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STRUCTURE-FUNCTION ANALYSIS OF 

INSECT OLFACTORY RECEPTORS 

 Maurizio Pellegrino, Ph.D. 

The Rockefeller University 2011 

 

Organisms use their senses to transform external stimuli into an internal 

representation of the world. Insects employ their keen sense of smell for a variety of 

tasks including location of food sources, which can vary from yeast growing on ripe 

fruits for the vinegar fly Drosophila melanogaster to mammals for blood-feeding insects 

such as the mosquito Anopheles gambiae. The first informational relay between the 

external environment and the organism is the olfactory sensory neuron (OSN), whose 

activation translates the intensity, quality, and temporal features of volatile chemicals 

into spike trains. This dissertation focuses on understanding how the insect olfactory 

system functions at the periphery, shedding light on the molecular players involved and 

the interactions between environmental chemicals and OSNs. 

In Drosophila, most of the ~1,200 OSNs express members of the olfactory 

receptor (OR) protein family (Stocker, 1994; Vosshall et al., 1999). The functional OR 

complex comprises at least one variable odorant-binding subunit and one constant 

subunit named OR83b (Benton et al., 2006). Insect ORs have historically been grouped 

with mammalian and nematode ORs, both of which are G protein coupled receptors 

(GPCRs), whose activation leads to increased concentrations of intracellular second 

messengers and opening of cyclic nucleotide-gated channels (CNG; Buck and Axel, 

1991; Colbert et al., 1997; Firestein et al., 1991; Nakamura and Gold, 1987; Troemel et 
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al., 1995). Insect ORs lack similarity to GPCRs (Benton et al., 2006; Vosshall et al., 

1999), and we hypothesized that they function as odorant-gated ion channels. We 

showed that expression of insect ORs in heterologous cells generates odorant-evoked 

currents that are resistant to G protein inhibitors, independent of cyclic nucleotides, and 

whose properties change based on OR subunit composition (Sato et al., 2008). This 

surprising discovery supports our hypothesis that insect ORs are indeed odorant-gated 

ion channels. 

Concurrently with these findings, we investigated the mode of action of DEET, 

the most widely used topical insect repellent, and showed that ORs are among its 

molecular targets. We demonstrated that DEET suppresses Drosophila food-seeking 

behavior, modulates OSN activity, and decreases OR-mediated currents in 

heterologous cells (Ditzen et al., 2008). Moreover, we showed that a missense 

polymorphism in a ligand-binding OR subunit leads to pharmacological resistance to the 

repellent in vivo. This is the first finding that identifies a molecular target of DEET. 

Within the OR complex, OR83b plays an essential role. Ligand-binding subunits 

fail to localize properly at the OSN dendrite in the absence of OR83b, resulting in almost 

complete loss of sense of smell (Benton et al., 2006; Larsson et al., 2004). We identified 

a putative localization motif in the OR83b protein, and showed that mutations in 

conserved residues abolish proper OR trafficking and impair odorant-evoked responses. 

This discovery defines critical amino acids that might be used as possible targets of 

future repellents to modulate the activity of insect OSNs. 

The discoveries described in this thesis will have an impact on the design of 

better and safer insect repellents and the control of insect-borne diseases. 
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1 Introduction to olfaction 

1.1 Why do we need chemosensation?  

1.1.1 Use of the chemosensory system in living organisms 

Sensory systems allow organisms to perceive the surrounding world to interact 

with the environment and survive. The central nervous system collects stimuli and 

translates them into an inner representation, which is used by the organism to respond 

with the most appropriate behavior. 

 

Chemosensation, the ability to sense external chemicals, is one of the oldest of 

our senses. Even unicellular organisms like bacteria can respond to changes in 

environmental chemicals through chemotaxis (Engelmann, 1883; Pfeffer, 1884), 

migrating up gradients of nutrients (Adler, 1966), and away from harmful stimuli like 

hydrogen peroxide (Benov and Fridovich, 1996). This behavior is also necessary for 

bacteria like Helicobacter pylori and Campylobacter jejuni to properly colonize the site of 

infection and become pathogenic (Foynes et al., 2000; Takata et al., 1992). 

With the evolution of higher organisms, the ability to detect chemicals has 

developed into two systems that differentiate between water-soluble and volatile cues: 

the sense of taste (gustation) and smell (olfaction). This dissertation is focused 

particularly on the latter. 

Similar to unicellular organisms, the nematode Caenorhabditis elegans interprets 

environmental cues to chemotax (Bargmann, 2006; Bargmann et al., 1993; Bargmann 

and Horvitz, 1991; Grewal and Wright, 1992), to avoid detrimental conditions (Pradel et 
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al., 2007; Troemel et al., 1997), and to alter its developmental stage depending on 

external circumstances (Golden and Riddle, 1982; Golden and Riddle, 1984a; Golden 

and Riddle, 1984b). 

Although plants do not move from place to place and cannot rapidly follow 

gradients, they can use chemical cues to communicate over short and long distances. 

Infected plants, for example, can emit volatile organic compounds that are detected by 

nearby conspecifics, which in turn increase the expression of resistance genes and 

mount defense responses (Baldwin and Schultz, 1983; Engelberth et al., 2004; Karban 

et al., 2006; Shulaev et al., 1997; Yi et al., 2009). Moreover, it has recently been shown 

that the parasitic dodder plant Cuscuta pentagona uses volatile cues to locate and 

specifically recognize its tomato plant host Lycopersicon esculentum (Runyon et al., 

2006). 

In vertebrates and invertebrates, volatile signals are fundamental for survival and 

social interactions. They mediate choices among possible mates (Andersson et al., 

2007; Bateman and Toms, 1998; Baum and Kelliher, 2009; Blows and Allan, 1998; 

Charpentier et al., 2008; Cross et al., 2009; Dickson, 2008; Fabre, 1911), discrimination 

between self and non-self (Bloss et al., 2002; Bonadonna, 2009; Carr et al., 1979; Carr 

et al., 1976; Thunken et al., 2009), and location of suitable oviposition sites (Elnaiem 

and Ward, 1992; Joseph et al., 2009; Pickett and Woodcock, 1996). Moreover, olfactory 

cues can elicit very strong behavioral responses. Substantial evidence has linked the 

innate fear responses in the rat Rattus norvegicus to the detection of traces of a single 

compound, 2,3,5-trimethyl-3-thiazoline, a component of fox predator urine (Fendt and 

Endres, 2008; Morrow et al., 2000). Studies in the mouse Mus musculus and rat have 
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shown how volatile chemicals are used for kin recognition (Brown et al., 1987; Todrank 

et al., 2005), social dominance (Drickamer, 2001; Lacey and Hurst, 2005), health status 

(Liberles et al., 2009; Riviere et al., 2009), and as a way for pups to recognize their own 

mother and initiate suckling behavior (Brake, 1981; Bruno et al., 1980; Teicher and 

Blass, 1976; Teicher and Blass, 1977). 

 

Nearly every species on Earth detects and responds to volatile chemicals 

present in its surrounding environment, and has developed a unique chemical language 

that mediates a wide variety of behaviors, tuning its olfactory system to discriminate, 

among all possible odorants, those that are essential for its survival. Understanding how 

chemical cues are sensed will serve as a new Rosetta Stone that will help us decipher 

the complex communication networks existing in nature. 

 

1.2 The peripheral olfactory system in commonly used model 

organisms 

Although different species respond to chemosensory cues depending on their 

needs, many adopted similar solutions to sense volatile chemicals. 

 

The mouse Mus musculus, the rat Rattus norvegicus, the nematode 

Caenorhabditis elegans, and the vinegar fly Drosophila melanogaster have been 

extensively used as model organisms to unravel the mechanisms underlying olfaction. 

In these species, volatile chemicals known as odorants are sensed by specialized 

sensory neurons that extend ciliated dendrites into an odor-rich environment. These 
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cells are characterized by expression of receptor proteins on their surface that directly 

bind odorants. Upon docking, the odorant changes the spontaneous activity of the 

neuron, either by increasing or inhibiting it. This represents the first step in odorant 

recognition, and sensory neurons are the first relay that translates the chemical signal 

into an electrical one by means of trains of action potentials (“spikes”). The neuronal 

change in activity is then interpreted by higher centers in the brain, which lead to a 

behavioral output of the organism. 

The ligand specificity of the receptor proteins varies considerably: some are 

specifically tuned to recognize only one or few chemicals, while others can vary broadly 

in specificity, likely reflecting the biological relevance of some scents compared to the 

large number of potential odorants that an organism can encounter in a lifetime. 

Surprisingly, a single receptor can detect chemicals with fundamentally different 

structures. Moreover, a single compound can often be recognized by multiple receptors 

with different affinity (Araneda et al., 2000; Araneda et al., 2004; Hallem and Carlson, 

2006; Katada et al., 2005; Malnic et al., 1999; Peterlin et al., 2005; Sengupta et al., 

1996). 

 

1.2.1 Cellular and molecular components of the peripheral olfactory 

system in rodents 

In rodents and most mammals, the detection of olfactory cues is divided among 

functionally and anatomically distinct organs: the main olfactory system (MOS), the 

accessory olfactory system or vomeronasal organ (VNO), the septal organ (SO), the 

Grüneberg ganglion (GG), and the guanylyl cyclase-D-expressing cells (Figure 1.1A). 
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The MOS and SO are activated by a vast variety of volatile chemicals (Breer et 

al., 2006; Buck, 1996; Kaluza et al., 2004; Sicard and Holley, 1984; Tian and Ma, 2004). 

Many substances conveying social and sexual signals, called pheromones, are sensed 

mainly by the VNO (Doving and Trotier, 1998; Halpern, 1987; Holy et al., 2000; 

Leinders-Zufall et al., 2000; Stowers et al., 2002; Wysocki and Lepri, 1991), as are cues 

from other species called kairomones (Sam et al., 2001; Spehr et al., 2006; Trinh and 

Storm, 2003; Wang et al., 2006; Xu et al., 2005). The functional relevance of the GG is 

still under investigation, although it has recently been shown that it can detect an alarm 

pheromone (Brechbuhl et al., 2008) and low ambient temperatures (Mamasuew et al., 

2008), potentially functioning as a way for the pups to remain close to their mothers. 

 In the MOS, odorants inhaled through the nose are detected by the olfactory 

epithelium (OE). Located on the roof of the nasal cavity, it contains the olfactory sensory 

neurons (OSN), whose dendrites lie in the OE mucus. Each of these primary sensory 

neurons expresses only one type of odorant receptor gene (OR) on its surface [a 

discovery formalized as the “one neuron—one receptor” rule (Axel, 2005; Buck and Axel, 

1991; Chess et al., 1994; Malnic et al., 1999)]. The axons of neurons expressing the 

same OR converge into spherical structures known as glomeruli in the olfactory bulb 

(OB), where the information from the periphery is related to higher brain centers (Figure 

1.1B). 
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Figure 1.1 Anatomy of the mouse olfactory subsystems. 
(A) Sagittal view of a rodent head, representing the different organs involved in odorant 

detection. AOB, accessory olfactory bulb; GC-D, guanylyl cyclase-D; GG, Grüneberg 

ganglion; MOS, main olfactory system; OB, olfactory bulb; OE, olfactory epithelium; SO, 

septal organ; VNO, vomeronasal organ. Adapted from Brennan and Zufall (2006). (B) 

Schematics of the connections between sensory neurons in the olfactory epithelium and 

the glomeruli in the olfactory bulb. Adapted from Pellegrino and Nakagawa (2009). 

 

The molecular identity of the receptors underlying the sense of smell was 

elucidated in 1991, with the groundbreaking discovery of the olfactory receptor protein 

family by Buck and Axel (Buck and Axel, 1991). In the mouse and rat, this protein family 

comprises ~1,000 different members (Zhang and Firestein, 2002; Zhang et al., 2004; 

Zhang et al., 2007) expressed in peripheral neurons of the OE (Buck and Axel, 1991), 

the SO (Kaluza et al., 2004; Tian and Ma, 2004), and in specific areas of the GG 

(Fleischer et al., 2006). These proteins contain seven transmembrane domains and 
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belong to the rhodopsin superfamily of G protein-coupled receptors (GPCRs; Buck and 

Axel, 1991). 

Upon ligand binding, GPCRs activate a heterotrimeric G protein, a complex 

composed of α, β, and γ subunits with GTPase activity. Depending on the type of α 

subunit, G proteins can be divided into four major subfamilies, the Gαi/o, Gαq, Gα12/13, 

and Gαs groups, each one coupled to a different downstream pathway (Alberts et al., 

2002). 

 

In the main olfactory system, odorant binding activates the OR, which stimulates 

Golf, an OSN-specific Gαs protein (Jones and Reed, 1989). This triggers rapid synthesis 

of 3’-5’-cyclic adenosine monophosphate (cAMP) by adenylyl cyclase III (ACIII; Pace et 

al., 1985; Sklar et al., 1986), and opening of the cAMP-sensitive Na+/Ca2+-permeable 

cyclic nucleotide gated channel (CNG) CNGA2/A4/B1 (Firestein et al., 1991; Nakamura 

and Gold, 1987). The resulting influx of Ca2+ into the neuron (Frings et al., 1995; 

Leinders-Zufall et al., 1997) opens Ca2+-dependent chloride conductances, likely 

through the ANO2 protein (Figure 1.2; Kurahashi and Yau, 1993; Lowe and Gold, 1993; 

Stephan et al., 2009). Both entry of Ca2+ and outflow of Cl- are responsible for the 

depolarization of the neuron and generation of action potentials. 
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Figure 1.2 Signal transduction cascade in mammalian OR-expressing neurons. 
Binding of an odorant to the olfactory receptor (OR) activates the G protein Golf which in 

turn stimulates production of cAMP through adenylyl cyclase III (ACIII). This leads to the 

opening of a cAMP-gated CNG channel (CNGA2/A4/B1). The influx of Ca2+ through the 

CNG channel opens the chloride channel ANO2.  

 

ORs are not the only receptors expressed in the OE. The trace amine-associated 

receptors (TAARs) represent a second class of chemosensory molecules that, similar to 

ORs, conform to the “one-neuron one-receptor” rule (Borowsky et al., 2001; Fleischer et 

al., 2007; Liberles and Buck, 2006). There are 15 TAAR genes in the mouse (Borowsky 

et al., 2001). Also found in some GG neurons (Fleischer et al., 2007), their transduction 

mechanisms are likely to be Golf and cAMP-mediated (Liberles and Buck, 2006). This 

protein family recognizes volatile amines present in mouse urine, such as β-

phenylethylamine, isoamylamine, and trimethylamine, which have been previously 

associated with the communication of social signals like stress levels (Dourish et al., 
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1982; Paulos and Tessel, 1982) and sexual maturity (Liberles and Buck, 2006; Price 

and Vandenbergh, 1992). 

One population of olfactory neurons in the MOS does not express the elements 

of the cAMP-mediated pathway, but is identified by the presence of the guanylyl cyclase 

GC-D (Fulle et al., 1995), the 3’-5’-cyclic guanosine monophosphate (cGMP)-dependent 

phosphodiesterase PDE-2 (Juilfs et al., 1997), and a cGMP-sensitive CNG channel 

(Meyer et al., 2000). These neurons are thought to respond to mouse urinary peptide 

hormones (Leinders-Zufall et al., 2007) and CO2 (Hu et al., 2007), but the molecular 

identity of receptors expressed in these cells, if they are not the GC-D itself, is still 

unknown. 

 

The VNO, located within the nose septum, contains sensory neurons whose 

axons extend to glomeruli in the accessory olfactory bulb (Figure 1.1A). With the 

exception of a few sporadic neurons, the VNO does not express members of the OR 

and TAAR families. Instead, the sensitivity of the VNO to chemosensory signals is 

provided by three different classes of GPCRs, the vomeronasal receptor superfamilies 

V1Rs (Dulac and Axel, 1995; Pantages and Dulac, 2000; Rodriguez et al., 2002; Zhang 

et al., 2007) and V2Rs (Herrada and Dulac, 1997; Matsunami and Buck, 1997; Ryba 

and Tirindelli, 1997), and the formyl peptide receptor-like proteins (FPRL; Liberles et al., 

2009; Riviere et al., 2009). The mouse genome has about 200 V1R genes (Zhang et al., 

2004; Zhang et al., 2007), 100 V2R genes (Shi and Zhang, 2007; Yang et al., 2005), 

and seven FPRL genes (Liberles et al., 2009; Riviere et al., 2009). As is seen with 

receptors expression in OSNs of the MOS, the three VNO receptor families are 
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expressed in non-overlapping zones and each neuron expresses only one receptor type 

(Dulac and Axel, 1995; Dulac and Axel, 1998; Liberles et al., 2009; Riviere et al., 2009). 

The types of ligands detected by these three gene families also appear to be distinct: 

V1Rs detect volatile chemicals (Del Punta et al., 2002; Leinders-Zufall et al., 2000), 

while V2Rs respond to small peptides (Chamero et al., 2007; Kimoto et al., 2005; 

Kimoto et al., 2007; Leinders-Zufall et al., 2004), and both can be activated by 

sulphated steroids (Nodari et al., 2008). The ligands activating FPRLs are less well 

understood, but one group has provided evidence that FPRLs detect ligands related to 

disease and inflammation status of the individual (Riviere et al., 2009). All three VNO 

receptor families are implicated in social communication in mice (Chamero et al., 2007; 

Hurst et al., 2001; Kimoto et al., 2005). 

 

The V1R family is co-expressed with the Gαi2 protein subunit and V2R-

expressing cells co-express the Gαo subunit (Berghard and Buck, 1996; Berghard et al., 

1996; Herrada and Dulac, 1997; Jia and Halpern, 1996). In both cases, ligand binding is 

thought to activate the corresponding Gα subunit, which then detaches from the Gβγ 

components allowing the Gβ protein to activate phospholipase Cβ2 (PLCβ2; 

Runnenburger et al., 2002). This event triggers the generation of downstream products 

such as inositol-1,4,5,-trisphosphate (IP3) and diacylglycerol (DAG; Krieger et al., 1999; 

Kroner et al., 1996; Sasaki et al., 1999; Wekesa and Anholt, 1997). DAG mediates the 

opening of the transient receptor potential channel C2 (TRPC2; Lucas et al., 2003). The 

influx of Na+ and Ca2+ through this channel is responsible for the depolarization of the 

neuron (Figure 1.3A and B). Recently, a TRPC2-independent pathway involving 
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arachidonic acid has been proposed as an alternative transduction mechanism (Spehr 

et al., 2002; Zhang et al., 2010). 

FPRL-positive neurons show co-expression of either Gαi2 or Gαo subunits. 

Therefore, PLC is thought to be involved in the signaling cascade following receptor 

activation in these cells as well (Liberles et al., 2009). 

 

Although unrelated, the five GPCR families employed by the mammalian 

olfactory system rely on G protein-dependent transduction mechanisms to trigger 

neuronal activity. 

 

Gαi2

PLCβ2

IP3

pheromone

β γ

Na+ Ca2+

V1R

Na+  Ca2+

TRPC2

DAG

A

Gαo

PLCβ2

IP3

pheromone

β γ

Na+ Ca2+

V2R

Na+  Ca2+

TRPC2

DAG

B

 
Figure 1.3 Signal transduction cascade in mammalian vomeronasal neurons. 
(A) Signal transduction in V1R-expressing neurons. Upon pheromone activation, the 

Gαi2 protein induces production of inositol-1,4,5,-trisphosphate (IP3) and diacylglycerol 

(DAG) through the phospholipase Cβ2 (PLCβ2). Subsequent opening of transient 

receptor potential C2 (TRPC2) causes influx of cations and neuronal depolarization. (B) 

Signal transduction in V2R-expressing neurons. The activated receptor stimulates a 

Gαo protein. This leads to production of DAG through PLCβ2 and opening of the TRPC2 

channel. 
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1.2.2 Cellular and molecular components of the peripheral olfactory 

system in the nematode Caenorhabditis elegans 

Like that of mammals, chemoreception in Caenorhabditis elegans is confined 

within distinct groups of cells: the amphid, inner labial, and phasmid neurons (Ward et 

al., 1975; Ware et al., 1975) which together total 32 neurons involved in chemosensory 

detection. Sensory cilia of these neurons are either enclosed within a sheathing cell or 

are exposed directly to the environment (Bargmann, 2006; Perkins et al., 1986; Ward et 

al., 1975), and axons are connected to the nerve ring, the largest neuropil in the head of 

the worm (Figure 1.4; Ward et al., 1975; Ware et al., 1975). 

 

The nematode genome contains over 1,000 rhodopsin-related GPCRs that may 

function as chemoreceptors (Chen et al., 2005; Colosimo et al., 2004; Sengupta et al., 

1996; Troemel et al., 1995; Zhang et al., 1997), representing about 7% of all worm 

genes (Robertson and Thomas, 2006). Worm chemosensory receptor genes can be 

grouped into eight different families, most distantly related to vertebrate GPCRs 

(Robertson and Thomas, 2006). Given the large number of putative chemoreceptors 

and the limited number of sensory neurons, it is not surprising that, unlike mammalian 

OSNs, Caenorhabditis elegans olfactory neurons express multiple chemoreceptors with 

different ligand specificities (Battu et al., 2003; Chen et al., 2005; Robertson and 

Thomas, 2006; Sengupta et al., 1996; Troemel et al., 1995). 
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Figure 1.4 Anatomy of the nematode olfactory subsystems. 
(A) Location of chemosensory neurons in Caenorhabditis elegans. Circled in red is the 

amphid sensory organ. Adapted from Bargmann (2006). (B) Details of one of the two 

amphid organs circled in red in A showing the chemosensory neurons projecting 

towards the amphid organ opening. Adapted from Perkins et al. (1986). 

 

Substantial lines of evidence suggest that there are two transduction 

mechanisms following ligand binding to nematode chemosensory receptors. Genetic 

and gene expression analysis indicate that the Gαi-like protein ODR-3 plays a major 

role downstream of odorant receptors for proper odorant-evoked responses (Lans et al., 

2004; Roayaie et al., 1998). Subsequent inhibition of a cGMP phosphodiesterase, or 

possible activation of the guanylyl cyclases ODR-1 and DAF-11 (Birnby et al., 2000; 

L'Etoile and Bargmann, 2000; Torayama et al., 2007; Vowels and Thomas, 1994), leads 

to increased intracellular levels of cGMP and opening of the cGMP-gated CNG channel 
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TAX-2/TAX-4 (Coburn and Bargmann, 1996; Coburn et al., 1998; Komatsu et al., 1999; 

Komatsu et al., 1996), followed by cation influx and neuronal depolarization (Figure 

1.5A). A second G protein-dependent mechanism in a different pool of sensory neurons 

involves the Gαi–like ODR-3 and GPA-3 proteins. Following G protein activation, 

production of polyunsaturated fatty acids through yet unknown mechanisms opens the 

TRPV cation channel OSM-9/OCR-2 (Colbert et al., 1997; Kahn-Kirby et al., 2004; 

Tobin et al., 2002), and causes neuronal depolarization (Figure 1.5B). Analogous to 

mammals, Caenorhabditis elegans relies on its olfactory system for survival and 

employs a structurally unrelated family of GPCRs to detect volatile chemicals. 
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Figure 1.5 Signal transduction cascade in nematode chemoreceptor neurons. 

(A) Some chemoreceptors activate the Gαi protein ODR-3 which regulates the 

production of cGMP through activation of the guanylyl cyclases DAF-11 and ODR-1 or 

inhibition of a phosphodiesterase. In either case, increase in cGMP concentrations 

opens the CNG channel TAX2/TAX-4. (B) An alternative signaling pathway involves the 

activation of the Gαi protein ODR-3 or GPA-3 and production of polyunsaturated fatty 

acids, which eventually leads to opening of the TRPV channel OSM-9/OCR-2. 
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1.2.3 Cellular and molecular components of the peripheral olfactory 

system in insects 

In adult insects, olfactory sensory neurons are located in the antennae and 

maxillary palps (Keil, 1999), two pairs of appendages protruding from the head (Figure 

1.6A). Sensory neurons extend their dendrites into hair-like structures, called sensilla. 

Each sensillum houses between one and 50 neurons, depending on the species 

(Esslen and Kaissling, 1976; Ochieng et al., 1998). The sensillar cuticle is perforated by 

pores (Riesgo-Escovar et al., 1997a; Riesgo-Escovar et al., 1997b; Stocker, 2001) 

through which odorants dissolve into the fluid lymph surrounding the OSNs. In the 

vinegar fly Drosophila melanogaster, the shape and location of each sensillum is 

stereotyped across individuals. All Drosophila sensilla have been characterized 

electrophysiologically for responses to odorants and subsequently classified into distinct 

groups based on their response profiles (de Bruyne et al., 2001; van der Goes van 

Naters and Carlson, 2007; Yao et al., 2005). Antennal sensilla are morphologically and 

functionally divided in 10 distinct types of club-shaped basiconic (antennal basiconic or 

ab sensilla, numbered ab1 to ab10), four types of sharp-tipped trichoid sensilla (at1-at4), 

and four dome-shaped coeloconic sensilla (ac1-ac4; Benton et al., 2009; Couto et al., 

2005; de Bruyne et al., 2001; Shanbhag et al., 1999; Shanbhag et al., 2000; Stocker, 

2001; Yao et al., 2005). Maxillary palps are anatomically simpler and contain only three 

types of basiconic sensilla (palp basiconic or pb1-pb3; Figure 1.6B; Couto et al., 2005; 

Shanbhag et al., 1999). 
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Figure 1.6 Anatomy of the insect peripheral olfactory system. 
(A) Head of an adult vinegar fly Drosophila melanogaster. The two olfactory organs, the 

antenna and maxillary palp, are indicated. (B) Schematic representation of the types of 

sensilla covering the olfactory organs in the vinegar fly. Adapted from Kaupp (2010). 

 

For the past 50 years, neurophysiological and behavioral research in insect 

olfaction focused on large insects such as moths (Boeckh et al., 1960; Boeckh et al., 

1965; Fabre, 1911; Schneider et al., 1964), honeybees (Boeckh et al., 1965; Esslen and 

Kaissling, 1976; Kaissling and Renner, 1968), locusts (Blaney, 1977; Ochieng et al., 

1998), and beetles (Inouchia et al., 1987; Merivee et al., 2001; Merivee et al., 2002). 

However, the molecular basis of insect olfaction has begun to be elucidated only in the 

past 10 years, thanks to the discovery of two unrelated protein families expressed in 

OSNs of the vinegar fly Drosophila melanogaster: the olfactory receptors (ORs; Clyne et 

al., 1999; Gao and Chess, 1999; Vosshall et al., 1999) and the ionotropic receptors (IRs; 

Benton et al., 2009). 
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1.3 The molecular constituents of the insect olfactory sensory 

system 

1.3.1 Insect IR and OR families: speculation on their origin, evolution, and 

function 

In Drosophila melanogaster, IRs include 61 genes with similarity to ionotropic 

glutamate receptors (iGluR; Benton et al., 2009). Classic iGluRs function in the central 

nervous system to bind to the neurotransmitter glutamate, and are characterized by two 

glutamate-binding modules separated by an ion channel pore (Mayer, 2006). Despite 

the conserved organization with iGluR structural domains, IRs lack the critical residues 

coordinating the glutamate, and have been shown to detect volatile chemicals instead 

(Benton et al., 2009). IRs are expressed in sensory dendrites of coeloconic sensilla, as 

well as gustatory neurons in the proboscis and mechanosensory neurons (Benton et al., 

2009). In addition, two IRs, IR8 and IR25a, are widely expressed in overlapping 

neuronal populations (Benton et al., 2009). The connection of IR-expressing OSNs to 

higher brain areas has not been fully described, but neurons expressing a single IR 

converge their axons to a single antennal lobe glomerulus (Benton et al., 2009). It will 

be fascinating to discover how the presence of multiple IRs in a single cell affects the 

wiring to higher brain centers and how this impacts the fly’s ability to discriminate 

odorants. 

The sequence identity across the IR family ranges between 10% to 70% in 

Drosophila melanogaster, with the highest conservation in the channel pore region 

(Benton et al., 2009). This strongly suggests that IRs maintain the ability to function as 
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ion channels upon ligand binding, similar to the canonical iGluR family members in the 

NMDA, AMPA, and kainate receptor subtype families. It is unknown if the influx of 

cations depolarizes the neuron directly, or indirectly by activating other ion channels 

through still undefined mechanisms. 

The presence of IRs in organisms lacking a nervous system, like the plant 

Arabidopsis thaliana (Chiu et al., 1999; Lam et al., 1998), can now be revisited. It is 

tempting to speculate that IRs could have odorant-sensing functions in plants and might 

mediate, for example, the attraction of the parasitic dodder plant Cuscuta pentagona to 

its tomato plant host (Runyon et al., 2006). 

In summary, while vertebrates use iGluRs as a means of neural communication 

system between neurons, insects have evolved additional iGluR-like genes to function 

as chemosensory receptor family enabling communication between neurons and the 

external environment. 

 

ORs are structurally different from IRs and represent an insect-specific seven 

transmembrane domain protein family, with 50-250 members in each insect species that 

has been examined so far (Nei et al., 2008). The genome of Drosophila melanogaster 

contains 62 OR genes (Clyne et al., 1999; Gao and Chess, 1999; Vosshall et al., 1999). 

OR expression does not overlap with IR-containing neurons [with one exception 

(Benton et al., 2009)] and ORs are expressed in all trichoid OSNs, one coeloconic OSN, 

and all basiconic OSNs except the ab1C neuron that is sensitive to carbon dioxide 

(Couto et al., 2005; Hallem et al., 2004a). OR family members are extremely variable in 

sequence within and across species (Clyne et al., 1999; Hill et al., 2002; Vosshall et al., 
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1999) and, in Drosophila melanogaster, their amino acid identity ranges between 15% 

and 30% between each pair (Vosshall, 2003). 

The molecular and anatomical organization of OR-expressing cells shows some 

similarities with their mammalian counterparts: although most peripheral neurons 

express on the surface only one type of ligand-specific receptor gene, respecting the 

“one neuron—one receptor” rule (Clyne et al., 1999; Gao and Chess, 1999; Vosshall et 

al., 1999), there are 13 known cases of multiple receptors co-expressed in a single 

neuron (Couto et al., 2005; Fishilevich and Vosshall, 2005; Vosshall and Stocker, 2007). 

Neurons expressing the same odorant receptor target the same glomerular structures in 

the antennal lobe (Couto et al., 2005; Fishilevich and Vosshall, 2005), the insect 

olfactory bulb, in an anatomical parallel to the glomeruli found in the mammalian 

olfactory system. The anatomical similarities between the mammalian and insect 

olfactory systems, the presence of seven transmembrane domains, and the fact that 

previous work in mammals and nematodes identified G protein coupled receptors as 

olfactory sensors led to the erroneous classification of insect ORs as GPCRs. 

 

1.3.2 The unusual receptor OR83b 

OR83b, a member of the OR family, is different from other olfactory receptors in 

that it is expressed in OSN along with a neuron-specific conventional OR that interacts 

with odorant ligands. In addition, it is the only OR whose protein sequence is extremely 

conserved across species. In fact, OR83b amino acid sequences from 15 insect species, 

separated by 350 million years of evolution (Grimaldi and Engel, 2005; Hennig, 1981), 

share on average 75% identity (Figure 1.7). As a consequence, OR83b orthologues 



 20

from other species can functionally substitute for Drosophila OR83b (Jones et al., 2005), 

highly suggestive of an exceptional and conserved role for this protein in insect olfaction. 

 

 
Figure 1.7 Snake plot of Drosophila melanogaster OR83b. 
Each amino acid residue is color coded according to the degree of identity across the 

15 insect species pictured in the right panel. 

 

Although co-expressed with other ORs, this atypical receptor does not seem to 

be involved in specific odorant recognition (Dobritsa et al., 2003; Hallem et al., 2004a). 

Instead, experimental evidence has shown that OR83b is necessary and sufficient to 

mediate oligomerization with ligand-specific ORs, which is fundamental for proper 
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targeting to cilia of olfactory neurons (Figure 1.8; Benton et al., 2006). Or83b null 

mutants lack functional ORs on the ciliated dendrite and are therefore seriously 

impaired in olfactory behavior and physiology (Larsson et al., 2004). 
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Figure 1.8 OR83b is necessary for proper localization of OR22a/b. 
Immunostaining for OR83b (green) and OR22a/b (red) in sections of adult antennae of 

wild type (left panel) and Or83b knock-out flies (right panel). The asterisk indicates the 

olfactory neuron cell body, while the arrow points at its ciliated dendrite. Adapted with 

permission from Benton et al. (2006). 

 

1.3.3 The topology and subunit association of insect ORs 

Mammalian and nematode olfactory receptor proteins belong to the seven 

transmembrane domain superfamily of rhodopsin-like GPCRs, their N-terminals 
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exposed to the extracellular environment and the C-terminal lying intracellularly 

(Palczewski et al., 2000). 

In contrast, bioinformatics, cellular, and glycosylation studies (Benton et al., 2006; 

Lundin et al., 2007; Wistrand et al., 2006) have shown that OR83b and other ORs 

(Jordan et al., 2009; Smart et al., 2008) adopt an inverted topology, questioning the 

general assumption that insect ORs are GPCRs (Figure 1.7). Although the precise 

stoichiometry of the complex has not been explicitly determined, interactions that 

promote the assembly of OR/OR83b complexes are likely to occur in the C-terminal half 

of the protein, as shown by yeast two-hybrid and chimeric receptor analysis (Benton et 

al., 2006). Furthermore, protein complementation assays in vivo have shown that at 

least two OR83b and two ligand-specific subunits lie in close proximity within the 

membrane, suggesting that the functional complex is a heteromultimer (Benton et al., 

2006). 

OR83b is thus likely to play a major role as an intermediary between a diverse 

family of receptors and a common transduction mechanism, and a structure-function 

analysis of this protein is needed to unveil its function in the receptor complex. 

 

1.3.4 Evidence for and against involvement of G proteins in insect 

olfactory sensory neurons in vivo 

There is extensive and compelling evidence for the role of G proteins in the 

signal transduction of both the mammalian and nematode olfactory systems. In contrast, 

studies on the signaling pathways of insect olfactory receptors have come to 

contradictory conclusions. 
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Localization studies in moth and mosquito species of different Gα subunits 

showed a generalized expression in olfactory organs, suggesting that G proteins may 

be involved in the transduction mechanisms. Gαq and Gαs are present in dendrites of 

olfactory sensory neurons, where the signaling cascade following ligand activation 

begins, while Gαo is localized to the nerve bundle (Jacquin-Joly et al., 2002; Laue et al., 

1997; Miura et al., 2005; Rutzler et al., 2006), suggesting a minor role in the initiation of 

signal transduction. Similar experiments in Drosophila melanogaster have revealed 

generalized expression of all Gα subunits types in the olfactory organs, including glia 

and support cells surrounding the sensory neurons (Boto et al., 2010; Talluri et al., 

1995). 

 

Although important in mammalian olfaction, the role of Gαs/cAMP in insect 

olfactory transduction seems to be minor. Independent studies failed to observe 

production of cAMP following pheromone stimulation of cockroach and moth antennae 

(Boekhoff et al., 1993; Breer et al., 1990; Ziegelberger et al., 1990). In addition, 

reduction of cAMP levels by genetic manipulations in Drosophila olfactory neurons 

impairs behavioral responses to some, but not all, odorants (Gomez-Diaz et al., 2004; 

Martin et al., 2001). But even these effects are very mild when compared to the striking 

reduction of odorant-evoked responses in the absence of Golf in mice (Belluscio et al., 

1998). Similarly, inhibition of Gαo signaling by pertussis toxin in OR83b-expressing 

neurons does not abolish olfactory responses, but decreases sensitivity to odorants and 
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possibly extends the response duration (Chatterjee et al., 2009), possibly suggesting a 

modulatory role of the odorant responses. 

On the other hand, there is some evidence for the involvement of Gαq/PLC/IP3–

dependent pathways in the insect olfactory signaling cascade. Several studies reported 

production of IP3 and cGMP and the presence of a cGMP-activated ion channel upon 

pheromone stimulation of moth or cockroach antennae (Boekhoff et al., 1993; Boekhoff 

et al., 1990; Breer et al., 1990; Stengl, 1994; Ziegelberger et al., 1990; Zufall and Hatt, 

1991). Furthermore, activation of Gα subunits or DAG in pheromone-responsive 

neurons induces currents similar to those evoked by the cognate ligand (Pophof and 

Van der Goes van Naters, 2002). However, the role of cGMP remains unclear, and 

cGMP seems to underlie the adaptation of pheromone responses, without participating 

directly in the response itself (Boekhoff et al., 1993; Dolzer et al., 2008; Ziegelberger et 

al., 1990). 

In Drosophila melanogaster, genetic tools allowed the manipulation of several 

components of the Gαq pathway. Reduction of either Gαq (Kain et al., 2008; Kalidas and 

Smith, 2002), PLCβ (Kain et al., 2008), DAG (Kain et al., 2008), or IP3 (Gomez-Diaz et 

al., 2006) levels in adult olfactory neurons decreases, but does not abolish, 

physiological and behavioral responses to odorants. However, more recent work by Yao 

and Carlson (Yao and Carlson, 2010) calls these prior results into question. These 

authors find no role whatsoever for G protein signaling in the in vivo function of 

Drosophila ORs. 
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In summary, the olfactory phenotypes described in these studies suggest that G 

proteins and/or downstream effectors may play a role in the function of the adult insect 

olfactory system. However, it is difficult to discriminate between a direct role in olfactory 

transduction mechanisms and a more general function of the G proteins in the 

maintenance or biological functions associated with the sensory neuron. 

 

In Chapter 2, we investigate the signaling cascade mechanisms necessary to 

trigger odorant-evoked responses of insect olfactory receptors. We show that insect 

ORs do not rely on cyclic nucleotides as second messengers and that G proteins do not 

play a significant role in the initiation of the odorant response. In addition, we provide 

initial evidence that insect ORs constitute a new family of ligand-gated cation channels. 

In Chapter 3 we demonstrate that ORs are molecular targets of the insect repellent 

DEET and identify a single amino acid polymorphism that renders an insect OR DEET-

insensitive. Finally, in Chapter 4 we present structure-function analysis of residues in 

the OR83b co-receptor that are important for receptor function. 
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2 Signaling cascade mechanisms of insect olfactory 

receptors 

In this chapter, we will analyze the components of the signaling cascade underlying 

insect OR activation. Both mammalian and nematode ORs rely on second messengers 

generated by G proteins to induce neuronal responses. Based on heterologous 

expression of insect ORs, we provide evidence that G proteins and classical second 

messengers are not necessary to induce activation of insect OR-dependent currents, 

therefore suggesting fundamentally different mechanisms of signal transduction. 

 

2.1 Heterologous expression of insect ORs in Xenopus oocytes 

To directly investigate the signal transduction mechanisms of olfactory receptor 

complexes, we established a heterologous expression system where we could study 

receptor complexes. We isolated and expressed in Xenopus laevis oocytes ligand-

specific odorant receptors from the vinegar fly Drosophila melanogaster and the malaria 

mosquito Anopheles gambiae, along with the corresponding co-receptor, OR83b and 

GPROR7, respectively. We tested the functional expression of OR complexes by 

performing two-electrode voltage clamp (TEVC) recordings. With this technique, we 

were able to fix the voltage across the oocyte cell membrane and record the currents 

necessary to maintain it. In agreement with previous in vitro (Nakagawa et al., 2005; 

Neuhaus et al., 2005) and in vivo (Benton et al., 2006) experiments, only the presence 

of both OR83b-like and ligand-specific subunits could confer odorant sensitivity to 

Xenopus oocytes (Figure 2.1A-C). The odorant specificity observed in this heterologous 
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system resembles the tuning previously described in vivo (Hallem and Carlson, 2004; 

Hallem and Carlson, 2006; Hallem et al., 2004b): OR47a/OR83b, GPROR1/GPROR7, 

and GPROR2/GPROR7 complexes specifically responded to their cognate ligands 

pentyl acetate, 4-methyl phenol, and 2-methyl phenol, respectively (Figure 2.1A-C). This 

allowed us to perform dose-response curves to establish a suitable odorant 

concentration range for further experiments (Figure 2.1D-F). 

 
Figure 2.1 Odorant stimulation of Xenopus oocytes expressing insect ORs 
generates inward currents. 
(A-C) Response profiles of OR47a, OR83b, and the complex OR47a/OR83b (A), 

GPROR1, GPROR7, and GPROR1/GPROR7 (B), GPROR2, GPROR7, and 

GPROR2/GPROR7 (C) to pentyl acetate, 4-methyl phenol, and 2-methyl phenol, 

respectively. The bars below each trace represent ligand application. (D-F) Dose-

response curves of OR47a/OR83b (D), GPROR1/GPROR7 (E), and 

GPROR2/GPROR7 (F) to cognate ligands shown in A-C. Curves were fitted by a Hill 

equation (n=6, 3, 8). Hill coefficient n and apparent association constant K1/2 values are 

indicated. Adapted from Sato et al. (2008). 
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Upon stimulation with the appropriate odorant, we could observe an inward 

current in cells at a holding potential of -60 mV. By changing the holding potential of the 

cell membrane from -80 mV to +40 mV and plotting the corresponding current (current-

voltage relationship or I-V curve), we observed that these currents were symmetric at 

positive and negative potentials, but exhibited a slight outward rectification similar to 

what had been previously reported for the moth receptor BmOR1 expressed with 

BmOR2, the OR83b orthologue from this moth species (Figure 2.2A-C; Nakagawa et al., 

2005). In Ringer’s solution, composed mainly of Na+ and Cl-, the potential at which no 

net flux of current is observed (reversal potential) was not statistically different for all the 

OR complexes tested (Table 2.1). 

 

Inward currents are carried by either an influx of positive ions or by an outflow of 

negative ions. To identify which ions carry the observed currents, we performed ion 

substitution experiments in which Na+ or Cl- ions present in the aqueous solution 

bathing the oocytes were substituted with equimolar concentrations of N-methyl-D-

glucamine (NMDG+) and sulfamate salts, respectively. These ions do not easily 

permeate through ion channels due to their size, but maintain a unitary charge and 

therefore do not change the osmolarity of the solution. I-V relationship analysis of the 

odorant-evoked currents in the different solutions revealed that, for all the OR- pairs 

tested, the elimination of Na+ shifted the reversal potential to more negative values 

(Figure 2.2A-C and Table 2.1), while removal of Cl- had no effect. Although removal of 

Ca2+ (Figure 2.2A-C and Table 2.1) or Mg2+ (data not shown) did not change the 

reversal potential, we cannot exclude that these ions also carry the currents observed 
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because of their low abundance in the solution. We then tested whether the apparent 

affinity of OR47a/OR83b or GPROR2/GPROR7 to their cognate ligands was voltage 

dependent, but found no effect of voltage on ligand affinity within the voltage range 

examined (Figure 2.2D and E). Taken together, these data suggest that odorants 

activate an OR-dependent cation conductance. 

 

 
Figure 2.2 Effects of ion removal and voltage change on odorant-evoked currents. 
(A-C) I-V relationship of OR47a/OR83b- (A), GPROR1/GPROR7- (B), and 

GPROR2/GPROR7-dependent (C) currents. I-V curves were obtained by changing 

voltage from -80 mV to +40 mV (20 mV steps). The current magnitude was normalized 

at a holding potential of +40 mV (n=5, 3, 3). Different curves represent I-V relationships 

under different ionic conditions: oocyte Ringer’s solution (black); Na+-free solution (red); 

Ca2+-free solution (green); and Cl--free solution (blue cross). Adapted from Sato et al. 

(2008). (D-E) K1/2 values for OR47a/OR83b (D) and GPROR2/GPROR7 (E) stimulated 

with pentyl acetate and 2-methyl phenol, respectively, at holding potentials ranging from 

-80 mV to +40 mV (20 mV steps, n=6, 5). Data are shown as mean±SEM. 
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Table 2.1 Reversal potential of OR complexes under different ionic conditions 

 Reversal potential (mV) 
 OR47a/OR83b GPROR1/GPROR7 GPROR2/GPROR7 

Ringer’s -13.68±5.21 -11.15±1.53 -13.46±0.22 

Na+-free -54.19±4.40 -54.06±3.03 -45.33±2.40 

Ca2+-free -9.39±2.20 -12.65±0.50 -13.15±0.15 

Cl--free -12.90±1.80 -13.07±0.37 -12.00±1.50 
  

Table 2.1 Summary of the reversal potential values in the different ionic conditions 

analyzed in Figure 2.2A-C (mean±SEM). The shift in Na+-free conditions is highlighted 

in grey. 
 

2.2 Role of cyclic nucleotides and intracellular soluble components 

in the initiation of olfactory transduction mechanisms 

If stimulation of the odorant receptor complex activates Gαi or Gαs pathways in 

ways similar to mammal or nematodes chemoreceptors, we would expect an increase in 

cAMP or cGMP levels that would open downstream channels. Therefore, we would 

expect that artificial increase of the intracellular concentrations of these cyclic 

nucleotides would lead to the opening of the ion channels independent of the activation 

of the olfactory receptor complex. To test this hypothesis, we applied 8-bromo-cGMP, a 

permeable cGMP analogue, to oocytes expressing the GPROR2/GPROR7 complex, 

but failed to detect current activation (Figure 2.3A). Similarly, application of forskolin 

(FSK), a direct activator of adenylyl cyclase, failed to generate currents in 

GPROR2/GPROR7-expressing cells (Figure 2.3B). In both cases, the functional 

expression of the complex was tested by successful stimulation with the cognate ligand 
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2-methyl phenol. Our cyclic nucleotide manipulations were effective, as the cGMP-

sensitive rat olfactory cyclic nucleotide gated (CNG) channel (CNGA1/A2/B4) expressed 

in oocytes was effectively activated by perfusion with 8-bromo-cGMP (Figure 2.3C). The 

observed currents were blocked by addition of external Mg2+, as shown in previous 

reports (Frings et al., 1991; Frings et al., 1995), confirming the stimulation of the CNG 

channel. Likewise, we could detect currents when forskolin was applied to cells 

expressing the chloride channel cystic fibrosis transmembrane conductance regulator 

(CFTR), whose opening is indirectly regulated by increases in intracellular cAMP. As 

expected, the observed inward currents were also sensitive to niflumic acid (NA), a 

general chloride channel blocker (Figure 2.3D). 

To test whether stimulation of GPROR2/GPROR7 leads to production of 

intracellular cAMP, we applied 2-methyl phenol (2-MP) to cells that simultaneously 

expressed GPROR2/GPROR7 and CFTR. If the activated receptor complex increases 

cAMP levels, these would indirectly open the cAMP-sensitive CFTR channel, and we 

would observe NA-sensitive currents. Although we could successfully stimulate the 

GPROR2/GPROR7 complex with 2-methyl phenol, we failed to detect CFTR-evoked 

currents, unless we stimulated the cells with FSK (Figure 2.3E). This suggests that 

either GPROR2/GPROR7 does not produce cAMP, or that it does not produce it in 

sufficient quantities to open CFTR. To investigate whether other soluble components 

are necessary to produce OR-dependent currents, we performed outside-out patch-

clamp recordings on oocyte membranes expressing OR47a/OR83b or 

GPROR2/GPROR7. This technique enabled us to isolate patches of membrane, and to 

control the composition of both the intracellular and extracellular environment. 
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Figure 2.3 Increase of cyclic nucleotide levels does not induce inward currents in 
oocytes expressing insect ORs. 
(A-E) Current recording of oocytes expressing GPROR2/GPROR7 (A-B, E), the rat 

olfactory cyclic nucleotide-gated channels (CNGA1/A2/B4; C), and cystic fibrosis 

transmembrane conductance regulator (CFTR; D-E), as indicated at the top of each 

trace. 8-bromo-cAMP (cAMP, 100 µM), 8-bromo-cGMP (cGMP, 100 µM), Mg2+ (10 mM), 

and forskolin (FSK, 40 µM), 2-methyl phenol (2-MP, 10 µM), NMDG+ (84.5 mM), and 

niflumic acid (NA, 1 mM) were applied during the time indicated by the bars above or 

below each trace. Adapted from Sato et al. (2008). 

 

Patches from uninjected oocytes did not show current responses to 2-methyl 

phenol (2-MP) and pentyl acetate (PA), indicating that odorants do not induce non-

specific currents by interfering with the membrane or its components (Figure 2.4A). In 

the absence of intracellular components, outside-out patches from oocytes injected with 

either Or47a/Or83b or GPROr2/GPROr7 mRNA showed transient currents that 
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resemble Drosophila and Anopheles receptor-dependent spontaneous activity of OSNs 

in the absence of ligands (Figure 2.4B and C). A larger number of events were 

observed with the application of the cognate ligands pentyl acetate (Figure 2.4D) and 2-

methyl phenol (Figure 2.4E), respectively. The increase in events was dose-dependent 

(Figure 2.4F) and the magnitude of the odorant-evoked currents increased when the 

holding potential was progressively shifted from +40 mV to -120 mV (Figure 2.4G), as 

expected from the I-V relationship (Figure 2.2C), in patches expressing OR47a/OR83b 

and GPROR2/GPROR7, respectively. These data show that insect ORs expressed in a 

heterologous system generate cation currents that are independent of cyclic nucleotides. 

To derive the channel conductance, we analyzed the recordings from OR47a/OR83b-

injected oocytes stimulated by 300 µM pentyl acetate (Figure 2.5A-C), and plotted the 

distribution of events and their relative current. At a holding potential of -80 mV, we 

calculated the mean channel current for single events at 1.2±0.03 pA (Figure 2.5D). To 

test whether ATP- or GTP-dependent signal transduction components were involved in 

odorant-evoked currents, we supplemented the intracellular patch solution with ATP (1 

mM) and GTP (0.1 mM), but we could not detect any difference in the activity (Figure 

2.5E-G). Although we observed OR-dependent odorant-evoked currents in outside-out 

patches, we failed to observe macro-currents, suggesting either that the expression 

levels on the membranes are not sufficient to generate them or that other elements not 

present on the membrane patch are necessary for the channels to remain in an open 

position for a longer period of time. 
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Figure 2.4 Properties of odorant-evoked currents in Xenopus outside-out 
membrane patches. 
(A) Outside-out patch clamp recording of an uninjected oocyte clamped at -90 mV. 

Arrows indicate valve openings that delivered pentyl acetate (PA, 300 µM), 2-methyl 

phenol (2-MP, 300 µM), or oocyte Ringer’s solution. (B-C) Outside-out patch clamp 

recording of an oocyte injected with OR47a/OR83b (B) or GPROR2/GPROR7 (C) in the 

absence of odorant ligand. (D-E) Outside-out patch clamp recording of an 

OR47a/OR83b- (D) or GPROR2/GPROR7-injected oocyte (E) stimulated for 14 sec with 

300 µM of the non-agonist odorant 2-MP or PA, respectively, followed by a 14 sec 

application of 300 µM of the cognate agonist. Delay in current response to the ligand is 

due to ~2 sec bath perfusion time lag. Oocyte Ringer’s solution was perfused after the 

14 sec ligand stimulation. The voltage was clamped at -90 mV. Bottom trace shows a 

time expansion during the ligand stimulation phase. (F) Dose-response and ligand 

selectivity of OR47a/OR83b-expressing patches in an outside-out configuration 

clamped at -90 mV. (G) Currents elicited in the same patch of a GPROR2/GPROR7-

injected oocyte by 300 µM 2-MP at various holding potentials from +40 mV to -120 mV. 

Adapted from Sato et al. (2008). 
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Figure 2.4 Properties of odorant-evoked currents in Xenopus outside-out 
membrane patches. 
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Figure 2.5 Odorant-evoked currents in excised outside-out patches of membranes 
expressing OR47a/OR83b. 
(A-C) Outside-out patch-clamp recording of a Xenopus oocyte membrane expressing 

OR47a/OR83b before stimulation (A), during stimulation with 300 µM pentyl acetate (PA; 

B), and after wash out (C). (E-G) Same as in A-C, but ATP (1 mM) and GTP (0.1 mM) 

were added to the pseudo-intracellular solution. The bottom traces of each panel 

indicate expansions of 300 ms current traces of single-channel recording at the 

positions indicated by the numbers. The data for A-C and E-G were obtained from two 

cells with voltage clamped at -80 mV. Scales for A-C and E-G are indicated at the top in 

A and E, and scales for the expansions are at the bottom in A and E. (D, E) All-point 

current histograms of unitary events before (blue) and during (orange) application of the 

ligand PA in B and F, respectively. Amplitude distributions were fitted with two Gaussian 

components (black lines). Adapted from Sato et al. (2008). 
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2.3 G protein pathways are not involved in the initiation of odorant-

evoked responses of insect ORs 

To examine the possibility that G proteins mediate the activation of OR-

dependent currents, we introduced GDP-β-S, a competitive inhibitor of G proteins, in the 

pseudo-intracellular solution, and performed outside-out patches on OR47a/OR83b-

expressing membranes. Even in the presence of GDP-β-S, we still detected pentyl 

acetate-evoked currents (Figure 2.6), suggesting that G protein signaling cascades are 

unlikely to underlie the activation of OR-dependent currents. 

 

 
Figure 2.6 Outside-out patches of membranes expressing OR47a/OR83b exhibit 
odorant-evoked currents in the presence of the G protein inhibitor GDP-β-S. 
Outside-out patch clamp recording of an oocytes expressing OR47a/OR83b in the 

absence (upper trace) and presence (lower trace) of 300 µM pentyl acetate (PA). The 

intracellular solution contained 1 mM GDP-β-S. Voltage was clamped at -80 mV. 

Adapted from Sato et al. (2008). 
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Similar results were obtained in a separate heterologous system by Dr. Koji Sato 

expressing OR complexes that were tested in Xenopus oocytes (Sato et al., 2008). To 

test whether Gαs is recruited after odorant stimulation, levels of cAMP were measured 

in HEK293T cells expressing Drosophila OR47a/OR83b, Anopheles 

GPROR2/GPROR7, or Bombyx BmOR1/BmOR2, the moth receptor complex 

responsible for the detection of bombykol (Nakagawa et al., 2005). Stimulation with the 

cognate ligands failed to increase intracellular cAMP levels. However, a rise in cAMP 

was observed after stimulation of the mouse olfactory receptor mOR-EG, as expected 

(Figure 2.7A). 

To investigate a possible role of Gαq/PLC, the phospholipase inhibitor U73122 

was applied before and throughout ligand stimulation in HeLa cells expressing 

OR47a/OR83b, but failed to affect the odorant-evoked response. In control experiments, 

the response of the GPCR α1-adrenergic receptor was completely abolished (Figure 

2.7B). 

To test whether other G protein pathways were recruited after OR activation, 

Xenopus oocytes expressing BmOR1/BmOR2 were injected with GDP-β-S. Similar to 

the outside-out patches in Figure 2.6, this treatment did not affect odorant-evoked 

currents, but drastically decreased G protein-mediated responses of the GPCRs α1- 

and β2-adrenergic receptors (Figure 2.8). These results support the hypothesis that OR 

activation is largely independent of G protein signaling. 
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Figure 2.7 Insect OR activity is independent of cAMP and PLC signaling pathways. 
(A) cAMP production in HEK293T cells expressing mOR-EG, OR47a/OR83b, 

BmOR1/BmOR2, or GPROR2/GPROR7 stimulated with eugenol (EG, 1 mM), pentyl 

acetate (PA, 100 µM), bombykol (BM, 10 µM) or 2-methyl phenol (2-MP, 100 µM), 

respectively. (B) Ca2+ responses of HeLa cells expressing OR47a/OR83b or α1-

adrenergic receptor (α1-AR) to a 10 s stimulation with 100 µM PA or 100 nM 

noradrenaline (NA) with application of 10 µM U73122 (filled bar) or 0.1% DMSO (open 

bar). Data are shown as mean±SEM. Adapted from Sato et al. (2008). 
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Figure 2.8 Insect OR activity is independent of G protein signaling. 

Effect of GDP-β-S on ligand-induced inward currents in Xenopus oocytes expressing 

BmOR1/BmOR2 (30 µM bombykol), α1-AR (1 µM noradrenaline) or β2-AR+CFTR (10 

µM isoprenaline). Significance assessed by t-test: *, p<0.05; **, p<0.01; n=5 each. Data 

are shown as mean±SEM. Adapted from Sato et al. (2008). 

 

2.4 Insect ORs are ligand-gated ion channels 

Taken together, these data provide compelling evidence that insect ORs function 

independently of G protein signaling cascades unlike their mammalian and nematode 

counterparts. Since insect ORs can function independently of intracellular components, 

it raises the possibility that either the OR complexes couple to an ion channel present 

on frog, mammalian, and insect cells, or that ORs themselves are the ion channels 

responsible for the odorant-evoked currents. If the latter is true, it is likely that the 

properties of ligand-evoked currents would change depending on the subunit 

composition of the complex. Indeed, odorant-evoked currents of HeLa cells expressing 

OR47a/OR83b and OR47a/BmOR2 show different reversal potential and outward 

rectification (Figure 2.9A-B). Despite a lack of homology with any previously described 
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ion channel, these data suggest that insect ORs are the ion channels responsible for 

the odorant-evoked currents. 

 

 
Figure 2.9 The functional properties of odorant-evoked currents are dependent on 
OR subunit composition. 
(A; left panel) I-V curves of OR47a/OR83b (blue) and OR47a/BmOR2 (green) 

expressing membranes when normal Ringer’s solution and K+-internal solution were 

perfused externally and internally, respectively (n=14, 13). The dotted line indicates a 

holding potential at +80mV. (right panel) Same as in A, but normal Ringer’s solution and 

NMDG+-internal solution were perfused externally and internally, respectively (n=11, 

n=13). (B) Same as in A with NMDG+-external solution and K+-internal solution perfused 

extracellularly and intracellularly, respectively. The I-V curve was obtained by ramp 

voltage from -60 mV to +100 mV. The magnitudes of currents were standardized at a 

holding potential of -60 mV. The reversal potentials are indicated as mean±SEM (n=9, 

5). Adapted from Sato et al. (2008). 
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Subsequent studies from other laboratories also failed to observe G protein 

involvement in odorant-evoked currents of the Drosophila OR43a subunit expressed in 

Sf9 and HEK293T cells (Smart et al., 2008). 

Given the number of OR protein members in different insect species (Nei et al., 

2008), insect olfactory receptors may be the largest family of ligand-gated ion-channel 

proteins found in any organism (Figure 2.10A). 

 

2.5 Controversial ideas in insect olfaction: a comparison of the ion 

channel versus channel-GPCR models 

An alternative hypothesis regarding the nature of OR-dependent currents was 

proposed by Wicher and colleagues (Wicher et al., 2008), who suggested that ligand-

binding subunits activated Gαs at low odorant concentrations, and that subsequent 

production of cAMP activated the CNG-like channel OR83b directly (Figure 2.10A-B). 

The authors claimed that OR83b has CNG-like activity in the absence of ligand-binding 

ORs. In their heterologous expression system, this led to metabotropic currents that 

developed over the course of ~60 seconds. At high odorant concentrations, the ligand-

binding subunits coupled directly to OR83b, resulting in a much faster current activation, 

peaking at ~1 second. According to their model, this would allow for a larger working 

range of the insect olfactory system (Figure 2.10A-B). 

 

Unlike what was shown in our study, Wicher and co-workers found that the 

ligand-binding subunits OR22a or OR47a are necessary and sufficient to raise the 
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intracellular concentration of cAMP through a Gαs pathway. However, it is peculiar that 

this group found that application of the G protein inhibitor GDP-β-S did not abolish 

odorant responses, but only decreased the apparent affinity of the OR for its ligand. It is 

also intriguing that Wicher et al. found that both ligand-binding subunits and the co-

receptor OR83b showed functional expression independently of each other in HEK293T 

cells, although co-expression of a ligand-binding subunit and the co-receptor is required 

in vivo (Benton et al., 2006; Jones et al., 2005; Larsson et al., 2004), and in some 

heterologous cell studies (Nakagawa et al., 2005; Nichols and Luetje, ; Wang et al., 

2010). 

 

While there is agreement that insect ORs are a new family of odorant-gated 

cation channels, the exact role of G proteins and cyclic nucleotides in signal 

transduction and the subunit composition of the ion channel remain controversial. The 

discrepancies observed in the experimental data between our paper (Sato et al., 2008) 

and that of Wicher et al. (Wicher et al., 2008) could be due to different heterologous 

systems used to express the OR complexes and/or to the endogenous proteins 

expressed along with insect olfactory receptors. To reconcile the models proposed by 

our group along with Dr. Touhara and the competing group, it would be useful to test the 

OR22a/OR83b receptor complex in either Xenopus laevis oocytes or HeLa cells. 

However, neither I nor members of the Touhara laboratory have been able to obtain 

functional expression of this receptor complex in any cell type tested (data not shown). 

Thus, the nature and origin of currents described by Wicher et al. remain unknown. 
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Figure 2.10 Models of insect OR transduction mechanisms. 
(A) Ion channel model proposed by our group with Dr. Touhara and co-workers: insect 

ORs form a ligand-gated ion channel directly gated by odorants. (B) Channel-GPCR 

model proposed by Dr. Wicher and co-workers: at low odorant concentration, the ligand-

specific subunit ORX activates Gαs that increases cAMP concentrations. Cyclic 

nucleotide binds and opens the CNG-like ion channel OR83b. At high odorant 

concentrations, the binding of the ligand to the OR opens OR83b directly. 

 

2.6 OR83b does not contain a predicted cyclic nucleotide binding 

domain 

For OR83b to be directly modulated by cyclic nucleotides, as proposed by 

Wicher et al. (Wicher et al., 2008), a cyclic nucleotide binding domain (CNBD) is 

required. 

 

CNBDs are conserved from prokaryotes to eukaryotes, and contain six invariant 

amino acids located within antiparallel β-barrel structures (Shabb and Corbin, 1992). 

These residues are the basis for two signature patterns (CNBD_BINDING_1 and 
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CNBD_BINDING_2, Table 2.2) used to identify them in novel proteins (Hulo et al., 

2008). The first pattern spans the first two invariant residues, and the second pattern 

includes the remaining four. Both signatures can recognize CNBD motifs with specificity 

bigger than 0.95 (probability of identifying true negative hits) and sensitivity of about 0.5 

(probability of identifying true positive hits; Hulo et al., 2008). 

Neither of the two motifs is present within the OR83b protein (data not shown). 

However, given the low sensitivity of the patterns, there is a possibility that a 

degenerate CNBD exists in OR83b or other OR family members, or that they contain a 

different kind of CNBD. 

 

To partially address this issue, we looked for a degenerate consensus in two 

protein sets based on the information provided by the database of protein domains 

PROSITE (Hulo et al., 2008). The first group includes proteins in which the algorithm 

could not detect a CNBD, but that have similarity to other proteins with a known CNBD 

(false negatives); the second group consists of proteins that are not known to bind to 

cyclic nucleotides (true negatives). Using the Network Protein Sequence Analysis 

PROSCAN algorithm (Combet et al., 2000), we identified putative degenerate CNBD 

domains and compared the average identity to the signature patterns within the two 

groups. Among false negatives, the average percentage identity to the 

CNBD_BINDING_1 was 82.00±11.01%, compared to 61.63±7.75% for true negatives 

(p=0.001, Student’s t-test, Table 2.2). Similarly, the average percentage identity to 

CNBD_BINDING_2 was 79.00±4.23% for false negatives, and 59.38±1.24% for true 

negatives (p=0.005, Student’s t-test, Table 2.3). OR83b falls within the range of the true 
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negatives for both patterns, with a percentage identity of 59% and 56%, respectively. 

Given these results, we think it is unlikely that OR83b contains a degenerate canonical 

cyclic nucleotide-binding domain. 

 

All proteins in the false negative group had domains with at least 60% similarity 

to the first signature pattern. However, the cGMP-dependent kinase KGP1_RABIT and 

the transcriptional regulator ARCR_STAA1 did not show any similarity to the second 

signature pattern, suggesting that they also lack a CNBD, although they are classified 

as false negatives. It is important to highlight that the function of these proteins is based 

only on sequence similarity to known proteins in other model organisms. Therefore, it is 

possible that the CNBD in these two proteins is non functional or, alternatively, they 

contain a non-canonical CNBD. Therefore, direct experimental evidence is necessary to 

show the existence of a functional cyclic nucleotide binding domain both in these 

proteins and in OR83b. 

 

In conclusion, the exact role of G proteins and second messenger-mediated 

mechanisms in insect olfactory signal transduction remain controversial, and regulation 

of insect OR channels by G proteins still needs to be fully explored. 
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Table 2.2 Percent identity to the CNBD_BINDING_1 pattern in false and true 
negative protein groups. 

 CNBD_BINDING_1  

False negatives 
(Best similarity, %) 

True negatives 
(Best similarity, %) 

HCN3_MOUSE 
K+/Na+ channel 
Mus musculus 

93% 76% 
ARI2_DROME 

RING finger protein 
Drosophila melanogaster 

KGP1_RABIT 
cGMP-dependent kinase 
Oryctolagus cuniculus 

92% 68% 
CP1A1_RAT 

Cytochrome P450 
Rattus norvegicus 

CNG11_ARATH 
CNG channel 
Arabidopsis thaliana 

89% 65% 
1B78_HUMAN 

HLA-I antigen 
Homo sapiens 

Y2565_MYCTU 
NTE family protein 
Mycobacterium 
tuberculosis 

87% 62% 
ENO_DROME 

Enolase 
Drosophila melanogaster 

CNBD1_HUMAN 
CNBD containing protein 
Homo sapiens 

81% 57% 
Q26433_DROME 
Myosin heavy chain 

Drosophila melanogaster 

RPGF3_RAT 
Rap GEF 3 
Rattus norvegicus 

80% 57% 
DPOLA_MOUSE 

PolymeraseA1 
Mus musculus 

SKOR_ARATH 
K+ channel 
Arabidopsis thaliana 

74% 55% 
SAPA_ECOLI 

ABC binding protein 
Escherichia coli 

ARCR_STAA1 
Transcriptional regulator 
Staphilococcus aureus 

60% 53% 
Q9UE34_HUMAN 

Fibrinogen 
Homo sapiens 

mean±SEM 82.00±11.01% 61.63±7.75% mean±SEM 

  59% 
OR83B_DROME 

Or83b 
Drosophila melanogaster  

Table 2.2 Proteins are identified by their UniProtKB identifier. The common name and 

the organism of origin are indicated. 
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Table 2.3 Percent identity to the CNBD_BINDING_2 pattern in false and true 
negative protein groups. 

 CNBD_BINDING_2  

False negatives 
(Best similarity, %) 

True negatives 
(Best similarity, %) 

HCN3_MOUSE 
K+/Na+ channel 
Mus musculus 

91% 64% 
1B78_HUMAN 

HLA-I antigen 
Homo sapiens 

SKOR_ARATH 
K+ channel 
Arabidopsis thaliana 

86% 63% 
ENO_DROME 

Enolase 
Drosophila melanogaster 

Y2565_MYCTU 
NTE family protein 
Mycobacterium 
tuberculosis 

85% 63% 
Q9UE34_HUMAN 

Fibrinogen 
Homo sapiens 

RPGF3_RAT 
Rap GEF 3 
Rattus norvegicus 

78% 59% 
Q26433_DROME 
Myosin heavy chain 

Drosophila melanogaster 

CNBD1_HUMAN 
CNBD containing protein 
Homo sapiens 

70% 58% 
ARI2_DROME 

RING finger protein 
Drosophila melanogaster 

CNG11_ARATH 
CNG channel 
Arabidopsis thaliana 

64% 57% 
CP1A1_RAT 

Cytochrome P450 
Rattus norvegicus 

KGP1_RABIT 
cGMP-dependent kinase 
Oryctolagus cuniculus 

Not found* 56% 
DPOLA_MOUSE 

PolymeraseA1 
Mus musculus 

ARCR_STAA1 
Transcriptional regulator 
Staphilococcus aureus 

Not found* 55% 
SAPA_ECOLI 

ABC binding protein 
Escherichia coli 

mean±SEM 79.00±4.23% 59.38±1.24% mean±SEM 

  56% 
OR83B_DROME 

Or83b 
Drosophila melanogaster 

* Not considered in the average  
Table 2.3 Proteins are identified by their UniProtKB identifier. The common name and 

the organism of origin are indicated. 
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3 Insect repellents 

3.1 Introduction to insect repellents: a way to reduce insect-borne 

diseases 

3.1.1 The socio-economic impact of arthropods 

Arthropods shaped human civilization in ways that are often overlooked. The 

relationship between human societies and arthropods, and insects in particular, heavily 

depends on the species under consideration. Beetles, ants, termites, and caterpillars, to 

name a few, have been used as food source, and bees are exploited to produce honey, 

wax and to pollinate flowers. Pigments, silk, and resins are derived from the cochineal 

Dactylopius coccus, the moth Bombyx mori, and the scale insect Kerria lacca, 

respectively. Furthermore, arthropods have been used in agriculture as biological 

agents for pest control (Bale et al., 2008; Neuenschwander et al., 2003; Smith, 1996), in 

the biomedical field in maggot therapy (Jones, 2009; Sherman et al., 2000; Whitaker et 

al., 2007), as source of the anti-wart agent cantharidin (Moed et al., 2001), and in 

forensics to date and interpret crime scenes (Wells and Stevens, 2008). 

However, the economic, biomedical, and social impact of arthropods has a dark 

side: these organisms can harm animals, damage crops, and, most importantly, be 

vectors of human diseases. For example, arthropods can carry the agents responsible 

for Lyme disease and Rocky Mountain spotted fever (deer ticks of the genus Ixodes), 

yellow and Dengue fever (the mosquito Aedes aegypti), plague (rat flea Xenopsylla 

cheopis), Chagas disease (assassin bugs of the Triatoma, Rhodnius, and 
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Panstrongylus genera), and sleeping sickness (tsetse flies of the genus Glossina). 

Malaria, carried by mosquitoes of the genus Anopheles, claims more than 1 million lives 

per year (Breman et al., 2001; WHO, 2009), and about half of the world population is at 

risk of contracting the disease (WHO, 2009). Besides the impact on human lives, it is 

estimated that malaria is responsible for a reduction in economic growth of 1.3% and a 

loss of $12 billion per year in Africa alone (Gallup and Sachs, 2001). 

In all these cases, the hematophagous arthropod vector acquires the disease 

agent while blood feeding on an infected host, and transmits it during a successive meal.  

 

3.1.2 DEET is the most widely used insect repellent 

Prevention of insect-bone disease can be achieved in several ways: vaccines  

and antibiotic treatments against the disease agent, when available, can be used in the 

developed world, while physical barriers and chemical means are being implemented in 

developing countries (Genton, 2008; Qazi and Shaikh, 2007; Sharma and Singh, 2008). 

In particular, insecticides and insect repellents play a crucial role in preventing blood-

feeding insects from biting humans. Insecticides have the general advantage of killing 

the potential disease vector, but are often toxic at high doses, can be concentrated in 

the food chain, and are not species specific (Stuetz, 2006; Tanabe, 2002; van den Berg, 

2009). Moreover, insects tend to develop resistance through natural selection (Oyarzun 

et al., 2008; Rosario-Cruz et al., 2009; Soderlund, 2008; Soderlund and Knipple, 2003). 

On the other hand, insect repellents currently used are less toxic and reduce exposure 

to a blood-feeding vector without killing it. Among insect repellents, DEET (N,N-diethyl-

3-methylbenzamide), picaridin (2-(2-hydroxyethyl)-1-piperidinecarboxylic acid 1-
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methylpropyl ester  or KBR 3023), oil of lemon eucalyptus (p-menthane 3,8-diol or 

PMD), and IR3535 (3-[N-Butyl-N-acetyl]-aminopropionic acid, ethyl ester) are repellents 

recommended by the Center for Disease Control and Prevention (CDC) that are also 

registered with the US Environmental Protection Agency (EPA; 

http://www.cdc.gov/ncidod/dvbid/westnile/RepellentUpdates.htm), because of their long 

lasting effects. 

DEET is the most widely used ingredient in topical formulations of insect 

repellents. Developed in 1946 at the US Department of Agriculture with Department of 

Defense funding (McCabe et al., 1954), this compound was registered for civil use in 

1957 (http://www.epa.gov/pesticides/factsheets/chemicals/deet.htm) and has proven 

effective against ticks (Couch and Johnson, 1992), sand flies (Naucke et al., 2006), 

mites (Ho and Fauziah, 1993; Tilak et al., 2001), fleas (Mehr et al., 1984; Rutledge et al., 

1982), bedbugs (Kumar et al., 1995), cockroaches (Rao and Rao, 1991), and 

mosquitoes (Coleman et al., 1993). 

 

The precise mode of action of DEET is largely unknown, although published data 

show that close contact to the insect repellent affects behaviors such as probing time 

and blood feeding rates, and reduces overall survival, revealing some insecticidal 

properties in the mosquito Anopheles quadrimaculatus (Xue et al., 2007). However, 

DEET can also affect mosquitoes through gas phase exposure up to a distance of 

approximately 40 cm (Schreck et al., 1970), can block both the behavioral attraction to 

lactic acid (Dogan et al., 1999) and the evoked activity of lactic acid-responsive OSNs in 

Aedes aegypti (Davis and PG., 1976). Therefore, it is likely that the olfactory system is 
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involved in mediating these effects. Three main hypotheses have been recently 

suggested to account for this: olfactory inhibition (Plettner and Gries, 2010), olfactory 

repulsion (Stanczyk et al., 2010; Syed and Leal, 2008), and direct interaction with 

odorants (Syed and Leal, 2008). 

 

We performed behavioral, electrophysiological, and molecular analysis to 

investigate the mode of action of DEET, and provide evidence for a direct effect of the 

insect repellent on insect olfactory receptors. 

 

3.1.3 Vinegar flies as a model to study the molecular action of DEET 

The attraction of arthropods towards human hosts has been extensively studied 

for the vector mosquitoes of the genera Anopheles (Annis, 1990; Pridgeon et al., 2009; 

Robert et al., 1991; Schreck and Kline, 1989; Yap, 1986) and Aedes (Frances et al., 

1993; Licciardi et al., 2006; Schreck et al., 1984). The attraction of mosquitoes is largely 

mediated by volatile compounds emitted from the human body, such as lactic acid, CO2, 

and 1-octen-3-ol (Takken and Knols, 1999). These molecules are sufficient to mediate 

host-seeking behavior and are effectively used as baits in mosquito traps (Hoel et al., 

2007; Kline et al., 1990). 

Unlike blood feeding arthropods, vinegar flies do not show attraction towards 

humans. However, it is possible to establish an in vivo assay to study food-seeking 

behavior, similarly to what has been done in mosquitoes. As a result, it has been shown 

that vinegar flies avoid DEET-treated food traps probably due to airborne vapors of the 

insect repellent (Reeder et al., 2001). 
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To study this avoidance behavior, Dr. Mathias Ditzen established a two-choice 

assay (Figure 3.1A). In the absence of any food bait or DEET, flies distributed equally 

among the trap vials (Figure 3.1B, right two bars). When the entrance of one trap was 

treated with 100% DEET, flies avoided the vial (Figure 3.1B), but this behavior was 

reduced when they were shielded from direct contact via a wire mesh or a perforated 

polypropylene barrier, and when the amount of DEET was decreased to 10% (Figure 

3.1B). With these physical barriers, no contact effects of DEET could be observed, 

allowing us to isolate its airborne mode of action. 

In the presence of food baits (Figure 3.1C), flies distributed roughly equally 

between the two vials. However, when one of the two entrances was treated with 10% 

DEET, more flies chose the untreated side (Figure 3.1D), despite the fact that at this 

concentration DEET did not show any repellent effect per se (Figure 3.1B). When DEET 

was applied to both entrances, the distribution of flies in the two vials was again similar 

(Figure 3.1D). 

 

These data show that Drosophila melanogaster can be used as a model to study 

the effects of DEET in the gas-phase on food-seeking behavior. 

 

 

 

 

 

 



 54

 

 

 
Figure 3.1 DEET reduces attraction of Drosophila melanogaster to food odor. 
(A, C) Schematic of trap assay without (A) or with (C) food bait (yellow). Entrance to 

trap is coated with DEET (red) or solvent (black). (B) Repellency of varying 

concentrations of DEET in the trap assay without food bait, with different barriers to 

impede direct contact with DEET (***, p<0.001; n.s., not significant, Mann-Whitney test; 

mean±SEM, n=11 to 12). (D) Repellency of 10% DEET with perforated polypropylene 

barrier in the trap assay with food bait (***, p<0.001; n.s., not significant, Mann-Whitney 

test; mean±SEM, n=12, 22, 12). Adapted from Ditzen et al. (2008). 
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3.1.4 The effects of DEET on the Drosophila melanogaster olfactory system 

are OR83b-dependent 

To investigate whether DEET acted at the peripheral level of the olfactory system, 

Dr. Ditzen tested flies with an impaired sense of smell in the two-choice assay. While 

intact flies and flies with only one antenna still preferred the non-treated vial, antenna-

less flies entered both food vials, with a slight preference for the DEET-treated trap 

(Figure 3.2A). Flies lacking Or83b, in which ~80% of the OSNs are genetically silenced, 

also do not show avoidance to DEET-treated traps (Figure 3.2B). These data show that 

the olfactory system plays a crucial role in mediating the effects of the insect repellent in 

Drosophila melanogaster. 

 

 
Figure 3.2 DEET-mediated behavioral inhibition is OR83b-dependent. 
(A) Repellency of 10% DEET with perforated polypropylene barrier in the trap assay 

with food bait with surgically de-antennated flies (**, p<0.01; ***, p<0.001; Mann-

Whitney test; mean±SEM, n=12). (B) Same assay as (A) with wild-type and Or83b−/− 

flies (***, p<0.001; n.s., not significant, Mann-Whitney test; mean±SEM, n = 13, 46). 

Adapted from Ditzen et al. (2008). 
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To determine whether DEET affected responses to food odorants in all or a 

subset of the OSNs, Dr. Ditzen recorded the extracellular electrical activity of the 

antennal olfactory neurons stimulated with the odor of fly food in the absence or 

presence of DEET (Figure 3.3A). These experiments showed complex effects of the 

insect repellent. In most OSNs, food-evoked responses were not affected by DEET, 

while a few showed potentiation (ab1A, ab3B, ab7, ab8) or inhibition (ab1B, ab5, atδ). 

The strongest inhibition was seen in the ab5 sensillum, which houses two olfactory 

sensory neurons, the ab5A and ab5B cells, expressing the OR82a/OR83b and 

OR47a/OR83b complexes, respectively. Responses elicited by a cognate ligand for 

OR47a, 3-methylthio-1-propanol (Figure 3.3B), and behavioral attraction mediated by 

the same odorant (Figure 3.3C) were decreased by the presence of DEET, correlating 

the electrophysiological phenotype to a behavioral outcome (Ditzen et al., 2008). 

 

Similar results were obtained when DEET was applied to the Anopheles gambiae 

maxillary palp capitate peg (cp) sensilla, which house two cells: the CO2-sensitive cpA 

cell, expressing the gustatory receptors GPRGR22/GPRGR23/GPRGR24, and the 1-

octen-3-ol-sensitive cpB cell, expressing the olfactory receptors GPROR8/GPROR7 (Lu 

et al., 2007). We found that the presence of DEET inhibited cpB odorant-evoked 

responses (Figure 3.3D) but not the cpA CO2-evoked activation (Figure 3.3E). 
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3.2 Insect ORs are molecular targets of DEET 

Although the previous experiments are suggestive of an interaction of DEET with 

the olfactory system, they do not prove that olfactory receptors are directly affected by 

it. To test this, we carried out experiments in which responses of different insect ORs 

evoked by odorants in the presence of DEET were examined in heterologous cells. 

We performed TEVC recordings in Xenopus oocytes expressing OR47a/OR83b. 

This receptor complex is particularly interesting because the sensory neurons in which it 

is expressed, the ab5B cell, showed a strong inhibition to food odor-evoked responses 

in the presence of DEET (Figure 3.3A). Treatment of OR47a/OR83b-expressing 

oocytes with high DEET concentrations did not generate currents nor did it prevent 

pentyl acetate-evoked currents in the same oocyte (Figure 3.4A). This suggests that 

DEET does not have non-specific effects on the cell membrane or endogenous 

membrane proteins. Oocytes stimulated with pentyl acetate for a sustained period of 

time showed slow inactivation of the current, which was not affected by intermittent 

stimulations with the same ligand concentration (Figure 3.4B). However, when DEET 

was applied along with the ligand, the odorant-evoked inward currents showed a dose-

dependent and reversible decrease (Figure 3.4C). DEET similarly affected two 

Anopheles gambiae OR complexes, GPROR1/GPROR7 and GPROR2/GPROR7 

(Figure 3.4E and G), tuned to the human sweat odorants 4- and 2-methyl phenol, 

respectively (Hallem et al., 2004b), and an additional OR complex, GPROR8/GPROR7, 

tuned to 1-octen-3-ol, a highly potent mosquito attractant (Figure 3.4I). This is in 

agreement with our in vivo results showing DEET inhibition of the OSN housing the 

GPROR8 receptor (Figure 3.3D). 
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Figure 3.3 DEET affects odorant-evoked responses in sensory neurons. 
(A) Single-sensillum electrophysiology. Responses of OR83b-dependent antennal 

basiconic (ab) and trichoid (at) sensilla stimulated with food odorants along with solvent 

(black bars) or DEET (red bars). Data are plotted as mean corrected spikes/s±SEM 

(n=5-17 sensilla). Circles above bar graph indicate the fold change in response in the 

presence of DEET (filled circles, decrease; open circles, increase). (B) Dose-response 

curves of ab5B stimulated with 3-methylthio-1-propanol with solvent (black) or DEET 

(red; mean±SEM, n=4). (C; left panel) Trap assay in which one vial is baited with pure 

3-methylthio-1-propanol (*p<0.05, Mann-Whitney test; mean±SEM, n=4). (right panel) 

Repellency of 10% DEET with perforated polypropylene barrier in the trap assay with 

pure 3-methylthio-1-propanol as bait (***p<0.001, Mann-Whitney test; mean±SEM, 

n=12). (D-E) Dose-response curves of mosquito cpA and cpB cells to CO2 and 1-octen-

3-ol with (red) or without (black) DEET (mean±SEM, n=7-13). Adapted from Ditzen et al. 

(2008). 
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Figure 3.3 DEET affects odorant-evoked responses in sensory neurons. 
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To investigate whether DEET could affect the properties of OR-dependent 

currents, we analyzed the I-V curve relationships when the complexes where stimulated 

in the presence and absence of the insect repellent. In all cases, the effects on the 

odorant-evoked currents were symmetric at positive and negative potentials, and no 

change in reversal potential was observed (Figure 3.3D, F, H, and J). This could be 

explained by a reduction in ion permeability that does not affect ion selectivity through 

the OR channel. 

Although DEET decreased the evoked currents for all the ORs tested, the extent 

of the effects was dose-dependent and differed according to the specific OR pair 

(Figure 3.3M). The insect repellent was not able to influence chloride currents elicited by 

the CFTR channel stimulated with forskolin (Figure 3.3K and L), nor impair the 

activation of the mouse eugenol olfactory receptor (mOR-EG) and subsequent cAMP 

production, which was observed by activation of CFTR (Figure 3.3N). However, DEET 

did inhibit other cation channels not related to insect ORs: the mouse transient receptor 

potential M8 (mTRPM8), the olfactory heteromeric CNG channel (CNGA2/A4/B1), and 

the Drosophila ether-a-gogo potassium channel (Figure 3.3N). 

 

Taken together, these data suggest that insect olfactory receptors are direct 

targets of the insect repellent DEET. Since OR83b-dependent OSNs are affected 

differently in Drosophila, and some are not affected at all, it is unlikely that OR83b itself 

represents the main target of this insect repellent. 
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3.3 Controversial ideas on the mode of action of DEET 

A recent study challenged our published results and suggested that DEET does 

not act by inhibiting olfactory responses, but acts to decreases the volatility of 1-octen-

3-ol, and possibly other odorants, within the odorant delivery system through a not well 

described “fixative mechanism” (Syed and Leal, 2008). We were interested in evaluating 

Syed and Leal’s claims but needed to find a compelling experimental paradigm to do so. 

In vivo analysis both in our laboratory and Leal’s laboratory relies on odorant-

delivery devices in which the absolute concentration of odorant and DEET that reaches 

a given insect olfactory sensillum are essentially impossible to control or to measure 

between laboratories or even within the same laboratory. On the other hand, 

heterologous expression systems have not been successful for the expression of the 

majority of insect ORs. Moreover, they intrinsically lack additional components present 

in insect olfactory organs that might play a role for the proper action of insect repellents, 

such as odorant degrading enzymes, odorant binding proteins, and intracellular 

neuronal constituents. To overcome these limitations, we reasoned that we could 

distinguish between the various models proposed for DEET function by analyzing the 

activity of OSNs housed within the sensillum of Drosophila antennae. In each sensillum, 

every neuron is exposed to the same concentration of odorant and DEET, and shares 

the same lymph components. This system allows us to directly compare responses of 

multiple receptor complexes to single odorants and highlight the differential effects of 

DEET on separate ORs. By in vivo extracellular recordings of OSNs, we provide 

evidence that the insect repellent DEET directly modulates the OR ligand-binding 

subunit. 
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Figure 3.4 DEET decreases odorant-evoked currents in Xenopus oocytes. 
(A-B) Pre-exposure to increasing concentrations of DEET (A) and inactivation of pentyl 

acetate-evoked currents (B) in oocytes expressing OR47a/OR83b. (C-J) Ligand-evoked 

currents in the presence of DEET in oocytes expressing OR47a/OR83b (C), 

GPROR1/GPROR7 (E), GPROR2/GPROR7 (G), and GPROR8/GPROR7 (I). (D, F, H, 

and J) show current-voltage (I-V) relationships during ligand stimulation in the absence 

(black squares) or presence (red circles) of 1000 µM DEET. Current was normalized to 

the value of +40 mV in the absence of DEET (mean±SEM, n=3 to 6). (K, L) Forskolin-

evoked currents in the absence (K) or presence (L) of 1000 µM DEET. (M) DEET 

effects on ligand-dependent currents of insect ORs (mean±SEM, n=3-5). Current was 

normalized to the value of the current in the absence of DEET. (N) Normalized stimulus-

evoked currents in oocytes expressing various receptors or ion channels in the 

presence of 1000 µM DEET (CFTR: 40 µM forskolin; mOR-EG+CFTR: 50 µM eugenol; 

GPROR2/GPROR7: 10 µM 2-methylphenol; GPROR1/GPROR7: 0.5 µM 4-methyl 

phenol; OR47a/OR83b: 100 µM pentyl acetate; GPROR8/GPROR7: 5 µM 1-octen-3-ol; 

CNGA2/A4/B1: 100 µM cAMP; ether-a-go-go: voltage steps from -60 mV to +20 mV; 

mTRPM8: 50 µM menthol). Bars labeled with different letters are significantly different 

(p<0.05, Kruskal Wallis test with posthoc multiple comparison correction against the 

CFTR control; mean±SEM, n=4-7). Adapted from Ditzen et al. (2008). 
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Figure 3.4 DEET decreases odorant-evoked currents in Xenopus oocytes. 
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3.4 DEET modulation of responses to single compounds is OSN-, 

odorant-, and concentration-dependent 

To assess the pharmacological action of DEET on ORs, we focused our analysis 

on the ab3 sensillum, which houses an A and a B cell that express the ligand-specific 

OR22a/22b, and OR85b subunits, respectively, along with OR83b. Both OR22a and 

OR85b have been shown to respond to a variety of alcohols and esters (Hallem and 

Carlson, 2006). OR22b is expressed along with OR22a but does not appear to be a 

functional ligand-binding receptor in Drosophila melanogaster (Dobritsa et al., 2003). 

The food odor we used in previous experiments to examine the effect of DEET on fly 

OSNs is a complex mixture of chemicals in variable ratios, and is therefore unsuitable 

for more detailed analysis. Instead, we selected a subset of single odorants that can 

stimulate both OSNs in a given sensillum, and analyzed the effects of DEET on the 

responses to increasing concentrations of ligands (Figure 3.5A-B). 

 

The effects on responses elicited by single ligands were OSN-, odorant-, and 

concentration-dependent. Both ab3A and B cells stimulated with 1-octen-3-ol (Figure 

3.5C-D) and 2-heptanone (Figure 3.5E-F) showed an apparent decrease in affinity 

when DEET is applied along with the odorant. Co-stimulation with pentanal and the 

insect repellent caused a minor effect on the A cell (Figure 3.5G), but abolished 

responses of the B cell (Figure 3.5H). DEET had no effect on the pentanoic acid-

induced inhibition of ab3B while still decreasing odorant-evoked responses of ab3A 

neurons (Figure 3.5I-J). 
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Conversely, the inhibitory effects on the ab3A cell were dependent on the dose of 

DEET applied (Figure 3.6A). Although DEET seems to act over a large spectrum of the 

chemical space, ab3A responses to butyraldehyde were not significantly reduced in its 

presence (Figure 3.6B). 

 

Taken together, these results are in agreement with the multitude of effects 

observed with food odor (Figure 3.3A), and with the idea that DEET might function by 

differentially altering the ability of the OSNs to respond to odorants. 

 

Similarly, DEET affected odorant-evoked responses of OSNs housed in the ab2 

sensillum expressing the OR59b/OR83b and OR85a/OR83b complexes (Figure 3.7 and 

Figure 3.8). It is known that a given OR complex can be inhibited and activated by 

different odorants (de Bruyne et al., 2001; Hallem and Carlson, 2006). Interestingly, 1-

octen-3-ol can function on the OR59b/OR83b complex both as an inhibitor and an 

activator in a concentration-dependent manner. The activity of the ab2A cell was 

decreased by a 10-3 dilution of the odorant to levels below the spontaneous firing rate 

and the small solvent-induced activity. When the odorant was presented at a 10-2 

dilution, the cell was effectively silenced (Figure 3.7D). Increasing the odorant dilution to 

10-1 led to activation similar to paraffin oil, and at 10-0 the neuron was significantly 

activated. 
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Figure 3.5 Odorant-dependent effects of DEET on OSNs in the ab3 sensillum. 
(A) Schematic of the odorant delivery protocol. Increasing concentrations of the 

indicated odorants were delivered to the ab3 sensillum in the absence or presence of 

DEET. Responses from ab3A neurons expressing OR22a/b/OR83b and ab3B neurons 

expressing OR85b/OR83b were recorded simultaneously and subsequently separated 

by spike-sorting algorithms. (B) Representative spike traces of ab3 sensillum recordings 

showing responses of the OR22a/b/OR83b OSN (left) and the OR85b/OR83b OSN 

(right) to 10-2 1-octen-3-ol, in the absence (top) or presence (bottom) of DEET. Spikes 

corresponding to the relevant cell are highlighted in red, while those of the other cell are 

in black. Bars above traces represent the 1 s odorant stimulus. The delay in odorant 

response onset is a function of the odorant delivery system. (C-J) Dose-response 

curves of OR22a/b/OR83b (C, E, G, I) and OR85b/OR83b (D, F, H, J) stimulated with 1-

octen-3-ol (C, D), 2-heptanone (E, F), pentanal (G, H), and pentanoic acid (I, J), with 

(dark color) or without (light color) DEET. Bar plots next to each dose-response curve 

represent responses to the solvent (PO, paraffin oil) in absence (grey) or presence 

(black) of DEET (significance assessed with F-test using Bonferroni correction. **, 

p<0.01; ***, p<0.001; n.s.=not significant; mean±SEM, n=9–16). 
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Figure 3.5 Odorant-dependent effects of DEET on OSNs in the ab3 sensillum. 
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Figure 3.6 DEET effects on the OR22a/b/OR83b complex are odorant- and 
concentration-dependent. 
(A) Dose-inhibition curve of DEET on OR22a/b/OR83b OSNs activated by 10-2 1-octen-

3-ol. (B) Dose-response curve of OR22a/b/OR83b OSNs stimulated with increasing 

concentrations of butyraldehyde in the absence (light green) or presence (dark green) of 

DEET. Bar plots (left) represent responses to the solvent (PO, paraffin oil) in absence 

(grey) or presence (black) of DEET (significance assessed with F-test using Bonferroni 

correction: n.s.=not significant; mean±SEM, n=6-11). 

 

Although the corrected spike counts in these experiments fall below the arbitrary 

50 spikes/sec threshold imposed by Hallem and Carlson (Hallem and Carlson, 2004; 

Hallem and Carlson, 2006), the responses are highly significantly different from 

responses evoked by solvent alone. Moreover, the actual number of spikes needed to 

elicit a behavioral output in any insect is unknown, but likely occurs below the arbitrary 

50 spikes/sec threshold. Application of DEET along with the odorant suppressed the 

inhibition of the neuron, but did not alter its activation (Figure 3.7D). In contrast, the 

ab2B cell in the same sensillum showed activation to 10-2 1-octen-3-ol, which was 

effectively suppressed when DEET was co-applied (Figure 3.7E). 
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Figure 3.7 DEET affects odorant-evoked inhibition of the OR59b/OR83b complex. 
(A), Schematic of the delivery protocol. Increasing concentrations of 1-octen-3-ol were 

delivered to the ab2 sensillum in absence or presence of DEET, and responses from 

OR59b/OR83b and OR85a/OR83b expressing neurons were recorded simultaneously. 

(B-C). Representative traces of single sensillum recordings. Bars represent 1 s odorant 

stimulation. Spikes corresponding to ab2A are in red in panel B and black in panel C. 

Spikes corresponding to ab2B are in red in panel C and black in panel B. The delayed 

response onset is a function of the odorant delivery system. (D-E) Dose-response 

curves of OR59b/OR83b (D) and OR85a/OR83b expressing cells (E) stimulated with 1-

octen-3-ol in the absence (light color) or presence (dark color) of DEET. Bar plots next 

to each dose-response curve represent responses to the solvent (PO, paraffin oil) in the 

absence (grey bar) or presence (black bar) of DEET (***, p<0.001, F-test with 

Bonferroni correction; mean±SEM, n=8–22). 
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Therefore, the simultaneous application of odorant and DEET to two neurons in 

the same sensillum resulted in opposite effects: suppression of odorant activation in the 

ab2B cell and suppression of odorant inhibition in the ab2A cell. These results are not 

consistent with the contention that DEET acts by inhibiting 1-octen-3-ol volatility prior to 

reaching the olfactory sensillum (Syed and Leal, 2008). To test whether DEET can 

generally prevent odorant-evoked inhibition in the ab2A cell, we performed dose-

response curves with two additional inhibitory odorants, linalool (Figure 3.8A) and 1-

octanol (Figure 3.8B). In both cases, the presence of DEET caused a partial 

suppression of inhibition, with similar maximal inhibition reached at higher ligand 

concentrations. However, activation of the cell by methyl acetate and 2,3-butanedione 

was not affected by DEET (Figure 3.8C and D). Conversely, the activation of the ab2B 

neuron in the same sensillum, expressing the OR85a/OR83b complex, could still be 

affected when DEET was presented with 1-octanol and ethyl-3-hydroxybutyrate (Figure 

3.8E and Figure 3.8F). 

 

 

 

 



 71

 
Figure 3.8 DEET affects odorant-dependent excitation in ab2B but not ab2A cells. 
(A-F) Dose-response curves of the OR59b/OR83b (A, B, C, D) and OR85a/OR83b (E, 

F) complex stimulated with increasing concentrations of linalool (A), 1-octanol (B, E), 

methyl acetate (C), 2,3-butanedione (D), and ethyl-3-hydroxybutyrate (F) in the absence 

(light color) or presence (dark color) of DEET. Bar plots next to each dose-response 

curve represent responses to the solvent (paraffin oil, PO) in the absence (grey bar) or 

presence (black bar) of DEET (***, p<0.001; n.s.=not significant, F-test with Bonferroni 

correction; mean±SEM, n=6–22). 
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3.5 Or59b is polymorphic in 18 wild type populations of Drosophila 

melanogaster 

To test whether DEET has a direct effect on ORs in vivo, we focused our 

attention on the responses of OR59b/OR83b to 1-octen-3-ol. We used Or59b allelic 

variants in populations of Drosophila melanogaster to analyze the effects that naturally 

occurring polymorphisms have on OR-odorant interaction sites and their effects on 

sensitivity to DEET. 

Naturally occurring polymorphisms can result in amino acid changes in a protein, 

leading to changes in its function. Polymorphisms have been previously connected to 

differential odorant sensitivity in humans (Keller et al., 2007; Menashe et al., 2007), and 

behavioral responses to oxygen and carbon dioxide in the nematode Caenorhabditis 

elegans (McGrath et al., 2009). 

Using 18 strains of Drosophila melanogaster collected in different locations 

around the world (Figure 3.9), we assessed responses of the OR59b/OR83b receptor 

complex to 10-2 1-octen-3-ol in the absence or presence of DEET (Figure 3.10). ab2 

sensilla were identified in each strain by the characteristic size and location of the 

sensilla and responses of the A cell to a 10-5 dilution of its cognate ligand methyl 

acetate (data not shown). Since all strains belong to the Drosophila melanogaster 

species, OR expression patterns in identified sensilla are likely to be conserved. 
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Figure 3.9 World map indicating the origin of the 18 wild type Drosophila 

melanogaster strains analyzed. 
World map indicating the location where the founders of 18 Drosophila melanogaster 

strains were collected. 

 

When stimulated with 1-octen-3-ol, 17 strains showed w1118-like inhibition that 

could be suppressed by co-application of DEET. However, the Brazilian strain Boa 

Esperança lacked 1-octen-3-ol inhibition, and the presence of DEET did not affect its 

response to the odorant (Figure 3.10B and D). 

 

Aside from a lack of inhibition by 1-octen-3-ol, ab2 sensilla of the Brazilian strain 

had response profiles otherwise similar to our w1118 control both for the A (Figure 3.11A-

C) and B cell (Figure 3.11D). This suggests that the sensillum expresses the 

characteristic receptors found in ab2 sensilla, OR85a/OR83b and OR59b/OR83b, and 

that there is a potential OR59bBoa variant in this strain. 
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Figure 3.10 Responses of OR59b/OR83b to 1-octen-3-ol and sensitivity to DEET 
vary across wild type Drosophila melanogaster strains. 
(A, C; upper panel) Schematic of the screening protocol: 10-2 1-octen-3-ol (A) or solvent 

(C; PO, paraffin oil) was delivered in the absence (light color) or presence (dark color) of 

DEET. (Lower panel) DEET suppresses 1-octen-3-ol-evoked activity of w1118 ab2A 

neuron (***, p<0.001; t-test with Bonferroni correction; mean±SEM, n=10). (B, D) Bar 

plots of odorant-evoked responses of 18 wild type strains to 10-2 1-octen-3-ol (B) or PO 

(D) in the absence or presence of DEET (***, p<0.001; n.s.=not significant, t-test with 

Bonferroni correction; mean±SEM, n=10–17). 
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Figure 3.10 Responses of OR59b/OR83b to 1-octen-3-ol and sensitivity to DEET 
vary across wild type Drosophila melanogaster strains. 
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Figure 3.11 Comparison of responses of OSNs housed in the ab2 sensillum of 
w1118 and Boa Esperança. 
(A) Schematic of the odorant delivery protocol. The indicated odorants were delivered to 

the ab2 sensillum of w1118 and Boa Esperança, and responses from the ab2A and ab2B 

OSNs were recorded simultaneously. (B) Representative traces of single sensillum 

recordings. The red traces show responses of the w1118 (upper panel) and the Boa 

Esperança (lower panel) ab2A cells to 10-5 methyl acetate. The delay in odorant 

response onset is a function of the delivery system. (C, D) The responses of the w1118 

ab2A (C) and ab2B (D) cells are plotted against the corresponding Boa Esperança 

ab2A and ab2B cell, respectively. The dotted lines show the linear regression fit of the 

values (mean±SEM, n= 9). 
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Figure 3.11 Comparison of responses of OSNs housed in the ab2 sensillum of 
w1118 and Boa Esperança. 
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3.6 Boa Esperança ab2A neurons exhibit decreased levels of 

odorant-evoked inhibition compared to w1118 

We then compared the full dose-response to 1-octen-3-ol with responses of 

OR59b from w1118 (Figure 3.12A). Unlike our control strain, OR59bBoa expressing 

neurons were not inhibited by 1-octen-3-ol for all dilutions tested, but still preserved 

odorant-evoked excitation at higher ligand concentrations. Furthermore, DEET did not 

modulate 1-octen-3-ol-evoked activity of OR59b/OR83b in the Boa Esperança strain 

(Figure 3.12B). Excitatory responses were also not affected, as the response profile to 

methyl acetate, both in the absence and presence of DEET, did not differ when 

compared with the corresponding w1118 neuron (Figure 3.12C and D). 

We then asked whether the loss of inhibition affected only 1-octen-3-ol, or if it 

similarly modulated the effect of other inhibitory ligands. As shown in Figure 3.12E, the 

ab2A cell in Boa Esperança also showed impaired inhibitory responses to 1-octanol and 

ethyl hexanoate. However, linalool was still able to inhibit the spontaneous activity of the 

neuron to the same extent of the w1118 OR59b-expressing OSN. Neither excitatory nor 

inhibitory responses of the B cell to the same odorants were altered (Figure 3.12F). 

These results eliminate the possibility that the observed differences in the Boa 

Esperança strain can be attributed to changes in either the sensillum lymph or other 

pan-neuronal cellular components, and strongly argue in favor of mutations present on 

the OR59b/OR83b complex expressed on the ab2A neuron of Boa Esperança. 
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Figure 3.12 ab2A neurons in w1118 and Boa Esperança differ in odorant-evoked 
inhibition and sensitivity to DEET. 
(A-C) Dose-response curves of the OR59b/OR83b complex in the wild type w1118 (solid 

line) and Boa Esperança (dotted line) strains stimulated with of 1-octen-3-ol (A) or 

methyl acetate (C; ***, p<0.001; n.s.=not significant, F-test with Bonferroni correction; 

mean±SEM, n=5–14). The dose-response curve of w1118 to 1-octen-3-ol is reproduced 

from Figure 3.7D for comparison. (B, D) Dose-response curves of the OR59b/OR83b 

complex in the wild type w1118 (solid line) and Boa Esperança (dotted line) strains 

stimulated with increasing concentrations of 1-octen-3-ol (B) or methyl acetate (D) in the 

presence of DEET. Bar plots next to dose-response curves represent responses to the 

solvent paraffin oil (PO) in the absence (grey bar) or presence (black bar) of DEET 

(n.s.=not significant, F-test with Bonferroni correction; mean±SEM, n=5–11). (E-F) Bar 

plots comparing responses of the OR59b/OR83b (E) and OR85a/OR83b complexes (F) 

in the w1118 (solid bar) and Boa Esperança (dotted bar) strains to 10-2 1-octen-3-ol, 10-1 

1-octanol, 10-1 ethyl hexanoate, and 10-1 linalool (**, p<0.01; ***, p<0.001; n.s.=not 

significant, t-test with Bonferroni correction; mean±SEM, n=9–11). 
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Figure 3.12 ab2A neurons in w1118 and Boa Esperança differ in odorant-evoked 
inhibition and sensitivity to DEET. 
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3.7 A single natural missense polymorphism in Or59b confers 

pharmacological resistance to DEET 

To verify the hypothesis that DEET acts directly on OR59b to modulate the 

receptor complex, we sequenced the coding region of Or59b in the 19 wild type strains 

and compared them to the published Or59b sequence (NCBI reference number 

NP_5238822.1). Or59b is one of the most highly conserved odorant receptor genes 

among closely related Drosophila species separated by 12 million years of evolution 

(McBride et al., 2007). Within our Drosophila melanogaster strains, we identified seven 

missense polymorphisms that allowed us to group OR59b into distinct protein 

haplotypes (Figure 3.13A). Based on limited within-strain sampling, we detected only 

one protein haplotype per strain, with the exception of the w1118 control for which we 

identified two separate sequences (Figure 3.13A and Table 3.1), one identical to the 

published OR59b sequence (OR59bNCBI REF), and one containing two missense 

polymorphisms (OR59bM352I T376S). Since we did not observe two different phenotypes in 

our electrophysiological recordings for this strain, both proteins are likely to have similar 

functional properties for the odorants tested. Interestingly, Boa Esperança was the only 

strain containing four missense polymorphisms (V41F, V91A, T376S, and V388A). The 

V41F and V91A polymorphisms, located in the N-terminus intracellularly near TM1 and 

within TM2, respectively, are unique to this strain (Figure 3.13B). 
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Figure 3.13 Summary of OR59b missense polymorphisms in the 19 wild type 
strains of Drosophila melanogaster analyzed. 
(A) Haplotype network for OR59b protein sequences. Each circle represents a unique 

OR59b protein haplotype, its size proportional to the number of strains containing each 

variant. Connecting lines show the type of amino acid substitutions that separate each 

haplotype. The bold circle represents the reference NCBI haplotype NP_5238822.1. 

The Boa Esperança strain is shown in red. (B) Snake plot of OR59b showing the 

location of missense polymorphisms. Substitutions in Boa Esperança are shown in red. 
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In addition to the seven missense polymorphisms that induced amino acid 

substitutions, we found 36 silent polymorphisms (see Table 3.1 and Figure 3.14). Since 

the co-receptor OR83b is an essential component of the OR complex, we sequenced 

the Or83b gene in both w1118 and Boa Esperança strains but did not detect any 

missense polymorphisms relative to the NCBI reference sequence NP_524235.2 (data 

not shown). 

 

To test whether missense polymorphisms in Or59b are responsible for the 

sensitivity to 1-octen-3-ol and DEET, we generated receptor variants containing each 

one of the four polymorphisms (V41F, V91A, T376S, and V388A), and a combination of 

the two polymorphisms unique to the Brazilian strain (V41F V91A), or the 

polymorphisms shared with other strains (T376S V388A), based on the OR59bNCBI REF 

backbone. To test the function of each OR59b variant, we expressed cDNA in the 

Drosophila “empty neuron” (Hallem et al., 2004a). This system uses ∆halo flies (Gross 

et al., 2003) containing a synthetic deletion encompassing the Or22a and Or22b genes 

normally present in ab3A neurons. This allows the expression of Or59b using the GAL4-

UAS system under the control of the Or22a promoter, therefore functionally replacing 

the endogenous ligand-binding OR protein with a given OR59b mutant. 
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Table 3.1 Silent and missense polymorphisms of Or59b in 19 Drosophila 

melanogaster strains 

Strain Origin Silent polymorphisms 
Missense 

polymorphisms 
BOG2 Bogota P78, A94, N133 NCBI REF* 

Alma-Ata Kazakhstan P78, A94, N133 NCBI REF* 

WT Berlin Berlin, Germany R27, C51, A55, P78, A94, N133, 
D206 NCBI REF* 

Boa 
Esperança Minas Gerais, Brazil S95, D206, L348 V41F V91A 

T376S V388A 

Manago Hawaii, USA R27, V355, I359 T376S V388A 

Algeria Algeria R27, L103, V355, I359 T376S V388A 

Canton-S Canton, Ohio, USA R27, C51, A55, P78, A94, N133, 
D206 T376S V388A 

NCBI REF* 
w1118† Oregon, USA L25, R27, R43, C51, A55, P78, 

A94, N133, I186, D206 
M352I T376S 

Oregon R Oregon, USA R27, L103, G282, V355, I359, K379 T376S 

EV Ellenville, New York, USA R27, C51, A55, P78, A94, D206 NCBI REF* 

Coffs Harbour New South Wales, 
Australia R27, C51, A55, P78, A94, D206 T376S V388A 

San Miguel Buenos Aires, Argentina P78, A94, N133, I186, D206, V227 M352I T376S 

Medvast-21 Finland R27, C51, A55, P78, A94, D206, 
I322, V355, I359 T376S V388A 

VAG2 Athens, Greece R27, C51, A55, P78, A94, I186, 
D206, G297 M352I T376S 

CO3 Commack, New York, 
USA 

R27, C51, A55, P78, A94, N133, 
K379, F380, I385 T376S 

Kericho-7B Kericho, Kenya R27, P78, Y92, E112, L276, L302, 
P313, R343, I359, K379, F380 

F197I A275V 
T376S 

Batumi-L Batumi, Georgia 
I186, D206, F274, G282,T306, 
P313, I322, V355, I359, S370,K379, 
F380, I385 

T376S 

CA1 Cape Town, South Africa 
T13, R27, A55, F56, T77, P78, Y92, 
S117, L118, D206, L276, L302, 
P313, R343, I359, K379, F380 

A275V T376S 

Akayu Akayu, Japan 
R27, C51, A55, P78, A94, N133, 
F274,G282, T306, P313, I322, 
V355, I359, S370, K379, F380, I385 

T376S 

  
*NCBI REF corresponds to the OR59b NCBI reference sequence NP_5238822.1 

†We found two different protein haplotypes that co-segregate in w1118 
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Figure 3.14 Silent and missense polymorphisms of OR59b. 
Snake plot of OR59b showing the prevalence and location of missense (filled circles) 

and silent (open circles) polymorphisms in the 19 strains analyzed. The position of each 

polymorphism is reflected on the corresponding amino acid and color coded according 

to its occurrence. 
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OR59bNCBI REF expressed in ab3A neurons showed a decrease in spontaneous 

activity comparable to the endogenous receptor in w1118 animals after application of 10-2 

1-octen-3-ol (See Figure 3.15 and Figure 3.10 for comparison). In contrast, OR59bBoa 

expressed in ab3A neurons showed activation after application of 10-2 1-octen-3-ol 

comparable to the response of the ab2A neuron in the Boa Esperança strain (Figure 

3.15 and Figure 3.1). OR59bT376A, OR59bV388A, and OR59bT376A V388A were also inhibited 

by the odorant (Figure 3.15A). 

The V91A polymorphism was the only one necessary and sufficient to 

phenocopy the electrophysiological effects of the endogenous Boa Esperança OR59b 

(Figure 3.15A). Both the single amino acid substitution (V91A) and any combination 

tested (V41F V91A and V41F V91A T376S V388A) showed the same DEET 

insensitivity and loss of odorant inhibition (Figure 3.15A). 

For each experiment, we verified that responses of endogenous OR59b in the 

native ab2A neuron on the same antennal preparation showed normal inhibition by the 

odorant (data not shown).  

 

A recent paper documented an effect of “silent” synonymous SNPs on the 

function of the ABC transporter MDR1, presumably because rare codons affected timing 

of co-translational folding and membrane insertion (Kimchi-Sarfaty et al., 2007). 

Although we did not explicitly test the role for the many synonymous Or59b SNPs 

identified in the course of our analysis, it is unlikely that silent changes in the Or59b 

coding region affect its inhibition to 1-octen-3-ol since its effects are reproducible across 

different strains that contain multiple and diverse SNP patterns. 
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Figure 3.15 A single natural polymorphism in Or59b confers pharmacological 
resistance to DEET. 
(A-B) Bar plots show the responses of OR59b variants expressed in ∆halo ab3A 

neurons, which lack endogenous Or22a and Or22b genes, to 10-2 1-octen-3-ol (A) or 

the solvent (B; PO, paraffin oil) in the absence (light color) or presence (dark color) of 

DEET. The location of variant amino acids in OR59b is depicted in the cartoon snake 

plot on top of each bar plot (*, p<0.05; **, p<0.01; ***, p< 0.001, n.s.=not significant, t-

test with Bonferroni correction; mean±SEM, n=7–11). 

 

 



 88

3.8 Model of the odorant receptor complex OR59b/OR83b 

Based on these results, we can speculate about a possible model of the odorant 

receptor complex OR59b/OR83b. Although the stoichiometry of any OR complex is still 

unknown, experimental evidence suggests that the functional OR is composed of at 

least two OR83b subunits and two ligand binding subunits (Benton et al., 2006). 

The dose-response curve of the OR59b/OR83b complex to 1-octen-3-ol (Figure 

3.7D) might be explained by the presence of two different binding sites that lead to 

different conformational changes in the OR channel (Figure 3.16A-B). At lower 

concentrations of 1-octen-3-ol, the odorant occupies the inhibitory site, leading to a 

closed state of the OR complex and inhibition of the neuron (Figure 3.16C). At higher 

odorant concentrations, occupation of the excitatory site leads to an open channel 

conformation and activation of the neuron (Figure 3.16D). The effects of DEET on the 

dose-response curve in Figure 3.7D can be explained by postulating interactions 

between the repellent and binding of the odorant to the inhibitory site, either directly 

(Figure 3.16E) or through some allosteric modulation. At low odorant concentrations, 

the insect repellent would then effectively block the inhibition of the OR complex (Figure 

3.16E), without interfering with the excitation observed at higher odorant concentrations 

(Figure 3.16F). This model is supported by the fact that DEET does not interfere with 

ligands that act as pure agonists, as shown in Figure 3.8C and D, suggesting that DEET 

does not have access to the excitatory binding site. Moreover, odor-evoked inhibition 

and sensitivity to DEET are specifically abolished by the polymorphism V91A (Figure 

3.12 C and D, Figure 3.15A). This shows that a mutation in the ligand-binding subunit 

can uncouple inhibitory and excitatory responses. 
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Figure 3.16 Model of the OR complex OR59b/OR83b. 
(A-B) 3D (A) and 2D (B) model of the OR59b/OR83b receptor complex, based on 

Benton et al. (2006). The location of the binding sites is arbitrary (C-F) Putative model 

for the interactions of 1-octen-3-ol and DEET on the receptor complex. Refer to the text 

for a complete explanation of the model. 
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3.9 DEET as a molecular confusant of insect olfactory receptors 

In this study, we investigated the mechanisms of action of the insect repellent 

DEET acting in the gas phase. Previous studies have described insecticidal properties 

(Pridgeon et al., 2009; Xue et al., 2007), active repellency (Plettner and Gries, 2010; 

Syed and Leal, 2008), and a direct effect on odorants (Syed and Leal, 2008), but its 

precise mode of action is still controversial. 

Our in vivo results using food-seeking behavior in Drosophila melanogaster 

demonstrated that the insect olfactory system is necessary for DEET to exert its effects 

(Figure 3.1-Figure 3.3). Moreover, OR expression studies in Xenopus oocytes showed 

that OR-generated currents are decreased by DEET, suggesting a direct effect of the 

insect repellent on the insect olfactory receptors (Figure 3.4). 

 

To investigate whether DEET has “fixative” effects on odorants, therefore 

preventing them from being released from the delivery system (Syed and Leal, 2008), 

we studied the electrophysiological responses to odorants that can stimulate OSNs 

housed in the same sensillum. We found that DEET affects responses to single 

odorants in an OSN-, odorant-, and concentration-dependent way (Figure 3.5-Figure 

3.8). Because DEET has opposing effects on 1-octen-3-ol responses on two neurons 

housed in the same sensillum (Figure 3.7D-E), we can exclude the proposed artifacts of 

reduced odorant delivery as the mechanism by which DEET reduces OSN activation 

(Syed and Leal, 2008). 

In addition we reasoned that, if DEET were acting directly on olfactory receptors, 

mutations in specific OR residues could lead to DEET-resistant OR complexes. The 
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OR59b/OR83b complex is expressed in the ab2 sensilla and is inhibited and activated 

by increasing concentrations of 1-octen-3-ol, and DEET can specifically suppress its 

odorant-evoked inhibition (Figure 3.7). We searched through 18 populations of 

Drosophila melanogaster for ab2 sensilla with altered responses to 1-octen-3-ol (Figure 

3.10) and found that the Brazilian strain Boa Esperança displays impaired inhibitory 

responses of OR59b/OR83b but retains normal odorant-evoked excitation (Figure 3.12). 

The Or59b gene in this strain contains two unique missense polymorphisms, among 

which V91A is sufficient and necessary to confer the same loss of inhibition observed in 

Boa Esperança when the OR59b receptor was misexpressed in the ‘empty neuron’ 

system, therefore rendering the receptor resistant to DEET (Figure 3.15). Unfortunately, 

we were unable to obtain functional heterologous expression of OR59b in HEK293T 

cells, and so were unable to probe the interactions of DEET with the various OR59b 

receptors variants in greater mechanistic detail (data not shown). 

 

The missense changes occurring in the OR59b receptor within Drosophila 

melanogaster populations are also shared with other non melanogaster species. By 

comparing OR59b sequences in 12 Drosophila species (Ware et al., 1975) we found 

that an alanine at position 91 is also present in Drosophila yakuba (melanogaster 

subgroup) and Drosophila grimshawi (Hawaiian Drosophila group), while the valine is 

found in the other 10 species (data not shown). 

It has recently been proposed that activation of a sensory neuron in a short 

antennal trichoid sensillum is responsible for the repellent effect of DEET and other 

compounds in the Southern house mosquito Culex quinquefasciatus (Syed and Leal, 
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2008). Furthermore, a recent paper (Stanczyk et al., 2010) documented behavioral 

insensitivity to DEET in Aedes aegypti mosquitoes. The authors suggested that genetic 

alterations in olfactory sensilla explained the observed behavioral effects but the 

responsible gene(s) were not identified. Although appealing, it is improbable that a 

single OR could mediate the repellency effects of DEET across such a large number of 

highly evolutionarily divergent insect species, given the very low level of similarity of 

chemoreceptors genes even within the same species (Abdel-Latief, 2007; Benton et al., 

2009; Engsontia et al., 2008; Hill et al., 2002; Robertson and Wanner, 2006; Robertson 

et al., 2003). Furthermore, DEET alone has been shown to be a mild attractant for 

Aedes and Anopheles mosquitoes (Dogan et al., 1999; Mehr et al., 1990), while still 

inhibiting behavioral attraction when in combination with other odorants (Dogan et al., 

1999). Therefore, DEET is unlikely to function as an active repellent. 

Our data show that a single missense polymorphism can affect the sensitivity of 

odorant receptors to DEET by modifying the interactions of specific odorants while 

leaving other odorant-evoked responses intact. Furthermore, we showed that these 

mutations can occur spontaneously and are present in natural populations of insects, 

both within and across species. We propose that DEET acts as a molecular “confusant” 

to modulate OR responses to some, but not all, odorants. 

Although we showed that olfactory receptors are direct targets of DEET, there 

are likely to be other protein targets of this insect repellent. We showed that DEET 

inhibits TRP and K+-channels expressed in Xenopus oocytes (Figure 3.4) and it seems 

likely that DEET exerts its effects on other still unknown targets. For example, while 

ticks are sensitive to DEET, there is no evidence of Or83b homologues or any ligand-
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binding ORs in the deer tick (Ixodes scapularis) genome (H.M. Robertson, personal 

communication), suggesting that in this animal DEET is acting on non-OR protein 

targets. Unlike mosquitoes, ticks do not fly, and usually wait in tall grass to attach to 

passing hosts. It is therefore possible that DEET exerts its protective effects not in the 

gas phase, as for flying insects, but through direct contact. Gustatory receptor (Gr) 

genes, which normally respond to non-volatile compounds and are distantly related in 

sequence to Or genes (Robertson et al., 2003), are present in the tick genome and 

could therefore mediate the protective effects of DEET in this species. 

In addition, a recent study (Corbel et al., 2009) provided evidence for DEET-

mediated inhibition of both insect and mammalian cholinesterase activity in vitro, 

suggesting that the modes of action of this insect repellent might extend to non-

chemosensory systems. 
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4 Structural domains of insect olfactory receptors 

Insect ORs are a highly divergent family of proteins that share no similarity with 

other proteins in non-insect species (Clyne et al., 1999; Hill et al., 2002; Vosshall et al., 

1999). Even across insect species, it is often difficult to find highly homologous 

sequences, and the rapid sequence divergence is also observed within the same 

species. In Drosophila, for example, the overall protein identity ranges between 15% 

and 30% (Vosshall, 2003). The only exception to this rule is OR83b, which retains on 

average 75% of sequence identity in species separated by up to 350 million years of 

evolution (Figure 1.7). Given its key role in the insect olfactory system and its 

conservation across species, OR83b represents an ideal candidate to investigate 

functional regions that allow the dimerization, targeting, and regulation of function of the 

OR complex. Thanks to the powerful genetic tools available in Drosophila, potentially 

interesting domains can be mutated and their function directly assessed in vivo in native 

olfactory sensory neurons. 

 

4.1 Bioinformatics analysis of putative functional domains of insect 

ORs 

We carried out a bioinformatics analysis on OR83b and its orthologues. Given 

the lack of homology with other protein families, we searched for motifs that have been 

shown to mediate dimerization, trafficking, and turnover of other membrane proteins 

(summarized in Figure 4.1 and Table 4.1), or were putative phosphorylation sites 

(summarized in Figure 4.2 and Table 4.2). 
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Figure 4.1 Conserved motifs in OR83b orthologues with homology to dimerization 
and trafficking motifs in other membrane proteins. 
The position of an internalization (Y-(X)2-Φ), dimerization (G-(X)3-G-(X)3-L), and folding 

(F-(X)6-I/L-I/L) motif is shown on the snake plot adapted from Figure 1.7. Only the 

residues that are part of the motifs are color coded according to their degree of 

conservation. 
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Table 4.1 Summary of conserved motifs found in OR83b orthologues. 

Motif Function Position Reference 

Y-(X)2-Φ 
clathrin-mediated 

internalization 
IC1 (102) (Rapoport et al., 1997) 

G-(X)3-G-(X)3-L β2-adrenergic 
receptor dimerization TM5 (356) (Hebert et al., 1996; 

Salahpour et al., 2004) 

F-(X)6-I/L-I/L receptor folding and 
ER export IC3 (408) (Duvernay et al., 2004) 

 
Table 4.1 Φ = bulky hydrophobic residue [ILVMFYW]; X = any residue; IC = intracellular 

loop; TM = transmembrane domain. The numbers in parenthesis indicate the amino 

acid position for the beginning of each motif. 
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Figure 4.2 Putative phosphorylation consensus sequences in OR83b orthologues 
and conserved residues. 
The location of a putative protein kinase C and casein kinase II phosphorylation sites, 

and the conserved tryptophan are shown on the snake plot adapted from Figure 1.7. 

Only the residues that are part of the motifs are color coded according to their degree of 

conservation. 
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Table 4.2 Summary of putative phosphorylation sites found in OR83b orthologues. 

Consensus Function Position Reference 

S/T-X-R/K protein kinase C 
phosphorylation IC2 (327) (Dai et al., 2009; 

Hecquet et al.) 

S/T-(X)2-D/E casein kinase 2 
phosphorylation IC3 (421) (Faber, 2009) 

 
Table 4.2 X = any residue; IC = intracellular loop. The numbers in parenthesis indicate 

the amino acid position for the beginning of each consensus site. 

 

In addition, we searched for extremely conserved amino acids by aligning the 

entire OR repertoire of Drosophila melanogaster and Anopheles gambiae. Across 138 

sequences, we could identify one tryptophan in the third intracellular loop that is present 

in 57/61 ORs from Drosophila melanogaster and 70/75 ORs from Anopheles gambiae, 

and is located at position 431 in Drosophila OR83b (W431). Interestingly, this residue is 

part of one of three motifs that have been recently described through an independent 

bioinformatics analysis of Drosophila melanogaster, Apis mellifera, and Anopheles 

gambiae ORs (Miller and Tu, 2008). Although very little is known about the functional 

significance of these domains, it has been previously shown that this region is 

necessary for dimerization between the ligand-binding subunit and OR83b in a yeast 

two-hybrid assay (Benton et al., 2006). In addition, a recent study has shown that a 

tryptophan to cysteine mutation in the vertebrate endo-alpha-1,2-mannosidase, a single 

span transmembrane protein, causes impaired trafficking of the protein from the 

endoplasmic reticulum (ER) to the Golgi, where it normally resides (Torossi et al., 2007). 

Therefore, it is tempting to speculate that the W431 residue may play a role at the 
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interface between OR subunits acting within a retention, localization, or dimerization 

motif. Given the striking conservation of the tryptophan across ORs, and its position in a 

region mediating OR-OR interaction, I will discuss the functional role of this residue 

within OR83b. 

 

4.2 The W431 residue in OR83b is part of a potential localization 

motif 

To test whether OR83b and the vertebrate endomannosidase might use similar 

localization signals, we compared the region surrounding the tryptophan in OR83b and 

the endomannosidase form Rattus norvegicus, Homo sapiens, and Canis familiaris 

(Figure 4.3). 

 

endomann. 
Rattus 

169IETHMKQMRSASIGVLALSWYPPDASDENGEATDYLVPTILDKAHKYN216

endomann.  
Homo 

169IETHMRQMRSASIGVLALSWYPPDVNDENGEPTDNLVPTILDKAHKYN216

endomann. 
Canis 

185IESHMKQMYSASIGVLALSWYPPGTNDENGENTDDLVPTILDKAHKYN232

OR83b 
Drosophila 

412GNRLIEESSSVMEAAYSCHWYD---GSEEAKTFVQIVCQQCQKAMSIS456

   :  :.:  *.  .. :  **    ..*:.:    :*    :** . . 

Identity            S         WY      E        V     KA      
Figure 4.3 Partial sequence alignment of endomannosidases and Drosophila 

melanogaster OR83b. 
Residues surrounding the tryptophan (red) in endomannosidases from human (Homo 

sapiens), dog (Canis familiaris), and rat (Rattus norvegicus) compared to the putative 

homologous region in Drosophila OR83b (* = identical residue; . = conserved 

substitutions; : = semi-conserved substitution). Identical residues are reported on the 

bottom row. The red box surrounds residues mutated within OR83b. 
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In the 45 amino acid region surrounding the conserved tryptophan, OR83b 

shows ~30% conserved substitutions with the endomannosidase protein family, with 

seven identical residues. We carried out site-directed mutagenesis of the Or83b gene to 

investigate the functional importance of the conserved residues W431 and Y432 by 

generating a series of point mutations summarized in Table 4.3. We hypothesized that 

mutations in any of the identical residues in this motif may cause a disruption in OR83b 

localization, therefore leading to accumulation in the ER compartment (Benton et al., 

2006). In control experiments, we induced a conservative mutation of W431 to 

phenylalanine (W431F) and mutated the non-conserved residue D433 to alanine 

(D433A). 

 

Table 4.3 Summary of mutations in the OR83b intracellular loop 3 and their 
expected phenotypes. 

Residue Mutations Expected phenotype 
on evoked responses

Expected phenotype 
on localization 

W341 W431A 
W431F 

No activity 
Wild type 

Mislocalization 
Wild type 

Y432 Y432A No activity Mislocalization 

D433 D433A Wild type Wild type 
 

 

Transgenic Drosophila melanogaster flies were generated for each mutant 

(Or83bMUT). To assess the functional consequences of our mutations, we expressed 

each Or83bMUT in OSNs lacking the endogenous Or83b gene, and tested the ability of 

the mutant to rescue the null phenotypes of OR trafficking and responsiveness to 

odorants. 
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4.3 OR83b W431 and Y432 mutants show impaired spontaneous 

activity and odorant-evoked responses in a subset of OSNs 

We performed extracellular recordings from the big basiconic ab2 and ab3 

sensilla stimulated with their cognate ligands. Each one of these sensilla houses two 

olfactory sensory neurons: the ab2A and ab2B (expressing OR59b/OR83b and 

OR85a/OR83b, respectively), and the ab3A and ab3B neurons (expressing 

OR22a/b/OR83b and OR85b/OR83b, respectively). To control for a general deleterious 

effect of our transgenic constructs on the antenna, we also recorded the activity of the 

ab1 sensillum, which houses one OR83-independent CO2-responsive neuron (ab1C) in 

addition to three OR83b-dependent cells (ab1A, ab1B, and ab1D; see Table 4.4 for a 

summary of cells and their cognate ligands used to stimulate them). We did not 

consider the activity of the ab1D cell because of its small spike amplitude. 

 
Table 4.4 Summary of the sensilla analyzed, the OR complex expressed, and the 
preferred cognate ligand. 

Cell OR83b-
dependent OR complex Stimulating 

compound 

ab1A YES OR92a/OR83b ethyl acetate 

ethyl butyrate 

ab1B YES OR42b/OR83b ethyl butyrate 

ab1C NO NA CO2 

ab2A YES OR59b/OR83b methyl acetate 

ab2B YES OR85a/OR83b ethyl-3-hydroxybutyrate 

ab3A YES OR22a/b/OR83b ethyl butyrate 

ab3B YES OR85b/OR83b 2-heptanone 
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As expected, sensilla of Or83b-/- flies did not exhibit spontaneous or evoked 

activity, except for the ab1C sensillum that expresses the CO2 receptor subunits Gr21a 

and Gr63a (Figure 4.4A; Jones et al., 2007; Scott et al., 2001), while a wild type OR83b 

transgene could restore neuronal activity (Figure 4.4). 

Mutations in both W431 and Y432 OR83b residues altered spontaneous and 

odorant-evoked activity in a cell-dependent way. In flies carrying the OR83bW431A mutant, 

most of the sensilla analyzed lacked odorant-evoked responses. The ab1 sensillum 

could be identified due to its sensitivity to CO2, but both spontaneous and odorant-

evoked activity of all the OR83b-dependent cells was abolished (data not shown; see 

summary in Table 4.5). 

In flies expressing the OR83bW431A mutant, we failed to identify any sensillum 

with ab2-like responses. Instead, sensilla with no spontaneous or evoked activity were 

present in the same location where ab2 sensilla are usually found (Figure 4.4C). 

Moreover, three out of 13 sensilla (~25%) in the same area showed very sparse 

spontaneous activity but no odorant-evoked responses. This suggests that both the A 

and B cells in ab2 sensilla are mostly non-functional. In the ab3 sensillum of the same 

flies, only the B cell showed spontaneous and ligand-evoked activity. In six out of nine 

sensilla (~60%), the A cell was activated only when the B cell responded to its cognate 

ligands, but otherwise showed sparse spontaneous activity and lacked odorant-evoked 

responses to ethyl butyrate (Figure 4.4). 
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Figure 4.4 Phenotypes of OSNs expressing OR83b mutants. 
(A-B) Representative traces of OSNs in ab2 (two left columns) and ab3 (two right 

columns) sensilla of Or83b-/- flies (A, CyO/Bl; Or83b2) rescued with an Or83b wild type 

transgene (B, Or83b-Gal4/UAS-Or83b; Or83b1/Or83b2). (C-F) Peristimulus plots (upper 

panels) and representative traces (lower panels) of OSNs in ab2 (two left columns) and 

ab3 (two right columns) sensilla of Or83b-/- flies rescued with OR83bW431A (C, Or83b-

Gal4/UAS-Or83bW431A; Or83b1/Or83b2), OR83bW431F (D, Or83b-Gal4/UAS-Or83bW431F; 

Or83b1/Or83b2), OR83bY432A (E, Or83b-Gal4/UAS-Or83bY432A; Or83b1/Or83b2), and 

OR83bD433A (F, Or83b-Gal4/UAS-Or83bD433A; Or83b1/Or83b2) transgenes. Responses 

from the OR83b wild type (WT=wild type, black circles) and mutant (red) rescue are 

superimposed in the peristimulus plots (n=3-6). The plots represent the number of 

spikes grouped in 200 ms bins of the cell highlighted in red in the traces. Spikes from 

the other neuron sharing the same sensillum are shaded in grey. The black bars above 

traces and plots represent 1 s stimulation of the sensillum with a 10-5 dilution of the 

specified ligand. In Or83b-/- flies, each sensillum was classified based on its size and 

location on the antenna. 

 

 

 

 

 

 



 104

 
Figure 4.4 Phenotypes of OSNs expressing OR83b mutants. 
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Less severe phenotypes were observed in OSNs expressing the OR83bW431F or 

OR83bY432A mutations, where the spontaneous activity of one and two cells, 

respectively, was restored in the ab1 sensillum (see Table 4.5). Although OR83bW431F 

and OR83bY432A showed spontaneous activity, we could not elicit odor-evoked 

responses with either mutant, and therefore failed to identify the molecular identity of 

the neurons showing spontaneous activity. 

In ab2 sensilla of animals expressing either OR83bW431F or OR83bY432A 

transgenes, the spontaneous activity of both the A and B cell was restored, but only the 

B cell could be stimulated with its cognate ligand ethyl-3-hydroxybutyrate (Figure 4.4D 

and E). In the ab3 sensillum of the same animals, the A neuron showed sparse 

spontaneous activity in ~50% of the cells analyzed and weak odorant-evoked responses 

could be stimulated when expressing OR83bY432A, but not OR83bW431F. Instead, the 

ab3B neuron exhibited normal odorant activation when either mutant was expressed 

(Figure 4.4D and E). 

Expression of OR83bD433A showed no difference from the wild type OR83b 

rescue (Figure 4.4F), as expected from the lack of conservation of the D433 residue 

between the endomannosidase family and OR83b (Figure 4.3). 
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Table 4.5 Rescue of the Or83b-/- phenotype by different OR83b mutants in single 
sensillum recordings 

Mutant Cell OR83b-
dependent 

Spontaneous 
activity 

Odor-evoked 
activity 

ab1A/B Yes No No 

ab1C No Yes Yes 

ab2A Yes No No 

ab2B Yes very sparse in 25% 
of cells analyzed No 

ab3A Yes sparse in 60% of 
cells analyzed No 

W
43

1A
 

ab3B Yes Yes Yes 

ab1A/B Yes 1 cell No 

ab1C No Yes Yes 

ab2A Yes Yes, faster than WT No 

ab2B Yes Yes, slower than WT Yes 

ab3A Yes sparse in 50% of 
cells analyzed No 

W
43

1F
 

ab3B Yes Yes Yes 

ab1A/B Yes 2 cells No 

ab1C No Yes Yes 

ab2A Yes Yes, faster than WT No 

ab2B Yes Yes, slower than WT Yes 

ab3A Yes sparse in 50% of 
cells analyzed Yes, weak 

Y
43

2A
 

ab3B Yes Yes Yes 

ab1A/B Yes Yes Yes 

ab1C No Yes Yes 

ab2A Yes Yes Yes 

ab2B Yes Yes Yes 

ab3A Yes Yes Yes 

D
43

3A
 

ab3B Yes Yes Yes 
  

Table 4.5 Spontaneous activity and odorant-evoked responses were color-coded 

according to the degree of rescue achieved compared to the wild type transgene. 

Green=full rescue; yellow=partial rescue; red=no rescue. ab1C neurons are not color 

coded because  they are OR83b-independent 
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4.4 OR83b W431 and Y432 mutants show abnormal localization in 

vivo 

The absence of odorant-evoked responses in the OR83b mutants analyzed could 

be due to a primary effect on the function of OR83b as an odorant-gated channel or due 

to a trafficking defect that either causes OR83b to be mislocalized and/or to fail to 

interact with its OR cargo. 

 

To test whether OR83b mutants could localize to the dendrite of the OSN, we 

performed immunostaining on adult antennal sections. As previously reported (Benton 

et al., 2006; Larsson et al., 2004), Or83b-/- flies did not contain any OR83b protein in 

OSN dendrites (Figure 4.5B). We could rescue this phenotype by expressing wild type 

OR83b (Figure 4.5C) or our control OR83bD433A mutant (Figure 4.5F). 

OR83bW431A, OR83bW431F, and OR83bY432A mutants (Figure 4.5D-F) failed to 

traffic properly and remained trapped within the cell body, with some faint dendrite 

staining in OR83bY432A-expressing cells. In these animals, the ligand-binding subunit 

OR22a/b also failed to localize to dendrites (data not shown), consistent with the 

hypothesis that these mutant OR83b proteins fail to traffic ligand-binding ORs to the 

dendrite. Unfortunately, attempts to raise antibodies to detect the OR85b subunit 

expressed in ab3B neurons failed, so we were unable to examine the localization of this 

receptor in neurons that express impaired OR83b mutants yet continue to function 

normally. 

It has been previously shown that the OR22a/b subunit co-localizes with an ER 

marker in the absence of OR83b (Benton et al., 2006). In Or83b-/- flies (Figure 4.5B) and 
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in animals expressing the wild type OR83b transgene (Figure 4.5C) or the OR83bD433A 

mutant (Figure 4.5G), visualization of the ER resident protein BOCA (Culi and Mann, 

2003) produced a faint cellular staining. Consistent with the published results, the same 

staining in antennae expressing OR83bW431A (Figure 4.5D), OR83bW431F (Figure 4.5E), 

or OR83bY432A mutants (Figure 4.5F) displayed brighter accumulation of BOCA in cell 

bodies and co-localization with OR83b in a fraction of cells. The cellular accumulations 

of BOCA are thought to be secondary to the trafficking defects, therefore explaining the 

low percentage of cells showing co-localization with OR83b. 

Given the strong electrophysiology and localization phenotypes obtained with 

OR83bW431A or OR83bW431F mutants, we asked whether these proteins could have 

dominant negative effects, and expressed each mutant along with one copy of the 

endogenous Or83b gene. Extracellular recordings of ab1, ab2, and ab3 sensilla (data 

not shown), and immunostaining of antennal sections did not differ from the wild type 

(Figure 4.6), suggesting that mutations of the W431 residue did not affect the function of 

endogenous OR83b. However, our antibody staining cannot distinguish between mutant 

and endogenous proteins. Therefore, we cannot discern whether the functional 

complexes localized at the dendrites contain only the endogenous wild type protein or if 

the co-expression of endogenous OR83b serves to rescue the localization of OR83b 

mutants. 

 

Taken together, these experiments suggest that the conserved W431 and Y432 

residues are necessary for the proper localization of some OR83b-complexes to the 

ciliated dendrites. 
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Figure 4.5 OR83b trafficking defects lead to accumulation in the ER. 
(A; left) Schematic of the third antennal segment. The field of view is represented here 

and in subsequent figures by the black square. (Right) Schematic of an olfactory 

sensory neuron, adapted from Benton et al., 2006 (Benton et al., 2006). (B-G) 

Immunostaining for BOCA (green) and OR83b (red) in antennal sections of flies lacking 

OR83b (B, CyO/Bl; Or83b2), or rescued with the wild type OR83b (C, Or83b-Gal4/UAS-

Or83b; Or83b1/Or83b2), OR83bW431A (D, Or83b-Gal4/UAS-Or83bW431A; Or83b1/Or83b2), 

OR83bW431F (E, Or83b-Gal4/UAS-Or83bW431F; Or83b1/Or83b2), OR83bY432A (F, Or83b-

Gal4/UAS-Or83bY432A; Or83b1/Or83b2), or OR83bD433A (G, Or83b-Gal4/UAS-Or83bD433A; 

Or83b1/Or83b2) transgenes. The dotted lines represent the boundary between the main 

antennal body where the cell bodies reside (left) and the sensilla where the outer 

segment of the dendrite is located (right). Arrows indicate cells where co-localization of 

OR83b and BOCA occurs. The images were taken with the same confocal settings to 

allow comparisons of signal intensities. 
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Figure 4.5 OR83b trafficking defects lead to accumulation in the ER. 
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Figure 4.6 OR83b W431A and W431F do not act as dominant negative proteins. 
Immunostaining for BOCA (green) and OR83b (red) in antennal sections of flies 

expressing OR83bW431A (A, Or83b-Gal4/UAS-Or83bW431A; +/Or83b2) or OR83bW431F 

transgenes (B, Or83b-Gal4/UAS-Or83bW431F; +/Or83b2), in the presence of one copy of 

the endogenous Or83b gene. The dotted lines represent the boundary between the 

main antennal body where the cell bodies reside (left) and the sensilla where the 

dendrites are located (right). Arrows indicate OR83b localization to the dendrite tip. The 

images were taken with the same confocal settings to allow comparisons of signal 

intensities. 
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4.5 C-terminal domains of OR83b mutants can interact in a yeast two-

hybrid assay 

It has been proposed that OR83b interacts with other OR subunits via its C-

terminal third intracellular loop (IC3; Benton et al., 2006), which contains the conserved 

residues W431 and Y432. Given their phenotypes, we asked whether the mutations 

disrupted association within OR83b proteins and between OR83b and other ORs, 

therefore preventing the formation of most OR complexes. 

As previously demonstrated (Benton et al., 2006), a yeast two-hybrid assay 

among OR IC3 domains can be used as a proxy for protein-protein association. 

Applying the same approach, we observed interactions of the wild type IC3 domain with 

all mutant IC3s (Figure 4.7A). The IC3 domain from each protein also associated with 

itself (Figure 4.7B). 

Using the same assay, we failed to detect interaction between the OR83b wild 

type IC3 and the IC3 from OR43a or OR47a (data not shown), therefore preventing us 

from investigating the association of the mutated domains with the ligand-binding 

subunits. Interaction between the IC3 domains of OR83b and OR43a has been 

previously reported (Benton et al., 2006). The discrepancy between our results and the 

published interaction could be explained by the weak association of the OR83b and 

OR43a IC3 domains (R. Benton, personal communication) and the qualitative nature of 

the scoring system. A more quantitative approach, such as detection of β–galactosidase 

activity induced by the interacting moieties, could lead to improved sensitivity of the 

assay and the ability to test whether mutated OR83b IC3s can associate with the 

corresponding regions of the ligand-binding subunits. 
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Figure 4.7 IC3 domains of wild type and mutant OR83b interact in a yeast two-
hybrid assay. 
(A-B) Interaction of IC3 domains tested by yeast two-hybrid assay scored for growth (+). 

(A) The cartoon depicts the location of the IC3 domain used (dark blue) and its location 

within the OR83b protein (light blue). Yeast growth was observed when either wild type 

or mutant IC3 domains were linked to the GAL4 activation domain and the wild type IC3 

domain was linked to the GAL4 DNA binding domain. No growth was observed when 

the IC3 domains were co-expressed with the binding domain alone (BD, binding 

domain). (B) Each mutant IC3 domain was tested for self-interaction by co-expressing 

the same domain linked to the GAL4 activation and DNA binding domains. No growth 

was observed when the IC3s linked to the GAL4 activation domain were co-expressed 

with the GAL4 activation domain alone (AD, activation domain). 
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4.6 431WY432 – part of a new ER export/localization motif? 

While ORs rely on OR83b for proper localization, the OR83b protein alone is 

sufficient for trafficking to OSN dendrites (Benton et al., 2006). We identified a 

tryptophan and tyrosine residues conserved among members of the OR and a 

vertebrate endomannosidase family (Figure 4.3) that are necessary for proper 

localization of the OR complex. Disruptive mutations of these residues in the OR83b 

protein, W431A and Y432A, abolish or decrease spontaneous activity and odorant-

evoked responses in some OSNs in vivo (Figure 4.4), and lead to lack of dendrite 

localization and retention of the protein in the cell bodies (Figure 4.5). A conservative 

mutation of the same tryptophan to phenylalanine (W431F) results in less severe 

electrophysiological phenotypes, but similar localization defects, while a disruptive 

mutation in the non-conserved amino acid D433 to alanine (D433A) does not affect 

OR83b function. 

Cells expressing OR85b/OR83b and OR47a/OR83b still retain sensitivity to 

odorants, suggesting that OR83b mutations did not drastically alter these OR 

complexes. In Or83b-/- animals, these sensilla are electrically silent (Figure 4.4A and 

data not shown), confirming that their odorant-sensitivity is OR83b-dependent. The 

discrepancy between the extracellular recordings and the antennal immunostainings 

could be explained by the higher sensitivity of electrophysiological recordings in 

detecting smaller amounts of functional complexes on the cell surface. Our data 

therefore suggests that a small amount of functional OR complex is sufficient to restore 

odorant sensitivity in Or83b-/- OSNs. 
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OSNs lacking conventional ORs lack odorant-responses but still show low levels 

of spontaneous activity (Dobritsa et al., 2003; Elmore et al., 2003), which is absent in 

Or83b-/- (Figure 4.4A; Larsson et al., 2004). Sparse spontaneous activity is also present 

in ab2B cells expressing OR83bW431A, and ab3A cells expressing the OR83bW431A, 

OR83bW431F, and OR83bD433A mutants (Figure 4.4C-E and Table 4.5). This could be 

explained by the presence of OR83b on the cell surface and its ability to form 

homomers with channel activity. 

 

The association of ORs with OR83b within the cell body forms an OR complex 

that is trafficked to dendrites. Mutations in OR83b W431 and Y432 residues did not 

disrupt the functional association with OR85b or OR47a, unlike what was observed for 

other OR complexes, suggesting that interactions between OR83b and each OR may 

be mediated by different subsets of residues within the OR83b protein (Figure 4.4). 

During the steps leading to the cell membrane, ligand-binding subunits are thought to 

assume a passive role and be simply guided to the dendrite thanks to the presence of 

OR83b. Our results suggest that conventional ORs might play a more important role 

within the OR complex than previously thought, in that they are not equivalent in the 

ability to interact with OR83b. The association of OR83b with OR85a and OR47a might 

be more stable than with other ORs, explaining the presence of evoked activity in our 

extracellular recordings with OR83b mutants in neurons expressing these two but not 

other ORs. 

Alternatively, cellular components present only in subset of OSNs could help the 

formation of functional complexes with OR83b mutants. This could be tested by co-
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expression of OR85b/OR83bW431A into an ab3A neuron in a ∆halo, Or83b-/- double 

mutant background. ∆halo contains a deletion of the Or22a and Or22b genes, creating 

an “empty neuron” where it is possible to misexpress ORs and study their function 

(Dobritsa et al., 2003) without interference from the endogenous OR. The ab3A neuron 

is especially appealing because the native receptors OR22a/b receptors do not function 

when expressed with OR83b W431 and Y432 mutants. If cell-specific factors 

independent of OR83b are necessary for OR trafficking, expression of 

OR85a/OR83bMUT in this neuron will not result in functional activity. 

While the precise reason for OR83b retention in the ER is unknown, it may not 

be ascribed to inability of OR83b to homodimerize, based on preliminary in vitro results 

(Figure 4.7). 

 

It would be interesting to investigate whether the other residues conserved 

between OR83b and the endomannosidase family also lead to similar phenotypes, and 

define a common motif that is involved in OR trafficking. Targeted mutations in similar 

residues in the ligand-binding subunits might also identify their role in the interface 

among OR subunits. An alternative approach might involve random mutagenesis of 

ligand-binding subunits to produce compensatory mutations that might revert the 

phenotypes observed with OR83bW431A. 

 

Overall, more experimental evidence is needed to establish what the exact role 

of OR83b is within the OR complex, what are the functional domains within this protein, 

and how they influence the behavior of the OR protein complex. 



 117

5 Implications of the current study and future directions 

This dissertation describes the mechanisms underlying the function of insect 

olfactory receptors and how their activity is modified by the insect repellent DEET. 

 

Specific protein families are utilized throughout the animal kingdom to detect 

particular stimuli: TRP channels sense temperature (Bautista et al., 2007; Caterina et al., 

1997; Chung and Caterina, 2007; Dhaka et al., 2007; Dhaka et al., 2006; Gracheva et 

al., 2010; Liman, 2006; Smith et al., 2002; Xu et al., 2002) and noxious chemicals 

(Bandell et al., 2004; Peier et al., 2002) in organisms as diverse as mammals, insects, 

and reptiles. On the other hand, multiple protein families can also be adopted within the 

same sensory modality: in mammals, the taste of umami, sweet, and bitter chemicals is 

GPCR-dependent (Chandrashekar et al., 2006), while sour compounds (Huang et al., 

2006; Ishimaru et al., 2006) and sodium (Chandrashekar et al., 2010) are probably 

sensed by ion channels. Different species can, however, recruit different protein families 

to detect the same stimulus: while the green alga Chlamydomonas reinhardtii senses 

photons through the channel channelrhodopsin (Nagel et al., 2002), vertebrates employ 

the GPCR rhodopsin (Wald, 1935). 

In olfaction, several unrelated receptor families have been described in insects, 

mammals, and nematodes. A surprising and fascinating distinction separates insects 

from other organisms, in that they specifically adopted ion channels to sense odorants 

in the environment, unlike GPCRs employed by mammals and nematodes. Is there a 

particular reason for using ion channels? Although we can only speculate, this might 

reflect an adaptation of the olfactory system to the specific needs of insects and their 
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high rate of movement when in flight. Since ion channels do not rely on intermediate 

amplification steps, they are faster than most GPCRs in producing neuronal 

depolarization, which may lead to faster behavioral responses. When leaving their 

source, odorants do not follow a linear path but are dispersed within plumes that change 

very rapidly with time. When approaching an odorant source, the insect brain may need 

to quickly compute whether it is located within or outside the plume. Having a fast 

switch at the periphery through the use of odorant-gated ion channels might have 

represented an evolutionary advantage. 

 

In the future, it will be fascinating to investigate the role of G proteins in insect 

signal transduction. Although not necessary for initiation of the response, several lines 

of evidence indicate that G proteins may play a role in modulating OSN activity in vivo 

(Boekhoff et al., 1993; Boekhoff et al., 1990; Breer et al., 1990; Chatterjee et al., 2009; 

Dolzer et al., 2008; Gomez-Diaz et al., 2004; Gomez-Diaz et al., 2006; Kain et al., 2008; 

Martin et al., 2001; Stengl, 1994; Ziegelberger et al., 1990; Zufall and Hatt, 1991). In the 

genome of Drosophila melanogaster there are six genes encoding Gα, three β, and two 

γ subunits (Boto et al., 2010). Given the limited repertoire, it may be feasible to identify 

putative interacting G proteins by co-expressing both insect ORs and G protein subunits 

in cell culture, and screen for enhancement of OR activity. To further test for direct 

interaction, both directed mutagenesis of ORs and biochemical assays will be 

necessary. 
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Given the lack of similarity with any known protein, future research is needed to 

identify structural motifs within insect ORs. Although we have shown that some 

conserved residues may play a role in localization of the receptor complex to the 

dendrite, additional amino acids are likely to be involved. Moreover, targeted 

mutagenesis of OR83b and ligand-binding subunits would help identify residues forming 

the channel pore. This discovery could determine whether both subunits contribute to 

the formation of the channel, as we have suggested (Sato et al., 2008), or if the ligand-

binding protein is dispensable for channel function, as proposed by Wicher and 

colleagues (Wicher et al., 2008). Further work could also focus on defining the 

stoichiometry of the OR complex. What is the number of subunits necessary to form a 

functional complex, and does it change for different OR complexes? And, finally, in the 

cases where two or more ligand-binding ORs are expressed in a given OSN, are 

different ORs incorporated in the same complex or is there a mechanism that keeps 

them separate? 

Once formed and localized at the dendrite tip, the OR complex might require 

post-translational modifications to modulate its activity. Therefore, identifying additional 

components of the signaling pathways, such as protein kinases and phosphatases, will 

reveal mechanisms for desensitization, inactivation, or turnover of the olfactory complex. 

A fascinating line of research could also delve into the mechanisms of interaction 

between odorant ligands and ORs. Discoverig the basis for ligand specificity and how 

different odorants trigger activation or inhibition in the same OR complex could be 

comparable to the finding of polyspecificity in antigen recognition by receptors within the 

immune system (Cohn, 2008; O'Callaghan and Bell, 1998). In both systems, the 
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receptors employed as detectors need to recognize a large variety of molecules. While 

the versatiliy of the immune system relies on somatic recombination events, the basis 

for odorant recognition by olfactory receptors is still unkown. 

 

Eventually, a crystal structure of the OR complex would be fundamental to 

answer these questions, but studies in heterologous systems can provide preliminary 

insights. While it is possible to employ cell cultures to study insect ORs, functional 

expression is limited to ~50% of the genes tested (data not shown and T. Nakagawa, 

personal communication). Even when successful, insect OR expression levels are 

generally poor. Future research would therefore greatly benefit from improvements in 

OR expression efficiency. Mammalian olfactory receptors have also suffered from the 

same impediment, until two accessory proteins present in olfactory neurons were shown 

to facilitate cell surface expression in HEK293T cells (Saito et al., 2004). For this reason, 

it is possible that proteins with similar functions are present in insect OSNs and may 

improve surface expression in heterologous systems. To identify possible candidates, a 

cDNA library from OSNs could be transfected in HEK293T cells along with an insect OR, 

and the ability of the gene products to enhance odorant-evoked responses could then 

be used as a screening readout. Alternatively, enriching OSN-specific transcripts 

through targeted translational profiling (Heiman et al., 2008) could reveal potential 

accessory proteins, that would then be tested in a heterologous system. 

Besides elucidating interesting cellular and molecular mechanisms of insect 

olfaction, more in depth knowledge of insect OR structure-function and better 
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expression systems would greatly improve ongoing studies that utilize heterologous 

expression for the discovery of new insect repellents. 

The findings presented in this dissertation are likely to have an impact beyond 

the field of olfaction. In fact, it is interesting to note that insect gustatory receptors (GRs), 

sensing mostly water-soluble chemicals, are related to the OR family, therefore 

suggesting that they might be ligand-gated ion channels as well. Although there is still 

little evidence supporting this hypothesis, sugar-activated ion channels have been 

described in the gustatory sensilla of the flesh fly Boettcherisca peregrine (Murakami 

and Kijima, 2000). However, recent work has proposed that Gαq and/or Gαs signaling 

pathways participate in sugar detection in Drosophila melanogaster gustatory neurons 

(Kain et al., 2010; Ueno et al., 2006). 

GRs are more than just sensors of water-soluble chemicals: members of this 

protein family in Drosophila melanogaster and Anopheles gambiae also detect external 

CO2 levels (Jones et al., 2007; Lu et al., 2007). Activation of CO2-responsive cells, likely 

mediated by the G protein Gαq (Yao and Carlson, 2010), is necessary to trigger the 

CO2-evoked avoidance behavior in the vinegar fly (Jones et al., 2007). 

Based on these results, it is likely that homologous proteins in mosquitoes 

mediate CO2-evoked behavioral attraction of these hematophagous insects to their 

hosts. Since DEET does not block neuronal responses to CO2 in Anopheles gambiae 

(Figure 3.3E), future research is needed to identify compounds that target the receptors 

expressed in these cells. Used in combination with DEET, this new “repellent” could 

have the benefit of potentiating the confusant effects of DEET by blocking an additional 

sensory channel through which hematophagous insects detect humans. 
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Our discovery that insect ORs are structurally different from mammalian ORs and 

that they are directly modulated by the repellent DEET is fascinating per se. However, in 

combination with the fact that some insect species are disease vectors and use 

olfaction to hone in to the host, it gives us a unique head start in the battle against 

insect-borne diseases. Insect ORs are, in fact, an excellent Trojan horse that may be 

exploited to specifically disrupt the host-seeking mechanisms that insects use to find 

humans, with the potential of decreasing disease transmission. To achieve this goal, a 

clear understanding of the functional OR domains that mediate dimerization, trafficking, 

and modulation of receptor subunits will be essential. 

 

With this knowledge in hand, it will be possible to design repellents that could 

specifically target the insect olfactory system and impair the proper function of the OR 

complex. 
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6 Materials and methods 

6.1 Bioinformatics 

The snake plots in Figure 1.7, Figure 4.1, and Figure 4.2 were manually 

composed based on a ClustalW (Thompson et al., 1994) alignment of OR83 protein 

orthologues performed through Jalview (Clamp et al., 2004).Transmembrane domains 

were predicted by the PredictProtein algorithm (Rost et al., 2004). The amino acid 

sequences were derived from mRNA clones obtained from Genbank (accession 

numbers in parenthesis): Drosophila melanogaster (NM_079511.4), Ceratitis capitata 

(AY843206.1), Anopheles gambiae (AY363725.1), Culex pipiens (DQ231246.1), 

Bombyx mori (AB100454.1), Helicoverpa zea (AY843204.1), Antheraea pernyi 

(AJ555486.1), Spodoptera exigua (AY862142.1), Ceratosolen solmsi (EU281848.1), 

Apis mellifera (NM_001134943.1), Apocrypta bakeri (EU281849.1), Microplitis mediator 

(EF141511.1), Philotrypesis pilosa (EU281850.1), Tribolium castaneum (XM_968103). 

The sequence of Schistocerca Americana OR83b was provided by Dr. Leslie Vosshall. 

Putative phosphorylation sites were identified using PredictProtein (Rost et al., 

2004), PROSITE (Hulo et al., 2008), NetPhos 2.0 (Blom et al., 1999), and YingOYang 

1.2 (Gupta, 2001). 

Snake plots and positions of variant amino acids of OR59b in Figure 3.13 and 

Figure 3.14 were manually composed using transmembrane domain predictions 

generated with the PredictProtein (Rost et al., 2004) algorithm. 

Structure of odorant molecules in Figure 3.5, Figure 3.6, Figure 3.7, Figure 3.8, 

and Figure 3.12 were drawn with the PubChem editor (Ihlenfeldt et al., 2009). 
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6.2 Genomic DNA and cDNA preparation 

DNA was prepared according to the Quick Fly Genomic DNA Prep protocol from 

the Berkeley Drosophila Genome Project 

(http://www.fruitfly.org/about/methods/inverse.pcr.html). 1.5 µl of DNA were used for 

amplification using the KOD PCR Kit (Novagen, Madison, WI, USA). For experiments 

conducted in Chapter 3, Or59b primers were designed to anneal to the 5’ and 3’ UTR of 

the w1118 Or59b locus: 

Forward: 5’-gaattcTCCGGGTATAAAGTGCAGGTGCTGGCACCG-3’ 

Reverse 5’-ctcgagGCTCTTTTTTGCGGGGGCTCATGGGTGCAG-3’ 

Or83b was amplified using primers that amplify the complete coding region: 

Forward: 5’-gaattcATGACAACCTCGATGCAG-3’ 

Reverse: 5’-caattgCTTGAGCTGCACCAGCACCA-3’ 

PCR products were cloned into pGEM-T Easy (Promega Corporation, Madison, 

WI, USA), sequenced (GENEWIZ, Inc., South Plainfield, NJ, USA), and analyzed using 

SeqMan software (DNASTAR Inc., Madison, WI, USA). For each strain, at least four 

independent samples were analyzed, derived from at least two different genomic 

preparations and two different PCR reactions. These were sequenced and compared to 

NCBI reference sequences for each gene (Or59b: NM_079098.1; Or83b: 

NM_079511.4).  

For cDNA preparation, total RNA was extracted from w1118 and Boa Esperança 

antennae using the RNeasy Mini Kit (QIAGEN, Valencia, CA, USA). cDNA was 

prepared with SuperScriptTM III First-Strand Synthesis System (Invitrogen, Carlsbad, CA, 
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USA) using oligo(dT) primers. Or59b cDNA from both w1118 and Boa Esperança was 

amplified using the following primers: 

Forward: 5’-gaattcATGGCGGTGTTCAAGCTAATCAAACCG-3’  

Reverse: 5’-ctcgagTTACTGGAACTGCTCGGCCAGATTCA-3’ 

PCR products representing full-length Or59bNCBI REF and Or59bBoa Esperança cDNAs 

were cloned into pGEM-T Easy, completely sequenced, and subcloned into the pUAST 

attB vector (Bischof et al., 2007) using EcoRI and XhoI restriction sites.  

 

6.3 Generation of Or59b and Or83b transgenes 

Amino acid mutations were introduced into the w1118 Or59b cDNA or Or83b (from 

(Benton et al., 2006)) by two rounds of PCR reactions. Briefly, the Or59b gene cloned 

into pGEMT-EZ or Or83b gene cloned in pUAST were used as templates for a first 

round of PCR amplification. Two independent reactions were prepared: one contained 

the forward primer with the desired mutation and the reverse primer annealing to the 

vector backbone; the second contained the reverse mutating primer and the forward 

primer annealing to the vector. The PCR products from the reactions were purified and 

1 µl of each was used as a template and mixed in a second round of amplification with 

the forward and reverse vector primers to obtain the full gene. 

Primers annealing on the vector backbone: 

OR59b 

Forward SP6 (5'-ATTTAGGTGACACTATAG-3')  

Reverse T7 (5'-TAATACGACTCACTATAGGG-3') 
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OR83b 

Forward 5’-CCAGCAACCAAGTAAATCAACTGC-3’ 

Reverse 5-‘TACACAAACAATTAGAATCAGTAG-3’ 

 

Mutating primers: 

OR59bV41F 

Forward: 5’-CCGCCGAAGGAGGGATTCCTGCGCTACGTGT-3’  

Reverse: 5’-ACACGTAGCGCAGGAATCCCTCCTTCGGCGG-3’ 

OR59bV91A 

Forward: 5’-AGGTGTGCATCAATGCGTATGGCGCCTCGG -3’ 

Reverse: 5’-CCGAGGCGCCATACGCATTGATGCACACCT -3’ 

OR59bT376S 

Forward: 5’-TGAACAGCAACATAAGCGTGGCCAAGTTCGC-3’ 

Reverse: 5’-GCGAACTTGGCCACGCTTATGTTGCTGTTCA-3’ 

OR59bV388A 

Forward: 5’-GCATCATTACAATAGCGCGACAAATGAATCT-3’ 

Reverse: 5’-AGATTCATTTGTCGCGCTATTGTAATGATGC-3’ 

OR83bW431A 

Forward 5’-GCCTACTCGTGCCACGCCTACGATGGCTCCGAG-3’ 

Reverse 5’-CTCGGAGCCATCGTAGGCGTGGCACGAGTAGGC-3’ 

OR83bW431F 

Forward 5’-GCCTACTCGTGCCACTTCTACGATGGCTCCGAG-3’ 

Reverse 5’-CTCGGAGCCATCGTAGAAGTGGCACGAGTAGGC-3’ 
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OR83bY432A 

Forward 5’- TACTCGTGCCACTGGGCCGATGGCTCCGAGGA-3’  

Reverse 5’- TCCTCGGAGCCATCGGCCCAGTGGCACGAGTA-3’ 

OR83bD433A 

Forward 5’- CGTGCCACTGGTACGCTGGCTCCGAGGAGGC-3’  

Reverse 5’- GCCTCCTCGGAGCCAGCGTACCAGTGGCACG-3’ 

 

OR59bV41F V91A was generated using OR59bV41F as a template and the primers 

used to generate the OR59bV91A mutant. Similarly, OR59bT376S V388A was generated 

using OR59bT376S as a template and the primers used to generate the OR59bV388A 

mutant.  

All PCR products were amplified using the KOD polymerase Kit (Novagen, 

Madison, WI, United States), T:A cloned into pGEM-T Easy (Promega, Madison, WI, 

United States) cut at the EcoRI (5`) and XhoI (3`) restriction sites (New England Biolabs, 

Ipswich, MA, United States), subcloned into the transgenic expression vector pUAST 

(OR83b) or pUAST attB (OR59b), and sequenced. 

Constructs for transgenic animals were injected into w1118 embryos by Genetic 

Services (Cambridge, MA, United States). The phiC 31 integrase system (Bateman et 

al., 2006; Bischof et al., 2007) was used to insert all the Or59b constructs and the 

mutated Or83b into the attp2 and attp40 insertion sites on the third and second 

chromosome, respectively. Wild type Or83b was inserted in a random location on the 

second chromosome as described in (Benton et al., 2006). Single transformants were 

isolated and balanced according to standard fly genetic methods. 
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6.4 Fly stocks 

Drosophila melanogaster stocks were maintained on conventional cornmeal-

agar-molasses medium under a 12 hour light:12 hour dark cycle at 25°C. 

In Chapter 3, the w1118 strain was used as wild type control. In addition to w1118, 

the following wild type strains were used for experiments described in Figure 3.10: 

Akayu (Drosophila Genetic Resource Center (DGRC) #103389, origin: Japan); Algeria 

(isogenic for II and III chromosomes, DGRC #103390, origin: Algeria); Alma-Ata (DGRC 

#103391, origin: Kazakstan); Canton-S (isogenic for II and III, lab stock, origin: Ohio, 

USA); CA1 (Bloomington Drosophila Stock Center #3846, origin: Cape Town, South 

Africa); Coffs Harbour (DGRC #103411, origin; New South Wales, Australia); Kericho-

7B (DGRC #103428, origin: Kericho, Kenya); Manago (isogenic for II and III, DGRC 

#103433, origin: Hawaii, USA); Oregon-R (isogenic for II and III, lab stock, origin: 

Oregon, USA); San Miguel (isogenic for II and III, DGRC #103450, origin: Buenos Aires, 

Argentina); WT Berlin (isogenic for II and III, Heisenberg laboratory, Würzburg, 

Germany, origin: Berlin, Germany); Batumi-L (DGRC #103396, origin: Batumi, Georgia); 

Boa Esperança (DGRC #103400, origin: Minas Gerais, Brazil); BOG 2 (Bloomington 

#3842, origin: Bogota, Colombia); CO 3 (Bloomington #3848, origin: Commack, New 

York, USA); EV (Bloomington #3851, origin: Ellenville, New York, USA); Medvast-21 

(DGRC #103435, origin: Finland); VAG 2 (Bloomington #3876, origin: Athens, Greece). 

Mutant alleles used for experiments in Chapter 3: Or22a/b∆halo (Dobritsa et al., 

2003), Or22a-Gal4 (Fishilevich and Vosshall, 2005). Mutant alleles in the Or59b gene 

used in experiments of Figure 3.15 are based on the OR59b protein derived from the 

NCBI reference mRNA sequence (NCBI REF number NM_079098.1). Fly genotypes: 
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Or22a/b∆halo; Or22a-Gal4/UAS-Or59b (labelled Or59bNCBI REF in the figure), Or22a/b∆halo; 

Or22a-Gal4/UAS-Or59bV41F (V41F), Or22a/b∆halo; Or22a-Gal4/UAS-Or59bV91A (V91A), 

Or22a/b∆halo; Or22a-Gal4/UAS-Or59BV41F V91A (V41F V91A), Or22a/b∆halo; Or22a-

Gal4/UAS-Or59bT376S (T376S), Or22a/b∆halo; Or22a-Gal4/UAS-Or59bV388A (V388A), 

Or22a/b∆halo; Or22a-Gal4/UAS-Or59bT376S V388A (T376S V388A), Or22a/b∆halo; Or22a-

Gal4/UAS-Or59bV41F V91A T376S V388A (Boa Esperança). 

Mutant alleles and transgenic flies used for experiments in Chapter 4: 

Or22a/b∆halo (Dobritsa et al., 2003), Or22a-Gal4 (Fishilevich and Vosshall, 2005). 

Genotypes of the flies used for Figure 4.4, Figure 4.5, and Figure 4.6: CyO/Bl; Or83b2, 

Or83b-Gal4/UAS-Or83b; Or83b1/Or83b2, Or83b-Gal4/UAS-Or83bW431A; Or83b1/Or83b2, 

Or83b-Gal4/UAS-Or83bW431F; Or83b1/Or83b2, Or83b-Gal4/UAS-Or83bY432A; 

Or83b1/Or83b2, Or83b-Gal4/UAS-Or83bD433A; Or83b1/Or83b2, Or83b-Gal4/UAS-

Or83bW431A; +/Or83b2, Or83b-Gal4/UAS-Or83bW431F; +/Or83b2. 

 

6.5 Histology 

Antibody staining was performed on 14 µm frozen antennal sections of w1118 and 

transgenic Drosophila animals. Five to seven day old flies were collected and fly heads 

were fixed in frozen OCT. 14 µm sections were cut on a cryostat (Microm HM 550, 

Thermo Fisher Scientific, Waltham, MA, United States) and collected on SuperFrost 

Plus slides (Thermo Fisher Scientific, Waltham, MA, United States). Sections were fixed 

for 7 min in 4% paraformaldehyd/1x PBS and washed twice for 10 min in 1x PBS. 

Sections then were permeabilized for 30 min in P/T (1x PBS/0.1% Triton-100) and 

blocked horizontally for 30 min in 500 µl P/T/S (P/T/5% heat inactivated normal goat 
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serum). Primary antibodies were diluted in P/T/S and 100 µl of the antibody dilutions 

were applied per slide. For the OR83b/ER double staining the following antibodies were 

used: α-2nd EC loop of Drosophila OR83b (dilution 1:5000; Benton et al., 2006) and 

Guinea pig α-Boca (Culi and Mann, 2003). For the OR22a staining, a rabbit α-OR22a/b 

was used (Dobritsa et al., 2003). To prevent evaporation during the overnight incubation 

at 4°C, cover slips were placed on each slide. The next day, sections were washed 3 

times for 10 min in P/T and blocked for 30 min with 500 µl P/T/S. The following 

secondary fluorescent antibodies were used: Cy3-conjugated goat α-rabbit IgG 

(Jackson ImmunoResearch, West Grove, PA, United States, dilution 1:200) and FITC-

conjugated goat α-guinea pig IgG (Jackson ImmunoResearch, West Grove, PA, United 

States, dilution 1:200). 100 µl of the antibodies diluted in P/T/S were applied per slide, a 

cover slip was placed on each slide and slides were incubated at 25°C in the dark. 

Sections were then washed 3 times for 5 min in P/T. 60 µl Vectashield (Vector Labs, 

Burlingame, CA, United States) were applied, microscope cover glasses were placed on 

each slide and slides were stored at 4°C in the dark. Visualization was performed using 

a Zeiss LSM510 confocal microscope (Carl Zeiss Jena GmbH, Jena, Germany). 

 

6.6 Single sensillum electrophysiology 

Female transgenic flies were recorded at 5 days after adult eclosion. All other 

flies were recorded at 5-10 days after adult eclosion. Single sensillum recordings were 

performed as described (Ditzen et al., 2008; Pellegrino et al.). Odorants were obtained 

from Sigma-Aldrich at high purity and diluted (v/v) in paraffin oil as indicated. DEET was 

obtained from Alfa Aesar (Ward Hill, MA, USA) and was applied undiluted. Chemical 
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Abstracts Service (CAS) numbers: paraffin oil (8012-95-1); 1-octen-3-ol (3391-86-4); 

pentanal (110-62-3); pentanoic acid (109-52-4); 2-heptanone (110-43-0); 1-octanol 

(111-87-5); (-)linalool (126-91-0 ); methyl acetate (79-20-9); 2,3-butanedione (431-03-8); 

ethyl hexanoate (123-66-0); butyraldehyde (123-72-8); ethyl-3-hydroxybutyrate (5405-

41-4); ethyl acetate (141-78-6); hexanol (111-27-3); DEET (134-62-3). 30 µl of the 

desired odor dilution was pipetted onto a filter paper strip (3 x 50 mm) and 30 µl of 

undiluted DEET or paraffin oil solvent was pipetted onto a second filter paper strip. Both 

filter paper strips were then carefully inserted into a glass Pasteur pipette. Prior to any 

recordings, charcoal-filtered air was forced through the pipette for 1-3 s to remove dead 

space in the odorant delivery system. For actual recordings, charcoal-filtered air was 

continuously applied to the insect antenna, with odorant delivered through the pipette to 

the fly antennae for 1 s. Sensilla types were identified by size, location on the antenna, 

and responsiveness to known preferred odorants (Hallem and Carlson, 2006). 

Data were collected using Autospike (Syntech) and analyzed by custom spike 

sorting algorithms (Ditzen et al., 2008). Spike trains were grouped in 200 ms bins and 

responses were calculated by subtracting the average spontaneous activity in 15 s 

before odorant application from activity during the first 500 ms (excitatory odorants) or 1 

s (inhibitory odorants) of odorant delivery. The onset of odorant-evoked responses 

varied due to slight variations in the position of the odorant delivery system relative to 

the sensillum being recorded. To correct for this, we calibrated the inferred odorant 

onset for each sensillum recorded based on excitatory responses elicited by control 

stimuli applied at the beginning of each trial (ab2: 10-5 methyl acetate; ab3: 10-5 2-

heptanone). 
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6.7 Statistics 

Statistical analysis in Figure 3.4 and the peri-stimulus plots in Figure 4.4 were 

performed in R2.3.1 (http://www.r-project.org/) or using Microsoft Excel statistical 

functions. The statistical tests performed are indicated in the figure legends under each 

figure. 

Dose-response curves in Figure 3.5, Figure 3.6, Figure 3.7, Figure 3.8, and 

Figure 3.12 were fitted using OriginPro 8 (OriginLab, Northampton, MA, USA) by a 

logistic function, except responses to 1-octen-3-ol in Figure 3.7D, which are fitted by a 

biphasic function. Comparisons of paired dose-response curves in the same figures are 

performed by an F-test to assess statistical significance of differences between the two 

curve fits, followed by Bonferroni correction for multiple comparisons. A two-tailed 

paired t-test was performed to assess statistical significance of all comparisons in 

Figure 3.10, Figure 3.12, and Figure 3.15, followed by Bonferroni correction for multiple 

comparisons applied to each set of experiments. Data in Figure 3.11 were fitted with a 

linear regression analysis. 

 

6.8 Yeast two-hybrid assay 

A yeast two-hybrid analysis was performed according to the MatchmakerTM GAL4 

Two-Hybrid System 3 User Manual (Clontech, Mountain View, CA, United States). The 

following OR fragments were used (amino acid codon number): OR43a IC3 (298–342), 

OR47a (305-355), OR83b IC3 (412–459), OR83bW431A IC3 (412-459), OR83bW431F IC3 

(412-459), OR83bY432A IC3 (412-459), OR83bD433A IC3 (412-459). 
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All Or83b mutant fragments were amplified by PCR using the respective pUAST 

vectors described before as template, and the following primers: 

Forward 5’- gaattcGGCAATCGTCTGATTGAAGAGAGTTCATCCGT -3’ 

Reverse 5’- cccgggttaTTTCGCTCCCGATATGCTCATCGCCTTCTG -3’. 

The OR47a (305-355) fragment was amplified by PCR using an Or47a cDNA 

clone (from T. Nakagawa) as template, and the following primers: 

Forward 5’-gaattcTGCGGGGAGAACCTGAAGACGGAG -3’ 

Reverse 5’-cccgggAATGCGGAATCCCCGATGAGCCCG -3’. 

The OR43a (298–342) fragment was obtained as described in (Benton et al., 

2006). 

All PCR products, amplified using the KOD polymerase Kit (Novagen, Madison, 

WI, United States), were T:A cloned into pGEM-T Easy (Promega, Madison, WI, United 

States) cut at the EcoRI (5’) and XmaI (3’) restriction sites (New England Biolabs, 

Ipswich, MA, United States) and subcloned into GAL4 DNA-binding domain or activation 

domain vectors pGBK-T7 and pGAD-T7 (Clontech, Mountain View, CA, United States). 

All constructs were sequenced at GENEWIZ, Inc (South Plainfield, NJ, United States) 

and analyzed using the program SeqMan Pro from DNASTAR Lasergene 8. 

All constructs were transformed into yeast strain AH109 (Clontech, Mountain 

View, CA, United States) using a standard protocol for the LiAc/SS carrier DNA/PEG 

transformation method. Briefly, frozen competent cells were thawed in a 37ºC water 

bath for 15-30 s. They were centrifuged for 2 min at 13,000 g and the supernatant was 

removed. The following transformation mix was prepared: 260 µl PEG 3350 (50% (w/v)), 

36 µl LiAc 1.0 M, 50 µl single-stranded carrier DNA (2mg/ml), 14 µl plasmid DNA plus 
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sterile water (1 µg of pGAD vector and 1 µg of pGBKT vector). The mix was added to 

the cells and cells were incubated in a 42ºC water bath for 20 min. Cells were then 

centrifuged for 30 s at 13,000g, the supernatant was removed and cells were washed 

with water. 1 ml of water was added and 200 µl of the resuspended cells were plated on 

selective plates (SD/-Leu/-Trp).  

Three days after transformation, single colonies were re-streaked on selective 

plates (SD/-Leu/-Trp) to allow colonies to grow. Two days later colonies were re-

streaked on media selecting for the expression of the HIS3 and ADE2 reporter genes. 

Interactions were scored for growth 1 week after re-streaking. In cases were the 

DNA/bait produced background growth on selective plates due to leaky HIS3 

expression, colonies were re-streaked on plates containing 2.5 mM, 5 mM or 7.5 mM of 

3-AT (3-Amino-1,2,4-triazole). Interactions were scored for growth 2 weeks after re-

streaking. 

 

6.9 Xenopus oocyte electrophysiology  

CNGs and CFTR DNA clones were provided by T.-Y. Chen and A. Kovacs, 

respectively. Full length cDNAs of fruit fly ORs [OR47a and OR83b], mosquito ORs 

(GPROR1, GPROR2, GPROR8, and GPROR7), mouse TRP channel (mTRPM8) and 

OR (mOR-EG), were cloned into the Xenopus laevis oocyte expression vector pXpress-

X and linearized with XbaI. Full length cDNAs of CFTR and rat olfactory CNGs (CNGA2, 

CNGA4, and CNGB1) were cloned into pGEMHE and linearized with NheI. Full length 

cDNA of the fruit fly K-channel ether-a-go-go (EAG) was cloned into pGH19 and 
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linearized with NotI. All plasmids were transcribed in vitro with mMessage mMachine 

(Ambion, Inc.). 

 

Oocytes were microinjected with 25 ng of complementary RNA (cRNA) for a 

conventional OR and 25 ng of cRNA for the OR83b family. Whole-cell currents were 

recorded with a two-electrode voltage-clamp filled with 3 M KCl, and were amplified with 

an OC-725C amplifier (Warner Instruments), low-pass filtered at 50 Hz and digitized at 

1 kHz. Odorants were applied to the recording chamber using a gravity driven perfusion 

system. Subtracted I-V curves were acquired with a step protocol ranging from -80 mV 

to +40 mV (20 mV step), and the currents were normalized to the +40 mV data point in 

the presence of ligand only. Electrodes were filled with a 3 M KCl solution, while the 

extracellular oocyte Ringer’s solution contained (in mM): 82.5 NaCl, 2 KCl, 1 MgCl2, 5 

HEPES, 1.8 CaCl2 (pH 7.5), except for mTRPM8 experiments where no CaCl2 was 

added. 

 

Outside-out patch-clamp recordings were performed 18–26 h after injection. After 

removal of the vitelline layer, oocytes were transferred to a Petri dish with a bath 

solution of oocytes Ringer's solution. Pipettes (4–7 MΩ) were covered with Sylgard 

(Dow Chemical Company) and filled with intracellular solution containing (in mM): 100 

KOH, 10 HEPES, 1 EGTA, 100 sulphamic acid (pH 7.6). After contact of the pipette tip 

with the oocyte membrane and seal formation (more than 5 GΩ), patches were excised 

and transferred to the recording chamber, where the extracellular side was continuously 

superfused with extracellular solution containing (in mM): 100 NaOH, 10 HEPES, 1 
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MgCl2, 100 sulphamic acid (pH 7.5); this was supplemented, where indicated, with the 

odorants. Solutions were switched by computer-driven electric valves (General Valve 

Corp.). Currents were recorded with an Axopatch 200A amplifier (Axon Instruments, 

Inc.), low-passed at 1 kHz (eight-pole Bessel; Frequency Devices), digitized at 10 kHz 

by means of an ITC-16 interface (Instrutech Corporation) and saved to a PC hard disk 

with PULSE v8.11 acquisition software (HEKA Elektronic). Data were analyzed with 

Clampfit 9.0 (Axon Instruments, Inc.) and Origin PRO 7 (Origin Lab). The I–V curves 

showing ion permeability were produced with low-Na+ solution (Na+ in oocyte Ringer's 

solution replaced by the impermeable cation NMDG+) and Cl--free solution (Cl- in oocyte 

Ringer's solution replaced by sulphamic acid). These experiments used bath application 

of ligands, precluding any measurement of the response latency of these currents.  

 

Stock solutions of pentyl acetate (1 M, CAS number: 628-63-7), 2-methyl phenol 

(1 M, CAS: 95-48-7), 4-methyl phenol (1 M, CAS: 8001-28-3), 1-octen-3-ol (1 M, CAS: 

3391-86-4), forskolin (40 mM, CAS: 66575-29-9), and menthol (1 M, CAS: 15356-60-2) 

were prepared in DMSO, and then added to Ringer’s solution. DEET (CAS: 134-62-3) 

was diluted directly to the extracellular solution. 
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6.10  Images copyright 

The images in Figure 3.9 are from Wikipedia (http://www.wikipedia.org/) and are 

released with the following licenses: 

 

Akayu: Creative Commons Attribution ShareAlike 3.0 

Algeria: Creative Commons Attribution 2.0 Generic 

Alma-Ata: Creative Commons Attribution ShareAlike 3.0 

Canton-S: Creative Commons Attribution ShareAlike 3.0 

CA 1: GNU Free Documentation License, Version 1.2 

Coffs Harbour: Creative Commons Attribution ShareAlike 3.0 

Manago: Creative Commons Attribution ShareAlike 3.0 

Oregon-R: Creative Commons Attribution ShareAlike 3.0 

San Miguel: Creative Commons Attribution ShareAlike 3.0 

WT Berlin: Creative Commons Attribution ShareAlike 3.0 

Batumi-L: Public domain 

Boa Esperança: Creative Commons Attribution ShareAlike 3.0 

BOG 2: Public domain 

CO 3: Public domain 

EV: Creative Commons Attribution ShareAlike 3.0 

Medvast-21: Creative Commons Attribution ShareAlike 3.0 

VAG 2: Creative Commons Attribution ShareAlike 3.0 

Kericho-7B: Creative Commons Attribution 2.0 Generic 
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6.11  Experiments performed by others 

cAMP assays in HEK293T cells (Figure 2.7A), Ca2+-imaging experiments  (Figure 

2.7B), Xenopus experiments in Figure 2.8, and patch-clamp experiments in mammalian 

cell lines (Figure 2.9) were performed by Dr. Koji Sato or Dr. Takao Nakagawa as 

specified in the figures and described in (Sato et al., 2008). 

 

Drosophila behavioral assays (Figure 3.1, Figure 3.2, and Figure 3.3C) and 

electrophysiology experiments (Figure 3.3A, B, D, and E) were performed by Dr. 

Mathias Ditzen as described in (Ditzen et al., 2008). 

 

Immunostaining and yeast two-hybrid assays in Figure 4.5, Figure 4.6, and 

Figure 4.7, and sequencing of Or59b alleles summarized in Figure 3.14 were performed 

by Nicole Steinbach, a Master student from the Ludwig-Maximilians-University of 

Munich, under my supervision. 



 139

7 Publications 

The original findings described in this dissertation were reported in the following 

publications: 

Ditzen M, Pellegrino M, Vosshall LB. 

Insect odorant receptors are molecular targets of the insect repellent DEET. 

Science. 2008 Mar 28;319(5871):1838-42. 

 

Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K. 

Insect olfactory receptors are heteromeric ligand-gated ion channels. 

Nature. 2008 Apr 24;452(7190):1002-6. 

 

And in the following review articles: 

Pellegrino M, Nakagawa T, Vosshall LB. 

Single sensillum recordings in the insects Drosophila melanogaster and Anopheles 

gambiae. 

J Vis Exp. 2010 Feb 17;(36):1-5. 

 

Pellegrino M, Nakagawa T. 

Smelling the difference: controversial ideas in insect olfaction. 

J Exp Biol. 2009 Jul;212(Pt 13):1973-9. 
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The following manuscript is in preparation: 

Pellegrino M, Steinbach N, Vosshall LB 

A natural polymorphism in an insect odorant receptor confers pharmacological 

resistance to DEET. 
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