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FROM MICROARRAYS TO BEHAVIOR: 

GENES CONTROLLED BY FEEDING STATE IN MOSQUITOES AND FLIES 

 
Shelli F. Farhadian, Ph.D. 

The Rockefeller University 2011
 

 Across many species, animals carefully regulate their food intake 

according to their energy needs.  They are able to do so through the ability to 

sense hunger or satiety cues.  In vertebrates, these signals are released by the 

gastrointestinal tract and by adipose tissue, and reach feeding centers in the 

brain, where they stimulate the release of peptides that modulate feeding 

behavior (Benarroch, 2010; Berthoud, 2008).  Although many of these neuronal 

populations have been identified in rodent models, the neural circuitry behind 

behavioral modification of food intake remains largely unknown. 

Insects like the blowfly and the locust have classically been used to 

describe basic features of feeding behavior (Bernays and Chapman, 1974; 

Dethier, 1976).  These animals, as well as vinegar flies and mosquitoes have 

been shown to modify their feeding behavior according to their internal nutritional 

status (Edgecomb et al., 1994; Takken et al., 2001).  Thus they are good models 

for examining the question of how this modulation of behavior occurs.  Moreover, 

Drosophila melanogaster has been used to study mechanisms of complex 

behaviors to great effect, and there are ample genetic tools available to study 

feeding behavior in this organism (Vosshall, 2007). 



 

We set out to identify genes that regulate feeding behavior according to 

nutritional status.  Anopheles gambiae mosquitoes were previously shown to 

display reduced host-seeking behavior for forty-eight hours after taking a blood-

meal (Takken et al., 2001).  We used whole genome microarrays to look for 

genes that are regulated in olfactory tissue by blood-feeding, and that therefore 

might function to modify olfactory driven host-seeking behavior according to 

nutritional state.  We found that two odorant receptor genes are significantly 

regulated by blood-feeding.  These are therefore candidate receptors for ligands 

that are important for host-seeking. 

We then extended our studies to Drosophila with the goal of identifying 

novel regulators of post-fasting feeding behavior.  First we defined two 

stereotypical post-fasting behaviors in flies: increased attraction to food odor, and 

increased consumption of liquid food.  We then looked for candidate genes that 

regulate these behaviors by looking for transcripts that are regulated by fasting 

and found that 247 genes in the head are significantly regulated by nutritional 

status.  Finally, we carried out a targeted genetic screen using RNA interference 

against these candidate genes.  We looked for flies that show a defective post-

fasting food intake response, and found eleven genes that cause such a 

behavioral disruption.  These genes may represent novel regulators of hunger 

and satiety in insects, laying the groundwork for future studies of modification of 

feeding behavior. 
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1 Introduction 

 

1.1 What is feeding behavior? 

All organisms require food to survive. However, normal eating is 

discontinuous, with periods of feeding alternating with periods of non-feeding 

activities, such as mating or grooming, or sleep (Wiepkema, 1971). Thus feeding 

competes with other required activities, and animals must prioritize the relative 

importance of feeding at any given moment to other activities that are required for 

survival. Normal feeding behavior, or the ability for animals to regulate food-

seeking and, consequently, food ingestion, is displayed by virtually all animals. 

Patterns of eating vary across species, with some animals, like the giant 

silkworm, not eating at all as adults, and others, like the locust, eating multiple 

meals per day (Dethier, 1976). Some animalsʼ food intake is limited by the 

availability of prey, while others have constant access to food. However, all 

animals (except perhaps filter feeding fish) experience periods of food intake and 

periods of abstinence from food; they must regulate their food intake according to 

their internal nutritional status (de Krom et al., 2009; Uher et al., 2006). In 

humans, when the drive to eat is no longer tied to the bodyʼs need for energy, 

obesity or eating disorders such as anorexia nervosa can ensue. Therefore, 

investigations of normal and mutant feeding behavior in model organisms might 

yield insight into mechanism of human disease. 
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Under ad libitum feeding conditions, animals have constant access to 

food. It can be useful to study feeding behavior under these conditions because 

one can observe the frequency and duration of feeding intervals in the absence 

of a need to “hunt” or seek food (Wiepkema, 1971). Simply put, by giving an 

animal free access to food, it becomes easier to see whether the animal chooses 

to eat or to engage in other activities. When flies or rats are observed under ad 

libitum feeding conditions, they consume food in discrete episodes of feeding, or 

“meals” (Ja et al., 2007; Le Magnen and Tallon, 1966). Thus, to study feeding 

behavior, one can look at factors that contribute to meal size or meal frequency. 

The amount of food ingested in a single meal may be influenced by a number of 

factors, including caloric content of the food (Carvalho et al., 2005; Edgecomb et 

al., 1994), length of the non-feeding interval (Wiepkema, 1971), energy 

expenditure during the non-feeding period (de Krom et al., 2009), and food 

deprivation. 

 

1.2 Neurogenetics of feeding behavior 

Feeding behavior is controlled by the interaction between environmental 

stimuli ,such as the presence of palatable food; nutritional status; energy 

expenditure; and genetically encoded heritable factors (Rankinen and Bouchard, 

2006). These complex signals must be integrated in the brain so that the animal 

can perform an appropriate behavioral output: to eat or not to eat. 
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Long periods of non-feeding intervals or food deprivation lead to hunger. 

Hunger is a subjective feeling that increases during a fasting period and is 

relieved by feeding (Uher et al., 2006). It is felt more strongly by women than 

men (Uher et al., 2006), can adversely affect mood (Uher et al., 2006), and most 

significantly, it leads to increased food consumption. Hunger is relieved by food 

consumption, which leads to satiety, and therefore to decreased food intake. In 

vertebrates, much is known about how hunger and satiety are sensed and acted 

upon by the central nervous system, as reviewed below. 

 

1.2.1 Humoral signals of hunger and satiety in vertebrates 

  As food enters the gastrointestinal tracts, several signals are generated in 

the gut which relay nutritional status to the brain. These gut signals are crucial for 

the control of appetite and the regulation of energy balance. Most known sensory 

signals originating in the gut are negative regulators of appetite in that they are 

only activated in the presence of nutrients in the gastrointestinal tract (Berthoud, 

2008). The one known exception is ghrelin, the first gut hormone found to 

increase appetite (Wren et al., 2000), and which may be involved in eating 

disorders (Monteleone et al., 2008; Takaya et al., 2008). Ghrelin, cholecystokinin 

(CCK), Glucagon like peptide-1, and peptide YY are gut hormones that can 

powerfully influence the control of food intake and regulation of energy balance. 

Other hormones and peptides, such as serotonin, may also be involved. These 

hormones are released from enteroendocrine cells in the gut mucosa, and can 
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act on the brain both through the circulation and through primary afferent neurons 

that terminate in the nucleus of the solitary tract (Benarroch, 2010). More 

research is needed to know exactly what mechanism is used by each relevant 

hormone. 

 In addition to signals arising from the stomach and bowels, leptin and 

insulin have anorexigenic effects on long term feeding. Leptin is synthesized in 

adipose tissue in response to fat content (Considine et al., 1996; Zhang et al., 

1994). When injected in rodents, leptin inhibits feeding (Jacob et al., 1997; Satoh 

et al., 1998). Insulin, produced in the pancreas, is similar to leptin in that it also 

circulates in levels proportional to fat stores, and it also inhibits feeding and leads 

to increased weight loss (Baura et al., 1993). Circulating messengers like leptin 

and insulin can reach their receptors in the hypothalamus by diffusing across the 

third ventricle to the arcuate nucleus (Elmquist et al., 1998).  

 

1.2.2 Mechano- and chemosensory signals of satiety from the stomach 

The stomach is a highly innervated organ that, through mechanosensors 

on vagal afferent nerves, can sense distention because of food intake. However, 

little is known about the molecular identity of these stretch receptors and of their 

signal transduction mechanism (Fox, 2006). In addition to its ability to sense 

stretch, the stomach has also been recently found to contain chemosensors that 

detect the presence of sweet or bitter foods (Rozengurt, 2006; Sutherland et al., 
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2007). This intriguing finding greatly expands our understanding of the concept of 

“taste” and, more generally, of the role of the alimentary canal in processing food.  

 

1.2.3 Hypothalamic control of food intake 

 In mammals, the primary brain region that receives hunger and satiety 

signals and that, in turn, regulates homeostatic food intake is the hypothalamus.  

Some of the key neuronal populations reside in the arcuate nucleus.  They can 

be divided into two basic groups that have opposite effects on food intake, and 

that interact with one another. The first group, consisting of neurons in the lateral 

portion of the arcuate nucleus, contains pro-opiomelanocortin (POMC) and 

cocaine- and amphetamine-regulated transcript (CART) synthesizing neurons 

(Kristensen et al., 1998). Leptin is the prototypical hormonal stimulator of 

POMC/CART neurons (Cheung et al., 1997; Thornton et al., 1997). These 

neurons send anorexigenic signals that reduce food intake and increase energy 

expenditure. 

 The second group consists of neurons in the medial portion of the arcuate 

nucleus. These neurons are inhibited by leptin and are activated by ghrelin, and 

they synthesize Neuropeptide-Y (NPY) and Agouti-related protein (AGRP), in 

addition to GABA (Broberger et al., 1998). Activation of these neurons has an 

orexigenic effect through numerous pathways. NPY itself seems to inhibit POMC 

neuron activity (Dietrich and Horvath, 2009). It also acts on NPY receptors in 

other hypothalamic areas to increase food intake and decrease energy 
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expenditure.  

 

1.2.4 Mechanosensory signals of hunger and satiety in invertebrates 

 Early work by Dethier and others asked whether insects, like vertebrates, 

sense stretch or fullness of parts of the gastrointestinal tract, and whether this 

sensation contributes to termination of a feeding episode (Dethier, 1976). Their 

results, and later work by others, showed that, like mammals, insects can sense 

fullness in the gastrointestinal tract, and this sensation contributes to termination 

of food intake. 

Specifically, Dethier found that distention of the foregut, but not the midgut 

or the hindgut, inhibited chemosensory input from taste neurons on the fly 

labellum, which would normally cause the fly to begin eating (Dethier, 1976). He 

postulated that the mechanism by which the foregut overrides chemosensory 

input is via a stretch receptor. Although the molecular identity of this receptor was 

never found, Gelperin conducted nerve resection experiments in the blowfly to 

show that there are at least two nerves which branch off the ventral nerve cord 

that sense stretch, or fullness, in the fly gut. First, he found that there are two 

neurons in a branch of the recurrent nerve that are activated by expansion of the 

foregut (Gelperin, 1967). He later found branches of the main abdominal nerve 

which surround but do not innervate the crop, and which display electrical activity 

when the crop distends, thus stretching the abdominal nerve (Dethier, 1976).  
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In addition to this early work in the blowfly, other experiments have shown 

that a stretch mechanism for sensing satiety also exists in several mosquito 

species (Hocking, 1971). For example, by giving mosquitoes a saline enema, 

Klowden found that abdominal distention is sufficient to terminate blood-feeding 

in the Yellow Fever mosquito Aedes aegypti (Klowden and Lea, 1979a). 

 

1.2.5 The role of hemolymph in controlling feeding in insects  

While the ventral nerve cord can relay information to the insect brain about 

short term food intake, circulating hemolymph provides longer term information 

on nutritional status (Simpson and Raubenheimer, 1993). Hemolymph, the insect 

equivalent of blood, contains the nutrients that are absorbed from food, as well 

as peptides and hormones that reach their targets through endocrine effects. As 

such, it contains valuable information for an insect regarding what and when it 

has eaten. 

  One important feature of hemolymph is that its osmolality is an indicator of 

the amount of solute circulating, and thus a rough indication of nutritional status. 

In experiments on Locusta migratoria, Bernays and Chapman found that meal 

size reduced proportionally with increased osmotic pressure in the hemolymph 

(Bernays and Chapman, 1974). However, osmotic pressure is only a rough 

indicator of how much has been ingested, and later evidence showed that 

circulating levels of specific macromolecules such as amino acids and sugars 

provide nutrient-specific information to insects (Simpson and Raubenheimer, 
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1993). More recent work has confirmed that flies have two distinct types of 

“hunger,” one for protein and one for carbohydrate.  The transcriptional and 

behavioral profile of animals in these two hunger states has been shown to be 

distinct (Zinke et al., 2002), and adults that are specifically starved of protein 

show an increased preference for yeast, a source of dietary amino acids (Ribeiro 

and Dickson, 2010).  

  Although the mechanism by which hemolymph influences feeding remains 

unknown, the best understood mechanism is of modulation of peripheral taste 

responsiveness by circulating amino acids and sugars. Experiments in the locust 

demonstrated that artificially raising the profile of amino acids in the hemolymph 

of an insect fed on a low-protein diet to that of a locust fed on a high-protein food, 

through injection, led to marked reduction in responsiveness of taste sensilla on 

the maxillary palps to stimulation with an amino acid mix (Simpson and Simpson, 

1992). The same injection had no effect on the peripheral response to sugar 

(Simpson and Simpson, 1992). 

  

1.2.6 Genetics of feeding behavior in flies 

Since Drosophila, like mammals, regulate their feeding behavior according 

to nutritional status, and because of the ease of their genetic manipulation, they 

represent an inviting model for elucidating the neurogenetics of feeding behavior. 

Importantly, many of the known genetic modulators of nutrient sensing in 

mammals are conserved in Drosophila. 
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1.2.6.1 Insulin, DILPs, and TOR 

Insulin signaling is a key component of the physiological response to 

nutritional status in both mammals and flies (Teleman, 2010). Drosophila contain 

seven insulin-like peptides (called Drosophila insulin-like peptides, or DILPs), 

which are homologues of mammalian insulin and insulin-like growth factors, and 

they express one insulin receptor (Teleman, 2010). DILPs are released from 

neurosecretory cells in response to amino acid intake. They act on the insulin 

receptor, which signals through a conserved PI3 kinase and leads to growth of 

the larva in response to nutritional conditions (Oldham and Hafen, 2003). Insulin 

may be a link between nutritional status and transcription in flies, since insulin 

targets the FOXO transcription factor, which regulates some gene expression in 

response to starvation in larvae (Teleman et al., 2008). Behavioral studies reveal 

that overexpression of DILPs in neurons leads to defective post-fasting food 

intake in larvae (Wu et al., 2005). 

The target of rapamycin (TOR) signaling pathway is a downstream target 

of insulin/PI3K signaling. Some of the transcriptional effects of starvation have 

been found to be mediated through the TOR pathway (Li et al., 2010). For 

example, TOR signaling controls ribosomal RNA transcription in larvae (Grewal 

et al., 2007). A null allele of TOR phenocopies amino acid starvation and leads to 

growth arrest in early larval development (Zhang et al., 2000).  TOR has 

therefore been suggested as a signal of amino acid reserves.  Recent work by 
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Vargas et al. showed that flies with activated S6K, an upstream activator of TOR, 

phenocopy amino acid deprivation (Vargas et al., 2010), while Ribeiro and 

Dickson find that both inhibition and activation of neuronal TOR/S6K signaling 

stimulates yeast feeding.  These results leave open the question of how TOR 

signals nutritional status (Ribeiro and Dickson, 2010).  

 

1.2.6.2 Neuropeptides and takeout 

Neuropeptide regulators of feeding behavior are also conserved in 

Drosophila. For example, hugin, a fly homologue of neuromedin was recently 

characterized (Melcher et al., 2006; Melcher and Pankratz, 2005). In rats, 

administration of neuromedin U suppresses food intake (Howard et al., 2000). In 

fly larvae, overexpression of the hugin neuropeptide gene leads to reduced 

feeding and smaller larvae (Melcher and Pankratz, 2005).  

The neuropeptide Y system is also conserved in flies. The fly homologue 

of NPY, Neuropeptide-F (NPF), is expressed in both the midgut and the central 

nervous system (CNS) (Brown et al., 1999). sNPFs are arthropod neuropeptides 

that are structurally similar, but shorter in length than NPF (Veenstra et al., 2008). 

In Drosophila, sNPF seems to be expressed only in the brain (Lee et al., 2004), 

but its receptor is found in the crop and in the hindgut and midgut (Mertens et al., 

2002).  

In mammals, neuropeptide Y is a potent stimulator of feeding when 

administered centrally (Stanley and Leibowitz, 1985). NPF also plays an 
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orexigenic role in flies (Lee et al., 2004; Wu et al., 2003). NPF seems to modulate 

feeding behavior in larvae while sNPF may play a role in adult feeding. 

Drosophila larvae normally wander away from food after five days of continuous 

eating. NPF is expressed in the larval brain during the continuous feeding period, 

but not during the wandering stage, suggesting a role for this peptide in 

mediating this feeding behavior (Wu et al., 2003). Moreover, gain of function 

larval NPF mutants display prolonged feeding, while loss of function larvae show 

premature wandering behavior (Wu et al., 2003). In adult flies, overexpression of 

the short form of the neuropeptide, sNPF, leads to overeating (Lee et al., 2004).  

Another protein that seems to play a role in feeding behavior in flies is 

Takeout.  Takeout is a putative juvenile hormone binding protein whose levels of 

mRNA increase with starvation, but its mechanism of influencing feeding is 

unknown (Meunier et al., 2007; Sarov-Blat et al., 2000). Interestingly, takeout is 

expressed in the head as well as in the cardia and the crop, two structures 

related to feeding. 

 

1.3 Regulation of feeding by modulation of sensory input 

In addition to metabolic signals of energy needs and environmental cues 

such as the presence of food, the smell and taste of food related stimuli also 

regulate the decision whether or not to eat. Sensory neurons that express 

olfactory and gustatory receptors transmit signals to the brain, where they are 

integrated with other metabolic signals that regulate feeding behavior. Cortical 
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integration of these signals primarily occurs in the insula and in the orbitofrontal 

cortex (Critchley and Rolls, 1996; Rolls, 2008). As described below, behavioral 

and imaging studies suggest that sensory modalities, such as taste and olfaction, 

are modified by metabolic signals of nutritional status, such that food becomes 

more attractive to hungry animals than to non-hungry animals.  

 

1.3.1 The effect of nutritional status on gustation 

One way in which nutritional status affects food consumption is through 

modulation of sensory responses to food. For example, taste is affected by 

hunger. Functional magnetic resonance imaging (fMRI) studies reveal that fasted 

subjects show stronger activity in taste areas of the insula and adjacent 

dorsolateral prefrontal cortex (Uher et al., 2006). Other studies show significantly 

decreased activity in brain taste centers after two days of overfeeding (Cornier et 

al., 2009). In monkeys that are fed to satiety, responses of neurons to the taste of 

the glucose were significantly decreased, and were accompanied by a change in 

behavior from acceptance to rejection of glucose (Rolls et al., 1989).  

Some evidence suggests that metabolic signals alter taste sensitivity in 

the peripheral nervous system in addition to their action on higher brain centers. 

For example, the leptin receptor is expressed in peripheral taste cells (Shigemura 

et al., 2004), and exogenous administration of leptin suppresses responses of 

peripheral taste nerves to sweet substances (Kawai et al., 2000) and decreases 

behavioral responses to sugars (Shigemura et al., 2004). In flies, 
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electrophysiological recordings of taste neurons in fasted flies reveal increased 

sensitivity to sugar in peripheral taste neurons (Meunier et al., 2007). These 

results suggest that modification of this sensory modality occurs not just in higher 

brain centers, but also in peripheral sensory systems. 

Hunger might also modulate taste sensation by decreasing the threshold 

for consumption of unpalatable foods. In human behavioral experiments, fasted 

subjects place less importance on tasty foods, as compared to immediately 

available foods (Hoefling and Strack, 2010). This corresponds with the 

observation that fasted subjects are less disgusted by the sight of unpalatable 

food (Hoefling et al., 2009). 

 

1.3.2 The effect of fasting on olfaction 

The sense of smell is also significantly modulated by internal nutritional 

status. When tested in a behavior assay, rodents show a significant increase in 

olfactory sensitivity after fasting, such that they can detect lower concentrations 

of a conditioned odor when they have been fasted (Aime et al., 2007). A similar 

phenomenon has been documented in the nematode C. elegans. The worm 

normally reacts to the smell of octanol by initiating backwards movement. In the 

absence of food, the animal is significantly slower in its behavioral response to 

this odorant (Chao et al., 2004). Starvation also increases olfactory adaptation in 

worms to some odorants, and animals can recover from this effect by re-feeding 

(Colbert and Bargmann, 1997). In the case of the worm, serotonin is suspected 
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to act as the mediator of a hunger signal, since administration of serotonin 

mimics feeding in olfactory behavior assays (Chao et al., 2004; Colbert and 

Bargmann, 1997). 

Fasting may also lead to increased food consumption by altering the 

perception of olfactory stimuli that are related to food. For example, when human 

subjects are asked to rate the pleasantness of a non-food odor and a food odor 

in the fasted and in satiated states, they rate the food odor as more pleasant 

when they are fasted as compared to when they are satiated. However the same 

is not true of their response to a non-food odor (Albrecht et al., 2009). Similarly, 

when rats are presented with odor under food-deprived or satiated state, food-

deprived rats exhibit significantly increased activity in the olfactory bulb compared 

to satiated rats when presented with food odor, but not when presented with a 

control odor (Pager et al., 1972). 

 While there are many descriptions of changes in feeding behavior 

according to nutritional status, the mechanisms by which hunger and satiety 

influence behavior remain largely unknown. Although the main feeding centers of 

the mammalian brain have been identified, we still do not know the neural 

circuitry that underlies nutrition-dependent changes in sensory and behavioral 

response to food.  

Insects are inviting organism by which to further our understanding of the 

neurogenetics behind nutritional control of feeding behavior. Classical work in the 

blowfly and in the locust established that insects display stereotyped feeding 
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behaviors and that, importantly, they modulate feeding according to nutritional 

status. Drosophila, in particular, has been an excellent model for probing human 

diseases because of its genetic similarity to higher organisms and the ease of 

behavioral and genetic studies. However, it has been underutilized as a tool to 

probe the mechanism by which nutritional status affects food-seeking. Although 

we do not yet know the central feeding centers of the fly brain, nor do we know 

the main signals of hunger and satiety in the fly, we have the genetic and 

behavioral tools to answer such questions in this organism. Finally, by studying 

feeding behavior in insects, we may gain an opportunity to slow disease 

transmission by gaining ways to interrupt feeding in blood-feeding insects such 

as the malaria mosquito. 

The remainder of this dissertation will focus on investigations into specific 

insect behaviors that are modulated by nutritional status. First, I will discuss our 

studies of transcriptional regulation of blood-feeding behavior in Anopheles 

gambiae, since this is a unique feeding behavior that is dependent on nutritional 

status. The remainder of this work will focus on post-fasting feeding behavior in 

Drosophila. I will describe our studies of olfactory response to an attractive odor 

in flies that have been fasted or satiated. Then, I will discuss my examination of 

post-fasting food intake, as well as our efforts to use this robust behavior as the 

basis for a targeted screen to identify novel genetic modulators of feeding 

behavior.  
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2 Transcriptional regulation of blood-feeding behavior in Anopheles 

gambiae 

 

2.1 Introduction 

2.1.1 The role of insect vector ecology in addressing neglected tropical 

diseases 

A number of the worldʼs most devastating diseases are spread by the bite 

of a mosquito. These include filariasis, Japanese encephalitis, dengue, yellow 

fever, and malaria. Human malaria itself causes 1-3 million deaths annually, 

making it the third largest infectious killer in the world (WHO, 1999). The disease 

can be caused by one of several different Plasmodium species, but all of these 

parasites are invariably spread by the bite of an Anopheles mosquito (Nighorn 

and Hildebrand, 2002). Consequently, any effective malaria control policy should 

and often does include a component targeted toward controlling the mosquito 

vector. At present, vector control strategies primarily consist of the use of 

bednets to prevent insect bites, insecticide spraying in certain areas, and 

alteration of the native environment to make it less conducive to mosquito 

breeding (Klempner et al, 2007). An important new target for interruption of 

vector transmission of the parasite is through manipulation of the mosquitoʼs 

olfactory system, since Anopheles females find the source of their blood meal 

through olfactory cues given off by their host. 
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2.1.2 Olfactory driven behavior in mosquitoes 

The olfactory-driven behavior of malaria mosquitoes has been described 

in detail by field researchers over the last few decades. It is well known that 

female mosquitoes prefer plant and nectar odors in the first 3-5 days of life, and 

then switch preferences to host odors (Takken and Knols, 1999). This 

corresponds with the typical female feeding pattern of eating only nectar during 

the first 3-5 days of life, and then taking a first blood meal and mating during days 

5-7 (Figure 1).  

 

 

Figure 1 Olfactory-driven behaviors in female Anopheles gambiae. Female 

mosquitoes rely on nectar for nutrients during the first 3-5 days of life, and then 

obtain nutrients almost exclusively from blood. Blood-feeding and ovipositing are 

olfactory-driven behaviors that do not occur simultaneously. 

 

Experiments dating to the 1940s have shown that human odors drive host-

seeking in malaria mosquitoes. In one field study, a tent occupied by humans 

attracted significantly more Anopheles gambiae than did an unoccupied tent 
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(Mukabana et al., 2002). Other studies have attempted to control for the physical 

presence of a host by presenting host odors in the absence of a physical host—

who also emits heat and alters convection currents, and could thus be attracting 

mosquitoes. In these studies, airborne human volatiles were collected and 

presented to mosquitoes through a sampling device, and it was shown that 

mosquitoes are attracted to these odors from a distance (Davis and Bowen, 

1994; Mboera et al., 2000). Other field studies have shown that some people are 

more attractive to mosquitoes than others, and that this differential attractiveness 

is entirely odor-mediated (Mukabana et al., 2004). 

The two classic human-derived odors that are attractive to mosquitoes are 

lactic acid and carbon dioxide, though most lactic acid studies have been 

conducted in Aedes aegypti. Other compounds that are present in human 

emanations and that have been shown to attract anopheline mosquitoes include 

acetone, 1-octen-3-ol, and fatty acids of the type that are produced by bacteria 

residing on human skin. Limburger cheese odor has also been found to be 

strongly attractive to Anopheles mosquitoes, which is not surprising as the odor 

is reminiscent of human feet (de Jong and Knols, 1995). The behavioral activity 

of many of these odorants has been complemented by limited 

electrophysiological recordings of whole antennae and of single sensilla (Qiu et 

al., 2006; Takken et al., 2001). These electrophysiological studies confirm that 

mosquito neurons respond to human-derived odors when these neurons are 

subject to extracellular recording in the presence of odor.  
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Behavioral studies show that there is a change in olfactory driven behavior 

in female mosquitoes following a blood meal. In studies of Aedes aegypti, 

Klowden and colleagues described a two-stage inhibition of host-seeking after a 

vitellogenic blood meal. First, after a sufficient amount of blood is ingested, 

abdominal stretch receptors send neural signals that mediate a behavioral 

change (Klowden and Lea, 1979a). Then, approximately twenty-four hours later, 

the distention is alleviated and an unidentified factor in the hemolymph inhibits 

host-seeking until oviposition occurs (Klowden and Lea, 1979b). Transferring the 

hemolymph from a blood-fed mosquito to a non-blood-fed mosquito mimics the 

inhibitory effect on host-seeking that occurs after a blood-meal.  

This second form of host-seeking inhibition is also observed in Anopheles 

gambiae. Takken describes blood-feeding behavior in five-day old mosquitoes 

that were given a human blood meal and subsequently exposed to human hand 

odor in a dual-choice olfactometer (Takken et al., 2001). At twenty-four hours 

after blood-feeding, fewer than 2% of the mosquitoes responded to human odors, 

whereas control (sugar-fed) mosquitoes consistently respond to human odors in 

the same apparatus (Figure 2).  This suggests that there is an unknown 

mechanism which dampens the mosquitoʼs attraction to human host odor for 24 

to 48 hours after blood-feeding. 
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Figure 2 Host-seeking is suppressed in mosquitoes for approximately 48 

hours after blood-feeding. 

Control mosquitoes were fed only sugar and did not have access to a blood meal. 

The x-axis represents the proportion of mosquitoes flying upwind toward a 

human-odor baited trap in an olfactometer. (Adapted from Takken et al., 2001). 

 

Following the behavior assay, the mosquitoesʼ ovaries were dissected and 

revealed a correlation between gonotrophic stage and response to human 

odorants. Mosquitoes that were in less developed gonotrophic stages did not 

respond to host odors, while those that had fully developed ovaries or had 

recently oviposited were far more responsive to human odorants (Takken et al., 

2001). This implied that host-seeking is inhibited while oocytes are developing, 

and is restored once the mosquito has laid her eggs and is ready for another 

blood meal. Electrophysiological studies support the theory that there is a change 

in olfactory sensitivity at the level of the olfactory sensory neuron. These studies 

conclude that certain classes of neurons respond to specific odors only after the 
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mosquito blood feeds, while others neurons respond to other odors only before 

the blood meal (Qiu et al., 2006). 

 

2.1.3 Organization of the mosquito olfactory system 

 Insects detect odors through a family of highly diverse odorant receptors 

(ORs). These are divergent seven transmembrane domain proteins whose signal 

transduction mechanism is controversial (Benton et al., 2006; Buck and Axel, 

1991; Clyne et al., 1999; Vosshall et al., 1999). ORs are expressed on the 

dendritic surface of olfactory sensory neurons (OSNs), which are present 

primarily in the antenna and maxillary palp, the two head appendages that are 

the insectʼs primary olfactory organs (Vosshall et al., 1999). There are 

approximately 1200 such OSNs in the Drosophila antenna (Stocker, 1994) and 

each expresses typically one but occasionally up to three ligand-binding ORs and 

the Or83b co-receptor (Couto et al.; Fishilevich and Vosshall, 2005). 

Like the Drosophila antenna, the mosquito antenna is covered by special 

sensory hairs called sensilla (Figure 3). Four different types of sensilla have been 

identified in female Anopheles and two of these sensilla types, the trichoid and 

the grooved-peg sensilla, house the majority of olfactory neurons. The outer 

surface of each sensillum is covered by a highly perforated cuticle that allows for 

entry of odor molecules. Insect sensilla are hollow and are filled with a fluid called 

sensillar lymph, the content of which is regulated by non-neuronal support cells 

that secrete ions and proteins into the sensillar shaft. One such class of proteins, 
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the odorant binding proteins (OBPs), may act to solubilize odor molecules and 

present them to a sensory dendrite (Smith, 1996).  

 

Figure 3 Primary olfactory organ for adult Anopheles gambiae and 

Drosophila melanogaster. 

A, Head of an Anopheles adult female. B, Head of an adult Drosophila. C, 

Scanning electron microscope close-up of female Anopheles antenna. Individual 

sensilla are labeled with arrows. D, Schematic of insect chemosensory sensilla. 

Olfactory Sensory Neurons (OSNs) expressing an OR are at the base of the 

sensillum, surrounded by support cells which contribute proteins and ions to the 

surrounding lymph. Each OSN has a sensory dendrite that projects to the tip of 

the sensillum, where it interacts with odorants. For simplicity, each sensillum is 

shown housing one OSN, whereas true insect sensilla typically contain dendrites 

from one to four OSNs.  

 

Once an odorant interacts with an OR, downstream signals lead to action 

potentials that send an odor-stimulated signal to the antennal lobe of the insect 

brain. In the Drosophila olfactory system, OSNs that express the same receptor 
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project to the same glomerulus in the insect antennal lobe (Couto et al., 2005; 

Fishilevich and Vosshall, 2005; Laissue et al., 1999).  

The Anopheles gambiae genome contains seventy-nine ORs (Hill et al., 

2002). These genes form a diverse family, with some members showing as little 

as 8% sequence homology to one another. Among Anopheles ORs, about half 

are more than fifty percent divergent from all Drosophila odorant receptors, 

leading researchers to believe that it is these divergent ORs that may underlie 

specific host preference for mosquitoes. One receptor, GPROR7, was found to 

be orthologous to the Drosophila Or83b, with these genes sharing 78% sequence 

identity (Hill et al., 2002; Jones et al., 2005; Pitts et al., 2004). This finding is 

significant because Drosophila Or83b is expressed in most olfactory receptor 

neurons in the fly, is essential for olfaction in vivo, and has recently been found to 

couple with another OR at the dendritic membrane of the OSN (Benton et al., 

2006; Vosshall et al., 2000). Furthermore, work from our laboratory showed that 

GPROR7 can functionally rescue Or83b mutant flies (Jones et al., 2005). Thus 

GPROR7 is likely vital to a functional olfactory system in the mosquito, possibly 

acting as a co-receptor.  

 

2.1.4 Odorant receptors and blood-feeding behavior 

A previous study identified one Anopheles odorant receptor, GPROR1, 

that is absent from female antennae after blood feeding through non-quantitative 

RT-PCR (Fox et al., 2001). This OR was subsequently found to be tuned to 4-
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methyl-phenol, a component of human sweat (Hallem et al., 2004b). While these 

studies suggest that GPROR1 is important for mediating attraction to human host 

odor, and that its expression levels are regulated by blood-feeding status, further 

studies must be done to determine to characterize this phenomenon. Notably, I 

have been unable to replicate these RT-PCR results using our own tissue 

samples. Furthermore, microarray analysis (Section 2.3.1) does not confirm that 

GPROR1 is down-regulated after blood-feeding. Thus, while previous studies 

suggest that ORs may mediate behavioral changes after blood feeding, further 

work must be done to identify and characterize the specific ORs that are 

important for behavioral changes following blood-feeding. 

 

2.2 Materials and Methods 

2.2.1 Isolation of Mosquito RNA 

To quantify gene expression levels in antennae from female mosquitoes at 

different feeding states, it was necessary to isolate sufficient genetic material for 

use on a commercial gene chip. Mosquitoes were provided by The Malaria 

Research and Reference Reagent Resource Center (MR4) at the Center for 

Disease Control (CDC). Mosquitoes were dissected and approximately 100 

antennae were collected for each microarray experiment. RNA quality was 

assessed by visual inspection of electropherograms produced by the Agilent 

2100 Bioanalyzer, using the Pico analyzer assay (Figure 4). In each 

electropherogram, abundant 18S and 28S ribosomal RNA peaks were evident, 
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and the height of the 28S ribosomal peak was used as an indicator of RNA 

quality. In such plots, the higher the peak, the more intact the RNA sample is. 

Similar RNA quality was seen for samples taken from mosquito antenna and from 

non-olfactory body tissue, despite the large differences in quantity of RNA 

between these two types of samples. We conclude that our methods for obtaining 

RNA from dissected mosquito antennae are robust. 

 

 

    A                                                             B 

 

 

 

 

Figure 4 High-quality RNA obtained from Anopheles antennae and bodies. 

Total RNA samples from A, 8 mosquito bodies (minus olfactory tissue) and B, 

120 antennae, were loaded on an Agilent BioAnalyzer using the Pico LabChip, 

which can detect as little as 200pg RNA. Peaks represent ribosomal RNA.  

 

2.2.2 Microarray and Quality Control 

Changes in A. gambiae gene expression 24 hours after a blood-meal were 

assessed using microarray analysis with whole Anopheles genome Affymetrix 

microarrays. At least four biological replicates were collected from each of four 

experimental groups: antenna from females before a blood meal and from 
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females twenty-four hours after a blood meal, and non-olfactory body tissue from 

the same females. RNA was extracted and cDNA was synthesized, linearly 

amplified, and labeled using the commercially available Ovation kit (Nugen). 

Probe production and array hybridization was carried out by the Rockefeller Gene 

Array Core Facility, which hybridized probes from the above RNA samples to 

Affymetrix gene arrays that combine on one chip approximately 14,900 genes 

from A. gambiae with 4,300 genes from the Plasmodium falciparum genome. 

In collaboration with Dr. Mayte Suárez-Fariñas (The Rockefeller 

University), the microarray data were analyzed to extract regulated genes with 

high statistical support. We chose to focus on genes that had a fold change 

greater than 2 and a false discovery rate (FDR) less than 0.2. The AffyQCReport 

R package of BioConductor was used to generate the initial quality control 

analysis. Average background levels and percent present calls were found to be 

similar across all chips. The level correlation of signal intensities showed 

between 87% and 99% similarity between chips, indicating that the samples were 

similar to one another in quality and in overall gene expression. 

 

2.3 Results 

2.3.1 Transcriptional changes correspond with behavioral changes after 

blood-feeding 

We looked for genes whose levels of expression change depending on 

blood-feeding status.  We were particularly interested in genes that are regulated 
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by blood-feeding exclusively in the antenna, since these represent candidate 

genes for regulating olfactory drive behavior.  A total of 1301 probe sets showed 

at least two-fold variation in signal intensity between mosquitoes before and after 

a blood-meal. Of these, 58 showed changes in expression exclusively in 

antennae, with 36 genes showing up-regulation after a blood-meal, and 22 genes 

showing down-regulation. These genes represent promising candidates for 

further analysis (Figure 5). 
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Figure 5 A microarray analysis of gene expression in mosquito antenna 

and non-olfactory body tissue identified genes that are regulated by blood 

feeding. 

A, Mosquitoes before and after a blood-meal were dissected for tissue to be used 

in a microarray. B, Summary of microarray results comparing gene expression 

before and after blood-feeding in antenna (yellow) and body (pink). Numbers 

indicate genes that are up or down-regulated following a blood-meal in mosquito 

tissue. C, Pie-chart of protein classes encoded by genes that are up- or down-
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regulated specifically in mosquito antenna. OBP= odorant binding protein. ODE= 

odorant degrading enzyme. 

 

2.3.2 Identification of odorant receptor genes that are regulated by blood 

feeding 

We wanted to know whether odorant receptor gene expression was 

affected by blood-feeding status.  Two out of the fifty-eight genes that were 

identified as regulated by blood-feeding exclusively in the antenna are ORs. 

These genes, GPROR56/57 and GPROR69, were approximately four-fold and 

three-fold down-regulated, respectively, after blood-feeding. GPROR56/57 are 

two closely related odorant receptors that both hybridize to the same Affymetrix 

probe. My hypothesis is that these receptors recognize a component of human 

host odor and that their expression levels modulate olfactory sensitivity, 

ultimately contributing to blood feeding behaviors. Recent studies by the Carlson 

and Zwiebel groups found odors that activate most Anopheles odorant receptors, 

including GPROR56 and GPROR57 (but not GPROR69) (Carey et al., 2010; 

Wang et al., 2010).  These receptors were activated by a number of odors, which 

draw from diverse classes of ligands, including aromatics, alcohols, terpines and 

esters.  Some of these odors, especially the aromatic compounds, could be of 

interest in host-seeking. 

 
2.4 Conclusion 

 Understanding the genetic basis for mosquito feeding behavior is vital to 

developing targeted new strategies to combat vector-borne diseases. Using 
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knowledge and tools developed from previous studies of the Drosophila olfactory 

system, we looked at gene expression in malaria mosquitoes and found many 

transcripts that are regulated by feeding state. This information should form the 

basis for future studies of the roles of specific genes in regulating blood-feeding 

behavior.
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3 Post-fasting feeding behavior in Drosophila melanogaster 

 

3.1 Introduction  

For organisms to survive, they must regulate their behavioral response to 

environmental stimuli according to their internal state.  In the case of the malaria 

mosquito, the animal behaves differently toward attractive human odor 

depending on the mosquitoʼs blood-feeding status.  In non-blood feeding animals, 

such as the vinegar fly, the animalʼs nutritional status is a key determinant in how 

food is perceived and in the decision on whether and how much to eat.  However, 

the neuronal and genetic bases of the regulation of feeding behavior remain 

poorly understood.  The genetic tools available for studies in Drosophila make 

this an enticing animal model for studies of this phenomenon,  

Classical studies in the blowfly, Phormia regina, described basic features 

of insect feeding behavior, with many of these behaviors subsequently shown to 

be conserved in Drosophila (Dethier, 1976; Edgecomb et al., 1994). Previous 

studies in Drosophila looked at proxy measures for food intake, such as the flyʼs 

willingness to extend its proboscis towards sucrose, rate of defecation, and 

accumulation of food in the crop, a food storage organ, (Edgecomb et al., 1994; 

Wong et al., 2009), and showed phenotypic changes that were dependent on the 

flyʼs nutritional state. These studies indicated that flies are capable of regulating 

their feeding behavior, but the assays did not allow for precise quantification of 

the effect of hunger on food intake, and thus they could not investigate the 
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genetic or neuronal underpinnings of feeding behavior. The development of the 

capillary feeder, CAFE, assay by the Benzer lab was a significant improvement 

over past tools used to measure food intake, since it allows for precise, short-

term measurements of food intake in real-time (Ja et al., 2007). 

The ability to regulate food-seeking behavior in response to nutritional 

status is central to an organismʼs survival. Nutritionally-deprived animals show 

modified perception of food stimuli, such that they are more sensitive to or more 

attracted to food stimuli. At the same time, animals in the fasted state consume 

food in larger quantities than do satiated animals. How this process is regulated 

genetically remains unknown. We have begun to address this question by 

establishing robust and quantitative post-fasting behavioral assays in the vinegar 

fly. This opens the door to a neuron-specific genetic screen to identify novel 

regulators of eating behavior.  

 

3.2 Methods 

3.2.1 Drosophila stocks 

Drosophila stocks were maintained on conventional cornmeal-agar-

molasses medium under a 12 hour light:12 hour dark cycle at 25°C. The Canton-

S strain was used as wild type control. RNAi experiments were carried out using 

a driver strain obtained from the Dickson Lab: w; UAS-dicer-2; Elav-Gal4. UAS-

Takeout-RNAi was generated at the Vienna Drosophila RNAi Center. 

 



33 

 

 

 

3.2.2 Olfactory trap assay 

Flies were fed on conventional fly food or fasted with access to only water 

for 12, 24, or 48 hours before being placed in a two-choice behavior chamber 

modeled after one described by Ditzen et al (Ditzen et al., 2008). Each trap was 

humidified and contained a small piece of filter paper with 10µl of either water or 

odor (3-methyl-thio-1-propanol). Flies could enter one of the two traps through a 

small plastic pipette tip inserted into top of each vial. After 24 h, the flies were 

scored by calculating the percent of flies in each trap. 30-50 male flies were used 

in each trap, with at least five replicates used for each comparison. Significance 

was assessed using the Mann-Whitney U test. 

 

3.2.3 Single sensillum recordings 

Wild type flies were aged for five days before recordings. One group was 

fasted for 24 h on wet cotton, and one group was given free access to food 

before recording. Single sensillum extracellular recordings of male flies were 

performed as described (Pellegrino et al., 2010). Briefly, activity of olfactory 

sensory neurons was recorded using a 10x AC probe connected to an IDAC-4 

amplifier. Odorants were obtained from Sigma-Aldrich at high purity and diluted 

(v/v) in paraffin oil as specified in the figures. One filter paper strip (3 x 50 mm) 
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imbued with 30 μl of the desired odor dilution was inserted into a glass Pasteur 

pipette. Charcoal purified air was delivered by a CS-55 stimulus air controller 

(Syntech, Kirchzarten, Germany) through the pipette to the fly antennae for 1 s. 

The odor was allowed to equilibrate in gas phase for at least 15 s before 

application. Each odorant pipette was used at most three times and no more than 

three sensilla were tested per animal. The ab5 sensillum was identified by its 

size, location, and responsiveness to its preferred odorants (Hallem and Carlson, 

2006). 

Data were collected using Autospike (Syntech) and analyzed by custom-

made spike sorting algorithms. Since spikes from the A and B cells can not be 

differentiated in the ab5 sensillum, spikes from these neurons were grouped 

together for analysis. Based on previous data, the ab5a sensillum does not 

respond to 3MT1P(D'Ettorre and Heinze, 2005; Ditzen et al., 2008; Hallem et al., 

2004a). Spike trains were grouped in 200 ms bins and responses were 

calculated by subtracting the average spontaneous activity of 15 s before odor 

application from the activity during the first 500 ms (excitatory odorants) or 1s 

(inhibitory odorants) after odor delivery. Curves were fit in Origin-Pro 8.0 using 

the Hill equation and were compared for significance with an F-test. 

 

3.2.4 CAFE assay 

Capillary feeding assays were modified from the design proposed by Ja et 

al. (Ja et al., 2007). The CAFE chamber consists of an empty wide polystyrene 
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vial (Fisher AS-519) with a wet cotton acetate plug at the bottom of the CAFE, for 

humidity. The top of the CAFE is plugged with a size 5.5 one-hole black rubber 

stopper (VWR product number 59581-265) into which is inserted a cut pipette tip. 

A 5 µl glass capillary (VWR 53432-706) is inserted through the pipette tip, and 

food is delivered through the glass capillary. Liquid food consists of 10% sucrose, 

5% yeast, unless otherwise noted, with 40 µl of McCormick green food coloring 

added to every 800 µl of food. Food intake is calculated by measuring the 

depression of the meniscus of food in the capillary. For the statistical 

comparisons between cumulative food consumption, two-way ANOVA was 

applied. Flies were allowed free access to food in the CAFE for two days prior to 

the first measurement. Five male flies were used in each CAFE. Data shown is 

consumption per fly. 

 

3.2.5 Crop measurements 

Flies were reared as described above. After three days of continuous 

access to 10% sucrose plus 5% yeast, flies were either fed or fasted for 24 

hours. Following this experimental period, flies were fed food consisting of 10% 

sucrose plus 5% yeast plus 0.02% FITC for three hours. Flies were then fixed in 

PBS plus 0.1% Triton for twenty minutes, then washed in PBS three times, for 

thirty minutes each.  Crops were then dissected and were visualized with a Zeiss 

LSM510 confocal microscope. 
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3.3 Results  

3.3.1 Behavioral attraction to an odor increases with fasting 

Since virtually all organisms modulate food-seeking behavior based on 

nutritional status, we asked whether fasting affects olfactory-driven responses to 

food in Drosophila. Flies show attractive and repulsive responses to different 

odors (Keller and Vosshall, 2007), including attraction to the food-like odor 3-

methylthio-1-propanol (3MTP), for which the corresponding olfactory receptor is 

known (Ditzen et al., 2008). To measure the effect of nutritional status on 

attraction to this odor, we used a two-choice olfactory trap assay (Figure 6A) in 

which flies may enter a trap containing the odor or one containing water alone.  

Flies that were fasted for 24 or 48 hours enter the odor trap significantly 

more often than flies that have not been fasted or have been fasted for 12 hours 

(Figure 6B). Therefore, behavioral attraction to an odor is strongly modulated by 

nutritional status, with increased food deprivation leading to increased attraction 

to a food-like odor.  
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Figure 6 Attraction to food odor increases with extended fasting 

(A) Schematic of two-choice olfactory trap assay to test attraction to a food odor. 

Approximately thirty flies were placed in the top chamber and allowed to enter 

either a chamber containing a food odor (3-methylthio-1-propanol) or water. Flies 

in each trap were counted after 24 hours.  

(B) Flies fasted for 24 or 48 hours are significantly more attracted to odor than 

water. Data shown are mean±s.e.m. ***p<0.001. n= 6-16 traps per time point. 

 

This change in olfactory response can be due to increased sensitivity to 

food odor in peripheral olfactory sensory neurons, or to changes in central 

nervous system responses in the fasted state. To distinguish between these two 

possibilities, we looked at sensitivity to food odor in the peripheral olfactory 

system and asked whether neuronal response to 3MTP is increased in flies that 

have been food deprived.  

The flyʼs main olfactory organ, the antenna, is covered by sensory sensilla 

that house the dendrites of olfactory sensory neurons (Figure 7A). Previous work 
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by Hallem and Carlson (Hallem and Carlson, 2006) showed that 3MTP is 

primarily detected by olfactory sensory neurons expressing OR47a, which is 

housed in the ab5 sensillum. We therefore performed extracellular single 

sensillum recordings in the ab5 sensillum in response to 3MTP (Figure 7B).  

 

 

 

 

 

 

 

 

 

Figure 7 Single sensillum recording of ab5 sensillum in response to an 

attractive odor 

 (A) Schematic of Drosophila single sensillum recordings. Horizontal black bar 

represents period of odor delivery. Shown is a representative trace of the 

response of ab5 sensillum to 3MTP. 

(B) Dose response curves of Or47a olfactory sensory neuron responses to 3-

methylthio-1-propanol in fed and fasted flies. There is no significant difference 

between fed and fasted flies in response to the odor. Data shown are 

mean±s.e.m. n= 9 sensilla. 

 

We measured responses of the OR47a neuron to 3MTP across a range of 

odor concentrations in fed and in 24-hour fasted flies. Evoked activity of OR47a 
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neurons as measured by spikes per second was not significantly different in 

fasted versus satiated flies (Figure 7B).  

 

3.3.2 Flies display a robust post-fasting feeding response 

In addition to olfactory-driven behavior, food intake behavior is also 

affected by feeding status, although in Drosophila the mechanisms behind this 

influence are unknown (Edgecomb et al., 1994). We wanted to establish a robust 

and precise assay to measure food intake behavior in post-fasted flies to aid in 

future genetic studies. We began our studies using the CAFE apparatus and 

liquid food developed in the Benzer laboratory, in which flies are fed 5% sucrose 

plus 5% yeast (Ja et al., 2007).  

Three day old male flies were placed in the CAFE and were fed ad libitum 

for 2 days in order to acclimate to the CAFE. We then measured food intake at 

regular intervals before and after 24 hours of fasting to compare food intake  

behavior in fed versus post-fasted nutritional states (Figure 8A). We found that 

when flies are fed 5% sucrose plus 5% yeast, there was no change in the amount 

of food intake in the post-fasted state (Figure 8B). However, when flies were fed 

a diet of 10% sucrose plus 5% yeast, they showed a significant increase in food 

intake in the post-fasted state (Figure 8C). This effect was seen in both male and 

female flies, although females consume significantly more food than males 

(Figure 8C). 
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Figure 8 Flies show a robust post-fasting feeding response 

(A) Timeline of feeding assay to measure post-fasting feeding response. 

(B) Flies that were fed a mixture of 5% sucrose and 5% yeast did not increase 

food intake after fasting. n = 6-10 CAFEs. 

(C) Males and females fed 10% sucrose plus 5% yeast both showed an increase 

in food intake after 24 hours of food deprivation. ***p<0.001. n = 10 CAFEs. 

 

To further explore post-fasting feeding dynamics in flies fed 10% sucrose 

plus 5% yeast, we measured food intake in male flies at regular intervals over the 

course of five days, with the third day consisting of access to food (Group 1) or 

water only (Group 2) (Figure 9). We found that the flies that were fasted (Group 

2) on day 3 showed a significant increase in food intake on day 4 (Figure 9). This 

same group of flies returned to pre-fast levels of feeding on day 5, after 24 hours 
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of re-feeding (Figure 9). Flies that were given continuous access to food did not 

vary their food intake over the course of the experiment (Figure 9). Therefore, the 

CAFE assay using 10% sucrose plus 5% yeast is a robust method for measuring 

post-fasting food intake behavior.  

 

 

Figure 9 Food consumption of fed and fasted flies over multiple days in the 

CAFE. 

Both groups were treated identically except for the time period from 48 to 72 

hours, when Group 1 was fed freely while Group 2 was fasted. Food is 10% 

sucrose, 5% yeast. After being fasted on the third day, Group 2 flies showed an 

increase in food intake that goes back to baseline on the second day post-

fasting. ***p<0.001. n = 10 CAFEs. 

 

3.3.3 Fasted flies store more food in their crop than flies that have free 

access to food 

 Insects possess a unique food-storage organ, the crop, which is empty 

under ad libitum feeding conditions. When flies are food deprived, however, 
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subsequent food intake leads to qualitatively larger crops, suggesting that there 

is an increase in meal volume following fasting (Edgecomb et al., 1994). We 

quantified the increased size of the crop in post-fasted flies. We placed flies in 

the CAFE, with Group 1 having free access to food, and Group 2 being fasted for 

24 hours. Both groups were then fed fluorescein labeled food for three hours 

before their crops were dissected and measured (Figure 10). We found that flies 

that are post-fasted have crops that were more than twice as wide as flies that 

had continuous, free access to food (Figure 10). This is consistent with our 

previous result showing that post-fasted flies consumed significantly more food 

than flies fed ad libitum. 
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Figure 10 Post-fasted flies store more food in their crops than flies fed ad 

libitum 

 (A) Timeline of crop dissection experiments. Both groups were given free access 

to food for twenty-four hours. Group 1 continued to have free access to food 

while Group 2 was fasted for twenty-four hours. Both groups were then fed liquid 

food with 0.02% FITC for three hours prior to crop dissection. 

(B) )(top)Schematic diagram of insect gastrointestinal system, showing the 

difference in relative size between an empty and a full crop. Reproduced with 

permission from Melcher et al. (Melcher and Pankratz, 2005). (bottom) Confocal 

images of crops from post-fast or free-fed flies. Scale bar=500 mm. 

(C) Post-fasted flies that are given access to food have substantially larger crops 

than flies that have had continuous access to food. t-test, ***p<0.001. n = 9 

crops. 
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3.4 Conclusion 

Our electrophysiological results suggest that the increased behavioral 

attraction to food odor in the fasted state may be caused by a more central 

mechanism, such as increased activity in the antennal lobe or higher brain 

structures, rather than increased peripheral sensitivity in sensory dendrites. 

Indeed, previous work on vertebrates showed changes in activity in olfactory 

brain centers in response to food odor that are dependent on feeding state 

(Pager et al., 1972). Further studies in the fly may elucidate which brain centers 

are hypersensitive in the fasted state, and the mechanism behind this change in 

sensitivity. 

In our initial CAFE experiments, we found that flies that are fed 5% 

sucrose, 5% yeast do not increase food intake after fasting. These results 

indicate that the CAFE as described by Ja et al. (Ja et al., 2007) did not allow for 

measurement of post-fasting feeding responses because flies fed 5% sucrose 

plus 5% yeast did not modulate their food intake after fasting. We found that flies 

fed a higher concentration of sucrose, 10% sucrose plus 5% yeast, do show a 

post-fasting feeding response. In the 24 hours following fasting, they consume a 

significantly larger amount of food than they do under ad libitum conditions. Thus, 

we conclude that the CAFE using 10% sucrose plus 5% yeast is a good assay for 

measuring post-fasting food intake. Furthermore, we conclude that flies fed 5% 

sucrose plus 5% yeast are in a constant-state of low level hunger, and are 

continuously eating a maximum amount of food. This is reinforced by the fact that 
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flies that are fed 10% sucrose plus 5% yeast consume less under ad libitum 

conditions than flies that are fed 5% sucrose plus 5% yeast. 

There is a debate in the literature over whether the concentration of 

sucrose in the fliesʼ diet influences food intake. One study found that flies 

increase the volume of food consumed as the percent of sucrose in the fliesʼ diet 

increases (Edgecomb et al., 1994). More recently, Carvalho et al. found the 

opposite result, that flies ingest a smaller volume of food when the concentration 

of sucrose increases (Carvalho et al., 2005). Our results support the latter 

finding, since our flies consume more food when given 5% sucrose plus 5% 

yeast than when they are given 10% sucrose plus 5% yeast. 

Our examination of feeding behavior in wild-type Drosophila showed a 

quantifiable increase in food intake under specific feeding conditions. This lays 

the groundwork for a genetic screen to find mutants that do not regulate food 

intake according to nutritional status, with the goal of identifying novel genetic 

regulators of feeding behavior. 
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4 A targeted genetic screen to identify novel regulators of feeding behavior 

in Drosophila melanogaster 

 

4.1 Introduction 

Most of the known regulators of feeding in Drosophila have been shown to 

act in larvae but not in adults. Therefore, there remain unidentified genes 

involved in feeding regulation.  Having established a robust way to measure post-

fasting food intake in flies, we set out to identify novel genes that regulate feeding 

behavior.  We used a microarray approach to screen for the effect of fasting on 

gene expression. The goal is to identify genes that underlie the post-fasting 

olfactory and food intake phenotypes described in previous sections.  We looked 

for functional significance of these genes through a targeted RNAi based screen 

for behavioral mutants.   

 

4.1.1 Known genes whose transcriptional regulation modifies feeding 

behavior in Drosophila 

Although more is known about genetic modifiers of food intake in 

vertebrates, recent studies have uncovered genes that influence feeding in flies 

(Lee et al., 2004; Melcher et al., 2007; Wu et al., 2003). While NPF mutants 

seem to display a feeding phenotype only in larvae (Wu et al., 2003), sNPF 

mutants show abnormal feeding in the larval and the adult stages (Lee et al., 
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2004). Overexpression of sNPF in neurons causes adults flies to consume 

significantly more blue food as detected by visualizing blue dye in the abdomen 

than control flies, while RNAi knockdown of the peptide leads to fewer flies 

consuming blue food than in control genotypes (Lee et al., 2004). These 

experiments were conducted under non-fasting conditions. 

In addition to sNPF, another gene that may regulate feeding in adults in 

takeout. Takeout is a member of a large family of putative small molecule binding 

proteins that is similar to juvenile hormone binding protein (Sarov-Blat et al., 

2000). Meunier et al. find that, under ad libitum conditions, takeout mutant adult 

flies are hyperphagic (Meunier et al., 2007). Intriguingly, they also found that 

takeout mutants show a significantly reduced intake in feeding post-fasting 

(Meunier et al., 2007). Expression studies of takeout remain cursory, and it is 

unknown if the feeding effect of takeout mutants is due to loss of activity in the fat 

body, where takeout is known to be expressed, or in other tissues, such as the 

brain or the antenna, where there is weaker evidence of takeout expression 

(Dauwalder et al., 2002; Sarov-Blat et al., 2000; So et al., 2000). 

Finally, Al-Anzi recently identified two classes of neurons in the fly brain 

that regulated overall fat deposition in the fly (Al-Anzi et al., 2009). These two 

neuronal populations, identified by expression of c673a-Gal4 and fruitless-Gal4, 

may represent part of an as-yet unknown central feeding center in the fly brain 

When c673a neurons are silenced, adult flies consume significantly more food 
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than control flies. However, the specific genes that operate in these neurons to 

control fat storage remain unidentified.  

 

4.1.2 Expected transcripts that are modified by nutritional status 

 Previous studies have examined transcriptional changes that are 

dependent on nutritional status in whole larvae (Zinke et al., 2002) and in adult 

head tissue (Fujikawa et al., 2009). These studies as well as previous work in 

vertebrates (Yamamoto et al., 2009) have shown that transcriptional changes do 

occur in response to food intake. The study of larval transcription identified a 

novel gene, sugarbabe, as the most highly regulated gene when larvae are 

allowed access to sugar only (Zinke et al., 2002). Fujikawaʼs study of 

transcription on the head found that fit, CG8147, and Obp99b are among the 

most highly regulated transcripts in food-deprived adult flies (Fujikawa et al., 

2009). Thus one might expect to find these genes in an independent examination 

of feeding-regulated transcripts.  

 Finally, since food intake initiates metabolic changes in the fly, a study of 

the effect of feeding on transcription ought to yield genes involved in lipid, 

carbohydrate, and protein metabolism. 

 

4.1.3 RNAi in Drosophila 

 RNAi in Drosophila is achieved through expression of a double-stranded 

hairpin consisting of an inverted repeat of a fragment of a gene. The expressed 
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hairpin is then processed by cell endogenous machinery, and often also an 

exogenous dicer protein, into approximately 19-nucleotide fragments which then 

target the gene of interest (Dietzl et al., 2007). The RNA hairpin is expressed via 

the Gal4-UAS system, with UAS-RNAi for the gene of interest integrated into the 

genome of a mutant fly. Thus it is possible to drive expression of the RNAi in 

select tissues, using tissue-specific Gal4 drivers. Moreover, resource centers 

such as the Vienna Drosophila Research Council (Vienna) and Drosophila RNAi 

Screening Center (Boston) have made it possible to carry out large scale RNAi 

screens through their construction of libraries of integrated UAS-RNAi hairpins. 

 One of the main concerns that arises from use of RNAi to knock-down gene 

expression is the potential for off-target effects. Since the dsRNA hairpin is 

digested into smaller fragments, there is a chance that one or more of these 

fragments could have sequence homology to an off target gene (Perrimon and 

Mathey-Prevot, 2007). Certain features of the RNAi hairpin, such as the presence 

of 6 or more contiguous trinucleotides CA[AGCT] (or CAN repeats), are more 

likely to lead to off target effects (Ma et al., 2006). A newer RNAi library 

generated by VDRC contains 10 or more of these problematic repeats in less 

than 1% of itʼs RNAi lines (Dietzl et al., 2007). However, since it is difficult to 

determine whether an observed phenotype is due to targeted or off target effects, 

it is useful to test multiple hairpins for genes of interest. 
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4.2 Methods 

4.2.1 Fly stocks 

Wild-type Canton-S flies were used for microarray experiments. For RNAi 

experiments, the following driver, obtained from the Dickson Lab, was used: w; 

uas-dicer-2; Elav-Gal-4. UAS- RNAi flies were generated at the Vienna 

Drosophila RNAi Center. 

 

4.2.2 Microarray 

Changes in D. melanogaster gene expression in fasting flies 24 and 48 

hours after feeding were assessed using microarray analysis with whole genome 

arrays from Affymetrix (Drosophila 2.0). Four tissue groups were collected from 

flies that had been fasted for 0, 24, and 48 hours: head (minus chemosensory 

organs), antenna, palp and proboscis, and body (minus the head). Five biological 

replicates were collected from each tissue group per time point.  

Male Canton-S flies were used in all experiments. Male flies were aged for 

2-3 days, and were then separated into 3 groups. The first group was fasted and 

dissected 24 hours later. The second group was fasted and dissected 48 hours 

later, and the third group was fasted and dissected 72 hours later. The flies were 

kept at constant temperature and humidity (25 degrees, 70% humidity), and all 

dissection were carried out at the same time of day to avoid circadian effects on 

gene expression.  
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RNA was extracted using the RNEasy kit (Qiagen) and cDNA was 

synthesized, linearly amplified, and labeled using the commercially available 

Ovation kit. Probe production and array hybridization was carried out by the 

Rockefeller Gene Array Core Facility. 

In collaboration with Mayte Suárez-Fariñas (The Rockefeller University), 

the microarray data were analyzed to extract regulated genes with high statistical 

support. We focused on genes that had a fold change greater than 4 and a false 

discovery rate (FDR) less than 0.01. Quality control was as described above 

(section 2.2.2). 

 

4.2.3 CAFE based screen 

Flies were generated for behavioral testing by crossing Elav-Gal4, UAS-

dicer driver virgin females to UAS-RNAi males. Virgin females were acquired by 

heat-shocking the driver line, which contains a heat-shock-hid element on the y 

chromosome that kills >99% of male progeny while sparing females. Six females 

laid eggs for two days before being discarded, to prevent crowding of the larvae. 

The progeny of this cross were aged for 2-3 days, after which male flies were 

separated. Five male flies were placed in each CAFE and were given two days of 

ad libitum access to food, to recover from carbon dioxide anesthesia and to 

acclimate to the CAFE. 

Each genotype was observed for five consecutive days in the CAFE. For 

the first two days, the flies acclimated to the CAFE with free access to food. On 
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the third day, flies were given food and food intake was measured at 6 hours and 

again at 24 hours. Food intake was determined by manually measuring the 

depression of the meniscus as a result of feeding. On the fourth day, flies were 

deprived of food. On the fifth day, flies were fed again, and food intake was 

measured at six hours. Flies were fed 10% sucrose plus 5% yeast, and 

capillaries were switched at least once every 24 hours. CAFEs were constructed 

and food intake measured as described in 3.2.4.  

 

4.3 Results 

4.3.1 Microarray analysis to identify candidate genes that may regulate 

feeding behavior 

 To determine whch genes may influence post-fasting feeding behavior in 

flies, we looked for genes that had changes in gene expression following 24 or 48 

hours of fasting.  We initially focused on genes whose expression was regulated 

in head RNA, because we were interested in central nervous system hunger 

regulators. In an analysis of head RNA, 247 genes were significantly regulated by 

feeding state. As expected, genes that are known to have expression levels 

affected by nutritional status were positive hits in our array: fit, Obp99b, takeout 

and sugarbabe. Thus the array, under our conditions, was able to detect 

transcripts that were previously shown to have a relationship with feeding 

(Fujikawa et al., 2009; Zinke et al., 2002). 
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Figure 11 Gene expression in the head is regulated by feeding state 

Shown are relative levels of gene expression for all genes that showed changes 

in expression in the head after 24 or 48 hours of fasting.  Each vertical column is 

a biological replicate.  White bars separate data from before fasting, after 24 

hours of fasting, and after 48 hours of fasting.  Most genes show decreased 

expression after 24 and 48 hours of fasting. 
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A standard approach to assess the relevance of a microarray study, or to 

look for interesting genes in large gene lists, is to look for enrichment of genes in 

the microarray results list, as compared to all genes in the genome (Dennis et al., 

2003). We used the Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) program, provided free by the NIH, to look for enriched genes 

in our study (Huang da et al., 2009). Our results, shown in Table 1, show that 

certain classes of genes are enriched in our list of genes that are regulated by 

feeding. We find that genes related to immune function and genes related to lipid 

metabolism, two systems that are closely associated with food intake, have 

expression levels regulated by nutritional status (Chandra, 1997).  

Table 1 

 

Of the 247 head genes that are affected by nutritional status, 151 genes 

showed decreased expression after fasting, while the remainder showed 

increased expression after 24 hours of fasting. We reasoned that genes with 
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expression levels that increase upon fasting might be candidate hunger signals, 

while genes whose expression levels decrease with fasting might be candidate 

satiety signals. We also found 74 out of 247 genes that represent non-annotated 

transcripts with no known function. Of the previously annotated genes, 10 are 

putative or known transcription factors, 12 are putative or known receptors, and 

18 have been shown by the Pankratz lab to be regulated by feeding in larvae 

(Zinke et al., 2002). 

We selected a subset of genes from the microarray results for behavioral 

analysis.  Most of these genes were found to be regulated by feeding status 

exclusively in the head, while some were found to be regulated in the body 

(Figure 12).  We obtained RNAi lines for these 174 genes for use in a CAFE-

based behavior screen to look for novel regulators of post-fasting feeding 

behavior. 

 

 

 

 
 
 

 

 
Figure 12 Genes were selected for an RNAi screen to look for feeding 
behavior mutants.  Genes were selected based on putative function, protein 
prediction, or because they were novel genes with no known function.  147 genes 
were exclusively regulated by feeding status in the fly head. 
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4.3.2 A proof-of-principle experiment shows that the six-hour CAFE can 

identify genes that control feeding behavior 

Our studies in wild-type Drosophila (section 3.3.2) indicated that post-

fasted flies consumed significantly more food in six hours than pre-fasted flies, 

and that this difference was quantifiable using the CAFE. Takeout, a putative 

hormone binding protein, was previously shown to control feeding in adult flies. 

We wondered whether flies with altered expression of a known feeding related 

gene, takeout, would behave differently from control flies in the CAFE. Using a 

neuron specific driver (Elav-Gal4) to drive expression of RNAi against takeout in 

neurons and measured absolute food intake over six hours of feeding, once 

before and once after 24 hours of fasting (Figure 13A).  

We found that control flies (Elav-Gal4 alone and UAS-takeout-RNAi alone) 

increased consumption by 75-92% (0.16-0.19 microliters) after fasting (Figure 

13B). However, flies that have decreased neuronal expression levels of takeout 

did not increase their food consumption after fasting. We conclude that pan-

neuronal knockdown of takeout abolishes the post-fasting increase in food intake 

in Drosophila. This experiment establishes the CAFE as an assay capable of 

identifying genetic modifiers of food intake behavior. 
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Figure 13. Six hour feeding measurements can identify feeding mutants 

 (A) Timeline of feeding measurements to identify flies defective in post-fasting 

feeding response. Food intake was measured at 6hr and 54hr to determine pre-

fast and post-fast food consumption. 

(B) Flies that have decreased takeout expression in neurons show defective 

post-fasting food intake. Pre-fasting food intake is not significantly different in the 

mutant flies, compared to controls (light blue bars). **p<.01, ***p<.001. n = 7-10 

CAFEs. 
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4.3.3 A targeted screen to identify novel regulators of feeding behavior 

4.3.3.1 RNAi lines chosen for screening 

We next asked if genes identified in our microarray screen are involved in 

feeding behavior by carrying out a pilot RNAi screen. A total of 395 RNAi lines 

representing 162 feeding candidate genes were obtained from the Vienna 

Drosophila Resource Center (VDRC) for use in the screen. These genes were 

selected from the complete list of genes generated by our microarray on the 

basis of the following criteria: all known/putative transcription factors (10 genes); 

receptors (12 genes); intracellular signaling molecules (2 genes); Novel genes 

(74 genes); secreted proteins. Eight genes overlapped with a previous study of 

fat-body specific transcripts (Jiang et al., 2005), and 18 were previously found to 

be regulated by nutritional status in larvae (Zinke et al., 2002). In addition, the 

majority of the genes we tested (147) were regulated by feeding only in head 

tissue, while the remainder were regulated by feeding in the body alone, or in the 

body and the head. 

 

4.3.3.2 Genes that may influence the post-fasting response in food intake 

We compared food intake after six hours of feeding before and after 

fasting, and looked for RNAi genotypes that had a significantly decreased post-

fasting food intake when compared to control flies. RNAi lines were screened 

under the control of a pan-neuronal driver, Elav-Gal4.  Control flies (Elav-Gal4 x 

W1118) have had a post-fast food increase of approximately 0.25 µl. This means 
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they consumed 0.25 µl more after fasting as compared to before fasting (Figure 

14, black bar). As expected, flies did not increase food intake after a mock fast in 

which they experienced the same CAFE conditions as fasted flies, but received 

liquid food while other flies were being fasted (Figure 14, grey bar).  

337 RNAi lines were tested in the primary screen. Of these, 59 (18%) 

showed a significantly different post-fasting food intake response than controls. 

This corresponds to a False Discovery Rate (FDR) of 0.3. Since we are primarily 

interested in genes that reduce the post-fasting feeding response, I focused on 

the mutants that had significantly lower increase in food intake after fasting, as 

compared to control flies. 37 lines fit this criterion. I re-tested 18 of these lines, 

and 11 remained positive hits (61% of re-tested lines). These 11 RNAi lines 

represent 11 distinct genes. I then tested multiple hairpins and RNAi insertions 

(when available) for these 11 genes (Figure 12). Two of the genes (CG6129 and 

CG17032) that we found to have a mutant post-fasting response were previously 

found to have transcript levels regulated by nutritional status (Fujikawa et al., 

2009). 

 

 

 



60 

 

Figure 14. Post-fasting food intake in control and RNAi flies. 

11 genes showed significantly reduced post-fasting food intake. Control flies 

(black bar) increase food intake by 0.25 ml. For 2 genes (CG5953 and sprint) 

results were confirmed by multiple hairpins that were significantly different from 

control. *p<0.05, t-test with Bonferroni correction for multiple testing. n = 5-25 

CAFEs per genotype, with 5 flies per CAFE.  

 

 

 We next asked whether these 11 genes were essential for normal feeding, 

or if disrupting them had a specific effect on the post-fasting response of food 

intake. We looked at normal, ad libitum eating over 24 hours in the CAFE, before 

fasting, and found that these RNAi genotypes do not consume significantly more 

or less than control flies under normal, non-fasting conditions (Figure 15). 

Therefore we concluded that these 11 genes do not grossly affect normal eating, 

and that their effect is specific to the post-fasting increase in food intake. 
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Figure 15. RNAi disruption of post-fasting food intake does not affect 

normal eating under ad libitum conditions.  

Shown is total food consumption, per fly, over 24 hours for flies with RNAi knock-

down of eleven candidate genes.  Colors refer to the same genes as in figure 11.  

Multiple bars per color signify different hairpins or hairpin-insertions for each 

gene, where available.  RNAi genotypes do not consume significantly more food 

than control flies.  n.s., not significant, t-test with Bonferroni correction for multiple 

comparisons. n = 5-25 CAFEs per genotype, with 5 flies per CAFE.  

 

Although we screened the known adult-feeding related gene snpf, this 

does not appear as a positive hit in our screen. This may be because snpf 

mutants significantly increase food intake within 10 minutes of feeding after a fast 

(Lee et al., 2004), and we measured food intake after 6 hours. Therefore any 

increase during the first ten minutes may be “diluted” by the larger total 
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consumption in six hours. We also did not find an overall increase in food intake 

in snpf-RNAi flies, which is not concordant with results described in Lee et al. 

(Lee et al., 2004). One possible reason for this discrepancy might be that we are 

using a different pan-neuronal driver than was used in previous snpf 

experiments. 

 

The eleven genes we have thus far identified are varied in their known and 

putative function (Table 2). Four are insect-specific genes with no known 

function. Others have invertebrate and vertebrate homologues, but their role in 

feeding is unknown and is difficult to predict based on predicted protein domains. 

CG5953 contains a DNA binding domain and may represent a novel transcription 

factor that, like sugarbabe, is active based on nutritional status.  
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Table 2 
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Two candidates, CG6129 and sprint, are most interesting because of their 

homology to known vertebrate genes, and we focused the remainder of our study 

on these two genes. When we test the UAS-RNAi alone for hairpins against 

these genes, we find that they do not show a significantly different behavior from 

controls (Figure 16). Therefore we conclude that the RNAi phenotype we see for 

these two genes is not due to an insertional effect of the UAS-RNAi construct. 

 

 

Figure 16. UAS-RNAi control data for CG6129 and sprint RNAi lines. 

UAS-RNAi lines were tested alone, without being driven by a promoter-Gal4. 

With the exception of UAS-RNAi-sprint line 272, none showed a significantly 

different post-fasting feeding phenotype from control. ** p<0.01 t-test with 

Bonferroni correction. 
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4.3.3.3 CG6129 and sprint are conserved genes that may regulate post-

fasting food intake 

CG6129 is the Drosophila homologue (49% protein similarity, 27% 

identity) to the vertebrate gene rootletin. Rootletin is a component of the ciliary 

rootlet, which is a cytoskeleton feature of some ciliated cells. The exact function 

of the rootlet is now known. However, in some ciliated cells it couples closely with 

the mitochondria (Olsson, 1962), suggesting a role beyond simple structural 

support. In mammalian cells, rootletin helps maintain centrosome cohesion at 

various points in the cell cycle (Bahe et al., 2005). Rootletin has been most 

extensively studied in mouse photoreceptor cells, which are large, ciliated, and 

have a prominent rootlet (Yang et al., 2002). Mice that are mutant for the rootletin 

gene have photoreceptor cells that are completely devoid of a rootlet (Yang et al., 

2005). Moreover, these mice show susceptibility to lung disease, and their 

photoreceptors degenerate early, suggesting that rootletin protein and the rootlet 

are essential for normal ciliary function over the life of a ciliated cell (Yang et al., 

2005). 

In flies, the only known ciliated cells are type-I sensory neurons, and 

sperm (Han et al., 2003). Photoreceptor cells are non-ciliated in Drosophila. 

Primary cilia are located at dendritic ends of sensory neurons, where they 

capture and transmit signals from environmental mechanical or chemical stimuli 

(Dubruille et al., 2002). Laurencon et al. found expression of a CG6129::GFP 
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fusion in ciliated chordotonal neurons in Drosophila (Laurencon et al., 2007). 

Although cilia have not directly been implicated in feeding behavior, their 

presence on sensory neurons, including those that detect stretch, makes them an 

appealing candidate for further study of feeding regulation.  

Another interesting candidate from our behavioral screen is sprint, a 

Drosophila homologue of RIN-1, Ras-interacting protein (51% protein similarity, 

including a conserved SH2 domain). In mammals, RIN-1 binds to activated Ras, 

a membrane-associated G-protein that couples with receptor and non-receptor 

tyrosine kinases (Han et al., 1997). RIN-1 can bind to and activate ABL kinases, 

which are ubiquitously expressed and mediate cytoskeletal remodeling (Hu et al., 

2005). RIN-1 can also activate the GTPase Rab5, thereby promoting RAB5-

mediated endocytosis of cell-surface receptors (Barbieri et al., 2003). All of this 

suggests that RIN-1 may function in multiple capacities to affect receptor 

endocytosis and cellular remodeling. 

In addition to its role in receptor trafficking, RIN-1 might also affect 

neuronal plasticity. In mice, RIN-1 expression turns on in adults, and the highest 

levels of expression are found in the mouse forebrain (Dhaka et al., 2003). A role 

for RIN-1 in synaptic plasticity has been suggested (Bliss et al., 2010), as 

behavioral and electrophysiological evidence shows that RIN-1 knock-out mice 

display elevated amygdala function in response to stimulation (Dhaka et al., 

2003). 

The sprint locus in Drosophila is complex and large (90kb), and is 
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predicted to encode at least two distinct transcripts (Szabo et al., 2001). In 

addition to their localization in the embryonic midgut and in the embryonic CNS 

(Szabo et al., 2001) sprint gene products are localized to migrating border cells. 

Sprint has been shown to have role in promoting receptor endocytosis in border 

cells, (Jekely et al., 2005), a small cluster of cells that directionally migrate toward 

oocytes during Drosophila oogenesis (Rorth, 2002). The cells contain two 

receptor tyrosine kinases, PVR and EGFR, which can sense chemical cues that 

are released by the oocytes. Upon stimulation by ligand, the receptors initiate a 

cascade that includes recruitment of cytoskeleton molecules to help the border 

cells move toward the target oocytes. Sprint helps maintain the spatial 

localization of the receptor tyrosine kinase signal by promoting endocytosis of the 

receptors during the migration process (Jekely et al., 2005). One hypothesis for 

how sprint affects feeding behavior, then, is through a possible role in 

endocytosis of a receptor for a hunger or a satiety signal. 

  

4.4 Conclusion 

 By conducting a microarray, we were able to identify 247 transcripts that are 

regulated by nutritional status. This enabled us to undertake a targeted screen for 

potential regulators of post-fasting food intake, a feeding behavior that is tied to 

nutritional status. Our screen uncovered several novel and interesting candidate 

genes that are ripe for further mechanistic studies.
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5 Implications of the current study and prospects for future research  

 This dissertation examines two distinct feeding modalities: blood-feeding 

behavior in mosquitoes and post-fasting feeding behavior in vinegar flies. The 

first occurs only in female mosquitoes, which do not need blood for their own 

survival but only to complete the maturation of their eggs, while the latter is 

essential for survival of flies. These two types of insect feeding have behavioral 

features in common.  First, in both cases, classical studies suggest that the 

animal undergoes a behavioral switch after it has taken in a meal such that it is 

less interested in eating again for a certain period of time.  Second, both the 

mosquito and the fly seem to display a change in their response to external 

stimuli, such as the presence of food, after food intake. And in both cases, the 

genes and circuits behind the observed behaviors are largely unknown. 

 We hypothesized that changes in feeding behavior that are dependent on 

nutritional status might be influenced by corresponding changes in gene 

expression.  This does not exclude the possibility that protein modifications also 

influence the specific behaviors we are studying, and indeed it is likely that both 

types of genetic regulation occur.  However, by focusing our efforts on microarray 

analysis and genetic screening, we identified possible transcriptional regulators 

of feeding behavior.   

 In the mosquito, we focused on transcriptional changes that occur in the 

antenna, since we were looking for novel regulators of olfactory-driven feeding 

behavior in this animal. By looking at transcriptional changes in olfactory tissue 
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and comparing it to transcriptional changes in the body as a whole, we were able 

to identify genes that are regulated by blood-feeding only in the antenna, and that 

are not just general, body-wide effects of blood-feeding. 

By looking at changes in antennal gene expression based on blood-feeding 

status, we hypothesized that we would uncover new molecules that receive or 

transduce an odor signal.  Our study of gene expression in post-blood fed 

mosquitoes is the first to look at transcriptional changes in olfactory-specific 

tissue that are dependent on feeding behavior.  

 We identified two odorant receptors, GPROR56/57 and GPROR69, whose 

expression levels are regulated by blood-feeding. Since the mosquito is no longer 

attracted to host odor after blood-feeding, it may respond by down-regulating 

expression of receptors that are necessary to sense host odor. Therefore, we 

hypothesized that since expression levels of these two receptors goes down after 

blood-feeding, these receptors may recognize host odors. A recent study by the 

Carlson and Zwiebel groups found odors that activate most Anopheles odorant 

receptors, including GPROR56/57 but not GPROR69 (Wang et al., 2010).   Of 

the six odorants that were found to elicit a strong response in GPROR56/57, 

none are known to be a component of human emanations.  Perhaps there are 

other odorants, not tested in this study, that elicit a response in this odorant 

receptor, and which are important in helping the mosquito locate an animal host.  

Alternatively, these odorant receptors may not be important for finding a host, but 

for another behavior that occurs coincidentally with host-seeking, such as mating.  
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Further work should be carried out to identify new ligands that activate 

GPROR56/57 and GPROR69.  Moreover, with new genetic tools available in the 

mosquito, it should be possible to knock-out or to down-regulate these receptors 

and observe the effects on host-seeking in mutant animals.    

 Our initial results in Anopheles gambiae were important early steps in 

establishing the mosquito as a viable organism for studies of molecular effects 

downstream of blood-feeding. Follow-up work should continue in Aedes aegypti, 

a mosquito species that is easier to rear in the laboratory, that displays cyclical 

blood-feeding behavior, and for which a complete genome is available. To begin, 

the question of whether OR expression or trafficking is modulated by nutritional 

status remains an open one, and warrants further study. Our work in the 

mosquito shows that gene expression of at least two ORs is influenced by blood-

feeding status. The next step would be to determine whether this change in gene 

expression corresponds to a selective increase or decrease in sensitivity to odor 

in neurons that house these ORs. Single sensillum recordings of mosquito 

antenna should be done to answer this question.  Since our lab and others have 

established robust Aedes aegypti colonies, it will be possible to extend this 

technique from Drosophila to Aedes and to record from neurons that express 

these odorant receptors, once the neurons have been identified through 

localization studies. 

 In addition to our results showing that two odorant receptor genes are 

regulated by blood-feeding, our microarray experiments in mosquito antennae 
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also identified a member of the takeout family as being expressed in the antenna 

and regulated by blood-feeding status.  Takeout was previously found to be 

regulated by feeding in Drosophila, and it is also expressed in the Drosophila 

antenna.  Takeout shows sequence homology to Juvenile Hormone Binding 

Protein, and it is predicted to contain a signal peptide sequence.  Therefore, 

members of the takeout family of proteins might function by binding to juvenile 

hormone, or, they may be binding to a different class of molecules.  One 

possibility is that takeout family proteins might bind directly to odors and act as 

odorant binding proteins.  A study of one member of the takeout family in 

Phormia regina found that the protein is secreted into the sensillar lymph by 

support cells in the blowflyʼs antenna (Fujikawa et al., 2006). Our preliminary 

experiments show that members of this gene family are expressed in support 

cells in olfactory sensilla in Drosophila (data not shown). This supports the idea 

that takeout family proteins may act as odorant binding proteins. 

 Although it is not known how or if takeout proteins act in the olfactory 

system, the fact that members of this gene family are regulated by nutritional 

status in both mosquitoes and flies, and that they are expressed in the mosquito 

and fly antenna, suggests an important role for this uncharacterized family in 

regulating the olfactory system in relation to feeding status.  Takeout might 

therefore be a clue to a mechanistic link between regulation of blood-feeding in 

mosquitoes and regulation of eating in flies.  It suggests that, in both systems, a 

binding protein is produced in response to nutritional status, and circulates in 
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hemolymph to act of tissues that are important for feeding.  This hypothesis 

should be further examined by looking at the entire takeout family in both 

Drosophila and Anopheles. 

 The question remains, in both Drosophila and in Anopheles, of how 

circulating hemolymph alters feeding behavior. A simple but untested hypothesis 

is that neurosecretory cells in the insect gut release hormones or peptides in 

response to food intake, which circulate in the hemolymph and act on the brain or 

on peripheral sensory organs to control feeding. Klowden began to address this 

question in studies of hemolymph transfer from blood fed to non-blood fed 

mosquitoes (Klowden and Lea, 1979b). He found that mosquito hemolymph 

recipients acted as though they, too had taken a blood-meal, and altered their 

behavioral response to host-stimuli (Klowden and Lea, 1979b). In that case, he 

was able to narrow the source of the secreted hormone or peptide to the 

mosquito ovaries. A similar phenomenon may be occurring in Drosophila after 

food intake, whereby the gut or the fat body releases a satiety signal that 

circulates to reach the CNS.  

 Our microarray studies in Drosophila identified a neuropeptide receptor, 

Gonadotropin-releasing hormone receptor (GRHR), as well as a putative 

neuropeptide, CG13056, that are regulated by fasting in the fly.  Perhaps this 

neuropeptide is secreted in the hemolyph in relation to feeding status, and acts 

on the brain to affect behavior.  Likewise, GRHR may be a candidate for a 

neuropeptide receptor that acts in the brain to affect feeding.  Future studies 
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should also attempt to isolate neuropeptides that are present in hemolymph in 

different nutritional states, perhaps through mass spectrometry. 

 Our results in mosquitoes and in flies indicate that the mechanism behind 

nutritional dependent changes in olfactory sensitivity differs between Anopheles 

and Drosophila. In Anopheles, we found indirect evidence that the peripheral 

olfactory system was altered by nutritional status, because certain ORs, 

expressed in peripheral sensory neurons, are regulated by feeding.  This 

suggests that changes in the amount of particular odorant receptors at the 

sensory dendrite affect behavior. On the other hand, our electrophysiology 

studies in Drosophila suggest that peripheral sensitivity to odor remains unaltered 

by nutritional status, and that the change in olfactory attraction to odor is not due 

to a change in odor sensitivity in the periphery.   

 Our results in Drosophila suggest that it is more likely that behavioral 

changes tied to feeding state are induced by changes in parts of the olfactory 

system that are further downstream from sensory dendrites.  How could this be?  

One possibility is that the antennal lobe, or a higher brain center involved in 

decision-making, globally becomes more excitable in fasted animals, leading to 

increased behavioral attraction to odor in the fasted state.  Another possibility is 

that only certain glomeruli in the antennal lobe have enhanced activity in the 

fasted state.  In either of these cases, the neurons might be more excitable due 

to a circulating neuropeptide that signals nutritional state.  Another possibility is 

that peripheral sensory neurons do have increased activity in the fasted state, but 
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that the increased activity is due to a receptor at the pre-synaptic, axonal end of 

the neuron rather than at sensory dendrites.  Olfactory sensory neurons project 

to the antennal lobe, thus a circulating peptide might act on receptors localized to 

the presynaptic terminal of the OSN axon to amplify the neuronal signal as it is 

passed to projection neurons in the antennal lobe. 

 Further studies in both insects should continue to probe the question of 

which parts of the olfactory system are susceptible to modulation by hunger or 

satiety signals. To begin, our studies did not exhaustively examine all possible 

sensilla that respond to 3MTP.  Before ruling out sensory dendrite as the source 

of increased sensitivity to this odor in fasted animals, further electrophysiological 

studies must be carried out on all sensilla that respond to this odor.  Next, the 

antennal lobe should be imaged in response to odor in the fed and in the fasted 

state.  Genetic tools are available in Drosophila to produce flies with genetically 

encoded fluorescent indicator in antennal lobe neurons.  These flies can then be 

examined under two photon calcium imaging to measure projection neuron 

responses to odor in flies that are fed or fasted.  This can be a starting point to 

look for CNS changes in response to odor in different nutritional states. 

 The second part of this thesis quantitatively examined feeding behavior in 

post-fasted flies and found that disruption of at least eleven genes leads to a 

significant decrease in the normal post-fasting food intake response. The 

precision with which we are able to quantify the increase in post-fasting food 

intake in flies highlights the benefits of using Drosophila as a model system for 
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feeding behavior. Moreover, the ease of gene expression analysis and genetic 

screens in this species allowed us to find novel candidates for regulators of 

feeding behavior that would not have been identified otherwise.  

Two genes that were not previously known to be associated with feeding 

behavior, and which present intriguing connections between other cellular 

processes and feeding, are CG6129 and sprint. CG6129, a rootletin homologue, 

is an exciting candidate for further study. Although there is no clearly understood 

connection between cilia dysfunction and feeding behavior, some diseases of 

cilia, or ciliopathies, lead to obesity, which strongly suggests a link between cilia 

and body-weight regulation in mammals (Sen Gupta et al., 2009). Bardet-Biedl 

Syndrome and Alstrom Syndrome are two human ciliopathies in which patients 

often show obesity in addition to other symptoms resulting from dysfunctional 

cilia. In these two diseases, the obesity may be caused by hyperphagia, as 

demonstrated by mouse models of these diseases (Arsov et al., 2006; Rahmouni 

et al., 2008).  Although these are relatively rare genetic diseases, they suggest a 

strong link between cilia and obesity.  This opens up a new avenue for 

researching the origins of obesity in the general population, which we can begin 

by studying the link between cilia and feeding behavior in simple animal models.  

One way in which defective cilia may lead to abnormal feeding behavior is 

through a disruption in normal signaling cascades that depend on the cilia for 

localization of receptors. Without functional cilia, receptors that normally localize 

to ciliary membranes (including several GPCRs and possibly some serotonin 
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receptors) cannot traffic properly. Therefore, resulting behavior or physiological 

defects in ciliopathies are often due to disrupted signaling pathways (Veland et 

al., 2009). In the case of feeding behavior, one hypothesis is that cilia may be 

important for mechanosensory neurons on the gut to detect stretch from food 

intake, and that disrupted cilia are on sensory neurons that are particularly 

important for sensing hunger or satiety can lead to defective eating behavior. In 

this case, mechanosensors would be unable to detect stretch, and the animal 

would not properly sense food intake.  

Another novel potential regulator of feeding behavior that we uncovered 

through microarray analysis and subsequent RNAi screening is sprint.  Sprint 

was previously shown to function in Drosophila by playing a role in endocytosis of 

receptor tyrosine kinases in migrating border cells of the embryo.  We 

hypothesize thatSprint might likewise affect feeding behavior through its role in 

receptor endocytosis. Sprint might regulate feeding behavior in normal flies 

through endocytosis of a receptor that mediates a hunger or satiety signal.  

Under this scenario, sprint RNAi mutants would fail to be properly endocytose the 

(as yet unknown) receptor, leading to disruptive signaling activity in the cell. The 

insulin receptor is one such candidate for a receptor that might be regulated in 

this way. It is already known that the insulin receptor undergoes endocytosis 

upon insulin stimulation (Khan et al., 1989).  Furthermore, RIN-1, the mammalian 

homologue of sprint, is involved with endocytosis of the insulin receptor in cell 

culture (Hunker et al., 2006), so it is conceivable that the role is conserved in 
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Drosophila sprint. Further experiments are needed to show if an interaction 

between sprint and the insulin receptor occurs in adult Drosophila. 

Alternatively, sprint may modify feeding behavior through its role in 

shaping neurons. In the adult mouse brain, RIN-1 helps shape synaptic 

connections through selective endocytosis of Eph receptors, which are important 

for interactions between neighboring cells (Deininger et al., 2008), and which are 

conserved in Drosophila. The sprint RNAi mutants we generated may have 

defective synaptic wiring in neuronal circuits that are important for the post-

fasting feeding response. If this is true then localization studies of sprint in adult 

brains will be highly useful in identifying neuronal populations that drive feeding 

behavior.  

 

Although this dissertation focuses on feeding behavior in two simple 

organisms, the mosquito and the fly, a biomedical scientistʼs ultimate goal is to 

better the human condition through discoveries that shed new light on human 

disease.  In this case, the simple feeding behaviors of insects are relevant to two 

different types of human disease: vector-borne illnesses such as malaria, and 

metabolic disorders such as obesity. 

Insect-borne diseases have a profound impact on world health both 

through human diseases such as malaria and yellow-fever, and through the 

devastation of crops that are important for food production.  In both cases, it is 

the insectʼs feeding behavior that ultimately leads to infection and spread of 
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disease.  By understanding the genes that are involved with regulating feeding 

behavior in mosquitoes, we may uncover novel targets for drugs that can confuse 

the mosquitoʼs normal drive for blood-feeding.  More specifically, by uncovering 

one or two odorant receptors that are especially important for host-seeking, we 

can target these receptors in a small molecule screen that looks for inhibitors of 

mosquito OR function. 

Studying feeding behavior in insects, and especially in the genetically 

tractable fly, can also help us uncover new genetic pathways that are involved in 

diseases related to food intake.  Obesity continues to be an important and 

increasing threat to global health.  Disorders of food intake have largely been 

studied in humans and in rodent models, and this has been a worthwhile 

approach, as such studies have uncovered some of the central regulator of 

appetite in humans, including leptin and NPY.  However, simple organisms such 

as the fly are emerging as powerful models for uncovering and understanding 

new genes that are important for feeding regulation.  Our unbiased microarray in 

Drosophila illustrates the utility of using flies to find genetic pathways related to 

obesity. We found that a component of the ciliary rootlet is important for normal 

feeding regulation.  We can therefore use Drosophila to understand the 

mysterious connection between cilia and food intake, which was previously 

recognized through disorders like Bardet-Biedl, but which remains poorly 

understood.  Further studies of feeding behavior in Drosophila should reveal 
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other conserved genes that regulate appetite, and which may lead to novel 

therapeutics for obesity. 

In 1976, Vincent Dethier, a pioneer in the study of insect feeding wrote: 

“Since no evidence has been found that an endogenous neural center drives 

feeding behavior, the peripheral chemosensory receptors…constitute the sole 

source of excitatory input that initiates and drives feeding” (Dethier, 1976). In the 

thirty-four years since Dethier wrote The Hungry Fly, Drosophila has been used 

to understand complex behaviors such as courtship, aggression, and olfactory 

learning (Vosshall, 2007). The time is ripe to extend the tools available to 

Drosophila geneticists to locate the endogenous neural centers that drive 

feeding. This is crucial to our understanding of an essential component of animal 

behavior, and the knowledge we gain in an insect model has the potential to aid 

in future studies of feeding in disease vectors as well as in humans. 
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