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Neuronal receptive endings such as dendritic spines and sensory protrusions are 

structurally remodeled by experience.  How receptive endings acquire their remodeled 

shapes is not well understood.  In response to environmental stressors, including 

starvation, crowding and high temperature, the nematode Caenorhabditis elegans enters a 

diapause state, termed dauer, which is accompanied by remodeling of sensory neuron 

receptive endings.  Here, we demonstrate that sensory receptive endings of the AWC 

amphid neurons in dauer animals remodel in the confines of a compartment defined by 

the amphid sheath glial cells that envelop these endings.  The glia remodel concomitantly 

with and independently of AWC receptive endings to delimit AWC receptive ending 

growth.  Remodeling of the glia requires the Otd/Otx transcription factor TTX-1, the 

C2H2 zinc finger transcription factor ZTF-16, the fusogen AFF-1, and likely the 

VEGFR-related protein VER-1, all acting within the glial cell.  ver-1 expression is 

induced by dauer entry and by cultivation at high temperature, and requires direct binding 

of TTX-1 and perhaps also ZTF-16 to ver-1 regulatory sequences.  Our results 

demonstrate that experience-induced changes in glial compartment size provide spatial 

constraints on neuronal receptive ending growth. 
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Organisms respond developmentally to environmental stress 

Organisms are adapted to life in particular environments (Figure 1.1).  As an 

environment changes, the organism senses the change and responds to optimize 

metabolism and growth.  Extreme environmental stress poses an additional problem: how 

to survive and maximize reproductive success in unfavorable conditions that may 

otherwise be lethal.  Accordingly, many organisms have evolved developmental 

strategies to persist under high stress conditions. 

In response to environmental insults, some organisms enter a specialized, stress-

resistant state.  Such a state permits both the temporal avoidance of the environmental 

insult, and also the dispersal of the organism from one environment to another.  For 

example, in response to nutrient depletion some species of bacteria become stress-

resistant endospores.  Endospores are metabolically-inactive cellular structures, with a 

thick, multi-layered protein coat and a dehydrated core (Nicholson et al., 2000).  

Specialized endospore proteins, called α/β-type small acid soluble spore proteins 

(SASPs), are synthesized during sporulation and bind to the DNA, generating a 

protective, conformational change.  These developmental changes in the bacterium confer 

resistance to environmental stressors, including temperature, DNA-damaging ultraviolet 

radiation, and noxious chemicals (Nicholson et al., 2000).  These developmental changes 

are reversible: upon return to a favorable environment the endospore will germinate and 

return to vegetative growth.  Endospores have incredible longevity; indeed, the 

endopsores of a Bacillus species have been recovered from an extinct symbiotic bee host 

preserved in amber over 25 million years ago (Cano and Borucki, 1995)! 
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Figure 1.1. Organisms are adapted to life in specific environments. In hot springs, a 

thermal gradient is generated between where the water emerges to where it is cooled at 

the pool’s edge.  Different microbial communities grow along this gradient and produce 

dramatic changes in color; a result of the different ratios of chlorophyll and carotenoid 

pigments of the different microorganisms. The rate of photosynthesis and growth of a 

microbial species is optimized for the temperature in which it grows (Brock, 1967; Brock 

and Brock, 1966; Ward et al., 1998). (Grand Prismatic Spring, WY, U.S.A.) 
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            Another strategy employed by organisms to escape a temporal period of stress is 

to generate stress-resistant offspring.  For example, in response to changes in water 

temperature many fresh and saltwater sponges reproduce asexually to generate 

gemmules.  Gemmules are comprised of metabolically-repressed cells that are packaged 

into collagenous glass capsules.  These packages are resistant to environmental insults 

such as freezing and desiccation (Loomis, 2010).  In gemmules of the sponge species 

Eunapius fragilis, the synthesis of sorbitol may serve as a cryoprotectant and also to 

generate a high osmotic pressure, which represses germination.  The return to a favorable 

environment triggers the synthesis of sorbitol dehydrogenase, in turn relieving osmotic 

pressure and permitting germination and the differentiation of the encapsulated cells into 

a new sponge (Loomis, 2010; Loomis et al., 2009).  This strategy ensures the genetic 

success of the organism during freezing winters and summer droughts. 

In response to high temperature and low water availability, many animals also 

enter a developmental period of metabolic arrest known as estivation.  Land snails, for 

example, have evolved annual cycles of estivation during unfavorable environmental 

periods.  Estivation even allows some species to survive in arid environments that may 

not see rainfall within a given year (Schmidt-Nielsen et al., 1971).  Estivation is marked 

by a dramatic reduction in metabolic rate (Schmidt-Nielsen et al., 1971) and the 

generation of an epiphragm, a protective calcium carbonate membrane that seals off the 

inside of the shell to the environment (Arad et al., 1989).  Estivating land snails are 

resistant to desiccation and high temperatures, and can survive prolonged periods of 

stress. 
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Vertebrates, including mammals, are also known to enter periods of estivation 

when food is limiting and when challenged with a hot, dry environment.  Most species of 

lungfish undergo seasonal estivation when the water level of their environment is 

reduced.  The African lungfish Protopterus annectens excavates a burrow in the mud, 

and secretes a mucous from epithelial mucous glands to generate a protective cocoon that 

prevents water loss from the dormant animal (Secor and Lignot, 2010).  Similarly, 

estivating amphibians reduce metabolism to increase survival time on endogenous energy 

stores, and some species will also generate a cocoon to prevent desiccation (Secor and 

Lignot, 2010).  These animals can survive many months at a time waiting for water levels 

to return.  Hibernating and estivating mammals also reduce metabolism to conserve 

energy, and switch from carbohydrate to lipid metabolism during the period of dormancy 

(Melvin and Andrews, 2009). 

Together, these examples illustrate the importance of environment on organism 

development and the need for an organism to respond appropriately to survive and 

reproduce in non-ideal conditions. 

 

Environmental sensory organs in animals are composed of neurons 

and glia 

In animals, many stressors and other environmental cues are detected by 

specialized sensory organs, which regulate both developmental and behavioral responses 

to the environment.  Generally, sensory organs are composed of dedicated sensory 
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neurons, which are responsible for collecting environmental information and converting 

it into an electrical signal, and their associated glia, or glia-like cells. 

Glia are intimately associated with neurons and are the most abundant cell type of 

the mammalian brain.  Like neurons, they exhibit vast morphological complexity and 

specialization (Awasaki et al., 2008; Cajal, 1911; Doherty et al., 2009).  Broadly defined, 

glia are non-neuronal cells that are closely associated with neurons, and which are 

lineally related (Shaham, 2005).  Glia form an integral part of the nervous system: they 

secrete trophic factors required for neuronal survival (Meyer-Franke et al., 1995), they 

can provide a framework for neuronal migration and patterning (Rakic, 1971; Rakic, 

1972), they form the myelin sheath around axons required for fast nerve impulses, they 

modulate neuronal communication at synapses (Panatier et al., 2006; Robitaille, 1998), 

and they can affect neuron shapes and dendritic morphologies (see below).  Although the 

purpose of glia in brain development and function has received much attention, the role 

of these cells in sensory organs has been little studied. 

For example, sensory neurons of the vertebrate olfactory epithelium are 

associated with glia-like sustentacular cells.  The epithelium consists of stratified cell 

layers: the sustentacular cell bodies are located apically, while the sensory neurons are 

located beneath these.  Basal to these layers are the progenitor cells that give rise to both 

the sensory neurons and the sustentacular support cells (Leung et al., 2007).  

Sustentacular cells share properties with glia: they electrically isolate the neuronal 

sensory dendrites (Breipohl et al., 1974), they exhibit phagocytic activity following 

neuronal cell death (Suzuki et al., 1996), and electrically-coupled sustentacular cells have 

the capacity for glia-like intercellular calcium waves (Hegg et al., 2009).  It is likely that 
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these glia-like cells also serve a neuroprotective role.  Specifically, they express high 

levels of detoxifying proteins such as cytochrome P450 and glutathione S-transferase 

(Rodriguez et al., 2008).  Furthermore, Notch2 receptor mRNA is detectable in 

sustentacular cells but not olfactory neurons, and conditional knockout of the receptor in 

the epithelium results in altered sustentacular cell morphology and gene expression.  This 

is accompanied by a disruption of the laminar structure of the epithelium and increased 

neuron degeneration in the postnatal mouse (Rodriguez et al., 2008). 

Interestingly, sustentacular cells may also play an active role in regulating odor 

sensitivity of the olfactory sensory neurons.  In response to hunger, animals typically 

have heightened sensitivity to odors, perhaps as a strategy to locate food in a complex 

environment (Aime et al., 2007).  Compared to satiated animals, the sustentacular cells of 

starved Xenopus laevis tadpoles have higher levels of diacylglycerol lipase α, which 

synthesizes the intercellular signaling molecule 2-AG (Breunig et al., 2010).  CB1 

cannabinoid receptors, which respond to 2-AG, are expressed in the associated sensory 

neurons and localize to the dendrites (Czesnik et al., 2007).  Inhibition of 2-AG synthesis 

to mimic the fed state increases the odor threshold required for neuron firing, while a 

CB1 agonist lowers the threshold of odor sensitivity (Breunig et al., 2010).  These 

findings suggest that glia-like sustentacular cells modulate the activity of their associated 

sensory neurons by altering 2-AG release depending on the hunger state of the animal. 

Likewise, supporting cells of the mammalian ear may contribute to hearing 

sensitivity.  Deiters’ cells form a scaffold that supports the sensory outer hair cells of the 

cochlea, and express the glial marker glial fibrillary acidic protein (GFAP), suggesting 

they are glia (Rio et al., 2002).  Following high-intensity sound exposure, Deiters’ cells 
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are displaced towards the outer hair cells (Flock et al., 1999).  This movement correlates 

with a loss of sensitivity of the cochlea to a test tone.  Continued acoustic overstimulation 

results in damage to the outer hair cells; therefore, the displacement of the Deiters’ cells 

and corresponding loss in hearing sensitivity may represent a protective mechanism 

against acoustic assault (Flock et al., 1999). 

Glia are also associated with sensory neurons in the vertebrate eye.  In the retina, 

both Müller glia and retinal pigmented epithelial (RPE) cells make contacts with 

photoreceptor cells.  One purpose of these glia may be neural regeneration.  In response 

to acute damage or destruction of photoreceptor cells by high-intensity light, Müller glia 

re-enter the cell cycle and dedifferentiate to produce embryonic retinal progenitor cells.  

These cells can subsequently form new photoreceptors, neurons or glia (Bernardos et al., 

2007; Fischer and Reh, 2001).  In addition, the cylindrical shape and orientation of 

Müller glia in the direction of incoming light might serve to guide light directly to the 

associated photoreceptor cells, perhaps improving the signal-to-noise ratio of an image 

(Franze et al., 2007). 

RPE cells also make contact with photoreceptors, ensheathing the outer segment 

of the photoreceptor cell.  RPE cells regulate the availability of the retinal chromophore, 

which is required for light detection by photoreceptors, as well as nutrient availability and 

ion homeostasis in the subretinal space to ensure correct photoreceptor function and 

excitability (Strauss, 2005).  In addition, RPE cells play a critical role in reducing photo-

oxidative stress within the photoreceptor cell.  The high levels of light encountered by 

photoreceptors can lead to the buildup of reactive products from photo-oxidative 

reactions, causing retinal degeneration.  RPE cells protect the photoreceptors by filtration 
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of light through RPE cell pigments, and the expression of antioxidants and detoxifying 

agents (Kevany and Palczewski, 2010).  As a further measure to prevent the buildup of 

reactive photo-oxidative products, photoreceptor cells continually shed and regenerate 

about 10% of their outer segment volume every day.  The outer segment is loaded with 

membranous discs of photosensitive pigment.  These discs are assembled at the segment 

base and continually displaced along the segment as more discs are synthesized.  At the 

end of the outer segment the oldest discs most likely to have accumulated damaging 

reactive species are detached from the photoreceptor cell, and the membranous debris is 

phagocytosed and degraded by the ensheathing RPE cell (Steinberg et al., 1977; Young 

and Bok, 1969).  In animals where the phagocytic function of RPE cells is defective, the 

membranous debris shed by the photoreceptors accumulates in the subretinal space and 

results in retinal degeneration and loss of vision (Bok and Hall, 1971). 

In addition, vertebrate RPE cells are required to regenerate the retinal 

chromophore isomer bound to the photosensitive pigments that absorb light.  Photon 

absorption by the pigment results in the conversion of 11-cis-retinal to all-trans-retinal in 

the photoreceptor cell.  The RPE cell is essential for regenerating 11-cis-retinal from all-

trans-retinal, and makes the molecule available again to the photoreceptor for use in 

another transduction cycle (Baehr et al., 2003). 

Together, these fledgling observations suggest that the role of glia in sensory 

organs is diverse: they secrete factors required for sensory function and neuroprotection, 

they can regenerate neurons after tissue damage, they act as phagocytic cells to remove 

neuronal debris, and they can regulate neuron function in response to animal state. 
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Glia are important for neuronal dendrite shapes 

Although glia have been shown to be important for sensory neuron function, there 

have been few reports describing a role of glia in sensory neuron morphology.  Sensory 

cells and other neurons display enormous diversity in shape; the most prominent 

morphological feature being their complex and highly stereotyped dendritic arbors (Cajal, 

1911; Gao, 2007).  This diversity is in no small part a result of each dendrite’s unique 

task: to gather information from specific synaptic partners or from the environment, and 

to transmit this information to the axon.  Although knowledge of the roles of glia in 

regulating sensory dendrite shape is lacking, numerous studies have explored glia-

dendrite interactions in non-sensory systems. 

Some of the signals controlling dendritic arbor shapes are neuron intrinsic.  For 

example, the nuclear protein HAMLET is transiently expressed in external sensory 

neurons of Drosophila during the initial phases of dendrite outgrowth, and hamlet 

mutants display altered dendritic branching patterns (Moore et al., 2002).  In the 

nematode Caenorhabditis elegans, mutations that disrupt intrinsic activity of the 

transmembrane fusogen EFF-1 result in excessive and disorganized branching of PVD 

mechanosensory neuron dendrites, suggesting that EFF-1 may function to dictate 

membrane shape and curvature of the growing neurites (Oren-Suissa et al., 2010).  

However, extrinsic signals seem to play important roles as well.  External signals may be 

(1) systemic (Woolley et al., 1990), (2) may emanate from other neurites, as in the case of 

activity-dependent dendritic shape determination (Parrish et al., 2007) or dendritic tiling 

of da neurons of Drosophila (Grueber et al., 2002; Matthews et al., 2007), or (3) may be 

provided by glia. 
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Glia are well positioned to regulate dendritic morphology as they are not only in 

close proximity to neurons but also ensheath neuronal processes and synapses.  For 

example, glia have been implicated in directing process orientation in the developing 

vertebrate brain.  Neurons generated by subventricular zone radial glia stem cells often 

contain a single process, resembling a dendrite (Cajal, 1911; Hatten, 2002), which is 

dynamically remodeled as neurons migrate to populate the brain.  Neuronal migration is 

guided in part by the radial glia to which migrating neurons adhere and upon which they 

travel (Rakic, 1971; Rakic, 1972).  The dendrite-like processes that emanate from these 

migrating neurons are oriented along the radial glial tracks, suggesting specific adhesion.  

The basis of the adhesion is not well understood; however, astrotactin, a neuronal protein 

suggested to promote neuron-glia adhesion, is required for granule neuron migration and 

process adhesion in the cerebellum (Fishell and Hatten, 1991).  In the neocortex, 

recognition and adhesion of migrating neurons to radial glia requires integrins (Anton et 

al., 1999) and the gap junction proteins connexin 26 and connexin 43 (Elias et al., 2007). 

Glia-derived cues are known to play important roles in axon guidance, affecting 

the shapes of axons by defining axonal extension paths (Chotard and Salecker, 2004).  

Recent evidence suggests that these same glia-derived axon guidance cues can also act on 

dendrites (Kim and Chiba, 2004).  For example, the extracellular matrix (ECM) protein 

Slit is expressed by specialized midline glia of the Drosophila central nervous system 

(Rothberg et al., 1988; Rothberg et al., 1990) and acts to repel axon growth cones that 

express the Slit receptor Robo (Battye et al., 1999; Kidd et al., 1999).  In robo mutants, 

the dendrites of some neurons inappropriately migrate towards or cross the midline 

(Furrer et al., 2003), and proper guidance of these dendrites requires cell autonomous 
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expression of Robo (Figure 1.2) (Furrer et al., 2003).  In C. elegans, ventral cephalic 

sheath (CEPsh) glia that ensheath the nerve ring, a dense neuropil analogous to the brain 

of higher organisms, express the chemotropic protein Netrin/UNC-6.  In unc-6 mutant 

animals (Wadsworth et al., 1996) or in animals lacking CEPsh glia (Yoshimura et al., 

2008), axon paths are severely disrupted, demonstrating a role for these glial cells in axon 

guidance.  RIA nerve ring neurons possess a single neurite whose proximal end is 

postsynaptic, resembling postsynaptic sites on dendrites.  In unc-6 mutants this neurite 

also exhibits severe guidance defects, and fails to navigate towards the CEPsh glia 

(Colon-Ramos et al., 2007).  Thus, glia can contribute to dendrite guidance via the 

secretion of chemotropic factors. 

In addition, all dendrites possess receptive structures that receive information, 

either from other neurons at synapses or, in the case of sensory neurons, from the 

environment.  For example, in the mammalian brain dendrites receive information at 

most excitatory synapses through specialized structures termed dendritic spines, which 

appear as small protrusions on the dendrite process.  Dendritic spines can be remodeled 

by environmental experience (Holtmaat and Svoboda, 2009), and changes in spine shape 

are correlated with neuronal function and synaptic strength (Bourne and Harris, 2008).  

Likewise, the shapes of sensory neuron dendritic endings are important, as mutations that 

affect sensory cilia morphology perturb the ability of a neuron to respond correctly to 

environmental stimuli (Perkins et al., 1986).  These sensory receptive endings are also 

morphologically malleable (Mukhopadhyay et al., 2008).  The dendritic receptive 

structures that receive information at synapses and those that receive environmental input 

share many similarities in function, shape and molecular components (Shaham, 2010).   
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Figure 1.2. Glia affect guidance of dendrite growth. (A) In Drosophila, midline glia 

(green) secrete the guidance molecule SLIT, shown as a dark green gradient in the 

extracellular environment. The dendrites of the RP2 motor neuron (orange) are repelled 

from the midline. The RP2 axon is not shown. (B) Same as (A), except in a SLIT receptor 

mutant background (robo). In these animals, the neurons no longer perceive SLIT 

(indicated by a loss of green shading). The RP2 dendrites inappropriately move towards 

and cross the midline (Furrer et al., 2003). 
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Intriguingly, both structures are frequently ensheathed by glia (Shaham, 2010; Spacek, 

1985; Ventura and Harris, 1999). 

Studies of cultured purified mammalian retinal ganglion cell (RGC) neurons have 

been particularly informative in uncovering details of glia-neuron interactions during 

synapse formation, as these neurons form far fewer synapses when cultured in vitro in the 

absence of glia than in their presence (Ullian et al., 2001).  A recent study suggests that 

physical contact between RGC neurons and astrocytic glia may allow these neurons to 

become competent for synapse formation.  Glia-neuron contact reduces dendritic 

localization of the axonal protein neurexin (Barker et al., 2008), which reduces synapse 

formation when expressed in postsynaptic structures (Taniguchi et al., 2007).  Synapse 

formation between RGC neurons is further induced by secretion of the ECM molecule 

thrombospondin (TSP) from glia (Christopherson et al., 2005).  TSP interacts 

postsynaptically with the Ca2+ channel subunit α2δ-1 on neurons (Eroglu et al., 2009). 

Studies in C. elegans also provide evidence for roles of non-neuronal cells in 

determining the locations of synapses.  The presynaptic HSN neurons form synapses onto 

the postsynaptic VC neuron to create part of the circuit controlling egg-laying behavior in 

the animal.  The positions of these synapses is determined not by the neurons, but by 

guidepost epithelial cells (Shen and Bargmann, 2003).  These guidepost cells express the 

transmembrane, immunoglobulin superfamily protein SYG-2, which interacts with and 

localizes the SYG-1 immunoglobulin protein on the HSN neurons (Shen and Bargmann, 

2003; Shen et al., 2004).  Synapses form where SYG-1 is localized (Shen and Bargmann, 

2003).  Similarly, C. elegans CEPsh glia may affect the location of synapse formation 

between the presynaptic interneuron AIY and its postsynaptic partner RIA.  The Netrin 
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receptor DCC/UNC-40 is expressed in AIY and localizes near the site where the CEPsh 

glia contact the neuron and secrete Netrin/UNC-6 (Colon-Ramos et al., 2007). 

In addition to regulating the formation and localization of the receptive structures 

on dendrites, glia also affect the shapes of these structures.  During development of the 

mammalian cerebellum, the extension of processes from Bergmann glia is intimately 

correlated with changes in Purkinje cell dendritic spine shapes (Lippman et al., 2008), 

suggesting that glia might influence spine shape dynamics.  One way they may do this is 

via ephrin-Eph signaling.  The astrocytic glia that ensheath hippocampal excitatory 

synapses express ephrin A3, while the receptor EphA4 is expressed in neurons and 

localizes to dendritic spines (Murai et al., 2003).  When EphA4 is activated by adding 

exogenous ephrin A3, the dendritic spines retract (Murai et al., 2003).  By contrast, mice 

lacking either ligand or receptor tend to exhibit elongated dendritic spines (Carmona et 

al., 2009; Murai et al., 2003).  The analysis of EphA4 mutant mice suggests that the 

consequences of these spine shape abnormalities may include defects in hippocampus-

dependent learning (Carmona et al., 2009). 

Dendrite guidance, as well as the formation, placement, and shapes of dendritic 

receptive structures, can all be affected by glia, suggesting that these cells play key roles 

in shaping the nervous system.  The implications of these studies are profound, as in all 

nervous systems neuronal shape determines circuitry, and the shapes of receptive 

structures affect signal strength.  Thus, exploration of glial roles in controlling neuron 

shape and activity is essential for understanding how the nervous system is put together 

and how it functions.  To address these issues, the soil-dwelling nematode C. elegans 
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may provide a unique in vivo setting for determining the roles of glia in regulating 

dendrite morphology and function. 

 

The nematode Caenorhabditis elegans responds developmentally to 

environmental stress 

In addition to the organisms described above, the nematode C. elegans provides 

another striking example of an animal that enters an alternative developmental program 

in response to environmental stressors.  Under favorable conditions, C. elegans grow 

rapidly, progressing through four larval stages (L1 through L4) in only a few days to 

become egg-laying adults.  This is termed reproductive growth.  By contrast, in an 

unfavorable environment C. elegans enter a protective, developmentally-arrested larval 

stage after the second larval transition, termed dauer, from the German for “enduring” 

larva (Figure 1.3) (Cassada and Russell, 1975). 

A number of morphological changes occur in dauer animals to enable them to 

persist in a harsh environment.  For example, the cuticle is altered, having a thicker outer 

cortex and an additional striated underlayer compared to non-dauer animals, and radial 

shrinkage of the body circumference occurs (Cassada and Russell, 1975).  Movement of 

dauers is suppressed (Cassada and Russell, 1975), while feeding ceases and metabolism 

is altered for long-term survival (Holt and Riddle, 2003).  These morphological changes 

confer on the animal extreme longevity and increased resistance to environmental 

challenges, such as resistance to desiccation, dilute acid, hypertonic solutions, 

temperature extremes outside of the optimum growth range of 15-25°C, and detergents,  
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Figure 1.3. The life cycle of Caenorhabditis elegans. During reproductive development, 

C. elegans progresses through four larval stages, L1 to L4, before becoming an egg-

laying adult. In an unfavorable environment, C. elegans will instead enter a diapause 

larval state, termed dauer, after the second molt. The environmental signals that regulate 

dauer entry are sensed during the first and second larval stages, marked in red (Golden 

and Riddle, 1984a). When environmental conditions become favorable, C. elegans will 

exit the dauer state and become fertile adults. 
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as measured by increased resistance to sodium dodecyl sulfate (SDS) (Cassada and 

Russell, 1975).  When environmental conditions improve, the animal resumes feeding 

and proceeds with development, becoming a fertile adult (Figure 1.3).  Thus, similar to 

bacterial endospores, the dauer state likely provides a means of temporal escape from a 

harsh environment and a dispersal form between environments. 

Dauer entry in C. elegans is promoted by high population density, low food 

abundance and high temperature (Cassada and Russell, 1975; Golden and Riddle, 1984a).  

C. elegans measure population density by the levels of dauer pheromone in the 

environment, a complex mixture of chemicals secreted constitutively by the animal and 

which constitutes the most potent dauer entry signal (Golden and Riddle, 1984a).  The 

induction of dauer entry by pheromone is, in turn, temperature-dependent (Golden and 

Riddle, 1984b).  The most active components of the dauer pheromone are structurally 

related small molecule glycosides of the sugar ascarylose, termed ascarosides (Butcher et 

al., 2007).  These are perceived through multiple receptors, one pair of which is the 

guanosine-5’-triphosphate (GTP)-binding protein (G-protein)-coupled receptors (GPCRs) 

SRBC-64 and SRBC-66, that are expressed specifically in a pair of environmental 

sensory neurons and function together to mediate responses to dauer pheromone (Kim et 

al., 2009). 

Dauer pheromone and environmental stressors that induce dauer entry are 

perceived by specialized sensory neurons in the head of the animal (Bargmann and 

Horvitz, 1991b) (see below).  Due to the organism-wide morphological and metabolic 

changes that occur in dauer animals, it is necessary that these neurons communicate this 

information about the environment to other tissues.  These systemic changes in 
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physiology are promoted through two major neuroendocrine pathways: insulin/insulin-

like growth factor (IGF) and transforming growth factor-β (TGF-β) signaling pathways 

(Kimura et al., 1997; Ren et al., 1996).  In both pathways, when hormone levels are high 

animals proceed with reproductive development.  When either hormone is low, the dauer 

state is promoted. 

The TGF-β-related hormone DAF-7 is expressed in the ASI amphid sensory 

neurons, and animals carrying mutations in the daf-7 gene (for dauer formation-7) enter 

dauer constitutively in otherwise favorable environments (Ren et al., 1996).  

Transcription of daf-7 is coupled to environmental stimuli that induce dauer; for example, 

transcription is inhibited by pheromone and high temperature, and reduced in dauer 

animals (Ren et al., 1996; Schackwitz et al., 1996).  While TGF-β/DAF-7 is expressed 

only in a specific sensory neuron, its receptor, the DAF-1/DAF-4 receptor kinase, is 

expressed broadly (Estevez et al., 1993; Georgi et al., 1990).  Likewise, although a 

number of insulin/IGF-like peptides exist in worms, one of these, DAF-28, is expressed 

in the ASI and ASJ amphid sensory neurons, and a daf-28 transcriptional reporter is 

regulated by sensory stimuli that induce dauer entry (Li et al., 2003).  Mutations in the 

daf-28 gene result in transient dauer arrest.  DAF-28, and possibly other insulin-like 

peptides, acts through the insulin receptor-like tyrosine kinase DAF-2 to inhibit dauer 

entry (Kimura et al., 1997).  Like the receptor for DAF-7/TGF-β, the insulin receptor 

DAF-2 is broadly expressed, predominantly in the nervous system.  In addition, other 

sensory neurons that detect environmental stressors can modulate the production of dauer 

hormone ligands from ASI and ASJ (Bargmann and Horvitz, 1991b; Kim et al., 2009).  

Thus, through both TGF-β/DAF-7 and insulin/DAF-28 neuroendocrine pathways, 
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sensory neurons can communicate information about the environment systemically to 

affect dauer development. 

TGF-β/DAF-7 and insulin receptor/DAF-2 pathways converge onto the nuclear 

hormone receptor (NHR) DAF-12.  Like other NHR genes, daf-12 codes for a 

transcriptional regulator with a variable amino terminus, a conserved DNA-binding 

domain, a variable hinge region, and a conserved carboxy terminal ligand-binding 

domain (Antebi et al., 2000).  A transcriptional reporter for daf-12 is expressed in most 

cells of the animal, with peak expression in the second larval stage when the commitment 

to dauer is made (Antebi et al., 2000).  Loss of function mutations in daf-12 cause a 

dauer-defective phenotype that is epistatic to the dauer-constitutive phenotypes of daf-7 

and some daf-2 alleles (Larsen et al., 1995; Riddle et al., 1981).  These findings are 

consistent with a model in which DAF-12 integrates signals from the TGF-β and 

insulin/IGF-like neuroendocrine pathways (Fielenbach and Antebi, 2008).  According to 

this model, both TGF-β/DAF-7 and insulin/IGF-like neuroendocrine pathways induce the 

synthesis of a secondary endocrine signal in downstream cells: the DAF-12 ligands.  

These ligands are dafachronic acid steroid hormones, which are secreted and act 

systemically on all DAF-12 expressing cells (Motola et al., 2006).  DAF-12 bound to its 

ligand promotes reproductive development; whereas, in an unfavorable environment, 

TGF-β/DAF-7 and insulin/DAF-28 signaling is low, and consequently dafachronic acid 

synthesis is reduced and the unbound DAF-12 receptor instead regulates gene 

transcription to specify dauer development (Fielenbach and Antebi, 2008). 

Dauer entry reflects a developmental decision made by the C. elegans larva to 

maximize reproductive success in a given environment.  How the animal perceives and 
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interacts with its environment is mediated by sensory neurons and, in the case of dauer 

development, their effects on neuroendocrine signaling pathways. 

 

The amphids sense the environment in C. elegans 

Like vertebrates and other animals, C. elegans sense the environment through 

organs composed of specialized sensory neurons and glia.  In C. elegans, most 

environmental signals are detected by neurons of the bilateral amphid sensilla.  The 

amphids are required for many behavioral responses, such as movement in response to 

tastants and odorants (Bargmann et al., 1993; Bargmann and Horvitz, 1991a), nose touch 

responses (Kaplan and Horvitz, 1993), and temperature seeking behavior (Mori and 

Ohshima, 1995), as well as for dauer development in response to environmental stress 

(Bargmann and Horvitz, 1991b; Perkins et al., 1986). 

Each amphid consists of 12 neurons, each of which extends a single unbranched 

dendrite from the cell body to the anterior nose-tip, a length of ~100 μm (Figure 1.4) 

(Ward et al., 1975).  Here, the dendrites terminate in specialized cilia, the shape of which 

are important for sensory responses (Perkins et al., 1986).  These ciliated sensory endings 

are sites where cell-surface receptors, ion channels, and signal transduction machinery 

are localized (Shaham, 2010).  The morphologies of amphid neuron sensory endings can 

be simple or complex.  For example, the ASI neurons, which secrete endocrine signals in 

response to environmental stressors that induce dauer (see above), have a single, 

microtubule-based cilium (Ward et al., 1975).  By contrast, the dendrites of AWC and 

AFD amphid neurons terminate in more elaborate structures. 
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Figure 1.4. A schematic drawing of the two amphid sensory structures in C. elegans.

Each neuron is bilateral (left and right); for simplicity, only a single neuron pair is shown 

(dark shading, cell bodies marked). Each of these neurons extends a dendritic process 

~100 μm long anteriorly to the nose-tip, where the dendrite terminates in a specialized 

sensory ending. Associated with these neurons are a pair of amphid sheath (AMsh) glial 

cells (light shading), that also extend a process to the nose and there ensheath the 

neuronal sensory endings. Not to scale. 
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The AWC dendrite ending has a wing-like, butterfly morphology that is required 

for behavioral responses to odorants (Bargmann et al., 1993; Perkins et al., 1986; Ward et 

al., 1975).  Calcium imaging experiments have shown that the neuron is activated most 

strongly by the removal of odorants from the environment (Chalasani et al., 2007).  This 

causes the release of the neurotransmitter glutamate at AWC synapses, affecting a 

downstream neuronal circuit that regulates animal turning behavior and ultimately results 

in attraction towards the odor stimulus (Chalasani et al., 2007).  In addition to responses 

to odorants, AWC may also have minor roles in temperature-associated behavior (Biron 

et al., 2008; Kuhara et al., 2008); however, it is unclear if the neuron is a direct 

thermosensor (Ramot et al., 2008a). 

The primary temperature-sensing neuron in C. elegans is the AFD amphid 

neuron.  When placed in a thermal gradient, C. elegans will seek the temperature at 

which they were cultivated, a behavior known as thermotaxis (Hedgecock and Russell, 

1975).  Computational studies suggest that plasticity in the memory of cultivation 

temperature, which is reset over the course of hours, likely serves to maintain worms at a 

fixed, optimal depth in the soil over daily and seasonal temperature fluctuations (Ramot 

et al., 2008b).  Laser ablation experiments of the AFD neurons have shown that this 

behavior is dependent on AFD (Mori and Ohshima, 1995).  Unlike AWC, the AFD 

sensory dendrite terminates not in a wing-like morphology but rather in microvillar 

finger-like projections (Ward et al., 1975).  Calcium imaging experiments and the 

localization of sensory transduction molecules suggest that the temperature-sensing 

capability of the cell is localized to this sensory ending (Clark et al., 2006; Coburn and 

Bargmann, 1996; Komatsu et al., 1996).  Consistent with this, mutant animals with 
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perturbed AFD sensory endings have defective thermotaxis behaviour.  The endings of 

AFD dendrites in animals carrying a mutation in the otd/Otx-type transcription factor ttx-

1 adopt a default single cilium in place of the elaborate microvillar extensions.  These 

mutant animals exhibit cryophilic behavior down a temperature gradient (Hedgecock and 

Russell, 1975; Perkins et al., 1986; Satterlee et al., 2001) and are hypersensitive to dauer 

pheromone, suggesting a role of AFD in modulating dauer responses (Golden and Riddle, 

1984b).  Furthermore, the exogenous expression of ttx-1 in other sensory neurons confers 

on them an AFD-like morphology, suggesting that the transcription factor acts to partly 

specify AFD thermosensory cell fate and morphology (Satterlee et al., 2001). 

Although in vivo patch-clamp recordings suggest that the AFD neuron is 

exquisitely sensitive to bidirectional changes in temperature (Ramot et al., 2008a), the 

molecular mechanism of how the neuron senses the temperature change is unknown.  In 

the mammalian peripheral nervous system, environmental temperature is sensed by 

neurons of the dorsal root ganglia that project to the epidermis and dermis of the skin.  

These neurons, as well as associated keratinocyte cells, express non-selective cation 

channels of the transient receptor potential (TRP) channel family that are directly gated 

by temperature (Peier et al., 2002a; Peier et al., 2002b; Story et al., 2003; Tominaga et al., 

1998).  Temperature-gated TRP channels are also utilized by pit-bearing snakes to sense 

the infrared radiation emitted by warm-blooded prey (Gracheva et al., 2010), 

demonstrating conservation of TRP channel thermosensory function over diverse 

vertebrate species.  By contrast, the bacterium Escherichia coli senses temperature 

fluctuations through a direct change in the activities of two transmembrane proteins, the 

chemoreceptors Tsr and Tar (Maeda and Imae, 1979; Mizuno and Imae, 1984).  Tsr and 
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Tar also bind the attractive ligands serine and aspartate, respectively, to mediate 

chemotaxis behavior.  This suggests that different environmental signals can be 

integrated at the receptor level in single-celled bacteria.  Plants also sense changes in 

temperature, and use this information to optimize flowering and growth with the seasons 

and time of day.  The mustard plant Arabidopsis thaliana may couple temperature cues 

directly to gene transcription via modifications in DNA chromatin structure (Kumar and 

Wigge, 2010).  As temperature decreases, the histone variant H2A.Z is more likely to be 

incorporated into DNA-bound nucleosomes in place of the canonical histone H2A.  

Mutants that are defective in incorporating H2A.Z display a warm-temperature gene 

expression pattern and phenotype, suggesting that changes in H2A.Z occupancy are 

linked to temperature-induced gene expression changes (Kumar and Wigge, 2010).  

Fluctuations in gene transcription, however, would be inconsistent with the fast response 

times of AFD to temperature (Ramot et al., 2008a). 

By contrast, the AFD neurons of C. elegans sense temperature by a cyclic guanine 

monophosphate (cGMP)–dependent pathway.  Although temperature-sensitive GPCRs in 

C. elegans have not yet been found, the downstream components of the thermosensory 

signaling pathway within AFD include multiple redundant membrane-associated 

guanylyl cyclases and a cyclic nucleotide-gated cation channel (Coburn and Bargmann, 

1996; Inada et al., 2006; Komatsu et al., 1996), which is consistent with a G-protein 

signaling pathway (Liu et al., 2010).  Some precedence for a temperature-sensing GPCR 

is found in Drosophila, where the light-sensitive GPCR rhodopsin also has roles in 

thermotaxis behavior; however, it is unclear if rhodopsin is directly activated by 

temperature or via interactions with other molecules (Shen et al., 2011).  In addition, the 



26 

elaborate and unique morphology of the AFD sensory ending is intriguing, and may be 

required either directly for temperature responses of the cell or for modulating those 

responses (Perkins et al., 1986; Satterlee et al., 2001).  For example, the specialized 

morphology of the thermosensory sensilla in the beetle Melanophila acuminata converts 

temperature changes to a mechanical stimulus (Campbell et al., 2002; Schmitz and 

Bleckmann, 1998).  As part of its natural ecology, Melanophila locates forest fires from 

great distances, where it mates and lays its eggs under the burnt bark of conifer trees, 

where the larvae feed.  Each Melanophila sensilla is innervated by a single 

mechanosensory dendrite cilium that is enclosed within a cuticular sphere.  

Electrophysiology recordings are consistent with a model whereby infrared radiation is 

absorbed by the cuticle, resulting in expansion of the cuticular sphere and a deformation 

on the sensory cilium, thus converting a temperature signal to a mechanical one 

(Campbell et al., 2002; Schmitz and Bleckmann, 1998).  It is unknown if AFD 

microvillar structure plays a similar role. 

Associated with AFD, AWC and other C. elegans neurons are glial cells, which 

ensheath sensory endings, synapses and neuron processes (Shaham, 2006; White et al., 

1986).  In each amphid sensory organ, the amphid sheath (AMsh) glial cell extends a 

process to the nose where it ensheaths the ciliated receptive endings of the dendrites 

(Figure 1.4) (Ward et al., 1975).  Some of these sensory endings, such as AWC and AFD, 

are embedded in the AMsh glia in a hand-in-glove configuration, while others project 

through an open channel formed by the glia and are directly exposed to the outside 

environment.  Each of the dendrites form tight junctions with the glia to form an isolated 
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sensory compartment, into which the glia secretes a specialized ECM required for 

neuronal function (Bacaj et al., 2008; Perkins et al., 1986; Ward et al., 1975). 

In addition to the amphid sensilla at the nose-tip of the animal, analogous bilateral 

sensory organs called the phasmids are located in the tail.  These organs consist of only 

two neurons, again associated with a sheath glial cell, and are required for measuring 

nose-to-tail environmental gradients (Hilliard et al., 2002). 

 

The C. elegans amphids as a model of neuron-glia interactions 

Despite the many possible roles of glia in controlling various aspects of nervous 

system function, in vivo studies of vertebrate glia and their roles in the nervous system 

have been complicated, primarily because the ablation or manipulation of glia often 

results in neuronal death (Cui et al., 2001; Delaney et al., 1996).  By contrast, in C. 

elegans, neurons survive following glia ablations, opening a unique in vivo arena in 

which to investigate the effects of glia on neuron function and shape (Bacaj et al., 2008; 

Yoshimura et al., 2008).  Furthermore, C. elegans has the advantage of facile genetics, 

and sensory inputs to amphid sensory neurons are well-defined and can be experimentally 

manipulated. 

Recent studies suggest that glia are required for amphid neuronal function and 

morphology.  For example, the correct morphogenesis of the AMsh glia channel is 

required for the direct access of amphid sensory neurons to the environment.  One factor 

required in glia for channel formation is the Patched-related transmembrane protein 

DAF-6, which lines the channel and apical surfaces of other tubular structures (Perens 
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and Shaham, 2005).  daf-6 mutants have bloated channels in which the sensory cilia are 

bent and neuronal responses to the environment are defective (Perens and Shaham, 2005; 

Perkins et al., 1986).  This observation suggests that daf-6 may be required to reduce the 

diameter of the channel.  Balancing the function of daf-6 is a pathway involving glia-

expressed Nemo-like kinase lit-1, which acts to increase channel diameter and may 

interact with the actin cytoskeleton at the anterior tip of the AMsh glia where the channel 

forms (Oikonomou et al., in press). 

In addition, the process lengths of the AMsh glia and sensory dendrites are 

coordinated during development and may be under glial control.  Although dendrite tips 

may often need to be told where to go by guidance cues (see above; Figure 1.2), this is 

not always the case.  Unlike some dendrites that elongate by growing a process out of a 

stationary cell body, time-lapse microscopy studies demonstrate that the dendrites of C. 

elegans amphid sensory neurons develop by first anchoring the presumptive dendritic tip 

to the surrounding environment at the nose (Heiman and Shaham, 2009).  Posterior 

migration of the cell body then stretches out a dendritic process (Figure 1.5A) (Heiman 

and Shaham, 2009).  The length of the dendrite and glial processes are correlated: in 

mutant backgrounds where the dendrites are too short, the glial process is also truncated 

(Heiman and Shaham, 2009).  At least one component of the dendritic-tip anchor, DYF-

7, is expressed by the sensory neurons (Heiman and Shaham, 2009), suggesting that 

anchoring is in part determined by the neurons themselves.  However, a second anchor 

component, DEX-1, is supplied by non-neuronal hypodermal cells surrounding the 

dendrite tip, raising the possibility that a number of cell types may contribute to creating 

the anchor. 
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Figure 1.5. A model for glial involvement in dendrite extension of C. elegans sensory 

neurons. (A) The single, unbranched dendrite of a C. elegans amphid neuron (orange) 

extends a process via retrograde extension. The presumptive dendritic tip of the neuron is 

anchored to its local environment (black, horizontal line). The dendrite is then extended 

by posterior migration of the cell body (indicated by arrow). The direction of migration is 

likely driven by a gradient of a chemotropic factor (blue gradient). The neuron is 

associated with the AMsh glial cell (green), whose process ensheaths the dendritic ending 

and which likely develops by retrograde extension also (Heiman and Shaham, 2009). (B)

When the amphid sheath glial precursor cell (Bacaj and Shaham, unpublished results) or 

the sheath glial precursor found in cephalic sensory structures (Ward et al., 1998; 

Yoshimura et al., 2008) is ablated, the dendrite of the associated sensory neuron is too 

short. 
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            The DYF-7/DEX-1 anchor seems to be an example of a structurally unique ECM 

of diverse functions in different systems.  DYF-7 is a secreted zona pellucida (ZP) 

domain protein localized near the tips of anchored sensory dendrites, while DEX-1 is a 

secreted zonadhesin (zonad) domain protein.  ZP domains form the ECM surrounding 

vertebrate oocytes (the zona pellucida), while zonadhesin is a sperm protein required for 

fertilization (Monne et al., 2008).  Both domains are also present in α-tectorin, a major 

component of the tectorial membrane, a highly organized proteinaceous ECM that 

anchors the ciliated outer hair cells of the inner ear (Legan et al., 1997). 

The observation that a single AMsh glial cell ensheaths all 12 amphid sensory 

neurons suggests that glia are also in a position to contribute to the common anchoring 

matrix.  Indeed, AMsh glia express several ZP domain proteins as well as other predicted 

extracellular proteins that could potentially contribute to the ECM anchor (Bacaj et al., 

2008).  Furthermore, ablation in early development of the precursor cells of the AMsh 

glia results in unanchored, short dendrites (Bacaj and Shaham, unpublished results), but 

does not affect sensory neuron cell migration.  Similarly, the dendrites of CEP sensory 

neurons, which are part of another C. elegans anterior sensory organ, are shortened when 

their glial precursors are ablated or when genes affecting differentiation of the associated 

glia are mutated (Figure 1.5B) (Yoshimura et al., 2008). 

Strengthening the notion that glia contribute to the ECM required for dendrite 

anchoring is the observation that the ECM that tethers mechanosensory neurons in 

Drosophila is, at least in part, secreted by glia-like cells associated with these neurons 

(Chung et al., 2001).  In type I mechanosensory organs of Drosophila, a sheath cell (also 

called the thecogen or scolopale cell in external sensory organs and chordotonal organs, 
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respectively) wraps the dendrite of the sensory neuron, and at the ciliated tip of the 

dendrite secretes a specialized ECM called the dendritic cap (Chung et al., 2001; 

Hartenstein and Posakony, 1989).  Although the sheath cell does not express the glial 

marker glial cell deficient/glial cell missing (glide/gcm) (Van De Bor et al., 2000), it is 

lineally related to the sensory neuron and has been described as a glial cell (Carlson and 

Saint Marie, 1990; Hartenstein and Posakony, 1989; Moore et al., 2004).  One of the 

proteins secreted by the sheath cell into the dendritic cap is No-mechanoreceptor-

potential A (NompA), which, like DYF-7, is a ZP domain protein.  In nompA mutant 

animals, the ciliated tips of the sensory dendrites fail to attach to nearby stimulating 

structures, either mechanosensory bristles or attachment cells, resulting in 

mechanosensory defects (Chung et al., 2001).  Furthermore, in the male tail of C. 

elegans, glial structural cells secrete the ZP domain protein RAM-5, which is required for 

correct morphology of the ray sensory organs (Yu et al., 2000). 

Together, these studies suggest that sensory organ glia may produce local ECM to 

which dendrite endings attach.  This ECM, in turn, may play a key role in determining 

dendrite length.  However, components of this specialized ECM may have other 

functions besides process anchoring.  Indeed, additional studies from the C. elegans 

amphid organs suggest the involvement of glia-secreted proteins in controlling the shapes 

of dendritic receptive structures and function.  Specifically, late-stage ablations of the 

AMsh glia result in changes in the morphology of the sensory endings of the ensheathed 

amphid neurons (Bacaj et al., 2008).  These changes correlate with behavioral defects of 

the animals in response to environmental stimuli (Bacaj et al., 2008).  The molecules 

contributed by the AMsh glia to maintain dendrite ending shape are not yet known; 
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however, the identification of a large number of glia-enriched mRNAs encoding secreted 

and transmembrane proteins by microarray analysis (Bacaj et al., 2008) may provide 

candidates for mediating shape determination. 

Interestingly, like vertebrate astrocyte glia, the AMsh glia of C. elegans secrete a 

TSP-domain protein called FIG-1, which, although having no defects in sensory cilia 

shape, is required for sensory neuron properties and function (Bacaj et al., 2008).  

Sensory neurons in fig-1 mutants are no longer able to accumulate the membrane dye DiI, 

suggesting the speculative possibility that the synaptogenic effects of TSP on vertebrate 

retinal ganglion cell neurons (Christopherson et al., 2005) may reflect a role in setting up 

postsynaptic architecture. 

 

Amphid dendrite endings and glia shapes are remodeled in C. 

elegans dauer larvae 

The morphology and/or metabolism of many organs are altered when C. elegans 

enters the dauer state, and this includes the amphid sensilla.  Electron microscopy (EM) 

reconstructions of the dendrite sensory endings at the nose-tip suggest that of the twelve 

bilateral neuron pairs, four of these are remodeled in dauer (Albert and Riddle, 1983).  

Two of these, the single-ciliated ASG and ASI neurons, are displaced posteriorly in the 

AMsh glia channel.  The others, AFD and AWC, show a change not in position but rather 

in shape.  The AFD sensory ending exhibits an increase in the number of microvillar 

extensions compared to non-dauer animals.  By contrast, AWC exhibits an even more 

dramatic change: the spatially-separated wing-like cilia expand at the nose-tip, such that 
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the left and right AWC neurons now overlap extensively in dauers.  This remodeling 

correlates with expansion and, remarkably, fusion of the two bilateral AMsh glia where 

they ensheath the AWC sensory endings (Figure 1.6) (Albert and Riddle, 1983).  What 

regulates the morphological remodeling of the amphids in dauer animals, and how dauer-

inducing signals from the environment feed into this developmental pathway are 

unknown. 

Why do the amphid structures remodel in dauer animals?  It is possible that these 

changes serve no functional purpose.  For example, the radial shrinkage of the body in 

dauer animals may shift the position of the ASI and ASG cilia, and bring the AWC 

sensory ending pair and two AMsh glia closer together (Albert and Riddle, 1983).  

Alternatively, the neurons of dauer animals may respond differently to their environment, 

and the remodeling of their morphology may have a functional consequence.  For 

example, these neurons may have altered sensitivity to food and other cues that would 

signal an improvement in their environment and the need to exit dauer to become 

reproductive adults.  Consistent with this hypothesis, the repertoire of odorant receptors 

expressed in a given sensory neuron is also altered in dauer animals (Peckol et al., 2001). 

 

Does plasticity of dendrite receptive ending shapes depend on glial 

plasticity? 

In addition to a well-established maintenance role of glia on dendrite shape (see 

above), could glia also be required for plasticity of dendritic receptive structures, such as 

sensory endings and dendritic spines?  Both structures exhibit morphological plasticity;  
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Figure 1.6. AWC neuron receptive endings and AMsh glia remodel in dauer larvae.

(A) A schematic of the head of the animal, showing the two bilateral AMsh glia and 

AWC sensory neurons (see also Figure 1.4). The horizontal line indicates the position of 

the transverse sections shown in (B,C). (B,C) Sections through the nose tip showing the 

relative positions of the AWC neuron receptive endings and the ensheathing AMsh glia 

in non-dauer (B) and dauer (C) animals. AMsh glia fusion may occur on either the ventral 

or dorsal side. In all images, left and right AWC (AWCL/R; dark shading) and AMsh glia 

(AMshL/R; light shading) are indicated. Adapted from Albert and Riddle, 1983; Ward et 

al., 1998. Not to scale. 
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for example, during synaptogenesis in the mouse cerebellum, dendritic spines of Purkinje 

cells exhibit dynamic shape changes, with spines rapidly emerging, growing, and 

retracting.  The frequency of these shape changes decreases as development proceeds to 

establish a stable synaptic repertoire (Dunaevsky et al., 1999).  In addition, systemic 

estrogen signals can affect dendritic spine number and density of adult rat hippocampal 

neurons (Woolley et al., 1990). 

The proximity of glial processes to dendritic receptive endings and the importance 

of glia in maintaining receptive ending shape may suggest that glia can influence 

neuronal receptive ending shape plasticity and that dynamic interactions between these 

cellular protrusions exist.  For example, in the cerebellum, Bergmann glia extend and 

retract processes in concert with the emergence and regression of Purkinje cell dendritic 

spines (Lippman et al., 2008).  Similarly, during lactation in female rats the processes of 

hypothalamic astrocytic glia retract, and this is accompanied by synaptic remodeling of 

the glia-ensheathed supraoptic nucleus (SON) neurons (Theodosis and Poulain, 1993).  

Some glia express neurotransmitter receptors (Porter and McCarthy, 1996), and in the 

case of visual cortex astrocytes, exhibit tuning responses similar to nearby neurons 

(Porter and McCarthy, 1996; Schummers et al., 2008).  Thus, glia possess machinery to 

gauge the environment surrounding receptive endings as well.  Together, these various 

observations raise the intriguing but speculative possibility that extracellular cues such as 

systemic hormones or environmental signals received by glia may promote their shape 

changes, which, in turn, could affect the shapes of neurons.  Furthermore, glia are already 

known to regulate plasticity of neuronal function; for example, sustentacular glia-like 
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cells in the olfactory epithelium affect the sensitivity of the sensory neurons to odorants 

following animal starvation (Breunig et al., 2010; Czesnik et al., 2007) (see above). 

Dauer-induced AWC neuron remodeling in C. elegans offers unique advantages 

for studying receptive ending plasticity: it is inducible, reproducible, and can be studied 

in an organism with facile genetics and molecular biology.  The fact that AWC and the 

other amphid neurons remodeled in dauer animals are all ensheathed by the AMsh glia, 

and that these glia also remodel, may indicate that the glia are required for directing some 

of the morphological changes in the neurons.  In this thesis, I will address roles of 

neurons and glia in nervous system shape plasticity, using C. elegans dauer-induced 

amphid remodeling as a model of dendrite-glia interactions.  In addition, I will describe a 

set of glial factors that are required for morphological changes of the glia in dauer 

animals. 
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Chapter 2 
 

Glia delimit shape changes of sensory neuron 

receptive endings
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Summary 

Dendritic receptive endings, such as dendritic spines and sensory protrusions, are 

structurally remodeled by experience.  How receptive endings acquire their remodeled 

shapes is not well understood.  In C. elegans dauer larvae, the AMsh glia remodel 

concomitantly with the sensory endings of the glia-ensheathed AWC neurons.  By 

ablating AWC, we have found that the glia remodel independently of AWC sensory 

ending growth.  By contrast, we have used genetic perturbations in the glia to show that 

the AWC sensory endings remodel in the confines of a compartment defined by the 

AMsh glia.  Our results demonstrate that stimulus-induced changes in glial compartment 

size provide spatial constraints on neuronal receptive ending growth. 
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Results 

Loss of daf-7/TGF-β promotes dauer remodeling of AWC neurons 

To characterize remodeling of AWC neuron sensory receptive endings, we 

examined dauer animals by EM serial reconstructions.  We found that in 2 of 3 animals 

examined, AWC receptive endings overlapped extensively.  By contrast, no overlap was 

evident in non-dauer adults (n = 6) (Figure 2.1A,B).  These results demonstrate that 

AWC remodeling occurs in some but not all dauers. 

Remodeling of AWC neurons could occur as a direct response to dauer 

pheromone, or may be a consequence of downstream systemic changes induced by 

pheromone.  To distinguish between these possibilities, we examined animals carrying a 

temperature-sensitive mutation in the daf-7 gene (Ren et al., 1996).  daf-7 encodes a 

TGF-β protein thought to function downstream of pheromone reception, and likely acts 

to inhibit the dauer program by binding to the DAF-1/DAF-4 TGF-β receptor complex 

expressed on the surfaces of many cells (Estevez et al., 1993; Georgi et al., 1990; Riddle 

et al., 1981) (see Chapter 1).  We found that AWC remodeling still occurred in daf-

7(e1372ts) animals induced to enter dauer at 25°C.  Specifically, 2 of 3 daf-7(e1372) 

dauers examined by EM showed overlap of AWC receptive endings (Figure 2.1C), 

suggesting that remodeling of AWC is a downstream consequence of pheromone 

signaling.  In addition, these results also demonstrate that daf-7 mutants are a suitable 

inducible setting in which to study AWC remodeling. 



40 

Figure 2.1. AWC neuron receptive endings and AMsh glia remodel in dauer 

animals. (A-C) Representative electron micrographs (EM) and schematic outlines of 

amphid sensory organs in non-dauer wild-type adults (A), wild-type dauers induced by 

starvation (B), and daf-7(e1372) dauers (C). Dorsal is up. In all schematics, left and right 

AWC (AWCL/R; dark shading) and AMsh glia (AMshL/R; light shading) are indicated. 

Scale bars, 5 μm. See also Figure 1.6. 
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AMsh glia fusion is dependent on AFF-1 and is not reversible 

To probe the extent of AMsh glia remodeling in dauers and to quantitatively 

describe the process, we developed a fluorescence assay to monitor AMsh glia fusion.  

First- or second-stage daf-7(e1372) larvae expressing an AMsh glia::green fluorescent 

protein (gfp) reporter from an unstable extrachromosomal array (nsEx1391, F16F9.3 

promoter::gfp) were selected for mosaic expression of GFP in only one of the two glial 

cells.  These animals were then cultivated for 48 h at 25°C to induce dauer entry.  The 

presence of GFP in both glial cells in dauers was taken as evidence of cytoplasmic 

mixing between the cells, indicative of cell fusion (Figure 2.2). 

Four control studies suggest that our assay faithfully reports on cell fusion: 

First, two independent chromosomally-integrated transgenes expressing a 

fluorescent reporter protein under the F16F9.3 promoter (nsIs142 and nsIs143) are 

constitutively expressed in both AMsh glia (n = 100 animals for each line), supporting 

the notion that single-cell expression of animals carrying the AMsh glia::gfp reporter 

(nsEx1391) is a result of mosaicism of the extrachromsomal array, and not asymmetric 

reporter expression. 

Second, we tested whether the presence of GFP in both AMsh glia required 

molecular mediators of cell fusion.  Two C. elegans genes, eff-1 and aff-1, encode 

fusogens required for somatic cell fusion in the animal (Mohler et al., 2002; Sapir et al., 

2007).  We found that both genes were expressed in AMsh glia (Figure 2.3A,B) (Mohler 

et al., 2002; Sapir et al., 2007) and localized to the apical region that undergoes fusion in 

dauers (Figure 2.3C,D).  Furthermore, glia fusion was markedly reduced in aff-1(RNAi)  
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Figure 2.2. Scoring AMsh glia fusion by cytoplasmic mixing. Animals express an 

AMsh::gfp reporter from an unstable extrachromosomal array (nsEx1391). First- or 

second-stage mosaic larvae expressing GFP in one of the two AMsh glia were picked and 

cultivated for 48 h at 25°C. If the two AMsh glia fuse at the nose-tip, cytoplasmic mixing 

occurs and both cells fluoresce. If fusion does not occur, the animals continue to express 

GFP in only one of the two AMsh glia. Entry into dauer is facilitated by the temperature-

sensitive, dauer-constitutive daf-7(e1372) allele. Examples of daf-7(e1372) dauers where 

cytoplasmic mixing has and has not occurred are shown. Scale bar, 20 μm. Anterior is up.



 

 

 

 

 

 

 

 

 

Figure 2.3. AMsh glia fusion is dependent on the aff-1 fusogen. (A,B) Fluorescence 

(left) and DIC (right) images of a wild-type adult animal carrying (A) an aff-1 

promoter::gfp transgene (hyEx167) or (B) an eff-1 promoter::gfp transgene (zzEx26). 

Arrows indicate AMsh glia cell bodies. Scale bars, 20 μm. Anterior is up. (C) 

Fluorescence (left) and DIC (right) images showing localization of an AFF-1::GFP fusion 

protein, expressed under an AMsh glia promoter (nsEx2727), to the nose-tip (arrow). 

Punctal cell body expression is also seen. Scale bar, 15 μm. (D) Fluorescence image 

showing localization of an EFF-1::GFP fusion protein, expressed under an AMsh glia 

promoter (nsEx2703), to the nose-tip of a dauer animal. Dashed line is the outline of the 

animal. Scale bar, 20 μm. (E) Percentage of daf-7(e1372) dauer animals treated with eff-1 

and aff-1 RNAi with fused AMsh glia as assayed by cytoplasmic mixing. P values 

between columns are determined using the χ2 test. Number of animals examined (n) is 

above each column. 

43



44 

 
Figure 2.3. AMsh glia fusion is dependent on the aff-1 fusogen. 
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dauers (Figure 2.3E), demonstrating an important role for AFF-1 protein in glia 

remodeling.  RNAi against eff-1 had no effect on glia fusion. 

Third, EM serial reconstructions demonstrated that glia remain unfused in dauer 

animals expressing GFP in only one AMsh glial cell, whereas dauers expressing GFP in 

both AMsh glia have fused glia (see below). 

Fourth, when we followed mosaic animals over time we observed that the time 

taken for GFP to be expressed at equal intensity in both glia took less than 2 h (n = 17).  

In some of these animals, GFP fluorescence at the nose tip was stronger relative to the 

cell body, indicative of a cell filling with GFP at its fused anterior tip (Figure 2.4).  These 

observations are consistent with cell fusion. 

Using our validated assay, and consistent with our EM studies, we found that 

AMsh glia fusion was never observed in wild-type, non-dauer adult animals, whereas 

51% of animals induced to enter dauer by the daf-7(e1372) mutation had fused AMsh 

glia (Figure 2.5A).  To address whether remodeling of AMsh glia was reversible upon 

exit from the dauer state, we examined post-dauer daf-7(e1372) adult animals recovered 

by cultivation of dauers at 15°C for 7 days.  While GFP perdures in amphid sheath glia 

for two days or less (Perens and Shaham, 2005), we found equal GFP fluorescence in 

both glial cells (Figure 2.5B).  Furthermore, EM serial reconstruction of a single wild-

type 2-day post-dauer adult revealed fused AMsh glia (Figure 2.5C; image provided by 

Singhvi, Lu and Shaham).  Together, these results suggest that remodeling induces a 

permanent change in AMsh glia architecture. 
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Figure 2.4. Cytoplasmic mixing of GFP between fused AMsh glia. (A) Fluorescence 

images showing cytoplasmic mixing of GFP between two AMsh glia in a daf-7(e1372) 

animal induced to enter dauer by cultivation at 25°C. The animal was initially selected 

for mosaic expression of an AMsh::gfp reporter (see Figure 2.2). Far left image, DIC. In 

fluorescence images, the plane of focus is at the level of the AMsh cell body which is 

filling with GFP, as marked by an arrow. In these images, the nose tip is out of focus. 

Time in minutes (’) is indicated. The animal was anesthetized using 10 mM levamisole in 

S-basal. (B) Fluorescence image of a daf-7 animal during cytoplasmic mixing. The AMsh 

glia on the right is filling with GFP. Note the greater intensity of GFP at the nose tip 

(arrow head) compared to the cell body (arrow) (compare with the relative GFP 

intensities between the anterior cell tip and cell body of the glia on the left). In (A,B), 

scale bar, 20 μm. Anterior is up. 
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Figure 2.5. Remodeling of AMsh glia occurs in dauer animals and persists in dauer-

recovered adults. (A) Percentage of animals with fused AMsh glia as scored by 

cytoplasmic mixing. Number of animals examined (n) is above each column. P value 

between columns was determined using the χ2 test. (B) Representative fluorescence 

image of a dauer-recovered daf-7(e1372) adult. First- or second-stage daf-7 larvae with 

mosaic expression of an AMsh::gfp reporter were induced to enter dauer at 25°C and then 

selected for GFP fluorescence in both AMsh glia (see A and Figure 2.2).  These animals 

were then induced to exit the dauer stage and became adults by cultivation at 15°C for 7 

days. Note persistence of equal intensity gfp expression in both AMsh glia (arrows). 

Scale bar, 50 μm. Anterior is up. n = 44. (C) Electron micrograph (EM) image (top) and 

schematic outline (below) of the amphid sensory organs of a wild-type, 2-day post-dauer 

adult. In this animal, the AMsh glia have fused on the ventral side. Scale bar, 1 μm. 

Dorsal is up. 
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AMsh glia remodeling is independent of AWC expansion 

In all dauers and normally-developed adults that we examined by EM serial 

reconstructions, regardless of genotype, we found that overlap of AWC sensory receptive 

endings correlated with AMsh glia expansion and fusion (8 and 19 animals examined 

with and without AWC overlap, respectively; Figure 2.1; see also below).  In one daf-

7(e1372) dauer, glia expanded to allow overlap of the bilateral AWC receptive endings 

but did not fuse (Figure 2.6).  These observations suggested to us that the remodeling of 

AMsh glia, with or without fusion, may be required to define a compartment into which 

the AWC receptive endings expand in dauers. 

Changes in glial architecture to accommodate the remodeling of AWC receptive 

endings could be induced by the expanding AWC neurons.  Alternatively, glia may 

independently define a compartment that limits the extent of AWC expansion.  To 

distinguish between these possibilities, we ablated the two AWC neurons using a laser 

microbeam in first-stage daf-7(e1372) larvae that were mosaic for AMsh glia::gfp 

expression and that expressed an AWC promoter::yellow fluorescent protein (yfp) 

reporter (oyIs45).  Ablated animals were then induced to become dauers by incubation at 

25°C for 48 h, and glial fusion was monitored using the cytoplasmic mixing assay.  We 

found that mock-ablated animals had a high rate of fusion, 89% (n = 36), perhaps a result 

of the strain background (Figure 2.7A).  Importantly, in animals where both AWC 

neurons were ablated, we saw no significant decrease in glial cell fusion (81%; n = 26; P 

= 0.47, Fisher’s exact test).  EM serial reconstructions of ablated animals confirmed both 

the degradation of the AWC receptive endings and the remodeling of the glia in the 

absence of AWC expansion (Figure 2.7B; n = 2). 
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Figure 2.6. Changes in AMsh glia shape correlate with AWC neuron remodeling. 

Electron micrograph (EM) and schematic outline of the amphid sensory organs of a daf-

7(e1372) dauer larva in which the AWC sensory endings expanded and overlapped. The 

AMsh glia also expanded but did not fuse. Scale bar, 5 μm; dorsal is up. Left and right 

AWC (AWCL/R; dark shading) and AMsh glia (AMshL/R; light shading) are indicated. 



 

 

 

 

 

 

 

Figure 2.7. Changes in AWC shape are not required for AMsh glial fusion. (A) 

Percentage of mock- and AWC-ablated dauer animals with fused AMsh glia as scored by 

cytoplasmic mixing (P = 0.47, Fisher’s exact test). All animals carry the daf-7(e1372) 

mutation and AWC promoter::yfp reporter (oyIs45). (B) Electron micrograph (EM) (top) 

and schematic outline (below) of the amphid sensory organs of a daf-7(e1372); AWC::yfp 

(oyIs45) dauer, where both AWC neurons were ablated in the first larval stage. AMsh 

glia fusion was scored prior to EM analysis by assaying for glial cytoplasmic mixing. 

Left and right AWC (AWCL/R; dark shading) and AMsh glia (AMshL/R; light shading) 

are indicated. Scale bar, 5 μm; dorsal is up. 
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Figure 2.7. Changes in AWC shape are not required for AMsh glial fusion. 
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            These results suggest that in response to external dauer signals the AMsh glia, 

independently of AWC neurons, define a compartment that delimits AWC receptive 

ending expansion. 

 

ttx-1 is required in AMsh glia for glia remodeling 

The observation that glia can remodel in the absence of AWC neurons suggests 

that active processes within AMsh glia may be required to promote glia remodeling and 

that interference with these processes should lead to defects in AWC sensory receptive 

ending shape.  To test this prediction and to begin to characterize the molecular basis for 

glia remodeling, we sought fully-penetrant mutants in which glia remodeling was 

blocked.  Importantly, since previous studies from our laboratory indicated that AMsh 

glia are required for maintaining AWC receptive ending shape (Bacaj et al., 2008), we 

aimed to identify mutants that specifically disrupt glia remodeling in dauers but in which 

glial shape was unperturbed in non-dauer animals.  aff-1 was unsuitable for such an 

analysis: RNAi knockdown of aff-1 did not have a fully-penetrant defect in glial 

remodeling and aff-1 genetic lesions had morphological abnormalities in the AMsh glia 

and other tissues by EM (Lu, Oikonomou and Shaham, unpublished results; see also 

Sapir et al., 2007).  Therefore, other mutants were sought. 

In the course of our studies, we had observed that the transcription of an AMsh 

glia-expressed gene, ver-1, was strongly dependent on temperature (see Chapter 3).  ttx-1 

codes for an otd/Otx transcription factor required for temperature responses of the animal 

(Satterlee et al., 2001).  Therefore, we analyzed the effect of the gene ttx-1 on glia 

remodeling.  As shown in Figure 2.8, AMsh glia fusion failed to occur in almost all daf-
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7(e1372); ttx-1(p767) and daf-7(e1372); ttx-1(oy26) double mutant dauer animals scored 

using the cytoplasmic mixing assay.  Thus, ttx-1 may be a component of the glial 

remodeling machinery, and ttx-1 mutants might provide a suitable genetic background in 

which to test the effects of AMsh glia remodeling on AWC neuron shape changes. 

However, previous studies suggested that ttx-1 is expressed specifically in the 

AFD thermosensory neurons of C. elegans.  Animals carrying ttx-1 promoter::gfp 

transgenes express GFP in AFD (Satterlee et al., 2001), and the AFD sensory receptive 

endings in ttx-1 mutants lack their wild-type microvilli-like protrusions (Perkins et al., 

1986).  Furthermore, ttx-1 mutants have defects in thermotaxis, an AFD-dependent 

behavior in which animals placed in a thermal gradient seek the temperature at which 

they were reared (see Chapter 1) (Hedgecock and Russell, 1975; Mori and Ohshima, 

1995).  ttx-1 might, therefore, act in AFD to drive AMsh glia fusion in dauers.  To test 

this possibility, we blocked activity in a number of amphid sensory neurons, including 

AFD, using a mutation in the tax-2 gene, which encodes a subunit of a cyclic nucleotide 

gated channel required for thermotaxis and other sensory functions (Coburn and 

Bargmann, 1996; Komatsu et al., 1996).  We observed no defect in the fusion of AMsh 

glia in tax-2(p691) mutants (Figure 2.8; P = 0.70, χ2 test), suggesting that sensory 

signaling in AFD was unlikely to be important for glia remodeling.  These results 

suggested the possibility that ttx-1 may act in AMsh glia to promote their remodeling in 

addition to its previously described roles in AFD. 

To test this idea, we examined expression of transgenes containing ttx-1 

regulatory sequences fused to sequences encoding fluorescent reporter proteins.  As 

shown in Figure 2.9A,B, a 7.5 kb sequence immediately upstream of the ttx-1  
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Figure 2.8. ttx-1 is required for AMsh glia remodeling in dauers. Percentage of 

animals with fused AMsh glia as scored by cytoplasmic mixing. Strains carrying a daf-

7(e1372) mutation are as indicated. Number of animals examined (n) is above each 

column. P values between columns are determined using the χ2 test or Fisher’s exact test. 

Transgenes expressing cell-specific ttx-1 are nsIs99 (AFD::ttx-1) and nsIs219 (glia::ttx-

1). The longest ttx-1 splice form, ttx-1a, was used (see Chapter 3; Table 3.3). Additional 

glia::ttx-1 transgenes also gave rescue of glia fusion (data not shown). 



 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9. ttx-1 is expressed in glia. (A) A schematic of the ttx-1 promoter. The ATG 

start codon and first exon (filled narrow box) are shown, as well as 11 kb of upstream 

sequence (solid, horizontal line). The ttx-1pro1 region includes the 7.5 kb sequence 

upstream and adjacent to the ttx-1 start site. The ttx-1pro2 region includes the 3.5 kb 

sequence upstream of ttx-1pro1. Scale bar, 2 kb. (B) Fluorescence image of an adult 

animal carrying a transgene containing the ttx-1pro1 sequence fused to dsRed 

(nsEx1320). Fluorescence is seen in the two AFD thermosensory neurons. (C) 

Fluorescence image of an animal carrying a transgene containing the ttx-1pro2 sequence 

fused to gfp (nsEx1942). Reporter expression is evident in the AMsh (arrows) and 

amphid socket (arrowheads) glia. (D,E) Representative fluorescence images of vap-1 

promoter::dsRed (nsIs53) expression within an AMsh glial cell at 20°C in wild-type (D) 

and ttx-1(p767) mutant (E) adults. Exposure time, 250 ms. In (B,C) and (D,E), scale bars, 

50 μm; anterior is up. 
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 Figure 2.9. ttx-1 is expressed in glia. 
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transcription start site drives reporter expression in AFD, consistent with previous 

observations (Satterlee et al., 2001).  By contrast, a 3.5 kb sequence further upstream 

drives expression in AMsh and phasmid sheath (PHsh) glia, as well as in associated 

socket glia (Figure 2.9A,C; and data not shown).  The PHsh glia are associated with the 

phasmid sensory organ in the tail.  Furthermore, by driving ttx-1 cDNA under cell-

specific promoters (see Chapter 6 for promoter details), we observed that although 

expression of ttx-1 in AFD was sufficient to confer wild-type AFD sensory ending 

morphology and thermotaxis to ttx-1 mutants (Figure 2.10A-C,F-H; see also Satterlee et 

al., 2001), it did not rescue the AMsh glia fusion defect in dauer animals (Figure 2.8).  

Restoring ttx-1 in AMsh glia, however, rescued AMsh glia fusion (Figure 2.8) but not 

thermotaxis or AFD morphology (Figure 2.10A,D,E,I).  These results demonstrate that 

ttx-1 has separable, cell-autonomous roles in the AFD thermosensory neurons and the 

AMsh glia. 

To determine whether ttx-1 was generally required for AMsh glia shape 

maintenance, we examined the morphology of these cells in non-dauer animals.  We 

found no defects in the shape of these glia.  Furthermore, expression of constitutive glial 

genes we examined was affected weakly or not at all by mutations in ttx-1 (Figure 

2.9D,E; and data not shown).  In addition, an aff-1 promoter::gfp reporter (hyEx167) 

showed GFP expression in AMsh glia of both wild-type and ttx-1 mutants (86% of wild-

type animals expressed GFP in AMsh glia, compared to 93% of ttx-1(p767) mutants; n > 

40 both genotypes), suggesting that ttx-1 likely affects glia remodeling and fusion 

through the transcriptional regulation of genes other than aff-1. 



 

 

 

 

 

 

 

Figure 2.10. Glial expression of TTX-1 is not required for AFD morphology or 

AFD-mediated thermotaxis behavior. (A) The number of animals with a mutant, 

elongated single cilium present or absent at the AFD dendrite ending at 25°C. In some 

mutant animals, microvilli are observable at the base of the single cilium. Representative, 

cell-specific ttx-1a rescuing arrays are shown (nsEx875, nsEx877 and nsEx930). 

Equivalent rescue was obtained with splice form ttx-1b (see Chapter 3). (B-E) 

Representative fluorescence images of the AFD dendrite endings of adult wild-type (B), 

ttx-1(oy26); AFD::ttx-1a (C), ttx-1(oy26); AMsh::ttx-1a (D), and ttx-1(oy26); 

AM+PHsh::ttx-1a (E) strains at 25°C. Scale bar, 5 μm. Anterior is left. In (A-E), a gcy-8 

promoter::gfp transgene (oyIs17) was used to visualize the AFD neurons. Note the 

presence of an aberrant single elongated cilium in (D,E). (F-I) Thermotaxis of wild-type 

(F), ttx-1(p767) mutant (G), ttx-1(p767); AFD::ttx-1a (nsIs99) (H), and ttx-1(p767); 

glia::ttx-1a (nsIs219) (I) animals. Animals were cultivated at 15°C (blue), 20°C (yellow) 

or 25°C (red) prior to performing each assay (see Chapter 6). The linear temperature 

gradient is represented by bins 1-6 on the horizontal axis, from cold (~18°C) to hot 

(~26°C). All values are mean +/- s.d. All animals also carry the ver-1 promoter::gfp 

transgene (nsIs22). For AFD cell-specific rescues of AFD morphology and thermotaxis 

defects of ttx-1 mutants (C,H) see also reference (Satterlee et al., 2001). 
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Figure 2.10. Glial expression of TTX-1 is not required for AFD morphology or 

AFD-mediated thermotaxis behavior. 
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            Our data show that ttx-1 has specific cell-autonomous roles in AMsh glia, 

supporting the idea that active glia-intrinsic processes promote glia remodeling.  These 

results also suggest that animals lacking ttx-1 function provide a suitable setting in which 

to test the effects of AMsh glia on AWC neuron remodeling. 

 

Proper remodeling of AWC neurons requires glia 

To address whether remodeling of AWC receptive endings in dauer animals 

depends on remodeling of AMsh glia, we examined EM serial sections of ttx-1 mutants.  

We first noted that ttx-1(p767) starvation-induced dauers as well as ttx-1(p767); daf-

7(e1372) dauers indeed fail to show AMsh glia fusion (Figure 2.11A,B; n = 6), verifying 

the results of our cytoplasmic mixing assay.  Importantly, in these same animals, AWC 

receptive endings did not overlap extensively (Figure 2.11A,B; n = 6, P<0.016).  

Furthermore, animals in which AMsh glia fusion was rescued by restoring ttx-1 

expression in these cells displayed a wild-type pattern of AWC overlap by EM (Figure 

2.11C; n = 2).  Interestingly, in 2/6 ttx-1 mutants we examined, AWC appeared to have 

expanded but, instead of projecting circumferentially around the nose as was always 

observed when AWC expanded in wild-type dauers, folded back on itself (Figure 2.12).  

It is possible that in these animals AWC attempts to expand but is constrained by the size 

of the compartment defined by the unfused glial cell, and therefore forms a whorl rather 

than extending circumferentially. 

The AWC ablation and ttx-1 studies demonstrate that AMsh glia respond to dauer 

signals independently of AWC to define a compartment confining AWC receptive  
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Figure 2.11. ttx-1 is required for remodeling of AMsh glia. (A-C) Representative 

electron micrographs (EM) and schematic outlines of amphid sensory organs in ttx-

1(p767) dauers induced by starvation (A), ttx-1(p767); daf-7(e1372) dauers (B), and ttx-

1(p767); daf-7(e1372); glia::ttx1 (nsIs219) dauers with fused AMsh glia as assayed by 

cytoplasmic mixing prior to EM analysis (C). Left and right AWC (AWCL/R; dark 

shading) and AMsh glia (AMshL/R; light shading) are indicated. Scale bars, 5 μm; dorsal 

is up. 
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Figure 2.12. The AWC neuron cilia are constrained by the ensheathing AMsh glia. 

Electron micrograph (EM) image and schematic outline of the amphid sensory organs of 

a ttx-1(p767); daf-7(e1372) dauer animal in which an AWC neuron folded back on itself 

within an unfused glial process. Scale bar, 5 μm. Dorsal is up. Left and right AWC 

(AWCL/R; dark shading) and AMsh glia (AMshL/R; light shading) are indicated. 
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endings, and that defects in glial compartment plasticity lead to defects in the 

morphology of AWC receptive endings. 

 

Discussion 

The results described here show that the extent of remodeling of a glial 

compartment in C. elegans dauers restricts the shape of remodeled AWC receptive 

endings: when ttx-1 function in glia is impaired the AWC sensory protrusions fail to take 

on their wild-type overlapping appearance.  Glia or glia-like cells are intimately 

associated with sensory receptive endings from C. elegans to humans (Shaham, 2010), 

suggesting that the roles they play in delimiting receptive ending morphological plasticity 

may be conserved.  Furthermore, the many similarities between sensory receptive 

endings and dendritic spines, which serve as receptive endings for postsynaptic neurons 

(Shaham, 2010), suggest the interesting possibility that glia may be in a position to define 

compartments that will constrain dendritic spine shape as well.  Indeed, all dendritic 

spines examined by EM in the cerebellum are tightly ensheathed by Bergmann glia 

(Spacek, 1985), and most spines examined by EM in the hippocampus are ensheathed by 

astrocytes (Ventura and Harris, 1999).  Furthermore, Bergmann glia have been shown to 

affect neuronal receptive ending shapes in the cerebellum (Lippman et al., 2008), and 

astrocytic glia affect dendritic spine morphology of hippocampal neurons via ephrin-

A3/EphA4 signaling (Murai et al., 2003). 

At least two possible mechanisms by which the glial compartment can delimit 

receptive-ending shape are possible.  Glia may form an inelastic physical barrier against 
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expansion of neuronal receptive endings.  Alternatively, glia may provide specific signals 

that induce receptive-ending growth or retraction.  Although both mechanisms may 

apply, our finding that in some ttx-1 mutants AWC attempts to remodel but forms 

membrane whorls confined to the space defined by the AMsh glia (Figure 2.12) is 

consistent with a physical barrier role for these cells.  A similar role for astrocytic glia in 

remodeling SON neuron synapses in the mammalian hypothalamus has been proposed: 

the retraction of astrocytic processes from postsynaptic surfaces may facilitate the 

increased number of synapses that occur onto a single postsynaptic element during 

lactation in female rats (Theodosis and Poulain, 1993).  In both of these cases, 

remodeling of the glia may be permissive for neuronal shape changes. 

The receptive endings of the amphid AFD thermosensory neurons may also 

remodel in dauer animals, as the number of AFD microvilli has been reported to increase 

upon dauer entry (Albert and Riddle, 1983).  Thus, it is possible that AMsh glia play a 

role in this remodeling process as well.  We were unable to use ttx-1 mutants to assess the 

effects of AMsh glia on AFD remodeling, as ttx-1 also functions within AFD to control 

morphology. 

Together, our results suggest that plasticity of dendrite receptive ending shape can 

depend on glial plasticity.  Furthermore, we have shown that the changes in AMsh glial 

shape depend on the transcriptional regulator ttx-1 and the cell fusion protein aff-1, both 

acting in the glia.  Dauer entry and glial fusion were also induced by a mutation in the 

neuroendocrine daf-7/TGF-β signaling pathway, suggesting that some signals affecting 

glial changes must come from sensory neurons that regulate dauer.  However, it is 

unclear if the glia can also respond independently of neurons to dauer-inducing 
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environmental stressors.  In the next chapter, I will describe the characterization of a glial 

gene, the receptor tyrosine kinase ver-1, and show that its transcription is regulated both 

by dauer entry and the stressor high temperature.  Using transcriptional reporters of this 

gene as a tool, I will further show that temperature signals are likely independent of 

sensory neurons, suggesting that the glia can respond to environmental stress and may 

integrate this information with dauer-inducing neuroendocrine pathways. 
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Chapter 3 
 

Transcription in glia depends on dauer and 

environmental temperature 
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Summary 

Although morphological plasticity of glia has been demonstrated in some settings, 

little is known about the molecular mechanisms promoting glial shape changes in 

response to environmental or developmental cues.  Here, we show that remodeling of the 

AMsh glia in dauer animals is affected by mutations in the ver-1 receptor tyrosine kinase, 

and that ver-1 expression is glia-specific and dependent on dauer development.  In 

addition, ver-1 transcription was up-regulated by an environmental stimulus that induces 

dauer: high temperature.  ver-1 expression required the transcription factor TTX-1, 

previously shown to affect AFD thermosensory neuron morphology and function.  

However, we found that ver-1 expression at high temperature was independent of AFD, 

suggesting that the glia might respond to temperature independently of sensory neurons.  

Our findings suggest that glial transcription is dynamically regulated by environmental 

and developmental cues, and that these transcriptional changes are important for 

morphological remodeling of the glia. 
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Results 

ttx-1 promotes AMsh glia remodeling by inducing ver-1/RTK expression 

To further elaborate the mechanism by which ttx-1 promotes the remodeling of 

AMsh glia, we turned our attention to the gene ver-1.  ver-1 encodes a protein with 

similarities to the mammalian vascular endothelial growth factor receptor (VEGFR), a 

receptor tyrosine kinase (RTK), and was previously reported to be expressed in AMsh 

and PHsh glia (Popovici et al., 2002).  Interestingly, we found that at 15°C, wild-type 

dauers induced by starvation strongly expressed a ver-1 promoter::gfp reporter in AMsh 

and PHsh glia (Figure 3.1A,C; see also Popovici et al., 2002).  However, only very weak 

expression of ver-1 was detected in non-dauer adults raised under the same temperature 

conditions (Figure 3.1B,D).  Thus, C. elegans AMsh glia respond to dauer signals by 

modifying gene expression concomitantly with induction of remodeling. 

The induction of ver-1 expression in dauers suggested to us that this gene may be 

involved in remodeling AMsh glia.  To test this idea, we examined two strains carrying 

different deletions of the ver-1 locus (Figure 3.2A) using our fluorescence fusion assay.  

As shown in Figure 3.2B, both strains displayed significantly reduced AMsh glia fusion.  

Although we have been unable to rescue this mutant phenotype (Appendix 1), the fact 

that two independent alleles of ver-1 both have reduced fusion is suggestive that this gene 

is required for glia remodeling. 

Furthermore, we found that expression of ver-1 in glia was dependent on 

functional ttx-1, as two independent ttx-1 alleles greatly reduced ver-1 promoter::gfp 

expression in dauers (Figure 3.1E).  To determine how TTX-1 regulates ver-1  



 

 

 

 
 
 
 
 
 
 
 
 
Figure 3.1. Dauer-induced expression of ver-1 is dependent on ttx-1. (A,B) 

Representative fluorescence images (left) and DIC and fluorescence merged images 

(right) of ver-1 promoter::gfp (nsIs22) expression in one of the two AMsh glial cells of a 

wild-type dauer induced by starvation at 15°C (A), and in a non-dauer adult animal at 

15°C (B). Exposure time for ver-1 promoter::gfp was 800 ms; scale bar, 50 μm; anterior 

is up. (C,D) As in (A,B), except showing ver-1 promoter::gfp (nsIs22) expression in the 

PHsh glia. Exposure time was 200 ms; scale bar, 50 μm; anterior is up. (E) Expression of 

a ver-1 promoter::gfp transgene (nsIs22) in AMsh glia of wild-type, ttx-1(oy26) and ttx-

1(p767) dauers at 15°C and 25°C. GFP expression is scored as either strong (dark green), 

weak (green), or absent. Note that the ttx-1(oy26) allele is temperature sensitive. 
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 Figure 3.1. Dauer-induced expression of ver-1 is dependent on ttx-1. 



71 

Figure 3.2. Mutations in ver-1 affect glia remodeling in dauers. (A) A schematic of 

ver-1 deletion alleles. The predicted VER-1 protein structure has an amino-terminal 

extracellular region (dark solid line) with immunoglobulin-like domains, flanked by a 

signal sequence (green box) and a single transmembrane domain (blue box). An 

intracellular protein kinase domain (red box) is predicted (Popovici et al., 2002). The 

tm1348 allele has a frame-shift deletion that codes for a truncated protein without the 

transmembrane and protein kinase domains, which is followed by an additional non-

homologous 21 amino acids (HSPSSETLRSETNSEKFYTFZ, not shown). A single base 

mutation also causes an amino acid change at position 266 (Y to C). The ok1738 allele 

has an in-frame deletion (dashed line) removing part of the extracellular region. Scale 

bar, 100 amino acids. (B) Percentage of daf-7(e1372) dauer animals with fused AMsh 

glia as scored by cytoplasmic mixing. Number of animals examined (n) is above each 

column. P values were determined using the χ2 test. 
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expression, we performed deletion studies of the ver-1 promoter with the aim of 

identifying a minimal interval required for expression of the gene.  We identified a ~90 

bp interval required for ver-1 expression in dauers (Table 3.1).  Within this interval we 

identified a potential TTX-1 binding site based on similarity to the mammalian Otx2 

binding site (Kelley et al., 2000), suggesting that ttx-1 might directly regulate ver-1.  

Indeed, a 40 bp oligonucleotide containing this sequence bound a GST::TTX-1 

homeodomain fusion protein, and alteration of the core nucleotides of the putative 

binding site from GGATTATC to GGGGGGTC abolished both in vitro binding (Figure 

3.3) and in vivo expression of a ver-1 promoter::gfp transgene (Table 3.1).  Thus, ver-1 is 

likely a direct TTX-1 target. 

The specific requirement of ttx-1 for both ver-1 expression and AMsh glia 

remodeling in dauers suggested to us that ttx-1 may be important for the expression of 

genes required for specific terminally differentiated features and/or functions of AMsh 

glia.  To test this idea, we asked whether other glia-specific genes were also regulated by 

ttx-1.  Specifically, using the BLAST algorithm to search the C. elegans genome, we 

identified within a cluster of thrombospondin (TSP)-domain encoding genes a 15-bp 

sequence highly similar to that surrounding the TTX-1 binding site in ver-1 (Figure 3.4A; 

14/15 residues identical).  Previous studies have shown that glia secrete TSPs to regulate 

synaptogenesis in mammals and sensory neuron function in C. elegans (Bacaj et al., 

2008; Christopherson et al., 2005); thus, TSP-related proteins are required for 

terminal/functional differentiation of glia.  Transcriptional reporters for the TSP genes we 

studied here were expressed in either AFD neurons or AMsh glia, and were regulated by 

ttx-1 (Figure 3.4B-D).  This result lends support to the notion that TTX-1 is required to  
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Table 3.1. A summary of ver-1 promoter deletion studies. 
  sheath glia GFP expression at:  
Fragment coordinatesa  15°C 25°C dauer 15°C dauer 25°C  

regulated by
ttx-1?b 

-2110 to +263 (in-frame) 
-2110 to +262 (-1 frame)c 

-2110 to +261 (-2 frame)c 

-2110 to -1 
+1 to +263 
+57 to +263 
+112 to +263 
+130 to +263 
+170 to +263 
+201 to +263 
+1 to +243 
+1 to +220 
+1 to +201 
+1 to +263 ATTA→GGGGd 

 – 
– 
– 
– 
– 
– 
– 
– 
– 
– 
– 
– 
– 
– 

++ 
++ 
++ 
– 

++ 
+ 
– 
– 
– 
– 
+ 
+ 
– 
– 

++ 
nd 
nd 
nd 
++ 
+ 
– 
– 
– 
– 
+ 
– 
– 
– 

++ 
nd 
nd 
nd 
++ 
++ 
+ 
+ 
– 
– 

++ 
+ 
– 
– 

 yes 
nd 
nd 
nd 
yes 
yes 
yes 
yes 
nd 
nd 
nd 
yes 
nd 
nd 

aThe indicated fragments were fused to gfp, introduced into animals, and assayed for GFP expression.   
“–” indicates no expression, “+” weak expression, and “++” moderate to high expression, while “nd” 
indicates not determined.  All constructs were injected at 60 ng/μl with 60 ng/μl pRF4.  Coordinates 
refer to positions relative to the WormBase predicted ATG start codon of ver-1. 
bTo test if a ver-1 reporter was regulated by ttx-1, a single array was crossed to ttx-1(p767) and scored 
for reduced GFP intensity. 
cFrame-shift reporters likely give GFP expression using the gfp start site rather than the ver-1 start, and 
demonstrate that regulation of GFP expression by temperature and dauer is transcriptional rather than 
translational. 
dThe core ATTA nucleotides of the predicted TTX-1 binding site (GGATTATC) are at position +176. 
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Figure 3.3. TTX-1 can bind directly to the ver-1 promoter. (A) A schematic showing 

part of the predicted ver-1 gene and promoter. Wormbase-predicted exons are shown as 

boxes, non-coding regions as a solid, horizontal line. The ATG start codon, putative 

TTX-1 binding site (ggATTAtc; core binding residues in capital letters), and location of 

the 40-bp probe used in (B) are shown. Scale bar, 100 bp. (B) Electrophoretic mobility-

shift assay showing binding of either a GST control or a purified GST::TTX-1 

homeodomain (HD) fusion protein to a wild-type (ATTA) or mutant (GGGG) 40 bp 

biotin-labeled probe from the ver-1 promoter. Competitor, unlabeled wild-type or mutant 

probes were added in 200-fold excess. 



 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.4. TTX-1 directly regulates glial and AFD genes. (A) A schematic showing 

part of the F58F9 cosmid sequence, which includes a cluster of five thrombospondin 

(TSP)-domain containing genes (boxes). The gene numbers are designated by 

WormBase. The putative TTX-1 binding site, based on conservation with the ver-1 

promoter, is indicated (conserved residues between ver-1 and F58F9 are 5’ ACG[A/-

]GATTATCGGATTCAG 3’, with core TTX-1 binding residues underlined). Also shown 

are the F58F9.10 and F58F9.6 promoter regions used in expression studies. (B,C) 

Fluorescence images (left), and DIC and fluorescence merged images (right) showing gfp 

expression in the AFD neurons of an adult wild-type animal carrying an F58F9.10 

promoter::gfp transgene (nsEx2284) (B), or in the AMsh glia of a wild-type animal 

carrying an F58F9.6 promoter::gfp transgene (nsEx2330) (C). GFP expression in AFD is 

indicated by arrowheads, and in AMsh glia by arrows. Expression of F58F9.6 

promoter::gfp in AMsh glia was rare (1/13 lines). (D) As in (C), except in a ttx-1(p767) 

mutant. (E) As in (C), except in a dauer animal. Exposure (C-E), 500 ms. Scale bar (B-

E), 50 μm. Anterior is up. All animals grown at 25°C. 
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Figure 3.4. TTX-1 directly regulates glial and AFD genes. 
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directly maintain the expression of markers of both AMsh glia and AFD differentiated 

cell types.  In addition, our observation that TSP expression within glia, unlike ver-1, was 

not dauer-dependent (Figure 3.4E) suggests that the role of TTX-1 in ver-1 expression is 

likely permissive: other factors must be required to induce expression of ver-1 in dauer 

animals and to confer glia versus AFD specificity. 

Taken together, these results suggest that ttx-1 may act to regulate AMsh glia 

fusion in dauer animals in part by promoting ver-1 expression. 

 

ver-1 exhibits temperature-dependent expression in dauers and non-dauers 

Although ver-1 expression was strongly induced by dauer entry, we also noticed 

induction of expression by high ambient temperature in non-dauer animals.  Over a 

temperature range of 15-25°C, adult animals exhibited a graded increase in ver-1 

promoter::gfp expression intensity (Figure 3.5A,C).  The increase in expression was not a 

general transcriptional response, as reporters for three other glial genes demonstrated 

only mild temperature effects and were not upregulated by dauer entry (Figure 3.6).  

Furthermore, neither the heat-shock nor the unfolded protein response pathways affected 

ver-1 expression (Table 3.2; and data not shown), indicating that the expression pattern 

observed was not a result of a general stress response. 

The induction of ver-1 expression by temperature was, however, dependent on 

ttx-1, as animals containing ttx-1 mutations failed to express the ver-1 promoter::gfp 

reporter at high temperatures (Figure 3.5B).  Restoring ttx-1 specifically in glia rescued 

temperature-dependent ver-1 expression, whereas restoring ttx-1 in AFD neurons did not  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.5. ver-1 promoter::gfp has temperature-dependent expression in AMsh and 

PHsh glia. (A) Representative DIC and fluorescence merged images (top), and 

fluorescence only images (below) of ver-1 promoter::gfp (nsIs22) expression in one of 

the two AMsh glial cells of wild-type adult animals at 15-25°C. (B) DIC and 

fluorescence merged (top), and fluorescence only (below) images of ver-1 promoter::gfp 

expression in a ttx-1(p767) mutant adult at 25°C. (C) As in (A), except in the PHsh glia. 

Scale bars (A,B), 50 μm. Scale bar (C), 20 μm. In all images, anterior is up. Exposure 

(A,B), 800 ms. Exposure (C), 200 ms. 
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Figure 3.5. ver-1 promoter::gfp has temperature-dependent expression in AMsh and 

PHsh glia. 
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Figure 3.6. Effect of temperature and dauer on other AMsh glia reporters. (A-C)

Representative fluorescence (left) and DIC (right) images of animals carrying an F16F9.3

promoter::gfp transgene: adults at 15°C (A), adults at 25°C (B), and dauer larvae at 15°C 

(C), exposure of 110 ms. (D-F) Same as (A-C) except using a vap-1 promoter::dsRed

transgene, exposure of 250 ms. (G-I) Same as (A-C) except using a T02B11.3

promoter::gfp transgene, exposure of 150 ms. Scale bar, 50 μm. Anterior is up. 
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Table 3.2. Effects of mutations in genes controlling thermotaxis, neuronal morphology, dauer, and the 
heat-shock/UPR pathways on ver-1 promoter::gfp expression. 

 ver-1 expression 15°C  ver-1 expression 25°C 
Genotypea % PHsh on % AMsh on n  % PHsh on % AMsh on n 
wild type 
 

6 
 

0 
 

80 
 

 100 
 

93 
 

80 
 

AFD, AIY or AIZ neurons 
(thermotaxis circuit) 

       

ttx-1(p767)  
ttx-1(oy26) 
ceh-14(ch3) 
dac-1(gk211) 
tax-2(p691) 
tax-4(p678) 
pkc-1(nj1) 
pkc-1(nj3) 
pkc-1(nj4) 
pkc-2(ok328) 
ttx-3(ks5) 
ttx-3(mg158) 
lin-11(n389) 
lin-11(n566) 
unc-86(e1416) 
unc-86(n846) 
 

0 
0 
0 
2 
0 
2 
5 
3 
5 
8 
5 
2 
5 
2 
2 
2 
 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
 

58 
47 
42 
48 
41 
46 
40 
40 
40 
40 
39 
40 
41 
40 
45 
43 

 

 2 
0 

96 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

 

0 
0 

94 
92 
88 
83 
88 
95 
95 
95 
80 
95 
98 
92 
91 
94 

 

51 
44 
50 
49 
50 
76 
40 
40 
40 
40 
51 
45 
54 
50 
45 
54 

 
Otx/otd transcription factors        
ceh-37(ok642) 
ceh-37(ok272) 
ceh-36(ky646) 
 

10 
10 
20 

 

0 
0 
3 
 

40 
40 
40 

 

 100 
100 
100 

 

85 
83 
98 

 

40 
40 
40 

 
Neuronal cilia and dendritic 
morphology 

       

che-2(e1033) 
che-13(e1805) 
osm-6(p811) 
dyf-7(ns89) 
dyf-7(m537) 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

55 
49 
44 
44 
43 

 

 100 
100 
100 
88 
88 

 

86 
94 
83 
98 
98 

 

51 
52 
48 
50 
50 

 
Dauer neuroendocrine pathways        
daf-7(e1372) 

daf-12(m20) 
daf-12(m25) 
daf-2(m41) 

daf-16(mu86) 
 

5 
0 
0 
0 
5 
 

0 
0 
0 
0 
0 
 

42 
40 
54 
39 
40 

 

 100b 
100 
100 
100c 
100 

 

100b 
90 
90 
98c 
100 

 

53 
50 
50 
54 
40 

 
Heat-shock and UPR pathways        
wild type 
ire-1(zc14) 
hsf-1(sy441) 

8 
8 

13 

0 
0 
0 

40 
40 
40 

 93d 
98d 

100d 

43d 
45d 
53d 

80 
40 
40 

aAll strains contained the ver-1 promoter::gfp transgene (nsIs22). 
Animals were scored as adults at the indicated temperature except for: 
bDauer-constitutive daf-7 animals as dauer larvae at 25°C. 
cDauer-constitutive daf-2 animals as dauer-recovered adults at 25°C. 
dDue to increased lethality at high temperatures, ire-1(zc14), hsf-1(sy441) and wild-type control animals were 
cultivated first at 15°C before shifting as L4 larvae to 25°C and scoring GFP intensity 24 h later. 
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(Table 3.3).  In addition, the same promoter region and TTX-1/Otx2 binding site required 

for expression of ver-1 in dauers were required for temperature-dependent expression of 

ver-1 (Table 3.1). 

Otx2 is expressed in glia-like cells in vertebrate olfactory and vomeronasal organ 

epithelia (Mallamaci et al., 1996), as well as other neuronal tissues, suggesting that the 

functions of this family of proteins in sensory organs may be widely conserved.  We 

found that expression of murine Otx2, but not Otx1, robustly rescued the defects in ver-1 

expression at 25°C of ttx-1 mutants (Table 3.3).  These results are consistent with the 

notion that both proteins may have similar functions in their natural settings. 

Interestingly, restoring ttx-1 to adult mutant animals using a heat-inducible 

promoter rescued ver-1 expression at 25°C (Table 3.4).  In addition, we found that the ttx-

1(oy26) allele was temperature-sensitive (Figure 3.1E), and that shifting ttx-1(oy26) 

animals reared at 15°C (the permissive temperature) to 25°C (the restrictive temperature) 

at any larval stage abrogated ver-1 promoter::gfp expression in glia (Figure 3.7), 

suggesting that ttx-1 is continuously required for ver-1 expression at 25°C, and consistent 

with our finding that TTX-1 can bind directly to the ver-1 promoter.  Strikingly, we also 

observed a continuous requirement for ttx-1 in maintaining AFD sensory ending 

morphology: ttx-1(oy26) mutants shifted to the non-permissive temperature acquired an 

aberrant, single elongated cilium (Figure 3.8).  Thus in both glia and neurons, ttx-1 

functions continuously to control specialized aspects of terminal differentiation. 

To determine whether temperature control of ver-1 expression was mediated by 

the sensory neurons associated with the AMsh glia, we genetically ablated both 

thermosensory AFD neurons and observed no defect in ver-1 expression (Table 3.3).   
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Table 3.3. TTX-1 acts in glia, and not AFD, to control temperature-dependent ver-1 expression. 

 ver-1 expression 15°C  ver-1 expression 25°C 
Genotypea % PHshb on % AMshb on n  % PHsh on % AMsh on n 
wild type 
 

6 0 80  100 93 80 

ttx-1(p767) 
ttx-1(p767); AFD::ttx-1 
ttx-1(p767); AMsh::ttx-1c 

ttx-1(p767); AM+PHsh::ttx-1 
 

0 
0 
0 

30 
 

0 
0 
0 
7 
 

70 
25 
25 
30 

 

 0 
0 
0 

87 
 

0 
0 

50 
97 

 

70 
23 
22 
30 

 
ttx-1(oy26) 
ttx-1(oy26); AFD::ttx-1 
ttx-1(oy26); AMsh::ttx-1c 

ttx-1(oy26); AM+PHsh::ttx-1 
 

0 
0 
0 

57 
 

0 
0 
4 
7 
 

30 
25 
25 
30 

 

 0 
0 
0 

83 
 

0 
0 

48 
93 

 

30 
21 
23 
25 

 
ttx-1(p767); glia::Otx1d 

ttx-1(p767); glia::Otx2 
 

0 
0 
 

0 
0 
 

40 
40 

 

 0 
45 

 

8 
100 

 

40 
40 

 
AFD genetic ablatione 

tax-2(p691) 
tax-4(p678) 
osm-9(ky10) 
tax-2(p691); osm-9(ky10)f 

8 
0 
2 
3 
8 

0 
0 
0 
0 
0 

40 
41 
46 
40 
40 

 100 
100 
100 
100 
100 

93 
88 
83 
95 
90 

40 
50 
76 
40 
40 

aAll strains contained the ver-1 promoter::gfp transgene (nsIs22). 
bPHsh, PHsh glia.  AMsh, AMsh glia. 
cThat ttx-1 expression only in AMsh glia rescued ver-1 expression only in AMsh glia supports a cell 
autonomous role for ttx-1. 
dThe glia promoter drives expression in both AMsh and PHsh glia. 
eSee Chapter 6. 
fThe tax-2(p691); osm-9(ky10) genotype also failed to affect ver-1 expression in dauers.  100% of tax-
2(p691); osm-9(ky10) starvation-induced dauers at 15°C expressed ver-1 promoter::gfp in PHsh, and 82% in 
AMsh, compared to 100% of wild-type dauers in PHsh, and 88% in AMsh (n = 50 both genotypes). 
Two ttx-1 cDNAs, ttx-1a and ttx-1b, were isolated, and gave equivalent rescue.  TTX-1A and TTX-1B 
proteins are identical, except for an additional 53 amino acid residues in TTX-1A.  Only ttx-1a rescue 
transgenes are shown.  Transgenes were injected at 60 ng/μl of ttx-1/Otx plasmid, with 60 ng/μl of pRF4.  
Lines shown are nsEx899, nsEx895, nsEx939, nsEx897, nsEx893, nsEx937, nsEx1661 and nsEx1662, and 
are representative of others. 
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Table 3.4. Restoring ttx-1 expression to ttx-1(p767) mutant adults using a heat-inducible promoter 
rescues ver-1 expression. 

  ver-1 expression 15°C  ver-1 expression 25°C 
Genotypea 

heat 
shockb  % PHsh on % AMsh on  % PHsh on % AMsh on

wild type – 
+ 

 8 
10 

0 
0 

 90 
95 

30 
40 

ttx-1(p767) – 
+ 

 0 
0 

0 
0 

 0 
0 

0 
0 

ttx-1(p767); heat shock::ttx-1ac – 
+ 

 0 
13 

0 
0 

 0 
55 

0 
10 

ttx-1(p767); heat shock::ttx-1bc – 
+ 

 0 
8 

0 
0 

 0 
63 

0 
20 

aAll strains contained the ver-1 promoter::gfp transgene (nsIs22). 
bAnimals carrying heat-shock promoter::ttx-1 arrays were cultivated initially at 15°C.  Adult animals were 
heat shocked at 34°C for 50 min, and then transferred either to 15°C or 25°C.  ver-1 promoter::gfp expression 
was scored 24 h later. 
cheat-shock promoter::ttx-1a and heat-shock promoter::ttx-1b lines used were nsEx1636 and nsEx1680, 
respectively.  ttx-1a and ttx-1b are described in Table 3.3. 
n = 40 for all values. 

 



85 

 
 
 
 
 
 
 

 

Figure 3.7. TTX-1 is required continuously for temperature-dependent expression 

of ver-1 in glia. Percentage of wild-type and temperature-sensitive ttx-1(oy26) mutant 

larvae (L1-L4 stages) expressing ver-1 promoter::gfp (nsIs22)in PHsh glia over time (h) 

following a temperature shift from 15°C to 25°C (n = 15 for each data point). ver-1

promoter::gfp expression in AMsh glia showed a similar trend; however, PHsh glial GFP 

fluorescence was greater (data not shown). 
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Figure 3.8. TTX-1 is required continuously for AFD morphology. (A-D) AFD 

microvillar morphology at the AFD dendrite endings of wild-type (A) and ttx-1(oy26)

mutant (B) adult animals expressing a gcy-8 promoter::gfp transgene (oyIs17) in the AFD 

neurons at 15°C; and wild-type (C) and ttx-1(oy26) (D) adults at 25°C. The microvillar 

morphology is more perturbed in oy26 animals raised at 25°C (D) than at 15°C (B). Scale 

bar, 5 μm. Anterior is up.  The microvilli in (B) are more globular than (A). (E) The 

percentage of wild-type and ttx-1(oy26) L4 animals in which AFD dendrite endings do 

not exhibit an aberrant single cilium morphology at 0 and 48 h following a temperature 

shift from 15°C to 25°C. In some animals possessing a single aberrant cilium, some 

microvilli were still observable at the base of the cilium. Results are comparable with 

second- and third-stage larvae (data not shown). n = 15 for both genotypes. A gcy-8

promoter::gfp transgene (oyIs17) was used to visualize the AFD neurons. 
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Likewise, perturbation of all amphid and phasmid sensory neuron signaling activity by 

mutations in the tax-2/tax-4 and osm-9 sensory transduction ion channels (Coburn and 

Bargmann, 1996; Colbert et al., 1997; Komatsu et al., 1996) had little effect on the 

induction of ver-1 expression at high temperature (Table 3.3).  These mutations also had 

no effect on ver-1 expression in dauer animals (Table 3.3; see footnote f).  Finally, (1) 

mutations disrupting sensory neuron cilia morphology and/or circuitry, or (2) mutations 

in dauer-related TGF-β (Ren et al., 1996) or insulin (Kimura et al., 1997) neuroendocrine 

signaling components, also had minor or no effects on ver-1 expression at 25°C (Table 

3.2).  These observations suggest that AMsh and PHsh glia respond to temperature 

independently of sensory neuron input. 

To assess whether increased ver-1 expression was sufficient to drive AMsh glia 

remodeling, we examined non-dauer adults raised at 25°C for fusion of AMsh glia, a 

condition in which ver-1 transcription is high.  We found that fusion does not occur in 

these animals (see Chapter 2, Figure 2.5A), even though ver-1 is highly expressed, 

suggesting that dauer entry provides additional necessary conditions for AMsh glia 

remodeling. 

High ambient temperature is one of the environmental stressors that regulate 

dauer entry (Golden and Riddle, 1984a), raising the possibility that increased expression 

of ver-1 at high temperatures may facilitate AMsh glia remodeling.  However, robust 

expression of ver-1 is still detected in dauers raised at 15°C, confounding a functional 

analysis of the effects of temperature on the remodeling of these glia.  Nonetheless, we 

still observed a temperature dependence of ver-1 expression in dauers raised at different 

temperatures (Table 3.1).  Thus, although temperature and dauer signals both induce ver-
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1 expression, these signals must also converge independently on the ver-1 promoter to 

induce expression in dauer animals.  These results raise the speculative possibility that 

temperature, in addition to dauer cues, may play a modulatory role in remodeling of 

AMsh glia. 

 

Discussion 

The VEGFR-related gene ver-1 is required for glia remodeling 

Our studies demonstrate that neuronal remodeling must be tightly coordinated 

with glia remodeling in dauer animals, predicting the existence of proteins tasked with 

executing this coordination.  That ver-1 encodes a receptor tyrosine kinase is intriguing, 

suggesting the speculative possibility that it normally responds to as yet unidentified 

neuronal cues to promote coordinated glia-neuron remodeling.  Expression of ver-1 in 

non-dauer animals may serve to prime glia for remodeling, in preparation of pending 

dauer entry.  Alternatively, ver-1 expression may represent a neuroprotective or stress 

response of the glia.  Supporting this possibility, the VER-1-related VEGF receptor Flk-

1/VEGFR-2 is expressed in neurons and glia of the mammalian hippocampus following 

nerve injury stress (Wang et al., 2005), and VEGF signaling has neurotrophic and 

neuroprotective roles in some contexts (Sondell et al., 1999).  In addition, the predicted 

ver-1 kinase domain is similar to kinase domains encoded by the C. elegans genes old-1 

and old-2 (~40% identity), and old-1 has been implicated in longevity and resistance to 

environmental insults (Murakami and Johnson, 2001).  Consistent with its organism-wide 

phenotype, a transcriptional reporter for old-1 was expressed broadly in hypodermal 
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tissue and is induced by environmental stressors, including high temperature (Murakami 

and Johnson, 2001).  The function of old-2 is unknown; however, based on its homology 

to old-1, it may also have a role in stress responses.  Surprisingly, we find that a 

transcriptional reporter for old-2 is expressed in the AMsh and PHsh glia (Figure 3.9), 

further strengthening the idea that these cells respond to environmental stress.  However, 

old-2 expression was not affected by a mutation in ttx-1 (data not shown), and we 

observed no defect in glial fusion as measured by cytoplasmic mixing in daf-7(e1372) 

dauer animals carrying a deletion in the old-2 gene (46% of old-2(ok1253); daf-7(e1372) 

dauers had fused glia; n = 101, P = 0.32, χ2 test), suggesting that the function of ver-1 and 

old-2 in glia may be different. 

 

ttx-1 regulates cell shape in thermoresponsive cells 

The temperature responses of AFD and AMsh glia may be mediated by either 

similar or different sensors.  A sensor has not yet been identified in either cell; however, 

three guanylyl cyclases are important for temperature sensation in AFD (Inada et al., 

2006).  Reporter constructs for these guanylyl cyclases are not expressed in AMsh glia 

(Inada et al., 2006), suggesting that glia might employ a different upstream sensor.  

However, it is also possible that these cyclases function permissively in AFD.  In 

collaboration with Erik Procko and Rachelle Gaudet (Department of Molecular and 

Cellular Biology, Harvard University, Cambridge MA), we found that the enzymatic 

activity of two of these guanyl cyclases in in vitro assays was constant at different 

temperatures, indicating that they are unlikely to be the thermosensors themselves 

(Appendix 2), suggesting instead a possible involvement of an upstream thermosensing  
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Figure 3.9. old-2, a ver-1-related tyrosine kinase gene, is also expressed in AMsh glia. 

(A) A schematic representation of the VER-1, OLD-1 and OLD-2 proteins. Cell 

membrane is indicated by two vertical lines. VER-1 has a long extracellular region 

composed of immunoglobulin repeats (semi-circles) and an intracellular split-kinase 

domain (orange boxes) that most closely resembles the kinase domains of the C. elegans’ 

proteins OLD-1 and OLD-2 (~40% identity). OLD-1 and OLD-2 share greater similarity 

to each other (indicated by level of shading).  Not to scale. (B) Representative 

fluorescence image (left) and DIC image (right) of old-1 promoter::gfp (nsEx2299) 

expression in the hypodermis.  See also Murakami and Johnson, 2001. (C) Same as (B), 

except showing old-2 promoter::gfp (nsEx2317) expression in the AMsh glia. All old-2

promoter::gfp lines gave PHsh glia expression (12/12), while AMsh glia expression was 

rare (1/12; pictured).  Scale bar (B,C), 50 μm; anterior is up. 
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GPCR in AFD.  In Arabidopsis, changes in ambient temperature cause fluctuations in the 

constituents of the nucleosomes on which the DNA is packaged (Kumar and Wigge, 

2010).  Thus, chromatin may act as a direct thermal sensor.  Such a sensor is unlikely to 

be employed in AFD neurons, as it would not be compatible with the fast calcium 

transients observed in AFD neurons following temperature shifts (Kimura et al., 2004).  

A DNA-bound sensor would, however, be consistent with the kinetics of temperature-

induced changes in ver-1 expression we observe in glia.  If such a sensor exists, TTX-1 

would be unlikely to be its temperature-sensitive component, as constitutive expression 

of TTX-1 or its mammalian homolog, Otx2, in glia does not perturb temperature 

sensitivity of ver-1 expression (Tables 3.3 and 3.4).  However, some caution must be 

used when interpreting rescue data, as all glial promoters so far examined have some 

mild temperature response (Figure 3.6). 

It is of note that ttx-1 is required for determining the morphology of process 

endings of both glia (fusion/expansion) and neurons (AFD microvilli).  Interestingly, 

ectopic expression of TTX-1 in non-AFD neurons induces protrusions in these cells 

(Satterlee et al., 2001).  Thus, TTX-1 may have specific roles in regulating cell shape.  

Furthermore, the role of the protein as a terminal cell fate gene may be largely limited to 

thermoresponsive cells, as TTX-1 is required in two seemingly unrelated temperature-

dependent processes in C. elegans: AFD neuron function and glial ver-1 expression.  

Intriguingly, in the adult mouse brain, some hypothalamic neurons of the preoptic area, 

which senses body temperature (Boulant, 2000), express the TTX-1 related protein Otx2 

(Kelley et al., 2000).  Moreover, in the developing olfactory sensory epithelium Otx2 is 

expressed and largely restricted to the ensheathing glia (Mallamaci et al., 1996).  Our 
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finding that murine Otx2, but not Otx1, robustly restored ver-1 expression to ttx-1 

mutants in C. elegans may, therefore, indicate that Otx2 has conserved roles in 

thermosensation and/or the function of glia in sensory organs, in addition to its other 

well-studied roles in development. 

 

ver-1 transcription can be used as a tool for finding genes required for glia 

remodeling 

Our studies have shown the involvement of a number of genes functioning in the 

glia to regulate dauer-induced remodeling, including ttx-1, ver-1 and aff-1.  However, 

using direct mutagenesis screens to find additional genes that regulate this process is 

challenging: neither EM nor the cytoplasmic mixing assay we have developed are high-

throughput enough for screening large numbers of mutagenized animals.  ver-1 

transcriptional reporters may represent a solution to this challenge.  A ver-1 

promoter::gfp reporter is up-regulated by dauer entry, and mutations in ver-1 and its 

transcriptional regulator ttx-1 both affect glia remodeling.  Therefore, mutant screens to 

find animals in which ver-1 expression is mis-regulated may potentially uncover 

additional genes required for glia morphology.  In the next chapter, I will describe 

ongoing work towards finding and characterizing these genes. 
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Chapter 4 
 

Transcriptional regulators of the receptor tyrosine kinase 

ver-1 are required for AMsh glia remodeling
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Summary 

Both neurons and glia display remarkable morphological plasticity.  We have 

shown that changes in glial shape in the amphid sensory structures of C. elegans can in 

turn affect neuronal morphological plasticity when animals enter dauer development in 

response to environmental stressors.  Glia remodeling is dependent on the receptor 

tyrosine kinase gene ver-1, its direct transcriptional activator ttx-1, and the aff-1 cell 

fusogen, all acting within the glia.  To identify other factors required for glia remodeling 

in dauer animals, we screened for mutants that failed to express the ver-1 gene.  We 

identified an additional transcriptional regulator, the C2H2 zinc finger factor ztf-16, as 

being required for both ver-1 up-regulation in dauer animals and glia remodeling.  Cell-

specific rescue studies show that ztf-16 is expressed and functions in the glia.  Together, 

our results identify a transcriptional network in the glia that is required for morphological 

plasticity. 
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Results 

Mutants with reduced ver-1 reporter expression generally fall into 3 

complementation groups 

Glial morphology in vertebrate systems is dynamic (Lippman et al., 2008; 

Theodosis and Poulain, 1993); however, very little is known about what factors promote 

changes in glial shape.  In response to environmental stressors, the nematode C. elegans 

becomes a developmentally-arrested dauer larva.  Numerous morphological changes 

occur upon dauer entry, including the remodeling of the bilateral amphid sensory organs 

in the head of the animal.  Our results have shown that changes in the AMsh glia in dauer 

animals are important for extension and overlap of the ensheathed AWC sensory neuron 

endings (see Chapters 2 and 3).  Some of the signals regulating changes in AMsh glial 

shape may be mediated by sensory neurons or secondary signals as a result of dauer 

entry; for example, a mutation in the TGF-β/DAF-7 neuroendocrine hormone causes both 

constitutive dauer entry (Ren et al., 1996) and glia remodeling (see Chapter 2).  Other 

signals may be sensed by the glia directly.  For example, mutations in the ver-1 receptor 

tyrosine kinase gene cause a significant decrease in AMsh glia remodeling, and ver-1 

expression is dependent on both dauer entry and ambient temperature.  Up-regulation of 

ver-1 transcription in response to high temperature is likely independent of input from 

sensory neurons (see Chapter 3).  In addition, both ver-1 transcription and glia 

remodeling require the Otx-type transcription factor TTX-1, which directly regulates the 

ver-1 gene. 

Based on these observations, we sought to find other genes required for changes 

in glia morphology in dauer animals.  However, screening directly for mutants with 
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defects in glia fusion would be a difficult undertaking: the assays available to us, EM and 

cytoplasmic mixing, are both problematic, limited by low n values and/or time-

consuming protocols.  Instead, we reasoned that mutations which affect expression of a 

ver-1 promoter::gfp reporter in the AMsh glia might also affect glia fusion in dauers.  

This rationale is based on the observation that a ver-1 promoter::gfp reporter is up-

regulated in the AMsh and PHsh glia upon dauer entry, and that mutations in ver-1 or its 

direct transcriptional activator ttx-1 also affect dauer remodeling.  Thus, we sought to 

find other genes that are required for ver-1 expression. 

Wild-type animals carrying a ver-1 promoter::gfp transgene (nsIs22) were 

mutagenized with ethyl methanesulfonate (EMS) (see Chapter 6).  To facilitate screening 

and animal recovery, we screened adult F2 animals grown at high temperature (25°C) 

rather than dauer animals directly.  ver-1 promoter::gfp expression is high at 25°C, as 

well as in dauers, and may be regulated by similar mechanisms in both conditions (see 

Chapter 3).  More than 35,000 F2 animals were screened, and a total of 21 independent 

mutant alleles were isolated with reduced gfp expression in the AMsh glia (Table 4.1).  

Animals with reduced gfp expression in the PHsh glia only, and not in the AMsh glia, are 

not shown. 

The mutant alleles generally fell into one of three complementation groups (Table 

4.1).  The first group failed to complement a ttx-1(p767) reference allele, which we have 

previously shown to affect ver-1 expression (see Chapter 3).  These 2 alleles, ns235 and 

ns252, were found to have an identical nucleotide substitution in the ttx-1 gene coding for 

a single amino acid change in a conserved residue of the TTX-1 DNA-binding 

homeodomain (Figure 4.1A,B).  In addition, we isolated 4 mutant alleles with a dominant  
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Table 4.1. Alleles that reduce ver-1 promoter::gfp expression generally fall into one of three 
complementation groups. 
 ver-1 expression 25°Ca 
Allelea % AMsh on n 
wild type 
 

97 
 

30 
 

Complementation group 1 (see also dominant alleles; below):   
ttx-1(p767) (reference allele) 
ns235 
ns252 
 

0 
0 
0 

40 
64 
62 

Complementation group 2:   
tam-1(ns258) (reference allele) 
ns167 
ns170 
ns174 
ns234 
ns237 
ns238 
ns241 
ns249 
ns268 
 

5 
83 
25 
9 

16 
81 
13 
41 
0 

70 

22 
24 
24 
22 
25 
21 
15 
22 
30 
30 

Complementation group 3:   
ztf-16(ns171) (reference allele) 
ns169 
ns178 
 

4 
29 
5 

25 
21 
22 

Alleles not falling into complementation groups 1-3:   
ns231 
ns257 
 

32 
90b 

22 
20 

Dominant allelesc:   
ns255d 

ns259d 

ns260d 

ns267 

0 
n.d. 
n.d. 

0 

42 
n.d. 
n.d. 
40 

aAll strains contained the ver-1 promoter::gfp transgene (nsIs22). 
bAllele ns257 had only a weak, qualitative effect on ver-1 promoter::gfp expression. 
cDominant alleles were not scored for complementation. However, all dominant alleles were found to 
have a mutation in the ttx-1 gene. 
dAlleles ns259 and ns260 were homozygous sterile and lethal, respectively. Animals homozygous for 
allele ns255 were slow growing and unhealthy, even after out-crossing. 
Only alleles known to be isolated from independent mutagenized P0s are shown.  The reference 
alleles were used in crosses to place other alleles into complementation groups. 
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Figure 4.1. Mutations in the Otx-type transcription factor ttx-1 reduce ver-1

promoter::gfp expression. (A) A schematic of the ttx-1 gene. Exons are represented by 

boxes; the start site (+1) is indicated; DNA-binding homeodomain, shaded. Mutant ttx-1

alleles isolated in our screen are shown, and the corresponding amino acid change is 

indicated. (*) indicates a premature stop mutation. The region of the ns260 deletion and 

small insertion is shown. ns255 likely represents a rearrangement of the gene, as PCR 

products using primers covering exons 2-6 are either absent, weak, or consist of multiple 

sized fragments (data not shown). In addition, ns255 has the same base substitution as 

ns235 and ns252, causing amino acid change E230K. Previously isolated ttx-1 alleles 

p767 and oy26 are also shown (Hedgecock and Russell, 1975; Satterlee et al., 2001). (B) 

Alignment of the DNA-binding homeodomains of Otx-type factors TTX-1 (A isoform), 

Drosophila OTD, and murine Otx1 and Otx2. The amino acid position where each 

protein is being aligned is shown in brackets. ns235 and ns252 (and ns255) code for a 

glutamic acid to lysine change in a conserved residue. 
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effect on ver-1 promoter::gfp (Table 4.1).  In all 4 dominant mutant strains, we found 

sequence changes in the ttx-1 coding region, suggesting that ttx-1 dosage is important for 

ver-1 expression (Figure 4.1A).  Interestingly, one of these alleles, ns259, was 

homozygous sterile, while the allele with the strongest predicted effect on ttx-1, ns260, 

which codes for a deletion of the DNA-binding homeodomain, was homozygous lethal 

(Appendix 3).  We were unable to rescue the ns260 lethality phenotype by restoring ttx-1 

function to either the glia or AFD thermosensory neurons (Appendix 3), suggesting that 

ttx-1 has functions in other cell types during early development that have yet to be 

elucidated. 

The largest complementation group of mutant alleles causing a qualitative 

reduction in ver-1 promoter::gfp expression was represented by 10 independently-isolated 

alleles (Table 4.1).  Single nucleotide polymorphism (SNP) mapping techniques against 

the Hawaiian strain background (Wicks et al., 2001) were used to map one of these 

alleles, ns268.  ns268 was mapped to an interval of ~160 kb on chromosome V (Figure 

4.2A).  A cosmid within this interval, F26G5, was able to rescue high ver-1 expression 

when injected into ns268 mutants (Figure 4.2B).  Sequencing of coding regions within 

this interval uncovered two base mutations in the tam-1 gene, causing amino acid 

changes (Figure 4.2C).  The other 9 alleles that failed to complement ns258 were also 

found to have mutations in tam-1 (Figure 4.2C), confirming the identity of the relevant 

gene. 

tam-1 codes for a predicted protein that includes a C3HC4 zinc finger (RING 

finger) and a B-box motif, which are found in proteins of diverse functions (Hsieh et al., 

1999).  Immunohistochemistry against TAM-1 in C. elegans suggested that the protein is  
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Figure 4.2. Mutations in the RING finger and B-box domain factor tam-1 reduce 

ver-1 promoter::gfp expression. (A) A schematic of the interval on chromosome V to 

which mutant allele ns258 was mapped. Flanking single nucleotide polymorphism 

markers (uCE5-1251 and snp_C04F5[1]) are shown, as are the physical base and map 

positions on the chromosome. The region spanned by the F26G5 cosmid and tam-1 gene 

are also shown. (B) Rescue of qualitatively high ver-1 promoter::gfp (nsIs22) expression 

of adult animals cultivated at 25°C in the amphid sheath (AMsh) and phasmid sheath 

(PHsh) glia of ns258 mutants by 2 independent extrachromosomal arrays containing the 

F26G5 cosmid (nsEx2169 and nsEx2170). (C) A schematic of the tam-1 gene 

(WormBase release WS224). Exons are represented by boxes. Mutant tam-1 alleles 

isolated in our screen are shown, and the corresponding amino acid change is indicated. 

(*) indicates a premature stop mutation. ns268 coded for two amino acid changes. 
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nuclear-localized and expressed in all somatic cells of the embryo (Hsieh et al., 1999).  

Furthermore, mutations in tam-1 reduced the expression levels of many fluorescent 

reporter transgenes expressed in diverse cell-types.  This reduction in reporter expression 

was context-dependent.  Generally, transgenes injected into the animal are incorporated 

into simple arrays that consist of many tandem copies of the transgene (Mello et al., 

1991).  Mutations in tam-1 affected the expression of transcriptional reporters from these 

simple arrays; however, complex arrays with a reduced repetitive structure generated by 

co-injection with C. elegans genomic DNA were unaffected (Hsieh et al., 1999).  In 

addition, analysis of endogenous gene expression of the myo-3 gene in tam-1 mutants did 

not replicate the reduced expression of a simple array containing repetitive myo-3 

promoter::gfp elements (Hsieh et al., 1999).  Thus, tam-1 broadly regulates gene 

expression of transgenes from simple arrays; therefore, its effect on ver-1 promoter::gfp 

expression may not reflect a true role in endogenous ver-1 expression (although, it is 

intriguing that all previously isolated tam-1 alleles were temperature sensitive; Hsieh et 

al., 1999).  Thus, any involvement of the tam-1 gene in glial function and morphology 

was not pursued further. 

The third complementation group was defined by 3 independently isolated alleles, 

ns169, ns171 and ns178, all with reduced ver-1 promoter::gfp expression (Table 4.1).  It 

was these mutants that we chose to characterize more fully. 

 

The C2H2 zinc finger factor ztf-16 is required for ver-1 expression 

Mutations in ns169, ns171 and ns178 all caused a reduction in expression of a 

ver-1 promoter::gfp transgene in the AMsh and PHsh glia of adult animals raised at high 
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temperature (Figure 4.3A,B; and data not shown).  In addition, we found that these 

mutants failed to up-regulate ver-1 expression in dauer animals induced by starvation at 

15°C (Figure 4.3C; 100% of wild-type dauers expressed ver-1 promoter::gfp [nsIs22] in 

the AMsh glia, whereas 0% of ns169, ns171 and ns178 dauer mutants at 15°C expressed 

the reporter, n = 50 all strains).  By contrast, mutations in ns169 and ns171 had little or 

no effect on an AMsh glia reporter that is expressed constitutively and independent of 

dauer entry (Figure 4.3D; and data not shown); therefore, the glia are present in ns169, 

ns171 and ns178 mutants, and these mutants instead disrupt the expression of specific 

genes only. 

Previously, we found that ver-1 expression was dependent on the Otx-type 

transcription factor ttx-1 (see Chapter 3 and above).  Interestingly, mutations in ttx-1 were 

first isolated in screens for aberrant morphology of the amphid AFD thermosensory 

neurons and AFD function in response to environmental temperature (Hedgecock and 

Russell, 1975; Satterlee et al., 2001).  However, unlike ttx-1, we find no defects of ns171 

mutants in AFD function (thermotaxis behavior) or morphology (presence of microvillar 

protrusions at the anterior tip of the AFD sensory dendrite; n = 30) (Figure 4.4).  This 

suggests that while ns171 mutants and ttx-1 mutants share some phenotypic similarities 

they are not completely identical. 

SNP mapping (Wicks et al., 2001) was used to place the ns171 mutation to an 

interval of ~370 kb on chromosome X, between polymorphisms on cosmid F55D10 (base 

14867) and C42D8 (base 5707) (Figure 4.5A).  Cosmids spanning the 5’ region of this 

interval were injected into ns171 mutants and scored for rescue of ver-1 promoter::gfp 

expression in adults raised at 25°C.  One of these cosmids, R08E3, gave rescue (Figure  
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Figure 4.3. Temperature- and dauer-induced expression of ver-1 is reduced in ns171

mutants. (A,B) Representative fluorescence images (left), and DIC and fluorescence 

merged images (right) of ver-1 promoter::gfp (nsIs22) expression in one of the two AMsh 

glial cells of a wild-type adult cultivated at 25°C (A) and in a ns171 mutant animal (B). 

Exposure time for gfp was 800 ms. (C) Representative fluorescence images of ver-1

promoter::gfp (nsIs22) expression in one of the two AMsh glial cells of a wild-type dauer 

induced by starvation at 15°C (left) and a ns171 mutant dauer animal (right). Exposure 

time, 200 ms. (D) Representative fluorescence images of vap-1 promoter::dsRed (nsIs53) 

expression in the AMsh glia of a wild-type adult (left) and a ns171 mutant adult animal 

(right). Exposure time, 600 ms. In all images, scale bars, 50 μm; anterior is up. 
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Figure 4.4. ns171 mutants have wild-type AFD sensory ending morphology and 

thermotaxis behavior. (A,B) Representative fluorescence images of the AFD dendrite 

endings of adult wild-type (A) and ns171 mutant (B) strains at 25°C. Scale bars, 5 μm. 

Anterior is up. (A) is reproduced from Chapter 2. A gcy-8 promoter::gfp transgene 

(oyIs17) was used to visualize the AFD neurons. (C,D) Thermotaxis of wild-type (C) and 

ns171 mutant (D) strains. Animals were cultivated at 15°C (blue), 20°C (yellow) or 25°C 

(red) prior to performing each assay (see Chapter 6). The linear temperature gradient is 

represented by bins 1-6 on the horizontal axis, from cold (~18°C) to hot (~26°C). All 

values are mean +/- s.d. All animals also carry the ver-1 promoter::gfp transgene (nsIs22).



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5. The C2H2 zinc finger gene ztf-16 is required for ver-1 expression. (A) A 

schematic of the interval on chromosome X to which mutant allele ns171 was mapped. 

The flanking single nucleotide polymorphisms (SNPs) are on cosmid F55D10 (base 

14867) and C42D8 (base 5707). The regions spanned by the cosmids used for the rescue 

experiments shown in (B) are indicated, as is the position of the ztf-16 gene. (B) The 

number of lines carrying extrachromosomal arrays of the indicated cosmid that rescued 

the reduced ver-1 promoter::gfp (nsIs22) expression phenotype of ns171 mutant adult 

animals cultivated at 25°C. (C) A schematic of the ztf-16 gene; exons are boxed; C2H2 

zinc finger domains are shaded. We isolated 2 splice forms of ztf-16 based on EST data 

available from WormBase (release WS224), and have named these gene models as ztf-

16a and ztf-16b consistent with the EST nomenclature. The mutant ztf-16 alleles isolated 

in our screen are shown, and the corresponding amino acid change is indicated. (*) 

indicates a premature stop mutation. 
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Figure 4.5. The C2H2 zinc finger gene ztf-16 is required for ver-1 expression. 
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4.5B).  Candidate coding regions were sequenced within this interval, and a single base 

substitution causing a premature stop mutation in the ztf-16 gene of the ns171 strain was 

found (Figure 4.5C). 

ztf-16, for zinc finger putative transcription factor family-16, codes for a predicted 

protein containing up to eight C2H2 zinc finger domains.  C2H2 zinc finger proteins are 

abundant transcriptional regulators in mammals, with over 130 expressed in the brain 

alone (Iuchi, 2001).  Based on the pattern of C2H2 zinc fingers, the C. elegans ztf-16 

gene has been described as a hunchback- and Ikaros-like transcription factor (Large and 

Mathies, 2010).  In vertebrates, the Ikaros family of C2H2 zinc finger transcription 

factors have broad roles in the development of the hematopoietic system (Smale and 

Dorshkind, 2006), while hunchback was identified as a transcription factor regulating 

Drosophila embryo patterning (Tautz et al., 1987).  hunchback- and Ikaros-like 

transcription factors have a unique arrangement of C2H2 zinc fingers: four amino-

terminal or middle C2H2 zinc fingers bind DNA (Molnar and Georgopoulos, 1994), 

while two carboxy-terminal C2H2 zinc fingers mediate dimerization (McCarty et al., 

2003).  In ztf-16, it is likely that zinc fingers 3-6 form the putative DNA-binding domain 

(Large and Mathies, 2010). 

Based on EST data available from WormBase (release WS224), we isolated two 

alternatively spliced cDNAs of the ztf-16 gene.  In accord with the EST nomenclature, we 

have defined these transcripts as ztf-16a and ztf-16b (as opposed to the alternative 

promoter hypothesis and nomenclature described by Large and Mathies, 2010).  ztf-16a 

and ztf-16b differ in the presence of the two carboxy-terminal zinc finger domains (zinc 

fingers 7-8) and a short extension of exon 10 in ztf-16a (Figure 4.5C). 
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When we sequenced the other two independently-isolated alleles that failed to 

complement ns171, we also found mutations in the ztf-16 gene.  ns178 had the same base 

mutation as ns171 (a C to T substitution at position 706 of the cDNA), coding for a 

truncated protein with loss of zinc fingers 6-8, while ns169 coded for another nonsense 

mutation (a C to T substitution at position 391 of the cDNA) with a loss of zinc fingers 3-

8 (Figure 4.5C).  These findings identify these mutants as probable loss of function 

alleles of the ztf-16 gene, and show that ztf-16 is required for ver-1 expression in glia. 

 

ztf-16 functions within glia to regulate ver-1 

A previous report has indicated that ztf-16 has minor functions in the somatic 

gonad.  Specifically, mutations in ztf-16 interacted synergistically with mutations in a 

related transcription factor, ehn-3, to regulate early somatic gonad development (Large 

and Mathies, 2010).  In the C. elegans hermaphrodite, the two somatic gonadal precursor 

cells (SGPs) divide asymmetrically to form daughter cells that will generate the distal tip 

cells (DTCs).  The DTCs each migrate to form the two gonad arms (Kimble and Hirsh, 

1979).  ztf-16 single mutants had little or no defect on gonad arm development, while ztf-

16; ehn-3 double mutants had increased penetrance of ehn-3 single mutant defects, 

including absence of gonadal arms and ectopic germ line proliferation near the center of 

the gonad (Large and Mathies, 2010).  These defects correlated with abnormal position 

and morphology of the SGPs.  Consistent with the mutant phenotypes, a ztf-16 

promoter::gfp reporter was expressed in the somatic gonad, hypodermis, and other 

undescribed tissues (Large and Mathies, 2010). 
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Our findings here that ztf-16 affects ver-1 expression in the AMsh glia suggested 

to us that ztf-16 might have roles in glial cell types in addition to the somatic gonad.  To 

determine if endogenous ztf-16 was expressed in the glia, we fused upstream enhancer 

regions from the ztf-16 promoter to a gfp fluorescent reporter.  Short regions immediately 

adjacent to the ztf-16 start site generated reporter expression in hypodermal and other cell 

types, but not in glia (data not shown).  This is consistent with the fact that cosmid 

F43C9, which includes all ztf-16 coding fragments but only ~300 bp of upstream 

promoter, failed to rescue the reduced ver-1 promoter::gfp expression of ztf-16(ns171) 

mutants (Figure 4.5A,B).  By contrast, a region from the ztf-16 promoter that was further 

upstream and ~2 kb in length (Figure 4.6A) gave strong, specific reporter expression in 

the AMsh and PHsh glia, as well as the amphid and phasmid socket glia and an 

unidentified pair of neurons in the head (Figure 4.6B; and data not shown).  In addition, 

we found that a ZTF-16::GFP fusion protein, expressed specifically in the AMsh and 

PHsh glia, localized tightly to the nucleus (Figure 4.6C; n = 50).  This suggests that ztf-16 

may function as a cell-autonomous transcriptional regulator in the glia. 

Consistent with this hypothesis, we found that we could rescue the low ver-1 

promoter::gfp defect of ztf-16(ns169) and ztf-16(ns171) mutants by driving ztf-16 cDNA 

under a continuous glia promoter (Table 4.2).  That we observed rescue of ver-1 

expression with both ztf-16a and ztf-16b splice forms suggests that the two carboxy-

terminal C2H2 zinc fingers are dispensable for ztf-16 function in regulating ver-1.  By 

contrast, we were unable to rescue ver-1 promoter::gfp expression by driving ztf-16 

cDNA under an embryonic glia promoter that is not expressed in later larval and adult 

stages (Table 4.2).  This embryonic promoter is able to rescue other early AMsh glia  



 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6. ZTF-16 is expressed in glia and localizes to the nucleus. (A) A schematic 

of the ztf-16 promoter. The start site (+1) is shown, as well as ~4.6 kb of upstream 

sequence (solid, horizontal line). The promoter region/glia enhancer element used in (B) 

is between -4637 and -2536 relative to the +1 start site. (B) Fluorescence image (left) and 

fluorescence and DIC merged image (right) of an adult animal carrying a transgene 

containing the ztf-16 promoter region shown in (A) driving gfp expression (nsEx3001). 

Fluorescence is seen in the two AMsh glia (arrows), the amphid socket glia (arrow 

heads), and a pair of unidentified neurons anterior of the AMsh cell bodies. Expression is 

also observed in the PHsh and phasmid socket glia in the tail (data not shown). (C) 

Localization of a ZTF-16::GFP fusion protein to the nucleus of the AMsh glia when 

expressed under a glia-specific promoter (nsEx1347). AMsh glia nucleus, arrow. In 

(B,C), scale bar, 50 μm; anterior is up. 
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Figure 4.6. ZTF-16 is expressed in glia and localizes to the nucleus. 
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Table 4.2. ztf-16 acts in glia to control ver-1 expression. 
 % adult animals expressing ver-1 in AMsh glia at: 
Genotypea 15°C 25°C 
wild type 
 

0 93 

ztf-16(ns171) 
ztf-16(ns171); glia::ztf-16ab 

ztf-16(ns171); glia::ztf-16b 
ztf-16(ns171); embryonic glia::ztf-16bd 

 

0 
0 
0 

n.d. 

16 
64 (P < 0.001)c 

80 (P < 0.001) 
10 (P = 0.47) 

ztf-16(ns169) 
ztf-16(ns169); glia::ztf-16a 
ztf-16(ns169); glia::ztf-16b 

0 
0 
0 

4 
44 (P < 0.01) 
60 (P < 0.001) 

aAll strains contained the ver-1 promoter::gfp transgene (nsIs22). 
bThe glia promoter (F16F9.3) drives expression in the AMsh and PHsh glia (Bacaj et al., 2008). However, 
rescue of ver-1 promoter::gfp expression in the PHsh glia was not observed, perhaps due to low expression 
levels (data not shown). 
cP values were determined using the χ2 test. Rescue lines were compared against the corresponding mutant 
alone at 25°C. 
dThe glial enhancer element from the lin-26 promoter (Landmann et al., 2004) was used to drive expression 
in embryonic glial cells. 
Transgenes were injected at 60 ng/μl of the rescuing plasmid, with 60 ng/μl of pRF4.  Lines shown are 
nsEx1389, nsEx1410, nsEx3266, nsEx1382 and nsEx1405, and are representative of others. n > 25 all 
strains. 
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defects (Perens and Shaham, 2005).  Together, these results show a continual, cell-

autonomous requirement of ztf-16 for ver-1 expression in glia. 

 

ZTF-16 regulates the ver-1 promoter through a site distinct from that bound by 

TTX-1 

Previously, we showed that full ver-1 promoter::gfp reporter expression required 

residues +1 to +263 of the ver-1 gene (relative to the ATG start site) fused to gfp (see 

Chapter 3).  Using ver-1 promoter deletion studies, we identified a smaller ~90 bp 

interval that was sufficient for weak glia-specific and dauer-dependent reporter 

expression.  Within this interval, we identified a direct TTX-1 binding site based on the 

homology of TTX-1 to its mammalian ortholog, Otx2 (Kelley et al., 2000).  The core 

residues of this binding site were located at position +176 to +179 of the ver-1 gene.  By 

contrast, we find that a mutation in ztf-16 only reduces ver-1 reporter expression if 

residues +220 to +263 of the ver-1 gene are present (Figure 4.7).  This suggests that ztf-

16 acts either directly or indirectly through a site/s somewhere in this interval, distinct 

from the TTX-1 binding site.  Consistent with this, a ver-1 fluorescent reporter with the 

ztf-16-regulated region removed (residues +1 to +220 of the ver-1 gene fused to gfp) had 

reduced expression compared to the full-length reporter, similar to the effect of a ztf-16 

mutation (Figure 4.7). 

Within the region of the ver-1 promoter regulated by ztf-16 we found a potential 

ZTF-16 direct binding site based on the homology of ZTF-16 to Drosophila Hunchback.  

Hunchback binds the consensus sequence (G/C)(C/A)TAAAAAA (Stanojevic et al., 

1989).  In the ver-1 regulatory region, a similar sequence of CATGAAAAC is found at  
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Figure 4.7. ZTF-16 regulates expression from the ver-1 promoter through a site 

independent of the TTX-1 binding site. The indicated ver-1 promoter fragments (left 

column, boxes) were fused to a gfp fluorescent reporter and tested for expression in the 

AMsh glia in adults raised at 15°C and 25°C, and dauers induced by starvation at 15°C 

and 25°C. The ver-1 gene fragments used are indicated relative to the +1 start site. The 

ver-1 promoter::gfp transgene used for the mutant screen (nsIs22) is shown at top (~2 kb 

of upstream promoter sequence through +263 of the ver-1 gene). The positions of the 

TTX-1 binding site (see Chapter 3) and the potential Hunchback (Hb)-related binding site 

are shown. (*) indicates that the site is mutated (see Results). To test if ztf-16 mutants 

affect a particular reporter, the reporter was crossed to ztf-16(ns171). P values of reporter 

expression in the ztf-16 mutant dauers at 25°C were determined by comparing the mutant 

strain against wild type; χ2 test. The integrated transgenes and extrachromosomal arrays 

used were, from top to bottom, nsIs22, nsEx1136, nsEx2174, nsEx1269, and nsEx3022. 

To generate arrays, the ver-1 reporter construct was injected at 60 ng/μl with 60 ng/μl 

pRF4. Arrays are representative of others. n.d., not determined. 
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position +217 to +225 relative to the ver-1 start site.  Mutating these residues to 

GGGCCCAAC resulted in a loss of ver-1 promoter::gfp expression, not unlike the effect 

of a ztf-16 mutation on the wild-type reporter (Figure 4.7).  This finding is consistent with 

the hypothesis that ZTF-16 binds directly to the ver-1 gene to regulate its expression at a 

site distinct from that bound by TTX-1.  However, we were unable to verify conclusively 

that a purified GST::ZTF-16 fusion protein could recognize this site in an in vitro gel 

shift assay.  We could not purify soluble full-length GST::ZTF-16B under a variety of 

conditions when induced in E. coli.  By contrast, zinc fingers 2-6 fused to GST 

[GST::ZTF-16(znf2-6)] were in part soluble when the fusion protein was induced at 20°C 

(Figure 4.8A).  However, GST::ZTF-16(znf2-6) showed only weak, non-specific binding 

to a 40 bp biotin-labeled probe from the ver-1 gene.  In some assays, weak binding was 

consistent with ZTF-16 directly associating with the wild-type ver-1 sequence and not to 

a probe where the predicted binding site was mutated (Figure 4.8B); however, due to the 

non-reproducibility of these results we cannot be conclusive. 

 

ztf-16 function is required in glia for AMsh glia fision in dauer animals 

Our rationale for screening for mutants with defective ver-1 expression was that 

these same animals would have defects in AMsh glia remodeling upon dauer entry.  

Previously, we designed an assay to score fusion of the two AMsh glia by taking 

advantage of instability of an extrachromosomal array expressing an AMsh glia::gfp 

reporter (nsEx1391).  Mosaic first- and second-stage larvae expressing the reporter in just 

one of the two AMsh glia were selected and cultivated for a further 48 h at 25°C.  Dauer 

entry was induced by the presence of a temperature-sensitive dauer constitutive mutation,  
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Figure 4.8. ZTF-16 may bind directly to the ver-1 promoter. (A) SDS-PAGE analysis 

of purified GST::ZTF-16 zinc fingers 2-6 (znf2-6) protein. Marker size in kD is shown, 

as are comparisons against GST and GST::TTX-1 homeodomain (HD) purified proteins. 

~1 μg of each purified protein is loaded. (B) Example of an electrophoretic mobility-shift 

assay suggestive of ZTF-16 binding to the ver-1 promoter. Either a GST control or a 

purified GST::ZTF-16(znf2-6) fusion protein was bound to a wild-type (CATGAA) or 

mutant (GGGCCC) 40 bp biotin-labeled probe from the ver-1 promoter. Competitor, 

unlabeled wild-type or mutant probes were added in 200-fold excess. Binding of 

GST::ZTF-16(znf2-6) to both DNA probes was generally weak, and a difference between 

the shifts of the mutant and wild-type probes was not always observed (data not shown). 
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daf-7(e1372) (see Chapter 2, Figure 2.2).  Cytoplasmic mixing between the two glia 

occurs in dauer animals where the glia fuse at the anterior tip of their cellular processes.  

In these animals, GFP is free to diffuse into the other cell, and both glia now fluoresce. 

Using our cytoplasmic mixing assay, we found that ztf-16(ns169) and ztf-

16(ns171); daf-7(e1372) dauers had significantly reduced AMsh glia fusion compared to 

daf-7(e1372) dauers (Figure 4.9A).  Furthermore, we could rescue the fusion defect by 

restoring ztf-16 function specifically to the glia (Figure 4.9A).  These findings suggest 

that ztf-16 function in glia is required for dauer-induced glia remodeling, and, like ttx-1, 

that ztf-16 acts in part to affect fusion by regulating the ver-1 gene.  Previously, we also 

showed a requirement of the aff-1 fusogen in glia fusion.  However, it is unlikely that ztf-

16 transcriptionally regulates aff-1: 95% of wild-type dauer animals carrying an aff-1 

promoter::gfp reporter (hyEx167) expressed GFP in the AMsh glia, while 87% of ztf-

16(ns171) mutants expressed GFP in the AMsh glia; n = 44 and 38, respectively. 

In addition to our cytoplasmic mixing assay, we found that 3 out of 3 ztf-

16(ns171); daf-7(e1372) mutant dauer animals failed to exhibit AMsh glia extension and 

fusion at the anterior tip of the cells by EM analysis (Figure 4.9B,C).  In these same 

animals, the AWC sensory neuron wing-like cilia that are ensheathed by the glia do not 

exhibit the large expansion characteristic of wild-type dauers.  These findings are 

consistent with our observation that changes in the glia are important for concomitant 

changes in the AWC neurons. 

Together, our results show that the ztf-16 gene is required for expression of the 

AMsh glia gene ver-1 in response to dauer entry, and that ztf-16 function is required for 

AMsh glia morphological remodeling during dauer development. 



 

 

 

 

 

 
 

Figure 4.9. ztf-16 function is required for AMsh glial remodeling in dauer animals. 

(A) Percentage of daf-7(e1372) dauer animals of the indicated genotype with fused AMsh 

glia as scored by cytoplasmic mixing. Number of animals (n) is shown above each 

column. (*) indicates P = 0.001 (Fisher’s exact test), (**) indicates P < 0.001 (χ2 test). 

The glia::ztf-16 transgene is nsIs245 (T02B11.3 promoter::ztf-16b). (B,C) Electron 

micrograph (EM) (left) and schematic outline (right) of the amphid sensory organs of a 

daf-7(e1372) dauer (B) and a ztf-16(ns171); daf-7(e1372) dauer (C). Left and right AWC 

neuron sensory cilia (AWCL/R; dark shading) and AMsh glia (AMshL/R; light shading) 

are indicated. In (C), a section close to the anterior tip of the glial processes is shown 

where maximum AWC expansion occurs. Due to the reduced morphology of AWCL, we 

were unable to conclusively identify this neuron from the other ensheathed wing-ciliated 

neurons (indicated by ?). Scale bar, 5 μm; dorsal is up. Wild-type data and images used in 

(A,B) are reproduced from Chapter 2. 
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Figure 4.9. ztf-16 function is required for AMsh glial remodeling in dauer animals. 
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Discussion 

Previously, we demonstrated that morphological remodeling and fusion of the two 

AMsh glial cells in dauer animals was dependent on the gene ttx-1 and its direct 

downstream target, the receptor tyrosine kinase ver-1.  Transcriptional reporters for ver-1 

indicate that the gene is upregulated by dauer entry and also by an environmental 

stimulus that induces dauer, high temperature (see Chapter 3).  Based on these 

observations, we hypothesized that other mutations that affect expression of a ver-1 

transcriptional reporter would also affect AMsh glia remodeling.  To this end, we have 

performed a mutant screen for loss of ver-1 promoter::gfp expression, and identified the 

transcription factor ztf-16 as being required for both ver-1 expression and dauer-induced 

AMsh glia fusion.  Our results are consistent with a model whereby the transcriptional 

regulators TTX-1 and ZTF-16 act through distinct binding sites to regulate both ver-1 and 

other genes required for AMsh glia fusion. 

Our EM analysis of dauer animals suggests that the AWC wing-like cilia fail to 

take on their expanded morphology in ztf-16 mutants.  It remains to be tested if AWC 

wing morphology is also reduced in non-dauer ztf-16 mutant animals, perhaps due to 

reduced size of the AMsh glia at the anterior tip of the glial processes.  Such a possibility 

can be explored by either EM or fluorescence-based studies; however, preliminary 

analysis suggests that AWC-mediated chemotaxis towards benzaldehyde in adult animals 

is unaffected by mutations in ztf-16 (data not shown). 

Interestingly, ztf-16 was also identified as a possible effector of AMsh glial 

channel morphology in an unrelated screen performed within our lab (Oikonomou et al., 

in press).  While some amphid sensory neurons like AWC and the thermosensory neuron 
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AFD are completely ensheathed by the AMsh glia, others project simple cilia through a 

channel in the glia that is open to the outside environment.  One factor that regulates 

embryonic channel formation is the Nemo-like kinase LIT-1, that localizes to the channel 

and there interacts with actin regulators to increase channel size (Oikonomou et al., in 

press).  Surprisingly, ZTF-16 was identified as a protein that potentially interacts with 

LIT-1 in a yeast two hybrid (Y2H) assay.  Intriguingly, lit-1 expression is strongly 

regulated by the DAF-12 nuclear hormone receptor, which integrates dauer 

neuroendocrine signals to induce dauer entry (Shostak et al., 2004).  That LIT-1/Nemo-

like kinase may also transmit signals between the nucleus and cytoplasm (Ishitani et al., 

2011) may support an interaction with ZTF-16 in the nucleus in dauer animals to regulate 

AMsh glia morphology.  However, while we find defects in dauer-induced glia fusion by 

our cytoplasmic mixing assay in lit-1(ns132) mutants (6% fusion, n = 133), these same 

mutants had no defect in ver-1 promoter::gfp expression in dauer animals or at high 

temperature (data not shown).  Likewise, more severe lit-1(t1512ts) mutants had no 

defect in ver-1 expression in adults shifted to high temperature (data not shown).  These 

findings suggest that if LIT-1 does regulate AMsh glia fusion it is unlikely through an 

interaction with ZTF-16, and rather may be a secondary defect of early developmental 

abnormalities of the glia in lit-1 mutants.  It is possible that ZTF-16 interacts with LIT-1 

in early glia development to have some effect on channel morphology, or alternatively 

the two proteins may interact in other cell types (for example, both are expressed in 

hypodermal cells) or not at all. 

If ZTF-16 does interact with other factors, it is possible that these interactions 

occur via the two amino-terminal or two carboxy-terminal C2H2 zinc finger domains, 
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which are unlikely to be required for DNA binding (Large and Mathies, 2010).  For 

example, the carboxy-terminal zinc fingers of the related Ikaros transcription factor 

enable dimerization of the protein (Sun et al., 1996).  However, in our rescue studies we 

find that these two zinc fingers are dispensable for ztf-16 function in regulating ver-1 

expression (Table 4.2; both splice forms ztf-16a to ztf-16b rescue ver-1 promoter::gfp 

expression).  Therefore, it is unclear what role these domains play in the ZTF-16 protein.  

One possibility is the creation of ZTF-16 isoforms that are able to or prohibited from 

complexing with other factors.  For example, Ikaros activity can be controlled by 

dimerization with non-functional isoforms of the protein (Sun et al., 1996).  Such a 

system may enable finer control over ZTF-16 activity. 

That most of the mutations we isolated in our screen for reduced ver-1 

promoter::gfp expression in adults raised at 25°C were alleles of one of three different 

genes, ztf-16, ttx-1 or tam-1, suggests that the screen has been performed close to 

saturation.  Although our analysis has identified ztf-16 and ttx-1 as glial factors required 

for ver-1 expression, it remains unclear how dauer signals that induce ver-1 transcription 

are perceived by the AMsh glia.  These signals may be direct neuroendocrine signals 

from amphid sensory neurons (for example, the TGF-β ligand DAF-7), secondary signals 

as a result of dauer entry (for example, radial shrinkage of the body circumference, 

pushing the glia into closer proximity), or in part environmental signals perceived 

directly by the glia (for example, temperature; see Chapter 3).  It is possible that mutant 

screens assessing ver-1 expression specifically in dauer animals rather than non-dauer 

adults may uncover what these signals are. 
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Although glial shapes are known to be plastic, very little is known about the genes 

required for glial shape changes in any system.  Here, we have shown that AMsh glia 

remodeling in C. elegans dauer larvae is a tractable system for genetic screens to uncover 

a molecular pathway regulating changes in glia shape. 
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Chapter 5 
 

Conclusions and future directions 
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Glia are required for dendrite morphological plasticity 

Neurons display a myriad of shapes, from complex dendritic arbors to the 

receptive endings on dendrites that receive sensory and synaptic information.  These 

shapes are plastic, and can be remodeled by developmental, hormonal, and environmental 

signals.  For example, changes in somatosensory input increases the turnover of 

pyramidal neuron dendritic spines in the mouse barrel cortex (Trachtenberg et al., 2002), 

while estrogen levels affect the number and density of hippocampal neuron dendritic 

spines in rats (Woolley et al., 1990).  These changes in receptive-ending shape reflect 

changes in synaptic connections and the strength of those connections (Holtmaat and 

Svoboda, 2009). 

Glia, which are intimately associated with neurons, also display vast 

morphological specializations.  Changes in glial shape can correlate with neuronal 

remodeling; for example, the retraction of astrocytic glia in the hypothalamus of lactating 

rats correlates with synaptic changes in associated neurons (Theodosis and Poulain, 

1993), while perturbation of the glial ephrin-A3 cell-surface molecule affects the shape of 

dendritic spines in the mouse hippocampus (Carmona et al., 2009).  These observations, 

coupled with the close proximity of glia to neurons and the ability of glia to regulate and 

perceive their extracellular environment (Meyer-Franke et al., 1995; Porter and 

McCarthy, 1996), suggests that glia are well-positioned to facilitate or, more 

speculatively, to direct changes in dendritic shapes. 

In response to environmental stressors, including starvation, crowding, and high 

temperature, the nematode C. elegans becomes a developmentally-arrested dauer larva.  

Various morphological changes occur in dauer animals, including the remodeling of the 
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amphid sensory organs (Albert and Riddle, 1983).  Here, we find that remodeling of the 

AMsh glia is required for correct morphological remodeling of the ensheathed AWC 

neuron dendrite endings.  Although it is unclear in mammalian systems if glia are 

instructive or permissive for neuronal plasticity, our results in C. elegans are consistent 

with a predominantly permissive role of the glia in affecting AWC shape.  The 

observation that some AWC sensory endings continue to expand in mutant animals where 

glial remodeling is blocked (Figure 2.12), suggests that expansion and fusion of the glial 

cells defines a new compartment in which the two AWC sensory endings can expand and 

significantly overlap with one another.  However, our finding that the glia remodel and 

fuse even in the absence of AWC expansion (Figure 2.7) is suggestive that glial 

remodeling is not simply a passive outcome of changes in the associated neurons and that 

the glia and AWC neurons may receive remodeling cues independently of each other. 

In addition to AWC, other amphid neurons also remodel during dauer 

development.  The single ciliated dendritic endings of the ASI and ASG neurons are 

repositioned more posteriorly in the AMsh channel, while the AFD thermosensory 

neuron may have an increase in the number of microvillar protrusions ensheathed by the 

AMsh glia (Albert and Riddle, 1983).  Although our studies have not addressed the role 

of AMsh glial remodeling in facilitating these other neuronal shape changes, a careful 

study of the glial remodeling mutants isolated here may determine if changes in the 

AMsh glia are generally required for sensory neuron plasticity. 
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Glia can respond to environmental and developmental cues 

Glia, like neurons, can sense changes in their extracellular environment.  Glia can 

directly sense stimuli such as Na+ levels (Shimizu et al., 2007), neurotransmitters (Porter 

and McCarthy, 1996), and protons (Wang et al., 2008).  Furthermore, glial sensory 

activity can regulate behavior.  For example, astrocytic glia of the ventral brainstem 

surface are proposed to sense CO2-evoked acidosis of cerebrospinal fluid, in turn causing 

adenosine 5’-triphosphate (ATP) release and activation of neurons that control inspiratory 

breathing movements (Ballanyi et al., 2010; Gourine et al., 2010).  In C. elegans, the 

AMsh glia express the acid-sensitive Na+ channel ACD-1 (for acid sensitive channel, 

degenerin-like-1), the activity of which is inhibited by protons (Wang et al., 2008).  In 

combination with a mutation in a neuronal degenerin Na+ channel, deg-1, acd-1 mutants 

have defects in avoidance responses to acid (Wang et al., 2008).  This suggests that glial 

sensory function may affect behavior in diverse organisms. 

Our studies demonstrate that the AMsh glia can respond to dauer entry and 

temperature, both exogenous stimuli.  Furthermore, at least one gene, ver-1, is 

dynamically regulated by both cues.  What are the molecular dauer signals perceived by 

the glia, and how do these regulate ver-1 transcription?  These signals could be derived 

from neuroendocrine pathways that regulate dauer entry.  For example, mutations in the 

neuron-secreted TGF-β/DAF-7 ligand can affect both dauer entry (Ren et al., 1996) and 

glia remodeling.  The TGF-β/DAF-7 and insulin receptor/DAF-2 neuroendocrine 

pathways that regulate dauer entry converge onto the nuclear hormone receptor (NHR) 

DAF-12 (Antebi et al., 2000).  Intriguingly, at least two potential DAF-12 binding sites 

are found within the minimal interval of the ver-1 promoter that is required for dauer 
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responses.  Mutating either of these sites causes a loss of ver-1 reporter expression in the 

glia of adult animals raised at 25°C (data not shown).  This is consistent with a model 

whereby factors such as TTX-1 and ZTF-16 confer glial specificity to ver-1 expression, 

while DAF-12 activity confers dauer- and temperature-dependence.  It is unlikely that ttx-

1 and ztf-16 are dauer-regulated themselves: another direct ttx-1 target gene in the glia 

was not induced by dauer entry (see Chapter 3) and ztf-16 does not regulate ver-1 

transcription through the minimal interval of the ver-1 promoter required for dauer-

dependence (see Chapter 4).  However, we were unable to detect specific binding of a 

GST::DAF-12 (DNA-binding domain) fusion protein to these potential DAF-12-binding 

sites in in vitro gel shift assays (data not shown), and daf-12 loss of function mutations do 

not result in a loss of ver-1 promoter::gfp expression in animals raised at 25°C (see 

Chapter 3).  It is possible that DAF-12-related NHR factors may bind these sites, or other 

factors altogether.  Our screen for loss of ver-1 promoter::gfp expression may not have 

uncovered these factors as we did not screen animals in the dauer state.  An alternative 

approach to finding transcriptional regulators that bind to the ver-1 promoter would be a 

yeast-1-hybrid (Y1H) screen, which may circumnavigate these difficulties. 

Alternatively, the dauer signals perceived by glia may be secondary signals as a 

result of dauer entry.  Many morphological changes occur in dauer animals, including the 

radial shrinkage of the body circumference.  This may physically push the glia and AWC 

neurons into closer proximity with one another, leading to amphid remodeling (Albert 

and Riddle, 1983).  Consistent with this idea, mutations in factors that make up part of 

the neuroendocrine dauer pathways, TGF-β/daf-7 and insulin receptor/daf-2, only affect 

ver-1 promoter::gfp expression if the mutant animals enter the dauer state and not in 



129 

response to temperature (see Chapter 3; by contrast, daf-2 mutants have alterations in 

longevity regardless if the animal enters dauer or not; Kimura et al., 1997). 

A third possibility, not exclusive of the others, is that the glia directly sense some 

environmental stressors that induce dauer entry.  Our findings that ver-1 transcription in 

the glia is highly dependent on ambient temperature, and that this is independent of the 

AFD thermosensory neurons, is consistent with the notion that the glia can respond 

directly to temperature.  That the glia express the transcription factor ttx-1, also required 

by the AFD thermosensory neuron for morphology and function, is intriguing.  The slow 

induction of ver-1 expression is consistent with a transcriptional mechanism of ver-1 

temperature-dependence.  For example, in the model plant Arabidopsis thaliana, 

chromatin components may be directly affected by temperature (Kumar and Wigge, 

2010).  However, we have been unable to determine from our studies the relevance of 

ver-1 up-regulation in response to temperature.  It may reflect a shared stress response of 

dauer animals with animals raised at high temperature.  Another possibility is that the 

temperature response primes the glia for subsequent signals to be received when the 

animal enters the dauer state.  If this were true, then dauer animals raised at different 

temperatures might be expected to have different incidences of amphid remodeling.  

Although our cytoplasmic mixing assay is unsuitable for such an analysis due to the use 

of a dauer-constitutive daf-7 mutant allele that has a temperature-sensitive phenotype, 

alternative assays using dauer pheromone to induce dauer entry or extensive EM analysis 

may address this question. 
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Identifying glial factors required for morphological plasticity 

Our finding that remodeling of the AMsh glia is important for changes in the 

associated sensory neurons suggests that factors that affect glial shape changes may also 

be important for neuronal shape and function.  To this end, we have shown the 

transmembrane receptor tyrosine kinase ver-1, its transcriptional regulators ttx-1 and ztf-

16, and the cell fusogen aff-1 are all glial factors required for glia remodeling and fusion 

in dauer animals.  The involvement of ver-1 is intriguing, suggesting that a kinase 

signaling pathway may regulate the process of fusion.  However, our inability to rescue 

the ver-1 mutant phenotype (Appendix 1) has hindered further studies of the VER-1 

protein. 

Our data posits that ttx-1 and ztf-16 function in part to regulate glia fusion by 

transcribing the ver-1 gene.  Transcriptional profiling of the AMsh glia from wild-type 

and ttx-1 and ztf-16 mutant strains may be a fruitful approach to find other targets also 

required for glia remodeling.  In addition, AMsh glia-specific mRNA microarray analysis 

comparing dauer to non-dauer animals may find additional factors involved in the 

process.  One successful method to generate cell-specific transcript information in C. 

elegans has been the dissociation of embryonic cells carrying a terminal differentiated 

cell marker, and subsequent fluorescence-activated cell sorting (FACS) of these cells 

following differentiation in culture (Bacaj et al., 2008; Colosimo et al., 2004).  However, 

such an approach does not permit the identification of developmental stage-specific or 

environmentally-regulated transcripts.  Alternative techniques, including co-

immunoprecipitation of poly(A) RNA with a cell-specific tagged poly(A)-binding protein 
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(Kunitomo et al., 2005; Takayama et al., 2009) or the generation of cell-specific biotin-

labeled RNA (Miller et al., 2009) are in the process of being developed in our laboratory. 

It is unclear from our studies if the transcriptional network regulating ver-1 also 

affects aff-1 function.  Expression of an aff-1 promoter::gfp reporter in the AMsh glia was 

unaffected in either ztf-16 or ttx-1 mutants; however, this does not preclude the possibility 

that the regulation of aff-1 is post-transcriptional.  The tight and easily-observed 

localization of an AFF-1::GFP fusion protein to the apical region of the glial processes 

where fusion occurs suggests that screening for factors that regulate AFF-1 polarity is 

feasible.  It is not known in C. elegans if factors that regulate glial polarity are identical 

to polarity genes identified in other cell types.  In addition, it is possible that some of the 

signals determining AFF-1 localization are given by the placement of the sensory neuron 

cilia, as has been suggested for factors required for glial channel morphogenesis (Perens 

and Shaham, 2005). 

Our studies have shown that screening for factors that regulate ver-1 

promoter::gfp expression is a useful method for finding new genes that affect glia 

remodeling in dauer animals.  However, such an approach may be limited to finding 

transcriptional regulators.  In addition, the fact that mutations reducing ver-1 

promoter::gfp in adults raised at 25°C fell largely into three complementation groups 

suggests that this screen may be close to saturation.  Our method of screening adults at 

high temperature may also fail to find signals that are only present in dauer animals.  One 

alternative is to screen instead for mutations that increase ver-1 promoter::gfp expression, 

rather than reducing it.  A screen for suppression of the ttx-1(p767) phenotype in non-

dauer adult animals at 25°C generated only one allele with wild-type gfp levels (from > 
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15,000 EMS-mutagenized F2 animals).  This mutant allele, ns228, was found to be an 

intragenic suppressor (having the p767 G to A substitution at position +4502 of the ttx-1 

gene, and an additional G to A substitution at +4506).  This suggests that suppression of a 

ttx-1 mutation by loss of function mutations in other genes may be biologically difficult.  

In addition, mutations in a gene identified to have inappropriately high ver-1 

promoter::gfp expression in a wild-type background did not affect AMsh glia fusion in 

dauer animals (Appendix 4).  These results place into doubt the physiological 

significance of high ver-1 promoter::gfp expressing mutants. 

 

What is the physiological purpose of amphid remodeling? 

The functional outcome of AWC receptive-ending remodeling in dauers is 

unclear; however, previous studies have correlated AWC sensory ending shape with 

function (Perkins et al., 1986).  Therefore, it is possible that the morphological changes in 

AWC promote a change in the behavior of the animal.  It is not unreasonable to speculate 

that dauer animals may wish to perceive their environment differently so that they may 

quickly locate favorable conditions, exit dauer and become reproductive adults.  

Alternatively, the remodeling of AWC and the AMsh glia may be a result of radial 

shrinkage of body circumference and serve no physiological purpose (Albert and Riddle, 

1983).  To date, no AWC-mediated behaviors have been described for dauers.  Indeed, in 

dauer animals the expression of at least one AWC odorant receptor is repressed (Peckol 

et al., 2001), and the classical AWC-sensed attractants benzaldehyde and isoamylalcohol 

act instead as repulsive cues (Appendix 5; and data not shown), either as a result of 

changes in AWC neuronal circuitry or AWC odorant receptor repertoire.  These 
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observations suggest that assessing the functional consequences of dauer remodeling will 

require a more thorough description of sensory neuron function and molecular biology in 

dauers than is presently available.  Future work may address this issue by carefully 

characterizing the behavior of dauers, and comparing wild-type and mutant animals with 

and without fusion of the AMsh glia. 

It is possible that changes in the amphid sensory structures are required to directly 

modulate the perception of dauer exit signals.  Consistent with this idea, ttx-1(p767); daf-

7(e1372) mutants have been reported to exit dauer prematurely compared to daf-7(e1372) 

single mutants (Satterlee et al., 2001).  However, cell-specific studies suggest that this 

effect can be rescued by restoring ttx-1 function to the AFD thermosensory neurons and 

not the glia, although we cannot rule out different growth rates in the transgenic lines 

used for the analysis (Appendix 6). 

Our observation that some aspects of amphid remodeling may be retained in post-

dauer adults (Figure 2.5) may suggest that post-dauer animals have some memory of past 

experiences.  It has previously been shown that the expression profiles of post-dauer 

animals differ from animals that did not pass through dauer, and that post-dauers live 

marginally longer and have increased brood sizes (Hall et al., 2010).  However, it is 

unclear if the permanent changes in amphid structure observed here have physiological 

relevance.  Further behavioral and other studies may be revealing. 
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Amphid sensory organ remodeling as a model of nervous system 

plasticity 

Although vertebrate glial and dendritic shapes are known to be plastic, the 

relevance of glial plasticity in guiding neuron shape has not been well explored.  In 

addition, very little is known about the factors required for glial shape changes.  Here, we 

have described a system in the nematode C. elegans where glia and neurons are 

remodeled by an inducible developmental state of the animal.  Studies of C. elegans may 

prove particularly useful in understanding glia-neuron interactions.  C. elegans has a 

small, invariant number of neurons and glia, which have stereotyped shapes and 

connections.  In contrast to other systems, C. elegans glia are not essential for neuronal 

survival (Bacaj et al., 2008; Yoshimura et al., 2008).  Furthermore, we have shown here 

that the facile genetics of C. elegans provides a powerful setting for gene discovery, 

which may prove useful for uncovering the molecular basis of glial actions on facilitating 

nervous system plasticity.  The conserved functional, morphological, and molecular 

features of mammalian and C. elegans glia (Bacaj et al., 2008; Yoshimura et al., 2008) 

suggest that this ‘simple’ nematode may be able to teach us something about the role of 

glia in the development and function of the most complex of organs: the human brain. 
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Chapter 6 
 

Experimental Procedures 
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Strains 

C. elegans were cultivated using standard methods (Brenner, 1974).  All animals 

cultivated at 20°C unless otherwise mentioned.  The wild-type strain used was Bristol 

(N2). 

Mutant alleles used: LGI: tax-2(p691), lin-11(n389, n566), che-13(e1805), daf-16(mu86), 
hsf-1(sy441); LGII: ire-1(zc14), old-2(ok1253); LGIII: dac-1(gk211), tax-4(p678), unc-
86(e1416, n846), daf-7(e1372), daf-2(m41), ver-1(ok1738, tm1348), lit-1(ns132, t1512); 
LGIV: osm-9(ky10); LGV: ttx-1(p767, oy26), pkc-1(nj1, nj3, nj4), osm-6(p811); LGX: 
ceh-14(ch3), pkc-2(ok328), ttx-3(ks5, mg158), ceh-37(ok642, ok272), ceh-36(ky646), che-
2(e1033), dyf-7(ns89, m537), daf-12(m20, m25), lin-15(n765). 

 

Mutant alleles isolated in this study were: LGV: tam-1(ns167, ns170, ns174, ns234, 
ns237, ns238, ns241, ns249, ns258, ns268), ttx-1(ns235, ns252, ns255, ns259, ns260, 
ns267); LGX: ztf-16(ns169, ns171, ns178), fkh-9(ns168, ns177, ns181, ns182, ns198, 
ns242, ns243, ns261), his-24(ns183).  Alleles not mapped to a chromosome include 
ns231, ns257. 

 

Integrated transgenes used: LGIV: nsIs22[Pver-1gfp; lin-15(+)], nsIs53[Pvap-1dsRed; unc-
119(+)], nsIs142[PF16F9.3dsRed; lin-15(+)]; LGV: oyIs17[Pgcy-8gfp; lin-15(+)], oyIs45[Podr-

1yfp; lin-15(+)]; LGX: nsIs143[PF16F9.3dsRed; lin-15(+)].  The sheath glia-specific 
integrated ttx-1 rescuing transgene (glia::ttx-1) was LGI: nsIs101[PF16F9.3ttx-1a; Pgcy-

7dsRed; lin-15(+)] and LGV: nsIs219[PT02B11.3ttx-1a; Punc-122dsRed; pSL1180].  The 
sheath glia-specific integrated ztf-16 rescuing transgene (glia::ztf-16) was LGV: 
nsIs245[PT02B11.3ztf-16b; Punc-122dsRed; pSL1180].  The integrated AFD-specific rescuing 
transgene (AFD::ttx-1) was LGX: nsIs99[Pgcy-8ttx-1a;Pgcy-7gfp; lin-15(+)].  Strains 
carrying nsIs99 may also contain the linked lin-15 allele n765. The integrated ver-1 
promoter::ver-1 transgenes [Pver-1ver-1; Punc-122dsRed; pSL1180] used in Appendix 1 
were: LG1: nsIs204; LGIII: nsIs205; LGIV: nsIs208; LGX: nsIs211, nsIs213. 

 

Extrachromosomal arrays used: nsEx755[Pgcy-8egl-1[x2]; rol-6(su1006)], nsEx1320[Pttx-

1(AFD)dsRed; rol-6(su1006)], nsEx1942[Pttx-1(glia)gfp; rol-6(su1006)], 
nsEx2436[PT02B11.3gfp; rol-6(su1006)], nsEx2703[PF16F9.3eff-1a::gfp; rol-6(su1006)], 
nsEx2727[PF16F9.3aff-1::gfp; rol-6(su1006)], nsEx1685/nsEx1391[PF16F9.3gfp; rol-
6(su1006)], nsEx2284[PF58F9.10gfp; rol-6(su1006)], nsEx2330[PF58F9.6gfp; rol-6(su1006)], 
nsEx2317[Pold-2gfp; rol-6(su1006)], nsEx2299[Pold-1gfp; rol-6(su1006)], 
nsEx1347[PF16F9.3ztf-16b::gfp; rol-6(su1006)], nsEx3022[Pver-1(Hb site*)gfp; rol-6(su1006)], 
nsEx3162/nsEx3171[ver-1 gDNA (fosmid WRM0636cD01); rol-6(su1006)], 
nsEx962[PF16F9.3ver-1::gfp; rol-6(su1006)], nsEx1517[PF16F9.3fkh-9a::gfp; rol-6(su1006)], 
nsEx1526[Pfkh-9gfp; rol-6(su1006)], nsEx1590[PF16F9.3his-24::gfp; rol-6(su1006)].  ver-1 
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promoter deletion::gfp arrays included nsEx1136 (+1 to +263), nsEx2174 (+1 to +220), 
nsEx1269 (+130 to +263) and others.  hyEx167 (Paff-1gfp) and zzEx26 (Peff-1gfp) were gifts 
from Benjamin Podbilewicz and William Mohler. 

ttx-1 rescuing arrays included: nsEx875/nsEx897/nsEx899/nsEx1913/nsEx1914[Pgcy-8ttx-
1a; rol-6(su1006)], nsEx877/nsEx893/nsEx895[Pvap-1ttx-1a; rol-6(su1006)], 
nsEx930/nsEx937/nsEx939/nsEx1923/nsEx1924[PF16F9.3ttx-1a; rol-6(su1006)], 
nsEx1636[Pheat shockttx-1a; rol-6(su1006)], nsEx1680[Pheat shockttx-1b; rol-6(su1006)], 
nsEx1915/nsEx1916[Plin-26ttx-1a; rol-6(su1006)], nsEx1948/nsEx1953[Pttx-1(AFD)ttx-1a; 
rol-6(su1006)].  glia::Otx rescuing arrays included: nsEx1661[PF16F9.3Otx1; rol-
6(su1006)], nsEx1662[PF16F9.3Otx2; rol-6(su1006)].  ztf-16 rescuing arrays included: 
nsEx3001[Pztf-16(glia)gfp; rol-6(su1006)], nsEx1382/nsEx1389[PF16F9.3ztf-16a; rol-
6(su1006)], nsEx1405/nsEx1410[PF16F9.3ztf-16b; rol-6(su1006)], nsEx3266[Plin-26ztf-16b; 
rol-6(su1006)].  fkh-9 rescuing arrays included: nsEx1505/nsEx1508[PF16F9.3fkh-9a; rol-
6(su1006)], nsEx1569[PF16F9.3fkh-9(31aa); rol-6(su1006)], nsEx1711[PF16F9.3Foxg1; rol-
6(su1006)]. 

 

Germline transformation and transgene integration 

Germline transformations were carried out using standard protocols (Mello and Fire, 

1995).  Co-injection markers used were either plasmid pRF4 containing the dominant 

marker rol-6(su1006) (Mello et al., 1991), plasmid pJM23 containing wild-type lin-15 

(Huang et al., 1994), or plasmids as otherwise noted.  pSL1180 is an empty cloning 

vector used to increase the DNA concentration of injection mixtures.  ver-1 

promoter::GFP and ttx-1 rescue transgenes were integrated by treating animals carrying 

extrachromosomal arrays with UV/psoralen.  The generated strains were backcrossed to 

N2 more than three times. 

 

Microscopy 

ver-1 promoter::gfp (nsIs22) expression was assayed using a fluorescence dissecting 

microscope (Leica).  Adult hermaphrodites were scored, except as noted.  Compound 
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microscope images were taken on an Axioplan II microscope using an AxioCam CCD 

camera (Zeiss) and analyzed using the Axiovision software (Zeiss).  Additional images 

were taken on a Deltavision Image Restoration Microscope (Applied Precision/Olympus) 

and analyzed using SoftWoRx software (Applied Precision).  Dauer animals for electron 

microscopy were grown at 25°C.  These were prepared and sectioned using standard 

methods (Lundquist et al., 2001).  Imaging was performed with an FEI Tecnai G2 Spirit 

BioTwin transmission electron microscope equipped with a Gatan 4K x 4K digital 

camera. 

 

Mutagenesis and mapping 

L4 animals carrying the ver-1 promoter::gfp transgene (nsIs22) in the N2 strain 

background were mutagenized with 30 mM ethyl methanesulfonate (EMS) for 4 h.  

Individual P0s were picked to separate 9 cm NGM agar plates with OP50 and cultivated 

at the relevant temperature.  F2 animals were screened.  Mapping was performed by 

crossing to the Hawaiian strain (CB4856), picking mutant F2 progeny and observing 

linkage to single nucleotide polymorphisms (SNPs) (Wicks et al., 2001). 

 

Dauer selection 

Animals were starved and dauers selected by treatment with 1% SDS in M9 solution for 

20 min.  Alternatively, animals carrying the daf-7(e1372) mutation were induced to form 

dauers by incubation at 25°C. 
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Cytoplasmic mixing assay to score AMsh glia fusion 

Adult animals carrying an nsEx1391 (AMsh glia::gfp) array were picked to plates seeded 

with OP50 bacteria or bacteria expressing dsRNA, and cultivated at 25°C.  From these 

plates, L1 and L2 progeny carrying the nsEx1391 array in one of the two AMsh glia were 

picked 24 h later to fresh seeded plates.  Mosaic animals were incubated for 48 h at 25°C 

before scoring GFP presence in either one or both AMsh glia.  Animals carrying a daf-

7(e1372) mutation were only scored if they were dauer larvae by morphology at the end 

of the assay period.  See Figure 2.2. 

 

Thermotaxis assays 

A linear thermal gradient from 18°C to 26°C was established across an aluminium 

surface using two Peltier feedback devices (Ryu and Samuel, 2002).  Staged adult 

animals cultivated on OP50 bacteria at either 15°C, 20°C, or 25°C were washed in S-

basal medium and transferred to the center of a 10-cm square petri dish containing 12 ml 

of NGM agar.  This dish was placed onto the aluminium surface, with a thin layer of 

glycerol between the dish and aluminium slab to ensure adequate heat conductance.  

Animals were allowed to disperse for a period of 45 min, fixed with chloroform, and 

counted across 6 bins, from cold to hot.  The center third of the assay plate, including 

equal areas across all parts of the temperature gradient, was removed from the analysis as 

some animals did not disperse.  50 to a few hundred worms participated in each assay.  

Results shown are averages of four independent trials. 
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Chemotaxis assays 

Chemotaxis of adult animals was performed as previously described (Bargmann et al., 

1993).  A modified protocol was used for chemotaxis of dauer animals (see Appendix 5). 

 

Electrophoretic mobility-shift assays (EMSAs) 

For the GST::TTX-1(HD) EMSA, double-stranded probes covering 40 bp of the ver-1 

gene, with the predicted TTX-1 wild type ATTA core binding sequence at the center, 

were generated by annealing single-stranded, 5' biotin end-labeled oligonucleotides.  

GST::TTX-1(homeodomain) and GST control protein (from the pGEX-5X-1 empty 

vector) were induced and purified from BL21(DE3) cells using the Bulk GST 

Purification Module (GE Healthcare).  Binding reactions were performed using the 

LightShift Chemiluminescent EMSA kit (Pierce).  Reaction conditions included 400 ng 

of TTX-1 homeodomain::GST fusion protein, 1x binding buffer, 2.5% glycerol, 5 mM 

MgCl2, 1 ug poly (dI-dC), 0.05% NP-40, and 20 fmol of biotin-labeled DNA probe.  GST 

control protein was added in excess of 400 ng.  In competition reactions, a 200-fold 

molar excess of unlabeled probe was added (4 pmol).  Reactions were performed at 20°C 

for 20 min, then run on a 6% polyacrylamide DNA retardation gel (Invitrogen) in 0.5x 

TBE buffer.  The reactions were transferred to a positively charged nylon membrane, and 

the biotin-labeled DNA imaged.  EMSAs of GST::ZTF-16(znf2-6) were performed in the 

same manner, except 800 ng of purified fusion protein and GST control were added to 

each binding reaction.  GST::ZTF-16(znf2-6) was insoluble in E. coli when induced at 

37°C; therefore, inductions were performed at 20°C. 
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RNAi of aff-1 and eff-1 

Plasmids expressing double-stranded RNA (dsRNA) were obtained from the Ahringer 

library (Fraser et al., 2000).  An empty vector was used as the control.  RNAi was 

performed by plating adult daf-7(e1372); nsEx1391 animals onto bacteria expressing the 

dsRNA and allowing them to feed (Timmons and Fire, 1998).  Early-laid L1 larvae 

mosaic for the nsEx1391 array were re-plated onto fresh RNAi plates and scored 48 h 

later.  Both eff-1 and aff-1 RNAi treated animals had grossly normal morphology, 

suggesting that the animals initially develop normally before knockdown of the two 

genes occurs, or that knockdown is weak. 

 

Cell ablations 

AFD was genetically ablated by expressing the egl-1/BH3-only cell death gene (Conradt 

and Horvitz, 1998) using an AFD-specific promoter (nsEx755).  AFD ablation was 

determined by loss of expression of an AFD::gfp reporter (oyIs17).  33% of amphids 

expressed AFD::gfp when carrying nsEx755, whereas in a ced-3(n717) caspase mutant 

background, 100% of amphids expressed AFD::gfp (both n = 100), demonstrating that 

EGL-1 kills AFD neurons.  Laser ablations of AWC were performed as described 

(Bargmann and Avery, 1995) in L1 larvae expressing YFP in AWC (oyIs45).  Ablation 

was confirmed by loss of YFP expression in AWC. 
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Statistics 

To calculate the significance of ttx-1 mutant animals showing defects in AWC 

remodeling by EM, we proceeded as follows.  AMsh glia fusion could occur on either the 

dorsal or ventral side of the animal or both.  By cytoplasmic mixing, 50% of daf-7 mutant 

dauers fail to exhibit either dorsal or ventral fusion.  Thus, if Q is the frequency of fusion 

dorsally or ventrally in a dauer population, then (1-Q)2=0.5, and Q=0.293.  For any 6 

animals without AWC overlap, therefore, the probability, P, of not having fusion at all is 

P=(1-Q)12=0.70712=0.0156.  The same values of P are obtained even if Q is different 

between dorsal and ventral sides.  Other P values were obtained using the indicated 

statistical tests. 

 

Plasmid construction and isolation of cDNAs 

The initial ver-1 promoter::gfp construct (~2 kb upstream promoter through +263 of the 

ver-1 gene fused to gfp) was a gift of R. Roubin and C. Popovici.  Most vector backbones 

are derived from the pPD vectors (gift of A. Fire).  cDNA template was prepared by 

washing animals from mixed-stage plates and extracting total RNA using TRIzol Reagent 

(Invitrogen).  Poly(A) RNA was purified using the Poly(A) Purist kit (Ambion) and 

cDNA was generated using SuperScript II Reverse Transcriptase (Invitrogen).  For a list 

of plasmids generated in this work, see Table 6.1. 
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Table 6.1. List of plasmids generated in this work (pages 143 to 145)
Name in text Plasmid Promoter cDNA Notes 
AMsh::ttx-1b pCP.1 vap-1 ttx-1b 5 kb vap-1 promoter into pPD49.78 at 

PstI/BamHI, ttx-1b cDNA at BamHI/NcoI. 
AMsh::ttx-1a pCP.2 vap-1 ttx-1a 5 kb vap-1 promoter into pPD49.78 at 

PstI/BamHI, ttx-1a cDNA at BamHI/NcoI. 
AFD::ttx-1b pCP.5 gcy-8 ttx-1b 2 kb gcy-8 promoter into pPD49.78 at 

PstI/BamHI, ttx-1b cDNA at BamHI/NcoI. 
AFD::ttx-1a pCP.6 gcy-8 ttx-1a 2 kb gcy-8 promoter into pPD49.78 at 

PstI/BamHI, ttx-1a cDNA at BamHI/NcoI. 
AFD::egl-1(x2) pCP.9 gcy-8 egl-1(x2) 2 kb gcy-8 promoter inbto pPD49.78 at 

PstI/BamHI., egl-1 cDNA at BamHI/NcoI. A 
double insertion of egl-1 occurred, both 5’ to 
3’.  egl-1 cDNA not as in WormBase, starts 
at position 46. 

 pCP.17 ver-1 (-2110 
to -1) 

nls-gfp ver-1 gene fragment into pPD95.69 at 
SphI/BamHI 

AMsh+PHsh::ttx-
1a 

pCP.19 F16F9.3 ttx-1a 2 kb F16F9.3 promoter into pPD49.78 at 
PstI/BamHI, ttx-1a cDNA at BamHI/NcoI. 

AMsh+PHsh::ttx-
1b 

pCP.20 F16F9.3 ttx-1b 2 kb F16F9.3 promoter into pPD49.78 at 
PstI/BamHI, ttx-1b cDNA at BamHI/NcoI. 

glia 
promoter::ver-
1::gfp 

pCP.21 F16F9.3 ver-1::gfp ver-1 cDNA (including first intron) into 
pPD95.75 at PstI/BamHI.  2 kb F16F9.3 
promoter into single PstI site. 

 pCP.23 F16F9.3  2 kb F16F9.3 promoter into pPD49.78 at 
PstI/BamHI 

ttx-1pro1::dsRed pCP.26 ttx-1 (-7482 
to +23) 

dsRed Indicated ttx-1 promoter fragment into pEP9 
(Elliot Perens) at NotI/KpnI. 

 pCP.33 ver-1 (-2110 
to +262; -1 
frame) 

gfp ver-1 gene fragment into pPD95.75 at 
PstI/BamHI, -1 frame relative to gfp. 

 pCP.34 ver-1 (-2110 
to +261, -2 
frame) 

gfp ver-1 gene fragment into pPD95.75 at 
PstI/BamHI, -2 frame relative to gfp. 

 pCP.36 ver-1 (+1 to 
+263) 

gfp ver-1 gene fragment into pPD95.75 at 
PstI/BamHI. 

F16F9.3 
promoter::gfp 

pCP.41 F16F9.3 gfp 2 kb F16F9.3 promoter into pPD95.75 at 
PstI/BamHI. 

 pCP.43 ver-1 (+130 
to +263) 

gfp ver-1 gene fragment into pPD95.75 at 
PstI/BamHI. 

glia::ztf-16b pCP.50 F16F9.3 ztf-16b ztf-16b cDNA into pCP.23 at XmaI/NcoI 
ttx-1pro2::dsRed pCP.58 ttx-1 (-

10965 to -
7451) + 
myo-2 

dsRed Indicated ttx-1 promoter fragment into PEP9 
(Elliot Perens) at NheI/NotI.  To facilitate 
expression, 160 bp myo-2 minimal promoter 
added at XbaI/KpnI (Okkema et al., 1993).  
To create ttx-1pro2::gfp, dsRed was replaced 
by gfp from pPD95.75 at KpnI/ApaI 
(pMH.28; Max Heiman).  When injected, all 
lines expressed GFP in amphid and phamid 
socket cells, some also in AMsh and PHsh.  
Occasionally weak GFP observed other cell 
types. 
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glia 
promoter::ztf-
16b::gfp 

pCP.61 F16F9.3 ztf-
16b::gfp 

F16F9.3 promoter inserted into single PstI 
site of pPD95.75.  ztf-16b cDNA inserted 
XmaI/KpnI in frame with gfp. 

glia::ztf-16a pCP.62 F16F9.3 ztf-16a ztf-16a cDNA into pCP.23 at XmaI/NcoI 
glia::fkh-9 pCP.70 F16F9.3 fkh-9a fkh-9a cDNA into pCP.23 at BamHI/NcoI. 
glia 
promoter::fkh-
9::gfp 

pCP.71 F16F9.3 fkh-
9a::gfp 

fkh-9a cDNA into pCP.41 at BamHI/KpnI. 

fkh-9 
promoter::gfp 

pCP.73 fkh-9 gfp 300 bp upstream plus exon 1 and 6kb intron 1 
of the fkh-9 gene inserted into pPD95.75 at 
SalI/SalI. SalI/BamHI and BamHI/AgeI. 

glia::fkh-9(31aa) pCP.79 F16F9.3 fkh-
9(31aa) 

A cDNA coding for the first 31 amino acids 
of FKH-9A into pCP.23 at BamHI/NcoI. 

F16F9.3 
promoter::dsRed 

pCP.81 F16F9.3 dsRed 2 kb F16F9.3 promoter into pEP9 (Elliot 
Perens) at NheI/AgeI. 

glia::his-24 pCP.83 F16F9.3 his-24 his-24 cDNA into pCP.23 at XmaI/NheI. 
heat shock::ttx-
1a 

pCP.94 hsp16.2 ttx-1a ttx-1a CDNA into pPD49.78 at BamHI/NcoI. 

heat shock::ttx-
1b 

pcP.95 hsp16.2 ttx-1b ttx-1b CDNA into pPD49.78 at BamHI/NcoI. 

 pCP.98 ver-1 (+57 
to +263) 

gfp ver-1 gene fragment into pPD95.75 at 
PstI/BamHI. 

 pCP.99 ver-1 (+112 
to +263) 

gfp ver-1 gene fragment into pPD95.75 at 
PstI/BamHI. 

glia::Otx1 pCP.100 F16F9.3 Otx1 Mouse Otx1 cDNA from Marathon-Ready 
mouse cDNA (Clontech) into pCP.23 at 
XmaI/NheI. 

glia::Otx2 pCP.101 F16F9.3 Otx2 Mouse Otx2 cDNA from Marathon-Ready 
mouse cDNA (Clontech) into pCP.23 at 
XmaI/NheI. 

glia::Foxg1 pCP.106 F16F9.3 Foxg1 Mouse Foxg1 cDNA inserted as AfeI/KpnI 
fragment from MGC 6314329 (I.M.A.G.E. 
Consortium) into SmaI/KpnI of pCP.23.  3’ 
end of cDNA amplified from mouse cDNA 
library and inserted at KpnI/SacI. 

 pCP.109 ver-1 (+170 
to +263) 

gfp ver-1 gene fragment into pPD95.75 at 
PstI/BamHI. 

 pCP.110 ver-1 (+201 
to +263) 

gfp ver-1 gene fragment into pPD95.75 at 
PstI/BamHI. 

embryonic 
glia::ttx-1 

pCP.111 lin-26 + 
myo-2 

ttx-1a ttx-1a cDNA inserted into pPD9575lin-
26myo-2pro-GFP (gift of Max Heiman) at 
XmaI/EcoRI 

ttx-1(AFD) 
promoter::ttx-1 

pCP.113 ttx-1(AFD) ttx-1a ttx-1a cDNA into pEP9 dsRed vector (Elliot 
Perens) at KpnI/EcoRI.  From this, a 
KpnI/PvuI fragment was inserted into 
pCP.26. 

 pCP.128  gcy-8 gcy-8 cdNA into pSL1180 at AflII/XmaI.  
This was inserted into pFB-flag to generate 
GCY-8(FLAG) (Erik Procko). 

 pCP.131 ver-1 (+1 to 
+263; TTX-
1 site*) 

gfp Site-directed mutagenesis on pCP.36 to 
mutate the TTX-1/Otx2 binding site at 
position +176 from ATTA to GGGG. 

 pCP.132 ver-1 (+1 to 
+132) 

gfp ver-1 gene fragment into pPD95.75 at 
PstI/BamHI. 
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 pCP.133 ver-1 (+1 to 
+220) 

gfp ver-1 gene fragment into pPD95.75 at 
PstI/BamHI. 

 pCP.134 ver-1 (+1 to 
+201) 

gfp ver-1 gene fragment into pPD95.75 at 
PstI/BamHI. 

GCY-23(FLAG) pCP.136  gcy-
23(flag) 

gcy-23 cDNA into pFB-flag (from Erik 
Procko) as NdeI/NdeI and NdeI/NotI 
fragments. 

GCY-
28A(FLAG) 

pCP.141  gcy-
28a(flag) 

gcy-28a cDNA into pFB-flag as NdeI/NdeI 
and NdeI/NotI fragments.  A single codon 
difference is observed compared to the 
predicted WormBase sequence (removal of 
Q464). 

GST::TTX-
1(HD) 

pCP.142  GST::ttx-
1(hd) 

The ttx-1 homeodomain was inserted into 
pGEX 5X-1 at BamHI/XhoI. This construct 
removes the first 154 and last 95 amino acids 
of the TTX-1A protein. 

F58F9.10 
promoter::gfp 

pCP.145 F58F9.10 gfp 2 kb F58F9.10 promoter into pPD95.75 at 
SphI/BamHI. 

old-2 
promoter::gfp 

pCP.149 old-2 gfp 2 kb old-2 promoter into pPD95.75 at 
SphI/XmaI 

old-1 
promoter::gfp 

pCP.151 old-1 gfp 2 kb old-1 promoter into pPD95.75 at 
BamHI/KpnI 

F58F9.6 
promoter::gfp 

pCP.154 F58F9.6 gfp 4 kb F58f9.6 promoter inserted into 
pPD95.75 at BamHI/AgeI as a BamHI/XmaI 
fragment 

 pCP.158 T02B11.3  2.5 kb T02B11.3 promoter into pPD49.78 at 
PstI/BamHI. 

glia::ttx-1 pCP.161 T02B11.3 ttx-1a 2.5 kb T02B11.3 promoter into pPD49.78 at 
PstI/BamHI, ttx-1a cDNA from pCP.2 at 
BamHI/SpeI. 

ver-1 
promoter::ver-1 

pCP.167 ver-1 ver-1 ver-1 cDNA, including intron 1 (remainder 
fully spliced), into pPD49.78 at BamHI/NcoI; 
a silent A to G mutation at position 924 of 
the fragment exists.  2.1 kb ver-1 upstream 
promoter inserted at SphI/BamHI. 

T02B11.3 
promoter::gfp 

pCP.169 T02B11.3 gfp 2.5 kb T02B11.3 promoter into pPD95.75 at 
SphI/BamHI. 

glia 
promoter::eff-
1::gfp 

pCP.179 F16F9.3 eff-1a::gfp eff-1a cDNA into pCP.41 at XmaI/KpnI 

glia 
promoter::aff-
1::gfp 

pCP.186 F16F9.3 aff-1::gfp aff-1 cDNA into pCP.41 at XmaI/KpnI. 

glia::ztf-16 pCP.191 T02B11.3 ztf-16b ztf-16b cDNA into pCP.158 at XmaI/SacI 
ztf-16 
promoter::gfp 

pCP.192 ztf-16 (-4637 
to -2536) 

gfp ztf-16 promoter region into pPD95.75 at 
SphI/KpnI 

 pCP.36 ver-1 (+1 to 
+263; Hb 
site*) 

gfp Site-directed mutagenesis on pCP.36 to 
mutate the Hunchback-like site at position 
+217 from CATGAAAAC to gggcccAAC. 

GST::ZTF-
16(znf2-6) 

pCP.198  GST::ztf-
16(znf2-6) 

ztf-16 cDNA fragment coding for C2H2 zinc 
fingers 2-6 inserted into pGEX 5X-1 at 
XmaI/XhoI. 

embryonic 
glia::ztf-16b 

pCP.204 lin-26 + 
myo-2 

ztf-16b lin-26 + myo-2 promoter from pPD9575lin-
26myo-2pro-GFP (gift of Max Heiman) was 
inserted into pCP.50 at SphI/XmaI. 
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Appendix 1: Attempted rescue of the AMsh glia fusion defect of 

ver-1 mutants 

Attempts were made to rescue the AMsh glia fusion defect of ver-1(tm1348) 

mutant dauers.  The predicted ver-1 cDNA was isolated (WormBase release WS224), and 

integrated transgenes expressing the ver-1 cDNA from its own promoter (2 kb upstream 

and intron 1; see Table 3.1) were generated.  These transgenes failed to rescue the fusion 

defect of ver-1(tm1348); daf-7(e1372) dauer animals as assayed by cytoplasmic mixing 

(Table A1.1).  Indeed, the percentage of dauers with fused AMsh glia appeared even 

smaller than the ver-1 mutant alone.  As such, the transgenes may be inhibiting fusion, 

perhaps by expressing inappropriate levels of ver-1 or an incorrect or misfolded ver-1 

protein.  Furthermore, it is possible that the ver-1 promoter::ver-1 transgene acts to 

inhibit AMsh glia fusion by sequestering factors such as TTX-1 away from other genes 

that are also required for fusion.  In support of such possibilities, these same ver-1 

promoter::ver-1 transgenes significantly reduced AMsh glia fusion in daf-7(e1372) 

dauers wild-type for ver-1 (Table A1.1). 

In addition, we have not been able to ascertain if the ver-1 cDNA we have 

isolated is fully functional.  For example, a VER-1::GFP translational fusion protein 

generated from this cDNA and expressed specifically in the glia localized to puncta 

throughout the cell body and glial process (Figure A1.1).  This could represent activated 

and internalized VER-1 signaling complexes (Rosette and Karin, 1996), or may indicate 

that the protein is misfolded. 
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Table A1.1. Attempted rescue of the AMsh glia fusion defect of ver-1(tm1348) mutant dauer animals. 
Genotypea % dauers with fused AMsh gliab 

ver-1(tm1348) 
    + nsIs204 (ver-1 promoter::ver-1) 
    + nsIs205 (ver-1 promoter::ver-1) 
    + nsIs208 (ver-1 promoter::ver-1) 
    + nsIs211 (ver-1 promoter::ver-1) 
    + nsIs213 (ver-1 promoter::ver-1) 
    + nsEx3162 (ver-1 gDNA)c 
    + nsEx3171 (ver-1 gDNA)c 

 

10% (n = 154) 
1% (n = 135) 
0% (n = 115) 
1% (n = 72) 
6% (n = 80) 
3% (n = 128) 
2% (n = 65) 
6% (n = 82) 

wild type 
    + nsIs205 (ver-1 promoter::ver-1) 
    + nsIs211 (ver-1 promoter::ver-1) 
    + nsIs213 (ver-1 promoter::ver-1) 

51% (n = 269) 
3% (n = 109) 
4% (n = 156) 
6% (n = 101) 

aAll strains also include daf-7(e1372), and are selected for larval mosaic expression of an AMsh glia::gfp 
reporter (nsEx1391) in one of the two glial cells. 
bAMsh glia fusion was determined by cytoplasmic mixing assay. 
cFosmid WRM0636cD01 was used for ver-1 gDNA. 
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Figure A1.1. VER-1::GFP localizes as puncta. Representative DIC and fluorescence 

merged image (left) and fluorescence only image (right) of an animal expressing a VER-

1::GFP fusion protein specifically in the AMsh glia (nsEx962). Arrows indicate examples 

of punctal localization of the fusion protein. Scale bar, 20 μm.  Anterior is left. 
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            In an additional experiment to rescue the fusion defect of ver-1(tm1348) mutants, 

we generated lines carrying wild-type ver-1 genomic DNA (gDNA; fosmid 

WRM0636cD01).  We predict that these lines have no bias towards any particular ver-1 

splice form.  Two lines were generated carrying the gDNA as an extrachromosomal array 

and were scored for AMsh glia fusion by cytoplasmic mixing.  Specifically, mosaic first- 

and second-stage daf-7(e1372); ver-1(tm1348) larvae carrying an AMsh::gfp array in just 

one of the two AMsh glia (nsEx1391), in addition to carrying the ver-1 gDNA rescuing 

array, were picked and induced to form dauers at 25°C.  This method assumes that the 

two extrachromosomal arrays (nsEx1391 and the ver-1 rescue array) segregate 

independently from one another, such that nsEx1391 mosaic animals are unlikely to also 

be mosaic for the ver-1 gDNA-containing array.  In this experiment, we again observed 

no rescue of AMsh glia fusion (Table A1.1), either due to incorrect copy number of the 

ver-1 gene, sequestration of TTX-1 and other transcriptional regulators away from other 

genes, or non-independent segregation of the two arrays in the AMsh glia.  Therefore, 

although the ver-1 expression pattern and the mutant analysis of ver-1 and its 

transcriptional regulators ttx-1 and ztf-16 are highly suggestive that ver-1 is required for 

AMsh glia fusion in dauer animals, we have been unable to ascertain this with complete 

certainty. 



151 

Appendix 2: The guanylyl cyclases GCY-8 and GCY-23 are not 

directly activated by temperature 

cDNAs for the AFD-expressed guanylyl cyclases (GCYs) gcy-8 and gcy-23 

(Inada et al., 2006) were PCR amplified and ligated into expression vectors (see Chapter 

6).  The expression constructs included a carboxy-terminal FLAG tag.  An attempt was 

made to clone another AFD-expressed GCY protein, gcy-18; however, all gcy-18 clones 

isolated contained PCR-induced mutations, and attempts to piece together wild-type 

sequences were unsuccessful, suggesting the cDNA may be lethal in E. coli. 

In collaboration with Erik Procko and Rachelle Gaudet (Department of Molecular 

and Cellular Biology, Harvard University, Cambridge MA), Sf21 insect cells were 

infected with baculoviruses encoding the FLAG-tagged GCY proteins and measured 

directly for cGMP levels by immunoassay.  Briefly, Sf21 cells were infected at a density 

of 1 x 106 cells/ml and harvested 48 h later (Figure A2.1A).  The cells were resuspended 

in fresh media (Supplemented Grace’s Medium with 10% fetal bovine serum, 0.1% 

pluronic F-68 polyol and 10 ug/ml gentamicin sulfate) to a density of 2 x 106 cells/ml and 

incubated on ice for 30 min.  Pentoxifylline (1.5 mM) and MnCl2 (4 mM) were added, 

and the cells were incubated at the indicated temperatures for 30 min (Figure A2.1B).  

The reactions were stopped by addition of HCl to 0.1 M, and the cells lysed by addition 

of Triton X-100 to 0.67% and freeze-thawing.  Cell debris was removed by centrifugation 

and the supernatant analyzed by an enzyme immunoassay for cGMP according to the 

manufacturer’s directions (Assay Designs).  The GCY-8 and GCY-23 proteins had no 

activity over a temperature range of 12-33°C, while a non-AFD expressed control GCY, 

GCY-28A, had relatively constant activity over the temperature range at which C.  
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Figure A2.1. GCY-8 and GCY-23 are not directly activated by temperature. (A) 

Anti-FLAG Western blot of Sf21 insect cells infected with baculoviruses encoding the 

indicated GCY proteins with carboxy-terminal FLAG tags. (B) cGMP levels of GCY-8, 

GCY-23 and GCY-28A infected cells when cultivated at 12-30°C. 
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elegans are cultivated (18-27°C) (Figure A2.1B).  Co-infection with both gcy-8 and gcy-

23 expression constructs also had no effect (data not shown). 
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Appendix 3: Null alleles of ttx-1 may be lethal 

The allele predicted to have the strongest mutation in the ttx-1 gene isolated in our 

mutant screens was ns260, which codes for a deletion of exon 6, removing the DNA-

binding domain.  Animals heterozygous for the ns260 allele had low ver-1 promoter::gfp 

expression (Figure A3.1).  By contrast, ns260 homozygosity was lethal.  A significant 

number of eggs laid by ns260 heterozygous parents (also carrying a ver-1 promoter::gfp 

transgene; nsIs22) failed to hatch (data not shown).  All viable progeny were either 

homozygous for the wild-type ttx-1 allele and expressed wild-type levels of ver-1 

promoter::gfp, or were ns260/+ heterozygous and expressed low gfp (Figure A3.2A).  

There was no difference between animals grown at 15°C or 25°C, indicating that the 

phenotype is not temperature-dependent (Figure A3.2A). 

We were unable to rescue ttx-1(ns260) lethality using either glial or AFD-specific 

promoters (Figures A3.2B,C), suggesting that ttx-1 may be acting in additional cells early 

in development.  Alternatively, the lethality phenotype may result from a linked mutation 

in an unrelated gene.  ttx-1(ns260)/ttx-1(oy26ts) transheterozygous animals were viable, 

although the percentage of transheterozygous progeny derived from a ns260/oy26ts 

parent grown at 25°C (the oy26 non-permissive temperature) was slightly reduced 

compared to animals grown at 15°C (at 15°C 59% of progeny are oy26/ns260, n = 29; 

whereas at 25°C 40% of progeny are oy26/ns260, n = 94; P = 0.0927, χ2 test). 

In addition, we noticed that animals homozygous for the ttx-1 allele ns259 (and 

carrying the nsIs22 transgene) were viable but sterile.  This allele, like ns260, had a 

dominant effect on ver-1 promoter::gfp expression (data not shown).  Individual animals 

were genotyped by sequencing reactions.  7 out of 68 progeny from an ns259/+  
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Figure A3.1. ttx-1(ns260) heterozygous animals express low ver-1 promoter::gfp. (A) 

Schematic of the ttx-1 gene, showing only exons 5 and 6 (boxes). The ns260 deletion is 

marked. The location of the three oligonucleotide primers used to genotype individual 

animals (see part B) are indicated by arrows (5’ to 3’). (B) Genotyping of four individual 

progeny from an ns260/+ heterozygous parent grown at 25°C and carrying a ver-1

promoter::gfp transgene (nsIs22). Two of these animals had wild-type levels of gfp

expression (left), while the other two had low levels (right). Primers used in the PCR 

assay are shown in (A). Wild-type animals exhibit a single amplified DNA fragment of 

~450 bp (a faint ~1 kb-sized band is sometimes also observed) (data not shown). ns260

homozygous animals are predicted to produce only a single DNA band of size ~600 bp. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A3.2. Glial and AFD-specific expression of ttx-1 cDNA fail to rescue ns260 

lethality. (A) Genotyping of viable progeny from ns260/+ heterozygous parents grown at 

either 15°C or 25°C. Wild type, +/+; ns260 heterozygous, +/–; and ns260 homozygous, –

/–. All animals also carry a ver-1 promoter::gfp transgene (nsIs22), and levels of gfp 

expression in the sheath glia in each individual animal were scored as either high, low, or 

not determined. The number of progeny examined (n) is indicated. (B) Same as (A), 

except the progeny also carry extrachromosomal arrays restoring ttx-1 expression in the 

AMsh glia. Cell-specific promoters driving ttx-1 cDNA include the F16F9.3 promoter 

(late embryo to adult expression) and the lin-26 promoter (embryonic expression only). 

Two different rescuing arrays using each promoter were scored, and are indicated. (C) 

Same as (B), except using AFD-specific gcy-8 and ttx-1 promoters. In (B,C), the ttx-1a 

splice form was used. In all lines shown in (A,B,C), viable  ns260 homozygous animals 

(–/–) were never observed. 
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Figure A3.2. Glial and AFD-specific expression of ttx-1 cDNA fail to rescue ns260

lethality. 
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heterozygous parent grown at 25°C were ns259 homozygous, of which all 7 were sterile 

(no eggs laid).  At 15°C, 6 out of 65 progeny were ns259 homozygous and sterile.  In a 

separate experiment, sterile ns259 homozygous animals were selected and observed to 

express a F16F9.3 promoter::dsRed transgene in the AMsh glia (n = 16; data not shown), 

indicating that the sterility phenotype is not due to a loss of the glia.  In all experiments, a 

ver-1 promoter::gfp transgene (nsIs22) was included in the strain background to facilitate 

following of the allele.  These results further support a role for ttx-1 in other 

developmental processes. 
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Appendix 4: fkh-9 may set a baseline for glial ver-1 promoter::gfp 

expression 

To find other molecules required for ver-1 expression, we screened for mutants 

with inappropriately high ver-1 promoter::gfp activity in the AMsh and PHsh glia.  4th-

stage larvae carrying the reporter (nsIs22) were treated for 4 h with ethyl 

methanesulfonate (EMS).  Single mutagenized P0s were picked to individual plates, and 

from these > 50,000 non-dauer F2 progeny were screened for increased GFP expression 

at either 15°C or 25°C.  A total of 23 alleles were isolated. 

One of these alleles, ns198, had increased ver-1 promoter::gfp expression in both 

AMsh and PHsh glia at both 15°C and 25°C; however, strong temperature-dependence of 

the reporter was still observed (Figure A4.1).  ns198 had a dominant effect on ver-1 

expression (Table A4.1; compare ns198/+ to wild type), indicating that either dosage of 

the gene is important or that the mutation may be a gain of function.  The effect of ns198 

on AMsh glia transcription may have some specificity, as another sheath cell reporter 

(vap-1 promoter::dsRed) did not appear dramatically different in ns198 mutants than 

wild-type animals (Figure A4.2).  Unlike ttx-1 mutants, ns198 mutants had wild-type 

thermotaxis behavior (Figure A4.3) and AFD sensory ending morphology (n = 50; data 

not shown), suggesting that fkh-9 does not affect AFD function. 

Single nucleotide polymorphism (SNP) mapping techniques against the Hawaiian 

strain background (Wicks et al., 2001) were used to map the ns198 mutation to an 

interval ~200 kb in length on chromosome X, between polymorphisms on cosmid C01C4 

(base 322) and F47F2 (base 21021), a map distance of 0.57 m.u.  31 genes were  
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Figure A4.1. ns198 mutants have increased ver-1 promoter::gfp reporter intensity.

Representative DIC and fluorescence merged images of wild type (left), ns198 mutant 

(center), and ns198; ttx-1(p767) double mutant (right) adult animals carrying a ver-1

promoter::gfp transgene (nsIs22) at 15°C (top) and 25°C (below). Arrowheads, weak 

GFP. In all images, anterior is up. GFP exposure, 400 ms. Scale bar, 50 μm. 
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Table A4.1.  Mutations in the fkh-9 gene increase ver-1 promoter::gfp expression. 
 ver-1 expression adults 15°C  ver-1 expression adults 25°C 
Genotypea % PHsh on % AMsh on n  % PHsh on % AMsh on n 
wild type 
 
fkh-9(ns198) 
fkh-9(ns198)/+c 
wild type; glia::fkh-9(31aa)d 

 

8 
 

98 
88 
0 

0 
 

73 
n.d. 

0 
 

40 
 

40 
40 
40 

 100 
 

100 
100 
100 

95 
 

100 (high)b 
100 (high)b 

88 
 

40 
 

40 
40 
40 

fkh-9(ns168) 
fkh-9(ns177) 
fkh-9(ns181) 
fkh-9(ns182) 
fkh-9(ns242) 
fkh-9(ns243) 
fkh-9(ns261) 
 

20 
100 
98 
98 
98 
90 

100 
 

0 
85 
70 
55 
65 
45 
70 

 

40 
40 
40 
40 
40 
40 
40 

 

 100 
100 
100 
100 
100 
100 
100 

 

100 (high)b 
100 (high)b 
100 (high)b 
100 (high)b 
100 (high)b 
100 (high)b 
100 (high)b 

 

40 
40 
40 
40 
40 
40 
40 

 
wild type; glia::fkh-9a 
fkh-9(ns198); glia::fkh-9a 
fkh-9(ns198); glia::Foxg1 
 

0 
75 
88 

0 
40 
75 

 

40 
40 
40 

 

 85 
88 

100 
 

18 
20 

100 (high)b 

 

40 
40 
40 

 
ttx-1(p767) 
ttx-1(oy26) 
ttx-1(p767); fkh-9(ns198) 

ttx-1(oy26); fkh-9(ns198) 

0 
0 
5 

98 

0 
0 
0 

75 

40 
40 
40 
40 

 0 
0 

23 (low)e 

48 

0 
3 

80 (low)e 

100 

40 
40 
40 
40 

aAll strains contained the ver-1 promoter::gfp transgene (nsIs22). 
bAll fkh-9 mutants had increased intensity of GFP fluorescence at 25°C compared to wild type (noted as 
“high”).  This difference in intensity was most dramatic in the AMsh glia.  See Figure A4.1. 
cThe heterozygous genotype was confirmed by crossing ns198 mutant hermaphrodites to males carrying a 
neuronal gfp reporter (oyIs17), and scoring only the progeny that carried the reporter. This reporter obscured 
the AMsh glia at 15°C (n.d., not determined).  This result shows that ns198 has a dominant effect on ver-1 
promoter::gfp expression. 
dThe glia promoter used to drive rescue constructs was F16F9.3 (Bacaj et al., 2008).  The 31aa form of fkh-9 
represents a truncated form of the fkh-9a splice form that codes for only the first 31 amino acids of the 
protein, representing the ns198 mutation.  The fact that this fails to increase ver-1 promoter::gfp expression 
suggests that ns198 is a loss of function allele, and that gene dosage of fkh-9 is therefore important. 
efkh-9(ns198); ttx-1(p767) double mutants had a greatly reduced intensity of GFP compared to either wild 
type or fkh-9(ns198) single mutants at 25°C (noted as “low”).  See Figure A4.1. 
Transgenes were injected at 60 ng/μl of rescuing plasmid, with 60 ng/μl of pRF4.  Lines shown are 
nsEx1569, nsEx1508, nsEx1505 and nsEx1711, and are representative of others. 
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Figure A4.2. ns198 does not affect vap-1 promoter::dsRed expression in AMsh glia.

Representative fluorescence images of vap-1 promoter::dsRed (nsIs53) expression within 

an AMsh glial cell at 20°C in wild-type and ns198 mutant adults. Exposure time, 250 ms; 

scale bar, 50 μm; anterior is up. 
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Figure A4.3. ns198 mutants have wild-type thermotaxis behavior. Thermotaxis of 

ns198 mutants. Animals were cultivated at 15°C (blue), 20°C (yellow) or 25°C (red) prior 

to performing each assay (see Chapters 1 and 6). The linear temperature gradient is 

represented by bins 1-6 on the horizontal axis, from cold (~18°C) to hot (~26°C). All 

values are mean +/- s.d. Animals also carry the ver-1 promoter::gfp transgene (nsIs22). 
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annotated in this region (WormBase release WS224), and the coding regions of candidate 

genes were sequenced.  We identified a point mutation causing a premature stop mutation 

in the coding sequence of the putative transcription factor fkh-9.  The other mutant alleles 

isolated with increased ver-1 promoter::gfp expression were also sequenced, and an 

additional 7 alleles of fkh-9 were found (Figure A4.4).  Each of these alleles caused an 

increase of gfp expression at low and high temperatures (Table A4.1), suggesting that 

fkh-9 likely sets a baseline for ver-1 promoter::gfp expression. 

fkh-9 codes for a putative winged helix/forkhead domain transcription factor of 

unknown function.  Interestingly, the closest-related mammalian protein to FKH-9, 

Foxg1 (46% identity over the winged helix DNA-binding domain), has roles in anterior 

brain development (Xuan et al., 1995), similar to orthologues of TTX-1 (Acampora et al., 

1996; Rhinn et al., 1998).  However, murine Foxg1 was unable to rescue fkh-9 mutants 

[I.M.A.G.E. Consortium clone ID 6314329 (Lennon et al., 1996)], suggesting some 

divergence of function between these proteins (Table A4.1). 

Five of the fkh-9 alleles code for premature stop mutations, suggesting they are 

loss of function alleles (Figure A4.4).  Alternatively, the truncated proteins could be gain 

of function alleles, which may explain the dominant phenotype of fkh-9 mutations on ver-

1 promoter::gfp expression.  However, over-expressing a truncated form of the fkh-9 

cDNA coding for only the first 31 amino acids, equivalent to the ns198 allele, did not 

reproduce the mutant phenotype (Table A4.1).  This suggests that the mutations are loss 

of function and that dosage of the fkh-9 gene is important. 

The other fkh-9 alleles isolated, ns168, ns182 and ns243, are missense mutations 

within the putative winged helix DNA-binding domain (Figure A4.4).  This suggests that  
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Figure A4.4. Mutations in fkh-9 increase ver-1 promoter::gfp expression. A 

schematic of the predicted fkh-9 gene; exons are indicated by boxes, introns as 

connecting lines.  The forkhead/winged helix domain is shown. The location of the 

genetic lesion in alleles ns177, ns181, ns182, ns198, ns242, ns243, ns261, and ns168 are 

marked (*), as is the corresponding amino acid change in the FKH-9A protein. Premature 

stop mutations are indicated by amber, ocher or opal. Allele ns242 codes for a single base 

deletion, causing a frame-shift and premature stop. 
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FKH-9 acts as a transcription factor.  Consistent with this, a cDNA coding for the 

longest-length splice form of the gene predicted by WormBase (release WS224), the a 

form, was isolated, and a FKH-9A::GFP fusion protein expressed specifically in the 

AMsh glia was nuclear localized (Figure A4.5A).  In addition, the cDNA of a predicted 

splice form of fkh-9 which lacks the DNA binding domain, fkh-9c (WormBase release 

WS224), failed to rescue the mutant phenotype (data not shown). 

To test in which cell types fkh-9 may be expressed, we generated a fkh-9 

promoter::gfp reporter, including 300 bp of fkh-9 upstream promoter followed by ~6.2 kb 

through to the end of intron 1.  This construct gave GFP expression in many cell types as 

previously reported (Hope et al., 2003), including the AMsh and PHsh glia (Figure 

A4.5B; and data not shown).  This implies that fkh-9 likely functions cell autonomously 

within the glia to regulate ver-1 expression.  We verified this by expressing wild type fkh-

9a cDNA under a sheath cell promoter.  This construct rescued the fkh-9 mutant 

phenotype and caused a decrease of ver-1 promoter::gfp expression in wild-type animals 

(Table A4.1), consistent with dosage of the gene being important. 

Furthermore, we found that mutations in fkh-9 affected the minimal interval of the 

ver-1 promoter required for glia-specific and temperature- and dauer-dependent 

expression identified in Chapter 2 (data not shown).  This was the same interval acted 

upon by ttx-1.  In addition, the increased expression of ver-1 promoter::gfp observed in 

fkh-9 mutants required functional ttx-1.  Specifically, in fkh-9(ns198); ttx-1(p767) double 

mutants, ver-1 promoter::gfp expression in adults was almost completely absent (Figure 

A4.1; Table A4.1).  The fkh-9(ns198); ttx-1(oy26) double mutant had reduced gfp 

expression in adults raised at 25°C but not at 15°C, further evidence that oy26 is a  
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Figure A4.5. fkh-9 is a glia-expressed nuclear factor. (A) DIC and fluorescence 

merged (left) and fluorescence (right) image of a wild-type adult animal expressing a 

FKH-9A::GFP fusion protein specifically in the AMsh glia (nsEx1517).  Note nuclear 

localization (arrow). (B) DIC and fluorescence merged (left), DsRed fluorescence 

(center) and GFP fluorescence (right) image of an adult wild-type animal carrying a fkh-9

promoter::gfp reporter (nsEx1526) and AMsh glia::dsRed marker (nsIs53). Note AMsh 

glia expression (arrow). In all images, anterior is up; scale bar, 50 μm. 
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temperature sensitive allele (Table A4.1; see Chapter 3).  Similarly, a mutation in fkh-9 

failed to suppress the loss of ver-1 promoter::gfp expression in ztf-16 mutant dauers (ztf-

16(ns171) mutants never expressed GFP in the AMsh glia in dauers induced by starvation 

at 15°C, n = 50; while ztf-16(ns171); fkh-9(ns261) expressed weak GFP in only 5% of 

animals, n = 40; P = 0.19, Fisher’s exact test). 

Based on the potential role of fkh-9 in regulating ver-1 expression, we 

hypothesized that fkh-9 mutants may also have a role in dauer-induced AMsh glia fusion, 

perhaps by increasing the percentage of animals with fused glia.  Alternatively, glia 

fusion may already be maximized in a wild-type background, and increasing ver-1 levels 

above this by using a mutation in fkh-9 may have no additional effect.  Consistent with 

this second notion, we find that mutations in four different alleles of fkh-9 have no effect 

on glia fusion in dauer animals as assessed by cytoplasmic mixing (Figure A4.6).  In 

addition, and consistent with the failure of fkh-9 mutations to strongly suppress the loss 

of ver-1 promoter::gfp expression in ttx-1 and ztf-16 mutants, we found no suppression of 

the fusion defects of ttx-1 and ztf-16 mutants when combined with a mutation in fkh-9 

(Figure A4.6).  Thus, it is unlikely that fkh-9 affects glial fusion, and these results raise 

doubt as to whether screening for mutants that increase ver-1 promoter::gfp expression in 

non-dauer animals is a useful method for finding glia remodeling genes. 

Interestingly, a mutation in a second gene found to cause increased ver-1 

promoter::gfp expression also codes for a protein with a winged helix-like DNA-binding 

domain.  Mutant allele ns183 had weakly elevated levels of ver-1 promoter::gfp in the 

PHsh glia (Figure A4.7A).  ns183 was mapped to chromosome X using SNP methods 

(Wicks et al., 2001) between polymorphisms on cosmid M163 at position 3785 to cosmid  
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Figure A4.6. Mutations in fkh-9 do not affect dauer-induced glia remodeling.

Percentage of daf-7(e1372) dauer animals of the indicated genotype with fused AMsh 

glia as assayed by cytoplasmic mixing. Number of animals examined (n) is above each

column. 
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Figure A4.7. A mutation in the linker histone his-24 causes a weak increase in ver-1

promoter::gfp expression. (A) DIC and fluorescence merged images of wild type (left) 

and his-24(ns183) (right) adult animals carrying a ver-1 promoter::gfp reporter (nsIs22) at 

15°C. Note weak GFP in the PHsh glia of ns183 mutants (arrow). Anterior is left; scale 

bar, 20 μm.  GFP exposure, 200 ms. (B) A schematic of the his-24 gene. Exons are 

represented by boxes; the linker histone H15 DNA-binding domain is shaded. The 195 bp 

deletion (and single base A insertion) of the ns183 allele is shown. Coordinates are 

relative to the +1 start site of the coding sequence. (C) Restoring his-24 cDNA 

expression specifically to the sheath glia rescues the ns183 mutant phenotype. All strains 

carry the ver-1 promoter::gfp transgene (nsIs22).  The rescuing extrachromosomal array 

shown (nsEx1590) is representative of others. 
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C44H4 at position 21512, an interval of ~126 kb.  Within this region, a 195 bp deletion 

and single base A insertion was identified in the his-24 linker histone gene (Figure 

A4.7B).  Furthermore, glia-specific expression of a his-24 cDNA rescued the ver-1 

promoter::gfp over-expression phenotype of ns183 mutants (Figure A4.7C).  his-24 is 

likely expressed in all somatic cells and nuclear-localized, and may function as a general 

component of chromatin structure (Jedrusik and Schulze, 2001).  Although linker 

histones share little sequence similarity with the winged-helix domain factors, the 

structure of the DNA-binding regions are conserved (Clark et al., 1993).  This implies 

that his-24 may act weakly through the same target genes as fkh-9 to regulate ver-1 

promoter::gfp expression.  Based on these observations, the gene was not pursued further. 
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Appendix 5: Dauer animals are repelled by isoamyl alcohol and 

benzaldehyde 

daf-7(e1372) dauers induced by cultivation at 25°C (60-72 h after laying) were 

tested in behavioral assays to the odorants benzaldehyde and isoamyl alcohol (IAA).  In 

non-dauer adult animals, these odorants are sensed by the AWC neurons and mediate an 

attractive response (Bargmann et al., 1993).  By contrast, we found that 1% IAA (Figure 

A5.1) and 0.5% benzaldehyde (data not shown) caused robust repulsion of daf-7 dauers.  

Due to the small size and limited movement of dauer animals, we used a modified 

chemotaxis assay: animals were washed and plated onto the center of a 9 cm round 

chemotaxis plate, with three 1 μl drops of the odorant spotted equidistant on one side of 

the plate and three drops of ethanol vehicle control spotted on the other.  1 μl 0.1 M 

sodium azide was added to each spot.  Animals were allowed to disperse from the center 

of the plate for 90 min, after which time they were fixed by addition of chloroform to the 

lid of the plate and the number of animals in each half of the plate counted.  The 

chemotaxis index was calculated by subtracting the number of animals which moved in 

the direction away from the odorant from the number that went towards the odorant, 

divided by the total. 

This difference between daf-7 dauers and wild-type adults was not a result of 

AMsh glia fusion in dauers: ttx-1(p767); daf-7(e1372) (Figure A5.1) and ttx-1(oy26); daf-

7(e1372) (data not shown) mutant dauers were also repelled by the odorant.  Therefore, 

the switch in behavior of dauer animals from attraction towards IAA to repulsion may be 

a result of AWC circuit rewiring or, perhaps more likely, changes in odorant receptor 

expression between chemosensory neurons (for example, see Peckol et al., 2001). 
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Figure A5.1. daf-7(e1372) dauer animals are repelled by isoamyl alcohol (IAA).

Chemotaxis index of wild-type (N2) adult animals and daf-7(e1372) dauers cultivated at 

25°C towards IAA (for method, see text). A negative index indicates repulsion. The cell-

specific ttx-1 rescue transgenes used were nsIs219 (glia::ttx-1) and nsIs99 (AFD::ttx-1). 

Results shown are averages of 4 assays, +/- s.d. 
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Appendix 6: ttx-1 likely functions in AFD to regulate dauer exit of 

daf-7(e1372) mutants 

It was previously reported that daf-7(e1372); ttx-1(p767) mutants prematurely exit 

dauer compared to daf-7(e1372) single mutants (Satterlee et al., 2001).  We rescued this 

phenotype using a transgene that restored ttx-1 expression specifically to the AFD 

thermosensory neurons and not to the glia (Figure A6.1).  Briefly, daf-7 mutant strains 

were staged and grown at 25°C on OP50 bacteria.  At 50 h, dauer animals were selected 

by 1% SDS treatment (see Chapter 6).  Animals were cultivated for an additional 30 h 

and then scored as dauer or post-dauer by morphology.  Due to the subtlety of the 

phenotype being scored (dauers vs recent post-dauers), we have been unable to rule out 

erroneous effects of the integrated transgenes on animal growth rates in these 

experiments. 
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Figure A6.1. ttx-1 likely functions in AFD to regulate dauer exit of daf-7(e1372) 

mutants. The percentage of animals of the indicated genotype remaining in dauer after 

80 h at 25°C. Results are averages of 3 assays, n > 50 each assay, +/- s.d. The ttx-1 rescue 

transgenes used were nsIs99 (AFD::ttx-1) and nsIs101 (glia::ttx-1). All strains also carry 

ver-1 promoter::gfp (nsIs22). 
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