
Rockefeller University
Digital Commons @ RU

Student Theses and Dissertations

2011

Regulation of Polarized Protein Transport to Axons,
Dendrites, and Sensory Cilia in Caeborhabditis
Elegans Neurons
Tapan Apurva Maniar

Follow this and additional works at: http://digitalcommons.rockefeller.edu/
student_theses_and_dissertations

Part of the Life Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and
Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact mcsweej@mail.rockefeller.edu.

Recommended Citation
Maniar, Tapan Apurva, "Regulation of Polarized Protein Transport to Axons, Dendrites, and Sensory Cilia in Caeborhabditis Elegans
Neurons" (2011). Student Theses and Dissertations. Paper 131.

http://digitalcommons.rockefeller.edu?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations/131?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mcsweej@mail.rockefeller.edu


	  
	  
	  

	  

REGULATION	  OF	  POLARIZED	  PROTEIN	  TRANSPORT	  TO	  AXONS,	  DENDRITES,	  AND	  
	  

SENSORY	  CILIA	  IN	  CAEBORHABDITIS	  ELEGANS	  NEURONS	  

A	  Thesis	  Presented	  to	  the	  Faculty	  of	  	  
	  

The	  Rockefeller	  University	  	  
	  

in	  Partial	  Fulfillment	  of	  the	  Requirements	  for	  
	  

	  the	  degree	  of	  Doctor	  of	  Philosophy	  

By	  	  
	  

Tapan	  Apurva	  Maniar	  
	  

June	  2011	  



	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
©	  Copyright	  by	  Tapan	  A	  Maniar	  2011	  



REGULATION OF POLARIZED PROTEIN TRANSPORT TO AXONS, DENDRITES 

AND SENSORY CILIA IN CAENORHABDITIS ELEGANS NEURONS 

 
 

Tapan Apurva Maniar, Ph.D. 
 

The Rockefeller University 2011 
 
 
 

Neurons are highly polarized cells, capable of receiving, processing and 

transmitting information, with the help of their specialized domains, an axon and one or 

more dendrites.  The molecular dissimilarities between these domains are critical for 

neuronal function, and are a result of asymmetric trafficking of a large number of cellular 

components including ion channels, neurotransmitter receptors, synaptic vesicles, and 

signaling proteins.  Yet, despite the significance of asymmetric protein transport in 

neuronal polarity, the molecules and mechanisms that direct polarized transport to axons, 

dendrites and cilia in neurons are only partly understood.  In this thesis, I describe my 

effort at understanding how neuronal proteins are asymmetrically localized.  I pursued a 

genetic approach, employing the C. elegans nervous system as an in vivo model system 

for protein transport to axons, dendrites and cilia.  

 Having established a system to visualize axon-dendrite compartmentalization in 

PVD mechanosensory neurons, I identified the microtubule-binding protein UNC-

33/CRMP and the ankyrin homolog UNC-44 as major regulators of polarized protein 

transport in C. elegans neurons.  In both unc-33 and unc-44 mutants, axonal proteins are 

distributed randomly between axons and dendrites, and dendritic proteins are partly 

mislocalized to axons.  In both mutants, the axonal kinesin UNC-104/KIF1A actively 



misdelivers axonal proteins to both axons and dendrites.  An altered distribution of 

neuronal microtubules in unc-33 and unc-44 mutants suggests that a primary defect in 

microtubule organization underlies defective protein targeting. unc-44 is required for 

UNC-33 localization to axons, where its enrichment in a proximal axonal segment 

suggests analogies with the vertebrate axon initial segment.   

 In parallel experiments, I analyzed odr-8 mutants, which were previously 

identified in screens for chemotaxis-defective mutants and shown to affect GPCR 

localization.  odr-8 mutants fail to localize a subset of odorant receptors including the 

ODR-10 diacetyl receptor to sensory cilia.  I found that odr-8 encodes the C. elegans 

homolog of mammalian UfSP2, which acts as a cysteine-protease specific for UFM1, a 

ubiquitin-like molecule.  ODR-10::GFP is retained in the ER in odr-8 mutants, whereas 

cilia localization of ODR-10::GFP is enhanced in ufm-1 mutants.  ufm-1 function is 

required for ER retention of ODR-10::GFP in odr-8 animals.  Thus, ODR-8 and UFM-1 

may act antagonistically to regulate ER exit and cilia localization of chemoreceptors such 

as ODR-10. 
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Chapter 1 

Introduction 

 Polarization of cells into functionally and morphologically specialized subcellular 

domains is a critical property for most cell types.  Neurons are prime examples of such 

polarization, with highly specialized substructures that execute distinct functions (Barnes 

and Polleux, 2009).  At the simplest and most fundamental level, neurons are divided into 

two major compartments, a single long axon and one or more dendrites with variable 

degrees of branching.  Reflecting the complexity of neurons, these domains are often 

organized into further subspecializations such as the axon initial segment, presynaptic 

sites, nodes of Ranvier, dendritic spines and chemosensory or primary cilia (Lasiecka et 

al., 2009).  Axons contain presynaptic vesicles filled with neurotransmitters and specialize 

in releasing these chemicals for signal propagation to downstream neurons in neural 

circuits.  Dendrites contain numerous organelle systems such as Golgi outposts and 

molecules such as neurotransmitter receptors and ion channels that allow them to sense and 

propagate these signals through the neuron.  Efficient flow of information in neural circuits 

relies on the proper functioning of axonal and dendritic domains, whose properties are 

defined by their constituent proteins (Arnold, 2009).  A greater understanding of the 

mechanisms that underlie proper targeting of neuronal proteins to their corresponding 

destinations has the potential to significantly improve knowledge of neuronal development 

and function.  

 Accurate localization of neuronal proteins is the outcome of a host of cellular 

processes, which can be divided into two main events.  The first of these is the proper 

establishment of neuronal polarity resulting in well-defined axon-dendrite domains, and 
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the second is the subsequent process of protein transport, which is guided by the spatial 

information laid out by the polarization event.   

  

1.)  Neuronal compartmentalization into axons and dendrites 

 

1.1.) Primary hippocampal neurons: Conceptual foundation and molecular contributions 

 Much effort has been dedicated towards understanding the process of neuronal 

polarization, using cultured mammalian neurons.  The employment of dissociated rodent 

hippocampal neurons established an ideal in vitro system (Dotti et al., 1988) that has been 

used for studies over the past two decades, and has enriched our understanding of neuronal 

polarity.  Cultured hippocampal neurons progress through multiple stages of 

morphological transition, starting out as round cells with lamellipodial protrusions (Stage 

1), followed shortly by growth of simple, immature neurites (Stage 2).  One of these 

neurites, which will eventually become an axon, initiates rapid and persistent outgrowth 

(Stage 3).  Subsequently, the other processes also start to grow and develop into dendrites, 

as the axon continues its elongation (Stage 4).  Ultimately, both sets of processes develop 

further specializations such as presynaptic sites, dendritic branches and dendritic spines 

(Stage 5) (Baas et al., 1989).   

Experiments have primarily focused on the transition from Stage 2 to Stage 3, the 

earliest visual representation of the decision as to which process will develop into an axon.  

Through these studies, extracellular cues such as laminin, BDNF and NT3 have been 

shown to affect neuronal polarity and promote axon development (Esch et al., 1999; 

Morfini et al., 1994; Shelly et al., 2007).  However, the main drive towards polarity in this 
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system is cell-intrinsic.  It is thought that these cells start out as symmetric cells that 

undergo minor local fluctuations in signaling molecules or pathways, generating weak 

intracellular asymmetry.  A large enough spontaneous fluctuation is subsequently 

amplified through positive feedback and establishes a lasting asymmetry within the 

neuron, eventually developing into axon-dendrite polarity (Arimura and Kaibuchi, 2007). 

In addition, a large set of signaling molecules can affect the morphological 

development of axons or dendrites, as described below.   

 

1.1.1.)  PI3-Kinase and PTEN 

  Members of the PI3K family of kinases phosphorylate phosphatidylinositol-(4,5)-

bisphosphate (PIP2) to generate phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) and have 

well-established roles in cell polarity and cell migration (Swaney et al., 2010).  Growing 

evidence from multiple groups point towards an important role of PI3K and its lipid 

product PIP3 in regulation of neuronal polarity.  Pharmacological inhibition of PI3K using 

Wortmannin or LY294002 disrupts proper formation of an axon (Jiang et al., 2005; Shi et 

al., 2003; Yoshimura et al., 2005), whereas overexpression of a constitutive active catalytic 

subunit (p110α) results in the development of multiple axons (Jiang et al., 2005).  These 

results suggest that PI3K activity is necessary and sufficient for specification and 

development of axon identity.  Consistent with this model, PIP3 accumulation and 

therefore PI3K activity show higher levels in developing axons compared to dendrites in 

Stage 3 neurons (Menager et al., 2004; Shi et al., 2003).  

 Studies on PTEN (phosphatase and tensin homolog deleted on chromosome 10), an 

antagonist of PI3K function, provide further support for the role of PI3K and PIP3 in 



	    4	  

neuronal polarization.  PTEN is a protein and lipid phosphatase that dephosphorylates PIP3 

to convert it back to PIP2, and thereby provides a spatial and temporal control on PI3K-

PIP3 signaling (Arimura and Kaibuchi, 2007).  Overexpression of PTEN leads to defects in 

axon formation, whereas knocking down its expression results in multiple axons (Jiang et 

al., 2005; Shi et al., 2003), opposite effects of the abovementioned effects of PI3K.  Thus, 

a balance in PI3K and PTEN activity may specify axon-dendrite development.  Recent 

studies in C. elegans in vivo have provided support for this general concept, as they have 

demonstrated the significance of PI3K in the initial events of neuronal polarization (Adler 

et al., 2006; Chang et al., 2006). 

 

1.1.2.)  GSK-3β 

 One of the targets through which PI3K signaling may regulate neuronal polarity is 

the serine/threonine kinase GSK-3β, or Glycogen Synthase Kinase 3β.  Unlike most 

kinases, GSK-3β is constitutively active until phosphorylated.  In cultured hippocampal 

neurons the phosphorylated form of GSK-3β shows greater accumulation in developing 

axons than in dendrites (Jiang et al., 2005; Yoshimura et al., 2005).  Overexpression of a 

non-phosphorylatable form of GSK-3β results in neurons lacking axons, and suppresses 

the supernumerary axon formation phenotype of overactive PI3K signaling.  Conversely, 

inhibition of GSK-3β using multiple peptide inhibitors or siRNAs leads to supernumerary 

axon formation (Gartner et al., 2006; Jiang et al., 2005; Yoshimura et al., 2005).  GSK-3β 

phosphorylates a diversity of proteins including microtubule-binding proteins such as 

MAP1b, Tau, CRMP-2 (discussed below) and APC (Adenomatous Polyposis Coli) (Hur 
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and Zhou, 2010), and may act through one or more of these targets to regulate axon-

dendrite formation.   

 

1.1.3.)  PAR proteins 

 The PAR proteins, conserved regulators of cell polarity, were originally identified 

in a pioneering screen for mutants with defects in asymmetric cell division of the C. 

elegans zygote (Guo and Kemphues, 1996).  PAR-3, PAR-6, and aPKC proteins localize at 

the anterior edge of the single-celled embryo and are required for, whereas PAR-1 and 

PAR-2 proteins are enriched at the posterior edge, and are required for establishing and 

maintaining posterior specification.  The PAR3-PAR6-aPKC complex is also required for 

the polarity of epithelial cells and dividing Drosophila neuroblasts (Nance and Zallen, 

2011).  In cultured hippocampal neurons, PAR3, PAR6 and aPKC accumulate in the 

developing axon, and overexpression of PAR3 or PAR6 perturbs neuronal polarization, 

and inhibition of aPKC activity leads to defects in axon formation (Shi et al., 2003). 

 Of the 13 mammalian kinases similar to the C. elegans PAR-1 kinase, three have 

been shown to be important for neuronal polarity (Lizcano et al., 2004).  Two of these, 

SAD-A and SAD-B kinases, are mammalian homologs of C. elegans SAD-1 (Kishi et al., 

2005), discussed in greater detail below along with its upstream regulator LKB1/PAR-4.  

The third PAR-1-like protein implicated in axon formation is MARK2 or microtubule-

affinity-regulating kinase 2.  Overexpression of MARK2 prevents axon formation, whereas 

knocking-down its expression results in excess axons, suggesting the regulated inhibition 

of MARK2 may be critical for the proper development of axon-dendrite polarity (Biernat 

et al., 2002; Chen et al., 2006).  
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1.1.4)  Summary of hippocampal polarity 

In addition to the proteins mentioned above, cyclic nucleotides, calcium, calcium 

chloride and cytoskeletal effectors regulating actin or microtubules affect the number of 

axons per neurons (Arimura and Kaibuchi, 2007; Shelly and Poo, 2011).  The cytoskeletal 

systems will be discussed further below. 

  Analyses using the in vitro hippocampal system have provided a conceptual 

framework for future experiments and with identities of numerous putative regulators.  

However, certain caveats associated with these experiments have also been recognized and 

are worth noting (Barnes and Polleux, 2009; Jiang and Rao, 2005).  For example, most of 

these experiments relied on neurite length as the single marker of axon identity, thereby 

not making the distinction between molecules that are required for specification of axons, 

and those that only affect axon elongation.  Furthermore, identification of regulatory 

molecules through overexpression or dominant negative approaches, while revealing, can 

be associated with ectopic activation of pathways not normally used by neurons, or with 

non-specific inactivation of an undesired pathway, respectively.  Lastly, given that the 

system employs dissociation of E17-E18 neurons that were already polarized, it is possible 

that at least a part of the analysis may be specific to repolarization of cells with some 

remaining memory of the previous polarization event.  These limitations highlight the 

importance of parallel studies of in vivo regulatory mechanisms.  
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1.2.)  The development of axon-dendrite polarity in vivo 

  

 The emerging theme from in vivo analyses of axon-dendrite specification indicates 

that this process involves four basic steps.  1.) The first step involves generation of 

intracellular asymmetry in an unpolarized neuron.  A number of recent studies have 

elegantly demonstrated that extracellular cues in the vicinity of postmitotic neurons play an 

instructive role in this process through asymmetric activation of downstream signaling 

pathways, leading to directed intracellular asymmetry in these neurons (Adler et al., 2006; 

Hilliard and Bargmann, 2006; Pan et al., 2006).  2.) The second step, the morphological 

elaboration of this initial intracellular asymmetry, involves directed outgrowth of axons 

and dendrites.  This visually striking and important step in neuronal polarization is likely to 

involve coordinated regulation of the cytoskeleton and membrane addition.  Indeed, a 

growing number of molecules are implicated in this morphogenetic process of growth 

(Tahirovic and Bradke, 2009). 3.) The third step is the molecular differentiation of axons 

and dendrites enabling them to serve their respective functions.  This process involves the 

regulated and polarized transport of constituent proteins to the two compartments, 

providing each with its molecular and functional properties.  Cell biological and genetic 

studies indicate that the microtubule cytoskeleton, which is known to differ between axons 

and dendrites, plays a major role in defining the directionality of protein transport.  4.) The 

morphological and molecular compartmentalization of neurons is maintained by a number 

of processes.  An actin- and ankyrin-dependent diffusion barrier exists between the axonal 

and somatodendritic domains (Nakada et al., 2003; Song et al., 2009; Winckler et al., 

1999), playing a pivotal role in maintaining axon-dendrite molecular distinctions 
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(Hedstrom et al., 2008; Sobotzik et al., 2009).  Furthermore, continued directional sorting 

and transport of proteins, as well as selective retention or endocytosis of other proteins, are 

required to maintain the functional properties of these compartments.  

 

1.2.1.)  Regulation of axon-dendrite polarity by extracellular cues  

 Analysis of C. elegans unc-6/netrin mutants have provided striking evidence for the 

role of netrin signaling in generating neuronal polarity.  The generation of initial 

asymmetry can be visualized directly in the HSN egg-laying neurons whose stereotyped 

anatomy is defined by a ventrally guided axon.  From their original spherical morphology, 

HSN neurons consistently initiate polarized outgrowth in the ventral direction.  UNC-6, 

which is secreted from ventral sources, plays an instructive role in directing this step 

(Adler et al., 2006).  HSN neurons in unc-6 mutants no longer restrict their outgrowth 

ventrally, and instead direct filopodia and nascent neurites in all directions.  Ultimately, 

however, HSN develops a single axon that grows anteriorly, indicating unc-6/netrin is 

required for the initial cellular asymmetry and for defining the direction of axon 

development, but not for axon development per se.  In absence of unc-6, intrinsic or 

external mechanisms may provide spatial information that polarize the cell anteriorly.  

Ventral UNC-6 leads to ventral localization of the UNC-6 receptor, UNC-40/DCC, in HSN 

neurons.  UNC-40 in turn triggers a signaling pathway involving MIG-10/lamellipodin and 

UNC-34/Enabled, which can act on the actin cytoskeleton.  Mammalian homologs of 

MIG-10 and UNC-34 also play important roles in lamellipodia and filopodia formation in 

neuritogenesis (Dent et al., 2007; Krause et al., 2004; Kwiatkowski et al., 2007). 
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 Interestingly, unc-6/netrin, originally identified for its early roles in cell migration 

and axon guidance, also acts at later stages in neuronal development, promoting 

synaptogenesis in one cell type (Colon-Ramos et al., 2007), and inhibiting accumulation of 

presynaptic proteins in dendrites in another (Poon et al., 2008).  These activities can be 

considered to be components of axon differentiation and neuronal polarity.       

 Complementing the significance of UNC-6/netrin along the dorsoventral axis, C. 

elegans WNT proteins act along the anterioposterior axis in neuronal polarity and other 

aspects of development (Hilliard and Bargmann, 2006; Pan et al., 2006).  The PLM 

mechanosensory neurons, positioned near the C. elegans tail, extend a long anterior 

process with a branch containing synaptic vesicles, and an unbranched and shorter 

posterior process.  In lin-44/WNT mutant animals, as well as in animals defective for its 

receptor LIN-17/Frizzled, the PLM neuron reverses its polarity along the A-P axis, 

directing a long process with its synaptic branch posteriorly, and extending a short 

unbranched process in the anterior direction.  Thus, while WNT signaling may not be 

essential for initiation and elaboration of PLM polarity, it is important in the organization 

of polarity along the body axis.  The source of LIN-44 expression is situated in the tail, 

posterior to PLM neurons (Hilliard and Bargmann, 2006).  These experiments suggest that 

WNT signaling orients PLM polarity along the A-P axis by directing the site of axon 

initiation away from the WNT source.  

 An activity analogous to that of netrin and WNTs in C. elegans neuronal polarity 

has been identified for the mammalian semaphorin Sema3A.  Dissociated rodent cortical 

neurons when cultured on cortical brain slices extend their axons towards the ventricular 

surface of the slice, as is the case in vivo.  Sema3A in the underlying slice directs this 
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polarity axis by promoting dendrite growth apically, and orienting the site of axon 

initiation away from its source (Polleux et al., 1998; Polleux et al., 2000). Disrupting the 

function of Sema3A receptor Neuropilin-1 leads to defects in this bias oriented growth 

(Polleux et al., 1998), suggesting that Neuropilin-1 signaling downstream of Sema3A 

directs the development of axon-dendrite polarity. 

 While a number of extracellular cues can affect axon development in vitro, recent 

work from Ehlers and Polleux labs may have identified the first extracellular signal in the 

mammalian nervous system important for neuronal polarity in vivo (Yi et al., 2010).  Using 

conditional knockout mice, they observed that TβR2, a receptor for TGF-β, is required in 

neurons for axonogenesis.  Neurons knocked out for TβR2 remained bipolar but failed to 

elaborate an axon, suggesting a specific defect in axon formation and development, rather 

than a defect in neuronal asymmetry.  In vitro experiments suggest that the TβR2 ligand 

TGF-β can promote axonal development.   

In summary, significant progress has been made in identifying cues that regulate 

neuronal polarity in vivo.  A lesson from these experiments is that extracellular cues 

identified for different roles in neurons or other tissues can act in neurons to regulate 

neuronal polarity.  unc-6/netrin, WNTs, or the TGF-β receptor may regulate distinct 

processes such as cell migration, axon-dendrite development and guidance, and synapse 

formation, in distinct cell types or even in the same cell in which they regulate neuronal 

polarity.  
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1.2.2.)  SAD and LKB1 kinases regulate axon-dendrite compartmentalization in vivo 

 Among the intracellular signaling molecules, the SAD-1 (SAD A/B) kinase and 

LKB-1/PAR-4 kinase are the best characterized and conserved regulators of neuronal 

polarity in vivo.  Genetic screens in C. elegans originally identified sad-1 mutants based on 

defects in presynaptic vesicle organization (Crump et al., 2001).  In addition to the defect 

in presynaptic vesicle clustering, sad-1 mutants also showed neuronal polarity defects, 

mislocalizing synaptic vesicle proteins to dendrites in sensory and motor neurons.  SAD-1 

encodes a serine/threonine kinase that is similar to the polarity protein PAR-1, identified 

for its role in the embryonic polarity of C. elegans zygote and subsequently found to be 

important for the polarity of numerous cell types, hinting at similarities between 

mechanisms controlling neuronal polarity and those controlling embryonic or epithelial 

cell polarity.  Subsequent knockout studies demonstrated that SAD A and SAD B kinases, 

mammalian homologs of SAD-1, are required for neuronal polarity in mice (Kishi et al., 

2005).  While it is not clear how SAD kinases regulate neuronal polarity or synapse 

development, it is believed that part of this effect is mediated by phosphorylation of 

microtubule-associated proteins (MAPs) such as tau (Kishi et al., 2005).  In addition, the 

identification of Neurabin (NAB-1) as a binding partner of SAD kinase, along with studies 

of the C. elegans nab-1 mutant, have led to the model where SAD-1 acts in concert with 

NAB-1 to regulate neuronal polarity (Hung et al., 2007).  

Acting upstream of mammalian SAD kinases, the mammalian homolog of the 

polarity protein PAR-4, the LKB1 kinase, is required for neuronal polarity and axon 

formation in mouse brain (Barnes et al., 2007).  Phosphorylated LKB1 in the presumptive 

axon phosphorylates and activate SAD kinases leading to polarization of neurons and axon 
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formation (Barnes et al., 2007; Shelly et al., 2007).  Providing further support to the role of 

LKB1 in neuronal polarity, C. elegans par-4 (LKB1) mutants also mislocalize synaptic 

vesicle proteins to dendrites, as seen in the case of sad-1.  However, in case of C. elegans, 

par-4 seems to act in the same pathway as par-1 rather than sad-1, whereas strd-1 

(STRDα), a binding partner of LKB1, appears to act in a parallel pathway with sad-1 (Kim 

et al., 2010).  It remains to be seen how extracellular cues such as TGF-β, unc-6/netrin or 

WNTs lead to the asymmetric activation of LKB1. 

 In addition to LKB1 and SAD kinases, additional signaling molecules such as 

PIP3, cGMP, cAMP and many others have also been implicated in neuronal polarity 

through in vitro studies (Arimura and Kaibuchi, 2007; Barnes and Polleux, 2009).  Now, 

with improved techniques for visualizing neuronal development and manipulating genes, 

the in vivo requirement and functions of these molecules with respect to axon-dendrite 

development can be better understood. 

 

1.3) Neuronal cytoskeleton: an active player orchestrating axon-dendrite 

compartmentalization 

  Axons and dendrites exhibit striking differences in their microtubule cytoskeleton.  

Axonal microtubules are generally oriented with their plus ends away from the cell body, 

whereas dendritic microtubules of mammalian neurons as well as Drosophila neurons 

exhibit the opposite orientation, or mixed polarity, depending on the cell type (Baas et al., 

1988; Burton and Paige, 1981; Heidemann et al., 1981; Kwan et al., 2008; Rolls et al., 

2007).  Furthermore, dendrites, but not axons, exhibit subcompartment specific and age-

dependent changes.  Microtubules in basal dendrites of pyramidal neurons display a mixed 
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orientation at all stages of neuronal development, whereas microtubules in apical dendrites 

of developing pyramidal neurons have a mixed polarity initially, but acquite a uniform 

orientation later in development (Kwan et al., 2008).  These differences in microtubule 

orientation are likely to be critical for neuronal function, given that they determine the 

directionality of cargo transport, executed by microtubule-dependent motors, discussed 

further below.   

In addition to microtubule orientation, axonal microtubules are also distinct from 

dendritic microtubules in terms of their stability, post-translational modifications and the 

complement of their MAPs, with the former being more stable, showing greater pools of 

acetylated and detyrosinated tubulin than the latter, and being enriched in the MAP tau as 

opposed to MAP2 (Binder et al., 1985; Caceres et al., 1984a; Caceres et al., 1984b; Dotti et 

al., 1987; Witte et al., 2008). 

 Notably, the cytoskeletal differenes between axons and dendrites are not limited to 

mature neurons, but are also detectable in developing neurons.  The process that develops 

into an axon is marked by a more dynamic actin cytoskeleton and more stable 

microtubules compared to the other neurites (Bradke and Dotti, 1999; Witte et al., 2008).  

Rather than just being markers of axon versus dendrite identities, both actin and 

microtubule cytoskeleton play critical roles in establishing as well as maintaining neuronal 

polarity (Tahirovic and Bradke, 2009).  Pharmacological manipulations have shown that 

actin destabilization and microtubule stabilization play instructive roles in neuronal 

polarity and bias the fate of a nearby neurite, inducing it to develop and acquire axonal 

identity (Bradke and Dotti, 1999, 2000; Witte et al., 2008).   
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 Instability of the actin cytoskeleton was first suggested to promote axon formation 

by allowing the progressive advancement and stabilization of microtubules in a given 

neurite towards its growth cone (Forscher and Smith, 1988).  A variety of actin nucleators 

and modulators have been shown to affect neuronal polarization, suggesting, however, a 

more subtle model.  For example, a result consistent with the earlier model is that the actin 

severing protein Cofilin is highly active in axonal growth cones, leading to a more 

destabilized actin network compared to presumptive dendrite processes.  Cofilin 

knockdown results in disrupted axon formation, whereas Cofilin constitutive activation 

leads to increased outgrowth (Garvalov et al., 2007; Jacobs et al., 2007).  A contrasting 

result was obtained by examining triple knockout of all three mammalian Ena/VASP 

proteins that promote actin polymerization.  Ena/VASP proteins, which are required for 

filopodia formation and neuritogenesis, are essential for axon formation (Dent et al., 2007; 

Kwiatkowski et al., 2007).  The emerging picture based on studies of actin modulators 

indicates that the determination of axonal identity may not be as simple as inhibiting actin 

depolymerization.  It will be important to understand which aspects of actin dynamics are 

regulated at which stages in neuronal development to bias a process towards becoming an 

axon or a dendrite. 

 In addition to the structural foundation provided by actin and microtubules, they 

also serve as tracks for protein transport by actin-dependent myosin motors, and 

microtubule-dependent kinesin and dynein motors.  Indeed, microtubule-based transport 

plays a critical role in the establishment of neuronal polarity, and continues to do so in 

maintaining molecular distinctions.  For instance, the signaling molecule PIP2 and the 

polarity protein PAR3, discussed above, play important roles in axon specification and 
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elongation in cultured mammalian neurons, and they require the kinesins GAKIN and 

KIF3A for their polarized accumulation in the nascent axon during the initial stages of 

axon-dendrite development (Horiguchi et al., 2006; Shi et al., 2004).  Given the instructive 

role of microtubules and the significance of protein transport in the establishment of axon-

dendrite polarity, the asymmetric nature of kinesin-dependent transport from an early stage 

in neuronal development is likely to be a major factor in determining and developing axon-

dendrite identities.   

 Once axon-dendrite polarity is established through coordinated regulation of the 

cytoskeleton and membrane/protein transport, the resulting differences in the compositions 

of these two domains are actively maintained, and to some extent plastic.  Axotomy in 

mature neurons either leads to regrowth of the axon, or can induce an existing dendrite to 

elongate and differentiate into an axon, depending on the site of axotomy (Gomis-Ruth et 

al., 2008).  Furthermore, pharmacological perturbations to actin and microtubule 

cytoskeleton can convert an existing dendrite in a mature neuron to an axon (Bradke and 

Dotti, 2000; Witte et al., 2008), highlighting the continued significance of the cytoskeleton 

in the maintenance of polarity. 

 

1.4)  C. elegans UNC-33 and mammalian CRMPs (Collapsin Response Mediator Proteins) 

The C. elegans unc-33 gene encodes the founding member of the CRMP family, 

and is the sole C. elegans homolog of mammalian CRMP proteins.  unc-33 was first 

identified as a mutant with abnormal locomotion, and subsequently found to have axon 

elongation and guidance defects (Brenner, 1974; Desai et al., 1988; Hedgecock et al., 

1985; Li et al., 1992; Siddiqui and Culotti, 1991; Tsuboi et al., 2005) and abnormal 
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organization of microtubules within and near sensory cilia (Hedgecock et al., 1985).  The 

unc-33 gene encodes three protein isoforms that vary in the lengths of their N-termini, 

while sharing a 523 amino acid C-terminal sequence and (Li et al., 1992).  

Immunofluorescence experiments demonstrated that UNC-33 isoforms are primarily 

expressed in neurons and are localized along neuronal processes, showing enrichment in 

axons compared to dendrites (Tsuboi et al., 2005). 

The first mammalian CRMP was identified as an UNC-33-like protein acting as a 

potential mediator of growth cone collapse caused by Semaphorin (Goshima et al., 1995); 

however, this activity has not been validated in vivo.  Subsequently, CRMPs came to 

attention for their roles in neuronal polarity.  CRMP-2 is enriched in the distal part of 

growing axons of cultured hippocampal neurons.  Overexpression of CRMP-2 leads to 

elongation of axons, as well as formation of multiple axon-like processes (Inagaki et al., 

2001).  Conversely, perturbing CRMP-2 activity through dominant negative and 

knockdown approaches results in shorter axons or cells with no axon-like processes 

(Inagaki et al., 2001; Nishimura et al., 2003).  These results implicate CRMP-2 in axon 

elongation and formation. 

The Collapsin Response Mediator Protein (CRMP) family, also known as Ulip, 

TOAD, DRP or TUC, is broadly expressed in the developing mammalian nervous system 

(Quinn et al., 1999). Members of this family bear sequence as well as structural similarity 

to liver diydropyrimidinases (DHPase), enzymes involved in the catabolism of uracil and 

thymine (Deo et al., 2004; Hamajima et al., 1996; Stenmark et al., 2007; Wang and 

Strittmatter, 1997).  Like DHPases, murine CRMP1 as well as human CRMP2 form 

tetramers (Deo et al., 2004; Fukata et al., 2002; Stenmark et al., 2007; Wang and 
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Strittmatter, 1997).  Similarly, C. elegans UNC-33 proteins are also able to interact with 

each other (Tsuboi et al., 2005), although the significance of oligomerization is not known.  

Unlike DHPases, however, CRMPs do not exhibit any catalytic activity towards any 

DHPase substrates, likely due to the fact that histidine residues critical for catalytic activity 

are not conserved in CRMP sequences (Hamajima et al., 1996; Wang and Strittmatter, 

1997).  Interestingly, mammalian CRMPs as well C. elegans UNC-33 can bind to tubulin 

heterodimers and with a lower affinity to microtubules (Fukata et al., 2002), and these 

interactions are regulated by phosphorylation events.  GSK-3β, mentioned above, as well 

as another kinase, Rho kinase, can phosphorylate CRMP-2 near its C-terminus leading to a 

reduction in its microtubule-binding affinity (Cole et al., 2004; Yoshimura et al., 2005).  

Furthermore, CRMP-2 can also promote microtubule assembly in vitro (Fukata et al., 

2002), suggesting a possible role in neuronal polarity through regulation of the 

cytoskeleton.  However, the presence of five CRMP members in mammals has meant a 

significant hurdle in elucidating the roles of this group of proteins in neuronal development 

in vivo.  Moreover, each of the five mammalin CRMPs encode multiple isoforms, and most 

of the work in the field has focused on the shorter isoform for each gene (Quinn et al., 

2003; Quinn et al., 1999). 

 

1.5.)  Motors executing axonal and dendritic transport, and their regulation 

 There are three classes of molecular motors involved in intracellular transport of 

proteins, namely kinesins, dyneins and myosins.  Myosins move along actin filaments and 

are mostly involved in short range transport beneath the plasma membrane (Hirokawa and 

Noda, 2008).  Kinesins and dyneins on the other hand are microtubule-dependent motors 
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that orchestrate long-range transport from the soma to the axon or dendrite periphery and 

back.   

The kinesin superfamily comprises of fifteen subfamilies of kinesin proteins (also 

known as KIFs).  Almost all kinesins, except for members of the KIF14 family, move 

towards the plus-end of microtubules, and are primarily responsible for the ‘anterograde 

traffic’ of cargoes moving away from the cell body in both compartments (Hirokawa and 

Takemura, 2005).  In contrast, dyneins identified thus far are minus-end directed motors 

(Kardon and Vale, 2009).  While there is a multitude of kinesins orchestrating anterograde 

transport, cytosplasmic dynein is the primary motor responsible for retrograde transport 

from axonal tip to the soma (Schnapp and Reese, 1989).  Given the mixed or opposite 

orientation of microtubules in dendrites, however, dynein may function as an anterograde 

motor as well as a retrograde transporter in subsections of this compartment, whereas in 

distal dendrites, it primarily acts a retrograde motor.   

Observations of transport in real time has demonstrated that cargoes do not move 

unidirectionally or continuously, and instead pause as well as switch directions, suggesting 

the existence of a competition between anterograde and retrograde activities (Muresan et 

al., 1996).  Indeed, vesicles attached to kinesins as well as dyneins have been identified.  

Moreover, direct interactions between KIF protein complexes and dynein associated 

proteins have also been observed; for example, the dynein binding protein p150Glued 

interacts with the kinesin associated protein KAP3 (Deacon et al., 2003).  Thus, the net 

directionality of a cargo’s movement is determined by a balance in anterograde versus 

retrograde activities, highlighting the importance of coordinated regulation of opposing 

motors.  
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The first kinesin molecule identified, also known as conventional kinesin/Kinesin-

1/KIF5/KHC, is one of the most well studied kinesins that has important roles in 

anterograde transport to axons as well as dendrites (Hirokawa and Takemura, 2005).  

Biochemical studies with mammalian KIF5 demonstrate that KIF5 is involved in the 

axonal transport of many proteins including organelles containing presynaptic proteins 

SNAP-25, syntaxin, synaptotagmin, as well as as growth factor receptor TrkA (Arimura et 

al., 2009; Diefenbach et al., 2002; Su et al., 2004).  KIF5 also interacts directly with an 

adapter protein GRIP, which may steer the kinesin towards dendrites to mediate the 

dendritic transport of AMPA receptor subunit GluR2, whereas overexpression of another 

adapter molecule JIP3 appears to antagonize the effect of GRIP (Setou et al., 2002).  Thus, 

KIF5 can function towards axons and dendrites, and its activity appears to be regulated by 

adapter proteins such as GRIP and JIP3.  Dyneins also exhibit axonal and dendritic 

functions: they are involved in the transport of TrkA-containing vesicles, BDNF-

containing vesicles, as well as mitochondria from the axon towards the soma, whereas they 

interact with RAB5 and RAB7 endosomes as well as the gephryin adapter for glycine 

receptor transport in dendrites (Fuhrmann et al., 2002; Gauthier et al., 2004; Hollenbeck 

and Saxton, 2005; Satoh et al., 2008; Saxena et al., 2005).  C. elegans and Drosophila 

mutants for conventional kinesin as well as cytoplasmic dynein confirm the importance of 

these motors in axonal transport, and further suggest roles in polarization of protein 

transport.  Kinesin-1/Kif5/KHC mutants show reduced synaptic localization, and instead 

exhibit abnormal accumulation of synaptic vesicle proteins in Drosophila and C. elegans 

axons (Byrd et al., 2001; Hurd and Saxton, 1996; Saxton et al., 1991).  Furthermore, C. 

elegans mutants in the unc-116 gene that encode the conventional kinesins/Kinesin-1/Kif5, 
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show mislocalization of synaptic vesicle proteins to dendrites, indicating UNC-116/KIF5 is 

required for the asymmetric transport of axonal proteins (Byrd et al., 2001).  Dynein 

mutants of Drosophila and C. elegans also show defects in axonal transport with abnormal 

accumulations in the axons (Bowman et al., 1999; Koushika et al., 2004; Martin et al., 

1999).  Interestingly, further analyses of fly mutants in the components of the dynein 

motor complex also revealed roles in dendritic arborization but not in axon morphogenesis, 

indicating asymmetric influence of dynein function (Satoh et al., 2008).   

    

1.5.1.)  UNC-104/KIF1A kinesin: Transporting synaptic vesicle precursors to axons 

The kinesin-3 family member, UNC-104/KIF1A, is the primary motor responsible 

for the anterograde transport of synaptic vesicle precursors to axons (Hirokawa and 

Takemura, 2005).  The significance of UNC-104/KIF1A was first recognized when C. 

elegans unc-104 mutants was shown to have defects in transporting synaptic vesicles to 

axons (Hall and Hedgecock, 1991).  Subsequently, UNC-104 homologs was found to be 

required for synaptic vesicle transport in flies and mice (Pack-Chung et al., 2007; 

Yonekawa et al., 1998).  Immunocytochemistry and immunoprecipitation experiments in 

mice have identified RAB-3A, synaptophysin and synaptotagmin as components of 

vesicles associated with KIF1A(Okada et al., 1995), and presynaptic proteins such as 

RAB-3, SNB-1 (synaptobrevin), SNT-1 (synaptotagmin) and SAD-1 all require UNC-

104/KIF1A function for their axonal localization in C. elegans neurons (Crump et al., 

2001; Nonet et al., 1997; Patel et al., 2006; Sieburth et al., 2005). 

Unlike most motors that function as dimers or tetramers, native polyacrylamide gel 

electrophoresis and light scattering analyses indicate that KIF1A acts a monomer (Okada 
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et al., 1995).  However, dimeric KIF1A has also been reported, the contribution of which 

in vivo transport remains to be clarified (Tomishige et al., 2002).  SYD-2/liprin-α, which 

has a scaffolding function in synapse development, interacts with UNC-104/KIF1A 

directly (Shin et al., 2003), clusters UNC-104 as well as promotes its motility (Wagner et 

al., 2009).  This interaction may serve as a link between synaptic components and their 

axonal motors.  Furthermore, the PH (pleckstrin homology) domain in KIF1A interacts 

specifically with PIP2 (phosphatidylinositol 4,5-bisphosphate), and mutations in this 

domain lead to defective transport (Klopfenstein et al., 2002).  This lipid interaction may 

assist UNC-104/KIF1A recuirtment to the surface of its cargo vesicle.  

 

1.5.2.)  Kinase-dependent regulation of microtubule motors in neurons 

The highly conserved neuronal kinase p35/CDK5, as well as cyclin CYY-1, and its 

partner kinase, PCT-1 (Pctaire kinase), act in parallel pathways to regulate the balance 

between kinesin-dependent anterograde traffic and the dynein-dependent retrograde traffic 

of axonal proteins in mature polarized neurons (Ou et al., 2010).  In vivo imaging of 

synaptic vesicle traffic suggests that p35/CDK5 and CYY-1/PCT-1 reduce dynein activity, 

and that upregulated dynein function in the mutants results in dramatic mislocalization of 

presynaptic proteins from axons to dendrites.  Indeed, double mutants disrupting both 

pathways exhibit almost complete misaccumulation of axonal proteins in dendrites, 

whereas defective dynein function rescues these dendritic mislocalization defects of 

p35/cdk5 and cyy-1/pct-1 mutants.  
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1.6.)  Maintaining axon-dendrite polarity with diffusion barriers   

 Once axon-dendrite domains are specified, an important mechanism ensuring 

molecular segregation of axonal and dendritic proteins is the existence of diffusion 

barriers.  Using optical tweezers to assess the lateral mobility of membrane proteins, 

Winckler et al. provided the first demonstration that the axon initial segment (AIS), which 

is a spatial and physiological landmark in the proximal region of the axon, acts as a 

diffuson barrier (Winckler et al., 1999).  Furthermore, DMSO and Latruncalin B 

treatments showed that this barrier is dependent on the actin cytoskeleton, which interacts 

with ankyrin and spectrin proteins at the AIS.  Single particle tracking of lipids has also 

shown that a diffusion barrier at the AIS impedes the mobility of lipids such as 

phosphatidylethanolamine (Nakada et al., 2003).  Interestingly, this diffusion barrier for 

lipids is also actin-dependent.  Furthermore, its emergence strongly correlates with the 

clustering of AnkyrinG at the AIS, and with the increasing localization of membrane 

proteins such as the voltage-gated sodium channels that interact with the cortial 

actin/spectrin cytoskeleton through AnkyrinG.  Consistent with the significance of 

AnkyrinG in this model, siRNA-mediated knockdown of AnkyrinG disrupts the membrane 

barrier (Song et al., 2009).   

 An actin and AnkyrinG-dependent barrier for the diffusion of cytosolic proteins 

also exists in mammalian neurons.  The dense actin/spectrin cytoskeleton and the network 

of AnkyrinG binding proteins contribute to a proposed meshwork that acts as a filter in 

impeding the diffusion of soluble proteins at the AIS (Song et al., 2009). 

In addition to its involvement in diffusion barriers, the AIS also has a separate 

function in the regulation of neuronal excitability.  Its function in excitability involves 
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membrane proteins including voltage-gated sodium channels, potassium channels and 

members of the L1 family of cell adhesion molecules, which are also anchored to the dense 

dense actin/spectrin cytoskeleton network, through the AnkyrinG adapter protein 

(Rasband, 2010).  

The structure of the AIS is suggestive of a unique and highly differentiated 

function.  The membrane of the AIS lies along a dense subcortical cytoskeleton composed 

of spectrin and actin (Bennett and Baines, 2001).  In addition, specialized microtubules are 

evident within the AIS.  Electron micrographs reveal clusters of parallel microtubules that 

are not present in other parts of the neuron (Palay et al., 1968; Sobotzik et al., 2009).  The 

AIS has long been considered a static structure, but recently been demonstrated to be 

regulated by neuronal activity, which can shift its position relative to the cell body (Grubb 

and Burrone, 2010; Kuba et al., 2010). 

In invertebrate neurons, axonal and dendritic specializations typically emerge from 

a single process, not from the cell body.  Therefore, the diffusion barriers are likely to have 

a different location.  Indeed, Drosophila axons have a diffusion barrier dividing a proximal 

and distal segment of the axon that impedes the diffusion of axon guidance receptors such 

as Derailed and Roundabout2 and Roundabout3 (Katsuki et al., 2009).  The relationship 

between this barrier and ankyrin or the AIS is unknown. 

 

1.6.1.)  C. elegans UNC-44 and mammalian AnkyrinG 

 Ankyrins are cytoskeletal adapter molecules, first identified in erythrocytes, that 

link a variety of membrane proteins to the spectrin/actin cytoskeleton (Rasband, 2010).  

Three genes encode ankyrins in mammals: AnkyrinR (also referred to as AnkR or ANK1), 
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AnkyrinB (AnkB or ANK2) and AnkyrinG (AnkG or ANK3) (Bennett and Chen, 2001).  

Each gene has multiple splice forms.  In most cases, all three ankyrin genes are expressed 

in a single ell type (Bennett and Chen, 2001).  AnkyrinB and AnkyrinG, whose function is 

well studied in neurons, have unusually long isoforms encoding giant proteins of  ~4400 or 

~4800 amino acids.  These long isoforms are efficiently localized to the axon, whereas the 

shorter isoforms are restricted to the cell body (Chan et al., 1993; Kunimoto, 1995).  

AnkyrinG is enriched at the AIS and at nodes of Ranvier, whereas AnkyrinB is present 

throughout the axon (Kordeli et al., 1995; Kunimoto et al., 1998). 

AnkyrinG is the master organizer of the AIS, playing a critical role in its 

establishment and maintenance (Hedstrom et al., 2008).  It localizes to the proximal region 

in the axon, which develops into the AIS of the cell, and induces the clustering of L1 cell 

adhesion molecules, voltage-gated sodium and potassium channels, and the spectrin 

proteins (Jenkins and Bennett, 2001; Zhou et al., 1998).  The extracellular and intracellular 

mechanisms regulating AnkyrinG localization to the nascent AIS remain to be uncovered.  

AnkyrinG is also a master organizer at nodes of Ranvier, recruiting a similar set of proteins 

as it does at the AIS (Rasband, 2010).  AnkyrinB, also able to bind L1 molecules, 

contributes to the organization of the paranodal membrane, situated adjacent to the nodes 

of Ranvier (Ogawa et al., 2006).   

AnkyrinG also has a role in the maintenance of neuronal polarity.  Knocking down 

AnkyrinG expression in cultured hippocampal neurons results in misaccumulation of 

dendritic cytoskeletal protein MAP2 and K+/Cl- cotransporter KCC2 to axons (Hedstrom et 

al., 2008).  In cerebellum-specific AnkyrinG knockout mice, purkinje cells showed defects 

in the maintenance of polarity, developing postsynaptic spines containing dendritic 
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molecules such as PSD95 (Sobotzik et al., 2009).  It will be interesting to see if 

AnkyrinG’s regulation of neuronal polarity is associated with its role in establishing 

diffusion barriers for membrane and cytosolic factors.  Microtubule fascicles associated 

with the AIS are also lost in AnkyrinG knockout mice (Sobotzik et al., 2009).  

The Drosophila genome encodes two ankyrin genes, Dank1 and Dank2 (Bouley et 

al., 2000; Dubreuil and Yu, 1994).  Like the mammalian ankyrins-B and -G, the fly Dank2 

gene encodes a giant ankyrin (Dank2-L), approximately 4000 amino acids long (Koch et 

al., 2008; Pielage et al., 2008).  Short ankyrin isoforms in the fly are restricted to cell 

bodies, whereas the longer isoforms are present throughout the axon (Bouley et al., 2000; 

Koch et al., 2008; Pielage et al., 2008), and interact with the Drosophila L1 homolog, 

neuroglian (Bouley et al., 2000).  Fly Dank2-L is required for the stabilization of synapses 

at the NMJ (Koch et al., 2008; Pielage et al., 2008). 

C. elegans unc-44 was originally identified as a mutant with defective locomotion, 

and has since been identified in numerous screens as an important regulator of axon 

elongation and guidance in a variety of cell types (Brenner, 1974; Hedgecock et al., 1985; 

Siddiqui and Culotti, 1991).  Analysis of transposon insertion alleles of unc-44 and their 

revertants identified unc-44 as the sole C. elegans homolog of mammalian ankyrins 

(Otsuka et al., 1995).  unc-44 encodes a large number of transcripts ranging from ~1 kb to 

~22 kb, giving rise to smaller conventional ankyrin proteins, as well as medium and giant 

isoforms of ~2000 amino acids and ~7000 amino acids (Boontrakulpoontawee and Otsuka, 

2002; Otsuka et al., 2002; Otsuka et al., 1995).  Interestingly, examination of multiple 

alleles demonstrated that the larger splice forms are disrupted in all alleles, suggesting the 

giant proteins are required for proper axon elongation and guidance (Boontrakulpoontawee 
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and Otsuka, 2002; Otsuka et al., 1995).  The smaller isoforms are expressed in many 

tissues including neurons, whereas the ~7000 amino acid long isoform appears specifically 

expressed in the nervous system (Otsuka et al., 2002).  Reminiscent of the subcellular 

distribution of mammalian and fly giant ankyrins, the long C. elegans ankyrin is localized 

at the periphery of cell bodies and also all along neuronal processes (Otsuka et al., 2002). 

 

 

2.)  Steps and mechanisms regulating protein transport in neurons: A focus on 

GPCRs  

Following neuronal polarization and the establishment of axonal and dendritic 

domains, neuronal proteins are accurately transported to specific subcellular destinations.  

The asymmetric transport of proteins has been studied in a wide variety of polarized cells.  

Here, we will briefly review the major steps in protein transport, with a particular emphasis 

on the traffic of GPCRs (G-protein coupled receptors).  

GPCRs are a superfamily of seven transmembrane signaling receptors that 

modulate cellular functions through heterotrimeric G proteins and downstream effectors.  

This superfamily of cell surface receptors comprises the largest class of signaling receptors 

(Bargmann, 2006).  The diverse set of GPCRs with vital roles in neuronal function 

includes neurotransmitter receptors, neuropeptide receptors, photoreceptors and 

chemoreceptors (odorant receptors and taste receptors) (Dong et al., 2007).  

Both the biosynthesis of GPCRs and the endocytic regulation of GPCRs in 

response to ligand binding have been analyzed for multiple family members.  The process 

of transporting and regulating the subcellular localization of GPCRs can be divided into 
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four main steps:  1.) Protein folding at the ER followed by ER exit 2.) Sorting into 

appropriate secretory vesicles 3.) Delivery to appropriate subcellular domain 4.) 

Maintenance or refinement of subcellular distribution by selective clustering or selective 

endocytosis. 

 

2.1.)  Protein folding and ER exit  

 Protein folding and ER exit are actively guided by general and dedicated accessory 

proteins (Dong et al., 2007).  Proteins need to achieve their native conformation before 

they exit the ER, and this may be a particular challenge for GPCRs and other proteins with 

multiple transmembrane domains.  Indeed, export of mature protein from the ER is the 

rate-limiting step in the biogenesis of δ-opioid receptor (DOR) and probably many other 

GPCRs (Petaja-Repo et al., 2000).  Chaperones and chaperonins in the ER, such as BiP, 

calnexin and caltreticulin, aid in the protein folding process for GPCRs and many other 

proteins.  By interacting with exposed hydrophobic surfaces, unpaired cysteines and 

immature glycans of unfolded proteins, they prevent the aggregation of immature proteins 

and promote sequential steps along the folding pathway (Ellgaard and Helenius, 2003). 

To ensure that only mature, properly folded proteins reach their destinations, a 

quality control system in the ER monitors the conformations of newly synthesized 

proteins.  The chaperones mentioned above act as conformational sensors and play a dual 

role in the ER: first, they assist in the folding process, and second, they identify proteins 

that are severely or irreversibly misfolded and target these for ubiquitin-mediated 

proteasomal destruction, as part of the ER-associated degradation (ERAD) pathway 

(Ellgaard and Helenius, 2003). 
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Elements within the GPCRs themselves also affect traffic.  Heterodimerization 

plays an important role in the biogenesis of many GPCRs and can affect pharmacological 

and signaling properties of these proteins (Prinster et al., 2005).  Indeed, α1D-adrenergic 

receptors show poor surface expression on their own, however, heterodimerization with 

α1B or β2-adrenergic receptors significantly enhances their surface expression and function.  

Furthermore, cis-acting dileucine and phenylalanine-based sequences in the membrane 

proximal domain also play a role in promoting ER exit, as seen for the vasopressin V2R 

receptor and the dopamine D1R receptor (Bermak et al., 2001; Schulein et al., 1998).  

Conversely, cis-acting seqences such as the RxR motifs induce ER retention until masked 

by accessory proteins or heterodimers, as seen in the case of GABABR2 that masks the ER-

retention sequence of its heterodimer GABABR1 to allow its ER exit (Margeta-Mitrovic et 

al., 2000; Pagano et al., 2001). 

Aside from these molecular chaperones, a growing number of trans-acting factors 

or accessory proteins have been identified that are required for ER exit, or that promote the 

ER exit of specific GPCR proteins.  These accessory proteins do not act on all GPCRs, and 

instead, show a high degree of substrate selectivity. 

 

 

2.1.1.)  ninaA 

 Studies of Drosophila and mammalian opsins first demonstrated the presence of 

GPCR-specific chaperones that promote folding and ER export.  The Drosophila ninaA 

gene encodes a cyclophilin homolog that is required for rhodopsins Rh1 and Rh2, but not 

Rh3, to traffic to the rhabdomeres of fly photoreceptors (Colley et al., 1991).  Cyclophilins 
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are peptidyl-prolyl cis-trans isomerases that catalyze the rate-limiting step to generate 

prolyl-peptide bonds conformations required for protein folding.  In ninaA mutants, Rh1 

and Rh2 rhodopsins are retained in the ER, presumably due to conformational 

abnormalities.  Moreover, ninaA colocalizes with rhodopsin-positive vesicles, suggesting 

additional roles in later steps of rhodopsin transport (Baker et al., 1994).  Similarly, a 

cyclophilin domain-containing protein, RanBP2, has been shown to promote surface 

expression of mammalian red/green rhodopsin in photoreceptor cells(Ferreira et al., 1996). 

 

2.1.2.)  ODR-4 

 C. elegans odr-4 gene encodes an accessory protein for a subset of chemoreceptors 

including ODR-10, a diacetyl odorant receptor (Dwyer et al., 1998). odr-4 was identified 

in a screen for chemotaxis-defective mutants, and encodes a single-pass transmembrane 

protein, found on intracellular membranous organelles likely to be ER and transport 

vesicles.  In absence of ODR-4 function, chemoreceptors like ODR-10 that are normally 

localized at sensory cilia at dendrite endings are instead retained in the cell body, probably 

in the ER.  Thus, ODR-4 encodes a trans-acting factor that is likely to function at the ER, 

and perhaps later, to promote ER exit and further transport of ODR-10 to neuronal cilia. 

As mentioned above, protein folding and ER exit is a rate-limiting step for many 

GPCRs, and also a cell-specific process for odorant receptors.  Mammalian odorant 

receptors as well as C.elegans ODR-10 display poor surface expression and primarily ER 

retention when expressed in heterologous cells, suggesting a requirement of trans-acting 

accessory factors such as ODR-4 (Bush and Hall, 2008).  ODR-4 co-expression promotes 

surface expression of ODR-10 as well as mammalian odorant receptor U131, suggesting 
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that the mechanism employed by ODR-4 is conserved (Gimelbrant et al., 2001), and 

consistent with the existence of mammalian ODR-4 homologs (Lehman et al., 2005).   

  

2.2.) Sorting into secretory vesicles 

 After subsequent processing in the Golgi complex, including maturation of 

glycosylation as well as lipid modifications such as palmitoylation, GPCRs are sorted at 

the trans-Golgi network into secretory vesicles that traffic to the cell surface (Mellman and 

Nelson, 2008).  Among the post-TGN vesicles are those destined for constitutive secretion, 

regulated secretion, endosomes or lysosomes.  Sorting at the TGN has been most carefully 

analyzed in the epithelial MDCK (Madine-Darby canine kidney) cells, a well-established 

system for studying polarized trafficking.  In MDCK cells, many proteins destined for the 

apical or basolateral domains are sorted into two distinct vesicle populations at the TGN 

(Wandinger-Ness et al., 1990).  However, proteins can also take an indirect route to their 

final destination as exemplified by the polymeric Ig receptor in epithelial cells that reaches 

its destination through selective endocytosis followed by directional transport, termed 

transcytosis (Tuma and Hubbard, 2003). 

Among the vesicles that bud off the TGN are clathrin-coated vesicles (CCVs).  

CCVs also bud off from the plasma membrane and endosome compartments.  In each case, 

clathrin is recruited by distinct adaptor complexes, which in turn recognize cargo proteins 

that bear amio acid sequences such as YXXφ and dileucine motifs.  The assembly of CCVs 

from Golgi depends on the tetrameric AP-1 adaptor complex, whereas CCVs at the plasma 

membrane depend on a similar AP-2 complex or other adaptors (Traub and Kornfeld, 

1997).  A diversity of clathrin adaptors permits sorting to distinct compartments in 
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polarized cells.  A specific AP-1 complex called AP-1B, consisting of an epithelia-specific 

 µ1b subunit, is present in polarized epithelial cells, and is essential for basolateral sorting 

of membrane proteins (Folsch et al., 1999; Folsch et al., 2003).   

 

2.2.1)  UNC-101, the µ1 subunit of the C. elegans AP-1 complex 

In C. elegans, the unc-101 µ1 subunit of the AP-1 complex is required for 

membrane localization to cilia, suggesting CCVs are involved in cilia targeting (Bae et al., 

2006; Dwyer et al., 2001).  GPCRs including the diacetyl receptor ODR-10, require unc-

101 for specific sorting to cilia (Dwyer et al., 2001).  In unc-101 mutants, ODR-10 is 

present throughout the plasma membrane of the soma, axons and dendrites, suggesting that 

it is missorted to a “bulk” or constitutive secretion pathway.  ciliary localization of ODR-

10 (Dwyer et al., 2001).  UNC-101 localizes at the Golgi and is required for ODR-10 

positive dendritic vesicles, suggesting it functions at the Golgi to sort ODR-10 into specific 

targeting vesicles (Dwyer et al., 2001; Kaplan et al., 2010).  A requirement of AP1 

adaptors is thus characteristic of sorting both to cilia and the basolateral compartment.   

 

2.3.)  Delivering proteins to the appropriate subcellular destinations 

Subsequent to sorting at the TGN, microtubule-dependent kinesin motors play a 

critical role in the delivery of axonal and dendritic cargoes (Goldstein and Yang, 2000).  In 

neurons, kinesin-driven transport is guided by the established axon-dendrite polarity. 

Vesicles carrying dendritic proteins such as ODR-10 and the transferrin receptor (TfR) 

move specifically towards dendrites via kinesin motor activity (Burack et al., 2000; Dwyer 

et al., 2001; Setou et al., 2002).  Similarly, vesicles carrying axonal proteins such as 
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VAMP2 move specifically towards axons (Nakata and Hirokawa, 2003).  Asymmetry in 

microtubule-dependent transport could arise from “smart” kinesin motors that know where 

axons and dendrites are located, or from cargo molecules or adapters that recognize 

intracellular asymmetry and inform kinesins where to go, or a combination of the two 

factors (Goldstein and Yang, 2000).  Elegant studies using full-length and chimeric kinesin 

constructs for KIF5 and KIF17 in cultured neurons have demonstrated that both kinesins as 

well as cargo molecules seem to contribute to the directionality of polarized transport 

(Jacobson et al., 2006; Nakata and Hirokawa, 2003).  Kinesin-dependent anterograde 

delivery is supplemented in some cases by dynein and myosin motors, with dynein motors 

in particular being implicated in retrograde transport from processes towards (Arnold, 

2009).  The identities of kinesins and adapters that regulate directed delivery of GPCRs 

such as ODR-10 remain to be identified.   

 

2.4.)  Clustering or selective endocytosis to maintain or refine localization patterns 

 After the directed delivery of proteins to the target cell surface, membrane proteins 

can be clustered or stabilized by scaffold proteins.  Examples of scaffold molecules include 

AnkyrinG and spectrin, which cluster voltage-gated sodium and potassium channels, and 

cell adhesion molecules at the AIS (Jenkins and Bennett, 2001; Zhou et al., 1998); Rapsyn, 

which clusters acetylcholine receptors at the neuromuscular junction (Fuhrer et al., 1999); 

and gephryn, which clusters glycine and GABAA receptors (Craig et al., 1996; Sassoe-

Pognetto et al., 1999; Sassoe-Pognetto et al., 1995).  

Some proteins are not delivered directly to the target membrane in polarized cells, 

but instead are delivered uniformly, then targeted by selective endocytosis followed by 
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directed delivery (transcytosis).  Indeed, a majority of apical proteins follow the 

transcytotic pathway in hepatocytes, travelling initially to the basolateral surface followed 

by endocytosis and redirection to the apical domain (Tuma and Hubbard, 2003).  The 

polymeric Ig receptor (pIG-R) that transports IgM and dimeric IgA molecules from the 

basolateral to apical surface in epithelial cells represents one of the best-understood cases 

of transcytosis.  A basolateral-localization signal in the cytoplasmic tail promotes the 

initial delivery of pIg-R to the basolateral domain.  Thereafter, pIg-R is endocytosed and 

delivered to the apical domain, and these events are stimulated by binding of 

immunoglobin molecules and by serine phosphorylation of the cytoplasmic tail (Tuma and 

Hubbard, 2003).  Transcytosis has also been observed in neurons, particularly for axonal 

proteins.  L1/NgCAM shows polarized axonal localization at steady state.  However, 

temporal analysis of its transport, combined with manipulations of endocytic regulators, 

showed that NgCAM is initially delivered to both axonal and somatodendritic domains, 

followed by preferential endocytosis in dendrites and subsequent traffic towards the axon 

(Wisco et al., 2003).  A similar transcytosis route has also been observed for presynaptic 

vesicle associated protein VAMP2 in mammalian neurons, although the mechanisms 

underlying its transcytotic transport are not as well understood (Yap et al., 2008a; Yap et 

al., 2008b).   

 

In this thesis, I set out to explore the regulation of polarized protein transport to 

axons, dendrites and sensory cilia.  I expressed two presynaptic molecules, SAD-1::GFP 

and mCherry::RAB-3, in a pair of PVD mechanosensory neurons that extend a single axon 

and two highly branched dendrites.  A genetic screen using this system identified unc-
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33/CRMP as a major regulator that establishes the restricted localization of axonal and 

dendritic molecules.  Subsequently, in a candidate approach, I observed that unc-

44/ankyrin mutants displayed similar phenotypes as unc-33 mutants.  Further 

characterization of these two mutants suggest that the C. elegans microtubule-binding 

protein UNC-33 and the ankyrin homolog UNC-44 act together to establish cytoskeletal 

substrates for asymmetric kinesin recruitment and polarized protein transport.  Chapter 2 

describes this work.  

Next, to better understand the regulation of chemoreceptor transport in the context 

of axon-dendrite identities, I cloned odr-8.  Based on genetic mapping and Solexa/Illumina 

whole genome sequencing, I identified odr-8 as the C. elegans homolog of UfSP2, a 

cysteine-protease specific for the ubiquitin-like peptide UFM1.  My results suggest that 

ODR-8/UfSP2 aids in the transport of chemoreceptors like ODR-10 from the ER to the 

cilia, whereas UFM1-conjugation limits receptor exit from the ER.  This ongoing work has 

led to the model that UFM1-conjugation and ODR-8-mediated deconjugation antagonize 

each other to control the surface expression of chemoreceptors, as described in Chapter 3.  

In Chapter 4, I discuss directions for future studies examining axon-dendrite polarization, 

and asymmetric protein transport in neurons.  
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Chapter 2 

unc-33/CRMP and unc-44/ankyrin organize neuronal microtubules and localize 

UNC-104/Kif1A kinesin to polarize axon-dendrite protein sorting  

 

Abstract 

Three proteins implicated in apparently distinct aspects of axon differentiation are the 

microtubule-binding protein CRMP, which promotes axon specification, the kinesin UNC-

104/Kif1A, which directs axonal traffic, and ankyrinG, which prevents dendritic protein 

diffusion into axons.  The relationships among these molecules are unknown.  We show 

here that the C. elegans CRMP homolog UNC-33 and ankyrin homolog UNC-44 act 

together to establish asymmetric sorting signals for both axons and dendrites. UNC-33 is 

localized to axons by UNC-44, and enriched in an axon segment near the cell body that 

suggests analogies with the vertebrate axon initial segment. In unc-33 and unc-44 mutants, 

axonal proteins are distributed randomly between axons and dendrites, dendritic proteins 

are partly localized to axons, and the distinctive organization of axonal and dendritic 

microtubules is disrupted. Dendrite integrity is corrupted by misregulated UNC-

104/KIF1A, which actively transports axonal proteins to dendrites. Although homologs of 

UNC-33 and UNC-44 are known to affect axons, the unexpected effects on dendrites 

suggest a broader function on asymmetric traffic. We propose that microtubules organized 

by UNC-33 capture the axonal motor UNC-104 to segregate axonal and dendritic sorting 

pathways.  
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Introduction 

The asymmetric microtubule cytoskeleton is essential for axon-dendrite 

specification early in development and for polarized protein sorting in mature neurons.  

The role of microtubules in axon specification, the developmental process that establishes 

a single unique axon in each cell, has been characterized extensively in cultured 

hippocampal neurons and to a lesser extent in vivo (Arimura and Kaibuchi, 2007; Barnes 

and Polleux, 2009).  Pharmacological manipulations that affect microtubule stability affect 

the number of axons per neuron and bias the selection of one process as the future axon 

(Witte et al., 2008), and many molecules that affect axon specification regulate 

microtubules.  Among these are the microtubule-binding CRMP proteins, also called 

UNC-33, TOAD-64, Ulip, DRP, or TUC, which are linked to early events in axonal 

development in vivo and in vitro (Arimura and Kaibuchi, 2007).  The founding CRMP 

protein, UNC-33, affects axon guidance and elongation in C. elegans (Li et al., 1992).  The 

best-characterized vertebrate CRMP, now known as CRMP2, promotes axonal 

specification in cultured mammalian neurons:  overexpression of CRMP2 causes neurons 

to form multiple axons at the expense of dendrites, and dominant-negative fragments or 

siRNAs targeted against CRMP2 result in the selective loss of axons (Fukata et al., 2002; 

Inagaki et al., 2001; Kimura et al., 2005; Yoshimura et al., 2005). CRMP proteins interact 

with tubulin heterodimers and microtubules, and promote microtubule assembly in vitro 

(Arimura et al., 2005; Fukata et al., 2002).  CRMP2 also binds the kinesin light chain 

(KLC) subunit of Kinesin-1, and acts as an adapter for the transport of tubulin dimers, the 

actin regulators Sra-1/WAVE, and the neurotrophin receptor TrkB into axonal growth 

cones (Arimura et al., 2005; Kawano et al., 2005; Kimura et al., 2005).  The relationship 
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between these developmental activities and the properties of differentiated axons is 

unknown. 

 In mature neurons, asymmetric microtubules regulate polarized protein sorting 

(Arnold, 2009).  Specialized aspects of axonal microtubules, such as their ability to support 

transport by the axonal Kinesin-3/Kif1A/UNC-104 family, define functional properties of 

axons (Goldstein and Yang, 2000; Hirokawa and Takemura, 2005).  Both kinesins and 

their cargo recognize features of axonal and dendritic microtubules that contribute to 

directional transport, although the complete nature of the sorting code has not been 

determined (Jacobson et al., 2006; Nakata and Hirokawa, 2003; Setou et al., 2002).  

Axonal microtubules are generally oriented with their plus ends away from the cell body 

(Burton and Paige, 1981; Heidemann et al., 1981), whereas dendritic microtubules can 

have the same orientation, the opposite orientation, or mixed polarity, depending on the 

cell type and distance from the cell body (Baas et al., 1988; Burton, 1985; Kwan et al., 

2008).  Axonal microtubules are also more stable than those in dendrites, associate with 

different microtubule-associated proteins (Conde and Caceres, 2009), and carry different 

post-translational modifications (Witte et al., 2008).  Axonal protein sorting is reinforced 

by the axon initial segment (AIS), a spatial and physiological landmark near the cell body 

that acts as a membrane diffusion barrier and the action potential initiation zone (Grubb 

and Burrone, 2010; Winckler et al., 1999).  In mammals, the giant actin-binding protein 

ankyrinG resides at the AIS and is required to maintain its integrity (Hedstrom et al., 2008; 

Jenkins and Bennett, 2001; Zhou et al., 1998).  AnkyrinG supports axon functions by 

preventing dendritic kinesins and their cargo from entering axons, but appears not to affect 

the properties of dendrites (Hedstrom et al., 2008; Sobotzik et al., 2009; Song et al., 2009).   
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Although they are all important in axon development or function, relationships 

between CRMP, Kif1A, and ankyrinG have not been examined in vivo or in vitro.  The 

biological significance of mammalian CRMPs, ankyrins, and kinesin3/Kif1A seem to be 

distinct, but are obscured by the fact that they belong to multigene families, with members 

that can have overlapping or antagonistic functions (Brot et al.; Ogawa et al., 2006; Quinn 

et al., 2003).  C. elegans mutants in unc-33, its sole CRMP homolog, and unc-44, its sole 

ankyrin homolog, share defects in locomotion, axon elongation, and axon guidance 

(Brenner, 1974; Desai et al., 1988; Hedgecock et al., 1985; Li et al., 1992; Tsuboi et al., 

2005).  We show here that C. elegans unc-33 acts with unc-44 to generate essential 

cytoskeletal signals for polarized sorting of a wide array of neuronal proteins.  Contrary to 

expectations, unc-33 and unc-44 mutants affect the microtubule cytoskeleton and protein 

sorting in dendrites as well as axons, in part by regulating the localization and activity of 

the conserved kinesin-3/KIF1A protein UNC-104.  The profound requirement for unc-33 

and unc-44 in differential transport to axons and dendrites suggests that they act as the 

source of the microtubule signals that polarize neuronal transport. 

 

Results 

Presynaptic proteins are mislocalized to PVD dendrites in unc-33 (CRMP) mutants 

The C. elegans PVD neurons, a pair of harsh touch sensors in the lateral body, have 

well-defined axons and dendrites that allow the straightforward visualization of polarized 

protein localization (Fig. 2.1a,b) (Oren-Suissa et al., 2010).  Each PVD has an axon that 

grows ventrally and then anteriorly into the ventral nerve cord, and two major dendrite 

processes that grow laterally and then branch elaborately into “menorahs” that circle the 
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body (Oren-Suissa et al., 2010; Tsalik et al., 2003).  Presynaptic specializations in PVD are 

restricted to the axon, and specifically to the ventral nerve cord (White et al., 1986).  To 

generate axonal markers in PVD, a des-2 promoter fragment (Treinin et al., 1998) was 

used to express two fluorescently tagged presynaptic molecules, RAB-3:: mCherry and 

SAD-1::GFP.  RAB-3 is a Rab GTPase that labels a subset of synaptic vesicles (Nonet et 

al., 1997), and SAD-1 is a presynaptically localized serine/threonine kinase that affects 

presynaptic differentiation and neuronal polarity (Crump et al., 2001; Kishi et al., 2005).  

Both markers were localized to axonal PVD puncta in the ventral nerve cord, and were 

either faintly visible or undetectable in the PVD dendrites (Fig. 2.1c-f).   

Several screens for altered localization of presynaptic proteins yielded two unc-33 

alleles, identified based on map position, visible phenotypes, and failure to complement 

existing unc-33 alleles (see Methods).  The two new unc-33 alleles and three existing unc-

33 alleles all disrupted the distribution of the presynaptic markers RAB-3::mCherry and 

SAD-1::GFP in PVD, reducing fluorescence in axons and increasing it in dendrites to 

result in a nearly random distribution of presynaptic proteins (Fig. 2.1g-l; further 

quantification in Supplementary Fig. 2.1).  Based on the fraction of defective animals and 

on fluorescence quantification, the mutants followed the allelic series: wild type > e204 > 

ky880 > ky869 ≥ e1193 = mn407 (Fig. 2.1k,l; Supplementary Fig. 2.1).  In strong alleles, 

all animals showed significant redistribution of axonal proteins into PVD dendrites. 

A broader survey of axonal markers demonstrated that unc-33 is a general regulator 

of axon-dendrite sorting, affecting diverse axonal proteins in multiple neuron types.  The 

tagged axonally-enriched proteins SNN-1/synapsin, APT-4/α-adaptin, and SYD-2/Liprin-

α were all mislocalized to PVD dendrites in unc-33 mutants (Supplementary Fig. 2.1 and  
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Figure 2.1. unc-33 mutants mislocalize presynaptic proteins to dendrites. 

(a,b) PVD neuron morphology in an L4 animal. (a) des-2::myristoyl::GFP marker (b) 

Diagrams of PVD morphology and PVD position within the animal.  

(c-j) Representative images of RAB-3::mCherry and SAD-1::GFP in PVD neurons of wild 

type (c-f) and unc-33(mn407) (g-j) animals, with schematics. For each set of fluorescence 

micrographs, the top panel is the maximum intensity projection of dendritic focal planes 

and the bottom panel is the maximum intensity projection for axonal focal planes. White 

and yellow arrowheads indicate axonal and dendritic puncta, respectively; ‘cb’ labels the 

PVD cell body, and asterisks mark gut autofluorescence. Anterior is at left and dorsal is up 

in all panels. Scale bars, 10 µm. 

(k,l) Quantification of axonal localization defects (k) and dendritic mislocalization defects 

(l) of RAB-3::mCherry and SAD-1::GFP (n>30 animals/genotype).  The fraction of 

animals with qualitative defects is shown; alternative quantification of fluorescence 

intensity per animal is provided in Supplementary Fig. 2.1. 

(m) unc-33 gene structure showing exons (black boxes), introns (lines), and untranslated 

regions (gray boxes), along with the positions and lesions of unc-33 alleles. Arrows denote 

the positions of start codons for alternative transcripts of unc-33. The three UNC-33 

protein isoforms (long, medium and short) are depicted with predicted microtubule-

assembling domains shown in blue.  

(n) Predicted microtubule-assembling regions of UNC-33 and rat CRMP-2. Gray regions 

highlight conserved residues; asterisk denotes the conserved glutamate mutated to a lysine 

in unc-33(ky880).  
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Supplementary Figure 2.1. unc-33 mutants mislocalize RAB-3::mCherry, SAD-1::GFP, 

and the active zone component SYD-2::GFP (liprin-α) to PVD dendrites  

(a-d) Alternative quantification of axonal localization defects (a, c) and dendritic 

mislocalization defects (b, d) of RAB-3::mCherry (a-b) and SAD-1::GFP (c-d) in PVDs of 

unc-33 mutants, scored as total average fluorescence intensity per cell (n=10-17 

animals/genotype).  

(e-f) Rescue of axonal marker localization defects of unc-33(ky880) mutant through pan-

neuronal and PVD-specific expression of UNC-33L.  

(g-h) SYD-2::GFP localization in PVD neurons of wild type and unc-33(mn407) animals, 

with schematics. For each set of fluorescence micrographs, the top panel is the maximum 

intensity projection of dendritic focal planes and the bottom panel is the maximum 

intensity projection for axonal focal planes. Yellow and white arrowheads indicate axonal 

and dendritic puncta, respectively; ‘cb’ denotes the PVD cell body and asterisks indicate 

gut autofluorescence. Anterior is at left and dorsal is up in all panels. Scale bar, 10 µm. 
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Supplementary Figure 2.1 
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data not shown).  The full set of mislocalized proteins included synaptic vesicle proteins, 

plasma membrane proteins, and cytoplasmic proteins.  Axonal markers were also 

mislocalized to dendrites in FLP mechanosensory neurons, AVE interneurons, and AWC 

and ASI chemosensory neurons (Supplementary Fig. 2.2 and data not shown).  

unc-33 mutants have defects in axon guidance and elongation (Desai et al., 1988; 

Hedgecock et al., 1985; Siddiqui and Culotti, 1991), raising a question as to whether the 

protein localization defects could be a nonspecific side effect of misguided or shortened 

axons.  PVD axons grew successfully to the ventral nerve cord in most unc-33(mn407) 

(80%, n=52) and unc-33(ky880) (100%, n=37) animals, but then terminated prematurely 

with a length around half that of wild-type PVD axons (Supplementary Fig. 2.3g).  The 

axons of FLP neurons in the head also terminated prematurely (Supplementary Fig. 2.3a).  

To assess the possible effects of guidance and termination defects on protein sorting, we 

examined unc-34 (Ena/VASP) mutants, which had similar axon guidance and premature 

termination defects in PVD and FLP (Supplementary Fig. 2.3a-c, g).  In contrast with unc-

33, unc-34 mutants were nearly normal in the localization of RAB-3::mCherry and SAD-

1::GFP in PVD and FLP (Supplementary Fig. 2.3d-f, h-i).  These results argue that defects 

in axon guidance and elongation are not sufficient to explain the mistargeting of axonal 

proteins in unc-33 mutants. 

 

UNC-33L acts cell autonomously in PVD to establish axonal polarity 

unc-33 encodes three distinct protein isoforms with alternative N-termini and a 

common 523 amino acid C-terminal sequence: UNC-33L (long), UNC-33M (medium), 

and UNC-33S (short) (Li et al., 1992; Tsuboi et al., 2005).  The canonical allele unc- 
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Supplementary Figure 2.2. unc-33 mutants mislocalize presynaptic proteins in multiple 

neuronal cell types  

(a-b) SAD-1::GFP distribution in FLP neurons of wild type and unc-33(mn407) animals, 

with schematics. ‘cb’ indicates FLP cell bodies; yellow arrowheads point to SAD-1::GFP 

puncta mislocalized to FLP dendrites. Asterisks denote labeling of AWC neuron cell 

bodies with an odr-1::dsRed marker. Anterior is at left and dorsal is up in all panels. 

(c) Dendritic mislocalization defects of RAB-3::mCherry and SAD-1::GFP in FLPs of unc-

33 mutants, and rescue of unc-33 mutants through pan-neuronal and FLP-specific 

expression of UNC-33L. The fraction of animals with qualitative defects is shown (n>30 

animals/genotype). tag-168p, pan-neuronal promoter; mec-3p, promoter expressed in PVD, 

FLP, and six mechanosensory neurons; des-2p, promoter expressed in PVD and FLP.  

(d-e) Distribution of UNC-2::GFP (Saheki et al., 2009), an α-subunit of a presynaptic 

voltage-gated calcium channel, in AWC and AWB chemosensory neurons of wild type (d) 

and unc-33(ky869) (e) animals, with schematics. Yellow arrowheads indicate mistargeting 

of UNC-2::GFP to dendrites. Scale bar, 10 µm. 

(f-h) Distribution of GFP::RAB-3 in AVE interneurons of wild type (f), unc-33(e204) (g) 

and unc-44(e362) (h) animals, with corresponding diagrams. Yellow arrowheads indicate 

mistargeting of GFP::RAB-3 to dendrites, observed in 65% (unc-33, n=222) or 23% (unc-

44, n=92) of animals. Scale bar, 10 µm.  
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Supplementary Figure 2.2 

 

 

	  



	    61	  

 

 

 

Supplementary Figure 2.3. unc-33 and unc-34/Enabled mutants have short FLP and PVD 

axons, but unc-34 mutants do not mislocalize axonal markers  

(a) Premature termination of FLP axons in wild type, unc-33(ky880) and unc-34(e315).  

(b-c) Representative maximum projection fluorescence images of des-2::myristoyl::GFP 

showing FLP axon in a wild type animal (b), and a prematurely terminated FLP axon in an 

unc-34(e315) mutant (c). ‘cb’ indicates the FLP cell body; white brackets indicate axons. 

Anterior is at left and dorsal is up in all panels.  

(d) Dendritic mislocalization of RAB-3::mCherry and SAD-1::GFP in FLPs of wild type 

and unc-34(e315) animals. Compare unc-33, Supplementary Fig. 2.2c. 

(e-f) Representative maximum projection fluorescence images showing SAD-1::GFP 

localization in a wild type FLP (e) and in a FLP with a prematurely terminated axon in an 

unc-34 (e315) animal (f). White arrowheads point to SAD-1::GFP axonal puncta. Asterisks 

denote AWC cell bodies labeled with an odr-1::dsRed marker. Scale bars, 10 µm.  

(g) Quantification of animals with PVD axons shorter than the vulva spatial landmark.  

(h-i) Axonal localization defects (H) and dendritic mislocalization defects (I) of RAB-

3::mCherry and SAD-1::GFP in PVDs of wild type and unc-34(e315) animals (n>30 

animals/genotype). Compare unc-33, Fig. 2.1k,l. 
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Supplementary Figure 2.3 
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33(e204) is a missense mutation that affects all isoforms, and two likely null alleles 

disrupting all isoforms are unc-33(e1193), a frameshift mutation, and unc-33(mn407), a 

500 base pair deletion (Tsuboi et al., 2005).  Sequencing of the new alleles revealed that 

unc-33(ky869) generates a nonsense codon in the long and medium forms of unc-33 (Fig. 

2.1m), and unc-33(ky880) is a glutamate to lysine missense mutation affecting all isoforms 

in the region corresponding to the microtubule (MT)-stabilizing domain of CRMP-2 (E663 

in UNC-33L) (Fukata et al., 2002) (Fig. 2.1n).  

To establish the molecular requirements for appropriate axonal protein sorting, we 

asked which of the three UNC-33 isoforms was involved, and identified the site and time 

of unc-33 action.  Most known unc-33 alleles affect all three predicted unc-33 isoforms, 

any of which might be important for axonal protein localization.  However, the strong 

mutant phenotype of unc-33(ky869), which should spare the short form of unc-33 (Fig. 

2.1k-m), suggested that the long or medium isoform was required for activity.  To test 

these isoforms individually, full-length untagged cDNAs encoding either the UNC-33L 

protein or the UNC-33M protein were expressed from pan-neuronal promoters and 

introduced into unc-33(mn407) null mutants.  UNC-33L, but not UNC-33M, fully rescued 

unc-33 locomotion, egg-laying, and polarized localization of RAB-3::mCherry and SAD-

1::GFP in PVD (Fig. 2.2a-b, Supplementary Fig. 2.1, and data not shown).  The combined 

results from isoform-specific rescue and the unc-33(ky869) mutant allele suggest that 

UNC-33L is sufficient and probably essential for unc-33 activity. 
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unc-33 reporters and UNC-33 proteins are expressed in many or all neurons, but 

generally not expressed in non-neuronal cells (Altun-Gultekin et al., 2001; Li et al., 1992; 

Tsuboi et al., 2005).  An UNC-33L cDNA under a pan-neuronal promoter fully rescued the 

unc-33 phenotype (Fig. 2.2a,b).  More selective rescue was accomplished by expressing 

the UNC-33L cDNA from a des-2 promoter fragment that is expressed only in PVD and 

FLP neurons.  This transgene resulted in near-complete rescue of the axonal sorting defects 

in PVD and FLP, consistent with cell-autonomous action of unc-33 (Fig. 2.2a,b; 

Supplementary Fig. 2.1, 2.2). 

We identified the developmental stage at which unc-33 acts by first characterizing 

wild-type PVD development, then restoring unc-33 function at different times using a heat 

shock promoter from hsp16-41.  The PVD neurons are born during the early L2 larval 

stage (Sulston and Horvitz, 1977), extend a primary axon and two primary dendrites during 

L2 and early L3 stages, and elaborate dendritic branches during the late L3 stage and L4 

stages (Fig. 2.2c-e) (Oren-Suissa et al., 2010).  Localized axonal expression of RAB-

3::mCherry and SAD-1::GFP was first detectable in the late L3 stage (Supplementary Fig. 

2.4).  hsp16-41::unc-33L rescued adult unc-33 defects after heat shock during L2 and L3 

larval stages, but little rescue was observed after heat shock during the L1 stage, the L4 

stage, or the young adult stage (Fig. 2.2f).  These results suggest that unc-33 acts in PVD 

neurons near the time when axon-dendrite polarity is established, and cannot restore 

polarized protein transport at later developmental times. 

 UNC-33L has previously been reported to be enriched in nerve ring axons (Tsuboi 

et al., 2005); a new polyclonal antibody generated against UNC-33L confirmed its axonal 

localization in nerve ring and ventral cord axons, and absence from amphid dendrites (Fig.  
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Figure 2.2. UNC-33L functions in PVD during the establishment of polarity  

(a,b) Isoform-specific and cell autonomous rescue of axonal protein localization in PVDs 

of unc-33 mutants. Quantification of axonal localization defects (a) and dendritic 

mislocalization defects (b) of RAB-3::mCherry and SAD-1::GFP were as in Fig. 2.1; n>25 

animals per genotype. 

(c-e) Developmental progression of PVD neurons, visualized with des-2::myrisotyl::GFP 

marker, with schematic diagrams at right. In c, two focal planes are shown for the late 

L2/early L3 stage animal to show the two neurites being elaborated. White arrowheads in 

(c) and (d) indicate the primary processes of PVD, ‘cb’ marks the PVD cell body, and 

asterisks mark gut autofluorescence. Anterior is at left and dorsal is up in all panels. Scale 

bar, 10 µm.  

(f) Quantification of axonal protein localization in PVD after heat shock-driven UNC-33L 

expression in unc-33(mn407) mutant animals (n>25 animals/condition). A corresponding 

time line of PVD and larval development is shown below.  Rescue was defined as correct 

localization of RAB-3::mCherry in adult PVD neurons. 
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Figure 2.2 
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Supplementary Figure 2.4 

 

 

 

Supplementary Figure 2.4. Polarized localization of presynaptic proteins RAB-

3::mCherry and SAD-1::GFP can be detected in PVD neurons in late L3 larval stage 

(a-b) Representative images demonstrating the distribution of RAB-3::mCherry (a) and 

SAD-1::GFP (b) in PVD neurons of late L3 stage wild-type animals. For each set of 

fluorescence micrographs, the top panel is the maximum intensity projection of dendritic 

focal planes and the bottom panel is the maximum intensity projection for axonal focal 

planes. White arrowheads indicate axonal puncta, ‘cb’ marks the PVD cell body, and 

asterisks mark gut autofluorescence. Anterior is at left and dorsal is up in all panels. Scale 

bar, 10 µm. 

 

 

 

	  



	    68	  

2.3a).  After testing several fusion proteins, we generated an internally-tagged UNC-

33L::GFP protein that rescued locomotion and RAB-3::mCherry axonal localization 

defects of unc-33 mutants.  UNC-33L::GFP expressed under a pan-neuronal promoter was 

enriched in axons compared to dendrites, a pattern that resembled endogenous UNC-33L 

immunoreactivity (Fig. 2.3b).  UNC-33L::GFP expressed under the des-2 promoter labeled 

PVD axons consistently, but was minimally expressed in primary dendrite processes and 

was undetectable in dendrite branches (Fig. 2.3c).  These results suggest a primary site of 

action in axons.  Within the PVD axon, UNC-33L::GFP was enriched in a segment of the 

axon near, but not adjacent to, the PVD cell body, but the inactive UNC-33S::GFP isoform 

was not (Fig. 2.3c-e).  Enrichment of UNC-33L::GFP in analogous axonal segments near 

the cell body was also observed in FLP and AWC neurons (data not shown).  

 

UNC-104/KIF1A kinesin traffics axonal proteins to dendrites in unc-33 mutants 

 The appearance of axonal proteins in dendrites in unc-33 mutants could result 

either from a passive randomization of protein localization through diffusion, or from 

active defects in polarized protein traffic.  To distinguish between these mechanisms, we 

combined unc-33 mutations with mutations in unc-104/KIF1A, a conserved Kinesin-3 

family member that mediates the axonal transport of presynaptic vesicles and a variety of 

presynaptic proteins (Hall and Hedgecock, 1991; Pack-Chung et al., 2007; Yonekawa et 

al., 1998).  In unc-104 mutants, axonal proteins are trapped in the cell body, but dendritic 

proteins are localized normally (Dwyer et al., 2001; Hirokawa and Takemura, 2005).   
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Figure 2.3. UNC-33L is enriched in PVD axons 

(a) UNC-33L immunoreactivity in nerve ring of wild-type animal.  

(b) Biologically active UNC-33L::GFP protein expressed from a pan-neuronal promoter in 

wild type animal, showing localization in nerve ring axons and absence from sensory 

dendrites. nr, nerve ring.  

(c-d) Representative images of UNC-33L::GFP and UNC-33S::GFP proteins in wild type 

PVD neurons, with schematic diagrams at right.  Red brackets indicate region of UNC-33L 

enrichment in axon, and arrowheads show expression in ventral nerve cord.  Black 

brackets indicate proximal segment of PVD axon used for comparing fluorescence 

intensities in (e).  

(e) Quantification of GFP (n=9), UNC-33L::GFP (n=11) and UNC-33S::GFP (n=10) 

fluorescence intensities, expressed as ratio of ‘axon initial’ domain to ‘axon proximal’ 

domain. *** p < 0.001 according to the Bonferroni t-test, ns, not significant. Anterior is at 

left and dorsal is up in all panels. Scale bars, 10 µm. 
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Figure 2.3 
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As expected from previous studies, RAB-3::mCherry and SAD-1::GFP markers 

were restricted to the PVD cell bodies in unc-104 mutants (Fig. 2.4a-h), a pattern distinct 

from wild-type and unc-33 patterns (Fig. 2.4i-l).  An unc-33 unc-104 double mutant 

resembled unc-104, with RAB-3::mCherry and SAD-1::GFP entirely restricted to the PVD 

cell body (Fig. 2.4m-p).  Therefore, both the residual axonal localization and the 

inappropriate dendrite localization of synaptic proteins in unc-33 mutants require UNC-

104, suggesting that the axonal UNC-104 kinesin gains access to the dendrite in unc-33 

mutants.  

To test this hypothesis, a monoclonal antibody that recognizes endogenous UNC-

104 protein was used to examine its subcellular localization.  In wild-type animals, UNC-

104 immunoreactivity was strong in regions enriched in axonal processes, such as the 

nerve ring, the amphid commissure, and the ventral nerve cord, but staining was not 

observed in the amphid dendrite bundles (Fig. 2.5a).  Similarly, the axon-rich regions in 

and near the ventral nerve cord were labeled in the tail, but sensory dendrites were not 

(Supplementary Fig. 2.5).  These results suggest that endogenous UNC-104 protein is 

preferentially localized to axons.  

By contrast, unc-33 mutants had substantial UNC-104 immunoreactivity in the 

amphid dendrites and the tail dendrites, in addition to the expected UNC-104 

immunoreactivity in nerve ring and ventral cord axons (Fig. 2.5b, Supplementary Fig. 2.5).  

To confirm this observation at the single-neuron level, a functional UNC-104::GFP fusion 

protein (Zhou et al., 2001) was expressed at low levels in PVD and FLP neurons using the 

des-2 promoter.  In agreement with the axonal localization observed via immunostaining,  
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Figure 2.4. unc-104/KIF1A kinesin mislocalizes presynaptic proteins to dendrites in unc-

33 mutants 

(a-p) Representative images of RAB-3::mCherry and SAD-1::GFP in PVD neurons of wild 

type (a-d), unc-104(e1265) (e-h), unc-33(ky880) (i-l), and unc-104 unc-33 (m-p) animals, 

with corresponding diagrams. For each set of fluorescence micrographs, the top panel is 

the maximum intensity projection of dendritic focal planes and the bottom panel is the 

maximum intensity projection for axonal focal planes. White and yellow arrowheads 

indicate axonal and dendritic puncta, respectively; ‘cb’ marks the PVD cell body, and 

asterisks mark gut autofluorescence. Anterior is at left and dorsal is up in all panels. Scale 

bar, 10 µm.  

(q,r) Quantification of axonal localization defects (q) and dendritic mislocalization defects 

(r) of RAB-3::mCherry and SAD-1::GFP, as in Fig. 2.1; n>30 animals/genotype. 
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Figure 2.4 
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Figure 2.5. UNC-104 is mislocalized to dendrites in unc-33 mutants 

(a,b) Immunostaining of endogenous UNC-104 in wild-type (a) and unc-33(mn407) (b) 

animals, with corresponding schematic diagrams. Yellow arrowheads indicate UNC-104 

immunoreactivity in sensory dendrite regions. nr, nerve ring; vnc, ventral nerve cord.  

(c,d) Localization of UNC-104::GFP in PVD neurons of wild-type (c) and unc-33 (mn407) 

(d) animals, with schematic diagrams. White arrowheads indicate UNC-104::GFP 

enrichment in PVD axons; yellow arrowheads indicate UNC-104::GFP in PVD dendrites.  

(e) Quantification of animals with detectable UNC-104::GFP fluorescence in PVD 

dendrites (n>25 animals/genotype).  

(f,g) Inferred UNC-104/KIF1A activity in neurons of wild-type animals (f) and unc-33 

mutants (g). Anterior is at left and dorsal is up in all panels. Scale bars, 10 µm. 
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Figure 2.5 
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Supplementary Figure 2.5. Kinesin UNC-104 mislocalization to dendrites in multiple 

neurons in unc-33 mutants 

(a-b) Immunostaining against UNC-104 in the tail regions of wild type (a) and unc-

33(mn407) animals, with corresponding schematic diagrams. Yellow arrowheads point to 

UNC-104 immunoreactivity in tail dendrite regions. vnc, ventral nerve cord.  

(c-d) Localization of UNC-104::GFP in FLP neurons of wild type (c) and unc-33(mn407) 

(d) animals, with schematic diagrams. White arrowheads indicate UNC-104::GFP 

enrichment in FLP axons; yellow arrowheads indicate UNC-104::GFP mislocalized to FLP 

dendrite endings.  

(e) Quantification of animals with detectable UNC-104::GFP fluorescence in FLP 

dendrites (n>25 animals/genotype).  Scale bars, 10 µm. 
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UNC-104::GFP was present in wild-type PVD and FLP axons and cell bodies, weak in 

primary dendrites, and absent from dendrite branches (Fig. 2.5c, Supplementary Fig. 2.5c).  

In unc-33 mutants, however, UNC-104::GFP fluorescence was reduced in axons and 

increased in dendrites and dendrite branches (Fig. 2.5d,e).  The combined genetic and cell 

biological results suggest that the mislocalization of axonal proteins in unc-33 mutants 

results from a failure to restrict UNC-104 kinesin to axons (Fig. 2.5f,g).  

 

The cilia chemoreceptor ODR-10 is mislocalized to axons in unc-33 mutants 

 To ask whether unc-33 affected sorting of dendritic proteins as well as axonal 

proteins, we examined the well-characterized AWB chemosensory neurons.  Each AWB 

has one dendrite that terminates in a sensory cilium at the tip of the nose, and one axon that 

grows into the nerve ring (Fig. 2.6a).  ODR-10::GFP, a chemosensory G protein-coupled 

receptor, is enriched in AWB cilia and excluded from axons of wild-type animals (Dwyer 

et al., 1998; Sengupta et al., 1996)(Fig. 2.6b).  In unc-33 mutants, however, ODR-10::GFP 

was present in AWB axons as well as AWB cilia (Fig. 2.6c).   

The defect in ODR-10::GFP localization in unc-33 mutants was not as severe as the 

defect in axon protein localization, but it was consistently observed in multiple unc-33 

alleles at both early and late larval stages (Fig. 2.6f).  The ODR-10::GFP defect appeared 

genetically distinct from the sorting defect affecting presynaptic proteins, based on double 

mutant interactions with unc-104.  unc-104 axonal kinesin mutants do not normally affect 

ODR-10::GFP localization (Fig. 2.6d,g)(Dwyer et al., 2001), and unc-33; unc-104 double  
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Figure 2.6. A sensory chemoreceptor is mislocalized to axons in unc-33 mutants 

(a) Schematic diagram of AWB chemosensory neurons in the head.  

(b-e) Representative maximum projection fluorescence images showing ODR-10::GFP 

localization in AWB neurons of wild type (b), unc-33 (c), unc-104 (d), and unc-104; unc-

33 double mutant (e) animals.  Yellow arrowheads indicate ODR-10::GFP in axons. 

Anterior is at left and dorsal is up in all images. Scale bar, 10 µm. (f,g) Quantification of 

animals with ODR-10::GFP fluorescence in axons (n>40 animals per genotype). 
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Figure 2.6 
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mutants resembled unc-33 single mutants, with ODR-10::GFP in both axons and cilia (Fig. 

2.6e,g).  Thus ODR-10 mislocalization in unc-33 mutants was not caused by dysregulated 

UNC-104.  The altered localization of ODR-10::GFP did, however, require odr-4, a gene 

that is normally required for ODR-10 exit from the endoplasmic reticulum and localization 

to cilia (Dwyer et al., 1998)(Supplementary Fig. 2.6).  unc-101, an AP1 µ1-adaptin subunit 

that restricts ODR-10::GFP to cilia (Dwyer et al., 2001), overshadowed the effect of unc-

33 in unc-101; unc-33 double mutants (Supplementary Fig. 2.6).  These results suggest 

that cilia proteins in unc-33 mutants are mislocalized, but still interact with the normal cilia 

sorting machinery. 

 

unc-33 organizes the neuronal microtubule cytoskeleton 

 The widespread defects in axons and dendrites prompted an examination of the 

cytoskeleton in unc-33 mutants.  C. elegans neurons are rich in microtubules, and a 

monoclonal antibody against α-tubulin (DM1A) preferentially labeled the C. elegans 

nervous system, revealing axonal processes in the nerve ring and ventral nerve cord, as 

well as amphid dendrites and cilia (Fig. 2.7a, Supplementary Fig. 2.7).  This staining 

pattern was strikingly altered in unc-33 mutants.  First, tubulin immunoreactivity was 

enriched in the distal segments of dendrites, consistent with an increase in dendrite 

microtubules previously observed in electron micrographs of unc-33 mutants (Hedgecock 

et al., 1985).  Second, axonal anti-tubulin staining in the nerve ring was strongly reduced 

(Fig. 2.7b, Supplementary Fig. 2.7).  These results suggest that the overall organization of 

neuronal microtubules is altered in unc-33 mutants. 
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Supplementary Figure 2.6. odr-4 and unc-101 regulate the distribution of ODR-10::GFP 

in wild type and unc-33 animals  

(a-d) Representative maximum projection fluorescence images showing ODR-10::GFP 

localization in AWB neurons of odr-4 (a), unc-101 (c), odr-4; unc-33 (b) and unc-101; 

unc-33 (d) animals. Anterior is at left and dorsal is up in all images. Scale bar, 10 µm. 

Comparisons with Fig 2.5a-c show that the double mutants odr-4; unc-33 and unc-101; 

unc-33 resemble odr-4 and unc-101 single mutants, respectively.  

(e) Quantification of animals with axonal ODR-10::GFP fluorescence, demonstrating that 

both the normal cilia localization as well as the axonal mislocalization of ODR-10::GFP in 

unc-33 mutants are odr-4-dependent (n>30 animals per genotype). Since odr-4 is required 

for the exit of ODR-10::GFP from the ER, the observation that axonal ODR-10::GFP in 

unc-33 mutants also requires odr-4 function implies that the axonal mislocalization is due 

to the misregulation of a post-ER step in trafficking.	  

 



	    82	  

Supplementary Figure 2.6 

 

 

 

	  



	    83	  

Figure 2.7. Neuronal microtubule defects in unc-33 mutants 

(a,b) Representative maximum intensity projections of confocal images of α-tubulin 

immunoreactivity in head neurons of wild type and unc-33(ky880) animals (unc-

33(mn407) in Supplementary Fig. 2.7). White arrowheads indicate axon-rich nerve ring 

and ventral nerve cord regions, yellow arrowheads indicate distal sensory dendrites.  

(c,d) TBA-1::mCherry (α-tubulin) fluorescence in PVD neurons of representative wild 

type (c) and unc-33(mn407) (d) animals.  

(e,f) Distribution of EBP-2::GFP (EB1) in PVD neurons of representative wild-type (e) 

and unc-33(ky880) (f) animals. In (c-f), white arrowheads indicate fluorescence in PVD 

axons, yellow arrowheads indicate fluorescence in PVD dendrites; ‘cb’ denotes the PVD 

cell body, and asterisks indicate gut autofluorescence. 
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Supplementary Figure 2.7. Distribution of tubulin post-translational modifications in 

unc-33 null mutants 

(a,b) Maximum intensity projections of α-tubulin immunoreactivity in head neurons of 

wild-type and unc-33(mn407) animals. White arrowheads indicate axon-rich nerve ring 

and ventral nerve cord regions; yellow arrowheads indicate distal sensory dendrites. (c-d) 

Immunostaining of glutamylated tubulin detects neuronal cilia in wild type (a) and unc-33 

(b) animals.  

(e-h) Immunostaining of acetylated α-tubulin (e-f) and detyrosinated α-tubulin (g-h) in the 

PLM mechanosensory neurons of wild type (e,g) and unc-33(mn407) (f,h) animals. Scale 

bars, 10 µm. 
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Antibodies to different post-translationally modified forms of tubulin can serve as 

indirect probes of microtubule stability that label different pools of microtubules within a 

single cell.  Staining of unc-33 mutants with these antisera indicated that their 

abnormalities were restricted to certain microtubule populations.  Microtubules in sensory 

cilia were labeled similarly in wild-type and unc-33 animals with GT335, an anti-

glutamylated tubulin antibody (Wolff et al., 1992), suggesting that this subset of 

microtubules was correctly localized in unc-33 mutants (Supplementary Fig. 2.7c,d).  

Antibodies against acetylated α-tubulin and detyrosinated α-tubulin, two modifications 

associated with stable microtubules, shower similar strong staining of mechanosensory 

neurons of wild type (Siddiqui et al., 1989) and unc-33 animals, again suggesting a normal 

localization of this microtubule subset (Supplementary Fig. 2.7e-h).   

To examine tubulin distribution at the single cell level and bypass the fixation step 

associated with antibody staining, tagged reporters of microtubule structure were expressed 

in PVD neurons.  In wild type animals, an mCherry-tagged α-tubulin protein was 

consistently detected in axons and primary dendrites of PVD neurons, but not in dendrite 

branches (Fig. 2.7c).  In unc-33 mutants, α-tubulin::mCherry fluorescence was 

significantly reduced in PVD axons, and brighter in dendrites and dendrite branches, 

matching the whole-animal results with anti-tubulin antibodies (Fig. 2.7d).  A marker that 

should detect polymerized microtubules was generated by tagging the microtubule end-

binding protein EBP-2 (EB1) (Srayko et al., 2005) with GFP.  In wild-type animals, EBP-

2::GFP labeled the soma, axon, and primary dendrites of PVD, but not dendritic branches; 

in unc-33 mutants, EBP-2::GFP labeled dendritic branches as well, suggesting aberrant 

invasion of these structures by microtubules (Fig. 2.7e,f). 
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 UNC-44/Ankyrin is required for UNC-33L axonal localization, neuronal microtubule 

organization and polarized protein trafficking 

The C. elegans unc-44 gene encodes its sole ankyrin homolog (Otsuka et al., 1995), 

and shares many functions with unc-33, including roles in axon growth and guidance 

(Hedgecock et al., 1985; Siddiqui and Culotti, 1991; Troemel et al., 1999).  We identified 

unc-44 mutants in several genetic screens for altered localization of axonal and dendritic 

proteins, suggesting that it might have functions related to those of unc-33.  Indeed, 

examination of two unc-44 alleles with the markers described above revealed a close 

correspondence between the defects in unc-44 and unc-33 mutants.  unc-44 mutants had 

reduced SAD-1::GFP and RAB-3::mCherry expression in PVD axons, and significant 

expression in dendrites (Fig. 2.8a,b).  Similarly, UNC-104 kinesin was present in dendrites 

as well as axons of unc-44 mutants, anti-tubulin immunoreactivity was reduced in axons 

and increased in dendrites, and the cilia protein ODR-10::GFP was partly localized to 

axons in AWB neurons (Fig. 2.8c-e).  unc-44 encodes at least ten proteins, of which two 

isoforms of >5000 amino acids are implicated in neuronal function (Otsuka et al., 1995); 

the mutants we examined are typical, but it is not known whether they are null alleles that 

affect all isoforms. Therefore, these experiments suggest common functions for unc-44 and 

unc-33, but may not detect all functions of unc-44. 

The suggestion that unc-44 and unc-33 have related functions was supported by an 

examination of UNC-33L protein:  in unc-44 PVD neurons, UNC-33L::GFP was depleted 

from axons, and instead accumulated in neuronal cell bodies and dendrite branches (Fig. 

2.8f-h).  Immunostaining of endogenous UNC-33L confirmed that immunoreactivity was  
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Figure 2.8. unc-44/ankyrin mutants disrupt axonal protein sorting and UNC-33L 

localization 

(a,b) Quantification of unc-44 axonal localization defects (a) and dendritic mislocalization 

defects (b) of RAB-3::mCherry and SAD-1::GFP in PVD neurons, as in Fig. 2.1; n>25 

animals/genotype. 

(c) Immunostaining of endogenous UNC-104 in unc-44(ky110) animal; yellow arrowheads 

indicate UNC-104 immunoreactivity in sensory dendrite regions. nr, nerve ring; vnc, 

ventral nerve cord. Compare Fig. 2.5a,b. 

(d) Representative maximum projection fluorescence image showing ODR-10::GFP 

localization in AWB neurons of unc-44(ky110) animal.  Yellow arrowhead indicates ODR-

10::GFP in axons. Compare Fig. 2.6b,c. 

(e) α-tubulin immunoreactivity in the head region of an unc-44 (ky110) animal. White 

arrowheads indicate axon-rich nerve ring and ventral nerve cord regions; yellow 

arrowheads indicate distal sensory dendrites. Compare Fig. 2.7a,b. 

(f,g) UNC-33L::GFP protein in PVD neurons of wild-type (f) and unc-44(ky110) (g) 

animals, with corresponding schematic diagrams at right. Red brackets indicate region of 

UNC-33L enrichment in proximal axon, white arrowheads indicate axonal UNC-

33L::GFP, and yellow arrowheads indicate UNC-33L::GFP foci in dendrites and dendrite 

branches. Asterisks indicate gut autofluorescence.  

(h) Quantification of animals with detectable UNC-33L::GFP expression in PVD axons 

and dendrite branches (n>25 animals/genotype). 

(i-k) Endogenous UNC-33L immunoreactivity in wild-type (i), unc-33(ky880) (j) and unc-

44(ky110) (k) animals. Nerve ring (nr, top panels) and ventral nerve cord (vnc, bottom 

panels) are shown. Arrowheads indicate UNC-33L retained in neuronal cell bodies in unc-

44 mutants. Anterior is at left and dorsal is up in all panels. Scale bars, 10 µm. 
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Figure 2.8 
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lost from the nerve ring and nerve cords, and enriched in cell bodies, throughout the 

nervous system of unc-44 mutants (Fig. 2.8i,k). These results indicate that unc-44 has an 

important role in UNC-33 axonal recruitment, and provide a molecular basis for the 

protein sorting defects of unc-44 mutants.   

UNC-33L localization was normal in unc-33(ky880) mutants, which have a 

mutation in the predicted tubulin-binding domain (Fig. 2.8j).  Notably, this mutant UNC-

33L protein is correctly localized to axons although tubulin, UNC-104, and synaptic 

proteins are mislocalized in unc-33(ky880) mutants.  UNC-33L axonal localization was 

also normal in unc-104(e1265) kinesin mutants (Fig. 2.8h).  These results indicate that the 

microtubule-binding function of UNC-33L is important for its activity, and reveal a 

hierarchy in polarized protein traffic in which UNC-33L localization is preserved even 

when other axonal and dendritic proteins are misdirected by altered microtubules and 

UNC-104. 

 

Discussion 

 unc-33/CRMP and unc-44/ankyrin are essential for polarized neuronal sorting to 

both axons and dendrites in C. elegans.  In unc-33 and unc-44 mutants, axonal 

transmembrane proteins (UNC-2), cytoplasmic proteins (SAD-1, SYD-2, SNN-1), and 

synaptic vesicle proteins (RAB-3, SNB-1) are randomized between axons and dendrites, 

and some dendritic proteins are altered as well.  By examining the localization of multiple 

proteins in wild-type and mutant backgrounds, we found that UNC-44 localizes UNC-33 to 

the axon, where UNC-33 increases the steady-state level of axonal microtubules and alters 
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their organization, providing an asymmetric influence on the neuronal cytoskeleton.  A 

requirement for UNC-33 at early developmental times suggests that this asymmetry 

establishes the lasting axon-dendrite polarity of the cell.  Either UNC-33 itself or the unc-

33-dependent asymmetric organization of microtubules directs the polarized recruitment of 

the kinesin UNC-104/KIF1A, which recruits and delivers axonal cargo proteins.  A loss of 

this polarized information in unc-33 and unc-44 mutants leads to a large-scale disruption of 

protein sorting, microtubule distribution, and kinesin activity in both axons and dendrites. 

 Although unc-33, unc-44 and their vertebrate homologs have been implicated in 

axon specification and elongation, most functions of unc-33 and unc-44 were not predicted 

by previous studies (Desai et al., 1988; Hedgecock et al., 1985; Tsuboi et al., 2005).  

CRMP2, the best-characterized CRMP protein, affects the number of axons per cell (the 

classical definition of “neuronal polarity” in vitro), and CRMP2 manipulations appear not 

to affect dendrites.  We did not observe a reduction in axon number in unc-33 mutants, nor 

were axons converted into dendrites by morphological criteria.  Instead, we found that 

axons and dendrites were morphologically recognizable, but profoundly defective in their 

cytoskeletal organization and protein localization.  A likely explanation for this apparent 

discrepancy is the complexity of the mammalian CRMP family, which consists of several 

paralogous genes with multiple splice forms (Quinn et al., 2003); as a result, complete 

disruption of CRMP function has not been attempted in mammalian neurons.   

Similarly, most of the properties of unc-44 mutants were unexpected.  Mammalian 

ankyrinG prevents the entry of dendritic proteins into axons (Hedstrom et al., 2008; 

Sobotzik et al., 2009; Winckler et al., 1999), a function that it shares with unc-44, and we 

found that unc-44 also excludes axonal proteins from dendrites, generating a bidirectional 
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barrier.  More significantly, the widespread microtubule defects in unc-44 mutants indicate 

that UNC-44 organizes the microtubule cytoskeleton in axons and dendrites, a function not 

previously ascribed to ankyrin.  This function is likely to arise from the ability of unc-44 to 

localize UNC-33L to axons, especially because of the striking phenotypic similarities 

between unc-33 and unc-44 mutants.   

The effects of UNC-33 on asymmetric protein transport, UNC-104 localization, 

and tubulin immunoreactivity, along with its early action and its localization to the axon, 

suggest that UNC-33 functions primarily to organize unique classes of axonal 

microtubules.  CRMP2 stimulates microtubule polymerization in vitro and promotes 

axonal transport of tubulin (Fukata et al., 2002; Kimura et al., 2005), functions that could 

contribute to the axonal microtubule defects in unc-33 mutants.  Indirect measurements of 

microtubule polarity suggests that microtubules in C. elegans axons, like those in 

mammalian neurons, may be oriented with distal plus-ends, whereas dendritic 

microtubules are less polarized (Ou et al., 2010).  The developmental requirement for unc-

33 in PVD suggests that polarized properties arise during a discrete time period, which 

could be characterized to provide insight into the construction of cytoskeletal asymmetry. 

The UNC-33L-enriched zone of C. elegans axons bears analogies with the 

vertebrate axon initial segment, which organizes the microtubule cytoskeleton and divides 

neurons into functional compartments.  In most vertebrate neurons, the axon initial 

segment is a clearly demarcated diffusion boundary and the site of action potential 

initiation (Grubb and Burrone, 2010).  In invertebrate neurons, the nature of the axon 

initial segment is less clear: a single process can split into axonal and dendritic regions far 

from the cell body, and spike zones can be distant from the soma (Bucher et al., 2003; 
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Meyrand et al., 1992; Rolls et al., 2007).  C. elegans does not have classical sodium-based 

action potentials, so its neurons are not predicted to have spike initiating zones, but they do 

have distinct axonal and dendritic regions.  unc-44 represents a molecular connection to 

ankyrinG at the axon initial segment, and the region of UNC-33L enrichment represents a 

plausible subcellular site for the axon-dendrite boundary in several C. elegans neurons.  

Moreover, the vertebrate axon initial segment is enriched in unusual microtubule fascicles 

that are absent from other neuronal compartments (Palay et al., 1968), an observation that 

may relate to the microtubule-stabilizing functions of UNC-33 and CRMP2.  

Although UNC-33L protein is largely excluded from dendrites, unc-33 mutant 

dendrites accumulate axonal proteins and excessive microtubules (Hedgecock et al., 1985) 

and lose some dendritic proteins.  Thus unc-33 establishes a distinction between axons and 

dendrites that is essential for the molecular integrity of both compartments, either through 

self-organizing features of the cytoskeleton or through cascades of inappropriate protein 

sorting.  Our results suggest that UNC-33L protects dendrites from axonal proteins by 

capturing the axonal kinesin UNC-104 and limiting its activity to axons.  We speculate that 

UNC-33 may affect other kinesin motors as well, since CRMP2 acts as an adaptor for 

axonal Kinesin-1-dependent traffic (Arimura et al., 2005; Kawano et al., 2005; Kimura et 

al., 2005). C. elegans Kinesin-1/unc-116 has a relatively minor role in PVD compared to 

unc-33 and unc-44 ((Tsuboi et al., 2005) and our data not shown), but a further 

examination of microtubules and microtubule-dependent traffic in unc-33 mutants may 

support or extend this hypothesis.  
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Chapter 3 

Regulation of Chemoreceptor ODR-10 transport to sensory cilia by ODR-8/UfSP2 

and UFM1 

 

Abstract 

 The biosynthetic transport of GPCRs from the ER to specific sub-cellular locations 

is a highly regulated process.  While critical in regulating the surface levels of these vital 

signaling receptors, this process remains not well understood.  Previous work had 

identified odr-8 as an important regulator of odorant receptor transport in C. elegans, 

whose identity was not known. Here, we report that odr-8 encodes the C. elegans homolog 

of mammalian UfSP2, a cysteine-protease specific for the ubiquitin-like molecule UFM1.  

We found that odr-8 and ufm-1/ UFM1 are both required for the proper regulation of 

chemoreceptor localization at the C. elegans chemosensory cilia. ODR-8, while diffusely 

distributed in neurons, showed ER-enrichment.  odr-8 mutants defective for ciliary 

localization of ODR-10 diacetyl receptor, displayed ER-retention of ODR-10.  ufm-1 

mutants displayed a converse up-regulation of ODR-10 localization at the cilia.  Double 

mutants resembled ufm-1 animals, suppressing ER-retention defects and instead showing 

ODR-10 ciliary enrichment.  Together, these results suggest that a balance between UFM-

1-conjugation and ODR-8/UfSP2–mediated deconjugation at the ER controls the rate of 

ODR-10 ER-exit and thereby dictates ODR-10 surface expression at the cilia. 
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Introduction 

 

Cell polarization is a ubiquitous phenomenon by which cells organize subcellular 

domains that serve distinct functions.  Neurons are striking examples of polarized cells, 

whose most fundamental division is the presence of a single axon and one or more 

dendrites, each of which typically elaborates further compartments.  Axons specialize in 

neurotransmitter release and signal propagation, whereas the primary function of dendrites 

is to gather information; neural function depends on the proper regulation of these 

domains(Barnes and Polleux, 2009).  Since the functional properties of these 

compartments are defined by their constituent proteins, understanding the mechanisms that 

control polarized protein localization may provide significant insight into the regulation of 

neuronal function. 

G-protein coupled receptors (GPCRs) represent a major group of proteins whose 

expression and distribution specify functional properties of cellular domains(Dong et al., 

2007).  GPCRs comprise the largest family of signaling receptors in animals and respond 

to a wide range of external stimuli and intercellular cues.  A growing number of GPCRs 

are known to localize in an asymmetric fashion in neurons and in other polarized cells such 

as epithelial cells.  For example, A1 adenosine receptors localize to the apical surface of 

epithelial cells, whereas β-adrenergic receptors localize to the basolateral surface(Wozniak 

et al., 1997; Wozniak and Limbird, 1996).  Furthermore, GPCRs can show distinct 

distributions in different cell types: the µ-opioid receptor 1 shows dendritic enrichment in 

CNS neurons, but axonal targeting in primary afferent neurons(Arvidsson et al., 1995).  

The biosynthetic processes by which GPCRs are transported from the ER to specific 
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subcellular compartments remain poorly understood and require further investigation, 

especially considering that GPCR transport defects are associated with the pathogenesis of 

human diseases such as retinitis pigmentosa and nephrogenic diabetes insipidus(Morello 

and Bichet, 2001; Stojanovic and Hwa, 2002). 

Recent studies indicate that the export of GPCRs from the ER to the Golgi 

complex, and subsequently from the Golgi complex to the correct plasma membrane 

domain is highly regulated.  A number of cis-acting motifs, such as phenylalanine-based 

and dileucine-based cytoplasmic signals promote export from the ER(Dong et al., 2007).  

Trans-acting accessory proteins, which typically affect a small set of GPCRs, can promote 

GPCR export from the ER to the plasma membrane and may also act in subsequent steps 

of vesicle transport or receptor regulation at the cell surface.  For example, ninaA, the 

Drosophila cyclophilin homolog, is required for the export of rhodopsin Rh1 from the ER 

and its transport along the biosynthetic pathway(Baker et al., 1994; Colley et al., 1991).  

The cyclophilin-related protein, RanBP2, may play an analogous chaperoning and escort 

role for mammalian red/green opsin(Ferreira et al., 1996).   

Chemoreceptors are a large and divergent set of GPCRs involved in olfaction and 

taste(Bargmann, 2006).  Mice have about ~1200 chemoreceptors including ~900 odorant 

receptors (ORs), humans have ~350 odorant receptors, and the nematode C. elegans has 

the highest number reported in any species, 1700-2100 predicted chemosensory 

receptors(Bargmann, 2006). In C. elegans, a screen for chemotaxis-defective mutants, 

followed by an examination of odorant receptor localization, identified odr-4 as the first 

accessory molecule identified for odorant receptors(Dwyer et al., 1998).  odr-4 encodes a 

transmembrane protein required for the transport of multiple chemoreceptors, including the 
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diacetyl receptor ODR-10, from the ER to the sensory cilia.  ODR-4 localizes to 

subcellular organelles and perhaps transport vesicles, but not to the cilia themselves.  A 

functional role similar to that of ODR-4 is suggested for three small transmembrane 

proteins (RTP1, RTP2 and REEP1) that are expressed in mammalian olfactory sensory 

neurons.  They associate with a subset of mammalian ORs and enhance their surface 

expression in heterologous cells(Saito et al., 2004).  

Mutants for odr-8, another regulator of odorant receptor localization, share 

numerous phenotypes with odr-4 mutants(Dwyer et al., 1998).  odr-4 and odr-8 mutants 

are defective in chemotaxis to a common subset of odorants, sensed by AWA and AWC 

chemosensory neurons.  odr-8 and odr-4 mutants also share defects in localizing a 

common subset of chemoreceptors, including the odorant receptor ODR-10.  In odr-4 and 

odr-8 mutant animals, these receptors are retained in the cell body rather than being 

enriched in cilia.  While multiple screens led to the isolation of five mutant alleles, the 

molecular identity of odr-8, possibly encoding another accessory molecule or a new class 

of molecule critical for GPCR transport to sensory cilia, remained to be discovered.  

Here, we report the identification of odr-8 as the C. elegans homolog of UfSP2 

(UFM1-specific protease 2), a potential regulator of UFM1 (ubiquitin-fold modifier 1).  

UFM1 is a conserved small protein belonging to the ubiquitin-like protein (UBL) family, 

with no sequence similarity but significant structural homology to ubiquitin(Komatsu et 

al., 2004), and E1, E2, and E3-like enzymes for conjugation to other proteins(Komatsu et 

al., 2004; Tatsumi et al., 2010).  UfSP2 and UfSP1 encode cysteine proteases specific for 

UFM1, activities that could either process mature UFM1 from its inactive precursor, or 

remove UFM1 from its conjugated substrates(Kang et al., 2007).  Only a single UFM1-
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modified substrate has been identified, the DDRGK1 (C20orf116) protein of unknown 

function, and the physiological function of UFM1 is unknown(Tatsumi et al., 2010).  

UBA5, the UFM1-specific E1 enzyme, is essential for mouse hematopoietic development.  

Uba5 knockout mice are severely anemic, show marked defects in differentiation of 

erythroid progenitors, and die by E13.5(Tatsumi et al., 2011). 

Here we analyze odr-8 (UfSP2) and zk652.3/ufm-1 (UFM1) single and double 

mutants and show that UfSP2 aids in the transport of odorant receptors such as ODR-10 

from the ER to the cilia, whereas UFM1 conjugation antagonizes receptor transport from 

the ER.  

 

Results 

 

odr-8 encodes the C. elegans homolog of UFM1-specific protease 2 (UfSP2) 

 Genetic screens for olfactory mutants had previously identified four alleles of odr-8 

(ky26, ky28, ky31 and ky41), and a direct screen for the localization of the GPCR ODR-10 

yielded a fifth allele, ky173(Dwyer et al., 1998).  Recombinant mapping performed by 

Noelle Dwyer using visible genetic markers and genetic deficiencies had placed odr-

8(ky31) on chromosome IV in between lin-45 and deb-1, markers with genetic positions 

+3.23 and +3.29 respectively.  However, prior attempts to rescue odr-8 with DNA from 

this region proved unsuccessful.  We employed whole genome sequencing to identify the 

causative mutation underlying the odr-8 phenotype.  Illumina-Solexa sequencing of odr-

8(ky31) genomic DNA yielded ~35 bp sequence reads that were aligned against the N2 

(wild type) reference genomic sequence to identify putative single nucleotide 
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polymorphisms (SNPs) and other genetic changes.  To distinguish the odr-8 mutation from 

extraneous SNPs present in the strain backgrounds used for mutagenesis or outcrossing, 

the following criteria were used: 1.) The SNP should be a C->T or a G->A change, 

characteristic of EMS mutagenesis; 2.) The SNP should not have been detected in 

unrelated strains from the lab that were previously sequenced.   

These criteria led to the identification of three putative SNPs in the 3.3 Mb interval 

between lin-45 and deb-1 on chromosome IV: a C->T non-coding SNP just downstream of 

H34C03.2; a C->T non-coding SNP in an intron of gene C17H12.13; and a G->A coding 

SNP at position 6850375 in R13H7.2, predicted to result in a Glu->Lys missense change in 

the corresponding amino acid sequence.  Two lines of experimental evidence indicated that 

none of these three SNPs was likely to be the mutation underlying odr-8(ky31).  First, 

fosmid transgenes and PCR product transgenes corresponding to each of the three genes 

failed to rescue the defect in localization of the GPCR ODR-10::GFP in odr-8(ky31) 

mutants.  Second, sequencing of the exons and splice junctions of these three genes did not 

reveal any mutations in two other odr-8 mutants, odr-8(ky28) and odr-8(ky41).  

These negative results raised the possibility that the odr-8(ky31) lesion had been 

incorrectly assigned to the interval between lin-45 and deb-1.  So the analysis of the whole 

genome sequence was expanded to SNPs located outside but near that genetic interval.  

Indeed, a G->A change in the coding region of F38A5.1, located on chromosome IV at 

+3.21, was predicted to result in the premature termination of the corresponding protein.  

Sanger sequencing of PCR products confirmed the putative F38A5.1 SNP identified by 

whole genome sequencing of odr-8(ky31), and also identified missense or nonsense 

mutations in four additional odr-8 ky31 (Fig. 3.1.c).  Transgenes corresponding to the 
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F38A5.1 genomic region rescued the ODR-10::GFP localization defects of odr-8(ky31) 

animals, restoring bright labeling of AWA cilia by ODR-10::GFP (Fig. 3.1.a).  These 

results identify F38A5.1 as odr-8. 

F38A5.1 is the C. elegans homolog of UfSP2, a conserved gene found in most 

multicellular organisms (Fig. 3.1.b).  Mammalian UfSP2 encodes a cysteine protease 

specific for Ubiquitin-fold modifier 1 (UFM1), a ubiquitin-like molecule conjugated to 

various cellular proteins(Kang et al., 2007; Komatsu et al., 2004).  UfSP2 is divided into 

two structural domains: a C-terminal catalytic domain that is similar to that of UfSP1, 

whereas an N-terminal domain of unique structure important for the interaction of UfSP2 

with its substrate, C20orf116(Ha et al., 2011; Tatsumi et al., 2010).  The odr-8 locus 

encodes two near-identical isoforms with alternative lengths of their N-termini.  Four of 

the five odr-8 alleles encode nonsense mutations affecting both isoforms, whereas the fifth 

allele (ky26) is a missense mutation changing a conserved histidine residue to a tyrosine in 

both isoforms.  

 

odr-8 is expressed in head and tail neurons, and acts cell autonomously to localize 

ODR-10::GFP to AWA olfactory cilia   

 GFP reporter genes with short (1.6-2.6 kb) regions upstream of the odr-8 start site 

were consistently expressed in chemosensory neurons in the head and tail, likely to be 

amphid and phasmid neurons whose identities remain to be confirmed (Fig. 3.2.a). 

Transgenes driving expression of mCherry::ODR-8A or mCherry::ODR-8B cDNA using 

the AWA-specific odr-7 promoter (Sengupta et al., 1994) restored ciliary localization of  
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Figure 3.1. odr-8 encodes the C. elegans homolog of UFM1-specific protease 2 (UfSP2).  

(a) Representative images of ODR-10 localization in wild type and odr-8 mutants. Yellow 

arrowhead points to cilia enrichment of ODR-10; white arrowhead points to cell body 

distribution.  Scale bar, 10 µm. 

(b,c) Schematic representation of (b) odr-8 gene structure and (c) protein isoforms with 

positional information about mutant alleles (red arrowheads denote nonsense mutations; 

black arrow signifies a misses mutation affecting a conserved histidine.) 

(d) Sequence alignment of ODR-8A, UfSP2 and UfSP1 sequences from other species, 

neighboring the catalytic cysteine (red asterisk, top) and around the catalytic aspartate and 

histidine residues (red asterisks, bottom).   
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Figure 3.1 
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ODR-10::GFP in odr-8(ky31) animals, suggesting a cell autonomous role for ODR-8 (Fig. 

3.2.b,c). 

Both mCherry::ODR-8A and mCherry::ODR-8B, each of which could rescue 

ODR-10 localization, were primarily localized to the cell body, and could not be detected 

in AWA cilia.  The distribution of mCherry::ODR-8 in the cell body was irregular and 

punctate, and puncta typically showed co-localization with ODR-10::GFP puncta 

(Fig.3.2.b). At higher expression levels, mCherry::ODR-8 was broadly distributed 

throughout the cytoplasm as well as the nucleus.  

 A transgene driving expression of ODR-8A cDNA, under the control of a heat-

shock promoter, was used to ask when in development odr-8 acts to regulate ODR-10 

expression.  A heat-shock pulse provided during late L4 or adult stages completely rescued 

ODR-10::GFP localization in odr-8(ky31) animals (Fig. 3.2.d), with bright labeling of 

AWA cilia within 6 hours after heat-shock.  This result suggests that ODR-8 acts acutely 

in mature neurons to regulate ODR-10::GFP localization. 

 

Genetic interactions between odr-8, odr-4 and unc-101 (µ-adaptin)  

 In animals mutant for UNC-101, the µ1 subunit of the AP1 adaptin complex, ODR-

10::GFP is no longer enriched at the AWB cilia, and instead shows bright labeling of the 

entire cell surface (Fig. 3.3.a) (Dwyer et al., 2001).  unc-101(m1); odr-8(ky31) and unc-

101(m1); odr-8(ky173) double mutants resembled odr-8 single mutants in that ODR-

10::GFP was primarily retained in the cell body (Fig. 3.3.a). A similar localizatio pattern 

was observed in unc-101; odr-4 double mutants (Fig. 3.3.a) These results suggest that  
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Figure 3.2. ODR-8 acts cell autonomously to localize ODR-10::GFP to the cilia.  

(a) Representative images of odr-8promoter::GFP expression in head (left) and tail (right) 

neurons.  

(b) Representative showing rescued localization of ODR-10::GFP and mCherry::ODR-8A.  

In (Top) AWA neurons olfactory cilia and to the cell body (dashed box in top panels; also 

showed at a higher magnification in the bottom panels).  Scale bar 10 µm.	  	  

(c) Fraction of animals displaying bright labeling of AWA cilia with ODR-10::GFP.  

(d) Fraction of odr-8(ky31);kyls53 animal rescued for ODR-10::GFP localization after a 2 

hour heat-shock at 33°C.	  	  
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Figure 3.2 
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ODR-8 and ODR-4 function in a compartment required for delivery to cilia and for 

constitutive delivery to the plasmam membrane, perhaps the ER. 

 The similar phenotypes of odr-4 and odr-8 single and double mutants prompted an 

examination of potential interactions between them. odr-8 mutants were not rescued by 

overexpression of ODR-4 (Dwyer et al., 1998), and conversely odr-4 mutants were not 

rescued by overexpression of ODR-8 (0 animals rescued, n>=38 animals each for three 

independent lines).  Localization of mCherry::ODR-8 was not different in wild type and 

odr-4 mutants (Fig. 3.3.b).   

 

ODR-10::GFP co-localizes with endosomal and Golgi markers in the cell bodies of 

wild type neurons, but shows ER retention in odr-8 mutants 

 To gain a better understanding of the step in ODR-10 transport that is regulated by 

ODR-8, the localization of ODR-10::GFP in AWA neurons of odr-8 mutant animals was 

compared with that of a Golgi marker (α-mannosidase - MANS), several ER proteins 

(CP450, cb5 and TRAPβ)(Rolls et al., 2002), and RAB proteins marking overlapping but 

distinct sets of internal structures(Grant and Donaldson, 2009).  In wild type neurons, 

ODR-10::GFP was localized to cilia and to punctate structures in the cell body.  The 

somatic puncta showed modest co-localization with the Golgi marker, MANS::mCherry 

(Fig. 3.4.b), and more significant co-localization with the cilia-targeting marker, 

mCherry::RAB-8 and the endosomal marker mCherry::RAB-10 (Fig. 3.4.a).  In odr-8 

mutants, ODR-10::GFP was distributed throughout the soma rather than being punctate, 

and showed perinuclear enrichment that colocalized with the ER markers CP450::mCherry  
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Figure 3.3. Genetic interactions between odr-8, odr-4 and unc-101.  

(a) odr-8 and odr-4 act upstream of unc-101(µ1	  AP1-adaptin) in a genetic pathway 

regulating ODR-10 localization.  Representative epifluorescence images showing ODR-

10::GFP localization in various mutants.  Scale bar 10 µm.	  n>50 examined for each 

genotype.  

(b) mCherry::ODR-8 localization is unaffected in odr-4(n2144) mutants, and ODR-8 

overexpression cannot rescue ODR-10 localization in odr-4(n2144) mutants.  Scale bar 10 

µm.	  
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Figure 3.3 
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and TRAPβ::mCherry(Fig. 3.4.c,d).  These results are consistent with the hypothesis that 

ODR-8 regulates ODR-10::GFP exit from the ER.   

 

 To further investigate the site at which ODR-8 acts to regulate ODR-10 transport, 

the subcellular localization of ODR-8 was examined.  In wild type AWA neurons 

GFP::ODR-8A and mCherry ODR-8A were distributed throughout the cytoplasm with 

perinuclear enrichment (Fig. 3.5). The pattern is consistent with ER localization but should 

be confirmed with ER markers. In AWA wild type neurons that expressed ODR-10::GFP, 

mCherry ODR-8 colocalized with ODR-10 puncta, suggesting that the overexpressed 

ODR-10 protein could redirect the distribution of ODR-8, and supports an interaction 

between the two proteins.  

 

UFM1 negatively regulates ODR-10::GFP transport to the cilia, and a deletion in 

ufm1 rescues the ODR-10 ER retention phenotype of odr-8 mutants 

 UfSP1 and UfSP2 proteases can play a role in the production of mature UFM1 and 

in the removal of UFM1 from its cellular substrates(Ha et al., 2011; Kang et al., 2007; 

Tatsumi et al., 2010). So the defects in odr-8 mutants could either arise from a reduction in 

UFM1 protein or from a defect in UFM-1 deconjugation. The ufm-1(gk879) deletion allele 

was employed to ask whether and how ufm-1 contributes to GPCR traffic and how it 

interacts with odr-8. gk379 disrupts both the sole C. elegans UFM1 homolog ZK652.3, and 

the adjacent gene coq-5, which encodes a methyltransferase in ubiquinone biosynthesis 

(Asencio et al., 2003; Rodriguez-Aguilera et al., 2003). ufm-1 (gk379) homozygotes arrest  
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Figure 3.4. ODR-10::GFP colocalizes with RAB protein and Golgi marker in wild type 

animal, but with ER markers in odr-8 mutants.  

(a) Representative confocal images of ODR-10::GFP showing a high degree of 

colocalization with RAB-8 (top) and partial colocalization with RAB-10 (bottom) in wild 

type animals.  

(b-d) Representative epifluorescence images showing colocalization of ODR-10::GFP with 

(b) Golgi marker, MANS::mCherry, and ER markers (c) CP450::mCherry and (d) 

TRAPβ::mCherry.  Scale bar 10 µm.	  
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Figure 3.4 
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Figure 3.5. GFP::ODR-8 is localized throughout the cytoplasm and the nucleus, and 

exhibits perinuclear enrichment indicative of ER association.  

(a,b) Two representative images of GFP::ODR-8 localization in AWA neurons at (a) high 

and (b) low expression levels.  

(c,d) Two representative images of GFP::ODR-8 localization; white arrowheads point to 

AWA cell bodies; yellow arrowheads point to perinuclear enrichment. Scale bar 10 µm.	  
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or die at larval early larval stages at which point ODR-10::GFP expression is relatively 

AWA.  Therefore to examine effects of ufm-1 on chemoreceptor localization, we used an 

AWB::ODR-10::GFP transgene that is strongly expressed in young animals and regulated 

by odr-8.  Compared to wild type L1-stage larvae, ufm-1(gk379) larvae showed 

significantly higher levels of ODR-10::GFP in AWB cilia, and lower levels of ODR-

10::GFP in the cell body (Fig.3.6.a-f).  Moreover, the ODR-10::GFP in the AWB cell body 

of ufm-1(gk379) larvae appeared near the plasma membrane and not in the puncta seen in 

wild type animals (Fig. 3.6.c).  In a few animals, ODR-10::GFP was present at the plasma 

membrane throughout the cell, a phenotype resembling unc-101(µ1 adaptor) mutants. 

Collectively, these results suggest that UFM-1 negatively regulates the transport of ODR-

10 from the cell body to the cilia, and perhaps the surface level and distribution of ODR-

10.   

In gk379; odr-8(ky173) double mutants, ODR-10::GFP instead shows bright AWB 

cilia labeling, in contrast with the ER retention observed in odr-8 alone (Fig. 3.6.b,e,f).  

This striking suppression (Fig. 3.6.g) suggests that UFM1 conjugation is responsible for 

the ER retention of ODR-10 in odr-8 mutants. Collectively, these results indicate that odr-

8 (UfSP2) and ZK652.3 (UFM-1) have antagonistic roles in the regulation of ODR-10 

transport, and therefore one consistent with the possibility that the ODR-10 localization 

defect in odr-8 is due to a defect in UFM1 deconjugation from substrate proteins.  

 T03F1.1 encodes the predicted C. elegans homolog of Uba5, an E1 enzyme for 

UFM1(Komatsu et al., 2004).  A putative null allele for T03F1.1(ok3364) did not show a 

marked change in ODR-10::GFP distribution in AWA neurons compared to wild type (Fig. 

3.7). Similarly the T03F1.1(ok3364) deletion did not suppress the ODR-10::GFP  
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Figure 3.6. ufm-1 is required for ER retention of ODR-10::GFP in odr-8 mutants.  

(a-f) Representative images depicting ODR-10::GFP distribution in AWB neurons of L1 

larvae of indicated genotypes.  Two examples each are provided for ufm-1(gk379) (c,d) 

and ufm-1:odr-8 (e,f) to show the variations in degree of ODR-10::GFP distribution along 

the processes, and ODR-10::GFP surface labeling of the soma.  kyls156 transgene was 

used to drive ODR-10::GFP in AWB neurons. Scale bar 10 µm.	  	  

(g) Fluorescence quantification of ODR-10::GFP localization in AWA cilia and cell body 

represented as a ratio.  12-18 animals used per genotype for fluorescence quantification. 

Error bars, SEM.  Compared using Dunn’s multiple comparison test. 
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Figure 3.6 
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Figure 3.7. A deletion in T03F1.1/Uba5 (the putative E1 enzyme for UFM1) did not lead 

to a marked change in ODR-10::GFP localization.  Fraction of animals displaying ODR-

10::GFP enrichment at AWA cilia. (n>50 animals for all genotypes). 
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localization defect of odr-8(ky31) mutants (Fig. 3.7). T03F1.1(ok3364) animals are viable 

and healthy, in contrast to the early larval arrest and lethality of ufm-1(gk379) mutants, 

suggesting that T03F1.1 is not the only E1 enzyme for UFM-1. 

 

odr-8 mutants show an increase in UFM1 immunoreactivity, suggesting a defect in 

UFM1 deconjugation  

 In addition to the genetic analysis mentioned above, a molecular approach was 

employed to ask whether odr-8 mutants fail to remove UFM1 from its substrates or to 

conjugate it in the first place. Wild type and odr-8(ky31) animals were lysed to obtain 

protein extracts that were subsequently centrifuged to obtain cytosolic and membrane 

fractions, which were probed for immunoreactivity against UFM1 (Fig. 3.8).  Preliminary 

results revealed the presence of a 9kDa band in the cytosolic fraction of both genotypes, 

the predicted size of unconjugated UFM1 protein. Additional higher molecular weight 

bands were detected in the cytosolic and membrane fractions of both genotypes. These 

bands may represent endogenous target proteins with UFM1-conjugation, and their 

presence in odr-8 protein extracts suggests that ufm-1 can be conjugated to substrates in 

odr-8 mutants. Moreover, a subset of the UFM1-immunoreactive bands, appeared to 

increase in odr-8 protein extracts, the pattern expected for a potential target of ODR-8 (Fig 

3.8.a,b).  
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Figure 3.8. UFM1 immunoreactivity may be upregulated in odr-8 mutants.  

(a) Western blot probed for immunoreactivity against UFM1.  The presence of UFM1 and 

UFM1 conjugated proteins was assessed in the cytosolic and membrane fractions extracted 

from either wild type worms or odr-8 mutants.  [kyls156=str-1::ODR-10::GFP, driving 

expression of ODR-10::GFP in AWB neurons].    

The red and yellow arrowheads point to bands that appear upregulated in odr-8 mutants.  

See (b) for a close up of these bands from the cytosolic fraction along with a loading 

control.  The star denotes BSA added to the membrane fraction. (Representative of n=2 

experiments). 
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Figure 3.8 
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Discussion 

 

 Both odr-8 (UfSP2) and ufm-1 (zk652.3/UFM1) affect localization of the GPCR 

ODR-10 to C. elegans chemosensory cilia.  odr-8 mutants display ER retention of the 

tagged ODR-10 odorant receptor, whereas ufm-1 mutant animals show increased ODR-10 

localization in the cilia near the cell surface in the soma, and occasionally in axon and 

dendrite processes. ufm-1 is epistatic to odr-8 in double mutants, such that ODR-10 is no 

longer retained in the ER. This result suggests that UFM-1 conjugation of substrates is 

required for the ODR-10 ER retention phenotype of odr-8 mutants. UFM-1 conjugation to 

one or more substrates may inhibit ODR-10 transport from the ER, whereas ODR-8 

mediated deconjugation of UFM-1 alleviates this inhibition, leading to the ER exit of 

ODR-10 and entry into the ciliar transport pathway.  A regulated balance of these two 

activities may be a mechanism to control surface levels of chemoreceptors like ODR-10.  

 

Subcellular distribution of ODR-10 diacetyl receptor in wild type and odr-8 animals 

Colocalization analyses with tagged reporter proteins for different subcellular 

organelles revealed ODR-10 enrichment in cilia and in somatic compartments marked with 

an endosomal marker and a Golgi marker. A previous study identified a steady-state pool 

of ODR-10 in RAB-8 positive compartments in AWB chemosensory neurons (Kaplan et 

al., 2010), consistent with this observation. On the other hand, in odr-8 mutants, ODR-

10::GFP showed perinuclear colocalizing with two ER markers, a pattern that was not seen 

in wild type.  ER retention resulting in poor surface expression is often associated with 

transmembrane proteins that exhibit improper folding or incomplete oligomeric assembly, 
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and regulation of ER exit represents a common step for accessory protein action (Bush and 

Hall, 2008; Dong et al., 2007). For example, mammalian odorant receptors and pheromone 

receptors are poorly expressed and trapped in the ER of heterologous cells, unless 

coexpressed with accessory proteins such as RTPs or members of the M10 family of MHC 

molecules(Loconto et al., 2003; Saito et al., 2004).  

 

 

odr-8/UfSP2 and ufm-1/UFM1 mutant phenotypes reveal a physiological role for the 

UFM1-conjugation system 

 

 UFM1 is a recently identified member of the growing class of ubiquitin-like (UBL) 

molecules that is highly conserved across eukaryotic species, including most sequenced 

multi-cellular animals and plants, but not in yeast (Komatsu et al., 2004).  Likewise, the 

enzymes involved in its conjugation cascade (E1 UBA5, E2 UFC1, E3 UFL1) are also well 

conserved(Komatsu et al., 2004; Tatsumi et al., 2010).  Analogous to the role played by 

de-ubiquitinating (DUB) enzymes for ubiquitin, UfSP2 and UfSP1 encode two UFM-1-

specific cysteine proteases.  UfSP2, the longer of the two proteases, is found in most if not 

all multicellular organisms including plants, whereas UfSP1 is not present in nematodes 

and plants(Ha et al., 2011; Kang et al., 2007).  While recent studies reflect a growing 

biochemical and structural characterization of the enzymatic cascade for UFM1 

conjugation, a biological function for UFM1 was not known. 

 Previous work identified odr-8 as an important regulator of chemoreceptor 

transport to the cilia, and my efforts revealed its molecular identity as the nematode 
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homolog of UfSP2, suggesting a physiological significance of UFM1 conjugation in this 

process.  While odr-8 mutants exhibit defects in chemotaxis and in the localizaton of a 

subset of chemoreceptors to sensory cilia, mutant animals seem superficially healthy and 

do not display any striking defects in development, morphology or locomotion.  

Furthermore, rather than a more general role in cilia development or ciliary protein 

transport, odr-8 mutations disrupt chemoreceptor distribution without affecting localization 

of G-proteins, TRP channels and cGMP-gated ion channels at the cilia(Dwyer et al., 1998).  

Consistent with a restricted function, expression of odr-8 was detected only in a subset of 

chemosensory neurons in the head and the tail, a pattern analogous to that observed for 

odr-4 (Dwyer et al., 1998), which in turn matches well with the two mutants displaying 

identical phenotypes.   

GFP::ODR-8 protein was detected throughout the cytoplasm and the nucleus but 

not at the cilia, and was particularly enriched in the perinuclear region associated with ER 

proteins.  Given the ODR-10 ER retention phenotype of odr-8 mutants, the association of 

ODR-8 with the ER may be relevant for regulating chemoreceptor transport from the ER to 

the cilia.  Providing further support to this idea, a similar localization pattern, including 

nuclear presence as well as ER-enrichment, was observed for mammalian UfSP2 when 

expressed in heterologous cells(Ha et al., 2011).   

The distribution of mCherry::ODR-8 protein fusion, however, only partly matched 

that of the GFP::ODR-8 protein or that of the mammalian myc::UfSP2 in HEK cells, with 

a less prominent ER enrichment of mCherry::ODR-8, and a more punctate distribution in 

the cell body.  The mCherry::ODR-8 protein has only been examined in cells expressing a 

high level of ODR-10::GFP and its puncta showed a very high degree of colocalization 
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with coexpressed ODR-10::GFP sites in the soma. In an interesting scenario, ODR-8 

protein may be redistributed by overexpressed ODR-10::GFP. Additional experiments in 

progress should test these possibilities.  

 

UFM-1 limits ODR-10 transport from the ER, regulating surface expression at the cilia 

 C. elegans ufm-1(gk379) homozygotes arrest or die as early larvae. The knockout 

phenotype for mouse Uba5, the E1 enzyme is also lethal but since the gk379 deletion also 

disrupts an adjacent gene (coq-5), rescue experiments are needed to clarify whether the 

lethality reflects a requirement for ufm-1 or coq-5. 

 ODR-10::GFP cilia expression showed a marked increase in ufm-1(gk379) animals, 

with a corresponding decrease in the soma. This observation suggests that UFM-1 

negatively regulates ODR-10 transport to cilia.  Moreover, ODR-10::GFP that remained at 

the soma in these mutant animals appear to localize on or near the cell surface.  

ufm1(gk379) suppressed the ODR-10::GFP localization defect of odr-8 animals.  These 

results suggest that UFM1 is required for the ER retention of ODR-10 in odr-8 mutants. 

Our model for chemoreceptor traffic would suggest that UFM1 acts at the ER to restrict the 

rate of ODR-10 exit.  Indeed, cell-fractionation experiments have demonstrated the 

presence of UFM1, UFM1-conjugates, and the E3 enzyme UFL1 in fractions enriched for 

ER proteins(Kang et al., 2007; Tatsumi et al., 2010).  Hence, a balance between UFM1 

function and ODR-8/UfSP2 activity may control the net movement of ODR-10 from the 

ER to the cilia. 

 In addition to the genetic argument, preliminary results using an antibody against 

human UFM1 suggest increased immunoreactivity against UFM1-modified proteins in 
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odr-8(ky31) mutants. Identification of these substrates may shed further light into the 

means by which UFM1 controls ODR-10 transport. ODR-10 itself and ODR-4 are prime 

candidates for UFM-1 conjugation, and are under investigation.  The only UFM1 target 

identified thus far, DDRGK1, could also be involved, but there is no existing mutant allele 

for this gene in C. elegans. 

 While mutants for the UFM1 E2 and E3 enzymes are not available, examination of 

a putative C. elegans E1 for UFM1, T03F1.1/Uba5(ok3364) mutants, showed neither an 

increase nor a decrease in ODR-10 transport to the cilia.  While this phenotype is 

surprising and the reason behind it remains unclear, it is likely that another E1, perhaps the 

closely related protein Uba4 (known as MOC-3/UBA-4 in C. elegans) may act redundantly 

with UBA-5. 
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Chapter 4 

Conclusion and Future Directions 

 

Summary 

As masters of cell compartmentalization, neurons are polarized into two primary 

domains that are morphologically and functionally distinct: a single long axon and one or 

more dendrites.  The distinct properties of these two compartments rely on the differences 

in their molecular composition.  Hence, understanding the mechanisms that target 

constituent proteins to specific domains is a fundamental question for neuronal cell biology 

and function. 

Here, I have described my thesis work aimed at understanding these mechanisms 

that regulate the transport of neuronal proteins to their respective subcellular destinations.  

I established an in vivo system to visualize axon-dendrite compartmentalization in C. 

elegans neurons by expressing two fluorescently-tagged presynaptic molecules in PVD 

mechanosensory neurons.  A visual screen for mutants identified unc-33/CRMP, a 

homolog of mammalian Collapsin Response Mediator Proteins (CRMPs), as a major 

regulator that establishes the restricted localization of axonal as well as dendritic 

molecules.  Furthermore, a candidate approach revealed that unc-44/ankyrin mutants share 

the phenotypes of unc-33/CRMP mutants.  The loss of axon and dendrite identities seem to 

result from misdirected transport: in mutants, the axonal kinesin UNC-104/KIF1A actively 

transports axonal proteins to both axons and dendrites, and the distinctive organization of 

axonal and dendritic microtubules is altered.  UNC-33 is axonally localized, and through 

the action of UNC-44 shows further enrichment in a proximal axonal region, reminiscent 
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of the axon initial segment – a spatial and physiological landmark with emerging roles in 

neuronal polarity.   

Next, in order to further characterize dendritic protein transport, and potentially 

identify the motor protein responsible for GPCR transport to sensory cilia, I focused on 

understanding the role of odr-8.  odr-8 mutants were identified in C. elegans screens for 

olfactory mutants or defective GPCR localization.  Mutants are defective at localizing 

chemoreceptors such as ODR-10, the diacetyl receptor, to the chemosensory cilia in 

neurons.  Using Illumina/Solexa whole genome sequencing, I identified odr-8 as a gene 

encoding the C. elegans homolog of UfSP2.  Mammalian UfSP2 acts as a cysteine-

protease specific for UFM1, a ubiquitin-like molecule, whose function remains to be 

identified.  odr-8 mutants exhibit ER retention of ODR-10::GFP.  In contrast, ufm-1 

mutants show enhanced levels of ODR-10 at the cilia and cell body surface.  Double 

mutants show suppression of the odr-8 phenotype, rescuing ODR-10 ciliary enrichment.  

odr-8 functions cell autonomously to regulate ODR-10 transport.  GFP::ODR-8, diffusely 

distributed throughout the cytosol and the nucleus, shows peri-nuclear enrichment 

suggesting ER association.  This suggests that ODR-8 may act at the ER in opposition to 

UFM-1 function to regulate ODR-10 transport from the ER to the cilia.   

 

Future Directions 

 

Screen: Additional regulators of axon-dendrite compartmentalization 

 Considering the possibility that mutants with defects in neuronal polarity may also 

have defects in other polarized cell types, we reasoned that these animals might be 
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extremely sick or even lethal, making it likely that one would fail to isolate these in a non-

clonal pool of F2s.  Hence, I performed an EMS-based F1 clonal screen examining ~40 F2 

progeny from each cloned F1 for the localization of mCherry::RAB-3 and SAD-1::GFP in 

PVD as well as FLP neurons.  This screen that led to the identification of unc-33(ky880) 

was a particularly small screen, examining ~4000 animals representing ~200 mutagenized 

genomes.  This work established RAB-3 and SAD-1 distribution in PVD neurons as a 

suitable system to examine axon-dendrite compartmentalization.  Clearly, further 

pursuance of this screen is likely to yield additional important regulators of axon-dendrite 

polarization.   

 

i.) Extracellular cues:  Given the documented roles of unc-6/netrin, slt-1/Slit and WNTs in 

regulating neuronal polarity(Ou and Shen, 2011), it would be interesting to see if they act 

in regulating PVD axon-dendrite polarization.  Since PVD polarity is aligned along the 

dorsal-ventral axis, unc-6 and slt-1 are prime candidates for orienting PVD axon-dendrite 

development.  

 While extracellular information has been shown to spatially organize axon-dendrite 

development and regulate protein transport in C. elegans neurons, its requirement for axon 

or dendrite growth per se requires further examination.  Future experiments can help 

identify cues that are required for PVD axon growth, and thereby assess if the same set of 

cues or distinct cues function together to co-ordinate morphological polarization and 

molecular composition of axons versus dendrites. 
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ii.) Regulation of UNC-33/CRMP function 

 The work presented in Chapter 2 suggests that UNC-44/ankyrin localizes UNC-

33/CRMP to axons, where they may function together to organize axonal microtubules so 

as to differentially recruit axonal kinesins.  Given the observation that the N-terminus of 

UNC-33L is required for its polarized localization, it is possible that UNC-44 or its 

unidentified downstream effector recruits UNC-33L by interacting with its N-terminus.  A 

yeast-two-hybrid approach with this N-terminus or an UNC-33L pull-down experiment 

may test this hypothesis and identify the binding partner.  This would shed light on the 

mechanism by which UNC-33 localization and hence activity is regulated in C. elegans 

neurons.  In mammals, the significance of ankyrins in regulating CRMP localization 

remains to be tested. 

 Experiments using cultured hippocampal neurons have shown that GSK-3β is a 

major regulator of CRMP-2.  GSK-3β phosphorylates the C-terminus of CRMP-2 at Thr-

514 and Thr-518, once Cdk5 kinase primes the substrate at Ser-522(Yoshimura et al., 

2005).  These phosphorylation events result in a diminished affinity of CRMP-2 for 

microtubules, thereby regulating axon versus dendrite levels of CRMP-2 function 

(Yoshimura et al., 2005).  While the phosphorylation residues do not appear to be 

conserved in the C-terminus of UNC-33, alternative sites are likely given the consensus 

motif for GSK-3β (S/T-X-X-X-S/T).  Thus, it remains to be seen if GSK-3β is also an 

important regulator of polarized protein transport in C. elegans, acting through UNC-33. 

  

 

 



	   138	  

iii.) Regulation of UNC-44/ankyrin function 

 A complete understanding of axon-dendrite compartmentalization would require 

connecting the relevant extracellular cues to UNC-44 as well as UNC-33 localization.  The 

mechanisms defining UNC-44 localization are unknown, mainly due to the complexity of 

the unc-44 locus that is characterized by a multitude of isoforms varying from 3 kb to ~25 

kb in length (Boontrakulpoontawee and Otsuka, 2002; Otsuka et al., 2002; Otsuka et al., 

1995).  However, recent advances in fosmid recombineering may allow the development of 

a translational GFP fusion reporter for UNC-44 that could be used for a forward genetic or 

a candidate screening approach.  Such reporters, in combination with α-UNC-44 

immunofluorescence experiments, can be used to test whether UNC-44 and UNC-33 are 

interdependent for their localization.  

As is true for C. elegans UNC-44, we know next to nothing about how ankyrinG is 

targeted to the AIS in mammalian neurons, and what determines the position of the AIS.  

Recent evidence indicates that the regulation of IκBα, an inhibitor of the transcription 

factor NFκB, may play a role in AIS formation and ankyrinG clustering . IκBα is enriched 

in the proximal axonal region along with ankyrinG, and inhibiting the phosphorylation of 

IκBα prevents AIS formation and ankyrinG clustering.  It remains to be seen whether this 

is a permissive function or an instructive role in spatially defining ankyrinG location. 

 

Understanding the effect of UNC-33 and UNC-44 on microtubules 

 A central observation in the work presented in Chapter 2 is that UNC-44 and UNC-

33 are necessary for the proper organization of axonal and dendritic microtubules that are 

known to have distinct properties.  Axonally localized UNC-33 and UNC-44 seem to 
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stabilize and organize axonal microtubules that may allow the differential recruitment of 

kinesins towards axons while preventing dendritic kinesin-cargo complexes.  While it has 

been shown that UNC-33 and mammalian CRMP proteins can promote microtubule 

assembly in vitro(Fukata et al., 2002), the mechanism of UNC-33 action on microtubule 

regulation needs further analysis.  1.) It will be important to ask whether UNC-33 

promotes microtubule polymerization by bundling microtubules or by inhibiting 

catastrophe or by actively promoting addition of tubulin heterodimers.  Consistent with the 

last of the three scenarios, mammalian CRMP proteins can bind tubulin heterodimers in 

addition to their microtubule binding property.  Assessing UNC-33 distribution on 

microtubules will provide additional information that may inform our understanding of its 

function.  2.) An interesting possibility to consider is whether microtubules polymerized in 

presence of UNC-33 differ from those polymerized without UNC-33.  If so, such 

differences may reveal the fundamental cytoskeletal differences between axonal and 

dendritic microtubules that may regulate polarized transport.  Given that axonal 

microtubules are more stable than dendritic microtubules in mammalian neurons(Witte et 

al., 2008), one could ask whether the microtubules formed with the aid of UNC-33 are 

more resistant to cold-induced or nocodazole-induced deplymerization, compared to 

microtubules formed without UNC-33.  3.) Ultimately, it will be important to connect any 

UNC-33 induced microtubule feature to regulation of kinesin-binding or kinesin-motility.  

Considering that this may or may not be direct, it represents an important but challenging 

question that will need addressing.  

The significance of UNC-44 in organizing neuronal microtubules may either be 

purely due to its effect on UNC-33 distribution, or UNC-44 may have additional roles in 
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regulating microtubule organization, perhaps directly.  Indeed, mammalian ankyrins in the 

brain and erythrocytes can interact with microtubules(Bennett and Davis, 1981, 1982; 

Davis and Bennett, 1984), the significance of which remains to be identified.  Drosophila 

giant ankyrin, Ank2-L, is also able to bind microtubules, and promotes microtubule 

stabilization through its extended C-terminal domain(Pielage et al., 2008).  Similar C-

terminal extensions also exist in mammalian ankyrinG and ankyrinB as well as C. elegans 

UNC-44, and their significance in binding and stabilizing microtubules will require further 

investigation.  

 

Regulation of ODR-10 transport: Identification of UFM-1 substrates 

 The studies on ODR-10 transport regulation by odr-8, presented in Chapter 3, show 

that while odr-8 is required for ER exit of ODR-10, UFM-1 may act to limit ODR-10 

transport from the ER to chemosensory cilia.  While the genetic argument in this analysis 

may be convincing, much work needs to be done, such as the verification of preliminary 

results concerning UFM-1 immunoreactivity, and continued characterization of ODR-10 

and ODR-8 subcellular localization.  In addition, one of the most interesting questions is 

the one raised by the ufm-1(gk379);odr-8(ky173) double mutant analysis.  The suppression 

of the odr-8 phenotype by ufm-1(gk379) suggests that UFM1 conjugation is required for 

ODR-10 ER retention in odr-8 mutans.  Therefore, one important direction for future 

experiments would be the identification of UFM1-modified substrates in neurons, and 

testing if these could result in ER retention of ODR-10.  The significance of ODR-4 for 

ODR-10 transport combined with its subcellular localization, makes ODR-4 a prime 

candidate whose modification by UFM1 may be functionally relevant.  Alternatively, 
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ODR-10 itself may be under direct control of UFM1 modification.  Thus, a candidate-

based approach combined with an unbiased LC-MS/MS analysis of UFM1-pull down 

samples is likely to yield the identity of the relevant UFM1-substrate that may control 

transport of chemoreceptors such as ODR-10. 

 

Significance of odr-8 and ufm-1: A potential Quantity Control and a Quality Control 

mechanism? 

 The results presented in Chapter 3 support, but not prove, the roles of ODR-8 and 

UFM-1 in a quantity control mechanism, where a balance of the two activities regulates the 

level of ODR-10 enrichment at the cilia.  While odr-8 is required for ER exit of ODR-10, it 

would be useful to ask whether overexpression of ODR-8 can increase ODR-10 cilia 

localization.  Similarly, ufm-1(gk379) single mutants clearly show that ufm-1 negatively 

regulates ODR-10 transport from the ER to the cilia.  However, a converse experiment of 

assessing the effect of UFM-1 overexpression on ODR-10 transport may prove 

informative.  Such an experiment may provide further support to the proposed role of 

UFM-1 in regulating ODR-10 surface levels.  Taking these experiments one step further, 

overexpression of UFM1 combined with ODR-8 overexpression can examine the 

importance of relativel levels as opposed to absolute levels in the regulation of ODR-10 

transport. 

ER retention is often associated with misfolded proteins or partly assembled 

complexes(Dong et al., 2007).  The system, regulating protein folding and transport from 

the ER, is referred to as the Quality Control mechanism(Ellgaard and Helenius, 2003).  

The efficient function of the Quality Control system ensures only mature, functional 
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proteins exit the ER for transport to their respective destinations, whereas the misfolded 

proteins get eventually targeted for proteasomal destruction via the ER-associated 

degradation (ERAD) pathway.  The experimental analyses of odr-8 and ufm-1 mutants are 

also consistent with a Quality Control function of the UFM1-modification system; this 

intriguing role, however, is purely speculative and may warrant further investigation.  It 

would be interesting to see if UFM1-conjugation of ODR-10/ODR-4/another substrate 

serves as a mark to label immature ODR-10 protein, causing it to be retained in the ER.  

On the other hand, proper conformational assembly, sensed directly or indirectly by ODR-

8/UfSP2, might result in UFM1-removal, allowing ER exit.  Examination of the 

conformational stability and functional capability of ODR-10 or other chemoreceptors in 

odr-8 and ufm-1 mutants could be used to test this model.  While direct examination of this 

model remains to be done, it is interesting that UFM1, its E3 ligase UFL1, and their lone 

substrate DDRGK1 show marked upregulation in response to elevated ER stress, induced 

by chemical ER stressors  or in genetic models of ischemic heart disease and diabetes 

mellitus 2 (Azfer et al., 2006). 

 

Concluding Remarks 

 The studies presented here show the value of using C. elegans genetics along with 

single-cell resolution analysis of its well-defined nervous system to identify molecules that 

are in vivo regulators of polarized protein transport in neurons.  In addition, examination of 

genetic interactions and subcellular reporter distribution can provide further insight into the 

mechanism by which such molecules control protein targeting.  As in the case of UNC-33, 

UNC-44 as well as for ODR-8, the combination of such studies in C. elegans neurons, with 
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biochemical as well as genetic experiments in additional systems will likely yield a 

complete picture regarding the mechanisms of asymmetric protein transport in neurons.   
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Materials and Methods 

 

Strains and Transgenes 

Wild type nematodes were C. elegans variety Bristol, strain N2.  Strains were cultured 

using standard techniques (Brenner, 1974) at 21-23 C. Some strains were provided by the 

Caenorhabditis Genetics Center.  The following mutants were used: unc-33(e204, e1193, 

ky869, ky880, mn407) IV; unc-34(e315) V; unc-104(e1265) II; unc-44(e362, ky110) IV, 

odr-8(ky26, ky28, ky31, ky41, ky173) IV; odr-4(n2144) III; unc-101(m1) I; Zk652.3/ufm-

1(gk379) III; T03F1.1/Uba5(ok3364) I.  

Germline transformation was carried out as described (Mello and Fire, 1995) using odr-

1::DsRed (25 ng/µl) or unc-122::DsRed (20 ng/µl) as co-injection markers. 

Standard molecular biology techniques were used to generate expression plasmids and 

cDNAs used for transgenes.   

 

Isolation and characterization of unc-33(ky880) and unc-33(ky869) 

A strain expressing RAB-3::mCherry and SAD-1::GFP in PVDs (kyIs445) was 

mutagenized using ethylmethane sulfonate (EMS) according to standard procedures 

(Anderson, 1995).  F1s were cloned onto individual plates, and 40-60 F2 progeny from 

each F1 parent were screened under a compound fluorescence microscope.  Mutants were 

chosen on the basis of dendritic mislocalization of RAB-3::mCherry and SAD-1::GFP, as 

detected by a Plan-Neofluar 40x objective on a Zeiss Axioplan2 microscope, resulting in 

the isolation of ky880. 
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Similarly, a strain expressing RAB-3::mCherry and UNC-2::GFP in AWCs 

(kyIs442) was mutagenized using EMS.  Through an analogous F1 clonal screen, ky869 

was isolated by Y. Saheki as a mutant that showed reduced axonal localization of RAB-

3::mCherry and UNC-2::GFP in AWC neurons.  Further characterization uncovered a 

significant increase in dendritic localization of both markers in AWCs. 

 

Mapping and rescue of ky880 and ky869 

ky880 and ky869 were mapped to the middle of LGIV using single nucleotide 

polymorphisms in the CB4856 strain (Wicks et al., 2001) and sequenced to identify unc-33 

mutations.  Both mutants failed to complement unc-33(e1193) and unc-33(mn407) null 

alleles for Unc and Egl behavior and for localization of RAB-3::mCherry and SAD-1::GFP 

in PVD and FLP neurons, but complemented the hypomorphic allele unc-33(e204) for all 

phenotypes.  This intragenic complementation suggests that unc-33 has two interdependent 

functions, and is consistent with the reported oligomerization of UNC-33/CRMP proteins 

(Tsuboi et al., 2005; Wang and Strittmatter, 1997).  A plasmid driving the expression of an 

UNC-33L cDNA under the regulation of the pan-neuronal tag-168 promoter rescued 

uncoordinated movement, egg-laying behavior, and RAB-3::mCherry and SAD-1::GFP 

localization in PVD neurons in unc-33(ky880) and unc-33(mn407) mutants.   

 

Cloning of odr-8 

Mixed stage CX2386 odr-8(ky31) animals were collected and genomic DNA was isolated 

through proteinase K digestion, followed by phenol-chloroform extraction and ethanol 

precipitation.  Thereafter, purified genomic DNA was submitted to the Rockefeller 
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Genomics Resource Center for Illumina-Solexa whole genome sequencing.  Scott Dewell 

and colleagues at the Genomics Resource Center prepared the library from the genomic 

DNA sample, obtained ~35 bp sequence reads, and aligned it against the worm wild type 

(N2 strain) reference genome to identify putative SNPs.  Patrick McGrath performed 

further alignment against sequence reads obtained for previously sequenced lab strains so 

as to eliminate putative SNPs common to lab strains that may have been used for EMS 

mutagenesis or outcrossing of odr-8(ky31).   

As mentioned in the results section of Chapter 3, the abovementioned sequence 

alignment led to the identification of putative SNPs that may be responsible for the odr-8 

phenotype.  Three of these that resided within the lin-45 and deb-1 interval were 

experimentally tested and excluded based on lack of rescue upon injection of 

corresponding fosmids (5 ng/ul) and PCR amplified gene products (25 ng/ul).  

Subsequently, the candidate G->A SNP affecting the gene F38A5.1 was considered that 

was predicted to result in a nonsense mutation (W419Stop), disrupting the putative 

protease just before its catalytic cysteine residue (C421).  1.) Sanger sequencing of three 

independent PCR products amplifying the putatively affected F38A5.1 region in odr-

8(ky31) animals confirmed the G->A SNP corresponding to W419.  2.) PCR amplification 

of F38A5.1 exons and splice junctions from the four additional odr-8 alleles identified 

mutations in F38A5.1 that were either nonsense changes or a missense change affecting a 

conserved histidine.  3.) F38A5.1 genomic region was PCR amplified with its exons, 

introns, 3’ UTR, and either 1.6 kb or 2.6 kb upstream region.  These two PCR products 

were injected at ~25 ng/ul (along with Coel:: DsRED co-injection marker at ~20 ng/ul) 

into odr-8(ky31); kyIs53 animals, where kyIs53 is the reporter driving ODR-10::GFP in 
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AWA neurons.  L4s or young adults from multiple lines were scored for both sets of 

injections.  For both PCR products injected, animals with the transgene exhibited wild type 

patterns of ODR-10::GFP localization, compared to animals without the transgene that 

showed cell body retention of ODR-10::GFP in AWA neurons.  Based on these three lines 

of evidence, it was concluded that F38A5.1 corresponds to odr-8.  

 

Analysis of ODR-10::GFP localization in ufm-1(gk379) animals  

ufm-1(gk379) homozygous animals are either arrested or dead at an early stage in L1.  

Hence, using a balancer, they are maintained as heterozygotes ufm-1(gk379)/hT2.  For the 

analysis of ODR-10::GFP expressed in ufm-1 single mutants or ufm-1; odr-8 double 

mutants, 20-30 ufm-1 heterozygous adults were allowed to lay eggs for 2 hours or 4 hours.  

After about 11-13 hours, most embryos had hatched at room temperature.  These progeny 

were allowed to grow for 1-2 days before the balancer-positive non-arrested progeny was 

removed from the plate.  No balancer-negative animal escaped the L1 arrest.  These ufm-1 

homozygous progeny, with or without the odr-8(ky173) mutation were examined for ODR-

10::GFP about 3-4 days post-hatching.  The reason for doing so was to bypass a potential 

maternal contribution of UFM-1.  In case of wild type and odr-8(ky173) single mutant 

animals, the hatch-off technique was used to obtained synchronized L1s.  Animals were 

examined at roughly 3 hour intervals.  Fluorescence quantification data for these genotypes 

corresponds to 5-7 hour-old L1s.   
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Fluorescence microscopy and quantification 

Animals were mounted on 2% agarose pads in 10 mM sodium azide. For unc-33 

experiments, L4 larvae or young adult animals were used for analysis of fluorescently 

tagged markers in PVD, whereas L1 stage and L4 stage larvae were examined for the 

analysis of ODR-10::GFP in AWB neurons (kyIs156 transgene).  Wild type animals 

generally showed >15 bright RAB-3::mCherry and SAD-1::GFP puncta in PVD axons, no 

dendritic puncta, and faint or nonexistent fluorescence in the primary dendrites, with 

modest variations depending on expression level of the transgene. Animals were scored as 

having reduced axonal labeling if there were fewer than 12 bright puncta in PVD axons, 

and were scored as having ectopic dendritic labeling if bright RAB-3::mCherry or SAD-

1::GFP puncta were present in PVD secondary dendrite branches. Several independent 

transgenic lines were examined for each transgene in each genetic background. 

 For odr-8 experiments, animals were mounted on 2% agarose pads in 400uM 

tetramisole or 10 mM sodium azide.  L4 and adult animals were analyzed for ODR-

10::GFP distribution in AWA neurons, whereas L1 staged as well as L4/adults were 

examined for ODR-10::GFP localization in AWB neurons. 

 Z-stacks of fluorescent images were acquired on a Zeiss Axioplan2 imaging system 

or on a Zeiss LSM510 META laser scanning confocal imaging system.  Wide-field and 

confocal z-stacks were processed using Metamorph or ImageJ (NIH) to obtain maximum 

intensity projections. 

 For the quantification of fluorescence intensities of RAB-3::mCherry and SAD-

1::GFP in PVD axons and dendrites, fluorescent z-stacks were acquired under consistent 
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detector settings using a Hamamatsu Photonics C2400 CCD camera and Metamorph 

software, under a 40x Plan-Neofluar on the Zeiss Axioplan2 imaging system. ImageJ was 

used to measure fluorescence intensities.  We obtained maximum projections of axonal 

focal planes and dendritic focal planes for one PVD in each animal.  Background intensity 

was subtracted and fluorescent clusters with signals above an arbitrary threshold were 

scored for total fluorescent intensity.  Identical thresholds were used for the quantification 

of each image.  10-17 worms per genotype were scored. 

 Using the same process, ODR-10::GFP fluorescence quantification was performed 

on the soma and cilia of AWB neurons in wild type, odr-8(ky173), ufm-1(gk379) and ufm-

1;odr-8  animals.  Using ImageJ (NIH), background fluorescence was estimated and 

subtracted for each of the subcellular regions, and the outlines of cell body and cilia were 

traced to obtain information about the fluorescence profile.  

 For the quantification of UNC-33::GFP in PVD axonal domains, fluorescent z-

stacks were obtained as above, using the 63x Plan-Apochromat objective on the Zeiss 

Axioplan2 system, and fluorescence measurements were performed using Metamorph. Z-

stack planes with ‘axonal proximal domain’ and ‘axonal initial domain’ in focus were 

selected for maximum intensitiy projections.  Background fluorescence was substracted for 

each image, and a line tool was used to measure the fluorescence along the axonal 

domains.  This average fluorescence for each axonal segment was used to calculate the 

‘axon initial’/‘axon proximal’ ratio for Figure 2.3e. 
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Heat-shock experiments 

For unc-33 experiments, animals were synchronized by allowing bleached eggs to hatch 

overnight in M9 buffer (22 mM KH2PO4, 22 mM Na2HPO4, 85 mM NaCl, 1 mM MgSO4) 

without food; the resulting larvae, synchronized at the L1 larval stage, were then fed and 

allowed to develop at 21-23°C.  Animals were provided a 2 hour pulse of heat-shock at 

33°C at varying time points, then recovered at 21-23°C.  For each heat-shock time point, a 

corresponding group of animals was examined using DIC on the Zeiss Axioplan2 

microscope to confirm the developmental stage at which animals were being heat-shocked.  

Adult animals were scored for the localization of RAB-3::mCherry and SAD-1::GFP in 

PVDs.  

 ODR-10::GFP localization defect in odr-8(ky31) animals was rescued by providing 

a 2 hour pulse of 33°C heat-shock to L4s or young adults.  Animals were allowed to 

recover at 21-23°C for 8 hours, before examining them for enrichment of ODR-10::GFP in 

AWA cilia. 

 

 

Immunofluorescence 

Antibodies used as well as their corresponding dilutions are as follows: DM1A anti-α-

tubulin (mouse monoclonal, Sigma) 1:400, GT335  anti-glutamylated tubulin (mouse 

monoclonal, a gift from C. Janke and B. Edde, CNRS) 1:500, 6-11B-1 anti-acetylated-α-

tubulin (mouse monoclonal, Sigma) 1:500, AB3201 anti-detyrosinated-α-tubulin (rabbit 

polyclonal, Millipore) 1:200, TUB-1A2 anti-tyrosinated- α-tubulin (mouse monoclonal, 
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Sigma) 1:200, 24H11 anti-UNC104 (mouse monoclonal, S. Koushika, unpub.) 1:250.  

Rabbit polyclonal antisera (Q3201 and Q3203) against an UNC-33L – specific fragment of 

UNC-33 (amino acid 29 to amino acid 128 of UNC-33L sequence) were generated using 

genomic antibody technology by Strategic Diagnostics, DE, and used at 1:250 dilution for 

immunostaining.  Antisera from both rabbits yielded similar UNC-33L localization results.  

The secondary antibodies, Alexa Fluor 488-conjugated goat anti-mouse IgG and Alexa 

Fluor 488-conjugated goat anti-rabbit IgG, (Invitrogen) were used at 1:400 or 1:500 

dilutions.  

Whole mount immunostaining was performed according to the peroxide tube 

fixation protocol (Duerr JS, Wormbook 2006), except that animals were fixed in 2% 

paraformaldehyde as described previously (Ruvkun and Giusto, 1989).  Briefly, nematodes 

were rocked in the fixation solution for 20 min at room temperature prior to freezing, and 

overnight at 4°C post freezing.  Fixed animals were permeabilized in TTB buffer (100 mM 

Tris pH 7.4, 1% Triton X-100, 1 mM EDTA buffer) containing 1% β-mercaptoethanol for 

2 hrs at 37 C, washed with BO3 buffer (10 mM H3BO3 pH 9.4, 0.1 % Triton X-100), 

reduced by 15 min incubation with 10 mM dithiothreitol in BO3 buffer at 37°C, washed 

with BO3 buffer, and sulfhydryl groups were oxidized by gentle agitation treatment with 

BO3 buffer containing 1% H2O2 for 1 hour at 25°C.  Samples were washed and incubated 

for 15-30 min with ABB buffer (PBS containing 0.5 % Triton X-100, 1 mM EDTA, 0.05% 

sodium azide and 0.1% BSA), and stored at 4°C in ABA buffer (PBS containing 0.5 % 

Triton X-100, 1 mM EDTA, 0.05% sodium azide and 1% BSA) until further use.  Animals 

were gently rocked and incubated overnight at 4°C in primary antibody solutions in ABA 

buffer, washed with ABB buffer; rocked in secondary antibody solutions in ABA buffer 
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for 2 hours at room temperature, and washed with ABB buffer.  The resulting animals were 

mounted on 2% agarose pads containing 50 mM Tris (pH 8.5) and 5 mM MgCl2 for 

visualization under the microscope.  

	  

Sub-cellular Fractionation and Western Blotting using anti-human UFM1 

Preparation of worm extracts and sub-cellular fractionation was performed according to 

Burbea et al. (Burbea et al., 2002) with some modifications.  Briefly, mixed stage worms 

were collected and extracts were prepared using a Barocycler in Buffer A (50 mM Hepes 

pH 7.7, 50 mM Potassium Acetate, 2 mM Magnesium Acetate, 1 mM EDTA, 250 m M 

sucrose) containing  protease inhibitors (leupeptin, chymostatin, elastatinal, pepstatin A, 

PMSF).  Cytosolic and membrane fractions were isolated by spinning at 55,000 rpm in a 

Ti70 rotor (Beckman).  The supernatant from this spin was the cytosolic fraction, used 

directly for western blotting.  The membrane fraction pellets were resuspended in Buffer 

A, supplemented with  7mM β-mercaptoethanol.  These were solubilized with (50 mM 

TRIS-HCl (pH 8.5), 1% SDS, 2 mM DTT) and diluted with 5 volumes of 50 mM Hepes 

(pH 7.7) buffer containing BSA to be used for western blotting or immunoprecipitation 

experiments.  Standard techniques were used for SDS-PAGE electrophoresis, transfer to 

nitrocellulose membranes and incubationg with primary and seconday antibodies.  The 

primary antibodies used were anti-human UFM1 (rabbit polyclonal, Boston Biochem, 

1:200) and DM1A anti-α-tubulin (mouse monoclonal, Sigma, 1:10000).  
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