Rockefeller University
Digital Commons @ RU

Student Theses and Dissertations

Progress Towards Integrated Models of HCV
Dynamics

Thomas S. Oh

Follow this and additional works at: http://digitalcommons.rockefeller.edu/
student theses and dissertations

b Part of the Life Sciences Commons

Recommended Citation
Oh, Thomas S., "Progress Towards Integrated Models of HCV Dynamics" (2012). Student Theses and Dissertations. Paper 172.

This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and

Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact mcsweej@mail.rockefeller.edu.


http://digitalcommons.rockefeller.edu?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations/172?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mcsweej@mail.rockefeller.edu

PROGRESS TOWARDS INTEGRATED MODELS OF HCV DYNAMICS

A Thesis Presented to the Faculty of
The Rockefeller University
in Partial Fulfillment of the Requirements for

the degree of Doctor of Philosophy

by
Thomas S. Oh

June 2012



© Copyright by Thomas S. Oh, 2012



PROGRESS TOWARDS INTEGRATED MODELS OF HCV DYNAMICS

Thomas S. Oh, Ph.D.

The Rockefeller University 2012

Hepatitis C virus is a small, enveloped positive-strand RNA member of the
Flaviviridae and the etiological agent of a global epidemic of chronic hepatitis C. One of
the salient features of HCV is a complex regulatory scheme involving numerous viral and
cellular components and which may be the key to its striking success in initiating and
maintaining decades-long chronic disease in infected individuals. Lacking any known
latent or integrated form, HCV must persist through ongoing RNA replication, immune
evasion, and infection of naive cells. HCV is a highly-studied virus, and many details of its
life cycle have been worked out; however, much remains unknown. One thing lacking is
an integrated model of HCV as a single dynamic system. Various viral life cycle events,
such as entry, polyprotein translation and processing, RNA replication, virion
morphogenesis and secretion have been studied and worked out to some extent. How
these activities are coordinated and how they influence each other is less well-
understood. We approached this problem from three angles. We developed
guantitative mathematical models designed to accurately recapitulate the specific
processes of virus production and accumulation and virus entry. These models were
applied to gain a more detailed understanding of these systems. We studied the HCV
regulatory protein NS5A through genetic and chemical perturbation to try to understand

how it might be connecting different life cycle activities. These studies revealed a



surprising role for the host cellular protein cyclophilin A in regulating virus assembly as
well as clarifying aspects of NS5A phosphorylation. These findings suggest a complex
system of regulation linking polyprotein translation, RNA replication, and virion
assembly which will require further work to decipher. We also pursued a bioinformatics
approach, in which we analyzed HCV multiple sequence alignments (MSAs) to identify
covariant amino acid positions within HCV proteins. Some of the challenges to the study
of covariation in HCV MSAs were identified, and we describe a novel method of
calculating covariation which addresses some of these issues, particularly the problem
of phylogenetic covariance. While an integrated dynamic model of HCV remains far from

achieved, these studies are presented as incremental steps towards that goal.
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Chapter 1. Introduction



Chapter 1 Introduction

Hepatitis C is a global epidemic, affecting an estimated 160 million people worldwide
(1), and is a leading cause of liver disease and hepatocellular carcinoma (2). Prevalence
varies widely, with a global average of 2.35% but ranging as high as 14% in countries like
Egypt and Cameroon. The acute phase of the disease is often asymptomatic, with an
estimated 20% resolving the infection naturally, but the remaining 80% continue on to
chronic infection, which is generally life-long without treatment and leads to progressive
liver damage. 10-20% of chronically infected individuals will go on to develop
complications of liver disease such as cirrhosis within 30 years, and 1-5% will develop

liver cancer.

In the United States, HCV-related mortality has increased steadily since its discovery,
and recent data indicate HCV has surpassed human immune-deficiency virus (HIV) as a
cause of death. It is also the most common chronic blood-borne infection and the main
indication for liver transplant (3). The current standard of care consists of pegylated
interferon-a and ribavirin, a poorly tolerated regimen with severe adverse effects and
success rate of only around 50-60% for genotype 1 HCV patients, the predominant
genotype in the U.S. (4). A decade of work on direct-acting antivirals (DAAs) has
resulted in the recent approval of two small-molecule inhibitors of HCV (5), with a
number of other compounds in the development pipeline. These DAAs, when added on

to the standard of care, yield much higher response rates



HCV is the type member of the Hepacivirus genus of the Flaviviridae family of
enveloped, positive-sense single-stranded RNA viruses. Related genera are Flavivirus,
which includes the major human pathogens yellow fever virus, West Nile virus, and
dengue fever virus, and Pestivirus, which includes important agricultural disease-causing
agents classical swine fever virus and bovine viral diarrhea virus. Very recently, a second
member of the Hepacivirus genus was discovered during investigations of a respiratory
illness outbreak in dogs. Follow-up study and sequencing uncovered a novel species of
the Hepacivirus genus, appropriately designated Canine Hepacivirus (CHV) (6). As the
closest relative to HCV, comparative studies of CHV and HCV may provide new insights

into the biology of both viruses.

The viral genome of HCV comprises a 9.6 kb uncapped RNA molecule bearing a
single open reading frame (ORF) spanning most of the genome flanked by shorter 5’-
and 3’-untranslated regions (UTRs). The UTRs carry specific RNA secondary structure
required for translation and RNA replication, while the ORF codes for the ten viral

proteins.

HCV protein translation is initiated from a 5’ internal ribosome entry site (IRES) and
proceeds through the entire open reading frame. The resulting polyprotein is cleaved by

a number of cellular and viral proteases to generate the ten viral proteins, designated C,
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Figure 1-1. HCV genome organization, polyprotein, and topology

(A) HCV genome with single long open reading frame, translated into a single
polyprotein, which is post-translationally cleaved by host and viral proteases. (B)

Resulting membrane topology of the 10 HCV proteins.



E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B. The polyprotein undergoes co-
translational translocation across the ER, and the viral proteins are predominantly
membrane-anchored or membrane associated. Of these, NS3 through NS5B represent
the minimal set of proteins required to initiate and sustain RNA replication along with

the 5’- and 3’-UTRs.

1.1  Cell culture systems

Although the HCV genome was originally cloned in 1989, allowing the first studies of
HCV as a genetic entity, any research on the viral life cycle itself was severely hampered
by a lack of model systems. Molecular clones were infectious in chimpanzees, but no
other animal model existed. Replication in cell culture was also was also unsuccessful for
over ten years, until the development of subgenomic replicons systems and the
discovery of numerous adaptive mutations which increased replication efficiency by
orders of magnitude. These subgenomic replicons typically consist of the 5’-UTR with its
IRES driving expression of an antibiotic resistance gene, followed by an
encephalomyocarditis virus (EMCV) IRES, the subgenome encoding NS3 through NS5B,
and the 3’-UTR. These constructs are transcribed in vitro to produce subgenomic RNA,
which is transfected into cells and maintained under drug selection. Even the choice of
cell line is rather restricted, with efficient replication seen in primary liver cells and a
small number of human hepatoma cell lines, in particular Huh7 and its derivatives.

Transfection and drug selection results in colonies of drug-resistant cells actively



replicating HCV subgenomic RNA; acquisition of adaptive mutations dramatically

increases the frequency of colony formation.

An obvious limitation of these subgenomic replicons is that, not expressing any of
the structural proteins, they are not capable of producing new infectious virions, and
therefore do not allow investigation of much of the virus life cycle, including assembly,
release, and entry. This limitation was overcome with the discovery of JFH-1, a genotype
2a patient isolate cloned from an individual with fulminant hepatitis in 2005. The JFH-1
clone supported both RNA replication and infectious virus production, allowing study of
the complete viral life cycle for the first time. This breakthrough was quickly followed up
by the report of intragenotypic chimeras of the J6 and JFH-1 strains. These chimeric
constructs, comprising the N-terminal region from J6 and the C-terminal region from
JFH-1 with a breakpoint either between NS2 and NS3 (J6/JFH) or within NS2 (Jc1), were
notable for producing significantly more virus than the wild type JFH1 virus. These two
lab strains, along with the Huh7 and Huh7.5 cell lines, have become standard models for

the study of the viral life cycle in cell culture.

1.2 The virus particle and entry

The virion is a roughly spherical particle approximately 60nm in diameter displaying
the two viral glycoproteins, E1 and E2, on a lipid bilayer envelope. The envelope
surrounds the viral nucleocapsid, a multimeric shell of HCV Core protein encapsulating

the viral genomic RNA. Virus particles are heterogeneous in composition, size, and



density, and are normally associated with host lipoproteins in larger assemblies known
as lipo-viral particles (LVPs). Apolipoproteins B and E (ApoB, ApoE) co-purify with
infectivity, suggesting an LVP with some resemblance to VLDL (7). That the maturation
and secretion of viral particles utilizes many components of the VLDL assembly pathway

further reinforces this notion (8).

HCV entry is a multi-step process involving numerous cellular proteins. Four major
entry factors have been identified — SRB1 (9, 10), CD81(11), CLDN1 (12), and OCLDN
(13), the ablation of any one of which is sufficient to severely impair entry of HCV and
HCV pseudo-typed lentivirus. Likewise, the expression of all four factors renders non-
permissive cells permissive for HCV entry. SRB1 and CD81 both exhibit affinity for the
HCV E2 glycoprotein and are believed to mediate the first steps, with initial engagement
and binding to SRB1 followed by a CD81-mediated priming of the particle for fusion (14).
The two tight junction proteins, CLDN1 and OCLDN, are involved in a post-binding step
downstream of both SRB1 and CD81 (12). Fusion of the viral envelope is a pH-
dependent process (15), implying that fusion takes place following endocytosis and

acidification of the endosome.

1.3 Translation and polyprotein processing

After uncoating of the particle, the genomic RNA is translated to generate the HCV
polyprotein. The viral RNA is not capped, and translation is initiated from the HCV IRES,

which recruits the 40S ribosomal subunit and eukaryotic initiation factor 3 (EIF3), which



is followed by binding of the ternary complex and completion of the 80S ribosome
complex. The AUG start codon is positioned in the ribosomal P-site upon recruitment,

and no ribosomal scanning is required (16).

As a consequence of HCV’s expression as a single polyprotein, numerous cleavage
events are required to generate the ten viral proteins, and notably, all viral proteins are
produced in equimolar quantities - the non-structural proteins are presumably
produced in vast excess. The structural proteins and p7, a small putative ion-channel
required for infectious virion production, are cleaved from each other by host signal
peptide peptidases and host signal peptidases. Processing of the remainder of the
polyprotein is mediated by two virally encoded proteases domains, found in NS2 and
NS3 respectively. The structure of the protease domain of NS2 shows a homodimeric
configuration in which two copies of the NS2 protein form two composite active sites,
with residues from both copies cooperating at each site to catalyze an autoproteolysis
which serves the purpose of separating NS3 from the C-terminus of each of the two NS2
molecules (17). This cleavage requires the N-terminal 180 residues of NS3, and no other
substrate for the NS2 protease is known apart from the NS2-NS3 junction. The
consequent liberation of the N-terminus of NS3 is essential for RNA replication, with
NS2 cleavage mutants unable to replicate (18), but the NS2 protein itself is not required
for RNA replication, as sub-genomic replicons expressing only NS3-NS5B replicate

efficiently (19). Constructs containing an EMCV IRES between NS2 and NS3 also replicate



well, further indicating that, unlike some other members of the Flaviviridae, the

uncleaved intermediate does not perform an essential function (20).

The remaining non-structural proteins are cleaved by the N-terminal serine protease
domain of NS3, along with the NS4A co-factor, which forms a stable complex with NS3
and is required for efficient processing. The NS3/4A protease also plays an important
role in evading the innate immune system of the cell by cleaving a component of the
RIG-I signaling pathway, the adapter molecule IPS-1, and thereby disrupting induction of
interferon and the cellular antiviral response (21, 22). The crucial role of the NS3/4A
protease makes it a very attractive drug target, and numerous small-molecule inhibitors

have been identified and are in various stages of development and clinical use (23-25).

1.4 RNA replication

Expression of the integral membrane protein NS4B is sufficient to induce the
membrane convolutions, dubbed the membranous web, to which the RNA replication
complexes localize (26). These membrane reorganizations form protected structures
which enclose the viral RNA replication machinery and may function to conceal viral
components from cellular pathogen-associated molecular pattern (PAMP) sensors or

control the local biochemical environment.

Once the replication complex is formed, RNA replication depends on the
cooperation of the NS3 RNA helicase, the RNA-dependent RNA polymerase NS5B, and

NS5A, a phosphoprotein with no known enzymatic activity. For full RNA replication



activity, these proteins must be expressed from the RNA to be replicated; most of the

protein functions cannot be trans-complemented (27).

The extensive biochemical and structural studies of NS5B as well as its clear function
make it the best understood component of the replicase as well as an important drug
target (28, 29). As the viral RNA-dependent RNA polymerase, NS5B is obviously essential
for HCV replication (30, 31), with mutations in the catalytic GDD motif rendering the
virus completely unable to replicate (32). Replication of RNA requires RNA elements in
the 5’-UTR (33, 34) and 3’-UTR (31), as well as, interestingly, RNA elements within the
coding sequence of NS5B (35). Like the NS3/4A protease, multiple inhibitors of the NS5B
polymerase are in development (28). Inhibitors include both chain-terminating
nucleoside analogues and non-nucleoside allosteric inhibitors directly binding the NS5B

molecule.

NS3 is also required for HCV replication, not only for its proteolytic activity in
cleaving the other replicase components from each other, but also for a distinct helicase
activity (36). The HCV double-stranded RNA is the presumed substrate for this helicase,
however its exact function in the RNA replication cycle is unknown. The helicase activity
is also a potential drug target, and various inhibitory compounds have been reported

(37-39).

10



1.5 Assembly, Maturation, Secretion

Compared to the earlier events, much less is known about the final stages of the
viral life cycle — assembly and secretion of infectious particles. In addition to the
structural proteins core, E1, and E2, p7 and NS2 are all dispensable for RNA replication
but required for virus particle production (20). A third non-structural protein, NS5A, also
plays an active role in virus assembly (40) in addition to its essential role in RNA
replication (41). Cytosolic lipid droplets (LDs) are believed to be the site of virus
assembly, with core protein associating with lipid droplets (42) and colocalizing with
NS5A, suggesting a rendezvous of HCV RNA and core for packaging into capsids (43).
NS5A, an RNA-binding protein and a component of the replicase complex, is thought to
shuttle HCV RNA from replication complexes to the sites of assembly and has been

recorded making rapid, microtubule-dependent movements over long-distances (44).

NS2 is believed to play a central role in virus assembly, with interactions with
structural and non-structural proteins (45) suggesting a possible role as a scaffold for
virus assembly (46). Mutagenesis studies of NS2 have identified numerous mutations
which specifically alter virus production and not RNA replication in both the N-terminal
transmembrane domain (47) and the protease domain (48), although the protease
activity itself is not required (49). Chimeras of J6 and JFH show large differences in virus
production which map to NS2 (50), and serial passaging in tissue culture has generated

higher titer strains with important adaptive mutations in NS2 (51, 52).

11



The small, a-helical, trans-membrane protein p7 is also required for virus assembly
(20). The protein oligomerizes in vitro to form ion channels which can be blocked by the
influenze A M2 inhibitor, Amantadine (53). This ion-channel activity has been shown to
de-acidify intracellular vesicles, protecting the nascent virion as it passes through an
acid-sensitive phase prior to maturation (54)to the final acid-resistant form (15). P7 is
also reported to possess a second, ion channel-independent function of regulating NS2

localization and interaction with NS5A (55).

A major hallmark of HCV particle assembly and secretion is its close association with
cellular lipid metabolism, especially very low-density lipoprotein (VLDL) synthesis.
Several components of the VLDL pathway, including microsomal triglyceride transport
protein (MTP) (8), apolipoprotein B (apoB) (56), and apolipoprotein E (ApoE) (57) have
been shown to participate in HCV assembly and maturation. Both ApoB and ApoE can be
found incorporated into LVPs, while MTP is believed to be involved in formation and
lipidation of the infectious particle. ApoE has also been shown to interact with NS5A,

and that interaction has been correlated with efficient assembly of viral particles (58).

1.6 NS5A

The penultimate member of the HCV polyprotein, NS5A is a putatively three domain
phosphoprotein of approximately 460 amino acids (actual length varying somewhat
between genotypes and isolates). The three predicted domains are separated by low-

complexity sequences (LCS-I and LCS-1l), however only domain | has been found to

12



exhibit any clear structure, with two distinct homodimeric forms having been
crystallized. Domain | consists of the first 213 amino acids, which contain an N-terminal
amphipathic membrane anchor, four essential cysteine residues which coordinate a
single structural zinc-ion, and a large basic groove which is formed at the homodimeric
interface of two NS5A molecules and is proposed as an RNA binding surface. NS5A
indeed has been shown to have RNA binding affinity, with the ability to bind the 3’- ends

of both the plus and minus strands of HCV RNA (59, 60).

The remainder of the protein, domains Il and Ill, are believed to be generally
disordered, and NMR studies support their classification as natively unfolded domains.
Their lack of distinct structure does not imply a lack of function however, and both
domains Il and Ill show important and specific functions in the viral life cycle. At the
same time, both domains display a degree of genetic flexibility generally absent from
domain | and from the HCV genome at large, with a higher degree of polymorphism
across isolates and tolerating various deletions and insertions. Deletion mapping of
domains Il and lll show that for the most part small deletions have little effect on RNA
replication. Similarly, a 47-amino acid deletion in domain Il has been isolated as an
adaptive mutation in subgenomic replicons. However, a 56 amino acid stretch in the
second half of domain Il is absolutely required for RNA replication and even small
deletions in this region render subgenomic replicons completely dead. A total deletion
of domain Il (except for a short C-terminal stretch required for 5A-5B cleavage) also

replicates RNA efficiently; however production of infectious virions is abolished,

13



pointing to a role of domain Il in assembly and release. Similarly, sites in domain Il have
been shown to accept large heterologous insertions like GFP with little effect on RNA
replication, at the cost of severely impaired virus production. More recently, inter-
genotypic exchanges of domain Ill have also been shown to affect virus production in a
consistent way (43), suggesting that certain domain Ill sequences are generally more

favorable for virus production than others.

These data point to roles of NS5A in both RNA replication and virus assembly. In fact
NS5A has long been proposed as a regulatory switch, balancing these two competing
activities. This notion is further encouraged by its ability to bind HCV RNA, imaging
studies which have found NS5A localizing with core at lipid droplets (41), the proposed

site of virus assembly, and the long-standing observation of NS5A phosphorylation.

Direct inhibitors of NS5A have been developed (61), in particular the compound
BMS-790052 (62). This NS5A inhibitor has shown astonishing efficacy, with effective
concentrations in the pico-molar range and highly rapid reductions in patient viral load.
The mechanism of these inhibitors is unknown, all the more so as NS5A has no known
enzymatic function. Resistance has been mapped to domain I, both in cell culture and in
HCV patients. Treatment of HCV infected cells with BMS-790052 results in changes in
localization (55), polyprotein processing (63), and phosphorylation status of NS5A, and

evidence suggests that the inhibitor targets multiple functions of NS5A (64).

14



1.6.1 NS5A phophorylation

In cells, NS5A exists in two major isoforms differing by their phosphorylation state:
the p56 basally phosphorylated form, also referred to as the hypophosphorylated form,
and the p58 hyperphosphorylated form. Under phosphatase treatment, the two
isoforms collapse down to a single species running slightly faster than the p56 form.
Neither the process of phosphorylation nor the functional significance of the two
phosphorylation states have yet been fully elucidated, and experimental results have
not yet coalesced into a unified picture. The hyperphosphorylated form can be reduced
in abundance or eliminated by a variety of means — mutation of serine 232 in domain |
(often referred to as S2204, by polyprotein numbering), mutation of serine 457 in
domain lll, chemical inhibition of casein kinase Il-alpha (CKla), chemical inhibition of
casein kinase Il (40), and antiviral compounds such as BMS-790052 (64), which target
NS5A. The wide variety of ways to reduce p58, and the fact that they affect p58
abundance as an integral species (rather than changing its degree of separation from
p56) suggests a cascade of phosphorylation with multiple prerequisite conditions, the

disruption of any one of which interrupts the entire process.

The effects of disrupting p58 are as varied as the means. The S2204| mutation in
domain | is an adaptive mutation in the genotype 1b Conl, reduces the
hyperphosphorylated form and enhances RNA replication 80-fold (65). The same
mutation in JFH1, where it also inhibits the formation of p58, severely impairs RNA

replication (64). On the other hand, mutating serine 457 to an alanine has minimal
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effect on RNA replication but reduces infectious virus production over a thousand-fold,
a defect that does not occur when serine 457 is mutated to the phospho-serine mimic
aspartic acid (40). Hyperphosphorylation has also been linked to a loss of interaction
with the host protein hVAP-A, a required factor for RNA replication, leading to the

proposal that hyperphosphorylation negatively regulates replication.

Advancing the theme of a replication/assembly tradeoff, multiple replication-
enhancing mutations (REMs) in full length genomes have been demonstrated to reduce
virus assembly efficiency (66). Many, if not all, of these REMs also reduce NS5A
hyperphosphorylation, reinforcing the link between NS5A phosphorylation status and

virus replication/assembly regulation.

These correlations between alterations in the phosphorylation states of NS5A and
differences in RNA replication and virus assembly capacity, while not easily understood,
provide perhaps the most convincing evidence that NS5A acts as a regulator of the

different life cycle activities of HCV.

1.7 Cyclophilin A

The topic of host factors required for the viral life cycle has been one of extensive
research and discussion. Numerous siRNA screens, viral protein pull-downs, yeast two-
hybrid screens, and small-molecule inihibitor screens have identified a vast array of
candidates, and validation of new hits by biochemical and functional assays are

published with regularity. These hits include replication factors human vesicle-
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associated membrane protein-associated protein A (hVAP-A) (67) and
phosphatidylinositol 4-kinase (PI4KA) (68), assembly factor annexin A2 (ANXA2), and

interferon signaling component PKR.

One of the more extensively studied host replication factors for HCV has been
cyclophilin A (CypA, PPIA). This highly abundant, cytosolic peptidyl-prolyl isomerase is an
important target of the immunosuppressive drug cyclosporine A (CsA), which when
bound to CypA inhibits calcineurin, an activator of IL-2 and the T-cell immune response.
However, its role in HCV replication is independent of its function as an immune
activator, as demonstrated by analogues of CsA lacking immunosuppressive activity
(69). The critical interaction of HCV and CypA is evidenced through direct binding,
chemical inhibition, genetic knockdown, and perhaps most convincingly, by the ongoing
clinical trials of Alisporivir, a non-immunosuppressive CsA analogue, currently in Phase
[l and being proposed as the linchpin of what could be the first interferon-free HCV
treatment regimen. However, despite these strong findings, the CypA-HCV story has
proven complex and is far from complete. At the outset, studies conflicted as to the
identity of the required host cyclophilin, with both CypA and CypB identified as the
essential replication factor (70)(71). Since then CypA has emerged as the general
consensus within the field, although studies continue to explore the role of CypB,
focusing specifically on its interaction with NS5B(72). In contrast, CypA’s role in HCV
replication has been traced to no less than three separate viral proteins, NS2, NS5A, and

NS5B. CypA is believed to play a role in the proper folding and activity of the NS2
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protease, the crystal structure of which reveals a rare cis-proline which may be the
substrate of CypA (73). Experiments separating NS2 from NS3 with an IRES or comparing
NS2-5B replicons with NS3-5B replicons show a pronounced decrease in CsA sensitivity

when NS2 is not expressed contiguously with NS3.

CsA resistance mutations have been traced to NS5B (74, 75), making it another
candidate for interaction partner and drug target. Supporting this hypothesis, NS5B has
been shown to associate with CypA via its enzymatic pocket (76), and CsA has been
shown to block incorporation of NS5B into replication complexes (77). There is some
conflicting data, however, as CypA-independent recruitment of NS5B to replication

complexes has also been demonstrated (72).

A consensus has emerged, however, that the primary target of CsA and the primary
viral protein partner in the HCV-CypA interaction is NS5A. The interaction of CsA, CypA,
and NS5A is the most-studied; nevertheless, findings have been highly diverse, with
varying reports as to the locus of interaction, the substrate for CypA’s isomerase
activity, and mechanism of action. Both domain Il (78, 79) and domain Il (80) of NS5A
have been shown to interact with CypA, and both domains have been reported to be
substrates of the peptidyl-prolyl isomerase. Two proline residues have been identified in
domain Il which are critical for CypA interaction and for replication (81), but additional
prolines scattered throughout domain Il are believed to be substrates and contribute to
binding in a distributed fashion (82). What effect the CypA interaction has on NS5A

function is not yet clear. One possibility is that CypA interaction with NS5A alters the
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kinetics of the NS5A-NS5B cleavage event, which may have ramification on both RNA
replication and virus replication (83). Another recent report has shown CypA to
modulate the RNA binding properties of NS5A domain Il (79); the importance of this

effect is unclear given that domain | is believed to be the major RNA-binding domain.

1.8 Objective

The objective of this present study is to further our understanding of the HCV life
cycle as a system. The long-term goal would be to integrate functional knowledge of
HCV molecular biology with quantitative measurements from controlled experimental
systems to deepen our understanding of HCV as a system and to develop more
comprehensive conceptual and numerical models. The work presented here describes
three avenues of approach towards that goal. In chapter 3 we develop two simple
mathematical models which we then refine with experimental data to arrive at
guantitative predictive models. We then explore some of the implications of these
models as well as some potential applications. In chapter 4 we focus on a specific viral
protein, NS5A, and probe its role in regulating the various components of the HCV life
cycle. In chapter 5 we explore a completely different, bioinformatic approach to HCV
biology: covariation analysis, a statistical study of mutational patterns in HCV sequence
alignments. These three approaches do not converge in this work; however, these
approaches are potentially convergent and we also outline future directions towards

this long-term goal.
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Chapter 2 Materials and Methods

2.1 Cell culture

Continuous cell lines were cultured at 37°C in 5% CO,.

2.1.1 Huh?7.5 (Human hepatoma)

Cells were propagated in Dulbecco’s Modified Eagle’s Medium (DMEM, Invitrogen)
supplemented with 10mM non-essential amino acids and 10% fetal bovine serum (FBS,

Omega Scientific) (30).

2.1.2 Huh7.5(CD81-)

Huh7.5 cells transduced with a shRNA against the HCV entry factor CD81 are
described in (84). Cells were propagated as described for the parental Huh7.5 cell line

with the addition of 6 pg/ml Blasticidin-S (Invitrogen).

2.2 Plasmid Constructs

2.2.1 Cloning primers

DNA oligonucleotides were ordered and custom synthesized (IDT) for use in
generating the plasmid constructs used in this work. The primers and sequences are

listed in Table 2-1.
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Table 2-1. Cloning primers

Primer Number

Sequence

RU-0-5933
RU-0-6769
RU-0-12685
RU-0-12686
RU-0-12709
RU-0-14251
RU-0-14775
RU-0-14776
RU-0-15105
RU-0-15106
RU-0-15869
RU-0-15870
RU-0-15871
RU-0-16248
RU-0-16249
RU-0-16250

5-TTGCCTTTGCTTCCAGAGG-3’
5’-GAGAGGGTACGCGTTTAGAGAAGACTCCACCCCTTGG-3'
5’-CATAGTGCGCTCAGCCGTGAGCAAAGGCGAAGAGCTG-3’
5’-CGTCTACTAGATCTCTTATAGAGCTCGTTCATGCCCTCGG-3’
5’-GATTCAGGAGTGGGTACCACCCATGC-3’
5’-CAGCTCTTCGCCTTTGCTCAC-3’
5’-GAGGCTCAGCCGTCAACCCCACCGTGTTCTTC-3’
5’-GCCAGATCTTTCGAGTTGTCCACAGTCAGC-3’
5’-ATGCACTCCGATATGAGCAGGTTGGCATCGACC-3’
5’-CAACCTGCTCATATCGGAGTGCATGCTCCCCAG-3’
5-GGACGTCGGACCGCCGGATTCGG-3’
5’-GGATGGCAAGCAGGTGGTGTTTGG-3’
5’-CCAAACACCACCTGCTTGCCATCC-3’
5’-GCTGTCGGGTCCCAGCTTCCCTGT-3’
5’-CGGCCTGAGAACAACCCGCCGCTCGTGGAA-3’
5’-CGGGTTGTTCTCAGGCCGTGCCCAAGCCGG-3’
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2.2.2 Jc1FLAG2(p7nsGluc2A)

This reporter genome based on the Jcl chimeric genotype 2A virus has been

previously reported (85).

2.2.3  Jc1(NS2-IRES-nsGluc2AUbi).

The previously published reporter construct J6/JFH(NS2-IRES-nsGluc2AUbi) (20) was
modified to contain the Jcl breakpoint in NS2 (50). The primer pair RU-0-12709/RU-O-
6769 was used to amplify a fragment of the Jc1 NS2 sequence with an N-terminal Notl
site and a C-terminal Mlul site corresponding to sites in the J6/JFH(NS2-IRES-
nsGLuc2AUbi). A second fragment was generated by digesting Jc1 with BsaBl and Notl.
These two fragments were ligated into the J6/JFH(NS2-IRES-nsGluc2AUbi) vector

digested with BsaBl and Mlul.

2.2.4 Jc1(378-Ypet)

A multiple cloning site encoding Blpl and Bglll site surrounded by flexible linkers
(GGGS) was engineered into APP23 at position 378 (NS5A protein numbering, domain
), resulting in the construct Jc1 378-Link. Ypet was amplified from Bi-Ypet-Jc1-FLAG2
(86) using primers RU-0-12685 and RU-0-12686 to generate a Ypet amplicon with

flanking Blpl and Bglll sites, which was then cloned into the Jc1-378-Link plasmid.
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2.2.5 Jc1(A34-378-Ypet)

Virus production-competent revertants were generated by passaging supernatants
from Jc1(378-Ypet). These clones were reverse transcribed and sequenced. A deletion
found in NS5A was engineered back into the Jc1(378-Ypet) background, yielding the
Jc1(378-Ypet-1) construct. The deletion was reengineered by PCR amplification of the
revertant cDNA using the primer pair RU-0-5933/RU-0-14251, which was digested with
BspEl and Blpl. A plasmid prep of J6/JFH made in DAM- E. Coli was digested with Spel
and BspEl, and the 2,164bp fragment was purified. This fragment along with the PCR

amplicon was ligated into the Spel-Blpl vector of Jc1(378-Ypet) in a 3-fragment ligation.

2.2.6 Jc1-H34L, Jc1(378-Ypet-H34L)

The NS5B adaptive mutation H34L has been previously published (87). The N-
terminal region of NS5B containing the mutation was cloned into Jcl and 378-Ypet

background by the unique restriction sites Rsrll and HindlIl.

2.2.7 Jc1-A34

The -1 deletion from Jc1(A34-378-Ypet) was engineered back into the original Jcl
using overlapping PCR mutagenesis to make a construct with the deletion but without
the Ypet fusion in NS5A. NS5A was amplified from Jcl with the primer pairs RU-O-
5933/RU-0-15105 and RU-0-15106/RU-0-15869. The two resulting overlapping

amplicons were assembled using the outer primers and digested with BspEl and Rsrll.
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The same DAM- Spel-BspEl fragment described above in the Jc1(A34-378-Ypet) cloning
was used along with the PCR assembled fragment in a 3-fragment ligation into the Spel-

Rsrll vector of Jcl.

2.2.8 Jc1(378-CypA) and Jc1(A34-378-CypA)

Cyclophilin A was PCR amplified from a commercially available PCMV-SPORT6-PPIA
plasmid (Open Biosystems) using primers RU-O-14775 and RU-0-14776. These primers
carry 5" overhangs with Blpl and Bglll sites respectively, matching the cloning sites
flanking the NS5A 378 locus and allowing the CypA gene to be swapped for the Ypet in

both the Jc1(378-Ypet) and Jc1(A34-378-Ypet).

2.2.9 Jc1(378-mutCypA) and Jc1(A34-378-mutCypA)

Residue 126 of CypA was mutated from a histidine to a glutamine (H126Q) by
overlapping PCR mutagenesis, resulting in a catalytically inactive mutant of CypA. One
fragment was generated by amplifying CypA with RU-0-14775 and RU-0-15871, and the
second fragment was made using RU-0-15870 and RU-0-14776, with the active site
mutation encoded in the two inner primers. The two overlapping fragments were
amplified in an assembly PCR reaction using the outer primers to generate the full
length mutant CypA. Blpl and Bglll sites in the outer primers allowed the mutant CypA to

be swapped into the Jc1(378-Ypet) and Jc1(A34-378-Ypet) backbone.
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2.2.10 Serine 457 mutants — Jc1(AEED), Jc1(DEED), Jc1(378-Ypet-AEED), Jc1(378-Ypet-

DEED), Jc1(A34-378-Ypet-AEED), and Jc1(A34-378-Ypet-AEED)

Mutations of serine 457 of NS5A to alanine and aspartic acid have been previously
generated in the J6/JFH background (40). The C-terminal region of NS5A containing the
mutations was transferred into Jcl, 378-Ypet, and A34-378-Ypet by restriction digest

cloning using the unique Rsrll and Hindlll sites in NS5A and NS5B respectively.

2.2.11 Jc1(DEYN)

The CsA resistance mutations D316E and Y317N were generated in Jcl by PCR
mutagenesis. Overlapping fragments were made from the primer pairs RU-0-16248/RU-
0-16250 and RU-0-16249/RU-0-15869. These fragments were joined by assembly PCR

and cloned into Jc1 by SanDI and Rsrll.

2.2.12 Cloning into the Jc1(NS2-IRES-nsGluc2AUbi)

378-Ypet and A34-378, the corresponding CypA fusions and mutCypA fusions, the
DEYN mutant and the serine 457 mutants were all cloned into the Jc1(NS2-IRES-

nsGluc2AUbi) background using the unique SanDI and Xbal sites.
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2.3 HCV cell culture protocols

2.3.1 HCV RNA transcription

HCV template plasmids were linearized by Xbal restriction digest for 3h at 37°C and
purified on MinElute columns (Qiagen). RNA was transcribed from 1 ug of linearized
template in a 20 puL T7 RiboMax Express (Promega) in vitro transcription reaction at 37°C
for 90 min, followed by a 15 min digestion with 1 uL of the supplied RQ1 DNAse. RNA
was purified from the reaction using an RNeasy column (Qiagen), quantified by 260 nm

absorpance, and visualized by 1% agarose gel electrophoresis to verify integrity.

2.3.2 HCV RNA transfection

Huh 7.5 cells (or derivative cell lines) were trypsinized, washed twice with ice-cold
RNAse-free PBS, and counted. The cells were finally resuspended in PBS at a
concentration of 1 x 10 cells/ml. 400 pL of cell suspension was mixed with 5 ug of RNA,
transferred to a 2 mm gap electroporation cuvette (BTX), and given 5 pulses of 860 V, 99
usec using an ElectroSquare Porator ECM 830 (BTX). The cells were left for 10 min
before being resuspended in complete DMEM with 10mM HEPES and subsequently

distributed into multi-well plates or dishes as needed.
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2.4 Assays

2.4.1 Gaussia luciferase assay

To measure intracellular guassia, cells were lysed with 1x Renilla Lysis Buffer
(Promega). To measure guassia secreted into the extracellular media, cell supernatants
were collected and immediately diluted 1:1 in 2x Renilla Lysis Buffer. 10 uL of each
sample were transferred to an opaque white 96-well plate and assayed for luciferase
activity with the Renilla Luciferase Assay Kit (Promega) on a FIuoSTAR Omega plate
reader (BMG). 50 uL of Renilla substrate was injected into each well and luminescence

was counted for 5 sec.

2.4.2 Cell-associated infectivity

Following electroporation, cells were plated into poly-lysine coated 96-well plates
and cultured. At the endpoint time, cell media was removed and each well was filled
with 200 plL PBS, aspirated, and refilled with 50 uL complete DMEM. The entire plate
was subjected to three freeze-thaw cycles at -80°C (>30 min) and room temperature
(10 min). To assay infectivity, the entire sample was pipetted up and down to mix and

put onto naive Huh7.5 cells.

2.4.3 Luciferase-based infectivity assay

Naive Huh7.5 cells were plated in 96-well plates at a density of 10 cells per well. The

following day, infectious samples of guassia-expressing HCV were added to each well
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and incubated to allow infection and expression of guassia. After 48 h, cells were lysed

and assayed according to the Gaussia luciferase assay described above.

2.4.4 HCV titer by limiting dilution

Naive Huh7.5 cells were plated in 96-well plates, 5x10° cells per well. The following
day, HCV-containing supernatants were serially diluted and 50 pL of each dilution were
added to each of 8 replicate wells. The infections were allowed to proceed for 72 h

before cells were fixed and stained for HCV NS5A antigen by immunohistochemistry.

2.4.5 HCV NS5A immunohistochemistry

Cells to be stained were fixed in 100% methanol at -20°C for 30 min and then
washed (each wash step is 2 times in PBS, once in PBS-T). Cells were blocked in 1% (w/v)
BSA and 0.2% milk in PBS-T (PBS with 0.1% Tween-20) for 30 min and then incubated in
3% hydrogen peroxide. Cells were incubated for 1 h in a 1:25,000 dilution of 9E10
mouse anti-NS5A monoclonal antibody (88) in PBS-T and then washed. An HRP-
conjugated anti-mouse antibody (Jackson, 1:200 in PBS-T) was added to the cells and
incubated for 30 min. The cells were washed once more and developed with DAB

peroxidase substrate (Vector) for 5 min before stopping the reaction with a PBS rinse.

2.4.6 HCV RNA gRT-PCR

HCV-infected cells in 96-well plates were lysed in 30 pL of SideStep Lysis and

Stabilization Buffer (Agilent) and frozen at -80°C. Thawed lysates were diluted 1:20 in
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nuclease-free water and 5 pL of diluted sample was added to make a 25 pL MultiCode-
RTX (EraGen) gRT-PCR reaction. Amplification and quantification was performed on a

LightCycler 480 (Roche) real-time PCR system.

2.4.7 Cell viability assay

Cell viability was assessed using the CellTiter-Glo assay (Promega). Cells were
cultured in a 96-well format. The well volume adjusted to 50 plL of complete DMEM and
50 uL of CellTiter-Glo reagent was added to each well. Plates were rocked for 30 min to
mix and assayed for luminescence on a FlIuoSTAR Omega plate reader (BMG) with an

integration time of 0.5 s.

2.4.8 HCV NS5A Western Blot

Supernatants were removed from cells, and cells were lysed in SDS sample buffer.
Lysates were resolved by PAGE on SDS-10% polyacrylamide denaturing gels and
transferred to PVDF membranes. Membranes were blocked in 5% milk/PBS-T for 1 h.
The 9E10 anti-NS5A mAB (88) was allowed to bind for 1h at RT in 5% milk/PBS-T (1:1000
dilution). Membranes were washed 5 times in PBS-T and incubated for 30 min at RT
with an anti-mouse-HRP secondary antibody (Jackson) in 5% milk/PBS-T (1:5000
dilution). After an additional 5 rinses with PBS-T, blots were developed using the

SuperSignal West Pico chemiluminescent substrate (Pierce).
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2.5 Inhibitors

Cyclosporine A (CsA) was purchased from Sigma (St. Louis, MO). 2’-C-methyl-
adenosine (2’CMA) was obtained from Merck (Whitehouse Station, NJ). BMS-790052
and danoprevir were purchased from Selleck Chemicals (Houston, TX). H479 was kindly

provided by Raffaele De Francesco (IRBM).

2.6 Experiments

2.6.1 Inhibitor Dose Response

Following electroporation, HCV-transfected Huh7.5 cells were transferred to 96-well
plates at a density of 10* cells per well in a well volume of 100 uL. Inhibitors were
diluted in complete media to 3x the final desired concentration. 50 pL of 3x inhibitor

was added to each well for a final volume of 150 pL.

2.6.2 Inhibitor kinetic response

Following electroporation, HCV-transfected Huh7.5 cells were seeded into multiple
96-well plates. Infection was allowed to proceed for 24 or 48 h before the addition of
chemical inhibitors. Entire plates were harvested at each selected time point following
drug addition and assayed for RNA replication, luciferase expression, and/or

intracellular infectivity.

31



2.6.3 Infection volume curve

Huh7.5 cells were seeded into poly-L-lysine treated 24-well plates and incubated for
24 h to allow attachment. Wells were then aspirated and then infected with either
JC1FLAG2(p7nsGLuc2AUbi) or TOTO1101(Fluc) (89) in varying volumes of complete
DMEM ranging from 200 plL to 2 ml. Infections were allowed to proceed at 37°C for 8 h
and 4h for HCV and Sindbis virus infections, respectively. Wells were then washed once
with 2 ml complete media and filled with 400 pL complete media. Plates were harvested
either 48 h (HCV) or 4 h (Sindbis) subsequently and assayed for luciferase activity to

determine the level of infection.

2.6.4 Virus production kinetic

Huh7.5 cells were electroporated with Jc1FLAG2(p7nsGLuc2AUbi) and plated in
poly-L-lysine coated 24-well plates. 24 h after electroporation, wells were washed twice
with PBS and refilled with complete DMEM. At fixed time intervals following the wash,
cell supernatant was sampled and split for the secreted Gaussia luciferase assay and

luciferase-based infectivity assay.

2.7 Numerical models

Several rate equation models were developed to describe various aspects of the HCV

life cycle. These models were represented as systems of ordinary differential equations
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(ODEs), with an independent variable of time and each dependent variable representing

a state value of the system (i.e. number of virions, infected cells, RNA molecules, etc.)
2.7.1 \Virus release and stability model

To model the release and stability of virus into the cell supernatant, a single ODE

was postulated:

AN, N,
~—VY_Rr —_v
dt p(t) Z

Here Ny represents the number of infectious virus particles, Rp(t) is the rate of
production, and ty is the lifetime of the virus in the supernatant. The rate of production
is time dependent and can be fit using a polynomial regression to an experimentally

determined rate protein expression.

By way of comparison, a second model was proposed which considered the
possibility of a secreted factor which might actively degrade virus particles. The model is

accordingly modified:

dNy Ny

T Rp(t) — Eo NyNpk
dNp Ng
ac ~ F 1,

Nr represents the secreted degrading factor with lifetime t¢ [s] and degradation rate k

[s'l], which is secreted a rate Rpr.
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2.7.2 \Virus entry model

The binding and entry process was modeled with a system of three equations,

simulating the kinetics of entry while virus in the supernatant continues to degrade.

dt Vol

dN¢;  RNgyNy
dt Vol

dNy  RNgyNy Ny
dt Vol Ty

where Ncy = number of uninfected cells, R [ml*s™]= entry rate, Ny = number of virions,

Vol = infection volume (ml), N¢ = number of infected cells, and Tty = virus decay lifetime.

2.8 Numerical solutions for systems of ordinary differential equations

ODE rate equation models were solved using a fifth-order Runge-Kutta-Fehlberg
algorithm (90) implemented in Visual C++ 6.0 (Microsoft). Rate equations were also

custom coded in C++ and data was output to text files for plotting.

2.9 Covariation

2.9.1 HCV sequence alignments

HCV protein multiple sequence alignments (MSAs) were downloaded from euHCVdb

(91). For the covariance analyses, only non-gapped sequences of equal length were
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considered. For each protein, the most common length was selected and all sequences
of different length were discarded from the set. Accession and genotype information
was also retrieved from the database. Where appropriate, sub-alignments were

generated by filtering by genotype annotation.

2.9.2 Implementation of covariance algorithms

Covariance analyses were done using custom software written in Visual C++ 6.0.
MSAs were imported from text files, and all algorithms were implemented in C++.

Details for each algorithm are provided in within the chapter text.
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Chapter 3. HCV Kinetics and Numerical Models
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Chapter 3 HCV Kinetics and Numerical Models

Numerical models have been applied to understanding various aspects of HCV,
including in vitro RNA replication (92), epidemiology (93, 94), and most of all, in vivo
response to clinical therapy (95-97). These models often provide valuable insight
precisely because of their quantitative nature, revealing through rate constants and
half-lives subtleties of the underlying biology which could be missed in a more
gualitative study. A most striking example comes from the field of HIV, in which a set of
modeling studies in the mid-1990s provided the theoretical principles for the
development of highly active anti-retro viral therapy (HAART), also known as
combination therapy (98—100). Two models, representing HCV production and HCV

entry, are presented here along with corresponding experimental data and analysis.

3.1 Virus production and decay

3.1.1 A simple model describes virus production and decay

As an initial foray into the effort of matching experimental results to numerical
models, the process of HCV release into the supernatant and subsequent decay was

chosen. A simple one-equation model was initially proposed to describe the system.

dN, N
—L =R, -~
dt Ty
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Figure 3-1. Thermal decay of HCV at 37°C

Relative infectivity as a function of incubation time normalized to non-incubated virus
shown with exponential regression. Means and SEM of at least two independent

experiments are shown.

Table 3-1. Production model parameters

Parameter Description Value Units
Rp Rate of production arb virions/s
Tv Virus lifetime 5.35 h

Time-dependent rate of

Rp(t
P(t) production

685.8t + 29666 virions/s
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In this model, virus is produced at a rate Rp and decays with an average rate ty. The
instability of the infectious virus particle can be experimentally determined by
measuring the decrease of infectivity in a virus sample over the course of incubation at
37°C. This data is shown in Figure 3-1, with an exponential regression showing a half-life
of 4.0 h. This experimentally determined value can be plugged into the model above and
then solved numerically to predict the accumulation of infectivity in the supernatants of
infected cells. The timescale is assumed to be short enough that the effects of
secondary infection can be ignored. The predicted accumulation as a function of time is

shown in Figure 3-2.

The actual shape of the infectivity accumulation curve can be experimentally
determined by washing virus-producing cells to remove all preexisting virus, and taking
samples of the supernatants at selected time intervals following the wash. The resulting
data shows some resemblance to the predicted curve in its basic shape and the plateau;
however, the experimental curve continues to rise rather than reach a steady state. This
discrepancy could be explained by a time-varying rate of virus production, which might
be caused by an increase in overall replication levels either on a per cell basis, or as a
result of ongoing spread. Ongoing spread was ruled out by the use of Huh7.5 cells
deficient in the HCV entry factor CD81. In order to assess a possible increase in per cell
viral replication, a reporter gene, secreted Gaussia luciferase, was monitored

simultaneously with the release of infectious virus. Because the secreted luciferase is
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Figure 3-2. Production model and experimental data

(A) Predicted HCV titers from model assuming constant production, shown as a function
of hours post-wash. (B) Actual HCV infectivity measured by Gaussia luciferase infectivity
assay. Cells were electroporated and then washed after 24 h. Means and SEM of at least

two independent experiments are shown.

40



highly stable in the cell supernatant (data not shown), an unvarying level of replication
would result in a linear increase of luciferase over time. Instead, luciferase accumulation
accelerates over time (Figure 3-3). A polynomial regression was applied to the luciferase
data, and Rp, the rate of virion production in the model, was changed to a time-
dependent variable proportional to the first derivative of luciferase accumulation.
Applying this correction resulted in a markedly improved correlation between the

numerical model and experimental results.

The remaining discrepancy can be described as an initial delay after washing. The
reason for this discrepancy is not immediately apparent, and may be an effect of the
washing step, which subjects the cells to changes in temperature, CO, levels, and
composition of the extracellular media. The quadratic fit to the luciferase also shows a
delay after washing, although this delay of 1 h is smaller than the delay observed in virus
production. If a 3 h delay is allowed in the model, the agreement between the model

and the experimental data becomes quite high, with an R-squared value of 0.98.

3.1.2 Applications of the virus production model

One practical application of the numerical model is in optimizing the production of
virus stocks, specifically in timing the harvest of supernatants. It is possible to simulate
an arbitrary set of incubations and harvests and predict the virus yield. Figure 3-4 shows

the effect of harvesting frequency on virus yield. At one extreme, a single harvest
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Figure 3-3. Luciferase expression corrected model

(A) Luciferase expression from HCV producer cells as a function of time post-wash,
overlaid with a second-order polynomial regression. (B) Overlay of actual HCV
production data with output from luciferase-corrected numerical model (R’=0.98). A
three hour delay has been added to the model. Means and SEM from two independent

experiments are shown.
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following a 48 h incubation yields the highest concentration (by minimizing the total
volume of media used), but a lower total yield of virus. If the frequency of harvests is
increased, loss due to thermal decay can be reduced by moving harvested supernatants
to 4° C, where the virus is more stable. In this way, more total virus is obtained, though
at a lower concentration. Based on the model, one might choose to harvest every 8 h,
which vyields four times more total virus than harvesting once after 48 h while

maintaining a final concentration which is only reduced by 40%.

The close agreement between the numerical model and the experimental data
(apart from the initial delay in virus release after wash) also supports the completeness
of the model and argues against additional factors affecting virus release and decay. It
appears that virus production is generally proportional to viral protein expression (as
evidenced by luciferase release), and that the decay rate is an essentially intrinsic
matter of virus particle stability, without a need to invoke any additional mechanisms,
such as a separate secreted virolytic cellular factor. Enzymes such as hepatic lipase (101)
and lipoprotein lipase (102) have been proposed as agents of virus degradation; the
completeness of the model described here argues either that such factors are not major
mechanisms of virus decay, or that such factors are co-packaged with the virus, making

their activity intrinsic to the virus particle.
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Figure 3-4. Effect of harvest interval on virus stocks

Different harvest intervals over a 48 h period simulated with the HCV production model,
going from frequent harvests on the left to a single harvest after 48 h as the final point
on the right. Absolute scale of simulated virus number is arbitrary but consistent with

concentration on the secondary Y-axis.
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3.2 Kinetics of HCV Binding and Entry

3.2.1 Description of binding and entry model

The process of virus uptake involves diffusion of the particle to the cell, attachment
to cell surface receptors and internalization, accomplished by cellular endocytosis
machinery. Alternatively, the entire process can be simply conceived of as a single
binding-entry event. This process can be described by the following model:

dNcy __ k;Ncy Ny
dt Vol

dNg, _ k;Ncy Ny
dt Vol

dNV_ kiNcyNy Ny
at Vol Ty

Three state variables — the number of uninfected cells N¢y, the number of infected cells
Nc, and the number of virus particles Ny — describe the system, augmented by a number
of constant parameters: the virus decay lifetime (determined experimentally in the
previous section), the infection volume, and a rate constant k;, with dimensions of
ml/(cell x virus x s), which is specific for a particular well geometry and describes the
overall rate at which the binding/entry process proceeds. According to this model, the

rate of cells becoming infected is proportional to the probability of a virus-cell
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Figure 3-5. Effect of virus dose and cell number on infection

(A) Effect of varying virus dose on total infection showing a wide linear range down to 3
TCID50/well, with linear regression. (B) Effect of varying cell number of total infection,
with linear regression. Range spans approximately 0.5% to 80% confluence in one well

of a 24-well plate.
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interaction (number of virions times number of cells divided by interaction volume). The
infection is further limited by the previously quantified decay of virus in the

supernatant.

3.2.2 Fitting model to experimental data shown a low rate constant for entry

To generate real-world data to test against the model, several experiments were
carried out in which a single variable was varied across a range while the remaining
values were held constant. The dependence of infection rate on cell number, virus
number, and infection volume were thus separately tested and plotted, as show in
Figure 3-5 and Figure 3-6. Infection efficiency was found to be proportional to cell
number and virus dose across a wide range, as expected from the nature of the model

and providing some confirmation that the basic form of the infection model was correct.

The dependence of infection on the incubation volume was more interesting,
showing a rather strong nonlinear dependence on volume. This shape of this curve can
be reproduced with excellent agreement to the experimental data, with an R? value of

0.98, by setting the infection rate constant k, equal to 8x10™* (Figure 3-6).

As a point of comparison, the same experiment was repeated with Sindbis virus. The
best fit to the experimental data was achieved with the value of k| set to 3><10’9, a
difference in infection rate constant of nearly 40-fold. While measurements for this
constant have not been previously reported, the comparison is consistent with the

report of a relatively high mean time to infection for HCV (103).
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Figure 3-6. Constant dose infection volume curve

Effect of varying infection volume for a fixed virus dose. HCV and Sindbis virus are
compared, overlaid with numerical model results. Means and SEM of at least two

independent experiments are shown.

Table 3-2. Entry model parameters

Parameter Description Value Units

11 .
k, Entry rate constant 810 © (HCV), ml/(cell x virus

3x107° (sindis) s)
Tv Virus lifetime 5.35 h
Vol Infection volume 0.2-2 ml
Ncu0 Initial number of cells 1,000 - 200,000 cells
NyO Initial number of virions 10-10,000 virions
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3.2.3 Consequence of low entry rate constant on measures of infectivity

The low value of k; in an HCV infection has a number of consequences on how
infectivity is measured. One result of the slow infection of HCV is that virus titers tend to
be underestimated compared to the actual number of infectious particles present in the
sample. The dependence of effective infectivity on k; is shown in Figure 3-7. At higher
values of k; (faster infection), the number of infected cells accurately reflects the
infectious content of the inoculum. With decreasing k, however, more of the initially
infectious virus is lost to thermal decay before the virus is able to enter. For Sindbis virus
in a typical infection volume, this represents a relatively minor loss of 20%. For HCV on
the other hand, 90% of the infectivity is lost. This figure should also apply to a standard
virus titering assay; determinations of virus titer therefore typically underestimate the
number of infectious particles in a given virus stock by 10-fold. It is also advisable that

the infection volume for the virus titering be standardized.

By extension, measures of specific infectivity could potentially be underestimated as
well, as infectivity measurements are subject to this problem while RNA and core
protein measurements may not be subject to the same thermal decay. It is interesting

to consider a ten-fold revision of previously reported values of specific infectivity.

Because of the low infection rate constant for HCV and the resulting sensitivity to

infection volume, the concept of virus dose is much less applicable to HCV as compared
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Figure 3-7. Effective infectivity as a function of k,

Fraction of total infectivity in inoculum which can productively infect cells as a function
of infection rate constant, k;, based on numerical model. Effective infectivity is a fraction

of actual infectivity, non-infectious particles are not considered.
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with a virus like Sindbis. At a fixed dose, the observed infectivity drops by over 70%
when the volume is changed from 200 ul to 800 pl, whereas in a Sindbis virus infection,

only 20% is lost over the same range of volumes.

On the other hand, given a fixed concentration of virus, rather than a fixed dose,
observed HCV infectivity is almost invariant over the range of volumes, changing by only
10%. Figure 3-8 shows the effect of changing infection volume at a fixed concentration
of virus, with some preliminary experimental data which supports the model. For HCV
therefore, the virus concentration is actually a much more meaningful measure of
infectivity than virus dose, as the number of cells infected in a well is nearly constant for
a fixed concentration over a range of volumes. Conversely, Sindbis infectivity varies

significantly when the virus concentration is held constant but the volume is changed.

Another commonly used descriptor for cell culture viral infection is the multiplicity
of infection (MOI), defined as the ratio of infectious virions to target cells. The MOI is
often used to calculate the percentage of cells which will be infected and the
distribution of uninfected, singly-infected, and multiply-infected cells. Based on the
numerical model, using the MOI in this way also suffers from certain fundamental
difficulties. The first is the same as already discussed — the fact that effective infectivity
is dependent on the infection volume. The second problem is the way in which cell
number affects infection frequency, even when volume is held constant. One of the

assumptions underlying the use of MOl is that cell number does not affect the number
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Figure 3-8. Constant concentration infection volume curve

Effect of varying infection volume for a fixed virus concentration. HCV and Sindbis virus
are compared, overlaid with predicted curves from the numerical model. Means of

triplicate wells from one experiment are shown.
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of infection events. So for example, doubling the number of cells, which halves the MOI,
does not affect the total number of infections but spreads the infection events over a
greater number of cells. The dependence of infection events on cell number is shown
for various values of k. For very large values of k,, the assumption of cell number
independence is in fact valid over a wide range, and the concept of MOl is applicable.
For Sindbis, the assumption is approximately true except at the low cell numbers, which

correspond to a confluence of less than 10% (Figure 3-9).

At low values of k, as with HCV, this assumption absolutely does not hold except at
unattainably large cell numbers, well in excess of the maximum capacity of the cell
culture vessel. Rather than being unaffected by cell number, the number of infection
events is nearly proportional to cell number — doubling the cell number roughly doubles
the number of infections, meaning the number of infections per cell is nearly the same,

even though the MOl is cut in half.

The applicability of MOI in the context of HCV is therefore quite limited. In order to
use MOI as relative measure, infection volume, cell number, and well format must be
constant over the compared conditions, in which case there is no advantage to using
MOI over either virus concentration or dose. For MOI to be used as an absolute measure
— for example, to predict the percentage of cells infected with a specific dose or the

number of doubly-infected cells according to the Poisson distribution — infection
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Figure 3-9. Effect of cell number for three values of K;

Simulated infections for 1000 infectious particles as cell number is varied. Each curve

represents a different value of k;, with HCV K, = 8><10'11, Sindbis k; = 3><10'9, and a “fast”

infection with k, = 107,
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volume, cell number, and well format must be identical to the conditions under which
the virus titers were determined. Alternatively, the mathematical model could

potentially be used to correct for differences in cell number, infection volume, etc.

3.3 Discussion

In these studies, mathematical models were developed to describe different aspects
of the HCV cell culture system. Through comparison with the appropriate experimental
data, the models were refined and verified. Simulations based on these models provide
additional insight into the behavior of HCV and allow a more detailed and quantitative
understanding of the experimental systems in use. While these models are relatively
simple, they have a particular value in that they conform quantitatively to experimental
data. Not only does this increase confidence that the model is sound, it also allows
guantitative determinations to be made, such as the relative concentration of virus
stocks or the fraction of infectious virions which are lost to thermal degradation. One
practical application of such detailed information is to optimize protocols for virus stock
preparation. The development of these models also imposes a certain level of rigor on
how experimental parameters are defined and can reveal issues with how those
parameters are used, such as the notion of infectivity and how the idiosyncrasies of the
HCV infection process create issues with the traditional use of concepts like titers, virus

dose, and MOI.
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These implications and applications of the numerical models derive from a
completed set of simulations leading to certain conclusions. It is also interesting to
consider a more interactive modality of use, in which these models are encapsulated in
a more accessible user interface and become tools for design and analysis of
experiments. For example, given that MOI in its traditional sense is not applicable to
HCV, there would be some practical value in developing a software tool to determine
the equivalent MOI for an arbitrarily chosen set of experimental parameters (virus dose,
cell number, well format, infection volume, infection time, etc.), or to calculate the virus
dose required to achieve a desired MOI for a set of specified experimental conditions.
This is, in fact, the only general way to infect cells at a predetermined multiplicity. At a
broader level, it is worth considering how an increased integration of mathematical
models and other software tools might prove beneficial to the practice of experimental

biology.

In terms of the specific biological findings, the impact of the entry rate constant k, on
virus titers offers some areas for further study. Having seen differences in k, between
HCV and Sindbis, it remains to be seen whether k; will vary between different strains of
HCV and whether this can account for differences in infectious virus production or
specific infectivity. This possibility is already being explored as a factor in the elevated
infectivity of J6JFH-Clone2, a highly infectious cell culture adapted strain with multiple
mutations. In a related vein, determining the correlates of k; would be an interesting

study as well. There are many possible reasons HCV entry proceeds so slowly, whether
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physical properties such as buoyant density or biochemical determinants like
glycoprotein sequence or target cell properties like receptor concentration. Some of
these factors have been modeled in great detail for receptor mediated viral entry in
general and include more complex scenarios such as sequential engagement of
receptors, which would be highly relevant for HCV entry (104). Other studies have
focused on one particular aspect of entry, such as the number of E2:CD81 complexes
required for entry (103). Understanding the factors which determine k; may also open
up new targets for drug development, by revealing exploitable bottlenecks in the HCV
entry process as well as suggest ways to improve the efficiency of current cell culture

systems.
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Chapter 4. NS5A and elements of HCV regulation
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Chapter 4 NS5A and elements of HCV regulation

As discussed in the introduction, NS5A has been long seen as a key regulator of the
various HCV life cycle activities; however, the mechanisms by which it accomplishes this
task remain largely undefined. Phosphorylation is certainly involved, and domains Il and
lIl have been shown to profoundly affect both RNA replication and virus production. We
performed a series of experiments which shed additional light on the regulatory role of

NS5A, particularly in the balance of RNA replication and virus production.

4.1 The 378 insertion site and the related domain Il deletion

As previously reported, insertions into NS5A domain Il are well tolerated in
replicons, which maintain efficient RNA replication with GFP inserted in-frame near the
C-terminus of NS5A (105). The effect on virus production in a full-length construct,
however, is profound, with 70-fold reductions in virus titer reported (106). We inserted
the fluorescent protein Ypet (107) between amino acids 378 and 379 in NS5A (to be
referred to as the 378 insertion site) in a Jc1 background to produce Jc1(378-Ypet), also
referred to as 378-Ypet. Consistent with previous reports, RNA replication was robust,
but infectivity was severely impaired (Figure 4-1). Serial passaging of cell supernatants
following electroporation generated revertants with restored infectivity. Sequencing of
these mutants revealed deletions in domain Il of NS5A. A 34 amino acid deletion,

dubbed A34, was reengineered back into the 378-Ypet background to create the A34-
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Figure 4-1. 378 Ypet insert and compensatory deletion
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constructs. Means and SEM of duplicate electroporations are shown.

(A) Genome layouts for Jc1, 378-Ypet, and A34-378-Ypet. (B) Comparison of replication
and virus production for the three constructs. Replication is assessed by FACS MFI for a
Infectivity (secondary Y-axis)

measured by limiting dilution assay. (C) Western blot against NS5A comparing the three



378-Ypet construct. This construct displayed close to wild-type levels of virus assembly.
Interestingly, there appears to be a small reduction in replication relative to the 378-
Ypet when the deletion is added. The increase in assembly and concomitant decrease in
replication, confirmed by NS5A MFI in FACS analysis, suggested that these observations
were linked to changes in how NS5A was regulating the relative balance of assembly and
replication. The fact that the reversion came in the form of a somewhat remote deletion
also seemed to hint that the decreased titers in the 378-Ypet virus were not due to the

loss of a NS5A assembly function, but rather a dysregulation.

The phosphorylation status of 378-Ypet and A34-378-Ypet were compared by
Western blot; the difference was not dramatic, but 378-Ypet showed a small bias
towards the larger p58 form, while A34-378-Ypet had a more pronounced p56 band.
This is in contrast both to the serine 457 studies (40) and to studies involving replication
enhancing adaptive mutations, which both showed a correlation between p58 levels

and virus production (66).

4.1.1 Decrease in virus production not caused by increased cytotoxicity

In the initial characterization of the virus, we observed higher degree of cell death in
the 378-Ypet virus compared with the A34-378-Ypet, which raised the question as to
whether the lower titers from 378-Ypet might be a kind of cytopathic effect. In order to

test this possibility, we engineered an NS5B mutation, H34L, into the Jcl and 378-Ypet
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Figure 4-2. H34L mutant and cell viability

(A) Cell viability of HCV RNA-transfected cells as a function of time post-electroporation,
with Jc1 and 378-Ypet both showing impaired proliferation at 48 h PE, both rescued by
the NS5B H34L mutation. (B) Viral titers at 48 h PE, measured by limiting dilution assay.

Means and SEM of duplicate electroporations are shown.
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backgrounds. This mutation, originally isolated as an adaptive mutation in JFH1
replicons (87), has been shown to attenuate HCV replication to some extent (88),
resulting in reduced cytopathic effect. With the adaptive mutation, increased cell
viability was observed in both the Jc1 and 378-Ypet following transfection (Figure 4-2).
Virus production was also improved in both cases; however the magnitude of the
differences was not enough to explain the phenotypes. In addition, the 378-Ypet and
A34-378-Ypet modifications were also later engineered into a bicistronic reporter
construct, which also displays a moderated replication phenotype and good cell viability.
In this background, the differences in virus production were the same, confirming that

these differences are not a result of differences in cytotoxicity.

4.1.2 378 Ypet insertion and A34 deletion affect an early step of production

To determine whether the lower virus titer with the 378 Ypet insertion was due to a
block in the maturation/secretion pathway or a defect in de novo virus assembly, we
compared the extracellular titers with intracellular virus released by freeze/thaw cycles
of the transfected cells. The differences in extracellular infectivity of the three
constructs were closely reflected in the intracellular infectivity levels, showing that the
Ypet insertion affects an early stage of virus assembly (Figure 4-3). Given the RNA
binding function of NS5A, this early step could be RNA transport and packaging at the

assembly site.
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Figure 4-3. Intra- and Extracellular infectivity

Measurements of intracellular and extracellular infectivity, determined by limiting
dilution assay, with intracellular infectivity obtained by multiple freeze/thaw cycles of

washed cells. Means and SEM of duplicate electroporations are shown.
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4.1.3 Independence of 378 and A34 phenotypes from serine 457

The loss of virus production and compensating recovery is reminiscent of the study
on NS5A serine 457 (40), which showed decreases in virus production when mutated
which are comparable to the 378-Ypet and a nearly complete recovery of virus
production when mutated to a phosphor-mimetic aspartic acid. To test whether serine
457 might play a role the phenotypes of 378-Ypet and A34-378-Ypet, the S457A and
S457D mutations were engineered into the 378-Ypet and A34-378-Ypet genomes. As
shown in Figure 4-4, the two sets of perturbations appear to act completely
independently. Regardless of whether they are in the Jcl, 378-Ypet, or A34-378-Ypet

background, the serine 457 mutations have the same effects on virus production.

4.1.4 The effect of the domain Il deletion is distributed across its span

We constructed a collection of mutants in domain Il mutants to further dissect
interplay of the domain Il deletion and the 378 Ypet insertion, as outlined in Table 4-1.
They include a set of sub-deletions of the A34 deletion along with proline to alanine
substitutions in that region. These prolines have been proposed as potential binding
and/or isomerization targets of cellular proline isomerase cyclophilin A (CypA) (82). Also
included was a deletion of a reported CypA binding motif (82) and mutations of the

prolines contained therein.
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Figure 4-4. Effect of serine 457 mutations

(A) Effect of serine 457 mutations on replication in the backgrounds of 3 different
constructs, with SEED being the native motif and AEED and DEED the respective
substitutions. (B) The effect of the same mutations on virus production, showing
identical effects in all three backgrounds. Means and SEM of duplicate electroporations

are shown.
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Growth curves and the relative replication and viral titers are shown in Figure 4-5.
Replication, with exceptions, was not highly affected by these mutations. The
exceptions are both alterations of the CypA binding site 310pAWARP?™®, which result in a
severe decrease in replication. The large boost in infectious virus output from the A34
deletion could not be mapped to any particular subdivision; the effect seemed to be
distributed across the span of the deletion. The second half of the deletion showed a
stronger contribution, an effect that continued beyond the C-terminus of the A34

deletion out to amino acid 306.

The effect of the five combined proline to alanine substitutions within the deletion
region showed just a two-fold decrease in replication and a minimal increase in virus
production. This small effect may, however, be the result of two or more opposing
effects. The first two proline mutations together decreased the yield of infectious virions
below the limit of detection; however, due to the low virus production of 378-Ypet,
titers below a 7-fold decrease could not be measured. The other three proline residues

together increased virus production 4-fold.

4.2 CsA differentially effects RNA replication and virus assembly

Because of the well-documented importance of CypA for HCV the HCV life cycle and
because CypA has been shown to interact with both domains Il and Ill of NS5A (78, 80),

this interaction was seen as potentially relevant. We therefore decided to test the effect
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Table 4-1. Domain Il mutagenesis constructs
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Figure 4-5. Domain Il mutagenesis

(A) Growth kinetics of the 12 different constructs, with replication determined by
luciferase expression. (B) 48 h replication and viral titers normalized to the parental 378-

Ypet. Infectivity was undetectable for two constructs — at least 7-fold reduced.
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of cyclosporine A (CsA), an inhibitor of CypA, on virus production. CsA is a known
inhibitor of HCV RNA replication; in order to look for a possible second effect on virus
assembly, we delayed administration of the drug until 24 h after transfection, to allow
some time for replication to be established. Two concentrations were tested, 8.3 uM
and 83 nM?, and both replication and virus assembly were then tracked periodically

following drug addition.

Because CsA has been shown to inhibit an interaction between CypA and NS2 as
well, we chose to perform these experiments using a bicistronic construct containing an
IRES between NS2 and NS3, as well as a Gaussia luciferase reporter, diagrammed in
Figure 4-6a. Separating NS2 and NS3 with an IRES has been shown to modulate the CsA
sensitivity, leading to the hypothesis that CypA may play a role in NS2-NS3 cleavage
(73). By using a construct in which NS2 and NS3 are already separated, we hoped to
bypass any effects of CsA on NS2. Unless otherwise specified, all of the remaining
experiments were done in this bicistronic background. Replication was represented by
luciferase activity in cell lysates, while intracellular virus released by freeze/thaw cycles
was passed on to naive cells to assay infectivity. The use of intracellular virus allowed
CsA in the supernatants to be diluted away, so it would not interfere with the infectivity

assay.

! CsA concentrations were initially chosen in units of pg/ml, and then converted to molarity at the
time of writing for consistency. 8.3 pM = 10 pg/ml, 2.5 puM = 3 pg/ml.
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Figure 4-6. Differential effect of CsA on replication and infectivity

(A) The bicistronic reporter virus with NS2 and NS3 separated and expressing Gaussia
luciferase. (B) Kinetic response to CsA as a function of time post-addition for three
different concentrations. (C) Intracellular infectivity as a function of time post-addition
of CsA. Note that infectivity with 83 nM CsA is higher than when untreated. Means and

SEM of replicate wells are shown.
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The resulting drug response time course yielded several interesting observations. As
expected, replication was significantly inhibited at the high concentration of CsA and
less so at the lower concentration. Surprisingly, however, even at the high
concentration, 40-fold higher than the ECsq, replication levels did not display any net

decrease at all after administration — only further increase in replication was halted.

Another interesting observation, which is followed up on in subsequent
experiments, is that though the low concentration of CsA is slightly inhibitory for
replication, virus yield is modestly enhanced. This simultaneous inhibition of replication
and stimulation of assembly again suggests a shift in some regulatory balance between
these life cycle activities, quite possibly through NS5A. CsA treatment did not rescue the
virus assembly defect of 378-Ypet, however, which might have been expected from the
proline mutagenesis results, but showed the same modest enhancement of assembly
coupled with moderate inhibition of replication as seen with the Jc1 genome at the low

concentration of CsA (data not shown).

4.3 Various compounds show diverse effects on HCV

In order to gain a clearer picture of the effects of CsA and place it in a broader
context for comparison, dose-response curves were measured for a set of compounds
with potential activity against HCV, including CsA, 2’CMA, danoprevir, BMS-790052, and

HA479 (See Table 4-2). The activity of the compounds was assessed on HCV
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Table 4-2. List of inhibitors

Inhibitor

Target

Mechanism

Cyclosporine A (CsA)

H479

ITMN-191 (Danoprevir)

BMS-790052

2'-C-methyl-adenosine
(2'CMA)

Cellular cyclophilins

Cellular casein kinase | (CKI)

HCV NS3-4A protease

HCV NS5A domain |

HCV NS5B

Binding of catalytic pocket

ATP-competitive imidazole inhibitor

Peptiomimetic inhibitor

Unknown

Chain-terminating nucleoside analogue
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electroporated cells at two different timing intervals, based on initial experiments — 4 h
PE administration and 48 h PE harvest (4-48 h) and 48 h PE administration with 72 h PE
harvest (48-72 h). The dose-response curves are shown in Figure 4-7, and show a
number of notable features. As noted, CsA at low doses has a stimulatory effect on
infectivity at both timings. Interestingly, 2’CMA has a similar effect at the 4-48 h
schedule, an effect which is completely absent in 48-72 h, unlike CsA. BMS-790052 and
danoprevir are both monotonically inhibitory, but share a common effect at the later

time interval in that both inhibit virus production more strongly than replication.

H479 stands out as a potential counterpart to CsA — this CKla kinase inhibitor
appears to stimulate replication and impair virus production, particularly when added
after the establishment of replication. This effect, along with its previously documented
effect on NS5A, made it a particularly interesting compound for further study of HCV

regulation through the NS5A protein.

The Hill slope for compounds that produced monotonic sigmoidal inhibition curves
also varied in interesting ways. At the early interval, BMS-790052 produced a steep
inhibition with a Hill slope of approximately 2 for both replication and virus production.
At the later time, the effect on infectivity remained steep, but the effect on replication
showed a shallower Hill slope of close to 1. Although the steepness of a Hill slope does
not lend itself to any conclusive interpretation, the suggestion which has been made

that BMS-790052 may inhibit two distinct activities of NS5A (64) certainly comes to
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Figure 4-7. Dose-response curves for various compounds

Effect of various compounds on replication and infectivity over a range of doses. In each

plot the solid curve represents replication and the dotted curve represents infectivity.

Timing intervals are given by time of addition and time of harvest (ex. 4-48 means 4 h

addition and 48 h harvest). Means and SEM of at least two independent experiments

are shown.
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mind. Perhaps at the early time points both activities are highly critical for both
replication and assembly, leading to steeper inhibition curves for BMS-790052, whereas
at later times one of the two activities becomes less crucial for replication, though still

required for assembly.

These experiments also showed a dependence of the dose-response curve on
timing. The curves shift laterally (in concentration), and the level of maximum inhibition
also varies depending on time of addition. CsA, for example, shows a maximum
inhibition of 99% at the earlier interval, but levels off at 58% inhibition at the same
concentration if administered and harvested later. This result is consistent with the

earlier observation that CsA does not efficiently inhibit pre-established replication.

Overall, the dose-response curves reveal a complexity of behavior beyond what can
be captured in a single metric like EC50, complexity which reflects details about the HCV
life cycle and the mechanism by which these inhibitors interact with HCV. Some of this
complexity is explored further in the following experiments; however, much of it is left

as promising avenues for future work.

4.3.1 CsA-mediated inhibition is phenotypically distinct from 2’CMA inhibition

The differences in inhibitory properties of CsA and 2’CMA was examined in further
detail by measuring the kinetic response of replication to both drugs. Cells were

transfected with HCV RNA and then treated with the inhibitors at a high concentration

76



50
-e- DMSO

- 2'CMA
-+ CsA

Normalized replication

Time (h)

Figure 4-8. Kinetic response to CsA and 2’CMA compared

Replication as a function of time after drug addition, normalized to replication at the
time of addition. HCV-transfected cells were treated with 10 uM 2’CMA, 8.3 uM CsA, or
DMSO at 24 h PE. Replication was monitored by luciferase expression. Means and SEM

of two independent experiments are shown.
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(~30 times the ICsq) 24 h later. Replication was monitored over the course of 28 h post-
addition to generate the time course shown in Figure 4-8. The curves show a clear
difference in the mode of inhibition of the two compounds. Whereas CsA only arrests
further increase in replication levels, 2’CMA effectively eliminates ongoing replication.
While a conclusive explanation of this would require further experimentation, one
possible explanation would be that CsA blocks formation of new replication complexes,
but lacks activity against ongoing replication within those that were formed before
addition of the drug. This is in contrast to treatment with 2’CMA, which directly

interferes with the enzymatic activity of the NS5B RNA polymerase.

4.4 Factors affecting the biphasic response to CsA

4.4.1 Assembly enhancement is sensitive to timing of drug addition and harvest

The effect of CsA on HCV virus production is biphasic, with low doses increasing
infectious virion yield while high doses decrease it. The effect appears to depend on
timing, with a stronger enhancement for 48-72 h treatment than 4-48 h. To further
study the role of timing, several combinations of drug addition times and harvest times
were tested, as shown in Figure 4-9a. In the panels which show the stimulation the
magnitude of the effect follows a trend of increased effect with increased time of

treatment and later harvest.

78



CsA4-24 CsA 448 CsA4-72
1.5 2.5 8
Q Q I Q
2 g 20 K 2
o o Y o 6
Q Q 4 \ Q
o 1.0 o ! \ n
] ® 15 / \ 2 \
° - ’ \ ° 4 !\
@ I P \ @ R 2
N N 1.0 = \ N / \
T 05 s \ s / \
E E \ E 2 \
5 5 05 \ 5 _-
=z z z .
.
0.0+ 1 0.0 T T T 1 T T T T
-9 5 9 8 -7 -6 9 8 -7 6
log M log M
CsA 24-72 CsA 48-72
4 4
Q Q
2 A 2
s 3 FAY s 3 /i
2 Y 2 /
2 Y 2 FARN
° 2 / \ ° 2 / \
(3 \ [ 4 \
N N - \
S /I \ £ — : | %
£ 1 _— £ 1 == N
S - ] .-_.N
z Al z
0+ T T T 1 0+ T T T 1
9 8 -7 6 -5 9 8 -7 6 -5
log M log M
44 81
c % 3nM Dan
2 (S
S = -+ 30nM Dan
- 34 8 6
131 L -6- 300nM Dan
£ o
c [
T 2 s 4
° 1 ko] 1
Q
N N
s s
E 14 £ 21
= =
o o
z z
3 T T T 1 c T T T 1
-9 -8 -7 -6 -5 -8 -7 -6 -5 -4

CsA conc. (log M) H479 conc. (log M)

Figure 4-9. Effect of timing and replication levels

(A) The effect of drug addition time and harvest time on CsA dose-response curves. Solid
lines = replication, dotted line = infectivity. (B) Pre-treatment with the protease inhibitor
danoprevir. Transfected cells were pre-treated from 4 h with danoprevir and then CsA
or H479 were added for 48-72 h. Infectivity curves are shown for CsA, replication curves

for H479. Legend applies to both plots. Means and SEM of at least two independent

experiments are shown.
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The most immediately apparent effect however is the fact that there is no
stimulation of virus assembly at the 24 h harvest; in fact, the same dose which gives the
most stimulation at other times inhibits infectivity by over 50% at 24 h, which is very
much in line with the effect of CsA on replication directly. Given the dependence of
assembly on RNA replication, the simplest explanation is that at 24h CsA has no direct
effect on virus production, with the stimulatory effect asserting only at later time points.
This could be due to a number of reasons. One possibility is that cells simply need to be
exposed to CsA for a longer duration for the effect to be manifested. However, the clear
effect of the 48-72 h timing argues against this, as the treatment duration is essentially
the same as the 4-24 h timing. It seems more likely then that the stimulatory effect only
manifests after certain conditions have been met as the HCV replication cycle proceeds.
If CypA is indeed negatively regulating virus assembly, it may be that this negative
feedback does not come into play until, for example, the overall replication levels have

crossed some threshold.

4.4.2 Assembly enhancement is dependent on overall replication level

To test this possibility, HCV electroporated cells were pre-treated with varying
amounts of danoprevir for the first 48 h before adding CsA, with the intention of
moderating replication to a lower level and gauging the impact on CsA-mediated
stimulation of infectivity. The results, shown in Figure 4-9b, support the hypothesis that
regulation of virus production by CypA only takes effect as the replication levels exceed

some threshold value. In contrast, the stimulation by H479 is not affected by pre-
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treatment of danoprevir in the same way, and maintains the same relative
enhancement even as the overall levels of replication are brought down by higher doses

of the protease inhibitor.

4.4.3 Stimulation of intracellular infectivity is reflected in extracellular titers

To avoid the carryover of inhibitors in the dose-response experiments interfering
with the downstream measurements of infectivity, intracellular infectivity was
measured to generate the response curves for infectivity rather than assaying the
supernatants directly. Therefore, it would be possible that an observed increase in
infectivity is a consequence of blocks in late stages of virus maturation or secretion
leading to an accumulation of intracellular virus rather than an increase in assembly.
Indeed it has been reported that inhibition of cyclophilins by NIM811, a non-
immunosuppressive CsA analog, alters lipid trafficking and blocks secretion of HCV
(108). However, this effect was only observed as a decrease in extracellular infectivity
and not accompanied by any increase in intracellular infectivity. To clarify the nature of
the infectivity enhancement, supernatants were titered by limiting dilution assay, which
would dilute away any carryover of inhibitor. The extracellular infectivity response
curve, shown in Figure 4-10, closely resembles the intracellular infectivity response
curve, indicating that the measured enhancement reflects an increase in assembly

rather than a block in secretion.
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Figure 4-10. Extracellular infectivity dose-response curve

Effect of CsA treatment on extracellular infectivity, measured by limiting dilution assay.
Transfected cells were treated at 4 h PE and supernatants were harvested at 72 h PE for

titering. Means and SEM of two independent experiments are shown.
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4.4.4 CsA resistance mutations in NS5A alter dose response

Mutations D316E and Y317N of NS5A conferring resistance to CsA have been
published (109). These mutations were engineered into the Jc1(NS2-IRES-nsGluc2AUbi)
and compared with the unaltered constructs for their CsA dose response curve. Like the
wild-type sequences, the DEYN mutant constructs showed a biphasic response curve in
virus production, with stimulation at low doses and inhibition at higher doses (Figure
4-11). The magnitude of the effect was larger both in 4-48 h and 48-72 h treatments.

The shape of the curve also suggested a shift in effective concentration.

A more detailed examination of the peak indeed shows a small but significant shift in
both the concentration of maximum effect, from 250 nM to 500 nM, and the EC50 of
the first phase, which shifts from 150 nM to 340 nM. The shift of peak could have been
attributable to an increased resistance to the anti-replication effect of CsA allowing a
stronger effect at the higher concentrations — in effect, a non-uniform vertical shift
resulting in an apparent horizontal shift. However, the fact that the stimulatory phase of
the curve begins its upward rise at a higher concentration supports the notion that the
curve has really shifted horizontally. It seems probable then that the altered sensitivity
of virus production to CsA is due to the fact that DEYN mutations directly perturb the
regulation of HCV production rather than a side effect of improved HCV replication

under CsA treatment.
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Figure 4-11. Dose-response for DEYN mutation

(A) Infectivity dose-response curves to CsA for Jcl and the CsA resistance mutant D316E
Y317N (DEYN). Two different drug timing intervals are shown. In both plots the dotted
curve shows the DEYN construct. (B) Detailed infectivity dose-response to CsA mapping
out the peak for the 4-48 h CsA treatment. Means and SEM of two independent

experiments are shown.
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4.4.5 CsA-mediated stimulation of assembly with different NS2 configurations

In order to bypass the effect of CsA on NS2, dose response curves were measured in
a bicistronic construct expressing NS3-NS5B from an EMCV IRES following NS2. To
confirm that the enhancement of infectivity from CsA treatment was not dependent on
this abnormal configuration of NS2 and NS3, a monocistronic Jcl reporter virus,
Jc1(p7nsGLuc2A), was also tested. This construct preserves the natural NS2/NS3
junction. The dose-response curve shows that the stimulation is the same regardless

whether NS2 and NS3 are expressed together or separately (Figure 4-12a).

We also considered the possibility that absolute levels of virus assembly might affect
the nature of CsA-mediated assembly enhancement. To test this, dose response curves
were generated from three different cell culture strains: JFH1, J6/JFH1, and Jc1 (Figure
4-12b). These three strains replicate with similar efficiency but differ in virus production
ability, with JFH1 having the lowest and Jc1 the highest (50, 88, 110). J6/JFH showed a
very similar response profile to Jc1, perhaps shifted slightly to the right. JFH1, on the
other hand, showed a very different profile. The response in infectivity was not biphasic
in the case in the case of JFH1, but monotonically increasing with CsA concentration.
J6/JFH and Jcl are both chimeras of the J6 isolate from the N-terminus and the JFH1
isolate from the C-terminus with a breakpoint between NS2 and NS3 for J6/JFH and
within NS2 for Jc1. Therefore the two constructs are identical in all genes except for part

of NS2. By contrast, the JFH1 strain is a single isolate, which therefore differs from both
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Figure 4-12. Alternate NS2 configurations

(A) Dose-response curve for a monocistronic virus construct. The 48-72 h CsA dose-

response for a native NS2-NS3 configuration shows the same enhancement of

infectivity. (B) Dose-response curves for different genotype 2A strains, all showing

infectivity enhancements from CsA.
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chimeric strains in all the structural proteins, p7, and NS2. There are therefore many
possible causes for the observed difference in the JFH1 response profile, including direct
causes such as differences in NS2, which has been implicated in coordinating virus
assembly (45, 46) and is a target of CypA, or in any of the structural proteins, as well as
indirect causes such as the large differences in overall virus production possibly
stemming from differences in regulatory setpoints or feedback loops. However, the
overall magnitude of the effect was roughly the same across the three strains;
significant differences in virus production did not dramatically enhance or abolish the

stimulatory effect of CsA on virus assembly.

4.5 CypA fused to NS5A negatively modulates replication and assembly

In order to test the effect of CypA directly on NS5A, the CypA gene was cloned
directly into the 378 insertion site in NS5A. Clearly, whether such a fusion would be
functional at all is impossible to know beforehand. However, the small, globular nature
of CypA, not entirely unlike Ypet in shape and size, and the previously determined
tolerability of fusion inserts into the 378 site provided enough encouragement to
construct and test this configuration. The structures of GFP and CypA are compared in

Figure 4-13a. Notably, the N- and C-termini of the two proteins are similarly configured.

In addition to the wild-type CypA gene, an active site mutant, H126Q, was also

engineered. These two genes were inserted into the 378 locus in the context of both the
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Figure 4-13. NS5A 378-CypA fusion constructs

(A) Crystal structure of Ypet on the left and CypA on the right, showing similar size and
globular configuration, as well as proximal N- and C- termini. (B) Engineered NS5A
constructs in the bicistronic reporter background showing the three domains of NS5A
with either the A34 deletion in domain Il, the CypA or mutCypA insert in domain lll, or
both.
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full-length NS5A and the domain Il compensatory deletion, yielding a total of four
constructs. As described earlier, the domain Il deletion restores lost virus assembly
function in the context of the Ypet insertion. To make a complete set, Jc1-A34 was also
included (domain Il deletion without any insert). All six constructs are shown in Figure

4-13b.

4.5.1 NS5A-CypA active site-dependent impairment of replication and production

The CypA fusion constructs show several interesting phenotypes. The growth curves
following electroporation are shown in Figure 4-14a, normalized to the initial 4 h
translation. By 24 h, differences between the constructs become apparent. Jcl
replicates the most efficiently from the outset, with Jc1-A34 virtually identical. All the
constructs containing insertions are impaired at this point, with the differences between
them systematic: the constructs with the mutated CypA replicate better, and the
constructs without the domain Il deletion replicate better. A34- 378-CypA, with both the

active CypA and the domain Il deletion, is the most impaired.

As replication hits the plateau around the 48 h mark, the relative ranking of
replication efficiency becomes shuffled, with most of the constructs clustering around
the wild-type Jcl level of replication. The exception is A34-378-CypA, which continues to
show a marked impairment of more than 1 log compared to all the other constructs
including A34-378-mutCypA, which is, apart from the single-residue active site mutation

of CypA, an identical genome.
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Figure 4-14. Phenotypes of 378-CypA constucts

(A) Growth curves for the six constructs following electroporation. Replication is
normalized to the 4 h PE luciferase expression level. Constructs with the deletion are
shown with dashed lines for readability. (B) Viral titers for the six constructs measured
by limiting dilution assay 48 h PE. Means and SEM of at least two independent

experiments are shown.
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The virus production capacity of these constructs shows greater variation — 48 h
titers are shown in Figure 4-14b. As previously noted, the domain Il deletion without any
insertion (Jc1-A34) has improved titers. Both CypA fusion constructs show major
reductions in titers — close to 2 logs. In the case of A34-378-CypA, some of this reduction
in titers can be attributed to a reduction in overall replicative potential. In both cases,
mutating the active site improves titers, with a 1 log gain for 378-CypA and a 2 log gain
for A34-378-CypA. In order to visualize the combined effects on replication and virus
production, the 48 h luciferase expression and 48 h viral titers are shown side-by-side in

Figure 4-15.

A simple, though admittedly naive, measure of the relative effect on infectivity of
the domain Il deletion and the CypA active site mutation can be calculated by assuming
infectivity scales linearly with replication. The marginal impact of a perturbation on
infectivity can be estimated by normalizing to the effect of that perturbation on
replication. The results of these calculations are shown in Table 4-3. The effect of the
domain Il deletion on replication varies widely, ranging from a 2-fold increase to a 15-
fold decrease. Its marginal effect on infectivity, on the other hand, was fairly consistent,
ranging from a 3-fold to 11-fold increase. The effect of mutating the CypA active site
was always positive for replication, with a much larger effect on the highly impaired

A34-378-CypA. Likewise, the CypA mutation had a consistently positive marginal effect
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Figure 4-15. Relative replication and titers

48 h PE luciferase-based replication values and viral titers normalized to the Jcl for

comparison. Means and SEM of at least two independent experiments are shown.

Table 4-3. Marginal effects of genetic perturbations

Relative effect of modification

Reference construct Modification
On replication On infectivity

Jcl A34 deletion 2.0 3.2

378-CypA A34 deletion 0.066 7.6

378-mutCypA A34 deletion 0.61 11

378-CypA CypA active site mutation 2.1 3.7

A34-378-CypA CypA active site mutation 19 5.3
Jcl CypA insertion 1.1 0.025
Jcl1-A34 CypA insertion 0.035 0.061
Jcl mutCypA insertion 2.2 0.094
Jc1-A34 mutCypA insertion 0.68 0.32
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on virus production. CypA insertion has contrasting effects for replication depending on
whether the deletion was present, but impaired virus production regardless of the

background.

4.5.2 Effect of CsA on NS5A-CypA fusion constructs

As the effects of the CypA fusion depend on the active site, and knowing that CsA
binds to the active site of CypA and competes out NS5A in a CypA binding assay (82), it is
natural to ask whether CsA can reverse the negative effects of the CypA fusion on
replication and virus assembly. The various constructs were electroporated into Huh7.5
cells and treated with a series of CsA concentrations at 4 h post-electroporation. At 48
h, the replication and infectivity levels were assayed to determine the effect of CsA

treatment. The results are shown in Figure 4-16.

The typical 4-48 h effect on Jc1 was seen, with decreasing replication and a biphasic
stimulation/inhibition of virus assembly. With CypA inserted at the 378 position, the
resulting virus becomes highly resistant to CsA, even exhibiting a minor increase in
replication with increasing CsA, up to a concentration of 2.5 uM. The effect of CsA on
virus assembly is modest yet complex, with both a dip at 80 nM and a small peak at 800

nM CsA.

The 378-mutCypA construct, on the other hand, is actually more sensitive to CsA

than the wild-type, with a replication IC50 of 208 nM, compared to 499 nM for Jcl.
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Figure 4-16. Effect of CsA on 378 CypA constucts

Replication and infectivity dose-response curves to CsA for the NS5A-CypA fusion

constructs. Means and SEM of at least two independent experiments are shown.
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Interestingly, the CsA induced stimulation of assembly appears to be largely erased, with
a small peak creeping up around 25 nM instead of the usual 250 nM. The A34-378-

mutCypA shows no stimulation of assembly at all.

The most dramatic response was seen for A34-378-CypA — the construct harboring
both the CypA insertion and the domain Il deletion. Replication increased with CsA
concentration, nearly 10-fold at the maximum concentration 2.5 uM. The effect on virus
production was even more pronounced, with an increase of approximately 35-fold at
the highest dose of CsA. The effect of CsA on this construct appears to be analogous to
the effect of mutating the active site of CypA. Extracellular infectivity also exhibited an

approximately 30-fold increase with 2.5 uM CsA (data not shown).

4.6 H479 increases translation at the expense of replication

As noted earlier, when measuring the dose response curves of various compounds,
the kinase inhibitor H479 showed an interesting effect on HCV, apparently increasing
replication and reducing virus production. H479 is an inhibitor of the alpha isoform of
casein kinase | (CKl-a), of which NS5A has been shown to be a direct substrate (111).
Previous studies on H479 treatment in HCV replicons have shown an efficient reduction
of the p58 hyperphosphorylated form of NS5A. Interestingly, this inhibition of p58 was
also shown to potentiate replication in the poorly replicating Con1 unadapted replicons;
however, in Conl strains harboring an NS5A adaptive mutation which decreases p58,

H479 treatment was inhibitory (65). Reduction in p58 by adaptive mutations has also
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been linked to decreased virus production in Conl full-length genomes (66). Taken
together these data suggest that H479 would favor RNA replication and reduce virus
assembly, in agreement with response we measured with H479. However, this
prediction overlooks other data. The same p58-reducing adaptive mutation, when put
into a genotype 2A genome (the genotype of Jcl), is highly maladaptive, completely

abolishing replication (64).

We observed that at the highest concentration of H479, the effect on replication
was in fact ambiguous (Figure 4-7). For 4-48 h treatment, H479 was quite inhibitory at
30 uM. For 48-72 h treatment, luciferase activity was generally increased at 30 uM over
DMSO alone, but it could be either higher or lower than at 10 uM H479. We reasoned
that the ambiguity in the final data point might be due to variations in timing. Therefore
dose response curves to H479 were measured for a set of different treatment durations,
with the compound added at 48 h and harvested at 66, 72, 78, and 90 h post-
transfection (Figure 4-17a). The shape of the curves confirmed the time-dependence of
the H479 stimulation. At the 66 h harvest, a simple dose-dependent stimulation is seen,
an effect which increases uniformly by 72 h. However, by 78 h the shape of the curve
changes, with the highest dose now starting to decrease, a trend which continues to the
90 h harvest where the highest does is actually inhibitory, and the second highest dose
has also started to come down from its peak. Transforming this same data into a time

course with time as the independent variable further clarifies the situation. High doses
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Figure 4-17. H479 effect over time

(A) Effect of harvest time on dose-response curves. 48 h PE treatment with H479 was
followed by harvest at four different time points, producing four different dose-
response curves. In the second panel, the same data has been re-plotted in the time
domain, showing the kinetic response of different doses of H479 following addition at
48 h PE. (B) RNA response kinetic shown as a function of time post-drug addition,
normalized to the DMSO treated cells. Means and SEMs for triplicate samples are

shown.
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of H479 induce a transient increase in luciferase expression which cannot be sustained.
Genotype 2a virus has already been shown to be sensitive to reductions in p58 NS5A;

H479 may be reducing the level of p58 below an optimum level.

One possible explanation for this transient increase is that the p58 form favors
translation of RNA over replication. To test this, we measured HCV RNA in cells along
with luciferase activity over time after H479 addition (Figure 4-17b). The results
confirmed the hypothesis. Although H479 produced a transient increase in luciferase
expression, it simultaneously led to a decline in RNA levels. Neither the increase in
luciferase nor the decline in RNA was immediate, which probably reflects the time it

takes for the existing p58 to decay away.

4.7 H479 is dominant over CsA enhancement of virus production

Having observed the myriad effects of H479 and CsA on HCV regulation, we tested
the effect of simultaneous administration of H479 and CsA for the 48-72 h treatment
interval. As seen in Figure 4-18, H479 seems to cancel the stimulatory effect of CsA on
virus production. The converse was not the case, and the inhibitory effect of CsA on
replication was additive with the higher luciferase expression caused by H479. At each
of the three tested concentrations, the response to simultaneous addition of CsA and

H479 closely resembled the response to H479 alone.
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Figure 4-18. Simultaneous administration of CsA and H479

Response to three different doses of CsA and H479, given separately or together for the
48-72 h interval. Luciferase expression and intracellular infectivity is shown normalized
to the DMSO control. For CsA, low = 83nM, mid = 250nM, high = 830nM. For H479, low
= 3uM, mid = 10uM, high = 30uM. Means and SEM of two independent experiments are

shown.
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The interaction between the two compounds suggests that the stimulation of
infectivity from CsA is mediated through p58, and possibly by newly formed p58 only.
Additional experimentation, such as kinetic measurements or variations on the timing of
drug addition would provide greater detail into the mechanism of this interplay;
however, the association of virus assembly with hyperphosphorylation is consistent with

multiple reports making the same correlation (40, 66, 112).

4.8 Discussion

Employing a combination of genetic and chemical manipulations, we sought to
further our understanding of NS5A and its role in regulating the different elements of
the HCV life cycle. The results suggest an intricate system centered on NS5A and
involving numerous interactions with host factors to coordinate protein translation, RNA
replication, and virion assembly. The NS5A/CypA interaction, and its effects on RNA
replication and virus assembly, was the primary subject of this study. The requirement
of this interaction for RNA replication is already well-documented; here we demonstrate
negative regulation via CypA of virus assembly and RNA replication as well as a separate
positive requirement for virus assembly. This bi-directionality is something of a
recurrent theme for NS5A, where a particular perturbation or interaction can have
either a positive or negative effect, depending on circumstances. Inhibition of CKl-q, is
another example, which enhances replication in the genotype 1 context, but inhibits it in
the 2a context. We have shown that inhibition by H479 can transiently increase protein
expression, only to ultimately diminish it.
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One possible explanation for the bi-directional nature NS5A perturbation is quite
apparent in light of the widely-held view that the role of NS5A is best described as
regulatory in nature. As a regulator of the virus life cycle, NS5A is not merely
contributing to one activity or another, but setting a compromise between several

different and, to some extent, competing activities.

4.8.1 CypA, CsA and NS5A

We have shown inhibition of CypA by CsA treatment to have a stimulatory effect on
virus production at low concentrations. Several lines of evidence support the case that
this is a specific effect on HCV regulation, rather than a general effect (for example,
creating cellular environment more conducive to virus assembly) and that this effect is
mediated through NS5A. Temporally, the effect depends more on the progression of
HCV replication than on treatment duration, arguing for a viral, rather than cellular,

pathway. The effect depends on overall HCV replication level, also arguing the same.

The relationship between timing, replication levels, and CsA-mediated assembly
enhancement might be understood by supposing CypA to have a restraining effect on
virus assembly, either directly or as an indirect consequence of its role in facilitating
RNA replication. At early stages of the viral life cycle, virus production may be
constrained by a more basic limitation, such as availability of RNA or structural proteins.

Later in the infection cycle, as RNA levels rise, the regulation of virus production through
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CypA may become the limiting factor. Inhibition of CypA via CsA would then release that

limitation and allow virus production to increase.

Incidentally, the timing of CsA-mediated assembly enhancement coincides with the
plateau of replication levels which follows the initial exponential growth phase, with the
transition in phase occurring between 24 and 48 h, as typically seen in a growth curve
following RNA electroporation, such as Figure 4-5a. It is tempting to hypothesize that
the limiting of replication and the limiting of virus assembly, which are correlated in

time, are also mechanistically linked.

The shift in peak enhancement concentration caused by the DEYN mutations in
NS5A makes a strong case for it being the primary partner of CsA in the enhancement of
infectivity by CsA. While the DEYN mutations do not rescue the direct interaction
between NS5A and CypA that is inhibited by CsA (113), they do confer resistance to the
drug. The implication is that the mutations render NS5A less dependent on CypA,
perhaps altering its conformation to one better approximating the CypA-NS5A complex
or the CypA-isomerized NS5A. The direction of the peak shift and the increase in
magnitude are both consistent with this model. If the CypA-NS5A complex has a
restraining effect on virus assembly, the mutated NS5A might restrain it more, which
would result in both a higher concentration of CsA required to release the restraint, and

a stronger stimulation of assembly upon that release.

102



By fusing CypA to NS5A, the effect of this particular interaction could be studied
more specifically, albeit in a more artificial system. These constructs provided additional
corroborating data. Consistent with previous experiments, these fusion constructs show
that the interaction between CypA and NS5A results in a moderate negative effect on
virus production, an effect which requires the active site of CypA. The difference in virus
production which maps to the active site of CypA is 4- to 5-fold when corrected for
differences in replication, roughly on par with the magnitude of the enhancement of
virus production observed at low doses of CsA. Unlike the previous experiments, the
CypA-NS5A fusion experiments also show a strong negative effect on replication. This
result is notable as it stands in contrast to the conventional role of CypA supporting
replication. The effect is not seen in the full-length NS5A, but in the context of the A34
domain Il deletion, there is a nearly 30-fold reduction in replication from inserting CypA.
The reason for this difference, presumably due to an interaction between CypA and
domain I, remains unknown. In either case mutation of the CypA active site results in an

increase in replication; in the case of the domain Il deletion, the rescue is nearly 20-fold.

The effect of Csa on the fusion constructs is not consistently equivalent to mutation
of the active site; while CsA treatment mimics the CypA active site mutation in the
context of the domain Il deletion (A34-378-CypA), resulting in significant increases in
both replication and virus production, CsA treatment of 378-CypA without the deletion
does not exhibit an increase in virus production comparable to that achieved by

mutating the CypA active site. One possibility is that the interaction between NS5A and
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CypA is stronger with the full length domain 1l, and therefore a higher concentration of
CsA is required to have an effect; this notion is supported by an NMR study which
indicates that CypA interacts with NS5A at numerous points distributed across domain |l
(82). Compensating for this with an increased CsA dose is complicated by the fact that
CsA targets the endogenous cellular CypA as well as the engineered NS5A-CypA and
because even the CypA in NS5A may be playing multiple roles with different CsA
sensitivities. For example, the strong inhibition of assembly usually seen at the higher
doses of CsA could be an independent effect now muting the anticipated rescue of

infectivity.

The dose-response curves of the mutant CypA constructs are also noteworthy for
their deviation from the unmodified Jc1 and for the consistency of the phenotypes with
the working model. Both mutant CypA constructs exhibit higher sensitivity to inhibition
by CsA, which can be interpreted as an increased requirement for CypA or a decreased
efficiency of interaction. This may be due to some residual interaction from the mutant
CypA interfering with the authentic CypA-NS5A interaction as a weak dominant negative
element. Based on the working model, we would predict that the infectivity peak in the
dose-response would shift to the lower concentrations and become smaller in
magnitude, reasoning analogously to the DEYN mutation. This effect can be seen in seen
in the 378-mutCypA response. If the domain Il deletion further reduces CypA binding,

the peak might reasonably be imagined to become undetectable altogether.
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In general, attempts to formulate an overarching model to explain the full range of
observed phenotypes are hampered by the complexity of the system. The underlying
range of possible mechanisms is correspondingly complex. CypA is believed to interact
with a number of prolines in domain Il, not to produce any single structure, but to effect
changes in the overall conformation of what is considered an intrinsically disordered
protein (IDP) domain (81). These conformational changes in turn could influence a
number of other interactions or activities, including NS5A/5B cleavage kinetics (83), RNA

binding (79), or localization.

4.8.2 H479

The interaction between H479 and CsA under co-treatment provides additional
evidence that the infectivity enhancement of CsA is mediated through NS5A. The
mechanism behind this interaction is unclear; however, the p58 isoform has been linked
to virus assembly in several studies, and our results, which show H479 consistently
reducing virus assembly, conform to this hypothesis. In addition, preliminary kinetic
studies (not shown), show a delay of about 10 h after H479 addition before increases in
luciferase and decreases in infectivity begin to manifest. Remarkably, a nearly identical
delay is seen before enhancement of infectivity begins under CsA treatment. In contrast,
this delay is not seen under treatment with the NS5A inhibitor BMS-790052, which
begins to inhibit both activities immediately upon addition. The most probable reason
for the delay in the case of H479 is fairly apparent: H479 has no effect on existing p58,

which has already been phosphorylated. H479, therefore, would have no effect until
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some portion of the extant p58 has turned over. The observation that CsA exhibits the
same delay suggest that 1) the effect of CsA is to prevent isomerization of NS5A by CypA
rather than inhibit the (reversible) binding of CypA to NS5A, and 2) that the target of
CypA, at least in the context of regulation of infectivity, is also p58. Again, this is

consistent with the association of p58 with virus assembly.

One distinctive conclusion drawn from our experiments with H479 is that RNA
replication is associated with p58 rather than p56, as generally believed. Instead, we
hypothesize that p56 is more specifically linked with translation, not RNA replication. As
both translation and RNA replication are required for efficient RNA replication, this
model is not necessarily in conflict with previous data, and potentially resolves certain
ambiguities. In the case of genotype 1 replication activation, one need only hypothesize
that the genotype 1 NS5A heavily favors the p58 replication activity over the p56
translation activity. By locking up what little RNA there is into replication complexes
rather than translating more of it to generate more proteins, replication can be made
very inefficient, to the point where it is not self-sustaining. Inhibiting p58 by H479 or
adaptive mutations would then re-allocate RNA for translation and dramatically increase
replication efficiency. A similar hypothesis has been recently been put forward to
explain the inability of some HCV strains to replicate, based on a theoretical analysis
(114). Work by Linda Andrus has confirmed that H479 is inhibitory for Jcl and also
suggests that Conl genomes may have ten-fold lower baseline translation efficiency

than Jc1 (person communication), which is consistent with our model.
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Figure 4-19. Conceptual model of NS5A regulation

Model of HCV regulation by NS5A. Nascent RNA formed within the replication complex
(RC) has numerous possible destinations. RNA untended by NS5A goes to ribosomes for
translation. CypA-isomerized p58 targets RNA to lipid droplets (LD) for packaging into

virions. Doubly isomerized p58 targets RNA to RCs for replication.
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4.8.3 Conceptual model

The task of regulating RNA replication and virus assembly can be compared in some
respects to regulation of cell division, especially when one considers the problem of cell
size sensing. Unicellular organisms generally maintain a fairly uniform maximum size
over many generations; in order to do this there must be a kind of molecular measuring
stick to sense cell size (115). Similarly, for HCV to regulate its own replication, it must
have some way of detecting and responding to its current state. CypA is remarkably well
suited to this purpose; its ubiquity and abundant, stable expression make it a reliable
standard for comparison, the same qualities which make it an excellent housekeeping
gene (116). The coupling of CypA with NS5A is particularly attractive in light of what
appears to be NS5A’s modus operandi: a multi-functional protein, with intrinsically
disordered, proline-rich domains, the activity of which is modulated through overall

conformational changes.

Because of the large number of possible relationships between conformation and
function and the dearth of data defining those relationships, any specific model of this
paradigm would be by necessity highly speculative. However, as an illustrative example,
we propose one possible model, shown in Figure 4-19. Here the primary function of
NS5A is assumed to be RNA allocation, and various modifications to NS5A modulate to
which of three compartments NS5A will direct the HCV RNA. Without targeting by NS5A,
RNA moves from the sites of replication to ribosomes for polyprotein translation. An

altered conformation of hyperphosphorylated NS5A, dubbed p58’, brings RNA to lipid
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droplets for packaging. A third conformation, p58”, feeds nascent RNA into new
replication complexes for further amplification. No function is assigned in this model to
p56 or to the native conformation of p58. Assuming that p58’ is the product of CypA cis-
trans isomerization and p58” requires further isomerization, a number of observations

can be explained.

High doses of CsA would be expected to prevent formation of both p58 and p58”.
Under these conditions, assembly of virus particles would be inhibited, as would any
expansion of replication complexes. Existing RCs could continue replicating, in keeping
with Figure 4-8. Intermediate doses, on the other hand, might increase p58’ (and
increase virus assembly) while decreasing p58”, particularly if the second CypA
interaction was of a lower affinity. On the other hand, in the case of excess interaction
with CypA, as might be in the NS5A-CypA fusion, more p58 may be converted to p58”,

impairing virus assembly.

The time- and replication-dependence of CsA enhancement of infectivity can be
understood in light of the fact that while CypA abundance in the cell is quite stable, the
abundance of NS5A changes dramatically. Therefore the relative abundance of CypA,
and the resulting efficiency of p58 and p58"” formation would depend on time and
replication level. In particular, at early time points or low replication levels, the relative
abundance of CypA would be quite high, meaning p58’ may exist in excess. In this case
increasing p58’ levels by low-dose CsA treatment would not result in any increase in

virus assembly. Another attractive feature of this model is that at early times with very
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high CypA abundance, p58” production would be at its highest, while at later times p58’
might become more emphasized. This would effect an early focus on replication which
would gradually shift towards virus assembly as NS5A levels in the cell increased. At still

higher levels, both activities might be moderated.

The DEYN mutations, mutCypA insertion and H479 dose-response have already been
discussed and fit easily into this model. The model is also consistent with published
work on the NS5A inhibitor BMS-790052, which has been shown to block p58 formation,

alter localization, and putatively interferes with two distinct activities of NS5A (63, 64).

The 378-Ypet insertion and compensatory deletion can be explained if the insertion
into domain lll is seen as somehow altering the function of p58’, perhaps causing p58’ to
function more like p58”. The anticipated result would be to reduce virus production and
increase replication. The deletion then, might do the opposite, and cause p58” to
function more like p58’. Further work is required to further define these relationships;
however, the model illustrates the potential complexity of the system and suggests lines

of future exploration.

4.8.4 Viral regulation in context

One significant question raised by this model is how the regulation of HCV proposed
here compares with the regulatory mechanisms of other viruses. Interestingly, not all
members of the Flaviviridae express a separate NS5A protein — the classical flaviviruses

have a single NS5 protein which functions as the viral RdRp and is also phosphorylated
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(117). The N-terminal portion of NS5 in this case catalyzes the formation of the 5’-RNA
cap, explicitly linking NS5 with polyprotein translation (118). Both the protein and its
activity differ significantly from HCV NS5A; however, it seems possible that regulatory
loops, albeit of a different nature, are also in operation here. On the other hand, these
differences in regulation may be related to the very different survival strategies and
pathogenesis of these two virus genera. The flaviviruses tend to produce an acute,
vigorous infection (119), while HCV produces a relatively mild and often asymptomatic
acute phase followed by a protracted chronic infection which may go unnoticed for
many years. The long-term evasion of host immunity may be the driving factor in the
development of what seems to be a complex, highly controlled system of viral
regulation. This also raises the concern that the atypical, highly productive cell culture
strains of HCV may not be appropriate subjects of study for truly understanding the
regulatory systems of the virus. Development of more authentic model systems may

prove necessary in this case.

The complex regulation of a chronically infecting virus is reminiscent another small
RNA virus, HIV. HIV has a number of proteins involved in regulation of the viral life cycle,
the most-studied being Tat and Rev. Tat, the trans-activator of transcription, interacts
with the long terminal repeat (LTR) promoter of HIV (120). In the absence of Tat,
transcription of viral mRNAs is highly inefficient, resulting in stalling of the cellular
polymerase Pol Il and the production of abortive transcripts (121). Expression of tat

potentiates cellular transcription several hundred-fold (122) - a positive feedback loop
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yielding an explosive increase in viral gene expression. Interestingly, the tat gene resides
near the 3’ end of the HIV genome. In light of the poor processivity of transcription in
the absence of Tat, it would seem reasonable for Tat to be situated closer to the LTR for
efficient activation; its distal placement suggests a need for delaying or otherwise
regulating the HIV in a way other than simply maximizing raw transcription efficiency.
This regulation could, for example, represent a switch from a latent to active state. The
Rev protein plays a role in export of the viral RNA (123). Because HIV is normally spliced
by the cellular splicing machinery, exporting a complete genomic RNA for packaging into
new virions requires special measures. Rev binds HIV RNA in the nucleus before it is
spliced and by oligomerizing onto the RNA, protects the splice junctions from
recognition (124). The regulatory rationale is easily guessed at: at early times, HIV RNA is
spliced to produce all the different protein products including virion components,
immune evasion factors, and Rev itself. As Rev accumulates, genomic RNA is exported
for packaging, and the virus shifts from a protein translation-focused early phase, to a
virion assembly-focused late phase (125). A second feedback loop occurs as Rev levels
rise and spliced HIV mRNA levels fall to the point where Rev expression, which itself
requires splicing, decreases. This in turn increases splicing and restores Rev levels (126).
The complexity of HIV regulation further underscores the importance of careful

coordination of the viral life cycle activities for fitness and surivival.
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4.8.5 Outlook

The regulation of HCV through NS5A is strikingly complex, with numerous
modifications affecting NS5A in myriad ways. CKIl phosphorylation has not even been
considered in this study, nor have we considered NS5A effects on innate immunity,
modulation of NS5B function, or the many adaptive mutations which have been
reported to enhance RNA replication or virus assembly. Adaptive mutations in particular
raise an interesting point. Naturally circulating HCV strains have been notoriously
difficult to culture, and almost always require adaptive mutations, which, surprisingly,
have appeared in almost every part of the HCV genome. Superficially it might appear
that wild-type HCV is highly suboptimal and inefficient, when ten- or hundred-fold
improvements in replication or virus production can be achieved with single residue
mutations. Alternatively, HCV could be seen as operating under a set of strict controls
which allow it to evade both innate and adaptive immunity and establish spectacular
success as a chronic infection. From this perspective, adaptive mutations might simply
be a breaking open of normally closed control loops and allowing viral processes to
proceed out of control. If this is true, it further complicates the study of HCV regulation.
Any “good” cell culture system would almost by definition have lesions in its regulatory
systems. Therefore we must be cautious in interpreting experimental data. One possible
approach is to study the same regulatory phenomena (ex. NS5A phosphorylation) in

multiple different cell culture systems (Conl, JFH1, Huh7.5, primary cells), which are

113



hopefully broken in different ways. Comparisons between more and less adapted strains

(JFH1 vs. J6/JFH vs. J6/JFH-Clone 2) might also yield valuable insights.

This important caveat notwithstanding, there are several opportunities for
extending the current work. Further work is required with H479, particularly as it is
somewhat at odds with existing hypotheses. One testable prediction from our model is
that Conl would have a low protein-to-RNA ratio, which would increase with H479
treatment. Measurements of protein-to-RNA ratios would also be helpful in
understanding what the CypA fusion constructs are doing to the relative balance of RNA

replication and protein translation.

The difference in infectivity enhancement curves between Jcl and JFH1 is also very
interesting. It seems quite possible that this difference would map to the N-terminus of
NS2, which amounts to five amino acid changes between the two strains, one of which
is a proline to serine substitution — the least conservative of the five changes. If the
difference were to map to this residue, it would be a candidate for yet another CsA

target in HCV.

One system we have not capitalized on is the CypA knockdown Huh7.5 cells. We
have gone as far as to test that the CypA fusion constructs replicate in these cells (data
not shown); however, testing the dose response curves to CsA for these constructs as

well as for the DEYN mutants would be valuable in testing our working model. We
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would predict that there would be little or no infectivity enhancement in the DEYN

mutant under CsA treatment in the CypA knockdown cells.

One other major avenue for future work is the inhibitor response experiments. We
believe that measuring the response of HCV to a panel of inhibitors shows promise as a
powerful approach to unraveling the details of the HCV life cycle as a system. This,

however, is left for the final discussion in chapter 6.
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Chapter 5. Covariation in HCV sequence alignments
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Chapter 5 Covariation in HCV sequence alignments

5.1 Introduction

The statistical analysis of multiple sequence alignments (MSAs) has long been
pursued as a means of inferring underlying biophysical facts about a protein from its
genetic diversity (127, 128). The degree of amino acid conservation at particular
positions, for example, is seen as evidence of structural or functional significance of
those residues ultimately resulting in a fitness advantage for the organism and the
consequent stability of that residue across evolutionary history. Like conservation,
covariation, also known as co-evolution or correlated mutation, is a statistical property
of a MSA. Unlike conservation, which measures the variation at a single position in the
protein (a single column in the MSA), covariation is a pairwise property describing the
correlation of variation between two amino acid positions (two distinct columns of the
MSA). If two positions vary in a completely independent fashion, those sites are said not
to covary. On the other hand, if a mutation at one site is frequently accompanied by a

mutation at the second site, those two sites are said to covary.

Strong covariation between two sites may be indicative of intra-molecular structural
contact or coordination between the sites for enzymatic function, ligand binding,
correct folding, etc. Hence, correlated mutation analysis has been proposed as a
method to predict residue contacts and generate information about protein structure

and function (127). While attractive in principle, practical realization of this concept has
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proven exceedingly difficult, for reasons to be explained below, and accurate prediction

of residue contacts directly from analysis of MSAs remains an open problem.

Numerous methods for estimating correlation between two random variables exist;
of these, a smaller subset of methods is suitable for calculating the correlation between
discrete, non-numerical variables, such as the letters in a protein sequence. These
methods including Observed Minus Expected Squared (OMES) (129), Statistical Coupling

Analysis (SCA) (130), and Mutual Information (Ml) (128).
5.1.1 Mutual Information

Mutual information (MI) is a technique originally developed in the field of
information theory which quantifies the mutual dependence of two random variables
(in this application the identity of two amino acid residues). Ml is calculated by
comparing the joint probability distribution between two variables X and Y with the
product of the two separate probability distributions, given by

MICX,Y) = ;;{P(x, y) log (%)

The summations are over all possible values of x and vy, in our case, the twenty
possible amino acids. P(x) is the probability of a particular amino acid appearing at

position X, and P(x,y) is the probability of encountering a specific pair of amino acids at
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positions X and Y simultaneously in a one sequence. If the amino acid positions vary
completely independently, the frequency (or probability?) of a particular pair of amino
acids appearing in the same sequence will be equal to the product of the probabilities of
each of the two amino acids appearing at each of the two sites respectively. Any
disparity between the product of the probabilities and the actual distribution is
indicative that the identity of the amino acid at one site is affected by what amino acid
is at the second site and vice versa (there is no directionality to mutual information). For
example, consider a MSA in which histidine occurs at position 1 in 10% of sequences,
and a valine occurs at position 2 in 10% of the sequences. If the two positions are
completely unlinked, the chance of a sequence containing both a histidine at position 1
and a valine at position 2 is 1% - the product of the two probabilities. If in fact, that
particular pairing occurs in 10% of sequences, which means the two amino acids always

appear together, position 1 and 2 are considered very strongly linked.

Another way to understand Ml is to ask, given two sites of unknown amino acid
identity in a sequence, if the identity of one is made known, how much is the
uncertainty of the second site diminished? If two sites are perfectly linked (ex. an
histidine at position 1 is always accompanied by a valine at position 2, but position 2 is

always a threonine when site 1 is a glycine), then revealing the identity of one amino

?In the literature, the term “probability” is typically used instead of “frequency”. For the purposes of
this study, the terms are interchangeable — the observed frequency of an amino acid at a site in the
protein is implicitly an estimation of the underlying probability of that amino acid appearing at that site.
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acid will completely eliminate any uncertainty about the second amino acid — there is

information which is mutual between the two sites.

5.1.2 Sources of covariation

Any analysis attempting to infer protein structure or function from sequence
covariation depends on the degree to which observed covariation is actually a
consequence of functional and structural linkage. In fact, observed covariation may have

multiple sources, of which true interaction between amino acids is only one.

In addition to direct interactions between residues, covariation is also caused by
indirect interactions. Allosteric effects are an obvious example, but indirect correlations
need not stem from dramatic conformational changes and may result from subtle
distributed effects or a series of interconnected direct interactions. Efforts to distinguish
direct interactions from indirect interactions by more sophisticated mathematical
techniques have met with some success; however the approach has been limited to

proteins existing in multiple copies per genome (131).

A third potential source of covariation in the amino acid MSAs is the presence of
RNA secondary structure. The one-to-one base pairing of RNA secondary structure
generally produces strong covariation signal from the nucleotide sequence which may
result in apparent covariation between two amino acids which in fact have no
interaction at all. Generally speaking, RNA secondary is more often located in

untranslated regions of an RNA molecule, although for RNA viruses, which tend to pack
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information more densely, RNA secondary structure often does overlap with protein

coding sequences.

One feature the three sources of covariation described thus far share is that they all
are rooted in biophysical interactions and in that sense are all “real”. The fourth and
fifth major sources of covariation, random covariation and phylogenetic covariation,
differ in that the resulting correlations are largely incidental. These correlations can
easily drown out the other “true” sources of covariation and present a significant

challenge to extracting useful information from any analysis of covariation.

Random covariation can result from sampling error, where there are not enough
sequences in the MSA for the signal to outweigh the background noise (132). A related
type of random MI occurs when there are large differences in conservation at different
positions in the MSA (133). Highly variable positions will tend to score higher in
measurements of covariation than highly conserved positions. This makes it more
difficult to detect covariation between more conserved positions, when these

covariances are often the most interesting.

5.1.3 Phylogenetic covariation

The problem of phylogeny is a general one affecting any attempt to determine the
correlation between two random variables across a genetically diverse sample set — not
only between two amino acids, but between any pair of variables at all, for example,

attempting to correlate the brain size of animals with their body mass. The problem is
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described in detail by Felsenstein (134), in which a set of data (protein sequences,
physical attributes, etc.) taken from numerous species might appear to show interesting
correlations when in fact they are artifacts of phylogenetic relationships between the

sampled species. How this occurs is best illustrated with a specific example.

In the case of a covariation analysis, a large number of related HCV isolates are
sequenced, and the sequences for the protein of interest are aligned and compared. If a
particular pair of mutations occurs exclusively in a concomitant fashion — every
sequence has either both mutations or neither — the conclusion that the two sites are
meaningfully linked may appear highly compelling. An attractive interpretation would
be that either mutation must be highly deleterious and selected against, and only in the
presence of a second, compensatory mutation can the protein maintain its necessary
function and be maintained in the gene pool. There is, however, another possibility: that
all the sequences containing the double mutations share a common ancestor. The two
mutations, which may be essentially neutral for protein function individually or in
tandem, happened to exist in that ancestral sequence, and having no fitness cost, these
two mutations were maintained in all of its progeny. As a result, the two mutations
repeatedly appear together, not due to any functional relationship between the two
sites, but by virtue of a shared lineage. Various methods have been developed to correct

for phylogenetic covariation, which are discussed further below.
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5.2 Calculating mutual information in HCV p7 alignments

In order to calculate MI from HCV sequence alignments, the MI algorithm as
described by Korber (128) was implemented in C++. As a quick check for functionality,
the Ml algorithm was executed on an alignment of 874 protein sequences of the V3 loop
region of HIV-1 Env, similar to the original analysis by Korber. While it was not possible
exactly reproduce the results (which would require using the same exact alignment used
in the earlier study), there was good overlap with the original covariation results, with 6
of the 7 originally identified hits showing up in the top 20 hits of the new analysis. The
overlap is shown in Figure 5-1, where the horizontal and vertical axes are residue
number, with a spot marking a covarying pair. The size of the spot indicates the strength

of the correlation.

We next chose to test the MI program on a set of HCV p7 sequences. Being the
shortest of the HCV proteins, p7 gave the simplest test case with least computational
cost. Sequences were downloaded from the euHCVdb (91) and culled by hand to
remove sequences less than full 63 amino acid length of p7 or containing any gaps. From
the remaining sequences we selected two sets according to genotype: one containing
455 sequences of genotype 1a only, and one containing 538 genotype 1b sequences. Ml
was calculated from these two alignments, with the results shown in Figure 5-2.

Certainly very few observations can be made directly from these visual representations.
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Figure 5-1. HIV Env V3 Mutual information

Top hits from MI calculation, compared with previously published results. Ml was

calculated for an alignment of 874 sequences of the V3 loop of HIV-1 B Env protein.
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Figure 5-2. p7-1a and p7-1b Ml

Top hits from MI analysis for p7-la and p7-1b MSAs. p7-la MSA contains 455
sequences. p7-1b MSA contains 538 sequences. The MSAs were also scrambled and Ml
was calculated from the scrambled MSAs. Both axes show residue number. A spot

represents a detected covariation between the residue pair given by the coordinates.
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There appears to be significant agreement between the two covariation sets; however,
whether the identified covariations are meaningful hits or artifacts of phylogeny or

random noise is unknown.

In an attempt to differentiate this covariation data from noise, scrambled
alignments were generated by repeatedly exchanging letters from one sequence with
the letter from the same position from a randomly chosen sequence. By exchanging
letters only within columns, the distribution of amino acids within any one column in the
sequence alignment is preserved; however, correlations between columns should be
completely abolished. These scrambled alignments were then analyzed for Ml in the
same way. The results suggest that random variation does account for part of the
correlation observed. Many of the same pairs identified in the Ml analysis also appear
with the scrambled alignment. This problem appears to be a manifestation of random
covariation stemming from differences in the degree of conservation. Examining the
sequence conservation plot, it is apparent that the high scoring pairs from the

scrambled MSA are all pairs of less-conserved residues.

The problem appears to be more pronounced with the 1b sequence set. In the 1a
results, the Ml values from the scrambled MSA are smaller, and many of the points are
unique to either the normal or scrambled dataset. The Ml scores from the 1a MSA are
also higher than the 1b scores overall, which further indicates that the 1a set contains

more useful covariance information.
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5.2.1 Evaluating Ml results by detection of alpha-helix stacking

To determine whether the detected covariation has any basis in the biophysical
properties of the protein, it is necessary to compare against some known biophysical
data about the protein. If a crystal structure is known, the mutual information between
amino acids can be compared to their physical proximity to see whether higher scores
tend to correlate with smaller inter-residue distances. For p7, the crystal structure is not
known; however, NMR studies and structure predictions indicate that the majority of
the protein is in the form of two trans-membrane alpha-helices (135, 136). The
knowledge of the largely alpha-helical nature of p7 provides enough a basis for making
an evaluation of the covariation results by whether they can detect evidence of
stabilizing interactions between stacked residues in the alpha helix. This type of
interaction has been shown to produce linkage between residues 3 to 4 residues apart,

which matches the typical alpha helix periodicity of 3.6 residues per turn (137, 138).

If the covariation detected by Ml analysis is due to intramolecular interactions within
p7, one would then expect a propensity towards finding high scores in covariant pairs 3
to 4 residues apart. In fact, for the genotype 1a analysis, 5 of the top 20 Ml scores are
from pairs 3 or 4 apart. This result is bolstered by the fact that from the scrambled 1a
alignment, only 2 of the top 20 hits meet this criterion, which is the value one would

expect if ranking the pairs randomly.
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The results from the 1b sequences are less clear overall. Like the 1a Ml results, 5 of
the top 20 pairs are 3 or 4 residues apart. However, when the sequences are scrambled,
there are still 4 such pairs in the top 20. The higher degree of overlap between the
unscrambled and scrambled 1b MSA has already been noted, so the result is not
particularly surprising. That the scrambled data produces 4 helix-stacking hits in the top
20 is more surprising. The reason is that a number of the variable positions in the 1b
MSA happen to be 3 or 4 residues apart, which gives a preponderance of random Ml hits

with that spacing, independent of any correlated mutations between those columns.

5.2.2 Combining the 1a and 1b MSAs brings phylogeny to the forefront

Some of the difficulty in detecting meaningful covariation can be attributed to a lack
of diversity; with many of the positions in the MSA quite highly conserved, Ml signal
tends to be weak and subject to greater sampling error due to the small number of
mutations. One way to increase the diversity of the p7 MSA is to combine the 1a and 1b
sets. The two sets were appended to generate a 1ab MSA, and once again tested for MI.
The results are very different from the covariance sets previously shown (Figure 5-3).
The magnitudes of the Ml scores are three times higher those of the 1a set, and much
more uniform. When helix-stacking performance was tested it was seen to be no better

than a random ranking, implying that the detected Ml is not a result of true interactions.
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Figure 5-3. Ml for combined 1a and 1b p7 MSA

Ml for the normal and scrambled combined MSA of p7-1a and p7-1b. MSA contains 993

sequences total.
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For comparison, the scrambled MSA was also analyzed; unlike the previous results,
the scrambled MSA here produces much smaller scores which are almost entirely non-
overlapping, suggesting a qualitatively different source of the false Ml than observed
thus far. Upon a closer examination of the results, it becomes clear that the high scoring
pairs are various combinations of a few residues, and that those residues are the ones
which are specific to genotype 1a or 1b. In other words, the observed covariation is now

dominated by phylogenetic influence.

This effect is most easily understood by considering an MSA containing multiple
copies of just two sequences. Any residue conserved between the two will have no
variation, and naturally, no covariation. Any residue which differs between the two will
covary perfectly with every other residue which differs between the two, producing an
extremely strong covariation signal. Looking at a phylogenetic tree of the 993 sequences
(Figure 5-4), it is clear that this is more or less the situation we are encountering —

multiple copies of essentially only two really distinct sequences.

5.3 Ml with average product correction

Mutual information with average product correction (MI-APC or Mlp) is a
mathematical technique developed by Dunn et al. (139) for the purpose of addressing

the issues of random Ml and phylogeny, two main problems encountered so far in this
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Figure 5-4. Phylogenetic tree for the p7-1ab MSA

Phylogenetic tree showing the clustering of the 993 1a and 1b sequences. Tree was

generated by neighbor-joining method.
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analysis. The idea is to estimate the contribution of those two sources of error and
subtract that contribution from the standard Ml calculation to give a corrected measure
of covariation for each pair. The correction, APC, is given by

MI(i, ©)MI(j, %)

APC(i,)) = e

where

L
MI(i, %) = %Z MIGi, x)

X+

o 2 L-1 L
1=mz Z MI

x=1y=x+1

The mean mutual information,MI(i,x), in the numerator of APC represents the
average Ml of a specific column with every other column in the MSA, where L is the
length of the sequences in the MSA. The summation is therefore over all the columns.
The denominator is the mean MI of the entire set — every column with every other
column. Mlp takes the form of MIp = MI — APC. This corrected figure has been shown to
have improved performance over Ml in contact prediction and detection of alpha-helix

stacking (140).
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5.3.1 Mip of p7-1a and p7-1b MSAs and the receiver operating characteristic

We first applied the average product correction to the single subtype MSAs of p7, to
test its effectiveness in reducing random MI. The Mlp hits for the p7-1a and p7-1b MSAs
and their scrambled counterparts are shown in Figure 5-5. When compared with the MI
results, there is noticeably less overlap between the hits for the scrambled sets and the
normal sets. This is especially true for the 1b, which displayed a greater degree of
random Ml in the earlier analysis. The spurious detection of helix stacking in the p7-1b
MSA is also eliminated, which is expected given that those hits were attributed to
random MI. The Mlp hits for p7-1a tend to cluster near the diagonal, meaning that more
of the detected covariation was between residues that were closer to each other in the
sequence, and subjectively, the Mlp results have a more natural, less grid-like

appearance.

There was no obvious improvement over Ml in the detection of helix-stacking by
Mlip as determined by the number of pairs in the top 20 scores with a spacing of 3 or 4
residues. In order to compare these algorithms more rigorously, receiver operating
characteristic (ROC) curves were generated for both algorithms acting on the p7-1a MSA
and scrambled p7-1a MSA. The ROC is a graphical depiction of the performance of a
binary classifier, which plots the true positive rate of that classifier against the false
positive rate as the discrimination threshold is varied over its entire range. A good

classifier will achieve a high true positive rate while maintaining a low false positive rate,
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Figure 5-5. Mlp for p7-1a and p7-1b

Top Mip hits for p7-1a and p7-lab MSAs. Results for the scrambled MSAs are also

shown for comparison.
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Figure 5-6. Receiver operating characteristic (ROC) curves

(A) A set of hypothetical ROC curves illustrating the difference between strong and weak
classifiers. (B) The ROC curves for helix-stacking detection, evaluating performance of Ml

and Mlp on p7-1a MSAs.
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whereas a random classifier will produce many false positives and achieve a true
positive rate roughly equal to its false positive rate, producing a line from the origin of
slope 1. The ROC curves for p7-1a show Ml and Mlp nearly identical in performance,
with a very small advantage to Mlp Figure 5-6. On the scrambled alignment, Mlip

performs no better than a random classifier, as expected.

5.3.2 Mip for the combined p7-1a and 1b MSA

MlIp was calculated for the p7-1a and 1b combined MSA. The results indicate that
Mip is not efficiently eliminating the effect of phylogeny, as evidenced by the large
overlap (14 of 20) with the uncorrected Ml results (Figure 5-3), where the Ml results are
almost entirely composed of phylogenetic covariation, and little overlap with either the
p7-1a results (4 of 20) or the p7-1b results (2 of 20), evident in Figure 5-7a. One would
expect that many of the covariant pairs in the two separate sets would still score highly
(as they are still covariant) in the combined set. The ROC curves for helix-stacking
detection showed a small improvement over Ml near the origin (which is the most
important region of the curve), but well short of the results from the p7-1a MSA.
Generally the latter part of the ROC curve can be ignored, as by that point the false

positive rate is very high.

The ineffectiveness of the average product correction to sufficiently diminish the

effects of phylogenetic covariation reflects the particular challenges of using covariation
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Figure 5-7. Mip for p7-1ab MSA

(A) Comparison of hits for combined p7-lab Mlp with Mip hits for the two MSAs

separately. (B) ROC curves comparing performance of the Ml with Mlp for p7-1ab.
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analysis to study HCV. When compared with trans-species sequence alignments which
are commonly used in such analyses, the HCV MSAs suffer from at least two major
limitations: lack of diversity and non-uniform distributions. Figure 5-8 compares
phylogenetic trees from the HCV p7 MSAs with a sample MSA used in the study
originally describing the average product correction (139), a set of 130 sequences of the
methionine aminopeptidase (MetAP) protein from many different bacterial species. The
trees illustrate the difficulties well. The lack of diversity is apparent from the relative
scale — the MetAP tree is ten times larger than the p7-1la or p7-1b MSA — and is
problematic because of the lower overall signal levels and higher susceptibility to
random variation. One way to counteract the problem of random variation is to have
more sequences within the distribution to average it out. To some extent this strategy is
already being exploited with the two p7 MSAs, which contain 455 and 538 sequences,
respectively, as compared with 130 sequences in the MetAP MSA. Another way to
increase diversity would be to combine the 1a and 1b MSAs; this however creates the
second major problem, which is the highly non-uniform distribution of the MSA in

sequence space, resulting in overwhelming phylogenetic covariation.

Thus, there is a kind of dilemma: it is desirable to improve MSA diversity, but
increased diversity comes at the heavy cost of phylogenetic effects. One common
approach to this problem is to cull the sequence set to try to reduce the skewing; this by

necessity reduces the number of sequences and increases susceptibility to random
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Figure 5-8. Phylogenetic trees

(A) p7-1a tree. (B) p7-1b tree. (C) MetAP tree. All trees generated using neighbor-

joining method. Note different scale bars for each tree.
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variation. In any case, it can be seen that no amount of culling will produce a star-like
phylogenetic tree. Another option is to try to fill in the missing areas; the tree for all p7

sequences downloaded from the euHCVdb is shown.

5.4 Development of a novel method for estimating covariation

In light of the particular challenges involved in assessing HCV covariation, we chose
to design an algorithm to cope with these difficulties. The basic approach is, for each
sequence, to find the most closely related sequences, and by comparison with those
relatives, to assign each letter of the sequence an interest score (IS), which quantifies
how “interesting” that amino acid is. After assigning every letter of every sequence an
IS, this set of scores can then be analyzed to find correlations between occurrences of

interesting residues.

5.4.1 Calculating interest scores

An amino acid in a sequence is considered interesting if, based on its relatives, one
would have predicted something else. Therefore, if all the related sequences have a
glycine at position 24, finding a glycine at the position would be uninteresting, whereas
finding a lysine would be very interesting. There would also be intermediate cases,
where a minority amino acid would be somewhat more interesting than the majority
amino acid. If the position is highly variable among the related sequences, then
whatever amino acid is found there in that sequence, it would not be as interesting as if

the position was generally conserved among the neighboring sequences. Further
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sophistication can be achieved by taking into account the likelihood of a particular
amino acid substitution. Finding a glutamic acid when one would have predicted an
aspartic acid would not be as surprising as finding a tryptophan. We chose to calculate

the interest score according to the following equation:

N,_O 105SFxS(nn')+M[snillsn;]

. _ n'=
I(i,n) = ZN’ o 10SSFxS(mn")+Ml[spillsniil
n'=

The interest score is calculated for a position i in sequence n, and is a ratio between
two values. The denominator, which is the main determinant of the score, is the sum of
the substitution rates of the amino acid at position (n,i) with the amino acid at that
position for every other sequence in the MSA, weighted by the similarity of the that
sequence to sequence n. The numerator is the normalizing factor, and is also a sum of
substitution rates weighted the same way but the rates are for substituting the amino
acid at (n,i) with the same amino acid. Therefore the minimum possible value of I(n,i) is
1, which is the case where position i is completely conserved in all sequences. The
largest value of I(n,i) would occur if every sequence differed from sequence n at position
i. The matrix M is a substitution matrix, for example, PAM20, which gives the log-odds of
seeing a particular substitution. The value S(n,n’) is a measure of similarity between two
sequences, and is given by sum of the amino acid substitution rates between the two
sequences for each position. SSF, the similarity scaling factor, determines how heavily to

weigh sequence similarity. It can be thought of as determining how near or far to search
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when comparing with related sequences. A large SSF would only consider very closely

related sequences, with more distant sequences given very little weight.

5.4.2 Testing interest score calculations

An artificial test MSA was generated by taking one sequence of p7 each from the 1a
MSA and the 1b MSA and replicating them multiple times. Then two amino acids were
exchanged in one pair, effectively creating an MSA with just two sequences with two
“interesting” residues each. A subset of the MSA is shown in Figure 5-9a. Interest scores
were then calculated according to the above algorithm for this test case MSA. For all but
the two mutated sequences, the interest score was approximately 1 for all residues. The
scores for the two mutated sequences are shown in Figure 5-9b. The scores for most of
the residues is 1, except for the two mutated residues, which are identified as highly

interesting.

5.4.3 Computing covariation from interest scores

After calculating the interest score for every residue in the alignment, the next step
is to search the set of scores to find correlated pairs of columns. This could be
accomplished a number of different ways; we chose to use a simple correlation function
to calculate the correlation between two columns of interest scores. We dubbed the

final computed value the interest-score correlation (iCor).
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Figure 5-9. Test MSA interest score

(A) Subset of the artificial test MSA. Actual MSA contains 77 sequences, which are all
copies of the blue sequences and red sequences. Two sequences contain 2 mutations
each, forming a covariant pair. (B) Interest scores for every residue in every sequence.
All of the unmutated sequences have scores of 1 across the sequence. The two mutated
sequence, shown in violet and teal, show high interest scores corresponding to the two

mutations.
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Here I(i,n) is the interest score for residue i in sequence n.I(i)is the average
interest score over all N sequences for column i. The result of this calculation for the test
MSA described above is shown in Figure 5-10 and compared with Ml and Mlp. Because
MI has no correction for phylogenetic M, it detects a large covariation between every
pair of residues that varies between the two sequences used to generate the test MSA.
The one actual covariation is buried under the phylogenetic background. Mlp is much
more successful at reducing this background, and the single covariant pair is apparent.
However, the iCor algorithm is more effective still at removing the effect of phylogeny,

as seen by the lower background.

5.5 iCor results for p7

Interest scores were computed for the p7-lab MSA. The scores for one
representative sequence is shown in Figure 5-11a. In this particular sequence, 3 residues
were scored as “interesting”: T16, P21, and 144. The higher scores for these three
residues indicate that they differ at those points from their related sequences. The array
of interest scores was then analyzed for correlation to generate the iCor values for
covariation. The results are shown in Figure 5-11b. One salient feature is the extensive

overlap with the separate p7-1a and p7-1b results (only a few of the blue dots are not
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Comparison of three different algorithms for estimating covariance in the test MSA
shown in the previous figure. Ml and Mlp are two published methods, iCor is a novel

method.
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occluded by red or green). This is in contrast to the results from Mlp (Figure 5-7a). These
results indicate that iCor is able to reduce phylogenetic covariance to the point where

underlying covariance signals are detectable.

ROC curves for helix-stacking detection were also computed to test the performance
of the iCor algorithm and are shown in Figure 5-12. The results confirm the
improvement over Mlp for the p7-1ab MSA. Comparing the left-hand-most region of the
curve, the performance of iCor on the mixed p7-1ab MSA is actually comparable to that
of Mlp on the single-genotype p7-1la MSA, which is the best-case scenario thus far

observed.

5.6 Discussion

In this study we identified and attempted to solve some of the specific challenges
facing covariation analysis of HCV MSAs. In particular, we found that lack of diversity
and highly non-uniform phylogenetic distribution to be major concerns when working
with HCV MSAs. We attempted to address the problem of phylogeny first by
implementing a well-known existing technique, Mlp, but found it insufficient to remove
the very large phylogenetic component of covariance found in the HCV MSAs. Instead,
we developed a novel algorithm for computing covariance by identifying “interesting”
residues and searching for correlations in the occurrence of these mutations. This
algorithm, iCor was compared with Ml and Mlp and found to be better suited to dealing

with the phylogenetic covariance.
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Figure 5-11. iCor results for p7-1ab

(A) Interest scores for a single selected sequence in the p7-1ab MSA. (B) Top hits for the
p7-1ab MSA using the iCor method. Covariance scores for p7-1a and p7-1b analyzed

separately are overlaid for comparison.
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Figure 5-12. iCor helix-stacking ROC curve

ROC curves of iCor and Mlp performance in detection of helix-stacking in the p7-1ab

MSA. For comparison, the Mlp results for p7-1a are also shown.
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Figure 5-13. Structural view of p7

[llustration showing a tentative structure of the p7 monomer on the left and the
oligomeric subunit of the ion channel on the right. From Montserret et al., JBC. 2010;

287:31446-31461. (141)
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The next step in evaluating these algorithms and also evaluating the covariance
approach in general would be to map covariant pairs onto the crystal structure of a
solved protein, such as NS3 or NS5B. A recently published tentative structure for p7 is
shown in Figure 5-13 (141). When compared with the iCor results, fully half of the top 20
hits appear to be physically interacting pairs. A larger protein like NS3 would be a more
rigorous test; as the volume of the protein increases, the probability of any two
randomly selected residues interacting decreases proportionally. In general, efforts to
predict pairwise physical interactions by covariance analysis have been largely
unsuccessful, and preliminary results with NS5B and NS3 do not show any major
breakthroughs in this regard. The question of how to utilize covariance data, even
assuming truly covariant pairs can be reliably identified, remains open. Apart from RNA
covariance (142, 143), which tends to produce better results because the interactions
are explicitly pairwise and there are fewer letters, covariance analyses in HCV have
focused on general trends and network effects rather than specific interactions (144,
145). The correct interpretation of this type of observation is not altogether clear. For
these reasons, the development of the iCor algorithm represents an incremental step

towards a destination which is still being defined.
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Chapter 6. Discussion

151



Chapter 6 Discussion

We have followed three separate avenues towards gaining a more comprehensive
understanding of HCV dynamics. We developed numerical models to accurately
recapitulate narrowly defined aspects of HCV biology, virus accumulation and virus
entry, and applied these models to gaining a more detailed understanding of these life
cycle events. We also studied the regulation of HCV through NS5A by chemical and
genetic perturbations. Finally, we attempted to apply covariation analysis to the study
of HCV, laying some fundamental groundwork and developing novel techniques to

advance this area of study.

At the outset of these studies, we had hoped to begin integrating the three
approaches developed in chapters 3-5. At this point, they remain separate; however,
paths toward convergence can be seen. The most obvious point of convergence is
between HCV regulation and numerical models. This particular coupling was seen as the
most accessible and had been an aim of the study from early on; however we found that
the complexity of NS5A’s regulation of HCV put a numerical model outside our reach.
What is needed to move forward is rich, quantitative data, and our work suggests

several areas for progress in this regard.

We feel that inhibitor studies have tremendous potential which we have only begun
to tap. The dose-response curves of HCV to these compounds demonstrate that there is

much more information to be gleaned than simply whether a compound is inhibitory
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and at what concentration. From the standpoint of drug development it might be
beneficial to rate efficacy by a single value in a single consistent assay done the same
way every time, for efficient comparison of large libraries of compounds. From the
standpoint of unraveling HCV biology on the other hand, we see value in doing many
variations of the assay with many different conditions. A dose-response at early times
vs. late times or long and short duration of treatment provide different pieces of
information which can be integrated, as seen with CsA treatment in particular. Similarly,
differences between dose-response curves measuring luciferase expression vs.
measuring RNA directly reveal underlying details not only about the mechanism of
inhibition, but about HCV itself, as is the case with H479. Even further insight can be
gleaned by combining inhibitors in various ways, such as pre-treating cells with different
doses of danoprevir before adding a second drug, or simultaneous addition of CsA and

H479, which suggested the functional target of CsA might be p58 NS5A.

One type of experiment which should be very powerful is the inhibitor response
kinetic. It did not receive much treatment in this work, due to technical issues, although
we did show some smaller-scale kinetic experiments for CsA, H479, and 2'CMA.
Comparing the kinetic response to a panel of compounds, which would include not only
the specific HCV inhibitors already discussed but also broader cellular inhibitors, would
provide invaluable information as to temporal relationships between different events.
Other inhibitors would include cyclohexamide, brefeldin A, the MTP inhibitor BMS-

200150, and kinase inhibitors like TBCA. Preliminary experiments have shown, for
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example, that danoprevir treatment results in a more rapid decline of intracellular
infectivity than cyclohexamide, which might be taken as evidence for the existence of a
pool of uncleaved polyprotein. It would also imply that a constant, fresh supply of at
least one of the NS3/4A-processed non-structural proteins is required for ongoing viral
assembly. The potential value of these experiments is only increased when we consider

combinations of drugs.

The challenges to this approach are largely technical — achieving a high degree of
uniformity and repeatability across time points and managing the large number of
samples resulting from the multiplication of the number of time points, the number of
compounds, the number of concentrations of each compound, the number of assays,
and the number of replicates. An additional challenge is presented in synchronizing the
experiment temporally for this large number of samples. For example, taking an hour to
harvest a set of plates for one time point would not be acceptable if the time points are
one hour apart. Obviously a significant amount of workflow optimization is required;

automation might also be appropriate.

The introduction of new assays is another exciting area of development to consider
with the inhibitor studies. So far, we have measured total HCV RNA, protein expression
by luciferase, infectivity, and phosphorylation as they respond to drug treatment.
Localization is a more difficult attribute to quantify, but with automated microscopy and
image analysis software it is becoming more common to do so. Two brand-new assays

are worth mentioning as well, both developed in cooperation with our lab. A PCR-based
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strand-specific assay is under development (Joseph Luna, personal communication),
which would provide a more detailed characterization of than total HCV RNA. Positive-
strand RNA alone is the substrate for polyprotein translation and for virion packaging,
whereas both strands are part of the RNA replication process; being able to separately
guantify the strands and their response to various inhibitors would shed additional light
on all these processes. The second assay is a fluorescent in situ hybridization (FISH) type
of assay developed by Salman Khetani (personal communication) for determining HCV
localization within the cell. Especially with the model of NS5A primarily regulating RNA
targeting, being able to image RNA localization and how it response to, for example,

H479 treatment, would be highly informative.

Armed with such a formidable collection of quantitative data, we would be in a
much better position to consider more comprehensive numerical models describing the
HCV system. The approach would be similar to that taken in chapter 3 but expanded in
scale and sophistication, and similarly the aim would be to develop a quantitative
description of a specific experimental system which could then be used to make testable
predictions and verified. In one sense, the mathematical model not an end in itself, but

rather a means of rigorously confirming our understanding of the underlying system.

Where covariation analysis might fit into the broader picture is more difficult to
answer. The hope would be to identify important intra- and inter- protein interactions,
which might provide insight into some of the molecular mechanics of HCV; in practice,

the ability to discover these connections is yet to be realized. One obvious thing to try is
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to search an NS5A MSA for covariation. In fact, this analysis was done; the issue is how
to utilize the results. No intuitive interpretation presents itself, just a list of putatively
covariant pairs. The hits did not clearly link any one region or domain with any other,
nor did they cluster together in hot spots. Either a more sophisticated method of
interpretation is required, such as the protein sector interpretation (146), or better
algorithms to improve the signal-to-noise ratio, or more sequence data. With the rapid
advance of sequencing technology, the latter is almost guaranteed. The covariation
approach therefore remains something of a dark horse which is of doubtful utility at the

moment but may yet yield payoffs in the long-term.
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