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GENETIC VARIATION IN NEUROTRANSMITTER RECEPTORS  

GENERATES BEHAVIORAL DIVERSITY 

 

Andrés Bendesky, Ph.D. 

The Rockefeller University 2012 

 

Variation in behavior among individuals is both remarkable and of great 

significance to society.  People differ in locomotor skills, in sleep patterns, in their 

willingness to take risks, and in how they relate to other people.  Whereas 

diversity enriches society, extreme behavioral deviations can be pathological, so 

it is important to identify the causes of behavioral variability.  It is clear that both 

the environment and genetics contribute to behavioral diversity in all animals, but 

the nature of the specific genes involved is only beginning to emerge.  The 

nematode worm Caenorhabditis elegans is a good animal model to study the 

genetic and neuronal bases of behavioral variation, as there are large differences 

in behavior between naturally-occurring strains, and powerful tools exist to 

characterize these differences.  

One example of the behavioral diversity of C. elegans is the existence of 

different thresholds for exploration–exploitation tradeoffs: some strains decide to 

exploit resources more thoroughly, while others decide to abandon resources 

earlier and explore other options.  Using quantitative genetic tools I have found 

that genetic variation in the adrenergic receptor tyra-3 affects this exploration–



exploitation decision.  tyra-3 responds to the neurotransmitter tyramine, which is 

related to vertebrate adrenaline and noradrenaline.  tyra-3 modifies the activity of 

sensory neurons that detect food cues and that regulate the decision to abandon 

depleting food resources.  In strains that are more prone to exploration tyra-3 is 

expressed at lower levels, and this altered expression modifies the response of 

the sensory neurons to food.  Variation in a gene that affects the response to the 

environment helps explain how nature and nurture interact to produce behavioral 

outcomes. 

In addition to variation in exploratory behavior, C. elegans strains also 

differ in social behaviors.  In most strains animals aggregate with each other, 

whereas a few strains have evolved a solitary life-style.  Variation in the 

neuropeptide Y receptor homologue npr-1 contributes to social behavior 

variation, but I found that other genes are also involved in this behavior.  Through 

quantitative genetic analysis I identified polymorphisms in the GABA-gated cation 

channel exp-1 that generate variation in social behavior.  

Based on existing behavioral diversity in C. elegans, I discovered genetic 

variation in two neurotransmitter receptors and characterized the way in which 

this variation modifies the neuronal circuits that generate behavior.  Consistent 

with findings in other systems, my results suggest that genetic variation in 

neurotransmitter receptors is a common way of generating behavioral diversity in 

animals. 
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 1 

“All animals are equal, but some animals are more equal than others.”                                  

–George Orwell 

 

INTRODUCTION:  Genetic contributions to behavioral diversity 

 

The word “behavior” refers to all observable actions of animals or people, 

ranging from simple reflex actions to complex behavioral sequences or patterns.  

A single behavior represents a combined response to external stimuli, internal 

motivational states, innate genetic programs, and experience-dependent 

learning.  These four domains emerge from neurobiological systems for sensory 

processing, emotion and motivation, neuroanatomy, and plasticity, respectively.  

The neurobiological systems are evolutionarily ancient and substantially shared 

between humans and other animals, although their action is shaped by higher 

cognition in humans.   

Many single-gene mutations that affect animal behaviors have been 

identified through classical genetic screens and knockout mutants, and rare 

single gene mutations affect human behaviors as well.  A notable example of the 

universality and specificity of single behavioral genes is provided by the genes 

that regulate circadian behaviors, first identified through induced mutations in 

Drosophila and mice 1,2, and then found to be mutated in humans with the rare 

single gene circadian disorder Advanced Sleep Phase Syndrome 3,4.  Other rare 

human mutations of large effect can give rise to specific syndromes of 
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overeating and obesity (leptin receptor) 5, narcolepsy/cataplexy (hypocretin) 6, or 

mental retardation and developmental delay 7, among other disorders.  Despite 

these powerful examples, however, most common genetic variation in human 

and animal behavior cannot be explained by known single-gene mutations.  

The subject of my thesis is common genetic variation in behavior.  

Genetic variation plays a role in human personality traits, in common mood 

disorders, addiction, and anxiety disorders, and in rare neurodevelopmental and 

psychiatric disorders such as autism and schizophrenia.  In humans, however, 

genetic factors are difficult to disentangle from individual experiences, 

environments, and choices.  Studies of natural behavioral variation in non-

human animals have begun to identify the molecules that generate common 

differences in behaviors ranging from fly locomotion, to nematode decision-

making, to rodent emotional and social behaviors.  Recent technological 

advances driven by genome sequencing allow the identification of genetic 

markers in any species; these methods, coupled to high-throughput genotyping, 

are facilitating rapid advances in the genetic mapping of normal and pathological 

behavioral traits.  

In this introduction I describe conceptual insights and molecular 

discoveries from studies of genetic variation within species, and between 

closely-related species.  I first describe the quantitative evidence for genetic 

effects on behavior and for a complex genetic architecture of most behavioral 

traits, and then describe representative studies that move from a behavior to 
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molecules, and back to behavior.  Gene-environment interactions are an 

essential theme of behavioral genetics, and I will use specific examples to show 

how the gene-environment interface illuminates the nature of behavioral 

variation.  An important question in the field is to understand how the brain 

translates genetic changes into behavior, and initial examples show the way 

forward – and have led to new insights into the neurobiological basis of 

behavior.  Finally, I argue that certain classes of genes, including sensory genes 

and genes that affect neuromodulatory systems, will be disproportionately 

associated with variation in behavior because of their evolvability.  I discuss 

these ideas in the context of balancing selection that shapes and maintains 

behavioral variation in nature.  

 

Quantifying genetic contributions to animal and human behavior 

Humans have bred domesticated animals for specific behavioral traits for 

thousands of years, an implicit recognition that such traits are genetically 

encoded.  Domestic dogs provide a familiar example: dogs are calmer and less 

aggressive than their wolf ancestors and, in addition, different breeds have been 

bred to excel at working tasks such as herding, retrieving, pointing, and scent 

tracking 8.   

In animals, heritability is typically quantified by regression of offspring trait 

values against those of their parents.  A survey of 57 behavioral traits in animals 

showed that the average heritability of these traits is 38% 9.  This survey included 
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behaviors such as courtship in insects, defensive behaviors in snakes, foraging 

behaviors in flies, snakes, and birds, and learning in insects, mice, pigs, and rats. 

Whether human and non-human animal behavior are influenced to the 

same extent by genetics is an important question.  In humans, heritability 

estimates for nonclinical behaviors including feeding, drug use, and social 

behaviors range from 15-60% 10-13, and the heritability of stable personality traits 

such as neuroticism or extraversion is estimated at 30-60% 13. These results 

suggest that the overall influence of genes on human behavior and on animal 

behavior is similar in magnitude. 

  The strongest evidence for genetic effects in human behavioral variation 

comes from family and adoption studies demonstrating elevated risk for 

psychiatric disorders in relatives of patients with those disorders.  Consistent 

with the importance of genetic risk factors, the degree of risk positively 

correlates with genetic relatedness.  Among family studies, the greatest weight 

has been placed on twin studies that compare monozygotic twins, who share 

nearly 100% of their genetic constitution, with dizygotic twins or other full 

siblings, who on average share 50% of their genetic makeup. The monozygotic 

twin of a schizophrenic patient has about a 50% risk of schizophrenia 14, which 

represents an enormous increase over the population risk of ~1%; still, the fact 

that it is less than 100% demonstrates the existence of non-genetic components.  

By the same formulation, an affected monozygotic twin with a disorder predicts a 
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60% risk for autism 15,16, and a ~40% risk for bipolar disease 17-19, anxiety 

disorders 20, or depression 21,22.  

A puzzling aspect of these studies appears when the risk to first-degree 

relatives is examined (dizygotic twins, other siblings, parents, and children of 

affected individuals).  In the common disorders like anxiety and depression, the 

risk to these individuals is about half that of the monozygotic twin 21,20,22.  This 

relationship matches theories of additive variation, where multiple alleles act 

independently of one another to influence risk.  In the rare disorders like autism, 

schizophrenia, and bipolar disorder, however, the risk to first-degree relatives is 

much lower than half that of the monozygotic twin 15,17-19,14,16.  For these 

disorders, the genetic risk may reflect new mutations and combinations of risk 

alleles with nonlinear interactions.  In addition, dizygotic twins have a higher risk 

than other first-degree relatives, an observation that might reflect prenatal 

environment or other developmental risk factors. 

Genome-wide association studies indicate that common genetic variants 

contribute to the risk of schizophrenia and bipolar disorder, but are less 

important than they are in other complex non-psychiatric diseases 23-26 (but see 

also 27 for an alternative viewpoint).  In addition, an unknown, but growing, 

fraction of schizophrenia and autism cases are associated with de novo 

mutations or rare transmitted mutations, often copy number variants (CNVs), 

that can cause a large increase in risk 28-34.  Each identified high-risk variant is 

present in at most 1% of patients, indicating that one disease can result from 
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hundreds of different genetic causes.  Adding to this complexity, several SNPs 

and a rare single-gene risk factor (DISC1) increase risk both for schizophrenia 

and for bipolar disorder, suggesting that shared genetic factors influence 

multiple disorders 35,23,24,36.  These results suggest that genetic causality and 

heterogeneity will challenge the existing classification categories for psychiatric 

disorders.  

 

Most behavioral traits have a complex genetic basis 

The first step towards understanding the genetic basis of behavioral trait 

variation is to define its genetic architecture – the number, frequency, effect size, 

dominance relationship, and interactions of genetic variants that affect a trait in 

populations of a species.  For organisms in which crosses can easily be 

performed, linkage-based mapping techniques such as quantitative trait locus 

(QTL) mapping are used.  In outbred populations such as humans and wild 

animals, genetic association approaches are more useful if a sufficiently large 

number of individuals and genetic markers are examined (e.g. genome-wide 

association studies).  In general, mapping methods are similar to those used in 

non-behavioral traits, but special care must be taken to minimize measurement 

noise, since behavioral traits are ‘noisier’ than morphological or physiological 

traits (Appendix 1).   
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Classical QTL mapping demonstrates a complex genetic architecture. QTL 

mapping of progeny from an intercross of two strains measures the correlation 

between trait values and DNA markers across the genome, and infers the 

number of loci that affect the trait, their location, and the contribution of each 

locus to the total trait variance (Figure 1.1).  QTL analysis between inbred 

strains has been used to map trait differences in mouse learning, fear, anxiety, 

circadian rhythm, responses to addictive drugs, and activity levels; rat fear, 

anxiety, and responses to addictive drugs; and Drosophila olfactory behavior, 

mating behavior, and locomotor reactivity 37-40.  The advantage of QTL mapping 

using defined crosses is that a sufficiently large collection of F2s or recombinant 

inbred lines rigorously tests each locus for variation, and also tests combinations 

of alleles and some genetic interactions (epistasis).  The disadvantage is that 

discovery is limited to the alleles that happen to vary between the two starting 

strains. 

A modified QTL approach directed at capturing broader population 

variation starts from a pool of parental strains, not just two strains.  In 

Drosophila, a collection of wild flies from the Raleigh Farmers’ Market has been 

used to generate 192 inbred lines representing broader genetic variations from 

wild populations 41.  In mice, a Collaborative Cross has been structured to 

capture variation from eight different mouse strains in a pool of recombinant 

inbred lines 42.  The advantage of this approach compared to the classical QTL 

approach is its genetic breadth; the disadvantage is that any phenotype that 
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requires a combination of genetic variants will probably not be represented in a 

realistic number of inbred strains.  In all of these examples, the existence of 

stable inbred strains that can be genotyped once and then tested for many 

phenotypic traits provides an immense increase in experimental power; such 

carefully-constructed strains exist for C. elegans 43, Drosophila 41, and mouse 42.  

QTL approaches in rodents and flies unambiguously show that the 

genetic architecture of behavioral traits is complex. For example, QTL analysis 

of two inbred mouse strains was conducted for “emotionality,” which describes a 

set of fear- and anxiety-related behavioral responses such as avoidance of 

exposed areas and inhibition of movement after foot shock.  A single pair of 

mouse strains yielded at least 16 distinct emotionality loci 38.  Moreover, a 

different set of QTLs was found for the same emotionality behavior in different 

strains of mouse 38.  Similar results from Drosophila locomotor activity and 

aggression support a similarly complex architecture 40,44.  Importantly, all QTLs 

do not contribute equally to a phenotype.  An analysis of over 200 behavioral 

QTLs affecting 20 different traits in mice and rats demonstrated that the effect 

size of QTLs is exponentially distributed: about 10% of the QTL had large 

individual effects accounting for 10-20% of trait variance and a large number of 

loci contributed increasingly smaller effects 38,45.  The traits characterized in this 

analysis included motor activity, learning, emotionality traits, and drug related 

behaviors. 
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Linkage studies with introgression strains show large effects on 

behaviors. An approach complementary to QTL analysis is to analyze 

introgression strains that have defined DNA segments from one strain 

introduced into a different strain background (Figure 1.1).  The introduced 

segments can be full chromosomes in chromosome substitution strains (CSS), 

or smaller chromosomal intervals in congenics.  This approach is particularly 

powerful when the whole genome is covered in a panel of CSS strains or 

congenic strains; such panels have been developed in C. elegans 46,47, in 

Drosophila melanogaster 48, in rats 49, and in mice 50-52 (where congenics in a 

panel are referred to as genome-tagged mice, or GTM).   

CSS and GTM have been used to characterize fear and anxiety-related 

traits in mice and, like QTL crosses, CSS and GTM indicate that multiple loci 

contribute to these behavioral traits 53,54.  Individual chromosomes, however, 

have been demonstrated to have large effects on these behaviors using CSS, 

sometimes accounting for half of the trait difference between the two parental 

strains 53 – a greater effect than is inferred for any single QTL identified through 

classical QTL mapping.  Even more remarkably, many chromosomes from a 

single strain can have large effects such that, in combination, they “account” for 

more than 100% of the difference between the two starting strains 55.  The larger 

apparent effect of single QTLs in a CSS is partly due to the statistical structure 

of the experiment.  A QTL cross with multiple loci segregating is used to explain 

the segregating variance in a trait, which must add up to 100%.  By contrast, 
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studies of CSS describe the effect of a genetic region on mean trait value, which 

more closely matches the intuitive concept of effect size.  In addition, QTL 

analysis detects the average effect of a variant across many different genetic 

backgrounds, including those where epistatic interactions obscure the effects of 

the QTL, whereas chromosome substitution interrogates the variant in a single 

background.  Many genetic effects are background-dependent in model systems; 

for example, the viability of certain gene knockouts in mice and yeast depends on 

the strain background 56,57.  Epistatic interactions among behavioral traits are 

well-recognized.  Epistasis between natural QTL has been detected in courtship, 

foraging, locomotion, learning, and aggressive behaviors in insects 9,58,59,44, and 

in fear and anxiety traits in mice 54. 

 

Lessons for human behavior. Based on animal studies, we expect any 

individual human behavioral trait to be affected by many different genetic 

variants.  Across the entire population, individual variants are likely to have small 

to moderate effect sizes.  However, the CSS and GTM results imply that in any 

one individual – in a single genetic background – a particular genetic variant 

may have a large effect that is lost by averaging all of the epistatic effects over 

the entire population.  At a practical level, this conclusion suggests that studies 

combining family-based designs with genome-wide association studies or 

sequencing approaches will help in finding causative genetic variants 60.  

Genome-wide association can detect many variants but, like QTL studies, effect 
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size will be diluted by the heterogeneity of backgrounds in the population.  

Human families are not as inbred as CSS strains, but they are considerably less 

heterogeneous in genetic background than whole populations.  

 

Fine-mapping and functional validation of QTL 

The best strategy for moving from a QTL to a single gene varies 

depending on the organism and on the complexity of the trait.  Approaches that 

have been successful for identifying and validating behavioral genes are outlined 

below. 

 

Introgression strategy. Genes associated with QTLs can be identified by an 

introgression strategy, in which smaller and smaller regions spanning the QTL 

are crossed into a recipient genetic background (Figure 1.2a,b).  Eventually, 

introgression of a single gene or variant can be shown to affect the recipient 

strain’s behavior.  This approach has been especially successful in 

Caenorhabditis elegans 61-63, whose 3-day generation time facilitates multiple 

rounds of introgression.  

 
 
 
 
 
 
 
 
 
 



Figure 1.2 
Fine-mapping of quantitative trait loci. Identified QTL can be narrowed down 
to smaller intervals by multiple mapping methods. a) Genome-tagged strains 
(GTS) with introgressed regions covering a QTL can be used to identify the 
region of overlap of introgressed DNA that contains the QTL activity.  b) If 
pre-existing GTS between the relevant strains are unavailable, QTL can be 
fine-mapped by introgressing smaller portions of the QTL by successive 
backcrosses (BC), selecting for individuals that maintain the QTL activity and 
have progressively less DNA from the donor strain.  c) QTL can also be 
fine-mapped by linkage disequilibrium mapping using outbred (genetically 
heterogeneous) individuals that have accumulated recombination events in the 
QTL over multiple generations.  In this example, outbreds (OB) only have two 
haplotypes, but in reality outbred populations usually have more than two 
haplotypes.  d) Genetic properties of the QTL in a-c.  These methods identify the 
location of sequence variation that gives rise to trait variation but, strictly 
speaking, they do not identify the relevant genes, since sequence variation can 
affect genes located outside the QTL.   
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Linkage disequilibrium mapping.  Another way to fine-map a QTL is by linkage 

disequilibrium association mapping in outbred populations, which relies on 

mapping strains that have accumulated multiple recombination events over many 

generations (Figure 1.2c).  This approach was used to identify the mouse 

emotionality gene Rgs2 (see main text).  Linkage disequilibrium mapping is also 

the basis for genome-wide association studies done in humans, which map a 

QTL to a very narrow location. 

 

Candidate genes. As an alternative to mapping, candidate genes of interest can 

be examined for natural variation.  For example, natural alleles of the Drosophila 

circadian genes period and timeless are differentially distributed across tropical 

and temperate zones in wild flies, and affect temperature compensation and light 

regulation of the circadian clock 64,65.  Many other candidate behavioral genes 

that appeared promising in initial studies have failed to replicate, however, and 

the consensus in the field is that unbiased approaches are still necessary.  One 

discovery-based approach to finding promising genes is genome-wide analysis of 

gene expression patterns, which can be applied to behaviorally-selected strains 

alone or in combination with QTL analysis (Figure 1.3).  This strategy has been 

used to define molecular signatures and candidate genes associated with 

Drosophila geotaxis, locomotion, and aggression behaviors 66-69.  

 

 



Figure 1.3
Differential gene expression analysis to identify genetic pathways 
mediating variation in behavior.  Transcript abundance can be compared 
between two strains that differ in a behavior of interest. The role of genes that 
vary in expression between strains can be further explored by testing mutants in 
those genes for altered behavior.  In this example, genes a, b, c, and d, are more 
abundant in the Lo strain relative to the Hi strain, but only loss of function 
mutations of d convert the behavior of the Lo strain in the direction of the Hi 
strain.  This technique identifies genes with a biological role in behavior, but do 
not identify QTL per se.
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Quantitative Trait Nucleotides (QTN), the polymorphisms responsible for a 

QTL, can affect transcriptional regulation or can lead to significant coding 

changes.  A coding QTN affects the gene where the QTL maps, but QTN can 

affect transcription of distant genes.  Some tests are better suited to confirm the 

relevance of QTN and others are more appropriate for identifying affected genes, 

or quantitative trait genes (QTG).   

 

Quantitative complementation.  The classical quantitative complementation 

analysis, first described in Drosophila 70 (explained in detail in 71), tests the ability 

of null mutations to complement the QTL allele with reduced activity (usually the 

recessive QTL allele).  In this test, strains carrying deletions or null mutations in 

genes within the QTL are crossed to both parental strains used for QTL mapping.  

An interaction between the QTL and the null mutation suggests that differential 

activity of the tested gene gives rise to behavioral variation.  A null mutant can fail 

to complement because it is allelic to the QTG, or because a mutation in another 

gene interacts with the QTG.  To minimize the effect of multigenic interactions, 

advanced quantitative complementation is best performed between strains with 

near-identical genetic backgrounds 61,44,63 (Figure 1.4a), for example, by 

introgressing both the QTL and the null mutation into a parental strain.  

 

 
 
 
 



Figure 1.4 
Functional identification of quantitative trait genes.  QTL can be assigned to 
specific genes by genetic or molecular tests (a-c). a) Failure to complement in a 
quantitative complementation test suggests, but does not prove, that the QTL is 
allelic to the gene whose mutant is being tested.  b) Gain of function 
experiments, such as transgenic overexpression of the QTG, can convert the 
strain with the recessive (low activity) QTL in the direction of the strain with the 
dominant (higher activity) QTL.  Allele-specific gain of function can confirm that 
the dominant allele has higher biological activity than the recessive allele, further 
validation of the identification of a QTG.  c) Knocking down the activity of QTG in 
the strain with the dominant (higher activity QTL) should convert the strain in the 
direction of the strain with the recessive (low activity) QTL.  d) Genetic properties 
of the QTL in a-c.  In this example, Hi and Lo strains refer to high and low 
phenotypic trait value, not to high and low QTL activity.  Trait value and QTL 
activity do not have to be positively correlated.  QTG from dominant QTL usually 
have comparatively higher biological activity than recessive QTL, but this is not 
always the case.
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Gain- and loss-of-function transgenesis.  Gain-of-function transgenesis can 

be performed on the strain carrying the recessive allele of the QTL, since the 

recessive allele normally has reduced activity compared to the dominant QTL 72 

(Figure 1.4b).  This approach is analogous to transgenic rescue experiments 

used to identify mutant alleles in forward genetic screens.  Moreover, transgenic 

analysis can be done with DNA from both parental strains 61-63; the expectation is 

that DNA derived from the strain with the dominant QTL is more potent at 

“rescuing” the behavior than DNA from the recessive strain, providing supporting 

evidence that the relevant QTN has been cloned.  If DNA from both strains 

rescues equally, the QTG may have been cloned, but the QTN may not be 

present in the transgene. 

Loss-of-function experiments in the dominant strain should provide the 

reciprocal answer to gain-of-function transgenesis in the recessive strain (Figure 

1.4c).  RNAi of QTG should usually transform the behavior of the dominant strain 

in the direction of the recessive strain 63. 

 

From behavior to molecule, and back to behavior 

Hundreds of QTLs that affect animal behavior have been detected in 

genetic crosses, but specific genes and gene variants for the QTL are just 

beginning to emerge from focused mapping approaches (described above.  See 

Figure 1.2).  An encouraging set of initial results suggests that behavioral genes 
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identified through these unbiased approaches can have conserved functions 

between invertebrates and vertebrates, including humans. 

 

A cloned QTL for mouse emotionality. Out of 450 behavioral QTL that have 

been detected in mice 73, the first to be compellingly mapped to a specific gene 

was Rgs2, which emerged from the studies of emotionality described above 74.  

The emotionality trait appeared genetically complex even in initial analysis, and 

fine-mapping led to the fragmentation of one strong QTL into three neighboring 

QTLs within the original region, a phenomenon that is commonly observed in 

quantitative genetics 75-78,44,63.  Along with fine mapping in outbred lines, the 

genetic proof that Rgs2 was a relevant locus for emotionality came from 

quantitative complementation tests where the high and low emotionality naturally-

occurring alleles were examined in heterozygous combination with an induced 

mouse knockout mutation in Rgs2 79.  

The homozygous knockout mutation of Rgs2 shows high anxiety, 

supporting the idea that this gene regulates emotionality.  Rgs2 encodes a 

regulator of G-protein signaling (RGS) that shortens the duration of G protein-

coupled receptor (GPCR) signaling by stimulating GTP hydrolysis and 

inactivation of heterotrimeric G proteins 80.  The effect of the Rgs2 knockout on 

anxiety-related behaviors suggests that Rgs2 limits signaling of GPCR pathways 

that produce anxiety.  The nature of the relevant GPCR might be understood by 

studying other phenotypes of Rgs2 knockouts, which include hypertension with 
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evidence of increased sympathetic function and disruption of angiotensin and 

vasopressin GPCR signaling 81,82.  Both blood pressure and anxiety are strongly 

stress-responsive, suggesting that a common Rgs2-regulated system could limit 

stress responses in the brain and in peripheral tissues. 

 

From animal QTLs to human behaviors?  Emotionality in mice is a trait with 

encouraging similarities to human emotional traits such as anxiety.  The brain 

regions involved in mouse emotionality include the amygdala, which is implicated 

in human fear-related behaviors 83,84.  Similarly, mouse emotionality has 

behavioral analogies to neuroticism, or emotional stability, in humans 85,74. 

Polymorphisms in Rgs2 have been tentatively associated with anxiety in humans 

86, suggesting that emotionality and neuroticism may also have genetic 

similarities.  

Another QTL approach to animal models of human behavior is to model 

features of human psychiatric disorders called endophenotypes, which are 

simpler markers correlated with the disorder 87.  Prepulse inhibition, the 

suppression of an acoustic startle response by a prior stimulus, is a behavior that 

is often diminished in schizophrenic patients 88, and it can be studied in animals 

to model some aspects of schizophrenia 89.  A QTL cross between two mouse 

strains identified six QTL that affect prepulse inhibition, as well as a number of 

loci associated with auditory sensitivity and other general behavioral traits 90.  

One of the prepulse inhibition QTL is linked to Fatty acid binding protein 7 
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(Fabp7), and a Fabp7 gene-targeted mouse recapitulates the behavioral effect of 

the QTL.  Although more needs to be done to strengthen the connection, the 

Fabp7-targeted mouse has reduced neurogenesis in the hippocampus, a 

developmental defect potentially consistent with neurodevelopmental defects of 

schizophrenic patients.   

Endophenotypes are also useful for generating animal models of drug 

addiction and related behaviors.  In humans, acute tolerance to the intoxicating 

effects of alcohol partly predicts alcohol addiction, and acute tolerance is easily 

modeled in animals.  Many QTL for alcohol tolerance, dependence, and 

withdrawal have been mapped in rodents, including one tolerance QTL in rats 

tentatively assigned to the neuropeptide Y gene 91 and a withdrawal QTL in mice 

that probably corresponds to the multiple PDZ (MPDZ) gene 92.  

 

Common genetic targets generate behavioral diversity in different animals.  

Some behavioral genes are conserved even between vertebrates and 

invertebrates: single-gene variants in the period gene can affect the circadian 

behavior of species as diverse as humans and flies 93,94,3,95.  Moreover, the 

repeated association of period with circadian and other behavioral variation both 

within and between species 96,64,94,3,95 suggests that some genes may be 

“hotspots” that are particularly likely to generate behavioral variation. 

A striking example of a natural genetic hotspot crystallized from studies of 

Drosophila foraging behavior.  Drosophila larvae fall into two groups based on 
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their foraging strategy, rovers (about 70% of the population) and sitters. Rovers 

travel greater distances in the presence of food than sitters, disperse more 

readily between different food patches, and pupate further from the food supply 

97,98.  Drosophila larval foraging was the first naturally-varying behavior to be 

mapped to a specific gene of major effect, foraging (for) 99,72, which encodes the 

conserved cGMP-regulated protein kinase G (PKG).  Rovers have more for 

mRNA in their brain than sitters, and higher PKG activity 72, suggesting that the 

rover allele is a high-activity allele. Among the targets of PKG regulation are ion 

channels that regulate neuronal excitability 100.  In an intriguing coincidence, 

mammalian PKG phosphorylates and regulates the mouse emotionality protein 

Rgs2 101. 

The discovery of for in flies paved the way to an understanding of foraging 

behaviors in other invertebrates.  Young adult honeybees engage in nursing 

activities in the hive, and older honeybees become foragers that leave the hive to 

retrieve food.  Transcript levels and activity of Amfor, the bee orthologue of for, 

are higher in foragers than in nurses, and stimulation of PKG activity with cGMP 

analogues can induce premature foraging behaviors in young bees 102.  These 

results suggest that developmental regulation of PKG in an individual honeybee 

modifies its behavior.  Another insect species where different behavioral forms 

vary in PKG activity is the red harvester ant, where the for orthologue is 

expressed at lower levels in foragers than nest workers (the opposite pattern 

from honeybees) 103.  An effect of PKG on behavioral variation extends to a 
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nematode worm, Pristionchus pacificus, that is attracted to its insect hosts by 

their pheromones.  Natural variation in Pristionchus attraction maps to Ppa-egl-4, 

a homologue of the for gene 104.  The combination of genetic mapping and 

candidate gene analysis shows that modulation of PKG activity is a common 

mechanism for altering animal behavior: genetic variation in PKG distinguishes 

different flies and nematodes, and stage- or caste-specific PKG modulation 

affects behavior in individual honeybees and ants. 

 

Genes and the environment:  a principle in genetic variation 

Many behaviors are triggered by sensory cues, and most are regulated by 

environmental context.  The dichotomy between genetic (nature) and 

environmental (nurture) regulation of behavior is false:  many genes that affect 

behavior do so by affecting an animal’s detection, response, or interaction with 

environmental cues.  Examples of each category appear below. 

 

Sensory genes and the environment.  Animals interact with the environment 

through different sensory modalities, and modifications of these systems appear 

to be a site of frequent behavioral adaptations.  

Receptors for smell and taste belong to large gene families, and they 

represent the fastest-evolving neuronal genes in animal genomes, including the 

human genome (Figure 1.5).  Modification of smell and taste receptors can lead 

to rapid changes in behavior, as can be illustrated by artificially-selected traits in 
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laboratory strains of the nematode C. elegans.  High-density growth of C. 

elegans in the laboratory resulted in the deletion of two different pheromone 

receptor genes that regulate development based on population density 105.  Both 

pheromone receptor genes were deleted independently in two strains grown at 

high density in different locations.  Moreover, a similar pheromone receptor gene 

was deleted following high-density growth of a different nematode species, C. 

briggsae 105.  Thus a shift in the environment (in this case, an artificial shift in 

density) can cause a reliable change in the repertoire of chemoreceptor genes.  

Another chemosensory gene of C. elegans, glb-5, has mutated in association 

with growth in a high-oxygen laboratory environment 62.  Reduced glb-5 activity in 

the laboratory strain decreases the animal’s sensitivity to oxygen 62,106 and 

affects other oxygen-regulated behaviors, such as their tendency to aggregate 

with other animals 62. 

Changes in human chemoreceptor genes are also associated with specific 

sensory changes.  Human polymorphism at the bitter receptor TAS2R leads to 

differences in perception of the bitter substance PTC 107, and polymorphism at 

the olfactory receptor OR7D4 leads to differences in perception of androstenone 

odors 108.  This variation in sensory perception alters the ingestion of bitter food 

109 and modifies physiological responses to odorants in human sweat, 

respectively 108,110.  

 

 



Gene death Gene birth

Figure 1.5
Olfactory receptor gene evolution in primates. Changes in the olfactory 
receptor (OR) gene repertoire in five primate species.  Left, based on 
cross-genomic comparisons, the common ancestor of primates had at least 551 
OR genes.  Many OR genes have been lost along the five branches to modern 
primates (numbers of gene losses are shown on each branch).  Right, the 
number of functional OR genes in modern primate species.  Humans have lost 
212 of the original 551 OR genes (white), retained 339 OR genes (dark blue), 
and gained 57 OR genes through gene duplication and divergence (light blue), 
for a total of 396 genes.  The rate of change in human OR genes is similar to the 
rate in other primate lineages.  Adapted from 111.
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Odors, tastes, and pheromones reflect features of an organism’s 

environment that change with diet, habitat, and population structure.  Because 

there are so many chemoreceptor genes, each tuned to different chemicals, 

genetic changes to this set of molecules provide a simple path to modifying 

specific behaviors without deleterious effects.  Variation in chemoreceptor genes 

between species that occupy different environmental niches carries this principle 

to the next evolutionary level.  Well-defined examples include shifts in the 

olfactory receptor repertoire of specialist Drosophila sechellia fruit flies that feed 

exclusively on the noni fruit 112, and the loss of sweet taste receptors in 

carnivorous cats 113. 

Visual systems also show evidence of rapid adaptation within and 

between animal species.  Changes in the sequence and number of the visual 

opsin genes, which encode cone photoreceptor proteins, have occurred 

repeatedly in vertebrate evolution 114.  Humans and old world monkeys have a 

recent opsin gene duplication that allows red-green color discrimination 

(reviewed in 115).  New world monkeys lack this duplication, but show evidence of 

intraspecies variation:  two alleles of a long-to-middle wavelength-sensitive (L-M) 

opsin gene on the X chromosome are maintained by balancing selection, and 

females that are heterozygous at this locus are able to discriminate more colors 

than hemizygous males or homozygous females 116. 

At a higher level, sensory systems can rapidly remodel the design or 

number of sensory organs to change behavior.  For example, the tetra fish 
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Astyanax mexicanus exists in two forms, one sighted and surface-dwelling, the 

other blind and cave-dwelling.  The loss of sight in cave-dwelling populations has 

been accompanied by expanded cell numbers in the mechanosensory organs of 

the lateral line, an adaptation that increases sensitivity to vibrations from food 

falling on the water surface 117.  In humans, genes required in the auditory 

system show signatures of positive selection that may be related to a 

sophisticated human ability, the use of language 118. 

 

Genes and the response to environmental cues.  An animal’s sensitivity to 

environmental cues at any given moment is determined not only by its sensory 

receptors, but also by shifting internal states.  For example, hungry animals are 

more sensitive to attractive food-related cues, and less sensitive to aversive 

cues, than they are when well-fed.  This example describes variability within one 

individual, but the interface between internal and external cues also represents a 

site for behavioral variation between individuals.  An example of natural variation 

at this interface is an animal’s choice whether or not to abandon a depleting food 

supply, which is known in behavioral ecology as the exploration-exploitation 

decision 119.  In C. elegans, as in other animals, abandoning a food supply is 

strongly modulated by environmental cues, including food quality, food quantity, 

and animal density 120,121.  It is also modulated by genetic variation, and has been 

studied using recombinant inbred lines from two C. elegans strains 43 that differ in 

their tendency to leave food (this is the subject of Chapter 2 of this Thesis; see 
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also 63). One QTL for the exploration-exploitation behavior corresponds to the G-

protein coupled Tyramine Receptor-3 (TYRA-3), which is related to vertebrate 

adrenergic receptors.  Noncoding polymorphisms in tyra-3 alter its expression 

levels in sensory neurons that detect food cues 63, and apparently modulate 

sensitivity to those food cues.  The effect of tyra-3 is only observed at 

intermediate food levels, whereas all animals, regardless of the tyra-3 allele, 

remain on abundant food and abandon low amounts of food 63. These results 

show how genetic variation interacts with the environment to regulate behavior: 

internal arousal states, signaled through adrenergic receptors, can couple 

strongly or weakly (depending on the adrenergic receptor allele) with a sensory 

input that modulates behavior. 

The ligand for tyra-3 is tyramine 122, one of several invertebrate 

neurotransmitters related to vertebrate adrenaline and noradrenaline 123.  This 

class of transmitters is linked to arousal states in invertebrates and vertebrates 

124.  Exploration versus exploitation decisions in primates are regulated by 

noradrenaline release 125, suggesting that analogous molecular pathways might 

have ancient roles in decision-making. 

 

Genetic variation and the environment act on common substrates. Another 

connection between genetic and environmental regulation of behavior is 

illustrated by studies of Drosophila aggression.  Fruit flies defend food resources 

or potential mates with attack behaviors like lunging and boxing 126.  The genetic 
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underpinnings of these behaviors have been analyzed by QTL approaches 44 and 

by selective breeding strategies in which the most aggressive flies in genetically 

heterogeneous populations were selectively mated for more than 20 generations 

67,127.  Both approaches found multigenic effects on aggression.  

As a way to identify candidate loci involved in aggression, microarray 

analysis was used to search for genes that were differentially expressed between 

highly aggressive and less aggressive flies derived from selective breeding or 

from random inbreeding of wild-derived populations 67,127,128 (see Figure 1.3).  

The overall transcriptional differences were substantial in three separate studies, 

but the gene number and specific gene sets identified were largely non-

overlapping.  A possible explanation for this finding is that outbred populations 

are so diverse that multiple independent combinations of alleles can lead to 

highly aggressive behavior or non-aggressive behavior.  Nonetheless, 25 of the 

differentially expressed genes had effects on aggression when tested using 

knockout alleles, supporting the validity of the candidate transcripts as regulators 

of behavior 67,127,128.  The genes that are differentially expressed in microarrays 

may be functional QTLs, or they may be indirect targets of the underlying genetic 

processes; linkage or identification of a mutation would be necessary to show 

that natural variation segregates at these loci. 

One interesting and informative gene that emerged from the artificially 

selected aggressive lines was Cyp6a20, which encodes one of multiple 

cytochrome P450 enzymes in Drosophila.  Expression of this gene is low in 
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aggressive strains compared to controls, and reduced expression is sufficient for 

behavioral differences in aggression 67.  Cyp6a20 is expressed in olfactory 

sensory organs, where it may regulate the responses to pheromones that 

influence aggression 129.  Interestingly, mRNA levels of Cyp6a20 are reduced in 

flies that are reared in isolation, which are more aggressive than socially 

experienced flies 129.  This observation suggests that social experience 

modulates aggression by changing Cyp6a20 levels.  Thus Cyp6a20 sits at the 

intersection of genetic and environmental influences on behavior:  either a 

genetic change or an environmental change that decreases Cyp6a20 expression 

leads to increased aggression. 

Gene-environment interactions are strongly supported in humans as well, 

and may form a framework for understanding many psychiatric disorders and risk 

factors.  In depression, for example, genetic susceptibility (having an identical 

twin who is depressed) interacts with environmental insults, like divorce or death 

in the family, to give a superadditive effect 130. 

 

The next step:  from genes to circuits that affect behavior 

A genetic change that affects behavior acts in the context of the neural 

processes that generate and regulate the behavior.  In some cases, such as 

changes in sensory receptor genes, this relationship is straightforward.  In other 

cases, studying the behavioral gene can provide new insights into brain circuits, 

as is illustrated by two examples from studying genes that affect social behavior. 
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From a social gene to a social circuit in C. elegans.  Most C. elegans strains 

are social feeders that aggregate in the presence of food, but the laboratory 

strain N2 is a solitary feeder.  Its low levels of aggregation are associated with a 

strong-effect, high-activity allele of a neuropeptide Y receptor homolog, npr-1, 

that differs from a low-activity (high aggregation) allele at a single amino acid 

residue 61.  Both alleles were originally thought to occur in the wild, but closer 

examination revealed that the high-activity solitary allele arose during laboratory 

cultivation 62 and increases fitness in the laboratory environment 131,132. 

An advantage to studying behavioral variation in C. elegans is the ability to 

examine the neural circuits regulated by a genetic variant.  npr-1 is expressed in 

~10% of C. elegans neurons, but careful mapping of its site of action showed that 

its influence on aggregation is dominated by its effects on a single pair of 

integrating neurons called RMG neurons 133.  RMG neurons are essential for 

aggregation, and are linked by gap junctions to multiple classes of sensory 

neurons that detect oxygen, pheromones, noxious cues, and nutrients.  

Aggregation is associated with high levels of all of these sensory cues, 

suggesting that RMG couples multiple sensory inputs to drive a common 

behavior.  The high-activity laboratory npr-1 variant partially uncouples this circuit 

to diminish aggregation behavior without disrupting other important roles of the 

sensory cues.  The discovery of this circuit element via the npr-1 variant shows 

how genetic approaches can advance neurobiological studies. 
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Differential gene expression pattern leads to changes in behavior: the case 

of neuropeptide receptors.  Variation in social behaviors is commonly observed 

within and between mammalian species, and here too genetic studies have 

provided fresh insights into the neurobiology of social behavior.  Two related 

neuropeptides, oxytocin and arginine-vasopressin (AVP), are important 

regulators of mammalian social and reproductive behavior 134.  Genetic variation 

in AVP signaling has been linked to rodent social behavior through cross-species 

comparisons of monogamous prairie voles and polygamous montane voles 135.  

AVP is released during mating, and promotes male pair-bonding and paternal 

behavior when injected into ventricles of the monogamous male vole, but does 

not have this effect on the polygamous male vole 136.  Conversely, antagonists of 

AVP block male pair-bonding in monogamous voles 137.  Both vole species have 

functional AVP genes and functional vasopressin receptor genes, but they differ 

in their expression of the vasopressin 1a receptor (V1aR).  A brain region 

involved in the neurobiology of reward called the ventral pallidum only expresses 

V1aR in monogamous voles 138 and, remarkably, affiliative behavior of 

polygamous montane voles is substantially increased by virally-mediated 

introduction of V1aR into the ventral pallidum 139.  These results implicate 

differential expression of the V1aR neuropeptide receptor in the differential 

organization of social behaviors in the two vole species.  They also point to the 

ventral pallidum as a site that can encode rewarding features of social cues.  
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Social behaviors are central to human experience, and their disruption is a 

key feature of human autism and schizophrenia.  Little is known about the human 

circuits for social behavior, but the rodent pathways provide a starting point for 

further investigation.  

 

Emerging themes in the genetics of behavior  

Is it possible to derive general principles about natural variation and the 

evolution of behavior, by analogy with common principles that have been 

uncovered in evolutionary developmental biology?  Natural variation in the PKG 

gene affects foraging behavior in both insects and nematodes, and variation in 

the period gene affects circadian rhythm in flies and humans, a promising start.  

Other indications of common themes are not so strongly tied to a single gene, but 

may be tied to classes of genes, like the sensory receptor genes described 

above.  We suggest that highly evolvable behavioral genes will be characterized 

by diversity, exemplified by multigene families, and by modular flexibility, the 

ability to form new behavioral connections easily. 

 

Adaptable neuromodulatory pathways.  Several behavioral trait genes are 

associated with G-protein coupled neurotransmitter receptors or their regulators:  

mouse Rgs2, vole avpr1a, and nematode tyra-3 and npr-1.  In each case, the 

GPCR system is associated with internal motivational states – anxiety, affiliation, 
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arousal, or hunger – that set thresholds for behavioral responses to external 

stimuli. 

The amenability of GPCR pathways to natural variation matches their 

diversity and modular flexibility.  All animal genomes encode dozens of GPCRs 

for neuropeptides and for modulatory bioamines that modify neuronal excitability 

and synaptic strength.  These modulators are typically not essential for core 

neurotransmission and this, coupled with their variety, leaves room for 

evolvability.   Moreover, neuromodulators can act at a distance and not just at 

local synapses, which allows them to broadcast internal motivational or arousal 

states.  Action at a distance enables the creation of new behavioral links between 

distant brain areas simply by modifying the site of receptor expression, without 

requiring growth of new anatomical connections.  In agreement with the 

hypothesis that neuromodulators are substrates for behavioral diversity, 

neuropeptides and neuropeptide receptor expression patterns evolve rapidly.  

Expression of oxytocin and vasopressin receptors is highly variable in different 

rodents 140,141, and cross-species comparisons of the stomatogastric ganglion of 

crustaceans show a near-invariant set of neurons, but divergence in 

neuropeptide expression 142,143.   

Genetic variation in GCPRs and other regulators of neurotransmission has 

been associated with human behavioral and psychiatric traits. For example, 

neurotransmitter transporters have been implicated in depression 144,145 and the 

DRD4 dopamine receptor is implicated in novelty seeking 146.  Recent studies 
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have discovered additional variants in GPCRs that may increase the risk of 

psychiatric disorders:  rare microduplications in the vasoactive intestinal peptide 

receptor 1 (VIPR1) in schizophrenia 147, a polymorphism in the HTR2B serotonin 

receptor found in Finns with severe impulsivity 148, and common polymorphisms 

at the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor PAC1 

in post-traumatic stress disorder 149.  A cautious stance to human association 

studies is warranted, since promising results have often failed to maintain 

significance upon meta-analysis 150,151.  These failures of replication, however, 

might reflect real genetic effects that are specific to a population or sensitive to 

genetic backgrounds.   

 

Balancing selection for behavioral traits.  Taking a step back from the 

specific genes that affect behavior, why does behavioral variation persist within 

a species?  Genetic variation is generated by mutation and maintained through 

drift, population-specific selection, or balancing selection.  Balancing selection 

maintains trait variation because either of two alleles can be advantageous 

under different circumstances:  two alleles can be balanced if a heterozygote is 

more successful than either homozygote, if each of the two alleles is better-

adapted to one of two alternative environments, or if each allele promotes a 

different, but equally successful survival strategy in the same environment 152,153.  

Emotionality traits in mice are potentially subject to balancing selection in 

different environments:  a predator-rich environment may favor animals that are 
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highly responsive to potentially dangerous stimuli, whereas a predator-poor 

environment may relax that selective pressure and favor bolder animals 154.  

Foraging activity is another behavioral axis subject to balancing selection:  high 

activity levels that promote exploration of resource-poor environments may be 

more or less advantageous than low activity levels that conserve energy 

resources, depending on the environment.  The rover and sitter alleles of 

Drosophila larvae are maintained in wild populations by balancing selection of an 

interesting kind:  different alleles are favored depending on the density of larvae 

and the relative frequency of rover and sitter alleles in the population 155,156.  

Density-dependent and frequency-dependent selection are special cases of 

balancing selection that are relevant to social behaviors as well as foraging.  

In this analysis, the reproducibility of an animal’s environment should 

have predictable effects on its genetic variability.  If an important environmental 

cue is entirely reliable, like the circadian cycle in the tropics, information about 

that cue should be reliably encoded by the genome.  If an environmental cue is 

entirely unreliable, animals may learn about it from individual experience.  In the 

intermediate domain, information about food supply, predators, weather 

patterns, or population density may be variable or constant, and balancing 

selection may encode different degrees of genetic versus experience-dependent 

behavior, accordingly.  

Human populations may also be subject to balancing selection for 

behavioral adaptations.  In that context, it may be fruitful to consider traits that 
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are frequently under balancing selection in animals, such as foraging strategies, 

activity levels, and sensitivity to threat.   

 

Perspective 

The analysis of natural variation in behavior has convincingly shown a 

complex genetic basis and pervasive interactions between genetic variants and 

the environment.  Current excitement focuses on identifying more of the 

molecules involved in behavioral variation, and translating these genetic 

discoveries into neurobiological and evolutionary insight. 

 

Thesis overview 

The topic of Chapter 2 of my thesis is natural variation in exploratory 

behavior in C. elegans, manifested by the decision to abandon a depleting food 

patch.  I will describe the identification of polymorphisms in the monoamine 

receptor tyra-3 and how these polymorphisms modify the neuronal circuits that 

participate in the decision to abandon food. 

On Chapter 3 I describe the identification of natural variation in the GABA 

receptor exp-1 and how it contributes to variation in the social behavior of C. 

elegans wild-type strains. 

A general analysis of my thesis and ideas for future experiments are 

discussed in Chapter 4. 
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“There’s a feeling I get when I look to the west and my spirit is crying for leaving” 

–Robert Plant 

 

CHAPTER 2:  Tyramine receptor polymorphisms affect exploratory 

behavior in C. elegans 

 

Summary 

Innate behaviors are flexible: they change rapidly in response to transient 

environmental conditions, and are modified slowly by changes in the genome. A 

classical flexible behavior is the exploration-exploitation decision, which 

describes the time at which foraging animals choose to abandon a depleting food 

supply. Here I use quantitative genetic analysis to examine the decision to leave 

a food patch in Caenorhabditis elegans. I found that patch-leaving is a multigenic 

trait regulated in part by naturally-occurring noncoding polymorphisms in tyra-3, 

which encodes a G protein-coupled tyramine receptor related to vertebrate 

adrenergic receptors. tyra-3 acts in sensory neurons that detect food-related 

cues, suggesting that the internal monoamines detected by tyra-3 regulate 

responses to external conditions. These results indicate that genetic variation 

and environmental cues can converge on common circuits to regulate behavior, 

and suggest that monoamines have an ancient role in regulating behavioral 

decisions.
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Introduction 

Despite abundant evidence for heritability of behavioral traits within and 

between species, only a few naturally varying traits have been associated with 

polymorphisms in specific genes 157. Foraging for food is an ecologically relevant, 

environmentally regulated behavior that is suitable for genetic analysis, as it can 

differ between populations of a species that live in different habitats 158. An 

essential foraging decision is the choice between exploiting existing resources 

and exploring other options that may provide new resources. This decision can 

be described by Charnov’s marginal value theorem, which proposes that the 

optimal time for an animal to leave a foraging ground occurs when local resource 

levels fall below the average level in the entire habitat 159. The marginal value 

theorem was developed for animals foraging for food in patchy environments, but 

has analogies with diverse decision-making processes in field biology, cognitive 

neuroscience, and economics 160,161,125,158.  The theoretical and predictive 

successes of the marginal value theorem raise a series of mechanistic questions.  

First, to what extent is the decision innate and genetically encoded, and to what 

extent is it learned through individual experience?  Second, how does the 

nervous system enact the comparison between current conditions and the 

decision threshold, and transform it into an adaptive behavior? 

Studies of patch-leaving behavior in the nematode C. elegans have 

revealed innate, environmental, and experience-dependent factors that affect its 

foraging decisions. C. elegans rarely leaves a dense lawn of high-quality 
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bacterial food 121,162, but more frequently leaves lawns of pathogenic bacteria or 

lawns that are spiked with chemical repellents 163,164.  An animal’s experience 

with high-quality food makes it more likely to leave a low-quality lawn 121.  Males 

will leave lawns that do not contain potential mates 165, while hermaphrodites 

leave lawns when animal density is high 166. In addition, wild-type strains vary in 

their propensity to leave bacterial lawns based on a genetic polymorphism that 

affects the G protein-coupled neuropeptide receptor NPR-1 166,167,131. The 

standard laboratory strain N2, which has a high-activity allele of npr-1 61 remains 

on lawns of high-quality food and leaves lawns of pathogenic bacteria, whereas 

animals with a low-activity allele of npr-1 that differs at one amino acid are less 

likely to leave a pathogenic lawn and more likely to leave high-quality food 

166,167,131. This npr-1 polymorphism affects many foraging behaviors; low-activity 

npr-1 strains aggregate into social feeding groups, move quickly on food, and 

have altered responses to oxygen, carbon dioxide, and pheromones compared to 

the N2 laboratory strain 61,168-170,133,62. The high-activity allele of npr-1 in N2 arose 

in the laboratory, probably as an adaptation to laboratory conditions 62, so it is not 

known whether genetic variation affects C. elegans foraging in natural 

environments.  

Natural genetic variation within a species can generate diversity in 

foraging behavior, as exemplified by the polymorphic Drosophila melanogaster 

foraging (for) gene, which encodes a cGMP-dependent protein kinase 72. A low-

activity allele of for is present in Drosophila sitter larvae, which move slowly on a 
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food patch; a high-activity allele of for is present in rover larvae, which move 

quickly and disperse rapidly 171. A for-related cGMP-dependent kinase affects 

foraging in honeybees, ants, and nematodes, suggesting that diverse animals 

share molecular mechanisms for behavioral regulation 104,171. 

To gain further insight into the genetics and neurobiology of lawn-leaving 

behavior in C. elegans, I used quantitative genetic analysis to examine its genetic 

architecture in wild-type strains, and show that genetic variation in multiple loci, 

including a tyramine receptor, interacts with environmental conditions to regulate 

the exploitation-exploration decision.  

 

Multiple loci affect leaving behavior 

Different wild-type strains of C. elegans vary in their tendency to leave or 

remain on a standardized small lawn of bacterial food (Figure 2.1a). For 

example, adult hermaphrodites from the laboratory strain N2 leave the lawn only 

once every 100 minutes, whereas animals from the CB4856 (HW) strain isolated 

from pineapple fields in Hawaii leave the lawn once every 5-6 minutes (Figure 

2.1b). To determine the genetic architecture of this behavioral difference between 

N2 and HW, I quantified leaving rates in 91 N2-HW recombinant inbred advanced 

intercross lines (RIAILs) 43. 58 of the RIAILs had low leaving rates comparable to 

N2, only 6-10 had high leaving rates comparable to HW, and 23 had intermediate 

rates (Figure 2.1c). The excess of low leaving rates and the continuous 
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behavioral distribution in RIAILs suggest that leaving is a multigenic quantitative 

trait.  

Quantitative trait locus (QTL) analysis across 1454 informative single 

nucleotide polymorphisms (SNPs) of the RIAILs uncovered two regions with 

significant effects on leaving rates, one on the X chromosome and one on 

chromosome II (Figure 2.1d).  The autosomal QTL are covered in Appendix 2.  

The X chromosome QTL overlapped with the location of the polymorphic G 

protein-coupled neuropeptide receptor NPR-1, which affects many food-related 

behaviors 61,166. The npr-1 polymorphism has previously been shown to affect 

leaving 166, as well as locomotion speed on food 61, a behavior that partially 

correlates with leaving rate (Figure 2.2). Examining the npr-1 genotype in the 

RIAILs revealed a strong but asymmetric correlation with leaving rates (Figure 

2.1c). Every strain with the N2 allele of npr-1 had low leaving rates (≤1 event 

every 20 minutes), but strains with the HW allele of npr-1 could have either low or 

high leaving rates (Figure 2.1c). The asymmetric distribution is consistent with a 

role for npr-1 in leaving behavior, but indicates that npr-1 has epistatic 

interactions with other loci segregating in the RIAILs.  
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Figure 2.1. 
Lawn-leaving behavior varies between wild-type C. elegans strains. 
a) Lawn-leaving assays. Top: Six adult HW hermaphrodites on a bacterial lawn. 
One animal has left the lawn and one is leaving. Bottom: Track of a HW animal 
during 5 min of an assay; colour shows passage of time. The border of the lawn 
is outlined. Scale bar, 6 mm. b) Leaving rates of six wild-type strains. c) Leaving 
rates of 91 N2-HW recombinant inbred advanced intercross lines (RIAILs) 43 and 
parental strains. d) QTL analysis of RIAILs shown in c. The horizontal line 
denotes the P < 0.01 genome-wide significance threshold. Error bars indicate 
s.e.m.
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Figure 2.2
Locomotion speed on a food patch correlates with leaving rate. Correlation 
between locomotion speed on a small bacterial lawn and leaving rate in wild-type 
strains examined in Figure 2.1. The leav-2 strain (Figure 2.4a), which has an N2 
allele of tyra-3 in HW background, is shown for comparison.
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The involvement of npr-1 in leaving behavior was confirmed by analyzing 

near-isogenic lines (NILs) containing the N2 and HW npr-1 alleles in the 

reciprocal strain background, and by examining npr-1 null mutants (Figure 2.3). 

Specific transgenic expression of the N2 npr-1 allele in its essential site of action, 

the RMG motor neurons 133, sharply reduced the leaving rate of HW animals 

(Figure 2.3). Thus npr-1 is a regulator of HW leaving rates, but not the only 

contributing gene. 

 

tyra-3 affects leaving behavior 

Studies in yeast, flies, mice, and plants have shown that individual QTLs 

often resolve into several genes that contribute to phenotypic variance 76-78,44. 

Similarly, fine-mapping of the ~ 1 Mb QTL that contained npr-1 suggested the 

existence of multiple loci that affected leaving rates. A NIL with <150 kb of N2 

DNA spanning the npr-1 locus introgressed into HW had N2-like leaving rates 

(leav-1 QTL, Figure 2.3 and Figure 2.4a). A second NIL with 700 kb of N2 DNA 

that did not cover npr-1 introgressed into HW also had a low leaving rate, with 

about half the leaving rate of HW (leav-2 QTL, Figure 2.4a). These results 

suggest the existence of a second X-linked locus that affects leaving rates, which 

I called leav-2. The leav-2 region did not affect leaving in the N2 genetic 

background (Figure 2.4a), so all subsequent experiments were conducted in the 

HW background. 

  



Figure. 2.3
npr-1 affects leaving behavior. Near-isogenic lines replace npr-1 in each strain 
with the other strain’s allele. The N2 allele of npr-1 has high activity compared to 
the HW allele; npr-1(ad609) is an EMS-induced loss-of-function allele of npr-1. 
Transgenic RMG expression of N2 npr-1 in HW animals was achieved using an 
intersectional Cre-Lox strategy with two transgenes 133. Error bars indicate s.e.m. 
* P  <  0.05, ** P  <  0.01 by ANOVA with Dunnett test.
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Figure 2.4
N2 and HW tyra-3 alleles differentially affect leaving rates.  a) Dissection of 
the QTL on X into two loci:  leav-1 (4.70-4.78 Mb) and leav-2 (4.78-5.75 Mb). 
‘Genotype’ shows chromosomes; thick line is X chromosome. Blue denotes HW 
DNA, red denotes N2 DNA, and yellow denotes the tyra-3(ok325) null mutant. In 
heterozygous strains, both X chromosomes are diagrammed. b) tyra-3 genomic 
fragments (Figure 2.8a) reduce HW leaving rates. Blue, HW transgenes; red, N2 
transgenes. Two-way ANOVA showed significant effects of both transgene 
concentration and DNA strain of origin. c) Effect of tyra-3 RNAi. Error bars 
indicate s.e.m. * P < 0.05, ** P < 0.01, *** P < 0.001 by t-test or ANOVA with 
Dunnett test.
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A 100 kb minimal region for leav-2 was identified by analyzing the 

breakpoints of individual RIAILs (Figure 2.5 and Methods). I characterized the 

genetic properties of leav-2 by crossing the leav-2 NIL strain with HW. The 

heterozygous F1 progeny had leaving rates similar to the leav-2 NIL (Figure 

2.4a), indicating that the N2 leav-2 locus was dominant to HW and suggesting 

that N2 transgenes covering the relevant gene should reduce the leaving rate of 

HW animals. Therefore, overlapping N2 genomic DNA fragments from the 100 kb 

minimal leav-2 region were introduced into HW animals by microinjection (Figure 

2.4b and Figure 2.6). A single gene in this region reduced leaving rates: tyra-3, 

which encodes a G protein-coupled receptor for the invertebrate norepinephrine-

like neurotransmitters tyramine and octopamine 122. Tyramine and octopamine 

receptors are related to vertebrate adrenergic receptors, and are thought to carry 

out analogous functions. tyra-3 genomic fragments from the N2 strain were more 

active than tyra-3 fragments from the HW strain injected at the same 

concentration, consistent with the possibility that tyra-3 is a polymorphic gene 

that differs between N2 and HW (Figure 2.4b).  

  



Figure 2.5 
Phenotype-genotype correlations in RIAILs.  Leaving behavior of recombinant 
inbred advanced intercross lines (RIAILs) with HW npr-1 and a breakpoint to the 
left of 5.75 Mb; these six RIAILs were used to define a potential location for the 
QTL in leav-2 strain. Blue denotes HW DNA, red denotes N2 DNA, and grey 
denotes breakpoints. QX108, QX122, and QX202 have lower leaving rates than 
QX75, QX154, and QX158. The QX158 strain appears to have a lower leaving 
rate than QX75 and QX154, but after backcrossing the X chromosome into the 
HW strain its leaving rates were indistinguishable from HW.
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Figure 2.6
tyra-3 is the gene affected by the leav-2 QTL. Leaving rates of transgenic HW 
animals injected with N2 DNA covering segments of the inferred position of the 
leav-2 QTL. Three independent transgenic lines were tested for each segment; 
two segments caused lethality upon injection and could not be scored. Error bars 
indicate s.e.m. *** P < 0.001 by ANOVA with Dunnett test.
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If leav-2 corresponds to tyra-3, a tyra-3 mutation should eliminate its 

activity 71. To test this prediction genetically, a null allele of tyra-3 in an N2 

background was introgressed into a HW background. The N2 region in the 

resulting NIL covered from 4.9 to 5.4 MB of the X chromosome, the inferred 

position of leav-2. The tyra-3(ok325) null NIL had high (HW-like) leaving rates, 

suggesting that N2 leav-2 activity was not present in the strain (Figure 2.4a). 

Heterozygotes between HW and the near-isogenic tyra-3(ok325) null strain also 

had high leaving rates (Figure 2.4a). These results are as expected if the active 

locus in leav-2 is tyra-3; however, other genes within the introgressed regions 

could also contribute to the different leaving rates.  

To strengthen the connection between tyra-3 and leav-2, RNAi against 

tyra-3 was performed in the leav-2 NIL that has low leaving rates due to the 

presence of the N2 QTL. Knockdown of tyra-3 increased the leaving rate of the 

leav-2 NIL to levels observed in HW animals, the result predicted if the tyra-3 

locus from N2 reduces leaving (Figure 2.4c). Comparable experiments in a pure 

HW strain had minimal effects, as expected if tyra-3 activity in HW is already low.  

Further confirmation that the HW allele of tyra-3 has reduced biological 

activity was provided by examining the one phenotype previously associated with 

tyra-3, avoidance of dilute octanol 122. tyra-3 null mutants avoid octanol more 

strongly than wild-type N2; the NIL strain with the HW tyra-3 allele had a similar 

enhanced octanol response, suggesting that the HW tyra-3 allele has reduced 

tyra-3 function (Figure 2.7 and see Appendix 2). 



Figure 2.7
The HW allele of tyra-3 has reduced activity in an avoidance assay.  Animals 
were scored for avoidance of a point source of 30% octanol, off food after 40 
minutes of starvation; rapid onset of reversals indicate a stronger response. 
Animals with a tyra-3(ok325) null allele or a HW tyra-3 allele responded more 
rapidly than N2 animals.  Error bars indicate s.e.m. ** P < 0.01, *** P < 0.001 by 
ANOVA with Dunnett test.
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Noncoding changes affect tyra-3 activity 

The differential activity of N2 and HW genomic tyra-3 fragments in the 

leaving assay suggested that N2 and HW alleles are functionally distinct (Figure 

2.4b). To identify polymorphisms between N2 and HW alleles of tyra-3, I 

sequenced ~19 kb surrounding the tyra-3 locus in HW. There were 34 differences 

between HW and the N2 consensus genomic sequence (Figure 2.8a): 33 

noncoding changes and a single coding difference that changed a glutamate in 

the tyra-3b isoform to glycine.  

Sequences that contribute to the differential activity of N2 and HW tyra-3 

alleles were localized further using transgenic assays. I fused N2 and HW tyra-3b 

cDNAs to 4.9 kb of noncoding N2 or HW sequence upstream of the tyra-3b start 

site and introduced each of the four resulting clones into the HW strain. tyra-3 

transgenes with the N2 noncoding sequence were significantly more potent than 

comparable transgenes with the HW sequence, regardless of whether they 

preceded N2 or HW tyra-3 cDNAs (Figure 2.8b), excluding the coding 

polymorphism and localizing a functional difference between N2 and HW tyra-3 

genes to a 4.9 kb region that harbours 5 noncoding SNPs, 1 single nucleotide 

insertion, and a 184 bp deletion in HW. To narrow the relevant change down 

further, the 184 bp deletion was engineered into the N2 tyra-3 genomic fragment; 

this clone was significantly less potent in the leaving assay than the full N2 

genomic fragment (Figure 2.9). These results indicate that the 184 bp deletion 
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represents at least part of the functional difference between N2 and HW tyra-3 

alleles. 

Sequence variation in tyra-3 noncoding regions could affect the level or 

location of tyra-3 expression. Quantitative RT-PCR of tyra-3 mRNA levels in 

mixed-stage animals indicated that N2 expressed approximately twice as much 

tyra-3 mRNA as HW, consistent with increased tyra-3 activity in the N2 strain 

(Figure 2.8c). The leav-2 NIL with N2 tyra-3 introgressed into HW also had high 

tyra-3 mRNA levels, suggesting that cis-acting changes affect tyra-3 expression 

(Figure 2.8c).  

Since both N2 and HW were cultivated in the laboratory for many years 

before permanent cultures were frozen, I wished to exclude the possibility that 

the tyra-3 polymorphisms were laboratory-derived 62. Therefore, 19 kb of the tyra-

3 locus was sequenced in all wild strains tested for leaving behavior in Figure 

2.1, including three strains that were frozen immediately after their isolation. Each 

strain represents a different C. elegans haplotype group 43. Both N2-like and HW-

like tyra-3 sequences were represented in the wild-caught strains, confirming the 

wild ancestry of both alleles (Table 2.1 and Methods). Notably, the tyra-3 locus of 

MY1 was identical to N2 and, correspondingly, the leaving rate of MY1 was 

similar to that of N2.  

 

  



Figure 2.8
Noncoding changes in tyra-3 affect its activity and expression level. a) HW 
polymorphisms in the tyra-3 locus relative to N2. tyra-3 encodes three predicted 
G protein-coupled receptors. The genomic region examined in Figure 2.4b and 
the 4.9 kb promoter used in Figures 2.8b and 2.10a are indicated. b) Leaving 
rates of transgenic HW animals with tyra-3b promoters fused to tyra-3b cDNAs. 
Error bars indicate s.e.m. ** P < 0.01 by two-way ANOVA; no statistical 
interaction between the promoter and the cDNA. c) Relative amounts of tyra-3 
isoform mRNAs in HW, N2, and leav-2 strains (Figure 2.4a). Error bars indicate 
s.d. ** P < 0.01 compared to HW, ANOVA with Dunnett test.
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Figure 2.9
The 184 bp tyra-3 noncoding indel affects the leaving rate.  Leaving rates in 
HW animals with an N2 tyra-3 transgene or a similar transgene bearing an 
engineered 184 bp deletion. To control for variation between different transgenes, 
five independent transgenic lines per transgene were tested and combined. Error 
bars indicate s.e.m. * P < 0.05 by t-test.
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Table 2.1. Polymorphisms in the 19 kb  tyra-3 locus

Position on X Chr. 
(WS210)

Wormbase 
reference

N2(1) 
(Bristol) MY1 MY14 CB4853 JU258

CB4856 
(HW)

4937008 T T T C C C C
4937279 G G G C C C C
4937525 A A A C C C C
4938557-4938560 4 bp(2) Del Del Del Del Del Del
4939032-4939033(3) - - - Ins A(4) - - -
4940383 C C C C T C C
4940524-4940525 2 bp 2 bp 2 bp 2 bp 2 bp Del 2 bp
4940538 A A A Del Del A Del
4940540 A A A Del Del T Del
4940740 T T T C C C C
4941601 A A A G G G G
4941668 A A A A A C A
4941684 A A A T T T T
4941752-4941753 - - - Ins A Ins A Ins A Ins A
4941946 A A A A A Del Del
4942122-4942141 20 bp 20 bp 20 bp Del Del Del Del
4942248 T T T G G G G
4942471 A A A A Del A Del
4942486 G G G A A A A
4942500-4942503 4 bp 4 bp 4 bp Del Del 4 bp 4 bp
4942565-4942573 9 bp 9 bp 9 bp 9 bp Del 9 bp 9 bp
4942815 T T T A A A A
4942836 G G G A A A A
4943047 G G G G G A G
4943084 G G G G G A G
4943188 G G G G C G G
4943344 C C C T C T T
4944083 C C C T T T T
4944482 A A A A C A A
4944611 A A A A A A Del
4944629 G G G A G G G
4944776 A A A T T T T
4945282 T T T G T T T
4945772-4945773 - - - Ins A Ins A Ins A Ins A
4946063 A A A A T A A
4946367 T T T T T C T
4947025 T T T T A T T
4947026 G G G G A G G
4947027-4947028 - - - - Ins 5 bp - -
4947028 C C C C T C C
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Table 2.1, continued
Position on X Chr. 
(WS210)

Wormbase 
reference

N2 
(Bristol) MY1 MY14 CB4853 JU258

CB4856 
(HW)

4947029 G G G G C G G
4948269 T T T A A A A
4948487 A A A A A A Del
4948578-4948579 - - - - Ins T - -
4948644 A A A G G G G
4948657 T T T C T C C
4948658-4948841 184 bp 184 bp 184 bp Del 184 bp Del Del
4948784 C C C C G C C
4948801 T T T T C T T
4948804-4948805 - - - - Ins T - -
4948807-4948808 2 bp 2 bp 2 bp 2 bp Del 2 bp 2 bp
4949069 C C C T T T T
4949663 A A A G G G G
4950349 A A A G G G G
4950685 T T T C C C C
4951209 A A A G A G G
4951596 G G G A A A A
4952048 T T T T T T T
4952532 T T T T C T T
4952780 A A A A G A A
4955677 G G G T G T T

(1) N2 was resequenced and compared to the N2 Wormbase reference.

(3) Insertions (Ins) lie between the two positions.

(2) These 4 bp are deleted in the resequenced N2 and all 'wild type' strains, 
indicating a discrepancy with the Wormbase reference.      

(4) The nucleotide of single-bp insertions is specified.  Longer insertions are 
referred to by their length, indicated in parentheses. 

58



 59 

 
tyra-3 acts in sensory neurons  

The identification of tyra-3 provided an opportunity to characterize the 

neuronal basis of the decision to leave or remain on a food patch. The biological 

activity of a transgene with 4.9 kb upstream of the tyra-3b start site fused to a 

tyra-3 cDNA (Figure 2.8b) implied that it was expressed in cells that regulate 

leaving behavior. When this 4.9 kb region was fused to GFP, it drove reliable 

expression in ASK, ADL, AIM, AUA, BAG, CEP, OLQ, and SDQL neurons, in 

other unidentified neurons in the ventral ganglion and the tail, occasionally in 

ASH, AFD and AWC neurons, and in two non-neuronal cell types, the 

spermatheca and the distal tip cell (Figure 2.10a and data not shown). The same 

set of cells was observed with reporter genes bearing either N2 or HW tyra-3 

upstream regions, and in both N2 and HW genetic backgrounds. Together with 

the quantitative RT-PCR data (Figure 2.8c), these results suggest that different 

tyra-3 expression levels, not different sites of expression, distinguish N2 and HW 

alleles. 

  



Figure 2.10
tyra-3 acts in ASK and BAG sensory neurons. a) Expression of 4.9 kb N2 
tyra-3b promoter::GFP fusion (Figure 2.8a) in HW animal; HW tyra-3b 
promoter::GFP is expressed in the same cells. Posterior signal is gut 
autofluorescence. Scale bar = 20 μm. b) Leaving rates of HW strains expressing 
tyra-3b in specific cells. c) Left: GFP fluorescence intensity in ASK of HW animals 
with a MosSCI insertion of N2 or HW 4.9 kb tyra-3b promoter::GFP. Right: 
Schematic of MosSCI technique 172. d) Leaving rates after killing ASK or BAG in 
HW and leav-2 strains (Figure 2.4a). Error bars indicate s.e.m. * P < 0.05, ** P < 
0.01, or *** P < 0.001 by t-test or ANOVA with Dunnett test.
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The neurons whose activity is regulated by tyra-3 were localized further by 

expressing tyra-3 cDNAs from cell type-specific promoters. tyra-3 expression in 

ASK or BAG sensory neurons significantly reduced leaving, but expression in the 

CEP or ADL sensory neurons did not (Figure 2.10b). The ASK neurons sense 

attractive food-derived amino acids 173 and regulate search behaviors after 

animals are removed from food 174,175. The BAG neurons sense CO2 and O2, two 

cues associated with bacterial metabolism 176,177. Lowering O2 to levels that 

activate BAG reduced leaving rates (Figure 2.11). 

To ask whether the tyra-3 noncoding polymorphism affects expression in 

relevant neurons, single-copy N2 or HW tyra-3b promoters driving GFP were 

inserted into a single, defined chromosomal location using the MosSCI technique 

172. GFP levels in ASK neurons were significantly higher for transgenes 

containing the N2 promoter compared to those containing the HW promoter 

(Figure 2.10c). These results suggest that the N2 tyra-3 locus is associated with 

higher tyra-3 expression in ASK, as well as higher tyra-3 mRNA expression at a 

whole-animal level; expression in BAG was not examined. 

  



Figure 2.11.
Lowering O2 levels reduces leaving rates. HW animals with either N2 or HW 
alleles of tyra-3 have lower leaving rates at 4% O2 than at 21% O2. Assays were 
conducted in a flow chamber with oxygen concentrations controlled by external 
tanks of mixed gases. Two-way ANOVA showed significant effects of both the 
tyra-3 genotype and the O2 concentration, with no significant interaction between 
them. Error bars indicate s.e.m. ** P < 0.01, *** P < 0.001 by two-way ANOVA.
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The behavioral functions of ASK and BAG, and tyra-3’s effect on those 

functions, were assessed by killing the neurons in different genetic backgrounds. 

Killing the ASK neurons reduced the leaving rate of HW animals, indicating that 

ASK can promote leaving (Figure 2.10d). The ablation resembled the effect of 

the ASK::tyra-3 transgene, suggesting that tyra-3 reduces ASK activity. In 

agreement with this idea, killing the ASK neurons in a strain with the N2 high-

activity tyra-3 allele did not reduce their leaving rates further. The effect of tyra-3 

on ASK was selective for this assay; tyra-3 did not reduce lysine chemotaxis, a 

second ASK-dependent behavior (Figure 2.12).  

Killing the BAG neurons increased leaving rates in the strain with the N2 

tyra-3 allele, demonstrating that BAG neurons prevent leaving (Figure 2.10d). 

However, killing BAG had no effect in the strain with the HW tyra-3 allele, 

suggesting that BAG activity is already low in this strain under the assay 

conditions. The ablation and genetic results suggest that the N2 tyra-3 allele 

decreases ASK activity and increases BAG activity, two changes that act 

together to prevent leaving (Figure 2.13). 

 

  



Figure 2.12
tyra-3 does not affect lysine chemotaxis.  Killing ASK reduces chemotaxis to 5 
mM L-lysine, but a tyra-3(ok325) null allele or a HW tyra-3 allele did not affect the 
behavior. Chemotaxis was scored by adding lysine to two quadrants of agar on a 
small plate, placing washed animals in the center of the plate, and examining 
their distribution after 5 minutes; chemotaxis index = [(animals on 
lysine)-(animals not on lysine)]/(total number of animals). Error bars indicate 
s.e.m. ** P < 0.01 by ANOVA with Dunnett test.
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Figure 2.13
tyra-3 polymorphism affects an exploration-exploitation decision.  The 
tyra-3 gene senses tyramine and modifies the function of ASK and BAG 
chemosensory neurons, which promote or inhibit lawn-leaving, respectively. The 
N2 high-activity allele of tyra-3 suppresses the function of ASK neurons and 
enhances the function of BAG neurons compared to the HW low-activity allele of 
tyra-3. Both functions of the N2 tyra-3 allele suppress lawn-leaving. Solid lines 
indicate activities identified in this study; dashed lines indicate results from prior 
studies.
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tyra-3 is a tyramine receptor 

Biochemical evidence shows that tyra-3 binds tyramine with nanomolar 

affinity and this binding is competed 10 times more strongly by tyramine than by 

octopamine 122.  Moreover, tyra-3 is required for some behavioral responses to 

exogenous tyramine, but not required for responses to exogenous octopamine.  

To confirm that tyramine is the endogenous ligand for tyra-3, I tested whether 

behavioral changes induced by tyra-3 overexpression are suppressed by mutants 

that are unable to synthesize tyramine.  Transgenic tyra-3 overexpression 

reduces the leaving rate of HW animals (Figure 2.4b) and also suppresses their 

social behavior (Figure 2.14).  The reduced social behavior of HW worms 

overexpressing tyra-3 is completely suppressed by a loss of function mutation in 

tyrosine decarboxylase 1 (tdc-1), which is required for tyramine and octopamine 

biosynthesis (Figure 2.14 and Figure A2.3a).  In contrast, a loss of function 

mutation in tyramine β-hydroxylase 1 (tbh-1), which is required for the conversion 

of tyramine into octopamine (Figure A2.3a), does not impact the reduced social 

behavior induced by tyra-3 overexpression (Figure 2.14).  In concert with the 

biochemical results and pharmacological manipulations, these genetic 

experiments point to tyramine as an important ligand for tyra-3.  Future 

experiments will determine whether tyramine acts as tyra-3’s ligand to modify the 

patch leaving rate; preliminary results are shown in Appendix 2. 

 

  



Figure 2.14
Tyramine is an endogenous ligand for tyra-3.  Bordering and clumping 
behaviors of HW animals and HW animals with a tbh-1(n3247) and tdc-1(n3420) 
in the absence or presence of transgenic overexpression of a genomic tyra-3 
fragment (Figure 2.8a).  tbh-1(n3247) and tdc-1(n3420) were introgressed into 
HW from an N2 background. Error bars indicate s.e.m. ** P < 0.01, *** P < 0.001 
by ANOVA with Bonferroni test.
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Gene-gene-environment interactions 

Like most natural behaviors, the decision to leave a food patch is 

regulated by multiple genes and the environment; it responds to genetic variation 

in tyra-3, npr-1, and additional genes on the autosomes (Figure 2.1) as well as 

food quality and quantity 121,162. Our results suggested that the N2 npr-1 allele 

was epistatic to tyra-3; animals with the N2 npr-1 allele had low leaving rates 

regardless of the tyra-3 genotype (Figure 2.4a). However, N2 npr-1 reduced the 

leaving rate to almost zero, making it difficult to detect any further reduction. To 

make the assay more powerful, leaving was assayed on bacterial lawns of 

different densities. Leaving rates of all genotypes increased on thinner lawns and 

decreased on thicker lawns (Figure 2.15), but the thickness of the lawn changed 

the genetic interaction between tyra-3 and npr-1. In the standard leaving assay, 

tyra-3 polymorphisms had different effects only in the presence of the HW npr-1 

allele; on a thinner lawn, only in the presence of the N2 npr-1 allele (Figure 

2.15). Thus the epistatic relationship between npr-1 and tyra-3 is defined by the 

specific environment, not by an intrinsic regulatory relationship between the 

genes. 

 

  



Figure 2.15
Density of the bacterial lawn affects leaving rates and genetic
interactions between npr-1 and tyra-3.  a) Leaving rates of both N2 tyra-3 and 
HW tyra-3 strains (HW npr-1 background) are higher on thinner lawns. b) N2 
tyra-3 further decreases the leaving rate of N2 npr-1 on OD600nm=1 lawns, but not 
on OD600nm=2 lawns (Figure 2.4a). Error bars indicate s.e.m. * P < 0.05 by t-test.
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Discussion 

Our results show that natural variation in tyra-3 affects patch leaving, a 

behavior representative of the exploration-exploitation decision. tyra-3 encodes a 

G protein-coupled receptor activated by the invertebrate transmitter tyramine and 

less potently by octopamine 122, which is structurally related to vertebrate 

epinephrine and norepinephrine. Monoamines are known to regulate arousal 

systems that affect many behaviors and behavioral decisions. In C. elegans, 

octopamine drives sensory, molecular, and behavioral responses to starvation, 

and tyramine affects specific aspects of locomotion 178-181. In insects, octopamine 

acts as a reward-related signal during learning, and also affects locomotory 

activity, arousal, and aggression 124,182-184. Mammalian norepinephrine is 

generally implicated in arousal behaviors, and norepinephrine release from the 

locus coeruleus is associated with switching between different tasks, a cognitive 

function with analogies to the exploration-exploitation decision 125.  The central 

nervous system effects of norepinephrine are mediated mainly by adrenergic 

receptors related to tyra-3 185 

Relatively few natural behavioral variations have been mapped to the 

single-gene level in any animal, and it is interesting that several of these 

variations affect G protein-coupled receptor signaling systems.  In addition to 

tyra-3, a mouse behavioural QTL for increased anxiety corresponds to Rgs2, a 

negative regulator of G protein signalling 79, and in voles, interspecies variation in 

social behaviour is associated with differential expression of the G protein-
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coupled receptor for the neuropeptide arginine vasopressin 136.  In humans, 

DRD4 dopamine receptor variation is associated with novelty-seeking behavior 

146.  I speculate that these receptor pathways may serve as common substrates 

of behavioral variation. All animal genomes encode many G protein-coupled 

receptors with different expression patterns.  For example, the C. elegans 

genome encodes at least six G protein-coupled receptors for tyramine or 

octopamine and one ligand-gated tyramine channel.  These receptors may 

provide a reservoir for genetic changes, as alteration in an individual receptor 

could cause relatively discrete effects without disrupting the entire system.  

QTL mapping in rodents and in Drosophila indicates that most behavioral 

traits are polygenic, with widespread epistatic effects 157,186. In agreement with 

this conclusion, our analysis suggests the existence of epistatic interactions 

between tyra-3, npr-1, and at least one additional locus. Importantly, the non-

additive interactions between tyra-3 and npr-1 are not stable, but vary based on 

the genetic background and the environment.  A similar conclusion has emerged 

from a comprehensive study of yeast sporulation, where epistatic interactions 

between four genetic variants are highly sensitive to environmental conditions 

and genetic background 187.  

By integrating genetic studies of C. elegans foraging with neuronal 

analysis, a first-level description of underlying mechanisms emerges. The 

sensory neurons that express tyra-3 detect food-related cues; I suggest that they 

integrate these external cues with internal arousal states detected by tyra-3, and 
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that different tyra-3 alleles confer differential sensitivity to these arousal states 

(Figure 2.13). C. elegans patch-leaving is strongly affected by aversive 

(arousing) cues 163,164, so variation in arousal systems is a plausible basis for the 

variable patch-leaving behaviour described here.  Thus variation in tyra-3 lies at 

the intersection of many forms of behavioral flexibility: rapid responses to 

environmental cues, short-term modulation by internal state fluctuations, and 

long-term genetic changes that lead to adaptive changes in innate behaviors.  
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“Animals are very literal; they live in a world of truisms.” 

–G.K. Chesterton 

 

 

CHAPTER 3: GABA receptor polymorphisms modify social behavior in C. 

elegans 

 

Introduction 

Social interactions are pervasive in the animal kingdom:  communication, 

reproductive behavior, agonistic actions, and affiliative behavior play crucial roles 

in the lives of most animals 188.  While social interactions are prevalent in most 

animal species, these interactions vary greatly in form and magnitude both within 

species and between closely related species.  For example, closely related 

species of voles differ drastically in pair-bonding and parental behaviors 189-191.  

In voles, interspecific differences in the neuronal expression pattern of the V1a 

vasopressin receptor contribute to variation in pair-bonding behavior 139.  The 

genetic changes that contribute to variation in V1a expression pattern or to social 

behavior differences in other species are largely unknown. 

Aggregation between members of a species is a simple form of social 

interaction.  Wild strains of Caenorhabditis elegans are social feeders and 

aggregate in the presence of food 61,62. This social behavior of C. elegans is 

partly a defensive strategy: animals effectively lower high surrounding oxygen 
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levels – which they dislike – by aggregating with other animals 168.  Pheromones 

released by other animals also play a role in C. elegans social behaviors 

192,193,133. 

 During the laboratory domestication of C. elegans, the common laboratory 

strain N2 evolved to be a solitary feeder.  Two mutations are responsible for the 

development of solitary behavior in laboratory C. elegans.  A loss-of-function 

mutation in the sensory globin gene glb-5 affects the ability of animals to detect 

small oxygen changes, while a gain-of-function mutation in the neuropeptide Y 

receptor homologue npr-1 modifies a circuit that integrates attractive and 

repulsive cues, including pheromones 61,133,62,106. It is not known, however, 

whether these genes are the only modifiers of social behavior that differ between 

wild type C. elegans strains. 

To further understand the genetics of social behavior, I used quantitative 

genetic techniques to identify additional social genes and found that noncoding 

polymorphisms in the GABA receptor exp-1 contribute to variation in social 

behavior. 

 

Multiple loci modulate social behavior  

Social C. elegans strains display a constellation of distinctive behaviors: 

they prefer the border of a bacterial lawn on which they feed over the center, they 

aggregate with other animals at the border of the bacterial lawn, and they move 

fast when traversing the lawn 61.  In contrast, animals from solitary strains 
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distribute themselves randomly on a bacterial lawn, do not aggregate with other 

animals, and move slowly on food 61. 

Variation in a single amino acid of the neuropeptide Y receptor homologue 

npr-1 mediates most of the difference in social behavior between solitary and 

social strains of C. elegans.  Social strains like CB4856 from Hawaii (HW) have a 

phenylalanine at position 215 of npr-1 while solitary strains have acquired a 

mutation at 215 that encodes valine 61.  Replacing the derived npr-1 allele of the 

solitary N2 strain with the ancestral HW allele of npr-1 from a social strain in a 

near-isogenic line (NIL) significantly transforms the solitary behavior of N2 toward 

HW-like social behavior 61,62  (Bordering and aggregation quantification in Figure 

3.1a).  While a HW npr-1 allele in an N2 background promotes substantial levels 

of social behavior, the necessity for a HW allele of npr-1 in the HW background 

has not been explored. 

To determine whether a HW allele of npr-1 is required for social behavior, I 

substituted the N2 allele of npr-1 for the HW allele in a HW strain through 

introgression.  Although HW animals with N2 npr-1 showed significantly less 

bordering and aggregation (clumping) behaviors than HW animals, their social 

behavior was intermediate between HW and N2, suggesting that variation in 

genes other than npr-1 promote social behavior in the HW strain (Figures 3.1a 

and 3.1b). 

  



Figure 3.1
Two autosomal QTL for social behavior in C. elegans.  a) Social behaviors of 
npr-1 near-isogenic lines (NILs) and of chromosome-substitution strains.  b) 
Solitary behavior of N2 animals (left), and social behavior of HW animals (middle) 
and HW animals with N2 npr-1 (right).  Scale bar, 2 mm.  c) Social behaviors of 
102 N2-HW recombinant inbred advanced intercross lines (RIAILs) with N2 
npr-1.  d) QTL analysis of RIAILs shown in c.  The horizontal line denotes the P < 
0.05 genome-wide significance threshold. lod, log likelihood ratio.  e) Social 
behaviors of NILs with the QTL identified on d.  Error bars in a, c, and e, s.e.m. * 
P < 0.05, ** P < 0.01, *** P < 0.001, by ANOVA with Bonferroni test.
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I performed quantitative genetic analysis to identify the loci that mediate 

differences in social behavior between the N2 and HW C. elegans strains.  Two 

independent approaches identified social behavior loci on chromosomes II and V.  

Chromosome substitution strains in which each of the six N2 chromosomes were 

individually replaced by a HW chromosome showed that HW chromosomes II, V 

and X have social behavior loci (Figure 3.1a).  The social behavior of the 

chromosome X substitution strain is higher than the NIL containing HW npr-1 in 

an N2 background, suggesting that additional loci on chromosome X modulate 

social behavior (Figures 3.1a). 

In an orthogonal approach, quantitative trait locus (QTL) analysis was 

performed on 102 recombinant inbred advanced intercross lines (RIAILs) derived 

from crosses between N2 and HW 43.  To facilitate the identification of loci other 

than npr-1, only RIAILs with the N2 allele of npr-1 were tested for social behavior.  

When a single QTL affects a trait in an inbred mapping population, the 

distribution of trait values should be bimodal in that population.  By contrast, the 

RIAILs showed a unimodal distribution for both bordering and aggregation 

behaviors, suggesting that multiple QTLs affect social behavior  (Figure 3.1c).  

Moreover, while bordering and aggregation behaviors were correlated (R2=0.53, 

P<0.0001) in the RIAILs, this correlation was far from perfect, suggesting that the 

genetics of bordering and clumping are similar, but partially non-overlapping. 

QTL analysis identified a significant QTL on chromosome V (V-QTL) for 

bordering behavior and a significant QTL on chromosome II (II-QTL) for clumping 
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behavior (Figure 3.1d).  The location of these QTLs agrees with the findings of 

the chromosome substitution strains (Figure 3.1a).  The V-QTL overlaps glb-5, 

confirming glb-5’s involvement in social behavior variation between N2 and HW.  

The chromosome V substitution strain, however, has a stronger social phenotype 

than a NIL containing HW glb-5 in an N2 background, suggesting that other loci 

on chromosome V in addition to glb-5 modify social behavior (Figures 3.1a and 

3.1d). 

Consistent with the inference of QTL additional to the II-QTL and glb-5, a 

NIL containing HW II-QTL and HW glb-5 in an N2 background was not as social 

as a HW strain with an N2 allele of npr-1 (Figure 3.1e, note difference in x-axis 

scale from Figure 3.1a).  The aggregation behavior of the HW II-QTL; HW glb-5 

double strain was particularly mild compared to the HW strain with the N2 npr-1 

allele and was even less pronounced than that of the II-QTL strain.  A reduction 

of clumping behavior induced by a HW allele of glb-5 has previously been 

observed in N2 animals with HW npr-1 62.  Thus the HW allele of glb-5 may either 

promote or reduce aggregation depending on the genetic background. 

 

Fine-mapping and origin of the social behavior II-QTL 

To fine-map the chromosome II social behavior QTL, the HW II-QTL in an 

N2 background was dissected through recombination with N2 (these experiments 

were done together with a rotation student, Jason Pitts).  An analysis of 5,000 

recombinants identified a 6.2 kb interval as the minimal region containing the II-
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QTL (Figure 3.2a).  This 6.2 kb interval was fully contained within a single gene, 

abts-3, an anion transporter (Figure 3.2b). 

Sequencing the region containing the QTL in N2 and HW uncovered 11 

polymorphisms (Figure 3.2 and Table 3.1).  Compared to N2 there were six 

noncoding single nucleotide polymorphisms (SNPs), one coding SNP (abts-3a 

G615D), one single nucleotide deletion, one single nucleotide insertion, a three-

nucleotide insertion and a 23-nucleotide deletion in HW.  Since mutations in the 

npr-1 and glb-5 genes that affect social behavior arose during the laboratory 

domestication of the N2 strain 62, I wished to determine whether the II-QTL had 

also evolved as a laboratory adaptation of the N2 strain.  LSJ2, a sister strain of 

N2, was separated early in the initial laboratory cultivation of N2, 50 years ago, 

and maintains the ancestral alleles of npr-1 and glb-5 62.  LSJ2 did not vary from 

N2 in the sequence of the II-QTL, indicating that N2 has not acquired mutations 

in the II-QTL since its separation from LSJ2.  In fact, sequencing the II-QTL in 

four additional wild C. elegans strains that represent different haplotypes 43 

revealed that N2 has only two SNPs that are not present in other strains 

(Figures 3.2b and 3.2c and Table 3.1).  These two SNPs could have occurred 

before N2 was brought to the laboratory or in captivity before its divergence with 

LSJ2.   

  



Figure 3.2
Fine-mapping a social behavior QTL to a 6.2 kb region.  a) Top: bordering 
and clumping behaviors of recombinants in the II-QTL region in an N2 
background. Polymophisms used for genotyping are shown under recombinants.  
Bottom: expansion of the 6.2 kb QTL, showing polymorphisms between N2 and 
HW, protein coding genes, and deletion alleles used in Figs. 3.3-3.6.  b) 
Polymorphisms in the QTL region of wild-type strains relative to the consensus 
sequences of MY1 and CB4853.  Shared polymorphisms are in black and in 
regions of overlap between boxes. c) Phylogenetic three of the II-QTL with data 
from b.  Error bars, s.e.m.  ** P < 0.01 by ANOVA with Dunnett test.
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Table 3.1  Polymorphisms in the 6.2 kb chromosome II QTL
Position on Chr. II 
(WS226)

Polymor- 
phism #

MY1 & 
CB4853

N2(1) & 
LSJ2 MY14 JU258

CB4856 
(HW)

6148781(2) 1 A A Del A Del
6148900 2 T T G T G
6149014-6149015(2) 3 - - Ins T - Ins T
6150458-6150459 4 - - Ins TCA - Ins TCA
6150465 5 C A C C C
6150559 6 C A C C C
6150634 12 C C T C C
6151354 13 G G C G G
6151494 7 C C C C A
6151791-6151792 14 - - - Ins T -
6151873 8 C C T T T
6152099-6152121 9 23 bp 23 bp Del 23 bp Del
6152280 15 C C A C C
6152281 16 A A C A A
6152858 10 T T G T G
6153301 17 C C G C C
6154296 18 A A G A A
61549909(3) 11 A A A A G

(2) Insertions (Ins) lie between the two positions.
(3) This is the only nonsynonymous substitution in the QTL (abts-3a G615D)

(1) N2 was resequenced and no differences were found with the N2 Wormbase 
reference.
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The GABA receptor exp-1 affects social behavior 

Since the II-QTL was fully contained within the abts-3 gene, a likely 

hypothesis was that different abts-3 activity between N2 and HW affects social 

behavior.  To test this idea I determined the activity of a loss of function mutation 

in abts-3 in a quantitative complementation test with the II-QTL 71.  I first 

determined that an N2 II-QTL / HW II-QTL heterozygote has an intermediate 

phenotype, but more closely resembles the N2 II-QTL homozygote (Figure 3.3a).  

This dominance relationship suggested that the N2 II-QTL has higher activity 

than the HW II-QTL and that a mutant abts-3 gene should fail to complement the 

HW II-QTL or increase the HW II-QTL social phenotype.  A deletion allele of abts-

3(ok368) in an N2 background, however, complemented the HW II-QTL:  the 

social behavior of a HW II-QTL / abts-3(ok368) heterozygote was significantly 

different from a HW II-QTL homozygote, but not significantly different from an N2 

II-QTL homozygote, inconsistent with the notion that variation in abts-3 activity 

affects social behavior (Figure 3.3a).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 3.3
exp-1 is a social quantitative trait gene.  a) Complementation tests between 
the HW II-QTL, N2, and deletion mutants of abts-3(ok368) and exp-1(ox276).  b) 
Social behavior after RNAi knock-down of exp-1 and abts-3.  Error bars, s.e.m.  
** P < 0.01, *** P < 0.001 by ANOVA with Bonferroni or Dunnett tests.
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The ability of a loss of function allele of abts-3 to complement the low-

activity HW II-QTL suggests that variation in the II-QTL affects a different gene. 

After abts-3, the nearest gene to the II-QTL is exp-1, which codes for a γ-amino 

butyric acid (GABA)-gated cation channel 194.  The stop codon of exp-1 is 2.2 kb 

distal from the 6.2 kb QTL (Figure 3.2); the next gene in the region is hst-3.1, a 

heparan sulfotransferase, located 13 kb away.  There is precedent in C. elegans 

for transcriptional regulatory regions located as far as 5.6 kb 3’ to the stop codon 

of a gene 195, so it is conceivable that the II-QTL affects the expression of exp-1.   

In contrast with the ability of an abts-3 mutation to complement the HW II-

QTL, a loss of function mutation in exp-1(ox276) failed to complement the 

reduced activity HW II-QTL (Figure 3.3a).  In addition, the homozygous null exp-

1(ox276) mutant exhibited a substantial degree of aggregation and bordering.  

These results suggest that HW II-QTL harbors a reduced activity allele of exp-1 

compared to N2.  If this is true, reducing exp-1 activity in the N2 strain that has 

higher-activity of exp-1 should mimic the HW II-QTL and lead to increased social 

behavior.  Indeed, RNAi against exp-1 in the N2 strain increased bordering 

behavior, whereas RNAi against abts-3 did not affect the social behavior of N2 

(Figure 3.3b).  These results are consistent with exp-1, and not abts-3, being the 

social behavior gene affected by the II-QTL.   

The social behavior of HW II-QTL animals is intermediate between N2 and 

the homozygous null allele exp-1(ox276) (Figure 3.3a).  Moreover, the HW II-

QTL complements the defecation defects of exp-1(ox276), suggesting that the 
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HW II-QTL provides full exp-1 function in the defecation cycle (Figures 3.3a and 

3.4).  Therefore, the HW II-QTL corresponds to a reduced or partial activity allele 

of exp-1, not to a complete loss of function allele. 

 

Interactions between exp-1 and other GABA pathway mutants suggest that 

GABA both promotes and suppresses social behavior 

 Since EXP-1 has been shown to be one of multiple GABA receptors in C. 

elegans, I next examined other mutations in the GABA pathway for their effects 

on social behavior.  The increased social behavior of the exp-1(ox276) null allele 

indicates that this GABA receptor normally antagonizes social behavior.  If GABA 

acts solely through exp-1 to decrease social behavior, animals with mutations 

that eliminate GABA transmission should have a similar increase in social 

behavior.  I tested this hypothesis by measuring the social behavior of animals 

with a loss of function mutation in the vesicular GABA transporter unc-47.  

Animals with an unc-47(e307) mutation are defective in all C. elegans behaviors 

that require GABA: backward motion, foraging behavior, and defecation 196,197.  

By contrast, social behavior in unc-47(e307) animals was identical to that of wild-

type N2 animals.  There are two possible explanations for these results: exp-1 

could have a GABA-independent function, or the unc-47 mutation could eliminate 

GABA effects mediated through exp-1 together with antagonistic effects 

mediated through another GABA receptor.  In agreement with the latter 

possibility, an exp-1(ox276); unc-47(e307) double mutation resembled unc-47 
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rather than exp-1 in its social behavior (Figure 3.5a).  These results suggest that 

GABA, in addition to inhibiting social behavior through exp-1, also promotes 

social behavior through additional receptors (Figure 3.5b). 

 

Bordering and clumping of exp-1 mutants require pheromones 

 Aggregation is associated with alterations in the relative degree of 

attraction to and repulsion from pheromones 133.  In addition, mutants in the 

pheromone-regulated daf-7 TGF-β pathway have strong effects on aggregation.  

To determine whether pheromones are required for the elevated social behavior 

promoted by reduced exp-1 activity, I quantified the social behavior of exp-

1(ox276) daf-22(ok693) double mutant animals.  The elevated social behavior of 

exp-1(ox276) animals was completely suppressed by the daf-22(ok693) 

mutation, indicating that pheromones are required for the high social behavior of 

exp-1(ox276) animals (Figure 3.6). 

  



Figure 3.4
The HW II-QTL has full exp-1 activity in the defecation program.  Fraction of 
posterior body contractions (pBoc) followed by an enteric muscle contraction 
(EMC).  The ox276 deletion allele of exp-1 was used. 
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Figure 3.5
exp-1 mutant animals require the vesicular GABA transporter unc-47 for 
their increased social behavior.  a) Bordering and clumping behaviors of 
exp-1(ox276), unc-47(e307), and exp-1(ox276);unc-47(e307) mutant animals.   
Error bars, s.e.m.  *** P < 0.001 by ANOVA with Bonferroni tests. b) Genetic 
model of GABA function in social behavior. 
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Figure 3.6
Pheromones are required for the elevated social behavior of exp-1 mutant 
animals.  Bordering and clumping behaviors of exp-1(ox276), daf-22(ok693), 
and exp-1(ox276) daf-22(ok693) mutant animals.  exp-1(ox276) daf-22(ok693) 
were also assayed in the presence of exp-1(ox276) single mutants (bottom two 
pairs of bars); boxes indicate the strain whose behavior was measured.  Error 
bars, s.e.m.  *** P < 0.001 by ANOVA with Bonferroni tests.
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 daf-22 mutations affect the pheromones an animal produces; in a 

homogeneous culture, they also affect the pheromones it experiences, both in 

development and in the context of an acute aggregation assay.  To test for acute 

effects of pheromones in the aggregation assay, I mixed exp-1(ox276) animals 

with exp-1(ox276) daf-22(ok693) animals marked with GFP in a 4:1 ratio and 

measured their social behavior.  exp-1(ox276) daf-22(ok693) that could not 

produce pheromones retained their solitary behavior in the presence of exp-

1(ox276) animals that did produce pheromones and aggregated (Figure 3.6).  

This result suggests that pheromones may not be an acute local signal driving 

aggregation of exp-1(ox276) animals; rather, pheromones may act during 

development to promote exp-1(ox276) social behavior, or pheromones may 

promote social behavior internally in each animal. Also, as daf-22 mutants 

accumulate lipids that cannot be converted to pheromones 198, excess lipids in 

daf-22(ok693) may inhibit social behavior.  

 

Bordering and clumping of exp-1 mutants requires O2-sensing neurons  

 Oxygen, and the oxygen-sensing neurons URX, AQR, and PQR, strongly 

modulate the social behavior of animals with reduced npr-1 activity: aggregation 

is suppressed by a shift to low (~10%) O2, by neuronal ablations or mutations 

affecting these neurons 199,168,200, and by decreasing the activity of these neurons 

by transgenic manipulations 201.  I next asked how these neurons affect the social 

behavior of animals with reduced exp-1 activity.  Killing URX, AQR, and PQR 
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suppressed the aggregation of animals with the HW II-QTL that reduces exp-1 

activity (Figure 3.7).  Killing URX alone in animals with the HW II-QTL also 

trended towards reduced social behavior, but the effect was not as strong as 

killing URX, AQR, and PQR together (Figure 3.7).  Interestingly, while killing 

URX, AQR, and PQR together in N2 does not modify their social behavior (data 

not shown), killing URX alone increased their bordering behavior (Figure 3.7).  

This result suggests that URX normally inhibits bordering behavior in N2, and 

that killing AQR and PQR in addition to URX reverses the increased social 

behavior induced by killing URX. 

The BAG neuron senses downshifts in O2 and changes in CO2 levels 

176,177,202.  BAG’s role in social behavior, however, had not been previously 

examined.  Killing BAG enhanced the bordering and clumping behaviors of the 

HW II-QTL and the bordering of N2 (Figure 3.7), suggesting that BAG normally 

inhibits social behavior. 

 

  



Figure 3.7
Social behavior consequences of killing O2-sensing neurons.  Bordering and 
clumping behaviors after killing URX, AQR, and PQR together, URX alone, or 
BAG alone, in II-QTL and N2 animals.  Error bars, s.e.m.  ** P < 0.01, *** P < 
0.001 by ANOVA with Bonferroni tests.
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Discussion 

Using a combination of quantitative genetic techniques, this work identified 

a novel QTL that modulates social behavior in C. elegans.  Fine-mapping of the 

QTL by screening a large number of recombinants narrowed down the location of 

the QTL to a 6.2 kb interval that contains 11 polymorphisms.  Quantitative 

complementation tests and loss-of-function experiments were consistent with 

noncoding variation in the QTL affecting the GABA receptor exp-1.  Further 

confirmation that exp-1 is the gene affected by the QTL should come from gain-

of-function experiments that rescue the low-activity social QTL with transgenes 

containing the high-activity solitary allele of exp-1. 

exp-1 is the third gene identified that contributes to social behavior 

differences between wild-type C. elegans strains.  The other genes are glb-5, 

which affects the sensation of O2 and CO2 cues that promote aggregation 62, and 

npr-1, which acts in the RMG neuron that integrates multiple aggregation-

promoting stimuli 61,133. Other QTL remain to be discovered, as npr-1, glb-5, and 

exp-1 do not account for all bordering and aggregation behavior differences 

between wild-type strains.  Strategies to identify these additional QTL are 

discussed in Chapter 4.  

My data show that the exp-1 social behavior QTL requires the activity of 

the URX, AQR, and PQR O2-sensing neurons to promote social behavior, 

consistent with the role of O2 in promoting aggregation behavior.  Interestingly, 

while killing URX, AQR, and PQR neurons together suppresses exp-1 social 
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behavior, killing URX alone does not strongly affect exp-1 social behavior 

suggesting that these three neurons act redundantly or that AQR and PQR are 

more relevant than URX for this behavior.  Killing each of these neurons 

individually and in combinations should help establish the contribution of each 

neuron.  My experiments also revealed a previously unrecognized role of the 

URX and BAG O2-sensing neurons in maintaining solitary behavior in N2 

animals. 

exp-1 is the only known GABA-gated channel that transports cations and 

thus functions as an excitatory GABA receptor.  Previously, exp-1 was known for 

its excitatory action on enteric muscles during defecation, but exp-1 expression in 

C. elegans neurons unrelated to defecation suggested that it could have other 

roles as well 194.  My results are consistent with dual roles of GABA in social 

behavior:  GABA inhibits social behavior through exp-1, but may promote it 

through additional receptors (Figure 3.5b).  Genetic and functional studies, as 

well as sequence homology searches, have identified 8 GABA receptor genes in 

the C. elegans genome: 4 GABAA, exp-1, an exp-1-related receptor, and 2 

GABAB receptors.  Combining mutations in other GABA receptor genes with an 

exp-1 mutation can be a useful approach to identify GABA receptors that 

promote social behavior: mutations in GABA receptors that promote social 

behavior should suppress the increased social behavior of exp-1 mutants.  

Identifying the cells where exp-1 acts to affect social behavior will also be an 

important step toward understanding its function.   
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 My results indicate that pheromones are necessary for exp-1 social 

behavior.  Pheromones are an important mode of communication between 

members of a species.  In mammals and insects pheromones regulate mating, 

aggression, aggregation, and strain and sex recognition, among other behaviors 

203-205.  In C. elegans, pheromones released by hermaphrodites attract males and 

are differentially attractive to hermaphrodites depending on their npr-1 allele 

192,193,133.  Strains with a social allele of npr-1 find low concentrations of 

pheromones attractive, but strains with a solitary allele of npr-1 find pheromones 

repulsive at all concentrations 133.  Nevertheless, animals with a social npr-1 

allele aggregate strongly even in the presence of a daf-22 mutation that 

eliminates production of many short-chain pheromones 206.  The high social 

behavior of exp-1 mutants, by contrast, requires daf-22, suggesting that 

pheromones are an important component of exp-1 social behavior.  Interestingly, 

low-activity exp-1 animals do not use pheromones as an acute signal to 

aggregate with other animals.  One possibility is that pheromones modify 

neuronal circuits for social behavior during C. elegans development, or during 

chronic exposure in adult animals.  Pheromones regulate chemoreceptor gene 

expression in ASI, ASH, and AWC sensory neurons, illustrating how pheromones 

can create lasting changes in the C. elegans nervous system 207,208.  Indeed, 

pheromone exposure during development affects olfactory plasticity of adult C. 

elegans, setting a precedent for developmental effects of pheromones on adult 
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behavior 209.  It will be interesting to determine how pheromone exposure allows 

exp-1 animals to become more social as adults. 

 Two parallel pathways that regulate social behavior have been identified in 

C. elegans, the neuropeptide receptor npr-1 pathway and the daf-7 TGF-β 

pathway 210,206.  daf-7 transcription in the ASI pheromone-sensing neurons is 

negatively regulated by pheromones 211,212, providing a plausible link between 

pheromone sensation and aggregation behavior. The importance of pheromones 

for exp-1 social behavior suggests that exp-1 may be part of the daf-7 pathway.  

Epistasis analyses of exp-1;npr-1 and exp-1;daf-7 double mutants should help 

determine whether exp-1 is part of the npr-1 pathway, the daf-7 pathway, or a 

third novel social behavior pathway. 
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“Sometimes you are too clever to understand men, especially when they 

act almost as simply as animals.” 

–G.K. Chesterton 

 

CHAPTER 4: Discussion and future directions 

 

My thesis work focused on discovering the genetic basis of behavioral 

diversity between individuals of a species and on understanding how genetic 

variability affects the neuronal circuits that generate behavior. 

 

Neuronal circuits for exploratory behavior 

In Chapter 2 I described the identification of a genetic variant that affects 

the decision to abandon depleting resources and explore the environment.  This 

variation results from polymorphisms that affect mRNA levels of the tyra-3 gene, 

which encodes a receptor for the modulatory amine tyramine.  High levels of tyra-

3 in sensory neurons that detect food cues promote exploitation of current 

resources, whereas lower levels promote exploration of the environment. 

A better understanding of the circuits that affect exploration–exploitation 

decisions in C. elegans should come from identifying the cellular sources of 

tyramine.  Initial experiments suggest that non-neuronal sources of tyramine may 

be important (see Appendix 2).  Cell-specific rescue should identify the source of 

tyramine involved in exploratory behavior.  Higher temporal resolution is required 
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to understand the timing of tyramine release that regulates exploratory behavior.  

Genetic tools that report the activation of a receptor upon ligand binding, such as 

the TANGO system developed for flies and mammalian cells, would help in this 

regard 213.  To this end, I have started to introduce the TANGO system into C. 

elegans. 

My work also suggests that additional receptors for tyramine and the 

related monoamine octopamine are involved in exploratory behavior (Appendix 

2); characterizing these additional receptors will further our understanding of this 

behavior.   

How tyra-3 affects sensory neurons that detect food cues is still unclear.  

Genetic experiments coupled to cell ablations indicate that tyra-3 reduces the 

activity of ASK neurons that detect attractive amino acids, while it activates the 

BAG neurons that sense O2 and CO2 changes that may be associated with 

bacterial metabolism.  Initial functional imaging of these neurons using the 

genetically-encoded calcium indicator GCaMP 3.0 failed to detect differences in 

activity of these neurons (data not shown).  This negative result suggests that 

tyra-3 may modulate aspects of neuronal physiology that are not reflected in 

overall calcium levels.  Other monoamines, including octopamine (which is 

structurally and functionally related to tyramine), are known to selectively 

modulate specific routes of neuronal output, such as increasing the strength of 

electrical synapses while decreasing the strength of chemical synapses 214,215.  

Similarly, tyra-3 may modify specific aspects of synaptic function, such as the 
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release of classical neurotransmitters or neuropeptides, which may require 

different synaptic components for their release 216,217. 

As shown in Figure 2.4a, I detected effects of genetic variation in tyra-3 

on exploratory behavior only in a HW genetic background, but not in an N2 

background. The HW loci that are required by tyra-3 to affect exploration have 

not been identified (see Appendix 2); characterizing them would further our 

understanding of natural variation in exploratory behavior in general and of the 

role of tyra-3 in particular.  One approach to identify the remaining HW loci is to 

measure the behavior of additional recombinant inbred advanced intercross lines 

(RIAILs).  The N2-HW RIAILs panel consists of 236 strains, and I only measured 

the exploratory behavior of 91 of them.  Testing more lines would increase the 

power to detect additional QTL by simple interval mapping and by searching for 

QTL that interact epistatically with the tyra-3 QTL.  As described in more detail in 

Appendix 2, one of the HW loci required by tyra-3 to affect exploration may be 

glb-5.  Combining HW alleles of glb-5 and tyra-3 in an N2 background would 

reveal if glb-5 is indeed one of the HW loci needed by tyra-3. 

 

The GABA system in social behavior 

In Chapter 3 I describe the identification of a novel social behavior QTL in 

C. elegans.  Genetic complementation and loss-of-function experiments are 

consistent with exp-1 being the gene affected by the QTL.  Further confirmation 

should come from gain-of-function experiments that rescue the low-activity social 
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QTL with transgenes containing the high-activity solitary allele of exp-1.  It will be 

interesting to determine whether additional genes are affected by the QTL to 

modify to social behavior.  Quantitative complementation with other genes in the 

region should identify these additional genes.  

Together with npr-1 and glb-5, exp-1 is the third identified gene that 

modulates social behavior between wild-type C. elegans strains.  Whereas 

coding changes in npr-1 and glb-5 impact social behavior, noncoding 

polymorphisms located 2-8 kilobases 3’ of exp-1 affect exp-1 activity, modulating 

social behavior.  Since these polymorphisms are not located in exp-1 coding 

regions, they likely affect exp-1 transcriptional regulation.  Therefore, the 

magnitude, timing, or cellular sites of exp-1 expression may vary between social 

and solitary animals.  Characterizing these differences will be a topic of future 

research. 

Other social behavior QTLs remain to be discovered, as npr-1, glb-5, and 

exp-1 do not account for all bordering and aggregation behavioral differences 

between wild-type strains.  Some of these additional QTL are probably in 

chromosomes V (where glb-5 is located) and X (where npr-1 is located): in an N2 

genetic background, a HW chromosome V leads to higher social behavior than a 

strain carrying a small HW region that includes glb-5; the same is true for 

chromosome X and npr-1.  The location of the additional chromosome V social 

behavior QTL is suggested by the QTL results shown in Figure 3.1d, where two 

closely linked peaks (one of which contains glb-5) cross the significance 
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threshold.  To test whether this second peak represents an independent social 

behavior QTL, it would be useful to construct a near-isogenic line that carries HW 

DNA encompassing the second peak in an N2 background. 

QTL mapping with the RIAILs did not show any significant peaks on 

chromosome X, but the existence of social QTL in this chromosome is inferred 

from the higher social behavior of a full HW X chromosome in an N2 background 

compared to a HW npr-1 near-isogenic line.  Since I was interested in identifying 

novel social QTL, I only used RIAILs that had the N2 solitary npr-1 allele.  As a 

consequence of testing only RIAILs with N2 npr-1, regions closely linked to npr-1 

are more likely to be of N2 origin, so few of the RIAILs carry HW loci in these 

positions, decreasing the power to detect QTL near npr-1.  Therefore, one 

possibility is that the additional QTLs are located near npr-1.  I, along with others 

in the Bargmann lab, have created near-isogenic lines of HW segments near npr-

1 in an N2 background.  It would be useful to screen these strains for the 

presence of additional social behavior QTL.  Alternatively, a panel of near-

isogenic lines that covers the entire HW X chromosome in an N2 background 47 

can be tested for social behavior. 

While the genetic and neuronal analyses of exp-1 in social behavior are 

still in their early stages, several interesting observations have already surfaced.  

For example, the role of the GABA system in C. elegans social behavior had not 

previously been recognized.  Moreover, my work supports the idea that 
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pheromones are involved in C. elegans aggregation, and revealed that their 

effects may be chronic rather than acute.   

Ongoing experiments are focused on understanding how genetic variation 

in exp-1 modifies neuronal circuits that regulate social behavior.  A first step will 

be to identify the neurons where exp-1 acts.  Finding the GABAergic neurons that 

activate exp-1 will also be important.  The C. elegans nervous system contains 

26 GABAergic neurons, comprising six neuronal classes.  Promoters that drive 

expression in subsets of these classes are known, and they can be used to 

rescue aggregation in unc-47 GABA deficient mutants to find the relevant source 

of GABA.  My work also suggests that while exp-1 acts to inhibit bordering and 

aggregation behaviors, other GABA receptors promote these behaviors.  

Identifying these additional receptors and the neurons in which they act will 

further illuminate the neuronal circuits that generate C. elegans social behavior. 

Pheromones do not appear to be an acute signal that promotes 

aggregation, but may be required by exp-1 animals chronically or during 

development.  To test this idea, exp-1 daf-22 double mutant animals that cannot 

synthesize short-chain pheromones can be grown in the presence of purified 

pheromones and then tested for social behavior as adults in the absence of 

pheromones.  Additionally, exp-1 daf-22 animals can be grown in the presence of 

animals that do synthesize pheromones and then tested as adults.  More refined 

experiments can determine whether specific pheromones are required, and 

whether they act at specific developmental stages. 
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Noncoding polymorphisms are commonly observed in behavioral variation 

A feature of biological systems that facilitates evolvability – the degree to 

which organisms can evolve through adaptive changes – is the modularity of 

system components 218.  Modular components can change without disrupting the 

whole system, and these changes occasionally increase fitness.  One type of 

modularity in biological systems is the structure of cis-regulatory elements 

(CREs) that regulate gene expression.  The transcription of many genes is 

regulated by multiple independent CREs and this independence facilitates 

evolution by changing gene expression in certain tissues without disrupting 

expression in others 219. 

Variation in the CREs that regulate transcription is the main type of genetic 

change driving morphological evolution 219.  For example, variation in abdominal 

pigmentation and trichome patterns between Drosophila species is caused by 

polymorphisms in CREs that affect tan and shavenbaby transcription, 

respectively 220,221. The genetic changes underlying behavioral variation between 

and within species are only beginning to emerge, but available data suggest that 

noncoding changes affecting transcriptional regulation will also predominate.  In 

mice, variation in noncoding sequences of Rgs2 modulates anxiety traits 

between wild-type strains 79.  In voles, changes in expression patterns of the 

vasopressin receptor V1a affect pair-bonding behavior 139.  In different fly strains, 

expression levels of Cyp6a20 correlate with aggressive behavior and changes in 

for expression affect foraging behavior 72,67.  In C. elegans, noncoding changes in 
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tyra-3 modulate exploratory behavior 63 and noncoding variation in exp-1 affects 

social behavior. 

Interestingly, the only two coding changes that emerged from QTL studies 

of C. elegans behavior, those affecting the npr-1 and glb-5 genes, arose during 

laboratory domestication.  This domestication process involved a drastic change 

from a natural environment in association with rotting fruits to a laboratory 

environment with radically different properties: a single dominant food source, E. 

coli, and high levels of exposure to environmental O2, along with many other 

changes that we have yet to appreciate 62. 

 

Neurotransmitter receptors as a source of genetic behavioral variation 

My results add to a growing body of evidence that genetic variation 

affecting neurotransmitter receptors is a frequent source of behavioral variation.  

In C. elegans, variation in the neuropeptide receptor npr-1 and in the GABA 

receptor exp-1 affect social behavior, and polymorphisms in the tyramine 

receptor tyra-3 modify exploratory behavior.  In different vole species, variation in 

the brain expression pattern of the vasopressin receptor V1a affect pair-bonding 

behavior 139.  In humans, variation in serotonin, dopamine, acetylcholine, and 

several neuropeptide receptors has been suggested to affect different aspects of 

behavior 146,148,222,149,147.  Most of these neurotransmitter receptors, like npr-1 and 

tyra-3, are G-protein coupled receptors.  However, exp-1 and the nicotinic 

acetylcholine receptors that modulate substance-abuse risk in humans are ligand 
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gated ion channels, suggesting that neurotransmitter receptors in general can be 

genetic sources of behavioral diversity. 

By analogy to the facilitation of evolution by modular transcriptional 

regulation units, modularity in neurotransmission has the potential to be relevant 

to the evolution of behavior.  A single neuron can respond both to multiple 

neurotransmitters and to the same neurotransmitter through multiple receptors.  

In this sense, some neurotransmitter receptors are modular components that can 

change without disrupting whole nervous systems.  

 

Summary 

 The contribution of genetics to behavioral variation in humans and other 

animals has long been recognized, but the identity of the specific genes involved 

remained elusive.  Using a combination of quantitative genetics tools and 

neuronal analyses I identified genetic variation in two neurotransmitter receptors 

as a source of behavioral diversity.  One of these receptors uses information 

about the internal state of the animal to modify the activity of sensory neurons, 

while the other receptor is part of the GABA system that regulates social 

behavior.  The neurobiological characterization of these receptors and the study 

of the mechanism by which genetic variation modifies neuronal circuits further 

our knowledge of the biological bases of behavior. 
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APPENDIX 1 

 

The nature of behavior, and challenges in the study of behavior 

Behaviors can be divided along different lines based on their complexity or 

their purpose.  A classical ethological approach might classify behaviors based 

on whether they are related to food acquisition, predator avoidance, habitat 

selection, reproduction, or other social interactions (see Table below).  A 

neurobiological approach might classify behaviors based on the extent to which 

they are learned, or based on the anatomical brain systems involved; this 

analysis would be orthogonal to the ethological one. 

 

        Simple component Complex pattern or sequence                      

Feeding behavior  Eating   Food selection and preference 

Defensive behavior  Escape  Behavioral suppression, hiding 

Habitat selection  Chemo/thermotaxis Nest building, exploration 

Reproductive behavior Mating  Courtship song or dance 

Other social behavior          Aggregation  Territorial defense, migration 

 

A typical behavior involves a set of connected actions that take place over 

a period of time – for example, immediate withdrawal of a paw from a hot 

surface; rapid retreat from the area; licking the paw; long term-avoidance of the 

area.  A sequence of behavioral actions is rarely as stereotyped as suggested by 
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this example, however, and even simple animals show a range of actions and 

sequences during a behavior like escape, mating, or grooming.  To capture this 

variability, over the past decade the analysis of animal behavior has become 

more sophisticated with the increasing use of high-throughput, automated 

systems for behavioral monitoring, combined with statistical analysis of 

behavioral events223-225.  These tools are particularly useful for genetic analysis, 

where quantitative data must be gathered for many individuals.  Careful and 

accurate behavioral measurements are key to the genetic analysis of behavior. 

The special challenge to understanding behavior is that the external and 

internal variables that affect behavior change over time, and a common response 

is only expected when all variables are held constant.  As a result, gene–

environment interactions are prominent features of behavioral variation.  

Variation is a property of many biological systems, but an animal’s morphology is 

much more stable over time than its behavior.  Variation is essential to behavior, 

not peripheral.   

Although behavioral variation is conceptually interesting, it generates 

challenges both intellectually and technically.  Natural behavioral variation exists 

on a continuum – genetic variants change the probability of certain behaviors in a 

quantitative way, not a qualitative way.  Complicating the issue, behavioral 

measurements in mice differ significantly between laboratories even when care is 

taken to standardize every aspect of an experiment226.  Even within a laboratory, 

anxiety measurements in mice are strongly influenced by the person handling the 
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animals227.  Moreover, even when all variables are held constant, the behavioral 

response is often probabilistic rather than deterministic, which may have adaptive 

value228.  With these factors in mind, it is clear why it is an art to develop 

behavioral assays that are both specific and sensitive.   
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APPENDIX 2 
 
 

Potential Autosomal QTLs Affecting Leaving Behavior 

An analysis of chromosome substitution strains (CSS) with a single HW 

chromosome in an N2 background confirmed the importance of the X 

chromosome but failed to show individual effects of the five HW autosomes on 

leaving behavior (Figure A2.1a).  The CSS strains were generously provided by 

Man-Wah Tan (Stanford University).  These results suggest that any autosomal 

QTLs are likely to be subject to epistatic interactions with each other or loci on X. 

The initial RIAIL analysis identified a QTL on chromosome II, leav-3, in 

addition to the QTL on X (Figure 2.1d).  However, HW chromosome II from the 

chromosome substitution strain did not have a significant effect on leaving either 

on its own (Figure A2.1a), or in combination with the HW region on X spanning 

npr-1 and tyra-3 (Figure A2.1b).  This result suggested that mapping the QTL on 

II would be sensitive to additional epistatic interactions, and therefore the QTL 

was not pursued further. 

A separate analysis of the RIAIL leaving data revealed a potential QTL on 

chromosome IV.  This analysis was stimulated by the idea that animals near the 

border might be expected to leave more often than animals far from the border.  

The alternative leaving probability was calculated as the number of leaving 

events divided by the time that animals spent on the lawn, within 1 mm of the 

border.  This analysis yielded two QTLs:  the X chromosome QTL, and a QTL on 
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chromosome IV, leav-4, that just reached genome-wide significance (Figure 

A2.1c).  HW chromosome IV from the chromosome substitution strain did not 

have a significant effect on leaving either on its own (Figure A2.1a), in 

combination with the HW region on X spanning npr-1 and tyra-3, or when a full 

HW II chromosome was present (Figure A2.1b) so this QTL was not pursued 

further. 

The leaving behavior of a strain containing HW chromosomes II and IV in 

combination with the QTL on X containing npr-1 and tyra-3, is indistinguishable 

from a strain containing the X chromosome QTL alone (Figure A2.1b).  This 

suggests that additional loci that were not detected by QTL mapping are required 

for the high leaving rate of HW animals.  One of these additional loci could be 

glb-5, a functional gene in HW but nonfunctional in N2 due to a partial gene 

duplication that creates an early stop codon 62,106.  Isaac Strong and I found that 

glb-5 modulates leaving behavior in a different format of the leaving assay – HW 

glb-5 promotes leaving a very thin bacterial lawn (10-fold lower bacterial density 

than the lawn in the standard leaving assay used in the experiments in Chapter 

2) when high density bacterial lawns are also present at the edges of the assay 

plate (data not shown).  Combining HW glb-5 with HW chromosomes II and IV, 

and the HW X chromosome QTL could reveal if a HW glb-5 allele is required by 

the chromosomes II and IV QTLs to increase the leaving rate in an N2 genetic 

background.  
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Figure A2.1
Exploration of autosomal QTLs involved in leaving behavior.  a) Leaving 
rates in chromosome substitution strains that replace each N2 chromosome with 
a HW chromosome.  b) Leaving rates in NILs containing autosomal QTLs in 
combination with the X chromosome QTL, in an N2 background.  leav-3 and 
leav-4 correspond to the QTLs identified in Figure 2.1d and in panel c of this 
figure, respectively.  c) Alternative QTL analysis of RIAILs for leaving events 
normalized not to total time on the lawn, but to time spent within 1 mm of the 
border of the lawn.  The horizontal line denotes the P < 0.01 genome-wide 
significance threshold.  Error bars indicate s.e.m. ** P < 0.01 by ANOVA with 
Dunnett test to correct for multiple comparisons.
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Genetic interactions between tyra-3, npr-1, and genetic background 

 The octanol avoidance assay revealed a startling diversity of genetic 

interactions between tyra-3, npr-1, and genetic background.  The N2 and HW 

tyra-3 polymorphisms only affected octanol avoidance in the N2 background, not 

in the HW background (Figure A2.2).  By contrast, the tyra-3 polymorphisms 

only affected the leaving assay in the HW genetic background (Figure 2.4a).  

The N2 npr-1 allele enhanced octanol avoidance in both N2 and HW 

backgrounds (Figure A2.2).  In the N2 background, tyra-3 and npr-1 

polymorphisms had a synergistic interaction:  the HW tyra-3 allele enhanced 

avoidance, the HW npr-1 allele diminished avoidance, and the combination of 

HW tyra-3 and HW npr-1 diminished avoidance more than HW npr-1 alone.  Thus 

HW npr-1 reversed the sign of the HW tyra-3 effect.  Further confirmation that 

these effects are mediated by npr-1 and tyra-3 and not by other genes in the 

introgressed regions may be obtained by transgenic rescue of npr-1 and tyra-3. 

  



113

a b

Figure A2.2
Interactions between npr-1, tyra-3, and genetic background for octanol 
avoidance.  Kaplan-Meier curves representing the fraction of animals that have 
reversed after exposure to octanol.  a) Strains in an N2 genetic background.  
b) Strains in a HW genetic background.
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Role of tyramine and octopamine in leaving behavior 

 The experiments addressing the role of tyra-3 in leaving behavior suggest 

that tyramine sensed by tyra-3 reduces the tendency to leave a patch of food 

(Figure 2.4).  The high-activity N2 allele of tyra-3 is associated with a lower 

leaving rate than the low-activity HW allele (Figure 2.4a).  Consistent with this 

notion, the reduction of the leaving rate induced by transgenic overexpression of 

tyra-3 positively correlates with the transgene concentration (Figure 2.4b).  

Moreover, reducing the activity of tyra-3 through RNAi also reduces the leaving 

rate (Figure 2.4c). 

 To test the roles of tyramine and octopamine in leaving behavior more 

directly I measured the leaving behavior of animals bearing mutations in the 

enzymes that synthesize these monoamines.  Tyramine is produced from 

tyrosine through decarboxylation by tyrosine decarboxylase 1 (tdc-1), while 

octopamine is produced by the hydroxylation of tyramine by tyramine β-

hydroxylase 1 (tbh-1) (Figure A2.3a) 178.  If tyramine prevents leaving a patch of 

food, an animal that is unable to synthesize tyramine should have an increased 

leaving rate.  Instead, HW animals with a tdc-1 mutation, which lack tyramine and 

octopamine, had a reduced leaving rate, suggesting that tyramine or octopamine 

or both prevent leaving through tyra-3, but promote leaving through alternative 

receptors (Figure A2.3b).  HW animals with a tbh-1 mutation that impairs their 

production of octopamine had an elevated leaving rate compared to HW, 

suggesting that octopamine prevents leaving (Figure A2.3b).  Animals with a 



 115 

tbh-1 mutation, however, not only lack octopamine but also accumulate tyramine 

at 20-fold higher levels than wild type animals 178.  Therefore, the increased 

leaving rate of tbh-1 mutants could result from increased tyraminergic signaling 

and not from reduced octopamine, a result consistent with the reduced leaving 

rate of tdc-1 mutant animals that lack tyramine.  Additional experiments are 

needed to separate the roles of tyramine and octopamine in leaving behavior and 

identify the additional receptors for these monoamines that mediate their actions. 

tdc-1, which produces tyramine, is expressed in two neuron pairs, RIM 

and RIC, and in two non-neuronal tissues, the gonadal sheath, which is part of 

the somatic gonad and uterine cells UV1 178.  tbh-1, which converts tyramine into 

octopamine, is expressed in the RIC neurons and in the gonadal sheath.  Initial 

attempts to identify the source of tyramine and octopamine relevant to leaving 

behavior consisted in cell-specific rescue of tdc-1 of HW animals with a tdc-1 

mutation.  HW animals with a tdc-1 mutation have a reduced leaving rate.  

Restoring tdc-1 to the RIM neurons or to the RIC neurons plus the gonadal 

sheath transgenically with cell-specific promoters driving tdc-1 cDNA did not 

rescue the reduced leaving rate of HW animals with a tdc-1 mutation (Figure 

A2.3c).  The tdc-1 cDNA is functional, since it can rescue the social behavior 

phenotypes of tdc-1 mutants animals shown in Figure 2.14 (data not shown).  

Therefore, the results suggest that tyramine and octopamine from these 

individual neuronal and nonneuronal sources is insufficient to affect leaving 

behavior.  If a single cell is important, these results point to the UV1 cells – which 
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were the only cells in which rescue was not performed – as the relevant source of 

tyramine for leaving behavior.  Cell-specific rescue in the UV1 cells will be 

required to confirm this hypothesis.  Initial attempts at finding a good promoter for 

the UV1 cells have been unsuccessful:  I was unable to obtain reliable GFP 

expression in the UV1 cells using an egl-38 promoter reported to drive 

expression in the these cells 229. 

  



Figure A2.3
Effect on the leaving rate of mutations that affect tyramine and octopamine 
synthesis.  a) Tyramine and octopamine synthesis pathway.  TDC-1, tyrosine 
decarboxylase 1.  TBH-1, tyramine β-hydroxylase.  b) Leaving behavior of HW 
animals and HW animals with tdc-1(n3420) and tbh-1(n3247) mutations.  
tdc-1(n3420) and tbh-1(n3247) were introgressed into HW from an N2 
background. Relative monoamine levels were measured in an N2 background 178.  
c) Cell-specific rescue of tdc-1.  The gcy-13 promoter was used for RIM, and the 
tbh-1 promoter for RIC and the gonadal sheath.  Error bars indicate s.e.m.  ** P < 
0.01 by ANOVA with Dunnett test.
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METHODS 

 

Nematode Growth 

Strains were grown and maintained under standard conditions at 22-23 ˚C on 

nematode growth medium (NGM) 2% agar plates 230.  All animals used for 

behavioral assays were grown on plates seeded with dense E. coli HB101 lawns. 

 

Analysis of Behavior in the Leaving Assay 

6 cm NGM agar plates were seeded with 70 µL (conditioning plate) or with 

10 µL (assay plate) of a fresh overnight culture of E. coli HB101 diluted in LB to 

OD600nm=2.0. 90 min after seeding the plates, ten young adult hermaphrodites 

were picked onto the conditioning plate. 30 min after being placed on the 

conditioning plates, seven of the animals were transferred onto the lawn of the 

assay plate. The 30 min leaving assay began 1 hr after placing the seven 

animals on the assay plate. The number of leaving events was recorded 

manually by examining the video recordings, and further behavioral analysis was 

conducted with a Matlab code adapted from the Parallel Worm Tracker with the 

help of Makoto Tsunozaki 231. A leaving event was defined as an episode in 

which the whole body of an animal left the bacterial lawn and the animal did not 

reverse immediately to return to the lawn. The leaving rate was calculated as the 

number of leaving events per worm minute spent inside the bacterial lawn. 

Experiments on each strain were repeated at least three times. 
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Quantitative Trait Locus Analysis 

The N2-HW recombinant inbred advanced intercross lines (RIAILs) used 

in this study represent the terminal generation of a 20-generation pedigree 

founded by reciprocal crosses between N2 and HW. The lines were constructed 

through 10 generations of intercrossing followed by 10 generations of selfing 43. 

They have been genotyped at 1454 nuclear and one mitochondrial markers and 

have a 5.3-fold expansion of the F2 genetic map 43. QTL analysis was performed 

on the mean leaving rates, bordering, and clumping of N2-HW RIALs by 

nonparametric interval mapping in R/qtl 232. Significance levels were estimated 

from 10,000 permutations of the data. 

 

Identification of the Minimal Genetic Region for the leav-2 QTL 

The genetic region from 4.78-5.75 MB defined by the leav-2 strain in 

Figure 2.4 encompassed 158 genes.  The location of the potential leaving-

suppressing variant was inferred from the analysis of breakpoints within the QTL 

in individual RIAILs, as follows.  The 1.5-lod score confidence interval defined by 

the RIAILs spans from ~4.6 to 5.3 Mb (Figure 2.5). Thus, the causal variant in 

leav-2 was hypothesized to lie between 4.78 and 5.3 Mb, a region containing only 

85 genes.  Six RIAILs that had HW npr-1 had a breakpoint to the left of 5.75 Mb.  

Three of the strains (QX108, QX122, and QX202) had N2 sequence to the right 

of 4.93 Mb and low leaving rates (Figure 2.5).  The other three (QX75, QX154, 

QX158) had N2 sequence to the right of 5.03 Mb and higher leaving rates.  
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These observations suggested that the N2 allele that suppresses leaving may lie 

between 4.93 and 5.03 Mb, a region that contains 17 genes (Figure 2.6). 

 

Identification of tyra-3 as the Gene Affected by the leav-2 QTL 

PCR products that overlap by at least 1 kb, covering the region from 4.93 

to 5.03 Mb on the X chromosome, were amplified from N2 genomic DNA using 

the following primers and injected into HW animals (at 5 ng/µL) in groups: 

Product a (tyra-3).Forward cctgctcttttctggaggtg, reverse gccgcaaaaacagagaaaac 

Product b. Forward ttttcctttttagatctccatgtc, reverse tgaaggaaccgtattttccaa 

Product c. Forward ttttcctttttagatctccatgtc, reverse aaagcggatcaagaattcca 

Product d. Forward ccaccatgtacccaggaatc, reverse ccttcctcgagtcaagttgc 

Product e. Forward agaacaaccccgagacacac, reverse tggagttttccaccgatttc 

Product f. Forward ccaatcacctgccctttcta, reverse tgtggacgatgagttggtgt 

Product g. Forward cgactcaaaggtgcaagaca, reverse gaagttcggctgaaaagcac 

Product h. Forward aacctttcagccaccgtatg, reverse acgcgttcaagcacttttct 

Product i. Forward gcaatttccatcctcatcgt, reverse ttcaacttccagtcggaacc 

Product j. Forward gtgctcacaaaatcgcagaa, reverse gctcgagacattttcgaagg 

Product k. Forward cgacaatgatggacacaagg, reverse agaagccgaagaaggaggac 

Product l. Forward aacaaaattggctcgtgacc, reverse aacttttgttcccggatgtg 

DNA pools tested by injection were pool 1=a+b; 2,=a; 3,=b; 4=c; 5=d; 6=e+f+g+h; 

7=h+i+j+k+l. Three transgenic lines were tested per DNA pool. 
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Generation of Near-Isogenic Lines 

Near-isogenic lines were created by backcrossing a chromosomal region 

or allele into the desired genetic background as described below. Desired 

segments were then inbred to homozygosity. For introgressions into the HW 

(CB4856) background, crosses were set up to avoid problems with the 

incompatibility locus between N2 and HW on chromosome I 233. 

Marker positions are based on Wormbase release WS219; npr-1 is at 

4,769,595 (indel) and tyra-3 is at 4,948,658 (indel). 

QX1092 npr-1 (CB4856>N2) [qqIR3] X:  QX202, a RIAIL containing CB4856 npr-

1 and N2 tyra-3, was crossed to lon-2 males (in an N2 background) for 10 

generations, picking non-Lon hermaphrodites each generation (lon-2 is tightly 

linked to npr-1). The introgression breakpoints are, on the left, between 

3,921,083 (marker haw101674) and 4,060,839 (marker pkP6146), and on the 

right, between 4,892,213 (marker pkP6106) and 4,937,279 (marker haw102792).  

There is additional CB4856 sequence with a left breakpoint between 6,073,091 

(marker haw103987) and 6,278,584 (indel) and a right breakpoint between 

6,278,584 (indel) and 6,581,237 (marker pkP6154). 

CX11400 leav-1 (N2>CB4856) [kyIR9] X:  CB4856 males were crossed to QX9, 

a RIAIL containing N2 npr-1, and a recombinant F2 between npr-1 and an indel 

marker at 4,948,658 was selected.  This recombinant bearing N2 npr-1 and 

CB4856 sequence to its right was backcrossed to CB4856 males nine more 

times, selecting hermaphrodites with an N2 allele of npr-1 each generation. The 

introgression breakpoints are, on the left, between 4,649,200 (marker uCE6-872) 
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and 4,745,912 (marker snp_C39E6[1]), and on the right, between 4,768,758 

(marker snp_C39E6[4]) and 4,797,631 (marker uCE6-877). 

CX10927 leav-2 (N2>CB4856) [kyIR2] X:  QX122, a RIAIL containing CB4856 

npr-1 and N2 sequence to its right, was crossed to CB4856 males for 10 

generations, selecting hermaphrodites with an N2 allele at 4,948,658 (indel) each 

generation.  The introgression breakpoints are, on the left, between 4,769,595 

(indel) and 4,797,631 (marker uCE6-877), and on the right, between 5,744,794 

(indel) and 5,759,074 (marker uCE6-952). 

CX13272 npr-1 tyra-3 (N2>CB4856) [kyIR91] X:  QX32, a RIAIL containing N2 

npr-1 and tyra-3, was crossed to CB4856 males.  Male F1s were backcrossed to 

CB4856 hermaphrodites, F2s were selfed, and F3s that kept N2 npr-1 and tyra-3 

were crossed to CB4856 males again.  This cycle was repeated four more times.  

The introgression breakpoints are, on the left, between 4,060,839 (marker 

pkP6146) and 4,279,605 (marker uCE6-854), and on the right, between 

5,153,187 (marker uCE6-890) and 5,234,763 (marker uCE6-904). 

CX11950 tyra-3 (ok325>CB4856) [kyIR25] X:  CB4856 males were crossed to 

CX11839 (tyra-3 [ok325]) and a recombinant F2 between npr-1 and tyra-3 

(ok325) was identified.  This recombinant bearing CB4856 npr-1 and tyra-3 

(ok325) was backcrossed to CB4856 males eight more times, selecting 

hermaphrodites with an ok325 allele of tyra-3 each generation.  The introgression 

breakpoints are, on the left, between 4,919,592 (marker haw102765) and 

4,919,769 (marker haw102766), and on the right, between 5,360,624 (indel) and 

5,414,461 (marker uCE6-929). 
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CX13271 tyra-3 (CB4856>N2) [kyIR90] X: QX75, a RIAIL containing CB4856 

npr-1 and tyra-3, was backcrossed repeatedly to N2-derived strains, while 

recombining dpy-3 and lon-2 markers on and off the X chromosome to eliminate 

linked sequences from CB4856.  The introgression breakpoints are, on the left, 

between 4,866,708 (indel) and 4,919,592 (marker haw102765), and on the right, 

between 5,033,445 (marker uCE6-886) and 5,152,492 (marker uCE6-888). 

QX1157 npr-1 tyra-3 (CB4856>N2) [qqIR2] X:  QX125, a RIAIL containing 

CB4856 npr-1 and tyra-3, was backcrossed to lon-2 males (in an N2 background) 

for 20 generations, picking non-Lon hermaphrodites each generation.  The 

introgression breakpoints are, on the left, between 4,507,511 (marker uCE6-865) 

and 4,637,513 (marker pkP6149), and on the right, between 10,265,260 (indel) 

and 11,142,289 (marker pkP6114). 

CX14180 npr-1 (CB4856>N2) [kyIR122] X: QX1155, a near-isogenic line 

containing CB4856 npr-1 in an N2 background that had been backcrossed 20 

times to N2, was crossed to N2 and a recombinant that kept CB4856 npr-1 but 

lost CB4856 DNA to the left of npr-1 was isolated by Joshua Greene.  The 

introgression breakpoints are, on the left, between 4,076,447 (indel) and 

4,384,533 (indel), and on the right, between 4,769,595 (indel) and 4,892,213 

(marker pkP6106). 

 

CX11176-CX11177 leav-3 (CB4856>N2) [kyIR4-kyIR5] II:  WE5237 

(chromosome substitution strain II) males were mated to QX1157; male F1 were 
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mated to QX1157 and two F2 recombinants that kept CB4856 alleles at 

1,683,956 (marker haw18527) and 5,329,512 (marker haw25319) were isolated. 

CX11170 leav-4 (CB4856>N2) [kyIR3] IV: QX45 was backcrossed to mec-3 dpy-

4 (in an N2 background) for 10 generations, picking non-Mec, non-Dpy animals 

each generation.  The introgression breakpoints are, on the left, between 

11,508,357 (marker haw59342) and 11,603,955 (marker haw59377), and on the 

right, between 13,629,791 (marker haw61017) and 13,706,656 (marker 

haw61106). 

CX13602 II-QTL (CB4856>N2) [kyIR97] II:  QX111, a RIAIL containing the II-QTL 

was backcrossed to clr-1 dpy-10 (in an N2 background) for 9 generations, picking 

non-Clr, non-Dpy animals each generation.  A smaller introgressed region was 

further isolated through recombination with N2.  The introgression breakpoints 

are, on the left, between 5,926,596 (indel) and 5,941,581 (indel), and on the 

right, between 6,195,603 (marker haw25802) and 6,198,696 (marker haw25803).  

 

Fine-mapping of the social behavior II-QTL 

 N2 animals were crossed to II-QTL (kyIR97), F1 hermaphrodites were 

selfed and 5,000 individual F2 hermaphrodites were dispensed into individual 

wells of 96-well plates with the use of a worm sorter (COPAS Biosort system; 

Union Biometrica).  These F2s were grown on 200 µL of an E. coli OP50 

suspension in S-basal buffer with cholesterol, rotating at 230 RPM, at 22 ºC for 6 

days.  The progeny of F2s was genotyped at 5,941,581 (indel) and 6,195,603 

(marker haw25802), a 0.41 cM interval, and recombinants between these 
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markers were isolated.  The recombinant chromosome was then made 

homozygous.  These homozygous recombinants were then tested for social 

behavior. 

 

tyra-3 Population Genetic Summary Statistics 

Population genetic summary statistics for the gapless sites in the 

alignment of the tyra-3 genomic region were calculated using libseq 234 by 

Matthew Rockman.  SNP variation (17644.3 noncoding and synonymous sites, p 

= 10.53 x 10-4, Qw = 9.99 x 10-4) is typical for C. elegans genes 235,236.  The allele 

frequency spectrum is also consistent with neutral equilibrium (Tajima’s D = 

0.368, p = 0.6).  The SNP data provided no evidence for intragenic recombination 

(Rmin = 0).  

 

Quantitative RT-PCR 

Total RNA from mixed stage worms was isolated with Trizol. 1.5 mg of 

RNA and oligo-dT were used for reverse transcription using SuperScript III First-

Strand Synthesis (Invitrogen) according to the manufacturer’s instructions. Real-

time PCR was performed with Fast SYBR Green Master Mix (Applied 

Biosystems) on a 7900HT Real-Time PCR System (Applied Biosystems). act-3 

was used as the calibrator for relative quantitation. 5’ primers corresponded to 

upstream exons that distinguished tyra-3 isoforms, and 3’ primers corresponded 

to shared exon sequence. Primers used were: 
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tyra-3a&c.2_F, ccacttgcaaatagcagcag 

tyra-3b_F, ggctatttggtggtggtttg 

tyra-3a & tyra-3b_R, tccttctggcgtcgaaatac 

act-3_F, tcacgatcatgagaccattcaaa 

act-3_R, gcaaattgtagtggggtcttcttatg 

 

tyra-3 Expression Pattern 

The N2 and HW 4.9 kb tyra-3b promoters were amplified using primers: 

tcaacctaaccactaactaaggg and cGatgaagcaagatgtcaggt, which overlaps the 

coding region by 4 bp. The ATG start codon is mutated to ATC (mutation is 

uppercase in primer). These promoters were individually fused by PCR to a 

fragment containing GFP followed by the unc-54 3’-UTR, as described 237. These 

PCR products were injected individually into both HW and N2 animals at 20 

ng/µL. Cells expressing GFP were identified by Nomarski microscopy in both L1 

and adult hermaphrodites. The identification of some cells was aided by injecting 

Ptyra-3b::GFP-expressing animals with promoter-mCherry fusions with 

established expression patterns. In this manner, the AIM neurons were identified 

as Ptyra-3b::GFP-expressing cells based on their position and the absence of co-

localization with Pttx-3::mCherry. The BAG neurons co-expressed Ptyra-3b::GFP 

and Pflp-17::mCherry. The CEP neurons co-expressed Ptyra-3b::GFP and Pdat-

1::mCherry. The ASK neurons co-expressed Ptyra-3b::GFP and Psra-
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9::mCherry. The ADL neurons co-expressed Ptyra-3b::GFP and Psri-

51::mCherry. 

 

Extrachromosomal transgenes  

Transgenes were made by injection of DNA clones into the gonads of 

young adult hermaphrodites together with a fluorescent coinjection marker 238. To 

control for variation between transgenes, between two and five independent lines 

from each injection were characterized. 

 

RNAi 

RNA interference was performed essentially as described 239.  A fragment 

common to all isoforms of a gene was amplified. The following primers were 

used, which include the T7 sequence (underlined): 

tyra-3_F, taatacgactcactatagggagagaaaatggcagcaggacttt 

tyra-3_R, taatacgactcactatagggagaatcctcgcagtctgtggagt 

exp-1_F, taatacgactcactatagggagacatgggtttcattatggatgg 

exp-1_R, taatacgactcactatagggagacaatgaaatcggtgcattgt 

abts-3_F, taatacgactcactatagggagatgaaagcagctaggacagca 

abts-3_R, taatacgactcactatagggagagcgtacgatccagtgaatga 

in vitro transcription was performed with RiboMAX kit (Promega). dsRNA 

was injected at 1.2 mg/mL into the gonads of adult hermaphrodites. Eggs laid 24 

and 48 hours after injection were used for the behavioral assays. 
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Generation of MosSCI Lines and Quantitation of GFP Fluorescence in ASK 

Single-copy insertion of transgenes was performed using the direct 

MosSCI technique targeting the ttTi5605 Mos allele on chromosome II, as 

described 172. A schematic of the mechanism underlying MosSCI is shown in 

Figure 2.10c. 

The pCFJ151 targeting vector was modified by the introduction of an FseI 

restriction site into the multiple cloning site by site-directed mutagenesis using 

the primers gtaatacgactcacttaaggccggccctagagggtaccagagctcacc and 

ggtgagctctggtaccctctagggccggccttaagtgagtcgtattac to make pAB1. An FseI-SpeI 

fragment from a pSM vector containing N2-Ptyra-3b::N2-tyra-3b::SL2 GFP::unc-

54 3’-UTR or HW-Ptyra-3b::N2-tyra-3b::SL2 GFP::unc-54 3’-UTR was cloned into 

pAB1.  

For each tyra-3-containing test plasmid, about fifty EG4322 animals were 

injected with a mixture of tyra-3 plasmid, pGH8, pCFJ90, pCFJ104, and pJL43.1. 

After positive and negative selection and full sequencing of the insert, two 

inserted transgenes each of N2-Ptyra-3b and HW-Ptyra-3b were backcrossed to 

HW males seven times, selecting GFP-fluorescent hermaphrodites each 

generation. The transgene-containing chromosome was then homozygosed. 

The strains containing the single-copy transgene in a HW background 

were injected with Psra-9::mCherry to identify ASK. Young adult hermaphrodites 

were examined on a Zeiss Imager Z.1 with a 60X objective focused on ASK 

using mCherry to prevent bleaching of GFP signal. Fluorescence signals were 
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acquired with fixed acquisition times (30-50 msec for mCherry, 100 msec for 

GFP). Background mean fluorescence intensity adjacent to ASK was subtracted 

from the ASK signal. 

 

Octanol Avoidance Assay 

Avoidance assays were conducted essentially as described 240. In brief, 

~20 three-day old animals were picked off of their growth plates food into a 

transfer plate without bacteria where they were allowed to crawl and rid 

themselves of bacteria. Animals were then transferred onto an NGM plate without 

food. After 40 minutes, a microcapillary with 30% octanol (v/v diluted fresh every 

day in ethanol) was presented in front of the animal’s nose. The time to reverse 

was recorded. If animals did not reverse within 20 seconds, the assay was 

stopped. Animals were presented with odor 1-3 times per experiment, with at 

least 3 minutes of rest interval.  I replicated published results demonstrating that 

tyra-3 null mutants had more rapid responses than N2 in the presence of 

exogenous serotonin and tyramine 122 but also observed more rapid responses in 

the absence of exogenous neuromodulators, as shown in Figure 2.7. 

 

Cell Ablations 

For leaving behavior assays ASK was ablated with a laser microbeam as 

described 241. BAG and URX were killed using split human caspase 3 fragments 

242 expressed from flp-17 and glb-5 promoters that overlapped only in BAG or flp-
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8 and glb-5 promoters that overlapped only in URX.  These strains were made by 

Patrick McGrath. URX, AQR, and PQR were killed jointly using egl-1 cell death 

activator driven by the gcy-36 promoter 168.  For lysine chemotaxis assays, ASK 

was killed using a mouse caspase 1 gene expressed from the sra-9 promoter 243. 

The ASK strain was a generous gift from Ryuzo Shingai. 

 

Social Behavior Assay 

Aggregation and bordering behaviors were measured essentially as 

described 61, with the modifications from 133.  Briefly, 2-3 week old (kept at 4 ºC) 

2% agar NGM plates were seeded with 200 µL of a saturated E. coli OP50 

bacterial culture in LB 2 days before the assay.  150 animals adult animals were 

picked onto the assay lawn.  Bordering and clumping behavior were quantified 

after two hours at 22 ºC.  An animal was considered to be bordering if its whole 

body resided within 1 mm of the border of the bacterial lawn.  Clumping behavior 

was measured as the fraction of animals that were in contact with two or more 

other animals along at least 50% of their body length. 

 

Defecation Assay 

 A defecation cycle consists of a posterior body contraction (pBoc), 

followed by an anterior body contraction (aBoc), and concludes with an enteric 

muscle contraction (EMC).  Defecation assays were performed as described 194.  
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I scored for the number of pBoc that were followed by an EMC. At least 25 

animals per strain were scored.  Each animal was scored only once. 

 

Transgenes 

The Pflp-21::LoxP stop LoxP::npr-1 SL2 GFP and Pncs-1::nCre constructs 

are described in Macosko et al, 2009 133. 

The 11 kb tyra-3 genomic transgene was amplified using Expand Long 

Range dNTPack (Roche) with primers cctgctcttttctggaggtg and 

gccgcaaaaacagagaaaac  

Ptyra-3b was amplified using primers: tcaacctaaccactaactaaggg and 

cGatgaagcaagatgtcaggt, which overlaps the coding region by 4 bp. The ATG 

start codon is mutated to ATC (mutation is uppercase in primer).  This product 

was cloned into pSM. 

ADL  Psri-51 ends: gactgtaaaatcgataagca…ccactgccaccgggcagaac  

ASK  Psra-9 ends: gcatgctatattccaccaaa...tgtgcatcaatcatagaaca 

BAG  Pflp-17 ends: ccttgaagcttttcctctga…gcaaaactttatttttccag 

CEP, ADE, PDE  Pdat-1 ends: atctctgaaatgtttctagt…aatctcaacaatttttagcc 

tyra-3b cDNA was cloned by RT-PCR. The ends are atggctatttggtggtggtt… 

agcaatcgacaatattctaa.  The product was cloned into pSM with NheI and KpnI. 

Promoter-GFP fusions were performed as described 244, with the same 

promoter end sequences as in Ptyra-3b. 
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The 12.6 kb tyra-3 genomic transgene was cloned into pSM.  The ends 

are agttggtacaaaaagcttac…gttctcagggtgattgtgtt. The 184 bp deletion was 

engineered by site-directed mutagenesis. 

 

Strains 

‘Wild-type’ strains 

Strain  Origin    Haplotype 43 

N2  Bristol, England  1 

CB4856 Hawaii, USA   41 

MY1  Lingen, Germany  29 

MY14  Mecklenbeck, Germany 40 

JU258  Madeira, Portugal  39 

CB4853 Altadena, California, USA 19 

N2-HW RIAILs for leaving QTL analysis 

QX10, QX11, QX12, QX13, QX14, QX24, QX31, QX32, QX34, QX37, QX38, 

QX39, QX42, QX43, QX45, QX47, QX49, QX52, QX55, QX56, QX57, QX58, 

QX61, QX62, QX64, QX65, QX68, QX70, QX71, QX73, QX74, QX75, QX77, 

QX82, QX86, QX91, QX98, QX107, QX108, QX121, QX122, QX124, QX125, 

QX126, QX127, QX128, QX129, QX131, QX132, QX133, QX134, QX144, 

QX149, QX151, QX152, QX154, QX157, QX158, QX165, QX167, QX168, 

QX169, QX171, QX174, QX175, QX176, QX178, QX179, QX181, QX182, 

QX185, QX187, QX190, QX191, QX192, QX193, QX195, QX196, QX198, 
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QX199, QX200, QX202, QX205, QX208, QX209, QX210, QX212, QX213, 

QX221, QX223, QX233 

N2-HW RIAILs for bordering and clumping QTL analyses 

QX1, QX3, QX4, QX5, QX6, QX8, QX9, QX15, QX16, QX17, QX18, QX20, 

QX25, QX26, QX27, QX29, QX32, QX33, QX38, QX43, QX44, QX47, QX48, 

QX49, QX51, QX52, QX53, QX54, QX55, QX56, QX57, QX62, QX68, QX70, 

QX71, QX72, QX73, QX74, QX76, QX78, QX79, QX80, QX81, QX82, QX83, 

QX84, QX85, QX87, QX90, QX92, QX93, QX94, QX95, QX96, QX97, QX99, 

QX100, QX102, QX103, QX110, QX112, QX114, QX115, QX120, QX121, 

QX128, QX129, QX137, QX140, QX147, QX156, QX157, QX161, QX163, 

QX165, QX171, QX174, QX175, QX176, QX177, QX178, QX181, QX186, 

QX187, QX189, QX190, QX192, QX193, QX194, QX203, QX206, QX210, 

QX212, QX216, QX217, QX218, QX220, QX221, QX227, QX228, QX230, 

QX231. 

Near-isogenic lines in a HW genetic background: 

CX11400 kyIR9 [leav-1 X:~4.70-~4.78Mb, N2>CB4856] 

CX10927 kyIR2 [leav-2 X:~4.78-~5.75Mb, N2>CB4856] 

CX13272 kyIR91 [X:~4.17-~5.19Mb, N2>CB4856] 

CX11950 kyIR25 [tyra-3 (ok325) X:~4.92-~5.39Mb, CX11839>CB4856] 

Near-isogenic lines in an N2 background: 

QX1092 qqIR3 [X: ~3.99-~4.91Mb, CB4856>N2] 

CX13271 kyIR90 [X:~4.89-~5.09Mb, CB4856>N2] 
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QX1157 qqIR2 [X: ~4.57-~10.70Mb, CB4856>N2] 

CX14180 kyIR122 [X: ~4.24-~4.83Mb, CB4856>N2] 

CX11176-CX11177 kyIR4-kyIR5 [II: ~1.68-~5.33Mb, WE2537>N2]; qqIR2 

CX11441 kyIR11 [II CB4856>N2]; qqIR2 

CX11170 kyIR3 [IV: ~11.6-~13.6Mb, CB4856>N2]; qqIR2 

CX11442 kyIR12 [IV: CB4856>N2]; qqIR2 

CX13602 kyIR97 [II: ~5.93-~6.97Mb, CB4856>N2] 

CX11498 kyIR11 [II CB4856>N2]; kyIR12 [IV CB4856>N2]; qqIR2 

CX10774 kyIR1 [V: glb-5, CB4856>N2] 

Chromosome substitution strains: 

These strains carry a single CB4856 chromosome in an N2 background.  They 

were a gift from Man-Wah Tan. 

WE5236 [I, CB4856>N2] 

WE5237 [II, CB4856>N2] 

WE5238 [III, CB4856>N2] 

WE5239 [IV, CB4856>N2] 

WE5240 [V, CB4856>N2] 

WE5241 [X, CB4856>N2] 

Transgenic strains 

CX12787, CX12788 kyEx3586, kyEx3589 [Pflp-21::LoxP stop LoxP::npr-1 SL2 

GFP @50ng/mL, Pelt-2::mCherry @2ng/mL] 
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CX12789-CX12790 kyEx3590-kyEx3591 [Pncs-1::nCre @20ng/mL, Pofm-

1::dsRed @10ng/mL] 

CX10576, CX10577, CX10595, CX10596 kyEx2635, kyEx2636, kyEx2651, 

kyEx2652 [11kb tyra-3 HW-genomic fragment @5ng/mL; Pelt-2::GFP 

@4.5ng/mL] 

CX10457-CX10459 kyEx2536-kyEx2538 [11kb N2-tyra-3 genomic fragment 

@5ng/mL; Pelt-2::GFP @4.5ng/mL] 

CX10619-CX10621 kyEx2667-kyEx2669 [11kb HW-tyra-3 genomic fragment 

@1ng/mL; Pelt-2::GFP @4.5ng/mL] 

CX10622-CX10624 kyEx2670-kyEx2672 [11kb N2-tyra-3 genomic fragment 

@1ng/mL; Pelt-2::GFP @4.5g/mL]  

CX11362, CX11365 kyEx3025, kyEx3028 [HW-Ptyra-3b::HW-tyra-3b::SL2 GFP 

@5ng/mL] 

CX11367-CX11368 kyEx3030-kyEx3031 [HW-Ptyra-3b::N2-tyra-3b::SL2 GFP 

@5ng/mL] 

CX11363-CX11364 kyEx3026-kyEx3027 [N2-Ptyra-3b::N2-tyra-3b::SL2 GFP 

@5ng/mL] 

CX11366, CX11369 kyEx3029, kyEx3032 [N2-Ptyra-3b::HW-tyra-3b::SL2 GFP 

@5ng/mL] 

CX10790-CX10791 kyEx2762-kyEx2763 [N2-Ptyra-3b::GFP @20ng/mL; Pelt-

2::GFP @4.5ng/mL] 
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CX10789, CX10792 kyEx2761, kyEx2764 [HW-Ptyra-3b::GFP @20ng/µL; Pelt-

2::GFP @4.5ng/mL] 

CX13452-CX13456 kyEx4030-kyEx4034 [12.6kb N2-tyra-3 genomic fragment 

@5ng/mL; Pelt-2::GFP @4.5g/mL]  

CX13447-CX13451 kyEx4025-kyEx4034 [12.6kb N2-tyra-3 genomic fragment 

Δ184 @5ng/mL; Pelt-2::GFP @4.5g/mL]  

CX13112-CX13114 kyEx3778-kyEx3780 [Psri-51::N2-tyra-3b::SL2 GFP 

@50ng/µL, Pelt-2::mCherry @2ng/µL] 

CX11495-CX11497 kyEx3063-kyEx3065 [Psra-9::N2-tyra-3b::SL2 GFP 

@40ng/mL, Pelt-2::GFP @4.5ng/mL] 

CX13118-CX13120 kyEx3784-kyEx3786 [Pflp-17::N2-tyra-3b::SL2 GFP 

@1ng/µL, Pelt-2::mCherry @2ng/µL] 

CX13115-CX13117 kyEx3781-kyEx3783 [Pdat-1::N2-tyra-3b::SL2 GFP 

@25ng/µL, Pelt-2::mCherry @2ng/µL] 

QS4 qrIs2 (Psra-9::mCaspase 1, Pelt-2::GFP) 

CX13355 kyIR92 [kyIs538 (Pglb-5::p12 hCaspase 3::SL2 GFP, Pelt-2::mCherry), 

CX11697>CB4856]; kyIR93 [kyIs536 (Pflp-17::p17 hCaspase 3::SL2 GFP, 

Pelt-2::GFP), CX11697>CB4856] 

CX11674-CX11675 kyIR14-kyIR15 [kySi47,kySi46 (Cbr-unc-119(+)::N2-Ptyra-

3b::N2-tyra-3b::SL2 GFP) II, N2>CB4856] 

CX11673, CX11676 kyIR13,kyIR16 [kySi41,kySi43(Cbr-unc-119(+)::HW-Ptyra-

3b::N2-tyra-3b::SL2 GFP) II, N2>CB4856] 
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CX13972 exp-1(ox276) daf-22(ok693) II; kyEx4313 [Pelt-2::GFP @4.5 ng/uL] 

CX11697 kyIs536 [Pflp-17::p17 hCaspase 3::SL2 GFP, Pelt-2::GFP]; kyIs538 II 

[Pglb-5::p12 hCaspase 3::SL2 GFP, Pelt-2::mCherry] 

CX11728 kyIs537 [Pflp-8::p17 hCaspase 3::SL2 GFP, Pelt-2::GFP]; kyIs538 II 

[Pglb-5::p12 hCaspase 3::SL2 GFP, Pelt-2::mCherry] 

CX13666 kyIR97 kyIs538 [Pglb-5::p12 hCaspase 3::SL2 GFP, Pelt-2::mCherry] 

II; kyIs536 [Pflp-17::p17 hCaspase 3::SL2 GFP, Pelt-2::GFP] 

CX13850 kyIR97 kyIs538 [Pglb-5::p12 hCaspase 3::SL2 GFP, Pelt-2::mCherry] 

II; kyIs537 [Pflp-8::p17 hCaspase 3::SL2 GFP, Pelt-2::GFP] 

CX7102 qaIs2241 [Pgcy-36::egl-1, Pgcy-35::GFP, lin-25(+)] X 

Mutant strains 

DA609 npr-1(ad609) X 

CX11839 tyra-3(ok325) X, outcrossed 4X to N2 

CX13840 abts-3(ok368) II, autosomes outcrossed 3X and X chromosome 

outcrossed completely to N2 

CX13975 exp-1(ox276) II, outcrossed 6X to N2 

CX13976 unc-47(e307) III, autosomes outcrossed 3X and X chromosome 

outcrossed completely to N2 

CX14021 exp-1(ox276) II; unc-47(e307) III  

CX13846 daf-22(ok693) II, autosomes outcrossed 5X and X chromosome 

outcrossed completely to N2 

CX13847 exp-1(ox276) daf-22(ok693) II  
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