure.  

Definition and maintenance of the centromere, therefore, is a complicated 

process and still not fully understood.   

 

Kinetochores 

The kinetochore is group of proteins that facilitates the interaction between 

microtubules and the chromosome.  A group of proteins called the constitutively 

centromere-associated network (CCAN) recognizes CENP-A as well as other 

centromere-defining features and makes up the inner kinetochore.  These 

proteins in turn recruit the machinery that forms attachments to microtubules and 

comprises the outer kinetochore.  The kinetochore as a whole is made up of 

approximately 80 proteins in humans (Figure 1-1C, reviewed in Cheeseman and 

Desai, 2008) and there are ongoing efforts that may add more to this list.   

Several kinetochore proteins have been specifically identified for their 

ability to directly interact with microtubules.  In fungi, the Dam1 complex forms a 

ring around microtubules and also facilitates the kinetochore-microtubule 

attachment (Cheeseman et al., 2001a; Westermann et al., 2005).  However, no 

clear homologue of Dam1 has yet been found in higher eukaryotes.  Most 

organisms studied thus far, however, have a version of the KMN complex, which 

is comprised of KNL1, and the MIS12 and NDC80 complexes.  The KMN network 
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constitutes the core conserved microtubule binding machinery (Cheeseman et 

al., 2006; Cheeseman et al., 2004).  The MIS12 complex facilitates localization of 

the KMN network to the kinetochore, while the NDC80 complex and KNL1 

directly bind to microtubules.  This network forms an attachment to the dynamic 

plus end of the microtubule, and this attachment must be stable enough to persist 

when the microtubule is growing or shrinking.  

Specifically, KNL1 was first identified in a screen for “kinetochore null” 

mutants, and RNAi of KNL1 abolishes kinetochore-microtubule interactions 

(Desai et al., 2003).  KNL1 recruitment is downstream of centromere assembly 

(Cheeseman et al., 2004).  KNL1 has the ability to directly bind microtubules in 

vitro, but the binding acts cooperatively with the NDC80 and MIS12 complexes 

(Cheeseman et al., 2006).  Homologues in fission and budding yeast, Spc7 and 

Spc105 respectively, were identified by functional homology (Kerres et al., 2007; 

Liu et al., 2005; Nekrasov et al., 2003).   

Despite the evolutionary distance and many fundamental cellular and 

biochemical differences between yeast and mammals, many of the proteins that 

make up both the inner and outer kinetochore are strikingly conserved.  While 

yeast kinetochores bind a single microtubule (O'Toole et al., 1999; Peterson and 

Ris, 1976), mammalian kinetochores bind between 15 and 20 (McEwen et al., 

1997).  However, it is thought that the yeast kinetochore represents a single 

microtubule-binding unit that is replicated in the larger mammalian structure 
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(Zinkowski et al., 1991).  Therefore, the study of the yeast kinetochore has 

helped to elucidate the human kinetochore.   

 

Microtubule capture and error correction 

The major function of the kinetochore is to attach chromosomes to the 

microtubules that will ultimately pull them to opposites poles.  In order to ensure 

that each daughter cell gets a full genomic complement, therefore, it is imperative 

that kinetochores on sister chromatids attach to microtubules emanating from 

opposite poles, a configuration known as biorientation.  However, microtubule 

capture by kinetochores is a stochastic process.  First, chromosomes interact 

with the lateral surface of microtubules through one of the kinetochores, and are 

then pulled along the microtubule towards the pole by motor proteins (Hayden et 

al., 1990; Rieder and Alexander, 1990; Tanaka et al., 2005).  In yeast, it appears 

the motor protein responsible for this movement is Kar3 (Tanaka et al., 2005), 

while in mammals there is evidence that dynein plays a major role (Echeverri et 

al., 1996; Howell et al., 2001).  It is likely that a combination of motor proteins 

have varying contributions to the movement.  During this pole-ward movement, 

the kinetochore transitions from lateral to end-on attachment, which is stabilized 

by the KMN network.  The chromosome is then congressed towards the 

metaphase plate in the middle of the spindle, and at some point during the 

process, the other kinetochore is also captured by microtubules.  The motor 

protein CENP-E mediates chromosome movement towards the metaphase plate, 
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and it can cause chromosome movement even when only one kinetochore is 

attached (Kapoor et al., 2006; Kim et al., 2008).   

Throughout this process of chromosome movement, kinetochore-

microtubule attachments are dynamic, so it is not inherently obvious how this 

process would lead to biorientation.  The chromatin structure at the centromere 

does introduce a geometric bias towards biorientation, but this is not enough to 

ensure that all chromosomes will be bioriented upon initial microtubule capture 

(Sakuno et al., 2009).  Indeed, it has been observed that this process can lead to 

incorrect kinetochore-microtubule attachments that need to be corrected (Nicklas 

and Ward, 1994).  Two of the three major classes of incorrect kinetochore-

microtubule attachment configurations are monotelic and syntelic.  In monotelic 

attachments, only one kinetochore is attached to a microtubule.  In syntelic 

attachments, both kinetochores are attached to microtubules emanating from the 

same poles.  These incorrect attachments can be recognized by the cell as either 

lacking attachment (monotelic) or lacking tension across centromeres (syntelic) 

(figure 1-2).  All such kinetochore-microtubule attachment configurations would 

lead to incorrect chromosome segregation once anaphase was initiated.   

To overcome this, as attachments are being made, there is a regulatory 

network promoting “error correction”.  The preferential destabilization of incorrect 

attachments is mediated by the kinase Aurora B, located at the centromere 

(Cimini et al., 2006a; Hauf et al., 2003).  Aurora B achieves this by 

phosphorylating members of the KMN network, thus decreasing their affinity for 
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microtubules (DeLuca et al., 2006; Welburn et al., 2010).  In addition, Aurora B 

phosphorylates Dam1 in budding yeast with similar results (Cheeseman et al., 

2002; Keating et al., 2009).  Through this destabilization, incorrect attachments 

can be released and reformed until proper bioriented attachments have been 

achieved.  Once this occurs, the dephosphorylation of the KMN network reverses 

this process to form stable interactions with microtubules.   

 

The spindle assembly checkpoint 

Through careful study of the cell cycle in budding yeast, it was found that 

cells treated with microtubule poisons arrest in metaphase through a mechanism 

now known as the spindle assembly checkpoint (SAC) (Jacobs et al., 1988).  

This arrest persists until all kinetochore pairs have achieved bioriented 

microtubule attachment (Rieder et al., 1994).  The SAC signal originates at the 

kinetochore (Rieder et al., 1995) and is activated by the same incorrect 

microtubule attachment configurations discussed above that can initiate the error 

correction mechanism.  These configurations are recognized either as a lack of 

attachment or a lack of tension across kinetochores (see Figure 1-2).  Two 

seminal studies resulted in a catalogue of the proteins involved in this process 

(Hoyt et al., 1991; Li and Murray, 1991).  Although the mechanisms of the 

triggering and silencing of the SAC signal remains a complex area of research to 

be discussed in later sections, the nature of the diffusible signal emanating from 
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the kinetochore has been elucidated (reviewed in Musacchio and Salmon, 2007, 

figure 1-3).   

The ultimate target of the SAC is the APC/C, which promotes entry into 

anaphase.  The APC/C requires a co-factor, Cdc20, in order to be activated.  The 

SAC functions by forming an inhibitory complex of Mad2, BubR1/Mad3, and 

Bub3 with Cdc20, called the mitotic checkpoint complex (MCC) (Sudakin et al., 

2001).  This complex will only form if Mad2 has adopted a conformation change 

that occurs at the kinetochore (Tipton et al., 2011).  This change is mediated by 

Mad1, which is localized to unattached kinetochores.  Mad1 facilitates the 

conversion of Mad2 from an open to a closed conformation (o-Mad2 to c-Mad2) 

(Luo et al., 2002; Sironi et al., 2002).  c-Mad2 can then diffuse from the 

kinetochore, where it can bind Cdc20 and complete the MCC.  In addition, c-

Mad2 can self-propagate, converting other o-Mad2 proteins into c-Mad2, thus 

creating a diffusible template that propagates the signal from the kinetochore to 

the pool of free proteins (Nasmyth, 2005).  The MCC can only form with the c-

Mad2 conformation, thus sequestering Cdc20 and preventing APC/C activation 

only in the presence of incorrectly attached kinetochores.  Interestingly, several 

of these and other SAC proteins have been implicated in cellular roles 

independent of SAC signaling, particularly in kinetochore-microtubule attachment 

stabilization (Gillett et al., 2004; Lampson and Kapoor, 2005; Logarinho and 

Bousbaa, 2008).   
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Figure 1-3: The molecular mechanism of SAC signaling.  Mad1 bound to 
c-Mad2 accumulates at unattached kinetochores.  This facilitates the conversion 
of o-Mad2 into c-Mad2, which then becomes a soluble signal by further converting 
other o-Mad2 into c-Mad2.  c-Mad2, but not o-Mad2, can bind Cdc20 along with 
Bub3 and BubR1 to form the mitotic checkpoint complex (MCC).  This sequesters 
Cdc20 from activating the APC/C when SAC signaling is present, thus preventing 
the transition into anaphase.  
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Merotelic attachments 

A third class of kinetochore-microtubule attachment configuration, 

merotelic attachment, occurs when one kinetochore is attached to one pole, but 

the other kinetochore is attached to both poles.  This configuration is unique in 

that it is fully attached and still produces some level of tension across 

kinetochores.  Consequently, the detection mechanisms discussed above cannot 

recognize this configuration, and the SAC is not activated.  However, it is 

imperative that merotelic attachments are corrected, as it is a major source of 

chromosome missegregation and aneuploidy (Cimini et al., 2001).   

There is clear evidence that merotelic attachments do get corrected in 

metaphase (Cimini et al., 2002; Cimini et al., 2003), and that this correction is 

also dependent on Aurora B-mediated destabilization of kinetochore-microtubule 

attachments (Cimini et al., 2006b; Knowlton et al., 2006).  Additionally, a complex 

in fungi, the monopolin complex, facilitates correct kinetochore-microtubule 

attachments by bundling microtubule attachment sites so they have the same 

orientation.  This has been shown to be critical for preventing and correcting 

merotelic attachments  (Corbett et al., 2010; Gregan et al., 2007; Rabitsch et al., 

2003).  Although no homologues for the monopolin complex proteins have been 

found in mammals, structural analysis indicates that members of the NDC80 

complex may play a similar role (Rumpf et al., 2010). 

In addition to mechanisms to correct merotelic attachments in metaphase, 

there is evidence that spindle forces in anaphase can facilitate the breakage of 
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the incorrect attachment (Cimini et al., 2004).  Microtubule associated motor 

proteins play a critical role in facilitating this mechanism of correction (Choi and 

McCollum, 2012).  Collectively, these mechanisms correct merotelic attachments 

by first weakening the incorrect microtubule attachment, and then attachments 

that have not been fully disconnected will break in anaphase.  This apparently 

two-step process facilitates the correction of these attachments even when they 

are invisible to the SAC.   

 

Mitotic phosphorylation 

Many of the regulatory pathways controlling mitosis are mediated by 

protein phosphorylation.  This modification changes protein properties such as 

localization, binding partners, or catalytic activity of an enzyme.  These property 

changes facilitate ordering and coordination of events as well as the proper 

functioning of mitotic cellular structures.  In an attempt to elucidate mitotic 

pathways, massive phospho-proteomic studies have attempted to catalogue all of 

the phosphorylation events occur in mitosis (Dephoure et al., 2008; Nousiainen et 

al., 2006).  In a different approach, specific pathways have been studied by 

scrutinizing the kinases involved, examining its mitotic functions and substrates 

(reviewed Ma and Poon, 2011).  Here, I will highlight the kinases that act 

specifically at the kinetochore in metaphase and our current understanding of 

their functions and substrates.   
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Kinases that act at the kinetochore 

The fact that the kinase Aurora B plays a critical role at the kinetochore to 

ensure proper chromosome segregation has long been established.   Aurora B 

acts in a protein complex with Survivin, Incenp, and Dasra/Borealin (hereafter 

referred to as Dasra) called the chromosomal passenger complex (CPC), named 

as such for its dynamic localization throughout the course of mitosis (reviewed in 

Ruchaud et al., 2007).  The CPC accumulates on chromosomes in prophase, is 

concentrated at the centromere in prometaphase and metaphase, then moves to 

the spindle midzone after initiation of anaphase and to the midbody in telophase.  

As mentioned above, Aurora B mediates the destabilization of incorrect 

kinetochore-microtubule attachments and error correction through 

phosphorylation of members of the KMN network.  In addition, Aurora B is 

necessary for the initiation of SAC signaling and for the preferential localization of 

SAC proteins to incorrectly attached kinetochores (Vigneron et al., 2004).  

Concurrent with the elucidation of the role that Aurora B plays at the 

kinetochore, a growing list of other kinases have been found to also function 

similarly within the same processes.  Some of these kinases work directly 

through modulating the localization of Aurora B itself.  Haspin kinase 

phosphorylates histone H3-serine 3 at the centromere, which promotes Aurora B 

localization (Kelly et al., 2010; Wang et al., 2010; Yamagishi et al., 2010).  

Cdk1/Cyclin B phosphorylates the CPC member Survivin in fission yeast, which 

is also required to target Aurora B to the centromere (Tsukahara et al., 2010).  In 
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addition, it phosphorylates Dasra in human cells, although the functional 

significance of this mark in relation to the activity of the CPC at the kinetochore is 

unknown (Date et al., 2012). 

Other kinases at the kinetochore appear to have similar functions to those 

of Aurora B.  Polo/Plk1 phosphorylates BubR1 (Elowe et al., 2007; Matsumura et 

al., 2007) and is required both for accumulation of SAC proteins at the 

kinetochore (Ahonen et al., 2005; Wong and Fang, 2005), and for stabilizing 

kinetochore-microtubule attachments (Sumara et al., 2004; van Vugt et al., 

2004).  The kinase Mps1 facilitates SAC signaling (He et al., 1998; Weiss and 

Winey, 1996) by mediating the localization of the Mad1/Mad2 complex to 

incorrectly attached kinetochores (Hewitt et al., 2010; Tighe et al., 2008).  In 

addition, Mps1 is required to form stabilized, bioriented attachments and for the 

error correction mechanism (Jones et al., 2005; Maure et al., 2007).  Bub1 and 

Nek2A are two other kinases that are known to be involved in both SAC signaling 

and stabilization of kinetochore-microtubule attachments (Du et al., 2008; Meraldi 

and Sorger, 2005; Wei et al., 2011), and Nek2A is also required for Mad1 

localization (Lou et al., 2004).  Bub1 is unique in that it also promotes the 

localization of shugoshin, which protects centromeric cohesion until anapahse 

through phosphorylation of histone H2A-serine 121 (Kawashima et al., 2010).   
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Interplay of kinase pathways 

Based on current knowledge, there appears to be an excess of kinases 

over functions at the kinetochore, a “kinase paradox.” For two major functions 

(error correction and SAC activation), we have at least five kinases that appear to 

be directly involved (figure 1-4).  There may be simple redundancy of the 

pathways, but there is growing evidence that the signaling pathways interact with 

each other in a more direct way.  For example, one of the most well 

characterized phospho-proteins at the kinetochore is Ndc80, phosphorylation of 

which is necessary for both error correction and SAC activation.  Nek2A (Du et 

al., 2008; Wei et al., 2011), Aurora B (Akiyoshi et al., 2009a), and Mps1 

(Kemmler et al., 2009) all phosphorylate Ndc80 on separate but overlapping sets 

of residues.  In another example, both Aurora B and Polo phosphorylate BubR1 

(Rancati et al., 2005).  The physiological consequences of multiple pathways 

converging on a single target have yet to be elucidated.   

Aside from converging on a shared target, several kinase pathways are 

required for the function of others.  In addition to Haspin and Cdk1/Cyclin B 

mentioned above, Plk1 and Mps1 regulate Aurora B activity through other 

members of the CPC.  Plk1 physically interacts with Incenp at the centromere 

(Carmena et al., 2012; Goto et al., 2006), and Mps1 phosphorylates Dasra 

(Jelluma et al., 2008).  Conversely, Aurora B itself is required for the localization 

of Mps1 and Bub1 (Vigneron et al., 2004).  Finally, Mps1 is required for Plk1 

kinetochore targeting (Wong and Fang, 2005).  These are just some of the known 
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Figure 1-4: Interplay of kinases at the kinetochore.  Schematic representation 
of the relationships between kinases that act at the kinetochore.  For kinases in 
purple, there is evidence of a direct role in SAC activation and error correction.  
Arrows indicate the requirement of one kinase (base) for the localization of another 
kinase (arrow head).  
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functional connections between kinases, and these interdependencies point to a 

complex regulatory network not yet fully understood.   

 

SAC activation: tension versus attachment 

As mentioned above, an established function of several kinetochore 

kinases is to activate SAC signaling.  Specifically, Polo, Aurora B, and Mps1 all 

appear to be significant for the recruitment of checkpoint proteins to 

kinetochores, which initiates the signal when the SAC is active.  What triggers 

this signaling and the molecular mechanism of its transduction, however, remains 

widely enigmatic and fiercely debated.   

Early studies of SAC signaling indicated that it could be triggered either by 

unattached kinetochores (Rieder et al., 1995), or by a lack of tension across 

kinetochores (Li and Nicklas, 1995).  There have been many efforts to distinguish 

how each mechanical property of the kinetochore is sensed and translated into a 

SAC signal (reviewed in Pinsky and Biggins, 2005).  However, this research is 

complicated by the fact that tension and attachment are interdependent: an 

increase in tension across kinetochores clearly stabilizes kinetochore-microtubule 

attachments (Dewar et al., 2004; King and Nicklas, 2000; Nicklas and Ward, 

1994).  Conversely, a lack of tension across kinetochores promotes the error 

correction mechanism that then generates unstable and unattached 

kinetochores.  
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At the heart of the SAC signaling mystery is Aurora B (reviewed in Kelly 

and Funabiki, 2009 and Maresca and Salmon, 2010).  It first appeared to be 

required for signaling the SAC in response to a lack of tension (generated by a 

lack of sister chromatid cohesion or the microtubule stabilizer taxol) but not in 

response to lack of attachment (generated by the microtubule depolymerizer 

nocodazole) (Biggins and Murray, 2001).  Combined with the data that Aurora B 

enables error correction by destabilizing kinetochore-microtubule attachments, a 

model emerged in which a lack of tension caused Aurora B to create unattached 

kinetochore, and this was the primary platform for SAC signaling and the 

convergence of both pathways (Pinsky et al., 2006).   

Other data, however, has implicated a direct role for Aurora B in SAC 

signaling aside from simply creating unattached kinetochores through error 

correction.  First, in mammalian cells and Xenopus extracts Aurora B is required 

for SAC activation in response to both lack of tension and lack of attachment 

(Ditchfield et al., 2003; Hauf et al., 2003; Kallio et al., 2002).  Second, in Xenopus 

egg extracts Aurora B is required for the recruitment of most SAC proteins 

(Vigneron et al., 2004).  Third, a mutant of Incenp has been identified which 

separates the functions of Aurora B.  In the presence of this mutant, Aurora B 

can effect error correction, creating unstable kinetochore-microtubule attachment, 

but the SAC response is impaired (Vader et al., 2007).  Finally, unattached 

kinetochores indeed activate the SAC, but this signal cannot be maintained even 

when all kinetochores are unattached if Aurora B activity is impaired (Santaguida 
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et al., 2011; Vanoosthuyse and Hardwick, 2009).   Similarly, constitutive 

recruitment of Mad1 to the kinetochore arrests cells through SAC activation, but 

this also requires Aurora B (Maldonado and Kapoor, 2011).  Both of these results 

indicate that Aurora B actually plays a role downstream of Mad1/Mad2 

recruitment in perpetuating SAC signaling.  Finally, upon initiation of anaphase 

Aurora B relocates to the spindle midzone.  Preventing this and retaining Aurora 

B at the centromere in anaphase, when there is no longer tension across the 

kinetochore, induces recruitment of some SAC signaling proteins, but does not 

destabilize the kinetochore microtubule attachments (Vázquez-Novelle and 

Petronczki, 2010).  This indicates that lack of tension may signal the SAC without 

creating unattached kinetochores, and that Aurora B mediates this signal.   

 

Sensing tension 

How is tension, or lack thereof, translated from a mechanical to a 

biochemical signal?  Careful studies of the molecular structure of the kinetochore 

have revealed that the tension generated by bioriented microtubule attachment 

generates a stretch, both between sister kinetochores and within a single 

centromere-kinetochore unit (Maresca and Salmon, 2009; Uchida et al., 2009; 

Wan et al., 2009).  The inverse correlation between kinetochore tension and SAC 

activation led to the hypothesis that the critical SAC-activating substrates of 

Aurora B, which is localized to the inner centromere, can only be phosphorylated 

when there is no tension and the substrates are thus close to the kinase.  Upon 
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biorientation, the kinetochore stretch generated by tension pulls the substrates 

away from the kinase, and thus the SAC signaling cannot be generated (Andrews 

et al., 2004; Liu et al., 2009; Tanaka et al., 2002) (see figure 1-2).  This has been 

coined the “spatial separation” model.   

A related sub-model to explain this mechanism exploits the structure of the 

non-catalytic members of the CPC complex.  Incenp has a long coiled-coil 

structure, which binds Aurora B at one end and Survivin and Dasra, which are 

responsible for the localization of the complex, at the other.  Thus it was 

proposed that Incenp acts as a ruler for kinetochore stretch, limiting the activity of 

Aurora B to a defined region in which the SAC signaling substrates reside when 

the kinetochores are not under tension but which they are pulled out of upon 

biorientation (Santaguida and Musacchio, 2009).   

One caveat to both of these models is that they rely on Aurora B being 

stably bound to the inner centromere.  However, FRAP analysis reveals that the 

CPC localization to the centromere is dynamic, and that the dynamicity depends 

on Aurora B kinase activity and microtubule attachment status (Beardmore et al., 

2004).  Additionally, recent immunofluorescence studies show that there is at 

least a small population of active Aurora B associated with the outer kinetochore 

(Deluca et al., 2011).  Supporting an alternative model, work in budding yeast 

suggests that tension across kinetochores causes a conformational change in 

the CPC that impairs the catalytic activity of Aurora B (Sandall et al., 2006).  

These models are not mutually exclusive, and it is likely that many changes of 
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the kinetochore occur upon biorientation.  Disentangling how these changes 

translate into biochemical signals is challenging.   

 

Protein Phosphatase 1  

Clearly, the activation of the SAC and its response to the physical status of 

the kinetochore is perpetuated by kinases.  They phosphorylate critical 

substrates that then translate into formation of the MCC and inhibition of the 

APC.  Specifically, the lack of tension across kinetochores allows substrate 

phosphorylation by Aurora B, and then tension generated by biorientation 

prevents this phosphorylation.  Simply preventing further phosphorylation, 

however, will not change the signal that has already been generated.  This is just 

one example of the essential reversibility of phosphorylation.  Thus 

phosphatases, the enzymes that remove phosphorylation marks, represent an 

equally critical set of regulators of mitotic events. 

 

Evidence that PP1 acts in mitosis 

Protein phosphatase 1 (PP1) was originally isolated from rabbit skeletal 

muscle (Antoniw and Cohen, 1976) and characterized as involved in glycogen 

metabolism (Antoniw et al., 1977).  More than a decade later, it was isolated in 

two independent screens for genes involved in segregation defects in fission 

yeast (Ohkura et al., 1988; Ohkura et al., 1989) and Aspergillus (Doonan and 

Morris, 1989).  As it was becoming increasingly clear that phosphatases, working 
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opposite to kinases, might also be essential mitotic regulators, this led to the re-

examining of the functions of PP1 in other organisms, now specifically looking at 

its potential role in mitosis.   

First, in Drosophila, a mutant of one of the four genes encoding PP1 

isoforms was shown to cause severe mitotic defects in larvae (Axton et al., 1990; 

Dombrádi et al., 1990).  It was then shown in mammalian cells that PP1 localized 

to chromosomes during mitosis, and that injection of inhibitory antibodies against 

PP1 into mammalian cells at different stages of mitosis led to either an arrest at 

metaphase or a defect in cytokinesis (Fernandez et al., 1992).  Interestingly, it 

was first thought in Xenopus that the major phosphatase that acted in mitosis 

was the related enzyme protein phosphatase 2A (PP2A) (Félix et al., 1990), but it 

was later revealed to be a combination of PP1 and PP2A.  Finally, in budding 

yeast the PP1 homologue Glc7, which was also originally characterized for its 

role in glycogen metabolism (Feng et al., 1991), was found to function in mitosis 

as well.    A mutant was isolated that caused mitotic defects in the form of 

chromosome missegregation at permissive temperatures and metaphase arrest 

at restrictive temperatures (Hisamoto et al., 1994).  Thus, in the course of 6 

years, there was phenomenological evidence in almost every model system in 

use that PP1 played an essential role in mitosis.  The next set of questions, 

which persist today, include how PP1 is regulated and what specific mitotic 

functions it carries out.   
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Specific functions of PP1 in mitosis 

The ubiquitous functions of PP1 make identifying the subcellular 

localization of the enzyme difficult.  However, several experiments have shown 

that PP1 is dynamic throughout the cell cycle, and particularly in mitosis it 

localizes to several distinct structures (Bloecher and Tatchell, 2000; Trinkle-

Mulcahy et al., 2003; Trinkle-Mulcahy et al., 2001).  This localization points to 

PP1 serving multiple roles in mitosis.  Specifically, several chromosome-related 

roles have been reported, concurrent with localization of PP1 to chromatin in 

metaphase.   

The only established substrate of PP1 on chromosomes so far is histone 

H3, the phosphorylation and dephosphorylation of which may modulate 

chromosome condensation (Goto et al., 2002; Hsu et al., 2000; Murnion et al., 

2001).  However, several studies have identified other functions attributable to 

the enzyme.  One of the earliest indications of the specific roles PP1 might play 

in mitosis, specifically at the kinetochore, comes from the fact that PP1 opposes 

Aurora B, as mutants in each protein rescue each other (Francisco et al., 1994).  

Not surprisingly, it has been shown that PP1 plays precisely the opposite role to 

Aurora B.  PP1 can both stabilize kinetochore-microtubule attachments (Sassoon 

et al., 1999), and is necessary to silence SAC signaling (Pinsky et al., 2009; 

Vanoosthuyse and Hardwick, 2009).  This SAC silencing function is particularly 

intriguing since it may play a role in the “spatial separation” model of Aurora B 

substrates that activate the SAC.   
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How these functions are modulated and the substrates necessary to carry 

them out remain mysterious.  Interestingly, though, there is evidence that 

localization to the kinetochore can be dynamically regulated and correlated with 

SAC activation.  PP1 chromatin immunoprecipitation with centromeric DNA in 

fission yeast, as well as kinetochore localization of GFP-PP1 in human cells, both 

decrease upon treatment with microtubule destabilizing drugs, concurrent with 

SAC activation (Liu et al., 2010; Meadows et al., 2011) 

The role PP1 plays in mitosis is evident yet enigmatic.  It was once 

thought that most phosphatases, including PP1, worked only passively.  It was 

assumed that only the kinase was regulated, and once the kinase was inhibited 

the phosphorylation was reversed by ubiquitous, soluble phosphatase activity 

(Virshup and Shenolikar, 2009).  It has now become increasingly clear that this is 

not the case.  Phosphatases are regulated in precise networks that work in 

conjunction with kinases to accurately control the phosphorylation level of any 

given substrate, both in time and space.  Deciphering the role of PP1 in mitosis, 

therefore, comes down to determination of the mechanism that controls each 

diverse function.  

 

Regulation of PP1 

PP1 regulatory subunits 

Although early attempts were made to characterize the substrate 

specificity of PP1 using techniques similar to those that identified the sequence 
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specificity of kinases (Antoniw et al., 1977), it soon became clear that PP1 is 

highly promiscuous in vitro.  It also became clear that PP1 serves a plethora of 

distinct, but highly specific functions in vivo.  The first clue to reconciling these 

observations came with the isolation of the first PP1 regulatory subunit, also from 

muscle tissue (Alessi et al., 1992).  Since then, biochemical and structural work 

has established a paradigm for the regulation of PP1.   

In the cell, a host of proteins, now called regulatory subunits, bind PP1 

through an RVxF motif on the regulatory subunit that fits into a binding pocket on 

PP1 that is remote from the catalytic pocket (Egloff et al., 1997) (figure 1-5).  

Notably, though, not all regulatory subunits utilize this method of binding to PP1 

(Ceulemans et al., 2002).  In addition, there exists a secondary binding site, 

called the SILK motif, on some regulatory subunits, which confers higher affinity 

between the regulatory subunit and PP1 (Hendrickx et al., 2009).  These 

regulatory subunits confer specific properties to the catalytic core of PP1 which 

facilitate its performance of a particular cellular function.   

Since the establishment of this regulatory paradigm, large-scale screens 

have been carried out to catalogue known PP1 regulatory subunits and discover 

new ones both in vivo (Moorhead et al., 2008; Walsh et al., 2002) and in silico 

(Hendrickx et al., 2009; Meiselbach et al., 2006).  These efforts represent a shift 

in perspective of PP1 from one enzyme to many holoenzymes, each with distinct 

properties and functions.  The study of the function of PP1 in any given process, 
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Figure 1-5: Structure of a PP1 holoenzyme.  The structure of PP1 (blue) in com-
plex with the regulatory subunit MYPT1 (cyan) was adapted from Terrak et al., 
2004.  The RVxF motif of MYPT1 is in green and the RVxF binding pocket of PP1 
is in magenta.  Residues that conjugate metal ions in the catalytic pocket are in red 
(Egloff et al., 1995).  
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therefore, can be thought of as the compilation of the effects of several 

holoenzymes.   

 

What is substrate specificity? 

Although there were early attempts to characterize the substrate specificity 

of phosphatases in vitro in a similar manner used to characterize kinases 

(Antoniw et al., 1977), it soon became clear that kinases and phosphatases are 

enzymatically quite distinct.  Indeed, the first crystal structure of PP1 revealed 

that the catalytic pocket is significantly shallower than that of most kinases (Egloff 

et al., 1995).  Consequently, the catalytic subunit of most phosphatases, 

especially PP1, is highly promiscuous with little substrate specificity in vitro.  

Regulatory subunits are commonly viewed as conferring substrate specificity to 

the catalytic core of PP1, but what does this mean in practice? 

Localization is probably the most important consideration when 

determining the substrates of a certain PP1 holoenzyme.  By targeting PP1 to a 

particular region of the cell, a regulatory subunit automatically restricts the access 

of the catalytic core to substrates.  But this is not the only mechanism through 

which a regulatory subunit can confer substrate specificity.  A regulatory subunit 

may confer binding sites for specific substrates, thus acting as a scaffold to bring 

together enzyme and substrate, or the regulatory subunit may be a substrate 

itself (reviewed in Bollen et al., 2010).  Other regulatory subunits act as general 

inhibitors of PP1 catalytic activity by blocking or perturbing the active site, such 
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as Inhibitor-1 (Nimmo and Cohen, 1978).  Finally, there is structural evidence that 

at least one PP1 regulatory subunit, MYPT1, does slightly change the shape of 

the catalytic cleft of PP1 upon binding (Terrak et al., 2004).  Whether this change 

is enough to confer substrate specificity, however, is unclear.  Ultimately, the 

relationship between PP1 and each of its regulatory subunits must be elucidated 

in order to fully understand how PP1 functions in the cell.   

 

Isoforms of PP1 

Although budding yeast only have one gene that encodes a PP1 

homologue, GLC7, many higher eukaryotes have multiple isoforms of the 

enzyme.  In mammals, there are three isoforms of PP1; PP1α, PP1β, and PP1γ; 

which primarily differ in their C-terminal 30 residues.  To date, it is unclear how 

their functions differ in the cell.  It is known that no one mammalian isoform can 

completely replace GLC7, and that each replacement shows a different 

phenotype throughout the cell cycle (Gibbons et al., 2007).  For two neuronal 

PP1 regulators, it was shown that the sequences that flank the RVxF motif are 

important for preferential binding of one isoform over others (Carmody et al., 

2004; Terry-Lorenzo et al., 2002), but these sequences are not conserved in 

other PP1 regulatory subunits.  In mitosis, Repo-man preferentially binds PP1γ; 

however, when it is overexpressed in the cell it also binds PP1α (Trinkle-Mulcahy 

et al., 2006).  It is likely that these isoforms serve some overlapping functions in 

the cell, but subtle distinctions between each may prove to be significant.   
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Potential non-catalytic roles of PP1 

The closely related phosphatase PP2A has been shown to play a role in 

chromosome condensation through binding condensin that is independent of its 

catalytic activity (Takemoto et al., 2009).  PP1 itself is a highly structured protein.  

Structural studies of one PP1 holoenzyme revealed that the regulatory subunit by 

itself was highly unstructured, but upon binding to PP1, it folds into a rigid 

conformation (Ragusa et al., 2010).  This mechanism of a conformational change 

of a regulatory subunit upon binding to PP1 may play a role in the function of the 

regulatory subunit that does not necessarily depend on the catalytic activity of 

PP1.  More detailed structural studies of specific PP1 holoenzymes may 

elucidate new modes of regulation in this process.   

 

 

Rationale and significance of this project 

Questions to be addressed 

The question at the heart of this project is the spatial and temporal 

regulation of PP1 in mitosis, particularly at the kinetochore.  To begin, I sought to 

simply establish that PP1 localizes to the kinetochore and that this localization is 

regulated.  Once this was established, I searched for a PP1 regulatory subunit 

that may be responsible for this localization.  Finally, I asked how PP1 

localization to the kinetochore might be related to the established functions of 

PP1 in mitosis.   
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The study of the phosphatase activity controlling mitotic events has the 

same significance traditionally associated with the study of mitotic kinases.  It is 

the balance of kinase and phosphatase activity that establishes the precise 

temporal and spatial domains of the phosphoproteins that carry out essential 

mitotic functions.  Without this balance, mitotic defects such as aneuplody occur.  

Therefore, the study of phosphatases and that of kinases are equally essential to 

our understanding of how the cell faithfully segregates its genome in each cell 

cycle.   

 

Initial challenges 

The discrepancy in timelines of discovery and elucidation between kinases 

and phosphatases is not without reason.  Simply put, with the tools available to 

cellular biologists and biochemists today, it is easier to visualize and quantify the 

appearance of something (i.e. phosphorylation) than the disappearance (i.e. 

dephosphorylation).  In addition, the fact that PP1 functions as many distinct 

holoenzymes has made any significant insight into its function impossible until 

the regulatory protein or proteins involved have been identified.   

At the onset of this project, we knew only a rough approximation of the 

localization of PP1 in mitosis and nothing of whether any specific site of 

localization was functionally significant, let alone what that function may have 

been.  There was little known about the functional domains of PP1, both in time 

and space.  In particular, it was unclear in most systems whether PP1 localized 
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to the kinetochore at all, and no regulatory subunits acting at the kinetochore had 

been identified.  To this end, the goals of this project started with the most basic, 

with more detailed aims to be guided by the data.   

 

Systems and approaches 

To answer the questions outline above, I used two complementary model 

systems.  First, I used the Xenopus egg extract system (Murray, 1991; Murray 

and Kirschner, 1989) as a biochemical approach for looking at protein 

interactions.  In this system, Xenopus laevis eggs are harvested and fractionated 

by centrifugation.  The cytoplasmic fraction, which contains no endogenous 

nuclear DNA, is collected.  These extracts are prepared so that they are arrested 

in meiotic metaphase II (analogous to mitosis) and called CSF (cytosolic factor) 

extracts.  Upon induction with calcium, the extracts can biochemically 

recapitulate a full cell cycle.  They can also form mitotic spindles around 

exogenous DNA in the form of purified sperm chromosomes or DNA coated 

beads.  The system is easily manipulated by immunodepletion and addition of 

recombinant proteins and drugs, and it is ideal for biochemical assays such as 

co-immunoprecipitation.   

One disadvantage of the Xenopus egg extract system is that very large 

proteins are difficult to work with biochemically.  Also, because the system is ex 

vivo and easily manipulated, certain aspects of the biochemistry may be different 

than they would be in a cellular context.  Therefore, I also used the budding yeast 
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Saccharomyces cerevisiae as a genetic system.  Using this system, I was able to 

easily examine the physiological consequences of mutant proteins.  The use of 

these two systems allowed me to approach the problem both from a biochemical 

and a genetic perspective and thus get a broader understanding of the 

phenomenon at hand.   
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CHAPTER 2: PP1 AT KINETOCHORES OF Xenopus laevis 

 

Introduction 

As discussed in the previous chapter, research progress on the regulation 

of phosphatases has historically lagged far behind that of kinases, and the 

mitosis field is no exception.  At the onset of this project, the kinases that control 

specific mitotic events were well characterized, and their substrates and 

regulatory mechanisms were starting to be elucidated.  On the contrary, very little 

was known about the phosphatases antagonizing these kinases.  There were 

some indications of the functions that PP1 may play, particularly involving 

processes at the kinetochore, but virtually nothing was known about its 

substrates and regulation.  

Therefore, the first questions to be addressed by this project were if and 

how PP1 is localized to the kinetochore in mitosis.  To answer these questions, I 

used the biochemical and cellular biology tools available in the Xenopus laevis 

egg extract system.  I first used immunoflorescence (IF) to visualize PP1 on the 

mitotic spindles, and then used co-immunoprecipitation (co-IP) to elucidate the 

regulation of the visualized localization.   
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PP1 localization 

Development of an RVxF binding mutant 

To begin to elucidate the role of PP1 in mitosis, I set out to examine the 

effect of regulatory subunits on the PP1 catalytic core.  Therefore, I started by 

creating a mutant that could no longer bind to the RVxF motif.  An important use 

of this mutant would be to purify recombinant protein and compare its localization 

on mitotic spindles with that of wild type PP1 by adding it to Xenopus egg 

extracts.  This data would allow me to distinguish to which structures PP1 is 

localizing through a regulatory subunit that contains an RVxF motif, and from 

there perform a targeted search for the specific protein.   

To design this mutant, I utilized the crystal structure of PP1 bound to an 

RVxF containing regulatory subunit, MYPT1 (Terrak et al., 2004, figure 2-1A), to 

delineate the residues on PP1 important for this interaction.  In addition, I took 

advantage of the fact that PP1 is very similar to protein phosphatase 2A (PP2A).  

Although the two phosphatases share almost identical catalytic pockets, PP2A 

does not interact with the RVxF motif.  Putting these data together, I chose three 

residues in the RVxF binding pocket of Xenopus laevis PP1γ (xPP1γ) to mutate 

to the corresponding residues in Xenopus laevis PP2A (xPP2A).  

The first mutation was of the residue D242, which form electrostatic 

interactions with the argenine of the RVxF motif.  Second, I mutated C291 

because it forms the base of the valine binding pocket.  I mutated these two 

residues to the corresponding residues of PP2A (Figure 2-1B), making the 
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Figure 2-1: Design of a PP1 RVxF binding mutant.  (A) Crystal structure of the RVxF 
binding pocket of PP1 (adapted from Terrak et al., 2004).  The RVxF domain of MYPT1 is 
in red, PP1 is in blue, and the residues mutated in MBP-xPP1γ to perturb the interaction 
are in magenta.  (B) Alignment between Xenopus laevis PP1γ and PP2A.  Magenta aster-
isks correspond to the mutated residues of PP1 in A.
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mutations D242T, and C291Y.  Finally, I attempted to collapse the hydrophobic 

interactions that form the phenylalanine binding pocket through the mutation 

F258A.   

I mutated these residues in recombinant MBP-xPP1γ, individually and in 

combination.  I first did small-scale preparations of all the mutants on amylose 

resin and tested their ability to bind a peptide containing the RVxF motif of an 

established PP1 regulatory subunit, Repo-man (Trinkle-Mulcahy et al., 2006; 

Vagnarelli et al., 2006).  As controls, I used both wild type xPP1γ and a 

previously described catalytic mutant, D95A (hereafter referred to as xPP1γcat) 

(Huang et al., 1997).  Three MBP-xPP1γ mutants showed promise in abolishing 

the interaction with the RVxF peptide when compared to wild type and the 

catalytic mutant: C291Y, D242T F258A, and D242T C291Y (Figure 2-2A).  I 

carried out large-scale purifications of these proteins.  Titrations with the RVxF 

containing peptide revealed that the best binding mutant was D242T C291Y, 

hereafter referred to as xPP1γRMB (RVxF binding mutant) (Figure 2-2B).   

To ensure that the recombinant MBP-xPP1γ proteins maintained their 

native structure, I performed an in vitro phosphatase assay using p-nitrophenyl 

phosphate (pNPP), a small molecule substrate of PP1 that turns yellow, and thus 

absorbs light at 405 nm when dephosphorylated (Figure 2-3).  As expected, the 

wild type MBP-xPP1γ showed strong phosphatase activity, while MBP-xPP1γcat 

showed very little activity.  Surprisingly, though, MBP-xPP1γRBM showed 

enhanced phosphatase activity over wild type.  This may be evidence of an 
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Figure 2-2: Characterization of MBP-xPP1γRBM.  (A) Small-scale prep of each 
MBP-xPP1γ mutant was incubated with beads coated with peptides containing the 
RVxF motif.  Supernatant and bound proteins were detected by Western blotting 
using anti-PP1γ antibody.  (B) Purified wild-type or mutant MBP-xPP1γ protein at 
the indicated concentrations was bound to peptide beads as in A, detected by 
anti-PP1γ Western blot (top), and quantified (bottom).  
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Figure 2-3: Catalytic activity of recombinant MBP-xPP1γ:  An in vitro phospha-
tase assay using p-nitrophenyl phosphate (pNPP) as a substrate was performed 
with the indicated concentrations of purified MBP-xPP1γ, MBP-xPP1γcat, or MBP-
xPP1γRBM.  Concentration of dephosphorylated pNPP was assessed after 30 min-
utes by spectrophotometry.  
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allosteric effect between the RVxF binding pocket and the catalytic pocket of 

PP1.  Nevertheless, the presence of any catalytic activity indicates that the 

structural integrity of MBP-xPP1γ is maintained in the RVxF binding mutant. 

 

MBP-xPP1γ  on mitotic spindles 

I next examined the localization of PP1 on mitotic spindles assembled in 

Xenopus egg extracts.  I added wild type and mutant MBP-xPP1γ to extracts 

along with purified sperm chromosomes, cycled them through interphase into 

metaphase, and processed them for IF with antibodies against MBP and BubR1 

to mark kinetochore.  Rhodamine labeled tubulin and DAPI stain were used to 

visualize the spindle and the DNA, respectively (Figure 2-4).   

MBP-xPP1γ showed ubiquitous localization on the spindle and 

chromosomes, but deconvolution of confocal z-stacks revealed a strong 

enrichment at the kinetochores.  While MBP-xPP1γcat showed a similar 

localization pattern, MBP-xPP1γRBM failed to enrich at kinetochores.  Interestingly, 

MBP-xPP1γRBM retained faint localization on chromosomes, indicating there may 

be a non-RVxF regulatory subunit that is at least partially responsible for 

targeting PP1 to chromatin.   

 

KNL1: a PP1 regulatory subunit 

The localization data suggested that there is an RVxF containing protein 

that is responsible for targeting PP1 to the kinetochores.  Based on this, I 

41



MBP BubR1
MBP

BubR1

MBP

MBP-
PP1γ

MBP-
PP1γRBM

MBP
tubulin
DNA

MBP-
PP1γcat

Figure 2-4: MBP-xPP1γ localization on mitotic spindles.  Spindles assembled 
on replicated sperm chromosomes in Xenopus metaphase extracts containing the 
indicated MBP-xPP1γ recombinant proteins and rhodamine-tubulin were 
processed for immunoflorescence and stained with Hoechst 33258 (DNA), anti-
MBP, and anti-BubR1 antibodies.  Scale bar, 15 μm.  Insets, higher magnifications 
of the regions indicated by arrowheads.
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examined all of the known kinetochore proteins to determine which ones have 

evolutionarily conserved RVxF motifs, and tested their interaction with PP1 in 

Xenopus egg extracts.  The proteins I first focused on were KNL1, CENP-E, EB1, 

and Ki67.  Due to difficulties such as low expression in an in vitro translation 

reaction or high background in the co-immunoprecipitation, however, none of the 

full-length proteins could be verified to interact with PP1.  

Once I obtained and sequenced the full-length Xenopus laevis clone of 

KNL1 (see Figure A-3), I found that it contained evolutionarily conserved RVxF 

(here RVSF) and SILK motifs close to its N-terminus (Figure 2-5).  Because full-

length KNL1 is very large (approximately 312 KDa), it also did not express well in 

an in vitro translation reaction.  However, I was able to create two N-terminal 

fragments that contained the RVxF motif, xKNL1300 and xKNL1790, comprising the 

first 300 and 790 residues, respectively.  Both of these truncated proteins 

expressed well, so I was able to use them to focus on assessing the interaction 

between KNL1 and PP1.   

To determine whether KNL1 and PP1 interact in extract, I added 35S 

labeled in vitro translated proteins to extract and looked for co-

immunoprecipitation using an anti-xPP1 antibody, which binds to both PP1α and 

PP1γ.  Both truncations showed robust co-immunoprecipitation with PP1 in 

extract both in interphase and mitosis (Figure 2-6).  When the RVSF motif was 

mutated to RASA, the interaction with PP1 was abolished.  These data indicate 
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Figure2-5: KNL1 contains conserved PP1 binding motifs.  (A) Alignment of the 
SILK (top) and RVxF (bottom) motifs of KNL1 from X. laevis (xKNL1), H. sapiens 
(hKNL1), G. gallus (ggKNL1), D. melanogaster (dmSPC105), C. elegans 
(ceKNL-1), S. pombe (spSPC7), and S. cerevisiae (scSPC105). Arrows indicate 
S23, S54, and S58 of xKNL1.
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Figure 2-6: xKNL1 interacts with PP1 in Xenopus extract.  35S-labeled PP1 
(positive control), GFP (negative control), and wild type or the RASA mutant of 
xKNL1790 (top) or xKNL1300 (bottom) were added to metaphase or interphase 
extracts.  35S-labeled proteins in extract (IN) and co-immunoprecipitated with anti-
PP1 or control anti-GFP antibody beads (B) were visualized by autoradiography.
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that the RVSF motif of KNL1 is functional, and that KNL1 is a good candidate for 

a PP1 regulatory subunit at the kinetochore.   

 

Phosphorylation of KNL1 

The KNL1-PP1 interaction is sensitive to phosphorylation 

It had previously been reported that Aurora B phosphorylates KNL1, and 

this phosphorylation mediates the affinity of the KMN network for microtubules 

(Welburn et al., 2010).  The exact residues that are phosphorylated by Aurora B, 

however, had not been established.  There are three conserved Aurora B 

consensus sites in and near the SILK and RVxF PP1-binding motifs (see Figure 

2-5), which are S23, S54, and S58 in the Xenopus laevis protein.  Notably, the “x” 

of the RVxF motif is one such serine (S58), and this is the only one of the three 

that is conserved in budding yeast.   

I hypothesized that phosphorylation of one or all of these residues might 

impair the interaction between KNL1 and PP1.  This could serve as a mechanism 

for proper temporal regulation of PP1 recruitment to the kinetochore (Figure 2-7), 

and in fact I had already established phosphorylation of the RVxF motif as a 

mechanism to regulate PP1 binding using the Repo-Man regulatory subunit (see 

Appendix, Figure A-2).  In this model, early in mitosis, when error correction is 

occurring and the SAC needs to be active, Aurora B phosphorylates several 

substrates to achieve these activities.  In addition, Aurora B may phosphorylate 

KNL1 on the SILK and RVxF motifs in order to exclude PP1 from the kinetochore, 

46



P

P

P

P

P

P

P

P

P

P

P

P

P

Aurora B

KNL1

PP1

P
P

P

P P

P
PP

PP

SAC

Figure 2-7: Possible model for regulating the KNL1-PP1 interaction.  With 
incorrect attachment (top), Aurora B phosphorylates substrates that activate the 
SAC and the KNL1 RVxF motif, which prevents targeting of PP1 to the kineto-
chore.  With bipolar attachment (bottom), phosphorylation of substrates at the 
kinetochore is reduced, including the RVxF motif of KNL1.  This promotes recruit-
ment of PP1, reinforcing low phosphorylation levels.  
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thus allowing Aurora B substrate phosphorylation levels to remain high by 

eliminating the counteracting phosphatase activity.  Once biorientation has been 

achieved and phosphorylation levels of Aurora B substrates, including KNL1, are 

reduced, then PP1 is recruited to the kinetochore to ensure that phosphorylation 

levels remain low and anaphase can proceed.   

To test this hypothesis, I examined the interaction of KNL1 (using the 

truncated xKNL1300 protein) and PP1 in extracts treated with okadaic acid.  

Okadaic acid is a phosphatase inhibitor that acts on both PP1 and PP2A, the 

major phosphatases working in the extract, and thus stabilizes many 

phosphorylation marks.  In addition, since Aurora B is activated by 

autophosphorylation, treatment of the extracts with okadaic acid causes 

hyperactivation of Aurora B.  In CSF (mitotic) extracts treated with okadaic acid, 

the interaction between KNL1 and PP1 is indeed abolished (figure 2-8A).  This 

sensitivity is dependent on the three Aurora B consensus sites, since when all 

three are mutated to alanine (xKNL1300,AAA) co-immunoprecipitation with PP1 

persists even in the presence of okadaic acid.  All three serines contribute to this 

sensitivity, since when any one serine remains the sensitivity is still present to 

varying degrees (Figure 2-8B).  This indicates that phosphorylation on KNL1 can 

in fact abolish its interaction with PP1.   
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Figure 2-8: The KNL1-PP1 interaction is sensitive to KNL1 phosphorylation.  (A) 
Metaphase egg extracts, containing 35S-labeled PP1 (positive control), GFP (negative 
control), and either xKNL11300, xKNL11300,AAA, or xKNL11300,RASA, were treated with 0.4 
μM okadaic acid (OA), or with DMSO for 30 minutes at 20°C.  35S-labeled proteins in 
extract (INPUT) and co-immunoprecipitated with anti-PP1 antibody (BEADS) were visual-
ized by autoradiography.  (B) 35S-labeled PP1, GFP, and xKNL11300 with the indicated 
alanine mutants of S23, S54 or S54, were co-immunoprecipitated from metaphase egg 
extracts treated as in A.  35S-labeled proteins were visualized by autoradiography (left), 
and the relative, normalized % ratios of KNL1 proteins copurified with PP1 were calcu-
lated as [(KNL1OA/PP1OA)/(KNL1DMSO/PP1DMSO)] x 100 (right). 
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Aurora B-mediated phosphorylation of KNL1 

To facilitate in vitro examination of the phosphorylation of KNL1 by Aurora 

B, I purified a bacterially expressed recombinant protein containing the first 100 

residues of xKNL1, which includes the SILK and RVSF motifs and all three 

Aurora B consensus sites, with a FLAG tag (xKNL1100-FLAG).  I purified wild type 

protein and all possible serine-to-alanine mutant combinations.  A 32P-ATP in 

vitro kinase assay revealed that xKNL1100-FLAG was phosphorylated by Aurora 

B, but not by Polo or Haspin kinases (figure 2-9A).  I then used the serine-to-

alanine mutants to examine which sites are phosphorylated, and found that 

Aurora B can phosphorylate all three residues.  However, when all three are 

mutated to alanine, the 32P-phosphorylation signal is completely eliminated 

(Figure 2-9B), indicating that there are no other Aurora B target sites in this 

region of the protein.   

To examine the activity of Aurora B towards KNL1 in a biological context, I 

added xKNL1100-FLAG to extracts.  Taking advantage of the overlapping 

substrate specificities of Aurora B and protein kinase A (PKA), I used a 

commercially available anti-PKA substrate antibody against the RRXS/Tph 

phospho-motif.  This antibody will recognize any of the three Aurora B sites on 

xKNL1100-FLAG.  In CSF extract, xKNL1100-FLAG, but not xKNL1100,AAA-FLAG, 

was phosphorylated in response to okadaic acid treatment.  When the CPC was 

depleted, the phosphorylation signal was mostly, but not entirely, eliminated 

(Figure 2-10A).  
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Figure 2-9: Aurora B phosphorylates xKNL1.  (A) xKNL1100-FLAG was incu-
bated with the indicated kinases and γ-32P-ATP.  Samples were taken at 0, 20, 40, 
and 60 minutes and visualized for 32P-ATP incorporation by autoradiography.  (B) 
xKNL1100-FLAG containing various serine (S) to alanine (A) mutations as indi-
cated at residues 23, 54, and 58 respectively were incubated with recombinant 
Aurora B-INCENP790-871 and γ-32P-ATP. Coomassie staining of xKNL1100-FLAG 
and autography are shown.
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Figure 2-10: Phosphorylation of xKNL1 by Aurora B in extract.  (A) Recombinant 
xKNL1100-FLAG or xKNL1100,AAA-FLAG proteins were added to metaphase control 
extracts (ΔIgG) or to those depleted of the CPC using anti-INCENP antibody (ΔCPC).  0.4 
μM okadaic acid (OA) was added to these extracts and incubated for 60 minutes. Extracts 
were analyzed by Western blotting using anti-FLAG (red) and anti-RRxS/Tph (green) anti-
bodies.  (B) Co-immunoprecipitation was performed between PP1 and xKNL1300 or 
xKNL1300,RASA as in figure 2-8A in metaphase ΔIgG or ΔCPC extracts. 
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Based on these data and the working hypothesis, if Aurora B is not 

present to phosphorylate these residues of KNL1, then KNL1 would consistently 

interact with PP1 independent of any stimuli.  This was not the case, however, 

and the co-immunoprecipitation of KNL1 and PP1 is still sensitive to okadaic acid 

even when Aurora B is depleted (Figure 2-10B).  This could be attributed to the 

residual phosphorylation of xKNL1100-FLAG seen in the presence of okadaic 

acid.  Since these N-terminal truncations of KNL1 lack the domain necessary to 

target it to the kinetochore (Kerres et al., 2007) and would therefore be 

cytoplasmic, other baso-directed kinases (such as Aurora A or PKA) may be 

phosphorylating these residues that would not normally have access to KNL1 at 

the kinetochore.  This is particularly relevant since a single phosphorylation event 

is sufficient to cause reduction of the KNL1-PP1 interaction.  I therefore sought to 

test this model without interference of other, likely irrelevant, kinases.   

To definitively show that Aurora B phosphorylation of KNL1 can impair its 

interaction with PP1, I recapitulated the KNL1-PP1 interaction in vitro.  When 

xKNL1100-FLAG was incubated with MBP-xPP1γ in vitro and isolated using anti-

FLAG antibody beads, it interacted with MBP-xPP1γ and MBP-xPP1γcat, but not 

with MBP-xPP1γRBM (Figure 2-11A).  I then tested the interaction between 

xKNL1100-FLAG and MBP-xPP1γcat when the xKNL1100-FLAG was pre-treated 

with Aurora B in the presence of ATP.  The catalytic mutant of MBP-xPP1γ was 

used to ensure that the phosphatase would not remove the marks placed by 

Aurora B, since even at 4°C PP1 retains some enzymatic activity.  Indeed, 
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Figure 2-11: Regulation of the KNL1-PP1 interaction by Aurora B in vitro.  (A) MBP-
xPP1γ or MBP-xPP1γRBM was incubated with xKNL1100-FLAG, followed by immunopre-
cipitation using anti-FLAG antibody, and analyzed by Western blots.  (B) xKNL1100-FLAG 
was treated with recombinant Aurora B-INCENP790-871, in the presence or absence of 
ATP.  xKNL1100-FLAG was then isolated with anti-FLAG beads and incubated with 1 μM 
MBP-xPP1γcat.  Fractions bound to the beads were visualized with Coomassie.  Normal-
ized PP1/KNL1 ratio is indicated below.
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prephosphorylation of xKNL1100-FLAG by Aurora B abolished its interaction with 

MBP-xPP1γcat.  The interaction between xKNL1100,AAA-FLAG and MBP-xPP1γ, 

however, was insensitive to Aurora B treatment (Figure 2-11B).   

 

Nocodazole treatment causes PP1 redistribution 

One prediction that can be made based on the biochemical data is that 

when the SAC is active, PP1 should be excluded from the kinetochore.  A 

practical consequence of this is that when spindles assembled in Xenopus egg 

extracts are treated with nocodazole to generate unattached kinetochores, PP1 

should no longer be visible on the kinetochore by immunofluorescence.  Indeed, 

this phenomenon had been observed previously in human cells (Liu et al., 2010).  

To avoid any perturbation of the system by the addition of excess phosphatase 

activity, I observed the localization of MBP-xPP1γcat on mitotic spindles with and 

without nocodazole treatment.  Surprisingly, even upon nocodazole treatment, 

PP1 was still targeted to kinetochores (Figure 2-12A).   

Upon closer inspection, the localization pattern of MBP-xPP1γcat around 

the kinetochore is different in control and nocodazole treated samples.  

Qualitatively, the signal appears to be more diffuse around the CENP-A marked 

kinetochores.  To quantitate this, I used the Pearson’s coefficient, which 

measures the co-localization of two signals by measuring the degree of overlap 

of each signal.  This measurement for CENP-A and MBP-xPP1γcat was 

decreased in the nocodazole treated sample when compared with the control 
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Figure 2-12: Redistribution of PP1 on unattached kinetochores.  (A) Meta-
phase spindles were assembled in Xenopus egg extracts, treated with either 
DMSO (control) or nocodazole, processed for immunofluorescence, and stained 
with Hoechst 33258 (DNA), anti-MBP, and anti-CENP-A antibodies.  Scale bar, 15 
μm.  (B) The mean ± SEM of the Pearson’s coefficient (blue) and FWHM of the Van 
Steensel’s curve (red) between CENP-A and MBP-PP1γcat are shown for control 
and nocodazole-treated spindles.  n = 5 spindles each.  
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(Figure 2-12B).  Practically, this measurement means that there is more PP1 

present that is not perfectly overlapping with CENP-A in the nocodazole treated 

samples.  Additionally, the Van Steensel analysis calculates the Pearson’s 

coefficient of co-localization when one channel is offset relative to the other 

(Bolte and Cordelieres, 2006).  This analysis generates a bell curve, and the full-

width-half-maximum (FWHM) of this curve was increased upon nocodazole 

treatment.  This means that the width of the MBP-xPP1γcat signal relative to the 

CENP-A foci is larger, representing a change in the localization pattern of PP1.   

 

Discussion 

A mechanism for temporal regulation of PP1 

Taken together, these data strongly suggest that KNL1 can interact with 

PP1 in mitosis, and that Aurora B phosphorylation of KNL1 abrogates this 

interaction.  Given that KNL1 is a known kinetochore component, this presented 

a logical mechanism for the temporal and spatial regulation of PP1 at the 

kinetochore.  This mechanism could potentially act as a bistable switch such that 

when Aurora B is active, it ensures high substrate phosphorylation by also 

preventing localization of the counteracting phosphatase.  Once the activity of 

Aurora B is decreased just enough such that PP1 can be recruited by KNL1, the 

phosphorylation level would be further suppressed.   
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PP1 on unattached kinetochores 

Grossly speaking, my data clearly indicates that PP1 is not completely 

excluded from unattached kinetochores in this system.  Similar experiments in 

human cells have produced conflicting results.  Examination of endogenous PP1γ 

indicates that PP1 localization to the kinetochore does not change upon 

treatment with nocodazole (Trinkle-Mulcahy et al., 2003); however, ectopically 

expressed GFP-PP1 does show a reduction (Liu et al., 2010).  These differences 

may be a result of methodology or detection limits, or may represent a 

physiological difference between cell types and systems.  Further study would be 

needed to determine the exact dynamics of PP1 on unattached kinetochores. 

What is also apparent from my data is a redistribution of PP1 upon 

nocodazole treatment.  It appears that PP1 may be targeted to the 

pericentromeric region, which may function to keep PP1 in proximity to the 

kinetochore so that it can be rapidly recruited upon biorientation.  Since PP1 has 

already been shown to be involved in heterochromatin formation (Goto et al., 

2002; Hsu et al., 2000), a similar targeting mechanism may be involved here.  

However, it is also possible that this difference is simply an artifact.  In Xenopus 

egg extracts, the chromatin structure is rearranged upon nocodazole treatment, 

as shown by the shape of the DNA staining.  This rearrangement alone may be 

causing the difference in PP1 localization pattern, and more careful studies would 

need to be done to determine whether it is indeed being targeted to 

pericentromeric heterochromatin.   
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Physiological significance of the KNL1-PP1 interaction 

From the data presented here, it is clear that the RVxF motif of KNL1 is 

capable of binding PP1 and that this interaction can be abrogated by 

phosphorylation on KNL1 by Aurora B.  From these considerations emerged a 

very attractive model to precisely regulate the phosphorylation status of 

kinetochore proteins.  However, the limitations of Xenopus egg extracts as a 

model system forced me to use small, truncated proteins that were not even 

targeted to the kinetochore.  Therefore, I had no way of knowing whether these 

interaction and modifications occurred in the context of the kinetochore.   

Another limitation to these data is addressing the functional significance of 

the KNL1-PP1 interaction and its regulation.  This regulatory mechanism could 

affect one or both of the known functions of the PP1-Aurora B balance, namely 

kinetochore microtubule stability and SAC signaling; or it could represent a 

completely novel function for these enzymes at the kinetochore.  In  Xenopus egg 

extracts it is normally possible to immunodeplete and add back mutant proteins 

to probe their effects on spindle assembly, kinetochore-microtubule attachment, 

and SAC activation.  However, the size and abundance of KNL1 was again a 

limiting factor.  I could not detect the endogenous protein by Western blot, and I 

could never get full-length protein to express either in extract or bacteria.   

For these reason, I chose to continue this project in the budding yeast 

Saccharomyces cerevisiae.  In this genetic system, issues such as very large 
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proteins and low abundance that impair biochemical studies are not a problem.  

Thus, I was able to probe the physiological consequences of abrogating the 

KNL1-PP1 interaction and its regulation.   
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CHAPTER 3: THE KNL1/SPC105-PP1 INTERACTION IN BUDDING YEAST 

 

Introduction 

Kinetochore structure and sub-complexes are highly conserved from 

mammals down to yeast.  In fact, the budding yeast kinetochore, which binds a 

single microtubule, is thought represent the basic repeated unit that makes up 

the mammalian kinetochore, which binds 15 to 20 microtubules.  To this end, I 

continued my examination of the KNL1-PP1 interaction in budding yeast.   

In this system, the homologue of KNL1 is Spc105.  Although it was 

originally identified as a spindle pole component, it is now known to function in 

the same KMN network as in mammals that works at the kinetochore to form the 

microtubule interface (Nekrasov et al., 2003).  In budding yeast, the GLC7 gene 

encodes the single PP1 homologue and IPL1 is the homologue of Aurora B.  For 

the remainder of this chapter, I will refer to KNL1, PP1, and Aurora B as Spc105, 

Glc7, and Ipl1 respectively.   

 

Generation of Spc105 mutants 

Inducible gene replacement 

The genetic tools of budding yeast are vast.  However, generating 

targeted, physiologically relevant mutants is subtly challenging.  Most methods 

utilize non-endogenous promoters or protein degradation that may be 

incomplete.  Furthermore, examination of the terminal phenotype of lethal alleles 

61



was also difficult.  To circumvent these issues, I utilized a new method developed 

in the Cross lab for the inducible generation of a point mutant at the endogenous 

locus of a gene (Cross and Pecani, 2010).  This method relies on the 

endogenous double strand break repair machinery of the cell, and does not 

require auxotrophic selection to obtain mutants (Figure 3-1).   

To employ this method, called here HGR (HO-induced gene replacement), 

I first inserted a cassette (spc105NT) consisting of a partial gene encoding the N-

terminal region of Spc105 containing a specific mutation that is marked with a 

restriction site, followed by an HO endonuclease cut site (HOcs) and the URA3 

gene, at the promoter region of SPC105.  All strains are MATa-inc, in which the 

HO cut site in the MATa locus has been mutated.  Consequently, the HO-site in 

this cassette is the only one in the genome.  Generation of a double strand DNA 

break at the HO-site by induction of GAL-HO stimulates homologous 

recombination between the truncated spc105 from the cassette and the full-

length endogenous SPC105 gene.  This results in essentially all cells in the 

culture undergoing recombination to produce either wild-type or mutant spc105, 

depending on the site of crossover, which can be distinguished by the presence 

of the restriction site.  The greatest advantages of this method come with lethal 

mutations, since the consequences of introducing the mutation can be observed 

in the first few cell cycles following recombination.   
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Figure 3-1: The HO-induced Gene Replacement (HGR) method.  (A) Sche-
matic of the HGR method.  Asterisk indicates the desired mutation, arrows indicate 
primers used for genotyping.  Homologous recombination after HO-induced DNA 
breaks generates full-length wild-type SPC105 (1) or mutant spc105 (2)  
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Spc105 RVxF mutants 

Based on the biochemical experiments carried out in Xenopus egg 

extracts, I hypothesized that Spc105 targets Glc7 to the kinetochore, and that 

Ipl1 can regulate Glc7 recruitment by phosphorylating Spc105 and abrogating 

this interaction.  To test this hypothesis, I sought to examine the effects of three 

mutants of the Spc105 RVSF motif using the HGR method.  The first was a PP1 

binding mutant, RASA.  The second was an unphosphorylatable mutant, RVAF.  

This mutation represents the only conserved Aurora B consensus site studied in 

Xenopus and therefore with this mutant, Ipl1 would be unable to regulate to 

Spc105-Glc7 interaction.  The third mutant was a negative control that introduced 

the STOP codon ochre at the start of the RVSF motif (R75ochre).  Since Spc105 

is an essential gene (Wigge et al., 1998), and this small truncation (the N-

terminal 74 residues) does not include the domain necessary to localize to 

kinetochores (Kerres et al., 2007), I expected this mutation to be lethal.  Finally, 

as a control for the new method, I used a cassette without any mutation that 

should simply produce wild type cells independent of the recombination site.   

To initially examine the viability of each mutant, I incubated the parent 

strains  (SPC105NT) on galactose for 6 hours, which is sufficient time to ensure 

that almost all cells have undergone recombination.  I then isolated single cells, 

and let them grow into colonies.  Once grown, I isolated DNA from each viable 

colony and determined the genotype by PCR and restriction digest.  This is the 

single cell colony assay (SCA) (Figure 3-2).  Parent cells containing the wild type- 
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Figure 3-2: Viability of Spc105 mutants.  (A) Single cell colony assay of 
spc105NT-WT, spc105NT-RVAF, spc105NT-R75ochre, and spc105NT-RASA parent cells. 
Six hours after GAL-HO induction, single cells were isolated, allowed to grow to 
isogenic colonies, and genotyped.  Number of colonies with the indicated geno-
types or those that failed to form macroscopic colonies (DEAD) is shown.  (B)   
Representative genotyping of generated recombinant colonies.  The genomic 
SPC105 locus was PCR amplified from recombinant colonies using primers A and 
B in Figure 3-1, digested with mutation-specific restriction enzymes, and resolved 
on an agarose gel.  Red asterisks indicate colonies with growth defects. 
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or RVAF-inducing cassette (SPC105NT-WT and SPC105NT-RVAF, respectively) 

produced cells that all grew up with wild-type kinetics.  Genotyping revealed that 

all the colonies produced from the SPC105NT-WT parent were SPC105.  The 

SPC105NT-RVAF parent, on the other hand, produced colonies that were both 

SPC105 and spc105RVAF, with indistinguishable rates of colony growth.  From the 

R75ochre-inducing cassette (SPC105NT-R75ochre), two populations of colonies 

were formed: one with wild type kinetics, and one viable but with a growth defect.  

The cells with wild type growth were indeed SPC105, while the slow-growing 

cells were spc105R75ochre.  The viability of these cells at all was surprising, since 

SPC105 is an essential gene.  I speculate that this viability is due to the read-

through of the single STOP codon, making this allele a hypomorph.   

In contrast, only a subset of the cells resulting from the RASA-inducing 

cassette (SPC105NT-RASA) grew to form viable colonies, and these were all 

SPC105.  The rest of the cells died as clumps and strings of large budded cells 

(Figure 3-3B).  Using the methods available, I could not extract DNA from these 

cells for genotyping.  However, when I induced recombination in liquid culture 

and extracted DNA from the mixed population for genotyping 6 hours later, I 

could detect the generation of the spc105RASA allele (Figure 3-3A).  I could 

therefore infer that the death of this subpopulation was due to the spc105RASA 

mutation.   

To determine the cell cycle status of these cells as they die, I used live 

imaging of GFP-tubulin (Figure 3-3C).  Imaging spc105NT-RASA cells from 6 hours 
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Figure 3-3: The terminal phenotype of spc105RASA.  (A) Six hours after induc-
tion of HGR in the parent strain harboring the NT-RASA cassette, the genomic 
SPC105 locus was PCR amplified from bulk culture and digested with PvuII to 
detect generation of spc105RASA.  (B) Representative colonies of the two classes 
of recombinants resulting from the RASA-inducing cassette were imaged at the 
times indicated after single cell isolation.  The colony on the left harbors wild-type 
SPC105 as confirmed by genotyping analysis.  Scale bar, 50 μm.  (C) Time-lapse 
microscopy of GFP-Tub1 (green) was performed on spc105NT-RASA cells begin-
ning 6 hours after GAL-HO induction.  Scale bar, 10 μm.
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after galactose induction for a duration of 12 hours revealed cells with very 

prolonged metaphase delays (more than 4 hours in most cases), followed by a 

sudden anaphase, while other cells, likely the SPC105 wild type recombinants, 

divided with normal kinetics.  Pedigree analysis of cells exhibiting long mitotic 

delays revealed that some of the daughter cells attempted to divide again, with 

another metaphase delay, while others simply stopped growing (Figure 3-4).  By 

contrast, all of the spc105NT-RVAF cells showed normal division kinetics after 

recombination, so the abnormal divisions seen in the spc105NT-RASA population is 

not due to the recombination events.  This suggests that the terminal phenotype 

of the spc105RASA mutation is a mitotic arrest, although the penetrance of this 

arrest is not complete.  Perhaps the few cellular divisions that these cells go 

through are due to stochastic drops in CDK1 levels, which induce anaphase.   

 

Rescuing spc105RASA 

Interaction with IPL1 

To further study the spc105RASA mutant, I searched for suppressor 

mutations.  Suppressor mutations can both give insight into the physiological 

consequences of the mutation as well as enable further study by producing a 

viable strain with the mutation.  If the phenotype of spc105RASA was truly due to a 

loss of Glc7 phosphatase activity at the kinetochore, then I hypothesized that 

impaired kinase activity might ameliorate this loss and even out the 

phosphorylation balance.  The mutation ipl1-1 had already been shown to 
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Figure 3-4: Pedigree analysis of SPC105 mutants.  Pedigree analysis of recom-
binants generated from the cells harboring the NT-RVAF or NT-RASA cassettes 
during live cell imaging.  Each lineage starts from a single unbudded cell and the 
duration of budding to anaphase (black rectangle) and anaphase to budding (line) 
was measured.  Cells were followed for three generations or until the end of the 
movie (asterisks).  When the lineage splits at each division, fates of the mother cell 
and the daughter cell are shown on the left and right, respectively.  (A) Represen-
tative pedigrees for cells resulting from the NT-RVAF cassette.  (B) Pedigree 
analysis of recombinants generated from the cells harboring the NT-RASA cas-
sette.  Representative lineages showing abnormal cell divisions (left 3 examples) 
and normal cell divisions (right 2 examples) are shown.
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partially rescue the glc7-1 mutation, so I tested whether ipl1-1 could also rescue 

spc105RASA.  Indeed, at the semipermissive temperature for ipl1-1, 30°C, viable 

spc105RASA cells were recovered from the SCA in the ipl1-1 background (Figure 

3-5A).  The cells are viable, albeit with a slight growth defect.  When they were 

shifted to 23°C and full Ipl1 function was restored, the ipl1-1 spc105RASA cells 

were again lethal (Figure 3-5B).  On the other hand, when the double mutant 

cells were shifted closer to the non-permissive temperature for ipl1-1, the 

spc105RASA mutation partially rescued the growth of ipl1-1.  These results 

indicate that the Spc105-recruited Glc7 functions to balance the kinase activity of 

Ipl1 at the kinetochore.   

 

spc105RASA and the SAC 

Based on previous research, Glc7 has two known functions at the 

kinetochore: to stabilize kinetochore microtubule attachments and to silence the 

SAC (Pinsky et al., 2009; Sassoon et al., 1999; Vanoosthuyse and Hardwick, 

2009).  Both of these functions act in opposition to Ipl1.  To elucidate the function 

of the Spc105-Glc7 interaction, I decided to examine the interaction of the 

spc105RASA mutation with MAD2.  In budding yeast, mad2Δ cells are viable while 

exhibiting some chromosome segregation defects, but they do not arrest in 

response to microtubule poisons (Li and Murray, 1991).  This indicates that the 

SAC is not essential in this system.  On the other hand, many mutants that cause 

structural defects in kinetochore architecture or the kinetochore-microtubule 
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interface are synthetically lethal with mad2Δ (Cheeseman et al., 2001b; Daniel et 

al., 2006; Hardwick et al., 1999; Montpetit et al., 2005; Tong et al., 2004).  This 

negative interaction is presumably because cells that have perturbed 

kinetochores need the SAC to allow enough time to form bipolar attachments.   

Based on these ideas, there are two possible hypotheses for the 

spc105RASA mad2Δ double mutant.  If Spc105-recruited Glc7 is responsible for 

silencing the checkpoint, then elimination of the checkpoint would make silencing 

no longer essential and the double mutant should consequently be viable.  

Conversely, if this pool of Glc7 were responsible for kinetochore-microtubule 

stabilization, then the spc105RASA mutation would cause unstable kinetochore-

microtubule attachments and should still be lethal in a mad2Δ background.  The 

first hypothesis was borne out: in a mad2Δ background, completely viable 

spc105RASA cells were recovered from the SCA (Figure 3-6).  By contrast, 

spc105R75ochre, which is sick in a wild type background (see above), is lethal in a 

mad2Δ background.  This likely reflects an effect of this mutant on kinetochore 

stability, analogous to the kinetochore structural mutants discussed above.   

The spc105RASA mad2Δ cells showed no cell cycle defects when assayed 

by budding index after a G1 arrest or kinetics of Pds1 degradation in mitosis 

(Figure 3-7).  The double mutant did, however, show a slightly reduced growth 

rate compared to mad2Δ cells (Figure 3-8A).  This may be due to another 

function of the Spc105-recruited Glc7.  To examine whether the spc105RASA 

mutation had a subtle effect on kinetochore function, I looked at chromosome 
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Figure 3-8: spc105RASA causes a minor effect on chromosome segregation.  
(A) Growth curve of mad2Δ and mad2Δ spc105RASA at 30°C in YEPD medium.  
Average ± SEM of the doubling time of three independent experiments are also 
shown.  (B) IPL assay of mad2Δ and mad2Δ spc105RASA cells containing a chro-
mosome III marked with a leu2 locus disrupted by URA3.  The mean frequency ± 
SEM of disomy formation (assessed by generation Leu+, Ura+ colonies) from ten 
independent cultures are shown.
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segregation using an increase in ploidy (IPL) assay.  This assay, originally used 

to characterize Ipl1 for its role in chromosome segregation, assesses the 

occurrence of disomy of chromosome III using auxotrophic markers (Chan and 

Botstein, 1993).  When compared to mad2Δ cells, which have an elevated 

missegregation occurrence over wild type cells, spc105RASA mad2Δ cells showed 

a very slight, though statistically significant, increase in disomy III (Figure 3-8B).  

This may explain the slightly slower growth rate observed for the double mutant.  

Taken together, these data indicate that the Spc105-Glc7 interaction is essential 

for its role in silencing the SAC, and that it plays an auxiliary, non-essential role in 

physical chromosome segregation, likely through stabilization of kinetochore-

microtubule attachments.   

Since Mad2 is localized to the kinetochore, the deletion of the protein may 

result in other structural perturbations of the kinetochore that affect the Spc105-

Glc7 interaction.  To alleviate this concern, I sought to manipulate SAC signaling 

without any possible effect on kinetochore structure.  To achieve this, I used the 

dominant mutant CDC20-127 (figure 3-9).  This mutant is insensitive to Mad2 due 

to a mutation in the Mad2 binding site (Hwang et al., 1998; Indjeian et al., 2005).  

When this protein is expressed under a tetracycline repressible promoter (tetR-

CDC20-127), the MCC cannot sequester it even when the SAC is signaled and it 

will constitutively activate the APC/C.  When the cells are put on doxycycline, the 

expression of this dominant protein is repressed and the SAC becomes 

responsive to signaling again.  Consistent with the interaction with mad2Δ, 
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Figure 3-9: The molecular mechanism of Cdc20-127.  The dominant protein 
Cdc20-127 lacks the domain required to bind Mad2.  Therefore, even when the 
SAC is signaled from incorrectly attached kinetochores, the MCC cannot seques-
ter Cdc20-127, the ACP/C gets activated, and anaphase proceeds.  However, the 
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CDC20-127 is repressed and only wild type Cdc20 remains, the cells are again 
responsive to SAC signaling.  
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spc105RASA is viable in the tetR-CDC20-127 background.  When these cells are 

treated with doxycycline, they die with a similar morphology as previously 

described for spc105RASA (Figure 3-10A).  Biochemically, when released from G1 

in the presence of doxycycline, they show prolonged stabilization of Pds1 levels 

and hyperphosphorylation of Mad1, indicative of SAC activation (Figure 3-10B).  

This data confirms that the terminal phenotype of the spc105RASA mutation is 

prolonged activation of the SAC with a consequent severe mitotic delay, and 

ultimate failure of proliferation. 

 

Phenotype of spc105RVAF 

spc105RVAF supports SAC activation 

Results in Xenopus discussed above suggested that Aurora B/Ipl1 

phosphorylates Spc105 in order to prevent premature association of Glc7 to the 

kinetochore.  In this model, the spc105RVAF mutation would not be under this 

regulation and would prematurely recruit Glc7 to the kinetochore.  Since I showed 

that Spc105-recruited Glc7 is necessary to silence the SAC, this premature Glc7 

recruitment might impair SAC activation.  From the initial SCA, I showed that 

spc105RVAF is viable.  The mutation causes no growth defects, and it does not 

affect chromosome segregation as assayed by the IPL assay (Figure 3-11).  In 

addition, spc105RVAF shows no negative interaction with ipl1-1 (see Figure 3-5A), 

which might be suspected if there was an increase in phosphatase activity.   
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Figure 3-10: spc105RASA dies from prolonged SAC activation.  (A) Ten-fold 
serial dilutions of WT, tetR-CDC20-127, and tetR-CDC20-127 spc105RASA were 
plated on YEPD with or without 5 μg/ml doxycycline at 30°C.  High magnification 
images of microcolonies are also shown.  Scale bar, 50 μm.  (B) tetR-CDC20-127 
and tetR-CDC20-127 spc105RASA cells were released from G1 arrest in the pres-
ence of doxycycline.  Pds1-MYC, Mad1, and Pgk1 (loading control) levels were 
analyzed by Western blots at the indicated timepoints after release.
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Figure 3-11: spc105RVAF does not affect cell growth.  (A) Growth curve of WT 
and SPC105RVAF at 30°C in YEPD medium.  Average ± SEM of the doubling time 
of three independent experiments are also shown.  (B) IPL assay of wild type and 
spc105RVAF cells containing a chromosome III marked with a leu2 locus disrupted 
by URA3.  The mean frequency ± SEM of disomy formation (assessed by genera-
tion Leu+, Ura+ colonies) from five independent cultures are shown.
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However, since the SAC is non-essential in this system, spc105RVAF may 

still specifically show a SAC signaling defect caused by an increase in PP1 

recruitment.  I therefore tested the ability of the spc105RVAF cells to respond to 

SAC signaling.  The SAC responds to both a lack of microtubule attachment at a 

single kinetochore and a lack of tension across kinetochores.  I first tested 

signaling in response to lack of attachment by treating cells with microtubule 

poisons.  In the presence of nocodazole, the majority of both wild type and 

spc105RVAF cells arrested as dumbbell-shaped cells with large buds (Figure 3-

12A).  This morphology is indicative of a metaphase arrest induced by active 

SAC signaling.  In addition, spc105RVAF shows no sensitivity to benomyl, while 

the true SAC mutant mad2Δ shows a significant sensitivity (Figure 3-12B).  

Taken together, I concluded that spc105RVAF cells could signal the SAC in the 

presence of unattached kinetochores.   

In budding yeast, Aurora B is required for SAC signaling in response to 

lack of tension, but not attachment (Biggins and Murray, 2001).  I therefore 

assayed the ability of spc105RVAF cells to activate the SAC in response to tension 

by examining its effect on the mitotic delay exhibited by a cohesin mutant, scc1-

73.  This mutant has defective sister chromatid cohesion at the centromere, and 

consequently these cells show a mitotic delay due to SAC activation because 

tension cannot be generated (Biggins and Murray, 2001).  This mitotic delay can 

be observed as a delay in Pds1 degradation at metaphase.  This delay is 

81



WT
spc105RVAF

[Benomyl] (μg/ml): 0 7.5 10 12.5 15

mad2∆ spc105RVAF
mad2∆

t (min): 0 15 1201059075604530
WT

scc1-73

scc1-73 spc105RVAF

scc1-73 mad2∆
WT
scc1-73
scc1-73 spc105RVAF

scc1-73 mad2∆

Pds1

 Pgk1

WT:

spc105RVAF:

DMSO noc

t (h)

%
 la

rg
e 

bu
dd

ed
 c

el
ls

0 1 2 3 4
0

20

40

60

80

100

C

A

B

Figure 3-12: spc105RVAF supports SAC activation.  (A) G1 synchronized WT and 
spc105RVAF cells were released into nocodazole.  The number of large budded cells was 
counted at the indicated timepoints, n > 500 cells each.  (B) Ten-fold serial dilutions of WT, 
spc105RVAF, mad2Δ, and mad2Δ spc105RVAF were plated on YEPD with the indicated 
concentrations of benomyl.  (C) WT, scc1-73, scc1-73 spc105RVAF, and scc1-73 mad2Δ 
cells were G1 synchronized at the permissive temperature (23°C), released to the restric-
tive temperature (37°), and Pds1 and Pgk1 (loading control) levels were monitored by 
Western blotting at the indicated timepoints after release. 
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abolished in a mad2Δ mutant, but the delay persists in the spc105RVAF mutant 

(Figure 3-12C), indicating proper activation of the SAC. 

These data are consistent with the IPL assay that showed that spc105RVAF 

does not cause chromosome missegregation.  As previously reported, this is not 

the case with a true SAC deficient mutant such as mad2Δ.  Taken together, these 

data demonstrate that prevention of Ipl1 phosphorylation of Spc105 near the 

Glc7 binding motifs does not affect SAC signaling.  

 

spc105RVAF affects chromosome segregation 

Although the double mutant spc105RVAF scc1-73 showed a delay in Pds1 

degradation at the non-permissive temperature (37°C), compared to the scc1-73 

single mutant, spc105RVAF does partially rescue the viability of the scc1-73 

mutation at the semi-permissive temperature (35°C) (Figure 3-13A).  To 

determine the reason for this rescue, I examined the chromosome dynamics in 

these cells using a GFP tag at the URA3 locus on chromosome 5.   

The characteristic phenotype of cohesin mutants is premature sister 

chromatid separation in prophase (Michaelis et al., 1997).  A consequence of this 

premature separation is improper kinetochore-microtubule attachments and 

chromosome missegregation, observable as cells in anaphase with both 

chromosomes in the same cell.  Both of these phenotypes are observed in scc1-

73 cells.  In the spc105RVAF scc1-73 cells, the occurrence of premature sister 
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Figure 3-13: spc105RVAF affects chromosome segregation in the scc1-73 back-
ground.  (A) Ten-fold serial dilutions of WT, spc105RVAF, scc1-73, and scc1-73 
spc105RVAF were plated on YEPD at 23, 35, and 37°C.  (B) WT, scc1-73, and scc1-73 
spc105RVAF cells with the URA3 locus marked with GFP were G1 synchronized at the 
permissive temperature (23°C) and released to the semi-permissive temperature (34°).  
S-phase cells were fixed and counted for premature sister chromatid separation (left), 
and anaphase cells were fixed and counted for proper chromosome segregation (right) 
based on the location of GFP.  Average ± SEM of three independent experiments are 
shown, n = 200 cells each.  Representative images of each cell type are shown.  Scale 
bar, 5 μm.  
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chromatid separation is unaffected.  However, the incidence of chromosome 

missegregation is reduced (Figure 3-13B).   

 

 

 

Consequences of constitutive Glc7-Spc105 interaction 

GLC7 fusion rescues spc105RASA 

I have assumed that the spc105RASA phenotype is due to the perturbation 

of the Spc105-Glc7 interaction.  However, the N-terminus of Spc105 may have 

other functions that are sensitive to the RASA mutation, independent of Glc7 

binding.  To alleviate this concern, I attempted to rescue the spc105RASA mutant 

by genetic fusion of the protein to Glc7.   

To make this fusion protein, I utilized a modified HGR approach (Figure 3-

14).  Into the SPC105NT, RASA cassette, I inserted the GLC7 gene, either wild type 

or a catalytically dead mutant (glc7cat), with a linker N-terminal to the SPC105 

fragment.  From the SCA, I obtained viable GLC7-spc105RASA cells (Figure 3-15).  

Conversely, I obtained no viable glc7cat-spc105RASA cells, all viable colonies were 

SPC105 and a subset of cells died with the spc105RASA morphology.  The GLC7 

fusion completely rescued the spc105RASA mutation, with identical growth rate to 

wild type and no effect on chromosome segregation as measured by the IPL 

assay (Figure 3-16).  From this data, I concluded that the phenotype observed in 
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Figure 3-14: Using HGR to generate Glc7-Spc105 fusion proteins.  The full 
length GLC7 gene, either wild type or with a catalytically dead mutation, was 
inserted N-terminal to the mutation generating spc105NT cassette.  Upon repair, 
three genotypes are possible depending on the site of recombination: regeneration 
of wild type SPC105 (1); GLC7 fused to wild type SPC105 (2); or GLC7 fused to 
mutant spc105 (3).  
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assay of cells harboring GLC7-SPC105 producing cassettes.  Number of colonies 
with the indicated genotypes or those that failed to form macroscopic colonies 
(DEAD) derived from single cells isolated after HGR of the strain harboring the 
indicted cassettes is shown.  (B) Representative genotyping of colonies produced 
from the NT-GLC7-spc105RASA and NT-glc7cat-spc105RASA.  The genomic 
SPC105 locus was PCR amplified from recombinant colonies using primers A and 
B in Figure 3-14.  Larger fragments include the GLC7 or glc7cat fusion, and diges-
tion with PvuII detects the RASA mutation.  
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Figure 3-16: Fusing Glc7 to spc105RASA rescues viability.  (A) Growth curve of 
WT and GLC7-spc105RASA cells at 30°C in YEPD medium.  Average ± SEM of the 
doubling time of three independent experiments are also shown.  (B) IPL assay of 
WT and GLC7-spc105RASA cells containing a chromosome III marked with a leu2 
locus disrupted by URA3.  The mean frequency ± SEM of disomy III formation 
(assessed by generation Leu+, Ura+ colonies) from 15 independent cultures are 
shown. 

A B

88



the spc105RASA mutant is due to the loss of Glc7 catalytic activity at the 

kinetochore.   

Using the GLC7-spc105RASA mutant, I was able to investigate the 

consequences of constitutive recruitment of Glc7 to Spc105.  As explained 

above, I hypothesized that constitutive recruitment of Glc7 might prematurely 

silence the SAC, causing a SAC-deficient phenotype.  However, GLC7-

spc105RASA cells showed no sensitivity to benomyl (Figure 3-17A).  In addition, 

when treated with nocodazole, GLC7-spc105RASA cells showed a complete 

metaphase arrest, analogous to wild type cells (Figure 3-17B).  It has previously 

been shown that impaired Ipl1 activity, despite showing no effect on SAC 

activation in response to nocodazole, does diminish the cell’s ability to recover 

after nocodazole treatment (Francisco et al., 1994).  On the other hand, GLC7-

spc105RASA cells showed no such sensitivity.  This indicates that SAC signaling 

can be activated even with constitutively recruited Glc7, and that phosphorylation 

levels of Ipl1 targets are not appreciably affected.   

To determine whether premature recruitment of Glc7 to Spc105 had any 

physiological consequences, I attempted to sensitize the system to phosphatase 

activity.  To do this, I used the ipl1-1 mutation, reasoning that if the kinase activity 

is impaired it might be more sensitive early in mitosis to Glc7 recruitment.  

Indeed, at semipermissive temperature for ipl1-1 (30°C), GLC7-spc105RASA 

further impairs growth (Figure 3-18A), indicating a negative interaction between 

these two mutations.  Although neither mutant impairs the activation of the SAC 
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Figure 3-17: GLC7-spc105RASA supports SAC activation.  (A) 10-fold serial 
dilutions of WT and GLC7-spc105RASA on YEPD with the indicated concentrations 
of benomyl.  (B) WT and GLC7-spc105RASA strains were treated with nocodazole 
and benomyl for 3 hours, cell morphology was counted (left), and cells were 
washed and plated on YEPD to count colony formation (right).  Average ± SEM for 
3 separate experiments are shown; n > 400 cells each; ns: not significant, p = 0.23.  

90



WT

GLC7-spc105RASA

ipl1-1

23o  C 30o C 37o  C

ipl1-1
GLC7-spc105RASA

23o  C 30o C 37o  C

WT

GLC7-spc105RASA

ipl1-1

ipl1-1
GLC7-spc105RASA%

 m
ito

tic
 c

el
ls

 a
fte

r
no

co
da

zo
le

 tr
ea

tm
en

t

50

100

75

25

0

Figure 3-18: GLC7-spc105RASA negatively interacts with ipl1-1.  (A) Ten-fold 
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were plated on YEPD at 23, 30, and 37°C.  (B) WT, GLC7-spc105RASA, ipl1-1, and 
ipl1-1 GLC7-spc105RASA cells were grown to log phase at the permissive tempera-
ture, treated with nocodazole and benomyl at the indicated temperatures for 3 
hours, and cell morphology was counted.  

A

B

91



when cells are treated with nocodazole, I tested the double mutant to see 

whether the additive effect caused a deficient SAC response.  However, at all 

temperatures tested, the GLC7-spc105RASA ipl1-1 cells still arrested in 

metaphase when treated with nocodazole.  Therefore, although the constitutive 

recruitment of the phosphatase does not mimic the effects of the impaired kinase, 

they do still show an additive effect.  

 

GLC7-SPC105 is lethal 

The HGR from the GLC7-spc105RASA inducing cassette had three possible 

outcomes, depending on the site of recombination (see Figure 3-14).  The 

possible genotypes are GLC7-spc105RASA, SPC105, and GLC7-SPC105.  

However, the only colonies recovered were either SPC105 or GLC7-spc105RASA, 

and a few cells died upon recombination.  When the glc7cat mutant was used, I 

recovered viable glc7cat-SPC105 clones, but no glc7cat-spc105RASA cells (see 

Figure 3-15).  This led me to suspect that GLC7-SPC105 is a lethal mutation.  

Indeed, when I used a cassette without the RASA mutation to simply 

induce GLC7-SPC105, the only viable colonies were SPC105.  As a control, a 

similar cassette with the glc7cat mutant generated both SPC105 and glc7cat-

SPC105 cells that were completely viable.  Using live imaging of GFP-tubulin and 

performing pedigree analysis on mutant cells, I observed that the terminal 

phenotype of GLC7-SPC105 is highly variable (Figure 3-19).  Some cells 

arrested in G1 as unbudded cells, while others showed a long mitotic delay.  
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However, GLC7-SPC105 is not rescued by mad2Δ (see Figure 3-15), indicating 

that the lethality was not solely due to SAC activation.   

 

Discussion 

spc105RVAF affects kinetochore-microtubule stability 

The spc105RVAF mutant showed a partial rescue of scc1-73, but not for the 

predicted reason.  Instead of perturbing SAC signaling, it appeared to rescue 

chromosome missegregation.  Phosphorylation of the KMN network, and 

specifically KNL1/Spc105, does regulate the stability of kinetochore-microtubule 

attachments by reducing the direct affinity of the proteins for microtubules 

(Welburn et al., 2010).  A lack of tension across the kinetochore would activate 

the error correction mechanism, thus promoting this phosphorylation even when 

the attachment is correct.  However, perhaps when Spc105 cannot be 

phosphorylated at this one site, the kinetochore-microtubule attachment may be 

slightly more stable, facilitating proper chromosome segregation.  This might 

indiscriminately stabilize all attachments, correct and incorrect, which is why the 

rescue would not be complete.  The spc105RVAF mutation alone, however, shows 

no effect on chromosome missegregation as judged by the IPL assay.  This 

marginal hyperstabilization of kinetochore-microtubule attachments, therefore, 

possibly only manifests a physiological effect in stressed situations such as in the 

scc1-73 mutant background.  In conclusion, the partial rescue of scc1-73 by 
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spc105RVAF is probably independent of Glc7 recruitment and its effect on SAC 

silencing.   

 

Sensitivity of the kinetochore to PP1 levels 

It is not inherently obvious why GLC7-SPC105 might be lethal.  The 

viability of GLC7-spc105RASA indicates that a fixed Glc7:Spc105 ratio of 1:1 is 

tolerated.  Assuming the endogenous RVSF motif is functionally recruiting Glc7, 

the Glc-Spc105 fusion is recruiting at most twice the amount of Glc7 catalytic 

activity.  This means that somewhere between 1:1 and 1:2 lies an increased level 

of Glc7 that cannot be tolerated.  This fine sensitivity is highly unusual for an 

enzyme.  Overexpression of GLC7 from a GAL1 promoter in budding yeast 

causes growth and morphology defects, but it is viable (Black et al., 1995).  This 

might imply that the kinetochore is unique in its sensitivity to phosphatase activity 

level.  Based on the pleiotropic cell cycle phenotype of the mutant, it is possible 

that the excess Glc7 is dephosphorylating targets other than those it normally 

would that are required for SAC silencing.  These could include targets required 

for kinetochore-microtubule stability, or targets that affect chromatin structure.  

These data point to the importance of precise regulation of phosphatase activity 

at the kinetochore.   
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Implications of the spc105RASA ipl1-1 genetic interaction 

The viability of spc105RASA ipl1-1 double mutant indicates that reduction of 

kinase activity via the temperature sensitive allele rescues the lack of 

phosphatase recruitment, thus restoring the phosphorylation balance.  This is in 

accordance with the data indicating that Spc105-recruited Glc7 is responsible for 

silencing the SAC: with reduced Ipl1 levels, the SAC cannot be efficiently 

activated and therefore might not necessitate silencing.  However, this model is 

contradicted by the fact that at higher temperatures spc105RASA actually partially 

rescues ipl1-1.  Effects of the SAC cannot explain this data; the Ipl1-1 mutant 

cannot activate the SAC at the restrictive temperatures, and an impairment in 

SAC silencing would not cause a rescue in growth.  Ipl1 has several other 

necessary functions, and this indicates that Spc105-recruited Glc7 probably also 

has other roles at the kinetochore.  This may be correlated with the slight 

increase in chromosome missegregation of the spc105RASA mad2Δ double 

mutant, which points to a potential role in kinetochore-microtubule stabilization.  It 

is possible that under normal circumstances this role is very minor, but in the very 

stressed conditions caused by the ipl1-1 mutation, it has a larger impact on the 

viability of the cells.   

 

Is the Spc105-Glc7 interaction regulated? 

Based on biochemical data from Xenopus egg extracts, I had 

hypothesized that the Spc105-Glc7 interaction is temporally regulated by Ipl1-
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mediated phosphorylation of Spc105.  This would mean that without this 

regulation Glc7 would be prematurely recruited to the kinetochore and impair 

SAC signaling.  However, the mutant of Spc105 that would eliminate this 

regulatory mechanism and cause this unregulated recruitment, spc105RVAF, did 

not show the expected phenotype.  This could be for two reasons.  First, there is 

a different mechanism that temporally regulates the association of Glc7 with the 

kinetochore, and even in the phosphorylation mutant this true regulatory pathway 

still temporally regulates the Spc105-Glc7 interaction.  Second, this regulation 

method is functional and Glc7 is prematurely recruited to the kinetochore in the 

spc105RVAF mutant, but this premature recruitment alone cannot silence the SAC.  

Based on observations of the GLC7-spc105RASA mutant, I can conclude 

that constitutive recruitment of Glc7 by Spc105 is insufficient to prematurely 

silence the SAC.  This deduction can help to more accurately interpret the 

phenotype of the spc105RVAF mutant.  The reason the spc105RVAF mutant shows 

no SAC deficiency phenotype may be that even if this mutant causes premature 

recruitment of Glc7, I now know that this is insufficient to silence the SAC.  

Therefore, although Ipl1 phosphorylation of Spc105 to abrogate its interaction 

with Glc7 may still be a functional regulatory mechanism, it is not the only 

mechanism working at the kinetochore to prevent Glc7 from silencing the SAC 

until biorientation is achieved.   

The dynamicity of the Glc7-Spc105 interaction is not essential for timely 

activation and silencing of the SAC.  However, directly fusing Glc7 to Spc105 is 

97



detrimental in an ipl1-1 background, indicating that there is a functional 

significance to the dynamicity of the interaction.  Impairing the counteracting 

kinase sensitized the system to inappropriate recruitment of the phosphatase.  It 

may be that the minor effect that this interaction could have on kinetochore-

microtubule stability is exacerbated in this situation.     
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CHAPTER 4: DISCUSSION AND PERSPECTIVE 

 

Function of the KNL1/Spc105-PP1/Glc7 interaction 

Coupling SAC silencing to microtubule attachment 

The majority of the work presented here was published in Rosenberg et 

al., 2011.  Based on this data, I proposed a model in which the Spc105-Glc7 

interaction is necessary to couple the proper attachment of microtubules to 

kinetochores with SAC silencing (Figure 4-1).  When Glc7 is not targeted to 

Spc105, the SAC cannot be silenced.  On the other hand, even if Glc7 is present 

at the kinetochore but there is no microtubule, the SAC still cannot be silenced.  

This is most likely because Glc7 cannot effectively dephosphorylate the 

substrates necessary to silence the SAC.  Only with concurrent Glc7 recruitment 

and microtubule attachment will the SAC be silenced.  

This coupling between microtubule attachment and Glc7/PP1 activity 

could occur in a number of ways.  The presence of microtubules may be 

necessary to bring Spc105/KNL1-bound PP1 in proximity to its critical substrates.  

This would make the most sense if the substrates were microtubule associated 

proteins, and thus only localized to kinetochores through microtubules.  A 

different, though not mutually exclusive, mechanism may involve a 

conformational change in the proteins involved upon microtubule attachment.  

Under this purview falls the theory of “spatial separation” in which tension across 

kinetochores caused by bioriented microtubule attachment pulls outer 
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Figure 4-1: PP1/Glc7 couples microtubule attachment to SAC silencing.  
Model.  In the absence of Glc7-Spc105 interaction (top left), or without microtubule 
attachment (top right), putative kinetochore proteins (X) are efficiently phosphory-
lated in an Ipl1-dependent manner and the SAC is turned on.  Only when Glc7 is 
recruited to Spc105 and microtubules are attached to the kinetochore, X is 
dephosphorylated and the SAC becomes silenced.
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kinetochore substrates away from the kinase (Aurora B/Ipl1) localized to the inner 

centromere, thus tipping the balance towards dephosphorylation (Liu et al., 

2009).   

 

Domain structure of KNL1 

This model implies that KNL1 simply occupies the correct spatial domain 

for the function of PP1 to counteract Aurora B.  However, examination of the 

domain structure of KNL1 (Figure 4-2) indicates that it may play a more direct 

role in regulating the function of PP1.  The C-terminus of KNL1 is primarily 

responsible for binding Mis12, and the binding site contains a putative coiled-coil 

domain that may be essential for this interaction.  The N-terminus, on the other 

hand, contains a variety of sequence and structural motifs, which are not yet fully 

understood, that may point to potential mechanistic properties.   

First, the N-terminus of KNL1 itself binds microtubules directly (Pagliuca et 

al., 2009; Welburn et al., 2010), and in C. elegans the exact binding motif has 

been mapped to a basic patch adjacent to the RVxF motif (Espeut et al., 2012).  

Through this interaction, it is possible that there is a more direct and dramatic 

conformation change induced by microtubule binding that facilitates 

dephosphorylation by the KNL1-PP1 holoenzyme.  In addition, there is evidence 

that KNL1 directly binds the SAC signaling proteins Bub1 and BubR1, and these 

binding sites have also been mapped to the N-terminus (Bolanos-Garcia et al., 

2009; Bolanos-Garcia et al., 2011; Kiyomitsu et al., 2011; Kiyomitsu et al., 2007; 

101



Homo sapiens

Xenopus laevis

Saccharomyces cerevisiae

SILK
RVSF
MELT
microtubule binding
Bub1 binding
BubR1 binding
Mis12 binding
prediced coiled-coil
repeats

Figure 4-2: Domain structure of KNL1/Spc105.  Schematic of sequence motifs 
and predicted structural and functional domains of KNL1/Spc105 from Homo sapi-
ens, Xenopus laevis, and Saaccharomyces Cerevisiae.  The SILK and RVxF 
motifs are defined previously.  MELT repeats are defined by M[E/D][I/L][S/T] 
(Cheeseman et al., 2004).  The microtubule binding motif was identified by 
sequence homology to the sites identified in C. elegans (Espeut et al., 2012).  The 
Bub1 and BubR1 binding motifs were mapped in the human homologue 
(Kiyomitsu et al., 2011), and the Mis12 binding motif was mapped in S. pombe 
(Kerres et al., 2007).  Repeat sequences and coiled-coil domains were predicted 
using the SMART databases (Letunic et al., 2012; Schultz et al., 1998).  
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Krenn et al., 2012).  Finally, there is a series of MELT repeats (defined as M 

[E/D] [I/V] T) that are highly conserved across the evolutionary spectrum.  The 

phosphorylation of these repeats by Mps1 has been implicated in recruitment of 

SAC proteins, and they may be dephosphorylated by PP1 directly (London et al., 

2012; Shepperd et al., 2012).  In higher eukaryotes such as frogs and humans, 

these sequence domains are located in two large internal repeats.  These 

repeats may in part contribute to the gross size difference between these 

proteins and the yeast homologues, which do not contain the repeats.   

The interactions of KNL1 with PP1, microtubules, and SAC proteins may 

be significantly intertwined to coordinate the SAC silencing activity of PP1 upon 

microtubule attachment.  Definition of the critical substrates as well as more 

precise structural data on the consequences of microtubule binding at the 

kinetochore are both necessary to begin to elucidate a possible mechanism for 

this coupling phenomenon.   

 

Mechanisms of silencing the SAC 

Mechanisms to activate SAC signaling have long been scrutinized, as the 

SAC is considered critical for maintaining genomic integrity.  Indeed, in most 

systems other than budding yeast, all SAC components are essential for 

maintained growth.  Silencing of the SAC, on the other hand, has only recently 

been considered.  It is in fact counterintuitive that a mechanism for SAC silencing 

should be essential in an unperturbed cell cycle when the SAC is thought of as 
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an emergency mechanism engaged only upon mitotic malfunction.  However, 

there is evidence that SAC components are recruited to kinetochores in the 

course of every cell cycle (Gillett et al., 2004).  It is therefore logical to conclude 

that in the course of prometaphase, when kinetochores are formed but not yet 

attached, SAC signaling is activated to some degree.  The “normal” cell cycle 

timing, then, is dictated by the rate of action of the mechanism to silence the 

SAC.   

How, then, is the SAC silenced?  Obviously, reversal of the 

phosphorylation signal that triggers SAC activation and formation of the MCC by 

phosphatases is necessary.  This is the part of the process for which the KNL1-

PP1 holoenzyme is critical.  Additionally, the motor protein dynein has been 

shown to facilitate the ejection of SAC proteins, including Mad2, from the 

kinetochore upon establishment of bipolar attachment (Howell et al., 2001).  This 

would facilitate the cessation of the SAC signal emanating from the kinetochore.  

Simply silencing the activation, however, may not be enough.  The diffusible c-

Mad2 signal would still be present in the cytoplasm and the MCC would still be 

intact.  The stochastic breakdown of this complex is likely not fast enough to 

account for the observed timing of transition to anaphase once all kinetochores 

are bioriented.   

The protein P31comet has been implicated as a direct silencer of the SAC.  

P31comet localizes to unattached kinetochores, but it also shows a rapid turnover 

and is present in the cytoplasm.  When P31comet is depleted, cells arrest in 
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metaphase with stable, bipolar attachments that are under tension (Hagan et al., 

2011).  In this situation, SAC signaling originating at the kinetochore would be 

turned off (possibly via KNL1-recruited PP1 activity), however, that is insufficient 

to silence the SAC without P31comet.  Mechanistically, P31comet preferentially binds 

c-Mad2, but not o-Mad2, and dissociates the MCC, facilitating Cdc20-mediated 

activation of the APC/C (Westhorpe et al., 2011; Xia et al., 2004; Yang et al., 

2007).  The dissolving of the MCC mediated by P31comet requires the hydrolysis 

of ATP (Teichner et al., 2011), pointing to an active process.  

It is clear that KNL1-PP1 and P31comet play critical roles in silencing the 

SAC.  How, then, are they related?  One possibility is that P31comet is a passive 

antagonizing force to SAC activation and once the initiating signal at the 

kinetochore is silenced by KNL1-PP1, the balance of c-Mad2 binding is tipped 

from the MCC to P31comet.  The other possibility is that P31comet is regulated to 

activate upon biorientation of all chromosomes by the activity of KNL1-PP1, 

although a potential signaling mechanism is not yet apparent.  A third possibility, 

given that there has not yet been a homologue of P31comet found in yeast, is that 

these represent two independent essential mechanisms for SAC silencing.  

Elucidating the critical substrates of KNL1-PP1 for SAC silencing would help to 

distinguish between these alternatives, and possible point to a molecular 

mechanism for translating biorientation into SAC silencing.   
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The collection of kinetochore associated PP1 regulatory subunits 

Other work on KNL1/Spc105 

Concurrent with this work, several other efforts to identify PP1 regulatory 

subunits at the kinetochore were reported.  Other studies focused on KNL1 in 

fission yeast, human cells, and worms.  The fission yeast homologue, Spc7, also 

shows an interaction with PP1 that is essential for silencing the SAC (Meadows 

et al., 2011).  In human cells, the PP1 binding mutant of KNL1 causes a 

decrease in kinetochore-microtubule stability, although the SAC was not 

examined.  In C. elegans, the PP1 binding mutant of KNL1 showed a delay in 

forming stable kinetochore-microtubule attachments as well, although no lagging 

chromosomes were observed.  Similar to my data in budding yeast, the mutant 

also causes a significant cell cycle delay after SAC activation, which was 

alleviated by depletion of the Mad2 homologue.  However, in stark contrast to my 

results, the PP1 binding mutant is synthetically lethal with depletion of Mad2 

(Espeut et al., 2012).   

The data from human cells and worms is in contradiction with my results in 

budding yeast that indicate the Spc105/KNL1-PP1 interaction does not play a 

significant role in kinetochore-microtubule stability.  One potential reason for this 

discrepancy is the robustness of the system.  The human cells were cold-treated, 

and perhaps in this stressed situation perturbation of the KNL1-PP1 holoenzyme 

causes a decrease in kinetochore-microtubule stability, but in a normal cell cycle 

this dysfunction is not enough to cause a visible phenotype in the functional 
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assay I used (the increase in ploidy assay).  The C. elegans data represents 

embryonic lethality, a system in which there may be different requirements for 

both kinetochore-microtubule attachment and SAC signaling and silencing.   

Another possibility is that these discrepancies represent an evolutionary 

difference between human cells, worms, and budding yeast.  It may be that in 

yeast the Spc105-Glc7 holoenzyme represents the major SAC silencing factor, 

but in humans it plays more of a role in kinetochore-microtubule attachment and 

a separate mechanism, such as P31comet discussed above, functions to silence 

the SAC.  In this case, the data from worms may represent an intermediate 

situation where the KNL1-PP1 holoenzyme plays a role in both mechanisms.   

 

Additional PP1 holoenzymes at the kinetochore 

In addition to KNL1/Spc105, there have been several other PP1 

holoenzymes at the kinetochore examined recently.  PP1 interacts with the 

microtubule motor protein CENP-E in human cells through a conserved RVTF 

motif, and this motif is regulated by phosphorylation by both Aurora A and Aurora 

B in a similar manner as I hypothesized for KNL1.  This holoenzyme and its 

regulation are required for proper chromosome congression to the metaphase 

plate and establishment of bioriented attachments (Kim et al., 2010).  In fission 

yeast, PP1 associates with the kinesin 8-like motors Klp5 and Klp6, and this 

interaction is also necessary to silence the SAC (Meadows et al., 2011).   
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Fin1 is a PP1 regulatory subunit described in budding yeast (but for which 

no homologue in other organisms has yet been found) that localizes to 

microtubules and kinetochores at anaphase onset.  Premature targeting of this 

complex results in monopolar spindles but a suppression of SAC activation 

(Akiyoshi et al., 2009b).  Repo-man recruits PP1 to chromosome arms, but it is 

responsible for the centromeric localization of Aurora B because it 

dephosphorylates the Aurora B-recruiting mark histone H3-threonine 3 

phosphorylation, thus limiting Aurora B to centromeres (Qian et al., 2011; Trinkle-

Mulcahy et al., 2006; Vagnarelli et al., 2006).   

Finally, Sds22 is the most studied mitotic PP1 regulatory subunit, although 

its function is the least well understood.  It does not interact through a canonical 

RVxF motif but rather through interaction of α-helices on both surfaces 

(Ceulemans et al., 2002).  It was discovered in fission yeast, where deletion of 

the gene causes mitotic arrest (Ohkura and Yanagida, 1991).  In budding yeast, 

Sds22 is required for the nuclear localization of PP1, and mutation of the gene 

causes mitotic arrest and chromosome instability (Pedelini et al., 2007; Peggie et 

al., 2002).  In addition, it was independently identified as a suppressor of an 

Aurora B/Ipl1 mutation (Pinsky et al., 2006).  In human cells, however, it is not 

necessary for nuclear accumulation of PP1 (Lesage et al., 2004), but rather for 

kinetochore localization of PP1, where it may modulate the kinase activity of 

Aurora B directly (Posch et al., 2010).  Interestingly, in all organisms studied, 

Sds22 forms an inhibitory complex with PP1 that impairs its enzymatic activity 
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(Daher et al., 2006a; Daher et al., 2006b; Lesage et al., 2007; Pedelini et al., 

2007).  How this inhibition relates to its function at the kinetochore, however, 

remains unclear.   

 

Perspective: The many faces of PP1 

Why so many? 

At the onset of this project, a major struggle came from the fact that we 

knew very little about the function of PP1 at the kinetochore, and nothing of the 

mechanism of localization.  Now at the conclusion there appears to be an excess 

of regulatory subunits for the functions we know PP1 plays.  There is likely a 

separation of function such that some PP1 regulatory subunits are responsible 

for the kinetochore-microtubule attachment stabilizing function of PP1, while 

others are responsible for the SAC silencing function.  This is consistent with the 

view that each regulatory subunit represents a different holoenzyme with unique 

localization and function.  However, there still appear to be up to six 

holoenzymes for only two major functions, and this may not even be a complete 

list since in vivo and in silico screens have generated large lists of 

uncharacterized PP1 binding proteins.   

This is reminiscent of the “kinase paradox” discussed earlier.  The specific 

properties of the holoenzymes might necessitate an overlap of function, such that 

each holoenzyme might have distinct timing, spatial range, or substrate 

specificity.  This would create a situation in which several enzymes are needed 
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but at different times or in different places.  But this also raises the question of 

whether the PP1 holoenzymes and the pathways that they are a part of interact 

with each other in a similar manner as those of the kinetochore kinases.  Indeed, 

in the case of the PP1-CENP-E interaction, CENP-E needs to be 

dephosphorylated in order to bind PP1 at all.  Might this be the function of 

another PP1 holoenzyme at the kinetochore?  Also, similar to some current 

models for kinases, certain PP1 holoenzymes might carry out the same function 

and even act on the same target, but in response to different stimuli.  These are 

just some of the many ways these pathways can interact, and a full 

understanding of kinetochore function will not be complete until we examine the 

relationships between enzymes beyond linear pathways.   

 

Discovery Methods 

There appear to be two major methods used to discover a “novel” PP1 

holoenzyme.  First, PP1 is co-purified with a previously uncharacterized protein, 

and then the localization and function of this protein is examined as it relates to 

how it regulates PP1.  Second, previously studied proteins are found to have a 

conserved RVxF motif, and then an additional role for this protein in regulating 

PP1 emerges.  This raises the question of whether the proteins solely discovered 

for their ability to bind PP1 actually have other roles in the cell as well.  An in-

depth look at these proteins independent of their roles in regulating PP1 may 

reveal novel regulatory pathways. 
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Another question that arises from these considerations is whether the 

“dual roles” of some of these proteins come up out of convenience or necessity.  

In other words, is the PP1-recruiting role of a protein somehow related to a 

seemingly PP1-independent role?  This question is particularly relevant to the 

work I have presented here, as discussed above.  Is it only that KNL1/Spc105 

occupies the right position to optimize the SAC silencing function of PP1, or is it 

critical for the function of the holoenzyme that KNL1/Spc105 also binds to 

microtubules and interacts with Bub1 and BubR1?  Our data indicating that the 

KNL1/Spc105-PP1 interaction is necessary for the coupling of microtubule 

attachment to SAC silencing make attractive the hypothesis that there is a 

functional connection between these three seemingly independent roles of 

KNL1/Spc105, but further studies are necessary to elucidate this connection.   

 

Evolution of the RVxF motif 

The RVxF motif is strikingly simple.  One of the strictest accepted 

variations of this motif are [R/K] [V/I] {P} [F/W], and any random twelve-nucleotide 

sequence has a 0.057 % chance of encoding this sequence.  This means that a 

human protein of “average” size (485 amino acids, or 1455 base pairs) has a 56 

% chance of containing an RVxF motif at random.  This high rate of random 

occurrence can be practically observed in the in silico screen done for novel PP1 

regulatory subunits (Hendrickx et al., 2009).  Of the 397 proteins found to have 

an RVxF motif conserved in mice, rats, and humans, 65% of these RVxF motifs 
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were in globular or extracellular domains, and were obviously not functional PP1 

binding motifs, but simply occurring at random.   

This random occurrence of the PP1 binding motif may represent a 

significant evolutionary force, especially considering the diversity of the cellular 

roles of PP1.  Given the high chance of random mutations generating an RVxF 

motif, once PP1 had this binding pocket it could have quickly obtained new roles 

in the cell.  This gives an evolutionary explanation for the discrepancy in numbers 

of kinases and phosphatases.  It would take far fewer steps of random mutation 

for an independent protein to obtain an RVxF motif and thus recruit PP1 for a 

specific purpose than for PP1 itself to duplicate and evolve a new targeting 

domain or substrate specificity necessary for a specific function.   

The potential rapid evolution of RVxF-containing PP1 regulatory subunits 

must also be considered when examining data from different model systems.  For 

example, the Sds22-PP1 holoenzyme discussed above exhibits rather different 

localization and behaviors in yeast and human cells.  PP1 also binds motor 

proteins in both human (Cenp-E) and fission yeast (kinesin-8), but they are not 

the same motor proteins and do not appear to be evolutionarily linked.  In this 

case it is possible that it was evolutionarily advantageous for a microtubule motor 

protein to bind PP1, but because of the high chance of random occurrence it 

ended up as different motor proteins in different evolutionary lineages.  

The many kinetochore-associated PP1 holoenzymes may represent a very 

interesting case of co-evolution and cooperation of functions.   Data from more 
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diverse species, especially in plants, is necessary to construct an accurate 

picture of how this network of kinetochore dephosphorylation has evolved.  This 

may reveal evidence of the functions of each part of this network in a way that 

studying any individual system could not.   

 

Future perspective 

Major outstanding questions 

The work presented here furthers our understanding of the 

phosphorylation balance at the kinetochore, both in terms of function and 

regulation.  However, there are many more questions that stem from this data, 

and they fall into two main categories.  First, what are the critical substrates of 

PP1 at the kinetochore?  Since we know that, at least in budding yeast, the 

KNL1-PP1 holoenzyme is primarily responsible for silencing the SAC, we can 

narrow down possible targets in terms of spatial range and function.  Two good 

candidates are Ndc80 and Mad3.  Both are phosphorylated upon checkpoint 

activation and need to be dephosphorylated in order to facilitate SAC silencing, 

and both are localized to the kinetochore in close proximity to KNL1 (Akiyoshi et 

al., 2009a; King et al., 2007).  In addition, Dam1 in yeast shares these same 

characteristics and represents another potential substrate in this system (Keating 

et al., 2009).  However, to definitively show that a particular protein is a substrate 

of PP1 in vivo is very difficult.  To answer this question requires better in vivo 

biochemical techniques and detection mechanisms.   
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Aside from KNL1-recruited PP1, there are broader considerations for PP1 

at the kinetochore given the number of PP1 holoenzymes that have some 

function at this structure.  To fully understand the mechanism of targeted 

dephosphorylation as it relates to the kinetochore, we must not only identify the 

critical substrates of each PP1 holoenzyme, but also how this substrate 

specificity comes about.  In addition, we must consider how the different PP1 

populations interact, whether they have overlapping sets of substrates and 

whether they are targeted in response to different stimuli.  A full consideration of 

kinetochore function is not complete without understanding how the phosphatase 

pathways interact with each other and with the kinases in order to converge on 

critical targets.   

The second class of outstanding problems focuses on the kinetochore 

itself.  Specifically, what are the structural changes that occur to the kinetochore 

upon microtubule attachment?  It has been shown that there occurs both 

intrakinetochore and interkinetochore stretching upon attachment due to the 

tension created by the pulling forces of the microtubules.  But this simple spatial 

separation might not be enough to elicit all of the precise biochemical changes 

that need to occur upon biorientation.  It is likely that there are other, smaller 

scale changes that occur, both to multi-subunit complexes and even to an 

individual protein conformation.  These changes may be crucial not only for PP1 

function but also for all the other factors that contribute to successful anaphase.  
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New advances in structural microscopy may in the future be able to more 

precisely visualize these transitions and help answer some of these questions.   

 

PP1 as a therapeutic target 

Due to its ubiquitous functions in the cell, PP1 has attracted much interest 

in the field of medical pharmacology.  Originally, small molecule modulators of 

the activity of the PP1 catalytic subunit, such as okadaic acid and microcystin, 

appeared promising as therapeutics for several diseases.  However, because the 

PP1 catalytic subunit plays so many roles in the cell, these drugs could have 

enormous off-target effects and are observed to be extremely toxic to cells.   

The next generation of phosphatase targeting drugs, therefore, is focused 

on specifically affecting PP1 regulatory subunits to generate a specific effect on a 

particular holoenzyme (reviewed in Fardilha et al., 2010 and Tsaytler and 

Bertolotti, 2012).  For example, the drug salubrinal inhibits the GADD34-PP1 

holoenzyme, which dephosphorylates the transcription factor eIF2α.  The 

ultimate effect of this is to inhibit the viral transcription of HERPES, and it has 

therefore been used as an effective treatment.  In the heart, there is a 

phosphorylation cascade that increases the heart rate in response to hormonal 

stimuli, and PP1 is responsible for return of the heart rate to basal levels.  The 

inhibitor I-1 modulates this function to act at the appropriate time, and I-1 

dysfunction has been linked to heart disease and ischemia.  In mice, the 

expression of a constitutively active I-1 alleviates overload-induced heart failure 
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and ischemia, and there is currently work to develop a synthetic molecule with 

similar actions (Nicolaou et al., 2009).  

We ultimately study the fine-tuned mechanisms that regulate the cell cycle 

and chromosome segregation for their links to aneuploidy and cancer.  PP1 is not 

unique in the fact that if we understand its mechanism of action in mitosis, it may 

lead to a better understanding of cancer-causing events and even to a potential 

therapy.  But understanding the mechanism of PP1 substrate specificity, 

localization, and activity has broader implications to many aspects of human 

health and disease.  Therefore, every study, including this one, that elucidates 

the specific mechanism of action of a PP1 holoenzyme adds to our 

understanding of the human system as a whole.   
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CHAPTER 5: MATERIALS AND METHODS 

 

Biochemistry and Xenopus extracts 

Plasmids and constructs 

For a full list of plasmids used in this study see table 5-1.  MBP-xPP1γ was 

made by cloning PP1γ from a X. laevis cDNA library into pMAL-c4g using the 

BamHI and HinDIII sites.  cDNA encoding X. laevis KNL1, Repo-Man1, and 

Repo-Man2 were purchased from Open Biosystems (IMAGE clone numbers 

7794105, 4084144, and 8329563 respectively) and the full-length sequence was 

determined (xKNL1 Genbank Accession JF804775).  xKNL1100-FLAG was made 

by cloning X. laevis KNL1 into PGEX-6p2 using the BamHI and EcoRI sites and 

inserting a C-terminal FLAG tag by PCR.  xKNL1300 was made by splicing the 

endogenous HinDIII site in KNL1 at residue 300 and the HinDIII site in the 

polylinker, and xKNL1790 was made in a the same way using XhoI sites.  All point 

mutants were made using Quikchange site-directed mutagenesis (Agilent).  For 

primers used see table 5-2. 

 

Recombinant proteins 

All proteins were expressed in BL-21 rosetta cells.   

For PP1γ-HIS, protein was first purified on an SP FF sepharose FPLC 

column according to manufacturers directions (Amersham Biosciences).  Peak 

fractions were further purified on NiNTA resin according to manufacturers 
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Table 5-1: plasmids used in this study (pages 118 to 119)

Plasmid Description 

pJR021 MBP-xPP1α 

pJR022 MBP-xPP1γ 

pJR023 MBP-xPP1γD95A = MBP-xPP1γcat 

pJR025 MBP-xPP1γD242T 

pJR026 MBP-xPP1γF258A 

pJR027 MBP-xPP1γC291Y 

pJR028 MBP-xPP1γD242T F258A 

pJR029 MBP-xPP1γD242T C291Y = MBP-xPP1γRBM 

pJR030 MBP-xPP1γD242T F258A C291Y 

pJR031 xKNL1300 

pJR032 xKNL1790 

pJR033 xKNL1300, RASA 

pJR034 xKNL1790, RASA 

pJR050 xKNL1300, S54A, S58A = xKNL1SAA 

pJR062 xKNL1300, S23A, S58A = xKNL1ASA 

pJR061 xKNL1300, S23A, S54A = xKNL1AAS 

pJR059 xKNL1300, S23A, S54A, S58A = xKNL1AAA 
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pJR051 GST-xKNL1100-FLAG 

pJR063 GST-xKNL1100, S23A-FLAG = GST-xKNL1100, ASS 

pJR052 GST-xKNL1100, S54A-FLAG = GST-xKNL1100, SAS 

pJR053 GST-xKNL1100, S58A-FLAG = GST-xKNL1100, SSA 

pJR064 GST-xKNL1100, S23A S54A-FLAG = GST-xKNL1100, AAS 

pJR065 GST-xKNL1100, S23A S58A-FLAG = GST-xKNL1100, ASA 

pJR054 GST-xKNL1100, S54A S58A-FLAG = GST-xKNL1100, SAA 

pJR066 GST-xKNL1100, S23A S54A S58A-FLAG = GST-xKNL1100, AAA 

pJR067 spc105wt-NT 

pJR056 spc105RASA-NT 

pJR057 spc105RVAF-NT 

pJR058 spc105ochre-NT 

pJR070 spc105GLC7-RASA-NT 

pJR073 spc105glc7cat-RASA-NT 

pJR071 spc105GLC7-SPC105-NT 

pJR072 spc105glc7cat-SPC105-NT 

pJR007 PP!γ-HIS 
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Table 5-2: primers used in this study (pages 120 to 121)

Name Sequence Purpose 

PP1g_D95A_s CCTAGGAGACTATGTAGCTCGAG
GCAAGCAGTCT 

PP1γ D95A mutation 
(sense) 

PP1g_D95A_a
s 

AGACTGCTTGCCTCGAGCTACATA
GTCTCCTAGG 

PP1γ D95A mutation 
(antisense) 

PP1g_D242T_
s 

ATTTCTTCACAAACATGATCTGACT
CTCATTTGCCGAGCTCATCAG 

PP1γ D242T mutation 
(sense) 

PP1g_D242T_
as 

CTGATGAGCTCGGCAAATGAGAG
TCAGATCATGTTTGTGAAGAAAT 

PP1γ D242T mutation 
(antisense) 

PP1g_F258A_s GTTGAAGATGGGTATGAATTCGCT
GCCAAGAGACAACTGGTTAC 

PP1γ F258A mutation 
(sense) 

PP1g_F258A_
as 

GTAACCAGTTGTCTCTTGGCAGCG
AATTCATACCCATCTTCAAC 

PP1γ F258A mutation 
(antisense) 

PP1g_C291Y_
s 

GATGAGTGTAGATGAAACATTAAT
GTATTCCTTCCAGATTCTAAAACC 

PP1γ C291Y mutation 
(sense) 

PP1g_C291Y_
as 

GGTTTTAGAATCTGGAAGGAATAC
ATTAATGTTTCATCTACACTCATC 

PP1γ C291Y mutation 
(antisense) 

Blinkin_RASA_
sense 

GCGGAGAAAAAGTCGTCGAGCTA
GCGCTGCTGAGAATATAAGGGTTT 

KNL1 RASA mutation 
(sense) 

Blinkin_RASA_
antisense 

AAACCCTTATATTCTCAGCAGCGC
TAGCTCGACGACTTTTTCTCCGC 

KNL1 RASA mutation 
(antisense) 

BlinkinS23A_ 
sense 

AGCCTCAGGAGGCGACTTGCCTC
TATTTTAAAAGTTC 

KNL1 S23A mutation 
(sense) 

BlinkinS23A_ 
antisense 

GAACTTTTAAAATAGAGGCAAGTC
GCCTCCTGAGGCT 

KNL1 S23A mutation 
(antisense) 

BlinkinS54A_ GATTCAACCATTGAAAAGCGGAGA KNL1 S54A mutation 
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sense AAAGCTCGTCGAGTTAGCT (sense) 

BlinkinS54A_ 
antisense 

AGCTAACTCGACGAGCTTTTCTCC
GCTTTTCAATGGTTGAATC 

KNL1 S54A mutation 
(antisense) 

BlinkinS58A_ 
sense 

GGAGAAAAAGTCGTCGAGTTGCC
TTTGCTGAGAATATAAGGG 

KNL1 S58A mutation 
(sense) 

BlinkinS58A_ 
antisense 

CCCTTATATTCTCAGCAAAGGCAA
CTCGACGACTTTTTCTCC 

KNL1 S58A mutation 
(antisense) 

Blinkin_S54_to
_DM_sense 

GGAGAAAAGCTCGTCGAGTTGCC
TTTGCTGAGAAATTAAGGG 

KNL1 S54A, S58A 
mutation (sense) 

Blinkin_S54_to
_DM_antisense 

CCCTTATATTCTCAGCAAAGGCAA
CTCGACGAGCTTTTCTCC 

KNL1 S45A, S58A 
mutation (antisense) 

spc105_RVAF_
wt_s 

TACAGAGTATGGTAAAGAGAAGAG
TTTCGTTCGCTCCCGA 

Mutating spc105NT 
construct to WT 
(sense) 

spc105_RVAF_
wt_as 

TCGGGAGCGAACGAAACTCTTCTC
TTTACCATACTCTGTA 

Mutating spc105NT 
construct to WT 
(antisense) 

GLC7_sal1_QC
_a 

CTATTTTTGGGTGATTATGTTGAC
CGTGGTAAACAATCC 

Eliminating SalI site in 
GLC7 (sense) 

GLC7_sal1_QC
_as 

GGATTGTTTACCACGGTCAACATA
ATCACCCAAAAATAG 

Eliminating SalI site in 
GLC7 (antisense) 

glc7_D95A_s CTATTTTTGGGTGATTATGTCGCC
CGTGGTAAACAATCCTTAGAG 

GLC7 D94A mutation 
(sense) 

glc7_D95A_as CTCTAAGGATTGTTTACCACGGGC
GACATAATCACCCAAAAATAG 

GLC7 D94A mutation 
(antisense) 

spc105_sg_seq CGCGAAAGAGAAGGCGCC Genotyping spc105 (F) 

Spc105_R CGCATGCTTTTCGCTGGGAG Genotyping spc105 (R) 
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directions (Qiagen) and exchanged into PP1 storage buffer (50 mM TRIS pH 8.0, 

200 mM NaCl, 0.1 mM MnCl2, 0.1 mM EDTA, 5 mM DTT).   

For MBP-xPP1γ and all related mutants: protein was purified on Amylose 

Resin according to manufacturers instructions (NEB), and dialyzed into PP1 

storage buffer.   

For xKNL100-FLAG and all related mutants: GST-tagged protein was 

purified on Glutathione Sepharose 4B and cleaved with precision protease 

according to manufacturers instructions (GE Healthcare), and dialyzed into 

sperm dilution buffer (5 mM HEPES pH 8.0, 150 mM sucrose, 100 mM KCl, 1mM 

MgCl2).  

 

in vitro phosphatase assay 

 Varying concentrations of purified MBP-xPP1γ were incubated protected 

from light in 50 µl final volume of pNPP reaction buffer [40 mM TRIS pH 7.4, 10 

mM KCl, 15 mM MgCl2, 1 mM DTT, 0.5 mg/mL BSA, 0.5 mM MnCl2, 20 mM 

pNPP (NEB), adapted from (Takai and Mieskes, 1991)].  After 30 minutes, the 

reaction was quenched with 1 ml 0.5 M EDTA.  The 20 fold diluted reaction was 

read by spectrophotometry for generation of dephosphorylated pNPP, molar 

extinction coefficient at 405 nM, e=16,000/M*cm.  The concentration of 

dephosphorylated pNPP was calculated as c=(20*A405)/.016 nM.   
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in vitro kinase assay and immunoprecipitation 

KNL11-100-FLAG (10 µM) was incubated with AuroraB-INCENP790-871 (A gift 

from A. Kelly), Polo, or Haspin (Gifts from C. Ghenoiu) (0.2 µM) for 30 minutes at 

20°C in kinase buffer (20 mM HEPES, 150 mM NaCl, 10 mM MgCl2, 1 mM DTT, 

1 mM MnCl2, .025% Tween-20) with either 1 mM ATP or 30 µM ATP plus 0.02 

µM 32P-ATP (approx. 6000 Ci/mmol). 

In vitro immunoprecipitation was performed in binding buffer (BB = PBS, 

0.01% NP-40, 0.1 mg/ml BSA, 0.25 mM TCEP, 10 % glycerol).  For Figure 2-2A, 

20 µl Dynabeads M-280 streptavidin beads (Invitrogen) coupled to peptide 

containing the RVxF motif of human Repo-Man (biotin-

NMRKRKRVTFGEDLSPEVFD) were incubated in 50 µl with 6.25 pmol of the 

indicated MBP-xPP1γ mutants for 1 hour at room temperature.  For Figure 2-2B, 

10 µl RVxF peptide beads were incubated in 50 µl with the indicated 

concentrations of MBP-xPP1γ for 2 hours at 4°C.  For Figure 2-11A, 0.8 µM 

MBP-xPP1γ and 0.4 µM xKNL1100-FLAG were incubated in 50 µl for 1 hour at 4 

°C, then added to an equal volume of protein A antibody beads (Sigma) coupled 

to anti-FLAG antibody and incubated for 1 hour at 4°C.  For Figure 2-11B, 5 µl of 

a non-radioactive in vitro kinase reaction (see above) was added to 10 µl of anti-

FLAG M2 agarose (Sigma) in 50 µl TBS and incubated for 30 minutes at room 

temperature.  The agarose was washed 2 times in TBS, 2 times in BB, 

resuspended in BB with 1 µM MBP-xPP1γcat, and incubated 2 hours at 4°C.  For 
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all experiments, beads were washed 3 times in BB and eluted with SDS sample 

buffer.  

 

Generation of peptide antibodies 

Methods previously described (Field et al., 1998) were followed.  Peptides 

corresponding to the C termini of PP1γ (RPVTPPRGIITKQAKK), and PP1α 

(QSRPVTPPRNKNKQSK) were synthesized (Tufts University Core Facility) and 

conjugated to KLH, and polyclonal antibodies were raised in rabbits (Covance).  

Antibodies were affinity purified using SulfoLink Coupling Gel (Pierce) according 

to the manufacturer’s directions.  PP1γ antibody recognizes PP1γ but not PP1α, 

and is therefore used as an isoform specific antibody (anti-PP1γ).  PP1α antibody 

recognizes both PP1α and PP1γ, and is therefore used as a pan-PP1 antibody 

(anti-PP1) (Figure 5-1).  

 

Xenopus laevis egg extracts 

Meiotic metaphase II (CSF)-arrested extracts were prepared as previously 

described (Murray, 1991).   

 

Spindle assembly and immunofluorescence 

CSF extracts were supplemented with rhodamine labeled tubulin, 

demembrenated sperm to a final concentration of 500 nuclei/µl, and 2 µM MBP-

xPP1γ.  CaCl2 was added to 0.3 µM, and the extract was incubated for 90 
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MBP-PP1γMBP-PP1α
1.00 1.000.50 0.25 0.50 0.25μM MPB-PP1:

anti-PP1

anti-PP1γ

Figure 5-1: Specificity of newly generated PP1 antibodies.  The indicated 
amounts of MBP-xPP1α or MBP-xPP1γ were blotted with purified PP1 antibodies.  
The antibody raised against the C-terminus of PP1α (top) recognizes both MBP-
xPP1α and MBP-xPP1γ, and is therefore referred to as anti-PP1.  The antibody 
raised against the C-terminus of PP1γ (bottom) is isoform specific and referred to 
as anti-PP1γ.  
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minutes at 20 °C to induce interphase.  Fresh CSF extract was added at a ratio of 

2:1, and incubated for 60 minutes.  For Figure 2-12, 10 µg/ml nocodazole or 

DMSO control was added and incubated for an additional 10 minutes.  

Spindles were processed for immunofluorescence as previously described 

(Desai et al., 1999).  Anti-MBP (Sigma, 1/1000), or anti-BubR1 (a gift from Rey-

Huei Chen, 0.1 µg/mL) primary antibodies and Alexa 488-conjugated goat anti-

mouse (Invitrogen) and cy3-conjugated donkey anti-rabbit (Jackson) secondary 

antibodies were used for detection.  10 µm stacks were taken using a DeltaVision 

Image Restoration Microscope and deconvolved using SoftWoRx software 

(Applied Precision).  Co-localization analysis was performed using JACoP in 

ImageJ.  Pearson’s coefficient of co-localization between CENP-A and MBP-

PP1γ was determined, and Van Steensel’s analysis was performed to yield the 

CCF curve (Bolte and Cordelieres, 2006).   

 

Immunodepletion and immunoprecipitation from extract 

Control rabbit IgG, anti-INCENP (Sampath et al., 2004), or anti-PP1 

antibodies were crosslinked to protein A Dynabeads (Invitrogen) using BS3 

(Pierce) according to the manufacturer’s directions.  For Immunodepletion, 

antibody-crosslinked beads were incubated with an equal volume of extract for 

75 minutes at 4° C and then removed to yield the depleted extracts.  For 

Immunoprecipitation, GFP, PP1, and xKNL1300 or xKNL1790 were translated and 

35S-labeled in rabbit reticulocyte lysate with SP6 RNA polymerase according to 
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manufactures directions (Promega).  Proteins were added to extract (1/10 of total 

extract volume, approx 1:1:6 PP1:GFP:xKNL1 by volume) and incubated for 1 

hour at 20°C, then added to an equal volume of antibody crosslinked beads and 

incubated for 30 minutes at 4° C.  Beads were washed 6 times with PBS + 0.1 % 

triton and eluted with SDS sample buffer. 

 

Immunoblots 

Primary antibodies were diluted in PBS + 4% milk, autoclaved or Blocking 

Buffer (Li-Cor) + 0.05% Tween-20.  IRDye 800 goat anti-rabbit or donkey anti-

goat or IRDye 680 goat anti-mouse secondary antibodies were used according to 

manufacturers instructions.  Blots were detected and quantified using the 

Odyssey Infrared Imaging System (Li-Cor). 

 

Saccharomyces cerevisiae methods 

Yeast strains 

All strains are derivative of the W303 background, see table 5-3.  

spc105NT-RVAF, spc105NT-RASA, and spc105 NT-R75ochre constructs were synthesized 

with a SalI site in the promoter for integrating (Epoch Biolabs) and cloned into 

RS406 using the SacII and KpnI sites.  For spc105 NT-WT, the RVAF mutation was 

eliminated from spc105 NT-RVAF using site-directed mutagenesis.  For Glc7 fusion 

constructs: An AscI site and a linker (GDGAGL) were inserted into the spc105 NT-

WT or spc105 NT-RASA plasmids via PCR, GLC7 was PCR amplified from genomic 
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Table 5-3: Yeast strains (pages 128 to 130)

Strain Genotype 

JSR070 MATa-inc lys2::GAL-HO-LYS2 SPC105::spc105WT-NT-URA3 

JSR002 MATa-inc lys2::GAL-HO-LYS2 his3::TUB1-GFP-HIS3 
SPC105::spc105RVAF-NT-URA3 ADE2 

JSR001 MATa-inc lys2::GAL-HO-LYS2 his3::TUB1-GFP-HIS3 
SPC105::spc105RASA-NT-URA3 ADE2 

JSR003 MATa-inc lys2::GAL-HO-LYS2 his3::TUB1-GFP-HIS3 
SPC105::spc105ochre-NT-URA3 ADE2 

JSR057 MATa-inc lys2::GAL-HO-LYS2 SPC105::spc105RASA-NT-URA3 ipl1-
1 TRP1 

JSR069 MATa-inc lys2::GAL-HO-LYS2 spc105-RASA ipl1-1 TRP1 

JSR069-1 MATa-inc lys2::GAL-HO-LYS2 SPC105 ipl1-1 TRP1 

JSR006 MATa-inc mad2Δ::KanMX lys2::GAL-HO-LYS2 his3::TUB1-GFP-
HIS3 SPC105::spc105RASA-NT-URA3 ADE2 

JSR083 MATa-inc bar1Δ his3::TUB1-GFP-HIS3 PDS1-18MYC-LEU2 LYS2* 

JSR084 MATa-inc bar1Δ his3::TUB1-GFP-HIS3 PDS1-18MYC-LEU2 LYS2* 
trp1::tetoff-CDC20-127-TRP1 

JSR085 MATa-inc bar1Δ his3::TUB1-GFP-HIS3 PDS1-18MYC-LEU2 LYS2* 
trp1::tetoff-CDC20-127-TRP1 spc105-RASA 

JSR004 MATa-inc lys2::GAL-HO-LYS2 his3::TUB1-GFP-HIS3 spc105-
RVAF ADE2 

JSR004-1 MATa-inc lys2::GAL-HO-LYS2 his3::TUB1-GFP-HIS3 SPC105 
ADE2 
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JSR049 MATa-inc mad2Δ::KanMX lys2::GAL-HO-LYS2 his3::TUB1-GFP-
HIS3 spc105-RVAF 

JSR078 MATa-inc bar1Δ leu2::tetR-GFP-LEU2 ura3::TetOs-URA3 LYS2* 

JSR079 MATa-inc bar1Δ leu2::tetR-GFP-LEU2 ura3::TetOs-URA3 LYS2* 
SPC105-RVAF ADE2 

JSR080 MATa-inc bar1Δ leu2::tetR-GFP-LEU2 ura3::TetOs-URA3 LYS2* 
scc1-73 TRP1 ADE2 

JSR081 MATa-inc bar1Δ leu2::tetR-GFP-LEU2 ura3::TetOs-URA3 LYS2* 
spc105-RVAF scc1-73 TRP1 ADE2 

YL044 MATa-inc bar1Δ mad2::KanMX scc1-73 leu2::GAL-PDS1-mdb-
LEU2 

JSR103 MATa-inc mad2Δ::KanMX lys2::GAL-HO-LYS2 his3::TUB1-GFP-
HIS3 spc105-RASA ADE2 

JSR103-1 MATa-inc mad2Δ::KanMX lys2::GAL-HO-LYS2 his3::TUB1-GFP-
HIS3 SPC105 ADE2 

JSR093 MATa-inc bar1Δ mad2::KanMX leu2::tetR-GFP-LEU2 ura3::TetOs-
URA3 

JSR094 MATa-inc bar1Δ mad2::KanMX leu2::tetR-GFP-LEU2 ura3::TetOs-
URA3 spc105-RASA 

JSR096 MATα lys2::GAL-HO-LYS2 mad2::kanMX leu2-Δ101::URA3::leu2-
Δ102 ADE2 

JSR097 MATα spc105-RASA lys2::LYS2-GAL-HO mad2::kanMX leu2-
Δ101::URA3::leu2-Δ102 ADE2 

JSR102 MATa-inc lys2:: GAL-HO-LYS2 SPC105::spc105GLC7-RASA-NT-URA3 

JSR113 MATa-inc lys2:: GAL-HO-LYS2 SPC105::spc105glc7cat-RASA-NT-URA3 
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JSR112 MATa-inc lys2:: GAL-HO-LYS2 SPC105::spc105GLC7-SPC105-NT-
URA3 

JSR114 MATa-inc lys2:: GAL-HO-LYS2 SPC105::spc105glc7cat7-SPC105-NT-
URA3 

JSR128 MATa-inc lys2:: GAL-HO-LYS2 SPC105::spc105GLC7-SPC105-NT-
URA3 mad2::KanMX his3::TUB1-GFP-HIS3 ADE2 

JSR105 MATa-inc lys2::GAL-HO-LYS2 Glc7-spc105-RASA 

JSR105-1 MATa-inc lys2::GAL-HO-LYS2 SPC105 

JSR106 MATa-inc lys2 leu2-Δ101::URA3::leu2-Δ102 

JSR107 MATa-inc lys2 leu2-Δ101::URA3::leu2-Δ102 GLC7-spc105RASA 

JSR127 MATa-inc lys2:: GAL-HO-LYS2 SPC105::spc105GLC7-SPC105-NT-
URA3 his3::TUB1-GFP-HIS3 ADE2 

Yeast strains used in this study. All strains are W303 background. Asterisks 

indicates either LYS2 or lys2::GAL-HO-LYS2. 
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DNA and inserted into the AscI site, and the SalI site in GLC7 was eliminated and 

the catalytically dead mutation D94A was created using site directed 

mutagenesis.  For all site directed mutagenesis, primers used are listed in table 

5-2. 

 

HO-induced Gene Replacement (HGR) and Single-Cell Colony Assay (SCA) 

For live cell imaging and bulk culture genotyping, parent cells were grown 

to log phase before GAL-HO induction for 6 hours, the time needed to guarantee 

cells have performed recombination (Cross and Pecani, 2010).  Cells were then 

prepared for live cell imaging or DNA extraction.  For the single cell colony assay, 

spc105NT strains were streaked on galactose plates and left for 6 hours at 30°C.  

Single budded cells were isolated and allowed to grow to colonies.  In cases 

where macroscopic colonies formed, DNA was isolated by standard protocol.  

The genotype was assessed by PCR amplification (for primers used see table 5-

2) and restriction digestion with an enzyme specific to each mutation.  

 

IPL assay 

Cells containing ura3-52 and leu2-Δ101::URA3::leu2-Δ102 at the 

endogenous LEU2 locus on chromosome 3 (Chan and Botstein, 1993) were 

grown in unselective YEPD for 48 hours, diluted appropriately and plated on 

selective medium lacking leucine, or that lacking both leucine and uracil.  Percent 

disomy III is defined as frequency of Leu+, Ura+ cell formation. 
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Time courses 

Cells were arrested in G1 in YEPD + 10 nM α-factor for 1.5 (30°C) or 2 

(23°C) hours.  For tetR-CDC20-127 experiments, 10 µg/ml doxycycline (sigma-

aldirch) was added for 2 hours, and cells were washed into YEPD with 

doxycycline and without α-factor.  For all others, after arrest cells were washed 

into YEPD without α-factor at 30°C or the indicated temperatures.  Samples for 

florescent microscopy and/or Western blotting were prepared as previously 

described (Bean et al., 2006) every 15 minutes for 2 hours after release, and 10 

nM α-factor was added 45 minutes after release to prevent cells from entering 

the next cell cycle. 

 

Nocodazole block 

For Figures 3-16B and 3-17B, asynchronous cultures grown to log phase 

in YEPD were treated with 15 µg/ml nocodazole and 10 µg/ml benomyl or an 

equivalent amount of DMSO for 3 hours, and cell morphology was counted.  For 

figure 3-16B, cells were then washed 2 times in YEPD, plated onto YEPD, and 

colony formation was counted after 48 hours.  For Figure 3-11A, cultures were 

arrested in G1 in YEPD + 10 nM α-factor for 1.5 hours, then washed into YEPD 

without α-factor with 15 µg/ml nocodazole and 10 µg/ml benomyl or an equivalent 

amount of DMSO, and cell morphology was counted every hour.  
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Time-lapse microscopy 

Parent strains (spc105NT) were grown to log phase in SCR-URA (synthetic 

media with raffinose and without uracil).  Galactose and uracil were added, and 

cells were further incubated for 6 hours.  Cells were then plated on agarose, and 

a previously described method (Drapkin et al., 2009) was used for 12 hour time-

lapse microscopy.  
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APPENDIX 

 

Identification of the Xenopus laevis KNL1 homologue 

Since the Xenopus laevis genome has not yet been sequenced, the first 

task in this study was to identify and sequence the KNL1 homologue.  I identified 

a potential homologue from a cDNA library using 5’EST homology and 

sequentially sequenced the full-length coding region.  The encoded protein was 

37.5 % similar to the human homologue, and contained the conserved RVxF 

motif (Figure A-1).  This is the protein used for all Xenopus egg extract 

experiments.  
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Figure A-1: Alignment of KNL1 homologues.  KNL1 from Xenopus laevis was 
identified from the IMAGE clone library by 5’EST homology and sequentially 
sequenced (xKNL1, IMAGE clone number 7794105, Genbank Accession 
JF804775).  The full-length sequence is compared to the published sequences 
from Homo sapiens (hKNL1).  Identical residues are marked in dark grey, similar 
residues in light grey, and red bar indicates the conserved RVxF motif.  
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Figure A1: pages 137 to 147
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Regulation of the Repo-Man-PP1 interaction 

Identification of Xenopus laevis Repo-Man 

At the onset of this project, Repo-Man was one of the few known 

chromatin-associated PP1 regulatory subunits (Trinkle-Mulcahy et al., 2006; 

Vagnarelli et al., 2006).  The regulation of this interaction, however, had not yet 

been explored.  I therefore initially set out to study this regulatory mechanism in 

Xenopus laevis egg extracts.  Since all previous studies of Repo-Man had been 

done in human cells, I first had to identify the homologue in this system.   

Using homology between the 5’EST sequences of a Xenopus laevis cDNA 

library and the Xenopus tropicalis Repo-Man homologue, I identified two potential 

homologues.  I sequentially sequenced these cDNA clones, and indeed they 

code for two distinct, full-length Repo-Man homologues with 79.8 % homology to 

each other, hereafter referred to as Repo-Man1 and Repo-Man2 (Figure A-2).  

Repo-Man2 is more similar to Xenopus tropicalis Repo-Man than is Repo-Man1 

(74.2 and 68.3 % homology, respectively).  Consistent with this, Repo-Man2 

contains the conserved RVxF motif, while Repo-Man1 does not.  All Xenopus 

homologues have approximately 31.5 % homology to human Repo-Man.   

 

Effects of phosphorylation of the RVxF motif 

I hypothesized that this interaction may be temporally regulated 

throughout mitosis.  The “x” of the RVxF motif in this case is a strikingly 

conserved threonine.  I therefore sought to test whether phosphorylation of this 
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Figure A-2: Alignment of Repo-Man homologues.  Alignment of the full-length 
sequences of Repo-Man.  Two isoforms from Xenopus laevis were identified from 
the IMAGE clone library and sequentially sequenced (Xl_Repo-Man1, IMAGE 
clone number 4084144, and Xl_Repo-Man2, IMAGE clone number 8329563).  
They are compared to published sequences from Xenopus tropicalis (Xt_Repo-
Man) and Homo sapiens (Hs_Repo-Man).  Identical residues are marked in dark 
grey, similar residues in light grey, and red bar indicates the conserved RVxF motif. 
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Figure A2: pages 150 to 157
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residue may provide a mechanism for regulation of the interaction between 

Repo-Man and PP1.  To examine this possibility in vitro, I had synthesized 

biotinylated peptides corresponding to the 20 amino acids surrounding the RVxF 

motif of the human protein.  I had to use the human sequence instead of the 

Xenopus laevis sequence because the protein is so large that it took several 

rounds of sequencing before I had reached the RVxF motif.   

I ordered two versions of this peptide: with and without a phosphorylated 

RVTF motif.  To test the interaction between PP1 and Repo-Man, I incubated 

peptide-coated beads with purified PP1γ-HIS.  To modulate the catalytic activity 

of the PP1γ-HIS, I supplemented the binding buffer with either MnCl2 (required for 

full activation of the phosphatase) or phosphatase inhibitors.  In either buffer, 

PP1γ-HIS bound to the unphosphorylated peptide.  However, PP1γ-HIS bound to 

the phosphorylated peptide in the activating buffer but not in the inhibitory buffer 

(Figure A-3).  This difference is most likely due to dephosphorylation of the 

peptide by active PP1γ-HIS.   

From these data, I concluded that the interaction between PP1 and Repo-

Man could be abrogated by phosphorylation of the Repo-Man RVTF motif.  This 

mechanism was later shown to be physiologically relevant and essential for 

regulating the anaphase function of the Repo-Man-PP1 holoenzyme (Vagnarelli 

et al., 2011).  

158



S B S B S B S B
RVTF RVTFRVTphF RVTphF

ACTIVE INHIBITEDPP1:
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Figure A-3: Phosphorylation on Repo-Man abrogates its interaction with 
PP1.  Peptides corresponding to the 20 amino acids surrounding the human 
Repo-Man RVTF motif were synthesized with or without threonine phosphoryla-
tion.  Peptides conjugated to magnetic beads were incubated with PP1γ-HIS in 
binding buffer supplemented with MnCl2 (ACTIVE), or phosphatase inhibitors 
(INHIBITED).  Proteins in the supernatant (S) and those bound to beads (B) are 
imaged by Coomassie.  
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