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DEVELOPMENT AND APPLICATION OF CHEMICAL STRATEGIES TO 

STUDY PROTEIN FATTY-ACYLATION IN EUKARYOTES

Mingzi Zhang, Ph.D.

The Rockefeller University 2012

Reversible S-palmitoylation confers spatiotemporal control of protein function by 

modulating protein stability, trafficking and activity  as well as protein-protein and 

membrane-protein associations. While it is evident that palmitoylation is regulated in 

vivo, mechanisms that mediate cellular stimuli-driven changes of the lipid modification 

are not understood. Furthermore, the requirement for substrate specificity among the 

highly redundant palmitoyl acyltransferases (PATs) remains unresolved. 

To study the regulation of PATs and palmitoylomes, I developed bioorthogonal 

chemical strategies for improved analysis of dynamic palmitoylation in mammalian cells. 

I showed that alkyne-functionalized fatty acids, in conjunction with azido-fluorophores, 

provide the most sensitive detection of acylated proteins following CuI-catalyzed azide-

alkyne cycloaddition. Linkage-specific hydrolysis, mutagenesis and inhibitor studies 

reveal that these alkynyl-fatty acids are incorporated into proteins by endogenous fatty-

acylation machinery via native linkages at specific amino acid residues. In addition, 

shorter and longer chain fatty acids label myristoylated and palmitoylated proteins 

respectively. Since myristoylation is co-translational and constitutive, I employed both 

palmitoylation and myristoylation chemical reporters with orthogonal fluorophores to 



simultaneously  monitor palmitate and protein turnover. Dual pulse-chase analysis of Lck, 

a tyrosine kinase required for T-cell signaling, revealed accelerated palmitate cycling 

upon T-cell activation. Pharmacological perturbation of Lck palmitate turnover suggests 

yet uncharacterized serine hydrolases contribute to dynamic palmitoylation in cells. 

These significant improvements allow rapid and robust biochemical analysis of 

palmitoylated proteins without overexpression, facilitating the functional characterization 

of cellular factors and drugs that modulate protein palmitoylation.

Taking advantage of the sensitive bioorthogonal detection of protein 

palmitoylation and the simple PAT network in the fission yeast Schizosaccharomyces 

pombe, I provided evidence for regulation of PATs and palmitoylomes in vivo at 

physiological enzyme and substrate concentrations. I showed that the Erf2-Erf4 PAT 

modulates sexual differentiation, and that upregulation of its expression is required to 

establish the meiotic palmitoylome. Importantly, I demonstrated that changes in Erf2-

Erf4 levels within the physiological range control PAT specificity and result in the 

differential palmitoylation of its substrates in vegetative and meiotic cells. Underscoring 

the biological significance of controlling PAT levels, Erf2-Erf4 overproduction in 

proliferating cells alters the palmitoylome and the subcellular distribution of Rho3, a 

major meiotic target, stimulating sexual differentiation in the absence of normal 

physiological cues. From this study, I conclude that PAT substrate specificity  depends on 

enzyme levels and propose the rheostatic control of PAT activity as a mechanism by 

which cells shape stimuli-induced palmitoylomes. Future questions stemming from this 

work are also discussed.
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CHAPTER 1

GENERAL INTRODUCTION

Post-translational modifications are important for protein function

Post-translational modifications of proteins (PTMs) are important for building functional 

complexity of proteomes in living organisms. To date, more than 200 PTMs involving the 

covalent attachment of metabolites and other proteins, both static and dynamic, have been 

identified. Together, they increase the diversity of functional groups beyond those in the 

side chains of the 20-22 proteinogenic amino acids, enabling new chemistry, new 

recognition patterns for binding partners as well as control of enzyme activity, protein 

stability  and location (Fig. 1.1b). The function and regulation of some of these 

modifications such as phosphorylation have been extensively  studied and characterized. 

In contrast, our understanding of modifications such as S-palmitoylation, the focus of this 

thesis, is limited.
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Figure 1.1 | Post-translational modifications (PTMs) are  important for protein function. a, 
Different  covalent  modifications of proteins, depicted by red circles, generate proteome 
complexity and diversify protein function. b, Examples of PTMs (red) of indicated amino acid 
side chains. Major forms of protein lipidation are indicated in box.

Protein S-palmitoylation

Lipid modifications, myristoylation, palmitoylation and prenylation (Fig. 1.1b, box), 

increase protein hydrophobicity, primarily functioning as lipid anchors to stabilize 

protein-membrane interactions and in some cases directly regulate protein activity as well 

as protein-protein interactions. These distinct lipid modifications differ not only in 

chemical linkage, chain length and degree of saturation of the lipids, but also in the 

associated enzymes, which recognize discrete protein substrates. S-Palmitoylation, also 

known as S-acylation, is the only  reversible lipid modification - the palmitate turns over 

faster than the protein itself1, 2. Palmitoylation takes place on the thiol side chains of 

cysteine residues post-translationally via thioester linkages (Fig. 1.2). Although it 

typically involves attachment of a saturated 16-carbon palmitate group to proteins, 

2



incorporation of longer fatty acids with different degrees of unsaturation have been 

reported3-5. Some proteins, such as the secreted Sonic hedgehog morphogen6-9, are 

irreversibly palmitoylated through the formation of an N-terminal amide bond (N-

palmitoylation) but in this thesis, palmitoylation refers to S-palmitoylation. To date, there 

is no unique consensus site, making it challenging to accurately predict palmitoylated 

proteins and modification sites.

Figure 1.2 | Protein  S-palmitoylation is  a reversible  modification. Palmitate is installed on the 
thiol side chain of a cysteine residue through the formation of a thioester linkage (red). 
Palmitoylation and depalmitoylation are mediated by a family of palmitoyl acyltransferases 
(PATs) and thioesterases, respectively. No reliable consensus palmitoylation sequence has been 
identified. 

 Nonetheless, recent technical advancements enabled comprehensive global 

characterization of palmitoyl-proteomes (palmitoylomes) in yeast and mammalian cells, 

which reveal that ~1-2% of proteomes are modified10-18. These studies greatly expanded 

the known complement of palmitoylated proteins and indicated important roles for this 

lipid modification as a major cellular regulator in diverse biological processes such as 

cell death and proliferation, immune signaling and neuronal function (Table 1.1). In this 

chapter, I will discuss how palmitoylation impacts protein function (Part 1) and how this 

modification is regulated in cells (Part 2). 
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Table 1.1 | Representative palmitoylated proteins.

Protein family Substrate Reference

Signaling proteinsSignaling proteinsSignaling proteins

Small GTPases

*HRAS, *NRAS
Hancock et al.20

*Baker et al.131

*Rocks et al.22

Small GTPases
*RHOB Adamson et al.167

*Kang et al.11

Small GTPases

*Brain-specific CDC42 isoform 2 *Kang et al. 11

G protein α subunits *Gαs, *Gαq, *Gα12

Linder et al.219

Wedegaertner et al.182

*Degtyarev et al.55

*Wedegaertner et al.54

Non-receptor tyrosine 
kinases

FYN Koegl et al.110

Shenoy-Scaria.115

Non-receptor tyrosine 
kinases

*LCK
Koegl et al.110

Shenoy-Scaria.115

*Zhang et al.52

Other signaling proteins

GAP43 (neuromodulin) Skene et al.183

Other signaling proteins

*eNOS Liu et al.218

*Ho et al.40

Other signaling proteins
Huntingtin Yanai et al.50

Other signaling proteins

CaMK1G Takemoto-Kimura et al.184

Other signaling proteins

GAD65 Christgau et al.

Other signaling proteins

Stathmin 2 (SCG10) Grenninglog et al.217

Channels, receptors, transporters other transmembrane proteinsChannels, receptors, transporters other transmembrane proteinsChannels, receptors, transporters other transmembrane proteins

G protein-coupled 
receptors

Rhodopsin OʼBrien et al.185

G protein-coupled 
receptors *β2-adrenergic receptor OʼDowd et al.216

*Mouillac et al.53

Ion channels
GluR1, GluR2 Hayashi et al.215

*Kang et al.11
Ion channels

Large conductance (BK) K+ channel Tian et al.88

Cell adhesion molecules
Integrin α6 Yang et al.186

Cell adhesion molecules
CD9 (tetraspannin 29) Yang et al.214

Cell death signaling FAS Chakrabandhu et al.187
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Table 1.1 continued |Table 1.1 continued |Table 1.1 continued |

Protein family Substrate Reference

Adaptors and scaffoldsAdaptors and scaffoldsAdaptors and scaffolds

*PSD95 (Post Synaptiic Density protein 95) Topinka & Bredt213

*El-Hussini et al.39

GRIP1, GRIP2 DeSouza et al.212

LAT (Linker for Activation of T-cells) Zhang et al.31

Proteins involved in protein sorting and vesicle traffickingProteins involved in protein sorting and vesicle traffickingProteins involved in protein sorting and vesicle trafficking

SNAREs SNAP25B Hess et al.211

*Syntaxin1, Syntaxin 6 Martin et al.13

*Kang et al.11

Synaptobrevin 2 Martin et al.13

Kang et al.11

Synaptotagmins *Synaptotagmin 1 Heindel et al.188

*Kang et al.11

Others CSP Chamberlain & Burgiyne189

*CKAP4 (p63) Schweizer et al.210

*Mundy & Warren56

IFITM3 Yount et al.16

*Changes in palmitoylation states have been associated with different cellular or physiological 
states.

Part 1: Palmitoylation-mediated regulation of protein function

Protein targeting and trafficking

Palmitoylation primarily targets proteins to specific membrane compartments in the cell. 

The small GTPase Ras, an important molecular switch in diverse signaling networks 

governing cell death, proliferation, differentiation that is well-known for its role in cancer 

development19, provides an important paradigm for spatial control mediated by this lipid 

modification. Nras and Hras are two highly homologous isoforms, differing mainly in 

their hypervariable C-terminal regions, where Nras and Hras are both prenylated and 
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either mono- or dual- palmitoylated2, 20, 21 (Fig. 1.3a). These isoforms have distinct 

cellular distribution with Hras being more enriched at the plasma membrane relative to 

the Golgi22 (Fig. 1.3a). This is dependent on their palmitoylation states since localization 

of mono-palmitoylated Hras mutants more closely resemble Nras22 (Fig. 1.3b). Notably, a 

non-palmitoylated Hras mutant is randomly  distributed to all membranes (Fig. 1.3b, 

C181, 184S), indicating that prenylation alone is insufficient to target proteins to specific 

membranes22. In fact, it  is appreciated that other lipid modifications such as 

myristoylation and prenylation (Fig. 1.1b) act as weak membrane anchors while 

palmitoylation, although not usually  the primary membrane association signal, is a strong 

membrane anchor that specifies the membrane distribution of a protein23 (Fig. 1.3d, steps 

1-3). The reversibility  of palmitoylation is also crucial for its function. Microinjection of 

a semisynthetic Nras that is irreversibly-linked to palmitate results in non-specific 

distribution of the protein (Fig. 1.3c), demonstrating that correct localization of Nras 

requires both palmitoylation and depalmitoylation22 (Fig. 1.3d). Cycles of palmitoylation 

and depalmitoylation govern protein-membrane associations, allowing key signaling 

proteins to shuttle and relocalize between intracellular membrane compartments22, 24, 25. 
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Figure 1.3 | Dynamic palmitoylation regulates localization of Ras isoforms. a, Distinct 
cellular distribution of two YFP-tagged Ras isoforms, Nras and Hras, which are mono- and 
dually- palmitoylated, respectively. Both isoforms are also prenylated. b, Palmitoylation 
determines membrane-specific localization of Hras. Cellular distribution of YFP-tagged Hras 
palmitoylation mutants, C184S, C181S or C181, 184S. Box, overexposed area reveals 
endoplasmic reticulum (ER) and plasma membrane (PM) localization of the C181S Hras mutant. 
c, Cellular distribution of synthetically-derived Cy5-labeled Nras with either native thioester-
linked or a non-cleavable thioether-linked palmitate upon microinjection into cells. a-c, Adapted 
from Rocks et al.22. d, Model for how palmitoylation regulates Ras trafficking. Newly 
synthesized Ras is prenylated and reversibly binds ER and Golgi membranes and traffic between 
them via a soluble cytosolic intermediate (step 1). Palmitoylation by a palmitoyl acyltransferase 
(PAT) kinetically traps Ras onto membranes in the early secretory pathway (step 2) and enables 
trafficking to the PM (step 3). Palmitate turnover generates a transiently depalmitoylated pool of 
protein that  is returned to the Golgi and/or ER compartments by non-vesicular transport, where it 
again can interact with PATs at the Golgi and/or ER and reenter the secretory pathway (step 4). 
Adapted from Goodwin et al.24

7



Spatial compartmentalization increases the complexity of signal outputs

By influencing their subcellular distribution, dynamic palmitoylation can have critical 

effects on the function and signaling outputs of proteins as epitomized by 

compartmentalized Ras signaling. Studies indicate that a Ras protein signals though 

distinct downstream effectors and pathways from a variety of membrane compartments22, 

26, addressing the conundrum of how a binary molecular switch like Ras, which cycles 

between GTP-bound active and GDP-bound inactive forms, can selectively control 

multiple pathways (Fig. 1.4). Unambiguously showed by Onken and colleagues using the 

single Ras protein in fission yeast27, 28 (Fig. 1.4b), compartmentalized Ras signaling also 

explains how the different Ras isoforms in mammals, though highly homologous and 

indistinguishable in most in vitro assays, perform non-overlapping biological functions19. 

In addition to maintaining the differential subcellular distribution of Hras and Nras 

isoforms, different de/repalmitoylation kinetics account for isoform-specific activation 

responses by regulating their partitioning between membrane compartments22, 24. It is 

clear that compartmentalized signaling increases the complexity of signaling outputs but 

it remains to be determined how palmitoylation, with its potential to impart rapid 

spatiotemporal control of protein function, affects distribution of signals across multiple 

platforms and influences the selectivity of signal outputs. 

8



Figure 1.4 | Palmitoylation-modulated compartmentalized Ras signaling increases the 
complexity of signaling outputs in a, Mammals and b, fission yeast. Palmitoylated and non-
palmitoylated Ras proteins localize to different  membrane platforms, where they signal through 
different  effectors and pathways involved in important cellular processes/events as indicated. PM: 
plasma membrane. 

Membrane microdomains as signaling platforms

Palmitoylation is also important for controlling the lateral segregation of proteins into 

membrane microdomains such as lipid rafts, which are ordered assemblies of proteins 

and lipids enriched in sterols and sphingolipids29. Several lines of evidence from studies 

in immune cell signaling suggest that this lipid modification functions modulates raft 

association of proteins. First, palmitoylation of proteins such as non-receptor tyrosine 

kinases Lck and Fyn, adaptor LAT, as well as co-receptors CD4 and CD8 are critical for 

T-cell signaling. Disruption of palmitoylation results in loss of raft association by these 

proteins, which is concomitant with abrogation of T-cell signaling3, 30-35. Second, 

substitution of palmitate on Lck with a more hydrophilic oxygen-substituted palmitate 

analog that disrupts lipid packing also reduces raft association and weakens its signaling 

activity36. Third, although artificial targeting of chimeric Lck and LAT constructs to the 
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plasma membrane without raft association restored their function in T-cell signaling, their 

signaling properties are altered37, 38. Together, these observations strongly  indicate 

palmitoylation-mediated targeting to membrane microdomains can affect the function and 

signaling outputs of proteins.

 How does targeting to membrane microdomains affect protein activity? The 

concept of compartmentalized signaling described previously can be applied to laterally 

divided subdomains within the same membrane compartment. Palmitoylation partitions 

proteins to common membrane microdomains or raft environments that are miscible, 

facilitating particular protein-protein interactions (Fig. 1.5a). In contrast, interactions 

between proteins in two non-miscible environments are less favored (Fig. 1.5b). By 

changing the lateral distribution of proteins within the same membrane compartment, 

palmitoylation can rapidly and reversibly modulate protein-protein interactions. 

Figure 1.5 |  Model  for regulation  of protein-protein interactions by palmitoylation-mediated 
microdomain association. a, Palmitoylation targets proteins to common membrane 
microdomains or raft environments that  are miscible, thereby facilitating dynamic protein-protein 
interactions. b, Interactions between proteins in two non-miscible environments are less favored.
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 Interestingly, many peripheral and transmembrane proteins required for signaling 

at neuronal and immune synapses are palmitoylated31, 39-41, suggesting a tantalizing 

possibility of lipid rafts as signaling platforms where reversible palmitoylation can 

rapidly regulate signaling strength by coordinating various lipid-protein and protein-

protein associations42.

Beyond membrane targeting

Besides inter- and intra- membrane targeting, palmitoylation controls protein activity  in  

diverse ways such as inducing protein conformational changes43, 44, modulating protein 

stability45-49 and aggregation50 as well as interacting with a variety of PTMs. Crosstalk 

between palmitoylation and other PTMs will be elaborated later in this chapter.
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Part 2: Regulation of protein palmitoylation

As reviewed in Part 1, palmitoylation controls various aspects of protein distribution and 

function. Given its versatility  and reversibility, palmitoylation is a potential major cellular 

regulator akin to phosphorylation. If this were true, one expects palmitoylation to be 

actively regulated and that this will have functional consequences on cellular physiology. 

This is best exemplified by  the neuronal scaffold PSD95. Receptor activity-regulated 

palmitate turnover of PSD95 modulates synaptic strength and plasticity  in post-synaptic 

neurons by mediating receptor clustering39, 51. Importantly, this effect is specific since 

palmitoylation of other neuronal proteins, GluR2 and GRIP1, is unaffected under the 

same conditions51. Besides neuronal activity, other extracellular signals have been shown 

to alter the palmitoylation state or rate of palmitate turnover in different cell types (Table 

1.1, *proteins). Accelerated depalmitoylation of G-protein subunits, G-protein coupled 

receptors and a non-tyrosine kinase Lck upon receptor stimulation suggest active 

regulation of de/re-palmitoylation52-55. Additionally, a broader level of control is 

suggested by  global changes in palmitoylomes that are associated with specific 

physiological states of the cell or organism11, 56. While it is clear that this lipid 

modification is regulated in vivo, the field is in its early days and little is known of how 

these changes in palmitoylation states occur and how they affect cellular function.

 Similar to how phosphorylation is regulated by protein kinases and phosphatases, 

it is conceivable that enzymes catalyzing the palmitoylation and depalmitoylation 

reactions are regulated. Here, I review the evidence for regulation of these enzymes and 
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the other mechanisms that modulate protein palmitoylation as well as what these mean in 

terms of cellular function.

Palmitoyl acyltransferases (PATs) 

A family of Asp-His-His-Cys-containing palmitoyl acyltransferases (DHHC-PATs) found 

in all eukaryotes examined is responsible for most protein palmitoylation events12. 

Discovered in Saccharomyces cerevisiae, AKR157 and ERF2-ERF458 are instrumental 

towards understanding the enzymology of protein palmitoylation. ERF2 requires an 

additional cofactor ERF4 for catalyzing palmitate transfer to its substrates58, as does its 

mammalian DHHC9 homolog59, while AKR1 exhibit  sufficient activity by itself like 

most other PATs. ERF2 and AKR1 are integral membrane proteins with 4 and 6 

transmembrane domains respectively, with the conserved DHHC domain that is required 

for catalytic activity facing the cytosol60 (Fig.1.6a). Demonstrated by two groups using 

ERF2-ERF4 and mammalian PATs, DHHC2 DHHC3 and DHHC9-GCP16, PATs catalyze 

palmitoylation via a two-step  ping-pong mechanism first involving autopalmitoylation of 

the enzyme followed by palmitoyl transfer to protein substrates61, 62. Although mutation 

of the conserved cysteine in the DHHC motif abrogates both autopalmitoylation and 

transfer57, 58, 61-63, there still lacks definitive evidence that it is the catalytic cysteine due to 

the current inability to isolate and identify the palmitoyl-enzyme intermediate. 
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Figure 1.6 | Structure  of PATs. a, PATs are integral membrane proteins with typically 4 or 6 
predicted transmembrane domains. The conserved DHHC motif required for catalytic activity is 
located on the cytoplasmic face. Adapted from Young et  al.64 b, Domain structures of 
representative human PATs. Besides a DHHC core domain, each DHHC protein has individual 
protein–protein-interacting domains such as a PDZ-binding motif, an SH3 domain and ankyrin 
repeats. Blue and green backgrounds show the DHHC2/15 and DHHC3/7 subfamilies, 
respectively. Adapted from Fukata et al.41
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PAT-substrate specificity

The multiple DHHC-containing PATs in an organism, ranging from a handful in 

unicellular fungi to more than twenty in metazoa, raise intriguing questions about 

substrate specificity and regulation.

 On one hand, most studies support the notion that specific PAT-substrate pairs are 

needed for palmitate transfer. A systematic screen of all 23 mammalian PATs by gain- and 

loss- of-function studies revealed that only a subset of PATs (DHHC2, 3 and 7) 

quantitatively increase palmitoylation of a model substrate PSD9565. Palmitoylome 

analysis of various PAT-deficient mutants in budding yeast provided clear evidence for 

PAT-substrate specificity with individual PATs showing a preference for substrates with 

common features12. For example, ERF2-ERF4 substrates tend to be heterolipidated (e.g. 

myristoylated or prenylated), SWF1 substrates tend to be transmembrane proteins and 

AKR1 preferentially modifies soluble hydrophilic proteins12. Evidence of specificity 

determinants on both substrates66 and enzymes67 further supports substrate specificity 

among members of the PAT family. Huang and co-workers demonstrated that transfer of 

the HIP14/DHHC17 ankyrin repeat domain to DHHC3 enabled it to modify huntingtin, a 

HIP14/DHHC17 substrate67, highlighting the importance and potential of domains 

outside the DHHC domain in regulating PAT-substrate specificity and function (Fig. 

1.6b).

 On the other hand, a recent study examining the kinetics of membrane association 

and partitioning of microinjected semisynthetic fluorescent lipopeptides suggested that 

protein palmitoylation was neither stereoselective nor sequence-specific and that 

substrate specificity was not required for dynamic palmitoylation in cells68. This is 
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supported by Hou and colleagues, who showed strong biochemical and functional overlap 

between the different PATs in budding yeast69. A potential concern for these studies is the 

use of non-physiological concentrations of substrates and/or enzymes, which may be 

accompanied by loss of PAT specificity. 

 Nonetheless, it is evident and consistent among the different studies that there is  

to a certain extent, biochemical and functional overlap between multiple PATs in 

organisms12, 65, 68, 69, which makes understanding their roles in regulating global protein 

palmitoylation and cellular physiology challenging.

Differential regulation of PATs

Physiological state-dependent changes in the palmitoylation of individual proteins and in 

palmitoylomes suggest mechanisms by which PATs “sense”  regulatory inputs and 

coordinate differential modification of its substrates. To date, there is little evidence for 

regulation of PATs and how it impacts protein palmitoylation as well as cellular function.

 Specific PATs were found to have different subcellular locations and tissue-

specific distribution70, 71, suggesting the possibility that PAT localization and expression 

levels may be important for cellular function. As the first documentation of differential 

PAT regulation, Noritake and colleagues showed in neurons that activity-sensitive 

DHHC2 translocation enhances PSD95 palmitoylation and synaptic receptor clustering51. 

Although how PAT localization is determined and altered in response to synaptic activity 

is unclear, such stimulus-specific compartmentalization of PAT function may be a general 

mechanism to regulate protein palmitoylation. Recent studies by the Chamberlain lab 
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identified sorting signals on several PATs that target these enzymes to defined membrane 

compartments as well as regulate PAT cycling between compartments72, 73.

 PATs may also be regulated by PTMs such as palmitoylation and ubiquitination18, 

74, 75. Interestingly, ubiquitination and subsequent proteasome-mediated degradation of 

DHHC5 were observed when cultured neural stem cells were induced to differentiate74. 

Nonetheless, it remains to be determined how induced PAT degradation affects substrate 

palmitoylation and impacts neuronal differentiation. From a bigger picture, are PATs 

modified by other PTMs and how do they regulate PAT function?

 Further supporting that PATs have distinct substrates and modulate specific 

physiological functions, misregulation and mutation of specific PATs in mammals are 

involved in different neurological and developmental defects as well as various cancers 

(Table 1.2). Given the importance of PAT-mediated palmitoylation in many biological 

systems, it  is important to elucidate mechanisms that control PAT activity  in 

physiologically relevant contexts.
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Table 1.2 | PATs involved in human diseasesTable 1.2 | PATs involved in human diseasesTable 1.2 | PATs involved in human diseasesTable 1.2 | PATs involved in human diseasesTable 1.2 | PATs involved in human diseases

Disease Model PAT Observations Reference

Neurological diseases Neurological diseases Neurological diseases Neurological diseases Neurological diseases 

Huntington 
disease (HD)

In vitro ZDHHC17
/HIP14

Weaker huntingtin (HTT)–HIP14 interaction and 
reduced palmitoylation in presence of disease-
causing mutation in HTT.

Singaraja et al190

Huang et al.209

Huntington 
disease (HD)

Mouse ZDHHC17
/HIP14

Reduced HTT palmitoylation in mouse model of 
HD.

Yanai et al.50

Huntington 
disease (HD) Mouse ZDHHC17

/HIP14
Phenotype in mice lacking HIP14 resembles mouse 
model of HD. Singaraja et al.208

Huntington 
disease (HD)

In vitro ZDHHC13
/HIP14L Reduced HTT palmitoylation in vitro. Saleem et al.191

Huntington 
disease (HD)

Mouse HIP14, 
HIP14L HTT modulates HIP14 and HIP14L activity. Huang et al.75

Alzheimerʼs In vitro ZDHHC12 DHHC12 is involved in amyloid protein precusor 
metabolism (including Aβ production). Mizumaru et al.192

Schizophrenia

Human DHHC8 Associated with patients with schizophrenia. Liu et al.207

Schizophrenia
Mouse ZDHHC8 Pre-pulse inhibition deficit in female knockout mice. Mukai et al.193

Schizophrenia

Mouse ZDHHC8
Defective neuron morphology and reduced dendrite 
spine density.
ZDHHC8 palmitoylates PSD95.

Mukai et al.206

X-linked mental 
retardation 
(XMLR)

Human DHHC9 Severe nonsyndromic XLMR, epileptic seizures, 
dysmorphic facial appearance. Raymond et al.194

X-linked mental 
retardation 
(XMLR) Human DHHC15 Moderate XLMR in males.

Developmental delay. Mansouri et al.205

Non-neurological developmental defectsNon-neurological developmental defectsNon-neurological developmental defectsNon-neurological developmental defectsNon-neurological developmental defects

Multiple defects Mouse ZDHHC13
/HIP14L

Knockout mice have shortened life spans, global 
amyloidosis, and hair, skin, and bone abnormalities. Saleem et al.191

Hair and skin 
defects Mouse ZDHHC21 Loss of ZDHHC21 function results in skin 

homeostasis and hair follicle differentiation.

Mayer et al.204

Mill et al.195

CancersCancersCancersCancersCancers

Various cancers 
and metastasis Human DHHC2

Potential tumor suppressor genes for various 
cancers are mapped to chromosomal region 8p22 
that contains the DHHC2 gene

Oyama et al.203

Qin et al.196

Bladder cancer Human DHHC11
Increased copy number of chromosome region 
containing DHHC11 gene in bladder cancers with 
high malignant potential.

Yamamoto et al.202
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Table 1.2 continued | Table 1.2 continued | Table 1.2 continued | Table 1.2 continued | Table 1.2 continued | 

Disease Model PAT Observations Reference

Non-small lung 
cancer Human DHHC11

Increased copy number of chromosome region 
containing DHHC11 gene in non-small cell lung 
cancers.

Kang et al.198

Colorectal 
cancer Human DHHC9

DHHC9 transcript is upregulated in the majority of 
microsatellite stable colorectal tumors but not in 
other common cancers.

Mansilla et al.201

Cellular 
transformation

Murine
cell line

Human

DHHC20

DHHC20 overexpression induces cellular 
transformation.

Overexpressed in several human tumors (ovarian, 
breast and prostate)

Draper et al.199

Cellular 
transformation

Murine 
cell line

ZDHHC17
/HIP14

HIP14 overexpression induces cellular 
transformation. Ducker et al.200

Depalmitoylating enzymes/ protein thioesterases

In contrast to the large PAT family, few protein thioesterases with depalmitoylating 

activity have been identified and they are relatively uncharacterized. Biochemical efforts 

to purify depalmitoylating enzymes have yielded lysosomal palmitoyl protein 

thioesterase 1 (PPT1) and cytosolic acyl protein thioesterase 1 (APT1), both of which can 

depalmitoylated proteins in vitro76-78. 

 PPT1, a lysosomal protein is responsible for degrading palmitoylated proteins, is 

thought to be topologically incompatible with depalmitoylating cytoplasmic proteins79. 

Nonetheless, recent studies show that PPT1 is also found in presynaptic compartments in 

neurons and that it may play a role in synaptic vesicle cycling80, 81.

 Consistent with its ability to depalmitoylate Hras and Gαi in vitro77, APT1 

overexpression promoted depalmitoylation of Gαs and eNOS in mammalian cultured 

cells82 and disruption of APT1 function in budding yeast resulted in decreased palmitate 

turnover on GPA1, the yeast Gα homolog78. Treatment of cells with an inhibitor 
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(Palmostatin B) designed to target APT1, an α/β serine hydrolase with a canonical serine/

histidine/aspartate catalytic triad83, 84, increased steady state Ras palmitoylation and 

cellular redistribution of Ras proteins84. While this study provides the first evidence that 

Ras is a substrate of APT1 in cells, it is possible that this is due to off-target effects of 

Palmostatin B on other similar serine hydolases and protein thioesterases including PPT1 

and APT283, which has been shown to deacylate GAP43 in cells85. Recently, APT1 was 

implicated in neuronal morphogenesis when it was found to be a target of a neuronal 

enriched microRNA, miR13886. Down-regulation of APT1 function was associated with 

increased association of Gα13 with the membrane and higher dendritic spine volume86. It 

would be interesting to see if other palmitoylated proteins in neurons41 are actually  APT1 

substrates and if they contribute to neuron morphogenesis and activity.

 Given the limited number of APT1 substrates that  are validated in vivo compared 

to diverse proteins that undergo regulated palmitate turnover14, it  remains to be 

determined if PPT1, APT1 and their related isoforms are the main deacylating enzymes 

or if there are potentially more enzymes to be uncovered. As with discovery of the PATs, 

identification of the thioesterases would allow perturbation of the palmitoylation/

depalmitoylation cycle and yield insights into the regulation and physiological function 

of dynamic palmitoylation.

20



Accessibility of modification sites

Protein palmitoylation can be modulated by  mechanisms that influence the accessibility 

of substrates or modification sites to the palmitoylation or depalmitoylation enzymatic 

machinery. An example is the promotion of Ras depalmitoylation by  prolyl isomerase 

FKBP1287 (Fig. 1.7). Ahearn and co-workers showed that  FKBP12 binds to Hras in a 

palmitoylation-dependent manner and regulates its trafficking by  promoting 

depalmitoylation through cis-trans isomerization of a peptidyl-prolyl bond close to 

palmitoylated cysteines. Inhibition of FKBP12 prolyl isomerase activity by a variety of 

chemical inhibitors such as FK506, rapamycin and cycloheximide increases Hras steady 

state palmitoylation87. While only proteins with proline residues close to palmitoylation 

sites can potentially be regulated by this mechanism, it is conceivable that any changes in 

protein conformation that influence the accessibility of the modification sites, can affect 

the palmitoylation/depalmitoylation cycle.

Figure 1.7 | Controlling depalmitoylation by altering the 
accessibility of modification sites. FKBP12 binds Hras and 

promotes its depalmitoylation by cis-trans isomerization of a 

peptidyl-prolyl bond in proximity to the palmitoylated 

cysteines.
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Substrate accessibility can also be modulated by crosstalk between different PTMs. 

Negatively-charged phosphate groups may prevent palmitoylation of an adjacent cysteine 

by preventing association with membranes, where PATs are localized (Fig 1.8a, 1). In a 

reciprocal manner, one would also expect palmitoylation to prevent phosphorylation by 

blocking access of kinases to nearby serine, threonine or tyrosine residues88-91 (Fig. 1.8a, 

2). Nitrosylation competes with the PATs for modification sites (Fig. 1.8b). PSD95 is 

physiologically  nitrosylated at the same cysteines that are palmitoylated and 

physiologically produced nitric oxide (NO) inhibits PSD95 palmitoylation and synaptic 

clustering in vivo, demonstrating direct  competition between these cysteine 

modifications40. Since NO is an established modulator of many biological processes 

including synaptic transmission92, dynamic reciprocity  between nitrosylation and 

palmitoylation may explain how synaptic activity regulates PSD95 palmitoylation as well 

as synaptic clustering and activity. Further examination of palmitoylated substrates for 

competing cysteine modifications (e.g. nitrosylation and sulfhydration) would help 

determine if this is a general mechanism for regulating protein palmitoylation.
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Figure 1.8 |  Interplay between palmitoylation and other PTMs. a, Proximity-dependent 
reciprocal regulation between phosphorylation and palmitoylation. (1) Negatively-charged 
phosphate group (P, yellow circle) prevents palmitoylation of an adjacent cysteine (Cys, red) by 
blocking membrane interaction. (2) Palmitoylation-mediated membrane association prevents 
access of protein kinases to an adjacent  phosphorylation site. b, Direct  competition for 
modification sites. (1) Nitrosylation (NO (nitric oxide, orange circle) may prevent  palmitoylation 
by direct  competition for cysteine residues (Cys, red) and vice versa. Nitrosylation may deplete 
the pool of depalmitoylated substrates available for repalmitoylation. Other cysteine 
modifications may have similar regulatory effects. Note that these examples are not mutually 
exclusive, nor do they illustrate the full range of effects that these PTMs have on each other.

While it  is clear that  protein palmitoylation is important for protein function and 

is regulated in vivo, the identity and physiological roles of mechanisms that regulate 

palmitoylation is limited. In this thesis, I describe the development of chemical tools that 

improves the detection and identification of dynamically  palmitoylated proteins, present 

the fission yeast Schizosaccharomyces pombe as a new model organism useful for PAT 

studies and demonstrate a physiologically  important mechanism for regulating protein 

palmitoylation.

23



CHAPTER 2

BIOORTHOGONAL DETECTION OF PROTEIN FATTY-ACYLATION 

IN MAMMALIAN CELLS

Introduction

Many cellular proteins are covalently modified by lipids, the addition and removal of 

which regulates diverse biological processes ranging from cellular growth and 

differentiation to lymphocyte activation and synaptic transmission. In eukaryotes, fatty 

acids, isoprenoids and glycosylphosphatidylinositols constitute the three prevalent forms 

of lipid modifications. In this chapter, I will be focusing on the two major forms of 

protein fatty-acylation, S-palmitoylation and N-myristoylation, which are characterized 

by the chain length of the acyl group attached to proteins (Table 2.1).

 S-Palmitoylation, also known as S-acylation, is the only characterized reversible 

lipid modification that takes place on the thiol side chains of cysteine residues post-

translationally  via a thioester linkage1. Although it typically involves attachment of a 

saturated 16-carbon palmitate to proteins, incorporation of longer fatty  acids with 

different degrees of unsaturation have been reported3-5. Unlike N-myristoylation, there is 

no unique consensus palmitoylation motif, making it  difficult to accurately predict 

palmitoylated proteins and modification sites. The functional role of palmitoylation in 

physiology and disease is covered in Chapter 1.
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Table 2.1 | N-Myristyolation and S-palmitoylation are two major forms of protein  fatty-
acylation in eukaryotes.
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Myristoylation is the irreversible attachment of a saturated 14-carbon myristate to N-

terminal glycine resides of proteins that is mediated by  N-myristoyltransferases 

(NMTs)93. Although myristoylation predominantly occurs during protein translation, it 

can occur post-translationally  on N-terminal glycine residues revealed by proteolytic 

cleavage of protein substrates94. Studies indicate that myristoylation promotes weak 

transient protein-membrane associations that would be further stabilized by a second 

signal such as palmitoylation23. In addition to being an essential modification95, 96, protein 

myristoylation has been implicated in infectious and neurological diseases as well as 

various cancers97. This is exemplified by  different classes of myristoyl switch proteins, of 

which conformation changes modulates accessibility  of the myristate group and thus their 

interactions with the membranes and other proteins98-102. 

 Given the critical role of fatty-acylation in modulating protein behavior, the 

ability  to detect, characterize and probe their involvement in cellular function is 

important. Traditional autoradiographic detection of radioactive (3H or 14C) fatty  acids 

that are metabolically  incorporated into proteins, while effective, requires exposure times 

spanning days or weeks. Radioactive iodinated (I125)-fatty  acids improves detection time 

but are hazardous and not readily available103. These limitations are circumvented by two 

different approaches of visualizing fatty-acylated proteins using streptavidin 

immunoblotting (Fig. 2.1). First, the acyl-biotin exchange protocol (ABE) involves the 

covalent at tachment of biot in-HPDP (N-[6-(biot inamido)hexyl]-3 ′-(2′-

pyridyldithio)propionamide) to free thiols on proteins that are liberated by hydroxylamine 

cleavage of thioester-linked palmitate groups104 (Fig. 2.1a). The combination of ABE 
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with mass spectrometry-based proteomics using multidimensional protein identification 

technology to yeast and neurons has revealed many new S-palmitoylated proteins in 

eukaryotes11, 12. However, this approach is limited to S-acylated proteins since the amide 

linkages of myristoylated proteins are resistant to hydroxylamine1. Furthermore, it is 

limited to the analysis of steady state palmitoylation. Developed by my research advisor, 

Dr. Howard Hang, the second approach allows visualization of both myristoylated and 

palmitoylated proteins. This bipartite labeling approach involving metabolic 

incorporation of azide-functionalized fatty acids followed by selective addition of 

phosphine-biotin probes via Staudinger ligation105 (Fig. 2.1b). While these 

complementary  approaches offer rapid and convenient detection of fatty-acylation, 

immunoblotting methods are not ideal for analyzing quantitative changes in protein fatty-

acylation necessary for investigating dynamics or regulatory mechanisms.

Figure 2.1 | Non-radioactive immunoblot detection of fatty-acylated proteins in eukaryotes. 
a, Acyl-biotin exchange. b, Metabolic labeling and Staudinger ligation.
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 I initiated this thesis by developing bioorthogonal methods for improved 

fluorescent detection of endogenously expressed fatty-acylated proteins in mammalian 

cells. Through comparative analysis of substrates representing different classes of fatty-

acylated proteins, I demonstrated the fatty acid chemical reporters are indeed taken up by 

cells and specifically  incorporated into proteins at canonical modification sites via native 

linkages. Furthermore, I showed that alkynyl-fatty  acid chemical reporters, in 

combination with in-gel fluorescence scanning, provide superior and quantitative 

detection of fatty-acylated proteins. Finally, Dr. Lun Tsou and I developed a tandem 

labeling and detection method to simultaneously monitor dynamic palmitoylation and 

protein turnover. The sensitivity  and efficiency of this approach should facilitate the 

functional characterization of cellular factors and drugs that modulate palmitoylation 

dynamics.
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Results

Bioorthogonal detection of protein fatty-acylation in mammalian cells

Advances in bioorthogonal labeling methods employing copper(I)-catalyzed Huisgen [3 

+ 2] cycloaddition (CuAAC) or “click chemistry” reaction between alkyl azides and 

alkynes (Fig. 2.2b) offered an opportunity to improve the analysis of fatty-acylated 

proteins using chemical reporters. To that end, a fellow graduate student in the lab, 

Guillaume Charron, synthesized a series of azido- and alkynyl-fatty acids of different 

lengths (Fig. 2.2c) as potential chemical reporters as well as a panel of biotinylated (alk-

biotin, az-biotin) and fluorescent (alk-rho, az-rho) detection tags (Fig. 2.2d). Together 

with another graduate student  in the lab, John Wilson, we optimized bioorthogonal 

reaction conditions and showed that fluorescence detection of fatty-acylated proteins in 

whole cell lysates using alkynyl chemical reporters is more sensitive compared to 

radioactive and immunoblot detection methods described previously. 

 Analysis of protein fatty-acylation at the proteome level, while important, is 

biased towards highly abundant proteins in cells where the dynamic range of protein 

concentrations can span more than seven orders of magnitude106-108. By immunopurifying 

proteins of interest prior to CuAAC (Fig. 2.2a), I was able to detect chemical reporter 

incorporation into substrates representing different classes of fatty-acylated proteins: S-

palmitoylated Linker for Activation of T-cells (LAT)31, N-myristoylated and S-

palmitoylated Lck109, 110, as well as S-palmitoylated and S-prenylated Ras2, 20, 21 (Fig. 2.3). 

Fluorescence at the expected molecular weight of each substrate was only observed in 

samples that were metabolically labeled with the fatty acid chemical reporters (Fig 2.3b).
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Figure 2.2 | Analysis of protein fatty-acylation with chemical  reporters. a, Metabolic labeling 
of mammalian cells with chemical reporters and bioorthogonal labeling of proteins. b, Copper(I)-
catalyzed Huisgen [3 + 2] cycloaddition or “click chemistry” enables selective covalent 
attachment of detection tags to azido or alkynyl substrates. c, Fatty acid chemical reporters. d, 
Clickable detection tags. 

 As a first indication of the specificity of these fatty-acylation chemical reporters, 

no fluorescent signal was observed for p53, a non-acylated protein (Fig. 2.3b). This 

approach allows analysis of less abundant proteins and focused studies of individual 

proteins of interest, detection of which may not be readily apparent at the lysate level.
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Figure 2.3 | Robust fluorescent detection of fatty-acylated proteins. a, Schematic 
representation of lipidation sites for LAT (S-palmitoyl-Cys26, S-palmitoyl-Cys29), Lck (N-
myristoyl-Gly2, S-palmitoyl-Cys3, S-palmitoyl-Cys5) and H-Ras (S-palmitoyl-Cys181, S-
palmitoyl-Cys184, S-prenyl-Cys186), which represent  different  classes of fatty-acylated proteins.  
b, In-gel fluorescent detection of fatty-acylated proteins in lysates and of immunopurified 
proteins. p53, non-fatty-acylated protein. 

Fatty acid chemical reporters exhibit chain-length dependent labeling of N-

myristoylated and S-palmitoylated proteins

The ability to assess chemical reporter incorporation into individual proteins allows 

evaluation of different detection methods and specificity  of the chemical reporters. For 

these studies, Jurkat cells were metabolically labeled with azido- or alkynyl- fatty acids 

and their incorporation into LAT, Lck and Ras was detected using biotinylated or 

fluorescent detection tags. Fluorescent detection of immunopurified fatty-acylated 

proteins was markedly improved compared to detection by streptavidin blotting (Fig. 

2.4). Longer palmititc acid analogues (az-15, alk-16), which should be incorporated into 

all three S-acylated proteins, was nearly undetectable by streptavidin blotting (Fig. 2.4a) 

but robustly visualized by in gel fluorescence scanning (Fig. 2.4b). Shorter myristic acid 
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analogues (az-12, alk-12), which should label N-myristoylated proteins, are preferentially 

incorporated into Lck and to a lesser extent into LAT and Ras by fluorescence (Fig. 2.4b). 

This is not unexpected since S-acylation involves a heterogenous composition of fatty 

acids3-5.

 It is unclear why  detection of S-acylated proteins is more efficient with myristic 

acid compared to palmitic acid analogues by streptavidin blotting. It is possible that az-12 

or alk-12 labeled proteins transfer more efficiently from the gel to the membrane and are 

thus better detected by  streptavidin blot than the more hydrophobic az-15 or alk-16 

proteins. Variability  in protein transfer efficiency would be circumvented by direct in-gel 

fluorescent detection, which is the more consistent and reproducible detection method 

over the multiple repeats of this experiment (data not shown). Notably, the orientation of 

alkyne and azide functional groups also influence overall detection sensitivity, with the 

alkynyl-chemical probes giving higher signal-to-noise compared to their azide 

counterparts (Fig. 2.4b). This is consistent with studies using alkyne- or azide-

functionalized chemical probes111, 112. Overall, these experiments demonstrate that 

alkynyl-fatty acid chemical reporters, in combination with in-gel fluorescence detection, 

afford optimal detection of fatty-acylated proteins.
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Figure 2.4 | Alkynyl chemical reporters, in conjunction with in-gel fluorescence  scanning, 
affords optimal detection of fatty-acylated proteins. a, Comparative analysis of click 
chemistry orientation with LAT, Lck and Ras by streptavidin blotting and b, in gel-fluorescence 
scanning. *non-specific bands.

Fatty acid chemical reporters are incorporated into proteins at canonical modification 

sites via native linkages

In-gel hydroxylamine treatment of alkynyl-fatty acid-labeled Lck and LAT reduced the 

fluorescent signal derived from alk-16 on both proteins, but  did not alter the alk-12 

labeling of Lck (Fig. 2.5a). We also analyzed the specificity of our fatty acid chemical 

reporters with wild-type and mutant constructs of p59 Fyn113, a well-characterized N-

myristoylated and S-palmitoylated Src-family  kinase, by  overexpression in HeLa cells, 

metabolic labeling and immunoprecipitation (Fig. 2.5b, c). Fatty-acylation of wild-type 

Fyn is readily detected with alk-12 and alk-16 labeling, whereas the N-myristoylation 

G2A mutant exhibited significantly reduced alk-12 labeling and was undetectable with 

alk-16. The dual S-palmitoylation-deficient C3,6S mutant was efficiently  labeled with 

alk-12 and not with alk-16. These results are quantitatively identical to previously 
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described experiments using radiolabeled fatty acids, which also demonstrated residual 

labeling of G2A mutant Fyn with a 125I-myristic acid analogue and no labeling with 125I-

palmitic acid analogue3, 113. These experiments also support the model that N-

myristoylation precedes S-palmitoylation and highlight the possibility of fatty-acylation 

at N-terminal alanine residues. Collectively, our experiments with cell lysates and 

specific proteins demonstrate that  alk-12 labels N-myristoylated and S-acylated proteins, 

whereas longer-chain fatty acid chemical reporters such as alk-16 preferentially  target S-

acylated proteins.

Figure 2.5 | Fatty acid chemical  reporters exhibit linkage  and residue specific labeling of 
proteins. a, Hydroxylamine sensitivity of alkynyl-fatty acid Lck and LAT labeling in Jurkat cells. 
Shown are fluorescence scans of the same gel before and after hydroxylamine treatment. b, 
Schematic representation of lipidation sites of Fyn (N-myristoyl-Gly2, S-palmitoyl-Cys3, S-
palmitoyl-Cys6). c, Comparative analysis of the acylation states of wild type (WT), G2A mutant 
and C3,6S mutant Fyn in HeLa cells.
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Tandem fluorescence imaging of two different protein modifications 

An opportunity to visualize two distinct  chemical reporters in the same sample arose 

when Dr. Tsou developed a set of clickable fluorescent detection tags (az/alk-Cyfur) with 

near-IR photophysical properties that are orthogonal to the rhodamine detection tags114. 

The following studies were done in close collaboration with Dr. Tsou.

Figure 2.6 | Tandem orthogonal  imaging of two different protein modifications. a, Following 
metabolic labeling with two chemical reporters, immunopurification and sequential click 
chemistry reactions with orthogonal detection tags allow simultaneous visualization of two 
protein modifications. b, Fatty acid chemical reporters and clickable fluorescent detection tags. c, 
Tandem detection of az-12 and alk-16 on Lck using alk-Cyfur and az-rho respectively. Western 
blot is probed for Lck. Lower panels are fluorescence scans of the same gel after hydroxylamine 
treatment. *, non-specific bands.
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To explore the simultaneous metabolic labeling and detection of two distinct chemical 

reporters, we focused on Lck, an N-myristoylated and S-palmitoylated non-receptor 

tyrosine kinase required for T-cell activation110, 115, 116 and exploited the chain-length 

specificity between different fatty  acid chemical reporters (Fig. 2.5a). Lck was 

immunopurified from Jurkat T-cells that were metabolically  labeled with either one or 

both of the myristate (az-12/alk-12) and palmitate (az-15/alk-16) analogs and subjected to 

sequential on-bead CuAAC reactions with az-rho and alk-Cyfur (Fig. 2.6a, b). Washes 

after the first reaction removes excess reagents that  could quench the second CuAAC 

reaction. Orthogonal visualization of the two chemical reporters was achieved with in-gel 

fluorescence scanning. At 532 nm excitation/580 nm emission, az-rho signal was 

observed for samples labeled with alkynyl-fatty  acid reporters (alk-12 and alk-16), while 

alk-Cyfur fluorescence at 633 nm excitation/670 nm emission was only detected in with 

samples exposed to azido-fatty acid reporters (az-12 and az-15) (Fig. 2.6c, upper panel). 

Consistent with the differential biochemical reactivity of thioester and amide linkages1, 

in-gel hydroxylamine treatment selectively  diminished fluorescence associated with 

thioester-linked palmitate analogs (az-15/alk-16) compared to amide-linked myristate 

analogs (az-12/alk-12) (Fig. 2.6c, lower panel). These results demonstrate that both sets 

of fatty  acid chemical reporters are specifically incorporated by N-myristoylation and S-

palmitoylation cellular machinery  through native chemical linkages. For the first time, we 

show sensitive fluorescent detection of dually-modified proteins using two distinct 

chemical reporters in parallel. Our tandem imaging method is complementary to copper-
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mediated and copper-free click chemistry  strategies that have been used for time-resolved 

imaging of single biosynthetic pathways117-120.

Measuring palmitate turnover on proteins using tandem fluorescence imaging

Next, we determined if we can measure palmitate cycling on proteins by  using the 

tandem imaging method to orthogonally monitor palmitoylation and protein synthesis52. 

Traditionally, palmitoylation turnover rates are obtained from pulse chase studies using 

3H-palmitate and 35S-methionine, with limitations associated with autoradiographic 

detection. To monitor palmitate cycling with fluorescence, we envisioned a pulse-chase 

experiment employing distinct chemical reporters with orthogonal readouts (Fig. 2.7a) – 

one to monitor dynamic palmitoylation and the other to function as an internal control for 

protein turnover. Since myristoylation is primarily a co-translational and constitutive 

modification1, a myristate analog should function as an efficient chemical reporter for the 

amount and loading of myristoylated proteins.

 We first evaluated whether incorporation of alk-16 into S-acylated proteins is 

reversible in cells. Lck was immunopurified from Jurkat cells that were pulse-labeled 

with az-12 and alk-16 followed by a 10-fold excess palmitate chase for different lengths 

of time (Fig. 2.7a). Compared to the relatively  constant signal of az-12 labeling of Lck, 

the fluorescent signal from alk-16 labeling decayed over time (Fig. 2.7b-d). No decrease 

of az-12 signal was observed with excess myristate as the chase additive over 6 hours 

(Fig. 2.8a), demonstrating that az-12 is an effective chemical reporter of constitutive N-

myristoylation and protein loading. If alk-16 is efficiently  recognized by cellular 
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thioesterases, we expect the calculated palmitate half-life on Lck using our method to 

agree with that of a previously reported pulse-chase study using 3H-palmitate and 35S-

methionine109.

Figure 2.7 | Measuring palmitate  turnover on Lck using the tandem imaging method. a, 
Scheme of pulse-chase experiment. b, Pulse-Chase analysis of Lck. c, Data from multiple chase 
experiments (n=10). Data points from the same chase times, after normalizing alk-16/az-12 
signals, were compiled and displayed as average values ± s.e.m. d, Plots of relative signals for 
alk-16, az-12 fluorescence and anti-Lck blot intensities in the pulse-chase experiments. 
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Figure 2.8 |  Pulse-Chase  controls. a, In-gel fluorescence scanning in the alk-Cyfur channel 
shows no significant  turnover of az-12 on Lck upon chasing in the presence of excess myristate.  
b, The range of in-gel fluorescence intensities is linear compared to the amount of labeled 
substrate.

After confirming our fluorescence measurements are in the linear range (Fig. 

2.8b) and normalizing alk-16 to az-12 fluorescent signals, our calculated palmitate half-

life on Lck is ~50 minutes (Fig. 2.7c), which is comparable to that reported by Paige et. 

al. under similar experimental conditions109. Parallel analysis of another fatty-acylated 

kinase, Fyn110, 113, from the same lysates confirmed dual and specific labeling with the 

fatty acid reporters. The calculated palmitate turnover rate of Fyn is longer than Lck (Fig. 

2.9) and is consistent with the reported estimate of 1.5-2 hours121. These results 

demonstrate that the fatty  acid reporters and our tandem imaging method can be used to 

efficiently and accurately evaluate S-palmitoylation turnover on endogenously expressed 

proteins.
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Figure 2.9 | Pulse-Chase analysis  of Fyn. Data 
from a single pulse-chase experiment after 
normalizing alk-16/az-12 signals relative to that  of 
Lck.

Pevandate stimulation accelerates palmitate 

cycling on Lck 

Since receptor stimulation has been shown to 

increase palmitate turnover on various proteins including G-protein subunits and G-

protein coupled receptors53-55 and palmitoylation of Lck is crucial for T-cell activation38, 

122, 123, we asked whether T-cell activation affects palmitate cycling on Lck. We utilized 

pervandate (PV), a phosphatase inhibitor, since it has been shown to trigger an activation 

response similar to that  of TCR cross-linking124. Anti-phosphotyrosine immunoblots 

revealed substantial increase in protein phosphorylation upon PV-treatment (Fig. 2.10) 

and mobility  shift of Lck due to phosphorylation was also evident from anti-Lck blots 

and in-gel fluorescence scans (Fig. 2.10). 

Figure 2.10 | Pervanadate  stimulation of Jurkat T-cells increases protein  phosphorylation 
and alters Lck electrophoretic mobility. Analysis of phosphoproteins and Lck electrophoretic 
mobility in cells with or without pervanadate (PV) treatment. IPCC, immunoprecipitation-click 
chemistry.
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 PV treatment resulted in 2-3 fold increase in palmitate cycling on Lck (t1/2 ~15 

min) that was reproduced over several experiments (n = 7) (Fig. 2.11a), suggesting T-cell 

activation increases dynamic palmitoylation of Lck. The increase in alk-16 signal at later 

time points suggest recycling of alk-16 from cellular palmitoyl-CoA pools, which has 

been attributed to the discrepancy of palmitate half-life measurements obtained in pulse 

chase experiments and imaging studies. Palmitate half-life measurements based on pulse-

chase experiments are in the order of minutes or hours and are often inconsistent with 

rapid physiological responses that can occur on the seconds time scale. Photo-activation/

bleaching of palmitoylated proteins fused to fluorescent proteins estimate protein-bound 

palmitate to turnover in milliseconds or seconds22, 24, but these experiments only  measure 

the protein trafficking and do not the directly evaluate the lipidation state of the protein. 

 We initially performed 2 hr pulses of the az-12 and alk-16 chemical reporters to 

compare our results with reported 3H-palmitate pulse-chase studies109. To address the 

effects presented by recycling analog pools, we repeated the experiments with a shorter 

pulse time (30 min) prior to chasing with excess palmitate, which has been demonstrated 

to minimize recycling of substrates in pulse-chase studies125. The absolute fluorescence 

intensities observed for both az-12 and alk-16 were lower overall but they remained in 

the linear range. Consistent with less recycling of alk-16, shorter pulses yielded a faster 

palmitate half-life of ~30 min on Lck compared to the ~50 min obtained with longer 2 hr 

pulses and the normalized alk-16 signal plateaus at a lower level with shorter pulses (Fig. 

2.11b). The increase in palmitate turnover on Lck upon PV stimulation, however, persists 

with shorter pulse times with an estimated half-life of <5 min (Fig. 2.11c). Notably for 
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PV-treated cells, recovery  of alk-16 signal was observed even with a shorter pulse time, 

which can be attributed to the rapid recycling of alk-16. These results demonstrate our 

tandem imaging method can reveal rapid rates of palmitate cycling on proteins that are 

closer to values obtained using fluorescence microscopy and that T-cell stimulation with 

PV accelerates palmitate cycling on Lck.

Figure 2.11 | Pervanadate  stimulation  of Jurkat cells accelerates palmitate  cycling on Lck. a, 
Pulse-chase analysis of Lck in the presence of 0.1 mM pervanadate (PV). PV activation data from 
multiple pulse-chase experiments (n = 7). Data points from the same chase times, after 
normalizing alk-16/az-12 signals, were compiled and displayed as average values ± s.e.m. (Inset). 
b, Pulse-chase analysis of Lck upon PV treatment with a shorter pulse time. c, PV activation data 
averaged from two pulse-chase experiments with a shorter pulse time.
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Pharmacological perturbation of Lck palmitate cycling

Efforts to identify enzymes that can depalmitoylate proteins have revealed APT1 and 

PPT1 as candidates76-78. Since both enzymes are predicted to be serine hydrolases based 

on sequence homology  and structure studies, we investigated the effect of a broad-

spectrum serine hydrolase inhibitor on Lck depalmitoylation. Addition of methyl 

arachidonyl fluorophosphonate (MAFP) during the chase significantly retarded palmitate 

turnover on Lck (Fig. 2.12a), suggesting that serine hydrolases that are sensitive towards 

the reactive fluorophosphonate group of MAFP may contribute to Lck depalmitoylation 

in T-cells. In contrast, incubation with another broad-spectrum serine hydrolase inhibitor, 

phenylmethylsulfonyl fluoride (PMSF) had no apparent effect on the initial rate of 

palmitate removal (Fig. 2.12b). Structural studies suggest  that  the bulky aromatic group 

of PMSF sterically hinders its binding to the active site of lipid serine hydrolases such as 

PPT1126. Since PPT1 resides in lysosomal compartments that are not topologically 

compatible with cytosolic depalmitoylation reactions79, and APT1 depalmitoylation 

activity has only been demonstrated for limited substrates, enzyme(s) that deacylate Lck 

in cells remain unclear. Nonetheless, our results with mechanism-based inhibitors suggest 

that serine hydrolases with active sites similar to that of PPT1 may contribute to the 

observed thioesterase activity on Lck.
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Figure 2.12 | Pharmacological  perturbation of palmitate turnover on Lck. a, Pulse-chase 
analysis of Lck in the presence of chemical inhibitors. Data from multiple pulse-chase 
experiments (n = 2). Data points from the same chase times, after normalizing alk-16/az-12 
signals, were compiled and displayed as average values ± s.e.m. b, Pulse-chase analysis of Lck in 
the presence of PMSF. Data from pulse-chase experiment after normalizing alk-16/az-12 signals 
compared to chase conditions without chemical inhibitors.

 We also assessed the effect of 2-bromopalmitate (2BP), a PAT inhibitor commonly 

used to block protein palmitoylation30, 127. Interestingly, 2BP also decreased Lck 

depalmitoylation rate (Fig. 2.12a). The actual targets of 2BP in cells are unknown and 

several enzymes have been suggested to interact with 2BP128. It  is possible that 2BP, 

which harbors a reactive α -bromo-carboxyl functional group poised for nucleophilic 

attack, might also inhibit putative thioesterases. This raises concerns over the use of 2BP 

as a specific PAT inhibitor in cells and subsequent interpretation of the data. Collectively, 

these experiments demonstrate that such a dual detection method can be used to evaluate 

effects of chemical inhibitors on palmitate turnover. Development of more specific 
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inhibitors using this assay should facilitate discovery  and characterization of cellular 

factors that perturb palmitate turnover in cells.

Tandem imaging method can be generalized to include alternative chemical reporters

To evaluate the utility of our tandem imaging method beyond N-myristoylated proteins, 

we employed a general chemical reporter of protein synthesis. Azidohomoalanine (AHA, 

Fig. 2.13a), a well-described azide-bearing methionine surrogate shown to label newly 

synthesized proteins with no observed toxicity, is an attractive alternative129, 130. We used 

an HA-tagged H-RasG12V construct to analyze another class of S-palmitoylated proteins. 

In-gel fluorescence analysis of purified HA-tagged H-RasG12V expressed in HeLa cells 

that were metabolically labeled with alk-16 and AHA showed incorporation and 

orthogonal detection of both chemical reporters (Fig. 2.13b). 

 We then compared our tandem imaging pulse-chase data with reported radioactive 

studies of H-Ras variants131. Palmitate removal rates on oncogenic H-Ras isoforms have 

been experimentally shown to be ~1 hr131. Pulse-chase analysis revealed significantly 

faster chase kinetics for alk-16 than AHA, demonstrating dynamic S-palmitoylation and 

minimal turnover of H-RasG12V in the time points analyzed (Fig. 13b, c). The HA-tagged 

H-RasG12V construct appeared as doublets by Cyfur fluorescence and anti-HA western 

blot, but only the upper band is modified by alk-16 as observed with az-rho fluorescence, 

suggesting the slower migrating polypeptide is the lipid-modified isoform of H-RasG12V 

under these conditions. Average Cyfur fluorescence across both H-RasG12V isoforms was 

used for data normalization since both exhibited similar turnover rates. The palmitate 

45



half-life on H-RasG12V was calculated to be ~50 min using our tandem imaging method 

over several experiments (n = 5) (Fig. 2.13b). This is consistent with the reported 

experimental palmitate turnover rates of other oncogenic H-Ras variants131. Based upon 

these experimental rates of palmitate cycling and GTP-binding measurements, the 

calculated palmitate half-life of fully  GTP-bound H-Ras is less than 10 min. The 

combined use of alk-16 with AHA should enable tandem fluorescence imaging of 

palmitate turnover on any S-acylated protein. Given its modularity and the wide spectrum 

of chemical reporters currently available132, this tandem imaging approach can be readily 

adapted to study other dynamic protein modifications.
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Figure 2.13 | Use of a general  protein synthesis chemical  reporter extends the tandem 
imaging method beyond N-myristoylated proteins. a, Amino acid chemical reporter for protein 
synthesis. b, Tandem detection of AHA and alk-16 on H-RasG12V in transfected HeLa cells. 
Western blot  is probed for the N-terminal HA epitope on H-RasG12V. c, Pulse-Chase analysis of 
H-RasG12V with AHA and alk-16. Data from multiple pulse-chase experiments (n  = 5). Data 
points from the same chase times, after normalizing alk-16/AHA signals, were compiled and 
displayed as average values ± s.e.m. d, Plots of relative signals for alk-16, AHA fluorescence and 
anti-HA blot intensities in the pulse-pulse-chase experiments. 
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Summary and Discussion

In this chapter, we have expanded the chemical toolbox for monitoring two major forms 

of protein fatty-acylation, N-myristoylation and S-palmitoylation, in mammalian cells. 

First, we established that fatty  acid chemical reporters, combined with improved 

bioorthogonal labeling conditions using CuAAC, enables specific and sensitive 

fluorescent detection of protein myristoylation and palmitoylation. We further extended 

this approach to enable tandem fluorescent detection of two protein modifications on 

proteins of interest and showed that this tandem imaging method can be used to 

efficiently monitor dynamic protein palmitoylation in cells.

 I have shown that sensitivity of the bioorthogonal labeling approach enables 

robust detection of endogenously  expressed fatty-acylated proteins within minutes after 

gel electrophoresis compared to days or weeks with radioactive analogues. Furthermore, 

in-gel fluorescence detection of fatty-acylated proteins circumvents the need to transfer 

proteins onto membranes for immunoblotting, which can be problematic for hydrophobic 

polypeptides, and thus provides a more direct  and quantitative means to detect protein 

fatty-acylation as well as measure palmitoylation dynamics in cells. These significant 

improvements in the detection of protein fatty-acylation offer new opportunities to 

interrogate the functions and regulatory mechanisms of protein fatty-acylation, in 

physiology and disease.

 There are caveats to the bioorthogonal labeling approach described in this chapter. 

First, it is likely that the fatty  acid chemical reporters might be metabolized into longer or 

shorter fatty acids such as acetate and be non-specifically installed onto proteins. While 
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this is not evident from the fact that the myristate and palmitate analogs preferentially 

label myristoylated and palmitoylated proteins respectively  and do not label p53, an 

acetylated protein (see Fig. 2.4), crosstalk between different  fatty acid pools in the cell 

can be reduced by  minimizing metabolic labeling times. Second, most likely  due to low 

incorporation efficiency of the AHA methionine surrogate into proteins cells, we were 

unable to detect AHA labeling of endogenous proteins and detection was possible only 

upon overexpression. As a result, non-myristoylated proteins like H-Ras will have to be 

overexpressed for us to measure palmitate turnover rates using the tandem detection 

method (see Fig. 2.13). This problem may be circumvented by the use of other chemical 

reporters for protein synthesis that are more efficiently incorporated into proteins.

 Application of our new tools revealed accelerated palmitate cycling of Lck upon 

T-cell stimulation, which raises several interesting questions. Studies demonstrate that  

Lck palmitoylation is required for proper T-cell activation by targeting Lck to the plasma 

membrane and maintaining its lipid raft association122, 123. Nonetheless, the physiological 

consequences of increased palmitate cycling rate during cellular stimulation is unclear. 

Live cell imaging studies suggest that Lck is dynamically recruited and distributed to the 

periphery of immunological synapses during cellular activation33. It is therefore possible 

that increased palmitate turnover upon T-cell activation serves to limit the proportion of 

raft-associated Lck and its access to downstream substrates or activators. Notably, 

accelerated palmitate turnover upon cellular stimulation have also been observed for 

other proteins including G-protein coupled receptors and neuronal scaffold PSD9539, 53-55, 

although how palmitate cycling on these proteins is modulated to be determined. For Lck, 
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it is possible that protein thioesterase activity is stimulated by downstream effects of TCR 

signaling such as release of calcium from intracellular stores in the ER. Alternatively, 

activated and phosphorylated Lck may assume a conformational change favorable 

towards spontaneous or enzymatic deacylation. Since protein thioesterases with 

depalmitoylating activity towards Lck are yet to be identified, mechanistic insights into 

the regulation of activity-induced palmitate turnover remain elusive. 

 To understand basic control mechanisms of protein palmitoylation, I was 

motivated to use the genetically  amendable fission yeast as a model because of its 

relatively simple palmitoylation machinery compared to metazoans. This transition to 

fission yeast will be further developed in the next chapter.
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Materials and Methods

Cell culture growth. Jurkat (human T-cell lymphoma) cells were propagated in RMPI 

1640 supplemented with 10% fetal bovine serum, 100 U/mL penicillin and 100 µg/mL 

streptomycin in a humidified CO2 incubator at 37 ºC. Cell densities were maintained 

between 1 x 105 and 2 x 106 cells per mL. HeLa cells were cultured in DMEM, 

supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin with 100 µg/mL 

streptomycin and maintained in a humidified 37 °C incubator with 5% CO2. 

Transfection of wild type, G2A, C3,6S Fyn constructs and HA-tagged H-RasG12V. For 

transfection studies, HeLa cells were grown in a 10 cm culture plate supplemented with 

DMEM  containing 10% fetal bovine serum in a humidified CO2 incubator to 

approximately 90% confluence before transfection with 12-15 µ g of DNA using 

Lipofectamine 2000 (Invitrogen). The human Fyn constructs, wild-type and mutant Fyn 

cDNAs cloned into eukaryotic expression vector pCMV5 as well as N-terminal HA-

tagged H-RasG12V (PCNC10) construct were kindly  provided by Dr. Marilyn Resh 

(Memorial Sloan-Kettering Cancer Center). Cells were transfected about 16 hours prior 

to metabolic or pulse-chase labeling.

Metabolic labeling with fatty acid chemical reporters. Jurkat and HeLa cells were 

treated for 2 hours with 20 µM az-12, az-15, alk-12, alk-14 or alk-16 (50 mM DMSO 

stock solutions) using the corresponding media for the respective cell types in the 

humidified CO2 incubator at 37 ºC. The same volume of DMSO was used in the negative 
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control. Following metabolic labeling, cells were harvested, washed once with ice-cold 

PBS and pelleted at 1000 g for 5 min. Cells were directly lysed or flash frozen in liquid 

nitrogen and stored at -80 °C prior to lysis. No significant loss of signal was observed for 

frozen cell pellets.

Pulse-Chase labeling. Jurkat T-cells were labeled with 20 µM az-12 and 20 µM alk-16 in 

RMPI 1640 supplemented with 2% charcoal-filtered fetal bovine serum, 100 U/mL 

penicillin and 100 µg/mL streptomycin. For H-Ras studies, transfected HeLa cells were 

incubated with 1 mM  azidohomoalanine (AHA) and 20 µM  alk-16 in methonine-free 

DMEM  (Invitrogen) supplemented with 2% charcoal-filtered fetal bovine serum. The 

same volume of DMSO was used in the negative controls. After 2 hours or 30 minutes 

incubation, the labeled cells were chased with pre-warmed RMPI 1640 or DMEM 

containing 200 µM palmitate, 10% fetal bovine serum and/or 100 U/mL penicillin and 

100 µg/mL. 100 µM  2-bromopalmitate (2BP) (Fluka), 20 µM (MAFP) (Sigma) or 200 

µM phenylmethylsulfonyl fluoride (PMSF) were added to the chase medium to 

investigate the effects of small molecule inhibitors on palmitate turnover. To determine 

palmitate turnover upon T-cell activation, 100 mM  pervanadate, freshly prepared by 

dissolving sodium orthovanadate in 300 mM H2O2, was added to the chase medium for a 

final pervanadate concentration of 0.1 mM. Samples were taken at various time points 

during the chase, washed once with PBS and flash frozen in liquid nitrogen and stored at 

-80 ºC prior to lysis.
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Preparation of cell lysates. Frozen Jurkat or HeLa cell pellets were lysed in chilled Brij 

lysis buffer (1% Brij-97, 150 mM NaCl, 50 mM triethanolamine pH 7.4, 10× Roche 

EDTA-free protease inhibitor cocktail, 10 mM  PMSF) with vigorous vortexing (3 x 20 s), 

placing tubes on ice during intervals to avoid heating of samples. For analysis of protein 

phosphorylation after T-cell stimulation, 1:50 dilution of phosphatase inhibitor cocktail 2 

(Sigma) was included in the lysis buffer. Lysates were spun at 1,000 g for 5 minutes at 

room temperature to remove cellular debris. Typical lysate concentrations of 4-8 mg/ml 

were obtained, as quantified using the BCA assay (Pierce). 

Lysate CuAAC / click chemistry. Cell lysates (50 µg) in 44.5 µL RIPA lysis buffer were 

reacted with 5.5 µL freshly premixed click chemistry  reaction cocktail [azido- or alkynyl-

detection tag (100 µM, 5 mM  stock solution in DMSO), tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP) (1 mM, 50 mM freshly  prepared stock solution in deionized 

water), tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) (100 µM, 2 mM stock 

solution in 1:4 DMSO:t-butanol) and CuSO4·5H2O (1 mM, 50 mM  freshly  prepared stock 

solution in deionized water)] for a total reaction volume of 50 µL for 1 h at  room 

temperature. The reactions were terminated by the addition of ice-cold methanol (1 mL), 

placed at −80 °C overnight and centrifuged at  18000g for 10 min at 4 °C to precipitate 

proteins. The supernatant from the samples was discarded. The protein pellets were 

allowed to air-dry for 10 min, resuspended in 25 µL of SDS buffer (4% SDS, 50 mM 

triethanolamine pH 7.4, 150 mM NaCl). 8.7 µL 4×LDS sample buffer (Invitrogen) and 

1.3 µL 2-mercaptoethanol were then added and the samples were heated for 5 min at 95 
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°C; 20 µL of the sample was loaded per gel lane for separation by SDS-PAGE (4−20% 

Bio-Rad Criterion Tris-HCl gel).

Immunoprecipitation-CuAAC. LAT, Lck and Ras proteins were immunoprecipitated 

from 200 µg Jurkat cell lysate using the following antibodies at recommended 

concentrations: mouse anti-Lck (p56lck) monoclonal (Clone 3A5, Thermo Scientific), rat 

anti-v-H-ras (Ab-1) monoclonal (Y13-259 agarose conjugate, Calbiochem), and rabbit 

anti-LAT polyclonal (Upstate). A rabbit  anti-Fyn polyclonal (Upstate) was used to 

immunoprecipitate wild-type and mutant Fyn proteins HeLa cell lysates. Upon incubation 

at 4 °C for an hour with 25 µL of packed protein A-agarose beads (Roche) with an end-

over-end rotator (Barnstead/Thermolyne), the beads were washed three times with ice-

cold RIPA lysis buffer (1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 10 mM 

Tris pH 7.4, 150 mM NaCl). The beads were resuspended in 20 µL of resuspension buffer 

(4% SDS, 50 mM triethanolamine pH 7.4, 150 mM  NaCl) and 2.25 µL freshly premixed 

click chemistry reagents (same as above) were added. After 1 hour at room temperature, 

the reaction mixture was diluted with 8.7 µL 4× LDS sample buffer and 1.3 µL 2-

mercaptoethanol and separated by SDS-PAGE. A separate gel was loaded for Western 

blot analysis.

Sequential on-bead CuAAC. Lck and Fyn proteins were immunoprecipitated from 0.6-1 

mg of Jurkat cell lysate using antibodies described above. For HA-tagged H-RasG12V 

immunoprecipitation, 15 µL of anti-HA beads (Monoclonal anti-HA agarose conjugate, 
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clone HA-7) was added to 200-300 µg of HeLa cell lysates. After 2 hours incubation on a 

platform rocker at 4 °C, the beads were washed three times with 1 mL of ice-cold RIPA 

buffer. The beads were resuspended in 20 µL of PBS and 2.25 µL freshly premixed az-

rho click chemistry  reaction cocktail described above for a total approximate reaction 

volume of 25 µL for 1 hour at room temperature. The beads were washed three times with 

1mL of ice-cold RIPA buffer and resuspended in 20 µL of SDS buffer. For the second 

CuAAC reaction, 2.25 µL of freshly  premixed click chemistry reagents (alk-Cyfur in 

place of az-rho) were added. After 1 hour at room temperature, the reaction mixture was 

diluted with 8.7 µL 4× LDS sample buffer and 1.3 µL 2-mercaptoethanol, heated for 5 

min at 95 °C, and 20 µL was loaded per gel lane for separation by SDS-PAGE. A separate 

gel was loaded for Western blot analysis.

In-gel fluorescence scanning. Proteins separated by SDS-PAGE were visualized by 

incubating the gel in 40% methanol, 10% acetic acid for at least 1 hour and directly 

scanning it  on a GE healthcare Typhoon 9400 variable mode imager. Rhodamine-

associated signal was detected at excitation 532 nm/emission 580 nm while orthogonal 

detection of Cyfur-associated signal was achieved at excitation 633 nm/emission 670 nm. 

In-gel hydroxylamine treatment. After an initial fluorescence scan to determine 

pretreatment fluorescence, the gel was rinsed with deionized water and soaked in freshly 

prepared 1 M hydroxylamine (pH 7.4) for 2 hours at room temperature on a shaker. The 

gel was subsequently  rinsed with deionized water and incubated with shaking for 2 hours 
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in 40% methanol, 10% acetic acid at room temperature prior to scanning for post-

treatment fluorescence.

Western blots. Proteins separated by SDS-PAGE were transferred to nitrocellulose 

membranes (50 mM  Tris, 40 mM  glycine, 0.0375% SDS, 20% MeOH in deionized water, 

Bio-Rad Trans-Blot Semi-Dry Cell, 20 V, 40 min), which were blocked with 10% non-fat 

milk, 5% BSA, 0.1% Tween-20 in PBS (0.1% PBST) and washed with 0.1% PBST 

before incubation with appropriate antibodies. Membranes were incubated with a mouse 

anti-Lck (p56Lck) monoclonal (Clone 3A5, Invitrogen) followed by light chain-specific 

HRP-conjugated affiniPure goat anti-mouse secondary (Jackson Immunoresearch 

Laboratories) for anti-Lck blots. Likewise, anti-Fyn and anti-LAT blots were treated with 

mouse anti-Fyn monoclonal (S1, Chemicon) and mouse anti-LAT monclonal (2E9, 

Upstate) respectively and followed by goat anti-mouse HRP-conjugated secondary 

antibody (Upstate). Anti-HA blots were treated with rabbit anti-HA polyclonal 

(CloneTech) followed by  goat  anti-rabbit HRP-conjugated secondary antibody (Upstate). 

Anti-phosphotyrosine blots were blocked with 5% BSA, 0.1% PBST prior to incubation 

with HRP-conjugated anti-phosphotyrosine mouse monoclonal (PY99, Santa Cruz). Blots 

were developed using the enhanced chemiluminescent kit (GE Healthcare).
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Image processing and calculations. All images were processed and analyzed using the 

ImageJ software. A rectangular box was tightly selected around the band(s) of interest 

and average fluorescence intensity  at mid-length of the box was measured. Dimensions of 

the box were maintained within the same experiment. No event of signal saturation was 

observed in this study. Background signal from non-specific labeling was removed by 

subtracting measurements of the DMSO sample from each of the data points. The ratio of 

background-corrected alk-16 to az-12 associated fluorescent signals accounted for protein 

load and turnover at each time point of a pulse-chase analysis. To allow comparison 

between pulse-chase experiments, alk-16/az-12 values within each dataset were 

normalized such that alk-16/az-12=1 at T=0 hours, which was defined as the earliest  of 

three consecutive time points during which a decrease of alk-16/az-12 was initially 

observed. Since values obtained under some conditions tested did not form a straight line 

when plotted on a logarithmic scale, which was observed by others (50), data for each 

protein or chase condition was fitted to a two-phase exponential decay model using the 

KaleidaGraph graphing and data analysis software. The equation used was a biphasic 

exponential decay line m1*exp(-m2*m0)+m3*exp(-m4*m0), which starts at m1+m3 and 

decays with rate constants m2 and m4. The half-life of protein-bound palmitate (t1/2) was 

defined as the length time required for the normalized alk-16/az-12 signal to decrease 

halve if decay was to occur solely at the initial rate, which is ln(2)/m2 with m1=0.5.
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CHAPTER 3

RHEOSTATIC CONTROL OF PROTEIN PALMITOYLATION REGULATES 

MEIOTIC COMMITMENT IN FISSION YEAST

Introduction

With advancements in biochemical methods for the detection and identification of 

palmitoylated proteins, including those described in Chapter 2, it is evident that reversible 

protein palmitoylation is subjected to regulation in vivo at the level of individual proteins 

as well as the level of the palmitoylomes. Changes in the protein palmitoylation states 

and in the repertoire of modified proteins associated with different physiological states11, 

39, 54, 56 hint at the potential of this lipid modification to be a major cellular regulator akin 

to phosphorylation. Nonetheless, little is known of about how these changes are 

coordinated with physiological states and how they affect cellular function. 

 The family of DHHC-containing PATs is known to be responsible for most protein 

palmitoylation events and genes encoding PATs are found in all eukaryotes, ranging from 

a handful in unicellular fungi to more than twenty in metazoa (Fig. 3.1a, b). The multiple  

PATs in an organism raises intriguing questions about substrate specificity and regulation. 

Specific PATs were found to have different subcellular locations and tissue-specific 

distribution70, 71, suggesting the possibility that PATs play diverse roles in cells. 

Nonetheless, understanding their roles in regulating global palmitoylation and cellular 

physiology has been difficult due to extensive biochemical and functional overlap among 

multiple PATs12, 67-69.
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Figure 3.1 | Model  organisms used for PAT studies. a, Phylogenetic clustering of human and S. 

cerevisiae (Red) DHHC-containing PATs based on ClustalX alignment of the 51 amino acid 

DHHC core sequence. Six potential subfamilies (I-VI) are indicated by brackets. Adapted from  

Mitchell et  al.133 b, Model organisms used in PAT studies and the number of DHHC-containing 

PATs encoded in each genome. Blue: S. pombe PATs have not been studied.

 I chose to work in the fission yeast Schizosaccharomyces pombe because of its 

simple palmitoylation machinery compared to other model organisms that are 

traditionally  used in PAT studies (Fig. 3.1b). Like the budding yeast Saccharomyces 

cerevisiae, S. pombe is genetically amendable and has proven to be a useful model for 

fundamental principles and mechanisms such as cell cycle control, genome organization 

and signal transduction. Although studies of S. pombe PATs have not been reported, its 

simple PAT network should facilitate the functional dissection of individual PATs. A study 
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on compartmentalized Ras signaling provided further motivation to move into fission 

yeast. Onken et al. showed that the only  Ras protein in S. pombe, Ras1, controls cell 

morphology  and mating depending on its subcellular location, which in turn depends on 

its palmitoylation state28. The combination of a simple PAT network and a highly 

conserved protein substrate with distinct palmitoylation-dependent outputs that are easily 

scored make S. pombe an attractive model to study  basic control mechanisms of protein 

palmitoylation. 

 In this chapter, I showed that the chemical tools that we have previously 

developed in mammalian cells also works in fission yeast. Combining chemical and 

genetic approaches, I showed that physiological control of PAT levels underlies 

differential modification of its cognate substrates in distinct cellular states, shaping the 

palmitoylome, which in turn plays a critical role in meiotic commitment. Based on these 

results, I propose that rheostatic control of single or multiple PAT activities quantitatively 

regulates global protein palmitoylation, which can have important consequences on 

cellular events.
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Results 

S. pombe has a simplified PAT network

In contrast to metazoa and budding yeast, where high functional redundancy  among 

multiple PATs has been reported68, 69, the fission yeast genome contains only five open 

reading frames that encode proteins containing the conserved DHHC motif preceded by a 

cysteine-rich domain, which is a characteristic feature of PATs (Fig. 3.2a). This less 

complex PAT network allows me to more easily  dissect the functional contribution and 

regulation of individual PATs. 

Figure 3.2 | DHHC-PATs in S. pombe. a, Partial sequence alignments and consensus sequence 
of the five DHHC-containing PATs encoded in the S. pombe genome. Viability of null mutants are 
also indicated. b, Growth and morphological phenotypes of cells with individual PAT deletions.  
Notably, erf2∆ and erf4∆ cells are viable at 32 °C and 34 °C but  inviable at 36 °C. DIC images 
(Top panel) as well as measurements of cell lengths (n=20) at division and generation times 
(Bottom panel) of indicated strains.
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 Of the five PATs, only  Swf1 was essential for viability134 while deletions of the 

remaining PATs had no effect  on cell growth or morphology under exponential vegetative 

growth conditions at 32 °C. (Fig. 3.2). Notably, erf2∆ and erf4∆ cells are inviable at 36 

°C. I focused on the Erf2 PAT and its accessory protein Erf4, whose roles in meiosis are 

suggested by their strongly regulated expression during this major transitional event in 

fission yeast135, 136. This system, where PAT regulation is linked to a highly coordinated 

biological process, provides a good model to study  how regulation of PATs affects global 

protein palmitoylation and its functional consequences.

Erf2 PAT function regulates meiosis in S. pombe

Fission yeast cells proliferate in the haploid state but when nutrients become limiting, 

cells of opposite mating types conjugate to form a diploid zygote. These diploid cells 

replicate their genome and then undergo two successive nuclear divisions to yield four 

haploid nuclei that mature into spores, completing meiosis (Fig. 3.3a). To specifically 

investigate a potential role for Erf2 in meiosis as well as circumvent the mating defect of 

haploid erf2Δ cells (Fig. 3.6c), I constructed stable diploids containing a temperature-

sensitive allele of the Pat1 meiotic repressor, pat1-114, which can be used to 

synchronously induce meiosis137-139 (Fig 3.4a). Consistent with genome-wide expression 

studies135, 136, transcript levels of erf2 and erf4 were significantly upregulated in 

synchronized meiotic cells compared to vegetative cells (Fig. 3.3b). Expression of erf2 

and erf4 was also induced by overproduction of the meiosis-specific Mei4 transcription 

factor (Fig. 3.3c). Compared to erf2+ cells, erf2Δ mutants were delayed in meiotic entry, 
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as determined by the onset of S phase (Fig. 3.4b), and in meiotic progression (Fig. 3.4c, 

d). The striking increase in the length of erf2Δ cells suggests that they continued 

vegetative growth during this delay  (Fig. 3.4d). Taken together, these observations 

indicate a role for Erf2 in regulating meiotic entry, suggesting that changes in global 

protein palmitoylation are critical determinants in meiotic commitment.

Figure 3.3 |  erf2  and erf4  expression are strongly regulated during meiosis in fission yeast. a, 
Schematic representation of the fission yeast sexual differentiation process. Haploid cells 
conjugate to form a diploid zygote, which undergoes meiosis to yield four haploid nuclei that 
matures into spores. b, qPCR analysis of erf2 and erf4  transcripts in vegetative (Veg) and meiotic 
(Mei, 8 h after meiotic induction) pat1-114/pat1-114 cells. c, qPCR analysis of indicated 
transcripts in vegetative haploid cells overexpressing (OE) Mei4 from a thiamine-repressible 
promoter. Fold change, transcript levels after 24 hours in thiamine-free medium compared to that 
in thiamine-containing medium. mde5 is a known Mei4 target gene. b, c, All transcript  levels 
were normalized to act1 mRNA. Error bars, s.d. 
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Figure 3.4 | erf2Δ cells are delayed in meiotic entry. a, Pat1 is repressor of meiosis. 
Synchronous meiosis in diploid pat1-114/pat1-114 cells was induced by shifting nitrogen-starved 
cultures to restrictive temperature (see Methods). b, DNA content analysis of indicated strains 
after meiotic induction. c, d, Percentage of cells with 1, 2 or >2 nuclei were determined by 
counting ≥ 200 DAPI-stained cells of the indicated strains at  hourly intervals after meiotic 
induction (left  panel). Shaded area facilitates comparison between the two strains. Representative 
DIC (middle panel) and DAPI (right panel) images of cells at indicated times after temperature 
shift. Scale bars, 10 µm.
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Chemical tools also work in fission yeast

To assess Erf2-dependent modulation of the palmitoylome during meiosis, we employed 

the alkyne-functionalized palmitate chemical reporter described in Chapter 2, alk-16140, 

together with bioorthogonal labeling (Fig. 3.5a), which allows superior fluorescent 

detection of the modification compared to conventional radiolabeled lipids in mammalian 

and yeast  cells (Fig. 3.5b-d). This bipartite bioorthogonal labeling approach enabled 

robust visualization of global and individual palmitoylated proteins such as Ras1 without 

overexpression (Fig. 3.5b). Alk-16 labeling of Ras1 was competed away  by palmitic acid 

in a dose-dependent manner (Fig. 3.5c). Additionally, preincubating cells with broad-

spectrum palmitoylation inhibitor 2-bromopalmitate or post-CuAAC cleavage of 

thioesters with hydroxylamine greatly diminished the fluorescence signal observed for 

Ras1 (Fig. 3.5d). In contrast, pretreating cells with protein synthesis inhibitor 

cycloheximide had minimal effect on Ras1 labeling (Fig. 3.5d). Collectively, these 

experiments established alk-16 as a specific and robust reporter for post-translational 

protein S-palmitoylation in fission yeast at endogenous substrate and enzyme 

concentrations.
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Figure 3.5 | Chemical tools work in fission yeast. a, Schematic representation of the 
bioorthogonal detection protocol. Alk-16: alkyne-functionalized palmitate reporter. Az-rho: azide-
functionalized rhodamine fluorophore. CuAAC: copper-catalyzed azide-alkyne cycloaddition. b, 
In-gel fluorescent  detection of alk-16 labeled proteins in lysates and immunopurified Ras1. c, d, 
Fluorescent detection of immunopurified Ras1, a known palmitoylated protein, from alk-16 
labeled cells (top panels). Western blots are probed for Ras1 (bottom panels). Palmitate (Palm) 
competes with alk-16 labeling in a dose-dependent manner. Ras1 fluorescence signal was greatly 
diminished by preincubating cells with a general palmitoylation inhibitor 2-bromopalmitate (2BP) 
or by post-CuAAC cleavage of palmitoylation thioester linkages with hydroxylamine (NH2OH). 
Pretreatment of cells with the protein synthesis inhibitor cycloheximide (CHX) had little effect on 
post-translational Ras1 labeling by alk-16.
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Ras1 is a substrate of the Erf2-Erf4 PAT complex

Using this system, I showed that the Erf2-Erf4 PAT complex and not two of the other 

putative PATs is required for the incorporation of alk-16 onto Ras1 (Fig. 3.6a), a known 

palmitoylated protein whose modification has been implicated in pheromone signaling28. 

Incorporation of alk-16 directly requires Erf2 PAT activity as re-introduction of Erf2, but 

not a catalytically  inactive DHHC➞DHHA mutant58, 62, rescued the Ras1 palmitoylation 

defect in erf2Δ cells (Fig. 3.6b). Since palmitoylation of Ras1 has been implicated in 

pheromone signaling28, these observations are consistent  with the mating defect of erf2Δ 

cells (Fig. 3.6c).  Akr1 may substitute for Erf2 function since deletion of akr1 in an erf2Δ 

background further decreased mating efficiency although no mating defect  was observed 

for akr1Δ cells. This is not surprising given the redundancy  between the multiple budding 

yeast and mammalian PATs68, 69. Collectively, these experiments demonstrate that Erf2-

Erf4 is able to specifically incorporate alk-16 into its substrates and that this method can 

be used to profile Erf2 substrates.
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Figure 3.6 |  Ras1 is a substrate of the  Erf2-Erf4 PAT complex. a, b, Alk-16-associated 
fluorescence of immunopurified Ras1 from cells with the indicated PAT deletions (top panels). 
Western blots are probed for Ras1 (bottom panels). Wild type (DHHC) or catalytic inactive 
(DHHA) Erf2 was expressed from a thiamine-repressible promoter in erf2Δ cells. c, erf2Δ and 
erf4Δ cells are defective in mating. Mating efficiency is quantified as the percentage of diploid 
zygotes/spore-containing asci after 2 days in nitrogen-free medium normalized to wild type 
(n≥200). Error bars, s.d. 
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Erf2 drives changes in the palmitoylome during meiosis

The significantly elevated erf2 transcript levels in meiotic cells and the phenotypes of 

erf2Δ cells support its role in orchestrating meiosis-specific protein palmitoylation (Fig. 

3.3). To determine whether increased erf2 expression alone has an impact on the meiotic 

palmitoylome, I profiled palmitoylated proteins by in-gel fluorescence in diploid cells 

undergoing synchronous meiosis. A distinct meiotic palmitoylome with a prominent band 

at approximately 23 kDa is established following the striking increase in Erf2 protein 

levels (Fig. 3.7a), which reflects the reported erf2 transcription profile during meiosis135, 

136. This specific palmitoylome requires Erf2 activity, as modification of those prominent 

substrates was not observed in either erf2Δ or erf4Δ cells undergoing meiosis (Fig. 3.7b, 

c). Ras1 was also palmitoylated in an Erf2-Erf4 dependent manner in meiotic cells (Fig.

3.7c, lower panel), suggesting a role for Ras1 in meiosis141. Since the salient features of 

the meiotic palmitoylome were still observed when two of the other putative PATs are 

deleted (Fig. 3.7c), I concluded that Erf2 is the primary PAT driving changes in the 

protein palmitoylation during meiosis.
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Figure 3.7 | The  Erf2-Erf4 PAT is  required for meiotic-specific protein palmitoylation. a, b, 
Fluorescence profiles of palmitoylated substrates in erf2-HA3/erf2-HA3 pat1-114/pat1-114 and 
erf2∆/erf2∆ pat1-114/pat1-114 cells undergoing synchronized meiosis (top panels). At  the 
indicated times after meiotic induction, aliquots of the culture were pulse-labeled with alk-16. 
Western blots were probed for tubulin and HA (middle and bottom panels). c, Fluorescence 
detection of palmitoylated substrates (top panel) and Ras1 palmitoylation (bottom panel) in 
homozygous diploid pat1-114/pat1-114 cells with the indicated PAT  deletions 8 h after meiotic 
induction. (-): DMSO control. Veg: vegetative cells. Red arrowhead points to the major substrate 
~25 kDa that is specifically modified by Erf2 in meiotic cells.
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Isp3 and Rho3 are selectively palmitoylated by Erf2 in meiotic cells

To identify the major Erf2 substrates that are preferentially palmitoylated during meiosis, 

I affinity purified alk-16 labeled proteins in meiotic erf2+, vegetative erf2+, and meiotic 

erf2Δ cells using a cleavable azido-biotin tag (Supplementary Fig. 3.8a, b). Recovered 

proteins were subsequently identified by gel-based proteomics, and those with ≥ 2-fold 

spectral counts in alk-16 samples compared to the corresponding DMSO controls were 

further studied. Proteins enriched in meiotic erf2+ cells were subjected to two filter 

criteria, excluding those also enriched in (1) meiotic erf2Δ cells and (2) vegetative erf2+ 

cells (Fig. 3.8c). Notably, Ras1 was excluded by  the second filter because it was equally 

recovered in both meiotic and vegetative erf2+ cells, consistent with the biochemical 

analyses (Fig. 3.9d). Of the 238 remaining candidates (Appendix 1), we focused on Isp3 

and Rho3 (Fig. 3.8e) as they were the most highly enriched proteins with molecular 

weights matching the prominent ~23 kDa band we previously observed (Fig. 3.8d). 

71



Figure 3.8 | Identification of Erf2 substrates that are selectively palmitoylated during 
meiosis. a, Schematic representation of the selective enrichment  protocol of alk-16 modified 
proteins from cell lysates using streptavidin beads. Az-azo-biotin: Azide-functionalized biotin 
probe with an azobenzene cleavable linker. CuAAC: copper-catalyzed azide-alkyne 
cycloaddition. b, c, Filter criteria for candidate substrates that  are palmitoylated by Erf2 during 
meiosis. d, Each of the 238 candidates from (c) is represented as a data point reflecting its 
molecular weight and enrichment  (net  spectral counts) in alk-16 over DMSO labeled erf2+ 

meiotic cells. Isp3 and Rho3 are the top two candidates with molecular weights ~23 kDa 
(shaded). e, Amino acid sequences of Rho3 and Isp3, both of which were validated to be Erf2 
substrates that  are selectively palmitoylated in meiotic cells. Yellow: identified peptides. Green: 
modified amino acids in identified peptides (e.g. oxidation, carbamidomethylation).
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Cognate Erf2 substrates are differentially modified in distinct cellular states

Isp3, an abundant spore protein specifically  expressed in meiotic cells142 (Fig. 3.9c), was 

the most heavily modified species since the ~23 kDa band was lost in isp3Δ cells and 

HA3-tagging of Isp3 reduced the electrophoretic mobility of the major fluorescent band 

(Fig. 3.9a). I also confirmed that Rho3, a Rho GTPase involved in polarized growth143, is 

an Erf2 substrate (Fig. 3.9b) that is differentially modified with between meiotic and 

vegetative cells (Fig. 3.9d). This suggests a mechanism by which changes in the 

palmitoylome can be mediated by the regulation of a single PAT (Fig. 3.9e). Given that 

Erf2 expression is low in vegetative cells and high in meiotic cells, I reasoned that the 

differential modification of Erf2 substrates could be a consequence of PAT levels.
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Figure 3.9 | Erf2 substrates are differentially modified in vegetative  and meiotic cells. a, 
Fluorescence profiles of meiotic cells with indicated gene deletions or those expressing 
endogenous or tagged Isp3 (top panels). Control: isp3+ cells labeled with DMSO instead of 
alk-16. Bottom panels: Coomassie or western blot probed for HA. b, Palmitoylation of Rho3-HA3 
in meiotic erf2+ and erf2Δ cells (top panel). Western blot is probed for HA (bottom panel). c, 
Isp3-HA3 expression as determined by anti-HA blot of lysates from cells in indicated cellular 
states. Veg: vegetative cells. Mei: meiotic cells. d, Rho3 and Ras1 palmitoylation states in 
vegetative and meiotic cells (top panels). Western blots were probed for Ras1 or HA (bottom 
panels). a-d, Synchronous meiosis in indicated diploid pat1-114/pat1-114 cells was induced by 
shifting nitrogen-starved cultures to restrictive temperature (see Methods). Meiotic cells refer to 
cells 8 h after the temperature shift. e, While differential palmitoylation of Isp3 in meiotic and 
vegetative cells can be explained by meiosis-specific isp3 expression, the differential 
modification of Ras1 and Rho3 is mediated by an alternative mechanism. Yellow circles represent 
palmitoylation of the indicated Erf2 substrates.
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Erf2-Erf4 PAT levels shape the meiotic palmitoylome

To test this hypothesis, I reduced erf2 expression in diploid cells undergoing 

synchronized meiosis, achieving intermediate and low expression relative to wild type 

(Fig. 3.10a, top). Although all three substrates require Erf2 for palmitoylation, Ras1, 

Rho3 and Isp3 were differentially  modified as a consequence of altering erf2 levels (Fig. 

3.10a). Ras1 was efficiently palmitoylated at  low erf2 expression levels, and its 

palmitoylation was unaltered at higher levels. In contrast, reducing erf2 expression 

decreased Rho3 and Isp3 palmitoylation with different sensitivities. This demonstrates 

that modulation of PAT levels can differentially alter the palmitoylation of individual 

substrates and suggests that the strong upregulation of erf2 expression during meiosis is 

needed to establish the distinctive features of the meiotic palmitoylome.

If physiological control of Erf2-Erf4 abundance solely accounts for the 

palmitoylome changes observed upon meiosis, it is predicted that increasing Erf2-Erf4 

levels in haploid vegetative cells would yield a palmitoylome similar to that of meiotic 

cells. To test this, I focused on Ras1 and Rho3 as model substrates since isp3 expression 

is restricted to meiotic cells (Fig. 3.9c). Ras1 palmitoylation was insensitive to increases 

in Erf2-Erf4 levels (Fig. 3.10b), consistent with our results in meiotic cells. In contrast, 

while individual overexpression of erf2 and erf4 had no impact on Rho3 modification, a 

striking increase in Rho3 palmitoylation was observed when the effective Erf2-Erf4 PAT 

concentration was increased by  co-overexpression of erf2 and erf4 (Fig. 3.10b, strains 

4-7). Intermediate overproduction of Erf2-Erf4 resulted in a modest increase in Rho3 

palmitoylation, indicating a dose-dependent function of PAT activity (Fig. 3.10b, strain 
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8). Importantly, although erf2 and erf4 were expressed from heterologous promoters, 

their levels were in fact within physiological range, with the highest and lowest levels 

being comparable to those attained by meiotic and vegetative cells respectively  (Fig. 3.3b 

and 3.10a, b). These results demonstrate that rheostatic control of protein palmitoylation 

by varying PAT levels is a mechanism by which cells finely  shape the palmitoylome and 

that this may play a key role in cellular transitions such as meiosis.
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Figure 3.10 |  Physiological changes in Erf2-Erf4 levels underlie the differential modification of 
cognate substrates in meiotic and vegetative cells. a, Labels are indicated in box. qPCR analysis of erf2 

and erf4 transcripts normalized to act1 mRNA levels in indicated pat1-114/pat1-114 strains 8 h into 
synchronous meiosis (top panel). Error bars, s.d. Palmitoylation of cognate Erf2 substrates were analyzed 

from the same lysate of each strain (bottom panels). Ras1 and Rho3-HA3 were immunopurified and their 
levels were determined by Ras1 and HA immunoblots respectively. Isp3 palmitoylation was monitored at 

the lysate level since it accounts for most of the fluorescence at ~23 kDa (Isp3 is unstable upon 
immunoprecipitation, data not shown). b,  Labels are indicated in box. Overexpression of erf2 and/or erf4 

from thiamine-repressible nmt promoters in the indicated vegetative pat1-114 cells was achieved by 
switching them into thiamine-free medium for 24 h. qPCR analysis (top panel) as well as palmitoylation of 

Ras1 and Rho3 (bottom panels) were performed as described in (a). Isp3 is not expressed in vegetative 
cells.Cells were maintained at permissive temperature throughout this experiment (See Methods). c, DAPI 

(left) and DIC (right) images of indicated cells 96 h after erf2 and/or erf4 overexpression. Strain 7*: nmt1-
erf2 (DHHA) nmt1-erf4. Scale bars, 10 µm.
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Erf2-Erf4 overproduction is sufficient to induce a meiotic phenotype in vegetative cells

If PAT-mediated changes in global protein palmitoylation are critical in meiotic entry, 

then increasing Erf2-Erf4 levels in vegetative cells may be sufficient to trigger meiosis in 

the absence of nutritional cues. Strikingly, overexpression of erf2 and erf4 in proliferating 

haploid cells induced a meiotic phenotype (Fig. 3.10c, strain 7). A significant reduction in 

growth rate with time, accompanied by a reduction in cell length at division and a 

transient G1 delay (Fig. 3.11a-c) was observed. At 96 hours after induction, a significant 

proportion of cells had >2 nuclei (Fig. 3.11d). These cells were appeared to be 

undergoing a meiotic program since deletion of mei4, which is required for meiotic but 

not mitotic divisions, resulted in the disappearance of cells with >2 nuclei and 

accumulation of misshapen cells with a single nucleus (Fig. 3.11f). The appearance of  

spores that are resistant to β-glucuronidase digestion, which specifically kills vegetative 

cells further suggested that these cells were indeed undergoing sexual differentiation 

program (Fig. 3.11e). While Erf2-induced haploid meiosis produced mainly inviable 

spores, overexpression erf2 and erf4 in diploid cells also induced a meiotic phenotype 

and yielded viable spores (Fig. 3.13). Under these same conditions, non-overexpressing 

cells continued normal vegetative growth over the course of the experiment (Fig. 3.12). 

Overall, these results demonstrate that increasing the levels of a single PAT activity is 

sufficient to induce sexual differentiation in otherwise proliferating cells and implicate 

the control Erf2-Erf4 activity  levels as a major determinant in S. pombe meiotic 

commitment.
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Figure 3.11 | Overproduction of Erf2 and Erf4 in proliferating cells  induce  a meiotic 
phenotype. a-e, erf2 OE erf4 OE: strain 7 from Fig. 3.10 that  co-overexpresses erf2  and erf4 at 
high levels. These cells were grown in the presence of nutrients at  permissive temperature, and 
co-overexpression of erf2 and erf4 was induced by switching cells to thiamine-free medium (See 
Methods). Indicated times or time intervals refers to time after induction of erf2  and erf4 co-
overexpression. a, Fold change in OD595 of cultures during indicated 12 h intervals. OD595 was 
maintained < 0.6 (See Methods). b, DNA content analysis. c, Blankophor staining of cells (top 
panels). Dimensions of septated cells (cell length and width, n=20) and percentage of septated 
cells (septation index, n≥200) were determined by measuring and counting blankophor-stained 
cells (bottom panels, left  to right). Error bars, s.d. d, Percentage of cells with 1, 2 or >2 nuclei 
(n≥200) was determined by DAPI staining. e, Left  panel, percentage of cells with spores (n≥200) 
at  indicated times post-induction. Right panel, DIC images of cells 96 h post-induction before and 
after β -glucuronidase digestion, which specifically kills vegetative cells but not  spores. f, DAPI 
(top) and DIC (bottom) images of indicated erf2  and erf4  co-overexpressing cells 96 h post-
induction. Scale bars, 10 µm. 
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Figure 3.12 | Non-overexpressing pat1-114 cells continue vegetative  growth  under the  same 
conditions. erf2 OE erf4 OE: strain 7 from Fig. 3.10 that co-overexpresses erf2 and erf4 at high 
levels. erf2 erf4: strain 4 from Fig. 3.10 that expresses erf2 and erf4 at endogenous levels. These 
cells were grown in the presence of nutrients at  permissive temperature, and co-overexpression of 
erf2 and erf4 was induced by switching cells to thiamine-free medium (See Methods). Indicated 
times or time intervals refers to time after the switch to thiamine-free medium. a, Fold change in 
OD595 of cultures during indicated 12 h intervals. OD595 was maintained < 0.6 (See Methods). b, 
DNA content analysis. c, Blankophor staining of cells (left  panels).Scale bars, 10 µm. Dimensions 
of septated cells (cell length and width, n=20, middle panels) and percentage of septated cells 
(septation index, n≥200, right  panel) were determined by measuring and counting blankophor-
stained cells. Error bars, s.d. d, Percentage of cells with 1, 2 or >2 nuclei (n≥200) was determined 
by DAPI staining of the indicated strains. e, Percentage of cells with spores at  indicated times 
post-induction (n≥200). 
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Figure 3.13 |  Ectopic meiosis  in diploid cells co-overexpressing erf2 and erf4 yields viable 
spores. Strain 7 from Fig. 3.10 was diploidized and grown in the presence of nutrients at 
permissive temperature, and co-overexpression of erf2 and erf4 was induced by switching cells to 
thiamine-free medium (See Methods). Indicated times or time intervals refers to time after the 
switch to thiamine-free medium. a, Fold change in OD595 of cultures during indicated 12 h 
intervals. OD595 was maintained < 0.6 (See Methods). b, DNA content analysis. c, Blankophor 
staining of cells (top panels). Dimensions of septated cells (cell length and width, n=20) and 
percentage of septated cells (septation index, n≥200) were determined by measuring and counting 
blankophor-stained cells (bottom panels, left to right). Error bars, s.d. d, Percentage of cells with 
1, 2 or >2 nuclei (n≥200) was determined by DAPI staining (left panel). DAPI and DIC images of 
cells 96 h post-induction (right panels). e, DIC image of cells 96 h post-induction after β-
glucuronidase digestion, which specifically kills vegetative cells but not spores. f, Percentage of 
cells with spores (n≥200). Viable colonies were obtained after plating β -glucuronidase digested 
cells at 84 h and 96 h. Scale bars, 10 µm.
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Erf2-induced meiotic phenotype is dependent on PAT activity levels

Consistent with the rheostat model (Fig. 3.10), this meiotic phenotype was dependent on 

high PAT levels, as cells continued vegetative growth when erf2 and erf4 are expressed at 

low (Fig. 3.11f, +Thiamine) or intermediate levels (Fig. 3.10c, strain 8). Critically, 

meiotic induction was not observed in cells co-overexpressing a catalytically  inactive 

Erf2 mutant and Erf4 (Fig. 3.10c, strain 7*) or in cells overproducing either Erf2 or Erf4 

alone (Fig. 3.10c, strains 5 and 6), highlighting the requirement for a functional and 

active PAT complex. Together with the meiotic delay observed in erf2Δ cells, these 

results demonstrate that  modulation of Erf2-Erf4 activity levels through changes in the 

expression of each subunit is a key step for meiotic commitment.

Rho3 function is required for Erf2-induced meiosis

As erf2 and erf4 expression are upregulated in cells undergoing normal meiosis when 

encountering low nitrogen conditions136, these results suggest that PAT level-mediated 

modulation of the palmitoylome is a major determinant of meiotic entry. What are the 

cellular factor(s) involved in this process? As meiosis can be induced by Erf2-Erf4 

overproduction, I reasoned that Erf2-Erf4 substrates involved in triggering meiosis would 

have to be present in vegetative cells and sensitive to Erf2-Erf4 levels for their 

palmitoylation state (Fig. 3.14a). One such substrate is Rho3 (Fig. 3.9b, d, and 3.10b). I 

found that Rho3, but not Ras1, is required for the meiotic phenotype triggered by  Erf2-

Erf4 overexpression in haploid cells (Fig. 3.14b). This is clearly dependent on the Exo70 

subunit of the exocyst complex and the Formin For3 (Fig. 3.14b), both effectors of Rho3, 
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suggesting a novel role for Rho3 in meiotic control in fission yeast, potentially  through 

its function in polarized exocytosis that is likely to be regulated by its palmitoylation 

state143, 144.

Figure 3.14 | A novel function of Rho3 in  S. pombe meiotic control. a, As meiosis can be 
induced by Erf2-Erf4 overproduction, the cellular factor(s) involved in Erf2-mediated meiotic 
control should be present in vegetative cells. Yellow circles represent  palmitoylation of the 
indicated Erf2 substrates. b, DAPI (top) and DIC (bottom) images of erf2 and erf4 co-
overexpressing cells with indicated deletions 96 h post-induction. Scale bars, 10 µm. Rho3 in S. 
pombe regulates polarized cell growth through For3 and Exo70, both of which are required for 
the observed meiotic phenotype. Rho3 has also been implicated in Golgi/endosome trafficking 
through Apm1 but Apm1 function is not required for Erf2-Erf4 induced meiosis.
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Erf2 function is required for proper Rho3 localization in vegetative and meiotic cells

Since palmitoylation has been shown to control protein function by changing protein 

distribution between the plasma and intracellular membranes, in collaboration with Dr. 

Pei-Yun Jenny Wu, we asked if Erf2-mediated palmitoylation of Rho3 affects its 

subcellular localization during ectopic meiosis. While Rho3 normally localizes to cell tips 

and septa in vegetative cells144, enhanced enrichment at cell tips was observed with Erf2-

Erf4 overexpression (Fig. 3.15a), which coincided with increased Rho3 palmitoylation 

(Fig. 3.10b). Interestingly, Rho3 relocalized to what  appeared to be prespore surfaces 

encapsulating individual nuclei as cells completed meiosis (Fig. 3.15a). This 

redistribution of Rho3 from cell tips to prespore surfaces was also observed under more 

physiological conditions, during meiosis in diploid cells induced by Pat1 inactivation 

after nitrogen starvation (Fig. 3.15b). Rho3 localization in both vegetative and meiotic 

cells requires palmitoylation by Erf2 (Fig. 3.15c), which was also visualized at forespore 

surfaces during meiosis (data not shown). Taken together, these data suggest that Erf2-

Erf4 regulates Rho3 function, and potentially its role in polarized exocytosis, by  altering 

its subcellular distribution.
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Figure 3.15 | Erf2-dependent Rho3 
localization in vegetative  and 
meiotic cells. Immunofluorescence 
localization of Rho3-HA3 and DAPI 
images (left  panels). Background 
anti-HA immunofluorescence and 
respective DAPI images (right 
panels). Images are maximum 
intensity projections. Scale bars, 10 
µm. a, Haploid cells were grown in 
the presence of nutr ients at 
permiss ive tempera ture . Co-
overexpression of erf2 and erf4 (erf2 
OE erf4 OE) was induced by 
switching cells to thiamine-free 
medium (See Methods). Indicated 
times refers to time after the switch 
to thiamine-free medium. b, c, 
Meiosis in homozygous diploid 
pat1-114/pat1-114 cells with the 
indicated genotypes was induced by 
shifting the culture to restrictive 
temperature for the indicated times. 
Later time points were taken for 
erf2Δ cells to compensate for the 
meiotic delay in these cells (Fig. 
3.4). 
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Summary and Discussion

In this chapter, we demonstrated that PAT levels matter. Physiological control of PAT 

levels underlie the differential modification of distinct  substrates in vegetative and 

meiotic cells and palmitoylome changes mediated by control of the level of Erf2-Erf4 

activity are sufficient to induce meiosis in fission yeast. We propose that rheostatic 

control of single or multiple PAT activities quantitatively regulates palmitoylomes, which 

we showed have important consequences on cellular events.

 This study showcases fission yeast  as a relevant and complementary  model 

organism for PAT studies. Consistent with studies in budding yeast and mammals12, 65, 67, 

I showed that fission yeast PATs can have different substrate preferences and that specific 

PAT-substrate pairs are needed for efficient palmitate transfer. Notably, the Erf2-

Erf4:Ras1 PAT:substrate pairing in fission yeast is reminiscent of the ERF2-ERF4:RAS1/

RAS2 and DHHC9-GCP16:H-/N-Ras pairs in budding yeast and human, respectively 58, 

59. This suggests an evolutionary selection for specific cognate PAT:substrate pairs, which 

would be unlikely  if PATs have extensive overlapping substrate preferences and were able 

to freely substitute for each other. Furthermore, from the relatively few PAT paralogs in 

fission yeast, I surmised that there would be less functional redundancy  between the 

enzymes, enabling us to distinguish the functional contributions of individual PATs. This 

is evident from the requirement of Swf1 for cell viability, which is the first report  of an 

essential DHHC-PAT and supports the view that  PATs occupy functional niches.  

Furthermore, I showed biochemically a clear requirement for Erf2 in Ras1 and Rho3 

palmitoylation in fission yeast, in contrast to reports in budding yeast12, 63. The 
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unambiguous PAT-substrate pairs in fission yeast facilitated this study and given the 

apparent parallels of PAT-mediated protein palmitoylation between yeasts and metazoa, 

studying this simple machinery  will provide insights into equivalent controls in 

mammals.

It remains to be determined how levels of a PAT affect its substrate specificity. 

One possibility is a difference in catalytic efficiency (kcat/KM) and this is supported by the 

discovery  of specificity  determinants on both the PATs and their substrates that dictate 

enzyme-substrate interactions66, 67. In addition, level-dependent changes in PAT 

localization might alter substrate availability. For example, DHHC2 translocates to post-

synaptic membranes upon neuronal stimulation, where it increases palmitoylation and 

synaptic targeting of PSD9551. In this study, however, changes in PAT localization are 

unlikely to account for the difference in Ras1 and Rho3 palmitoylation since both 

substrates are localized to the same compartments in vegetative cells28, 144. Alternatively, 

there may  be depalmitoylating thioesterases or competing cellular factors that target 

substrates differentially40, 84, 86, 87. 

As global proteomic studies rapidly expand the known list of proteins that are 

reversibly modified with this lipid moiety10-18, palmitoylation is proposed to be a major 

cellular regulator. This is supported by  expression profiling experiments in flies and 

humans in which transcript levels of specific PATs vary widely across tissues70, 71. 

Neuronal differentiation signals were found to induce the PAT degradation via the 

ubiquitin-proteosome pathway74. In addition, PAT overexpression is associated with a 

variety of human cancers and induces cellular transformation (summarized in Table 1.2). 
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Along with these results, this study suggests critical roles for the control of PAT levels 

and regulation of palmitoylomes in cellular development and disease. Although the 

palmitoylation machinery is more elaborate in multicellular eukaryotes, the conservation 

of PAT function and of specific PAT:substrate pairs between yeast and humans12, 58, 59  

indicates that the conclusions of this study  are relevant in predicting regulatory  roles of 

palmitoylation in major developmental transitions in metazoa.
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Materials and Methods

Genotype of haploid S. pombe strains used.

Strain Genotype Source
PN1 h- Nurse lab 
PN4 h+ Nurse lab
Mz53 h- erf2Δ::NatMX6 This study
Mz56 h+ erf2Δ::NatMX6 This study
Mz166 h- erf4Δ::KanMX6 This study
Mz170 h+ erf4Δ::KanMX6 This study
Mz126 h- akr1Δ::KanMX6 This study
Mz132 h+ akr1Δ::KanMX6 This study
Mz120 h- pfa5Δ::KanMX6 This study
Mz124 h+ pfa5Δ::KanMX6 This study
Mz184 h- erf2Δ::NatMX6 erf4Δ::KanMX6 This study
Mz188 h+ erf2Δ::NatMX6 erf4Δ::KanMX6 This study
Mz254 h- akr1Δ::KanMX6 pfa5Δ::KanMX6 This study
Mz257 h+ akr1Δ::KanMX6 pfa5Δ::KanMX6 This study

Mz108 h+ erf2Δ::NatMX6 leu1-32::pDUAL(leu1 nmt41:HFY-erf2) ade-M216 
ura4-D18 This study

Mz199 h+ erf2Δ::NatMX6 leu1-32::pDUAL(leu1 nmt41:HFY-erf2(DHHA)) 
ade-M216 ura4-D18 This study

YN464 
(FY12642)* h- leu1 pREP1(nmt1:mei4) Nakase et 

al.197
Mz471 h- pat1-114 nmt1:erf2::KanMX6 rho3-HA3::KanMX6 This study
Mz492 h- pat1-114 nmt1:erf4::KanMX6 rho3-HA3::KanMX6 This study

Mz476 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 rho3-
HA3::KanMX6 This study

Mz504 h- pat1-114 nmt41:erf2::KanMX6 nmt41:erf4::KanMX6 rho3-
HA3::KanMX6 This study

Mz556 h- pat1-114 leu1-32::pDUAL(leu1 nmt1:erf2(DHHC)) This study
Mz560 h- pat1-114 leu1-32::pDUAL(leu1 nmt1:erf2(DHHA)) This study
Mz518 h- nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 rho3-HA3::KanMX6 This study

Mz534 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 mei4Δ::natMX6 
ura4-D18 This study

Mz488 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 rho3Δ::kanMX6 
ura4-D18 This study

Mz587 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 ras1Δ::ura4+ 
ura4-D18 This study

Mz629 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 apm1Δ::ura4+ 
ura4-D18 This study

Mz634 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 exo70Δ::ura4+ 
ura4-D18 This study

Mz567 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 for3Δ::ura4+ 
ura4-D18 This study

89



Genotype of  diploid S. pombe strains used.Genotype of  diploid S. pombe strains used.Genotype of  diploid S. pombe strains used.

Strain Genotype Source
Mz5d h-/h- pat-114/pat1-114 erf2-HA3::KanMX6/erf2-HA3::KanMX6 This study
Mz9d h-/h- pat-114/pat1-114 erf2Δ::NatMX6/erf2Δ::NatMX6 This study
Mz21d h-/h- pat-114/pat1-114 erf4Δ::KanMX6/erf4Δ::KanMX6 This study
Mz25d h-/h- pat-114/pat1-114 akr1Δ::KanMX6/akr1Δ::KanMX6 This study
Mz29d h-/h- pat-114/pat1-114 pfa5Δ::KanMX6/pfa5Δ::KanMX6 This study

Mz17d h-/h- pat-114/pat1-114 akr1Δ::KanMX6/akr1Δ::KanMX6 
pfa5Δ::KanMX6/pfa5Δ::KanMX6 This study

Mz60d h-/h- pat-114/pat1-114 ras1Δ::KanMX6/ras1Δ::KanMX6 This study
Mz74d h-/h- pat-114/pat1-114 isp3Δ::KanMX6/isp3Δ::KanMX6 This study
Mz64d h-/h- pat-114/pat1-114 rho3Δ::KanMX6/rho3Δ::KanMX6 This study
Mz88d h-/h- pat-114/pat1-114 isp3-HA3::KanMX6/isp3-HA3::KanMX6 This study
Mz68d h-/h- pat-114/pat1-114 rho3-HA3::KanMX6/rho3-HA3::KanMX6 This study

Mz89d h-/h- pat-114/pat1-114 rho3-HA3::KanMX6/rho3-HA3::KanMX6 
erf2Δ::NatMX6/erf2Δ::NatMX6 This study

Mz129d h-/h- pat1-114/pat1-114 nmt41:erf2::KanMX6/nmt41:erf2::KanMX6 
rho3-HA3::KanMX6/rho3-HA3::KanMX6 This study

Mz189d h-/h- pat1-114/pat1-114 erf2+/erf2Δ::ura4+ rho3-HA3::KanMX6/rho3-
HA3::KanMX6 ura4-D18/ura4-D18 This study

Mz197d
h-/h- pat1-114/pat1-114 nmt1:erf2::KanMX6/nmt1:erf2::KanMX6 
nmt1:erf4::KanMX6/nmt1:erf4::KanMX6 
rho3-HA3::KanMX6/ rho3-HA3::KanMX6

This study

*Strain was obtained from the Yeast Genetic Resource Center of Japan, supported by  the 

National Bioresource Project (YGRC/NBRP).
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Strain construction and growth conditions. Standard media and methods were used145, 

146. All experiments were carried out in minimal medium (EMM) and minimal medium 

plus supplements (EMM4S) for prototrophic and auxotrophic strains respectively at 25 

°C unless otherwise noted. When applicable, strains were generated by tetrad dissection 

and validated by marker segregation or PCR. Deletion strains, strains expressing erf2-

HA3, isp3-HA3, and those expressing erf2 and erf4 from nmt promoters were constructed 

by PCR integration147. For Rho3, the HA3-tag sequence was inserted in-frame 42 bp 

upstream of its termination codon by PCR integration. Functional rescue in erf2Δ cells 

was performed using the pDUAL plasmid (RIKEN BRC, Japan) expressing YFP-FLAG-

His6-erf2 under the nmt41 promoter, which was linearized and integrated into the leu1 

locus. The Quikchange XL II kit (Stratagene) was used for site-directed mutagenesis of 

the erf2 DHHC motif. Homozygous diploids were obtained by incubating midlog cultures 

of haploid cells with 20 µg/ml Carbendazim (Sigma) for 4.5 hours at 25 °C and screening 

colonies on YES + phloxin B plates.

Synchronized Pat1-driven meiosis. Pat1-driven meiosis in diploid pat1-114/pat1-114 

cells was carried out as described135. Midlog cultures grown in EMM, which contains 

0.5% NH4Cl, were filter-washed three times with nitrogen-free minimal medium (EMM-

N) using the Microfil filtration system (Millipore), and resuspended in EMM-N for 14 

hours at 25 °C. Meiosis was induced by  shifting the cultures to 34 °C in the presence of 

0.05% NH4Cl. t=0 is defined as the time of the temperature shift.
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erf2 and/or erf4 overexpression from thiamine-repressible nmt promoters. Cultures 

were grown to midlog in EMM plus 10 mg/mL thiamine at 25 °C. erf2 and/or erf4 

expression from nmt promoters was induced by filter-washing the cells three times with 

EMM as described above. The cells were resuspended in EMM and growth was 

maintained at 25 °C. The cultures were diluted with EMM approximately every 12 hours 

for the duration of each experiment to keep OD595 <0.6 and in the presence of nutrients. 

t=0 is defined as the time of thiamine removal.

Flow cytometry. DNA content was analyzed by flow cytometry  using ethanol-fixed and 

propidium iodide-stained cells (2 µg/mL propidium iodide in 50 mM sodium citrate) on a 

BD FACS Calibur and analyzed using FlowJo software.

Cell size measurements and DNA staining. For cell size measurements, live cells were 

stained with Blankophor (MP Biomedicals). For DNA staining, ethanol-fixed cells were 

stained with DAPI. Images were acquired in Metamorph (MDS Analytical Technologies) 

using an Axioplan 2 microscope (Carl Zeiss) and a CoolSNAP HQ camera (Roper 

Scientific). Cell size measurements were obtained using the Pointpicker plug-in of Image 

J (National Institute of Health).

Immunofluorescence microscopy. Cells were fixed at the indicated time points in 3.7% 

formaldehyde for 30 minutes at 25 ºC, washed three times in PEM (100 mM Pipes, 1 mM 

EGTA, 1 mM  MgSO4 pH 6.9), and digested with 0.25 mg/mL zymolyase in PEMS (PEM 
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+ 1.2 M Sorbitol) for 20 min at 37 ºC. Cells were then permeabilized by  treatment with 

PEMS + 1% Triton X-100 for 30 s, after which they  were recovered in PEMBAL (PEM 

with 1% BSA, 0.1% NaN3, 100 mM  lysine hydrochloride) for incubation with α-HA 

antibody (12CA5, mouse monoclonal) at 1:1000 dilution overnight at room temperature. 

After three washes in PEMBAL, samples were incubated with Alexa 568-conjugated 

anti-mouse secondary antibody  (Invitrogen) at 1:2000 dilution for 3 hours in the dark at 

room temperature. Cells were then washed with PEMBAL and PBS. For imaging, cells 

were stained with 2 µg/mL DAPI to visualize nuclei. Microscopic images were acquired 

in Metamorph (MDS Analytical Technologies) using a 63x objective on an Axioplan 2 

(Carl Zeiss, Inc.) epifluorescence microscope and a CoolSNAP HQ camera (Roper 

Scientific), with the same exposure settings for all images.

Quantitative RT-PCR. Total RNA was extracted using acidic phenol, DNase I-treated, 

and purified with the RNeasy kit (Qiagen). RNA concentration was quantified and its 

integrity  was determined by agarose gel electrophoresis. cDNA was synthesized using 

random hexamers and the SuperScriptIII First Strand Synthesis SuperMix (Invitrogen). 

Relative quantification of cDNA was carried out in triplicate for each independent 

experiment using qPCR MasterMix Plus for SYBR Green (Applied Biosystems) on an 

ABI 7900 Real-Time PCR system. Primers used for quantitative PCR are listed in 

Supplementary  Table 2. Standard curves were generated using least six 2-fold serial 

dilutions of a control sample and values within the linear exponential phase were used to 

calculate relative concentrations after normalization to the endogenous actin controls.
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Oligonucleotide primers used in quantitative RT-PCR.

Gene ID Left Right

actin SPBC32H8.12c CGAACGTGAAATTGTTCGTG GGAGGAAGATTGAGCAGCAG

mde5 SPAC25H1.09 TTGCCGGACATTGATACAGA CCGTCGATTTTGAACTGCTT

erf2 SPBC3H7.09 CTTTTTGGCTCTGGCATCAT AATTCCTGGATCAGCAGTCG

erf4 SPAC3F10.07c CGCAATATGGGGTTTTTGAG GGCAGAGGGAAGTGTTCGTA

pfa3 SPBC2F12.15c TGCCATCACCAAAACTTTCA TCATTCCAACAGCAAAAGCA

pfa5 SPBC691.01 GGTGATTTACCATGGGATCG GAAGCGGCAAAATCCAATTA

swf1 SPBC13G1.07 TCCATACTCCGCCTTGGTTA CCCAGTTCCCCTTCACTTTT

akr1 SPAC2F7.10 TTAGCCGCTAGTCAGGGAGA AATGCAGTTGCTCCACCTTC

Metabolic labeling and preparation of cell lysates. Cells were labeled with 10 µM  of 

alk-16 (20-50 mM  DMSO stock) for 15 min, washed once with PBS prior to liquid 

nitrogen freezing and storage at -80 °C. For inhibitor experiments, cells were 

preincubated for 30 min with either 200 µ g/mL CHX or 200 µ M 2BP, which were 

maintained in the cultures during alk-16 labeling. Competition experiments were carried 

out with various palmitate concentrations in the cultures during metabolic labeling. To 

prepare cell lysates, Brij lysis buffer (1% (v/v) Brij-97, 150 mM NaCl, 50 mM 

triethanolamine pH 7.4, 5× concentration of Roche EDTA-free protease inhibitor 

cocktail, 10 mM PMSF) and acid-washed glass beads (Sigma) were added to the frozen 

yeast cell pellets, which were lysed (3 x 20 s) using the Fastprep  homogenizer (Thermo 

Scientific) at 4 min intervals to avoid overheating. Lysates were spun at  1,000 g for 5 min 

to remove cellular debris. Typical lysate protein concentrations of 5-10 mg/mL were 

obtained, as quantified using the BCA assay (Pierce).
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Immunoprecipitations and CuAAC. For analyses of whole cell lysates, 50 µg of protein 

was diluted with Brij lysis buffer to a final volume of 44.5 µL, to which 5.5 µL of freshly 

mixed CuAAC reagents were added. The CuAAC reagents consisted of 1 µL az-Rho (5 

mM stock solution in DMSO), 1 µL tris(2-carboxyethyl)phosphine hydrochloride (TCEP) 

(50 mM  freshly prepared stock solution in deionized water), 2.5 µL tris[(1-

benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) (2 mM stock solution in 1:4 

DMSO:t-butanol) and 1 µL CuSO4·5H2O (50 mM  freshly prepared stock solution in 

deionized water). After 1 hour at room temperature, proteins were methanol-chloroform 

precipitated to remove excess CuAAC reagents. The protein pellets were air-dried and 

resuspended in SDS buffer (4% (w/v) SDS, 150 mM  NaCl, 50 mM triethanolamine pH 

7.4) by sonication before SDS-PAGE. For Ras1 and HA immunoprecipitations, 1-3 mg of 

cell lysate was added to 4 µg anti-Ras antibody (Ras10, Millipore) with 25 µL Protein A 

agarose (Roche) or to 15 µL of anti-HA antibody–conjugated agarose (3F10, Roche) 

respectively. After 2 hours incubation with rocking at  4 °C, the beads were washed three 

times with ice-cold RIPA buffer (1% (v/v) Triton X-100, 1% (w/v) sodium deoxycholate, 

0.1% (w/v) SDS, 50 mM triethanolamine pH 7.4, 150 mM  NaCl). The washed beads 

were resuspended in 20 µL of PBS and 2.25 µL freshly-mixed CuAAC reagents described 

above. The beads were then washed three times with ice-cold RIPA buffer prior to boiling 

in SDS buffer for SDS-PAGE.
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In-gel fluorescence scanning and Western blots. Fluorescence gels were visualized on a 

Typhoon 9400 variable mode imager (GE Healthcare) at excitation 532 nm/emission 580 

nm. For Western blotting, proteins separated by SDS-PAGE were transferred to 

nitrocellulose membranes and probed with the following antibodies: anti-Ras (Ras10, 

Millipore), anti-tubulin (Tat1, gift  from Keith Gull) and anti-HA (3F10, Roche). To avoid 

visualizing the light chain band in anti-Ras1 immunoblots of Ras1 immunopurifications, 

an Fc-specific anti-mouse-HRP secondary antibody (A2544, Sigma) was used. Blots 

were developed using the enhanced chemiluminescence kit  (GE Healthcare). Images 

were processed using Image J.

Affinity enrichment and mass spectrometry. CuAAC reagents (az-azo-biotin) were 

added to 10 mg cell lysate at the same concentrations described above. Proteins were 

methanol-precipitated and resulting air-dried protein pellets were resuspended in 1 mL 

SDS buffer containing 10 mM EDTA by sonication. The mixture was diluted 1:3 with 

Brij lysis buffer and incubated with 100 µL of washed streptavidin agarose resin (Pierce) 

for 1 hour on a nutating mixer at room temperature. The beads were then washed once 

with 0.2% (w/v) SDS in PBS, three times with PBS and twice with 250 mM ammonium 

bicarbonate (ABC). Beads were resuspended in 500 µL 8 M  urea, and reactive cysteines 

were alkylated by addition of 25 µL 200 mM  TCEP and 25 µL 400 mM iodoacetamide 

for 30 min. The beads were washed twice with 50 mM ABC. Two sequential elutions of 

proteins from the resin were performed by incubating the beads with 250 µL of 25 mM 

sodium dithionite in 50 mM  ABC with 0.1% (w/v) SDS for 30 min each. Proteins were 
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concentrated using YM-10 Centricons (Millipore), dried in a speed vac and separated by 

SDS-PAGE. Upon staining with Coomassie blue, each lane was cut into 10 slices for 

trypsin digestion and peptide extraction. Extracted peptides were dried and resuspended 

in 0.1% (v/v) trifluoroacetic acid for mass spectrometry identification. Acquired MS/MS 

spectra were analyzed using the Sequest search engine to identify proteins from the 

primary sequence database obtained from the S. pombe GeneDB. Exported Sequest 

results were analyzed using Scaffold (Proteome Software).
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CHAPTER 4

A FISSION YEAST MODEL FOR PALMITOYLATION-MEDIATED 

REGULATION OF SIGNAL TRANSDUCTION

Introduction

In S. pombe, meiosis is part of a highly coordinated sexual differentiation process that is 

triggered by nutrient depletion. This important switch from the mitotic cell cycle to 

meiosis involves striking changes global gene expression135, 136 and is governed by master 

regulator Mei2, an RNA binding protein (Fig. 4.1a). Mei2 binds to meiRNA, forming a 

dot structure that sequesters Mmi1 and enables stable expression of meiosis-specific 

transcripts critical for meiosis I148. Although the molecular functions of Mei2 in initiating 

and orchestrating the meiotic program are not fully elucidated, it is apparent that Mei2 is 

the master regulator that integrates extracellular cues (stress, nutrients and pheromones), 

primarily  through transcription factor Ste11, and drives the meiosis (Fig. 4.1b). Mei2 

function is tightly regulated by the Pat1 kinase, which phosphorylates and inactivates 

Mei2, preventing meiotic entry during the mitotic cell cycle149. Together, the Pat1-Mei2 

system constitute the core mitosis-meiosis switch in fission yeast. Thermal inactivation of 

Pat1 in cells carrying the temperature sensitive pat1-114 allele or even weak expression 

of a constitutively active Mei2 (Mei2SATA) is sufficient to induce ectopic meiosis and 

sporulation regardless of nutritional cues and ploidy of the cells137-139, 149. Under 

physiological conditions, however, complete inactivation of Pat1 and meiotic induction 

strictly  requires the stoichiometric inhibitor Mei3, which is only expressed in 

98



heterozygous diploids formed after successful conjugation150-152. Working in concert, 

these key cellular factors integrate environmental cues and control cellular commitment 

to meiosis.

Figure 4.1 |  Key cellular factors underlying the  mitotic-meiotic decision in S. pombe. a,  
RNA-binding protein Mei2 is a critical regulator of meiotic initiation and progression. A number 
of meiosis-specific transcripts carry DSR (determinant of selective removal) regions, which 
renders them eliminated during the mitotic cell cycle by Mmi1. During meiotic prophase, Mei2, 
together with meiRNA, sequesters Mmi1, so that  meiosis-specific transcripts become free from 
Mmi1-dependent  elimination and be expressed. Adapted from Harigaya et  al.148 b, Key regulators 
integrate different signal transduction pathways (boxes) to regulate the initiation of meiosis. 
Green: positive regulators. Red: negative regulators.

 In the previous chapter, I demonstrated that rheostatic control of Rho3 

palmitoylation by varying levels of the Erf2-Erf4 PAT is a major determinant of meiotic 

commitment in S. pombe. In this chapter, I seek to determine where Erf2-Erf4 fit in the 

regulatory  network of the meiotic program. Epistasis analysis revealed genetic 

interactions between erf2, erf4 and the key regulators of meiotic commitment (Fig. 4.1b) 

as well as the components of the stress-activated protein kinase (SAPK) pathway. 

Consistent with this, various stress response defects were observed for erf2∆ and erf4∆ 

cells, which were associated with changes in global palmitoylation profiles. Taken 
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together, these results, though somewhat preliminary, suggest an intriguing role of the 

Erf2-Erf4 PAT in coordinating cellular response to stress and sexual differentiation. 

Given the homology between components of the S. pombe and mammalian MAPK/

SAPK pathways, if validated, this system offers a powerful tool to study palmitoylation-

mediated regulation of signal transduction for diverse stimuli.
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Results

pat1-114 provides a sensitized genetic background for Erf2-induced meiosis

In normal meiosis, heterozygous diploid zygotes formed after successful conjugation 

express Mei3, which inactivates Pat1 and leads to activation of Ste11 and Mei2, which in 

turn drives meiotic entry  (Fig. 4.2a, box). As described in Chapter 3, overproduction of 

the Erf2-Erf4 PAT is sufficient to trigger a meiotic phenotype in otherwise proliferating 

cells. I further determined that induction of this meiotic phenotype requires canonical 

meiotic regulators, specifically  Ste11 and Mei2, but not Mei3 (Fig. 4.2a). The latter is not 

unexpected since mei3 expression is restricted to heterozygous zygotes whereas Erf2-

Erf4 overproduction is sufficient to induce meiosis in haploid and homozygous diploid 

cells. This also indicates that the Erf2-induced meiotic phenotype is not a result of 

unscheduled mei3 expression. Curiously, a routine control experiment revealed that the 

meiotic phenotype observed with Erf2-Erf4 overproduction is only  apparent in the 

pat1-114 but not pat1+ genetic background (Fig. 4.2b). Since lower Pat1 kinase activity 

has been reported for pat1-114 cells even at permissive temperature153, I hypothesized 

that high Erf2-Erf4 activity induces the meiotic phenotype in these sensitized cells by 

activating the Ste11-Mei2 pathway  or inactivating Pat1 via a Mei3-independent 

mechanism.
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Figure 4.2 | Erf2-Erf4 function in meiotic control  is revealed in pat1-114 cells. DAPI (left) 
and DIC (right) images of haploid cells 96 h after erf2 and erf4 co-overexpression. Cells were 
maintained in the presence of nutrients at  permissive temperature. Scale bars, 10 µm. a, Epistasis 
analysis revealed that  canonical meiotic regulators Ste11 and Mei2, but  not  Mei3, are required for 
Erf2-Erf4 induced meiosis in pat1-114 cells. Cellular factors involved in the S. pombe mitosis-
meiotic switch are indicated in the box. In normal meiosis, Mei3 inactivation of Pat1 leads to 
activation of Ste11 and Mei2, which drives meiotic entry. Activation and inhibition are 
represented by arrows and crossing bars, respectively. b, Erf2-Erf4 induced meiosis is observed in 
pat1-114 but not pat1+ cells.

Erf2-induced meiosis requires the stress-activated protein kinase (SAPK) pathway

To test  this, I determined the epistatic relationship of Erf2-Erf4 overproduction to a 

number of mutants constructed in the pat1-114 genetic background, focusing on the genes 

in major pathways involved in the commitment to sexual differentiation in fission yeast. 

These include the cAMP, the pheromone signaling MAPK and the SAPK pathways (Fig. 

4.3b). Erf2-Erf4 was overproduced in haploid strains with deletions of different 

components in each signaling pathway. Cells lacking components of the nutrient-sensing 

cAMP pathway (rst2) or pheromone signaling pathway (ras1 and spk1) exhibited the 

meiotic phenotype upon Erf2-Erf4 overproduction (Fig. 4.3a). In contrast, deletion of 

kinases in the SAPK pathway, wis1 and sty1, suppressed the meiotic phenotype (Fig. 

4.3a). Deletion of a specific Sty1 effector, atf1, but not other Sty1 substrates (srk1 and 
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smk2), also suppressed the meiotic phenotype (Fig. 4.3a). Given that Atf1 is required for 

ste11 expression, these observations suggest that Erf2-Erf4 induces the meiotic phenotype 

by activating Ste11-Mei2 via the Wis1-Sty1-Atf1 SAPK pathway (Fig. 4.3b). Such 

activation is perhaps sufficient to overcome the Pat1-mediated meiotic repression in 

pat1-114 cells, in which the Pat1 kinase is not fully active even at permissive 

temperature.

 Genetic interactions between erf2, erf4 and core components of the SAPK 

pathway raises the possibility that Erf2-Erf4, in addition to their roles in meiotic 

commitment, may also be important in controlling cellular response to environmental 

stresses (Fig. 4.3b). Interestingly, both Sty1 and Atf1 are involved in both sexual 

differentiation as well as stress response in fission yeast, suggesting coordination between 

both processes154. Is Erf2-Erf4 also involved in general stress response? In the rest of this 

chapter, I present a series of preliminary observations to support  the role of the Erf2-Erf4 

PAT in the stress response pathway.
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Figure 4.3 |  Epistasis analysis reveals that Erf2-induced meiosis  requires the SAPK 
pathway. a, DAPI (left) and DIC (right) images of haploid cells 96 h after erf2  and erf4 co-
overexpression. Cells were maintained in the presence of nutrients at  permissive temperature. 
Scale bars, 10 µm. b, Signaling pathways involved in the commitment to sexual differentiation in 
fission yeast. Red, gene products are required for Erf2-induced meiosis. Blue, gene products are 
not required for Erf2-induced meiosis. Activation and inhibition are represented by arrows and 
crossing bars, respectively.
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erf2∆ cells are inviable at high temperatures

First, erf2∆ and erf4∆ cells are inviable at 36 °C (Fig. 4.4). Notably, no significant growth 

defects was observed at 34 °C, the restrictive temperature for inactivating Pat1 in the 

synchronous meiosis experiments described in the Chapter 3, suggesting that this growth 

defect at high temperatures does not contribute to the meiotic delay of erf2∆ cells. In 

contrast, deletion of the other PATs does not  affect growth at higher temperatures, 

indicating a specific role of the Erf2-Erf4 PAT in maintaining cell viability at elevated 

temperatures.

Figure 4.4 | erf2∆ and erf4∆ cells are temperature 
sensitive. Serial 10-fold dilutions of exponentially 
growing cultures of the indicated strains, normalized 
to the same OD, were spotted on YE4S plates and 
incubated for 4 days at the indicated temperatures. 
The pat1-114 strain was used as a positive control 
for temperature sensitivity. The deletions were made 
in a pat1+ wild type background.
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erf2∆ cells are delayed in G1 arrest during nitrogen starvation

Second, erf2∆ cells are delayed in their nitrogen starvation response. When homothallic 

fission yeast cells are subjected to depravation of a nitrogen source, they arrest at G1 of 

the cell cycle prior to mating and sporulation. Mutants deficient in sty1 or atf1 deficient 

in G1 arrest and sterile154, 155. Compared to wild type cells, erf2∆ cells arrest much less 

efficiently at G1 and arrest in these cells takes a longer time, as observed by the relative 

sizes of the 1C peak 8 h after nitrogen depletion (Fig. 4.5a). This inefficient G1 arrest in 

erf2∆ cells is accompanied by the appearance of misshapened cells with abnormally thick 

septa (Fig. 4.5a).

 To determine whether Erf2 PAT activity has an impact on the global protein 

palmitoylation during nitrogen starvation, I profiled palmitoylated proteins by in-gel 

fluorescence at different times after transfer to a nitrogen-free medium. In wild type cells,  

palmitoylation of at least two distinct substrates between 25-37 kDa was maintained for 

7-8 h after nitrogen removal despite large-scale protein degradation as observed by 

Coomassie staining of the gel (Fig. 4.5b). On the other hand, in erf2∆ cells, 

palmitoylation of these substrates were only sustained for 3-4 h after nitrogen removal 

(Fig. 4.5b). It would be interesting to determine what these Erf2 substrates are and how 

they contribute to G1 arrest in response to nitrogen depletion.
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Figure 4.5 |  erf2∆ cells are defective  in G1 arrest in response  to nitrogen starvation. a, 
Exponentially growing cells were filter-washed and transferred to nitrogen-free medium for the 
indicated times. Right panel: DNA content analysis of indicated cells pre- and 8 h post- nitrogen 
removal. Left panels: DIC images of the indicated cells 8 h after nitrogen removal. Scale bars, 10 
µm. b, Alk-16 fluorescence profiles of palmitoylated substrates of indicated strains at different 
times after nitrogen removal (top panels) and Coomassie staining of the gels (bottom panels). (-): 
DMSO controls.
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To investigate whether erf2∆ cells can sense nutritional cues, I performed the following 

nutritional shift experiment. It was previously  reported that cells shifted from a good 

nitrogen source (glutamate) to a poor nitrogen source (proline) are advanced into mitosis, 

which is observed as a transient increase in the proportion of dividing cells and a reduced 

cell length at division156. It is evident that erf2∆ cells, like wild type cells, are able to 

sense and respond to the nutritional glutamate-proline downshift by advancing mitotic 

onset, which leads to a peak in the percentage of dividing cells about 1 h after nutritional 

shift and a reduced cell size at  division (Fig. 4.6). These results demonstrate that the 

delay in G1 arrest upon nitrogen starvation in erf2∆ cells was not due to their inability to 

sense nutritional cues.

Figure 4.6 |  erf2∆ cells  respond to nutrient shifts. Exponentially growing cultures in glutamate-
containing medium were shifted to proline-containing medium at t=0 h. At the indicated times 
after the shift, cells were stained with blankophor. The percentage of septated cells (left panel, 
n≥200) and cell length at  division (right  panel, n=20) were determined by counting and 
measuring blankophor-stained cells. Previously reported values for wild type cells and a TOR 
mutant that is unable to respond to nutritional shift  are also included156. Although the trend holds, 
discrepancies between the two studies may be due to different growth temperatures (25 °C vs 32 
°C) and the use of synchronous vs asynchronous cultures.
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erf2∆ cells exhibit morphological defects during recovery from stationary phase

Third, erf2∆ and erf4∆ cells exhibit are defective in growth recovery from stationary 

phase. Upon growth to saturation, fission yeast cells exit the mitotic cycle and enter 

stationary phase, accumulating in G1 or G2 depending on whether they are deprived of 

nitrogen or carbon, respectively157. Because of the growth medium used, when haploid 

cells are grown to high densities, glucose is usually limiting and cells accumulate in 

G2157. When the starved cultures were reinoculated into fresh medium, wild type cells 

exit stationary phase and resume normal cell division (Fig. 4.7a). In contrast, 

morphological defects were observed in erf2∆ and erf4∆ cells after dilution into fresh 

medium. These include the appearance of misshapened and multiseptated cells as well as 

excessive deposition of cell wall material and abnormally thick septa (Fig. 4.7a). The 

heterogeneity of these cells can be observed by the spread of data points on the forward/

side scatter plots compared to wild type (Fig. 4.7d). The failure by the multiseptated cells 

to complete cytokinesis is also reflected in the DNA content analysis, where a 4C peak is 

observed for erf2∆ cells (Fig. 4.7c). Interestingly, this phenotype is transient and resolves 

over time as the cells resume normal growth but can be observed if the culture is again 

starved and refed (Fig. 4.7b), suggesting that these defects in erf2∆ and erf4∆ cells are 

restricted to the initial recovery period from stationary phase.
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Figure 4.7 | erf2∆ cells exhibit morphological  defects  during recovery from starvation at 
high cell  density. Cultures at  OD595 ~3 were incubated at  32 °C for 16 h prior to dilution into 
fresh medium. Indicated times refer to the time after starved cultures were diluted into fresh 
medium. a, DIC images of indicated strains 5.5 h after dilution of starved cultures into fresh 
medium. Scale bars, 10 µm. b, Percentage of cells with defective morphology (misshapened, 
multiseptated, excessive cell wall material) for indicated strains (n=200). #: cultures were grown 
to high density and then rediluted into fresh medium. c, DNA content  analysis of indicated 
strains. d, Forward (FSC) and side (SSC) scatter plots of the indicated strains.
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To determine whether Erf2 PAT activity has an impact on the global protein 

palmitoylation during recovery from stationary phase, I profiled palmitoylated proteins 

by in-gel fluorescence at different time points after dilution of the starved cultures into 

fresh medium. In wild type cells, there is a striking and reproducible increase in protein 

palmitoylation 1 h after refeeding the cultures (Fig. 4.8a). Interestingly, this increase in 

global protein palmitoylation, which is absent in erf2∆ cells (Fig. 4.8a), occurs before the 

appearance of the multiseptated erf2∆ cells as observed by the appearance of the 4C peak 

by flow cytometry  analysis (Fig. 4.8b). It would be interesting to determine how these  

modified substrates contribute to recovery from stationary  phase and if they are the same  

substrates that mediates the nitrogen starvation response.

Figure 4.8 | Different palmitoylation profile of erf2∆ cells during recovery from starvation at 
high cell  density. Cultures at  OD595 ~3 were incubated at  32 °C for 16 h prior to dilution into 
fresh medium. Indicated times refer to the time after starved cultures were diluted into fresh 
medium. a, Alk-16 fluorescence profiles of palmitoylated substrates of indicated strains (top 
panels) and Coomassie staining of the gels (bottom panels). (-): DMSO controls. b, DNA content 
analysis of the indicated strains.
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Summary and Discussion

In this chapter, I showed genetic interactions between erf2, erf4 and important regulators 

of meiotic commitment as well as the components of the SAPK pathway. Together with 

the abnormal stress responses observed in erf2∆ and erf4∆ cells, these preliminary results 

suggest potential role(s) of the Erf2-Erf4 PAT in coordinating cellular response to stress 

and sexual differentiation.  

 In S. pombe, the SAPK pathway mediates a variety of cellular responses to heat, 

oxidative, nutritional, osmotic and UV stresses, controlling the initiation of sexual 

differentiation/mating and stationary  phase survival as well as resistance to drugs and 

heavy  metals. Sty1 is the core MAPK module in the SAPK pathway. Sty1 is activated by 

the Wis1 MAPKK158, 159, which in turn is activated by MAPKKK’s Wis4 and Win1160-164 

(Fig. 4.9a). Atf1 is a target transcription factor downstream of Sty1 and directs stress-

specific gene expression155, 165. Consistent with Sty1 and its targets playing critical roles 

in general stress response, inactivation of sty1 or atf1 results in cells that are 

hypersensitive and fail to respond appropriately to a variety of stresses, including the 

inability to grow at high temperatures, survive stationary phase growth and arrest  cell 

cycle in G1 upon nitrogen depletion154, 155. Similar phenotypes observed in erf2∆ cells 

suggest role(s) for Erf2 and protein palmitoylation in regulating the general stress 

response. This is further suggested by the altered global palmitoylation profiles in erf2∆ 

cells under these conditions. It would be interesting to identify  the Erf2 substrates 

involved in these stress responses and determine how palmitoylation regulates their 

function. Nonetheless, more work will have to be done to validate the function of the 
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Erf2-Erf4 PAT in the general stress response and if it has a direct or indirect regulatory 

role on the SAPK pathway and meiotic commitment (Fig 4.9a).

Figure 4.9 | A fission  yeast model for palmitoylation-mediated regulation of signal 
transduction. a, A model for the role(s) of the Erf2-Erf4 PAT in coordinating cellular response to 
stress and sexual differentiation. Pathways indicated by dashed lines are conceptual and 
speculative. Activation and inhibition are represented by arrows and crossing bars, respectively. 
b, Homology between mammalian and S. pombe SAPK pathways.

113



 Given the homology between components of the S. pombe and mammalian SAPK 

pathways, if validated, the system described above offers a powerful tool to study 

palmitoylation-mediated regulation of signal transduction. Besides structural homology 

between the SAPKs and transcription factors, the SAPK cascades in fission yeast  and 

mammals are similarly regulated and control the activity of transcriptional factors that 

determine biological responses to various stresses (Fig. 4.9b). In mammals, the SAPK 

pathways are activated by environmental stimuli similar to S. pombe and are involved in 

apoptosis, DNA repair, cellular proliferation and differentiation166. Stress signals are 

delivered to the SAPKs by small GTPases of the Ras and Rho (Rac, Rho, Cdc42) 

families, some of which are known to be reversibly palmitoylated11, 167. Ras, for example, 

is proposed to signal through distinct MAPK/SAPK pathways from different membrane 

compartments19, 26, 168, which is in turn regulated by palmitoylation22, 24. Nonetheless, 

evidence for differential signal outputs from each compartment is limited and largely 

confined to overexpression studies of molecules re-targeted to ectopic compartments. 

Therefore, this fission yeast system, in which a specific PAT function is coupled to a 

conserved signaling pathway, provides a tractable model to uncover the role of protein 

palmitoylation in generating spatial complexity of signaling networks in a physiological 

context. 
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Materials and Methods

Genotype of S. pombe strains used.

Strain Genotype Source

PN1 h- Nurse lab 
PN2283 h- pat1-114 Nurse lab 
Mz53 h- erf2Δ::NatMX6 This study
Mz166 h- erf4Δ::KanMX6 This study
Mz126 h- akr1Δ::KanMX6 This study
Mz120 h- pfa5Δ::KanMX6 This study
Mz254 h- akr1Δ::KanMX6 pfa5Δ::KanMX6 This study
Mz364 h- pfa3Δ::KanMX6 ade6-M216 This study

Mz476 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 rho3-
HA3::KanMX6 This study

Mz518 h- nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 rho3-
HA3::KanMX6 This study

Mz531 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 
mei2Δ::natMX6 ura4-D18 This study

Mz626 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 
mei3Δ::ura4+ ura4-D18 This study

Mz630 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 
ste11Δ::ura4+ ura4-D18 This study

Mz632 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 atf1Δ::ura4+ 
ura4-D18 This study

Mz564 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 spk1Δ::ura4+ 
ura4-D18 This study

Mz551 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 sty1Δ::ura4+ 
ura4-D18 This study

Mz571 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 wis1Δ::ura4+ 
ura4-D18 This study

Mz624 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 wis4Δ::ura4+ 
ura4-D18 This study

Mz644 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 win1Δ::ura4+ 
ura4-D18 This study

Mz572 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 rst2Δ::ura4+ 
ura4-D18 This study

Mz627 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 srk1Δ::ura4+ 
ura4-D18 This study

Mz628 h- pat1-114 nmt1:erf2::KanMX6 nmt1:erf4::KanMX6 cmk2Δ::ura4+ 
ura4-D18 This study
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Strain construction and growth conditions. Standard media and methods were used145, 

146. Strains used in this study are listed in Supplementary  Table 1. All experiments were 

carried out in minimal medium (EMM) and minimal medium plus supplements 

(EMM4S) for prototrophic and auxotrophic strains respectively at 32 °C unless otherwise 

noted. When applicable, strains were generated by tetrad dissection and validated by 

marker segregation or PCR. Deletion strains and those expressing erf2 and erf4 from nmt 

promoters were constructed by PCR integration147. 

Epistasis analysis. Cultures were grown to midlog in EMM plus 10 mg/mL thiamine at 

25 °C. erf2 and/or erf4 expression from nmt promoters was induced by  filter-washing the 

cells three times with EMM as described above. The cells were resuspended in EMM and 

growth was maintained at 25 °C since these strains are constructed in a pat1-114 

background. The cultures were diluted with EMM approximately every 12 hours for the 

duration of each experiment to keep OD595 <0.6 and in the presence of nutrients. t=0 is 

defined as the time of thiamine removal. At t=96 h, cells were harvested and ethanol-

fixed prior to DAPI staining and imaging.

Nitrogen starvation. Cultures were grown to midlog in EMM  at  32 °C. Nitrogen was 

removed by filter-washing the cells three times with nitrogen-free EMM (EMM-N) and 

resuspending the cells in EMM-N. Cultures were then returned to 32 °C.
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Glutamate to proline nutritional shift. These experiments were conducted as reported156 

with the exception that the cells were grown at 32 °C rather than 25 °C. Cultures were 

grown to midlog in EMM plus 1 mg/mL glutamate at 32 °C. Nutritional shift to a poorer 

nitrogen source was performed by filter-washing the cells three times with EMM  plus 

1.15 mg/mL proline. The cells were resuspened in EMM+proline and returned to growth 

at 32 °C.

Recovery from high cell density starvation. Starter cultures at OD595 ~3 in EMM  were 

incubated for 16 h at  32 °C prior to dilution into fresh EMM at t=0. Indicated times refer 

to the time after starved cultures were diluted into fresh medium. Most analyses were 

performed at 5.5 h after dilution into fresh medium, when morphological defects were 

observed for a large proportion of erf2Δ cells.

Flow cytometry. DNA content was analyzed by flow cytometry  using ethanol-fixed and 

propidium iodide-stained cells (2 µg/mL propidium iodide in 50 mM sodium citrate) on a 

BD FACS Calibur and analyzed using CellQuest software (BD).
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Cell size measurements and cellular staining. For cell size measurements, live cells 

were stained with Blankophor (MP Biomedicals). For DNA staining, ethanol-fixed cells 

were stained with DAPI. Images were acquired in Metamorph (MDS Analytical 

Technologies) using an Axioplan 2 microscope (Carl Zeiss) and a CoolSNAP HQ camera 

(Roper Scientific). Cell size measurements were obtained using the Pointpicker plug-in of 

Image J (National Institute of Health). 

Metabolic labeling and preparation of cell lysates. Cells were labeled with 10 µM  of 

alk-16 (20-50 mM  DMSO stock) for 15 min, washed once with PBS prior to liquid 

nitrogen freezing and storage at -80 °C. To prepare cell lysates, Brij lysis buffer (1% (v/v) 

Brij-97, 150 mM  NaCl, 50 mM triethanolamine pH 7.4, 5× concentration of Roche 

EDTA-free protease inhibitor cocktail, 10 mM  PMSF) and acid-washed glass beads 

(Sigma) were added to the frozen yeast cell pellets, which were lysed (3 x 20 s) using the 

Fastprep homogenizer (Thermo Scientific) at  4 min intervals to avoid overheating. 

Lysates were spun at 1,000 g for 5 min to remove cellular debris. Typical lysate protein 

concentrations of 5-10 mg/mL were obtained, as quantified using the BCA assay (Pierce).
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CuAAC. For analyses of whole cell lysates, 50 µg of protein was diluted with Brij lysis 

buffer to a final volume of 44.5 µL, to which 5.5 µL of freshly mixed CuAAC reagents 

were added. The CuAAC reagents consisted of 1 µL az-Rho (5 mM  stock solution in 

DMSO), 1 µL tris(2-carboxyethyl)phosphine hydrochloride (TCEP) (50 mM  freshly 

prepared stock solution in deionized water), 2.5 µL tris[(1-benzyl-1H-1,2,3-triazol-4-

yl)methyl]amine (TBTA) (2 mM stock solution in 1:4 DMSO:t-butanol) and 1 µL 

CuSO4·5H2O (50 mM freshly  prepared stock solution in deionized water). After 1 hour at 

room temperature, proteins were methanol-chloroform precipitated to remove excess 

CuAAC reagents. The protein pellets were air-dried and resuspended in SDS buffer (4% 

(w/v) SDS, 150 mM NaCl, 50 mM triethanolamine pH 7.4) by sonication before SDS-

PAGE. 

In-gel fluorescence scanning. Fluorescence gels were visualized on a Typhoon 9400 

variable mode imager (GE Healthcare) at excitation 532 nm/emission 580 nm. After 

fluorescence scanning, gels were stained with Coomassie Blue for determination of 

protein load. Images were processed using Image J.
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CHAPTER 5

GENERAL DISCUSSION

This thesis describes the development and application of chemical approaches to study 

the function and regulation of protein S-palmitoylation, a uniquely reversible lipid 

modification that primarily  serves as an important membrane targeting mechanisms in 

eukaryotes. Using fatty acid chemical reporters, combined with bioorthogonal labeling 

conditions involving CuI-catalyzed azide-alkyne cycloaddition, I was able to specifically 

and robustly detect lipid modified proteins by fluorescence. I further extended this 

method to allow fluorescent detection of two distinct protein modifications on proteins of 

interest and showed that this tandem imaging method can be used to efficiently monitor 

dynamic palmitoylation in cells. These protocols are currently used by  most members of 

the lab on a routine basis as well as by multiple labs that we have collaborated with for 

studying various protein modifications. Combining chemical and genetic approaches in 

fission yeast, I showed that quantitative control of an acyltransferase complex during 

meiosis results in differential activity on cognate substrates and shaping of the 

palmitoylome, which is an important determinant for commitment to this major 

transitional event in S. pombe. Based on this study, I propose that rheostatic control of 

acyltransferase activity  provides an important mechanism for regulating global protein 

palmitoylation and that this may have significant impacts on major developmental 

transitions.
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Fission yeast is a relevant and complementary model for palmitoylation studies

The genetically amendable fission yeast S. pombe, combined with the use of chemical 

strategies that we have developed, is a relevant and complementary model for 

understanding basic control mechanisms and function of protein palmitoylation. Its 

simple PAT network facilitates dissection of the regulation and functional contribution of 

individual PATs. Interestingly, Swf1 is required for cell viability134, and if validated to be 

a bona fide PAT, would be the first  report of an essential DHHC-PAT. Initial efforts to 

make a conditional mutant by replacing the endogenous swf1 promoter with thiamine-

repressible nmt promoters failed, suggesting that regulated swf1 expression is perhaps key 

to its function in maintaining cellular viability. Why is swf1 essential? In budding yeast, 

SWF1 palmitoylates SNAREs required for membrane fusion12, 45 and by homology, the 

putative SNARE substrates of Swf1 in fission yeast, Psy1 and Syb1 , are essential for cell 

viability134, 169, 170. Hence, it  is likely Swf1 mediates essential cellular processes such as 

membrane trafficking and fusion. It will be interesting to study the function of Swf1 by 

means of temperature-sensitive or conditional switch-off alleles.

 Although this thesis focuses on the palmitoylating machinery, some of the 

preliminary experiments that I have conducted indicates that S. pombe would also be a 

good system to study the depalmitoylation machinery. The fact that palmitate turns over 

faster on Ras1 than the protein argues for the existence of protein thioesterase(s). 

Disruption of the only  Apt1 thioesterase homolog in fission yeast did not affect cell 

viability, cell growth at high temperature and stationary phase, mating efficiency, steady 

state Ras1 palmitoylation or global protein palmitoylation by in-gel fluorescence. It 
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remains to be determined if the palmitate half-lives of Ras1 and other palmitoylated 

substrates are different in wild type and apt1∆ cells. As discussed in Chapter 1, it is still 

unclear if APT1 and related isoforms are the main depalmitoylating enzymes or if there 

are potentially  more enzymes to be uncovered. By homology  to APT1 and inhibitor 

studies14, 52, 84, it is likely that depalmitoylating enzymes are serine thioesterases. Given 

that there are hundreds of serine/cysteine hydrolases encoded in the mammalian genome, 

it is more practical to systematically  screen candidate enzymes for the ability to 

depalmitoylate proteins in fission yeast.

PAT levels matter: shaping palmitoylomes by rheostatic control of PAT activity

Evidence for regulation of palmitoylating and depalmitoylating enzymes are limited and 

although individual PATs and APT1 have multiple substrates12,  65,  77,  82, studies tend to 

focus on a single enzyme:substrate pair. For example, It would be interesting to 

determine if the activity-sensitive translocation of DHHC2 affects palmitoylation of other 

neuronal substrates besides PSD95 and if that  contributes to modulation of synaptic 

activity51. Our study in fission yeast, where we identified and monitored three cognate 

Erf2-Erf4 substrates in vegetative and meiotic cells, offers a different perspective. We 

showed that physiological control of Erf2-Erf4 activity  levels underlie the differential 

modification of its cognate substrates in distinct cellular states, suggesting that  rheostatic 

control of single or multiple PAT activities is a basic mechanism by which cells shape 

their palmitoylomes. It raises the possibility  that a single PAT can have different functions 

and regulate different cellular processes depending on its levels. We further showed that 

PAT level-dependent changes in palmitoylomes are important for cellular events such as 
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meiotic commitment in fission yeast. This highlights the importance of studying PATs 

and palmitoylomes in physiologically relevant contexts and provides a possible 

explanation for the extensive biochemical and functional overlap  between the PATs in 

cellular studies involving non-physiological enzyme and substrate concentrations68, 69.

Because of technical difficulties, it remains to be determined how levels of a PAT 

affect its substrate specificity. As previously  discussed, one possibility is a difference in 

“specificity constant” (kcat/KM) and this is supported by the discovery of specificity 

determinants on both the PATs and their substrates that dictate enzyme-substrate 

interactions66, 67. If this were the case, one would predict higher kcat/KM for substrates that 

require lower PAT levels for effective palmitoylation and vice versa. I am currently 

investigating the possibility  of recognition domains on the substrates by first swapping 

Rho3 and Ras1 palmitoylation motifs and asking if this affects the PAT level-dependence 

of each substrate. Another possibility is that depalmitoylating thioesterases or competing 

cellular factors target certain substrates more efficiently40, 84, 86, 87. This can be addressed 

by comparing the palmitate turnover on the different Erf2 substrates. Alternatively, level-

dependent changes in PAT localization might alter substrate availability. For example, 

DHHC2 translocates to post-synaptic membranes upon neuronal stimulation and 

mediates increased palmitoylation and synaptic targeting of PSD9551, implicating PAT 

compartmentalization as a means to control activity-induced palmitoylomes. In our study, 

however, subcellular localization is unlikely to account for the difference in Ras1 and 

Rho3 palmitoylation since both proteins are localized to the same compartments in 

vegetative cells28, 144. These proposed mechanisms are not mutually exclusive since 
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mobilization of PATs might be interpreted as an increase in local PAT concentration, 

which might then increase protein palmitoylation by mass action or by titration of 

competing cellular factors. 

Conservation of specific PAT:substrate pairs

I showed that the Erf2 PAT in fission yeast, can have different substrate preferences and 

that specific PAT-substrate pairs are needed for efficient palmitate transfer, which is 

consistent with studies in mammals and budding yeast12, 65. Notably, the Erf2-Erf4:Ras1 

PAT:substrate pairing in fission yeast is reminiscent of the ERF2-ERF4:RAS1/RAS2 and 

DHHC9-GCP16:H-/N-Ras pairs in budding yeast and human, respectively58, 59. Given 

that humans and yeast diverged about 1 billion years ago while S. pombe and S. cerevisae 

diverged 300-400 million years ago, this suggests an evolutionary  selection for specific 

cognate PAT:substrate pairs, which would be unlikely if PATs have extensive overlapping 

substrate preferences and were able to freely  substitute for each other. Interestingly, the 

Erf2-Erf4:Rho3 pair in fission yeast is also found in budding yeast12, raising the 

possibility that DHHC9-GCP16 might also modify Rho GTPases in mammals. This is 

further suggested by  the large number of mammalian Rho GTPases with cysteines close 

to the N- or C- terminus, which serve as potential palmitoylation sites (Fig. 5.1). If 

DHHC9-GCP16 indeed does palmitoylate Rho proteins, it would be interesting to 

determine if, like Erf2-Erf4, it can differentially modify Ras and Rho proteins.
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Figure 5.1 |  Mammalian Rho GTPases. An unrooted phylogentic tree that is based on the 
ClustlW alignment of the amino-acid sequences of the 20 Rho GTPase proteins. The tree 
demonstrates the relationship between the different  family members. EMBOSS pairwise 
alignment was used to calculate the percentage of amino-acid-sequence identity within 
subfamilies. High sequence similarity is found between proteins within the Rac and Rho 
subfamilies, whereas the other subfamilies are much less similar. Adapted from Heasman et al.171
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Role of protein palmitoylation in other developmental transitions

The highly conserved Ras and Rho GTPases are essential for cellular differentiation and 

development in mammals171. Conservation of PAT function and specific PAT:substrate 

pairs between yeasts and humans suggests regulatory roles of palmitoylation in major 

developmental transitions in metazoa. This is supported by  expression profiling 

experiments in flies and humans in which transcript levels of specific PATs vary widely 

across tissues70, 71. Neuronal differentiation signals were found to induce the PAT 

degradation via the ubiquitin-proteosome pathway74. In addition, PAT mutation and 

misregulation is associated with a variety  of developmental defects as well as cancers in 

humans (summarized in Table 1.2). It will be interesting to determine if the control of 

PAT levels and regulation of palmitoylomes are important for cellular development and 

disease.

Rho3 coordinates regulation of membrane trafficking and polarized exocytosis

We demonstrated that  both the actin nucleating formin For3 and exocyst subunit  Exo70, 

but not the clathrin-adaptor Apm1, is required for the essential role of Rho3 in Erf2-

induced meiosis. A recent study proposed that polarized exocytosis in fission yeast, rather 

than being a linear event of actin-dependent long-range vesicle transport followed by 

exocyst-dependent vesicle tethering at the PM172, can be independently  mediated by 

either pathway173. Physical and/or genetic interactions between Rho3 and For3 as well as 

different subunits of the exocyst complex indicates that Rho3 regulates and potentially 

coordinates these actin-dependent  and exocyst-dependent secretory pathways143,  144 (Fig. 
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5.2a). Interestingly, Rho3 is localized to the cell periphery as well as endomembranes 

(Golgi/endosome), raising the possibility  that Rho3 signaling, like Ras1, may be 

compartmentalized. This is supported by  studies showing that Rho3 colocalizes with For3 

at the cell periphery143,  144 and with Apm1 at endomembranes174. Physical interactions 

between Rho3 and For3 as well as Apm1 were validated biochemically144,  174. Spatial 

compartmentalization may explain how Rho3 can control multiple pathways including 

golgi/endosome trafficking, cytoskeletal organization and polarized exocytosis143,  144, 174 

(Fig. 5.2b). This can be tested by  artificially targeting Rho3 to different compartments 

and measuring signaling outputs from each pathway biochemically and phenotypically.

 How does Rho3 palmitoylation regulate meiotic commitment? If the 

compartmentalized signaling model is correct, one would expect factors that regulate the 

cellular distribution of Rho3 to affect its function. These factors include Cdc42 and 

exocyst localization143,  144 and, as shown here, Erf2-mediated palmitoylation. I am 

currently constructing strains that express palmitoylation-deficient Rho3 to confirm this. 

The role of Rho3 palmitoylation may  then be tested by looking at trafficking of known 

cycling substrates (e.g. vesicular SNAREs), secretion of acid phosphatase as well as 

endocytosis and vacuole sizes (FM4-64, membrane markers) in cells expressing wild type 

and palmitoylation-deficient Rho3. Delivery of cytoplasmic vesicles to discrete plasma-

membrane domains is critical for establishing and maintaining cell polarity, neurite 

differentiation and regulated exocytosis. Anastasia and co-workers showed that blocking 

membrane traffic causes a mitotic checkpoint, suggesting a link between mitotic entry 

and membrane growth in budding yeast175. If Rho3 palmitoylation affects membrane 
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trafficking, signals that are coupled to membrane growth may explain how Rho3 

regulates meiotic entry in fission yeast. These signals may be increased concentration of 

receptors and effectors at the plasma membrane or simply non-specific stress signaling as 

a result of defective membrane trafficking or cytoskeleton organization. The identity  of 

these signals are unknown (Fig. 5.2b).

Figure 5.2 | Model  for coordination of membrane  trafficking and polarized exocytosis by 
Rho3 in S. pombe. a, Rho3 may coordinate parallel actin-dependent and exocyst-dependent 
secretory pathways. Cdc42 sets up cell polarity and regulates two parallel morphogenetic 
modules for polarized cell growth, the formin-dependent actin cable module and the exocyst 
module, contributing to transport  and tethering of exocytic vesicles, respectively. The exocyst is 
also controlled by PIP2 levels at the plasma membrane. Actin patches, and thus endocytosis, may 
contribute to maintaining polarized localization of Cdc42 and the exocyst. An effector of Rho3, 
For3 binds to both active forms of Cdc42 and Rho3. Rho3 localization is dependent  on the 
exocyst  but  not vice versa. b, Speculative model of compartmentalized Rho3 signaling. # depicts 
the different  factors such as cytoskeleton, exocyst  function and palmitoylation may affect Rho3 
distribution, which in turn affect its function by signaling though different  effectors. How these 
different  signals are integrated and contribute to meiotic entry are not  known. PM: plasma 
membrane.
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Multiple Erf2-Erf4 functions

Although I chose to focus on meiosis for my  thesis, Erf2-Erf4 function is implicated in 

multiple cellular processes including stress response, mating, meiosis and sporulation. 

This raises an important question - how does a single PAT selectively control and 

coordinate these different pathways? This may be achieved via different substrates and 

we showed here that substrates of the same PAT can be differentially  modified simply  by 

changing PAT activity levels. It will be worthwhile to catalog the different Erf2 substrates 

that are modified during each of the cellular events and determine if their palmitoylation 

states affect coordination of these temporally  separated processes: stress response ➔ 

mating ➔ meiosis ➔ sporulation.

 As shown by others and in our study, palmitoylation is not an all-or-nothing 

process and the steady state palmitoylation levels of a specific substrate can vary  over a 

large range. While I have focused on the high and low palmitoylation levels of Rho3 in 

meiotic and vegetative cells respectively, it remains to be seen if intermediate Rho3 

palmitoylation has a function in the different cellular processes. In the case of PSD95, 

whose palmitoylation has been shown to affect  synaptic clustering and signaling 

strength39, 51,  176‐178, one expects a positive correlation between synaptic strength and the 

levels of steady state PSD95 palmitoylation.

Model organisms and technical advances are important for new discoveries

Technical difficulties in palmitoyl enzymology and detection/analysis hindered 

palmitoylation studies for more than 30 years since the initial discovery of the 
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modification179. In the last  decade, the use of model organisms and technical advances in 

the detection and analysis of palmitoylation have propelled this emerging field (Fig. 5.1). 

 Yeast genetics have proven fruitful in landmark discovery  of the PATs as the main 

palmitoylating enzymes57, 58, 63 when biochemical attempts to purify them were 

complicated by the instability  of these enzymes once they  are extracted from 

membranes180, 181. The budding yeast model has been and continues to be instrumental in 

our understanding of PAT specificity12, 66, 69 and mechanism of palmitate transfer61, 62.

 The advent of the acyl-biotin exchange protocol as well as bioorthogonal 

chemical reporters described in this thesis enabled identification of palmitoylomes, 

greatly expanding the scope of the modification and providing unprecedented insights 

into the cellular function of palmitoylation. Furthermore, these two approaches allowed 

robust non-radioactive detection of palmitoylated proteins expressed at endogenous 

levels, reducing experimental times and enabling faster testing of hypotheses.

 Advanced microscopy techniques, in combination with semi-synthetic 

lipopeptides, offer unprecedented insights into the dynamics of protein palmitoylation. 

Photo-activation/bleaching of fluorescent palmitoylated proteins estimate protein-bound 

palmitate to turnover in milliseconds or seconds22, 24, which is consistent with rapid 

physiological responses that can occur on the seconds time scale. This is in contrast to 

biochemical pulse-chase experiments, which yield palmitate half-life measurements in 

the order of minutes or hours potentially due to rapid recycling of the labeled fatty acid 

analogs. Use of semi-synthetic proteins irreversibly linked to palmitate definitively 

showed the importance of the reversibility  of the modification and how palmitate cycling 
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contributes to cellular distribution of modified proteins22. More recently, the design of a 

specific APT inhibitor, Palmostatin B83, 84, potentially allows rapid temporal control of 

depalmitoylation activity and further dissection of the palmitoylation kinetics in cells.

 Together, these technical advances are beginning to reveal mechanistic and 

functional insights into the effect dynamic palmitoylation exerts on physiology and 

disease but tool development will continue to be critical for progress in the field. For 

example, there is still a need for specific PAT inhibitors since most existing 

palmitoylation inhibitors such as 2-bromopalmitate have pleiotropic effects on lipid 

metabolism128. On a similar note, development of activity-based probes that selectively 

react with active PATs or thioesterases will not only allow one to profile the functional 

states of these enzymes in normal and disease models (Fig. 5.3a), but also aid in the 

development of specific inhibitors. In addition, solving the structures of PATs will 

invaluable towards understanding the mechanism of palmitate transfer to substrates and 

origin of substrate selectivity  as well as greatly facilitate the design of selective activity-

based probes and inhibitors. Understanding what dictates enzyme:substrate specificity 

will further help development of approaches that allows control of the palmitoylation  

state of specific proteins of interest. For instance, one can imagine engineering specificity 

determinants that can be appended onto a PAT and a protein of interest such that the  

latter will only  be modified when this orthogonal PAT is expressed. Last  but not least, 

given the evidence for interactions between different PTMs, palmitoylation should not be 

studied in isolation but in conjunction with other modifications, especially 

phosphorylation and other cysteine modifications.
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Figure 5.3 | Activity-based probes for palmitoylation studies. Activity-based probes (selective 
chemically reactive group with a detection/affinity handle) that  specifically react  with active PATs 
or thioesterases enable the profiling of functional states of the enzymes in normal and disease 
models. Figure adapted from the Cravatt lab (Scripps) website.

Concluding remarks

In conclusion, we have developed chemical strategies to efficiently detect and identify 

palmitoylated proteins in mammalian systems and by applying them in an alternative S. 

pombe model, uncovered a mechanism by which PATs regulate global protein 

palmitoylation as well as important cellular events such as meiosis. Our study  also 

highlights the importance of studying the regulation and function of protein 

palmitoylation in physiologically relevant contexts. This is perhaps best demonstrated by 

a series of studies in neurons, which collectively showed that neuronal activity-driven 

regulation of PAT localization and protein nitrosylation modulates protein palmitoylation, 

which in turn modulates neuronal morphogenesis, receptor clustering and synaptic 

strength39, 40, 51, 65, 177, 178. In this thesis, we introduced a genetically tractable system with 

relatively simple enzymatic machinery  and substrate “catalog” that  is valuable towards 

understanding basic principles and control mechanisms of protein palmitoylation in a 
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physiological context. This work exemplifies how chemical strategies may be used in the 

fission yeast system to study the PAT-mediated regulation of palmitoylation and the 

associated effects on cellular physiology. In the process, new questions about multiple 

PAT functions, differential substrate specificity and potential regulatory  roles of 

palmitoylation are generated, which can be systematically tested using this system. The 

next few years represent a challenging and exciting time that promises to reveal 

fundamental insights into protein palmitoylation, which one hopes may one day lead to 

novel therapeutic strategies to control diverse physiological processes.
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APPENDIX 1 - Proteomics data (Pages 134-146)

Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

DMSO alk-16 DMSO alk-16 Net 
counts DMSO alk-16

Isp3 SPAC1F8.05 20 3 2 30 99 69 8 4

P-type ATPase SPAC6C3.06c 117 0 7 0 14 14 9 9

Vps13b SPBC16C6.02c 339 4 3 0 11 11 4 4

Rho3 SPAC23C4.08 23 0 2 0 11 11 0 0

Sir2 SPBC16D10.07c 53 4 7 0 8 8 0 0

Noc1 SPAC4F10.09c 98 2 4 0 8 8 0 3

Rad24 SPAC8E11.02c 30 7 10 0 6 6 0 3

Cid11 SPBC1685.06 55 4 6 0 6 6 0 0

Dcr1 SPCC188.13c 158 3 0 0 6 6 0 3

Pre5 SPAC6G10.04c 30 0 0 0 6 6 0 0

Gpd1 SPBC215.05 42 0 2 0 6 6 2 3

Hxk1 SPAC24H6.04 54 0 2 0 6 6 0 2

Sak1 SPAC3G9.14 86 3 0 0 5 5 0 2

Ferric-chelate 
reductase SPBC947.05c 65 2 2 0 5 5 2 2

Ucp8 SPBC83.01 98 0 0 0 5 5 0 0

Mss1 SPAC222.05c 55 0 0 0 5 5 0 0

Pli1 SPAC1687.05 81 0 0 0 5 5 0 0

Non classical export 
pathway protein SPBC1685.13 20 0 0 0 5 5 0 0

Top1 SPBC1703.14c 94 0 0 0 5 5 0 2
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Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

Alpha,alpha-
trehalose-phosphate 

synthase
SPACUNK4.16c 107 0 0 0 5 5 0 2

UPF0061 family 
protein SPAC20G4.05c 64 0 0 0 5 5 0 2

Nep1 SPBC17D11.01 47 0 2 0 5 5 0 0

Adf1 SPAC20G4.06c 16 0 2 0 5 5 0 0

Trk1 SPAC3F10.02c 96 0 4 4 9 5 2 0

Rpl14 SPAC1805.13 15 9 16 0 4 4 0 0

Uso1 SPAC29E6.03c 122 4 6 0 4 4 0 0

Oxa101 SPAC9G1.04 42 3 0 0 4 4 0 2

Spt8 SPBC14C8.17c 58 3 2 0 4 4 0 0

Hrp3 SPAC3G6.01 159 3 4 0 4 4 4 6

Cytoskeletal protein 
binding protein Sla1 

family
SPAC16E8.01 155 2 0 0 4 4 0 0

Membrane 
transporter SPAC3H1.06c 64 2 0 0 4 4 0 0

Ptc4 SPAC4A8.03c 44 2 2 0 4 4 0 0

Rhp54 SPAC15A10.03c 97 2 2 0 4 4 0 2

Rpl22 SPAC11E3.15 13 2 2 0 4 4 0 2

NAD/NADH kinase SPAC3H5.11 45 2 3 0 4 4 2 3

Sir1 SPAC10F6.01c 164 2 3 0 4 4 0 0

Vps4 SPAC2G11.06 48 0 0 0 4 4 2 0

Klp8 SPAC144.14 57 0 0 0 4 4 2 0

Coq3 SPCC162.05 30 0 0 0 4 4 2 0

Lhs1 SPAC1F5.06 95 0 0 0 4 4 2 2
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Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

Rsc7 SPCC1281.05 44 0 0 0 4 4 0 0

cdc23 SPBC1347.10 67 0 0 0 4 4 0 0

DuF1740 family 
protein SPBC20F10.05 113 0 0 0 4 4 0 0

Conserved fungal 
protein SPCPB16A4.02c 38 0 0 0 4 4 0 0

Grx3 SPCC1450.06c 18 0 0 0 4 4 0 0

Suc22 SPBC25D12.04 45 0 0 0 4 4 0 0

Ght5 SPCC1235.14 60 0 0 0 4 4 0 0

FAD-dependent 
amino acid oxidase SPAC6G10.06 42 0 0 0 4 4 0 0

Rrp6 SPAC1F3.01 90 0 0 0 4 4 0 0

Htb1 SPCC622.09 14 0 0 0 4 4 0 0

zf-CCHC type zinc 
finger protein SPAC683.02c 25 0 0 0 4 4 0 0

Ptc2 SPCC1223.11 41 0 0 0 4 4 0 0

ATP-dependent RNA 
helicase, eIF4A 

related
SPAC1F5.10 45 0 0 0 4 4 0 0

Rds1 SPAC343.12 44 0 0 0 4 4 0 0

Shf1 SPAC22F8.12c 19 0 0 0 4 4 0 2

Aif1 SPAC26F1.14c 62 0 0 0 4 4 0 2

Ppp1 SPBC19F5.05c 69 0 0 0 4 4 0 2

Mrpl32 SPBC1604.13c 12 0 0 0 4 4 0 2

Rpn2 SPBC17D11.07c 107 0 2 0 4 4 4 2

Ubp22 SPCC188.08c 129 0 2 0 4 4 4 3

Pga2 SPBC27.01c 16 0 2 0 4 4 3 2
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Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

Arh1 SPBC3B8.01c 53 0 2 0 4 4 3 3

Spt5 SPAC23C4.19 109 0 2 0 4 4 2 0

Conserved eukaryotic 
protein SPAC1687.04 57 0 2 0 4 4 0 0

Sequence orphan SPBC405.02c 50 0 2 0 4 4 0 0

Str2 SPCC61.01c 66 0 2 0 4 4 0 2

transcription factor, 
zf-fungal binuclear 

cluster type
SPAC1399.05c 61 3 3 0 3 3 0 0

RNA binding protein SPAC4G8.03c 88 2 2 0 3 3 0 0

Dbp9 SPCC1494.06c 67 2 2 0 3 3 0 0

guanyl-nucleotide 
exchange factor SPAC11E3.11c 106 0 0 0 3 3 3 3

Mcm3 SPCC1682.02c 97 0 0 0 3 3 3 4

Pig-F SPCC1450.15 57 0 0 0 3 3 2 2

Ubiquitin-protein 
ligase E3 SPBC947.10 77 0 0 0 3 3 2 2

Yop1 SPCC830.08c 21 0 0 0 3 3 2 2

Sequence orphan SPAC821.03c 54 0 0 0 3 3 2 3

Sequence orphan SPAC13G7.09c 16 0 0 0 3 3 0 0

AAA family ATPase, 
unknown biological 

role
SPBC947.01 72 0 0 0 3 3 0 0

Sec6 SPCC1235.10c 83 0 0 0 3 3 0 0

Ulp1 SPBC19G7.09 65 0 0 0 3 3 0 0

Apl4 SPCP1E11.06 96 0 0 0 3 3 0 0
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Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

D123 family SPAP27G11.03 37 0 0 0 3 3 0 0

Hst4 SPAC1783.04c 47 0 0 0 3 3 0 0

Pinin homolog SPAC26F1.02 23 0 0 0 3 3 0 0

CorA family 
magnesium ion 

transporter
SPAC17A2.14 71 0 0 0 3 3 0 0

Aspartate kinase SPBC19F5.04 57 0 0 0 3 3 0 0

Fumarate lyase 
superfamily SPBC8E4.05c 50 0 0 0 3 3 0 0

Transcription factor SPAPB1A11.04c 79 0 0 0 3 3 0 0

tRNA 
nucleotidyltransferas

e
SPAC1093.04c 58 0 0 0 3 3 0 0

WD repeat protein, 
human WDR55 

family
SPAC1A6.02 40 0 0 0 3 3 0 0

Biotin-protein ligase SPBC30D10.07c 71 0 0 0 3 3 0 0

Transcription factor SPBC19C7.10 48 0 0 0 3 3 0 0

Ctf1 SPBC3B9.11c 40 0 0 0 3 3 0 0

Sec15 SPCC1183.01 91 0 0 0 3 3 0 0

Nak1 SPBC17F3.02 71 0 0 0 3 3 0 0

Rpt6 SPBC23G7.12c 45 0 0 0 3 3 0 0

Nucleoporin 
Nup157/170 SPAC890.06 148 0 0 0 3 3 0 0

Mitochondrial citrate 
transporter SPAC19G12.05 32 0 0 0 3 3 0 0

Amidase SPAC869.01 65 0 0 0 3 3 0 0

Uve1 SPBC19C7.09c 69 0 0 0 3 3 0 0

Leu3 SPBC3E7.16c 64 0 0 0 3 3 0 0
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Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

Adaptin SPAC1F3.05 57 0 0 0 3 3 0 0

Ubp6 SPAC6G9.08 52 0 0 0 3 3 0 0

ZIP zinc transporter 1 SPAP8A3.03 50 0 0 0 3 3 0 0

Taf1 SPAC1002.04c 23 0 0 0 3 3 0 0

Phx1 SPAC32A11.03c 104 0 0 0 3 3 0 0

Pex7 SPAC17D4.01 35 0 0 0 3 3 0 0

Gln1 SPAC23H4.06 40 0 0 0 3 3 0 0

Ptr6 SPAC13F5.02c 45 0 0 0 3 3 0 0

Ubi1 SPAC11G7.04 15 0 0 0 3 3 0 0

Las1-like protein SPBC16C6.12c 54 0 0 0 3 3 0 0

Gpi18 SPAC18B11.05 49 0 0 0 3 3 0 0

AMP-activated 
protein kinase beta 

subunit
SPCC1919.03c 33 0 0 0 3 3 0 0

Cbs2 SPAC1556.08c 37 0 0 0 3 3 0 0

Sdh3 SPCC330.12c 20 0 0 0 3 3 0 0

DUF726 family 
protein SPAC607.08c 64 0 0 3 6 3 0 3

Sti1 SPCC645.14c 66 0 2 2 5 3 3 3

Pmc2 SPAC2F7.04 51 3 4 0 2 2 0 0

Rps21 SPBC18E5.06 10 3 5 0 2 2 0 0

Lsk1 SPAC2F3.15 67 2 2 0 2 2 0 0

Swi2 SPAC1142.03c 82 2 2 0 2 2 0 0

Dbp3 SPBC17D1.06 64 2 2 0 2 2 0 0

PQ loop protein SPAC2E12.03c 32 2 3 0 2 2 3 5
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Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

Ypt3 SPAC18G6.03 24 2 3 0 2 2 0 0

TRP-like ion channel SPCC663.14c 77 0 0 0 2 2 2 2

Irs1 SPBC8D2.06 123 0 0 0 2 2 2 3

Lsd90 SPBC16E9.16c 82 0 0 0 2 2 2 3

Pdt1 SPAC27F1.08 58 0 0 0 2 2 2 3

alpha-1,2-
mannosyltransferase SPBC16H5.09c 44 0 0 0 2 2 2 3

Rec11 SPCC4E9.01c 107 0 0 0 2 2 0 0

Conserved fungal 
protein SPCC1494.08c 31 0 0 0 2 2 0 0

Nat10 SPAC20G8.09c 116 0 0 0 2 2 0 0

Abp2 SPBC1861.02 60 0 0 0 2 2 0 0

Sid4 SPBC244.01c 74 0 0 0 2 2 0 0

Aminotransferase 
class-III, unknown 

specificty
SPAC27F1.05c 53 0 0 0 2 2 0 0

Mfh1 SPAC9.05 97 0 0 0 2 2 0 0

Conserved fungal 
protein SPAC2F3.14c 38 0 0 0 2 2 0 0

Glc9 SPAC17A5.09c 35 0 0 0 2 2 0 0

Sequence orphan SPBC2G2.14 60 0 0 0 2 2 0 0

Atp23 SPCC320.12 22 0 0 0 2 2 0 0

Spermidine family 
transporter SPBC36.03c 59 0 0 0 2 2 0 0

Mug100 SPBC16E9.07 36 0 0 0 2 2 0 0
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Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

DUF1716 family 
protein SPAC1952.06c 65 0 0 0 2 2 0 0

Ltv1 SPAC3F10.17 44 0 0 0 2 2 0 0

Arg7 SPBC1773.14 52 0 0 0 2 2 0 0

Cmk1 SPACUNK12.02c 38 0 0 0 2 2 0 0

Mitochondrial tRNA SPAC12B10.08c 52 0 0 0 2 2 0 0

Ran GTP-binding 
protein SPAC31A2.10 51 0 0 0 2 2 0 0

Acetyl-CoA 
hydrolase SPAC1952.09c 58 0 0 0 2 2 0 0

C2 domain protein SPCC962.01 156 0 0 0 2 2 0 0

Transcription factor SPAC105.03c 81 0 0 0 2 2 0 0

Arrestin/ PY protein 
1 SPAC31A2.12 66 0 0 0 2 2 0 0

Tht1 SPAC13C5.03 63 0 0 0 2 2 0 0

Sbh1 SPBC2G2.03c 10 0 0 0 2 2 0 0

Nap1 SPCC364.06 44 0 0 0 2 2 0 0

Sequence orphan SPAC7D4.13c 36 0 0 0 2 2 0 0

Ark1 SPCC320.13c 41 0 0 0 2 2 0 0

Svf1 SPCC584.11c 43 0 0 0 2 2 0 0

LEA domain protein SPAC23C4.05c 50 0 0 0 2 2 0 0

Short chain 
dehydrogenase SPAC19A8.06 45 0 0 0 2 2 0 0

TLDc domain protein 
2 SPBC21.02 59 0 0 0 2 2 0 0
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Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

NADPH-dependent 
diflavin 

oxidoreductase
SPAC1296.06 64 0 0 0 2 2 0 0

Gma12 SPCC736.04c 43 0 0 0 2 2 0 0

Rsv2 SPBC1105.14 69 0 0 0 2 2 0 0

Pgp1 SPCC1259.10 46 0 0 0 2 2 0 0

Mep33 SPBC28F2.02 33 0 0 0 2 2 0 0

Rft1 SPBC887.19 60 0 0 0 2 2 0 0

Mitochondrial m-
AAA protease SPBC543.09 85 0 0 0 2 2 0 0

Hta2 SPAC19G12.06c 14 0 0 0 2 2 0 0

Rae1 SPBC16A3.05c 39 0 0 0 2 2 0 0

Hhp1 SPBC3H7.15 42 0 0 0 2 2 0 0

Wee1 SPCC18B5.03 96 0 0 0 2 2 0 0

Pfs2 SPAC12G12.14c 58 0 0 0 2 2 0 0

Cytoskeletal 
signaling protein SPAC637.13c 56 0 0 0 2 2 0 0

Mcp2 SPCC1682.08c 79 0 0 0 2 2 0 0

Mug73 SPCC31H12.02c 35 0 0 0 2 2 0 0

Mbx1 SPBC19G7.06 51 0 0 0 2 2 0 0

Apc11 SPAC343.03 11 0 0 0 2 2 0 0

Nudix family 
hydrolase SPAC14C4.10c 38 0 0 0 2 2 0 0

DUF544 family 
protein SPAC12G12.11c 42 0 0 0 2 2 0 0
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Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

Ppk29 SPBC557.04 96 0 0 0 2 2 0 0

Rfc2 SPAC23D3.02 38 0 0 0 2 2 0 0

Sgf29 SPBC1921.07c 28 0 0 0 2 2 0 0

Nicotinic acid plasma 
membrane transporter SPAC1002.16c 55 0 0 0 2 2 0 0

Peptidase SPCC1259.02c 92 0 0 0 2 2 0 0

Steriod 
dehydrogenase SPAC7D4.09c 32 0 0 0 2 2 0 0

Rhp18 SPBC1734.06 43 0 0 0 2 2 0 0

Membrane 
transporter SPCC965.13 60 0 0 0 2 2 0 0

RINT1 family protein SPBC691.02c 79 0 0 0 2 2 0 0

Rad17 SPAC14C4.13 69 0 0 0 2 2 0 0

Ura3 SPAC57A10.12c 48 0 0 0 2 2 0 0

Fun1 SPCC18.18c 56 0 0 0 2 2 0 0

Erv41 SPBC2G5.04c 38 0 0 0 2 2 0 0

Sce3 SPBC18H10.04c 43 0 0 0 2 2 0 0

IMP 5'-nucleotidase SPBC30D10.03c 46 0 0 0 2 2 0 0

Rax2 SPAC6F6.06c 128 0 0 0 2 2 0 0

CTNS domain 
protein SPAC4C5.03 34 0 0 0 2 2 0 0

Nup120 SPBC3B9.16c 130 0 0 0 2 2 0 0

Asa1 SPAC1006.02 41 0 0 0 2 2 0 0
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Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

Sequence orphan SPAC24C9.04 14 0 0 0 2 2 0 0

Spp2 SPBC17D11.06 53 0 0 0 2 2 0 0

Clr2 SPAC1B3.17 62 0 0 0 2 2 0 0

Tea1 SPCC1223.06 127 0 0 0 2 2 0 0

Sequence orphan SPAC17A2.07c 20 0 0 0 2 2 0 0

Nab2 SPAC14C4.06c 34 0 0 0 2 2 0 0

Conserved protein SPAC6G9.01c 10 0 0 0 2 2 0 0

Ubiquitin-protein 
ligase E3 SPBC16G5.03 31 0 0 0 2 2 0 0

Atp6 SPMIT.07 28 0 0 0 2 2 0 0

Histone 
acetyltransferase 
complex subunit

SPAC25H1.06 47 0 0 0 2 2 0 0

SRR1 family protein SPBC14C8.13 29 0 0 0 2 2 0 0

Sgf11 SPAC57A10.14 13 0 0 0 2 2 0 0

Atf31 SPAC22F3.02 24 0 0 0 2 2 0 0

Swd1 SPAC23H3.05c 45 0 0 0 2 2 0 0

Short chain 
dehydrogenase SPAC977.08 26 0 0 0 2 2 0 0

Eng2 SPAC23D3.10c 78 0 0 0 2 2 0 0

Swd1 SPBC354.02c 53 0 0 0 2 2 0 0

Mis16 SPCC1672.10 48 0 0 0 2 2 0 0
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Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

Membrane 
transporter SPCC417.10 57 0 0 0 2 2 0 0

Psy1 SPCC825.03c 33 0 0 0 2 2 0 0

Moc3 SPAC821.07c 55 0 0 0 2 2 0 0

RNA-binding 
protein, G-patch type SPAC2G11.04 33 0 0 0 2 2 0 0

Cwf20 SPCC4B3.14 33 0 0 0 2 2 0 0

Mug117 SPCC645.11c 22 0 0 0 2 2 0 0

DUF1000 family 
protein SPBP35G2.02 23 0 0 0 2 2 0 0

Mitochondrial 
ribosomal protein 

subunit L9
SPCC777.17c 12 0 0 0 2 2 0 0

ORMDL family 
protein SPBC119.09c 21 0 0 0 2 2 0 0

Tif212 SPAC32A11.04c 36 0 0 0 2 2 0 0

Mdm10 SPAC17H9.17c 42 0 0 0 2 2 0 0

tRNA specific 
adenosine deaminase SPBC16A3.06 44 0 0 0 2 2 0 0

Hem2 SPAC1805.06c 36 0 0 0 2 2 0 0

Imidazoleglycerol-
phosphate synthase SPAC222.08c 26 0 0 0 2 2 0 0

Diacylglycerol 
cholinephosphotranfe
rase/ diacylglycerol 
ethanolaminesphotra

nferase

SPAC22A12.10 44 0 0 0 2 2 0 0

Metal dependent 
phosphohydrolase SPCC4G3.17 23 0 0 0 2 2 0 0

145



Identified proteins Accession 
Number

MW
(kDa)

Vegetative WT
(spectral counts)
Vegetative WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic WT

(spectral counts)
Meiotic erf2Δ

(spectral counts)
Meiotic erf2Δ

(spectral counts)

Gpi12 SPAPB2B4.01c 28 0 0 0 2 2 0 0

tspO homolog SPBC725.10 18 0 0 0 2 2 0 0

Btn1 SPAC607.09c 44 0 0 0 2 2 0 0

Sequence orphan SPBPB21E7.05 15 0 0 0 2 2 0 0

Amino acid 
permease, unknown 

15
SPCC74.04 60 0 0 0 2 2 0 0

Rng3 SPCC613.04c 84 0 0 2 4 2 0 0
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