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 The cellular pathways that govern survival in the face of diverse stresses rely on gene 

expression changes as one mechanism to respond to or protect against internal and external 

threats.  Because eukaryotic DNA is packaged into chromatin, these gene expression changes 

depend on the targeting of regulatory proteins to specifi c regions of the genome to alter 

chromatin structure, promoting or repressing transcription.  One protein domain involved 

in targeting chromatin regulators is the plant homeodomain, or PHD fi nger, a module that 

preferentially interacts with either methylated or unmethylated lysines on histones, and has 

important functions in human health.  Despite recent advances in identifying the histone ligands 

for some PHD fi ngers as well as the functions of the proteins that contain them, for many 

other PHD fi ngers, including some of the 17 PHD fi ngers of the budding yeast Saccharomyces 

cerevisiae, these questions remain unanswered.

In the research presented in this thesis, I sought to gain insight into the ligands and 

functions for three yeast PHD fi nger proteins, the Yng1 subunit of the NuA3 acetyltransferase 

complex, Jhd2, and Ecm5, the latter two both being homologous to the mammalian JARID 

family of histone demethylases.  In Chapter 2, I demonstrate that the PHD fi ngers of these 

proteins interact with histone H3 enriched for different sites of methylation depending on the 



PHD and present results of an in vitro assay used to test whether any yeast PHD fi ngers possess 

ubiquitin E3 ligase activity, a function ascribed to the PHD-related RING domain.  In Chapter 3, 

I discuss experiments performed to identify the protein interaction partners of Jhd2 and Ecm5, 

culminating in the discovery that Ecm5 interacts with the PHD fi nger protein Snt2 as well as 

the Rpd3 deacetylase, forming a complex I have named Rpd3(T).  I also discuss experiments 

showing that the ecm5 knockout strain does not have obvious defects in many yeast pathways.  

In Chapter 4, I present evidence that Rpd3(T) complex members are involved in the 

cellular oxidative stress and metabolism pathways, and discuss chromatin immunoprecipitation 

experiments followed by high-throughput sequencing which were performed to map Ecm5 and 

Snt2 localization before and after hydrogen peroxide-mediated oxidative stress.  I then discuss 

how the Ecm5 and Snt2 localization patterns relate to gene expression changes in wild-type cells 

after oxidative stress and in snt2 knockout cells.  I compare Ecm5 and Snt2 localization patterns 

in rich media before and after oxidative stress to patterns in less rich media before and after 

nutrient stress induced by the TOR pathway inhibitor rapamycin.  Finally, I discuss potential 

mechanisms through which Ecm5 and Snt2, either as a pair or as a part of the Rpd3(T) complex, 

may help to coordinate the cellular responses to oxidative and nutrient stresses, and the greater 

implications of this work. 
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CHAPTER 1: GENERAL INTRODUCTION

Eukaryotic genomes are packaged into chromatin

Eukaryotic cells face the challenge of fi tting extensive genomes into relatively modest-

sized nuclei.  They must do this in a manner that is space-effi cient but still fl exible enough to 

allow DNA-templated processes, such as transcription and replication, to occur.  This feat is 

accomplished by the packaging of the genome into a structure known as chromatin.  The cell 

biologist Walter Flemming fi rst used the term “chromatin” in late 1800’s, to describe a string-

like material within cells that readily absorbed basophilic aniline stain (Flemming, 1882).  

Approximately 45 years later, another biologist named Emil Heitz noticed that certain regions 

of chromatin remained darkly stained and condensed throughout the cell cycle, while other 

regions decondensed when not undergoing mitosis.  He named the former “heterochromatin” 

and the latter “euchromatin” (Figure 1.1A) (Heitz, 1928).  These two early studies helped launch 

the fi eld of chromatin biology, which in recent decades, has become immensely important to 

understanding genome regulation.

Working around the same time as Flemming, biochemist Albrecht Kossel discovered an 

acid-soluble substance associated with the nulcei of goose erythrocytes, and named it “histon” 

(Kossel, 1884).  Until the 1940’s, many scientists believed the histone proteins, which showed 

some degree of diversity depending on the source organism, were the source of hereditary 

information, rather than the DNA, which was thought to be too uniform between species to 

encode information (Schultz, 1941).  One partial proponent of this view was Alfred Mirsky, a 

protein biochemist working at The Rockefeller University (then The Rockefeller Institute), who 
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Figure 1.1 Chromatin structure
 A. Electron micrograph of a lymphocyte nucleus, with heterochromatin (Hc) and euchromatin 
(Ec) labeled.  The nucleolus (Nu) is also labeled. B. Schematic of chromatin as “beads on a 
string,” showing that heterochromatin has a more compact structure than euchromatin. C. Front 
view structure of the nucleosome core particle.  DNA is labeled in light blue, while histones H3, 
H4, H2A, and H2B are colored blue, green, yellow, and red, respectively.
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pioneered many of the early biochemical studies of histone proteins (Daly and Mirsky, 1955; 

Mirsky and Pollister, 1946).  However, in 1944, Oswald Avery, Colin MacLeod, and Maclyn 

McCarty, also working at The Rockefeller Institute, reported that the “transforming principle” 

responsible for converting a non-virulent strain of bacteria into a virulent strain was DNA, 

initiating many future studies that proved that DNA is the basis for heredity in bacteria and 

eukaryotes (Avery et al., 1944).  As DNA became increasingly accepted as the carrier of genetic 

information, the proposed function of the histone proteins switched from information carrier 

to DNA “packager,” although there was also early speculation that histones might inhibit gene 

transcription (Stedman and Stedman, 1951).  However, the details of DNA-histone interactions 

remained unclear.

In the 1970’s several studies helped to uncover the overall primary structure of 

chromatin.  First, multiple studies found that digesting chromatin with endonucleases resulted in 

a series of fragments, differing in size by approximately 200 bp, that produced a regular ladder 

when separated on a gel, suggesting that chromatin consisted of a repeating unit and that DNA 

and protein were associated within this unit (Billing and Bonner, 1972; Hewish and Burgoyne, 

1973; Mirsky, 1971).  Electron microscopy studies from C.L.F. Woodcock as well as Ada and 

Donald Olins showed that chromatin from multiple organisms formed a thin fi ber broken up by 

thicker particles, a structure that Roger Kornberg described as “beads on a string” (Figure 1.1B) 

(Kornberg, 1974; Olins and Olins, 1974; Woodcock et al., 1976).  Around the same time, Roger 

Kornberg published a model of chromatin structure based largely on biochemical and biophysical 

studies, describing a repeating unit of chromatin, consisting of an octamer of two copies each of 

the four core histone proteins, H2A, H2B, H3, and H4 (Kornberg, 1974; Kornberg and Thomas, 
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1974).  A subsequent study named this repeating unit of chromatin the “nucleosome” which both 

referenced the nuclear origin of these particles and the original term for these structures used 

by the Olinses, “nu bodies” (Oudet et al., 1975).  Whether physiologically relevant variation 

occurred within nucleosomes, and if so, how this variation was achieved, remained unclear at the 

time.

In 1997, Karolin Luger and Timothy Richmond published the crystal structure of 

the nucleosome at 2.8Å resolution, showing that the nucleosome core particle consists of an 

octamer of histone proteins which are wrapped with 146 basepairs of DNA in 1.65 left-handed 

superhelical turns (Figure 1.1C) (Luger et al., 1997).  A linker histone, called H1, associates with 

the DNA between two nucleosomes and assists in compaction of the chromatin into a tight fi ber 

(Happel and Doenecke, 2009).  The core histone proteins that make up the nucleosome octamer 

are extremely conserved throughout eukaryotes, indicating the importance of the chromatin 

structure in nuclear function.  Importantly, this high level of conservation allows studies of 

chromatin function in model organisms to be highly informative.

Mechanisms of chromatin regulation

Initially thought of as just a method to package DNA, chromatin is now understood to 

actively regulate most, if not all, DNA processes.  This is achieved through mechanisms that 

alter nucleosome structure, resulting in either increased accessibility of nucleosome-bound 

DNA or increased association between regulatory factors and the histones proteins themselves.  

At least four different mechanisms are known to regulate chromatin structure.  First, ATP-

dependent chromatin remodelers can alter the histone-DNA contacts of a nucleosome, rendering 
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it more accessible.  Numerous outcomes have been reported for remodeling, including the 

complete eviction of the histones from the nucleosome, the repositioning or sliding of the 

nucleosome along the DNA fi ber, replacement of certain histones within the nucleosome, or 

a reconfi guration of the nucleosome to a more accessible structure (Flaus and Owen-Hughes, 

2011).  The downstream consequence of these activities is to render DNA more or less accessible 

to regulatory factors such as the transcription machinery.

A second means of chromatin regulation involves the replacement of individual 

histones with “histone variants,” which can substitute for the canonical H2A, H2B, H3, and 

H4 (Talbert and Henikoff, 2010).  While some variants only contain slight differences in amino 

acid composition compared to their canonical counterparts, others are quite distinct.  In higher 

eukaryotes, where many cells are post-mitotic, variants provide an important way to alter 

chromatin structure without having to go through S phase, the point in the cell cycle when the 

canonical histones are synthesized and packaged with DNA (Frank et al., 2003).  However, even 

rapidly dividing eukaryotes such as the budding yeast, Saccharomyces cerevisiae, the model 

used in this thesis research, utilize variant histones to help regulate certain key processes.  For 

example, the yeast histone variant H2A.Z, which can substitute for histone H2A, is incorporated 

into the two nucleosomes fl anking transcription start sites, and is involved in initiation of 

transcription (Raisner and Madhani, 2006).  In addition, the yeast H3 variant, CenH3, marks 

centromeres and is important for genome integrity (Choy et al., 2012).

Another way that chromatin can be regulated is through the proteolytic cleavage of the 

histone tail from the core of the protein.  Site-specifi c histone cleavage was fi rst reported by 

Thomas Eickbush, Dennis Watson, and Evangelos Moudrianakis in the late 1970’s, who had 
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found a shorter isoform of histone H2A in histones extracted from calf thymus (Eickbush et al., 

1976).  Shortly after, David Allis and colleagues reported a clipped isoform of histone H3 in the 

transcriptionally inactive micronuclei of the ciliated protozoan Tetrahymena thermophila (Allis 

et al., 1980).  While studies into histone proteolysis continued into the early 1990’s, as more 

discoveries emerged about the fourth mechanism of chromatin regulation, post-translational 

modifi cation of the histone proteins, attention shifted away from histone “clipping.”  Recently, 

the histone H3 tail was found to be cleaved during mouse ES cell differentiation (Duncan 

et al., 2008), suggesting that histone proteolysis might play important roles in development.  

Furthermore, in budding yeast, H3 cleavage during sporulation and stationary phase growth was 

also recently reported (Santos-Rosa et al., 2009).  These new fi ndings may prompt a resurgence 

of interest in this mechanism.

Histones are the substrates for a wide range of post-translational modifi cations

One of the more widely studied mechanisms of chromatin regulation is histone post-

translational modifi cation, the covalent attachment of chemical moieties to the N termini and 

amino acid side chains of the histone polypeptides.  The fi rst scientist to describe the post-

translational modifi cation of histones was Kenneth Murray, who showed that histones from cells 

treated with radioactive methionine contained radioactive -N-methyl-lysine (Murray, 1964).  

Shortly thereafter, Vincent Allfrey, a histone biochemist and protégé of Alfred Mirsky (and 

another Rockefeller chromatin biologist), reported that histones could be acetylated as well as 

methylated (Allfrey et al., 1964).  Seeking to explain the observation that histones sometimes 

inhibited RNA synthesis and sometimes did not, Vincent Allfrey hypothesized that “relatively 
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minor modifi cations of histone structure, taking place on the intact protein molecule, offer a 

means of switching-on or –off RNA synthesis at different loci along the chromosome.” As proof 

of the existence of these “relatively minor modifi cations,” he showed that when isolated nuclei 

were incubated with radioactive sodium acetate or methionine, histones became radioactively 

acetylated or methylated, respectively.  

Since these initial discoveries, a wide variety of other histone post-translational 

modifi cations have been described, including phosphorylation, ubiquitylation, sumoylation, 

crotonylation, propionylation, butyrylation, formylation, citrullination, O-GlcNAcylation, and 

ADP ribosylation (Banerjee and Chakravarti, 2011; Bannister and Kouzarides, 2011; Jiang et 

al., 2007; Messner and Hottiger, 2011; Sakabe et al., 2010; Tan et al., 2011; Zhang et al., 2009). 

The diverse array of modifi cation types combined with the many histone residues that can act as 

substrates for these marks, results in a mind-boggling number of diverse combinations.  Noting 

this combinatorial complexity, Brian Strahl and David Allis hypothesized that “multiple histone 

modifi cations, acting in a combinatorial or sequential fashion on one or multiple histone tails, 

specify unique downstream functions,” an idea they named the “histone code hypothesis” (Strahl 

and Allis, 2000).  Indeed, there are many well documented associations between particular 

modifi cations and cellular outcomes, such as those between phosphorylation of histone H3 at 

serine 10 (H3S10) and mitosis, and between H3K4 methylation and transcription (Ng et al., 

2003; Santos-Rosa et al., 2002; Sims et al., 2003).  

While these examples provide striking proof of the coding potential for histone 

modifi cations, a key challenge in the chromatin fi eld remains to be the identifi cation of functions 

for each individual histone modifi cation and for combinations of co-occurring marks.  In that 



8

regard, the budding yeast system has proved particularly useful.  Because haploid yeast contain 

only two copies of each core histone and are amenable to gene deletion and mutation, studies in 

this organism have led to many key insights in chromatin biology (Hereford et al., 1979; Smith 

and Andresson, 1983).  Furthermore, the ease with which non-histone genes can be deleted 

from yeast, allowing the search for synthetic phenotypes using combinations of mutations, has 

made the yeast system a powerful tool for unraveling chromatin pathways.  One early pioneer 

of the use of yeast for chromatin studies is Michael Grunstein.  Early histone mutant studies 

from the Grunstein laboratory helped established a much stronger causal link between histone 

deacetylation and yeast heterochromatin formation (Johnson et al., 1990; Kayne et al., 1988).  

For my own graduate studies, I was attracted to the genetic power of the yeast system, and all 

of the in vivo experiments that I will describe in this thesis were performed using budding yeast.  

However, where possible, I will note connections between this work and mammalian biology.

Histone post-translational modifi cations regulate chromatin structure in cis and trans

Histone modifi cations regulate chromatin structure in two ways.  First, post-translational 

modifi cations can directly alter the strength of histone-DNA or histone-histone contacts, 

loosening the chromatin fi ber and promoting access to the underlying DNA.  This mechanism 

of nucleosome regulation in cis, is generally associated with histone modifi cations that alter the 

charge of the histone proteins, such as histone acetylation (Robinson et al., 2008; Shogren-Knaak 

et al., 2006).  Another histone modifi cation that regulates chromatin through a cis mechanism is 

histone ubiquitylation.  This mark has recently been shown by Tom Muir’s laboratory to impair 

compaction of the chromatin fi ber, in a mechanism distinct from that of histone acetylation (Fierz 

et al., 2011).
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In addition to affecting nucleosomal structure directly, histone post-translational 

modifi cations can also regulate chromatin in trans, by creating docking sites for other 

regulatory proteins.  Trans-acting proteins recruited to chromatin through interactions with 

histone modifi cations can then promote changes in local chromatin structure, enhancing or 

repressing the expression of nearby genes. For instance, in metazoans and the fi ssion yeast 

Schizosaccharomyces pombe, H3K9 methylation creates a binding site for the HP1 protein, 

which promotes chromatin compaction, resulting in the silencing of genes associated with 

this mark. (Bannister et al., 2001; Lachner et al., 2001; Nakayama et al., 2001).  In addition 

to regulating chromatin in cis, histone acetylation can also promote recruitment of regulatory 

factors in trans: in yeast, this mark creates binding sites for the Gcn5 protein, which is known to 

catalyze histone acetylation, thus creating a positive feedback loop (Owen et al., 2000).

Readers, writers, and erasers regulate histone post-translational modifi cations

When discussing chromatin regulation, it is useful to categorize the protein players 

into writers, erasers and readers (Figure 1.2).  Writers are the enzymes that catalyze particular 

histone modifi cations.  Similarly, erasers are the enzymes that remove those marks. The last 

category of histone regulator, readers, are proteins that are recruited to or stabilized on chromatin 

by interactions with specifi c histone modifi cations.  Generally, specifi c modules within reader 

proteins mediate histone interactions.  Many families of reader modules have now been 

described.  For instance, bromodomains are known to interact with acetylated histones, while 

chromodomains show specifi city towards histone methylation (Jacobs et al., 2001; Min et al., 

2003; Owen et al., 2000).  To further add to the complexity of chromatin regulation, often a 
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Figure 1.2 Writers, erasers, and readers
 Histone regulation is achieved by proteins that catalyze histone modifi cations (writers), proteins 
that enzymatically remove histone modifi cations (erasers), and proteins that specifi cally 
recognize either unmodifi ed or modifi ed histone amino acids (readers).
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single protein or protein complex can fall into more than one of these roles (Ruthenburg et al., 

2007).  For instance, the yeast Rpd3(S) histone deacetylase complex, which I will discuss more 

below, functions primarily as an eraser, removing acetyl groups from histones, but the Rco1 

and Eaf3 subunits of this complex contain a PHD fi nger and chromodomain, respectively, two 

reader modules that promote association with H3K36 methylation (Joshi and Struhl, 2005; Li et 

al., 2007).  It should be noted that while these concepts have generally been applied to histone 

modifi cations, many examples of post-translational modifi cation of non-histone proteins have 

been documented.  One of the better-studied examples of a non-histone substrate for post-

translation modifi cation is p53, which was demonstrated to be acetylated by Wei Gu and Robert 

Roeder, working at The Rockefeller University (Dai and Gu, 2010; Gu and Roeder, 1997; Huang 

and Berger, 2008; Spange et al., 2009).  Therefore, many of the readers, writers, and erasers 

known to regulate histones are likely to have non-histone substrates as well.

Histone acetylation is a modifi cation associated with transcriptional activity in yeast

Because histone acetylation and lysine methylation are two modifi cations most relevant 

to this work, I will introduce more about these marks.  Histone acetylation has been found at 

many, though not all, of the lysines in histones, and more recently, in non-histone proteins as 

well (Basu et al., 2009; Choudhary et al., 2009).  The writers for this mark are proteins known 

as histone acetyltransferases (HATs), or more recently, as lysine acetyltransferases (KATs), in 

recognition of these enzymes’ abilities to acetylate nonhistone substrates as well as histones.  

The fi rst transcription-associated HAT was discovered by James Brownell and David Allis in 

1995, who fractionated an acetylating activity from the transcriptionally active macronuclei of 
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Tetrahymena, and used an in-gel acetylation assay to show that this activity came from a 55 kDa 

polypeptide which was later identifi ed as the homolog of the yeast Gcn5 protein (Brownell and 

Allis, 1995; Brownell et al., 1996).  Around the same time, Susanne Kleff and Rolf Sternglanz 

identifi ed another yeast HAT activity and linked this activity to a gene which they named HAT1 

(Kleff et al., 1995), and work from Daniel Gottschling’s laboratory also identifi ed the yeast 

histone acetyltransferase Hat1 (Parthun et al., 1996).  Following on these initial discoveries, the 

human Gcn5 homolog; the mammalian transcriptional coactivators p300, CBP, PCAF, ACTR, 

and SRC-1; as well as the TAF(II)250 subunit of the TFIID transcription initiation factor were 

all shown to have HAT activity, suggesting histone acetylation and active transcription might be 

linked (Bannister and Kouzarides, 1996; Candau et al., 1996; Chen et al., 1997; Mizzen et al., 

1996; Ogryzko et al., 1996; Spencer et al., 1997; Yang et al., 1996).  

Budding yeast contain at least 10 HATs, Gcn5, Hat1, Elp3, Hpa2, Esa1, Sas3, Sas2, Taf1, 

Nut1, and Rtt109 (Han et al., 2007; Kimura et al., 2005).  In vivo, many of these HATs function 

in multi-protein complexes, and at least 12 different yeast HAT complexes have been described 

(Han et al., 2007; Lee and Workman, 2007).  For instance, the NuA3 complex, which will be 

discussed more in Chapter Two of this thesis, consists of the Sas3 catalytic subunit as well as 

Taf30 (Taf14/Anc1/Tfg3), Yng1, Nto1, and Eaf6, and is capable of acetylating multiple lysines 

on histone H3 (John et al., 2000; Taverna et al., 2006).  In some cases, the noncatalytic subunits 

of these complexes stimulate HAT activity (Han et al., 2007), while in others they help target 

these complexes to specifi c regions of the genome (Bian et al., 2011; Joshi and Struhl, 2005).  
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Functions of histone acetylation

Since its discovery, histone acetylation has been largely linked with active transcription.  

Vincent Allfrey, himself, showed that chemically acetylated histones stimulate transcription 

in an in vitro assay (Allfrey et al., 1964).  Consistent with this result, numerous studies have 

shown that in vivo, chromatin with abundant H4 acetylation is transcriptionally active, and 

transcriptionally active chromatin preparations are enriched for H4 acetylation (Allegra et 

al., 1987; Hebbes et al., 1988; Johnson et al., 1987; Lin et al., 1989; Ridsdale and Davie, 

1987).  While these studies convincingly showed correlations between histone acetylation and 

transcriptional activity, whether increased acetylation is a cause or a consequence of transcription 

remained a question for the fi eld (Turner, 1991).  

However, later studies have established causal links between increased histone 

acetylation and increased transcription.  For instance, while deleting the H4 N-terminal tail 

or mutating the acetylatable H4 lysines were generally found to impair gene activation, these 

mutations have been shown to activate the normally repressed yeast GAL1 promoter (Durrin 

et al., 1991; Fisher-Adams and Grunstein, 1995).  In addition, yeast strains with catalytic point 

mutations in the Gcn5 HAT fail to acetylate gene promoters and to activate genes in response to 

de-repressing stimuli (Kuo et al., 1998; Lee et al., 2000).  Furthermore, more recent experiments 

have found that the presence of HAT complexes and histone acetylation both stimulate 

transcription in vitro (Guermah et al., 2006; Ikeda et al., 1999; Kundu et al., 2000; Tse et al., 

1998).

Acetylation has functions beyond just stimulating transcription.  For instance, this mark 

helps prevent the spread of silent heterochromatin.  In yeast, the telomeres, rDNA, and silent 
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mating type loci are actively deacetylated and silenced by the SIR (silent information regulator) 

proteins, most notably, the Sir2 histone deacetylase (Bryk et al., 1997; Gottschling et al., 1990; 

Imai et al., 2000; Rine and Herskowitz, 1987; Smith and Boeke, 1997).  The confi nement of 

silencing factors to these regions is enacted, in part, by acetylation of H4 on lysine 16 (H4K16) 

by the Sas2 (something about silencing) and Esa1 HATs (Kimura et al., 2002; Suka et al., 

2002).  Because the Sir3 silencing protein requires deacetylated H4K16 to spread Sir2 mediated-

silencing along the chromatin fi ber, Sas2-catalyzed H4K16 acetylation presents a barrier to Sir 

spreading (Liou et al., 2005).

Histone deposition and chromatin assembly have also been linked to histone acetylation.  

During S phase, histone H4 is rapidly acetylated on K5 and K12 in many eukaryotes (Chicoine 

et al., 1986; Sobel et al., 1995).  This modifi cation promotes associations between newly 

synthesized histones and chaperone proteins, which help to deposit the new histones into 

chromatin (Smith and Stillman, 1991).  In yeast, acetylation of H4K5/12 is carried out by 

the HAT1 complex (Ai and Parthun, 2004; Poveda et al., 2004).  However, unlike in other 

eukaryotes, in yeast, H4 K5, K8, and K12 acetylation all function redundantly to promote histone 

deposition (Ma et al., 1998).  Once deposited into chromatin, these acetyl marks are rapidly 

removed, allowing other patterns of histone modifi cations, specifi c to the genomic region, to be 

set up (Annunziato and Seale, 1983; Jackson et al., 1976; Ruiz-Carrillo et al., 1975).

Rpd3 is a histone deacetylase with broad functions

Acetylation is not a permanent mark, but rather is actively removed from histones by 

eraser proteins called histone deacetylases or HDACs (also known as KDACs).  Jack Taunton, 
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Christian Hassig, and Stuart Schreiber are credited with identifying the fi rst HDAC.  Taunton 

and colleagues used the irreversible HDAC inhibitor trapoxin to purify a protein from human 

thymus cells which turned out to be homologous to the known yeast repressor Rpd3 (Taunton et 

al., 1996).  Shortly after, the Grunstein laboratory purifi ed two complexes with HDAC activity 

from yeast, and identifi ed the proteins Hda1 and Rpd3 as the subunits responsible for activity 

(Rundlett et al., 1996).  These initial studies paved the way for the identifi cation of many more 

HDAC proteins and complexes, including the discovery of at least seven more yeast HDACs, 

Hos1, Hos2, Hos3, Sir2, Hst1, Hst3, and Hst4 (Kurdistani and Grunstein, 2003).

Long before its HDAC function was known, the RPD3 gene was identifi ed by Marc 

Vidal and Richard Gaber in a screen for mutants that derepress the Trk2 potassium transporter in 

the absence of its activating protein, Trk1, and therefore had a reduced potassium dependency, 

compared with trk1 single mutants (Vidal and Gaber, 1991).  This study also found that Rpd3 

was required for both full repression and full activation of certain genes, suggesting that Rpd3 

might be a transcriptional regulator.  Consistent with this idea, Rpd3 has been linked with gene 

repression (Kadosh and Struhl, 1997, 1998; McKenzie et al., 1993; Stillman et al., 1994), a 

function which makes sense in light of the links between histone acetylation and transcription 

described above.  In addition to a repressive function, some studies have found a requirement 

for Rpd3 activity in gene activation (Bowdish and Mitchell, 1993; Sharma et al., 2007; Xin et 

al., 2007).  Because these studies did not demonstrate Rpd3 localization to the genes that require 

it for activation, some scientists have dismissed these fi ndings as indirect effects of RPD3 

deletion (Humphrey et al., 2004).   However, more recent studies have demonstrated that Rpd3 

directly binds to the promoters of some of the genes that require it for activation (De Nadal et 
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al., 2004; Ruiz-Roig et al., 2010; Sertil et al., 2007; Sharma et al., 2007).  Intriguingly, Rpd3 has 

also been shown to be required for activation of the FLO11 gene locus, through a mechanism 

involving repression of FLO11-repressive noncoding RNAs originating in the FLO11 promoter 

(Bumgarner et al., 2009).  It remains unclear whether other examples of Rpd3-mediated gene 

activation are also cases where Rpd3 functions to repress noncoding RNAs that repress gene 

activity.  Taken together, these studies suggest that while Rpd3 primarily functions to repress 

target genes, in certain contexts, this protein can function as a transcriptional activator.

In addition to gene regulation, Rpd3 also functions to antagonize silencing.  In this 

regard, Rpd3 functions in an opposite fashion to the Sir2 HDAC mentioned above, which is 

required for silencing in yeast.  Cells lacking Rpd3 have greater levels of silencing at telomeres, 

silent mating type loci, and rDNA (De Rubertis et al., 1996; Rundlett et al., 1996; Smith 

et al., 1999; Vannier et al., 1996).  In addition, rpd3 cells have increased levels of Sir2 in 

heterochromatic regions and neighboring euchromatic regions (Zhou et al., 2009).  Given that 

histone deacetylation is generally associated with gene repression, the increased silencing seen 

in rpd3 mutants may seem a bit puzzling.  To reconcile these fi ndings, some have suggested 

a model in which Rpd3 and Sir2 compete for binding sites at boundary regions (Smith et al., 

1999; Sun and Hampsey, 1999; Zhou et al., 2009).  According to this model, deletion of RPD3 

frees up more binding sites for Sir2, which then enhances silencing.  Intriguingly, a recent study 

has found low levels of H4K12 acetylation, one of the preferred targets of Rpd3 deacetylation, 

at telomeric regions (Zhou et al., 2011).  It is possible that the presence of this mark promotes 

heterochromatin formation, and that the higher levels of H4K12 acetylation found in rpd3 

knockout cells result in increased levels of silencing. While the exact mechanism by which Rpd3 
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antagonizes silencing is still unclear, this function for Rpd3 may explain the observation that 

rpd3 cells have increased lifespans, since loss of rDNA silencing is known to promote aging in 

yeast (Kim et al., 1999).

Rpd3 is a member of two known yeast complexes: Rpd3(S) and Rpd3(L).  Rpd3(L) is 

the larger of the two known Rpd3 complexes, with 12 reported subunits (Carrozza et al., 2005b; 

Keogh et al., 2005).  This complex localizes to the promoters of numerous genes and regulates 

transcription (Carrozza et al., 2005a).  Rpd3(L)-mediated gene regulation has been shown to be 

important in diverse cellular processes.  For instance, Rpd3 represses genes involved in meiosis, 

and rpd3 mutants have sporulation defects (Dora et al., 1999; Hepworth et al., 1998; Lamb 

and Mitchell, 2001).  Rpd3 also represses cell cycle genes (Bernstein et al., 2000; Takahata et 

al., 2009) and the HO endonuclease gene, which is important for yeast mating type switching 

(Vannier et al., 2001).  In addition, and of particular interest to the research discussed in this 

thesis, Rpd3 has been shown to regulate both cellular stress and nutrient metabolism genes, a 

function that will be discussed in greater depth later in this introduction.

The Rpd3(S) complex consists of the subunits Sin3, Ume1, and Rpd3, which are shared 

with Rpd3(L), as well as the unique subunits Eaf3 and Rco1 (Carrozza et al., 2005b; Keogh 

et al., 2005).  As mentioned earlier, the chromodomain and PHD fi nger of Eaf3 and Rco1, 

respectively, both interact with H3K36me2/3.  Together, these interactions recruit Rpd3(S) 

to gene bodies to deacetylate histones within coding sequences and help reset chromatin that 

has been activated by transcribing RNA polymerase II (Krogan et al., 2003; Li et al., 2007; 

Li et al., 2003; Xiao et al., 2003).   This genic deacetylation is most important at genes whose 

coding sequences serendipitously harbor regions that look like gene promoters.  At these genes, 
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Rpd3(S)-mediated deacetylation helps suppress transcriptional initiation from these “cryptic” 

internal promoters, promoting transcriptional fi delity (Carrozza et al., 2005b; Joshi and Struhl, 

2005; Keogh et al., 2005).  In addition, a recent study has found Rpd3(S) at gene promoter 

regions, where it suppresses noncoding antisense transcription (Churchman and Weissman, 

2011). The research described in this thesis pertains to the discovery of a third Rpd3 complex 

and my attempts to compare the function of that complex with known Rpd3(L) and Rpd3(S) 

functions.

Histone methylation also marks transcriptionally active chromatin in yeast

In contrast to acetylation, methylation does not alter the charge of the lysine side chain.  

Therefore, this modifi cation is not thought to regulate chromatin structure in cis.  Rather, the 

effects of lysine methylation are mediated primarily through the reader proteins that interact 

with this mark.  There are three distinct states of lysine methylation.  One, two, or even three 

methyl groups can be attached to the epsilon amino group of the lysine side chain, resulting in 

monomethylation (me1), dimethylation (me2), or trimethylation (me3), respectively.  While the 

distinct roles of these three types of methylations at different lysines have not all been elucidated, 

there is evidence that different states of methylation are associated with different functions.  For 

instance, in mammalian cells, H3K4me1 and H3K4me3 have different patterns of localization, 

with the former enriched in enhancer regions, and the latter enriched in gene promoters 

(Heintzman et al., 2007).  In yeast, Oliver Rando and colleagues have shown that H3K4 

methylation exists in a gradient throughout genes, with H3K4me3 levels peaking at the 5’ ends, 

H3K4me2 levels high in the middle, and H3K4me1 levels high at the 3’ ends (Liu et al., 2005). 
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Methylation of different histone residues is associated with different outcomes.  At least 

5 different sites of lysine methylation exist in mammalian H3 (K4, K9, K27, K36, and K79), 

along with one well characterized site of methylation on histone H4 (K20) (reviewed in Goll and 

Bestor, 2002; Lachner et al., 2003).  H3K9, H3K27, and H4K20 methylation are all correlated 

with heterochromatin formation (Cao et al., 2002; Lachner et al., 2001; Muller et al., 2002; 

Nakayama et al., 2001; Schotta et al., 2004).  In contrast, methylation of H3K4, K36, and K79, 

are all associated with transcriptionally active regions (reviewed in Martin and Zhang, 2005).  

Of those six well-studied methylation sites, only H3K4, K36, and K79 are known to be 

methylated in budding yeast.  Levels of H3K4 methylation peak in the promoters and 5’ ends 

of genes (Pokholok et al., 2005).  In contrast, H3K36 methylation is enriched in the middle and 

3’ ends of active genes, largely as a consequence of the association between the enzyme that 

writes this mark, Set2, and elongating RNA polymerase II (Krogan et al., 2003; Pokholok et al., 

2005; Xiao et al., 2003).  H3K79 methylation is also enriched in coding regions and is important 

for silencing (Ng et al., 2002; Pokholok et al., 2005; van Leeuwen et al., 2002).  In addition to 

these sites, recent studies have identifi ed H2BK37, H4K5, H4K8, H4K12, and H4K31 as sites 

of methylation in yeast, as well as H2AK99, H2BK43, H3K23, and H4K59 in mammals (Garcia 

et al., 2007; Gardner et al., 2011; Green et al., 2012; Hyland et al., 2011; Zhang et al., 2003).  

Future research will be key to discovering what roles these additional modifi cations play.

Histone methylation is catalyzed by a group of enzymes called histone methyltransferases 

(HMTs, also called lysine methyltransferases, or KMTs).  These enzymes use the metabolite 

S-adenosyl-L-methionine (SAM) as a methyl donor.  The fi rst HMT was characterized by Steven 

Rea, Thomas Jenuwein, and colleagues who were studying Suv39h1, the mammalian homolog 
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of the Drosophila Su(var)3-9 suppressor of position effect variegation (Rea et al., 2000).  The 

region of this protein responsible for methyltransferase activity was shared between SU(VAR)3-9 

proteins, the Polycomb-group E(Z) protein, and the trithorax-group TRX protein, so this motif 

was named the “SET” domain.  Shortly after this discovery, Scott Briggs and colleagues reported 

that in yeast, the Set1 protein functions as an H3K4 methyltransferase (Briggs et al., 2001), and 

the yeast Set2 and Dot1 proteins were found to methylate H3K36 and K79, respectively (Ng et 

al., 2002; Strahl et al., 2002; van Leeuwen et al., 2002).

While for many years, histone methylation was thought to be an irreversible modifi cation, 

the discovery of a class of enzymes that erase this mark, called histone demethylases (HDMs, 

also called lysine demethylases, or KDMs) challenged this idea.  Yang Shi and colleagues 

identifi ed the fi rst HDM, the mammalian LSD1 protein, based on its similarity to a class of 

enzymes called amino oxidases, which were known to be capable of oxidizing methylated 

proteins (Shi et al., 2004).   LSD1 was shown to demethylate H3K4me1 and me2.  However, this 

enzyme could not utilize H3K4me3 as a substrate, leaving open the question of whether histone 

trimethylation could be enzymatically erased.  Subsequent work from Yi Zhang’s laboratory 

identifi ed a second class of HDMs, the Jumonji C, or JmjC, proteins, which were capable of 

erasing histone trimethylation (Tsukada et al., 2006).   Further studies led to the identifi cation of 

fi ve JmjC proteins in budding yeast, Rph1, Gis1, Jhd1, Jhd2, and Ecm5, of which all but Ecm5 

have been found to have activity (Kim and Buratowski, 2007; Klose et al., 2007a; Liang et al., 

2007; Seward et al., 2007; Tu et al., 2007).
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The PHD fi nger acts as a methyl-reader module

Numerous protein domains act as readers for histone lysine methylation, including 

chromodomains, Tudor domains, and MBT domains (Taverna et al., 2007).  However, at the start 

of my graduate research, I took an interest in one type of reader module in particular, called the 

PHD, or plant homeodomain, fi nger.  Initially identifi ed in two plant homeodomain proteins that 

gave this module its name, the PHD fi nger is a protein domain that, depending on the specifi c 

example, differentially recognizes either methylated or unmodifi ed lysine residues on histone 

tails.  The PHD domain typically consists of a Cys4-His-Cys3 structure that coordinates two Zn2+ 

ions and contains two anti-parallel  sheets (Figure 1.3).  There are 14 PHD fi nger-containing 

proteins, and a total of 18 PHD domains in yeast (Table 1.1), while humans have approximately 

150 PHD fi nger proteins (Bienz, 2006). 

Because of structural similarities between the PHD domain and the RING fi nger, a 

domain associated with ubiquitin E3 ligase activity, the PHD fi nger was initially thought to also 

be capable of ubiquitylation.  However, all early examples of PHD fi ngers with E3 ligase activity 

were later shown to be misclassifi ed RING domains, leading most researchers to abandon 

the hypothesis that PHD fi ngers could function as ubiquitin ligases (Aravind et al., 2003) , an 

idea that I will revisit in the second chapter of this thesis.  As the popularity of this hypothesis 

fl agged, focus switched to the idea that PHD fi ngers might mediate chromatin interactions.  

Consistent with a chromatin function for these domains, many PHD fi nger-containing proteins 

are known to be nuclear and to contain other domains associated with chromatin regulation 

(Bienz, 2006).  In addition, early studies showed that PHD fi ngers can interact with nucleosomes 

(Eberharter et al., 2001; Ragvin et al., 2004; Xiao et al., 2001).  Soon after, the PHD fi ngers 
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Figure 1.3 The PHD fi nger is a reader module that recognizes lysine methylation states 
A. The PHD fi nger fold is characterized by 4 cysteines, 1 histidine, and 3 more cysteines 
that coordinate 2 Zn2+ ions in a structure containing two anti-parallel -sheets. B and C. The 
structures of the H3K4me3-binding PHD fi nger from the human BPTF protein (B)  and the 
H3K4me0-binding PHD from human BHC80 (C) are shown with the PHD domain in silver, 
the H3K4 peptide in green, and the Zn2+ ions in cyan. Side chains of the residues critical for 
K4me0 or me3 interaction are in purple.
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Table 1.1 The 14 PHD fi nger-containing proteins in S. cerevisiaea
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of human BPTF (bromodomain and PHD fi nger transcription factor) and ING2 (inhibitor of 

growth-2) were shown to interact preferentially with histone H3K4me2/3, functionally linking 

PHD fi ngers to readout of histone methylation (Li et al., 2006; Pena et al., 2006; Shi et al., 2006; 

Wysocka et al., 2006).

Spurred by the excitement of those early discoveries, the chromatin fi eld has seen 

a dramatic expansion of research into PHD fi ngers in recent years, leading to discoveries 

of histone ligands for a number of additional PHDs.  These newer studies have reported 

many more examples of H3K4me-interacting PHD fi ngers.  In addition, PHD fi ngers that 

preferentially associate with other methylated lysines, unmethylated lysines, acetylated lysines, 

and even methylated arginines on histones have also been found (reviewed in Li and Li, 2012).  

Furthermore, while PHD fi ngers have traditionally been thought of as mediators of histone 

interactions, the PHDs of the mammalian MLL1 and PYGO1 proteins have been shown to 

interact with non-histone proteins, expanding the potential roles of these domains (Fiedler et al., 

2008; Miller et al., 2010; Wang et al., 2010).

The importance of PHD fi ngers in chromatin regulation is underscored by the number 

of human diseases that result from either direct mutation or altered regulation of this domain 

(Baker et al., 2008).  For instance, mutations in the human RAG2 PHD fi nger, which normally 

interacts with H3K4me3 to recruit RAG2 to segments of the genome poised to undergo V(D)

J recombination, are associated with the immunodefi ciency disorders T-B-SCID and Omenn 

Syndrome (Matthews et al., 2007; Ramon-Maiques et al., 2007; Schwarz et al., 1996; Sobacchi 

et al., 2006).  In addition, mutations in the fi rst PHD of the AIRE (autoimmune regulator) 

protein, which is known to interact with unmethylated H3K4, are associated with another 
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immune disorder called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy 

(APECED) (Bjorses et al., 2000; Org et al., 2008; Saugier-Veber et al., 2001).  PHD mutations 

have also been associated with the neurological disorders Sotos Syndrome, Weaver Syndrome, 

ATR-X Syndrome, Rubenstein–Taybi Syndrome, and Borjeson–Forssman–Lehmann Syndrome 

(Argentaro et al., 2007; Douglas et al., 2003; Kalkhoven et al., 2003; Lower et al., 2002).  Lastly, 

PHD translocations and point mutations are associated various types of cancer (Ayton and 

Cleary, 2001; Campos et al., 2004; Chen et al., 2003; Chen et al., 2001; Lochner et al., 1996; 

Reader et al., 2007; van Zutven et al., 2006; Wang et al., 2009).  The links between mutations 

in the PHD module and so many different types of human disease give added importance to the 

goal of understanding the biology of these domains.

While many published studies have provided detailed examples of the mechanisms 

by which PHD fi ngers interact with chromatin and effect changes in chromatin regulation, 

there are still a large number of PHD fi nger proteins for which this understanding is lacking.  

Even in budding yeast, which has had the advantage of many years of genetic dissection, the 

exact ligands for many PHDs and the functions of the proteins that contain them are still not 

fully understood.  In the research described in this thesis, I set out to better characterize the 

in vivo functions of two yeast PHD fi nger proteins, Jhd2 and Ecm5, and the contributions of 

their PHD fi ngers to those functions.  When I started this work, very little had been published 

about these proteins, except that they contained other potential chromatin interacting domains 

(such as JmjC and ARID domains), and were known to be nuclear (Figure 1.4) (Bienz, 2006).  

In addition, Ecm5, or extracellular mutant 5, had been discovered in a screen from Howard 

Bussey’s laboratory for mutants with impaired cell walls (Lussier et al., 1997).  Based on this 
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knowledge, I hypothesized that both proteins were likely to have interesting and novel chromatin 

functions, and in the case of Ecm5, this might involve regulating genes involved in the cell 

wall.  Shortly after starting this project, Jhd2 was shown to have H3K4 demethylase activity and 

was given its name, JmjC domain-containing histone demethylase 2, leading me to become all 

the more interested in what the function of Jhd2-catalyzed demethylation might be. (Liang et 

al., 2007; Seward et al., 2007; Tu et al., 2007) .  At the same time, Ecm5, which also contains a 

JmjC domain, was shown not to have demethylase activity, leaving the function of this protein 

unknown.

Ecm5 and Jhd2 are homologous to the Drosophila melanogaster Lid protein, as well 

as to a mammalian family of proteins called the JARID proteins (Figure 1.4).  This family 

consists of the RBP2, PLU-1, SMCX, and SMCY proteins (also called JARID1A/KDM5A, 

JARID1B/KDM5B, JARID1C/KDM5C, and JARID1D/KDM5D, respectively), and proper 

functioning of these proteins is important to human health.  Mutations in SMCX are correlated 

with X-linked mental retardation and autism spectrum disorder (Adegbola et al., 2008; Ounap et 

al., 2012; Santos-Reboucas et al., 2011; Tzschach et al., 2006).  PLU-1 is upregulated in breast 

cancer (Barrett et al., 2002; Lu et al., 1999).  Furthermore, RBP2, a protein that interacts with 

retinoblastoma tumor suppressor protein is upregulated in gastric cancer, and translocations 

involving this protein, are found in some cases of acute myeloid leukemia (Fattaey et al., 1993; 

Reader et al., 2007; van Zutven et al., 2006; Wang et al., 2009; Zeng et al., 2010).  

Like Jhd2, the mammalian JARID proteins are H3K4 demethylases (Christensen et 

al., 2007; Iwase et al., 2007; Klose et al., 2007b; Lee et al., 2007; Seward et al., 2007; Yamane 

et al., 2007).  Intriguingly, Jhd2 and Ecm5 are each homologous to different sets of domains 
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Figure 1.4 Jhd2 and Ecm5 are homologous to the Drososphila Lid and mammalian JARID 
proteins
Domain structures of Jhd2, Ecm5, and a typical JARID/Lid protein are shown. Domains are 
abbreviated as follows - JmjN: Jumonji N, JmjC: Jumonji C, PHD: Plant Homeodomain, ARID: 
AT-Rich Interaction Domain, C5HC2: Zinc Finger Domain with Cys5HisCys 2-type structure. 
The asterisk in the Ecm5 JmjC domain denotes that this domain lacks demethylase activity.



28

within the JARID proteins, suggesting that yeast might have evolved two separate proteins that 

perform the JARID function together, while in mammals, this functionality is contained within 

one polypeptide.  A detailed analysis of the functions of Jhd2 and Ecm5 will both aid in our 

understanding of general chromatin regulatory mechanisms and provide specifi c insights into 

how the mammalian JARID proteins function and contribute to human disease.

Chromatin regulation as a part of the yeast stress response and metabolism pathways

Many cellular pathways ultimately culminate in gene expression changes, and therefore 

rely on chromatin factors to enable transcription.  This is certainly true of many of the yeast 

stress and metabolism pathways, which are related to this research (Figure 1.5).  Regulation of 

yeast metabolism is governed by multiple major cellular pathways. (See Zaman et al., 2008, 

for an extensive review of yeast nutrient response regulation.)  These pathways can be broadly 

divided into those that respond to carbon sources and those that respond to nitrogen sources.  

For instance, high glucose levels activate the yeast protein kinase A pathway through the Ras1 

and Ras2 GTPases, which stimulate the production of cyclic AMP (cAMP) (Dechant and Peter, 

2008).  High levels of cAMP relieve repression of PKA, resulting in the phosphorylation of 

targets that promote glucose utilization and cellular growth.  PKA signaling also activates genes 

involved in ribosome biogenesis and glycolysis and represses stress response genes.  In a parallel 

pathway, the yeast Sch9 kinase, which is a homolog of the mammalian Akt/Protein Kinase B 

and S6 kinases, also promotes growth in response to glucose.  Sch9 is also involved in nitrogen 

sensing, through the TOR pathway that will be discussed below (Jorgensen et al., 2004; Urban et 

al., 2007).  
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Figure 1.5 The complicated world of cell metabolism and oxidative stress regulation 
converges on the nucleus
Many of the yeast pathways involved in cellular metabolism and oxidative stress response are 
shown, with key pathway names are in blue boxes . Oxidative stressors (hydrogen peroxide: 
H2O2; superoxide: O2

.-; oxidized proteins: SOH) are in yellow.  Nutrient stimuli (glucose: GLU; 
amino acids: AAs) are in dark green. Membrane receptors for some pathways are in pink. A 
cysteine-containing protein is shown in red. The main kinases or effectors of the pathways are 
in orange, except for Yap1, which is in purple. Transcription factors downstream of the various 
pathways are in light green.
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When glucose is limiting, the Yak1, Snf1(AMPK), and RGT pathways work to inhibit 

biomass production and promote utilization of alternate carbon sources.  The absence of 

glucose promotes the nuclear localization of both the Yak1 and Snf1 kinases.  Nuclear Yak1 

phosphorylates downstream targets, including the Pop2 subunit of the Ccr4-Not complex which 

functions in both RNA degradation and transcriptional regulation (Moriya et al., 2001).  Nuclear 

Snf1, the yeast homolog of the mammalian AMP-activated protein kinase (AMPK), promotes 

the repression of glucose catabolism genes through the Mig1 protein (Hedbacker and Carlson, 

2008).  Snf1 also promotes the activation of genes involved in nonfermentable carbon source 

metabolism, fatty acid oxidation, and stress response through a variety of transcription factors, 

including Adr1, Cat8, Sip4, and Hsf1.  In the absence of glucose, the RGT network promotes 

repression of different hexose transporter genes by the Rgt1 and Ssn6-Tup1 repressors (Johnston 

and Kim, 2005).  In low to moderate levels of glucose, this network also ensures selective 

expression of the hexose transporters with the appropriate affi nities for the amount of glucose 

present.

Two key pathways are associated with nitrogen sensing in yeast.  First, low amino 

acid levels activate the GCN (general control non-derepressable) pathway.  The effector of 

this pathway is the Gcn2 kinase, which is activated by interaction with the uncharged tRNAs 

that accumulate when amino acid concentrations are low.  Activated Gcn2 phosphorylates the 

translation initiation factor eIF2, inhibiting translation of most genes, while at the same time, 

promoting translation of the transcription factor Gcn4.  Once translated, Gcn4 activates genes 

involved in amino acid biosynthesis.  The TOR pathway responds to nitrogen levels through 

two protein kinase complexes: TORC1 and TORC2.  In contrast to the GCN pathway, TOR 
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complexes are active when amino acids are abundant.  While both TOR complexes regulate 

growth, TORC1 does so by promoting protein synthesis, production of translation machinery, 

and cellular uptake of nitrogen and carbon sources, while TORC2 is regulates cell polarity and 

endocytosis (De Virgilio and Loewith, 2006).  In addition, TORC1, but not TORC2, is sensitive 

to inhibition by the antifungal and chemotherapeutic agent rapamycin.  Treatment of yeast cells 

with rapamycin, promotes many of the same cellular changes as starvation, making this drug a 

useful tool in studying nutrient stress (Loewith et al., 2002).  The exact mechanisms by which 

amino acid levels stimulate TORC activation are still unclear, although many of the downstream 

targets of TORC1, including the Sch9 kinase, are known.  In response to TOR signaling, Sch9 

inhibits repressors like Stb3, Dot6, and Tod6, promoting expression of ribosome biosynthesis and 

ribosomal protein genes .

In addition to pathways that sense nutrient levels, yeast have multiple pathways that 

sense and respond to cellular stressors like oxidative stress, which is another focus of this work.  

Oxidative stress is primarily caused by reactive oxygen species (ROS), highly reactive oxygen-

containing molecules including oxygen ions and peroxides (Freinbichler et al., 2011).  At low 

levels, ROS do not necessarily present a challenge to yeast cells because dedicated families 

of enzymes can detoxify them.  In fact, yeast actively generate small amounts of ROS as a 

biproduct of oxidative phosphorylation through the mitochondrial electron transport chain (ETC), 

which couples NADH production in the TCA cycle to ATP generation (Kowaltowski et al., 2009; 

Lambert and Brand, 2009).  Usually, electrons fl owing through the ETC eventually interact with 

molecular oxygen, to generate water.  On occasion, this transfer can be incomplete, resulting in 

the ROS superoxide (O2
●-).  Superoxide, itself, is quite toxic, but superoxide dismutase (SOD) 
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enzymes in the mitochondria and cytoplasm can convert superoxide to hydrogen peroxide (H2O2) 

(Fridovich, 1995).  H2O2 is also a byproduct of fatty acid oxidation in peroxisomes.  While this 

ROS is less toxic than superoxide, it can still cause damage by oxidizing macromolecules in the 

cell directly, or by being partially reduced to the hydroxyl radical (●OH), an extremely powerful 

oxidant.  Proteins are particularly sensitive to oxidation, which can convert the sulfhydryl group 

of cysteine and methionine side chains into sulfenic, sulfi nic, or sulfonic acid (D’Autreaux and 

Toledano, 2007).  Cellular catalase and peroxidase enzymes perform an important function 

by converting H2O2 to water (Herrero et al., 2008).  In addition, some small molecules in the 

cell, such as reduced glutathione (GSH), ascorbate or vitamin E can act as antioxidants, further 

protecting cells from ROS-induced damage (Evans and Halliwell, 2001).

While these enzymes and antioxidants work well at detoxifying small amounts of ROS, 

larger doses of oxidants require the use of cellular stress response pathways for detoxifi cation.  

Damaged proteins can be repaired by thioredoxin, glutaredoxin, and the methionine sulphoxide 

reductase proteins (Herrero et al., 2008).  The Yap1 transcription factor also helps cells cope 

with ROS (Rodrigues-Pousada et al., 2010).  Yap1 is known to be localized to the cytoplasm in 

unstressed cells.  Upon exposure to ROS, the peroxidase protein Gpx3 acts as redox sensor and 

ultimately causes a intramolecular double bond to form between two cysteines in Yap1, resulting 

in a conformational change that causes Yap1 to accumulate in the nucleus and activate stress 

genes.

In addition to these pathways, yeast respond to oxidative stress through two mitogen 

activated protein kinase (MAPK) pathways.  The high-osmolarity glycerol (HOG) pathway is 

primarily associated with osmotic stress response.  In response to this stress, the HOG pathway 
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becomes activated, leading to phosphorylation of the Hog1 MAPK (de Nadal and Posas, 2010).  

Active Hog1 relocalizes to the nucleus and both associates with genes directly and promotes a 

transcriptional response through the Smp1, Hot1, and Msn2/4 transcriptional activators and the 

Sko1 repressor (Alepuz et al., 2001).  Oxidative stress also activates the HOG pathway (Bilsland 

et al., 2004; Haghnazari and Heyer, 2004; Singh, 2000).  Furthermore, a recent study found that 

hypoxia activates this pathway as well (Hickman et al., 2011).  While osmotic stress results in 

rapid phosphorylation of Hog1 within minutes (Maeda et al., 1995), both oxidative stress and 

hypoxia promote a more gradual phosphorylation of Hog1, with the former peaking 1 hour after 

the onset of stress and the latter peaking 4-5 hours afterward (Bilsland et al., 2004; Hickman et 

al., 2011).  These results suggest that timing of the HOG response may help dictate which genes 

are regulated.  Acute hypoxia is known to transiently induce oxidative stress in yeast, most likely 

through increased ROS production caused by impaired fl ux through the mitochondrial ETC 

(Dirmeier et al., 2002).  Thus, these two Hog1 responses might be linked.

The Cell Wall Integrity (CWI) MAPK pathway, has also been reported to respond to 

oxidative stress (Alic et al., 2003; Vilella et al., 2005).  This pathway is activated by numerous 

inducers of cell wall stress, including acid exposure, heat shock, and hypo-osmolarity, chemicals 

that bind to or degrade the cell wall, and caffeine treatment (Levin, 2005).  Once activated, 

the CWI pathway activates the Slt2 MAPK, which regulates cell wall remodeling, vesicular 

traffi cking to the cell wall, and the expression of cell wall biosynthesis genes through the Swi4/6 

transcription factors.  Oxidative stress is thought to activate this pathway either through direct 

oxidation of lipids in the plasma membrane, where sensors of cell wall stress are located, or 

through the activation of Ask10, which may activate Slt2 via activation of an upstream kinase 

(Levin, 2005). 
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There are numerous lines of evidence that the yeast nutrient sensing and oxidative stress 

response pathways are linked.  As mentioned above, respirative ATP metabolism is known to 

produce ROS.  Both caloric restriction and the presence of yeast antioxidant genes have been 

shown to extend replicative lifespan (Barker et al., 1999; Lin et al., 2002).  Furthermore, both 

starvation and oxidative stress trigger yeast to produce trehalose (Benaroudj et al., 2001; Lillie 

and Pringle, 1980).  This disaccharide is thought to help yeast cope with these stresses, both by 

preserving the integrity of the plasma membrane and by acting as a protein chaperone (Crowe 

et al., 1984; Singer and Lindquist, 1998).  Furthermore, inhibition of the TOR pathway, which 

mimics starvation, leads to the activation of the known stress transcription factors Msn2/4 as 

well as activation of genes involved in the oxidative stress response (Bandhakavi et al., 2008; 

Beck and Hall, 1999).  Conversely, oxidative stress leads to the inhibition of protein synthesis 

and is known to activate the Snf1 kinase (Hong and Carlson, 2007; Shenton and Grant, 2003).  In 

addition, diverse forms of stress as well as starvation activate the same set of genes, called “the 

environmental stress response” (Gasch et al., 2000).

Many chromatin regulators are known to be involved in the yeast metabolic and stress 

pathways.  For instance, numerous studies have linked diverse chromatin regulators, including 

the NuA4, Gcn5, and Rtt109 HATs; the Swi/Snf and Ino80 remodelers; and the Asf1 and Spt6 

chaperones, to regulation of the PHO5 gene, which is known to be induced by low phosphate 

levels, resulting in the loss of positioned nucleosomes at the PHO5 promoter (Rando and 

Winston, 2012).  Gcn5 is also needed for the activation of the Snf1 target gene, ADY2 (Abate et 

al., 2012).  Yeast growth and stress genes are known to be differentially regulated by the TFIID 

and SAGA complexes, respectively, both of which have HAT activity (Huisinga and Pugh, 
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2004).  SAGA, SWI/SNF, and RSC (another chromatin remodeler), are all needed to activate 

genes in response to osmotic stress (Mas et al., 2009; Pokholok et al., 2006), while Rtt109, 

Asf1, and Ino80 are needed to repress genes that have become activated in response to this 

stress (Klopf et al., 2009).  Moreover, a genome-wide ChIP study reported that the associations 

of a myriad of chromatin regulators with the stress gene promoters change after heat shock, 

consistent with roles for many of these proteins in regulating transcription in response to stress 

(Venters et al., 2011).  

Notably for the research presented in this thesis, multiple studies have linked the 

Rpd3 HDAC with regulation of stress and metabolic genes.  Rpd3 and Sin3 are needed for 

the repression of rRNA and ribosomal protein genes after rapamycin treatment (Rohde and 

Cardenas, 2003; Tsang et al., 2003).  A separate study found that Rpd3(L) is recruited to 

promoters of ribosomal biogenesis and ribosomal protein genes, which it represses in response 

to inactivation of the Sch9 TOR pathway effector (Huber et al., 2011).  Rpd3 is also required for 

gene activation after rapamycin treatment, although it is unclear whether this is due to a direct 

activating role of Rpd3 or due to indirect effects (Humphrey et al., 2004).  Rpd3 is also needed 

for gene activation and repression following heat shock (Kremer and Gross, 2009; Ruiz-Roig et 

al., 2010), and for gene activation after osmotic shock (De Nadal et al., 2004).  

While these studies link chromatin function to gene expression following nitrogen stress, 

heat shock, and osmotic stress, less is known about the chromatin proteins needed to regulate 

gene expression following oxidative stress.  Furthermore, the fi eld still does not know all of the 

proteins involved in gene regulation upon these stresses.  A recent study mapped the localization 

of 200 transcription-related proteins and found that 93% of yeast genes were occupied by at 

least 10 regulators, suggesting that diverse combinations of regulators at different sets of genes 
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may underlie the complex regulation downstream of many of these pathways (Venters et al.,  

2011).  Even in yeast, in which most of these pathways have been studied extensively, there are 

still many proteins, like the PHD fi nger proteins I described above, that are suspected or known 

to interact with chromatin, but whose functions remain unclear.  Sorting out these how these 

stress and metabolism pathways are regulated has relevance to numerous human disease states, 

including cancer, diabetes, and aging (Alic and Partridge, 2011; Dazert and Hall, 2011; Lin and 

Beal, 2006; Roberts and Sindhu, 2009).

Chromatin as a sensor of metabolic state

In addition to regulating metabolism genes, chromatin and metabolism are intimately 

linked by the use of cellular metabolites as precursors for histone modifi cations (Table 1.2) 

(Teperino et al., 2010; Wallace and Fan, 2010; Wellen and Thompson, 2010).  The best-studied 

example of a metabolite that connects chromatin and cellular energy state is acetyl-CoA, a key 

molecule in the tricarboxylic acid (TCA) cycle which also serves as the acetyl source for histone 

acetylation.  Recent studies have shown that yeast go through metabolic cycles, oscillating 

between using glycolysis and oxidative respiration as the main source of energy (Slavov et 

al., 2011; Tu et al., 2005).  Just as levels of oxygen consumed fl uctuate through these cycles, 

acetyl CoA levels also show periodicity (Cai et al., 2011).  The levels of histone acetylation also 

fl uctuate in these cycles, suggesting that histone proteins may also be a cellular metabolic sink.  

The link between acetylation levels and energy status makes some sense: since acetylation levels 

and tran scriptional activity are correlated, the enrichment of histone acetyl levels when acetyl-

CoA is abundant ensures that cells will be transcribing at maximal rates when they have enough 

energy stored to make biomass.
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Table 1.2 Cellular metabolites used by histone writer and eraser enzymes
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Acetyl-CoA is not the only chromatin enzyme cofactor that is also involved in 

metabolism.  The Sirtuin family of HDACs require NAD+ for activity, linking histone 

deacetylation to the cellular NAD+/NADH ratio, a readout of the redox state of the cell (Imai 

et al., 2000). The precursor for histone methylation, S-adenosyl methionine (SAM), is a key 

metabolite involved in the generation of the amino acids cysteine and methionine (Teperino et 

al., 2010).  In addition, histone demethylation depends on -ketoglutarate, an intermediate in 

the TCA cycle. Lastly, histone O-GlcNAcylation requires the molecule UDP-GlcNAc as a donor 

(Hanover, 2010).  This sugar is created by the hexosamine biosynthesis pathway and is used to 

make cellular glycosaminoglycans, proteoglycans, and glycolipids.

 Intriguingly, some metabolic enzymes have been detected in the nucleus, suggesting 

that metabolic regulation of chromatin is occurring locally.  For instance, the metabolic 

enzyme S-adenosylhomocysteine hydrolase (SAHH), which cleaves S-adenosylhomocysteine, 

a byproduct of cellular methylation reactions, can be found in the nuclei of frog embryos 

(Radomski et al., 1999).  Furthermore, the enzyme S-adenosyl methionine transferase, which is 

known to generate SAM from methionine, is partially localized to the nuclei of rat cells (Reytor 

et al., 2009).  In yeast, the enzymes Arg5/6, which are involved in arginine biosynthesis, also 

can be found in the nucleus and regulate gene expression (Hall et al., 2004).   In addition, the 

enzymes that generate acetyl-CoA in yeast, Acs1 and Acs2, have been found in the nucleus 

as well (Huh et al., 2003; Takahashi et al., 2006).  The reason for the nuclear localization of 

these metabolism enzymes is not clear.  In some cases, they might be creating locally high 

concentrations of cofactors needed for histone modifi cation.  Alternatively, they might have 

entirely novel nuclear functions, potentially acting as transcription factors.
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PHD fi nger proteins, stress, and metabolism

The research described in this thesis initiated with my wanting to understand how PHD 

fi nger-containing proteins contribute to chromatin regulation.  Specifi cally, this thesis describes 

my work to explore the functions and associations of the yeast PHD fi nger proteins Jhd2 and 

Ecm5.  In the next chapter, I will describe experiments I performed to characterize the chromatin 

associations of the Jhd2 and Ecm5 PHD domains.  I will also summarize experiments to test the 

hypothesis that a yeast PHD domain might function as a ubiquitin ligase.  In the third chapter of 

this work, I will describe experiments aimed at determining the functions of Jhd2 and Ecm5, and 

the exciting discovery that Ecm5 forms a complex with Snt2 and the Rpd3 HDAC.  In the fourth 

chapter I will present evidence that this new Rpd3 complex functions in the yeast oxidative stress 

and metabolic response pathways.  Finally, in the fi fth chapter, I will some discuss potential 

mechanisms by which this new Rpd3 complex regulates these pathways, future experiments to 

test these mechanisms, and the greater implications of this work. 
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CHAPTER 2: BIOCHEMICAL EXPERIMENTS TO CHARACTERIZE THE YNG1, 

JHD2, AND ECM5 PHD FINGERS

Chapter Introduction

The PHD fi nger is one member of a diverse set of domains that interact with specifi c 

histone modifi cation states.  Originally named for the plant homeodomain proteins fi rst shown 

to contain this domain, the PHD fi nger has a characteristic Cys4-His-Cys3 signature which 

coordinates two Zn2+ ions (Bienz, 2006).  As discussed in the previous chapter, this domain is 

capable of recognizing specifi c lysine methylation states on histone proteins.  In recent years, a 

number of elegant studies have characterized the structures and histone associations of a diverse 

array of PHD domains.  A recent review from Li and Li (2012) elegantly summarizes these 

studies.  However, in spite of these advances, there is still much to be discovered.  Although 

many PHD domains have been characterized structurally and biochemically, there are abundant 

examples of PHDs for which a ligand has not been found, making it diffi cult to ascertain how 

these domains contribute to the functions of the proteins that contain them.  Having studied yeast 

genetics and chromatin biology as an undergraduate, I immediately sought to take advantage 

of the potential of the budding yeast, S. cerevisiae, to address some of these questions.  There 

are 14 PHD-fi nger-containing proteins in yeast. (See Table 1.1, in the introductory chapter, 

for more information about these proteins.)  Many of these yeast PHD-containing proteins are 

known subunits of chromatin regulatory complexes, and all but three are known to localize to 

the nucleus (Bienz, 2006).  Thus, it is likely that most, if not all, yeast PHD fi nger proteins play 

important roles in chromatin regulation.  
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Because of my interest in these domains, I began to work with Sean Taverna, a former 

postdoctoral fellow in the Allis laboratory, to assist him in the characterization of the interactions 

of the NuA3 Yng1 PHD fi nger with chromatin.  The fi rst part of this chapter will focus on 

pull-downs I performed with Sean’s help, to confi rm an association between the Yng1 PHD 

fi nger and H3K4me3.  Upon completion of the Yng1 project with Sean, I became interested 

in two additional PHD-containing proteins, Ecm5 and Jhd2.  Unlike Yng1, whose interaction 

with the NuA3 histone acetyltransferase complex had been known before Sean and I started 

our experiments, the functions of Jhd2 and Ecm5 were largely unknown.  I therefore set out to 

determine whether the PHD fi ngers of Jhd2 and Ecm5 could interact with histones.  This work is 

the focus of the second part of this chapter.

The third section of this chapter describes in vitro experiments I performed to explore 

whether yeast PHD fi ngers might function as ubiquitin E3 ligases.  PHD fi ngers are structurally 

similar to RING domains, which are known to have ubiquitin ligase activity (Jackson et al., 

2000).  As part of my work studying PHD fi ngers, I noticed that the Ecm5 PHD was extremely 

similar to that of the S. pombe protein Msc1, a protein whose three PHD fi ngers were all reported 

to have ubiquitin ligase activity (Dul and Walworth, 2007).  I therefore wondered whether the 

Ecm5 PHD fi nger, or for that matter any other yeast PHD fi nger, might function as a ubiquitin E3 

ligase.  With the help of Ronen Sadeh, a postdoctoral fellow in the Allis laboratory, I set out to 

test whether yeast PHD domains translated in vitro possessed ubiquitin E3 ligase activity.
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The Yng1 PHD Finger Preferentially Interacts with H3K4me3

The NuA3 histone acetyltransferase (HAT) complex is one of at least eight complexes in 

yeast responsible for setting and maintaining the high levels of histone acetylation characteristic 

of yeast chromatin (Carrozza et al., 2003).  The isolated NuA3 complex is about 500 kDa, and 

has been shown to contain the proteins Taf30 (Taf14/Anc1/Tfg3), Yng1, and the HAT/MOZ 

domain-containing Sas3 protein, responsible for HAT activity (Eberharter et al., 1998; Howe et 

al., 2002; John et al., 2000).  Because of his own interest in this complex, Sean Taverna purifi ed 

the NuA3 complex, and identifi ed the proteins Nto1 and Eaf6 as additional subunits of this 

complex (data not shown).  Both Yng1 and Nto1 contain PHD fi ngers, suggesting the possibility 

that these domains might be involved in NuA3-chromatin interactions.  In addition, the entire 

Yng1 protein had previously been shown to interact with H3K4me3, suggesting that this subunit 

in particular might play a role in mediating the interaction between NuA3 and chromatin (Martin 

et al., 2006).  However, whether this interaction was mediated through the Yng1 PHD fi nger was 

unclear.

Thus, during my rotation in the Allis laboratory, Sean and I set out to determine whether 

the Yng1 PHD domain interacts with H3K4me3.  To that end, Sean purifi ed recombinant, 

N-terminally GST-tagged Yng1 PHD domain (residues 141-219 of full-length Yng1).  I then 

purifi ed endogenous yeast histones by acid extraction from cryogenically-prepared yeast lysates, 

to use in combination with the tagged Yng1 PHD for in vitro binding assays.  We chose to use 

endogenous yeast histones rather than purifi ed recombinant histones because we expected the 

former to have the full complement of histone modifi cations occurring in yeast, and thus, to 

potentially contain the “right” combination of modifi cations (if there is any) to interact with 
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the Yng1 PHD.  As a negative control, we used a recombinant GST-Yng1 PHD point mutant, 

in which the tryptophan corresponding to position 180 in full-length Yng1 had been mutated to 

glutamate (GST-Yng1-W180E); based on comparisons to other PHD fi ngers, this mutation was 

predicted to abolish binding to methylated lysines (Martin et al., 2006).

When combined with the yeast histones, the GST-Yng1 PHD fusion preferentially 

pulled-down histone H3, and not appreciable amounts of the other core histones (Figure 2.1).  

In contrast, no enrichment of H3 was seen in pull-downs with the tagged Yng1-W180E PHD.  

Furthermore, the H3 pulled-down by the tagged Yng1 PHD was enriched for H3K4me3, and to 

a lesser extent, H3K4me2, suggesting that the Yng1 PHD domain might interact preferentially 

with this mark.  Further fl uorescence anisotropy experiments by Sean Taverna confi rmed an 

association of the Yng1 PHD domain with H3K4me2/3, and found that the Yng1 PHD domain 

interacts preferentially with an N-terminal H3 peptide containing trimethylated lysine 4.  The  

dissociation constant (Kd) for this interaction was 9.1 M, compared to Kds of 21.4, 50.7, 

and >400 M for interactions with H3K4me2, H3K4me1, and unmodifi ed H3K4 peptides, 

respectively (Taverna et al., 2006).  Furthermore, using chromatin immunoprecipitation (ChIP), 

Sean was able to show that Yng1 localizes to genomic locations containing high levels of 

H3K4me3, and that when the Yng1 PHD fi nger was mutated, there was decreased H3K14 

acetylation and transcription at target genes.  All together, the in vitro binding assay performed 

by me, and the anisotropy and ChIP experiments performed by Sean all show that the Yng1 PHD 

fi nger can interact with H3K4me3, an interaction that helps target or stabilize an association of 

the NuA3 HAT complex with active chromatin regions of the yeast genome, where it can then 

acetylate H3 in these regions.
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 Figure 2.1 Recombinant, GST-tagged Yng1-PHD fi nger interacts with histone H3 enriched 
for K4me3
GST-tagged Yng1-PHD or Yng1-PHD-W180E fusions were incubated with acid-extracted yeast 
histones and pulled-down using glutathione sepharose. Western blotting with histone-specifi c 
antibodies was used to look for histones and modifi cations that preferentially associate with the 
Yng1 PHD fi nger.  Inputs (In) are 8% of pull-downs (PD).
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The Jhd2 and Ecm5 PHD Fingers Interact with Histone H3

Having helped to uncover an association between the Yng1 PHD domain and H3K4me3, 

I turned my attention to two other PHD fi nger-containing proteins, Ecm5 and Jhd2, the functions 

of which were completely unknown at the time.  Because both proteins contained multiple 

domains (ARID, JmjN, JmjC) linked to chromatin function, in addition to their PHD fi ngers, 

I reasoned that they might have interesting and novel chromatin regulatory functions.  I was 

intrigued that both proteins contained Jumonji C (JmjC) domains, which had just been shown 

to have histone lysine demethylase activity in other proteins, leading me to wonder whether 

Jhd2 and Ecm5 might be yeast histone demethylases.  In fact, shortly after I started this project, 

Jhd2, which until that point was being referred to by its open reading frame name (YJR119C), 

was shown to have H3K4 demethylase activity through its JmjN and JmjC domains, and was 

therefore named JmjC domain-containing histone demethylase 2, or Jhd2 (Liang et al., 2007; 

Seward et al., 2007; Tu et al., 2007).  However, it remained unclear whether the PHD domain 

of Jhd2 interacted with histones, and whether this interaction was dependent on specifi c 

histone modifi cations.  Furthermore, the contribution of the Jhd2 PHD to the protein’s histone 

demethylase function was also unknown.  

In contrast to the JmjN and C domains of Jhd2, the Ecm5 JmjC domain was found not 

to have histone demethylase activity (Tu et al., 2007), and closer examination of this domain 

revealed that it lacks residues thought to be necessary for enzymatic activity, making it unlikely 

that Ecm5 functions as a demethylase.  Therefore, I chose to focus on what functions this protein 

might possess besides histone demethylation.  Ecm5 (or extra cellular mutant 5) was originally 

discovered in a screen for mutants with cell wall defects (Lussier et al., 1997).   Because Ecm5 



47

contains multiple chromatin-related domains and because Ecm5 is known to be nuclear, I 

originally hypothesized that Ecm5 might have some role in regulating genes involved in cell wall 

maintenance.  In addition, Ecm5 and Jhd2 are roughly homologous to the mammalian JARID 

family of demethylases, RBBP2, PLU-1, SMCX, and SMCY (also called JARID1A/KDM5A, 

JARID1B/KDM5B, JARID1C/KDM5C, and JARID1D/KDM5D, respectively.  As discussed 

in the previous chapter, improper regulation of these proteins is linked with various human 

diseases.  Therefore, insights into the functions of Ecm5 and Jhd2 might have implications for 

the functions of the human JARID proteins, as well as for their roles in human disease.

In order to better understand Jhd2 and Ecm5, I fi rst wanted to determine whether the 

PHD fi ngers of these proteins can interact with histones.  I compared the Jhd2 and Ecm5 PHD 

fi nger sequences to those of the yeast Yng1 and human ING2 and BPTF PHD fi ngers, all of 

which are known H3K4me3-binders whose structures have been solved.  Alignments of these 

PHDs show that while the Ecm5 PHD has a slightly longer second loop region than most other 

PHDs, it is similar to the H3K4me3-binding PHD domains (Figure 2.2).  Three of the four key 

residues found to interact with H3K4me3, are conserved in the Ecm5 PHD (residues colored 

blue and red in Figure 2.2), as are two of the three residues known to be important for binding 

unmodifi ed H3R2 (residues colored green and red).  Thus, it seemed possible that the Ecm5 PHD 

fi nger might also recognize H3K4me3 or another methylation site (Figure 2.2).  In contrast, the 

Jhd2 PHD was more divergent at these residues, suggesting this PHD either does not interact 

with histone methylation, or that it does so in an entirely different manner from other known 

H3K4me3-binding PHD fi ngers.
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 Figure 2.2 Alignments of the BPTF, ING2, Yng1, Ecm5, and Jhd2 PHD fi ngers
Shown are alignments of amino acids Y2743-S2791, Y214-G260, Y157-E204, Y1240-P1289, 
and A237-V284 of the full-length BPTF (Homo sapiens, NCBI accession # NP_872579.2), 
ING2 (Homo sapiens, # NP_001555.1), Yng1 (S. cerevisiae, # NP_014707.1), Ecm5 (S. 
cerevisiae, # NP_013901.1), and Jhd2 (S. cerevisiae, # NP_012653.1) proteins, respectively.  
The amino acids that make up the characteristic Cys4His1Cys3 structure that defi nes the PHD 
fi nger are highlighted in yellow. For the BPTF, ING2, and Yng1 PHD fi ngers, whose structures 
have been solved, the residues known to interact with H3K4me3 are colored in blue, the 
residues that interact with H3R2 are in green, and the residues that form the separation between 
the H3R2 and H3K4me3 binding pockets are in red.  Corresponding conserved residues in the 
Ecm5 PHD fi nger sequence are also colored in this manner.
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I then set out to characterize the interactions of the Jhd2 and Ecm5 PHD fi ngers with 

histones, using the same in vitro binding assay described earlier in this chapter.  I fi rst purifi ed 

recombinant, GST-tagged Jhd2 and Ecm5 PHD fi ngers (residues G221-L300 and S1232-D1295, 

respectively, of the full-length proteins), as well as GST alone, from E. coli (Figure 2.3).  As 

a positive control for this assay, I used the GST-Yng1-PHD fusion, which again pulled down 

histone H3.  The tagged Jhd2 PHD also pulled-down H3 in this assay (Figure 2.4).  GST alone 

and the GST-Yng1-W180E-PHD fusion, which served as negative controls for this assay, did 

not pull down appreciable levels of any histone.  These results suggest that the Jhd2 PHD fi nger 

interacts with histone H3.

To try to determine whether a specifi c histone modifi cation on H3 mediates the Jhd2-

PHD interaction, I then blotted the eluates from my tagged Jhd2 PHD pull-downs with 

antibodies recognizing specifi c histone modifi cations.  In contrast to the H3 pulled-down by 

the tagged Yng1 PHD, which again was enriched for H3K4me3, the H3 pulled-down by the 

tagged Jhd2-PHD was enriched for H3K36me3 (Figure 2.4, bottom two panels).  To confi rm 

a direct interaction between the Jhd2 PHD and H3K36me3, I next conducted peptide pull-

down experiments with tagged Jhd2 PHD fi nger and biotinylated peptides containing either 

trimethylated or unmodifi ed H3K36.  However, I failed to observe enrichment of the tagged 

Jhd2 PHD in pull-downs with H3K36me3 peptides (data not shown).  Taken together, these data 

suggest an interaction between the Jhd2 PHD fi nger and histone H3 is unlikely to be mediated 

solely by a direct interaction with H3K36me3.  Jhd2 may instead interact with a yet unknown 

histone modifi cation state correlated with high levels of H3K36me3.  Alternatively, Jhd2 may 

require a combination of more than one modifi cation (e.g, H3K4me3 and H3K36me3) to interact 

with H3.
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 Figure 2.3 Recombinant free GST and GST-tagged Jhd2- and Ecm5-PHD fi ngers used for 
pull-downs
Coomassie-stained gels of GST (A), as well as N-terminally GST-tagged Jhd2 (B) and Ecm5 
(C) PHD fi ngers (amino acids G221-L300 and S1232-D1295 of the full-length proteins, 
respectively), which were expressed in E. coli and purifi ed using glutathione sepharose.
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 Figure 2.4 Recombinant, GST-tagged Jhd2-PHD fi nger interacts with histone H3 enriched 
for K36me3 
GST alone or GST-tagged Jhd2-PHD, Yng1-PHD or Yng1-W180E-PHD fusions were 
incubated with acid-extracted yeast histones and pulled-down using glutathione sepharose. 
Western blotting with histone-specifi c antibodies was used to look for histones and 
modifi cations that preferentially associate with the PHD fi ngers.  Inputs (In) are 8% of pull-
downs (PD).
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Next, I performed in vitro binding assays with the GST-Ecm5-PHD fusion.  As was the 

case with the Yng1 and Jhd2 PHD fi ngers, the GST-Ecm5-PHD selectively pulled-down histone 

H3 (Figure 2.5).  Intriguingly, and in contrast to my fi nding with the other PHD fi ngers, I also 

saw enrichment for histone H2A in tagged Ecm5 PHD pull-downs.  Using H3 modifi cation-

specifi c antibodies, I checked whether H3K4 or K36 methylation was enriched in tagged Ecm5 

PHD pull-downs.  The H3 pulled-down by the Yng1 PHD, the Ecm5 PHD-precipitated H3 

did show some enrichment for H3K4me3 compared to the GST control pull-down, although 

the levels of this modifi cation in the GST-Ecm5-PHD pull-down were not higher than in the 

negative control Yng1-W180E-PHD pull-down.  In addition, I found modest levels H3K36me3 

enrichment in the Ecm5 PHD pull-down, though this enrichment was lower than the amount of 

H3K4me3 enriched on H3 pulled-down by the Yng1 PHD fi nger.

I was surprised to not see more H3K36me3 enriched on the H3 pulled-down by the  

Ecm5 PHD fi nger because Or Gozani’s laboratory had reported that the Ecm5-PHD domain 

interacts with this mark (Shi et al., 2007).  Therefore, I decided to look for evidence for this 

interaction  using a peptide pull-down assay, despite not seeing strong enrichment of H3K36me3 

in Ecm5 PHD-precipitated H3.  However, using conditions under which a GST-Yng1-PHD 

fusion is selectively pulled-down with H3K4me3 peptides, I failed to observe enrichment of 

tagged Ecm5 PHD in pull-downs using methylated or unmethylated H3K4 or K36 peptides 

(Figure 2.6).  In summary, while the Ecm5 PHD domain can interact with the H3 and H2A 

proteins under some assay conditions, I could not fi nd any strong evidence for a direct interaction 

between the Ecm5 PHD fi nger and H3K36me3. 
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Figure 2.5 Recombinant, GST-tagged Ecm5-PHD fi nger interacts with histone H3 
GST alone or GST-tagged Ecm5-PHD, Yng1-PHD or Yng1-W180E-PHD fusions were 
 incubated with acid-extracted yeast histones and pulled-down using glutathione sepharose. 
Western blotting with histone-specifi c antibodies was used to look for histones and 
modifi cations that preferentially associate with the PHD fi ngers.  Inputs (In) are 8% of pull-
downs (PD).
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Figure 2.6 Tagged Ecm5 PHD fi nger is not enriched in pull-downs with an H3K36me3 
peptide 
Biotinylated peptides corresponding to the extreme N terminus of H3 or the region of H3 
surrounding K36 and bearing the indicated modifi cations were pre-bound to high capacity 
streptavidin agarose . Peptide-bound beads (or beads alone) were then used in pull-downs with 
GST alone or GST-tagged Yng1 or Ecm5 PHD fi ngers. Input GST fusions and peptide pull-
downs were separated by SDS-PAGE and analyzed by Coommassie staining.  Locations of 
GST and GST-PHD fusions as well as molecular weight markers are indicated to the sides of 
gels.
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Yeast PHD Fingers as Potential Ubiquitin E3 Ligases

PHD fi ngers are structurally similar to another class of zinc-coordinating domains, 

called RING (really interesting new gene) domains (Figure 2.7A) (Capili et al., 2001; Pascual 

et al., 2000).  Just as a Cys4-His-Cys3 signature is characteristic of PHD fi ngers, a Cys3-His-

Cys4 signature defi nes most RING domains.  Many RING domains act as ubiquitin E3 ligases, 

catalyzing the fi nal step in the cascade that covalently attaches the protein ubiquitin to lysine 

residues within protein substrates (Figure 2.7B) (Jackson et al., 2000; Weissman, 2001).  The fi rst 

step of the ubiquitylation cascade is ubiquitin activation.  In this step ubiquitin forms an ATP-

dependent attachment to a ubiquitin-activating enzyme, or E1, by means of a high energy thiol-

ester bond between a cysteine in the E1 and the C-terminal glycine of ubiquitin.  The ubiquitin 

is then transferred from the E1 to a conserved cysteine in a member of the ubiquitin-conjugating 

E2 enzyme family.  The ubiquitin-charged E2 then associates with a RING-type ubiquitin E3 

ligase. The E3 ligase acts in part as a scaffold, bringing together the ubiquitin-charged-E2 and 

the substrate protein, thus facilitating the transfer of ubiquitin from the E2 to the -amino group 

of a lysine side chain in the substrate.  

In addition to forming attachments to substrate proteins, one ubiquitin moiety can be 

linked to a lysine in a second ubiquitin.  In this way, a single, monoubiquitylated lysine in a 

protein substrate can become the site of a long polyubiquitin chain.  Linkages via ubiquitin 

lysines 48 and 63 (K48 or K63) are the most common types of polyubiquitylation, although 

linkages at the other ubiquitin lysines have been found to exist in vivo (Xu et al., 2009).  

Different types of ubiquitin linkages promote different cellular outcomes.  For instance, K48-

linked polyubiquitin chains often target proteins for degradation by the 26S proteasome (Chau et 
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Figure 2.7 Overview of RING-type ubiquitin ligase function, and comparison with PHD 
fi ngers
A. Connectivity diagrams show the similarity between PHD fi ngers and RING domains. 
Diagrams were adapted from or modeled after Bienz (2006). B. Diagram showing how RING-
type ubiquitin E3 ligases function. A ubiquitin moiety (Ub) fi rst attaches to a cysteine (Cys) 
in an E1 ubiquitin-activating enzyme.  The ubiquitin is then transfered to a cysteine in  an E2 
ubiquitin-conjugating enzyme.  The RING domain-containing E3 ligase then brings together 
the ubiquitin-charged E2 and the fi nal substrate, and catalyzes transfer of the ubiquitin to the 
substrate. C. Alignment of the S. cerevisiae Ecm5 PHD and second S. pombe Msc1 PHD fi ngers 
(amino acids K1239-P1289 and H1172-Y1219 of the full-length proteins, respectively), with 
identical residues highlighted in yellow and similar residues in orange.
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al., 1989; Finley et al., 1994).  On the other hand, K63-linked polyubiquitin chains are generally 

associated with cellular signaling functions, including protein traffi cking and DNA repair 

(Clague and Urbe, 2010; Sun and Chen, 2004).  Protein monoubiquitylation also seems to be 

involved in cell signaling rather than targeting proteins for degradation (Hicke, 2001).

 Because of the similarity between PHD fi ngers and RING domains, it was originally 

thought that some PHD fi ngers might function as E3 ligases (Capili et al., 2001).  In support of 

this hypothesis, the PHD fi ngers of the viral MIR1 and 2 (modulator of immune recognition) 

and the mammalian MEKK1 (MAP/ERK kinase kinase 1) proteins were all shown to have E3 

ligase activity (Coscoy et al., 2001; Hewitt et al., 2002; Lu et al., 2002).  However, these PHD 

fi ngers were later shown to be misclassifi ed RING domains, casting doubt as to whether any true 

PHD fi ngers had ubiquitin ligase activity (Aravind et al., 2003; Scheel and Hofmann, 2003).  

Nevertheless, more recently, the three PHD fi ngers of the S. pombe Msc1 (multi-copy suppressor 

of Chk1) protein have been shown to have E3 ligase activity, suggesting that some PHD domains 

may indeed act as ubiquitin ligases (Dul and Walworth, 2007).  Furthermore, the PHD fi nger of 

the KAP-1 corepressor was shown to act as an E3 ligase for the ubiquitin-related SUMO protein, 

facilitating the sumoylation of an adjacent domain on KAP-1, and expanding the potential roles 

for PHD fi ngers to encompass ubiquitylation and sumoylation, as well as histone interaction 

(Ivanov et al., 2007).

While BLAST searching with the Ecm5 PHD sequence I noticed it was strikingly similar 

to the sequence of the second PHD fi nger of the S. pombe Msc1 protein (Figure 2.7C), one of 

the PHD domains mentioned above that was found to have ubiquitin ligase activity.  I therefore 

wondered whether the Ecm5 PHD fi nger might also have this function.  Luckily, when I became 
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interested in this question, Ronen Sadeh, a new postdoctoral fellow with experience in the 

ubiquitin fi eld, had just joined the Allis laboratory, and was also interested in seeing whether the 

Ecm5 PHD fi nger, or for that matter, any yeast PHD fi nger, possessed ubiquitin ligase activity.

Ronen and I were both intrigued with the possibility of a single PHD domain that 

might have the dual ability to bind to methylated histones and act as a ubiquitin ligase.  We 

hypothesized that if this were the case, the presence of histone methylation might compete 

for the same regions of the PHD fold required for E3 ligase activity, and thereby inhibit 

ubiquitylation.  Alternatively, histone methylation could stimulate ligase activity if the methyl-

binding and catalytic regions of the PHD were separate.  We thought this would be a novel and 

interesting way for chromatin modifi cations to regulate protein ubiquitylation.  

Histones themselves are targets of ubiquitylation:  H2B is known to be 

monoubiquitylated at lysine 123 (H2BK123ub) in yeast, and both H2A and H2B are 

ubiquitylated in higher eukaryotes (Goldknopf et al., 1975; Hunt and Dayhoff, 1977; Robzyk 

et al., 2000; West and Bonner, 1980).  Moreover, in yeast and other eukaryotes, H2BK123ub is 

required for H3K4 and K79 methylation, providing precedent for the co-regulation of histone 

ubiquitylation and methylation (Chandrasekharan et al., 2010).  In addition to the two well-

studied ubiquitylation sites on H2A and H2B, H3 and H4 have been reported to be ubiquitylated 

in mammals, suggesting that there may be additional sites of histone ubiquitylation in yeast and 

mammals waiting to be discovered (Chen et al., 1998; Wang et al., 2006).  Since PHD-fi nger 

containing proteins are generally localized in the nucleus, Ronen and I were interested in the 

possibilities that (1) any yeast PHD fi nger might act as a ubiquitin ligase, (2) histone methylation 

might regulate this activity, and (3) the substrate of this activity might be a histone.
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We set out to test whether the fi rst of these hypotheses, using an in vitro auto-

ubiquitylation assay (Figure 2.8) (Ben-Saadon et al., 2006).  In the fi rst part of this assay, a wheat 

germ extract cell-free expression system is used to transcribe and translate a plasmid-encoded, 

HIS-tagged candidate PHD fi nger in the presence of 35S-methionine.  The translation mixture, 

containing the radiolabeled candidate protein to be tested for activity, is then combined with 

all of the components needed for ubiquitylation (E1 and E2 enzymes, ATP, ubiquitin, DTT, 

and ubiquitin-aldehyde to inhibit deubiquitylating enzymes).  After the reaction is allowed to 

proceed, the components are separated on an SDS-PAGE gel which is dried and imaged using a 

phosphorimager.  

In the absence of ubiquitin ligase activity, radiolabeled proteins are expected to appear 

as single bands on the audoradiogram.  However, if the candidate protein has autoubiquitylated 

during the reaction, this protein should appear as a ladder of higher molecular weight bands or 

as a very high molecular weight smear, depending on the extent of ubiquitylation.  Since many 

RING-type E3 ligases will auto-ubiquitylate in vitro, we were reasonably confi dent that if our 

PHD fi ngers possessed E3 ligase activity, we would be able to detect it using this assay, without 

the addition of a separate substrate (Fang and Weissman, 2004).  Because we did not know the 

nature of the E2 that might act together with our PHD domains, we used recombinant human 

UbcH5c, Rad6a, and UbcH13-Uev1a as E2 enzymes for this assay, along with human Ube1 

E1 enzyme.  These human enzymes are extremely similar to their yeast homologs, represent 

most of the known nuclear E2s, and were either commercially available or available as gifts 

from Jaehoon Kim, a former postdoctoral fellow in Robert Roeder’s laboratory.  Throughout 

these assays, we used the full-length human Ring1B protein, a known H2A E3 ligase with self-

ubiquitylation activity, as a positive control.
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Figure 2.8 Diagram of in vitro auto-ubiquitylation assay
The protein or PHD domain (PHD) to be tested for E3 ligase activity is fi rst transcribed and 
translated in the presence of 35S-methionine, using a cell free expression system, generating 
a radiolabeled polypeptide. Ubiquitin reaction components (E1 and E2 enzymes, ubiquitin, 
ubiquitin aldehyde, DTT, ATP) are then added to the tube, which is incubated 1 hour at 30oC 
to allow ubiquitylation to occur. The reaction contents are then separated by SDS-PAGE and 
imaged using a phosphorimager. If the candidate protein has self-directed E3 ligase activity, 
auto-ubiquitylated forms of the protein will be seen as either a few higher molecular weight 
bands or as a very high molecular weight smear .
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When the 18 yeast PHD fi ngers were subjected to this assay, many of the yeast PHD 

fi ngers showed no activity, but the Nto1, Snt2, and Yng1 PHD fi ngers as well as the second 

Msc1 PHD, had a single higher molecular weight band, consistent with a monoubiquitylation 

event (Figure 2.9).  Remarkably, three additional PHD fi ngers, the Ecm5, Spp1, and second Rco1 

PHDs, had multiple higher molecular weight bands, suggesting they were the targets of multiple 

monoubiquitylations, or less likely, polyubiquitylation, in this assay.  As expected, Ring1B ran 

as a high molecular smear, consistent with it having the ability to polyubiquitylate itself.  This 

activity required the presence of ubiquitin (Figure 2.10A) and was proportional to the amount 

of E2 in the assay (Figure 2.10B).  Exogenous E1 was not required for and did not stimulate 

activity, suggesting that a protein within the wheat germ extract could provide this function 

(Figure 2.10B).  Furthermore, the activity was specifi c to the UbcH5c E2, since we did not see 

activity using the Rad6a or UbcH13-Uev1a E2 proteins (Figure 2.10C).  Taken together, these 

data strongly suggested that our radiolabeled PHD fi ngers are the substrates for a ubiquitin ligase 

activity present in this assay.

While the Ecm5, Spp1, and second Rco1 PHD fi ngers were the targets of a specifi c E3 

ubiquitin ligase activity, it was possible that the activity was coming from another protein in 

the assay, separate from the PHD domains.  Given that the wheat germ extract introduces many 

proteins to this assay, and we had already seen that a protein in the assay could function as an 

E1 enzyme, we felt it imperative to determine whether the activity was coming from the PHD 

domains or another protein.  We therefore attempted to recapitulate our results using a bacterial 

S30 expression system instead of the wheat germ system since the ubiquitylation machinery is 

absent in prokaryotes.  Therefore, if we continued to see activity with PHDs translated in this 
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Figure 2.9 The Ecm5, Spp1, and second Rco1 PHD fi ngers are ubiquitylated  in vitro  
Each PHD fi nger was transcribed and translated using a wheat germ extract expression system, 
and then incubated with (+) or without (-) the ubiquitin reaction mixture (rx mix), as described 
in Figure 2.7. The full-length Ring1B protein, which is a known ubiquitin ligase, was used as a 
positive control.
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Figure 2.10 Ubiquitylation activity is ubiquitin- and UbcH5c-dependent
Autoradiograph of  in vitro ubiquitylation assays carried out as in Figure 2.9, with (+) or without 
(-) ubiquitin or reaction mixture (rx mix) (A), using different concentrations of the UbcH5c E2 
(B), or using different E2 enzymes (C).
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extract, we could feel more confi dent that the source of the activity was the PHDs, themselves, 

and not an external, wheat germ extract-born E3.  In in vitro assays using the S30 system, 

Ring1B continued to have activity.  However, the Ecm5, Spp1, and second Rco1 PHD fi ngers 

did not, raising doubts as to whether these domains possessed intrinsic E3 ligase activity  (Figure 

2.11A and data not shown).  Furthermore, when we added some of the wheat germ extract to 

the S30-translated PHD fi ngers, the activity returned, suggesting this activity was present in the 

wheat germ expression system and not intrinsic to the PHD fi ngers, and that the lack of activity 

in the S30 extract system is not due to improper folding of the PHD fi ngers (Figure 2.11A and 

data not shown).

We then mutated six of the eight PHD fi nger cysteines in each of the Ecm5, Spp1, and 

second Rco1 PHD fi ngers, to completely abolish proper folding of these domains.  A mutant 

Ring1B with the RING domain deleted was used as a control.  As expected, mutation of 

Ring1B completely abolished its E3 ligase activity (Figure 2.11B).  Disappointingly, however, 

the mutated Ecm5, Spp1, and second Rco1 PHD fi ngers were still ubiquitylated in this assay, 

and to the same extent as the wild-type PHDs.  Based on these results, we concluded that the 

ubiquitylation of the Ecm5, Spp1, and second Rco1 PHD fi ngers was the result of an 

activity in the wheat germ expression system, for which these particular PHD fi ngers made good 

substrates.  Lacking solid evidence that the yeast PHD fi ngers could act as E3 ligases, Ronen and 

I chose to pursue other avenues of experimental investigation that seemed more promising, rather 

than continuing to seek support for this hypothesis.
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Figure 2.11 PHD-directed ubiquitylation is the result of a factor in the wheat germ 
expression system
A. Ring1B and the second Rco1 PHD were translated using the S30 expression system, and 
then  in vitro ubiquitylation assays were performed in the presence (+) or absence (-) of reaction 
components (rx mix) and wheat germ extract (WGE). B. In vitro ubiquitylation assays were 
performed as in Figure 2.9 on Ring1B and either wild-type (WT) or 6-cysteine mutant (mut) 
PHD fi ngers.  A Ring1B mutant, in which the RING domain has been deleted, was also used as 
a control.
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Chapter 2 Discussion

The experiments described in this chapter were all performed with isolated purifi ed PHD 

fi ngers, either to look for interactions with histones or to look for ubiquitin ligase activity.  I have 

shown that a tagged Yng1 PHD fi nger preferentially pulls-down histone H3, and that H3K4me3 

is enriched on the co-precipitated H3. These results, combined with other data collected by Sean 

Taverna, strongly support a direct interaction between the Yng1 PHD fi nger and H3K4me3, and 

further support a model in which the NuA3 HAT complex is recruited to or stabilized at sites of 

transcriptionally active chromatin, via interactions between the Yng1 PHD fi nger and H3K4me3, 

a mark known to be enriched in these regions (Pokholok et al., 2005).  This allows NuA3 to 

catalyze histone acetylation at these loci, further promoting transcription.

Because many chromatin effector modules interact with histone modifi cations relatively 

weakly, a combination of many such interactions has been proposed to modulate chromatin 

complex targeting in vivo (Ruthenburg et al., 2007).  While Sean’s fl uorescence anisotropy 

experiments found that the Yng1 PHD domain interacts with H3K4me3 with a Kd more than 

40-fold lower than the Kd for the interaction with unmodifi ed H3K4, showing a clear preference 

for the trimethylated state, this Kd is still relatively high, suggesting that additional histone and 

DNA interactions mediated by other domains within Yng1 or other subunits of NuA3, may also 

contribute to NuA3 localization.  Consistent with this idea, the fi rst 28 amino acids of Yng1 

were recently shown to interact with the unmodifi ed H3 tail (Chruscicki et al., 2010).  The 

Nto1 subunit contains two PHD fi ngers of its own, which also might be involved in chromatin 

interactions.  A recent study of yeast PHD fi ngers found a weak association between the fi rst 

Nto1 PHD fi nger and H3K36me3 (Shi et al., 2007).  Since this modifi cation is enriched within 
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the coding regions of genes (Pokholok et al., 2005), and Sean’s ChIP-chip studies found 

signifi cant NuA3 localization in both the 5’ ends and the middle of genes, an interaction between 

the Nto1 PHD and H3K36me3 might help direct NuA3 to gene coding regions, where levels of 

H3K36me3 predominate over H3K4me3.  In addition, the Taf30 subunit of the NuA3 complex 

contains a YEATS (Yaf9, ENL, AF9, and TFIIF small subunit) domain, another domain known 

to mediate histone interactions, and it is possible that this domain also contributes to NuA3 

complex localization or function (Schulze et al., 2010).

Having successfully used an in vitro binding assay to show interaction between H3 and 

the Yng1 PHD fi nger, I went on to use this assay to show that two additional PHD fi ngers, from 

the yeast Jhd2 and Ecm5 proteins, also interact with histone proteins.  I found that a GST-Jhd2-

PHD fusion was able to preferentially pull-down histone H3.  In agreement with my results, a 

recent report found that the Jhd2 PHD fi nger can interact with nucleosomes, and that mutation of 

the Jhd2 PHD reduced Jhd2 binding to a target gene in vivo (Huang et al., 2010), underscoring 

the importance of this histone-PHD interaction in maintaining proper Jhd2 genomic localization.  

This report also showed that H3K4me3 was not necessary for the interaction between the Jhd2 

PHD fi nger and immobilized nucleosomes, consistent with my own fi nding that H3K4me3 was 

not enriched in the H3 pulled-down by the GST-Jhd2-PHD fusion.  

I did fi nd H3K36me3 enriched in the H3 co-precipitating with the Jhd2 PHD fi nger.  

While it is possible that the Jhd2 PHD fi nger interacts directly with this modifi cation, I was 

never able to confi rm such an interaction using peptide pull-down assays.  Experiments from the 

Gozani lab also did not fi nd an interaction between the Jhd2 PHD fi nger and H3K36me3.   It is 

possible that the Jhd2 PHD interacts with H3 indirectly, by means of an unknown acid soluble 
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protein contaminant (or contaminants) in my histone preparations.  Alternatively, the Jhd2 

PHD may interact with another region of H3 whose modifi cation status is correlated with high 

levels of H3K36me3, require a longer region of the H3 tail than was covered by the H3K36me3 

peptide for interaction, or require more than one histone modifi cation, such as the combination of 

H3K4me3 and H3K36me3, for binding.  

Given that Jhd2 demethylates H3K4, an activity associated with chromatin repression, 

the idea that Jhd2 might be recruited to transcriptionally active loci seems paradoxical.  

However, this paradox makes sense if Jhd2 is recruited to active genes that need to be turned 

off.  Consistent with this idea, a recent study from Oliver Rando’s laboratory found that patterns 

of H3K4me3 generated at genes activated by alpha factor or heat shock are actively removed 

by Jhd2 as these genes are returned to a repressed state (Radman-Livaja et al., 2010).  Another 

study reported that Jhd2 was needed at the GAL1 gene to both prevent over-activation in the 

presence of nonfermentable carbon sources and promote repression in the presence of glucose 

(Ingvarsdottir et al., 2007).  Furthermore, a small-scale ChIP study found Jhd2 enriched in the 5’ 

end of the INO1 gene, consistent with the hypothesis that Jhd2 localizes to gene bodies to help 

maintain the localization differences between H3K4 and K36 methylation (Huang et al., 2010).

I also showed that a tagged Ecm5 PHD fi nger interacts with histone H3.  As I noted 

earlier in this chapter, there was a report that the Ecm5 PHD fi nger weakly interacted with 

H3K36me3 (Shi et al., 2007).  However, I did not fi nd a specifi c enrichment for H3K36me3 in 

Ecm5 PHD-precipitated H3.  Furthermore, peptide pull-downs with H3K4me3 and H3K36me3 

peptides failed to confi rm an association between the Ecm5 PHD and H3K36me3.  The Kd the 

Gozani lab reported for this interaction was 155 M, an order of magnitude weaker than that 
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of the Yng1-PHD H3K4me3 interaction.  It is possible that my pull-down conditions, while not 

very stringent as evidenced by the background level of GST PHD pulled-down by each peptide, 

were still too stringent to detect such a weak interaction.  However, as I will discuss in a later 

chapter of this thesis, my own ChIP experiments have found that Ecm5 localizes mainly to the 

promoter regions of genes, where H3K36me3 levels are low, and only to a small number of gene 

bodies.  As with the Jhd2 PHD pull-down experiment, it is possible that the Ecm5 PHD interacts 

with H3 indirectly.  Alternatively, the Ecm5 PHD fi nger may interact with H3 directly, although 

H3K36me3 is unlikely to be the sole target of this interaction in vivo.  

What might other targets of the Ecm5 and Jhd2 PHDs be?  In their interaction studies, 

the Gozani lab only tested for interactions with methylated and unmethylated H3K4, H3K36, 

and H3K79 peptides.  However, there are a number of other known H3 modifi cations, such as 

H3R2 methylation, and it is possible that the Ecm5 and Jhd2 PHD fi ngers interact directly with 

one or more of these other marks.  It is also possible that a combination of histone modifi cations, 

such as the presence of both H3R2me and H3K4me might be required for Ecm5 or Jhd2 

PHD interaction, something that would have been missed in both the Gozani Lab’s singly-

modifi ed peptide arrays, and my own peptide pull-down experiments.  As newer technologies, 

such as large-scale arrays containing tens or hundreds of peptides with many combinations of 

modifi cations become less costly and easier to generate, it will become easier to determine if this 

is the case.
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Surprisingly, the Ecm5 PHD fi nger also precipitated histone H2A.  To my knowledge, 

there is no mass spectrometric evidence of specifi c H2A methylation sites in yeast.  However, 

multiple sites of lysine and arginine methylation have been found on mammalian H2A by mass 

spectrometry (Waldmann et al., 2011; Zhang et al., 2003).  Furthermore, yeast incubated with 

3H-S-adenosyl methionine were found to have radioactive H2A, suggesting that yeast may have 

one or more H2A methylation sites (Miranda et al., 2006).  There are 11 lysines and 10 arginines 

in yeast H2A, numbers too high to easily generate and test methylated peptides of each site for 

Ecm5-PHD interaction.  However, in vitro binding assays with histones acid-extracted from yeast 

strains containing H2A point mutations at these sites as well as tail deletions may help isolate 

specifi c H2A modifi cations or regions that interact with the Ecm5 PHD fi nger.

The structural similarities between PHD fi ngers and RING-type ubiquitin ligases, as well 

as the sequence similarities between the Ecm5 PHD and a PHD fi nger shown to have ubiquitin 

ligase activity, prompted me to test all of the yeast PHD fi ngers for E3 ligase activity.  While the 

Ecm5, Spp1, and second Rco1 PHD fi ngers were all ubiquitylated in our in vitro assay, we were 

disappointed to discover that the PHD fi ngers themselves were not the ligases responsible for this 

activity.  Rather, a component (or components) of the wheat germ extract used to express these 

PHDs was the source of this activity.  

It is curious that the Ecm5, Spp1, and second Rco1 PHD fi ngers are particularly good 

substrates for this activity.  These PHD fi ngers do not contain more lysines than the other yeast 

PHD fi ngers, so it is unclear why they would make better substrates.  While this could be solely 

an artifact of our experimental system, it is also possible that these PHD fi ngers are substrates for 

ubiquitylation in vivo.  Owing to the vital nature of the ubiquitin pathway, many of the enzymes 

in this pathway are very highly conserved.  Therefore, it is possible that the protein or proteins 
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in the wheat germ extract responsible for ubiquitin ligase activity have yeast homologs.  Cellular 

Ecm5 protein levels are extremely low, suggesting the protein is expressed at very low levels 

and/or actively degraded.  Experiments looking at Ecm5, Spp1, and Rco1 protein levels before 

and after yeast proteasome inhibition might reveal whether any of these proteins is ubiquitylated 

and degraded.  Alternatively, stringent Ecm5, Spp1, and Rco1 pull-downs from proteasome-

inhibited strains containing tagged ubiquitin, followed by western blotting with ubiquitin-tag 

specifi c antibodies might also reveal whether these proteins are ubiquitylated in vivo.  It should 

be noted that in the Ecm5 pull-downs described in the next chapter of this work, we never 

detected ubiquitin by mass spectrometry.  However, we did not inhibit the proteasome for our 

pull-downs, so if Ecm5 were targeted for degradation, we may not have precipitated enough of 

it to detect a ubiquitylated form.  As an interesting connection to the work in the fi rst part of this 

chapter, Jhd2 has been shown to be ubiquitylated by the RING fi nger ubiquitin ligase Not4 and 

degraded by the proteasome (Mersman et al., 2009). 

Even though we were unable to fi nd evidence for a yeast PHD fi nger possessing ubiquitin 

ligase activity in our in vitro assay, it remains possible that such a PHD might exist in vivo.  If 

one of the yeast PHD fi ngers tested has activity but cannot fold properly as an isolated domain, 

requires another protein for activity, requires a separate substrate for activity, or cannot utilize 

wheat germ and human E1 and E2 homologs, our assay would have been unable to detect 

activity for that domain.  Future in vitro ubiquitylation assays with PHD-containing protein 

complexes purifi ed from yeast, may reveal as yet undescribed ubiquitin ligase functions for some 

of these domains.  Further work may also shed light on our second and third hypotheses, possibly 

fi nding examples of PHD domain ubiquitin ligases that are regulated by histone methylation and/

or catalyze histone ubiquitylation.
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CHAPTER 3: EARLY ATTEMPTS TO DETERMINE ECM5 FUNCTION

Chapter Introduction

In parallel to exploring the chromatin interactions of the Jhd2 and Ecm5 PHD fi ngers, I 

sought to better understand the functions of these two proteins.  Both Jhd2 and Ecm5 were found 

to have nuclear localization (Huh et al., 2003), and they each possess domains that are linked to 

chromatin function, suggesting they might act as chromatin regulators.  In agreement with this, 

just after I started this work, Jhd2 was shown to be an H3K4 demethylase (Liang et al., 2007; 

Seward et al., 2007; Tu et al., 2007).  However, the function of Jhd2-catalyzed demethylation 

remained unclear.  The ECM5 gene was discovered in a screen for mutants with cell wall 

defects, suggesting this protein might help regulate the cell wall (Lussier et al., 1997).  Although 

Ecm5 also possesses a Jumonji C domain, the domain linked to histone demethylase activity, 

this protein was shown not to function as a demethylase, leaving the function of this protein 

unknown.

As part of a broader effort to determine the functions of Ecm5 and Jhd2, I 

immunoprecipitated these proteins and identifi ed their interaction partners using mass 

spectrometry.  These immunoprecipitation experiments, which were performed in collaboration 

with Beatrix (Trixi) Ueberheide in the laboratory of Brian Chait and are discussed in the 

fi rst part of this chapter, culminated in the discovery of a new Rpd3 histone deacetylase 

complex containing Ecm5 and another PHD fi nger protein, Snt2.  Based on the results of these 

experiments, and the PHD fi nger-histone pull-downs described in the previous chapter, I initially 

hypothesized that Ecm5 and Jhd2 might be involved in preventing transcription from cryptic 
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internal promoters within coding regions, similar to the function that has been reported for the 

Rpd3(S) complex (Carrozza et al., 2005b; Joshi and Struhl, 2005; Keogh et al., 2005).  The 

second part of this chapter describes experiments undertaken to test this hypothesis.  However, 

I was not able to fi nd any evidence to support a role for Ecm5 and Jhd2 in preventing cryptic 

transcription, so I decided to focus my attention on the function of Ecm5 in the newly discovered 

Rpd3 complex.  The third and fi nal section of this chapter describes my attempts to screen for a 

function of Ecm5.

Ecm5 interacts with Snt2 and the Rpd3 histone deacetylase

In order to better understand the functions of Jhd2 and Ecm5, I set out to determine 

with which proteins they associated.  Because individual domains within Jhd2 and Ecm5 are 

homologous to different parts of the mammalian JARID proteins, I hypothesized that Jhd2 and 

Ecm5 might interact with one another and function as a complex.  In this model, yeast would use 

two separate but physically associated polypeptides function like a single JARID protein does 

in mammalian cells.  Thus, in addition to looking for new Jhd2 and Ecm5 interaction partners, 

I wanted to test if these two proteins interacted with one another.  To address these questions, I 

initiated a collaboration with Trixi Ueberheide in the Chait laboratory to take advantage of the 

lab’s expertise in protein purifi cation and mass spectrometry. ECM5 and JHD2 were tagged at 

their C-termini with a Protein A (PrA) tag and immunoprecipitated (IPed) from cryogenically-

prepared Ecm5-PrA and Jhd2-PrA lysates, under relatively mild conditions to maintain protein 

associations.
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The cryogenic lysis method  was developed by Michael Rout’s laboratory as a superior 

method for purifying intact protein complexes (Oeffi nger et al., 2007).  This method involves 

spinning down cells to be harvested, resuspending them in a cryoprotectant solution, and then 

pipetting small droplets of cells into liquid nitrogen to quickly freeze them.  Once frozen, 

cells are milled in a liquid nitrogen-cooled metal chamber with ball bearings, lysing them at 

cryogenic temperatures.  Cryogenic lysis was chosen because it offered a number of benefi ts over 

other methods of yeast lysis.  Because cells are rapidly frozen and kept cool during the entire 

lysis, proteases have less time to degrade proteins of interest.  Furthermore, proteins are less 

likely to separate from interaction partners.  In addition, large amounts of starting lysate from 

multiple large batches of cultures can be generated before actually performing the IP, which was 

necessary for us to obtain enough material, because the Ecm5 and Jhd2 proteins are only present 

in low amounts in vivo (Ghaemmaghami et al., 2003). 

We initially focused our attention on the purifi cation of Jhd2-PrA and its interaction 

partners.  However, other than contaminating background proteins known to associate with the 

PrA tag (Gavin et al., 2002; Shevchenko et al., 2008), we failed to identify any other proteins 

co-precipitating with Jhd2-PrA (data not shown). We tried various purifi cation and wash 

conditions, but four separate attempts at the Jhd2-PrA purifi cation failed to identify any credible 

Jhd2-interaction partners.  Thus, we were unable to fi nd support for the idea that Jhd2 and Ecm5 

associate, and could not identify any other proteins stably associated with Jhd2.

We next purifi ed PrA-tagged Ecm5, and resolved Ecm5-PrA co-purifying proteins 

by SDS-PAGE  (Figure 3.1A).  Bands detectable by Coomassie staining were excised and 

analyzed using MALDI mass spectrometry.  We again identifi ed some known contaminants of 
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Figure 3.1 Ecm5 interacts with Snt2 and the Rpd3 histone deacetylase
A. PrA purifi cations from Ecm5-PrA or untagged yeast lysates were separated by SDS-PAGE, 
and stained with Gel Code Blue Protein Stain.  Stained bands were identifi ed using mass 
spectrometry, and identifi ed Ecm5-PrA-interacting proteins are labeled to the right of the 
gel image.  IgG, which elutes from the resin and runs at the same point on the gel as Rpd3, 
is also identifi ed.  Asterisks mark contaminants. B. Diagrams of the Ecm5, Snt2, and Rpd3 
domain structures. ARID: AT Rich Interaction Domian; JmjC: Jumonji C domain; PHD: plant 
homeodomain fi nger; BAH: bromo-adjacent homology domain; SANT: Spt3-Ada3-N’CoR-
TFIIS domain; HDAC: histone deacetylase domain. C. Silver-stained gel of eluate from control 
and Snt2-PrA purifi cations.  Eluate proteins identifi ed by mass spectrometric analysis are 
indicated next to their respective bands, and contaminants are marked with asterisks. D. Eluates 
from an Ecm5-PrA purifi cation  were immunoblotted with an HRP-conjugated-secondary 
antibody (to detect Ecm5-PrA) and an Rpd3 antibody.
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PrA purifi cations, many of which were also present in the control IP from an untagged strain 

(bands marked with asterisk in Figure 3.1A).  We did not detect any band the size of Jhd2 in 

the Ecm5-PrA purifi cation.  However, we did identify two proteins co-purifying with tagged 

Ecm5 that were not in our untagged control purifi cation.  The fi rst, which migrated as a band 

of approximately 160 kDa just below Ecm5-PrA, was identifi ed as the yeast Snt2 protein.  A 

second band around 50 kDa in size, that ran with IgG on the gel, was identifi ed as the histone 

deacetylase Rpd3.  

Snt2 is named after its SANT (Swi3, Ada2, N-CoR, and TFIIB”) domain (Figure 3.1B).  

These domains are found in many HAT and HDAC complexes, and individual SANTs have 

been shown to mediate histone interactions and modulate HAT and HDAC activity (Boyer et 

al., 2004).  Snt2 also contains three PHD fi ngers of its own as well as a BAH (bromo-adjacent 

homology) domain, another known chromatin interaction module (Armache et al., 2011; Kuo 

et al., 2012).  The wealth of domains known to mediate chromatin interaction in the Snt2 

protein suggests this protein is highly likely to have a function on chromatin.  Consistent with 

this idea, Snt2 was found to reside at the promoters of a small number of genes by chromatin 

immunoprecipitation (ChIP), suggesting this protein might function directly in gene regulation 

(Harbison et al., 2004).  

Rpd3 is a histone deacetylase and a key subunit of two other yeast complexes: Rpd3(S) 

and Rpd3(L) (Figure 3.2).  The Rpd3(L) complex is the larger of the two known Rpd3 

complexes, with 12 reported subunits (Carrozza et al., 2005b; Keogh et al., 2005).  This complex 

localizes to the promoters of numerous genes and regulates transcription (Carrozza et al., 

2005a).  Consistent with the known association between deacetylated histones and transcriptional 
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Figure 3.2 The Rpd3 deacetylase is a subunit of two other yeast complexes
Diagram showing subunits of the Rpd3(L) and Rpd3(S) complexes, as well is the Rpd3(T) 
complex described in this thesis. Rpd3 is in red, and other shared components between Rpd3(L) 
and (S) complexes are in blue. 
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repression, the Rpd3(L) complex generally functions as a transcriptional repressor (Allfrey et al., 

1964; Kadosh and Struhl, 1998; Vidal and Gaber, 1991), but the complex also functions as an 

activator at a subset of genes (De Nadal et al., 2004; Ruiz-Roig et al., 2010; Sertil et al., 2007).  

The Rpd3(S) complex was fi rst fully purifi ed and analyzed by mass spectrometry in 2005, and 

found to consist of the subunits Sin3, Ume1, and Rpd3, which are shared with the Rpd3(L) 

complex, as well as the Rpd3(S)-unique subunits Eaf3 and Rco1 (Carrozza et al., 2005b; Keogh 

et al., 2005).  Rpd3(S) localizes to both gene bodies and promoters where it helps suppress 

various types of noncoding or aberrant transcription (Carrozza et al., 2005b; Joshi and Struhl, 

2005; Keogh et al., 2005).  Members of the Rpd3(L) and (S) complexes were not detected in the 

Ecm5-PrA purifi cation, suggesting that Ecm5, Snt2, and Rpd3 constitute a third Rpd3 complex.

In order to confi rm the associations between Ecm5, Snt2, and Rpd3, we fi rst repeated 

our Ecm5 purifi cation.  As expected, we again detected Snt2 and Rpd3 co-purifying with Ecm5 

(data not shown).  To further confi rm these interactions, we PrA-tagged SNT2, and purifi ed this 

protein along with its interaction partners.  A portion of the Snt2-PrA purifi cation was visualized 

by SDS-PAGE analysis followed by silver staining (Figure 3.1C).  We subjected the remainder 

of the eluted proteins for liquid chromatographic-mass spectrometric (LC-MS) analysis, to 

identify any Snt2 co-purifying proteins.  Only peptides from known contaminants were found 

in a control purifi cation from an untagged strain.  In contrast, peptides matching both Ecm5 

and Rpd3, in addition to tagged Snt2 were detectable in the Snt2-PrA purifi cation.  Intriguingly, 

further MS-MS analysis on Snt2 peptides in the purifi cation determined that serine 641 of Snt2 is 

phosphorylated, suggesting a possible method of regulation for this protein.  Peptides matching 

subunits of the Rpd3(L) and (S) complexes were not detected in the Snt2-PrA purifi cation.
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To fully confi rm these interactions, we purifi ed Rpd3 and its interaction partners using an 

Rpd3-PrA strain.  We were able to identify 10 out of 12 of the known Rpd3(L) subunits and 5 out 

of 5 Rpd3(S) subunits in the Rpd3-PrA purifi cation, confi rming that our purifi cation conditions 

preserved Rpd3 complex associations (Table 3.1).  In addition, peptides matching Ecm5 and 

Snt2 were also identifi ed, although in much lower abundance.  In order to be certain that Ecm5 

and Snt2 co-purifi ed with Rpd3, we separated some of the Rpd3-PrA eluate by SDS-PAGE, 

Coomassie stained the gel, and excised the bands corresponding in size to Ecm5 and Snt2.  Mass 

spectrometric analysis clearly identifi ed Ecm5 and Snt2 (>20 peptides each) in these bands 

(data not shown).  As further confi rmation of these associations, I performed a separate PrA 

purifi cation with lysates from the Ecm5-PrA and untagged strains.  Rpd3 was clearly detected 

in eluates from the Ecm5-PrA purifi cation by immunoblot (Figure 3.1D).  Taken together, 

these experiments show that Ecm5, Snt2, and the Rpd3 histone deacetylase form a third Rpd3 

complex, which I have named the Rpd3(tiny), or Rpd3(T), complex.

Exploring whether Jhd2 and the Rpd3(T) complex repress cryptic transcription

Based on these interaction results, I hypothesized that Ecm5 might help recruit or 

stabilize this new histone deacetylase complex to specifi c genomic locations, where the complex 

might have a repressive function.  I also suspected the Jhd2 H3K4 demethylase would repress 

transcription, because H3K4me is associated with gene activation (Briggs et al., 2001; Nishioka 

et al., 2002; Santos-Rosa et al., 2002; Wang et al., 2001).  As discussed in the previous chapter, 

there was initial reason to believe that both the Jhd2 and Ecm5 PHD fi ngers might interact with 

H3K36me3, suggesting both proteins might be recruited to gene bodies.  (My own peptide pull-
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Table 3.1 Summary of proteins identifi ed by LC-MS analysis of Rpd3-PrA IP a
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down experiments eventually failed to confi rm associations of these PHDs with H3K36me3-

pepetides, but this work was undertaken before I had completed these experiments.)  The 

possibility of these potentially repressive proteins being recruited to gene bodies immediately 

reminded me of the Rpd3(S) complex, and its recruitment to gene bodies to repress transcription 

in aberrantly initiating from cryptic promoters within genes.

At least two classes of short aberrant transcripts have been described in yeast.  One class 

was fi rst described by Francoise Wyers and colleagues, who noticed that deletion of the nuclear 

exosome exonuclease Rrp6 resulted in accumulation of short transcripts, 250-600 nucleotides 

long, originating from intergenic regions (Wyers et al., 2005).  Because wild-type cells rapidly 

degrade these transcripts, Wyers and colleagues named them “cryptic unstable transcripts” or 

CUTs .  CUTs are capped at their 5’ ends and polyadenylated by the TRAMP (Trf4, Air1/2, and 

Mtr4 polyadenylation) complex, promoting their rapid degradation by the nuclear exosome 

(Rrp6, Mtr4/Dob1, and Rrp47/Lrp1) in wild-type yeast.  Deletion of TRAMP complex subunits, 

as well as subunits of the Nrd1-Nab3-Sen1 complex, which are required for the association 

of CUTs with the exosome, promotes accumulation of these transcripts (Arigo et al., 2006; 

Vasiljeva and Buratowski, 2006; Wyers et al., 2005).  

Not to be confused with CUTs, a second class of aberrant transcripts was fi rst described 

by Fred Winston’s laboratory, who noticed that mutant yeast with reduced levels of the histone 

chaperone Spt6 accumulated short transcripts initiating from the middle of certain genes (Kaplan 

et al., 2003).  This work went on to show that in cells lacking Spt6, chromatin inside of these 

genes was more sensitive to micrococcal nuclease, suggesting that Spt6 is required to restore 

proper chromatin structure in the wake of transcribing RNA Polymerase II (Pol II).  Thus, Craig 
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Kaplan, Fred Winston, and colleagues proposed that without proper restoration of chromatin 

structure after transcription, inappropriate transcription could initiate from regions within genes 

that happened to resemble promoters.  Like CUTs, these genic cryptic transcripts, which I refer 

to as simply “cryptic transcripts” for the rest of this work, are poly-adenylated and capped on 

their 5’ ends, but in contrast to CUTs, cryptic transcripts are not actively produced and degraded 

at high levels in wild-type cells.  Rather, cryptic transcripts appear to be a phenotypic readout 

for yeast mutants with problems maintaining proper chromatin structure at transcribed genes.  

For this reason, mutations in other proteins involved in chromatin regulation and transcriptional 

elongation also result in accumulation of cryptic transcripts.  For instance deletion of the BUR1 

or BUR2 genes, which encode subunits of a cyclin-dependent kinase important for transcriptional 

elongation, also results in this phenotype (Kaplan et al., 2003).  In addition, a report from Kevin 

Struhl’s laboratory found that a mutation in the SPT16 gene, encoding a subunit of the FACT 

transcriptional elongation complex, results in increased Pol II density at the 3’ ends of genes and 

initiation of cryptic transcripts (Mason and Struhl, 2003).

As mentioned earlier, the Rpd3(S) complex has also been linked to repression of cryptic 

transcripts.  The chromodomain of the Eaf3 subunit  and the PHD fi nger of the Rco1 subunit 

both interact with H3K36me2/3, and both K36me interactions have been shown to work together 

to recruit Rpd3(S) to gene bodies to deacetylate genic histones (Krogan et al., 2003; Li et al., 

2007; Li et al., 2003; Xiao et al., 2003).  Thus, deletion of Rpd3(S) subunits results in increased 

histone acetylation at the 3’ ends of genes, and accumulation of cryptic transcripts (Carrozza et 

al., 2005b; Joshi and Struhl, 2005; Keogh et al., 2005).  I hypothesized that, like Rpd3(S), Jhd2 

and the Rpd3(T) complex might also be recruited to gene coding regions by interactions between 
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H3K36me3 and the Jhd2 and Ecm5 PHD fi ngers.  Once recruited to gene bodies, Rpd3 and Jhd2 

might deacetylate and demethylate histones, respectively, helping to maintain a chromatin state 

inside of gene bodies that is repressive to cryptic transcription (Figure 3.3).  

Testing the 6-azaurcil sensitivity of ecm5 and snt2 mutants

In order to test my hypothesis, I fi rst tested whether ecm5 or jhd2 knockouts had 

differential growth on 6-azauracil (6-AU).  When cells are treated with this chemical, their 

intracellular GTP levels are depleted, slowing down transcriptional elongation (Exinger 

and Lacroute, 1992).  While wild-type cells can grow on 6-AU, mutants with defects in 

transcriptional elongation display sensitivity to this chemical, presumably because the elongation 

defects caused by 6-AU and those caused by the mutation synergistically create a transcriptional 

burden severe enough to impede growth (Archambault et al., 1992).  Conversely, yeast with 

mutations that stimulate transcriptional elongation and promote cryptic transcription have been 

shown be 6-AU resistant (Keogh et al., 2005).  I therefore reasoned that if Ecm5 and Jhd2 are 

involved in repressing cryptic transcription, strains lacking these proteins might show 6-AU 

resistance.

Because 6-AU is most effective when combined with uracil-free media, I fi rst 

transformed wild-type and knockout strains with the high-copy uracil plasmid pRS426 

(Christianson et al., 1992), to allow them to grow without uracil.  I used the set2 

knockout strain as a positive control for these assays, since this mutant has been shown to 

be 6-AU resistant (Keogh et al., 2005; Kizer et al., 2005).  As expected, set2 knockout cells 

consistently showed resistance to 6-AU (Figure 3.4).  Intriguingly, jhd2 mutant cells were also 
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Figure 3.3 Model for how Jhd2 and/or the Rpd3(T) complex could suppress cryptic 
transcription
A. High levels of H3K36me are established within gene bodies by the Set2 methyltransferase, 
which interacts with elongating RNA polymerase II. B. The Rpd3(T) complex might then 
be recruited to open reading frames via interactions between H3K36me3 and the Ecm5 
PHD domain, allowing Rpd3 to deacetylate histones inside of coding sequences, repressing 
cryptic  transcription. C. Similarly, interactions between H3K36me and the Jhd2 PHD fi nger 
might recruit Jhd2 to open reading frames to demethylate H3K4 in these regions and repress 
transcription from cryptic internal promoters.
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Figure 3.4 ecm5 and jhd2 mutants sometimes show enhanced growth on 6-AU
Five-fold serial dilutions wild-type (BY4741) or indicated mutant strains containing the uracil 
plasmid pRS426 were spotted on complete synthetic media lacking uracil (CSM-URA) or 
CSM-URA supplemented with 100 g/mL 6-azauracil (6-AU). Pla tes were imaged after 3 days.
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consistently 6-AU resistant, suggesting that in the absence of Jhd2, transcriptional elongation 

is enhanced.  The rpd3 knockout strain also showed modest 6-AU resistance.  However, the 

ecm5 knockout strain performed inconsistently in this assay, showing 6-AU resistance in some 

assays but not in others.  Thus, while these assays suggested that Jhd2 might function to repress 

chromatin in coding regions, I could not conclude that Ecm5 did the same.

Looking for cryptic transcripts by qPCR

As another way of testing whether Jhd2 and Ecm5 are involved in preventing 

cryptic transcription, I checked for the accumulation of cryptic transcripts in jhd2 and ecm5 

knockout strains, using quantitative RT-PCR (qPCR).  I reasoned that if cryptic transcripts 

are accumulating in these strains, cDNA from jhd2 and ecm5 knockouts would show higher 

qPCR signal at the 3’ end of cryptic transcript genes, compared to wild-type signal, without 

also showing higher signal at the 5’ end of the genes (which would suggest complete gene up-

regulation, rather than a specifi c accumulation of the shorter cryptic transcript).  To test this idea, 

I purifi ed RNA from wild-type yeast as well as  jhd2 and ecm5 knockout strains and converted it 

to cDNA.  The cDNA from jhd2 and ecm5 knockout strains completely lacked detectable signals 

from JHD2- and ECM5-specifi c primers, respectively, confi rming that each gene was deleted 

from its knockout strain (data not shown).  However, in jhd2 and ecm5 knockout cells, levels of 

the STE11 gene, which is known to contain cryptic internal promoters, were similar to wild-type 

at all portions of the gene tested (Figure 3.5A).   Similarly, levels of SPB4, another gene known 

to contain a cryptic promoter, were the same as or lower than wild-type levels, at both the 5’ and 

3’ end of the gene (Figure 3.5B).  Thus, the qPCR assay did not provide any evidence that Jhd2 

and the Rpd3(T) complex repress cryptic transcription.
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Figure 3.5 ecm5 and jhd2 mutants do not show increased expression of the 3’ ends of 
known cryptic transcript genes by qPCR
Random hexamer-primed cDNA from wild-type (BY4741) or indicated knockout strains was 
used for qPCRs with primer pairs corresponding to the 5’ end (5’), 3’ end (3’), or 3’ untranslated 
region (3’ UTR) of the STE11 [A] and SPB4 [B] genes. qPCRs are normalized to signal from 
the AC T1 gene, and graphs show means and SEMs for three biological replicates.
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Northern blots to assay from cryptic transcripts

While these results suggest that Jhd2 and the Rpd3(T) complex do not suppress 

cryptic transcripts, it was possible that the qPCR-based technique was not sensitive enough to 

detect increases in cryptic transcripts that were in much lower abundance than the full-length 

transcripts.  Therefore, I also assayed for the presence of cryptic transcripts in ecm5 and jhd2 

mutants, using northern blotting, which unlike a qPCR assay, separates different transcripts from 

the same gene by size, allowing detection of shorter transcripts that are far less abundant than 

their full size counterparts.  As a positive control for these assays, I used RNA from set2 and 

eaf3 knockout strains, which as described above, are known to accumulate cryptic transcripts.  

I used oligo-dT beads to enrich for polyadenylated (poly-A+) RNA from total RNA taken from 

wild-type yeast and various knockout strains, and blotted this enriched RNA with probes to the 

3’ ends of STE11 and SPB4.  While this enrichment step did not entirely eliminate rRNA from 

my samples, as can be seen by the two cross-reacting bands in my northern blots (Figure 3.6, 

marked with x’s), cryptic transcripts were clearly detected in cells lacking Set2 or Eaf3 (Figure 

3.6, marked with green arrows).  Cryptic STE11 transcripts were also detected in the rpd3 

strain, albeit at lower levels.  However, cryptic SPB4 transcripts were not detected in this strain, 

possibly as a result of Rpd3 having many cellular functions, resulting in pleiotropic effects when 

this gene is deleted.  In contrast to the set2 and eaf3 knockout strains, knockouts for ecm5, snt2, 

and jhd2, did not show cryptic STE11 or SPB4 transcripts.  

Intriguingly, ecm5 and snt2 mutants did show higher levels of a 6kb RNA species 

cross reacting with the 3’ STE11 and SPB4 probes (Figure 3.6, marked with asterisks).  For 

the ecm5 RNA, this may be partially explained by overloading of the gel, since more ecm5 



89

Figure 3.6 Northern blots to look for cryptic transcripts in ecm5 or jhd2 mutants
Poly-A+-enriched RNA from the indicated wild-type (WT) or knockout strains was subjected 
to northern blotting with probes corresponding to the 3’ end of the STE11 or SPB4 genes (top 
panels of A and B, respectively).  A probe to ACT1 was used as a loading control (bottom 
panels).  The full-length transcript and the shorter, cryptic transcripts are marked by red 
and green arrows, respectively.  Contaminating rRNA, which remained even after poly-
A+-enrichment, is marked with x’s, and a longer RNA species enriched in ecm5 and snt2 
knockouts, is marked with asterisks. The sizes from an RNA ladder (in kb) are shown  to the left 
of each panel.
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RNA is also detected with the ACT1 loading control probe.  However, the snt2 lane does not 

appear to be overloaded and also shows increased levels of the 6kb species.  This species may 

be longer isoforms of STE11 and SPB4, only present in jhd2 and ecm5 mutants.  It could also 

be an unprocessed rRNA precursor present at higher levels in these mutants, that the poly-A+ 

enrichment failed to fully eliminate and that cross-reacted with the probes.  It remains unclear 

whether this is a true and interesting transcriptional difference between ecm5 and snt2 mutant or 

an artifact of these experiments.  However, taken together, these experiments failed to fi nd any 

evidence that either Jhd2 or the Rpd3(T) complex represses cryptic transcription.

Exploring other possible Ecm5 functions: the ecm5 knockout does not have cell wall defects 

but does show increased expression of a gene encoding a cell wall protein

Unable to fi nd any evidence that Ecm5 was involved in preventing cryptic transcription, 

I next attempted a number of experiments to get at what the function of this protein might 

be.  Many of these experiments involved spotting serial dilutions of wild-type and ecm5 onto 

plates supplemented with chemicals that perturb various pathways, and looking differential 

growth under these conditions.  These plate assays are summarized in Table 3.2.  I fi rst set out 

to confi rm the cell wall defect phenotype that had been reported for the ecm5 knockout strain, 

by seeing if ecm5 knockouts displayed sensitivity to Calcofl uor White, a chemical that binds to 

and interferes with the chitin in the yeast cell wall (Lussier et al., 1997; Ram et al., 1994).  In 

addition to the wild-type strain, a bar1 knockout, which contains the same G418-resistance gene 

as the other knockout strains was used as a negative control for these assays.  This knockout 

lacks an excreted protease only used for mating, and was therefore not expected to have any 
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Table 3.2 Summary of plate spotting assays in which the ecm5 
knockout strain grew no differently than a wild-type strain
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cell wall phenotypes.  As additional controls for this assay, I used knockouts for chs3 and gas1, 

which are known to be Calcofl uor White resistant and sensitive, respectively (Ram et al., 1994; 

Roncero et al., 1988).  As expected, the chs3 strain grew better than wild-type on YPD plates 

supplemented with Calcofl uor White, while the gas1 strain showed little or no growth (Figure 

3.7A).  However, several independently derived ecm5 knockout strains did not show Calcofl uor 

White sensitivity.  Similar results were found with ecm5 knockout strains derived from the W303 

yeast background strain (data not shown).

Growth on media containing sodium dodecyl sulfate (SDS) is another way to assay for 

cell wall defects (Shimizu et al., 1994).  I therefore spotted the same set of strains on YPD plates 

supplemented with 0.015% SDS (Figure 3.7B).  The gas1 mutant again showed sensitivity to 

this cell wall-disrupting treatment.  Again, however, ecm5 knockout strains grew similarly to 

wild-type.  While I was tempted to conclude from these experiments that Ecm5 protein function 

was completely unrelated to the yeast cell well, a microarray experiment I conducted to compare 

gene expression between wild-type and ecm5 mutant cells did fi nd a difference in the expression 

of FIT1, which encodes a cell wall mannoprotein (data not shown) (Protchenko et al., 2001).  I 

was unable to validate most of the hits from this microarray screen, but I did confi rm that cells 

lacking Ecm5 had higher levels of FIT1 mRNA (Figure 3.7C).  Taken together, these results 

suggest that while an ecm5 knockout strain derived from the BY4741 or W303 background strain 

does not have impaired cell walls, Ecm5 may nevertheless have a role in cell wall function by 

ensuring proper expression of certain cell wall genes.
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Figure 3.7 ecm5 and jhd2 knockouts are not sensitive to chemicals that disrupt the cell 
wall
Five-fold serial dilutions wild-type (BY4741) or indicated mutant strains were spotted on rich 
media (YPD) or YPD supplemented with 100 g/mL Calcofl uor White [A] or 0.015% sodium 
dodecyl sulfate (SDS) [B]. Plates were photographed after the number of days indicated under 
each image. C. qPCR analysis of FIT1 expression in wild-type and ecm5 knockout strains.  
Expression values were normalized to  ACT1 expression. Graph shows means and SEMs for 3 
biological replicates.
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Exploring whether Ecm5 is involved in the cellular morphogenesis checkpoint

Without any evidence that Ecm5 is required for intact cell wall, I next turned my attention 

to another phenotype originally reported for the ecm5 knockout strain, elongated bud necks 

with drooping buds.  Cell division in budding yeast is asymmetric: smaller daughter cells bud 

off of larger mother cells.  Each daughter cell then grows into a mother and produces her own 

daughter cells.  During cell division, the bud emerging from the mother cell forms the basis for 

the future daughter cell.  The neck of the bud, the point of attachment between this structure 

the mother cell, is formed by a ring of septin proteins and acts as the conduit through which all 

components that the mother cell partitions to the daughter must pass (Merlini and Piatti, 2011).  

Thus, the proper formation of the bud neck and bud structures is vitally important to proper cell 

proliferation.  In accordance with the importance of these structures, yeast have mechanisms in 

place to ensure that bud and bud neck are structured and properly.  One such mechanism, the cell 

morphogenesis checkpoint, arrests the cell cycle in response to bud neck defect (Theesfeld et al., 

2003).  

The cell morphogenesis checkpoint is triggered by improper arrangement of the septin 

proteins that make up the bed neck. Normally, during late G1 and S phases, the Swe1 kinase 

(the budding yeast homolog of Wee1) accumulates in the nucleus.  During S phase, a ring of 

septin proteins forms at the emerging bud, and a subpopulation of Swe1 leaves the nucleus 

and is recruited to the bud neck by the Hsl7 and Hsl1 proteins.  Once at the bud neck, Swe1 is 

phosphorylated by the kinases Cdc5 and Cla4, promoting its degradation.  As bud-neck localized 

Swe1 is degraded, more Swe1 is recruited from the nucleus, and in this manner, the cellular pool 

of Swe1 is diminished.  If there is a defect in the septin organization at the bud neck or in the 
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actin-mediated transport of components to the emerging bud, Hsl7 is no longer recruited, and the 

Hsl1-Hsl7 complex no longer recruits Swe1 for destruction.  The stabilized Swe1 is then free to 

phosphorylate the mitosis-promoting cyclin-dependent kinase Cdc28, thereby inactivating it, and 

triggering a G2 arrest.

Like the ecm5 knockout strain, the cla4 knockout also has an elongated bud neck 

phenotype (Cvrckova et al., 1995; Schmidt et al., 2003).  Intriguingly, cla4 mutants have 

similar doubling times to wild-type strains, suggesting that mutants that result in morphogenesis 

checkpoint activation can fi nd ways to circumvent this checkpoint and keep dividing. In addition, 

ECM5 gene expression is elevated in a strain lacking Cbk1, a kinase needed for apical bud 

growth, further linking Ecm5 with bud regulation (Bidlingmaier et al., 2001).  Rpd3 has also 

been linked with bud regulation: combining the rpd3 knockout with either cla4 or hsl7 mutants 

results in synthetic lethality (Ruault and Pillus, 2006; Ye et al., 2005).

To test whether ECM5 deletion results in morphogenesis checkpoint activation, I 

immunoblotted whole cell extracts from wild-type and ecm5 cells with antibodies that 

recognize unmodifi ed or phosphorylated Cdc28 (Figure 3.8).  Consistent with the known 

function of Cla4 in this checkpoint, lysates from a cla4 strain had higher levels of Cdc28 

phosphorylation.  Cells lacking Hsl1, another protein needed to promote Swe1 degradation, also 

had higher levels of Cdc28 phosphorylation.  However, cells lacking Ecm5, Snt2, or Rpd3 did 

not, suggesting deletion of Rpd3(T) complex members does not result in constitutive activation 

of the cellular morphogenesis checkpoint.
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Figure 3.8 Cellular morphogenesis checkpoint signaling is not activated in ecm5, snt2, or 
rpd3 knockouts
Whole cell extracts from a wild-type strain (WT) and the indicated knockout strains were 
blotted with antibodies against the Cdc28 cyclin, Cdc28 phosphorylated in tyrosine 19 (Cdc28 
Y19p). A histone H4 blot and a Direct Blue 71 stain of the membrane are shown as loading 
controls.  The hsl1 and cla 4 knockout strains, which are known to have activated cell integrity 
checkpoints, are used as positive controls.
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Exploring whether Ecm5 might be involved in the cell cycle or the DNA damage response

Hoping to get clues to the function of Ecm5 and the Rpd3(T) complex, I turned to 

publicly available high-throughput datasets.  In particular, I focused on a study from Nevan 

Krogan’s laboratory in which large numbers of yeast double knockout strains were screened for 

synthetic growth phenotypes (Collins et al., 2007).  The ecm5 knockout was one of the strains 

used in this screen, although the snt2 knockout was not included.  This study found a number of 

genes that showed synthetic genetic interactions with ECM5 (Table 3.3).  

I immediately noticed that the TOP3 and RMI1 genes, which encode two subunits of 

the DNA topoisomerase III complex, were both strongly synthetically sick in combination with 

ECM5 deletion.  This complex is involved in homologous recombination and DNA double strand 

break repair (Cejka et al., 2010; Hickson and Mankouri, 2011).  Rpd3 has also been reported to 

antagonize the DNA damage response (Scott and Plon, 2003).  I therefore wondered whether 

Ecm5 might be involved in DNA damage repair.  In order to explore this, I spotted wild-type 

and ecm5 knockout yeast strains onto plates treated with the DNA damaging agents (MMS and 

UV radiation) or chemicals that induce DNA replication stress (hydroxyurea or camptothecan).  

However, the ecm5 knockout grew similarly to the wild-type strain under all these conditions 

(summarized in Table 3.2 and data not shown).  After I completed these assays, I discovered 

that the TOP3 and RMI1 knockout strains were only pulled out of the Krogan laboratory screen 

because these mutants require a suppressor mutation in a gene near ECM5 for vitality (Chang et 

al., 2005; Gangloff et al., 1994).  ECM5 is synthetically sick with these mutants because double 

mutants containing ecm5 no longer carry this suppressor mutation, and not due to the ecm5 

mutation, itself.
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Table 3.3 ECM5 Synthetic Genetic Interactionsa
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The ecm5 knockout was also synthetically sick with cells lacking the CDK inhibitor 

Sic1, whose phosphorylation and destruction triggers the start of S phase (Verma et al., 1997).  

In addition, numerous studies have linked Rpd3 regulation of cell cycle genes (Bernstein et 

al., 2000; Robert et al., 2004; Takahata et al., 2009; Wu et al., 1999).  I therefore wondered 

whether, as part of the Rpd3(T) complex, Ecm5 might play a role in the yeast cell cycle.  I set 

out to characterize the cell cycle profi les of control and ecm5 knockout strains using FACS cell 

cycle analysis.  I arrested both strains using -factor and monitored the arrest by looking for the 

presence of shmoos and the absence of buds in the microscope.  I then released the synchronized 

cells into the cell cycle, and took aliquots every 20 minutes for cell cycle analysis, using fl ow 

cytometry.  As can be seen in Figure 3.9, before release, wild-type cells had almost exclusively 

1C DNA content, consistent with their arrest G1 phase.  Within 40 minutes after release, many 

wild-type cells had 2C DNA content, indicating they had completed S phase.   Between 60 and 

80 minutes post-release, the number of cells with 1C DNA content increases again, consistent 

with cells that have completed mitosis.  The profi les of the ecm5 knockout strain were almost 

identical to wild-type profi les, showing that ecm5 mutants have no obvious cell cycle defects.  

In addition, I tested growth on the microtubule inhibitor benomyl to see if the ecm5 knockout 

had defects in mitosis, but again, the ecm5 knockout strain grew similarly to wild-type in this 

assay (data summarized in Table 3.2).  Consistent with these results, ecm5 mutants had similar 

doubling times to wild-type cells in both rich (YPD) and less rich (synthetic defi ned with 

complete supplement mixture, or SD CSM) media (Table 3.4).
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Figure 3.9 Cell cycle analysis of ecm5 knockout cells
The bar1 knockout strain (“Wild-type”) and the bar1ecm5 double knockout 
(“ecm5”) were synchronized using -factor, and cells were taken at the indicated time points, 
stained with SYTOX green and analyzed by fl ow cytomet ry.  Histograms of cell fl uorescence at 
each timepoint are shown, with the positions of 1C and 2C DNA content indicated.  Cells from  
asynchronously growing strains (async) were also analyzed.
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Table 3.4 Growth rates in rich and moderate mediaa
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While Ecm5 is not required for cell cycle progression, it is possible that this protein is 

still involved in this process.  Since the levels of many cell cycle proteins fl uctuate over the 

course of the cell cycle, I checked whether Ecm5 protein levels changed at any point in the 

cycle.  To that end, I synchronized a tagged Ecm5 strain, and immunoblotted cell lysates taken 

at various points after release to look for changes in Ecm5 protein levels (Figure 3.10).  Levels 

of H3S10p, which are known to peak during mitosis (Wei et al., 1998), were clearly enriched 

starting between 40 and 60 minutes post-release, showing that these cells were well synchronized 

going into mitosis, although less so at later time-points.  In contrast, levels of tagged Ecm5 

protein remained constant throughout the cell cycle.  Taken together, the results of these 

experiments do not provide any evidence that Ecm5 is involved in cell cycle progression, or 

DNA repair and replication.

Exploring whether Ecm5 is required for sporulation

Since Ecm5 protein levels are low in yeast grown under normal conditions, I wondered 

whether the primary function of this protein might be in a pathway not normally needed during 

vegetative growth, such as sporulation.  Intriguingly, around this time, we received word that 

unpublished work from Marc Meneghini’s laboratory had found that Jhd2 is required for proper 

sporulation.  In addition, the Rpd3(L) complex is known to repress meiosis genes in vegetatively 

growing yeast, and rpd3 mutants have sporulation defects (Bowdish and Mitchell, 1993; Dora 

et al., 1999; Lamb and Mitchell, 2001; Strich et al., 1989; Strich et al., 1994; Vidal and Gaber, 

1991).  I therefore tested whether an Ecm5 mutant has any defect in sporulation.  Because 

the BY4741 background strain that I have used for most of this work is known to be poor at 
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Figure 3.10 Ecm5-TAP protein levels over the course of the cell cycle
Whole cell extracts from an ECM5-TAP bar1 strain synchronized using -factor were 
immunoblotted with antibodies against the TAP tag (to detect Ecm5-TAP levels) and H3S10 
phosphorylation (H3S10p, a mitosis-specifi c mark). Numbers at the top show minutes after 
-factor release . Bottom panels are amido black stains, used as a loading control.



104

sporulation, I created a homozygous diploid ecm5 knockout strain on the highly-sporulating 

SK1 genetic background, and grew wild-type and ecm5 SK1 strains in 1% potassium acetate 

solution to promote sporulation.  However, the ecm5 mutant showed no defects in tetrad 

formation (Figure 3.11A), and individual spores from sporulated ecm5 mutant tetrads were fully 

viable (Figure 3.11B), showing Ecm5 is not required for sporulation.

Chapter 3 Discussion

The experiments described in this thesis chapter were all undertaken with the goal of 

better understanding the functions of Ecm5 and Jhd2.  In order to achieve this goal, I fi rst set out 

to determine Ecm5- and Jhd2-interacting proteins.  Despite multiple attempts, Trixi and I were 

unable to identify any proteins interacting with Jhd2.  While we tried a variety of purifi cation 

conditions, it is possible that we failed to utilize the specifi c condition under which associations 

between Jhd2 and its interacting proteins were maintained.  Alternatively, Jhd2 may function 

independently of other proteins in a stable complex.  Trixi and I were able to show that Ecm5 

interacts with Snt2 and the Rpd3 deacetylase.  In good agreement with my results, shortly after I 

identifi ed this complex, Anna Shevchenko and A. Francis Stewart reported identifying a complex 

consisting of Ecm5, Snt2, and Rpd3, which they called the Snt2 complex (Snt2C) (Shevchenko 

et al., 2008).  Because Rpd3 is currently the only subunit in this complex known to have 

enzymatic activity, I favor the use of the name Rpd3(T) complex, which highlights the likely 

function of this complex as a deacetylase and promotes comparison to the other Rpd3 complexes.  
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Figure 3.11 The ecm5 knockout strain does not have sporulation defects
Wild-type (WT) SK1 and ecm5::G418/ecm5::HYG mutant yeast were transferred to 2% 
potassium acetate to induce sporulation. A. After 3 days, the number of tetrads was counted 
and divided by the total number of tetrads and unsporulated diploid cells in the sample to 
determine % sporulation.  The graph shows the mean and standard deviation of 3 independently 
sporulated wild-type colonies and 4 independently sporulated ecm5 knockout colonies.  B. 
Representative tetrad dissections show that ecm5/ spores are viable.  Replica platings of 
the ecm5/ tetrads onto plates containing G418 and hygromycin B (HYG, bottom panels), to 
select for each ecm5 knockout allele, show the  ecm5 deletion segregates normally.
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Based on the Ecm5 and Snt2 domain structures, and the known deacetylase activity of 

Rpd3, the Rpd3(T) complex is highly likely to function at chromatin.  Regardless of whether 

we treated our extracts with DNAse, micrococcal nuclease, or nothing (in which case the DNA 

was partially sheared due to cryogenic lysis procedure), histones were never observed in our 

purifi cations.  It is possible that this complex does not interact with chromatin.  However, I 

believe it is more likely that our purifi cation conditions promoted dissociation of the Rpd3(T) 

complex from nucleosomes.  In support, experiments I described in Chapter 2 of this thesis 

found that the Ecm5 PHD fi nger could interact with histone H3.  Additionally, in experiments 

I describe in the next Chapter of this work, I was able to clearly and repeatedly fi nd Ecm5 and 

Snt2 localized to specifi c genomic regions by ChIP.  

The existence of a third Rpd3 complex immediately prompts the question: how do the 

functions of these three complexes compare?  Because of initial data suggesting the Ecm5 

and Jhd2 PHD fi ngers could interact with H3K36me3, I immediately thought of the Rpd3(S) 

complex, which also contains subunits that interact with H3K36me2/3, and is required to prevent 

initiation from cryptic promoters within certain genes.  I initially hypothesized that Jhd2 and 

the newly discovered Rpd3(T) complex might also prevent cryptic transcription.  However, I 

was unable to fi nd any evidence that levels of known cryptic transcripts were higher in strains 

lacking Ecm5 or Snt2, leaving no support for this hypothesis.  It remains possible that Jhd2 or 

the Rpd3(T) complex does prevent cryptic transcription within coding sequences, but at different 

target genes than the two that I studied in these assays, or that higher levels of cryptic transcripts 

present in strains lacking these proteins are still too low to be detected in my assays.  The cryptic 

transcripts in the rpd3 knockout were just at the limit of detection in my northern blots, so levels 
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of cryptic transcripts lower than these would likely have been below the level of detection by 

this assay.  It is also possible, that the Rpd3(T) complex acts redundantly with other factor(s) 

such that cryptic transcripts are only detectable ecm5 or snt2 knockouts also deleted for this 

other factor(s).  To that end, it would be interesting to see whether deletion of ecm5 enhanced the  

cryptic transcript phenotype of the eaf3 and rco1 knockout strains.  However, it should be noted 

that in ChIP experiments that I will describe in the next chapter of this work, I did not see any 

Ecm5 or Snt2 enrichment at STE11 or SPB4 coding regions or promoters, making it unlikely that 

the Rpd3(T) complex has any direct function at these genes (data not shown).

In addition to preventing aberrant transcription from initiating within genes, a recent 

report shows that the Rpd3S complex plays a role in suppressing transcription of CUTs initiating 

from promoter regions (Churchman and Weissman, 2011).  These authors report that rco1 and 

eaf3 knockouts have higher levels of antisense CUTs, initiating from the same start sites used by 

the coding transcripts.  Since deletion of Set2 (but not Set1) also increases CUT transcription, the 

authors suggest that Rpd3(S) is recruited to the promoter regions where these CUTs are known 

to initiate through interactions with Set2-deposited H3K36me3 at the 3’ ends of nearby genes.  

However, even the authors note that this model does not explain how the Rpd3(S) complex 

prevents CUT transcription at promoters that are not close to the 3’ end of another gene.  This 

new work affi rms that aberrant transcription within coding regions is just the tip of the iceberg 

when it comes to noncoding transcription in yeast.  Because my experiments only focused 

on a role for the Rpd3(T) complex in preventing aberrant transcripts within coding regions, I 

cannot say whether this complex is involved in other types of noncoding transcription, although 

the intriguing 6kb RNA species enriched in ecm5 and snt2 knockouts may point to some role 
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for Rpd3(T) in the pathways.  Future experiments looking for altered levels of other kinds of 

noncoding transcripts in ecm5 and snt2 knockouts, either in combination with TRAMP and 

exosome mutants, or by directly sequencing RNA Pol II-associated transcripts, may uncover 

a role for the Rpd3(T) complex in regulating non-coding transcription.  In addition, a northern 

blot with an rRNA proble, to look at whether ecm5 and snt2 knockout strains have altered rRNA 

processing, might be worthwhile.

While I was unable to confi rm a role for the Rpd3(T) complex in suppressing cryptic 

transcription, I remained interested in gaining insight into the function(s) of this complex.  

Because of the cell wall phenotypes reported for the ecm5 mutant, I thought that Ecm5 might 

be involved in regulating this structure, possibly by regulating expression of genes involved 

in cell wall maintenance.  However, my own ecm5 knockout strains showed no sensitivity to 

the cell wall disrupting agents calcofl uor white and SDS.  This discrepancy in fi ndings may be 

due to the differences in genetic backgrounds used between this work and the previous Ecm5 

study.  My studies have all been conducted with mutants made in the S288C (BY4741) and 

W303 background strains, while the original isolation of the Ecm5 mutant was done using the 

AWM3C630 background strain.  There are at least a few reported examples of different mutants 

having different phenotypes in different genetic backgrounds (de Jesus Ferreira et al., 2001; 

Kucharczyk et al., 1999; Schoch et al., 1997; Trachtulcova et al., 2003).  While I did not fi nd 

any evidence that the cell walls of ecm5 knockout cells were grossly defective, I did fi nd up-

regulation of a cell wall mannoprotein gene in the ecm5 knockout strain, suggesting at least one 

link between Ecm5 and the yeast cell wall.  
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Cells lacking Ecm5 have also been reported to have elongated bud necks and drooping 

buds, suggesting Ecm5 might be required for proper formation of the bud or bud neck, 

and deletion of this gene might activate the cellular morphogenesis checkpoint.  However, 

ecm5 knockout cells did not have higher levels of Cdc28 phosphorylation, showing that this 

checkpoint is not constitutively active in ecm5 knockouts.  I have never noticed an elongated 

bud neck or drooping buds in my own microscopic examinations of ecm5 mutants.  However, 

the elongated bud neck phenotype is fairly subtle to detect using normal light microscopy, and I 

have trouble recognizing it even when pointed out in micrographs in published papers.  Notably 

the elongated bud neck phenotype for ecm5 mutants was reported by the same group who found 

the ecm5 mutant had a cell wall defect, so it is also possible that this phenotype is only present in 

ecm5 knockouts from the AWM3C630 background.

As another means of getting at Ecm5 protein function I made use of a high-throughput 

screen for genes that synthetically interact with the ecm5 knockout strain.  There were many 

interesting genes pulled out from this screen.  For instance deletion of ECM5 relieved the growth 

defects associated with loss of Sin3, a subunit of both the other Rpd3 complexes, suggesting that 

Rpd3(T) may function in opposition to the Rpd3(S) and Rpd3(L) complexes.  Because three of 

the genes in this screen had functions relating to DNA damage repair or cell cycle progression, I 

checked whether ecm5 mutants had any defects in these pathways.  However, I showed that the 

ecm5 knockout strain is not sensitive to chemicals that disrupt DNA replication, trigger DNA 

damage, or interfere with mitotic microtubules and that ecm5 knockout cells have normal cell 

cycle profi les, suggesting Ecm5 is not necessary for any of these processes. In addition, ecm5 

knockout cells have no discernible defects in sporulation.  While it remains possible that Ecm5 
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plays a subtle and non-essential role in any of these processes, it seemed unwise to experiment 

further along these lines without a clear indication of involvement.

These early experiments into Ecm5 function were not very successful.  However, there 

were other genes with ECM5 synthetic phenotypes found in the Krogan laboratory’s screen that I 

had yet to interrogate (Table 3.3).  This screen found a genetic interaction between ECM5 and the 

SAS2 gene, which encodes a H4K16 acetyltransferase known to oppose transcriptional silencing.  

In contrast to the SIN3 genetic interaction data discussed above, this genetic interaction suggests 

that the Rpd3(L) and (S) complexes might function similarly with regard to transcriptional 

silencing, since the Rpd3(L) complex has been shown to antagonize silencing (De Rubertis et 

al., 1996; Rundlett et al., 1996; Smith et al., 1999; Sun and Hampsey, 1999; Vannier et al., 1996).  

ECM5 also had genetic interactions with ASK10 and GCN1, genes which encode oxidative stress 

and amino acid starvation sensors, respectively, hinting that the Rpd3(T) complex might function 

in stress and metabolism signaling, an idea that forms the basis for the next chapter of this work.
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CHAPTER 4: EXPLORING THE ROLE OF THE RPD3(T) COMPLEX IN THE 

OXIDATIVE STRESS RESPONSE AND METABOLIC REGULATION

Chapter Introduction

Despite obtaining some negative results in my early Ecm5 functional experiments, I 

remained eager to determine a function for the Rpd3(T) complex.  Based on a genetic interaction 

reported by the Krogan laboratory, between ECM5 and the ASK10 oxidative stress sensor gene 

(Collins et al., 2007), I formed a new hypothesis that the Rpd3(T) complex might function in the 

yeast oxidative stress response.  The fi rst part of this chapter will focus on initial experiments 

I performed to look for evidence that Ecm5 and Snt2 are involved in this pathway, and the 

discovery that the snt2 knockout strain is resistant to hydrogen peroxide (H2O2)-mediated 

oxidative stress.  I will then discuss genome-wide chromatin immunoprecipitation (ChIP) 

experiments undertaken to map Ecm5 and Snt2 localization before and after oxidative stress.  

Because the results of this mapping found Ecm5 and Snt2 localized to gene promoter regions, 

I next wanted to determine whether there were any differences in gene expression in ecm5 and 

snt2 knockout strains before and after H2O2 stress.  The third part of this chapter will describe 

RNA sequencing experiments undertaken to look for gene expression differences in these 

mutants, and to determine whether Ecm5 and Snt2 regulate the expression of their target genes.

While these ChIP and gene expression analyses isolated many genes involved directly in 

the oxidative stress response, they also identifi ed genes involved in cellular metabolism functions 

such as protein translation, amino acid uptake and synthesis, and carbon usage.  The association 

of the Rpd3(T) complex with metabolism genes suggests that rather than functioning solely in 
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detoxifying oxidative stress, this complex might function more broadly at the interface between 

cellular stress and nutrient metabolism.  In order to see whether the Rpd3(T) complex also 

responds to metabolic stress, I conducted studies in the more nutrient-limited stationary phase 

of growth and with the TOR pathway inhibitor rapamycin, which is known to promote cellular 

changes that mimic amino acid starvation.  The fourth part of this chapter will summarize these 

experiments, and show that the Rpd3(T) complex responds to nutrient stress.  

Genetic links between the Rpd3(T) complex and oxidative stress

In the synthetic genetic screen performed by the Krogan laboratory, discussed in the 

previous chapter, one of the genes whose deletion showed synthetic sickness when combined 

with the ecm5 knockout was ASK10 (also known as RGC2).  This gene was fi rst discovered 

in a screen for mutants that result in transcriptional activation of SKN7, a transcription factor 

involved in the oxidative and heat stress responses (Page et al., 1996).  A later report found 

that Ask10 associates with the RNA pol II holoenzyme and is phosphorylated in response to 

oxidative stress, suggesting that Ask10 may help regulate the yeast oxidative stress response 

(Cohen et al., 2003).  More recently, Ask10 was shown to be involved in regulating the response 

to hyperosmotic stress, a condition that also triggers Ask10 phosphorylation (Beese et al., 2009).  

Because of the genetic link between Ecm5 and Ask10, I hypothesized that the Rpd3(T) 

complex might help to mediate the oxidative stress response, or possibly a more general response 

to stress.  In support of this, cells lacking Snt2 have higher levels of phosphorylated Slt2 (de 

Groot et al., 2001), a mitogen activated protein kinase (MAPK) homologous to the mammalian 

p42/p44 MAPK, that is activated in response to diverse extracellular stresses, including oxidative 
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and osmotic stress.  In addition, many of the genes whose levels change in response to osmotic 

stress are genes whose promoters were found to contain Snt2 by ChIP-chip (Harbison et al., 

2004; Miller et al., 2011).  Thus, there were multiple lines of evidence to connect Ecm5 and Snt2 

to cellular stress response.

Work from several groups has implicated Rpd3 and the Rpd3(L) complex in yeast stress 

response function.  Cells lacking Rpd3 or Sin3 are sensitive to osmotic stress, and in response 

to high levels of NaCl, these proteins are recruited to the promoters of osmotic stress genes 

where they are required for gene activation (De Nadal et al., 2004).  The Rpd3(L) complex is 

also recruited to stress response genes in response to heat shock, where it mediates both gene 

activation and repression (Kremer and Gross, 2009; Ruiz-Roig et al., 2010).  In addition, Rpd3 is 

required for the activation of certain cell wall mannoproteins in response to hypoxia stress (Sertil 

et al., 2007).  While Rpd3 is generally thought of as a transcriptional repressor, these reports 

suggest that in some cases, this protein can also activate transcription.  Consistent with this idea, 

a microarray study found that Rpd3 is required for both activation and repression of the many 

genes whose expression change in response to heat shock, osmotic stress, or oxidative stress 

(Alejandro-Osorio et al., 2009). 

Because of the genetic evidence linking Ecm5 to oxidative stress, and because of the 

connection between the Rpd3(L) complex and stress response pathways, I set out to determine 

whether the Rpd3(T) complex also functioned in the yeast oxidative stress response.  I initially 

checked whether tagged Ecm5 and Snt2 protein levels change in response to treatment with 0.5 

mM H2O2.  While Ecm5 and Snt2-PrA levels did not change within the fi rst couple of hours of 

H2O2 treatment, they each increased 4 hours after H2O2 treatment relative to the loading controls 
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(Figure 4.1A).  No western blot signal was seen before or after treatment in whole cell extracts 

from an untagged strain, confi rming that the Ecm5- and Snt2-PrA signal on these western blots 

was specifi c to the tagged proteins.  In a second experiment, where a single Ecm5-PrA culture 

was grown and divided into two separate cultures, one receiving 0.4 mM H2O2, and the other 

receiving no treatment, Ecm5-PrA levels increased in response to H2O2 treatment but not in the 

no treatment control (Figure 4.1B).  The increase in Ecm5 protein levels was not seen in every 

experiment I tried, but it was repeatable: 6 out of 8 experiments involving treatment with 0.4-

0.5 mM H2O2 resulted in an increased in tagged Ecm5 protein levels.  In contrast, the increase 

in Snt2-PrA after H2O2 treatment was only seen in 1 out of 4 experiments.   The increased Ecm5 

protein levels in response to oxidative stress could be explained by increased transcription, 

increased translation, or decreased degradation of Ecm5.  However, qPCR experiments found 

that ECM5 mRNA levels do not change signifi cantly 30 minutes or 4 hours after H2O2 treatment 

(Figure 4.1C), suggesting the increases in Ecm5-PrA were the result of post-transcriptional 

mechanisms.  SNT2 mRNA levels did increase slightly 0.5 hours after H2O2 treatment but 

returned to baseline by 4 hours post-treatment (Figure 4.1D).  

Because these results provided an early confi rmation that Ecm5 and Snt2 might 

function in the oxidative stress response, I then tested whether ecm5 and snt2 knockouts 

showed differential growth on plates supplemented with H2O2.  As a control for this assay, I 

used a strain lacking the Yap1 H2O2-response transcription factor, which is known to be H2O2-

sensitive (Schnell et al., 1992).  When plated on YPD containing moderate concentrations of 

H2O2 (concentrations in which the wild-type strain grew as well as on untreated plates, but the 

oxidative stress-sensitive yap1 knockout could not grow), the ecm5 and snt2 knockout strains 
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Figure 4.1 Ecm5 and Snt2 protein and mRNA levels before and after H2O2 stress
A. Protein A-tagged (and untagged control) strains were grown to mid-log phase in rich media, 
and treated with 0.5 mM H2O2.  PrA western blots of whole cell extracts show Ecm5- and Snt2-
PrA levels before and at indicated times (hrs: hours) after treatment.  Blots for histone H3 and 
tubulin, as well as Direct Blue 71 membrane straining are shown as loading controls. B. PrA 
western blots on whole cell extracts as in A, except cells were treated with either 0.4 mM H2O2 
or water alone (no treatment) as a control.  C and D. qPCR expression analysis of ECM5 (C) 
and SNT2 (D) mRNA levels in wild-type cells and after 0.4 mM H2O2 treatment.  Expression 
values were normalized to ACT1 expression, and average expression in the wild-type untreated 
sample was set to 1. Graphs show averages and SEMs of qPCRs from 3 biological replicates. * 
p<0.05 by paired two-tailed t test.
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grew very similarly to wild-type (Figure 4.2A, compare left and middle panels).  Surprisingly 

however, on higher H2O2 concentrations, the snt2 knockout strain was H2O2-resisitant, growing 

almost as well as on the untreated YPD control plate while the wild-type strain could barely 

grow (Figure 4.2A, right panel).  A similar level of growth was seen with a strain lacking Gpr1, 

a G protein glucose sensor which was recently reported to be H2O2-resistant (Molin et al., 2011).  

Unlike the snt2 knockout, the ecm5 knockout strain had similar H2O2 sensitivity to the wild-type 

strain.  The rpd3 knockout strain has a known growth defect which can be seen by the smaller 

rpd3 colony size on the YPD control plate.  While this strain also had smaller sized colonies 

on the 3.0 mM H2O2 plate, there were more rpd3 colonies than wild-type colonies on this plate, 

showing that like the snt2 knockout, this mutant also was resistant to oxidative stress.

Having performed a great many plate spotting assays by this point in my graduate 

research without ever having seen a strong phenotype for the ecm5 and snt2 knockout strains, 

I was cautiously excited to fi nally see a phenotype for one of my mutants.  However, I wanted 

to be sure this phenotype was truly due to deletion of SNT2, and not just an artifact of this 

particular strain.  I therefore constructed new ecm5, snt2, and rpd3 deletion strains on the 

BY4742 background and subjected them to the same plate assay.  The snt2 knockout strain again 

showed resistance to high levels of H2O2 (Figure 4.2B).  The rpd3 strain also showed moderate 

H2O2-resistance in this assay.  To determine whether this result was specifi c to the oxidative 

stress response or was a more general stress resistance, I subjected these cells to osmotic stress 

by plating them on plates containing 1.2 M NaCl.  Consistent with previous reports, the rpd3 

mutant showed a strong growth defect on high salt.  However, the snt2 mutant also grew better 

than wild-type and the ecm5 knockout strain under these conditions, suggesting this knockout 

displays resistance to multiple kinds of stresses (Figure 4.2C).
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Figure 4.2 snt2 mutants are resistant to oxidative and osmotic stress
A. Five-fold serial dilutions of mid-log phase cultures of wild-type (BY4741) or indicated 
knockout strains were spotted on rich media (YPD) or YPD supplemented with 2.4 or 3.0 mM 
hydrogen peroxide (H2O2). Plates were imaged after 2 days. B. Spotting assay as in A, with 
a separate set of knockout strains derived from the BY4742 background strain. C. Spotting 
assay as in A on YPD or YPD supplemented with 1.2 M NaCl. YPD control and NaCl plates 
were imaged after 2 and 3 days, respectively.  D. The wild-type (BY4741) or knockout strains 
indicated were grown to mid-log phase, and cultures were treated with 0.4 mM H2O2 for 4 
hours.  Percent su rvival was determined by plating 1000 cells from each culture before and 
after treatment and counting viable colonies after two days’ growth. Shown are means and 
SEMs from 3 biological replicates.
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To further confi rm that the snt2 mutant was resistant to oxidative stress, I subjected the 

wild-type and ecm5, snt2, and rpd3 knockout strains to a liquid survival assay.  In this assay, 

each strain was grown to mid-log phase in YPD and treated with 0.4 mM H2O2 for 4 hours.  

Before and after treatment 1000 cells from each culture were plated onto YPD, and the number 

of colonies visible after 2 days’ growth was counted to determine the number of viable cells at 

the time of plating.  The percentage of cells alive after treatment, relative to the number of live 

cells before treatment was then determined.  Under these conditions, the wild-type strain and 

the ecm5 knockout strain each had about 20% survival (Figure 4.2D).  Consistent with the plate 

assays, the rpd3 and snt2 knockouts showed enhanced survival in this assay, with 58% of snt2 

cells and 41% of rpd3 cells surviving 4 mM H2O2 treatment.  Taken together, these experiments 

show that both the snt2 and rpd3 knockout strains are resistant to H2O2-mediated oxidative stress, 

with the snt2 strain showing higher levels of resistance than the rpd3 strain.

Mapping the genomic localization of Ecm5 and Snt2 before and after oxidative stress

In order to get a better understanding of how the Rpd3(T) complex might function in 

the response to oxidative stress, I sought to map this complex’s genomic localization using 

chromatin immunoprecipitation followed by deep-sequencing (ChIP-seq).  Since Rpd3 is a 

constituent of at least two other chromatin-associated complexes, I set out to map the localization 

of the Rpd3(T)-unique Ecm5 and Snt2 subunits.  A previous study had mapped genome-wide 

Snt2 associations using ChIP followed by microarray analysis, and found Snt2 at the promoters 

of a small number of genes (Harbison et al., 2004).  Using this data, a separate group determined 

a binding motif for Snt2 and reported enrichment of this motif at the promoters of amine 
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transmembrane transporters (Ward and Bussemaker, 2008).  While these studies offered some 

insight into the potential functions of Snt2 and the Rpd3(T) complex, the use of microarrays 

containing only a single probe for each promoter region limited the spatial resolution of this 

mapping.  I therefore felt it necessary to map the localization of Snt2 myself using the newer 

ChIP-seq technology favored by the Allis laboratory, which provides better resolution, higher 

sensitivity, and more complete genome coverage than most microarrays.  In addition, to my 

knowledge, no ChIP for Ecm5 had ever been performed, and I wanted to determine whether 

Ecm5 and Snt2 colocalized, as would be predicted if they are part of the same complex.  Lastly, 

neither protein’s localization has been mapped under conditions of oxidative stress, and given 

my genetic results, I was curious to see whether Ecm5 and Snt2 would respond H2O2 stress by 

localizing to new regions of the genome.

Ecm5 and Snt2 are highly colocalized by ChIP-seq

For these ChIP studies, I generated new strains in which ECM5 or SNT2 was tagged with 

13 copies of the Myc epitope (hereafter referred to as the Myc tag).  I grew both tagged strains 

along with an untagged control strain to mid-logarithmic (mid-log) phase in rich media, and 

harvested and fi xed cells for ChIP.  I then treated the remaining cultures with 0.4 mM H2O2, and 

harvested cells 30 minutes and 4 hours after treatment.  I chose these two time-points because 

the former would allow me to look at the acute stress response, which has been shown to occur 

5-30 minutes after H2O2 stress (Gasch et al., 2000) , while the latter coincided with the time 

when I found an increase in Ecm5 protein levels.  Since H2O2 is a highly reactive chemical, the 

majority of H2O2-infl icted damage is likely to occur within minutes of addition of this chemical 
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to the media.  However, cells given a mild dose of H2O2 are known to undergo adaptive changes 

that render them more resistant to larger doses of this stress in the future (Collinson and Dawes, 

1992; Jamieson, 1992).  Another reason I chose to map Ecm5 and Snt2 localization 4 hours after 

H2O2 treatment was to see whether there were any localization changes specifi c to this late time-

point that might suggest Ecm5 and Snt2 involvement stress adaptation.  While I never tested 

ecm5 and snt2 knockout strains for enhancement or loss of the adaptation, I was curious to see 

whether localization changes in these two proteins might reveal something about this process.

I then performed ChIP on these cells using an anti-Myc, and submitted both the input and 

the ChIP DNA from all samples for sequencing.  Here, I was fortunate to work with Scott Dewell 

in Rockefeller University’s Genomics Resource Center who performed the actual sequencing 

and analyzed and mapped the initial sequencing reads.  The number of sequencing reads for each 

sample in this experiment are summarized Table A.1, in the Appendix of this work.  In addition, 

Deyou Zheng, a computational biologist at Albert Einstein Medical College, provided assistance 

with data analysis.  

Consistent with Ecm5 and Snt2 being members of the same complex, the ChIP-seq 

profi les of Ecm5 and Snt2 were almost identical.  Before treatment, Ecm5 and Snt2 localized 

to a limited number of regions in the genome, in tight peaks, and regions containing high 

numbers of sequencing reads in the Ecm5 ChIP almost always had high read counts in the Snt2 

ChIP (see Figure 4.3A for a representative chromosome).  In almost all cases, regions of the 

genome containing high numbers reads in the Ecm5 and Snt2 ChIP tracks, had low read counts 

in the input and untagged control ChIP, confi rming the specifi city of these ChIP experiments.  

To quantitate the extent of Ecm5 and Snt2 colocalization, I used the MACS algorithm to 
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Figure 4.3 Ecm5 and Snt2 are highly colocalized
A. Ecm5- and Snt2-Myc ChIP profi les in untreated cells along a representative chromosome. 
The Y axis of each track represents the number of reads (in millions) spanning a genomic 
position normalized to the total number of reads for each sample. The numbers in square 
brackets above and to the right of the panel denote the scale [baseline, maximum] which is the 
same for all tracks.  Input and no tag control tracks are shown under the ChIP tracks, and the 
location of yeast genes and genomic coordinates are shown at the bottom of the panel.  B. Venn 
diagrams showing peaks of Ecm5 and Snt2 ChIP reads that overlapped by at least 200 bp.
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computationally defi ne peaks of ChIP enrichment – genomic loci with high numbers of Ecm5 

and Snt2 sequencing reads compared to the untagged control ChIP (Zhang et al., 2008).  This 

analysis found 430 and 420 peaks of Ecm5 and Snt2 reads, respectively, before treatment.  I then 

determined the number Ecm5 and Snt2 peaks that overlapped by at least 200 bp.  Remarkably, 

both before and after treatment, the majority of Ecm5 and Snt2 peaks overlapped, with 315 of the 

Ecm5 and Snt2 peaks overlapping in the untreated cells (Figure 4.3B).  Taken together, the visual 

inspection of the ChIP-seq tracks and the computational peak calling both show that Ecm5 and 

Snt2 are highly colocalized, consistent with their functioning in the same complex.

Ecm5 and Snt2 localize to many new regions a half hour after H2O2 treatment

Surprisingly, 0.5 hours after H2O2 treatment, Ecm5 and Snt2 localized to many genomic 

loci.  For example, in the representative region shown in Figure 4.4, arrows mark peaks of Ecm5 

and Snt2 ChIP-seq reads that were either not present before treatment or strongly enriched after.  

The peaks are not present, or are much less enriched in the input and untagged control ChIP 

tracks, again showing the appearance of these peaks after treatment is specifi c to Ecm5 and Snt2.  

The computational peak calling confi rmed that there were many more peaks of Ecm5 and Snt2 

binding after treatment, fi nding 817 Ecm5/Snt2 shared peaks 0.5 hours after treatment, compared 

with 315 before (Figure 4.3B, and bottom tracks in Figure 4.4).  This dramatic reassortment of 

Ecm5 and Snt2 was only transient, and by 4 hours after H2O2 treatment, Ecm5 and Snt2 profi les 

resembled those of untreated cells.  Furthermore, 4 hours after treatment, the number of peaks 

called by the algorithm was reduced, with 276 only Ecm5/Snt2 shared peaks called, similar to 

the number of peaks found in untreated cells.  Of those, about half, or 137 peaks overlapped 
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Figure 4.4 Ecm5 and Snt2 localize to many new regions after H2O2 treatment
Ecm5- and Snt2-Myc ChIP-seq tracks from both untreated and H2O2-treated yeast, depicted as 
in Figure 4.3, with arrows marking new or enhanced peaks in the 0.5 hour ChIPs (bracketed 
tracks). Peaks called by the  MACS algorithm for each ChIP are shown under the tracks.



124

with peaks called before treatment.  Peaks that were not shared between the two timepoints 

refl ect mistakes in the peak calling (e.g. a weak peak that was called in one timepoint and not the 

other), and not differences in Ecm5 and Snt2 localization before and 4 hours after treatment.  In 

summary, Ecm5 and Snt2 do not show localization changes 4 hours after treatment that would 

suggest they mediate adaptation to stress, but these proteins do localize to new regions of the 

genome as part of the acute response to H2O2 stress.  

To confi rm the ChIP-seq fi ndings, I performed separate small-scale ChIP-qPCRs 

experiments, following the same H2O2 treatment protocol described above.  I fi rst focused on the 

promoter of the ERG6 and YAP1 genes, a region which shows a modest increase in Ecm5 and 

Snt2 localization 0.5 hours after H2O2 treatment by ChIP-seq (Figure 4.5A, left panel).  ERG6 

encodes an enzyme that helps to synthesize ergosterol, a sterol that accumulates in yeast cell 

membranes after stress and promotes resistance (Lees et al., 1995; Swan and Watson, 1998).  As 

described in the introduction to this work, YAP1 encodes a transcription factor that is known 

to respond to oxidative stress (Rodrigues-Pousada et al., 2010).  Since both YAP1 and ERG6 

have been linked to stress, I was eager to confi rm that Ecm5 and Snt2 were localized to these 

promoters after H2O2 treatment.  In accordance with these results, in ChIP-qPCR experiments 

Ecm5- and Snt2-Myc were enriched (3- to 5-fold above an untagged control strain) at this 

promoter only after H2O2 treatment (Figure 4.5B, left panel).  

I next focused on the CYC3 and the IPI3/YNL181W shared promoters, which both 

had very high numbers of Ecm5 and Snt2 reads before and after treatment in the ChIP-seq 

experiment (Figure 4.5A middle and right panels).  CYC3 encodes an enzyme that helps generate 

active cytochrome C, one of the components of the mitochondrial ETC (Dumont et al., 1987).  
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Figure 4.5 Small-scale confi rmation of ChIP-seq
A. Ecm5 and Snt2 ChIP-seq enrichment before and after H2O2 treatment at the ERG6/YAP1, 
CYC3, and IPI3/YNL181W promoters, depicted as in Figure 4.3.  B. Confi rmation of the ChIP-
seq results in [A] using using ChIP-qPCR.  The relative ChIP enrichment was calculated by 
dividing the percent input for each replicate at the region of interest by the percent input in the 
middle of the ACT1 gene, where Ecm5/Snt2 enrichment is low.  Graphs show mean and SEM 
from 3  biological replicates.
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IPI3 encodes a member of the Rix1 complex, responsible for processing rRNA (Krogan et al., 

2004; Nissan et al., 2004), while YNL181W is believed to encode an oxidoreductase (Giaever 

et al., 2002).  Thus, CYC3, IPI3, and YNL181W were all functionally linked to either cellular 

redox reactions or protein synthesis.  Before and after treatment, at both promoters, the signal 

from the untagged control ChIP was almost undetectable (Figure 4.5B).  In contrast, Ecm5 

and Snt2 were clearly enriched at these promoters, and the enrichment was slightly higher 30 

minutes after treatment.  These fi ndings confi rm the reproducibility of the ChIP-seq fi ndings, and 

also demonstrate the large dynamic range in the levels of Ecm5 and Snt2 enrichment found at 

different regions of the genome, which may refl ect differences in the affi nities of different sites 

for these proteins or differential Ecm5/Snt2 binding in different subsets of cells.

Ecm5 and Snt2 localize primarily to gene promoters and for a small number of highly 

expressed genes, to gene bodies

Both before and after treatment, Ecm5 and Snt2 were localized primarily to promoter 

regions of genes.  As an example, Ecm5 and Snt2 localization to the FUI1 and PRE7 genes 

0.5 hours after H2O2 treatment is clearly constrained to these genes’ shared promoter (Figure 

4.6A).  In addition, as described above, Ecm5 and Snt2 are enriched in the promoter regions 

of the ERG6/YAP1, CYC3 and IPI3/YNL181W genes (Figure 4.5A).    To further analyze this 

trend, Scott Dewell aligned every yeast gene around its transcription start site (TSS), and then 

determined the average number of sequencing reads in 50 bp windows relative to the TSS’s.  

This analysis found a very slight enrichment of Ecm5 and Snt2 reads approximately 250 bp 

upstream of the TSS before or 4 hours after H2O2 treatment (Figure 4.6C, left panels).  The level 
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Figure 4.6 Alignment of H2O2 ChIP-seq reads around transcription start sites
A and B. Representative ChIP-seq tracks as in Figure 4.3, showing a typical (A) or a highly-
expressed (B) Ecm5/Snt2 target gene.  (C) All yeast genes (left panels) or the 100 most highly-
expressed yeast genes (Miller et al., 2011; right panels) were aligned by their transcri ption start 
sites (TSSs) and the average number of Ecm5 (top panels) or Snt2 (bottom panels) ChIP-seq 
reads per 50 bp window relative to the TSSs for each ChIP experiment was calculated.  Each 
average value was normalized to the total number of mapped reads for that experiment and 
divided by 1,000,000 to get normalized average numbers of reads at positions relative to the 
TSS.
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of enrichment is small because at these time-points Ecm5 and Snt2 only localize to a small 

number of genes, and the signal from these genes is drowned out by the lack of enrichment at all 

the other yeast genes.  However, 0.5 hours after H2O2 treatment, an enrichment of Ecm5 and Snt2 

ChIP-seq reads is clearly visible 250 bp upstream of the TSS.

I also noticed a small number of genes enriched for Ecm5 and Snt2 in their coding 

regions in untreated cells.  Intriguingly, in many of these examples, 0.5 hours after H2O2 

treatment, Ecm5 and Snt2 were no longer enriched within the bodies of these genes, and were 

instead enriched at the 5’ (and in some cases 3’) ends.  The RPS13 gene is an example of one 

such gene (Figure 4.6B).  I noticed that many of the genes displaying this trend were coded for 

either ribosomal proteins or metabolic enzymes, two categories of highly transcribed genes.  At 

the same time that I observed this trend, Scott independently obtained a list of the 100 most 

highly expressed yeast genes, based on a recent yeast gene expression study (Miller et al., 2011), 

and repeated his TSS localization analysis using only these genes.  Remarkably, his TSS profi les 

matched what I had been seeing: at highly expressed genes, there is signifi cant enrichment 

of Ecm5 and Snt2 reads 250-1000 bp downstream of the TSS before H2O2 treatment, and 0.5 

hours after treatment, this enrichment has shifted to approximately 300 bp upstream of the TSS 

(Figure 4.6C, right panels).  Taken together, these data show there are two patterns of Ecm5/Snt2 

binding: Ecm5 and Snt2 localize to discrete peaks within promoters of most target genes, but 

also localize to gene bodies in some highly expressed genes.  In the latter case, Ecm5 and Snt2 

redistribute away from gene bodies and to the 5’ and 3’ ends of genes in response to H2O2-stress.
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Ecm5 and Snt2 target genes have functions in stress response and metabolism

I next determined what categories of genes Ecm5 and Snt2 were targeting.  To sort out 

which genes were targeted by Ecm5 and Snt2 generally, and which were specifi c to the H2O2 

response, I next compared the 315 shared Ecm5/Snt2 ChIP peaks before H2O2 treatment with 

the 817 shared peaks 0.5 hours after treatment and determined which peaks in these two sets 

overlapped by at least 200 bp (Figure 4.7A).  This analysis generated three lists of peaks: the 151 

peaks of Ecm5/Snt2 binding present before H2O2 treatment but not after, the 652 peaks present 

only after treatment, and the 164 peaks present both before and after treatment.  The fi rst two 

lists of peaks represent regions of Ecm5 and Snt2 binding that are either enhanced or diminished 

by H2O2 treatment.  In contrast, the last set of peaks represents constitutive Ecm5/Snt2 ChIP 

targets.  

To compile lists of Ecm5/Snt2 target genes, I defi ned each gene’s promoter as the 

region from 500 bp upstream of the start codon to the start codon.  I then determined which 

gene promoters overlapped Ecm5/Snt2 shared peaks by at least 200 bp before and after H2O2 

treatment, and used these gene lists as input for the FuncAssociate program which determines 

functional categories of genes enriched among each set (Berriz et al., 2009).  This analysis 

found that target genes that only contained promoter-bound Ecm5 and Snt2 before treatment 

were enriched for translation and ribosome genes.  The translation and ribosome gene categories 

were also enriched among targets with Ecm5 and Snt2 present only before or both before and 

after H2O2 treatment (Figure 4.7B, yellow and orange bars).  In addition, genes involved in 

sugar metabolism (hexose biosynthetic process, gluconeogenesis) and retrotransposon function 

(transposition) were enriched among the general Ecm5/Snt2 targets, but not among H2O2-
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Figure 4.7 Gene ontology analysis of promoters containing peaks of Ecm5 and Snt2 ChIP -
seq reads
A. Venn diagram showing the overlap between Ecm5 and Snt2 shared peaks before and 0.5 
hours after H2O2 treatment. B. Categories of genes signifi cantly over-represented among genes 
whose promoters contained Ecm5/Snt2 peaks before H2O2 treatment only (yellow), both before 
and after H2O2 treatment (orange), or after H2O2 treatment only (red).
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specifi c targets, suggesting that regulation of carbohydrate metabolism and transposition genes 

may be general functions of the Rpd3(T) complex.  The presence of retrotransposons among 

Ecm5 and Snt2 target genes is especially interesting, since recent studies have linked stress and 

nutrient starvation to retrotransposon activation (Morillon et al., 2000; Stamenova et al., 2008), a 

response that Ecm5 and Snt2 may help regulate.  

Among the genes containing Ecm5 and Snt2 at their promoters only after H2O2 treatment, 

genes involved in the oxidative stress response, oxidation-reduction processes, plasma membrane 

functions, and amino acid transport and synthesis were enriched (Figure 4.7B, red bars).  These 

are all categories of genes that would be expected to be up- or down-regulated to help cells 

recover from oxidative stress: in addition to the up-regulation of oxidative stress response 

genes to help yeast repair damage caused by the H2O2, genes involved in oxidative-reductive 

metabolism would be expected to be up- or down-regulated to help the cell maintain the proper 

redox state in response to H2O2-triggered oxidation.  Furthermore amino acid transporters and 

genes involved in amino acid biosynthesis might be important in helping cells remake proteins 

damaged by H2O2.  Lastly, while not signifi cant among the H2O2-specifi c Ecm5 and Snt2 

target genes, functional analysis of the complete list of Ecm5 and Snt2 target genes 0.5 hours 

after H2O2 treatment revealed that cell wall genes are enriched among this set (p=4.5x10-7).  

Approximately half of these genes had peaks of Ecm5 and Snt2 binding both before and after 

treatment, while the other half only had binding after, explaining why this category was not 

found signifi cant when these two lists were separated.  The regulation of cell wall genes by Ecm5 

and Snt2 might explain the cell wall phenotypes reported for some ecm5 mutants (Lussier et al., 

1997).  In summary, Ecm5 and Snt2 generally localize to genes involved in translation and sugar 
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metabolism, and in response to H2O2, these proteins localize to additional genes, whose functions 

directly refl ect the needs of a cell trying to respond to and repair oxidative stress-induced 

damage.

Gene expression analysis of the ecm5 and snt2 knockout strains before and after H2O2 stress

Because Ecm5 and Snt2 localize to many gene promoters, I hypothesized that they might 

function in gene regulation.  More specifi cally, because these proteins are in a complex with the 

Rpd3 histone deacetylase, and histone deacetylation and Rpd3 have both been linked to gene 

repression (Allfrey et al., 1964; Kadosh and Struhl, 1998; Vidal and Gaber, 1991), I thought 

the Rpd3(T) complex might repress genes in response to H2O2 stress.  I therefore used RNA-

sequencing (RNA-seq) to look for expression differences in cells lacking Ecm5 or Snt2, before 

and 0.5 hours after H2O2 treatment.  I chose to only focus on the 0.5 hour time-point, because all 

of the Ecm5 and Snt2 localization changes happened at within this window, and were returned 

to the pre-treatment state by 4 hours.  With Scott’s help, cDNA from three biological replicates 

of each strain before and after H2O2 treatment was sequenced and aligned using the TopHat 

software, and genes showing differential expression from wild-type were identifi ed using the 

Cuffdiff software (Trapnell et al., 2009; Trapnell et al., 2010).  The numbers of sequencing reads 

for each sample are summarized in Table A.2, in the Appendix.  I fi rst sought to confi rm the 

RNA-seq results by performing qPCRs on cDNA made from the same RNA samples submitted 

for sequencing, and found both techniques were in good agreement (Table 4.1).  
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Table 4.1 Comparison of expression ratios 0.5 hours after H2O2 
treatment determined by RNA-seq and qPCR a
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In wild-type cells, 3127 genes had signifi cant expression changes in response to H2O2 

treatment (Table 4.2, statistical signifi cance determined by Cuffdiff software).   In comparison, a 

separate study reported 1294 genes up- or down-regulated at least two-fold after H2O2 treatment 

(Gasch et al., 2000).  My study identifi ed a larger number of genes in part because Cuffdiff 

uses a more lenient cut-off for signifi cance: fold differences as low as 1.3 as can be considered 

signifi cant if there are enough reads for the model to statistically call a difference.  In addition, 

the slightly higher concentration of H2O2 I used (0.4 mM in my study compared to 0.32 mM in 

the Gasch study) may have accounted for larger number of genes changing in my experiment.  

Importantly, 1031 of the 1294 genes (80%) identifi ed as responding to H2O2 in wild-type cells in 

the Gasch et al. study were also signifi cantly up- or down-regulated in my study, confi rming that 

my H2O2 treatment produced similar expression changes to what has been previously reported.

Because Ecm5 and Snt2 are part of the same complex, and localize to the same regions 

of the genome, I initially expected that knockouts for these two proteins would show similar 

gene expression changes.  However, consistent with the lack of phenotype for the ecm5 knockout 

strain I saw in my genetic assays, this strain had only a very limited effect on gene expression: 

before H2O2 treatment only 33 genes were signifi cantly up- or down-regulated in the ecm5 

knockout strain relative to expression in the wild-type stain, and after treatment, only 7 genes had 

altered expression (Table 4.2).  Both before and after treatment ECM5 was the most signifi cantly 

down-regulated gene in the ecm5 knockout strain.  Interestingly, 5 out of the 14 genes up-

regulated in the ecm5 knockout strain before treatment, were cell wall mannoproteins genes, 

including the FIT1 gene, whose up-regulation in ecm5 cells I discussed in the previous chapter.  

The up-regulation of these cell wall proteins in the ecm5 knockout strain may be responsible for 

the cell wall phenotypes reported in this mutant (Lussier et al., 1997).
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Table 4.2 Summary of Gene Expression Differences a
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In contrast, the snt2 knockout strain had a much larger number of genes differentially 

expressed, with 172 genes signifi cantly up- or down-regulated compared to wild-type expression 

before treatment and 737 genes up- or down-regulated compared to wild-type after treatment 

(Table 4.2).  SNT2 was the most down-regulated gene in the snt2 knockout strain before and 

after treatment.  At both time-points, there was little to no overlap between the genes in the 

ecm5 strain and the genes in the snt2 strain that were misexpressed, suggesting that despite 

being associated with Snt2, Ecm5 does not function in the same manner as Snt2 with respect to 

gene regulation.  Of the 737 genes with up- or down-regulated in the snt2 knockout compared 

to wild-type expression 0.5 hours after H2O2 stress, 573 (78%, p = 4.1x10-75) were also genes 

whose expression was up- or down-regulated in wild-type cells 0.5 hours after H2O2 treatment, 

compared to wild-type expression before treatment.  The high degree of overlap between genes 

misregulated in the snt2 knockout strain and genes whose expression change as a part of the 

wild-type response to H2O2 treatment further implicate Snt2 in the oxidative stress response.  

Genes showing differential expression in the snt2 knockout fall into the same functional 

categories as genes found to be Ecm5/Snt2 targets by ChIP

Using FuncAssociate, I identifi ed categories of genes showing expression changes in 

the snt2 knockout before and after H2O2 stress.  Similar to the sets of genes identifi ed as Ecm5/

Snt2 ChIP targets, many of these genes had roles in metabolism.  For instance, many of the 

genes up- or down-regulated in the snt2 mutant before H2O2 treatment were involved in energy 

homeostasis functions such as acetyl-CoA metabolism, NAD metabolism, oxidation-reduction 

processes, and the tricarboxylic acid (TCA) cycle (p values: 8.8x10-7, 5.5x10-5, 1.3x10-6, and 
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5.8 x10-8, respectively).  After treatment, many of the genes showing expression differences fell 

into categories related to protein synthesis, including ribosome, translation, rRNA processing, 

nucleolus, and amino acid biosynthesis (p values: 1.3x10-16, 2.1x10-9, 1.37x10-16, 1.18x10-19 

4.4x10-8, respectively).  In addition, genes involved in the yeast cell wall (p value 1.2x10-5) were 

also enriched in the set of genes showing expression differences after H2O2 treatment.

Direct comparison of ChIP and Expression Data

Surprisingly, many of the gene targets of Ecm5/Snt2 binding either before or after 

H2O2 treatment showed no expression differences in the ecm5 or snt2 knockout strains at either 

time-point.  Of the 312 Ecm5/Snt2 target genes in untreated cells, only 25 were over- or under-

expressed at least 1.5-fold in the snt2 strain at that time-point.  After H2O2 treatment 98 of the 

312 genes were 1.5-fold over- or under-expressed in the snt2 knockout strain compared to wild-

type expression after treatment, suggesting that Ecm5 and Snt2 may mark some gene targets 

before Snt2 is required for their regulation.  There were 1205 genes with Ecm5/Snt2 peaks in 

their promoters after H2O2 treatment, and of those, 403 were over- or under-expressed at least 

1.5-fold in the snt2 strain at that time.  In summary, only some of the Ecm5/Snt2 target genes 

require Snt2 for proper expression, and almost none require Ecm5.

To look more carefully at target genes most likely to be directly regulated by Snt2, 

I focused my attention on the 1205 genes that were found to have Ecm5/Snt2 peaks at their 

promoters 0.5 hours after H2O2 treatment.  Of those, 813 (66%) changed expression at least 1.5 

fold in wild-type cells in response to H2O2 stress, and 403 (33%) were misexpressed in the snt2 

strain after H2O2 treatment.   There were 309 target genes that were on both lists, and I felt these 
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would be most interesting for future study (Figure 4.8A).  Thus, I was able to identify 309 genes 

that contained Ecm5 and Snt2 at their promoters after H2O2 treatment, changed expression in 

wild-type cells in response to H2O2, and were also misexpressed in snt2 cells 0.5 hours after 

treatment.

As discussed above, I originally expected that direct targets of Snt2 would have higher 

expression levels in the snt2 knockout strain than in wild-type.  Surprisingly, however, the gene 

expression patterns proved much more complicated.  To get a broad sense of gene expression 

patterns before and after treatment, Deyou generated heatmaps, showing the expression profi les 

of these genes clustered into 4 groups (Figure 4.8B, with clusters labeled above the heatmap).  

The fi rst group is made up of genes whose expression levels were low before H2O2 treatment, 

were induced in wild-type cells after treatment, and were induced even more strongly in the snt2 

knockout.  The second group of genes also had low basal expression that was induced in wild-

type cells after treatment, and in snt2 knockout cells, these genes were either not induced at all 

in response to treatment or were induced less in the wild-type strain.  In contrast, the third and 

fourth groups were genes repressed upon H2O2 treatment that were either repressed more weakly 

or more strongly than wild-type levels, respectively in snt2 cells after treatment.  Since direct 

targets of the Snt2 could be either activated or repressed in the snt2 knockout strain, Snt2 seems 

likely to be capable of promoting both transcriptional activation and repression, depending on the 

context.

As another way to look at this data, I plotted the log2 expression ratios of each of the 309 

genes on a two-dimensional plot (Figure 4.9, top left panel).  In this plot, each dot represents one 

gene, and the x-axis represents the log2 ratio of expression in wild-type cells 0.5 hours after H2O2 
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Figure 4.8 Ecm5 and Snt2 ChIP target genes that change expression in wild-type cells in 
response to H2O2 and are misexpressed in the snt2 strain after H2O2 treatment
 A. Genes with shared peaks of Ecm5 and Snt2 ChIP-seq reads at their promoters 0.5 hours 
after H2O2 treatment were selected.  Of those, genes whose expression was 1.5-fold higher 
or lower in the snt2 knockout strain after H2O2 treatment compared to wild-type expression 
levels at that time (genes misexpressed in snt2) were isolated (red circle), and genes whose 
expression was 1.5-fold higher or lower after H2O2 treatment in wild-type cells compared to 
wild-type expression before treatment (H2O2 response genes) were isolated (purple circle).  The 
Venn diagram shows the overlap of these two gene sets (309 genes). B. Heatmap showing the 
RNA-seq expression levels of the 309 shared genes descrived in (A) in the indicated strains 
before and 0.5 hours after H2O2 treatment.  The color key for the heatmap is shown below the 
panel. The heatmap can be roughly divided into 4 clusters, labeled above the panel, based on 
whether genes increase or decrease expression in wild-type cells after treatment, and whether 
expression in the snt2 knockout strain after treatment is higher or lower than wild-type 
expression at that timepoint.
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Figure 4.9 Different subsets of the 309 genes respond differently to the absence of Snt2
Dot plots showing the log2 expression ratios of the 309 genes identifi ed in Figure 4.8.  The 
xaxis for these plots is the log2  ratio of expression in wild-type cells 0.5 hours after H2O2 
treatment compared to expression in wild-type cells before treatment.  The y axis is the log2 
ratio of expression in the snt2 knockout strain 0.5 hours after treatment compared to expression 
in wild-type cells after treatment.  The top left panel shows all 309 genes in black, with regions 
of the graph corresponding to the four clusters described in Figure 4.9 labeled in blue.  The 
remaining panels have points representing genes that are part of the indicated functional 
categories highlighted in red.
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treatment compared with wild-type expression before treatment.  Similarly, the y-axis represents 

the log2 ratio of expression in the snt2 strain after H2O2 treatment compared with wild-type 

expression values after treatment.  Thus, genes that fall in the top right quadrant of the plot, 

for example, represent genes that are induced in wild-type cells in response to H2O2 stress, and 

over-expressed in snt2 cells after stress.  This quadrant roughly corresponds to group 1 in the 

heatmap in Figure 4.8B.  Based on this plot, it is clear that while there are slightly more genes 

in the top-left quadrant of the plot (or group 3 the heatmap), overall, there is no strong pattern of 

expression.

I next looked for categories of genes whose members were enriched among these 309 

genes, to see if distinct patterns of gene expression could be discerned for different types of 

genes.  I identifi ed genes involved in the plasma membrane, cellular biosynthesis, and translation 

as being over-represented among the 309 genes.  Interestingly, these different categories of 

genes showed different expression patterns.  The biosynthesis genes, were largely repressed in 

wild-type cells following H2O2 stress, consistent with the cell halting new biosynthesis until 

damaged molecules could be repaired.  In snt2 knockout cells, these genes were both up- and 

down-regulated relative to wild-type, showing no clear pattern of regulation (Figure 4.9, bottom 

left panel).  In contrast, most plasma membrane genes were over-expressed in the snt2 knockout 

strain after treatment, suggesting that overall, Snt2 functions to repress genes in this category 

after H2O2 stress (Figure 4.9, top right panel).  The clearest expression pattern could be seen for 

translation genes, which were almost all down-regulated in wild-type cells in response to H2O2, 

and under-expressed (down-regulated too much) in snt2 cells, suggesting that Snt2 might be 

needed for activation of this set of genes (Figure 4.9, bottom right panel).  Notably many of these 



142

genes were the highly expressed genes enriched for Ecm5 and Snt2 in their gene bodies before 

treatment at their 5’ and 3’ ends after, suggesting that this localization pattern is correlated with 

Snt2 activation function.  In summary, Snt2 can function to both activate and repress genes, with 

different functional categories associated with different Snt2 behavior.

Comparing nutrient stress and oxidative stress responses

Despite treating cells in the experiments described above with an agent to induce 

oxidative stress, every experiment identifi ed genes with metabolic functions.  This is perhaps 

unsurprising given that, as discussed in the introduction to this thesis, stress and metabolism are 

highly linked.  In addition, there is genetic evidence linking the Rpd3(T) complex to metabolism.  

The synthetic genetic screen I described in the previous chapter found that the ecm5 knockout 

is synthetically sick in combination with deletion of the amino acid starvation sensor Gcn1 

(Table 3.3).  Furthermore, a newer ECM5 synthetic genetic screen (Zheng et al., 2010), the 

results of which are listed in Table 4.3, also uncovered multiple genes linked to oxidative stress 

and nutrient metabolism, including GLN3 and GAT2, transcription factors that regulate genes 

involved in amino acid metabolism.  I therefore wondered whether Rpd3(T) complex function 

could be directly linked to nutrient metabolism. 

Ecm5 protein levels decrease in stationary phase

To investigate whether the Rpd3(T) complex has a role in nutrient metabolism, I fi rst 

determined whether levels of these complex members change as cells enter stationary phase.  In 

contrast to the logarithmic phase of yeast growth, in which yeast have abundant nutrients and 
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Table 4.3 Knockouts that have synthetic growth phenotypes in 
combination with ecm5 a
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grow and divide at their maximal rate, stationary phase occurs when yeast cells have exhausted 

most of the nutrients in their media (generally within 12-24 hours of inoculation in rich media), 

and do not have enough nutrients left to synthesize the precursors needed for growth.  Many 

cellular and metabolic changes occur as yeast shift to stationary phase, including the transition 

from anaerobic glycolysis to aerobic fermentation known as the diauxic shift (Galdieri et 

al., 2010).  In addition stationary phase yeast have thicker cell walls, accumulate storage 

carbohydrates, and are more resistant to stress (Werner-Washburne et al., 1993).  Despite not 

actively dividing, yeast can remain viable in stationary phase for signifi cant periods of time, 

and will resume growth and division if supplemented with nutrients (Lillie and Pringle, 1980).  

Because yeast in stationary phase remain alive but are quiescent, stationary phase growth has 

been suggested to be a good model for aging in mammalian systems (Chen et al., 2005).  To 

determine whether protein levels of the Rpd3(T) complex members change during stationary 

phase, I cultured PrA-tagged Ecm5, Snt2, and Rpd3 strains in YPD for 7 days, taking aliquots of 

cells each day for whole cell extracts.  Snt2 and Rpd3 protein levels remained roughly constant 

at all time-points (Figure 4.10 A and B).  In contrast, levels of tagged Ecm5 decreased starting 

around 24 hours after the initial culture inoculation (Figure 4.10C).  This result was opposite to 

what happened to Ecm5 protein levels upon acute H2O2 treatment.  It is possible that the same 

mechanisms that render stationary phase cells more resistant to oxidative stress underlie this 

difference in Ecm5 reaction to H2O2 (Galdieri et al., 2010).

Levels of H4K16 acetylation are known to increase as yeast cells reproductively age (have 

many daughters) (Dang et al., 2009).   Because of the link between this histone modifi cation and 

yeast aging, I thought it would be interesting to check whether H4K16ac levels increase as cells 
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Figure 4.10 Comparison of H4K16ac and tagged Ecm5, Snt2, and Rpd3 protein levels 
before and during stationary phase
A-C. PrA-tagged Snt2, Rpd3, or Ecm5 strains as well as an untagged control strain were 
cultured for one week in rich media (YPD). Whole cell extracts taken at the indicated times 
after inoculation were analyzed by immunoblotting to measure tagged Snt2 (A) Rpd3 (B) and 
Ecm5 (C) protein levels.  Direct Blue 71-stained membranes and immunoblots for histone 
H3 are shown as loading controls. (D) An immunoblot showing H4K16ac levels in a wild-
type strain at the indicated times post-inoculation. An H4 immunoblot and Direct Blue stained 
membrane are shown as loading controls.  Numbers to the left of blots denote molecular 
weights.
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enter stationary phase, which is a model of chronological aging.  Surprisingly, I saw a decrease 

in H4K16ac as cells entered stationary phase (Figure 4.10D).  A recent publication also reported 

fi nding decreased H4K16ac levels by mass spectrometry, in stationary phase cells, consistent 

with my fi ndings (Ngubo et al., 2011).  Usually replicative lifespan and chronological lifespan 

models of aging in yeast are thought of as being similar, but these results suggest there are 

meaningful differences between these two aging models.

Mutants lacking Snt2 are resistant to the TOR pathway inhibitor rapamycin

The ChIP and gene expression studies described earlier in this chapter link Ecm5 and 

Snt2 to genes involved in many aspects of metabolism, including sugar utilization, amino acid 

transport, as well as the TCA cycle and redox reactions.  However, the categories of genes that 

seemed to come up most often were translation and ribosome.  I therefore chose to extend these 

studies to involve direct perturbation of protein metabolism using the chemical rapamycin.  

Rapamycin is an inhibitor of the yeast target of rapamycin complex 1, or TORC1, which is 

responsible for sensing and signaling the availability of extracellular nutrients such as amino 

acids (Wei and Zheng, 2011).  When nutrients are abundant, TORC1 signaling is active, telling 

yeast cells to keep growing while there are enough raw materials to do so, and promoting 

translation initiation and ribosome biogenesis.  In addition, active TORC1 represses cellular 

stress response and nitrogen-catabolite repression (NCR) genes.  However, when nitrogen-rich 

nutrients become scarce, the TOR pathway is inhibited, leading to the repression of translation 

and ribosome genes and the activation of stress and NCR genes.  By inhibiting this pathway, 

rapamycin treatment mimics this amino acid starvation response.  As with the oxidative stress 
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response, several studies have already implicated Rpd3(L) complex function in the response to 

rapamycin (Humphrey et al., 2004; Rohde and Cardenas, 2003; Tsang et al., 2003).

I fi rst wanted to see whether the snt2 knockout strain showed any resistance to 

rapamycin.  I spotted wild-type or ecm5, snt2, or rpd3 knockout strains onto SD CSM (synthetic 

defi ned with complete supplement mixture) plates supplemented with either DMSO or 50 nM 

rapamycin.  I chose to use the less nutrient rich SD CSM, instead of YPD, for these experiments 

because I was concerned that cells grown in rich media might have a chance to accumulate 

nutrient reserves that would allow them to be more resistant to nutrient stress in ways that 

would mask true stress-resistant phenotypes.  All strains grew similarly to wild-type in SD CSM 

supplemented with DMSO alone, and the growth defect seen when the rpd3 knockout strain was 

grown in YPD was almost completely gone on the SD CSM media (Figure 4.11).  Consistent 

with what has been reported in the literature, the rpd3 knockout strain was resistant to rapamycin 

treatment (Tsang et al., 2003).  In addition, the snt2 strain also showed resistance, linking Snt2 

protein function to metabolic as well as oxidative stress.

Mapping Ecm5 and Snt2 localization before and after rapamycin treatment

I next mapped Ecm5 and Snt2 localization before and after rapamycin treatment using 

ChIP-seq.  This experiment was done similarly to the H2O2 ChIP-seq experiment, except that for 

reasons mentioned above, strains were grown in SD CSM media, and after harvesting the cells at 

the initial time-point, each culture was split into two and treated either with DMSO, as a control, 

or with rapamycin.  The rapamycin treatment clearly had an effect on the cells, since cells 

receiving this treatment had slower growth (based on OD600 measurements) than cells treated 
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Figure 4.11 The snt2 knockout strain is resistant to rapamycin
Five-fold serial dilutions of mid-log phase cultures of wild-type (BY4741) and ecm5, snt2, 
and rpd3 strains were spotted on the SD CSM plates supplemented with either DMSO or 50 
nM rapamycin. Plat es were photographed 3 days later.
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with DMSO (data not shown).  The ChIP-seq read counts for this experiment are summarized in 

Table A.3, in the Appendix.  

Interestingly, cells grown in SD CSM media without any additional treatment did not 

show the same patterns of Ecm5/Snt2 enrichment found in cells grown in YPD.  Rather, the ChIP 

profi les of untreated cells grown in SD CSM were actually more similar to the H2O2-treated cells 

grown in YPD (see Figure 4.12A for a representative region of the genome).  Of the 278 Ecm5/

Snt2 shared peaks in cells grown in SD CSM before rapamycin treatment, almost half overlapped 

with peaks only found in YPD-grown cells 0.5 hours after H2O2 treatment (Figure 4.12B).  The 

similarities in Ecm5/Snt2 localization in cells grown in less rich media and H2O2-treated cells 

suggest that that H2O2 stress and the stress of not having as many nutrients trigger some of the 

same responses.

Just as H2O2 treatment triggered new sites of Ecm5/Snt2 ChIP enrichment, so too did 

rapamycin treatment, resulting in 558 shared peaks 0.5 hours after treatment, compared to 278 

peaks before treatment.  Most of these new sites of Ecm5/Snt2 enrichment were also enriched 

after H2O2 treatment, suggesting that both treatments lead to a similar response, with regard to 

Ecm5 and Snt2.  I compared peaks of Ecm5/Snt2 binding 0.5 hours after rapamycin treatment 

with peaks found in DMSO-treated cells to generate three lists of peaks – those that were only 

seen in rapamycin-treated cells (rapamycin-specifi c targets), those that were seen in both DMSO- 

and rapamycin-treated cells (general targets), and those that were only seen in DMSO-treated 

cells (targets that Ecm5 and Snt2 leave in response to rapamycin treatment) (Figure 4.13A).  

Different types of genes were targeted by the peaks in each list (Figure 4.13A).  General targets 

of Ecm5/Snt2, tended to be genes involved in sugar metabolism, amino acid transport, as well 
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Figure 4.12 Ecm5 and Snt2 ChIP profi les in less rich media resemble profi les 0.5 hours 
after H2O2 treatment in rich media
A. Ecm5- and Snt2-Myc ChIP-seq tracks from both untreated and H2O2-treated yeast grown 
in YPD, and untreated yeast grown in SD CSM. B. Overlap between Ecm5/Snt2 ChIP peaks 
seen in YPD-grown cells only after H2O2  treatment and peaks in SD CSM-grown cells prior to 
rapamycin treatment.
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Figure 4.13 Rapamycin-specifi c peaks are involved in amino acid metabolism
A.  Overlap between Ecm5/Snt2 ChIP peaks 0.5 hours after rapamycin treatment and peaks 
0.5 hours after DMSO control treatment. Categories of genes enriched among the three sets of 
genes whose promoters contain each set of ChIP peaks are listed next to their corresponding 
section in the diagram. B. Specifi c examples of genes showing changes in Ecm5/Snt2 ChIP 
enrichment in response to rapamycin treatment at the promoter and/ or ORF region.
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as cell wall and membrane maintenance.  Genes whose promoters were enriched for Ecm5/Snt2 

before treatment and in DMSO-treated cells, but not in rapamycin treated cells were involved in 

the ribosome and translation.  For instance, YEF5, a gene which encodes a translation elongation 

factor, is enriched for Ecm5 and Snt2 throughout its gene body before and 0.5 hours after 

DMSO-treatment, but this enrichment is gone in cells treated with rapamycin (Figure 4.13B, 

left panel).  (While the majority of Ecm5/Snt2 enrichment at the gene is seen within the coding 

region of YEF5, enough of this peak overlapped with the promoter region that it was pulled out 

in this analysis).  In contrast, genes involved in amino acid metabolism and nutrient transport 

were enriched among the rapamycin-specifi c targets.  For instance, the gene body and promoter 

of the gene encoding the Dur3 nitrogen transporter, and the promoter of the gene encoding 

the Gat1 transcriptional activator of involved in nitrogen signaling, only show Ecm5 and Snt2 

enrichment after rapamycin treatment (Figure 4.13B, middle and right panels).  In summary, 

consistent with rapamycin treatment inhibiting protein synthesis and promoting nitrogen uptake 

and metabolism, this chemical caused Ecm5 and Snt2 to relocate away from genes involved in 

translation and to genes involved in amino acid metabolism and nutrient transport.

Unlike H2O2, which only induces transient changes in Ecm5 and Snt2 localization, 

rapamycin treatment led to changes in localization that were more long lasting: the ChIP-seq 

profi les of Ecm5- and Snt2-tagged strains 4 hours after treatment were very similar to those 

seen at the earlier, 0.5 hour time-point (data not shown).  Curiously, there were approximately 

40 genes that showed increased levels of Ecm5 and Snt2 localization in their gene bodies 4 

hours after DMSO treatment.  For instance, high numbers of Ecm5 and Snt2 reads were found 

in the gene bodies of the MET6 and MET3 genes 4 hours after DMSO treatment, but not after 
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rapamycin treatment (Figure 4.14A and B).  I noticed that many of these genes were known to 

be involved in the biosynthesis of the sulfurous amino acids methionine or cysteine.  Indeed, an 

analysis of genes known to be involved in the sulfur metabolism pathway revealed that all but 

2 genes were enriched for Ecm5 and Snt2 4 hours after DMSO treatment (Figure 4.14C).  Since 

the DMSO-control cells were able to grow and divide at a normal rate, they were quite dense 

when I harvested them.  In contrast, cells that received rapamycin treatment slowed down their 

cycling and had not gotten as dense at this late time-point.  Therefore, the localization of Ecm5 

and Snt2 to these sites may be part of some kind of response to the cultures getting dense and 

beginning to undergo the diauxic shift.  More likely, Ecm5 and Snt2 may be localizing to sulfur 

metabolism genes as a direct response to prolonged exposure DMSO, which itself is a sulfur-

containing molecule, suggesting that caution should be used when using DMSO as a control.

Chapter 4 Discussion

The experiments described in this chapter present multiple lines of evidence that the 

Rpd3(T) complex functions in the yeast oxidative stress and metabolic stress response pathways.  

First, Ecm5 protein levels were found to respond to changes in stress and nutrient levels.  Ecm5 

levels increased in some experiments in response to H2O2 treatment.  In contrast, Ecm5 protein 

levels decreased as cells entered stationary phase of growth, a state where nutrients are limiting.  

Given that stationary phase is generally thought to be a state in which cells are exposed to 

increased levels of oxidative stress, presumably because of the increased amount of respiration 

occurring during this phase (Galdieri et al., 2010), it is somewhat surprising that Ecm5 protein 

levels would respond differently to entry into stationary phase and H2O2 treatment.  However, 



154

Figure 4.14 Ecm5/Snt2 localize to sulfur metabolism gene bodies in DMSO-treated cells 
A. Examples of sulfur metabolism genes with increased numbers of Ecm5/Snt2 ChIP-seq reads 
4 hours after DMSO treatment. ChIP-seq tracks are as in Figure 4.3. B. Diagram of sulfur 
metabolism with genes involved in boxes.  Boxes around genes enriched for Ecm5/Snt2 ChIP 
reads 4 hours after DMSO treatment  are colored yellow.
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unlike cells growing exponentially and suddenly encountering an unexpected dose of H2O2, 

stationary phase cells are known to be resistant to stress (Galdieri et al., 2010).  This difference 

between stationary phase growth and acute H2O2 stress may underlie the differential Ecm5 

protein response to these two states.  Furthermore, some studies have called into question the 

idea that cells undergoing respiration have increased levels of oxidative stress.  One study found 

that cells undergoing respiration as a response to calorie restriction actually had lower levels 

of H2O2 released per O2 consumed (Barros et al., 2004).  The authors of this study suggest 

that active respiration may promote effi cient electron fl ow through the mitochondrial electron 

transport chain and prevent electron leakage that leads to ROS formation.

Second, I have shown that the snt2 knockout strain is resistant to H2O2-mediated 

oxidative stress, both on solid media and in liquid culture.  The increased growth of the snt2 

knockout on H2O2-containing plates could be because snt2 cells divided more rapidly than 

wild-type cells once plated or because more snt2 cells survived the initial plating.  The results 

of the liquid survival assay, which measures survival independent of growth rate, support the 

latter possibility.  These fi ndings suggest that the Rpd3(T) complex might actively promote cell 

death in response to H2O2 treatment.  While yeast are not normally associated with programmed 

cell death, prior research from former Allis laboratory graduate student Sung Hee Ahn Upton 

showed that H2O2 can trigger an apoptosis-like cell death process in yeast, and that a knockout 

for the rpd3 histone deacetylase has increased survival in H2O2 (Ahn et al., 2006; Ahn et al., 

2005).  My experiments confi rmed this fi nding and found that the snt2 knockout had even better 

survival, suggesting that in response to H2O2 the Rpd3(T) complex has a role in promoting 

apoptosis.  



156

The higher level of stress resistance seen with the snt2 knockout strain compared to that 

of the rpd3 knockout was surprising given that they are members of the same complex.  It is 

possible that Snt2 has a function in the oxidative stress response that is independent from Rpd3’s 

role.  Alternatively, since Rpd3 is known to have many cellular roles, and functions in two 

complexes separate from the Rpd3(T) complex, the less severe stress resistance seen with the 

rpd3 knockout may refl ect pleiotropic effects simultaneously promote and impede resistance to 

oxidative stress.

As a third piece of evidence that the Rpd3(T) complex functions nutrient metabolism, I 

have shown that in unstressed cells, the genes whose promoters are enriched for Ecm5 and Snt2 

have translation and carbohydrate metabolism functions.  Furthermore, Ecm5 and Snt2 ChIP 

profi les were shown to be radically different 0.5 hours after H2O2 treatment.  In response to H2O2, 

Ecm5 and Snt2 were found to localize to many new gene promoters and to redistribute away 

from the gene bodies and into 5’ and 3’regions of certain highly expressed genes.  Moreover, the 

types of genes that Ecm5 and Snt2 localize to in untreated cells were functionally distinct from 

the H2O2-specifi c targets.  In contrast with the genes involved in translation and carbohydrate 

metabolism that were general Ecm5 and Snt2 targets, after H2O2 stress Ecm5 and Snt2 localized 

to genes involved in amino acid metabolism, transmembrane transport, oxidation-reduction 

reactions, cell wall and plasma membrane function, and response to oxidative stress.  H2O2 

treatment is known to inhibit protein translation, which allows cells time to clear proteins 

and metabolites damaged by H2O2 before resuming biosynthesis (Shenton et al., 2006).  This 

inhibition of protein synthesis requires Gcn1, one of the proteins whose deletion that was found 

to result in synthetic sickness in combination with an ecm5 knockout (Collins et al., 2007).  The 
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presence of Ecm5 and Snt2 at amino acid metabolism genes and the redistribution of Ecm5 and 

Snt2 from gene bodies to promoter regions of ribosomal protein genes after H2O2 treatment 

may refl ect a potential role for Ecm5 and Snt2 in regulating this translational inhibition and the 

subsequent cellular need to generate new amino acids for when translation resumes.

As further evidence that the Rpd3(T) complex functions in the oxidative and nutrient 

stress pathways, rpd3 and snt2 mutants were also resistant to the TOR inhibitor rapamycin, 

which promotes an amino acid starvation response in yeast.  Furthermore, just as H2O2 treatment 

stimulated many new Ecm5/Snt2 genomic associations, so too did rapamycin treatment.  While 

the H2O2-specifi c Ecm5 and Snt2 targets were involved in myriad stress and metabolism 

functions, the smaller number of rapamycin-specifi c targets tended to be genes involved in amino 

acid metabolism.  Even before rapamycin treatment, the mere growth of cells in the less rich SD 

CSM media already prompted Ecm5 and Snt2 association with more targets than the number of 

genes targeted when cells are grown in YPD, and many of these targets were genes that Ecm5 

and Snt2 localize to in response to H2O2 treatment.  These results suggest that whatever cellular 

state is triggered by H2O2 treatment resembles the state of cells without an abundance of nutrients 

around.  In support of this idea, one study found that cells starved for an essential amino acid had 

increased levels of reactive oxygen species, suggesting that lack of nutrients can directly promote 

oxidative stress (Eisler et al., 2004).  More recently, starving yeast were shown to up-regulate 

oxidative stress response genes (Petti et al., 2011).  One open question from this work is whether 

the relocalization of Ecm5 and Snt2 upon H2O2 treatment is a direct consequence of oxidative 

stress signaling or a secondary consequence of the high degree of crosstalk known to exist 

between the stress and nutrient signaling pathways.
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A fi nal piece of evidence linking the Rpd3(T) complex to oxidative and nutrient stress 

is that the genes over- or under-expressed in the snt2 knockout strain are also involved in these 

pathways.  Moreover, there is a high degree of overlap between genes misexpressed in the 

snt2 strain after H2O2 treatment and genes whose expression levels change in wild-type cells in 

response to H2O2.  In contrast to the gene expression changes seen in the snt2 strain, the ecm5

strain had very few genes misexpressed, consistent with the genetic data showing that deletion of 

Ecm5 did not promote H2O2 or rapamycin resistance.  More discussion of the potential reasons 

why deletion of ECM5 does not show the same striking phenotypes as SNT2 deletion will be 

presented in the fi nal discussion chapter to this thesis.

Of course, the key question is whether the Rpd3(T) complex localizes to target genes 

to regulate gene expression.  The majority of Ecm5 and Snt2 target genes both before and after 

H2O2 treatment show no expression differences in the snt2 strain.  While surprising, this result 

is consistent with two other reports about the Rpd3(L) complex, which showed this complex 

is localized at the promoters of ribosomal protein genes whose expression do not change when 

Rpd3 is deleted (Kurdistani et al., 2002; Rohde and Cardenas, 2003).  These studies and my own 

fi ndings suggest that in many cases the Rpd3(T) complex may be poised at target genes, waiting 

for a signal or additional factor needed for the complex to affect gene expression.

I did isolate a subset of 309 genes that contained Ecm5 and Snt2 at their promoters, 

changed expression in wild-type cells, and were also differentially expressed in the snt2 

knockout strain after H2O2 treatment.  While I initially thought Rpd3(T) would be a repressive 

complex, I found that while some of these genes were over-expressed in the snt2 strain, others 

were repressed, suggesting that the link between Rpd3(T) function and gene expression is 
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complicated.  Again, previous studies of the Rpd3(L) complex have paved the way for these 

fi ndings, showing that this complex is needed for both activation and repression of target genes 

in response to stress (Alejandro-Osorio et al., 2009; De Nadal et al., 2004).  Genes falling within 

the same functional category were more likely to be regulated by Snt2 in similar ways.  While 

not defi nitive, this result is consistent with a model in which different factors associate with the 

Rpd3(T) complex at different gene targets and modulate its activity, an idea I will discuss further 

in the next chapter.

Surprisingly, Ecm5 and Snt2 showed two distinct modes of binding.  While in most cases, 

these proteins were localized in gene promoters, there were a number of genes that contained 

Ecm5 and Snt2 within their gene bodies in untreated cells.  This pattern of binding was often 

correlated with highly expressed genes, so it would be interesting to see if H3K36me3 levels, 

which are known to correlate with transcription level (Pokholok et al., 2005), are higher at these 

genes, which would be consistent with the Rpd3(T) complex being recruited to these genes 

through the reported weak interaction between the Ecm5 PHD fi nger and this mark (Shi et al., 

2007).  After H2O2 treatment, Ecm5 and Snt2 were no longer enriched in the coding regions 

of these genes, but rather appeared to relocalize to the 5’ and 3’ ends.  Intriguingly, genes that 

had this pattern of localization were generally repressed upon H2O2 treatment, and in many 

cases were even more repressed after treatment in the snt2 strain, suggesting that this pattern 

of localization is correlated with Rpd3(T) acting as a transcriptional activator.  In summary, 

Ecm5 and Snt2 localize to promoters and some coding regions of genes involved in stress and 

metabolism, and Snt2 is required for the proper expression levels of a subset of the Ecm5 and 

Snt2 target genes, suggesting that the Rpd3(T) complex may function to regulate gene expression 

in response to metabolic and oxidative stress signals.
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CHAPTER 5: GENERAL DISCUSSION

The study of yeast PHD fi ngers led to the discovery of a new chromatin regulatory complex

 The research described in this thesis was undertaken with the goal of learning more 

about the functions of the PHD fi nger-containing proteins Jhd2 and Ecm5.  Because of the 

domain structures of Ecm5 and Jhd2, and because both proteins are localized to the nucleus, I 

hypothesized that they would function to regulate chromatin.  Early support for this hypothesis 

came from my own pull-down experiments showing that the PHD fi ngers of both proteins 

interact with histone H3.  In addition, studies from other laboratories have successfully mapped 

Jhd2 on chromatin using the ChIP technique (Ingvarsdottir et al., 2007; Radman-Livaja et al., 

2010), and shown that this protein can act as an H3K4 demethylase (Liang et al., 2007; Seward 

et al., 2007; Tu et al., 2007).  My own ChIP experiments have successfully mapped the genomic 

localization of Ecm5, as well as its interaction partner, Snt2.  In addition, I have characterized 

an Ecm5-containing complex that also contains Snt2 and the Rpd3 deacetylase.  I have chosen 

to call this complex the Rpd3(T) complex, to highlight its catalytic deacetylase subunit.  This 

allows the reservation of the term Snt2C to refer to a possible subcomplex containing Ecm5 and 

Snt2 only, which I will discuss more below.  Thus, both Ecm5 and Jhd2 bind to chromatin and 

contain or are associated with histone-directed enzymatic activity.

 I have shown that members of the Rpd3(T) complex are not required to prevent cryptic 

transcription, a known function for another Rpd3-containing complex, Rpd3(S).  In addition, I 

have demonstrated that ecm5 knockout cells do not have obvious defects in the cell wall, DNA 

damage repair, the cell cycle, the cellular morphogenesis checkpoint, meiosis, or sporulation.  
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Rather, a genetic interaction between ECM5 and a gene required for the yeast oxidative stress 

response led me to uncover a role for Rpd3(T) in regulating the yeast oxidative stress and 

nutrient metabolism pathways.

The many domains in Ecm5 and Snt2 are likely to work in combination to recruit or 

stabilize the Rpd3(T) complex on chromatin

 Many of the domains in Ecm5 and Snt2 are part of families with known functions in 

chromatin interaction, including the PHD fi nger, a domain that has been a focus of this research.  

It is likely that these domains help promote or stabilize Rpd3(T) complex binding on chromatin.  

I have shown that the Ecm5 PHD fi nger interacts with histone H3 and have found a moderate 

enrichment for H3K36me3 in the H3 pulled-down.  The Gozani lab has also reported that the 

Ecm5 PHD interacts with H3K36me3, albeit weakly (Shi et al., 2007).  While I was unable to 

confi rm a direct association between the Ecm5 PHD and H3K36me3, possibly because of the 

weakness of this reported interaction, I did fi nd that Ecm5 and Snt2 localize to the gene bodies of 

highly transcribed genes, which are known to have the highest levels of H3K36me3 (Pokholok et 

al., 2005).  At these genes, the high levels of this mark may compensate for a weak Ecm5-PHD 

interaction in helping this complex bind to or remain at these chromatin regions.  

 In an interesting twist for a project that was initiated because of PHD fi ngers, Snt2 has 

three PHDs of its own.  Gozani and colleagues reported that the second Snt2 PHD could interact 

very weakly with H3K36me as well as with an H3 peptide centered around K79, irrespective of 

methylation status (Shi et al., 2007).  They were unable to fi nd associations between the other 

two Snt2 PHDs and the chromatin marks they tested.  These domains may interact with some 
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of the more recently described sites of yeast lysine methylation mentioned in the introductory 

chapter, with arginine methylation, or with non-histone proteins.  In addition to PHD fi ngers, 

Ecm5 contains an ARID domain, and Snt2 contains BAH and SANT domains.  In other 

proteins, these domains have been shown to mediate DNA or histone interactions (Armache 

et al., 2011; Boyer et al., 2004; Kuo et al., 2012), and it is likely that multiple weak DNA or 

histone interactions mediated through these individual domains work in combination to recruit 

Ecm5 and Snt2 to specifi c chromatin locations, or to stabilize these proteins on chromatin once 

recruited.  The kinetic and thermodynamic cases for how multiple weak interactions allow 

chromatin regulators to bind tightly but reversibly to their substrates has been well described 

in a review on the topic of “multivalency” in chromatin associations from Dr. Alex Ruthenburg 

and colleagues, and the references therein (Ruthenburg et al., 2007).  In the future, it would be 

interesting to produce the Snt2 BAH, SANT, and three PHD domains recombinantly, singly 

and in combination, and to test them all for histone binding in pull-down assays.  Future ChIP 

experiments with tagged Ecm5 or Snt2 strains containing point mutations in these various 

domains may also reveal interesting functions for these domains in mediating interactions 

between Rpd3(T) and chromatin.

Potential models for the role of Rpd3(T) in regulating stress and metabolism

 In the previous chapter, I presented multiple lines of evidence that the Rpd3(T) complex 

regulates yeast metabolism and the oxidative stress response.  A key question that is unresolved 

in this work is what is the exact mechanism for this regulation.  The exact nature of the signal 

that promotes Ecm5 and Snt2 localization to new promoter regions in less rich media and after 



163

oxidative stress remains unclear, as does the mechanism by which Ecm5 and Snt2 promote 

changes in gene expression at a subset of their targets.  The simplest model for the latter question 

would be if Rpd3(T) were recruited to gene promoters (and sometimes coding regions) so that 

Rpd3 could deacetylate these regions and repress the gene targets.  However, there is no clear 

pattern of expression differences of these genes in the snt2 knockout: some genes are up-

regulated in the absence of Snt2, while others are down-regulated.  Furthermore, I identifi ed a 

large number of Ecm5 and Snt2 target genes whose expression was no different than wild-type 

expression levels either before or after stress.  These fi ndings demonstrate that the link between 

Rpd3(T) complex function and gene regulation is more complicated than the simple model that 

Rpd3(T) represses target genes. 

 Precedence for more complicated types of gene regulation exists in the literature. For 

example, a single factor in yeast can be associated with both activating and repressing activity, 

depending on the context.  A study from Fred Winston’s laboratory has shown that the yeast 

Hap1 protein, which is known to activate genes during aerobic growth, also directly represses 

ergosterol biosynthesis genes during hypoxia (Hickman and Winston, 2007).  Hap1 localizes 

to the promoters of the ergosterol genes both during hypoxia, when it is needed for repression, 

and during aerobic growth, when it is needed for activation of these genes, and cellular 

concentrations of heme dictate whether Hap1 acts as an activator or a repressor.  In this example, 

whether Hap1 activates or represses genes depends on the state of the entire cell, whereas my 

data suggest Snt2 function might be capable of activating or repressing genes in the same cell, 

although it is possible that genes that were over- or under-expressed in the snt2 knockout strain 

came two a different subpopulations of cells within the culture (e.g. cells that experienced high 

levels of H2O2 vs. cells that received lower doses). 
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 There are other possible models for how Snt2 could promote both gene activation and 

repression (Figure 5.1).   Snt2 may exist as part of two distinct complexes, one whose sole other 

member is Ecm5, and one that also contains Rpd3 – Rpd3(T).  The mass spectrometric results 

I discussed in the third chapter show that Rpd3 can associate with Ecm5 and Snt2, but they do 

not rule out a possible subcomplex consisting of Ecm5 and Snt2 only.  The Rpd3(T) complex 

may localize to the promoters that require Snt2 for repression, while and Ecm5 Snt2 subcomplex 

localizes to other promoters and gene bodies to promote activation (possibly by recruiting 

additional transcription factors) (Figure 5.1A).  An Rpd3-indendent function for Snt2 might 

explain why the snt2 knockout strain has markedly better survival in response to H2O2 stress 

than the rpd3 knockout, although it is also possible that pleiotropic effects of RPD3 deletion are 

responsible for this result.  In theory, Ecm5 and Snt2 could also have functions independent from 

one another.  However, within the genome, I do not see regions where one is bound without the 

other, suggesting Ecm5 and Snt2 function as a unit on chromatin.  One of the most important 

next experiments for this work will be to use ChIP to map Rpd3 localization before and after 

oxidative stress, and see whether some targets of Ecm5 and Snt2 binding are not Rpd3 targets.

 Another possibility is that the Rpd3 localizes to all the same genes that Ecm5 and Snt2 

localize to, and depending on which other factors are present, can promote gene activation 

or repression.  As mentioned earlier, other studies have found examples of genes containing 

Rpd3 at their promoters that require Rpd3 for activation (De Nadal et al., 2004; Ruiz-Roig 

et al., 2010; Sertil et al., 2007; Sharma et al., 2007).  This could be the result of the Rpd3(T) 

complex recruiting different factors that either promote or repress transcription (Figure 5.1B).  

It is possible that in some cases, deacetylation of specifi c histone lysines might promote 
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Figure 5.1 Models for possible ways that Snt2 might directly regulate both gene activation 
and repression
A. Ecm5 and Snt2 might be recruited without Rpd3 to promoters that require Snt2 for 
activation, subsequently recruiting transcription factors, while other promoters might recruit the 
entire Rpd3(T) complex for HDAC-mediated repression. B. The Rpd3(T) complex might be 
recruited to promoters that require Snt2 for activation, where the complex functions primarily 
to recruit other transcription factors (Txn factor), while at promoters that require Snt2 for 
repression,  Rpd3(T) might recruit transcriptional repressors (Rep). C. Different regulatory 
factors (Factor) interacting with Rpd3(T) may change the preferred histone lysine substrates 
of Rpd3, with deacetylation of specifi c histone lysines potentially promoting transcription and 
deacetylation of other histone lysines repressing it. D. Different regulatory factors (Factor) 
interacting with Rpd3(T) may change the preferred substrate of Rpd3 to a n on-histone protein, 
with deacetylation of the non-histone substrate potentially promoting transcription and 
deacetylation of a histone substrate repressing it.
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Figure 5.1 Models for possible ways that Snt2 might directly regulate both gene activation 
and repression 
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transcriptional activity (Figure 5.1C).  It also remains possible that despite being bound to 

chromatin, Rpd3(T) does not affect histone acetylation at the genes it activates, but rather 

deacetylates non-histone factors that are recruited in the vicinity of this complex, which then 

promote transcription (Figure 5.1D).  These models are not exclusive, and combinations of two 

or more of them, could be happening in vivo.

 Another Rpd3-containing complex, Rpd3(L), has also been shown to regulate stress 

and metabolism genes (De Nadal et al., 2004; Humphrey et al., 2004; Kremer and Gross, 2009; 

Rohde and Cardenas, 2003; Ruiz-Roig et al., 2010; Tsang et al., 2003).  Like the snt2 knockout 

strain, knockouts for Rpd3(L) subunits have been shown to be rapamycin resistant (Rohde 

and Cardenas, 2003).  In addition, a recent study has found that in response to TOR pathway 

activation, the Rpd3(L) complex localizes to and represses ribosomal biogenesis and ribosomal 

protein gene promoters (Huber et al., 2011).  In this research, I have also found Ecm5 and Snt2 

localized at promoters and in some cases, gene bodies, of these types of genes.  Therefore, 

the Rpd3(T) complex could possibly be a subcomplex of Rpd3(L) that only associates under 

conditions of oxidative or nutrient stress.  This could explain why Ecm5 and Snt2 were never 

detected in IPs for Rpd3(L) subunits, and why Rpd3(L) subunits were not detected in my own 

Ecm5 and Snt2 IPs, all of which were performed in lysates from unstressed cells.  It would 

be interesting to repeat these IPs in cells treated with H2O2 or rapamycin to look for new 

associations. 
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Could plant homeodomain fi ngers act as redox sensors?

 Reactive oxygen species (ROS) are damaging to cells in part because they can directly 

oxidate cysteine side chains of proteins.  While this oxidation generally renders proteins 

nonfunctional, and is therefore deleterious, cysteine oxidation can have a positive role in 

regulating cellular response to redox status.  In yeast, the Yap1 transcription factor is one of the 

better examples of this type of regulation.  As discussed in the introductory chapter, Yap1 is 

normally exported from the nucleus, but when intracellular levels of H2O2 are high, two cysteines 

in Yap1 are oxidized, forming an intramolecular bond.  This results in a conformation change 

that masks Yap1’s nuclear export sequence, allowing it to accumulate in the nucleus and activate 

oxidative stress response genes.  

 The PHD fi nger is a domain defi ned by the presence of multiple cysteine residues, which 

are required for the proper folding of this module.  Oxidation of PHD cysteines, which would be 

expected to perturb these folds, would likely alter or prevent the chromatin associations of these 

modules.  Not all cysteines are equally good substrates for oxidation (Le Moan et al., 2006).  

Nevertheless, I speculate that if PHD domains can become oxidized in response to higher levels 

of cellular ROS, the proteins or complexes containing these domains might then rely more on 

their other chromatin-interacting motifs for chromatin localization, and might therefore localize 

to different regions of the genome.  Cells might use PHDs as redox sensors as a mechanism to 

alter the genomic associations of PHD fi nger proteins, resulting in differential gene regulation in 

response to oxidative stress.

 If such a mechanism does exist in yeast cells, the Rpd3(T) complex would be a good 

candidate complex for redox sensing.  While Ecm5 appears to be dispensable for complex 
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function, the three Snt2 PHD domains may not be.  I have already demonstrated that Ecm5 and 

Snt2 localize to new loci in response to H2O2 treatment.  This might be an indirect effect of H2O2 

treatment, but it is possible that H2O2 treatment directly oxidizes one or more Snt2 PHD fi ngers, 

resulting in a conformational change that allows Ecm5 and Snt2 to bind to new regions in the 

genome.  Future experiments that map complex localization before and after oxidative stress 

in cells with mutations in the Snt2 PHD cysteines might provide evidence for this mechanism.  

Because of the concern that cysteine mutation might just destabilize or unfold Snt2, it would be 

important to establish that the localization of Snt2 containing PHD point mutations was normal 

in the absence of oxidative stress.  In addition, it would be interesting to perform western blots 

for tagged Snt2 on whole cell extracts from untreated and H2O2-treated cells, using non-reducing 

conditions, to look directly for evidence of disulfi de bond formation. 

What does Ecm5 do, and why does the mutant lack a phenotype in these assays?

 The ultimate goal that drove this research was to gain insights into the function(s) of 

Ecm5, and it was a genetic interaction with ECM5 that led me to test whether the Rpd3(T) 

complex was involved in the oxidative stress response.  I was therefore surprised to fi nd that 

the snt2 knockout strain had such dramatic phenotypes while the ecm5 knockout strain did not.  

The high degree of genomic colocalization these two proteins have made this result all the more 

surprising.  Thus, in spite of great strides in identifying interaction partners for Ecm5 and fi nding 

roles for them in oxidative stress and cellular metabolism pathways, at the end of this project, I 

am left facing the same question I had when I began: just what exactly does Ecm5 do?
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 It is possible that Ecm5 physically associates with Snt2 and Rpd3, but is not needed for 

their genomic localization or association with one another.  If this is the case, Snt2-mediated 

gene regulation would not be expected to be perturbed in cells lacking Ecm5, which would 

explain how so few genes’ expression levels differ from wild-type in ecm5 knockout cells.  

Future ChIP experiments in strains where one member of the Rpd3(T) complex is tagged and one 

member is deleted could help to unravel the mechanism for this complex biology.  

 While very preliminary, in H2O2 plate assays, the ecm5snt2 double mutants have 

phenotypes more similar to ecm5 cells, or somewhere in between ecm5 knockouts and snt2 

knockouts, suggesting that the functions of Ecm5 and Snt2 might be opposed (Figure 5.2A).  

It is possible that in wild-type cells, Ecm5 functions to inhibit Rpd3 activity and that Snt2 

prevents Ecm5 from doing this, allowing Rpd3 to remain active at Rpd3(T) target genes, and 

enact gene expression changes that cause cells to be sensitive to H2O2 (Figure 5.2B).  Under this 

model, in ecm5 cells, Rpd3 would be active, and would sensitize cells to H2O2.  In snt2 cells, 

there would be nothing protecting Rpd3 from Ecm5-mediated repression, causing Rpd3 to be 

inactivated.  Without Rpd3-mediated changes in gene expression, cells would remain resistant to 

H2O2.  In rpd3 cells, the gene expression changes that promote H2O2-mediated cell death would 

not occur, resulting in H2O2-resistant cells.  However, other effects from the loss of Rpd3(L) and 

Rpd3(S) complex function may blunt the H2O2 resistance, explaining why rpd3 cells are less 

resistant than snt2 cells.  In ecm5snt2 double mutants, Rpd3 would be active, promoting 

cell death in response to H2O2 stress, explaining why this double mutant phenotypically is more 

similar to wild-type and ecm5 yeast strains and not the snt2 knockout strain.  This model would 

also suggest that in certain cell states, Ecm5 could be freed from Snt2-mediated repression, and 

could actively inhibit Rpd3.
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Figure 5.2 Preliminary evidence that Ecm5 and Snt2 might oppose one another and a 
model for how this might work 
A. Dilutions of saturated overnight cultures of the indicated mutant strains were spotted onto 
YPD alone or YPD supplemented with 4 mM H2O2.  Plates were imaged after 2 days. B. The 
phenotypic resemblance of the ecm5 snt2 double knockout strain to the ecm5 single knockout 
strain could be explained by a model where Ecm5 represses Rpd3 function and Snt2 represses 
Ecm5.  In wild-type cells, these activities would result in active Rpd3, which could promote 
changes that sensitize cells to H2O2.  The corresponding states for each mutant are diagramed 
below the wild-type case.
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 At the moment, this model is speculative, and will require further testing to confi rm.  

To that end, it will be important to determine what happens to Rpd3(T) complex composition 

when one member of the complex is deleted.  In addition, in vitro histone deacetylation assays 

with Rpd3(T) complex purifi ed from cells lacking either Ecm5 or Snt2 could test whether Ecm5 

represses Rpd3 activity, and whether Snt2 inhibits this repression.  Because of the diffi culties of 

purifying large quantities of Rpd3(T) complex, in vitro deacetylase assays with fully recombinant 

Rpd3 alone, or in complex with recombinant Ecm5 and/or Snt2, may be a more feasible way to 

see whether Ecm5 and Snt2 affect Rpd3 activity.  In support of this model, Yi Zhang’s laboratory 

has shown that the presence of the non-Rpd3 subunits of the Drosophila homolog of the Rpd3(T) 

complex inhibits Rpd3 activity (Lee et al., 2009).

 As I mentioned in the introductory chapter, Ecm5 contains a JmjC domain that seemingly 

does not have demethylase activity.  While this domain lacks the conserved residues predicted to 

interact with Fe(II), it retains some of the residues predicted to bind to  -ketoglutarate (Figure 

5.3).  The JmjC domain is part of a larger superfamily of domains with oxygenase activity 

(Loenarz and Schofi eld, 2008).  Other functions for domains in this family include the post-

translational modifi cation of proteins by prolyl-hydroxylation and arginine demethylation.  While 

the Fe(II)-binding triad of histidine, aspartate or glutamate, and histidine is conserved in most 

members of this family, this triad is not universal.  Therefore, an intriguing possibility is that 

the Ecm5 JmjC possesses a catalytic activity distinct from lysine demethylation.  Future in vitro 

reactions with Ecm5 purifi ed from yeast, may reveal such an activity.
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Figure 5.3 The Ecm5 JmjC domain possesses many of the residues predicted to bind 
-ketoglutarate
JmjC domain alignments consisting of amino acids 470-575, 486-591, 414-521, and 509-667 of 
the full-length RBP2 (Homo sapiens, NCBI accession # NP_00103068), PLU1 (Homo sapiens 
# NP_006609), Jhd2 (S. cerevisiae, # NP_012653.1), and Ecm5 (S. cerevisiae, # NP_013901.1), 
respectively, with askterisks, colons , and periods under fully, strongly, and weakly conserved 
residues, respectivel y. Predicted Fe(II) binding residues are highlighted in light red, and 
predicted -ketoglutarate-binding residues are in light blue. Predicted residues come from 
Klose et al., 2007; Yamane et al., 2007; and Li et al. 2008.
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Evolutionary reasons for the snt2 mutant phenotype and competitive fi tness of this strain

 I have shown that increased numbers of cells survive H2O2-mediated stress when SNT2 or 

RPD3 is deleted, compared to survival in a wild-type strain, suggesting that part of the function 

of the Snt2 and Rpd3 is to inhibit cell division and promote cell death in response to high 

levels of oxidative stress.  Unlike H2O2 treatment, rapamycin treatment, which mimics nutrient 

stress, does not promote cell death, but rather just slows cell division (data not shown), and 

strains lacking Snt2 or Rpd3 are resistant to rapamycin.  These results suggest that in response 

to oxidative stress Rpd3 and Snt2 act to promote cell death, while in response to nutrient stress 

Rpd3 and Snt2 act to inhibit cell division.  

 It might at fi rst, seem counterintuitive that yeast would evolve a protein complex that 

would slow down their growth or promote cell death.  In multicellular organisms, the case can be 

made that the quiescence or death of one cell may be important for the survival and reproductive 

success of the whole organism, and so makes good evolutionary sense.  Yeast, on the other 

hand, are only single cells, and should therefore have evolved mechanisms that promote the 

fastest growth and reproduction.  Nonetheless, the existence of a cell death pathway in yeast 

has now been well-documented, and scientists have speculated that death of chronogically aged 

or stressed yeast cells may allow for the release of nutrients into the media which promote the 

growth and survival of healthier yeast cells within the population as a whole (Herker et al., 2004; 

Madeo et al., 2004).  While this strategy is disadvantageous for the dying cell, it benefi ts the 

rest of the population, and given that yeast cells within a population are genetically similar, a 

population benefi t also helps the cell that has died to pass on its genes.  A similar mechanism is 

known to occur in the bacterium Bacillus subtilis.  When Bacillus cells are starved for nutrients, 
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a fraction of the cells undergo a switch that allows them to secrete extracellular factors that kill 

the cells around them (Claverys and Havarstein, 2007).  The secreting cells can then feed on the 

remains of their dead siblings.  This behavior has been delightfully named “cannibalism,” and is 

also proposed to help this species survive extreme stress.

 In keeping with these ideas, I hypothesize that Rpd3 and Snt2 inhibit cell growth in 

response to nutrient stress because in the long run, continuing to divide under such stress would 

be deleterious to the yeast population.  Inhibiting growth in response to low levels of stress 

allows cells time to repair damage, conserve energy, and regenerate key molecules.  In cells 

too damaged to successfully keep reproducing, cell death allows that other cells to at least gain 

a nutritional benefi t, which may provide them with the energy needed to activate their own 

stress defense pathways.  Based on these hypotheses, I expect that snt2 cells would have a 

fi tness defect compared to wild-type cells.  To test this idea, I have performed a preliminary 

competition experiment, in which equal numbers of wild-type and snt2 cells were inoculated 

into SD CSM and cultured over several days. Cultures were diluted with fresh media each day, to 

avoid looking for differences in chronological age.  Surprisingly, under these conditions, snt2 

cells out-competed wild-type cells, as measured by the proportion of total cells in the culture 

that possessed the G418 resistance marker and therefore were deleted for SNT2 (Figure 5.4).  

In hindsight, this may be because the conditions of this experiment were conducive to growth.  

Perhaps only under extreme stress conditions, where it is vital that cells not divide until damage 

is repaired, and that damaged cells clear the way for intact ones, would a fi tness defect emerge 

for the snt2 knockout strain.  Future competition experiments that test various stress conditions, 

such as repeated exposure to H2O2, rapamycin treatment, starvation media, or chronological 

aging, may reveal such a defect. 
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Figure 5.4 The snt2 knockout strain out-competes the wild-type strain
Equal numbers of wild-type and either ecm5 or snt2 knockout cells were co-inoculated into 
the same SD CSM cultures.  Immediately and 12 hours after inoculation, samples were taken, 
diluted, and plated to determine the numbers of wild-type and knockout cells in each culture.  
After 24 hours in culture, and each subsequent day, cultures were diluted to 2x105 cells/mL in 
fresh media, and samples were taken, diluted, and plated for counting.  Dilutions of cultures 
were plated on both knockout-selective and non-selective media, and viable colonies were 
counted two days post-plating.  The number of viable knockout cells in a sample was then 
divided by the total number of cells in that same sample.  Graphs show the means and SEMs 
of these ratios for 3 replicates each for competitions between snt2 and wild-type and between 
ecm5 and wild-type strains .



177

The implications of this research: live long, stay healthy, and drink up!

 I initially embarked on this project with the hope that anything I learned about Jhd2 or 

Ecm5 might be applicable to their human homologs, the JARID proteins.  Excitingly, there is 

evidence for human complex similar to Rpd3(T).  The human RBP2/JARID1A protein has been 

shown to be a member of a large complex that includes a PHD fi nger-containing protein called 

Pf1 and the Rpd3 homolog HDAC2 (Hayakawa et al., 2007).  It would be interesting to use 

ChIP-seq to map the localization of subunits of this complex in human cell lines before and after 

exposure to ROS or nutrient starvation conditions to see if this complex associates with different 

genomic regions in response to these insults.  It is now well established that increased exposure 

to oxidative stress and perturbed cellular metabolism contribute to numerous human disease 

states, including cancer, diabetes, and age-related neuropathies (Alic and Partridge, 2011; Dazert 

and Hall, 2011; Lin and Beal, 2006; Roberts and Sindhu, 2009).  Therefore, if humans contain a 

pathway analogous to Rpd3(T) that is responsible for regulating metabolism and stress response, 

understanding this complex may have important implications for understanding the factors that 

contribute to these diseases.

 This research may also have applications in combatting pathogenic fungi.  There are 

numerous species of fungi that can infect the human body.  Candida albicans is the most 

common human fungal pathogen, causing opportunistic infections in humans (Beck-Sague and 

Jarvis, 1993).  C. albicans populates the gastrointestinal tract, and oral and vaginal mucosa of 

most people.  For healthy individuals, and this does not generally pose a problem (Kim and 

Sudbery, 2011).  However, in patients whose immune systems are compromised, as a result 

of diseases like AIDS, blood cancers, or the use of immunosuppressive therapies, C. albicans 
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infections can escape immune control, causing infection of the skin, infection of the mouth 

(thrush), infection of the throat (esophagitis), and infection of the bloodstream (candidimia).  

Even though anti-fungal treatments for Candida are available, once this pathogen has infected 

the bloodstream, it is fatal in more than 50% of cases (Andes et al., 2012).  In healthy 

individuals, macrophages fi ght infections of this fungus by generating ingesting C. albicans 

cells and generating superoxide (Vazquez-Torres and Balish, 1997), so the oxidative stress 

response pathways of this fungus act as key virulence factors.  A better understanding of how 

these pathways allow Candida to resist stress could be used to design new treatments for this 

pathogen.

 While the human health implications for the research described in this thesis should 

not be belittled, these fi ndings may also have relevance outside of the biomedical sphere.  The 

production of beer, wine, and other alcoholic beverages depends on the effi cient fermentation 

of sugars into alcohol by S. cerevisiae.  In fact, the word “cerevisiae” comes from the Latin 

“of beer.”  Yeast are known to actively up-regulate oxidative stress response genes during beer 

fermentation (Higgins et al., 2003; James et al., 2003).  Furthermore, the oxidation of compounds 

in the beer can have profound effects on the beer’s fl avor (Bamforth and Lentini, 2009; 

Vanderhaegen et al., 2006).  Therefore, the beer industry actively researches the yeast oxidative 

stress response, seeking strains that have a strong oxidative stress response and that also secrete 

antioxidants that will prevent oxidation of compounds in the beer (Berner and Arneborg, 2012).  

The research described in this thesis regarding how yeast regulate their sugar metabolism and 

respond to oxidative stress may have important implications for helping to craft a better beer.  

While no beer made from genetically-modifi ed yeast is currently sold commercially, this is likely 
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to change in the future, and genetic alterations that tinker with Rpd3(T) function may create a 

yeast strain that makes a better beer.  Even without genetically engineering, screening wild yeast 

isolates for strains with altered levels of the proteins in this pathway, may lead to the discovery 

of exciting new beer strains.  Lastly, understanding the environmental factors that contribute to 

Rpd3(T) mediated response may help brewers fi nd small changes they can make to their beer-

making procedures that can result in tastier outputs. 



180

MATERIALS AND METHODS

Yeast strains and culture conditions

All S. cerevisiae strains used for this research are listed in Table M.1.  With the exception of 

the strains used for sporulation assays, which were made on the SK1 background, all strains 

are isogenic to BY4741 or BY4742, which are derivatives of S288C.  Transformation of yeast, 

culturing, media preparation, and general strain handling were all performed using the methods 

described in Methods in Yeast Genetics and the references therein (Amberg et al., 2005).  The 

uracil plasmid pRS426  was transformed following a previously published protocol for yeast 

plasmid transformation (Elble, 1992).  Where indicated in Table M.1, deletion strains come 

from the S. cerevisiae haploid nonessential genome deletion library (Winzeler et al., 1999), 

and all deletions were verifi ed by PCR.  Additional deletion strains were created by targeting 

the kanMX4 or hphMX4 antibiotic resistance cassettes to the genes of interest (Goldstein and 

McCusker, 1999; Wach et al., 1994).  Yeast were cultured in either YPD (1% yeast extract, 2% 

peptone, 2% dextrose) or Synthetic Defi ned Media with Complete Supplement Mixture [SD 

CSM, 0.17% yeast nitrogen base without amino acids or ammonium sulfate, 0.5% ammonium 

sulfate, 0.079% complete supplement mixture (CSM, MP Biomedicals), 2% dextrose].  Cultures 

were grown at 30oC with 200 rpm shaking.

Recombinant PHD Preparation

Yng1, Jhd2, and Ecm5 PHDs (amino acids 141-219, 221-300, and 1232-1295 of the full-length 

proteins, respectively) were cloned into pGEX-6P-1 (Amersham Pharmacia) which added an 

N-terminal gluthathione S-transferase (GST) tag.  Constructs were transformed into BL21 E. 
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Table M.1 Yeast strains used in this research a
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coli, and induced by adding isopropyl--D-thiogalactopyranoside (IPTG) (fc 0.2 mM) and 

incubating 15-20 hours.  E. coli containing GST fusion proteins were lysed using sonication 

and lysates were purifi ed using Glutathione Sepharose 4B (Amersham Pharmacia) following 

manufacturer’s recommendations.  The Yng1 W180E point mutation was created using 

QuikChange Site-Directed Mutagenesis Kit (Stratagene).

In vitro histone binding assays

To prepare histone acid extract, wild-type yeast were lysed by cryogenic lysis method (described 

below), and lysates were resuspended in 0.4 N H2SO4 and incubated for 30 minutes with rotation 

at 4oC.  Acid-soluble histones were separated from insoluble pellet and precipitated with TCA.  

Binding assays were performed by mixing acid extracts from 5.5x108 cell equivalents with 1 

g GST-tagged PHD fi nger or GST alone in binding buffer (150 mM NaCl, 20 mM HEPES 

pH7.9, 25% glycerol, 1.5 mM MgCl2, 0.2 mM EDTA, 1 mM PMSF, 0.2% Triton X-100) for 1 

hour at room temperature with nutation.  Glutathione Sepharose 4B resin (Amersham Pharmacia 

– 25 L) was then added and assays were nutated for 1 hour.  Resin was washed 3 times with 

wash buffer (300 mM KCl, 20 mM HEPES pH 7.9, 0.2% Triton X-100) and one time in fi nal 

wash buffer (4 mM HEPES pH 7.5, 10 mM NaCl).  Reactions were separated on 12% SDS-

PAGE gels, and transferred to PVDF membranes by dry transfer method.  Antibodies used to 

probe membranes were: -H3 (Abcam ab1791), -H4 (Abcam ab10158), -H2A (UBI ab07-

146), -H2B (UBI 07-371), -H3K4me3 (Abcam ab8580), -H3K4me2 (Abcam ab7766), 

-H3K36me3 (Abcam ab9050), and -GST (RPB1236, Amersham).
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Peptide pull-down assay

High capacity streptavidin agarose (Thermo/Pierce) was washed 2x in PBS and mixed with 

excess amounts of the following peptides in PBS: H3(1-20), H3(1-20)K4me3, H3(27-46), and 

H3(27-46)me3.  Peptides and resin were incubated 3 hours at room temperature, and washed 

3x PBS with 1% Triton X-100, and 1x in PBS.  For pull-downs, 20 L 50% bead slurries were 

mixed with 10g GST-tagged PHD or GST alone in peptide binding buffer [20 mM HEPES 

pH 7.9, 125 mM KCl, 0.1% Triton X-100, Complete Protease Inhibitor (Roche)] and incubated 

2 hours at 4oC.  Pull-downs were washed 3x in wash A [20 mM HEPES pH 7.9, 300 mM KCl, 

0.1% Triton X-100], 1x in wash B [4 mM HEPES pH 7.9, 10 mM KCl], and eluted in boiling 

SDS-Loading Buffer.  Elutions were separated on 4-20% Tris-Glycine Gels (Invitrogen) and 

stained with Coomassie.

In vitro translation and ubiquitylation assays

PHD fi ngers from S. cerevisiae Ecm5 (amino acids 1210-1318 of the full-length protein), Snt2 

(289-397 – PHD1, 1010-1125 – PHD2, and 1148-1279 – PHD3), Set3 (89-194), Yng1 (127-219), 

Jhd2 (227-313), Yng2 (200-282), Pho23 (252-330), Jhd1 (1-100), Set4 (132-238), Nto1 (235-

341 – PHD1 and 345-469 – PHD2), Rco1 (232-337 – PHD1 and 386-500 – PHD2), Bye1 (44-

162), Cti6 (44-151), Spp1 (1-100), and S. pombe Msc1 (1143-1248) were cloned into a pCS2+ 

vector with a 6-Myc tag and an SP6 promoter (Ben-Saadon et al., 2006).  pCS2+-Ring1B and 

pCS2+Ring1B with the RING domain deletion were gifts from Ronen Sadeh.  Cysteine point 

mutations were introduced using the QuikChange Site-Directed Mutagenesis Kit (Stratagene).  

In vitro translations were performed using the Promega Tnt SP6 High-Yield Wheat Germ 
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Protein Expression System per manufacturer’s instructions with the following specifi cations: 

250 ng plasmid were used, reactions were supplemented with 35S methionine, and reactions were 

incubated at 30oC for 2 hours.  

For ubiquitylation assays, translated PHDs or Ring1B were added to a reaction mix consisting 

of 40 mM Tris pH 7.5, 5 mM MgCl2, 2 mM DTT, 2.5 M ubiquitin aldehyde (Enzo Life 

Sciences), 5 g recombinant ubiquitin (Sigma), 3 M E2 enzyme, and 5 mM ATPS (Roche), 

to a fi nal volume of 10 L and incubated at 30oC for 1 hour.  Reactions and input translations 

were separated on 4-12% Bis-Tris gels (Invitrogen) which were dried and imaged using a 

phosphorimager.  For experiments testing ubiquitin or E1 requirements, and E2 concentrations, 

reaction mixes were altered as indicated in the fi gures.  Recombinant human UbcH13/Mms2 

and hHR6A were purchased from Enzo Life Sciences, and recombinant human E1 was a gift 

from Jaehoon Kim from Robert Roeder’s laboratory.  For reactions with bacterial S30 system, 

PHDs (same amino acids listed above) were cloned into the pT7-7 vector (Tabor and Richardson, 

1985), and translated using the S30 T7 High-Yield Protein Expression System (Promega) per 

manufacturer’s instructions with the following modifi cations: 11 ng plasmid was used, and 35S 

methionine was added to the translations which were incubated for 1 hour at 37oC.

Purifi cation of Jhd2 interaction partners and Rpd3(T) complex

Yeast strains in were constructed containing a Protein A (PrA) tag (Aitchison et al., 1995) at 

the C terminus of Jhd2, Ecm5, Snt2, or Rpd3.  Tagged strains as well as an untagged control 

strain, were grown in 10L batches to mid log phase.  Cells were collected by centrifugation and 
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prepared for cryolysis as described previously (Oeffi nger et al., 2007).  Briefl y, pellets were 

mixed with freezing solution [1.2% polyvinyvinylpyrrolidone (PVP), 20 mM HEPES pH 7.4, 10 

mg/mL PMSF, 0.04 mg/mL pepstatin], in a ratio of 100 L solution per mL of cell pellet.  This 

mixture was frozen in small droplets in liquid nitrogen, and frozen cell droplets were stored at 

80oC before lysis.  For lysis, ~10g frozen cells at a time were milled in a Retsch PM100 Mill, 

using the 125 mL-sized chamber.  Mill settings were 3 minute cycles at 400 rpm, switching 

directions at 1 minute intervals.  Mill chamber and ball bearings were cooled in liquid nitrogen 

before milling, chamber was recooled in liquid nitrogen between 3 minute cycles.  This was done 

for 8-12 total cycles, until very few intact cells were visible when samples of the lysate were 

viewed under the microscope.

Cryolysates from tagged strains or untagged control (20-30g each, depending in the IP, 34.5x1011 

cell equivalents) were resuspended in IP Buffer [20 mM HEPES pH 7.4, 2 mM MgCl, 300 mM 

NaCl, 0.1% Triton X-100,  0.1% Tween-20, 110 mM potassium acetate, 0.1 mg/mL PMSF, 2 ug/

mL pepstatin, 0.5% protease inhibitor cocktail for fungal and yeast cells (Sigma)] in a ratio of 

25 mL of buffer to 5 g lysate.  Recombinant DNase I was added (Roche, 30 units/g lysate), and 

lysates were rocked 10 minutes at room temperature.  Lysates were then homogenized using a 

Polytron homogenizer on setting 4 for 10 seconds and centrifuged for 10 minutes at 2300 g to 

precipitate insoluble material.  Buffer equilibrated, IgG-conjugated Dynabeads, made following 

the protocol of Cristea et al. (2005), were added to each clarifi ed lysate (10 uL beads/g lysate), 

and IPs were incubated 1 hour at 4oC with nutation.  IPs were washed 5 times in IP Buffer, and 2 

times in IP Buffer lacking detergents.  Samples were eluted by incubating twice in 0.5 N NH4OH, 
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0.5 mM EDTA for 15 minutes at room temperature with agitation, and eluted samples were dried 

in a speedvac.

For the Ecm5-PrA IP, eluted proteins were reduced with dithiothreitol (DTT), alkylated with 

iodoacetamide, and separated on 1D SDS PAGE.  Protein bands were stained with Gel Code 

Blue Stain Reagent (Thermo Scientifi c), and bands were excised for mass spectrometric 

identifi cation.  For the Snt2-PrA and Rpd3-PrA IPs, 5% of each elutate was analyzed by silver 

stain gel and 50% was reserved for mass spectrometry.  The remaining Rpd3-PrA eluate was later 

separated on a gel and stained with Gel Code Blue.  Stained bands on the gel were excised for 

additional mass spectrometric identifi cation.  

To confi rm Rpd3 association with Ecm5, eluate from a separate, small-scale Ecm5-PrA IP was 

separated on a 4-20% Tris Glycine gel (Invitrogen), and transferred to PVDF membranes by wet 

transfer method.  The membrane was cut in two and probed with the antibodies that recognize 

the PrA tag (rabbit--goat-IgG-HRP secondary antibody, Dako P0160) or Rpd3 (sc6654, Santa 

Cruz Biotechnology).

Mass spectrometric identifi cation of immunoprecipitated proteins

For the Ecm5-PrA and untagged control IPs, excised bands were destained with 50% methanol 

in 100 mM ammonium bicarbonate.  The gel bands were dehydrated and digested overnight at 

room temperature in 100 mM ammonium bicarbonate with 50 ng sequencing-grade modifi ed 

trypsin (Promega).  The digestion was stopped and the tryptic peptides extracted by adding 
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an aqueous solution of 5% formic acid, 0.2% trifl uoroacetic acid (v/v) and reverse phase resin 

(POROS 20 R2, Perseptive Biosystems).  After light shaking at 4°C for 4 hours the resin 

was washed with 0.5% acetic acid and the bound peptides were eluted with 40% acetonitrile 

followed by elution with 80% acetonitrile in 0.5% acetic acid.  The eluents were combined and 

concentrated in a speedvac.  

The concentrate was pressure-loaded onto a nano-HPLC column with integrated 15m emitter 

(360 x 75 m PicoTip emitter, New Objective) packed with 6 cm of 5m C18 beads (YMC ODS 

AQ).  The peptides were eluted with a linear gradient of 0-40%B in 50 min and 40-100%B in 

70 min (A = 0.1M acetic acid, B = 70% acetonitrile in 0.1M acetic acid) using an Agilent 1100 

binary HPLC and analyzed on a Finnigan LTQ-XL mass spectrometer (Thermo Fisher) equipped 

with a nano-HPLC microelectrospray ionization source.  The mass spectrometer was operated in 

a data dependent mode were one full scan mass spectrum was followed by 10 collision activated 

dissociation (CAD) mass spectra of the 10 most abundant ions.  The fragmented ions were set on 

an exclusion list for 40 s and the cycle repeated throughout the data acquisition.  The resulting 

spectra were searched against the Saccharomyces cervisiae database using the search program X! 

tandem. 

For Snt2-PrA, Rpd3-PrA, and control IPs, after elutions were dried by speedvac, samples were 

resuspended in 100 mM ammonium bicarbonate, reduced and alkylated (same procedure as for 

the gel) and digested with trypsin for 8 hours at 37oC digested overnight.  The digestion was 

stopped by acidifying the solution with glacial acetic acid. The solution was pressure loaded 
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onto self-packed pre columns (360x75 um), rinsed with 0.5% acetic acid to remove salt and 

butt-connected to the nano-HPLC column.  Peptides were separated, eluted and identifi ed as 

described above.  For further validation of the Rpd3-PrA IP results, the remaining 50% of this IP 

was treated as described for the Ecm5-PrA IP, with focus on excising the bands corresponding in 

molecular weight to Ecm5 and Snt2.

Plate spotting assays

YPD, SD CSM, or SD CSM-URA media containing 2% agar was autoclaved, media was allowed 

to cool to approximately 60oC, and supplements were added to the fi nal concentrations indicated 

in tables and fi gures.  Saturated overnight cultures (for spotting assays in Chapters 3 and 5) or 

exponentially-growing mid-logarithmic (mid-log) phase cultures (for assays in Chapter 4) were 

diluted to 5x106 cells/mL in YPD, and this was diluted 1:5 in YPD 4 more times, for a total of 

5 serial dilutions.  4 L of each dilution were spotted onto control or treated plates, which were 

incubated at 30oC (unless otherwise indicated) for 2-5 days, and imaged once spots or colonies 

were clearly visible.  

Rapamycin, 6AU (6-azauracil), calcofl uor white (fl uorescence brightener 28), caffeine, MMS 

(methyl methanesulfonate), benomyl (methyl 1-(butylcarbamoyl)-2-benzimidazolecarbamate), 

BCS (bathocuproinedisulfonic acid), and BPS (bathophenanthroline disulfonate) were purchased 

from Sigma-Aldrich.  HU (hydroxyurea) was purchased from Acros.  Camptothecan was 

purchased from Calbiochem/EMD chemicals.  Hygromycin B was purchased from Invitrogen, 

and H2O2 was purchased from Fisher.
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Yeast RNA Preparation

For RNA preparations, wild-type and knockout strains were grown to mid-log phase in YPD, 

and harvested by centrifugation followed by fl ash freezing in liquid nitrogen.  Cells were stored 

at 80oC before RNA was prepared.  RNA was extracted using hot acid phenol, as previously 

described (Collart and Oliviero, 2001).  RNA quality was assessed using the Nanodrop 

spectrophotometer (Thermo Scientifi c), by measuring the 260 nM wavelength absorption, by 

checking for a clean peak of absorption, and by ensuring that the 260nm/280 nM ratio was 

>1.8.  RNA was also assessed by separation on formaldehyde agarose gels followed by ethidium 

bromide staining to examine rRNA bands for degradation.  For qPCR, total RNA was treated 

with DNase I (Ambion).  For northern blots, Poly-A+ RNA was enriched from total RNA using 

an Oligotex mRNA kit (Qiagen).  

For RNA-sequencing experiments, wild-type, ecm5, and snt2 yeast strains were grown in 

YPD to mid-log phase (~1x107 cells/mL), at which point 40 mL of each strain were separated, 

centrifuged to isolate cells, and fl ash frozen.  H2O2 was added to each culture to a fi nal 

concentration of 0.4 mM, and cultures were harvested 0.5 and 4 hours later.  Cells were stored at 

80oC before RNA was prepared as described above.

Reverse transcription and quantitative PCR-based expression analysis

DNase I treated RNA was converted to cDNA using the Superscript III First Strand Synthesis 

Kit (Invitrogen), following manufacturer’s instructions.  For quantitative PCR (qPCR) assays in 

Chapter 3, random hexamers were used to prime cDNA formation, while oligo dT was used to 
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prime the cDNA used for the qPCRs in Chapter 4.  Reverse transcribed cDNA was then used in 

qPCR reactions with SYBR Green reagent (Applied Biosystems), and incorporated fl uorescence 

was measured either on a Strategene Mx3000p Instrument (for qPCR assays in Chapter 3) or 

on an Applied Biosystems StepOnePlus Real Time PCR System(for qPCR assays in Chapter 

4).  Primers for all qPCR reactions are listed in Table M.2.  Dilutions of pooled cDNAs were 

used to generate standard curves for each primer set, and qPCR reactions were quantitated based 

on comparison to the standard curve, and normalized to the relative expression of ACT1.  All 

expression experiments were done with three biological replicates.

Northern blots

1 g of poly-A+-enriched RNA from each strain was separated on a formaldehyde agarose gel 

and transferred to Hybond membrane (GE Healthcare) using capillary transfer, after denaturing 

gel in 0.05 N NaOH for 30 minutes and neutralizing in 0.1 M Tris-HCl pH7.5 for 30 minutes.  

After UV-crosslinking RNA to the membrane, the membrane was incubated on top of boiling 

water for 1 minute, and incubated in prehybridization solution (50% formamide, 10% dextran 

sulfate, 1M NaCl, 0.05M Tris HCl pH 7.5, 0.1% SDS, 0.1% sodium pyrophosphate, 0.26% 

polyvinylpyrolidone, 0.26% BSA, 0.26% Ficoll, 0.33 mM EDTA, and 500 g/mL boiled ssDNA) 

for 42oC for 6 hours.  Membrane was then incubated in hybridization solution (50% formamide, 

10% dextran sulfate, 1M NaCl, 0.05M Tris HCl pH 7.5, 0.1% SDS, 0.1% sodium pyrophosphate, 

0.2% polyvinylpyrolidone, 0.2% BSA, 0.2% Ficoll, 0.25 mM EDTA, and 500 g/mL boiled 

ssDNA) containing boiled radiolabeled probe, at 42oC for 20-24 hours.  The membrane was 

washed 2x in 2X SSC for 15 minutes at room temperature, 2x in 2X SSC, 0.5% SDS at 65oC for 

30 minutes, and 2x in 0.1X SSC for 30 minutes, and was then imaged using a phosphorimager.
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Double-stranded northern probes designed to hybridize to the 3′ ends of STE11 and SPB4 (bases 

1641-2153 and 1604-1812, respectively, relative to the ATG start codon) were amplifi ed by PCR 

from genomic DNA.  A probe for ACT1 (bases 36-640) was used as a loading control.  Probes 

were radiolabeled using the RadPrime DNA Labeling System (Invitrogen), by incubating PCR 

fragments with Klenow, random hexamers, dATP, dGTP, dTTP, and 32P-dCTP overnight at room 

temperature.  

Yeast whole cell extract preparation and immunoblotting

The indicated strains were grown to mid-log phase in YPD at 30oC, and either harvested or  

treated as indicated in the text and then harvested by centrifugation.  Whole cell extracts were 

prepared by resuspending cells in 20% TCA, adding glass beads (425-600 M, Sigma), and bead 

beating in a Mini Bead Beater (Biospec Products).  Extracts from 1x107 cell equivalents were 

separated on 4-20% Tris Glycine gels (Invitrogen), and transferred to PVDF membranes by wet 

transfer method (300 mAmp, 90 minutes).  Antibodies used to probe membranes were: -Cdc2 

(sc-53, Santa Cruz Biotechnology), -Cdc2 Y19 phos (#9111S, Cell Signalling), -H4 (ab10158, 

Abcam), -H3S10p (12261), -TAP (CAB10001, Open Biosystems), -H4K16ac (#39167, 

Active Motif), -H3 (ab1791, Abcam), --Tubulin (T5201, Sigma).  Membranes washed, 

incubated with secondary antibodies (swine--rabbit-IgG-HRP, Dako P0399 sheep--mouse-

IgG-HRP, GE Healthcare NA931; and rabbit--goat-IgG-HRP, Dako P0160), incubated with 

Immobilon Western Chemiluminescent HRP Substrate (Millipore), and imaged with a Fujifi lm 

LAS3000 Camera.
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For immunoblot analysis of tagged protein levels before and after H2O2 treatment, Ecm5-PrA or 

Snt2-PrA yeast strains were inoculated into YPD and grown 5 hours until they were in mid-log 

phase, at which point samples were taken for the 0 hour timepoint.  H2O2 was then added to a 

fi nal concentration of 0.4 or 0.5 mM (as indicated in fi gures), and cells were harvested 2 hours, 

4 hours, and 6 hours later.  In one experiment an untagged strain was used as a control, while in 

another, the Ecm5-PrA strain was grown but treated with water as a control.  For immunoblot 

analysis of stationary phase yeast, untagged, Ecm5-PrA, Snt2-PrA, and Rpd3-PrA strains were 

inoculated into YPD.  Cultures were allowed to grow for 7 days, and cells were harvested at the 

times indicated in Figure 4.10.  Whole cell lysates were obtained and immunoblots performed as 

described above.

Yeast cell cycle analysis

Cultures of bar1, ecm5 bar1, and ECM5-TAP bar1 strains were grown to mid-log phase in 

YPD, and synchronized using -factor, which was purchased from GenScript, using a previously 

published protocol (Amberg et al., 2005).  Synchronies were monitored in the microscope, to 

look for very few or no budded cells and shmoo formation.  Synchronized cells were collected 

by centrifugation, washed in pre-warmed media, and resuspended in fresh media to release cells 

from arrest.  Samples were taken every 20 minutes for fl uorescence activated cell sorting (FACS) 

analysis, or every 10 minutes for immunoblot analysis.  For the latter, whole cell extracts were 

obtained and immunoblots performed as described above.  Cells taken for FACS analysis were 

fi xed in 67% ethanol overnight and prepared for FACS using the SYTOX Green (Molecular 
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Probes) DNA-binding dye as following a previously published protocol (Haase, 2004).  FACS 

was performed in the Rockefeller University Flow Cytometry Resource Center.  A FACSCalibur 

instrument (BD Biosciences) was used to collect the data, using the 488 nM laser for excitation 

and the FL2 detector.

Sporulation assays and spore analysis

For sporulation analysis, the ECM5 gene was deleted from wild-type haploid MATa and MAT 

SK1 background strains (strains SKY163 and SKY164, respectively – gifts from Scott Keeney), 

generating MATa ecm5::kanMX4 and MAT ecm5::hphMX4.  These two strains were mated 

to make an ecm5/ diploid strain.  The wild-type diploid SK1 strain (165) and the ecm5/ 

diploid strain were struck on YPG (YP Glycerol) just prior to sporulating to ensure their 

respiratory competence.  Cells were then patched onto YPD plates and incubated overnight at 

30oC.  Cells were transferred to sterile 1% potassium acetate solution, and incubated at 30oC for 

3 days.  The number of tetrads was divided by the total number of tetrads and diploid cells (based 

on hemocytometer counting) to determine the percent sporulation for each strain.  More than 500 

cells or tetrads were counted per strain, for 3 independent wild-type replicates and 4 independent 

ecm5/ replicates.

For tetrad dissections, tetrads were collected by centrifugation, resuspended in 0.05 mg/mL 

zymolyase 10T (US Biological) in 1M sorbitol, and incubated at 30oC for 20 minutes with 

nutating to digest the ascospore.  Digested tetrads were diluted 1:25 and placed on ice.  10 L of 

digested tetrads were dripped down the middle of a YPD plate, and an Axioscope 40 microscope 
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fi tted with an Axioscope Tetrad Manipulation System (Zeiss) was used to dissect individual 

tetrads onto clean sections of the plate.  Plates were incubated at 30oC and imaged after 2 days.  

Plates were then replica-plated onto YPD-G418 and YPD-Hygromycin plates to select for 

individual ecm5 knockout alleles.  Selection plates were grown overnight at 30oC and imaged the 

next day.

Determination of doubling times

YPD or SD CSM cultures were inoculated with each strain, and allowed to grow at least 5 hours 

to mid-log phase.  Samples of each culture were taken each hour for at least 8 hours and analyzed 

using the Beckman Coulter DU800 Spectrophotometer to determine optical densities at 600 nm 

(OD600s).  For each culture, optical densities were plotted as a function of time in Excel, and 

an exponential trendline (y=aebx) was fi tted to the curve, where y is OD600 and x is time.  The 

doubling time was then determined by taking ln(2)/b, based on the following derivation:  

The formula for exponential growth is C2 = C1*2(x /D), where C1 is the initial concentration of 

cells, C2, is the fi nal concentration of cells, x is the time in culture, and D is the doubling time.

If eln 2 is substituted for 2, the equation becomes: C2 = C1*e (x*ln 2/D), which is in the same form as 

the exponential trendline.  From this, b=ln 2/D, and therefore, D=ln 2/b.

Doubling times were determined for 3 independent cultures and then averaged.
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H2O2 survival assays

Wild-type, ecm5, snt2, or rpd3 yeast strains were inoculated into YPD and grown to mid-

log phase.  An aliquot of each culture was taken, and the cell concentrations were determined by 

taking OD600 spectrophotometer readings and comparing to a previously determined standard 

curve relating OD600 readings and cells/mL measured on a hemocytometer.  Aliquots were 

diluted in YPD to 1667 cells/mL, and 6 x 100 L of each aliquot were plated on YPD (167 cells 

per plate, 1000 cells total).  H2O2 was then added to each culture to a fi nal concentration of 0.4 

mM, and cultures were put back in the 30oC shaking incubator.  4 hours after H2O2 addition, 

another aliquot was taken, diluted, and plated as described above.  After 2 days, the number of 

viable colonies on each plate was counted, and for each culture, the number of viable cells at the 

4 hour timepoint was divided by the number of viable cells before H2O2 addition, to determine 

percent survival.  Three independent replicates were performed for each strain, and the percent 

survival values were averaged across replicates.

Chromatin immunoprecipitation

For the H2O2 ChIP-sequencing experiments, cells for sequencing, Ecm5-Myc, Snt2-Myc, and an 

untagged control strain (BY4741) were inoculated into 1.5L YPD cultures, and grown to mid-

log phase (~2x107 cells/mL).  From each culture, 400 mL were separated and fi xed by adding 

formaldehyde to a fi nal concentration of 1%, shaking at room temperature for 20 minutes, and 

adding glycine to a fi nal concentration of 125 mM to quench.  Cells were then centrifuged, 

washed 4 times in cold PBS, and fl ash frozen in liquid nitrogen.  H2O2 was added to the 

remaining culture to a fi nal concentration of 0.4 mM, and 0.5 and 4 hours after H2O2 addition, 

cells were fi xed and harvested as described above.
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ChIP was performed essentially as described (Aparicio et al., 2005)B, with the following 

modifi cations.  Cells were resuspended in lysis buffer (50 mM HEPES pH 7.5, 1 mM EDTA, 140 

mM NaCl, 1% Triton X-100, 0.1% sodium deoxycholate, 1 mM PMSF, 5.8 M pepstatin, and 

0.5 g/mL leupeptin) to a fi nal concentration of 4x109 cells/mL and lysed by bead beating with 

zirconia-silica beads (Biospec Products), alternating between 3 minutes in the bead beater and 

1 minute on ice, for 10 cycles.  Lysates were then sonicated in 1 mL aliquots using a Bioruptor 

Sonicator, set on high, cycling between 30 seconds on and 30 seconds off for 100 minutes total 

time.  After sonication, DNA was purifi ed from an aliquot of each sample and run on an agarose 

gel to ensure DNA was sheared to between 150 and 400 bp.  

Chromatin from identical samples was pooled, and 16 g monoclonal Myc 9E10 antibody 

(#05-419, Millipore) were added to each sample.  Samples were incubated 16 hours at 4oC with 

rotation.  The next day, 160 L of Magna ChIP Protein G magnetic beads (Millipore) were 

used to IP each sample.  After washing, crosslinks were reversed, and input and IP DNA were 

purifi ed over Qiagen PCR purifi cation columns and eluted in 25 L Tris pH 8.0.  Purifi ed DNA 

was incubated with 30 g RNase A for 3 hours at 37oC (Fisher Scientifi c), purifi ed over a second 

Qiagen column with 25 L elution, and 5 L of the elution was saved for qPCR analysis.  The 

remaining 20 L of each sample were used to build sequencing libraries.  Small-scale ChIPs 

were performed similarly except that 1x109 cells, 2 g anti-Myc antibody, and 20 L Protein G 

beads were used per ChIP.  
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For ChIP-seq of rapamycin treated samples, Ecm5-Myc, Snt2-Myc, and an untagged control 

strain (BY4741) were inoculated into 2L SD CSM cultures, and grown to mid-log phase (~2x107 

cells/mL).  For the 0 hour timepoint, 450 mL of each culture were taken and fi xed as described.  

Cultures were split into two fl asks, one that received DMSO, and one that received rapamycin 

(fi nal concentration 100 nM).  After 0.5 hours, 450 mL of each culture were taken and fi xed, 

and 4 hours after rapamycin addition, 250 mL of each culture were taken and fi xed.  ChIPs were 

performed as described above.

Preparation of samples for sequencing and sequencing

ChIP sequencing libraries were prepared using a TruSeq DNA sample prep (Illumina), following 

manufacturer’s instructions, except that lower concentrations of TruSeq adapters were used: 8% 

of the recommended adapter concentration was used with the H2O2 ChIP samples, because the 

amount of DNA in these samples was expected to be much lower than the recommended started 

amount, since the kit is designed for making libraries out of genomic DNA.  For the rapamycin 

ChIP samples, 3.2% of the recommended adapter concentration was used, because the 8% used 

for the H2O2 library preparations still created dimers that were detectable after the amplifi cation 

step.  For the fi nal amplifi cation step, 20 cycles of PCR were used for the H2O2 -treated samples 

and 21 cycles for the rapamycin-treated samples.  Samples of each library were analyzed by 

agarose gel to assess library size distribution and quality.

RNA sequencing libraries were prepared from 4 g total RNA using a TruSeq RNA sample prep 

(Illumina) per manufacturer’s instructions.   For the fi nal amplifi cation step, 15 cycles of PCR 

were used.
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All libraries were validated using the nanodrop spectrophotometer, to check concentration 

and for a clean peak, and using an Agilent Bioanalyzer to more accurately determine size and 

quantity of DNA in libraries.  As a fi nal verifi cation, qPCR was purifi ed on an aliquot from 

the fi nal libraries, using primers to the CYC3 promoter, which is a previously reported Snt2 

ChIP target (Harbison et al., 2004), to ensure that DNA from this region is enriched in ChIP 

libraries relative to input libraries.  Libraries were sequenced on an Illumina HiSeq 2000 at the 

Rockefeller University Genomics Resource Center.

Alignment and analysis of sequencing data

Reads from ChIP-seq experiments were aligned to the S. cerevisiae genome (SacCer2) using 

the Bowtie alignment software (Langmead et al., 2009).  Unique reads that mapped to a single 

location with no more than two mismatches were kept and used to generate genome-wide 

distributions of  Ecm5 or Snt2 binding and for peak identifi cation.  

The Galaxy server (https://main.g2.bx.psu.edu/) was used for a much of the sequencing data 

analysis.  The software MACS, which was run off the Galaxy server, was used to identify peaks 

in the Ecm5 and Snt2 ChIP and input datasets using the time-matched ChIP from the untagged 

strain as a control (Zhang et al., 2008).  Peaks identifi ed in the ChIP samples that were also 

identifi ed in the inputs were discarded.  Peaks that were shared between Ecm5 and Snt2 were 

determined by asking the Intersect program on the Galaxy server to return genomic intervals 

where the intervals defi ning Ecm5 and Snt2 peaks overlapped by at least 200 bp.  In cases where 

the number of peaks differed depending on whether Ecm5 or Snt2 was the fi rst dataset (e.g. 
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places where 1 Ecm5 peak encompasses a region of the genome that contains two Snt2 peaks), 

the intersected list with the lower number of peaks was used.  A list of yeast genes was obtained 

from the UCSC Genome Browser (http://genome.ucsc.edu/).  Yeast promoter regions were 

defi ned by asking the Get Flanks program on Galaxy to return the 500 bp upstream of the start 

codon of each yeast gene.  The Intersect program was then asked to return the names of genes 

whose promoter regions overlapped with shared Ecm5/Snt2 peaks by at least 200 bp.  These 

genes were then used for functional gene ontology analysis using the FuncAssociate program 

(Berriz et al., 2009).  For the transcription start site (TSS) analysis, the TSS’s of all genes were 

taken from the UCSC Genome Browser.  TSS profi les were generated using a custom script that 

divides each gene into 50 bp windows surrounding the TSS, and counts the average number of 

reads at all genes within those windows per million mapped reads.  This analysis was repeated 

with the top 100 most highly expressed yeast genes, taken from a separate study (Miller et al., 

2011).

Reads from RNA-seq experiments were aligned to the S. cerevisiae genome using the software 

TopHat (Trapnell et al., 2009).  The Cuffl inks and Cuffdiff software were then used to generate 

expression values for each gene in each sample and ratios of expression for genes between 

samples (Trapnell et al., 2010).  These programs were all executed from the Galaxy server.  The 

heatmap was generated using a custom clustering script.
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Competitive Fitness Assays

Wild-type, ecm5, and snt2 strains were patched onto YPD and grown overnight at 30oC.  

These cells were then used to inoculate precultures in SD CSM media, which were grown 

overnight at 30oC.  The next morning, OD600 spectrophotometer readings of dilutions of the 

precultures were used to determine cell concentrations.  Equal numbers of wild-type and ecm5 

or snt2 cells were inoculated into SD CSM media, such that each culture started out with 2x105 

cells/mL total.  After inoculating, aliquots of each culture were taken, diluted and plated on 

YPD or YPD G418, aiming for approximately 120 cells per plate with 6 YPD plates and 6 YPD 

G418 plates per culture.  After 12 hours, aliquots of each culture were taken, diluted, and plated 

as described above.  After 24 hours in culture and each subsequent day, OD600 readings were 

used to determine the cell concentration in each culture, cultures were diluted to 2x105 cells/mL 

in fresh SD CSM media, and aliquots were taken, diluted, and plated as described above.  The 

dilution of cultures with fresh media each day ensured that the experiment tested competitive 

fi tness and not just which strain had longer chronological lifespan.  For each set of plates, 2 days 

after plating, colonies were counted, and for each culture, the number of colonies on the YPD 

G418 plates (which was proportional to the number of knockout cells in culture) was divided by 

the number of colonies on the YPD plates (which was proportional to the total number of cells 

in culture).  Three wild-type vs. ecm5 competitions and three wild-type vs snt2 competitions 

were performed, and results from replicates we re averaged.
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APPENDIX: SUMMARY OF SEQUENCING DATA

Table A.1 Summary of H2O2 ChIP Sequencing Experiment
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Table A.2 Summary of H2O2 RNA Sequencing Experiment
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Table A.3 Summary of Rapamycin ChIP Sequencing Data
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