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The Role of 53BP1 in 
 DNA Double-Strand Break Repair  

 
Anne Helen Bothmer, Ph.D. 

The Rockefeller University 2011 
 
 
DNA double-strand breaks (DSBs) are dangerous insults to DNA integrity and can 

lead to genome instability if left unrepaired. However, the immune cell 

diversification reactions V(D)J recombination and Class Switch Recombination 

(CSR) require the formation of DSB intermediates, a process that is tightly controlled 

and strictly limited to developing B and T cells. CSR in B cells diversifies antibodies 

by joining DSBs between highly repetitive DNA elements, which are separated by 

60-200 kb. Switch region DSBs are joined by a mechanism that requires an intact 

DNA damage response and classical or alternative non-homologous end-joining (C-

NHEJ and A-NHEJ). Among DNA damage response factors, absence of 53BP1 leads 

to the most severe defect in CSR. Similarly, the loss of 53BP1 leads to impaired 

joining of distal DSBs during V(D)J recombination and results in  abrogated trans-

chromosomal fusions of dysfunctional telomeres. Interestingly, joining of proximal 

switch region internal DSBs is not affected by the absence of 53BP1, leading to the 

hypothesis that 53BP1 affects the joining of only a subset of DSBs. Here I use the I-

SceI meganuclease system to introduce site-directed DSBs in order to establish the 

effect of 53BP1 on the joining of trans-chromosomal and intra-chromosomal DSBs 

separated by various distances. I provide evidence that 53BP1 facilitates joining of 

intra-chromosomal DSBs, but that this effect is limited to a range that coincides with 

the spread of DNA damage response factors. I then explore the role of 53BP1 in 

DNA repair, and find that the absence of 53BP1 results in a distance-independent 



   

increase in DNA end resection and that resected DNA is preferentially repaired by 

microhomology mediated A-NHEJ. Furthermore, analysis of 53BP1 mutants shows 

that chromatin association, oligomerization, and N-terminal ATM phosphorylation 

sites are all required for preventing DNA end resection and joining as measured by 

immunoglobulin CSR.  

In summary, these data provide new insights the molecular mechanisms by which 

53BP1 facilitates DSB joining during CSR and its contribution towards the 

maintenance of genomic stability. 
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CHAPTER 1:  

Introduction 

A DNA double-strand break (DSB) is one of the most serious insults to the 

integrity of our genome and can pose a threat to the survival of the entire 

organism: unrepaired DSBs can induce genomic rearrangements such as 

chromosomal deletions, amplifications and translocations – all of which are 

hallmarks of cancer. The origins of DSBs are diverse and can be generally 

classified as arising from either exogenous or endogenous sources. Exogenous 

sources of DSBs include exposure to ionizing radiation (IR), ultraviolet light 

(UV), chemicals or genotoxic agents, for example during chemotherapy 

treatment. Endogenous DSBs can form as accidental by-products of normal 

cellular metabolism: replication fork collapse, reactive oxygen species, collision 

of transcription and replication or the presence of critically short telomeres. 

Lastly, DSBs arise as intermediates in physiological reactions, most prominently 

in the developing immune system during V(D)J recombination and Class Switch 

Recombination (CSR), and in germ cells during cross-over reactions in meiosis. 

Regardless of their origin, DSBs are toxic and unrepaired damage may lead to 

genomic instability with detrimental consequences for possibly the entire 

organism. To ensure the faithful repair of DSBs the cell has evolved a complex 

system of DNA damage sensors, signal transducers and effector proteins. 

Together this system arrests the cell cycle and invokes DNA repair or initiates 

apoptosis if the damage is too severe to be repaired. The importance of a 

functional DNA damage response is exemplified by the clinical manifestations of 

mutations in DNA damage response pathways. Individuals inflicted with 
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inherited defects display to various degrees immune deficiencies, sterility, 

developmental disorders, neurodegenerative diseases and a marked 

predisposition to cancer.  

 

In my thesis work, I will explore the role of the DNA damage response 

and of DNA repair in CSR, one of two immune diversification reactions that 

require DSB intermediates. The first part of the introduction focuses on the DNA 

damage signaling pathways involved in the recognition of DSBs and the repair 

pathways that are employed by cells to fix the damage. In the second part of the 

introduction I will focus on programmed DSBs in the context of immune system 

diversification reactions. I will describe the molecular mechanisms by which 

DSBs are introduced, the role of DNA damage signaling and the role of repair 

pathway choices during those reactions. This will lay the groundwork for the 

experimental design in which we use immune cells to study aspects of DNA 

repair as they pertain to the outcome of immune cell diversification reactions. 
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The DNA damage response 

The DNA damage sensor: MRN  

MRN is a large multiprotein complex comprising of two MRE11, two 

RAD50 and a yet undetermined number of NBS1 molecules (1). MRN is one of 

the first complexes to recognize a DSB and initiate repair (2, 3). MRE11 forms a 

homodimer and when associated with RAD50 possesses DNA binding activity as 

well as single-stranded DNA (ssDNA) endonuclease activity and 3’-5’ 

exonuclease activity (4-7). This endows the MRN complex with the ability to 

initiate processing of broken ends for further DNA repair steps.  

RAD50 contains an N-terminal Walker A and a C-terminal Walker B domain, 

which interact with each other forming a globular ATPase domain, while the 

intervening part extends as a coiled-coil. The globular part of RAD50 is also the 

site at which it binds to MRE11, leading to formation of the MRE112RAD502 

complex (1, 8, 9).  

NBS1, the third component of the MRN complex, binds to MRE11 (10). In 

contrast to MRE11 and RAD50, NBS1 has no known catalytic activity, but instead 

is essential for nuclear localization of MRE11 and RAD50 and for activation of 

downstream DNA damage signaling (11, 12). NBS1 contains a Fork-Head 

Associated (FHA) domain at its N-terminus followed by tandem BRCA1-Related 

C-Terminal (BRCT) domains; both are phosphopeptide-binding motifs commonly 

found in DNA damage response proteins (10, 12). Moreover, NBS1 contains 

several S/T-Q motifs, which are targets of ATM kinase phosphorylation (13). 

Importantly, NBS1 is responsible for recruiting and concentrating ATM at the 

site of the break (11, 12). 
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Besides NBS1 mediated activation of downstream signaling, the MRE11 

component of the MRN complex can juxtapose two broken ends to facilitate 

DNA repair (9), while RAD50 may be involved in promoting long-range 

interactions between two sister chromatids through dimerization of the coiled-

coil domains (4). 

The importance of the MRN complex is reflected by the embryonic lethality of 

null mutations of any of its components (14-16). Human patients bearing a 

hypomorphic mutation of the NBS1 gene display Nijmegen breakage syndrome, 

which is characterized by cancer predisposition, immunodeficiency and 

developmental defects (17). Similarly, hypomorphic mutations in MRE11 lead A-

T like disorder, a disease that is similar to the defect displayed in the absence of 

its downstream signaling partner ATM (18).  

 

Central player in the DNA damage response: ATM 

Ataxia-telangiectasia mutated (ATM) was identified as the gene that is mutated 

in patients with the rare autosomal recessive disorder ataxia-telangiectasia, 

leading to the name A-T mutated (ATM; (19). Mutations in the atm gene lead to a 

wide array of symptoms, the most pronounced of which are cancer 

predisposition, radiation sensitivity, cerebellar ataxia and progressive 

neurodegeneration. The severe phenotypes observed in A-T patients underscore 

the importance of ATM as one of the central players for the maintenance of 

genome integrity.  

ATM is a member of the phosphoinositide 3-kinase-related protein kinase 

(PIKK)-family and like other members of this kinase family preferentially 

phosphorylates serine or threonine residues followed by glutamine (consensus 
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phosphorylation site: S/T-Q; (20, 21). ATM phosphorylates more than 700 

downstream targets, which are involved in cell-cycle regulation and DNA repair 

(22, 23).  The first identified target of ATM phosphorylation after DNA damage 

was p53, which in turn induces p21, resulting in the inhibition of the 

CyclinE/CDK2 complex leading to cell-cycle arrest at the G1-S transition (24, 25). 

Furthermore, ATM signaling can activate the intra-S phase checkpoint by 

phosphorylating the effector kinase CHK2, which then phosphorylates and 

thereby marks for degradation the phosphatase CDC25A, resulting in the 

inhibition of DNA replication (26, 27). Moreover, ATM signaling can arrest cells 

at the G2/M checkpoint by activating the CHK2 kinase, which then 

phosphorylates the phosphatase CDC25C, leading to the inactivation of 

CyclinB/CDC2, whereby transition into mitosis is prevented (28).  

ATM is a predominantly nuclear protein, which in the absence of DNA damage 

forms an inactive dimer (29). The C-terminal portion of NBS1 recruits ATM to 

the site of the break, followed by ATM autophosphorylation at serine 1981 

leading to its dissociation into active monomers.  

The functional significance of ATM autophosphorylation of serine 1981 remains 

controversial. An ATM-/- mouse expressing ATM with a phosphorylation site 

mutation (serine 1987 mutated to alanine) using a BAC transgene did not show 

radiation sensitivity, cell-cycle defects or deficiencies in phosphorylation of 

downstream targets such as CHK2 or p53 (30). Since the hallmarks of ATM 

activation are intact in those mice, serine 1987 autophosphorylation in mice does 

not seem to be exclusively responsible for ATM activation.  

At the site of the DSB, ATM phosphorylates a plethora of targets, including NBS1 

of the MRN complex, establishing a positive feedback loop, which leads to the 
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recruitment of more ATM and MRN, amplifying the damage signal (3, 11). This 

amplification step is thought to be an essential component of the DNA damage 

response, ultimately leading to the formation of cytologically visible DNA 

damage foci.  

 

DNA damage factor recruitment hub: γH2AX 

DNA damage leads to modifications of the chromatin surrounding the 

DSB. The hallmark of an active DNA damage response is the ATM dependent 

phosphorylation of the C-terminal serine 139 residue of the chromatin 

component histone H2AX  (γH2AX, (31, 32)). This modification is very rapidly 

induced and nuclear γH2AX foci at the site of the DSB can be observed as soon 

as one minute after damage induction (33). However, the absence of ATM still 

leads to detectable γH2AX focus formation, indicating significant redundancy in 

the phosphorylation pathways: two other PIKKs, ATR and DNA-PKcs, have 

been implicated in H2AX phosphorylation in the absence of ATM during 

replication stress (34). The phosphorylation of H2AX is thought to spread to 

hundreds of kilobases surrounding the break (33). H2AX serves as an anchor and 

promotes the recruitment and accumulation of many downstream targets, 

initiated by its direct interaction with the tandem BRCT domains of the mediator 

protein MDC1 (35, 36).  

H2AX deficient mice are viable, but harbor an increased frequency of 

chromosome and chromatid breaks after IR, indicating a defect in DNA repair 

(37, 38). In contrast to ATM deficient mice, H2AX deficiency leads to increased 

tumor incidence only in the absence of p53, which is required for the induction of 
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apoptosis in cells with unrepaired DSBs (39, 40). Furthermore, H2AX-/- mice 

display increased sensitivity to radiation and males are infertile due to a defect in 

DSB break repair during meiotic recombination in germ cells (41).  

 

Mediator of DNA damage factor recruitment: MDC1 

MDC1 is a large nuclear protein that similarly to many other members of 

the DNA damage response contains an N-terminal FHA domain and C-terminal 

tandem BRCT domains (36, 42-44). MDC1 interacts constitutively with the MRN 

complex mediated by binding of the FHA domain in NBS1 to a DNA damage 

independent phosphorylation site in MDC1 (45-48). Importantly, the BRCT 

domains of MDC1 bind to DNA damage inducible γH2AX, which is consistent 

with kinetic studies of DNA damage focus formation that have shown γH2AX 

foci to precede MDC1 foci (36, 49).  

Recently, ubiquitylation of DSB flanking chromatin has been discovered 

as an entire new arm of the DNA damage response (50-52). The recruitment of 

factors mediating ubiquitylation crucially depends on MDC1 and will be 

described in more detail in the next paragraph. MDC1-/- mice are viable and 

closely resemble the phenotype of H2AX-/- mice: male infertility, radiosensitivity 

and checkpoint defects (35). 

  

Chromatin modifications: RNF8 and RNF168 

RNF8 is a DNA damage response protein that contains an N-terminal FHA 

domain and a C-terminal RING-finger domain and thereby is functionally 

classified as a member of the E3 ubiquitin ligase family (50-52). RNF8 rapidly 
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forms foci at sites of DSBs and this accumulation is dependent on the previous 

recruitment of MDC1 and by extension on H2AX. Specifically, the FHA domain 

of RNF8 binds a phosphorylated S/T-Q motif in the N-terminus of MDC1 (50-

52). In contrast, the RING-domain mediated ubiquitin ligase activity of RNF8 is 

dispensable for its accumulation at sites of DNA damage, but is required for 

ubiquitylation of H2AX or H2A (50-52). Interestingly, the recruitment of 

downstream factors such as 53BP1 and BRCA1 is severely compromised in the 

absence of RNF8 catalytic activity, indicating that ubiquitylation plays in 

important role in regulating DNA repair. RNF8-/- mice display increased 

chromosome instability and predisposition to cancer. In addition, RNF8 

deficiency leads to male infertility as a result of meiotic defects (53, 54).  

Although required, RNF8 is not sufficient to maintain ubiquitylation of 

damaged chromatin. Another layer of regulation has been uncovered with the 

identification of RNF168, which similarly to RNF8 is a member of the RING-

finger ubiquitin ligase family (55, 56). RNF168 contains two MIU (Motif 

interacting with Ubiquitin) motifs, which allow for its direct association with 

ubiquitin moieties, a process that is dependent on previous ubiquitylation of 

H2A-type histones by RNF8. The association of RNF168 with the ubiquitin 

conjugating enzyme UBC13 is required for sustained ubiquitylation of damaged 

chromatin and the catalytic activity of RNF168 is essential for efficient 

accumulation of 53BP1 and BRCA1 at sites of DSBs (55, 56). Interestingly, 

mutations in the rnf168 gene were identified in patients with a rare disorder 

called RIDDLE syndrome, which is characterized by radiosensitivity, 

immunodeficiency, dysmorphic features and learning disabilities (56).  
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Figure 1.1. Accumulation of DNA damage response factors at DSBs 
DSBs are sensed by the MRN complex, which recruits and activates ATM at the site of 
the break. ATM activation leads to the phosphorylation of many downstream proteins, 
such as the histone variant H2AX. Phosphorylated H2AX recruits MDC1, which in turn 
recruits RNF8, RNF168 and UBC13 to induce ubiquitylation of damaged chromatin. This 
then leads to the recruitment of downstream components such as 53BP1 and BRCA1. 
Phosphorylation of H2AX spreads to areas surrounding the DSB, leading to the 
accumulation of DNA damage response factors several hundred kilobases away from 
the DSB.                   (image adapted from Nussenzweig et al., Cell 2010) 
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 DNA damage effector: 53BP1 

The protein 53BP1 was discovered in a yeast two-hybrid screen tailored to 

identify new interaction partners of p53 (57). A wild type fragment of murine 

p53 was fused to the Gal4 DNA binding domain, while a cDNA library was 

fused to the activation domain, leading to transcription of a target gene only if 

the p53 fragment interacts with a partner fused to the transactivation domain. 

53BP1 (p53 binding protein 1) emerged from this screen as a novel p53 

interacting protein. 

In those early years 53BP1 was mainly studied to gain mechanistic insight into 

p53 function. In this context, 53BP1 was shown to bind to the central DNA 

binding domain of p53 (57). Functionally 53BP1 enhances p53 transactivation 

activity in vitro, and is therefore considered a transcriptional coactivator of p53 

(58). 53BP1 itself moved into the spotlight when an amino acid homology to the 

BRCT domain was identified (59). BRCT domains are commonly found in 

proteins involved in the recognition and repair of DNA damage. Furthermore, 

the sequence homology to Rad9, a central DNA damage induced checkpoint 

protein in S.cerevisiae, strongly implied a function for 53BP1 in response to DNA 

damage (60). Indeed, upon treatment with IR 53BP1 rapidly forms distinct 

nuclear DNA damage foci and colocalizes (among many other factors) with 

γH2AX (60-62). 53BP1 is also a substrate of the ATM kinase (61), but ATM 

activity is not essential for 53BP1 focus formation upon IR (60, 62). The functional 

significance of ATM mediated phosphorylation of 53BP1 is not well understood.  
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53BP1 is a large nuclear protein of 1972 amino acids (Figure 1.2). Besides the 

well-defined C-terminal tandem BRCT domains, 53BP1 contains a tandem tudor 

domain spanning amino acids 1486-1540 (human 53BP1; (63)). This domain 

displays a high degree of conservation throughout evolution and is present in 

the 53BP1 orthologues Crb2 and Rad9 of S.pombe and S.cerevisiae, respectively 

(64).  Importantly, the tandem tudor domain of 53BP1 is strictly required for 

focus formation after IR induced damage (63, 64). Tudor domains are methylated 

histone-binding motifs; however, the identity of the histone interaction partner of 

53BP1 remains controversial. In an initial study, the structure of the tudor 

domain was solved by X-ray crystallography and a pocket between the two 

tudor folds was shown to interact selectively with dimethylated H3K79 

(HeK79me2; (64)). Moreover, mutational analysis of residues within the binding 

pocket, specifically substitution of the aspartic acid residue at position 1521 with 

arginine (D1521R), completely abrogates 53BP1 focus formation. However, in a 

subsequent study a genetic depletion of DOT1, which is the enzyme responsible 

for the dimethylation of H3K79, showed no impaired focus formation of 53BP1, 

leading to the conclusion that the histone interaction is probably not mediated 

through H3K79me2 (65). The search for an alternative interaction partner 

resulted in the identification of dimethylated H4K20 (H4K20me2) as a 

preferential binding partner and at lower affinity monomethylated H4K20 

(H4K20me1; (65)). H4K20me2 appears to be a constitutive histone mark (65, 66) 

and is catalyzed by the histone methyltransferases SUV4-20H1 and SUV4-20H2 

(67, 68). A double knockout of both enzymes leads to the expected decrease of 

H4K20me2 species, but again focus formation of 53BP1 was only mildly affected 

by the combined absence of these two methyltransferases (69). One possible 
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explanation for this observation is that H4K20me1 (which is increased as a result 

of the SUV4-20H1/H2 double knockout) is sufficient to mediate 53BP1 chromatin 

interaction. An alternative explanation is that both H3K79me2 and H4K20me2 

can mediate binding of the tudor domain to chromatin, or that a different histone 

modification altogether is the tudor domain binding partner. 

Both H4K20me2 and H3K79me2 are constitutive histone marks and do not 

appear to change globally after DSB formation. In contrast, phosphorylation of 

histone H2AX on serine 139 is induced by DNA damage and stable 53BP1 focus 

formation is dependent on this modification (70-72). Although weak 53BP1 foci 

form 30-45 min after IR exposure of H2AX-/- MEFs, 53BP1 foci are not maintained 

at later time points (70, 73). A set of early experiments showed that γH2AX can 

immunoprecipitate 53BP1 upon IR-mediated DNA damage (62, 72). However, 

the interaction between γH2AX and 53BP1 is likely not direct but occurs via 

γH2AX dependent recruitment of the E3 ubiquitin ligases RNF8 and RNF168 (50-

52). Consistent with this model is the finding that deficiencies in RNF8 or 

RNF168 abrogate sustained 53BP1 focus formation. However, the precise 

mechanism by which ubiquitylation of damaged chromatin regulates 53BP1 

recruitment remains to be elucidated, as there is also no evidence for a direct 

interaction between 53BP1 and ubiquitin moieties.  

In summary, these observations imply that 53BP1 binding to dimethylated 

histones is required, but binding is not sufficient for 53BP1 focus formation. 

Sustained accumulation of 53BP1 in a focus requires ongoing DNA damage 

signaling. Interestingly, a recent report showed that the histone 

methyltransferase MMSET dimethylates H4K20 locally at the site of the DSB 
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whereby it recruits 53BP1 (74). However, recruitment of MMSET is dependent on 

damage-induced γH2AX, indicating the presence of only one, damage-inducible 

53BP1 recruitment pathway. 

An additional requirement for focus formation is the ability of 53BP1 to form 

homo-oligomers and the domain responsible for this activity mapped to residues 

1231-1277 (75, 76).  

The fragment of 53BP1 spanning aa 1220-1711 is the minimal region required for 

focus formation and includes the oligomerization domain, the tandem tudor 

domains and the nuclear localization sequence (NLS) (63, 72).  Interestingly, 

overexpression of the focus-forming fragment was shown to suppresses 

homologous recombination in a human cell line, indicating a role for 53BP1 in 

DNA reapir (77). 

The C-terminal BRCT domains and the N-terminal portion of 53BP1 comprising 

of multiple S/T-Q motifs (phosphorylation targets of ATM) are dispensable for 

the accumulation of 53BP1 at sites of DNA damage (78). However, although loss 

of ATM mediated phosphorylation of the N-terminus does not affect 53BP1 focus 

formation, repair of DSBs is negatively affected, as evidenced by sustained H2AX 

phosphorylation (75). 

53BP1-/- mice are viable and do not display cell proliferation defects, have only 

minor checkpoint defects and are mildly susceptible to thymic lymphomas (79). 

Tumors develop more rapidly in the combined absence of p53, indicating that 

p53 acts cooperatively with 53BP1 in tumor suppression (80).  
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Figure 1.2. Schematic of human 53BP1 functional domains and 
phosphorylation sites. 
Human 53BP1 is a 1972 amino acid protein. The predominantly N-terminal ATM 
phosphorylation consensus sites (S/T-Q motifs) are indicated by black arrows. 
The LC8 domain which interacts with the dynein light chain is shown in red. The 
oligomerization domain is shown in orange, the Glycine Arginine Rich (GAR) 
domain that becomes substrate for PRMT1 mediated methylation is shown in 
grey. The chromatin interacting tudor domain is shown in green, followed by the 
NLS in light blue. The C-terminal BRCT portion of the molecule is shown in dark 
blue. Amino acid positions are induicated below the respective functional 
domain. 
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DNA repair pathways 

DSBs can be repaired by one of two evolutionarily conserved pathways: 

Homology directed repair (HR) or non-homologous end joining (NHEJ).  

During HR, the undamaged sister chromatid is used as a template for repair. 

This ensures a high degree of fidelity but also limits the utility of this pathway, 

as templates for repair are only present in late S phase and during the G2 phase 

of the cell cycle. In contrast to HR, NHEJ functions independently of the cell 

cycle. NHEJ comprises of two pathways: classical-NHEJ (C-NHEJ) and 

alternative-NHEJ (A-NHEJ). While the C-NHEJ pathway is very well 

characterized, the molecular constituents of A-NHEJ are only beginning to be 

understood. For both pathways small deletions and insertions are frequent, 

which make C-NHEJ and A-NHEJ less conservative form of DSB repair than HR.  

 

Homologous recombination 

Templates for accurate repair of DSBs by HR are only proximal once the 

respective chromosomes have been replicated in late S phase and during G2. HR 

is initiated by resection of the 5’ strand at the site of the DSB, leaving a 3’ ssDNA 

overhang. The enzymatic machinery required for efficient end resection has 

recently been described in S.cerevisiae, where end resection occurs in two phases.  

In the first phase resection is initiated by the recruitment of the Mrx complex, 

followed by Sae2 accumulation. Whereas initial Mrx recruitment to the site of the 

DSB is ATM independent, Sae2 recruitment requires ATM activity (81-83). The 

initial actions of Mrx and Sae2 (at the site of the DSB expose ~ 50 - 100 nt of 

ssDNA (84-86). DNA repair pathway choice is made at the step of end resection 
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and it is therefore not surprising that end-resection is regulated in a cell-cycle 

specific manner. Specifically, Sae2 is phosphorylated on serine 267 by the S-phase 

specific kinase Cdk2, activating Sae2 catalytic activity. Accordingly, mutation of 

serine 267 leads to severely impaired resection activity in areas proximal to a 

DSB (87, 88).  

Subsequently, more extensive end resection is initiated by the combined 

activities of Sgs1 (DNA helicase), the 5’-3’ exonuclease Exo1 and the helicase and 

nuclease Dna2. Dna2 and Exo1 are redundant with respect to end processing. 

The combined absence of Exo1 and Sgs1 leads to a more severe resection defect 

than the combined absence of Sgs1 and Dna2, leading to the conclusion that Sgs1 

and Dna2 operate in the same pathway and Exo1 is responsible for DNA end 

resection in the absence of Dna2 (84-86). However, even the most drastic long 

distance resection defect observed in the combined absence of Dna2, Sgs1 and 

Exo1 leads to severely, but not completely, compromised homologous 

recombination (a functional readout of end resection proficiency). Likely, the 

initial end trimming of 50 - 100 nt by the Mrx complex and Sae2 is sufficient for 

the repair of a DSB by homologous recombination, albeit at reduced frequency.  
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Figure 1.3. DNA end processing after DSB formation. 
In the initial “end trimming” step the Mrx complex with Sae2 process the broken DNA 
ends endo– and exonucleolytically, revealing 50-100 nts of 3’ ssDNA overhang. The then 
following end resection step is mediated by the enzymes Sgs1/Dna2 or Exo1. Extensive 
end resection is required for efficient repair by homologous recombination.  
 
 
The 3’ ssDNA overhang generated by resection of the 5’ strand is rapidly bound 

by the abundant ssDNA binding protein Replication Protein A (RPA), which 

recruits the ATRIP/ATR complex along with the RAD9-RAD1-HUS1 complex 

leading to the activation of the checkpoint protein CHK1. This in turn halts the 

cell cycle by activation of the G2/M checkpoint (89, 90). 

The ssDNA-RPA complex recruits another protein, RAD51, which forms a 

nucleoprotein filament (91, 92). This intermediate is essential for HR because it 

mediates homology search by strand invasion of the sister chromatid or the 

homologous chromosome, leading to the formation of a displacement loop. DNA 

synthesis is initiated and leads to the extension of the 3’ invading strand to copy 
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the sequence information of the sister chromatid or homologous chromosome 

(reviewed in (93). Subsequently, repair can progress through several pathways 

with different outcomes: during synthesis-dependent strand annealing (SDSA) 

the extended strand dissociates and re-anneals to the complementary DNA end 

that was exposed during resection, in which case the repair reaction is completed 

in the most conservative form, without a crossover reaction. Alternatively, the 

second broken DNA end can be “caught” by the displacement loop, forming a 

double Holliday junction. Depending on which enzymes resolve the Holliday 

junction, these repair reactions can result in non-crossover or crossover repair 

products.  

 

Classical non-homologous end-joining (C-NHEJ) 

During NHEJ DSBs are repaired without the “help” of homologous sequence. 

This pathway is inherently error prone and can entail loss of sequence or 

mutations at the junctions. The core NHEJ machinery consists of the KU70/KU80 

complex, XRCC4 and DNA Ligase IV (LIG4) (reviewed in (94). All of the core 

NHEJ factors are evolutionarily conserved. The non-conserved accessory factors 

DNA-PKcs and Artemis facilitate end-joining of certain complex end structures, 

but are not absolutely required for DNA repair.  

C-NHEJ is initiated by the rapid binding of the KU70/80 complex to the DSB (95, 

96). The KU complex specifically interacts with DNA ends and is unable to 

associate with or dissociate from circular DNA (97). Binding of the Ku complex 

leads to the recruitment of DNA-PKcs, which upon binding to the DSB acquires 

serine/threonine kinase activity (98, 99). The KU/DNA-PKcs complex acts as a 

protein hub for the recruitment of many downstream DNA repair factors such as 
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Artemis, Polymerase μ (Polμ), XRCC4 and LIG4 (100-102). Pathologic DSBs leave 

behind greatly varying substrates and NHEJ must therefore possess great 

flexibility to efficiently join such vastly differing end structures. Trimming of the 

ends in preparation for ligation is stimulated by DNA-PKcs induced 

phosphorylation of Artemis, an exo- and endonuclease, which cleaves off both 5’ 

and 3’ overhangs (101, 103, 104). After initial nucleolytic end processing, the 

error-prone polymerase Polμ can add nucleotides to the end in a template-

independent fashion (105). Polμ is one of the most flexible polymerases in its 

family and therefore ideally suited to process ends during NHEJ. Subsequently, 

the ligation components XRCC4 and LIG4 ligate the processed ends together. 

LIG4 is a flexible ligase: it can ligate blunt ends and ends with small 

microhomologies (106, 107). In summary, the C-NHEJ pathway is characterized 

by small end modifications (nucleotide losses or additions) and limited 

microhomology at the junction ranging from 0-4 nt, with the majority of the ends 

being ligated without the presence of microhomology.  

 

Alternative non-homologous end-joining  

A-NHEJ is a still poorly defined pathway, which is characterized by the 

predominance of microhomology at the joining junction and extensive sequence 

deletions, making it a less conservative pathway than the already error-prone C-

NHEJ pathway. Joining by A-NHEJ was first encountered in cell lines deficient 

for C-NHEJ components KU80, XRCC4 or LIG4 (108-110). The molecular 

requirements for A-NHEJ remain to be elucidated. Repair factors that have been 

shown to contribute to A-NHEJ are MRE11 and CTIP, both of which are also 
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responsible for the first phase of end-resection during HR (111). End resection is 

thought to be involved during A-NHEJ, as stretches of homology can be exposed 

and used for annealing. A-NHEJ may be less efficient and kinetically slower than 

C-NHEJ and entails sequence deletions (112). Though the physiological function 

of this pathway has not yet been established, A-NHEJ is thought to mediate the 

joining of a subset of DSBs during chromosome translocation (113-116).  
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Model Systems  

In the next paragraphs model systems will be described, which are used to study 

the DNA damage response and DNA repair processes. A brief discussion on 

using ionizing radiation for DSB formation is followed by the description of 

endonucleases as tools to induced DSBs. Finally, we will briefly discuss how the 

ends of chromosomes, telomeres, are perceived as DSBs in the absence of proper 

protection. 

 

Ionizing radiation induced DSBs 

Treatment of cells with IR results in the formation of DSBs, either by direct 

collision of high frequency electromagnetic waves with DNA, or indirectly, 

through the ionization of H2O molecules, leading to the creation of hydroxy 

radicals (OH-). Radicals are extremely reactive intermediates with the potential to 

damage molecules in their vicinity. By far the most frequent insults to DNA after 

IR are single strand breaks (SSBs). In addition, each Gy of IR leads to the 

formation of ~ 35 DSBs per cell (32). IR induced DNA damage is a convenient 

way of introducing high amounts of DNA damage that has been and still is used 

by many laboratories to assay functional aspects of the DNA damage response. 

However, a major drawback of using IR is the heterogeneity of the type of lesions 

introduced and the lack of spatial control. The DNA damage response is context 

dependent and differs for example for lesions in heterochromatic versus 

euchromatic regions (117), or depends on the quality of the lesion. Hence, fine 

mapping of DNA damage signaling networks requires the ability to introduce 

DSBs in a spatially and temporally controlled manner.  
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Endonuclease induced DSBs 

Homing endonucleases are enzymes, which recognize specific DNA target sites 

and induce DNA cleavage (reviewed in (118). The first homing endonuclease to 

be identified was a protein called I-SceI that mediates lateral transfer of genetic 

information in yeast. The I-SceI recognition site is an 18 nt sequence, that is not 

present in either the mouse or human genome. If introduced by gene targeting or 

random integration, I-SceI sites can serve as unique recognition sites for the I-

SceI enzyme, leading to the formation of a DSB. The advantage of this system is 

the exquisite temporal and spatial control over DSB formation. Also, the end 

structure of the broken DNA is known: cleavage of the I-SceI recognition site by 

the I-SceI endonuclease results in a 4 nt 3’ overhang. Similar to I-SceI, the HO 

endonuclease in yeast, which initiates mating type switching, is commonly used 

to address DNA damage and repair kinetics.  

 

Dysfunctional telomeres  

Telomeres are specialized structures at the ends of linear chromosomes that 

protect them against degradation. Linear chromosomes are protected from 

recognition by the DNA damage response by the presence of telomeric DNA and 

the protein complex shelterin, which specifically binds to telomeric repeat 

sequences (reviewed in (119). Shelterin is composed of six individual proteins: 

TRF2, TRF1, POT1, RAP1, TIN2 and TPP1.  The absence of protective factors 

leads to the activation of the DNA damage response and DNA repair, leading to 

aberrant chromosome-to-chromosome fusions. Loss of the shelterin component 

POT1 leads to the activation of ATR kinase signaling, leading to predominantly 

post-replicative chromatid or sister fusions (120, 121).  
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In contrast, the absence of TRF2 leads to the rapid activation of the ATM 

signaling pathway resulting in chromosome-type fusions involving ~30-60% of 

all chromosomes, detectable in metaphase spreads or in southern blot assays 

(120, 122, 123). Upon TRF2 deletion, DNA damage response factors such as the 

MRN complex, ATM, γH2AX, MDC1 and 53BP1 accumulate at the telomeric 

repeat sequences in specialized structures, called telomere dysfunction-induced 

foci and promote checkpoint signaling and fusion (124-126). Interestingly, DNA 

damage response factors are required for fusion of dysfunctional telomeres. For 

instance, NBS1 deficiency leads to a failure to activate ATM signaling, revealing 

that the MRN complex is the sole sensor for ATM activation (127). Furthermore, 

loss of NBS1 leads to abrogated chromosome fusions in G1. Similarly, ATM 

deficiency leads to ~ 15 fold reduction in chromosome fusion (122). Strikingly, 

the most severe fusion defect is observed in the absence of 53BP1, where only 1-

2% of residual fusions are detectable (124). Telomere fusions in the absence TRF2 

are facilitated by telomere mobility, which allows for the sampling and 

eventually encounter other telomeres to initiate the fusion reaction. The absence 

of 53BP1 in this context was shown to severely compromise the mobility of 

dysfunctional telomeres in an ATM dependent manner, indicating that 53BP1 

enhances chromatin dynamics and thereby facilitates joining of distal 

chromosome ends (124).  

Facilitated by DNA damage response factors, chromosome fusions in the absence 

of TRF2 are dependent on LIG4 and KU70 activity and are therefore mediated by 

the C-NHEJ pathway in the G1 phase of the cell cycle (122, 128). 
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V(D)J recombination and CSR  

The immune system requires DSBs as intermediates during endogenous 

rearrangement reactions that generate antibody diversity and enhance its ability 

to recognize and eliminate antigens. Many discoveries, especially related to the 

end-joining pathways, have been made using developing lymphocytes as model 

system for DNA repair. The following sections will describe the rearrangement 

reactions and the ensuing steps of DNA damage recognition and repair in detail.  
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DSBs in Immune System Diversification Reactions 
 
 
Adaptive immunity has evolved to effectively protect against a wide array of 

disease-causing organisms. Receptors on B and T lymphocytes are capable of 

recognizing the enormous diversity of pathogens by displaying an almost 

infinite range of antigen binding specificities. This remarkable variety cannot be 

encoded in the genome, but is created de novo by somatic gene alteration 

mechanisms. Immunogloblins (Igs) are the antigen receptors on B cells, and are 

either expressed on the cell surface or secreted into the bloodstream as soluble 

antibody molecules. Though not a focus of this thesis, antigen recognition by T 

cells is mediated by a membrane bound T cell receptor, of which, however, no 

soluble version exists.  

 

Antibody diversification mechanisms 

An antibody molecule consists of two identical heavy chains and two identical 

light chains (Figure 1.3 A). The heavy chains are connected to each other and to 

the light chains through disulfide bonds. The N-terminal portions of the heavy 

and light chains physically interact with the antigen and are collectively referred 

to as the antigen-binding site or variable region (Figure 1.3 B). Not surprisingly it 

is this part of the antibody molecule that needs to display the highest degree of 

diversity. Early in B cell development, before exposure to antigen, B cells 

assemble the variable region by a process called V(D)J recombination, which 

involves the combinatorial shuffling of different gene segments. Assembly of the 

variable region of the heavy chain involves rearrangement of variable (V), 

diversity (D) and joining (J) gene segments. The variable region of the light chain 
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is assembled by a rearrangement reaction of V and J gene segments only, either 

at the Igλ or Igκ locus. After stimulation with antigen, B cells can undergo two 

additional Ig diversification reactions: Somatic Hypermutation (SHM) and Class 

Switch Recombination (CSR).  

SHM introduces non-templated point mutations into the previously assembled 

variable region. Mutations resulting in increased affinity for the antigen are 

selected for in the germinal center reaction, yielding antibodies of enhanced 

specificity to the antigen.  

CSR modifies the C-terminal portion of the antibody molecule, also called the 

constant region. The constant region determines the IgH isotype of the antibody 

and antibodies of different isotypes mediate different effector functions. During 

CSR one constant region is exchanged for another through a deletional 

recombination reaction. Thereby CSR alters the effector function of the antibody 

molecule but maintains the same antigen specificity.  
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Figure 1.4. Schematic of an Immunoglobulin molecule.  
(A) Immunoglobulins are composed of two identical heavy chains (blue) and two 
identical light chains (green). Disulfide bonds connect heavy chains to each other and 
light chains to heavy chains. 
(B) Shown in red is the variable (V) – region, which recognizes and physically interacts 
with antigen. Shown in orange is the constant region, which is encoded by the 
immunoglobulin heavy chain locus and determines the effector function of the antibody. 
 

V(D)J recombination 

V(D)J recombination is the reaction through which the variable region is 

assembled in developing B and T lymphocytes. In this section V(D)J 

recombination is described using the assembly of the variable region of the 

heavy chain in B cells as an example. Though different in details, the general 

mechanism is conserved for light chain assembly and during T cell receptor 

rearrangement. 
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The process of V(D)J recombination involves the de novo combinatorial assembly 

of V, D and J gene segments and solves the problem of how antigens of 

unlimited diversity can be recognized by highly specific antigen receptors with 

only a limited number of available genes. The mouse Ig heavy chain locus (IgH) 

contains several hundred V, 13 D and 4 J gene segments spanning a ~ 1 Mb 

region on chromosome 12. Expression of the Recombinase Activating Genes 1 

and 2 (RAG 1 and 2) initiates V(D)J recombination. Both the expression of RAG1 

and RAG2 is strictly limited to developing B and T lymphocytes (129, 130) and 

absolutely required for V(D)J recombination (131, 132).  

Recombination signal sequences (RSS), which flank each gene segment, serve as 

the recognition sites for the RAG recombinase enzymes. RSS consist of a 

conserved heptamer and nonamer sequence separated by either 12 or 23 nt of 

non-conserved spacer sequence (133, 134). Spacer sequences guide the assembly 

of the variable region, as RAGs are only able to join gene segments flanked by an 

RSS with a 12 nt spacer to segments containing a 23 nt spacer. All V and J gene 

segments are flanked by a 23 nt RSS while all D gene segments are flanked by a 

12 nt RSS. This arrangement prevents nonproductive recombination within gene 

segment families.  

In the precleavage complex, RAG1/2 associate with the respective gene 

segments by binding to the conserved nonamer and heptamer sequences (135, 

136). The RAGs then introduce a single-stranded nick between the gene 

segments and the non-coding RSS heptamer . This creates a nucleophilic 3’OH 

group at the 3’ end of the gene segment, which attacks the opposite DNA strand 

leading to the formation of a hairpin (referred to as the coding end; (137, 138). 

The RSS containing end of the DSB remains blunt (referred to as the signal end).  
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The RAG complex reamins associated with the broken DNA in a post-cleavage 

complex in order to protect DNA ends from degradation, recruit repair factors or 

aid in the positioning of ends for completion of the joining reaction (139, 140). 

Ligation of the two gene segments requires the C-NHEJ machinery, comprising 

of KU70/80, XRCC4 and LIG4 (reviewed in (94). The signal ends are blunt and 

provide an immediate substrate to the C-NHEJ machinery. In contrast, in order 

for the coding ends to be joined, the protective hairpins at the respective gene 

segments must first be opened. This is accomplished by the action of the 

endonuclease Artemis, which is phosphorylated and activated by DNA-PKcs 

(101, 103, 104). The opening of the hairpin generates a substrate for additional 

modifications of the coding ends such as nucleotide additions and deletions by 

the lymphocyte specific enzyme TdT, leading to yet another layer of 

diversification beyond the combinatorial gene rearrangement process itself (141). 

Once the coding ends have been processed, the XRCC4 and LIG4 ligation 

complex performs the joining reaction. C-NHEJ factors are absolutely required 

for V(D)J recombination. The absence of any of the evolutionarily conserved C-

NHEJ factors (KU70, KU80, XRCC4 or LIG4) leads to a complete absence of 

rearranged antigen receptor genes, resulting in a severe combined 

immunodeficiency (SCID) phenotype (142-145). Similarly, mice deficient for 

DNA-PKcs or Artemis display a SCID phenotype due to the inability of coding 

joint formation (103, 104, 146).  

The sustained presence of RAG proteins in a post-cleavage complex is thought to 

“shepherd” the repair of the broken ends towards the C-NHEJ pathway (147). 

RAG mutants that retain their ability to perform the cleavage reaction but lose 

their ability to remain associated after cleavage show a dramatically increased 



 30 

incidence of HR using reporter substrates (148).  Furthermore, removal of the 

RAG2 C-terminus allows for repair of DSBs by the microhomology dependent A-

NHEJ, indicating that this part of the molecule is crucial for channeling the repair 

towards C-NHEJ (147). The A-NHEJ activity in cells expressing a RAG2 C-

terminal truncation protein was shown to be independent of C-NHEJ factors 

such as XRCC4 and DNA-PKc. A-NHEJ in the absence of the RAG2 C-terminus 

was surprisingly robust, suggesting that while the A-NHEJ machinery is 

expressed in wild type cells, it is actively excluded during V(D)J recombination 

by the RAG enzymes (147).  

V(D)J recombination proceeds via RAG induced DSB intermediates, leading to 

the activation of the canonical DNA damage response. ATM induced γH2AX 

focus formation can be detected at the TCRα locus during V(D)J recombination 

(149). Mice deficient for ATM and H2AX show a reduction in the number of B 

and T lymphocytes in the bone marrow and thymus, but do not display an overt 

V(D)J recombination defect by themselves (37, 150, 151). Interestingly the 

absence of the effector protein 53BP1 does not lead to a joining defect per se, but 

selectively impairs the joining of distal V to DJ segments during the assembly of 

the TCRα locus (152). Thus, the absence of DNA damage response factors leads 

to an at most moderate defect in V(D)J recombination and is not considered an 

integral component of the V(D)J recombination reaction. However, the absence 

of functional DNA damage recognition leads to an increased half-life of DSB 

intermediates, which may become substrates for chromosome translocations 

(150, 153).  
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Class Switch Recombination 

The IgH isotype of an antibody molecule is determined by the expression of one 

of eight heavy chain constant region (CH) genes: Cµ, Cδ, Cγ3, Cγ1, Cγ2b, Cγ2a, Cε 

and Cα (Figure 1.4 A). CH genes are clustered in this order in a region spanning 

~200 kb on the heavy chain locus on mouse chromosome 12, downstream of the 

V, D and J gene segments. Naïve B cells emerging from the bone marrow having 

assembled a functional variable region initially express the constant region genes 

Cµ and Cδ and are therefore IgM and IgD positive. CSR is the mechanism by 

which upon antigen encounter, B cells exchange the initially expressed constant 

region genes Cµ/Cδ for a different constant region gene (Figure 1.4 B-D). 

Different IgH isotypes are responsible for mediating different effector functions: 

antibodies of IgM isotype typically form pentamers and are predominantly 

found in the bloodstream where they can efficiently bind to bacterial 

polysaccharide antigens. In contrast, antibodies of IgA isotype can be secreted 

across the mucosal epithelium and into milk. The most abundant IgH isotype 

with its various subtypes, IgG, can neutralize toxins and viruses and opsonize 

pathogens for phagocytosis. Furthermore, different IgH isotypes bind and 

activate distinct Fc receptors on immune effector cells (such as macrophages, 

neutrophils or eosinophils) and can activate different arms of the complement 

system.  

Mechanistically, CSR is a deletional recombination reaction that similarly 

to V(D)J recombination necessitates DSB intermediates at the regions to be joined 

together. However, in contrast to V(D)J recombination DSB formation during 
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CSR does not occur at a precisely defined location such as a RSS, but is targeted 

to switch regions, the non-coding stretches of repetitive DNA preceding each 

constant region gene (except for Cδ). Once DSBs are formed, they are recognized 

by the DNA damage response, which facilitates the successful completion of 

CSR. Finally, two DSBs in two different S-regions are joined together by the C-

NHEJ or A-NHEJ DNA repair machinery.  In the next sections, the three steps of 

CSR (formation of the DSB, activation of DNA damage response, and DNA end 

joining) will be discussed in more detail. 
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Figure 1.5.  CSR is a deletional recombination reaction with DSB intermediates. 
(A) Structure of the IgH locus with constant region genes (rectangles) and unique S- 
regions (circles) preceding the respective constant region genes. Naïve B cells express 
IgM and IgD by alternative splicing.  
(B) Upon antigen encounter in vivo or in vitro stimulation with cytokines, S-region and 
constant region transcription is initiated. AID expression is induced and deamination 
activity is targeted to S-regions. 
(C) Deaminated cytosines are processed into DSBs in donor and acceptor S-regions. 
(D) The intervening sequence is excised, circularized and lost from the genome. Two 
DSBs are joined together, resulting in a hybrid S-region and expression of the same 
variable region with a new constant region. 
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Formation of DSBs inS-regions by AID 

DSB formation in S-regions is initiated by activation-induced cytidine deaminase 

(AID), an enzyme that deaminates cytosine residues leading to their conversion 

into uracils. AID was discovered through a subtractive hybridization screen in 

the murine cell line CH12F3 by Tasuku Honjo’s group in 1999 (154) and 

subsequently shown to be essential for CSR and SHM in both mice (155) and 

humans (156). Loss of AID in mice leads to the complete absence of CSR and 

SHM. Similarly, human patients harboring mutations in the aicda gene display 

Hyper-IgM syndrome, indicative of the failure to produce antibodies of different 

isotypes. The homology to the RNA editing enzyme APOBEC-1 at first suggested 

that AID acts on RNA (155). However, in vitro deamination assays with purified 

AID and evidence for mutation in bacterial genes upon ectopic AID expression 

soon revealed that the target of AID deamination activity is not RNA but 

cytosines in single-stranded DNA during transcription (157-162). In addition, it 

was shown that γH2AX and NBS1 DNA damage foci form in an AID dependent 

manner at the IgH locus in B cells stimulated to undergo CSR, suggesting that 

the deamination of cytosines by AID is required for DSB formation (163). 

Subsequently, the use of LM-PCR has shown the fragmentation of S-regions is 

AID dependent (164). These findings showed that AID activity is required for 

DSB formation, but could not explain the mechanism by which a cytosine 

deamination event is transformed into a DSB. Neuberger’s group and others 

showed that members of the Base Excision Repair (BER) machinery recognize 

and process the mismatch into a SSB. After cytosine deamination the resulting 

uracil forms a mismatch with guanine, which is recognized and the uracil excised 
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by uracil DNA glycosylase (UNG; (160, 165, 166)). Mice deficient for UNG 

display greatly reduced CSR levels and strongly reduced DSB formation at S-

regions (165). Similarly, patients with mutations in UNG display Hyper-IgM 

syndrome, indicative of a CSR deficiency (167). After UNG activity the ensuing 

abasic site is detected by members if the APE endonuclease family, which make 

incisions in the phosphate backbone at the site of the lesion, leading to the 

transformation of an abasic site into a SSB (168). The absence of members of the 

BER machinery severely impairs CSR.  

The Mismatch Repair (MMR) pathway contributes to DSB formation after 

cytosine deamination by AID, but is not absolutely required for CSR (169-174). 

The MSH2-MSH6 complex recognizes a nucleotide mismatch, which is thought 

to recruit Exo1, leading to the excision of the mismatched nucleotide by strand 

resection (175). Long-range strand resection would lead to the formation of a 

DSB if another AID induced ssDNA lesion were encountered in the opposite 

strand.  However, mice deficient for members of the MMR pathway display a 

CSR defect less severe than the absence of BER family members, leading to the 

conclusion that this pathway is required for the formation of some, but not all 

DSBs (169, 171, 173, 174, 176). How exactly the uracil:guanine mismatch induced 

by AID is converted into a DSB is still not completely understood and remains an 

active area of investigation.  

 

AID preferentially deaminates WRCY motifs (W= A or T, R= A or G, Y= C or T) 

(161). While S-regions are enriched for these motifs, WRCY sequences are not 

exclusively found in those regions and are also present at other locations in the 

genome. Aberrant AID activity at non-Ig genes contributes to cancer formation 
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by introducing point mutations in tumor suppressor genes or through DSB 

induced chromosome translocations (177-181). Hence, targeting of AID to its 

physiologic substrates is crucial for the maintenance of genome integrity. AID 

activity is associated with transcribed genes. Stimulation of B cells with cytokines 

either in a germinal centre or in vitro induces differential transcription of S-

regions from their cytokine inducible promoters (182-184). For example, 

stimulation with LPS and IL-4 stimulates germline transcription at Sμ and Sγ1. 

Only transcriptionally active S-regions become substrates of AID deamination 

activity and will undergo CSR. It is therefore plausible that transcription plays a 

role in AID targeting (185). Consistent with this hypothesis of transcriptional 

targeting, AID has been shown to interact with RNA Pol II (186, 187). Recently, 

the interaction of AID with RNA Pol II and its targeting to S-regions was shown 

to be dependent on the transcriptional elongation factor SPT5 (187). Interestingly, 

SPT5 normally associates with Pol II during transcriptional stalling and the Ig 

locus harbors the highest levels of SPT5 and therefore stalled polymerases in the 

B cell genome. Transcriptional stalling could provide AID with sufficient time 

and ssDNA substrate for the deamination activity. However, in such a model 

only the non-template strand is single stranded; the template strand associates in 

a duplex with the nascent transcript. Recently, the RNA exosome complex has 

been shown to impart AID deamination activity onto both the non-template and 

template strands in vitro, possibly involving RNA removal from the template 

strand by polymerase backtracking during stalling in vivo (188). 
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The DNA damage response during CSR 

The formation of DSBs in S-regions leads to the activation of the canonical DNA 

damage response. As described in the previous Chapter, the sensor that 

recognizes DSBs is the MRN complex, which recruits the ATM kinase to the site 

of the break (11, 12). ATM is responsible for cell cycle arrest and recruitment of 

downstream repair factors. One major target of the ATM kinase is the C-terminal 

tail of histone variant H2AX, which is phosphorylated on serine 139. The 

phosphorylation of H2AX spreads on nucleosomes to areas surrounding the 

DSB, which leads to the amplification of the DNA damage signal (33). γH2AX 

then recruits a variety of downstream mediator proteins, such as MDC1, RNF8, 

RNF168 and 53BP1 (49). The accumulation of DNA damage response factors at 

the IgH locus during CSR can be detected in immuno-FISH experiments (163, 

189). Interestingly, DNA damage response factors are required for efficient CSR, 

but the mechanistic basis of how CSR is facilitated is not understood. For 

instance, loss of the DNA damage-sensing component NBS1 leads to a two- to 

three-fold decrease in CSR efficiency (190). Similarly ATM deficiency leads to an 

approximately three-fold reduction of CSR levels (191, 192). A more severe CSR 

defect is observed in the absence of H2AX, in which B cells undergo CSR at a 

four-to five-fold reduced frequency (193). Strikingly, the most pronounced CSR 

defect occurs in the absence of 53BP1 (194, 195). Loss of this molecule leads to an 

almost complete abrogation of CSR to all isotypes. As described in the previous 

chapter, 53BP1 focus formation after DNA damage depends on the binding of its 

tandem tudor domain to H4K20me2. However, the combined conditional 

deletion of SUV4-20H1 and SUV4-20H2, the enzymes responsible for 

dimethylation of H4K20, show only two-to three-fold reduction in CSR (69). This 



 38 

relatively mild defect compared to the complete absence of CSR in 53BP1-/- B 

cells implies that 53BP1 is recruited to DNA damage foci through either a 

different histone modification or that the SUV4-20H1/H2 enzymes are not the 

sole methylatransferases mediating dimethylation of H4K20. Evidence for both 

alternatives exists: recently the methyltransferase MMSET was shown to 

dimethylate H4K20 locally after DSB formation. The contribution of MMSET 

towards CSR is not yet established, as mice deficient for this methyltransferase 

are not yet available for analysis. Alternative histone modfications to which the 

tudor domain could bind in the absence of H4K20me2 inculde H4k20me1 and 

H3K79me2. Furthermore, damage induced γH2AX dependent recruitment of 

RNF8 and RNF168 to chromatin and their subsequent ubiquitylation of histone 

H2AX is required for efficient accumulation of 53BP1 at the site of a DSB. Again, 

neither H2AX nor RNF8 deficient mice display a CSR defect as severe as 53BP1-/- 

mice (53). The combined absence of RNF8 and H2AX leads to CSR levels that are 

comparable to the levels displayed by H2AX-/- mice, suggesting that those two 

proteins act epistatically (53). The contribution of RNF168 to CSR has only been 

assessed using siRNA in CH12 cells, which yielded reduced CSR to levels less 

severe than RNF8. Human patients with a mutation in rnf168 have severely 

reduced serum Ig levels, indicative of a CSR defect. However, a mouse model for 

RIDDLE syndrome is not yet available.  

While loss of 53BP1 leads to the most severe CSR defect of all DNA damage 

response proteins assayed to date, switch region internal deletions (joining of 

two DSBs within the same S-region) occur at elevated levels (196). This is 

especially interesting considered that loss of ATM or loss of H2AX does not lead 
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to increased S-region internal deletions (193). This clearly indicates a role for 

53BP1 during CSR that is not shared by other DNA damage response factors in 

the ATM signaling pathway. 

 

End-joining during CSR 

AID mediated DSBs are limited to the G1 phase of the cell cycle (164). As 

described in the previous Chapter, C-NHEJ is the preferred pathway for 

repairing DSBs in the absence of a proximal sister chromatid or homologue. The 

classical end-joining pathway, comprising of the KU70/80 complex, XRCC4 and 

LIG4, is characterized by the predominance of joins with no or little 

microhomology at the junction and minor (if any) nucleotide loss. Sequencing of  

switch junctions from B cells having successfully undergone CSR showed that 

the majority of joins contain little to no microhomology, indicating that C-NHEJ 

joins DSBs during CSR (197). As C-NHEJ is absolutely required for V(D)J 

recombination, the effects of C-NHEJ deficiency in the context of CSR can only be 

addressed using mice with preassembled Ig light and heavy chain (IgH+L) 

knock-in alleles or in mice with conditional deletions of C-NHEJ factors at a late 

B cell developmental stage, following V(D)J recombination. Using those systems, 

it was shown that the C-NHEJ pathway is not absolutely essential for CSR, as the 

absence of either XRCC4 or LIG4 leads to surprisingly robust CSR at ~ 50% of 

wilt type levels (112, 113, 197-199). Interestingly, in the absence of these 

molecules the spectrum of switch junctions changed dramatically towards the 

usage of junctional homologies, indicative of joining through the A-NHEJ 

pathway. However, absence of either LIG4 or XRCC4 retained the upstream 

components of the C-NHEJ pathway, which may have led to residual C-NHEJ by 
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the KU70/80 complex. Recently, the deletion of both LIG4 and KU70 in mice 

with preassembled IgH+L variable regions was shown to display relatively 

robust CSR at the level of KU70-/- B cells, leading to the conclusion that A-NHEJ 

is a truly independent pathway that can ligate DSBs suring CSR (198). 

Interestingly, the absence of KU70 alone or the combined absence of KU70 and 

LIG4 lead to significantly more direct joins than the absence of LIG4 alone. This 

indicates that the A-NHEJ in the absence of LIG4 proceeds through a KU 

complex dependent pathway (198). It is possible that there are more types of A-

NHEJ: one that is KU dependent and one that functions in the absence of KU.   

An alternative resolution of an AID induced DSB in activated B cells is the re-

ligation of the break to either another DSB within the same S-region or to itself, 

leading to the formation of S-region internal deletions (ISDs). Such deletions 

were readily observed in the absence of C-NHEJ factors (LIG4, XRCC4, KU70, 

KU80), but rarely in wild type cells.  This indicates that A-NHEJ preferentially 

ligates DSBs within one S-region. A possible mechanistic explanation for this 

observation is that microhomologies present within one S-region are the 

preferred substrate for A-NHEJ. Alternatively, A-NHEJ may have a preference 

for proximal joining while C-NHEJ may be more efficient at catalyzing distal 

joining events.  

 

Somatic Hypermutation 

SHM is the reaction whereby point mutations are introduced into B cell receptor 

variable region genes after antigen encounter (reviewed in (200). Similarly to 

CSR, SHM is strictly dependent on AID induced cytosine deamination. The 

resulting uracil is converted into a mutation by either replicating across the 
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mismatch, the action of BER pathway or processing by Mismatch Repair 

pathway. In contrast to CSR, hypermutation does not require DSB intermediates 

and is entirely unaffected by the absence of DNA damage response proteins and 

DNA repair proteins such as H2AX, 53BP1, KU80 and LIG4 (200). B cells with 

mutations that increase affinity to antigen are selected for and clonally expanded 

in vivo, leading to an improved clearance of the antigen. 

 

 

Chromosome translocations as a byproduct of antigen receptor diversification reactions 

DSBs pose a threat to genome integrity and can lead to chromosome 

rearrangements such as deletions, translocations or amplifications, which can 

lead to malignant transformation. While deletions occur on one chromosome in 

cis, chromosome translocations and amplifications involve the joining of one DSB 

on one chromosome to another DSB on a different chromosome. In a reciprocal 

translocation the telomeric portion of one chromosome is fused to the 

centromeric portion of another chromosome, resulting in the formation of two 

stable chromosomes. While balanced chromosome translocations can be stably 

propagated during cell division, non-reciprocal translocations can result in the 

formation of genetically unstable dicentric or acentric chromosomes. Particularly 

dicentric chromosomes pose a serious threat to genome integrity since their 

replication leads to additional DSBs, which can become substrates for yet more 

chromosome abnormalities.  

Most hematopoietic malignancies harbor clonal reciprocal translocations 

(reviewed in (201). Lymphocytes are particularly prone to chromosome 

translocations as DSBs are obligate intermediates during their development. 
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Translocations can induce oncogenic transformation through different 

mechanisms. For example, a highly active promoter or cis-regulatory element can 

be juxtaposed to a proto-oncogene and now highly transcribed, the proto-

oncogene acquires oncogenic potential. An “infamous” example is the 

juxtaposition of the 3’ regulatory elements of the IgH locus to the c-myc proto-

oncogene in B cells (202). Furthermore, a chromosome translocation can result in 

the expression of a chimeric protein by fusing together parts of two different 

genes. For example, the BCR-ABL fusion protein results in constitutively active 

abl kinase, leading to chronic myeloid leukemia (201).   

 

Chromosome Translocations as a byproduct of V(D)J recombination 

V(D)J- recombination is the first lymphocyte diversification reaction and requires 

DSB formation at antigen receptor loci in both B and T cells. The RAG1/2 

enzymes are highly specific for RSS sequences, but can rarely produce DSBs in 

“off-target” genes containing cryptic RSS or genes with non-canonical DNA 

structure. Such aberrant targeting can lead to the joining of two different 

chromosomes (203-205). However, those events are rarely observed. In contrast, 

the absence of damage response factors, particularly ATM, results in the 

persistence of programmed RAG induced DSBs at antigen receptor loci, which 

more frequently become substrates for chromosome translocations (150).  Mice 

deficient in C-NHEJ components do not display overt tumor susceptibility due to 

the intact p53 checkpoint, which efficiently eliminates cells with unrepaired 

DSBs. The combined absence of p53 and a C-NHEJ factor leads to rapid tumor 

development of predominantly B cell origin (206, 207).  

 



 43 

 

AID induced translocations during CSR and SHM 

In contrast to the exquisite specificity for the RSS displayed by the RAG 

enzymes, AID only has a weak preference for the WRCY motif that is strongly 

overrepresented in the IgH locus, but still relatively common genome wide. 

Many proto-oncogenes have been found to harbor AID dependent mutations, 

including c-myc, Bcl6, Pax5 and Pim1. In fact, almost 25% of the expressed genes 

in germinal center B cells harbor to some extent AID induced mutations, 

indicating the oncogenic potential of this mutator enzyme (178). Proof of the 

direct involvement of AID in the formation of chromosome translocations came 

from experiments  showing that the c-myc/IgH translocation is dependent on AID 

and the downstream processing enzyme UNG (Uracil-N-glycosylase)(208). 

However, AID overexpression in itself is not sufficient for B cell transformation, 

only if p53 is concomitantly deleted can B cell tumors be detected (209). This 

indicates that intact checkpoint signaling networks are crucial for the 

maintenance of genome integrity in AID expressing B cells. Consistently, the 

checkpoint protein ATM, which is activated after AID induced DSB formation at 

the IgH locus during CSR, protects against chromosome translocations. ATM-/- B 

cells stimulated with cytokines in vitro display increased frequencies of c-

myc/IgH translocations (208). In contrast, loss of the DNA damage protein 53BP1 

does not increase the frequency of c-myc/IgH translocations, presumably due to 

the fact that the upstream checkpoint is intact and can eliminate cells harboring 

translocation that exhibit oncogenic stress (208). Interestingly, 53BP1-/- B cells 

stimulated to undergo CSR contain many chromosome abnormalities that are 

limited to the IgH locus (196). Consistent with the hypothesis that translocations 
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inducing oncgenic stress are efficiently deleted through the activation of 

checkpoint proteins is the finding that the translocation frequency between IgH 

and Igβ, which does not lead to oncogenic stress, is not altered in the absence of 

p53 (210).  

Furthermore, loss of C-NHEJ proteins leads to increased chromosome 

translocation in the absence of p53. Interestingly, sequencing of translocation 

breakpoints showed extensive microhomology at the junction, indicative of 

joining by the A-NHEJ pathway (114, 116). Consistent with the idea that A-NHEJ 

catalyzes chromosome translocations, I-SceI endonuclease induced translocations 

do not depend on C-NHEJ factors and are mediated in part by A-NHEJ (115, 

189). It is possible that C-NHEJ is protective against chromosome translocations 

by actively excluding the more translocation prone A-NHEJ pathway. 

 

Summary and Outlook 

DSBs are necessary intermediates for both V(D)J recombination and CSR. 

Particularly CSR, and to a lesser extent V(D)J recombination, relies on a 

functional DNA damage response for successful completion of the 

rearrangement reaction. Among DNA damage response factors, the most 

pronounced defect in CSR occurs upon loss of 53BP1, a chromatin binding 

protein that is also an ATM target. Only distal DSB joining between two S-

regions is impaired in the absence of 53BP1, while S-region internal deletions, 

which occur between proximal DSBs within one S-region, are in fact increased 

(194-196). Similarly, only distal V-DJ joining is affected by the absence of 53BP1 

during V(D)J recombination (152). In addition, the distal joining of de-protected 
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telomeres resulting in chromosome fusions is strongly impaired in the absence of 

53BP1 (124). Several non-mutually exclusive models have been proposed to 

account for the effects of 53BP1 on CSR, V(D)J recombination, and telomere 

fusion: 53BP1 may enhance synapsis and long-range interactions between two 

distal DSBs and thereby promote CSR (194-196) possibly by altering local 

chromatin structure (152) or increasing chromatin mobility (124). Interestingly, 

the defects observed in the absence of 53BP1 are more severe than in the 

upstream regulators such as ATM or H2AX, leading to the conclusion that 53BP1 

plays an additional role in those reactions.  

While DNA damage factors are required to facilitate CSR, they are also crucial 

for the maintenance of genomic integrity. Loss of functional DNA repair can lead 

to chromosome translocations, which are often found in immune cell tumors of 

mice that lack DNA damage response factors.  

In Chapter 2 I will describe experiments in which we use the I-SceI meganuclease 

system to investigate the etiology of the c-myc/IgH translocation that arises as a 

byproduct of CSR. In Chapter 3 I apply the I-SceI system to introduce paired 

intra-chromsomal DSBs on mouse chromosome 12 in B lymphocytes to 

systematically examine the role of 53BP1 and chromosomal distance in DSB 

joining. In Chapter 4 I investigate the role of 53BP1 in DNA repair pathway 

choice. Lastly in Chapter 5, I focus on the functional domains of 53BP1 and 

determine their contributions towards CSR and repair pathway choice.  
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                                    CHAPTER 2: 

Role of AID in the Formation of 
c-myc/IgH Chromosome Translocations 

 
Chromosome translocations require paired DSBs on heterologous chromosomes. 

B cell lymphomas often harbor characteristic chromosome translocations, 

frequently involving their antigen receptor genes (201). DSBs that arise during 

antigen receptor diversification reactions such as CSR and SHM can become 

substrates for chromosome translocations that can initiate oncogenic 

transformation. Both SHM and CSR are strictly dependent on AID activity. While 

AID acts predominantly on IgH switch regions during CSR and variable region 

genes during SHM, non-Ig loci can harbor AID dependent mutations, although 

at a lower frequency than physiologic targets (178). The proto-oncogene c-myc, 

which is the translocation partner of IgH in human Burkitt’s lymphoma and 

mouse plasmacytoma (211-222) displays AID dependent mutations that are 

orders of magnitude lower than at the IgH locus, and is also less frequently 

mutated than many other AID off-target genes (178). The source of the DSB in 

the antigen receptor loci is clearly dependent on AID; the source of the DSB in c-

myc however remains enigmatic (208, 223). Besides the possibility that AID 

activity is responsible for DSB formation at c-myc, sources for DSBs in c-myc 

include non-canconical, fragile DNA configurations such as Z-DNA, H-DNA and 

G-quadruplex DNA (224-226). Such structural variations could enhance 

susceptibility to spontaneous DSB formation during transcription or replication. 

In addition, metabolic intermediates such as reactive oxygen species have been 
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implicated in the generation of DSBs at c-myc that lead to its translocation to IgH 

(227).  

In the following chapter we will induce artificial DSBs with the yeast 

endonuclease I-SceI to examine the role of AID in DSB formation at the c-myc 

locus that leads to the c-myc/IgH translocation.  
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AID overexpression leads to DSBs and mutations at c-myc 

AID dependent DSBs during CSR can be detected by the efficient accumulation 

of the DNA damage response protein 53BP1 at the IgH locus (Figure 2.1). In 

contrast, physiologic levels of AID expression during CSR did not result in 53BP1 

accumulation at c-myc (Figure 2.1). Only retroviral overexpression of AID leads 

to detectable 53BP1 focus formation at c-myc, indicating that c-myc can be a target 

of AID activity (Figure 2.2 A). Similarly, the AID mutation footprint can be 

detected at c-myc only if AID is retrovirally overexpressed (Figure 2.2 B).  
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Figure 2.1. Wild type B cells show AID-dependent focus formation at IgH, but not c-
myc. 
(A) Immuno-FISH analysis of 53BP1 DNA damage foci at IgH or c-myc loci in activated B 
cells. Representative images showing co-localization of the indicated loci with 53BP1 in 
LPS and IL-4 stimulated wild type (WT) B cells.  
(B) Immuno-FISH analysis of 53BP1 DNA damage foci at IgH or c-myc loci in activated B 
cells. Representative images showing co-localization of the indicated loci with 53BP1 in 
LPS and IL-4 stimulated AID-/- B cells.  
(C) Table showing co-localization frequencies as percentage of cells analyzed in LPS and 
IL-4 stimulated wild type (WT) and AID-/- B cells. The number of cells analyzed is 
shown in parentheses. Three independent experiments. 
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Figure 2.2. Retroviral overexpression of AID leads to DSBs and mutations at c-myc. 
(A) Immuno-FISH analysis of AID induced 53BP1 DNA damage foci in AID-/- B cells 
infected with AID or empty virus control. Representative images and table showing co-
localization frequencies at c-myc. The number of cells analyzed is shown in parentheses. 
p = 0.007 with student’s t-test. Three independent experiments. 
(B) Mutation frequency at c-myc locus of wild type (WT) or AID-/- B cells infected with 
the indicated retroviruses. Indicated in parentheses are the total number of nucleotides 
analyzed. 
 

I-SceI induced DSBs at c-myc and IgH 

To further examine the requirements and consequences of DSB formation at c-

myc and IgH at physiologic AID levels, we introduced I-SceI recognition sites by 

gene targeting at both c-myc and IgH (MycI/+ and IgHI/+ respectively, for details 

see Methods section). In the absence of AID, retroviral infection of MycI/+AID-/- 

or IgHI/+AID-/- B cells with the enzyme I-SceI leads to efficient DSB formation at 
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MycI/+ and IgHI/+, respectively (Figure 2.3). In contrast, a retrovirus harboring a 

catalytically inactive I-SceI* did not induce 53BP1 focus formation in the I-SceI-

site bearing lymphocytes. We therefore conclude that I-SceI efficiently and 

specifically introduces DSBs at loci bearing its recognition sites in primary B 

cells.  

 

 

 

Figure 2.3. I-SceI induced DSBs at c-myc and IgH. 
Immuno-FISH analysis of I-SceI induced 53BP1 DNA damage foci in IgHI/+AID-/- (top) 
or MycI/+AID-/- B cells (bottom). Representative images and table showing co-
localization frequencies at IgH or c-myc (as indicated) in I-SceI or I-SceI* expressing B 
lymphocytes. The number of cells analyzed is shown in parentheses. 
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I-SceI induced translocations in AID deficient B lymphocytes 

To establish whether I-SceI induced DSBs at c-myc and IgH can serve as 

substrates for c-myc/IgH translocations, we generated MycI/+IgHI/+AID-/- B cells 

(Figure 2.4 A). Retroviral infection with I-SceI to introduce DSBs at both loci 

leads to robust c-myc/IgH translocation, while catalytically inactive I-SceI* does 

not (10x10-5 for I-SceI infection versus 0 for I-SceI*, Figure 2.4 B). To precisely 

establish where the DSB occurred, we sequenced translocation junctions. The 

range of translocation breakpoints as determined by sequencing of PCR junctions 

varied from 0 - 2178 nt away from the I-SceI site (Figure 2.4 C). 19 out of 21 

translocation junctions sequenced harbored 1-7 nt microhomology at the 

junction, and two included insertions (Figure 2.5 D). We conclude that I-SceI can 

efficiently mediate c-myc to IgH translocation in MycI/+IgHI/+AID-/- B cells and 

that translocations are frequently processed leading to the formation of 

microhomolgy at the junction. 
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Figure 2.4. I-SceI induced translocations in AID deficient B lymphocytes. 
(A) Schematic representation of the MycI, Myc+ and IgHI alleles with the PCR primers 
for detecting der15 c-myc/IgH translocations. Circles point to the position of the I-SceI 
sites.  
(B) I-SceI rescues translocations in the absence of AID. Representative agarose gels with 
PCR products corresponding to c-myc/IgH translocations (as verified by sequencing 
and/or Southern Blot). The size of PCR amplified translocation products varies 
significantly depending on DNA repair induced sequence deletions at the junction.  
MycI/+IgHI/+AID-/- B cells were stimulated with LPS and IL-4 and infected with I-SceI or 
I-SceI* control retroviruses. 100,000 cells were assayed in each lane. Three independent 
experiments.  
(C) Map of translocation breakpoints from I-SceI expressing MycI/+IgHI/+AID-/- B cells. 
Arrows point to c-myc/IgH translocation breakpoints for der15. 
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DSBs in c-myc are limiting for c-myc/IgH translocations 

To determine whether I-SceI induced DSBs can be joined to AID induced DSBs, 

we infected MycI/+ B cells with I-SceI or I-SceI*. The translocation frequency was 

significantly increased in the presence of I-SceI induced DSBs versus I-

SceI*(0.8x10-5 and 0.2x10-5 respectively, Figure 2.5). In agreement with this result, 

we found by sequencing translocation junctions that 15 out of 17 translocations 

were directly at or within 74 nt of the I-SceI site. The two remaining 

translocations involved the wt allele. In contrast, all translocations from wild 

type B cells spread over several kb around exon 1. The translocation junctions 

involved predominantly blunt joins, or a small degree of microhomology (1-3 nt, 

Figure 2.5 D). We conclude that I-SceI induced DSBs at c-myc can be joined to 

AID induced DSBs at IgH and that the DSB at c-myc is limiting for the 

translocation reaction. Furthermore, the presence of AID leads to predominantly 

blunt translocation junctions.  
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Figure 2.5. DSBs in c-myc are limiting for c-myc/IgH translocations.  
(A) Schematic representation of the MycI, Myc+ and IgH+ alleles with the PCR primers 
for detecting der15 c-myc/IgH translocations. Circle points to recognition sequence for I-
SceI.  
(B) I-SceI directed translocations in the presence of AID. Representative agarose gels 
with PCR products corresponding to c-myc/IgH translocations (as verified by sequencing 
and/or Southern Blot). MycI/+ B cells were stimulated with LPS and IL-4 and infected 
with I-SceI (three independent experiments) or I-SceI* control. 100,000 cells were assayed 
in each lane.  
(C) Map of translocation breakpoints from stimulated MycI/+ B cells infected with I-SceI. 
Filled arrows point to c-myc/IgH translocation breakpoints from der15. Empty arrows 
indicate the distribution of breakpoints obtained in the absence of I-SceI.  
(D) Table shows summary of the extent of junctional microhomology from c-myc/IgH 
translocations. 
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DSBs at IgH are not limiting for c-myc/IgH translocation 

We next tested whether the DSB in IgH is limiting for c-myc/IgH translocation. To 

this end we infected IgHI/+ B cells with I-SceI or inactive I-SceI* and found no 

significant difference in translocation frequency (0.14x10-5 for I-SceI and 0.2x10-5 

for I-SceI*, Figure 2.6). We conclude that DSBs at IgH are not limiting for the 

translocation reaction.  

 

 

 
Figure 2.6. I-SceI induced translocations in AID deficient B lymphocytes. 
(A) Schematic representation of the Myc+ and IgHI alleles with the PCR primers for 
detecting der15 c-myc/IgH translocations. Circles point to the position of the I-SceI sites.  
(B) Representative agarose gels with PCR products corresponding to c-myc/IgH 
translocations (as verified by sequencing and/or Southern Blot). IgHI/+AID-/- B cells 
were stimulated with LPS and IL-4 and infected with I-SceI or I-SceI* control 
retroviruses. 100,000 cells were assayed each in lane. Three independent experiments.  
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AID induces DSBs at c-myc 

To test whether AID is responsible for the generation of DSBs in c-myc we 

infected MycI/+AID-/-, IgHI/+AID-/- or control MycI/+IgHI/+AID-/- B cells with I-SceI 

or I-SceI* (Figure 2.7). While I-SceI infection of MycI/+IgHI/+AID-/- B cells leads to 

efficient c-myc/IgH translocations, none were detected in I-SceI infected 

MycI/+AID-/- or IgHI/+AID-/- B cells (Figure 2.7). We conclude that AID induced 

DSB formation at both IgH and c-myc is required to generate c-myc/IgH 

translocations. 
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Figure 2.7. AID is essential for the lesion in c-myc that leads to c-myc/IgH 
translocation.  
(A) Top: schematic representation of the MycI, Myc+ and IgH+ alleles with the PCR 
primers for detecting der12 and der15 c-myc/IgH translocations. Circle indicates I-SceI 
site. Bottom: a representative ethidium bromide (EtBr) stained agarose gel was also 
Southern blotted and probed for c-myc and IgH, as indicated, to verify translocations. 
MycI/+AID-/- B cells were stimulated with LPS and IL-4 and infected with an I-SceI 
encoding retrovirus. 100,000 cells were assayed in each lane. No translocations were 
identified out of 3.4x107 cells analyzed. Three independent experiments.  
(B) Top: schematic representation of the Myc+ and IgHI alleles with the PCR primers for 
detecting der15 c-myc/IgH translocations. Circle indicates I-SceI site. Bottom: a 
representative ethidium bromide (EtBr) stained agarose gel was also Southern blotted 
and probed for c-myc and IgH, as indicated to verify translocations. IgHI/+AID-/- B cells 
were stimulated with LPS and IL-4 and infected with I-SceI. 100,000 cells were assayed 
in each lane. No translocations were identified in 6.9x107 cells. Seven independent 
experiments. 
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CHAPTER 3:  

Role of Distance in DSB Joining 

DSBs are dangerous lesions that can lead to genomic rearrangements.  Joining of 

DSBs within one chromosome can lead to chromosomal deletions, while joining 

of paired DSBs on separate chromosomes can lead to chromosome 

translocations. However, paired intra-chromosomal DSBs are necessary 

intermediates in immune cell diversification reactions such as V(D)J 

recombination and CSR. During CSR, AID produces tandem DSBs in IgH switch 

regions separated by 60-200 kb, which are rejoined while the intervening DNA is 

lost from the genome. DNA damage response factors are required for the 

efficient joining between IgH switch breaks. Among DNA damage response 

factors, the absence of 53BP1 leads to the most dramatic CSR defect (194-196). 

Similarly, joining of DSBs during V(D)J recombination of the TCRα receptor 

locus and of de-protected telomeres due to the absence of TRF2 is dependent on 

53BP1 (124, 152). However, absence of 53BP1 does not lead to a joining defect per 

se, as proximal breaks within one switch region can be joined, leading to the 

hypothesis that the requirement for 53BP1 in the joining of DSBs is distance 

dependent (196).  

The systematic study of the role of distance and the effect of 53BP1 on the 

joining of DSBs necessitates a method that allows for temporal and spatial 

control of DSB formation. In this Chapter we use the previously established I-

SceI endonuclease system to study the joining of paired DSBs different distances 
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apart from each other on the same chromosome, and the role of 53BP1 in the 

joining process.  
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Genetic modifications of chromosome 12  

To study the role of distance in DSB joining, we used gene targeting to introduce 

paired I-SceI recognition sites separated by various distances on mouse 

chromosome 12 (Figure 3.1). 

To determine short-range intra-chromosomal joining frequencies, ES cells were 

targeted with a construct containing two I-SceI sites separated by 1.2 kb of spacer 

sequence at the IghG1 locus (IgHI-1k, Figure 3.1 A, for details see methods section). 

Joining of paired DSBs separated by 1.2 kb resembles the distance involved in the 

joining of DSBs within the same S-region.  

To examine the joining of DSBs separated by distances occurring during 

CSR, we retargeted the IgHI ES cell clone already containing an I-SceI site at Sµ 

and inserted a second I-SceI site 3’ of Sγ1. This yielded ES cells with two I-SceI 

sites spaced 96 kb apart from each other (IgHI-96k, Figure 3.1 B, for details see 

methods section). This setting should recapitulate the physiological switch 

recombination reaction to IgG1.  

To determine how DSBs situated long distances apart from each other are 

joined we introduced an I-SceI site into the c-fos locus, which lies 27 Mb 

centromeric of the IgH locus on chromosome 12. For this targeting, the ES cell 

clone already containing an I-SceI site at Sµ was used, resulting in paired I-SceI 

sites spaced by 27 Mb on chromosome 12 (IgHI-27M, Figure 3.1 C, for details see 

methods section).  
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Figure 3.1. Schematic of genetic modifications of chromosome 12. 
(A) Schematic representation of IgHI-1k allele, bearing two I-SceI sites separated by 1.2 kb. 
Spacer sequence is indicated as yellow rectangle.  
(B) Schematic representation of IgHI-96k allele, bearing two I-SceI sites separated by 96 kb.  
(C) Schematic representation of IgHI-27M allele, bearing two I-SceI sites separated by 27 
Mb.  
In all panels: I-SceI sites are indicated as blue circles, loxP sites as red triangles.
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 Loss of 53BP1 does not affect proximal DSB joining 

 To assess the effect of 53BP1 on the joining efficiency of proximal DSBs, 

we first assayed IgHI-1k mice, which bear I-SceI sites separated by 1.2 kb (Figure 

3.2 A). IgHI-1k B cells showed normal development, proliferation and CSR to IgG1 

upon stimulation with LPS and IL-4 (Figure 3.2 B). To ensure that DSB joining is 

exclusively mediated by I-SceI and is not confounded through randomly 

generated AID dependent breaks in the same region, we crossed IgHI-1k mice into 

AID-/-. We infected IgHI-1k/+AID-/- and IgHI-1k/+AID-/-53BP1-/- B cells with an I-SceI 

expressing virus or an inactive I-SceI* control and measured recombination 

frequencies by sample dilution PCR. Infection with the inactive control virus led 

to no detectable recombination (Figure 3-2 C, lower panel). In agreement with 

the finding that proximal, switch region internal DSBs are not affected by the 

absence of 53BP1, we found that loss of 53BP1 did not significantly affect the 

joining frequency of DSBs separated by 1.2 kb (0.17x10-2 IgHI-1kAID-/- and 0.29x10-

2 in IgHI-1kAID-/-53BP1-/-, Figure 3-2 D).  
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Figure 3.2. Effect of 53BP1 on joining efficiency of proximal DSBs.  
(A) Schematic representation of IgHI-1k allele before (top) and after (bottom) I-SceI 
induced recombination. I-SceI sites are indicated as blue circles, loxP sites as red 
triangles. Spacer sequence of 1.2 kb is indicated as yellow rectangle.  
(B) Flow cytometric analysis of spleen cells from age-matched wild type and mutant 
IgHI-1k/+ mice reveals normal B cell development, CSR to IgG1 and proliferation (by 
labeling with the dye CFSE). Numbers indicate percentage of live cells within the 
indicated gates.  
(C) Representative ethidium bromide stained agarose gel showing PCR products 
obtained after I-SceI and I-SceI* induced recombination in IgHI-1k/+AID-/- B cells. 
(D) Bar graph shows I-SceI induced recombination frequency of IgHI-1k/+AID-/- B cells in 
the presence or absence of 53BP1. Error bars indicate standard deviation. P value was 
calculated using a paired two tailed students t-test. Seven independent measurements. 
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Loss of 53BP1 decreases joining efficiency of DSB separated by 96 kb 

We next determined whether loss of 53BP1 affects the joining efficiency of I-SceI 

breaks separated by 96 kb. IgHI-96k mice (Figure 3.3 A) displayed normal B cell 

development, proliferation and CSR upon stimulation with LPS and IL-4 (Figure 

3.3 B). As with proximal break joining, we performed all experiments in the 

absence of AID. Infection of IgHI-96k/+AID-/- B cells with an I-SceI expressing 

retrovirus should recapitulate physiologic CSR and yield IgG1 expression upon 

successful recombination. To test if this is the case, we infected IgHI-96k/+AID-/- B 

cells with I-SceI or an inactive control I-SceI*. Indeed, I-SceI expression led to 

IgG1 surface expression, while the catalytically inactive I-SceI* did not induce 

recombination (Figure 3.3 C and D). We then used surface IgG1 expression as a 

proxy for I-SceI joining efficiency and measured recombination frequencies in the 

presence and absence of 53BP1. Joining was significantly reduced from 0.54% in 

IgHI-96k/+AID-/- to 0.31% in IgHI-96k/+AID-/-53BP1-/- B cells (Figure 3.3 E and F). To 

obtain an independent measure of recombination frequency we examined the 

joining between I-SceI sites by sample dilution PCR.  In agreement with the flow 

cytometry analysis we found that with this method the joining efficiency in 

stimulated IgHI-96k/+AID-/- B lymphocytes was significantly reduced from 0.76% 

to 0.48% in the absence of 53BP1 (Figure 3.2 G). We conclude that loss of 53BP1 

decreases the efficiency of recombination between I-SceI sites in IgHI-96k/+AID-/- B 

cells; however, the effect is far less pronounced than it is for physiologic CSR, 

where the reduction of in the absence of 53BP1 is to approximately 10% of wild 

type levels. 



 68 

 

 
 
 
Figure 3.3. Loss of 53BP1 decreases joining efficiency of DSBs separated by 96 kb.  
(A) Schematic representation of the IgHI-96k allele (upper panel) and the I-SceI induced 
recombinant that encodes IgG1 (lower panel). LoxP sites are indicated as red triangles 
and I-SceI sites as blue circles. 
(B) Flow cytometric analysis of spleen cells from age-matched wild type and mutant 
IgHI-96k mice reveals normal B cell development and CSR to IgG1 after stimulation with 
LPS and IL-4. B cells were labeled with CFSE to track cell division. 
(C) Representative flow cytometry experiment shows CSR to IgG1 of IgHI-96kAID-/- B 
cells 72 hrs after the first infection with I-SceI or catalytically inactive I-SceI* encoding 
retrovirus.  
(D) Graph shows the results of six independent flow cytometry measurements for IgG1 
expression of I-SceI or I-SceI* infected IgHI-96kAID-/- B cells. P value was calculated using 
Student’s t-test (two-tailed). Error bars indicate standard deviation. 
(E) Representative flow cytometry experiment shows CSR to IgG1 of IgHI-96kAID-/- and 
IgHI-96kAID-/-53BP1-/- B cells 72 hrs after the first infection with an I-SceI encoding 
retrovirus.  
(F) Graph shows I-SceI recombination efficiency of IgHI-96kAID-/- and IgHI-96kAID-/- 
53BP1-/- B cells, determined in five independent flow cytometry experiments, each dot 
representing an individual experiment. P value was calculated using Student’s paired t-
test (two-tailed). The means are shown as a line in the graph. 
(G) Bar graph shows I-SceI recombination efficiency of IgHI-96kAID-/- and IgHI-96kAID-/- 
53BP1-/- B cells, determined by nine independent PCR experiments. Error bars indicate 
standard deviation. P value was calculated using Student’s paired t-test (two-tailed). 
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Loss of 53BP1 does not affect joining efficiency of distal DSBs separated by 27 

Mb 

To determine the effect of 53BP1 on long-range joining across 27 Mb, we assayed 

IgHI-27M mice (Figure 3.4 A). IgHI-27M mice displayed normal B cell development 

and CSR upon stimulation with LPS and IL-4 (Figure 3.4 B). We infected IgHI-

27M/+AID-/-53BP1-/- B cells and the respective 53BP1 proficient control with an I-

SceI retrovirus. In contrast to joining across 96 kb and similar to joining of DSB 

separated by short distances, loss of 53BP1 leads to an increase in recombination 

frequency from 0.0048x10-2 in IgHI-27M/+AID-/- to 0.0062x10-2 in IgHI-27MAID-/-

53BP1-/- (Figure 3.4 D). Strikingly, the efficiency of joining DSBs separated by 27 

Mb was >30 fold lower than that of DSBs separated by 1.2 kb or 96 kb (0.0048x10-

2 versus 0.17 x10-2 and 0.7x10-2 respectively, grey bars in Figures 3.4 C, 3.3 E and 

3.2 D). We conclude that in contrast to facilitating the joining of DSBs separated 

by 96 kb, 53BP1 does not alter the joining frequency of more proximal or distal 

DSBs. 
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Figure 3.4. Loss of 53BP1 does not affect joining of distal DSBs separated by 27 Mb.  
(A) Schematic representation of IgHI-27M allele before (top) and after (bottom) I-SceI 
induced recombination.  
(B) Flow cytometric analysis of spleen cells from age-matched wild type and mutant 
IgHI-27M/+ mice reveals normal B cell development, CSR to IgG1 and proliferation. 
(C) Bar graph shows I-SceI induced recombination frequency of IgHI-27M/+AID-/- B cells in 
the presence or absence of 53BP1. Error bars are standard deviations. P value was 
calculated using a paired two tailed students t-test. Eight independent measurements. 
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Loss of 53BP1 does not affect joining of trans-chromosomal DSBs  

To determine how distal intra-chromosomal joining compares with trans-

chromosomal joining, we produced mice with paired I-SceI sites on 

chromosomes 12 and 15 (IgHI and MycI, respectively) and generated 

translocations by infecting cells with I-SceI viruses. The joining frequency of I-

SceI infected IgHI/+MycI/+AID-/- B cells was 0.0027x10-2, which is comparable to 

the joining between I-SceI sites separated by 27 Mb in IgHI-27M/+AID-/- (Figures 3.4 

C and Figures 3.5 B, grey bars). We then measured the effect of 53BP1 on the 

joining of trans-chromosomal DSBs. We infected MycI/+IgHI/+AID-/-53BP1-/- B 

cells with an I-SceI retrovirus. Similarly to the joining of intra-chromosomal DSB 

separated by 27 Mb, loss of 53BP1 leads to an increase in recombination 

frequency from 0.0027x10-2 in MycI/+IgHI/+AID-/- B cells to 0.004x10-2 in 

MycI/+IgHI/+AID-/-53BP1-/- B cells (Figure 3.5 B).  

We conclude that the joining of distal (27 Mb) intra-chromosomal DSBs is similar 

to the trans-chromosomal joining.  
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Figure 3.5. 53BP1 does not affect joining efficiency of trans-chromosomal DSBs.  
(A) Schematic representation of the MycI and IgHI alleles. 
(B) Bar graph shows I-SceI induced recombination frequency of IgHI/+MycI/+AID-/- B 
cells in the presence or absence of 53BP1. Error bars indicate standard deviations. P 
value was calculated using a paired two tailed students t-test. Four independent 
measurements. 
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Spreading of DNA damage response along chromatin 

53BP1 selectively facilitates end-joining of DSBs in cis separated by 96 kb. Loss of 

53BP1 does not reduce the joining frequency of proximal, very distal or trans-

chromosomal DSBs. This selective effect of 53BP1 on the joining of paired breaks 

coincides with the proposed spread of DNA damage response to chromatin 

surrounding the DSB (33, 228). We hypothesized that DNA damage response 

factors could facilitate DSB joining in areas that are affected by the spreading. To 

test whether in our system we could detect spreading of the DNA damage 

response we performed a γH2AX ChIP after DSB formation by I-SceI in IgHI-

96k/+AID-/- B cells. Indeed, we could detect γH2AX in areas surrounding the I-SceI 

induced DSBs at the IgH locus with an ensuing spread of 100-300 kb (Figure 3.6). 

No γH2AX was detected beyond 1 Mb of the DSBs. As a control, we measured 

γH2AX density at 27 Mb and as expected did not detect a signal above 

background. We conclude that the DNA damage induced γH2AX signal reaches 

a maximum at ~100-300 kb from the DSB, but that distal sites are not affected.  
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Figure 3.6. γH2AX spreading to areas surrounding the I-SceI induced DSBs. 

γH2AX density measured by Chromatin IP at the IgHI-96k allele upon I-SceI induced DSB 
formation (blue circles) by infection of IgHI-96k/+AID-/- B cells or IgHI-96k/I-96kAID-/- B cells 

with I-SceI or I-SceI* control. To calculate γH2AX density (y-axis), the γH2AX signal at 
different genomic locations on chromosome 12 (indicated by x-axis) was normalized to 
the signal at the (non-broken) GAPDH locus. Two independent experiments. Error bars 
indicate standard errors.  
 

Switching by Cre mediated recombination 

The mechanism that mediates joining of DSBs between switch regions during 

CSR includes DNA damage response factors. However, chromosome 

conformation capture PCR experiments suggest that AID may contribute to long-

range interactions between switch regions (229). To determine whether AID 



 76 

plays a role in modulating chromosome conformation we made use of the 

Cre/loxP system. Cre is a bacteriophage enzyme that mediates recombination 

between loxP sites via Holliday junction intermediates (230). Synapsis between 

two molecules of Cre bound to separate loxP sites precedes and is required for 

catalysis (231). Because synapsis is limiting in this reaction, the rate of 

recombination between loxP sites in mammalian cells expressing Cre is inversely 

proportional to the distance between the sites and can therefore serve as a 

measure of chromosome topography (232, 233).  

To determine whether AID expression alters IgH topology sufficiently to change 

the rate of Cre mediated recombination between switch regions, we compared 

Cre induced CSR in AID deficient IgHI-96k B cells and control IgHI-96k B cells 

(Figure 3.7).  B cells were stimulated with LPS and IL-4 and infected with a Cre 

encoding retrovirus or an inactive retrovirus Cre*. Infected cells were identified 

by GFP expression and CSR was measured by flow cytometry. Cre expression in 

AID sufficient IgHI-96k B lymphocytes increased CSR to IgG1 from 3.8% to 14.4% 

and 16.2% to 32.2% at 72 hrs and 96 hrs after stimulation respectively (Fig 3.7 B 

and C). However, the rate of CSR in IgHI-96k B cells was similar in the presence or 

absence of AID 96 hrs after stimulation (Figure 3.7 B and C).  

 To determine whether the loss of 53BP1 alters the efficiency of Cre mediated CSR 

we compared the frequency of recombination between IgHI-96k/+AID-/-53BP1-/- 

and IgHI-96k/+AID-/- B cells. We found that CSR in Cre infected IgHI-96k/+AID-/- 

53BP1-/- B cells was indistinguishable from 53BP1 proficient cells (Figure 3.7 C 

and D). We conclude that neither AID nor 53BP1 alter the overall structure of the 

IgH locus sufficiently to change the rate of synapsis between the loxP sites in 

IgHI-96k. 
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Figure 3.7. Cre recombinase induces efficient CSR to IgG1 independently of AID and 
53BP1.   
(A) Schematic representation of the IgHI-96k allele (upper panel) and the Cre induced 
recombinant that encodes IgG1 (lower panel). LoxP sites are indicated as red triangles, I-
SceI sites are shown as blue circles.  
(B) Representative flow cytometry experiments showing CSR to IgG1 of IgHI-96k B cells 
infected with retroviruses encoding Cre or catalytically inactive Cre*. IgG1 expression 
was analyzed at 72 hrs and 96 hrs after LPS and IL-4 stimulation.  
(C) Representative flow cytometry experiments showing CSR to IgG1 for IgHI-96k/+AID-/- 
and IgHI-96k/+AID-/-53BP1-/- B cells analyzed at 96 hrs after LPS and IL-4 stimulation.  
(D) Graph shows the results of three independent flow cytometry experiments 
measuring CSR to IgG1 after Cre infection of IgH I-96/+AID-/- and IgHI-96k/+AID-/-53BP1-/- B 
cells.  
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CHAPTER 4:  

The Role of 53BP1 in DNA Repair Pathway Choice 

As shown in the previous chapter, we have established a system using the I-SceI 

enduclease to determine joining efficiencies of DSBs separated by different 

distances. This system allows us to examine joining and repair of two spatially 

separated I-SceI induced DSBs. Here we utilize this system to explore a role for 

53BP1 in DSB repair. 

 

Absence of 53BP1 results in more end processing  

To address if 53BP1 plays a role in DNA repair, we analyzed the joining products 

of DSBs separated by 96 kb. IgHI-96k/+AID-/-53BP1-/- and IgHI-96kAID-/- control B 

cells were infected with I-SceI and analyzed using the previously described 

dilutional PCR assay. We noticed the occurrence of PCR products with lower 

than expected molecular weight, which predominantly occurred in the absence 

of 53BP1. The expected size for precise I-SceI to I-SceI joining is a PCR product of 

336 nt. Lower molecular weight products are a consequence of end processing at 

the sites of the DSBs, resulting in a deletion and loss of DNA. Our single event 

dilutional PCR assay allows us to directly score the appearance of lower 

molecular weight species (products running below 300 nt i.e. more than ~30 nt 

total end resection).  By visual inspection of the agarose gels we found that PCR 

products with minimal deletions (running above > 300 nt) were the predominant 

species in control IgHI-96k/+AID-/- B cells (Figure 4.1 B and C). The loss of 53BP1 

resulted in an overall increase in the number of PCR products with lower than 

expected molecular weight to 51.6% of all products. (Figure 4.1 B and C).  
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Figure 4.1. Loss of 53BP1 leads to increased end resection. 
(A) Schematic representation of IgHI-96k allele (upper panel) with the PCR primers 
(arrows) used to amplify a 336 nt recombination product (lower panel).  
(B) Representative ethidium bromide stained agarose gels showing PCR products 
obtained after I-SceI induced recombination in IgHI-96k/+AID-/- and IgHI-96k/+AID-/-53BP1-/- 
B cells.  
(C) Bar graphs showing the frequency of I-SceI induced recombination products running 
at or below 300 nts, for IgHI-96k/+AID-/- and IgHI-96k/+AID-/-53BP1-/- B cells. Error bars 
indicate standard deviation. P value was calculated using Student’s t-test (two-tailed).  
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Molecular structure of joins 

To determine the precise molecular structure of the joins we sequenced all 

recombination products. I-SceI induced cleavage of its recognition site leaves a 4 

nt 3’ overhang which needs to be removed during the joining process. The extent 

of resection was scored as the number of nucleotides lost from the 5’ end (i.e. 

only 5’-3’ resection was scored, not loss of 4 nt overhang, Figure 4.2 A). We 

found that the average extent of end processing was 34.7 nucleotides for IgHI-

96k/+AID-/- B cells while the average number of nucleotides lost from the junction 

increased almost two-fold to 66.8 nucleotides in the absence of 53BP1, confirming 

our visual scoring of resection on the agarose gel (Figure 4.2 C). If no end 

processing occurs, an intact I-SceI site will be reconstituted. Hence, scoring the 

frequency of this precise event is an alternative and complementary measure of 

end processing. We found that consistent with the idea that ends are more 

frequently processed in the absence of 53BP1, the number of precise joins 

decreased from 30.9% to 13.3% in 53BP1-/- B cells (Figure 4.2 C).  
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Figure 4.2. Loss of 53BP1 leads to increased end resection. 

(A) Top: Sequence of I-SceI site in Iµ and 3’ of Sγ (red). I-SceI cutting (black lines) will 
result in a 4 nt 3’ overhang. Bottom: Joining without end-processing results in 
reconstitution of a complete, recleavable I-SceI site (red). 
(B) Top: Resection of the 3’ strand after I-SceI cutting exposes microhomology (blue). 
Bottom: Joining product after resection and loss of the I-SceI sequence, indicating the 
microhomology used  (blue). 
(C) Dot plot showing total resection of I-SceI infected IgHI-96k/+AID-/- and IgHI-96k/+AID-/-

53BP1-/- B cells. Each dot represents one sequence. The means are indicated as red lines 
in the graph. The p-value was calculated using the Student’s t-test (two-tailed). 
(D). Bar graph shows the average frequency of perfect I-SceI joins in I-SceI infected IgHI-

96k/+AID-/- and IgHI-96kAID-/-53BP1-/- B cells of five independent experiments. Error bars 
indicate standard deviation. The p-value was calculated using the Student’s t-test (two-
tailed). 
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Resection of DNA Ends correlates with microhomology at the junction 

Besides determining the extent of nucleotide loss (resection) during DSB joining , 

sequencing repair joins yields additional information about microhomology 

usage at the junction. All of the minimally processed joins showing less than 30 

nt end resection, displayed 0-4 nt of junctional microhomology, with an average 

of 1.5 and 2.0 nt, for AID-/- and AID-/-53BP1-/- B cells respectively (Figure 4.3). 

Minimal end processing in combination with little junctional homology is 

characteristic of C-NHEJ. In contrast, the majority of joining events that involved 

extensive resection (≥ 30 nt) used 3 nt or more of junctional microhomology, with 

an average of 3.6 and 4.0 nt, for AID-/- and AID-/-53BP1-/- B cells respectively 

(Figure 4.3, p<0.0001 for AID-/- and p=0.0004 for AID-/-53BP1-/-). Extensive end 

processing and junctional microhomologies are indicative of A-NHEJ. 

Interestingly, end resection leads to microhomology mediated end joining 

regardless of 53BP1 status. We therefore conclude that loss of 53BP1 leads to a 

greater likelihood of resection of DNA ends, which then leads to increased 

microhomology usage at the repair junction. 
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Figure 4.3. Resected DSBs are joined using microhomology-mediated end-joining, 
independently of 53BP1.  
(A) Bar graph shows microhomology at junctions of PCR products from I-SceI infected 
IgHI-96k/+AID-/- B cells. Black bars indicate sequences with little resection (< 30nt), white 
bars indicate sequences with resection ≥ 30nt.  
(B) Bar graph shows microhomology at junctions of PCR products from I-SceI infected 
IgHI-96k/+AID-/-53BP1-/- B cells. Black bars indicate sequences with little resection (< 30 
nt), white bars indicate sequences with resection ≥ 30 nt.  
(C) Graph shows extent of microhomology at junctions of PCR products from I-SceI 
infected IgHI-96k/+AID-/- and IgHI-96k/+AID-/-53BP1-/- B cells. Sequences are divided into 
those displaying fewer than 30 nt processing (left) and those with more than 30 nt 
(right). Horizontal line shows the mean. A total of 67 and 48 sequences were analyzed 
for IgHI-96k/+AID-/-  and IgHI-96k/+AID-/-53BP1-/- B cells, respectively. 
(D) Table indicates the average number of nt of microhomology at junctions in I-SceI 
infected IgHI-96k/+AID-/- and IgHI-96k/+AID-/-53BP1-/- B cells.  
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Increased end-resection in the absence of 53BP1 is independent of distance 

Next we asked whether the increased end resection in the absence of 53BP1 is 

specific for joining of DSBs across 96 kb. We first applied our PCR assay to 

measure resection frequency of DSBs separated by 1.2 kb utilizing B cells of IgHI-

1k/+AID-/-53BP1-/- mice and the respective 53BP1 proficient control (Figure 4.4 A). 

Joins with deletions of more than 30 nt (indicative of extensive end-processing) 

increased from 37.2 % in IgHI-1k/+AID-/- to 52.4 % in IgHI-1k/+AID-/-53BP1-/-. 

Sequencing of joins showed a corresponding increase in the average amount of 

end resection from 54.8 nt in IgHI-1k/+AID-/- to 90.4 nt in IgHI-1k/+AID-/-53BP1-/- 

(Figure 4.4 C).   
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Figure 4.4. 53BP1 effects on end resection during proximal DSBs joining.  
(A) Schematic representation of IgHI-1k allele before (top) and after (bottom) I-SceI 
induced recombination. I-SceI sites are indicated as blue circles, loxP sites as red 
triangles. PCR primers to amplify recombination products are shown as arrows.  
(B) Bar graph showing the frequency of I-SceI induced recombination products with 
more than 30 nt end processing for IgHI-1k/+AID-/- and IgHI-1k/+AID-/-53BP1-/- B cells. 
Error bars indicate standard deviations. The p-value was calculated using the Student’s 
t-test (two-tailed). Average of seven independent measurements. 
(C) Dot plot showing resection in sequences from I-SceI infected IgHI-1k/+AID-/- and IgHI-

1k/+AID-/-53BP1-/- B cells, with each dot representing one sequence. Average is indicated 
as a red line. The p-value was calculated using the Student’s t-test (two-tailed).  
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Next we tested whether loss of 53BP1 leads to increased end resection 

upon joining of DBSs across long distances utilizing our IgHI-27M mice. Similarly 

to our observations for joining of DSBs separated by 1.2 kb and 96 kb the extent 

of end processing increased from 55.5 % in IgHI-27M/+AID-/- to 75.5 % in IgHI-

27M/+AID-/-53BP1-/- (Figure 4.5 B), with the precise loss of sequence increasing 

from 103.2 nt to 142 nt in IgHI-27M/+AID-/- and IgHI-27M/+AID-/-53BP1-/-, respectively 

(Figures 4.5 C).  
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Figure 4.5. 53BP1 effects on end resection during distal (27 Mb) DSB joining.  
(A) Schematic representation of IgHI-27M allele before (top) and after (bottom) I-SceI 
induced recombination. I-SceI sites are indicated as blue circles, loxP sites as red 
triangles. PCR primers to amplify recombination products are shown as arrows.  
(B) Bar graph showing the frequency of I-SceI induced recombination products with 
more than 30 nt end processing for IgHI-27M/+AID-/- and IgHI-27M/+AID-/-53BP1-/- B cells. 
Error bars indicate standard deviations. The p-value was calculated using the Student’s 
t-test (two-tailed). Average of seven independent measurements. 
(C) Dot plot showing resection in sequences from I-SceI infected IgHI-27M/+AID-/- and 

IgHI-27M/+AID-/-53BP1-/- B cells, with each dot representing one sequence. The p-value 

was calculated using the Student’s t-test (two-tailed). Means are indicated as red lines. 
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Next we asked whether loss of 53BP1 also affects the repair process of 

DSBs on different chromosomes, utilizing the I-SceI inducible c-myc/IgH 

translocation system described in Chapter 2 (Figure 4.6 A). While the average 

amount of nucleotides lost from MycI/+IgHI/+AID-/- B cells is 448.2, the average 

amount of end resection increased almost two-fold to 742.3 nt in 

MycI/+IgHI/+AID-/-53BP1-/- B cells (Figure 4.6 B). Hence, we find that the absence 

of 53BP1 leads to increased DNA end resection even when DSBs are joined 

across different chromosomes 

We conclude that 53BP1’s ability to prevent end resection is independent 

of distance between paired DSBs. 

 

 

 
Figure 4.6. 53BP1 effect on trans-chromosomal joining of DSBs.  
(A) Schematic representation of the MycI and IgHI alleles.  
(B) Dot plot showing resection in sequences from I-SceI infected MycI/+IgHI/+AID-/- B 
cells in the presence or absence of 53BP1. The p-value was calculated using a two-tailed 
students t-test. Means are indicated as red lines.  
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Inhibition of ATM kinase decreases resection 

Optimal resection and formation of the single-stranded DNA substrate for HR 

requires ATM kinase activity as it facilitates the recruitment and activation of the 

nucleases that attack DNA ends (83, 234). Although HR does not appear to be 

involved in CSR, we investigated whether a related mechanism is involved in 

processing DNA ends for microhomology based A-NHEJ.  

To this end, we treated I-SceI infected IgHI-96k/+AID-/- and IgHI-96k/+AID-/-53BP1-/- 

B cells with a small molecule inhibitor of ATM (ATMi). Indeed, ATMi treated 

IgHI-96k/+AID-/- B cells showed significantly reduced DNA end resection (17.8% 

ATMi vs. 34.1% control, Figure 4.7 A and B) and a concomitant increase in the 

number of precise I-SceI joins (47.6 % in ATMi treated vs. 30.9% in control, 

Figure 4.7 C). Thus, the increase in I-SceI induced DNA end processing observed 

in the absence of 53BP1 is dependent on ATM.  
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Figure 4.7. Increased DNA end resection in the absence of 53BP1 is dependent on 
ATM. 
(A) Representative ethidium bromide stained agarose gels showing the PCR 
amplification products after I-SceI induced recombination of IgHI-96k/+AID-/- and IgHI-

96k/+AID-/-53BP1-/- B cells in the presence or absence of ATMi.  
(B) Bar graph showing the frequency of I-SceI induced recombination products running 
at or below 300 nt, for IgHI-96k/+AID-/- and IgHI-96k/+AID-/-53BP1-/- B cells in the presence 
or absence of ATMi. Error bars indicate standard deviation. P-value was calculated 
using Student’s t-test (two-tailed), three independent experiments.  
(C) Frequency of direct I-SceI joins, reconstituting an I-SceI site, as determined by 
sequencing of individual amplification products of I-SceI infected IgHI-96k/+AID-/- and 
IgHI-96k/+AID-/- 53BP1-/- B cells in the presence or absence of ATMi. Error bars indicate 
standard deviation. P-value was calculated using Student’s t-test (two-tailed), three 
independent sequencing experiments. 
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235), ATMi reduces CSR to IgG1 in wild type B cells from 21.5% to 11.6% (Figure 

4.8 A). In striking contrast, ATMi enhanced CSR in 53BP1-/- B cells from 1.3% to 

3.2% (Figure 4.8 B). We conclude that ATMi ameliorates the severe defect in CSR 

observed in the absence of 53BP1. 

 

 

 
 
 

Figure 4.8. Inhibition of ATM partially rescues the CSR defect in 53BP1-/- B cells.  
(A) Representative flow cytometry experiment showing CSR to IgG1 by wild type and 
53BP1-/- B cells, 96 hrs after LPS, IL-4 and RP105 stimulation in the presence or absence 
of ATMi.  
(B) Graph summarizes CSR to IgG1 by wild type and 53BP1-/- B cells in four 
independent experiments in the presence or absence of ATMi. Means are shown as a line 
in the graph and in the table below the graph. P-value was calculated using Student’s t-
test (two-tailed). 
 

 
 

 

Partial rescue of CSR in 53BP1 deficient B cells treated with ATMi 

Loss of 53BP1 interferes with CSR, but enhances recombination between repeat 

DNA within switch regions (194-196, 208). Since the latter requires DNA end 

processing we examined whether inhibition of DNA end processing by ATMi 

enhances CSR in 53BP1-/- B cells.  In agreement with published studies (191, 192, 

 

Partial rescue of CSR in 53BP1 deficient B cells treated with ATMi 

Loss of 53BP1 interferes with CSR, but enhances recombination between repeat 

DNA within switch regions (194-196, 208). Since the latter requires DNA end 

processing we examined whether inhibition of DNA end processing by ATMi 

enhances CSR in 53BP1-/- B cells.  In agreement with published studies (191, 192, 
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CHAPTER 5:  

53BP1 Structure/Function Analysis 

53BP1 is a DNA damage response protein that rapidly forms nuclear foci in 

response to DNA damage (60-62). This process is dependent on PIKK- 

(ATM/ATR/DNA-PKcs) induced phosphorylation of histone H2AX (γH2AX, 

(70-73)). γH2AX in turn recruits the E3 ubiquitin ligases RNF8 and RNF168 (51, 

52, 55, 56, 236) which promote histone ubiquitylation at sites of DSBs. The way in 

which ubiquitylation facilitates the accumulation of 53BP1 at sites of DSBs has 

not yet been defined; but one possible scenario is that ubiquitylation exposes 

constitutive chromatin marks, such as H4K20me2, to which 53BP1 then binds via 

its tandem tudor domain (52, 65).  

In addition to its chromatin binding tudor domain, 53BP1 contains an 

oligomerization domain, tandem BRCT domains, and numerous sites that can be 

modified post-translationally (237). Homo-oligomerization and interaction 

between the tudor domains and H4K20me2 are required for 53BP1 focus 

formation in response to DNA damage (63, 65, 72, 75, 76). In contrast, the C-

terminal tandem BRCT domains are not essential for focus formation, but 

mediate the interaction between 53BP1 and EXPAND1, a protein shown to 

promote chromatin changes after DNA damage and to facilitate repair (50, 75). 

Finally, the N-terminal portion of 53BP1 lacks defined structural domains but 

contains multiple S/T-Q sites, which are phosphorylation targets of ATM. 

Although mutating these residues to alanine alters the kinetics of resolution of 

DNA damage foci, it does not affect the formation of 53BP1 foci in response to 
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DNA damage (75, 78, 238). In addition to DNA damage dependent focus 

formation, 53BP1 is required to protect DSBs from end resection. 

In this chapter we analyze the contribution of 53BP1’s functional domains 

towards the protection of broken ends from resection, CSR, chromatin binding 

and focus formation upon DNA damage.  

 

The BRCT domains are dispensable for CSR and the prevention of end 

resection  

To investigate the function of the BRCT domains of 53BP1 in CSR and for the 

protection of DNA ends from resection, we deleted the region corresponding to 

amino acids 1708-1969 from the mouse germline (53BP1ΔBRCT; Figure 5.1 A). 

Lymphocyte development was normal in 53BP1ΔBRCT mice (Figure 5.1 B), despite 

lower than wild type levels of the mutant protein (Figure 5.1 C).  

 

 

 

 

 

 



 96 

 

 

 

Figure 5.1. B cell development is unaltered in 53BP1ΔBRCT mice but expression of the 
truncated protein is reduced. 

(A) Schematic representation of wild type (WT) 53BP1 protein (top) and (53BP1ΔBRCT) 
lacking the BRCT domains (bottom).  

(B) Flow cytometric analysis of splenocytes from age-matched wild type and 53BP1ΔBRCT 
mutant mice showing normal B lymphocyte development. Immuno-staining was 
performed with the indicated markers on total spleen cells. Representative of three 
independent experiments.  
(C) Western blot on total cell lysates showing 53BP1 expression levels in WT and 

53BP1ΔBRCT B cells. 

 

We next tested whether the absence of the BRCT domains affects CSR. 

53BP1ΔBRCT B cells were stimulated with LPS, IL-4 and RP105 to induce CSR to 

IgG1. We found that CSR in 53BP1ΔBRCT B cells occurs at levels comparable to WT 

control cells and conclude that the BRCT domains are dispensable for CSR. 

(Figure 5.2). 
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Figure 5.2. The tandem BRCT domains of 53BP1 are not required for CSR. 
(A) Representative flow cytometry plots measuring CSR to IgG1 after stimulation of WT, 

53BP1ΔBRCT and 53BP1-/- B cells.  
(B) Summary dot plot indicating CSR as a percentage of WT. The bar indicates the mean. 
Each dot represents an independent experiment. 

 

To determine whether the BRCT domains are required for DSB end 

protection, we produced 53BP1ΔBRCT/-IgHI-96k/+ mice and assayed the resection of 

paired I-SceI breaks. We found a minor increase in the number of PCR products 

that showed extensive end resection (> 35 nt) in 53BP1ΔBRCT/-IgHI-96k/+ B cells 

compared to control IgHI-96k/+, B cells, which can probably be attributed to the 

decreased expression level of the mutant protein (Figure 5.3 B). However, 

sequencing of PCR products did not reveal a major difference in the total number 

of nucleotides resected between IgHI-96k/+ and 53BP1ΔBRCT/-IgHI-96k/+ B cells. We 

conclude that the BRCT domains of 53BP1 are dispensable the protection of DNA 

ends from resection. 
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Figure 5.3. The tandem BRCT domains of 53BP are not required to protect DSBs from 
end resection.  
(A) Representative ethidium bromide stained agarose gels showing PCR products 

obtained after I-SceI induced recombination in IgHI-96k/+, IgHI-96k/+53BP ΔBRCT and IgHI-

96k53BP1-/- B cells. Red arrows point to the expected product size of 336 nts.  
(B) Bar graph quantitating the frequency of I-SceI induced recombination products with 
more than 35 nt end processing. Error bars indicate standard deviations. The p-value 
was calculated using the Student’s t-test (two-tailed). Average of at least six independent 
measurements using B cells from two mice. 
(C) Dot plot showing resection with each dot representing one sequence. Average is 
indicated as a red line. The p-value was calculated using the Student’s t-test (two-tailed).  
Recombination junctions from two mice were analyzed. 
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53BP1 is constitutively associated with chromatin  

53BP1 is a predominantly nuclear protein and forms nuclear foci in response to 

DNA damage (60, 65). Focus formation was shown to require the interaction of 

the 53BP1 tandem tudor domains with H4K20me2. It is unclear whether or not 

this interaction is inducible or constitutive, as the global level of H4K20me2 does 

not seem to change upon DNA damage. To determine the cellular distribution of 

53BP1 and whether it changes upon DNA damage we biochemically fractionated 

WT day 0 B cells (no stimulation). We confirmed the previous finding that 53BP1 

is a predominantly nuclear protein, as virtually no signal could be detected in the 

cytoplasmic fraction (Figure 5.4 left panel). The majority of 53BP1 is present in 

the nuclear soluble fraction; however, we could reproducibly detect the 

association of 53BP1 with chromatin in an undamaged state (Figure 5.4, left 

panel). Upon treatment of IR, we could not detect a measurable increase in 53BP1 

chromatin association, with the majority of the protein remaining in the nuclear 

soluble fraction (Figure 5.4, right panel). We conclude that a fraction of 53BP1 is 

constitutively chromatin associated and that upon treatment with 10 Gy of IR, 

53BP1 chromatin association is not increased globally.  
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Figure 5.4. 53BP1 is constitutively associated with chromatin in the absence of IR 
induced DNA damage. Western blots of fractionated WT B cells on day 0 with (+) or 
without (-) 10 Gy of IR, probed with antibodies shown on left. CYTO, cytoplasmic 
fraction; NS, nuclear soluble fraction; CHR, chromatin fraction. 

 

The tudor domain is required for CSR and the prevention of end resection 

The aspartic acid residue D1521 in the tudor domain of human 53BP1 is 

required for its binding to H4K20me2 (65). To test the significance of this 

interaction in CSR and the prevention of DNA resection, we produced D1518R 

mutant mice (53BP1DR) bearing a single amino acid substitution that is equivalent 

to D1521R in humans (Figure 5.5 A). Lymphocyte development was similar to 

wild type in 53BP1DR mice (Figure 5.5 B), and the mutant 53BP1DR protein was 

normally phosphorylated at Ser25 upon IR (Figure 5.5 C).  
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Figure 5.5. B cell development and 53BP1 phosphorylation are unaltered in 53BP1 
tudor domain mutant mice.  
(A) Schematic representation of WT 53BP1 (top) and 53BP1 with tudor domain mutation 
D1518R (bottom).  
(B) Flow cytometric analysis of splenocytes from age-matched wild type and 53BP1DR 
mutant mice reveals normal B lymphocyte development. Immuno-staining was 
performed with the indicated markers on total spleen cells. Representative of three 
independent experiments.  
(C) Western blots showing 53BP1 expression levels and phosphorylation at Ser25 in 
response to 10 Gy of IR (90 min recovery) in WT and 53BP1DR B cells. 

 

In agreement with previous studies, 53BP1DR failed to form IR-induced 

foci in mouse embryonic fibroblasts (MEFs; Figures 5.6 A, (64, 65)). In addition, 

53BP1DR was not chromatin associated in B cells (Figure 5.6 B). In fact, we noticed 

that in contrast to wild type 53BP1 the majority of 53BP1DR was located in the 

cytoplasm. Though the nuclear localization signal remains intact in this mutant, 

we cannot exclude that defects in nuclear localization are responsible for the 

observed deficiency in chromatin association. We conclude that chromatin 

association is required for focus formation but dispensable for DNA damage 

inducible 53BP1 phosphorylation. 
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Figure 5.6. The tudor domain of 53BP1 is required for focus formation and 
constitutive interaction with chromatin.  

(A) 53BP1 and γ-H2AX IRIF in WT and 53BP1DR MEFs after 10 Gy of IR, recovery 90 min 
(contributed by Jacqueline Barlow).  
(B) Western blots of fractionated WT and 53BP1DR B cells on day 0. CYTO, cytoplasmic 
fraction; NS, nuclear soluble fraction; CHR, chromatin fraction. 

 

To determine whether chromatin association is required for CSR, we 

stimulated 53BP1DR B cells in vitro. Mutant B cells assayed for IgG1 expression on 

day 4 of LPS, IL-4 and RP105 stimulation showed class switching at about 10% of 

wild type levels, phenocopying 53BP1-/- (Figure 5.7). 
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Figure 5.7. The tudor domain of 53BP1 is required for CSR. 
(A) Representative flow cytometry plots measuring CSR to IgG1 after stimulation of WT, 
53BP1DR and 53BP1-/- B cells.  
(B) Summary dot plot indicating CSR as a percentage of WT. The bar indicates the mean. 
Each dot represents an independent experiment. 
 
 

 We next determined the effect of the tudor domain mutation on the ability of 

53BP1 to prevent the occurrence of end resection. We crossed 53BP1DR mice to the 

resection reporter system IgHI-96k to produce IgHI-96k/+53BP1DR mice. We infected 

IgHI-96k/+53BP1DR B cells with I-SceI, inducing DSB formation at both IgHIμ and 

IgHIγ.  DSB joining was measured using the previously described dilution PCR 

assay. We detected an increase in DNA end resection in 53BP1DRIgHI-96k/+ B cells 

comparable to 53BP1-/-IgHI-96k/+ controls (Figure 5.8). We conclude that 53BP1 is 

constitutively chromatin associated and that this association is required for the 

protection of DNA ends from resection. Furthermore, loss of chromatin 

association leads to a severe CSR defect. 
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Figure 5.8. The tudor domain of 53BP is required to protect broken ends from 
resection.  
(A) Representative ethidium bromide stained agarose gels showing PCR products 
obtained after I-SceI induced recombination in IgHI-96k/+, IgHI-96k/+53BPDR and IgHI-

96k53BP1-/- B cells. Red arrows point to the expected product size of 336 nts.  
(B) Bar graph quantitating the frequency of I-SceI induced recombination products with 
more than 35 nt end processing. Error bars indicate standard deviations. The p-value 
was calculated using the Student’s t-test (two-tailed). Average of at least six independent 
measurements using B cells from two mice. 
(C) Dot plot showing resection with each dot representing one sequence. The p-value 
was calculated using the Student’s t-test (two-tailed). Recombination junctions from two 
mice were analyzed. 
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53BP1 chromatin association is required but not sufficient for CSR and DNA 

end protection 

H2AX is required for stable 53BP1 DNA damage focus formation, and its 

deficiency impairs CSR, but to a lesser extent than absence of 53BP1 (37, 71, 193). 

Moreover, 53BP1 was reported to interact with H2AX (72). To determine if the 

chromatin association of 53BP1 depends on this histone variant, we assayed 

H2AX deficient B cells. Although H2AX is required for 53BP1 foci, we found that 

H2AX is dispensable for constitutive 53BP1 chromatin association (Figure 5.9).  

 

 

Figure 5.9. 53BP1 is chromatin associated in the absence of H2AX.  
(A) Western blots of unstimulated fractionated AID-/- and AID-/-H2AX-/- B cells. CYTO, 
cytoplasmic fraction; NS, nuclear soluble fraction; CHR, chromatin fraction. 

 

To determine if H2AX is required to prevent DNA resection, we assayed 

IgHI-96k/+AID-/- H2AX-/- B cells. We found that resection was increased in the 

absence of H2AX to levels comparable to 53BP1-/- (51.7 % compared to 35.8 % in 

IgHI-96kAID-/- control, Figure 5.10 A and B).  

 



 108 

 

 

Figure 5.10. Chromatin associated 53BP1 is not sufficient for preventing end resection 
in the absence of H2AX.  
(A) Bar graph showing the frequency of I-SceI induced recombination products with 
more than 35 nts end processing for IgHI-96k/+AID-/-, IgHI-96k/+AID-/-53BP1-/- and IgHI-

96k/+AID-/-H2AX-/- B cells. Error bars indicate standard error of the mean. The p-value 
was calculated using the Student’s t-test (two-tailed). Difference in resection between 
IgHI-96k/+AID-/-53BP1-/- and IgHI-96k/+AID-/-H2AX-/- B cells is not significant. Average of 
three independent measurements using B cells from two separate mice. 
 (B) Dot plot showing resection in sequences from I-SceI infected IgHI-96k/+AID-/-, IgHI-

96k/+AID-/-53BP1-/- and IgHI-96k/+AID-/-H2AX-/- B cells. Red arrows point to the expected 
product size of 336 nts.  The p-value was calculated using the Student’s t-test (two-
tailed). Recombination junctions from two mice were analyzed. 
 
 

The oligomerization domain of 53BP1 is required for CSR 

The central region of 53BP1 is required for 53BP1 oligomerization (75, 76) and 

contains residues that are phosphorylated by ATM (S1219; (239)), ubiquitylated 

by Rad18 (K1268; (240)), and methylated by PRMT1 (R1398, R1400, R1401; (241)). 
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To determine the role of this region in vivo, we produced mice that express a 

mutant form of 53BP1 lacking this region (Figures 5.11 A). 53BP1Δ1210-1447 protein 

was expressed at normal levels, and lymphocyte development in 53BP1Δ1210-1447 

mice was similar to wild type (Figures 5.11 B and C). 

 

 

 

Figure 5.11. B cell development is unaltered in 53BP1Δ1210-1447 mice and protein is 

expressed at normal. 
(A) Schematic representation of wild type (WT) 53BP1 protein (top) and 53BP1 lacking 
the central domain (bottom).  

(B) Flow cytometric analysis of splenocytes from age-matched wild type and 53BP1 Δ1210-

1447mutant mice reveals normal B lymphocyte development. Immuno-staining was 

performed with the indicated markers on total spleen cells. Representative of three 
independent experiments.  

(C) Western blot showing 53BP1 expression levels in WT and 53BP1 Δ1210-1447B cells. 
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However, 53BP1Δ1210-1447 B cells similarly to 53BP1-/- B cells do not undergo 

CSR to IgG1  (Figure 5.12).  

 

 

Figure 5.12. The central domain of 53BP1 is required for CSR. 
(A) Representative flow cytometry plots measuring CSR to IgG1 after stimulation of WT, 

53BP1Δ1210-1447 and 53BP1-/- B cells.  
(B) Summary dot plot indicating CSR as a percentage of WT. The bar indicates the mean. 
Each dot represents an independent experiment. 

 

As the deletion of amino acids 1210-1447 of 53BP1 includes the 

oligomerization domain and several post-translational modification sites, we 

produced four region-specific mutant retroviruses and assayed them for their 

ability to rescue IgG1 switching in 53BP1-/- B cells (Figure 5.13 A) in order to 

identify which activity is required for CSR. All retroviruses were made without 

the tandem BRCT domains, since full-length 53BP1 is not expressed by 

retroviruses. Also, the retrovirus does not contain a GFP reporter gene, which 

compromises expression due to the size of the 53BP1 insert. We confirmed by 
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western blot that all retroviruses express the mutated 53BP1 proteins (Figure 5.13 

B). 

 

 

 
Figure 5.13. 53BP1 mutant retroviruses are expressed at normal levels after infection 
of 53BP1-/- B cells. 
(A) Diagram of 53BP1 retroviral constructs with the indicated mutations and deletions.  
(B) Western blot analysis on whole cell lysates to confirm that a protein of the expected 
size is produced upon retroviral infection. Asterisks denote lanes with unrelated 
samples, to be disregarded.  

 

We then tested all four mutant 53BP1 retroviruses for their ability to rescue CSR 

upon infection in 53BP1-/- B cells (Figure 5.14 A). 53BP1Δ1231-1270, which lacks the 

oligomerization domain, was the only mutant that failed to rescue CSR (Figure 

5.14 A and B). We conclude that the oligomerization domain in 53BP1 is required 

for class switch recombination but that residues S1219, K1268 and 

R1398/R1400/R1401 are dispensable.  
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Figure 5.14. The oligomerization domain of 53BP1 is required for CSR. 
 (A) Summary dot plot indicating CSR as a percentage of WT value within the same 
experiment. The bar indicates the mean. Each dot represents an independent 
experiment.  
(B) Representative flow cytometry plots measuring CSR after stimulation of 53BP1-/- B 
cells infected with the indicated retroviruses. Numbers indicate the percentage of IgG1 
switched cells. CFSE dye tracks cell division. 

 

We next tested whether the mutation in the oligomerization deletion affected the 

chromatin binding status of 53BP1. Interestingly, 53BP1Δ1231-1270 partially retained 

the ability to bind chromatin (Figure 5.15 A, (76)). To test whether the 

oligomerization domain is required to protect DNA ends from resection, we 

reconstituted Brca1Δ11/Δ11 53BP1-/- B cells with the 53BP1Δ1231-1270 retrovirus and 

measured the frequency of radial chromosome structures upon treatment with 

the PARP inhibitor (242). Loss of 53BP1 rescues homologous recombination in 

Brca1 mutant cells by facilitating the processing of DNA ends (242). Whereas 12 

radial structures were found among 100 metaphases in Brca1Δ11/Δ1153BP1-/- B cells 

infected with a negative control virus, 54 were present upon infection with 

53BP11-1710 (average of two independent experiments, Figure 5.13 B). The 
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oligomerization mutant 53BP1Δ1231-1270 showed on average 12/100 metaphases 

with radial fusions, which is similar to what we observed upon infection with an 

empty retrovirus (Figure 5.13 B). We therefore conclude that the oligomerization 

domain in 53BP1 is required for preventing DNA end resection. 

 

 

Figure 5.15. The oligomerization domain of 53BP1 is allows for partial chromatin 
association and is required for preventing end resection.  
(A) Western blots of fractionated 53BP1-/- B cells stimulated and infected with 53BP11-1710 

or 53BP1Δ1231-1270. CYTO, cytoplasmic fraction; NS, nuclear soluble fraction; CHR, 
chromatin fraction. 
(B) Left: Examples of normal metaphases (+empty) or metaphases containing radial 

chromosome structures (+53BP11-1710). Right: BRCA1Δ11/Δ1153BP1-/- B cells reconstituted 
with 53BP1 mutant retroviruses. Histogram quantitating the number of radial structures 
upon infection with the indicated retroviruses. Error bars indicate standard error of the 
mean. Two independent experiments.  

 

Minimal focus forming region is not sufficient for CSR 

Residues 1052 to 1710 of 53BP1 include the tudor and oligomerization domains, 

which as shown above are required for efficient CSR and the prevention of end 

resection. We now asked whether oligomerization and chromatin binding are 

sufficient for 53BP1 function in those two processes and utilized 53BP11052-1710. A 

fragment that is can form DNA damage foci upon IR and contains those two 
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domains (Figure 5.16 A, (72, 76)). We confirmed expression of the mutant protein 

and found that expression levels are strongly elevated compared to the 53BP11-1720 

control retrovirus Figure 5.16 B.  

 

Figure 5.16. The focus forming region of 53BP1 is expressed at elevated levels in 
infected 53BP1-/- B cells. 
(A) Schematic of 53BP1 retroviral construct with the indicated mutations and deletions.  
(B) Western blot analysis on whole cell lysates to confirm that a protein of the expected 
size is produced upon retroviral infection. Asterisks (*) denote lanes with unrelated 
samples, to be disregarded. 

 

However, despite high levels of expression retrovirally expressed 53BP11052-1710 

was unable to rescue CSR (Figure 5.17 A and B).  
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Figure 5.17. The focus forming region of 53BP1 is not sufficient for CSR.  
(A) Representative flow cytometry plots measuring CSR after stimulation of 53BP1-/- B 
cells infected with the indicated retroviruses. Numbers indicate the percentage of IgG1 
switched cells. CFSE dye tracks cell division.  
(B) Summary dot plot indicating CSR as a percentage of WT value within the same 
experiment. The bar indicates the mean. Each dot represents an independent 
experiment.  
 

We next determined the chromatin binding status and assayed whether the 

minimal focus forming fragment was able to protect DNA ends from resection. 

We found that despite retaining its ability to bind chromatin, DNA ends were 

processed such that radial structures were prevented similar to 53BP1 deficiency 

(Figure 5.18 A and B)  
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Figure 5.18. The focus forming region of 53BP1 binds to chromatin but does not 
prevent end resection. 
(A) Western blots of fractionated 53BP1-/- B cells stimulated and infected with 53BP11-1710 

or 53BP11052-1710. CYTO, cytoplasmic fraction; NS, nuclear soluble fraction; CHR, 

chromatin fraction. 

(B) Brca1Δ11/Δ11 53BP1-/- B cells reconstituted with 53BP1 mutant retroviruses. Histogram 

quantitating the number of radial structures upon infection with the indicated 
retroviruses. Error bars indicate standard error of the mean. Two independent 
experiments.  

 

We conclude that chromatin binding, oligomerization, and focus formation are 

insufficient to promote CSR, suggesting that the N-terminus of 53BP1 may play 

an important role in this reaction. 

 

Phosphorylation sites at the N-terminus of 53BP1 

To examine the role of the N-terminus of 53BP1 in CSR, we produced and tested 

additional mutants, including: (1) smaller N-terminal deletions (53BP1901-1710 and 

53BP1459-1710), (2) internal deletions corresponding to the amino acids encoded by 
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exons 3-12 (53BP1D61-901), 7-12 (53BP1D216-901) and 12 alone (53BP1D459-901 (75, 78)). We 

found that all of the deletion mutants were unable to rescue CSR (Figure 5.19). 

 

 

Figure 5.19.  53BP1 N-terminus is required for efficient CSR.  
(A) Cartoon diagram of 53BP1 N-terminal deletion mutants.  
(B) Control western blot analysis on whole cell lysates from a representative experiment 
to confirm that a protein of the expected size is produced upon retroviral infection.  
(C) Percentage of 53BP11-1710 class switching for each mutant (right). 53BP1D61-901, 
53BP1D216-901, and 53BP1D459-901 are N-terminally HA-tagged (blue).  Each dot represents an 
independent experiment; the bar indicates the mean value.  
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We next generated alanine substitution mutants of S/T-Q consensus sites for 

ATM phosphorylation (53BP18A, 53BP17A, 53BP115A, 53BP128A; Figure 15.20). 

 

 

Figure 5.20. Retroviruses containing 53BP1 N-terminal alanine substitution mutations 
of S/T-Q phosphorylation sites are expressed at normal levels. 
(A) Schematic of 53BP1 retroviral construct with the indicated mutations.  
(B) Western blot analysis on whole cell lysates to confirm that a protein of the expected 
size is produced upon retroviral infection.  
 
 
 

 
The alanine substitution mutants 53BP18A, 53BP17A, 53BP115A and 53BP128A 

displayed a CSR defect that correlated in severity with the number of 

substitutions. 53BP18A showed 90% of WT CSR whereas 53BP128A was similar to 

the null mutant (Figure 15.21).  
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Figure 5.21. N-terminal phosphorylation of 53BP1 is required for CSR. 
(A) Representative flow cytometry plots measuring CSR after stimulation of 53BP1-/- B 
cells infected with the indicated retroviruses. Numbers indicate the percentage of IgG1 
switched cells. CFSE dye tracks cell division.  
(B) Summary dot plot indicating CSR as a percentage of WT value within the same 
experiment. The bar indicates the mean. Each dot represents an independent 
experiment.  
 

Despite its inability to rescue CSR, 53BP128A bound to chromatin and formed IR-

foci (Figure 15.22 A and B). We conclude that multiple S/T-Q target sites for 

ATM phosphorylation at the N-terminus of 53BP1 are required for CSR. Lastly, 

we determined whether 53BP128A was able to protect DNA ends from resection. 

We found that despite retaining its ability to bind chromatin, DNA ends were 

processed such that radial structures were prevented similar to 53BP1 deficiency 

(Figure 5.22 C).  
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Figure 5.22. N-terminal phosphorylation of 53BP1 is required for preventing end 
resection but is dispensable for chromatin binding and IR induced focus formation. 
(A) Western blots of fractionated 53BP1-/- B cells stimulated and infected with 53BP11-1710 
or 53BP128A. 
(B) Focus formation after treatment of 10 Gy of IR after retroviral infection of 53BP1-/- 
MEFs with the indicated retroviruses 

(C) Brca1Δ11/Δ1153BP1-/- B cells reconstituted with the indicated 53BP1 mutant 

retroviruses. Histogram quantitating the number of radial structures upon infection 
with the indicated retroviruses. Error bars indicate standard errors of the mean.Two 
independent experiments.  
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CHAPTER 6:  

Discussion 

AID is responsible for the DSB at c-myc that is required for c-myc/IgH 

translocation 

Hematologic malignancies such as leukemias and lymphomas frequently harbor 

clonal chromosome translocations. Chromosome translocations require the 

joining of two spatially proximal DSBs on heterologous chromosomes. DSBs 

rarely accumulate in somatic cells, but they are obligate intermediates in CSR, a 

reaction that involves introduction of multiple targeted DSBs in the IgH locus in 

mature B lymphocytes. Normally, the ATM-, p53- and p19Arf-dependent 

pathways that detect and signal DNA damage protect the B cell genome from 

chromosome translocations (208). Nevertheless, these protective mechanisms 

sometimes fail, as evidenced by the involvement of the IgH locus in nearly all 

cancer-associated chromosomal translocations in mature B cell lymphomas and 

multiple myeloma (243). 

AID creates the lesions in the IgH locus that lead to translocations (153, 

163, 208, 223). Although necessary, DSBs in IgH alone are not sufficient for 

translocation - a second DSB on a heterologous chromosome is required. 

However, the source of DNA damage at genes that are translocated in mature B 

cell malignancies has not been determined (243). 

In Burkitt’s lymphoma and in murine plasmacytoma IgH is translocated to c-myc, 

leading to deregulated expression of c-myc and malignant transformation (211-

222). 
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Although AID was found to be required for c-myc/IgH translocation and to 

increase the translocation rate, this effect could have been due to higher levels of 

DNA breaks on c-myc or IgH or both (208, 244, 245). Previous work suggested 

that DSBs in c-myc are AID independent and might be due to increased 

susceptibility of fragile non-B-DNA to environmental agents like reactive oxygen 

intermediates, transcriptional or replication-linked DNA damage (246-249). This 

idea was supported by the finding of AID independent DSBs in c-myc in B cell 

lymphomas (250), the relative rarity of somatic mutations in c-myc (251), and the 

lack of deletions or duplications in c-myc that would mark DSB formation (177-

181, 251, 252).  

Here we present experiments that clearly show a requirement for AID in 

the formation of mutations and lesions at c-myc. We demonstrate that AID is 

essential for DSB formation in c-myc that result in c-myc/IgH translocation in 

primary nouse B cells. Based on the finding that artificial DSBs at c-myc induced 

with the I-SceI endonuclease increase c-myc/IgH translocation frequency, we 

conclude that the DSB at c-myc is limiting for the reaction. Consistent with this 

finding is the paucity of easily detectable DNA damage under physiologic AID 

expression levels and the absence of mutations at the c-myc locus (178). However, 

AID over-expression leads to the AID mutation footprint at c-myc as well as focus 

formation of DNA damage factors. We conclude that AID-induced DSB 

formation at c-myc is much less efficient than at IgH under physiologic 

conditions, but that these rare off-targeting events are responsible for the lesion 

at c-myc that leads to the formation of the c-myc/IgH translocation 
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Differential DNA repair at different loci 

We observed that the extent of DNA processing and the structure of the 

intermolecular joints differed depending on whether the lesion was induced by 

AID or I-SceI. The most extensive resection of DNA ends was found at c-myc 

with I-SceI mediated translocations in the absence of AID. The same extent of 

end resection was not detected at IgH under the same conditions. Moreover, 

whereas I-SceI induced breaks were resolved by a mechanism biased toward 

junctional microhomology reminiscent of alternative NHEJ (253), AID breaks 

produced a combination of blunt and short microhomology joints similar to 

those found in CSR. The difference in trans-chromosomal joints between I-SceI 

and AID may be explained by recruitment of a distinct set of repair enzymes to 

the two types of DNA damage. In the case of I-SceI a DSB is introduced directly 

by the yeast endonuclease and must be recognized by the DNA damage 

recognition and repair system before being processed and joined. In contrast, 

AID induced U:G mismatches are recognized by mismatch and base excision 

repair enzymes before recruitment of additional repair factors that then process 

the lesions to produce DSBs. Thus, the difference in the joints produced by I-SceI 

breaks and AID lesions may in part be due to the distinct mechanisms that 

recognize the initial lesion and produce the DSB. 

Although the precise mechanism by which AID introduces lesions in DNA is still 

debated, AID is thought to produce U:G mismatches in DNA by cytidine 

deamination (200, 254, 255). In B cells undergoing SHM or CSR, uracil is detected 

and removed from antibody genes by error prone mechanisms leading to 

mutations or DSBs. Other genes, including oncogenes, appear to repair such 
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lesions in a relatively error free manner, which may explain the nearly 

undetectable level of AID mediated mutation in genes like c-myc (178, 181, 251).  

 

The role of distance in DSB joining  

While joining of paired DNA breaks on disparate chromosomes leads to 

translocations resulting in loss of genetic material in some cases, joining of paired 

intra-chromosomal breaks always results in loss of genetic information. HO, I-

SceI, and zinc finger nucleases that produce unique DSBs in yeast and 

mammalian genomes have primarily been used to explore the biology of 

chromosome translocations. However, much less is known about the role of 

DNA repair factors in protecting cells against intrachromosomal deletions.  

Deletions are commonly observed in cancer, where they are often recurrent and 

contribute to malignant transformation (256). In fact, recent high-throughput 

paired-end sequencing of breast cancer genomes indicated that intra-

chromosomal rearrangements are ~6-fold more common than trans-

chromosomal rearrangements (257). The distribution of intra-chromosomal 

rearrangements appeared to be non-random:  the great majority of deletions 

occurred between sites separated by less than 2 Mbs of genomic distance. This 

indicates that certain architectural features of the chromosome lead to a higher 

likelihood of DSB joining within 2 Mbs than more distal DSB joining. However, 

cancer genomes are highly selected populations and larger deletions may have 

been selected against. Unbiased approaches to map chromosome topology and 

genome architecture revealed that the nucleus is highly compartmentalized and 

that chromosomes are organized in a non-random fashion. Specifically, using 

“Hi-C”, a technique that samples the interaction probabilities between different 
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loci genome-wide, showed with a resolution of 1 Mb that chromosomes display 

“polymer-like” behavior, where the contact probability between two loci 

depends on the 3 D distance between them (258).   

Although chromosome deletions are often pathogenic and contribute to 

malignant transformation, deletions are required intermediates in immune cell 

diversification reactions. For instance, CSR in B cells involves the programmed 

deletion of DNA segments separated by 60-200 kb at the IgH locus of mouse 

chromosome 12 (255). While the distance between two loci inversely correlates 

with their contact probability on a global scale, local chromosome organization 

induced by cis- and trans-acting factors, regulatory DNA elements and 

chromatin status, may impact substantially on rearrangement efficiencies. For 

example, enhancer elements at the IgH locus in B cells induce looping, resulting 

in the close physical proximity of distant sites (229). Hence, genomic distance 

does not necessarily represent the actual physical 3D distance in an interphase 

nucleus especially at a local scale. 

To study the role of distance in the joining of tandem intra-chromosomal DSBs in 

mammalian cells with an emphasis on CSR, we compared joining between I-SceI 

induced breaks on chromosome 12 spaced by 1.2 kb, 96 kb, and 27 Mb. Our 

analysis reveals that DSBs separated by 1.2 kb or 96 kb are more likely to join 

than those separated by 27 Mb on mouse chromosome 12. In fact, when DSBs are 

separated by 27 Mb, the rate of joining in cis is similar to trans-chromosomal 

joining between IgH and c-myc. One potential caveat of our comparative analysis 

is that I-SceI cutting efficiency may vary depending on the genomic location. In 

our set of experiments we do not control for cutting efficiency and the 
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conclusions from the comparative analysis are drawn assuming that cutting 

efficiency is the same for I-SceI sites located in Iμ, Cγ and c-fos and c-myc.   

 

The fact that very distal intra-chromosomal DSBs are joined less frequently than 

more proximal DSBs is in agreement with genome wide conformation-capture 

data and also with findings from cancer genome sequencing that show a striking 

enrichment for intra-chromosomal rearrangements in a 2 Mb window (257). 

Moreover, the Hi-C dataset showed that contact probabilities between distal sites 

(>20 Mb) within one chromosome are of the same order of magnitude as contact 

probabilities between two heterologous chromosomes, which is entirely 

consistent with our observation that joining of DSBs separated by 27 Mb occurs 

at similar efficiencies to DSB joining between different chromosomes.  

Although our data concerning the joining of DSBs at discrete distances matches 

the observations of genome-wide chromosome organization experiments (257, 

258), genome-wide architectural studies such as Hi-C sample the steady state, 

while cancer genome sequencing presents a highly selected end-product. Both 

methods may not entirely reflect what happens during DSB joining, as DSB 

formation leads to local changes in chromatin structure that may alter interaction 

probabilities between different loci, leading to an altered likelihood of local DSB 

joining than steady-state contact probability would predict.  

 

The contribution of 53BP1 to joining efficiency 

53BP1 is a large nuclear protein that forms foci in response to DNA damage. This 

protein plays an interesting role in the joining of DNA breaks, as it promotes the 
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joining of DSBs between two distal S-regions during CSR, but is dispensable for 

the joining of proximal DSBs within one S-region (194-196). Similarly, distal V-DJ 

recombination at the TCRα locus is impaired in the absence of 53BP1 as well as 

the joining of TRF2 depleted telomeres (124, 152). Those findings suggest that 

53BP1 does not affect DSB joining per se, but only affects joining across certain 

distances.  

Here we systematically analyze which distances are affected by the absence of 

53BP1 by measuring the joining frequency of DSBs separated by 1.2 kb, 96 kb, 27 

Mb and on different chromosomes in the presence and absence of 53BP1. We 

found that 53BP1 selectively facilitates joining of DSBs separated by 96 kb, and 

does not affect more proximal, very distal or trans-chromosomal joining events.  

Several non-mutually exclusive hypotheses have been proposed to account for 

the effect of 53BP1 on DSB joining. One model proposes that 53BP1 enhances 

chromatin mobility after DSB formation and is based on observations made at 

dysfunctional telomeres, where 53BP1 was shown to promote telomere mobility, 

thereby facilitating trans-chromosomal telomere fusion events (124). In a 

protected, undamaged state, telomere movement constrained to a maximum 

displacement of ~ 0.5 µm. Upon de-protection and activation of the DNA 

damage response, telomere mobility in 53BP1 proficient cells increases ~ two-

fold, while 53BP1 deficient cells display significantly reduced mobility. However, 

it is not clear whether telomeres, which represent one DSB at the end of a 

chromosome, behave similar to DSBs that occur within one chromosome. In fact, 

the movement of chromosome internal DSBs has been shown to be highly 

restricted, due to the rapid accumulation of bridging factors such as the KU70/80 
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complex at the site of the break, which is thought to hold the broken ends in 

close proximity to facilitate DNA repair (259). By extension, it is unclear what 

role 53BP1 dependent chromosome mobility plays in the repair of random or 

programmed chromosome internal DSBs. 

An alternative explanation for the selective effects on DSB joining displayed by 

53BP1 derives from the finding that 53BP1 allows for a higher probability of 

interactions between DNA elements 28-172 kb apart during rearrangements of 

the TCRα locus (152). 53BP1 was proposed to facilitate joining by coating regions 

adjacent to broken DNA to mediate the “synapsing” of RAG induced DSBs by 

homo-oligomerization.  

Recently, the preferential joining of S-region breaks by C-NHEJ and the exclusion 

of A-NHEJ has been proposed to facilitate DSB joining during CSR (198). B cells 

deficient for the C-NHEJ factors XRCC4 and Ku70 display reduced CSR levels to 

~ 50% of wild type levels. However, 53BP1 deletion leads to a more drastic defect 

in CSR, hence the repair pathway choice may be a contributing factor to CSR 

defects.  

Our data do not provide direct evidence for either the synapsis model or the 

chromatin mobility model that have been proposed to account for 53BP1 

dependent DSB joining. However, we reasoned that the selectivity on the joining 

of paired breaks separated by 96 kb coincides with the proposed spread of DNA 

damage factors along the chromosome in response to DSBs (49, 228). Indeed, the 

extent of γH2AX spreading from an I-SceI induced DSB at the IgH locus is 

confined to ~ 1 Mb surrounding the break. Since DSBs produced during CSR are 

separated by 60-200 kb, our findings support a model in which 53BP1 and 
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possibly other focus forming factors promote the synapsis of DSBs if they fall 

within the range of spread of the H2AX/RNF8 dependent DNA damage 

response . This model correctly predicts that trans-chromosomal DSB joining, or 

joining of DSBs that occur at distances beyond the spread of the DNA damage 

response are not affected by the loss of 53BP1.  

Interestingly, loss of 53BP1 does not affect recombination efficiency mediated by 

Cre/loxP, a recombination reaction that is independent of the DNA damage 

response. This finding substantiates that 53BP1 acts downstream of a DSB, 

mediating synapsis of broken ends as part of the DNA damage response.  

 

The role of 53BP1 in DNA repair 

DSBs can be repaired with a high degree of fidelity during the S and G2 phases 

of the cell cycle by HR, which uses the undamaged sister chromatid as a template 

for repair. HR requires 5’-3’ resection of DNA ends to produce ssDNA, which 

recruits RPA, leading to deposition of RAD51, a factor that is essential in 

homology search (260). End resection is believed to occur during two stages: in 

the first phase, relatively shorstretches of ssDNA are produced by the combined 

action of MRE11/RAD50/NBS1 (MRN) and CTIP; in a second phase, longer 

stretches of ssDNA are produced by the combined action of Bloom’s helicase, 

EXO1 and WRN (81, 84-86, 111, 261, 262). ATM is implicated as a regulator of the 

resection process because it phosphorylates all of the enzymes known to be 

involved in resection (89) and is required for optimal ATR activation and for 

CTIP recruitment to DNA ends (234, 260, 263, 264). Recent work from a number 

of laboratories indicates that the critical choice between HR and NHEJ in the 
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S/G2/M phases of the cell cycle is regulated at the level of DNA end resection 

(82, 87, 88). 

 

In the absence of a template sister chromatid during CSR in G1, DSBs are 

repaired by error-prone C-NHEJ or A-NHEJ. However, little is known about the 

choice between C-NHEJ and A-NHEJ. Under physiological circumstances the 

majority of switch joins are blunt or show minimal microhomology, suggesting 

that C-NHEJ is the dominant pathway (255). Nevertheless, A-NHEJ is a robust 

pathway, which can reconstitute up to 50% of normal levels of CSR in the 

absence of core C-NHEJ factors such as LIG4, or XRCC4, or KU70/ 80 or even the 

combination of KU70 and LIG4 (113, 147, 197, 198). 

 

A-NHEJ can also mediate plasmid re-circularization in transfected cells (108), 

joining of I-SceI breaks (265), oncogenic translocations (116, 206-208), and finally 

V(D)J recombination when the end protection function of the RAG recombinase 

is disabled (148). However, other than the preponderance of microhomologies 

found at the junctions (266, 267) and the suggestion that MRN is required for A-

NHEJ (111, 261, 268, 269), this pathway remains poorly defined. 

 

In addition to NHEJ, the DNA damage response is also essential for 

physiological CSR (270). Among the factors that mediate this response, 53BP1 

has the most profound effect on CSR and specifically affects long-range joining 

between different switch regions (194, 196). In contrast, 53BP1 deficient B cells 

show increased short-range intra-switch joining, which involves ligation of 

highly repetitive DNA (196).  
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Here we provide evidence that the DNA damage response factor 53BP1 

influences the choice between C-NHEJ and A-NHEJ by preventing end-resection 

of DSBs. End processing is essential for the production of the ssDNA required for 

microhomology based A-NHEJ. Therefore, by interfering with end processing, 

53BP1 normally impairs A-NHEJ, which leads to enhanced C-NHEJ. The choice 

of repair pathway is particularly crucial during CSR. While different (distal) S-

regions are highly repetitive internally, they are not homologous with respect to 

each other.  The extensive end-resection observed in the absence of 53BP1 reveals 

the abundant microhomologies within one S-region, providing substrates for 

efficient S-region internal ligations, which would normally be prevented. Loss of 

53BP1 therefore favors switch region internal deletions by enhancing resection 

dependent A-NHEJ, and disfavors C-NHEJ dependent recombination between 

two non-homologous switch regions. Consistent with this idea, inhibition of end 

resection by interfering with ATM activity enhances CSR in 53BP1 deficient B 

cells.  

Interestingly, the other severe defect in the absence of 53BP1 is the inability to 

join dysfunctional telomeres. Similarly to S-regions, telomeres consist of highly 

repetitive sequence. It is possible that analogous to its protective role in CSR, 

53BP1 protects dysfunctional telomeres from end degradation. Resected ends are 

refractory to ligation by C-NHEJ, therefore 53BP1 dependent maintenance of 

telomere integrity could be a crucial contribution towards joining of chromosome 

ends.  

Similar to our findings, a parallel study showed that 53BP1 mediates the choice 

between HR and NHEJ by preventing end resection. Specifically, inhibition of 
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PARP in BRCA1 deficient cells leads to abundant formation of NHEJ dependent 

radial structures. 53BP1 deficiency abrogates radial structure formation by 

allowing repair of PARP inhibitor induced DSBs by HR rather than NHEJ (242).  

 

In summary, we have uncovered a novel function for 53BP1 in promoting the 

choice between classical and alternative NHEJ pathways. Based on these findings 

we propose a model in which CSR is facilitated by 53BP1 dependent C-NHEJ 

pathway. However, C-NHEJ deficient B cells can undergo CSR with up to 50% of 

wild type efficiency, which is far above the observed rates for CSR in 53BP1 

deficient B cells (197, 198). Therefore, the severe 53BP1 defect cannot exclusively 

be explained with the “choice of repair pathway” model. Alternative models 

such as the 53BP1 chromatin mobility or DSB synapsis models remain to be 

tested and established in the context of CSR. 

 

 

Structure/Function Analysis 

We have shown that 53BP1 facilitates end joining in cis and that this effect is 

limited to DSBs separated by 96 kb, as loss of 53BP1 does not reduce the joining 

frequency of proximal, very distal or transchromosomal DSBs. The selective 

effect of 53BP1 on joining paired breaks separated by 96 kb suggested a role for 

DNA damage factors that spread along the chromosome in response to DSBs in 

an H2AX/RNF8 dependent manner (49, 228). In addition to forming repair foci 

at DNA ends we have provided evidence that 53BP1 protects DNA ends from 

resection and thereby favors repair by C-NHEJ while preventing A-NHEJ. 

However, end protection is not sufficient to explain the effects of 53BP1 on CSR 



 133 

since H2AX deficiency promotes extensive end resection and yet produces a 

milder CSR defect (193). 

The way in which 53BP1 mediates end protection and facilitates joining 

was investigated by analyzing the contribution of the structural domains of 

53BP1 to DNA end protection and class switching in B lymphocytes. Human 

53BP1 binds to the histone mark H4K20me2 via its tudor domain and mutation 

of amino acid D1521 in the tudor domain abrogates 53BP1’s ability to form DNA 

damage foci in response to IR (64, 65). We find that 53BP1 is chromatin 

associated even in the absence of DNA damage or H2AX, which is consistent 

with previous reports showing that H4K20me2 is a constitutive chromatin 

modification (65, 66) and that 53BP1 chromatin association is RNF8 and 53BP1-

foci independent (53). These studies suggest that even in the context of 

undamaged chromatin this modification is accessible to 53BP1. Furthermore, a 

knock-in mutant of the tudor domain (53BP1DR) that fails to form foci in response 

to DNA damage also fails to associate with chromatin in non-irradiated cells. 

Therefore, an intact tudor domain is required for both constitutive binding to 

chromatin and DNA damage induced focus formation. As predicted from its 

inability to bind chromatin or form DNA damage foci, 53BP1DR was unable to 

protect DNA ends from resection or to support CSR. 

The absence of 53BP1’s oligomerization domain and deficiency in H2AX 

both impair the formation of stable DNA damage foci (70-73). In contrast, we 

find that neither the oligomerization domain of 53BP1 nor H2AX are required for 

53BP1 binding to chromatin. However, DNA end protection and CSR are 

impaired in the absence of either. Thus the ability to bind constitutively to 

chromatin appears to be necessary but not sufficient for end protection or CSR. 
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Consistent with this idea, a fragment of 53BP1, which binds chromatin and forms 

DNA damage inducible foci (53BP11052-1710), is unable to support either end 

protection or CSR. Interestingly and unlike 53BP1, H2AX deficiency does not 

rescue the formation of radial fusions observed in PARP inhibitor treated Brca1 

mutant B cells (Figure 4C). Although H2AX and 53BP1 deficiency both lead to 

increased end-resection (242, 271-273), H2AX in contrast to 53BP1 likely plays 

additional roles in HR and NHEJ which may be essential in Brca1 deficient cells. 

Similar to H2AX, RNF8 and RNF168 are required for stable 53BP1 focus 

formation upon IR (51, 52, 55, 56, 73, 236).  In this context, it will be interesting to 

test the effect of RNF8/RNF168 deficiency on PARP inhibitor induced 

chromosome abnormalities in Brca1Δ11/Δ11 cells, as these ubiquitin ligases lie 

downstream of H2AX and upstream of 53BP1. 

Our analysis of tandem BRCT domains mutant B cells (53BP1ΔBRCT) 

showed that the C-terminus is dispensable for both CSR and the protection of 

ends from processing, which suggests a role for the N-terminus in these 

processes. The N-terminus of 53BP1 lacks known structural domains, but 

contains S/T-Q consensus target sites for ATM phosphorylation that are 

implicated in promoting the resolution of γH2AX foci upon IR (75, 78, 238). We 

find that the putative ATM phosphorylation sites are also required to prevent 

DNA resection and to support CSR, suggesting that N-terminally 

phosphorylated 53BP1 may recruit additional factors to regulate DNA repair. In 

summary, out of all the 53BP1 functional domains tested, the ability to protect 

DNA ends from resection is the only parameter that correlates with CSR. 

Chromatin association, focus formation, oligomerization, and intact N-terminal 
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ATM phosphorylation sites are all essential but by themselves not sufficient to 

prevent DNA end processing or to support CSR. Therefore, end protection and 

CSR may not simply be mediated by direct physical association of 53BP1 with 

DNA ends but appears to require the assembly of a complex composed of H2AX, 

53BP1 and possibly additional yet-to-be defined proteins.  
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CHAPTER 7:  

Methods 

 
Mice 
IgHI-1k/+, IgHI-96k/+, IgHI-27M/+ were generated by homologous recombination in 

C57BL/6 albino embryonic stem (ES) cells. Details of the targeting vectors, 

screening by Southern blot, and genotyping PCR are provided in the following 

sections. IgHI/+, MycI/+, 53BP1ΔBRCT/+, 53BP1DR/+, and 53BP1Δ1210-1447/+ mice were 

generated by Dr. Davide Robbiani, The Rockefeller University, New York. AID-/- 

(155), 53BP1-/- (195), H2AX-/- (37), Brca1lox/lox (274), Brca1Δ11/Δ11 (275), FLPer mice 

(Rodriguez et al., 2000) and CD19cre mice (276) were previously described. All 

experiments were performed in accordance with protocols approved by The 

Rockefeller University and National Institutes of Health (NIH) Institutional 

Animal Care and Use Committee. 

 

Targeting strategy for IgHI-196/+ mice 
 
IgHI-1k mice were generated by homologous recombination in C57BL/6 albino 

embryonic stem (ES) cells. The following primers were used to generate the 

construct: Long arm of homology: 5’- GCGGCCGC GCATGC 

CAGATACCCATACTGGAAAGCAGG-3’ and 5’- GCGGCCGC TTAATTAA 

CCTGGAATAAGTGTCTTCTCTGTGC-3’; Short arm of homology: 5’- 

GTTTAAAC GGCGCGCC AAGCCTCAGCAGAATGGGAAGTGG-3’ and 5’- 

GTTTAAAC GGCCGGCC ATTACCCTGTTATCCCTA 

GCTGTCTGATGTGGGCATCTGTG-3’.  I-SceI site is underlined. LoxP site was 
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present in hygromycin targeting backbone. The frt-flanked hygromycin cassette 

was removed in vivo by crossing to FLPer mice. Genotying primers used on 

hygro excised germine IgHI-96k allele: 5’- TCAGGGAACCTAAGAACAGGGACC-

3’ and 5’-TAGGAAAATGCCCCACCTGC’-3, 38 cycles of PCR amplification (95 

C, 45 s; 57 C, 45 s; and 72 C, 30 s). Primers used for amplification of probe: 5’- 

GGTGCTGAGGTTCAAAGGCAG -3’ and 5’- 

TTTTAGGTGCTTGCTTAGGAGGTC-3’). 

 
 
 
Figure 7.1. Gene targeting strategy to generate IgHI-96k/+ mice.  
(A) Schematic representation of the gene targeting strategy, using IgHIµ ES cells 
(Robbiani et al, 2008). The targeting vector, targeted allele and targeted allele upon flp 
induced hygromycin excision (germline IgHI-96k) are shown. LoxP sites are indicated as 
red triangles, I-SceI sites are blue circles and frt sites are black bars. DTA was used for 
negative selection.  
(B) Southern Blot analysis of ES cell DNA digested with SphI showed correct integration 
upon hybridization with a radiolabeled probe.  

 

Targeting strategy for IgHI-1/+ mice 

IgHI-1k were generated by homologous recombination in C57BL/6 albino 
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embryonic stem (ES) cells. The spacer sequence (human IgHG1 intron 4) was 

amplified using the following primers: 5’ - 

CACACAAAGACTCTGGACCTCTCCTGCGAGACTGTGATGGTTCTTTC-3’ 

and 5’- 

GGCCGGCCAATATTATTACCCTGTTATCCCTATGTGGCAGGACCCAGGAT

GTAG – 3’. The probe for Southern blotting was amplified using the following 

primers: 5’- TTCCTACCTTCTCCCCTGAGTCTC -3’ and 5’- 

TTCCCAGAGTCACAGCCTTTGTCC-3’. The frt-flanked hygromycin cassette 

was removed in vivo by crossing to FLPer mice. For genotyping, 38 cycles of PCR 

amplification (95° C, 45 s; 59° C, 45 s; and 72° C, 30 s) were performed with 

primers 5’- GCGGGTCCTGCTGAGGGCCAG-3’ and 5’-

TAGGAAAATGCCCCACCTGC’-3. The size of the IgHI-1k allele is 390 bp. 

 

 

Figure 7.2. Gene targeting strategy to generate IgHI-1k/+ mice. 
Schematic representation of the gene targeting strategy to generate IgHI-1k mice. The 
targeting vector, targeted allele and targeted allele upon flp induced hygromycin 
excision (germline IgHI-1k) are shown. LoxP sites are indicated as red triangles, I-SceI 
sites are blue circles and frt sites are black bars. DTA was used for negative selection.  

 
 
 



 139 

Targeting strategy for IgHI-27M mice 

The following primers were used to generate the construct: Long arm of 

homology: 5’- GGCCGGCCAAGCTT ATTACCCTGTTATCCCTA 

ACCAGTTTGTCAAGATGGGTGG-3’ and 5’- 

GGCGCGCCAGATGTGCCAGATGTAGGTAGATGC-3’; Short arm of 

homology: 5’- TTAATTAACTGGATTTGACTGGAGGTCTGC-3’ and 5’- 

CGATCGGCGGCCGC TCCTCAGAGGCCTTCCTGAAAC -3’.  I-SceI site is 

underlined. LoxP site was present in hygromycin targeting backbone. Probe for 

Southern blotting was amplified using the following primers: 5’- 

GCGAGCAACTGAGAAGACTGGATAG -3’ and 5’- 

AATGGTAGTAGGAAAGGCTGTCCC-3’. The frt-flanked hygromycin cassette 

was removed in vivo by crossing to FLPer mice. For genotyping, 38 cycles of PCR 

amplification (95° C, 45 s; 55° C, 45 s; and 72° C, 30 s) were performed with 

primers 5’- ACCCATCTTGACAAACTGGTTAGG-3’ and 5’- 

TAGGAAAATGCCCCACCTGC’-3. The size of the IgHI-27M allele is 231 bp. 
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Figure 7.3. Gene targeting strategy to generate IgHI-27M/+ mice.  

Schematic representation of the gene targeting strategy to generate IgHI-27M mice 
starting from previously targeted IgHI ES cells (Robbiani et al, 2008). The 
targeting vector, targeted allele and targeted allele upon flp induced hygromycin 
excision (germline IgHI-27M) are shown. LoxP sites are indicated as red triangles, I-
SceI sites are blue circles and frt sites are black bars. DTA was used for negative 
selection.  
 

B cell cultures 

B lymphocytes were isolated from mouse spleens using anti-CD43 MicroBeads 

(Miltenyi Biotech) and cultured at 0.5x106 cells/ml in complete R10 medium 

(RPMI supplemented with L-Glutamine, Sodium Pyruvate, Hepes, 50µM 2-

Mercaptoethanol, antibiotic/antimytotic and 10% fetal calf serum (Hyclone)). For 

B cell stimulation 25µg/ml lipopolysaccharide (LPS, Sigma) and 5 ng/ml mouse 

recombinant IL-4 (Sigma) were added to the culture. Where indicated, RP105 (0.5 

µg/ml, Pharmingen) or ATMi Ku55933 (2.5 µM) was added to the culture. 
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Retroviruses 

Cre, I-SceI, I-SceI*, and AID were PCR-amplified and cloned into the pMX-IRES-

GFP plasmid. In I-SceI*, D44A and D145A substitutions to inactivate the catalytic 

sites were introduced by PCR. Coding sequences of the human 53BP1 mutants 

were cloned into a modified pMX (Moloney leukemia virus-based retroviral 

expression virus (277)) retroviral plasmid with deleted IRES-GFP (courtesy of Dr. 

Silvia Boscardin), to allow for proper packaging of this large protein. Therefore, 

in each experiment infection efficiency was monitored by Western Blot. 53BP18A 

encoded for the following alanine substitutions: S6A; S13A; S25A; S29A; S105A; 

S166A; S176A; S178A. 53BP17A encoded for: T302A; S452A; S523A; S543A; S625A; 

S784A; S892A. 53BP115A encoded for the same alanine substitutions as in both 

53BP18A and 53BP17A. In addition to these, 53BP128A also had S437A; S580A; 

S674A; T696A; S698A; S831A; T855A; S1068A; S1086A; S1104A; S1148A; T1171A; 

S1219A. Unless otherwise noted, mutants bore a C-terminal HA-FLAG tag. 

Plasmids with alanine substitutions were provided by Philip Carpenter and 

cloned into the pMX retroviral expression system. 

  

Retroviral infections 

Retroviral supernatants for B cell infections were produced in BOSC23 

(derivative for 293T cell line (278)) by transfection with Fugene 6 with 7μg of 

pCL-Eco (279) and 7μg plasmids carrying either Cre, Cre*, I-SceI or I-SceI* 72 hrs 

prior to the first B cell infection (189). Retroviral supernatants were filtered and 

added to B cell cultures at 20 hrs and 44 hrs after start of stimulation and spun at 

1150g for 90 min in the presence of 2.5 µg/ml polybrene. After 6 hrs, retroviral 
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supernatants were replaced with LPS, IL-4 and RP105 supplemented R10 

medium (RPMI supplemented with L-Glutamine, Sodium Pyruvate, Hepes, 

50µM 2-Mercaptoethanol, antibiotic/antimytotic and 10% fetal calf serum 

(Hyclone)). .  

 

FACS analysis 

For fluorescence-activated cell sorting (FACS) analysis, spleen cell suspensions 

were stained with fluorochrome-conjugated anti-CD19, anti-CD3, anti-IgM, anti-

IgD, and anti-IgG1 (Pharmingen) in PBS 5% FCS with a final concentration of      

1 µg/ml, followed by three washes in PBS 1% FCS. 

 

CFSE labeling 

Labeling for cell division was at 37C for 10 min in 5 mM carboxyfluorescein 

succinimidyl esther (CFSE) in 1 ml of serum free R10, followed by three washes 

in complete R10 (RPMI supplemented with L-Glutamine, Sodium Pyruvate, 

Hepes, 50µM 2-Mercaptoethanol, antibiotic/antimytotic and 10% fetal calf serum 

(Hyclone)).  

 

Translocation PCR assays 

PCR reactions were performed on genomic DNA from 105 cells, unless otherwise 

indicated. Using Expand Long Template PCR System nested reactions were 

performed with the following primers: for derivative chromosome 15 

translocations first round, 5-ACTATGCTATGGACTACTGGGGTCAAG-3 and 5-

GTGAAAACCGACTGTGGCCCTGGAA-3; for derivative chromosome 15 

translocations second round, 5-CCTCAGTCACCGTCTCCTCAGGTA-3 and 5-
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GTGGAGGTGTATGGGGTGTAGAC-3. PCR conditions were according to 

manufacturer instructions with 29 cycles for the first round (10 cycles at 92°C, 10 

s; 60°C, 30 s; and 68°C, 7 min; followed by 19 cycles at 92°C, 15 s; 60°C, 30 s; and 

68°C, 7 min with 20 s of additional extension time per cycle) and 25 cycles for the 

second round (10 cycles at 92°C, 10 s; 60°C, 30 s; and 68°C, 4 min; followed by 15 

cycles at 92°C, 15 s; 60°C, 30 s; and 68°C, 4 min with 20 s of additional extension 

time per cycle). PCR products were gel-purified and sequenced. 

 

Intra-chromosomal joining assay 

I-SceI infected cells were harvested on day 4 of culture and infection efficiency 

was determined by FACS analysis using the GFP reporter encoded by the pMX-I-

SceI-IRES-GFP or pMX-I-SceI*-IRES-GFP retroviruses. DNA was phenol-

chloroform extracted and precipitated with ethanol, before quantification.  

 

The first round of PCR for IgHI-1k joining was done with the following primers: 

5’- CAGACCTGGGAATGTATGGTTGTG-3’ and 5’- 

AGACAGGACAGGACAGGACCAAAC-3’. The following conditions were used 

for the first round of amplification: 10 cycles at 92°C, 10 s; 56°C, 30 s; and 68°C, 

40 s; followed by 25 cycles at 92°C, 15 s; 56°C, 30 s; and 68°C, 40 s with 2 s of 

additional extension time per cycle. The second round of PCR for both IgHI-1k 

and IgHI-27M was done with the following primers: 5’ – 

ATGTATGGTTGTGGCTTCTGGG-3’ and 5’ - 

CCTGCTTTCCAGTATGGGTATCTG-3’ using the following conditions: 10 cycles 

at 92°C, 10 s; 55°C, 30 s; and 68°C, 30s; followed by 15 cycles at 92°C, 15 s; 55°C, 

30 s; and 68°C, 30 s with 2 s of additional extension time per cycle). 
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For the I-SceI joining frequencies in the IgHI-96k system, nested PCR reactions 

were performed with the Expand Long Template PCR System. The first round of 

PCR was done with the following primers: 5’- 

CCAATACCCGAAGCATTTACAGT-3’ and 5’- 

AGACAGGACAGGACAGGACCAAAC-3’ and the following conditions: ten 

cycles at 92°C, 10 s; 56°C, 30 s; and 68°C, 40 s; followed by 25 cycles at 92°C, 15 s; 

56°C, 30 s; and 68°C, 40 s with 2 s of additional extension time per cycle. The 

second round of PCR was done with the following primers: 5’ – 

ATGTATGGTTGTGGCTTCTGGG-3’ and 5’ - 

CCTGCTTTCCAGTATGGGTATCTG-3’ using the following conditions: ten 

cycles at 92°C, 10s; 55°C, 30 s; and 68°C, 30 s; followed by 15 cycles at 92°C, 15 s; 

55°C, 30 s; and 68°C, 30 s with 2 s of additional extension time per cycle).  

 

The first round of PCR for IgHI-27M joining was done with the following primers: 

5’- CCAATACCCGAAGCATTTACAGT-3’ and 5’- 

TAGGAAAATGCCCCACCTGC-3’.   The following conditions were used for the 

first round of amplification: 10 cycles at 92°C, 10s; 56°C, 30 s; and 68°C, 40s; 

followed by 25 cycles at 92°C, 15 s; 56°C, 30 s; and 68°C, 40 s with 2 s of 

additional extension time per cycle. The second round of PCR for both IgHI-1k 

and IgHI-27M was done with the following primers: 5’ – 

ATGTATGGTTGTGGCTTCTGGG-3’ and 5’ - 

CCTGCTTTCCAGTATGGGTATCTG-3’ using the following conditions: 10 cycles 

at 92°C, 10 s; 55°C, 30 s; and 68°C, 30 s; followed by 15 cycles at 92°C, 15 s; 55°C, 

30 s; and 68°C, 30 s with 2 s of additional extension time per cycle).  
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For each experiment and genotype, serial dilutions were tested, and events were 

counted at the dilution that showed a maximum of two joining events per lane. 

PCR products were then isolated from gels and sequenced 

 

Southern Blot 

Southern blot analysis was performed as described (208). Oligoprobes were: for 

der15 c-myc 5- GCCGCCACTTTACTGGACTGCGCAGG-3; for der15 IgH 5-

GAGGGAGCCGGCTGAGAGAAGTTGGG-3; for der12 c-myc  5-

GCAGCGATTCAGCACTGGGTGCAGG-3; for der12 IgH (3’ of switch m) 5- 

CCTGGTATACAGGACGAAACTGCAGCAG-3; for der12 IgH (5’ of switch m) 

5- TTCAGTCATTGCTTTAGGGGGAG-3.  

 

Cell Fractionation and Western Blot  

The cytoplasmic fraction from 5x106 splenic B cells (treated or not with 10 Gy IR 

and allowed 90 min recovery) was separated from the nuclei using the ProteoJET 

Cytoplasmic and Nuclear Protein Extraction Kit (Fermentas Cat# K0311) 

following the manufacturer’s instructions. To separate nuclear-soluble and 

chromatin fractions, the manufacturer’s nuclei lysis buffer was supplemented 

with the provided Nuclei Lysis reagent and with 30 mM EDTA, 2 mM EGTA, 

and 10 mM dithiothreitol. The nuclear extract was centrifuged at 1700g for 20 

min at 4°C; the supernatant was saved at −80°C as the “nuclear-soluble fraction”, 

and the chromatin pellet was washed twice in 250 µl of 3 mM EDTA, 0.2 mM 

EGTA, 1 mM dithiothreitol, and protease inhibitors (Roche). Chromatin was 

resuspended in 30 µl of 10 mM Hepes, 10 mM KCl, 1 mM MgCl2, 10% glycerol, 1 
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mM CaCl2, 1 mM EDTA, 1× protease inhibitors (Roche), and 5 U of micrococcal 

nuclease (New England Biolabs), and then incubated for 45 min at 37°C. The 

reaction was stopped by the addition of EGTA to 1 mM, and the digested pellet 

was stored at −80°C as the “chromatin-bound fraction.” For retroviral 

reconstitution experiments, splenocytes were stimulated and fractionated on day 

4. Expression of wild type and mutant 53BP1 proteins was detected with antisera 

to 53BP1 (Bethyl A300-272A), 53BP1 phosphorylated on Serine 25 (Bethyl A300-

652A), FLAG (SIGMA F1804), or HA (Abcam ab 9110), as indicated. Controls for 

DNA damage, cell fractionation and for loading were with antibodies to γH2AX 

(Millipore 05-636), H2AX (Bethyl A300-083A), H4K20me1 (Abcam ab9051), IgG LC 

(Jackson Immunoresearch Laboratories 015-030-007), tubulin (Abcam ab4074) or 

actin (SIGMA A5060). 

 

Immuno-FISH 

After stimulation, 1x106 B cells were spun onto 24-well plates containing 12-mm 

coverslips (Fisher) coated with 150 g ml-1 poly-L-lysine (Sigma). Cells were fixed 

with methanol (-20°C), blocked with 5% goat serum/1% bovine serum albumin 

(BSA)/1x PBS overnight, incubated with either γH2AX (1:500), or 53BP1 (1:200) 

polyclonal antibodies, washed and then stained with Alexa-568 conjugated goat 

anti-rabbit antibody (Molecular Probes). For ICC-FISH, antibodies were cross-

linked using 50 mM ethylene glycol bis (succinimidyl succinate) for 30 min at 

37°C followed by RNase (100 g/ml) treatment for 60 min at 37 °C. Chromosomal 

DNA was denatured in 0.07 M NaOH (pH 13.0) for 2 min followed by immersion 

in cold PBS. The biotin-labelled DNA probe was hybridized at 37 °C overnight, 
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followed by standard FISH washes. DNA probes were detected with avidin-

fluorescein isothiocyanate (FITC), and then amplified with biotinylated goat anti-

avidin and avidin-FITC (all antibodies diluted 1:200 in 3% BSA/4 SSC/0.05% 

Tween 20; Vector Laboratories). 

 

Ionizing radiation induced foci 

For IRIF, mouse embryonic fibroblasts (MEFs) were grown overnight on glass 

coverslips in 30 mm culture dishes, then exposed to 5 Gy (53BP1 mutant MEFs) 

or 10 Gy (53BP1-/- MEFs reconstituted with mutant retroviruses) ionizing 

radiation and allowed to recover for 90 min. Cells were then fixed with 4% 

paraformaldehyde/PBS, followed by 0.5% Triton X-100/PBS permeabilzation 

and processed for immunofluorescent staining. Images were acquired using an 

LSM 510 META microscope (Zeiss) or with DeltaVision (Applied Precision). 

Primary antibodies used for immunofluorescence were rabbit anti-53BP1 (Novus 

Biologicals NB 100-304), mouse anti γH2AX (Millipore 05-636), and mouse anti-

FLAG-M2 (SIGMA F1804). Secondary antibodies were Alexa568- and Alexa488-

conjugated (Molecular Probes). DNA was counterstained with 4',6-diamidino-2-

phenylindole (DAPI). 

 

Chromatin Immunoprecipitation (ChIP).  

Cells were fixed by adding 1% paraformaldehyde at 37°C for 10 min. Cells were 

then collected, washed once with cold PBS and lysed in RIPA buffer in the 

presence of Protease Inhibitor Cocktail (Roche), 0.5 mM PMSF and 5 mM NaF 

followed by sonication (Diagenode BIORUPTOR, 20 min with 30 s on/30 s off)  
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to produce DNA fragments 200-500 bp in length. Meanwhile, the γH2AX 

antibody (Millipore 05-636) was bound to Dynabeads Protein A (Invitrogen) 

following the manufacturer’s instructions. The supernatants of sonicated samples 

were collected after centrifugation at 14000 rpm at 4°C for 5 min and added to 

the γH2AX binding beads overnight. The next day, beads were washed 2X with 

RIPA, 2X with RIPA + 0.3 M NaCl, 2X with LiCl buffer (0.25 M LiCl, 0.5% NP-40, 

0.5% NaDOC), 1X with TE+0.2% Triton X and 1X with TE. Beads were then 

resuspended in TE and cross-linking was reversed using 3% SDS and Proteinase 

K (Sigma) at 65°C for 4 hrs. After removal of beads DNA was extracted with 

Phenol/Chloroform and precipitated with EtOH and NaOAc in the presence of 

glycogen. The qPCR was performed using SybrGreen reagent 

(Agilent/Strategene). Primer sequences used for amplification the indicated 

distances 3’ of the I-SceI site in μ:   

5 kb (5’-TGAGCAACTGAACCTGAGGGAG-3’ and  

TGGTCACATACTTCTCTTGGGGC),  

25 kb (5’-GCATTTCCCTGATGACTAAGGACTG and 5’-

GACACCAACAAACCAAAGAACCC-3’),  

80 kb (5’-GGCTTTTTTTGGCTGGGAGAC-3’ and 5’-

CTGAAGAACCTGGATGAAATGGAC-3’),  

100 kb (5’-TACTGCCTACATCCTATGCCCCTC-3’ and 5’-

CACCCACATCTCACCCTTACCTAAC-3’),  

120 kb (5’-CACCATCTTCATCAGCCTCTTCC-3’ and 5’-

TGGGGACAGCAAAGTAACATCCTAC-3’),  
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145 kb (5’-ACAGTGGAGTCCGTAGCAGGAAAG-3’ and 5’-

GTTCTGGGTCATCTGAGTTCTATGC-3’),  

195 kb (5’-CACCATCCTGTCCTGAAAGCAG-3’ and  5’-

CAGCAAACCTGAGCCAGATAAGC-3’),  

345 kb (5’-TGGCGAAAGGTAAGGCTGTATTC-3’ and 5’-

AAATGCTGAGAAGTAGTCCCCCCG-3’),  

595 kb (5’-TTGAGTGACACATACCGAGAGCC-3’ and 5’-

TGAACCAAAGAAGAGGGGACCG-3’),  

1 Mb (5’-CGCCAATCCTGTGACCATTTC-3’ and 5’-

CACTCCAAAACAAGCCAAGAGC-3’) and  

27 Mb (5’-GCTTCCTTTTCTGACGAGGCTG-3’ and 5’-

CCCTGATAGTTTACTGTGTCCCTGG-3’).  

To calculate γH2AX enrichment, the γH2AX signal was normalized to the 

GAPDH signal at all locations (average of triplicates). Primers used for 

amplification of GAPDH:  (5’-TGAAGCAGGCATCTGAGGG-3’ and  

5-CGAAGGTGGAAGAGTGGGAG-3’). 
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