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  MECHANISTIC AND PHYSIOLOGICAL STUDIES OF THE INSULIN-
                          DEPENDENT REGULATION OF FOXA2 
 
                                          Jessica Jean Howell, Ph.D.
                                    The Rockefeller University 2009 
   

The Forkhead box A2 transcription factor (Foxa2/HNF-3β) has been 

shown to be a key regulator of genes involved in the maintenance of glucose 

and lipid homeostasis in the liver, and is constitutively inactivated in several 

hyperinsulinemic/obese mouse models, thereby enhancing their metabolic 

phenotypes.  Foxa2 is activated under fasting conditions, but is inhibited by 

insulin signaling via PI3K/Akt in a phosphorylation-dependent manner, which 

results in its nuclear exclusion.  However, the mechanism and relative 

importance of nuclear export have not yet been elucidated.  In addition, the 

existence and potential role of insulin-dependent regulation of Foxa2 have not 

been studied in other tissues where it is expressed, such as the gut, lung, and 

hypothalamus.   

Here we further investigate the regulation of Foxa2 by insulin and the 

mechanism and relevance of its nuclear exclusion.  We demonstrate that 

differential regulation of Foxa2 exists in different mouse models, that this 

variability is dependent on circulating insulin levels, and that Foxa2 activity 

correlates with metabolic function.  We further show that Foxa2 contains a 

functional nuclear export signal and is excluded from the nucleus via a CRM1-

 



     dependent pathway in response to insulin signaling.  Our data provide direct 

     evidence that nuclear export-defective Foxa2 is phosphorylated and inactivated 

     by insulin both in vitro and in vivo, suggesting that phosphorylation itself is the 

     main regulatory event regulating the activity of Foxa2, and not nuclear 

     exclusion per se.  Finally, we provide evidence for and physiological 

     consequences of insulin-dependent inactivation of Foxa2 in two other 

     metabolic organs: the hypothalamus and the lung. 
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INTRODUCTION 

Globally, diabetes is ranked by the world health organization as the fifth 

leading cause of death (1).  Using data from 2003, the international diabetes 

foundation estimated that 194 million people, ages 20-79 (roughly 5% of the 

world’s population) have diabetes.  An additional 8% show signs of impaired 

glucose tolerance, a high risk factor for the development of type 2 diabetes (2).  

With the death rate from diabetes mellitus having increased by 45% from 1987-

2002, it is imperative that we understand the underlying causes of this complex 

disorder (3). 

Originally described as nonketotic, or non-insulin-dependent diabetes, 

type 2 diabetes mellitus is a complex disease characterized by abnormal glucose 

tolerance and hyperglycemia due to increased insulin resistance in combination 

with relative insulin deficiency (4).  While it has become clear that obesity (5, 6), 

fat distribution (5), and physical inactivity (6) are all risk factors correlated with 

the development of type 2 diabetes, the molecular mechanisms connecting 

these risk factors to the onset of insulin resistance and relative insulin 

deficiency resulting in type 2 diabetes remain unclear.     

 Understanding the pathology of diabetes requires an intricate knowledge 

of the cellular signaling associated with insulin.  In mammals, insulin is the 

main hormone regulating the maintenance of glucose homeostasis.  In fasting 

states there exists a balance between glucose production and tissue uptake and 
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utilization, such that blood glucose levels are maintained within a narrow range.  

In response to increased glucose levels, such as after a meal, insulin secreted 

from pancreatic beta cells induces the uptake of glucose into peripheral tissues 

and inhibits endogenous glucose production, thus restoring and maintaining 

normoglycemia.  Conversely, in fasting states when glucose and insulin levels 

are low, and glucagon levels are increased, this suppression is relieved. (7) 

The liver plays an essential role in this process of glucose homeostasis 

and is a main target of insulin action.  When insulin levels are high, hepatic 

programs of gluconeogenesis, glycogenolysis and fatty acid beta oxidation are 

suppressed (8).  Though the effects of insulin are pleitropic and complex, this 

suppression occurs in large part through the transcriptional inhibition of key 

rate limiting enzymes in these pathways (9).  To this end, the forkhead box A2 

transcription factor (Foxa2/HNF3β) has been shown to be a key regulator of 

genes involved in the maintenance of glucose and lipid homeostasis in the liver 

(10, 11). 

The forkhead superfamily of transcription factors, of which Foxa2 is a 

member, is defined by a conserved, 110-amino acid winged-helix DNA binding 

domain (12).  Currently more than 100 members have been assigned to this 

gene family in species ranging from yeast to humans (13).  However, there is 

very little sequence conservation outside of the winged helix domain in many 
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of these genes, where even subtle changes have been seen to affect DNA 

binding (13, 14).  Consequently the different forkhead family members have 

been found to affect a varied array of target genes with functions ranging from 

regulation of development in a wide variety of tissues (15, 16), to DNA repair 

(17), and apoptosis (18).  Some forkhead proteins have been shown to act as 

transcriptional activators while others act as repressors.   

The hepatocyte nuclear factor 3 (HNF-3)/forkhead family of 

transcription factors in mammals includes three genes designated Foxa1 (HNF-

3α), Foxa2 (HNF-3β) and Foxa3 (HNF-3γ), which have overlapping patterns of 

tissue expression, including gut, central nervous system, neuroendocrine cells, 

and lung (14, 19).  Originally identified as liver-enriched proteins that bind to 

specific sequences in the transthyretin (TTR) and alpha1-antitrypsin (α1-AT) 

promoters and activate their transcription (20), the HNF-3 (Foxa) proteins are 

generally considered to be the founders of the forkhead family (identified at the 

same time as the drosophila fork head protein) (14).   

Foxa proteins have subsequently been shown to be critical regulators of 

development, growth and metabolism in worms, flies and mammals.  Reduced 

levels of pha-4, the Foxa homologue in worms, leads to developmental arrest 

and, post-embryonically, inhibits the ability of the organism to respond to 

dietary manipulations (21).  Simultaneous knock-down of daf-16, the Foxo 
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homologue, had an additive effect on dauer recovery in worms, suggesting that 

these two factors function in parallel pathways.  Furthermore, dietary 

restriction leads to increased expression of pha-4, which activates genes that 

protect against oxidative damage (e.g. superoxide dismutase) (22). 

Mouse genetic studies have also revealed important roles for murine 

Foxa genes in development and metabolism. In livers of adult mice, Foxa2 

activity has been shown to mediate fasting responses, including fatty acid 

oxidation, ketogenesis, and increased VLDL and HDL secretion, by activating 

gene expression of key enzymes of these pathways (10, 23, 24).  

The DNA-binding domain of Foxa3 has been crystallized bound to its 

target DNA sequence, revealing monomeric DNA-binding and a novel 

“winged helix” motif (25).  The extent and pattern of sequence conservation in 

the DNA-binding regions of known members of the forkhead family indicates 

that all forkhead family members share this basic structural domain.  In 

particular, this is assumed to be the case for Foxa1 and Foxa2 which share 95% 

and 90% sequence identity in this region, respectively.   

Interestingly, it was also observed that this Foxa DNA binding domain is 

similar in structure to that of the linker histone H5 (25).  However, in contrast 

to linker histones that compact DNA in chromatin and repress gene 

expression, FoxA proteins are associated with transcriptionally active 

chromatin and may decompact DNA from the nucleosome (26, 27).  
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Additionally, this high affinity DNA-binding site in combination with C-

terminal regions mediating interaction with histones H3 and H4 have been 

shown to enable Foxas to act as pioneer transcription factors, which are able to 

decompact DNA from nucleosomes without ATP-dependent enzymes (26).   

While Foxa proteins share very high sequence homology within the 

DNA binding domain (as well as a suggested common consensus sequence for 

DNA binding (28)), Foxa proteins are not entirely redundant in function.  

Outside of this conserved region, Foxa1 and Foxa2 are only 39% identical, 

with Foxa3 being even more distinct (14).  Accordingly, these differences are 

reflected in phenotypes of knock-out mice.  Mice homozygous for a null 

mutation in Foxa2 exhibit an embryonic lethal phenotype, lack a notochord 

and exhibit defects in foregut and neural tube development, while Foxa3-

deficient mice develop normally (29-31).  Mice lacking Foxa1 expression 

develop neonatal persistent hypoglycemia, hormonal insufficiencies, pancreatic 

alpha- and beta-cell dysfunction and die between postnatal days 2 and 14 (32, 

33).   

The sequence divergence among the Foxa proteins also allows for 

unique posttranslational modifications and differential DNA and protein 

interactions.  Previous work in our lab has shown that Foxa2, but not Foxa1 or 

Foxa3, is negatively regulated by insulin in the liver.  In unstimulated, or fasting 

states, Foxa2 is consistently observed in the nucleus, and only extensive 
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mutation of the DNA-binding/nuclear localization domains alters this cellular 

distribution (10, 11, 19, 20, 34, 35).  However, in response to increasing 

concentrations of insulin in vitro and in vivo in perfused mouse liver, Foxa2 

shows dose-dependent nuclear exclusion, which corresponds with its 

phosphorylation (10, 36).  This phosphorylation has been mapped to threonine 

156 in a conserved AKT site, and a single point mutation of T156 to alanine 

(T156A) alone abolishes insulin-induced nuclear exclusion.  Insulin has also 

been shown to inhibit transactivation by Foxa2, both in reporter assays, as well 

as in ad libitum fed and hyperinsulinemic mice.  Likewise, this transcriptional 

inactivation is completely alleviated by T156A mutation.  Thus, Foxa2T156A is 

a constitutively active, constitutively nuclear Foxa2 variant. 

Cotransfection of wildtype or constitutively active (but not dominant 

negative) AKT in reporter assays was shown to mimic the effects of insulin on 

Foxa2 transactivation, while inhibition of PI3-kinase signaling repressed the 

effects of insulin.  Direct phosphorylation of Foxa2 by AKT was further 

supported by in vitro kinase assays,  in addition to coimmunoprecipitation 

experiments, in which wildtype Foxa2, but not Foxa2 T156A or R153A (a 

Foxa2 mutant that is unable to bind AKT) can be immunoprecipitated with 

and phosphorylated by AKT (36, 37).  Together these data have led to the 

model proposed in Figure 1. 
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Figure 1.  Model illustrating the regulation of Foxa2 by insulin.  Insulin binds to and activates the 
insulin receptor (IR), which triggers autophosphorylation and the recruitment and phosphorylation of 
insulin receptor substrate (IRS) adaptor proteins.  These proteins transmit the insulin signal by 
activating PI3-kinase, which phosphorylates phosphatidylinositol (4,5) bisphosphate (PIP2) and 
catalyzes the formation of PIP3.  This leads to the phosphorylation and activation of protein kinase B 
(AKT) by PDK1 and the mTORC2 complex.  AKT, which has been found in the nucleus upon 
activation, phosphorylates Foxa2 at T156, which is then excluded from the nucleus and thus 
inactivate.  Insulin withdrawal allows reentry of Foxa2 into the nucleus, presumably through 
regulation of a phosphatase. 

 
Several studies have been carried out to elucidate the function of 

different domains of Foxa2, and are summarized in Figure 2.  In addition to its 

winged helix DNA-binding domain, the regions flanking the C-terminal, and 

partially overlapping the N-terminal end of this domain have been shown to be 
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required for nuclear localization.  Four additional conserved regions have been 

identified and together form two transactivation domains (at the amino and 

carboxy terminal), which are important for target gene discrimination and 

activation (34, 38).  More recently the AKT phosphorylation site and a PGC1β-

interaction domain have been described (24, 36). 

 

 

Figure 2.  Schematic depiction of Foxa2 showing known domains.   II-V, transactivation domains; p, 
phosphorylation site; NLS, nuclear localization signal (N- or C-terminal of the DNA binding 
domain); DBD, DNA binding domain; PGC1β, PGC1β interaction domain. 

 
The importance of the phosphorylation site has been further analyzed in 

mouse models of type 2 diabetes.  In hyperinsulinemic/obese mice, Foxa2 (but 

not Foxo1) is permanently excluded from the nucleus and its inactivation 

contributes to the development of hepatic steatosis and insulin resistance.  This 

has been demonstrated by re-expression of constitutive active Foxa2 

(Foxa2T156A) in livers of obese mouse models that led to increased Fatty acid 

oxidation, increased VLDL secretion, reduced hepatic TAG content and 

increased insulin sensitivity and normalization of blood glucose levels (10).   

The differential regulation of Foxo1 and Foxa2 in insulin resistant states 

is somewhat counterintuitive, since both have been shown to be inhibited by 

insulin signaling through the PI3-kinase pathway.  However, this can be 

explained by increased sensitivity of Foxa2.  Knockdown of IRS2 alone was 
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able to abolish nuclear export of Foxo1, however knockdown of both IRS1 

and IRS2 was required for inhibition of nuclear export of Foxa2 (10).  It has 

been shown that there is decreased expression of IRS2 in insulin-resistance 

states, while IRS1 levels remain unchanged (39).    This provides an enticing 

explanation for the mixed insulin resistance observed in many models of type 2 

diabetes, and suggests a mechanism whereby the inhibition of 

gluoconeogenesis is lost, but the inhibition of fatty acid oxidation is not.  

As evidenced by Foxo1, the negative regulation of forkhead 

transcription factors by nutritional or stress signals is not unique to Foxa 

proteins.  PI3-kinase/Akt signaling in the nematode Caenorhabditis elegans, 

suppresses the function of DAF-16, a transcription factor that belongs to the 

Foxo branch of the forkhead/winged-helix family (40). Mutations in the 

insulin/Igf-1 receptor homologue (daf-2) (41, 42), the catalytic subunit of PI3-

kinase (age-1) (43), or Akt (akt1 and akt2) (44), result in increased longevity and 

constitutive dauer formation, a stage of developmental arrest and reduced 

metabolic activity that enhances survival during periods of food deprivation 

and other environmental stresses. In each case, mutation of daf-16 restored 

normal life span and prevented entry into dauer stage.  

 In mammals, this regulation has also been described for Fkhr (Foxo1), 

Fkhrl1 (Foxo3), and AFX (Foxo4) (18, 45-47).  Foxo-1 can be phosphorylated 

by Pkb/Akt at multiple sites causing repression of transcriptional activity of 
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target genes such as insulin growth factor binding protein 1 (Igfbp-1), glucose-

6-phospatase and phosphoenolpyruvate carboxykinase (48, 49).  Similar to 

Foxa2, this regulation has been shown to occur, at least in part, by nuclear 

exclusion, although recent findings suggest that additional mechanisms are 

involved (50). At the moment it is unclear whether nuclear export is the key 

mechanism regulating Foxo transcription factors or whether other nucleus 

specific regulatory pathways are involved in the regulation of this factor as well.  

The constitutive inactivation of Foxa2 by insulin, in addition to the 

beneficial effects of constitutively active Foxa2 in mouse models of obesity 

make understanding the molecular mechanisms of its regulation of great 

scientific and potentially therapeutic interest.  While it is clear that 

phosphorylation is necessary for nuclear exclusion of Foxa2, the mechanism 

and importance of nuclear exclusion in the inactivation of Foxa2 by insulin has 

not previously been investigated.  Here, we explore the molecular mechanisms 

controlling nuclear exclusion of Foxa2 in response to insulin signaling, and its 

physiological impact in the liver, lung and hypothalamus.   
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CHAPTER 1:  Genetic Strain variations modulate Foxa2 activity 

1.1  Effect of insulin on Foxa2 in hepatocytes from diabetic mice 

We have shown that nuclear exclusion of Foxa2 closely correlates with 

insulin levels, both in wild-type C57Bl/6 and in hyperinsulinemic mouse 

models.   Nonetheless, there was initially some disagreement in the literature 

over this point (11).  While wildtype C57Bl/6 mice have fasting glucose levels 

around 0.3 ng/mL (going up to ~3 ng/mL in fed mice) ob/ob, db/db and HF 

mice are all hyperinsulinemic even after a fast, with plasma insulin 

concentrations ranging from ~5-80 ng/mL.  To directly analyze the effects of 

insulin on the nuclear exclusion of Foxa2, we isolated primary hepatocytes 

from these mice and subjected them to controlled amounts of insulin.   

As evidenced by quantitation of nuclear and cytoplasmic extracts, an 

overnight “fast” (serum withdrawal) is sufficient to restore Foxa2 to the 

nucleus of primary hepatocytes derived from different hyperinsulinemic mouse 

models, when left untreated (Figure 3).  This demonstrates that there is no 

inherent/irreversible defect in these cells that results in nuclear exclusion of 

Foxa2. Furthermore, Foxa2 is excluded from the nucleus and localizes to the 

cytosol in a dose-dependent manner in response to insulin in all hepatocytes.  

Thus, alterations in the insulin levels alone are sufficient to induce nuclear 

inclusion or exclusion of Foxa2.   
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Figure 3.  Insulin-dependent Foxa2 localization in primary hepatocytes.  Nuclear and cytoplasmic 
extracts were prepared from primary hepatocytes of wild-type C57Bl/6, ob/ob, db/db, and HF diet-
induced obese mice, which were incubated for 6 h in the presence of varying amounts of insulin.  
Foxa2 was detected by immunoblotting, quantified by densitometry and normalized to -Tubulin.  
Data are means ± SD, n=2. 
 

 
Notably, while insulin removal completely restored Foxa2 to the nucleus 

in hepatocytes of ob/ob, db/db and HF diet mice, higher concentrations of 

insulin were needed to re-induce nuclear exclusion.  In hepatocytes from 

wildtype C57Bl/6 mice, Foxa2 was already cytoplasmic at 1 ng/mL insulin.  

However, this concentration of insulin results in only ~20-25% nuclear 

exclusion in ob/ob, db/db and HF hepatocytes, demonstrating that their 

hepatocytes do retain a low level of insulin resistance in culture.   

 

1.2  Genetic strain variations affect metabolic parameters 

Diabetic mouse models represent an extreme metabolic phenotype.  

However, even wild-type strains have been shown to display differing 

propensities for weight gain and development of features of the metabolic 
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syndrome.  C57Bl/6 mice, for example, are more obese, glucose intolerant, 

hyperinsulinemic, and hyperletpinemic than Sv129 mice on either regular chow 

or a high-fat diet, and are more susceptible to the development of insulin 

resistance and diabetes (51, 52).  While these genetic discrepancies cannot be 

traced to single genetic alterations, it has subsequently been found that 

different strains have varying levels of circulating hormones such as insulin, and 

exhibit different metabolic parameters (51-54).   

 
Sv129 
fasted 

Sv129
fed 

CD1
fasted 

CD1
fed 

DBA
fasted 

DBA
fed 

C57Bl/6 
fasted 

C57Bl/6
fed 

         
Glucose (mg/dL) 83 ± 9 164 ± 11 90 ± 10 171 ± 21 81 ± 7 199 ± 21 100 ± 10 255 ± 31 
Insulin (ng/mL) 0.14 ± 0.04 0.31 ± 0.06 0.22 ± 0.05 0.48 ± 0.07 0.25 ± 0.04 0.63 ± 0.1 0.31 ± 0.05 1.7 ± 0.12 
Cholseterol  104 ± 10 103 ± 13 106 ± 11 104 ± 13 94 ± 13 90 ± 11 92 ± 10 80 ± 9 
Triglycerides 104 ± 12 102 ± 34 101 ± 11 100 ± 33 99 ± 14 99 ± 27 87 ± 13 84 ± 31 
Ketone bodies 2.6 ± 0.2 2.5 ± 0.2 2.4 ± 0.2 2.6 ± 0.3 2.6 ± 0.2 1.9 ± 0.2 2.5 ± 0.3 1.3 ± 0.2 
Liver triglycerides 19 ± 3 20 ± 2 20 ± 2 20 ± 2 22 ± 3 25 ± 2 24 ± 2 30 ± 2 
Glycogen n.d 3.1 ± 0.4 n.d 3.5 ± .5 n.d 3.5 ± .6 n.d 3.3 ± .5 
Table 1.  Metabolic parameters of different mouse strains.  Fasting and fed blood glucose, plasma 
insulin, cholesterol, triglycerides and ketone bodies, liver triglycerides and glycogen were measured 
from 6 male mice age 10-14 weeks.  Data are means ± SD. 

 
Initially we chose to investigate four different mouse strains:  Sv129 

(129), CD1, DBA, and C57Bl/6 (B6).  As shown in Table 1, these mice exhibit 

striking differences in their metabolic parameters, with 129 mice having the 

lowest insulin levels, and B6 mice the highest.  While B6 mice tended to have 

lower circulating cholesterol and triglyceride levels in fasting and fed states, 

these differences were not significant.  However, circulating ketone body 

concentrations were significantly decreased in fed DBA and B6 mice, inversely 

correlated to plasma insulin levels.  Additionally, circulating ketone bodies were 

significantly decreased in the fed state compared to the fasted state in DBA and 
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B6 mice, while no significant differences between fed and fasted states were 

observed in 129 or CD1 mice.  We analyzed the rate of β-oxidation in livers of 

these mice in fasted and fed states, and observed similar results.  Both in the 

fed and fasted state, DBA and B6 mice had the lowest rates of mitochondrial β-

oxidation, while 129 and CD1 animals exhibited the highest rates (Figure 4).  

Furthermore, no change in rate was observed between fed and fasting states in 

the latter two strains, while increased β-oxidation was observed in the fasted, 

compared to the fed state of the DBA and B6 mice.   

 

Figure 4.  Fasting and fed β-oxidation rates varies between strains.  Mitochondrial β-oxidation was 
measured from livers as a function of 14CO2 production from [1-14]C-palmitic acid.   n≥4. 

 

1.3   Foxa2 and Foxo1 localization in different mouse strains 

The differences in insulin levels, as well as the observed correlation with 

the downstream regulation of β-oxidation and ketone body metabolism, 
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encouraged us to analyze the nuclear localization of Foxo1 and Foxa2.  These 

two transcription factors have been shown to regulate metabolic genes and are 

inhibited by insulin signaling in the liver.  Foxa2, in particular, has been shown 

to increase fatty acid oxidation and ketone body production, while Foxo1 is 

preferentially involved in the activation of gluconeogenesis (10, 55).   

Nuclear extracts were prepared from livers of mice from all four strains 

(129, CD1, DBA, and B6), which were either ad libitum fed, fasted, or injected 

with 10 ng/mL insulin through the portal vein.  Western blotting of nuclear 

fractions revealed that both Foxo1 and Foxa2 remain nuclear in fed and fasted 

Sv129 and CD1 mice, while both are excluded from the nucleus in fed DBA 

and B6 mice (Figure 5).  

Furthermore, we could show that this is not an inherent defect in the 

signaling ability or nuclear export mechanism in the livers of these mice, since a 

bolus injection of insulin restored nuclear export of both Foxo1 and Foxa2.   

Thus, insulin is able to enact nuclear exclusion of Foxo1 and Foxa2 to a similar 

extent in livers of all four strains.  This suggests that the differential regulation 

observed in ad libitum fed states is a function of plasma insulin levels, which are 

below the necessary threshold to achieve this effect, even in a fed state, in 129 

and CD1 mice. 
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Figure 5.  Strain variation in nuclear localization of Foxa2 and Foxo1.  Immunoblots of nuclear 
extracts from livers of fasted, fed and fasted, insulin-injected Sv129, C57Bl/6, CD1, and DBA mice. 

1.4   Decreased insulin signaling, but increased sensitivity in Sv129 and 

CD1 mice  

To determine the more general hepatic effects of different circulating 

concentrations of insulin in these strains, we perfused livers with increasing 

amounts of insulin and analyzed insulin signaling pathways by western blotting 

and RT-PCR.  Total levels of insulin receptor (IR), insulin receptor stubstrates 

1 and 2 (Irs-1, Irs-2) and Akt expression remained unchanged in all strains 

during insulin perfusion, however we observed an increase in Akt 

phosphorylation, as well as Mapk phosphorylation, in response to increasing 

insulin concentration in the perfusate (Figure 6).  Accordingly, decreased levels 
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of nuclear Foxa2 and Foxo1 were observed in all strains with increasing 

concentrations of insulin.  RT-PCR analysis revealed that the expression of 

downstream target genes of Foxa2 and Foxo1 is also inhibited by insulin 

(Figure 7). 

As a functional readout we measured β-oxidation and ketone body 

production in the livers of these mice.  Again, insulin resulted in decreased β-

oxidation and ketone body production in all strains in a dose-dependent 

manner (Figure 8).  Notably, 129 and CD1 strains were even more insulin 

sensitive, showing earlier activation of insulin signaling pathways and greater 

levels of target gene suppression at lower concentrations of insulin.  This 

suggests that the altered metabolic rates observed between these strains are 

directly correlated to plasma insulin levels, insulin signaling and Foxa2 and 

Foxo1 localization.   
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Figure 6.  Insulin perfusion shows strain variations in insulin signaling.  Livers from B6, 129, DBA and 
CD1 mice were perfused with increasing concentrations of insulin and activation of insulin signaling 
pathways was analyzed by immunoblotting whole cell or nuclear (n) lysates.  TBP, Tata-binding 
protein;  p, phopsho. 
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Figure 7.  Strain variation in repression of metabolic genes by insulin.  RT-PCR from livers of B6, 129, 
DBA and CD1 mice perfused with increasing concentrations of insulin.  Pepck, Phosphoenolpyruvate 
carboxykinase;  CptI, Carnitine palmitoyltransferase 1; Mcad, Medium chain acetyl-coA 
dehydrogenase; b-DH, 3-Hydroxybutyrate dehydrogenase; Acet, Acetyl-CoA Synthase; Mtp, 
Microsomal triglcyeride transfer protein. 
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Figure 8.  Strain variations in ketone body production and β-oxidation in response to insulin.  Ketone 
body production and mitochondrial β-oxidation were measured from livers as a function of 14CO2 
production and 14C- acid-soluble products, respectively, from [1-14]C-palmitic acid.  n≥4. 

 

1.5  Constitutive activation of Foxa2 increases hepatic lipid metabolism 

in livers of Fed C57Bl/6 mice 

To more directly determine what effect the amount of active/nuclear 

Foxa2 has on the observed metabolic discrepancies in these mouse strains, we 

injected ad libitum fed Sv129 and C57Bl/6 mice with constitutively active Foxa2 
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(T156A) adenovirus.  As shown in Figure 9, cellular fractionation confirmed 

that endogenous Foxa2 is nuclear in livers of 129 mice, but cytoplasmic in 

livers of B6 control mice injected with GFP adenovirus.  Adenovirally 

expressed Foxa2-T156A is constitutively nuclear in livers of both strains.   

 

Figure 9.  Localization of Foxa2 and Foxa2-T156A in livers of 129 and B6 mice.  129 and B6 were 
injected with 1E9 PFU of GFP or Foxa2-T156A adenovirus.  Six days post injection, mice were 
sacrificed, livers were fractionated, and nuclear and cytoplasmic extracts were analyzed for Foxa2 
localization by western blotting. 

 
As shown in (Figure 10), expression of constitutive active Foxa2 leads to 

a significant increase in mitochondrial β-oxidation in B6 mice, where 

endogenous Foxa2 is inactive.  Conversely, the effect of Foxa2-T156A is not 

significant in 129 animals, which already have active Foxa2 in the nucleus.   

 

 

Figure 10.  Activation of Foxa2 restores β-
oxidation in livers of Fed B6 mice.
Mitochondrial β-oxidation measured in 129
and B6 mice six days post injection with
either Ad-GFP or constitutively active (Ad-
T156A) Foxa2.  Data are means ± SD, n≥4.
** , p<0.01 by students t-test. 
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RT-PCR reveals a similar trend in expression of genes involved in β-

oxidation and ketone body synthesis.  Foxa2-T156A results in significant 

upregulation of CptI, Mcad, Vlcad, and b-DH in B6 mice, compared to GFP 

controls, while Pepck gene expression (encoding the rate-limiting enzyme for 

heptatic gluconeogenesis) is unchanged (Figure 11).  Foxa2-T156A also 

increases expression of these genes in Sv129 mice, however to a lesser extent, 

and only Cpt is significantly upregulated. 

 

Figure 11.  T156A-Foxa2 re-activates expression of B-oxidation genes in the liver.  Relative expression 
levels of genes involved in B-oxidation, ketone body synthesis and gluconeogenesis were analyzed by 
real time PCR from livers of 129 or B6 mice adenovirally expressing GFP or Foxa2-T156A (T156).  
Data are means ± SD, n≥4.  

1.6  Summary 

These studies demonstrate that genetic strain variations, in mice as in 

humans, play an important role in determining metabolic phenotypes.  Here we 

show that nuclear localization of Foxa2 (and Foxo1) correlates with 

physiological insulin levels in four different mouse strains.  Sv129 and CD1 
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mice, which have low physiological levels of insulin, retain Foxa2 in the nucleus 

even in fed states.  DBA and C57Bl/6 mice have higher insulin levels, which 

are sufficient to induce nuclear export and inactivation of Foxa2 in the fed 

state.  This data also provides a possible explanation for the lack of Foxa2 

shuttling observed by Zhang and colleagues (11).  Interestingly, constitutive 

activation of Foxa2 in livers of fed B6 mice is sufficient to restore 

mitochondrial β-oxidation to fasting levels, similar to fed Sv129 mice, and 

suggests that the differential regulation of Foxa2 plays a major role in liver lipid 

metabolism, and the metabolic phenotype. 
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CHAPTER 2:  Shuttling of Tagged Foxa2 

2.1  Functional analysis of the Foxa2 Akt phosphorylation site 

We have shown that Akt phosphorylation of Foxa2 at T165 mediates its 

nuclear exclusion and transcriptional inactivation in response to insulin; 

however the mechanisms involved in this regulation remain unclear.  It has 

been observed that the Foxa2 Akt site (RRSYTH) does not perfectly match the 

canonical Akt recognition motif (RARSYS/TH), yet it is evolutionarily 

conserved in Foxa2.  To attempt to address whether this imperfection has 

some additional significance in the regulation of Foxa2, we generated two 

variants with canonical Akt sites:  Foxa2-pAins was generated by inserting an 

additional alanine after R152, while Foxa2-pMut was generated by mutating 

Y151R and R152A.  In reporter assays both Foxa2-pAins, and Foxa2-pMut 

showed similar transactivation levels to wildtype Foxa2 under basal conditions, 

Figure 12.  Transactivation of Foxa2
Akt site variants.  HepG2 cells were
transfected with expression vectors
containing Foxa2 or variants, alone or
in combination with DN-Akt or Akt2.
p6xCdx-TkLuc was used as a reporter
gene, normalized to renilla luciferase,
and shown relative to vector only
controls.  Experiments were
performed in triplicate and are
representative of 2 independent
experiments. 
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similar increases when coexpressed with dominant negative Akt (DN-Akt), and 

all were repressed to a similar degree by coexpression of wildtype Akt (Figure 

12).  Thus, it appears that the exact sequence of this Akt site is not essential for 

the regulation of Foxa2 by Akt.  Nonetheless, we cannot rule out that alteration 

of this site might have a more subtle effect in vivo that was not observed in an in 

vitro analysis requiring cellular manipulation and overexpression.   

To further investigate the importance of this phosphorylation site we 

took advantage of the fact that Foxa1, a highly homologous member of the 

Foxa family, does not shuttle in response to insulin.  Additionally, sequence 

alignment of these two proteins revealed that Foxa1 has a T->P substitution in 

the region corresponding to the Akt phosphorylation site in Foxa2 (alignment 

of this region is shown in Figure 13.)  

 

 

We therefore asked whether introduction of the Foxa2 Akt site into 

Foxa1 would be sufficient to induce its inactivation by insulin.  This approach 

Figure 13.  Partial sequence alignment of Foxa1 and Foxa2.  The Foxa2 Akt phosphorylation site, is 
highlighted in yellow. 
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has been successfully used to identify a PGC1β-

interaction domain in Foxa2, and has also been 

used to demonstrate the importance of a 

phosphorylation motif for shuttling of Foxo3 by 

domain swapping with Foxo6 (24, 56).  Site directed 

mutagenesis was performed to clone the Foxa2 Akt site into a plasmid 

containing HA-tagged Foxa1 (Foxa1p3B), replacing the corresponding region 

in Foxa1, and its expression was confirmed by sequencing and western blot 

analysis (Figure 14).   

To test whether introduction of the phosphorylation site was sufficient 

to induce Akt-dependent inhibition of Foxa1, expression vectors for Foxa1, 

Akt2, or dominant negative Akt (DN-Akt) were coexpressed with 

pGL2hGlucP, a luciferase reporter plasmid containing the human glucagon 

Figure 14.  Expression of Foxa1 
mutants.  Whole Cell extracts 
from HepG2 cells transfected 
with pcHAFoxa1 or 
pcHAFoxa2p3B, detected with 
an α-HA antibody 

Figure 15.  Transactivation by Foxa1 and Foxa1p3B.  HepG2 cells were transfected with expression 
vectors containing Foxa1 constructs, alone or in combination with DN-Akt or Akt2.  pGL2hGlucP 
was used as a reporter gene.  Firefly luciferase activity was normalized to renilla luciferase, and 
shown relative to vector only controls.  Experiments were performed in triplicate and shown as the 
average of 3 independent experiments ± SEM. 
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promoter (shown to preferentially bind Foxa1(57)) upstream of a minimal 

promoter and the firefly luciferase gene.  Both Foxa1 variants only weakly 

transactivate the reporter, however there was no significant difference observed 

between them, with or without cotransfection of Akt or DN-Akt (Figure 15).  

If anything, transcriptional activity was stimulated by Akt, although this could 

be a general effect of increased transcription/translation caused by mimicking 

activation of a growth factor signaling pathway.   

Foxa2 transactivation, as has been previously shown (36), was enhanced 

by co-expression with dominant negative Akt, and inhibited by overexpression 

of wild-type Akt2 in parallel experiments (Figure 16).  These data suggest that 

the Foxa2 phosphorylation site alone is not sufficient to induce nuclear 

exclusion by Akt, and demonstrate that additional sequence elements might be 

necessary for the insulin-induced nuclear exclusion of Foxa2. 

 

 

Figure 16.  Foxa2 transactivation is inhibited
by Akt.  HepG2 cells were transfected with
expression vectors containing Foxa2, alone
or in combination with DN-Akt or Akt2.
p6xCdx-TkLuc was used as a reporter gene.
Firefly luciferase activity was normalized to
renilla luciferase, and shown relative to
vector only controls.  Experiments were
performed in triplicate and shown as the
average of 3 independent experiments ±
SEM. 
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2.2  Transient transfection inhibits shuttling of Foxa2 

To further elucidate the sequence elements responsible for the insulin-

induced nuclear exclusion of Foxa2 we generated N- and C-terminal Foxa2-

GFP fusion constructs (GFPN1- and GFPC1-Foxa2, respectively).  This is a 

useful approach for studying the intracellular 

localization of proteins in real time and in live cells, 

and has been previously used to visualize the 

intracellular localization of many different proteins, 

including members of the Foxo family, which also 

shuttle in response to external stimuli (56, 58-60).   

Western blot analysis confirmed the expression of a 

~90 kDa band corresponding to the predicted size 

of GFP-Foxa2 fusions (Figure 17).  However, fluorescence microscopy 

revealed that GFPC1-Foxa2 transfected into HepG2 cells was constitutively 

nuclear, despite cotransfection with Akt (Figure 18).  Insulin was also unable to 

Figure 18.  Immunofluorescent localization of GFPC1-Foxa2.  HepG2 cells were 
transfected with 20ng of pEGFP-C1 (Clontech) or GFPC1-Foxa2, with or without 
cotransfection of Akt2 (40ng), and detected by fluorescence microscopy. 

Figure 17.  Expression of
Foxa2-GFP fusion proteins.
Whole cell lysates from HepG2
cells transfected with the
indicated GFP-Foxa2
expression plasmids, separated
by SDS-PAGE and subject to
western blot analysis. 
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alter this nuclear localization, and GFPN1-Foxa2 gave similar results, with or 

without insulin or cotransfection of Akt (data not shown). 

To determine whether this effect might be due to transient transfection, 

we analyzed the localization of HA and FLAG double-tagged wildtype rat 

Foxa2 (HA-Foxa2, which has previously been shown to shuttle in response to 

insulin signaling (36)) after transfection into HepG2 cells.  Once again, even 

after stimulation with 500 nM insulin Foxa2 remained nuclear (Figure 19).   

 

 

 

Figure 19.  Immunofluorescence localization of transfected Foxa2.  HepG2 cells were
transiently transfected with 20ng of HA-Foxa2, serum starved for 18 hours and treated
with or without 500nM insulin for 20minutes.  Cells were fixed and stained with anti-
HA antibody overnight at 4° and visualized with Alexa 480 Goat anti-mouse IgG using
laser scanning micrsocopy.  Nuclei were visualized by costaining with Topro3. 
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2.3  Cytoplasmic relocalization of endogenous Foxa2 by cellular 

fractionation 

Given these unexpected in vitro results and the emerging controversy 

over Foxa2 shuttling, we decided to reconfirm nuclear exclusion of Foxa2 in 

vivo, using previously established methods.   Nuclei were extracted from livers 

of fasted, random fed and ob/ob mice and assayed for the presence or absence 

of Foxa2 by western blotting.  As shown in Figure 20, Foxa2 was found in the 

nuclear fractions of livers of fasted mice, but was excluded in the livers of 

random fed and ob/ob mice.  Additionally, fasted mice injected with 150 ng of 

insulin 15 min prior to sacrifice showed nuclear exclusion of Foxa2, while PBS-

injected mice did not (Figure 21).  

 

 

Figure 20.  Nuclear exclusion of Foxa2 in livers of fed and
hyperinsulinemic mice.   Immunoblot analysis of Foxa2 in
nuclear extracts from livers of C57BL/6 and ob/ob mice,
fasted for 24 h or ad libitum fed.  Nuclear extracts were
prepared by sucrose gradient fractionation and each lane
represents livers pooled from 2 mice. 

Figure 21.  Nuclear exclusion of Foxa2 is
induced by insulin in vivo.   Immunoblot
analysis of Foxa2 in nuclear extracts from livers
of C57BL/6 mice, fasted for 24 h and injected
with PBS or 600 ng insulin via the tail vein.
Nuclear extracts were prepared by sucrose
gradient fractionation.  The upper band is non-
specific and serves as an internal loading
control. 
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While these data demonstrate robust nuclear exclusion of Foxa2, thereby 

confirming previous results, the experimental protocol did not allow for 

simultaneous analysis of cytoplasmic fractions, an ideal internal control.  We 

therefore sought to develop a robust assay for determining the cellular 

localization of this factor both in vitro and in vivo.  We subsequently used a 

gentle hypotonic lysis buffer to release cytoplasmic proteins, followed by brief 

centrifugation to pellet nuclei, which were ultimately extracted by addition of 

ammonium sulfate to 400 mM.  This method of cellular fractionation yielded 

good resolution of nuclear and cytoplasmic fractions in liver tissue, as indicated 

by the predominantly nuclear localization of the TAF100 transcription factor 

(Figure 22).  Moreover, it allowed us to visualize not only the nuclear exclusion 

of Foxa2, but the corresponding cytoplasmic relocalization upon stimulation 

with insulin (and in hyperinsulinemic ob/ob mice) by cellular fractionation and 

immunoblotting.  This, in addition to the development of two new polyclonal 

Foxa2 antibodies, greatly improved our ability to accurately assay the cellular 

localization of Foxa2.   

Figure 22.  Cytoplasmic localization of
Foxa2 in livers of insulin-injected and
hyperinsulinemic mice.
Nuclear/cytoplasmic fractionation of
50 mg of frozen liver from fasted mice
injected with either PBS or insulin and
subject to immunoblotting. 
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This new protocol allowed us to revisit the impaired shuttling of 

transfected Foxa2.  Nuclear and cytoplasmic extracts confirmed shuttling of 

endogenous Foxa2 in untransfected HepG2 cells after stimulation with insulin, 

verifying that Foxa2 also shuttles in vitro (Figure 23, null).  However, after 

transfection of the cells with either PCDNA3 vector and GFP, or HA-Foxa2 

and GFP, neither transfected HA-Foxa2 nor endogenous Foxa2 shuttled in 

response to insulin (Figure 23). 

    

Figure 23.  Endogenous and HA-Foxa2 are nuclear after transfection.  HepG2 cells were transfected 
with either GFP and pcDNA3 (GFP), or GFP and HA-Foxa2 (HAFoxa2), not transfected (null) or 
mock transfected with Fugene only, serum starved for 19 h and treated with or without 500 nM insulin 
for 15 min.  Cellular fractionation was followed by SDS-PAGE and immunoblot analysis using the 
indicated antibodies. 

 
Mock transfection of the cells with Fugene transfection reagent did not 

alter the shuttling of endogenous Foxa2, demonstrating that this is not strictly 

an issue of toxicity caused by the transfection reagent.  The same nuclear 

phenotype was observed when we transfected different concentrations of 

GFPC1-Foxa2 (Figure 24). 
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2.4   Nuclear/Cytoplasmic shuttling of tagged Foxa2 

To avoid the issue of altered protein regulation after transfection, we 

generated stable cell lines expressing N- and C-terminal GFP-Foxa2 fusion 

plasmids in HepG2 cells.   In the process of selecting stable cell lines we found 

that GFP-Foxa2 fusions occasionally integrated in such a way as to cause 

truncation of the fusion product.  Clonal populations were selected based on 

fluorescence, and fusion constructs were detected by immunoblot analysis of 

whole cell extracts using an anti-HA antibody (Figure 25).  Therefore, the 

truncations were generally predicted to have been shortened from the C-

terminus, with the exception of GFPN1-Foxa2 clone #2, which is around 50 

kDa and appears to have retained both the N-terminal HA-tag and C-terminal 

GFP.   

Figure 24.  GFPC1-Foxa2 is nuclear after transfection.  HepG2 cells were transfected with
either 4 or 12 ug of GFPC1-Foxa2, or untransfected (null), serum starved for 19 h and treated
with or without 500 nM insulin for 15 min.  Cellular fractionation was followed by SDS-
PAGE and immunoblot analysis with anti-Foxa2 antibody. 
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Although we did not sequence the constructs to determine exactly where 

truncations occurred, we took advantage of their size differences to investigate 

Figure 25.  Stable expression of GFP-Foxa2 fusion constructs.  Clonal populations of HepG2 cells
were selected for G418 resistance and fluorescence, and screened for expression of GFP-Foxa2
fusion products in whole cell extracts by immunoblotting with anti-HA and anti-GFP antibodies 

Figure 26.  Impaired shuttling of GFP-Foxa2 in stable cell lines.  Immunoblots of nuclear and 
cytoplasmic extracts from HepG2 cells stably expressing GFPC1-Foxa2, GFPN1-Foxa2, or truncations 
thereof, with and without stimulation with 500nM insulin for 15min.  HA antibody was used to
identify stably expressed Foxa2 variants, Foxa2 antibody was used to assay endogenous Foxa2, and γ-
Tubulin was used as a loading control.
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the shuttling properties of shortened fusions alongside the full-length 

constructs.  This allowed us to simultaneously assess whether stable expression 

and/or total size reduction could enable shuttling of GFP-Foxa2.  GFPC1-

Foxa2 #17, which is around 37 kDa and presumably contains less than 10 kDa 

of Foxa2, was the smallest fusion protein generated.  While this one did show a 

general cytoplasmic shift in its distribution, the rest of the fusion constructs 

remained nuclear, and none were excluded from the nucleus after stimulation 

of the cells with insulin (Figure 26).  Endogenous Foxa2, on the other hand, 

shuttled to the cytoplasm in all GFPC1-Foxa2 stable cell lines, suggesting that 

the loss of nuclear export observed with the GFP fusion constructs is not due 

to decreased insulin sensitivity, but rather is an artifact caused by fusion to 

GFP. 

To further ensure that this was not 

an in vitro issue, we generated adenovirus 

from the GFPC1-Foxa2 construct and 

injected this into wildtype mice.  Once 

again, the GFPC1-Foxa2 construct was 

clearly nuclear in livers from both fasted 

and fed mice (Figure 27).  Taken together, 

these data demonstrate that both transfection and GFP-fusion inhibit insulin-

induced nuclear exclusion of Foxa2. 

Figure 27.  AdGFPC1-Foxa2 remains
constitutively nuclear in fasted and fed mice.
Immunoblots showing cellular fractionation
of livers from fasted or ad libitum fed
C57Bl/6  mice injected with GFPC1-Foxa2
adenovirus. 
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As opposed to GFP, which encodes a protein of roughly 30 kDa, HA 

and FLAG peptides are hydrophilic and immunogenic fusion tags that are 

specifically designed to facilitate purification and detection using monoclonal 

antibodies.  Due to their small size, they are less likely to interfere with protein 

function (61). We therefore established stable cell lines expressing N-terminal 

HA and FLAG double-tagged Foxa2 (HA-Foxa2) in HepG2 cells.  Indeed, 

cellular fractionation showed that stably expressed HA-Foxa2 was almost 

completely excluded from the nucleus (and relocated to the cytoplasm) by 15 

minutes after stimulation with insulin in each cell line (Figure 28).   

 

Figure 28.  Nuclear-ctyosolic shuttling of HA-Foxa2 in vitro.  Nuclear and cytoplasmic fractionation 
of HepG2 cells stably expressing HA-Foxa2 (3B4, 3B6, 3B10 denote individual clones), with and 
without stimulation with 500nM insulin for 15min.  LSD1, and GAPDH were used as nuclear and 
cytoplasmic loading control markers, respectively. 

2.5  Summary 

Here we show that Foxa2 shuttling is disrupted by transient transfection 

in HepG2 cells in vitro.  We have also tested shuttling in HEK293, and Huh7 

cells, using various transfection methods with similar results (data not shown).  
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While we were not able to elucidate the cause of this impaired shuttling, our 

data suggest that it is a consequence of the transfection procedure.  We have 

further shown that GFP fusion to Foxa2 ablates its nuclear export.  This effect 

is independent of transfection, as we achieved the same results in stable cell 

lines, and by adenoviral expression in vivo.    

Previously shuttling of Foxa2 had only been observed by its absence in 

nuclear extracts, or by immunofluorescent staining.  Here we demonstrate the 

nuclear exclusion and cytoplasmic relocalization of Foxa2 by cellular 

fractionation, both in vitro and in vivo.  Finally, we show that Foxa2 shuttling is 

not disturbed by HA/FLAG epitope tagging, thereby confirming previous data 

in the lab and establishing more robust assays for further mechanist analysis of 

its regulation. 
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CHAPTER 3: Nuclear export-independent inhibition of Foxa2 

3.1  Foxa2 Contains a Nuclear Export Sequence 

To identify possible mechanisms responsible for the nuclear export of 

Foxa2 we used a candidate approach focusing on CRM1 (also called 

exportin1/Xpo1) as the most common nuclear export factor. Since CRM1 

mediated nuclear export can be potently inhibited by the pharmacological agent 

leptomycin B (LMB) (62, 63) we used this to analyze CRM1-dependent 

shuttling of Foxa2 in the 3B10 HepG2 cell line stably expressing HA-Foxa2 

(3B10, Figure 31).  Analysis of nuclear and cytoplasmic extracts showed that 

LMB prevents the export of Foxa2 from the nucleus after stimulation with 

insulin, while untreated control cells display normal export dynamics (Figure 

29). This finding demonstrates that nuclear export of Foxa2 is mediated by 

CRM1. 

 

Figure 29.  LMB inhibits nuclear export of Foxa2. Cellular fractionation of HepG2 cells stably 
expressing HA-tagged Foxa2, serum-starved overnight and stimulated with 500nM insulin, with or 
without pretreatment with 2.5ng/mL LMB.  Foxa2 localization was determined by western blotting. 
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To identify possible regulatory sites in Foxa2 we performed a 

comparative analysis of the primary amino acid sequence using the generally 

accepted CRM1 consensus sequence, LX(2,3)[LIVFM]X(2,3)LX[LI] (62, 64).  

Interestingly, Foxa2 contains one leucine-rich sequence that closely resembles 

this consensus nuclear export signal (NES) as shown in Figure 30, aligned to 

the prototypical HIV-REV NES.  This region lies in the N-terminal half of 

Foxa2, about 40 amino acids upstream of the Akt phosphorylation site (T156), 

between the transactivation and DNA binding domains, and is evolutionarily 

well-conserved (Figure 30 and Figure 31).   

 

Figure 30.  Partial sequence alignment of Foxa2 from six different species, and the HIV-REV NES.  
The putative NES (red) and phosphorylated threonine (blue) are highlighted.  H, human; R, rat; M, 
mouse; C, chicken; Xl, Xenopus laevis; Dm, Drosophila melanogaster. 

 
 
 

 

Figure 31.  Schematic depiction of Foxa2 showing the putative NES in relation to other known 
domains, along with mutant constructs.  II-V, transactivation domains; NES, nuclear export signal; p, 
phosphorylation site; NLS, nuclear localization signal (N- or C-terminal of the DNA binding 
domain); DBD, DNA binding domain; PGC1β, PGC1β interaction domain; Foxa2, rat wildtype Foxa2; 
T156A, mutated at residue T156A; Emut, mutated at residues L110A and L113A; TAE, mutated at 
residues T156A, L110A, and L113A. 
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3.2  Foxa2 NES is Necessary for Nuclear Export 

To elucidate whether the putative CRM1 NES is responsible for nuclear 

export of Foxa2, and thus important for its regulation in different physiological 

states, we performed mutational analyses.  Since the C-terminal hydrophobic 

residues of the CRM1 consensus sequence have been shown to be the most 

critical for nuclear export (65), we mutated both terminal leucines (L110 and 

L113) of the putative Foxa2 NES to determine whether this sequence is 

necessary for nuclear exclusion in response to insulin.  L110A, L113A Foxa2 

(Emut, Figure 31) was stably expressed in HepG2 cells, and analyzed for its 

ability to shuttle from the nucleus in response to insulin stimulation.  

Endogenous Foxa2 was used as an internal control.  We show that while 

endogenous Foxa2 still shuttles in 

these cells in response to insulin 

stimulation, the export mutant 

remains nuclear, demonstrating that 

the NES is functional and necessary 

for export in vitro (Figure 32).   

 To test whether this sequence is 

also necessary for export in vivo and 

thus might play an important role in the 

Figure 32.  Nuclear/cytoplasmic shuttling of 
Foxa2 Emut in vitro.  Immunoblots showing 
cellular fractionation of HepG2 cells stably 
expressing Emut Foxa2, serum-starved 
overnight and stimulated with 500nM insulin. 
γ-Tubulin was used as a general loading 
control, and LSD1 and GAPDH served as 
nuclear and cytoplasmic extraction controls, 
respectively.
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hormonal regulation of Foxa2 activity we generated a recombinant adenovirus 

containing export mutant (Ad-Emut) Foxa2 and injected it into C57Bl/6 mice. 

As controls we treated mice with recombinant adenoviruses expressing 

wildtype (Ad-Foxa2) or phosphorylation-deficient, constitutively active Foxa2 

(Ad-T156A), which have been previously characterized (10).  All constructs 

were HA- and FLAG-tagged, and GFP adenovirus was used as an additional 

control.  As shown in Figure 33, both endogenous and exogenous Foxa2 were 

nuclear in all fasted animals.  However, while endogenous and Ad-Foxa2 were 

excluded from the nucleus in random fed animals, the export mutant (as well as 

the T156A control) remained nuclear.  Thus, the newly identified NES in 

Foxa2 is responsible for the active nuclear export of Foxa2 in hepatotcytes 

both in vitro and in vivo.   

 

 

 

Figure 33.  Ad-Emut is deficient in nuclear export in vivo.  Immunoblots showing cellular
fractionation of livers from C57BL/6 mice infected with GFP, Foxa2, T156A, or Emut adenovirus.
Five days post-infection, mice were either fasted for 18 h (S) or ad libitum fed (F). 
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3.3  Emut Foxa2 is inhibited by insulin signaling 

The ability to study the effect of phosphorylation uncoupled from 

subcellular localization of Foxa2 led us to ask whether regulation of Foxa2 

activity by insulin is mainly controlled by nuclear export or by phosphorylation 

at T156.   To explore this latter possibility, we first sought to determine if Emut 

Foxa2 could be efficiently phosphorylated through insulin signaling.  Primary 

hepatocytes were isolated from C57Bl/6 mice, infected with the corresponding 

adenoviruses and serum starved overnight, followed by a 15 minute incubation 

with insulin.  Exogenous Foxa2 was immunoprecipitated and subjected to 

western blot analysis with an anti-Foxa2T156-specific phosphopeptide 

antibody.  Western blots show that Emut Foxa2 is phosphorylated to a similar 

extent as wildtype Foxa2, suggesting a segregation of postranslational 

modification and cellular localization.  

To further clarify this point we generated recombinant adenovirus 

expressing a double Foxa2 mutant protein (TAE, Figure 31), containing both 

the Emut and T156A mutations. The T156A and TAE mutants, both of which 

lack the phosphorylation site and thus serve as negative controls, are not 

detected by the phospho-specific antibody (Figure 34).  
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Figure 34.  Insulin results in phosphorylation of Emut Foxa2.  Primary hepatocytes isolated from 
C57BL/6 mice were infected with the indicated adenovirus, serum starved overnight and stimulated 
with 100nM insulin.  Whole cell extracts were subject to immunoprecipitation using an anti-HA 
antibody.  Immunoblots of whole cell extracts and IPs were probed with antibodies against HA and 
phospho-Foxa2 (P-Foxa2).   
 

Since the export mutant is phosphorylated in response to insulin 

signaling, we hypothesized that, despite its nuclear localization, Foxa2 could 

still be inactivated by its Akt dependent phosphorylation.  To test this 

hypothesis, we first expressed wildtype Foxa2, T156A, or Emut plasmids 

together with a reporter plasmid containing six Foxa binding sites of the 

murine Cdx-2 gene upstream of firefly luciferase (6xCdx), with or without Akt2, 

in HepG2 cells.  Reporter assays showed that while the export mutant retained 

transcriptional activity under basal conditions, cotransfection with Akt ablated 

this activity to a similar extent as wildtype (Figure 35).  As a control, 

Foxa2T156A remained fully active with or without Akt coexpression.  These 

data clearly demonstrate that on a functional level Foxa2 transcriptional activity 

is primarily regulated by posttranslational modification rather than by nuclear 

localization.   
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Figure 35.  Akt inhibits transactiation by Emut Foxa2.  HepG2 cells were transfected with expression 
vectors containing Foxa2 constructs, alone or in combination with Akt2.  p6xCdx-TkLuc was used as 
a reporter gene.  Luciferase activity was normalized to renilla luciferase, and shown relative to vector 
only controls.  All experiments were performed in triplicate and values shown represent the mean of 
three independent experiments ± SEM.  *, p< .05; **, p<.01 by unpaired t-test. 
 

To test whether these functional changes translate to the binding of 

Foxa2 to its target promoter regions, we performed chromatin 

immunoprecipitations from C57Bl/6-derived primary hepatocytes infected 

with Ad-GFP, Ad-Foxa2, Ad-T156A, Ad-Emut and Ad-TAEmut.  In a serum-

starved state, all Foxa2 constructs were able to bind to known Foxa2 

interaction sites in CPT1, HMGCS, and L-PK genes.  However, after insulin 

stimulation, the wildtype and export mutant constructs were no longer found 

to bind the target sites, while binding of the T156A and TAE mutant Foxa2 

proteins was unaffected by insulin (Figure 36).  These data confirm the results 

obtained from the transactivation assays and show that phosphorylation 

determines binding of Foxa2 to its responsive promoter elements and that 

cellular localization is a secondary effect.  
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Figure 36.  Insulin signaling disrupts promoter binding of Emut Foxa2.  Chromatin 
immunoprecipitations from serum-starved or insulin-stimulated primary hepatocytes that were 
infected with the indicated adenoviruses. Chromatin was immunoprecipitated with HA or IgG 
(control) antibodies.  Binding of Foxa2 and mutants to promoter sites in target genes was assayed by 
PCR.  CPT1, carnitine palmitoyltransferase 1;  HMGCS, HMG CoA synthase; L-PK, liver pyruvate 
kinase. 
 

3.4  Emut is constitutively nuclear but inactive in hyperinsulinemic 

ob/ob mice 

The effect of constitutive activation of Foxa2 is most striking in 

hyperinsulinemic mouse models that show constitutive inactivation of 

endogenous Foxa2 (10).  Thus, to assess the importance of nuclear export on 

the physiological activity of Foxa2 in the context of metabolic disorders, and to 

elucidate whether the biological activities of Foxa2 mutants show the same 

regulation in vivo, we expressed Emut Foxa2 in the livers of ob/ob mice using 

recombinant adenoviruses.  Transcriptional activity, and resulting metabolic 

and physiological consequences, were compared to age and sex-matched ob/ob 



46 
 

mice injected with either wildtype, T156A, or TAE Foxa2 adenoviruses.  We 

previously demonstrated that endogenous and Ad-Foxa2 are constitutively 

cytoplasmic and inactive in hyperinsulinemic mouse models of type 2 diabetes, 

while Ad-T156A remains in the nucleus and is able to restore Foxa2 activity 

(10).  Nuclear and cytoplasmic extracts from the livers of these mice confirmed 

that endogenous and Ad-Foxa2 are constitutively cytoplasmic, while the Ad-

T156A, Ad-Emut and Ad-TAE Foxa2 constructs remain in the nucleus (Figure 

37).  Immuno-fluorescence microscopy was also used to confirm these results 

(Figure 38).   

 

Figure 37.  Emut is constitutively nuclear in ob/ob mice.  Ob/ob mice were injected with the 
indicated adenovirus and livers were analyzed 10 days post-injection by cellular fractionation and 
immunoblotting.  γ-Tubulin was used as a general loading control, and LSD1 (Lysine-specific 
demythlase 1) and GAPDH served as nuclear and cytoplasmic extraction controls, respectively. 

 
To analyze the activity of the export mutant in these mice, which is the 

most important functional readout, we measured target gene activation by real-

time PCR and assayed various metabolic parameters over 10 days.  As 

expected, mRNA levels of Foxa2 target genes involved in mitochondrial fatty 
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acid oxidation and ketone body formation (MCAD, VLCAD, CPT1α, and 

HMGCS) were upregulated in livers of the T156A-injected mice, while no 

significant change was observed in mice injected with wildtype Foxa2.  

Consistent with our previous findings, Emut Foxa2 was unable to activate 

transcription of target genes in these hyperinsulinemic mice, while the double 

mutant TAE Foxa2 restored constitutive activation (Figure 39).  As a control, 

we checked Foxa2 mRNA levels, which were upregulated roughly 2-fold in all 

mice, relative to Ad-GFP controls (Figure 40).  

 

 

Figure 38.  Immunofluorescence localization of Foxa2 variants in ob/ob liver.  Ob/ob mice were 
injected with the indicated adenovirus and livers were frozen in OCT 10 days post-injection.  
Cryosections stained with anti-HA and Donkey anti-rabbit IgG Alexa Fluor 488 (Green) and Dapi 
(red) were visualized by fluorescence microscopy. 
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Figure 40.  Foxa2 mRNA levels in
adenovirus-injected ob/ob mice.  Primers
were designed to recognize both rat and
mouse isoforms.  Values shown represent
the mean ± SEM, n≥3. 
 

Figure 39.   Mean mRNA levels of Foxa2 
target genes in livers of ob/ob mice 
injected with the indicated adenovirus, 
n≥3.  MCAD, medium chain acyl-CoA 
dehydrogenase; VLCAD, very long chain 
acyl-CoA dehydrogenase; CPT1α, 
carnitine palmitoyltransferase 1α; 
HMGCS, HMG CoA synthase.  Colors as 
in Figure 40. 

Figure 41.  Emut does not activate
mitochondrial β-oxidation in ob/ob livers.
The formation of 14CO2 from 14C-palmitic acid
was measured from liver mitochondrial
extracts from ob/ob mice 10 days after
injection with the indicated adenovirus.
Values shown represent the mean ± SEM.  *,
p< 0.05; **, p<0.01; ***, p< 0.001 by unpaired
t-test compared to Ad-GFP; n≥4.   

Figure 42.  Emut does not activate liver ketone
body production in ob/ob mice.  The
formation of 14C-acid-soluble products from
14C-palmitic acid was measured from liver
mitochondrial extracts from ob/ob mice 10
days after injection with the indicated
adenovirus. Values shown represent the mean
± SEM.  *, p< 0.05; **, p<0.01; ***, p< 0.001
by unpaired t-test compared to Ad-GFP; n=4.  
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As a physiological readout, we measured hepatic mitochondrial fatty acid 

β-oxidation and ketone body production in the livers of hyperinsulinemic ob/ob 

mice that were infected with either Ad-GFP, Ad-Foxa2, Ad-T156A, Ad-Emut, 

or Ad-TAE.  Consistent with the gene expression data, fatty acid oxidation and 

ketone body production remained unchanged in the Ad-Foxa2 and Ad-Emut 

injected mice, indicating that both are functionally inactive in hyperinsulinemic 

conditions.  On the contrary, phosphorylation-deficient Ad-T156A and Ad-

TAE groups were immune to inactivation by insulin and showed significant 

increases in fatty acid metabolism (Figure 41, Figure 42).  

 

Figure 43.  Liver and Plasma lipids in adenovirus-injected ob/ob mice.   (A) Lipids were extracted 
from 50 mg of liver tissue by the Folch method, weighed and recorded as a percentage of the original 
tissue weight.   (B) Triglycerides were measured from plasma samples taken after a moderate 6 hour 
fast over the course of the experiment. Values shown represent the mean ± SEM.  *, p< 0.05; **, 
p<0.01; ***, p< 0.001 by unpaired t-test compared to Ad-GFP; n≥4. 

 
As an additional readout of fatty acid metabolism we assayed liver lipids 

and plasma triglycerides.  Hepatic lipid content (shown as percent wet weight) 

revealed a similar trend Figure 43A), with decreases observed only in Ad-



50 
 

T156A and Ad-TAE groups.  Plasma triglycerides showed an inverse trend 

(Figure 43B). 

Blood glucose and plasma insulin levels were also measured in these 

mice, and both decreased significantly over 10 days in the T156A and TAE 

groups mice, whereas no decrease was seen in Ad-Foxa2 or Ad-Emut groups 

(Figure 44, Figure 45).  In contrast to previous assumptions, these data 

demonstrate that nuclear exclusion is not necessary for insulin-induced 

transcriptional inactivation of Foxa2.  

 

  
Figure 44.  Emut is unable to normalize 
blood glucose in ob/ob mice.  Blood 
glucose was measured from plasma samples 
taken after a moderate 6 hour fast over the 
course of the experiment.  Values shown 
represent the mean ± SEM.  *, p< 0.05; **, 
p<0.01; ***, p< 0.001 by unpaired t-test 
compared to Ad-GFP, n=5. 
 

   

 

 
 
Figure 45.  Emut is unable to decrease 
plasma insulin levels in ob/ob mice.  
Insulin was measured from plasma 
samples taken after a moderate 6 hour fast 
over the course of the experiment. Values 
shown represent the mean ± SEM.  *, p< 
0.05; **, p<0.01; ***, p< 0.001 by unpaired 
t-test compared to Ad-GFP; n=4. 
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3.5  Summary 

Herein, we demonstrate that Foxa2 contains a functional CRM1-

dependent (LMB-sensitive) nuclear export site, which is necessary for its 

nuclear exclusion in response to insulin stimulation.  Our data clearly 

demonstrate that ablation of the nuclear export site, both in vitro and in vivo, 

results in constitutively nuclear Foxa2 that is still rendered transcriptionally 

inactive upon insulin stimulation.  In addition, we have shown that 

phosphorylation at T156 is necessary for both nuclear export and 

transcriptional inactivation, since export mutants that are constitutively located 

in the nucleus are still phosphorylated by insulin signaling, and additional 

T156A mutation restores constitutive Foxa2 activity.  Thus, we show here for 

the first time that intracellular relocation is a secondary effect and that Akt-

dependent phosphorylation is a more direct determinant of Foxa2 activity and 

its physiological functions in maintaining hepatic lipid metabolism.   
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CHAPTER 4:  Pulmonary Regulation of Foxa2 by insulin 

4.1  Foxa2 expression in the lung 

As previously mentioned, Foxa2 is expressed early in development in the 

node, notochord and floor plate, while in adult animals it is expressed in 

endodermally derived tissues such as the liver, pancreas, lung and gut (19, 31, 

66, 67).  While the lung is not generally considered an insulin-sensitive organ, it 

does play a role in metabolism.  In addition to its respiratory functions, the lung 

has been demonstrated to act as a filter for certain metabolites, such as 

serotonin, and is the main source of angiotensin converting enzyme (ACE) 

(68).  Perhaps the most well appreciated metabolic function of the lung, 

however, is the production and secretion of surfactant. 

Pulmonary surfactant is an amphipathic lipoprotein complex composed 

of ~90% lipid and 10% protein (69).  Its major function is to maintain low 

levels of surface tension at the air-liquid interface in lung alveoli, and thus allow 

for more efficient gas exchange, in addition to preventing lung collapse.  For 

this reason, surfactant production is most critical for the transition to air 

breathing at birth, although it has also been linked to breathing disorders later 

in life.  Both in mice and humans, mutations or deletions in the genes coding 

for surfactant protein B and C (SP-B and -C, two of the four major surfactant 

proteins), are associated with respiratory failure and interstitial lung diseases, 
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which can be lethal without lung transplantation (70, 71).  More recently, 

additional proteins involved in surfactant production have been linked to 

respiratory diseases including proteins involved in lipid transport such as 

ABCA3 (ATP-binding cassette A3, a lipid transporter), as well as transcription 

factors regulating the expression of important surfanctant genes such as TTF-1 

(thyroid transcription factor 1) and Foxa2 (72, 73). 

In mice, Foxa2 is expressed in a subset of respiratory epithelial cells in 

the lung throughout development.  In adult animals its pulmonary expression is 

restricted to epithelial cells of the bronchi, bronchioles, alveolar type II cells, 

and at lower levels in the trachea.  Notably, its expression overlaps both 

temporally and spatially with the expression of key surfactant genes including 

SP-B, SP-C, CCSP and TTF-1, which have been shown to be Foxa2 targets 

(74-78).  Furthermore, Wan and colleagues demonstrated that conditional 

deletion of Foxa2 in the lung impaired lung maturation and surfactant 

production, and resulted in respiratory failure and death, further emphasizing 

the crucial role of Foxa2 in lung development and surfactant production (79).    

Despite the fact that the lung is not generally considered a metabolic 

organ, demonstration of such an important role for Foxa2 activation in the 

lung caused us to speculate as to whether insulin might also inhibit the 

activation of Foxa2 in the lung, and whether this might interfere with 

pulmonary function in hyperinsulinemic conditions.  Indeed, Type 2 diabetes 
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has been suggested to be associated with certain chronic respiratory diseases 

such as asthma and COPD (80-82).  While most of the genetic abnormalities 

discussed so far result in respiratory failure and lethality, chronic lung diseases 

are more common and less well understood (83).  Additionally, there is known 

to be an increased risk of respiratory distress syndrome in newborns of diabetic 

mothers (84, 85).  These mothers are generally hyperinsulinemic, but insulin 

resistant and therefore hyperglycemic.  While insulin does not cross the 

placenta, glucose does, and an excess of blood glucose stimulates the fetal 

pancreas to produce more insulin, thus rendering the fetus hyperinsulinemic. 

Taken toghether, these findings have led us to hypothesize that increased 

insulin levels may lead to nuclear exclusion and inactivation of Foxa2 in the 

lung, thus inhibiting transcription of important surfactant genes and providing 

a link between hyperinsulinemia and respiratory problems in type 2 diabetes.   

4.2  Insulin induces nuclear exclusion of Foxa2 in the lung 

To address whether insulin induces nuclear exclusion of Foxa2 in the 

lung, fasted C57Bl/6 mice were given injections of either PBS or PBS 

containing 600ng insulin.  Ob/ob (leptin-deficient) mice were used as a model of 

hyperinsulinemia and were given no injections.  20 minutes post-injection the 

mice were sacrificed and nuclear extracts were made from whole lungs 

following a protocol previously established for the liver (10).  Livers were 
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analyzed as a positive control and, as expected, livers derived from C57Bl/6 

mice injected with insulin, as well as hyperinsulinemic ob/ob mice, showed 

nuclear exclusion of Foxa2 (Figure 21).  Similarly, the lung showed clear 

nuclear exclusion of Foxa2 in response to insulin and in ob/ob mice, even with 

25% more protein loaded in insulin and ob/ob lanes (Figure 46).   

 

Though the predicted molecular weight of Foxa2 is 50 kDa, it generally 

runs around 55 kDa by SDS-PAGE.  This is approximately the same mass as 

mouse IgG heavy chain, and the two polypeptides may comigrate in a gel. To 

ensure that the band we observed in the PBS lanes was not due to 

contaminating IgG (since  a mouse monoclonal antibody was used to detect to 

Foxa2) we probed a control blot using only anti-mouse secondary antibody.  

After an hour long exposure (compared to a 4 minute exposure in Figure 46) 

we observed minimal IgG contamination, and the intensity of the 

Figure 46.  Nuclear exclusion of Foxa2 in
lungs of insulin-treated and hyperinsulinemic
mice.  Western blots of nuclear extracts
prepared from lungs and livers of fasted
C57B6 and ob/ob mice injected with
either PBS or 600 ng of insulin.  

Figure 47.  No effect of IgG 
contamination on shuttling of Foxa2. 
Blots from Figure 46 were preincubated 
with anti-mouse secondary antibody to 
control for background bands. 
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contaminating heavy chain species was higher in the ob/ob extracts than the 

PBS samples (Figure 47).  Thus, detection of Foxa2 in these samples was not 

compromised by IgG contamination. 

To determine whether this effect was relevant at physiological levels of 

insulin, we repeated the experiment in C57Bl/6 mice that were either fasted for 

24 hours or allowed to eat normally, and again included ob/ob  mice as a 

control.  Nuclear extracts of lungs from these mice showed that postprandial 

insulin levels alone were enough to induce the nuclear exclusion of Foxa2 in 

fed mice (Figure 48).  Ob/ob  mice also showed clear nuclear exclusion of 

Foxa2.  Ponceau staining or antibody against the generic TAF100 transcription 

factor were used as loading controls.   

 

After development of the cellular fractionation protocol discussed in 

chapter 2, we repeated these experiments in triplicate in fasted, fed, insulin-

injected C57Bl/6, and ob/ob mice.  As expected, Foxa2 was once again found in 

the nucleus of lungs of fasted mice, but was excluded from the nuclear 

fractions in fed, insulin-injected and ob/ob mice (Figure 49).  Accordingly, we 

Figure 48.  Nuclear exclusion of Foxa2 in
lungs at physiological insulin levels.
Immunoblot analysis of Foxa2 in nuclear
extracts from livers of C57BL/6 and ob/ob
mice, fasted for 24 h or ad libitum fed.
Nuclear extracts were prepared by sucrose
gradient fractionation and each lane
represents livers pooled from 2 mice. 
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were able to see Foxa2 in the cytoplasmic fractions only in lungs from fed, 

insulin-injected and ob/ob mice.  

 

Figure 49.  Foxa2 relocates to the cytoplasm in lungs of fed and hyperinsulinemic mice.  Immunoblots 
of nuclear and cytoplasmic fractions from lungs of fasted, fed or insulin-injected C57Bl/6 mice, and 
fasted ob/ob mice. 
 

4.3  Surfactant gene expression in adult lung 

To determine whether the inhibition of Foxa2 in fed mice has an effect 

on surfactant gene expression we prepared RNA from lungs of fasted or ad 

libitum fed mice, and analyzed expression levels of candidate Foxa2 target genes 

by realtime PCR.  While we did observe a slight decrease in SP-A , SP-B and 

Aqp3 (aquaporin 3, a water channel protein whose transcription is activated by 

Foxa2 in reporter assays (86)), only SP-A was significantly downregulated 

(Figure 50).   

 

Figure 50.  Surfactant gene expression in lungs of fasted and fed mice.  RNA was prepared from lungs 
of C57Bl/6 mice that were fasted overnight or ad libitum fed.  RNA was reverse transcribed and 
relative gene expression was measured by quantitative realtime PCR, normalized to either GAPDH 
(left panel) or 36B4 (right panel). Values represent the mean ± SEM;  **, p<.01 by two-tailed students 
t-test relative to fasted controls, n≥3. 
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SP-A has been previously associated with Foxa2 due to its decreased 

expression in Foxa2∆/∆ lungs, and there is evidence that insulin leads to 

inhibition of SP-A in a PI3-K-dependent manner (79, 87), suggesting that it 

could potentially be a direct target.  However, this is debatable since reporter 

assays failed to show that Foxa2 can directly activate its transcription (79).   

Since the expected downregulation of SP-B and CCSP in fed mice was 

not observed by realtime PCR we took a more unbiased approach to identify 

potential Foxa2 target genes that are regulated by nutritional status.  mRNA 

was prepared from total lung RNA of fasted and fed C57Bl/6 mice, pooled, 

and compared by Affymetrix microarray hybridization.  Table 2 shows the 

most downregulated and upregulated genes in the fed compared to the fasted 

state.  Since Foxa2 generally acts as a transcriptional activator we consider the 

downregulated genes most likely to be direct targets of Foxa2.   

Once again we saw no significant changes in surfactant genes, and no 

obvious target genes linking nutritional status to pulmonary function.  It should 

be noted, however, that this experiment only compared lungs of adult, healthy, 

wildtype mice in fed and fasted states, and not more extreme hyperinsulinemic 

conditions.  We therefore decided to investigate Foxa2 in a more demanding 

context. 
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Gene Fold downregulation 

chloride channel calcium activated 3 46.3 
chitinase 3-like 4 23.6 
eosinophil-associated, ribonuclease A family, member 11 6.9 
resistin like alpha 6.6 
cDNA sequence BC055107 4.7 
serum amyloid A 3 4.4 
solute carrier family 26, member 4 4.3 
chloride channel calcium activated 1 ; chloride channel calcium activated 2 4.2 
cDNA sequence BC055107 3.9 
pyruvate dehydrogenase kinase, isoenzyme 4 3.9 
anterior gradient 2 (Xenopus laevis) 3.5 
angiopoietin-like 4 3.5 
PREDICTED: zinc finger and BTB domain containing 16 mRNA 3.4 
RIKEN cDNA 2210019G11 gene 3.4 
Hexaribonucleotide binding protein 3 (Hrnbp3) 3.4 
lysyl oxidase 3.3 
Transcribed locus 3.3 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

l l i l f lik 2
3.3 

DNA-damage-inducible transcript 4 3.2 
Gene Fold upregulation 

cathelicidin antimicrobial peptide 8.172 
neutrophilic granule protein 3.838 
major urinary protein 1 ; major urinary protein 2 3.704 
lecithin-retinol acyltransferase (phosphatidylcholine-retinol-O-acyltransferase) 2.866 
mannosidase 2, alpha B2 2.701 
cytochrome P450, family 1, subfamily a, polypeptide 1 2.548 
WNT1 inducible signaling pathway protein 1 2.479 
Lecithin-retinol acyltransferase (Lrat), mRNA 2.455 
chemokine (C-X-C motif) ligand 7 2.417 
regulator of G-protein signaling 18 2.319 
transmembrane protein 46 2.255 
PREDICTED: Mus musculus RIKEN cDNA 9630020C08 gene  2.238 
RIKEN cDNA 8430417A20 gene 2.221 
DNA segment, human D4S114 2.217 
checkpoint kinase 1 homolog (S. pombe) 2.201 
limb-bud and heart 2.187 
solute carrier family 7 (cationic amino acid transporter, y+ system), 

b 10
2.174 

tumor necrosis factor (ligand) superfamily, member 10 2.166 
Insulin-like growth factor 1, mRNA (cDNA clone MGC:18617  2.165 

Table 2.  Highest down and upregulated genes in fed lung.  Biotin-labelled cRNA samples from 5 
fasted and 5 fed mice were pooled and hybridized to an Affymetrix GeneChip Mouse Genome 2.0 
array.  Shown are the 19 highest down and upregulated genes in fed compared to fasted mice. 
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4.4  Nuclear exclusion of Foxa2 in Fetal lungs 

Since previous studies have demonstrated a critical role for Foxa2 in 

lung development and the transition to air breathing, we first investigated 

whether insulin also regulates the nuclear localization of Foxa2 in the fetus.  

Timed pregnancies were set up in wildtype C57Bl/6 mice and allowed to 

progress to embryonic day 19 (E19), at which point lung development is nearly 

complete (88).  Pregnant females were either fasted, or allowed to feed freely 

for 16 hours prior to sacrifice, and cellular localization of Foxa2 was assessed in 

maternal and fetal liver and lung tissue.  In accordance with previous data, 

Foxa2 is nuclear in maternal tissue from fasted mice, as well as in the lung and 

liver of fetuses from fasted mothers (Figure 51).  This is in startk contrast to ad 

libitum fed pregnant females, where Foxa2 is excluded from the nucleus in 

maternal and fetal lung and liver (Figure 52).  Here we demonstrate, for the 

first time, that Foxa2 shuttling also occurs in the fetus, and that its cellular 

localization is linked to the nutritional state of the mother. 

 

Figure 51.  Foxa2 is nuclear in liver and lung of fasted fetuses.  Nuclear and Cytoplasmic fractions 
from wildtype fasted maternal (M2) or E19 fetal (E1, E2) liver (Lv) and lung (Lu) were immunoblotted 
for Foxa2.  TP1 and TP2 indicate individual timed pregnancies. 
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Figure 52.  Foxa2 is cytoplasmic in fetal liver and lung of fed mice.  Nuclear and Cytoplasmic 
fractions from wildtype ad libitum fed maternal (M) or E19 fetal (E1,4,6) liver and lung were 
immunoblotted for Foxa2. 
 

Since insulin does not cross the placenta, we could not directly test the 

effect of insulin on the localization of Foxa2 in fetal tissues by injection.  

Instead, we took advantage of two mouse models of diabetes that are 

hyperglycemic and thus induce hyperinsulinemia in the fetus.   

SREBP-1cAp2 (SREBP) transgenic mice, express nuclear Sterol 

regulatory element-binding protein (SREBP) 1c only in adipose tissue, but 

subsequently have a pronounced type 2 diabetic phenotype with marked 

hyperinsulinemia, insulin resistance and hyperglycemia (89).  Previous data 

from the lab has shown that Foxa2 is constitutively cytoplasmic and inactivate 

in livers of these mice (10).  We now show that Foxa2 is also constitutively 

cytoplasmic in lungs of these mice.  Additionally, maternal hyperglycemia in 

these animals is able to signal a constant “fed” state even in these fasted mice, 

and thus triggers insulin secretion, as evidenced by nuclear exclusion of Foxa2 

in fetal lungs of these mice (Figure 53). 
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Figure 53.  Nuclear exclusion of Foxa2 in fetal lungs of SREBP mice.  Immunoblots of nuclear and 
cytoplasmic extracts from lungs of fasted SREBP mice.  M, maternal lung; E1-4, E19 fetal lung; C, 
fasted lung whole cell lysate as a control; TBP, TATA binding protein.   

 
The second mouse model we used to demonstrate the effect of aberrant 

insulin signaling on Foxa2 localization in fetal tissue is streptozotocin-induced 

diabetic mice, a model for Type I diabetes.  Streptozotocin (stz) targets and kills 

pancreatic beta cells, inducing hypoinsulinemia and, consequently, 

hyperglycemia.  Thus, these mice provide an elegant approach to studying the 

effects of maternal hyperglycemia on Foxa2 localization in wildtype fetuses.  

Fasted stz-treated mothers, in accordance with their hypoinsulinemic state, 

show Foxa2 localization in the nucleus in liver and lung (Figure 54).   

 

Figure 54.  Differential Foxa2 localization in maternal and fetal livers and lungs of Stz mice.  Pregnant 
C57Bl/6l mice were given injections of 3x75 mg/kg stz on E14-16.  Mice were fasted on E18, sacced 
on E19 and nuclear and Cytoplasmic fractions maternal (M) or E19 fetal (E1, E5) liver (Lv) and lung 
(Lu) were subject to immunoblot analysis. 
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Conversely, fetuses of these hyperglycemic mothers retain beta cell 

function and secrete insulin, which results in cytoplasmic relocalization of 

Foxa2 only in fetal tissues (Figure 54). 

To study the effect of hyperinsulinemia on gene regulation in fetal lungs 

we compared mRNA expression profiles from wildtype, fasted fetuses and stz-

treated fetuses.  Agilent microarray analysis revealed 37 genes which were 

found to be significantly downregulated and 103 genes significantly upregulated 

more than 2 fold in stz-lungs compared to fasted wildtype controls (Table 3).   

While we have not yet verified any of these genes in the lung, 

preliminary cDNA analysis of fetal livers from stz and wildtype fasted fetuses 

by RTPCR shows a significant decrease in known Foxaa2 target genes 

including MCAD, VLCAD and CPT1 (Figure 55).  This analysis was 

preliminary due to the limited n number, however it suggests that the model is 

sound.  It is also reassuring to note that several of the top downregulated genes 

in the agilent list have already been linked to Foxa2 in the literature. Reg3g, has 

been shown to be a Foxa2 target gene in vitro, and is the highest downregulated 

in our list (90).  Scgb3a1, the second most downregulated gene in stz-lungs is a 

homolog of CCSP, a secrotoglobulin also regulated by Foxa2 (91).  

Additionally, muc5b (mucin 5b) is a related to muc2, the main component of 

intestinal mucous which is regulated by Foxa1 and 2 in intestinal eplithelial cells 

(92). 



64 
 

Gene Fold downregulation Gene Fold downregulation

Reg3g 78.98 A_52_P444116 3.77 
Scgb3a1 31.79 Chst5 3.55 
Muc5b 31.34 Krt5 3.31 
Agr2 22.71 Klk10 3.26 
Mfi2 16.90 Vip 3.23 
1110017I16Rik 16.67 A_52_P686218 3.02 
Matn3 14.50 A_52_P257026 2.95 
Col9a1 11.89 B230303O12Rik 2.92 
C1qtnf3 10.69 2310068J10Rik 2.91 
Col9a3 9.74 AK163997 2.87 
Lect1 8.63 Gzmb 2.85 
3110079O15Rik 8.34 D130076A03Rik 2.69 
Agc1 7.96 Mfsd2 2.64 
Chac1 7.22 Abcg5 2.51 
Adh7 5.65 Nr1i3 2.41 
Cart 5.22 AK154840 2.37 
A930038C07Rik 4.71 E430002D04Rik 2.03 
BC006965 4.36 Nptxr 2.01 
9030611K07Rik 4.05 

Gene Fold upregulation Gene Fold upregulation 

Pln 169.7 Akr1b7 4.8 

Prap1 71.3 Serpina1e 4.8 

Ckmt2 65.3 Agxt 4.8 

Nppa 25.5 Cyp3a41 4.7 

Ftcd 21.5 Kng1 4.7 

Dhrs7c 15.5 F13b 4.6 

C78409 14.8 Cps1 4.5 

Xist 14.4 Fabp1 4.4 

Apoa5 10.1 Abcb11 4.3 

Nefh 8.1 Pck1 4.1 

Pah 7.6 Slc10a1 4.1 

9630020C08Rik 5.9 Apoa1 4.0 

Cyp3a16 5.8 Sult1d1 4.0 

Slco1b2 5.7 Bhmt2 4.0 

Fthl17 5.7 Dmgdh 4.0 

Ankrd1 5.4 Hsd17b13 3.9 

Hfe2 5.4 Clec4f 3.9 

Angptl3 5.1 Serpina1b 3.7 

Bhmt 5.0 Spp2 3.6 
Table 3.  Genes  altered in fetal lungs of stz-mothers.  Highest up and downregulated genes in stz 
compared to fasted fetal lungs were identified using 4x44 Agilent whole mouse genome microarray 
service (miltenyi) and further analyzed using GenespringGX software. 
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Figure 55.  Foxa2 β-oxidation genes are inhibited in fetal livers of stz mothers.  Realtime PCR analysis 
of Foxa2 target genes in cDNA made from livers of fetuses from C57Bl/6 fasted or stz-induced 
diabetic mothers.  Values are means, normalized to GAPDH ± SEM shown relative to fasted fetal liver 
samples, which were sset to 1.  *, p≤.05; **, p ≤ 0.01.  MCAD, medium chain acyl-CoA 
dehydrogenase; VLCAD, very long chain acyl-CoA dehydrogenase; CPT1, carnitine 
palmitoyltransferase 1α.  n≥2. 

4.5  Summary 

Though the lung is not considered a major metabolic organ, we have 

found that Foxa2 localization is regulated by insulin in the lung as it is in the 

liver.  In lungs of adult mice Foxa2 is excluded from the nucleus following 

insulin injection, as well as by physiological levels of insulin experienced in the 

fed state.  Furthermore it is constitutively cytoplasmic in lungs of 

hyperinsulinemic ob/ob mice.  The increased incidence of lung disorders in 

babies of diabetic mothers, which are similar to that observed in Foxa2 lung 

conditional knockout mice, led us to search for a correlation between 

hyperinsulinemia, Foxa2 inactivation, and the production of surfactant 

proteins.  In lungs of adult mice, RTPCR and microarray analysis failed to 

provide clear evidence that Foxa2 inactivation in the fed state links nutritional 
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status to pulmonary function.  However, we did observe a slight but significant 

downregulation in SP-A gene expression by RTPCR.    

While microarray analysis of gene expression in fetal lungs from stz-

induced diabetic mothers was also unable to directly correlate Foxa2 regulation 

to surfactant production, we do clearly observe insulin-dependent inactivation 

of Foxa2 both in fetal liver and lung.  In normal mice and in mouse models of 

diabetes, we find that Foxa2 in the embryonic lung (and liver) is excluded from 

the nucleus in conditions of high blood glucose.  This sensitivity of Foxa2 to 

maternal glycemic state leaves open the possibility that there is a link between 

diabetic mothers and fetal lung development and function. 
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CHAPTER 5:  Shuttling of Foxa2 in the Hypothalamus 

5.1  Hypothalamic expression of Foxa2  

In addition to aforementioned regions, Foxa2 is also expressed in the 

brain, including certain regions of the hypothalamus (19).  Using Xgal knock-in 

mice (Foxa2+/lacZ) in which one allele of Foxa2 is replaced by the LacZ gene, we 

have further mapped the expression of Foxa2 in the central nervous system.  

X-gal staining was observed in the lateral hypothalamic area, paraventricular 

hypothalamic area, zona incerta, and substantia nigra (Silva J, unpublished 

data).  However, the function of Foxa2 in these cells is not well understood.  

Given the newly emerging view of Foxa2 as an important sensor and regulator 

of metabolic genes, we found its expression in the lateral hypothalamus 

(considered to be the feeding center of the brain) to be of particular interest 

(93).   

While the hypothalamic role of Foxa2 has not yet been appreciated, the 

anorectic effects of insulin and its subsequent activation of the 

phospatidylinositol 3 kinase (PI3K)/IRS/Akt signaling pathway in the 

hypothalamus are well documented (94-96).  In the arcuate nucleus, these 

effects have been shown to be mediated in part by suppression of orexigenic 

neuropeptides such as neuoropeptide Y (Npy) and Agouti-related protein 

(Agrp), while activating the expression of anorexigenic Pomc 
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(proopiomelanocortin) at the same time (97).  Inactivation of Foxo1 by insulin 

and leptin has been shown to play a key role in these regulatory events (98). 

Neurons in the lateral hypothalamus also respond to feeding and fasting, 

and control food intake as well as spontaneous physical activity due in large 

part to the effects of orexin and MCH (99, 100).  However, the mechanism and 

metabolic stimuli controlling their regulation in response to feeding and fasting 

is unknown.  Dual immunofluorescence labeling with Foxa2 and MCH or 

orexin reveals that all MCH and orexin positive neurons also express Foxa2 

(Silva J, unpublished data).  Thus we hypothesized that insulin-induced nuclear 

exclusion of Foxa2 could mediate feeding-induced inhibition of MCH and 

orexin, and thus appetite and food seeking behavior.  

5.2  Insulin induces nuclear exclusion and inactivation of Foxa2 in the 

hypothalamus 

To begin to address the role of Foxa2 in the hypothalamus, we first 

sought to determine whether it is inactivated by insulin signaling in this portion 

of the brain.  Hypothalami were dissected from fasted or ad libitum fed wild 

type mice, subjected to cellular fractionation and assayed for nuclear exclusion.  

As shown in Figure 56, Foxa2 is nuclear in hypothalami from fasted mice, but 

cytoplasmic in fed mice.   
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To demonstrate that this regulation is 

due specifically to increased postprandial 

insulin levels and not blood glucose 

concentrations, we isolated hypothalami 

from fasted wildtype mice and incubated 

them ex vivo in basal media with low glucose, 

high glucose, or low glucose plus insulin.  

Neither low nor high glucose concentrations 

are sufficient to induce nuclear export of Foxa2, however Foxa2 did shuttle 

when insulin was added to the low glucose media (Figure 57) 

 

Figure 57.  Hypothalamic nuclear exclusion of Foxa2 is insulin and not glucose-dependent.  
Immunoblot analysis of nuclear and cytoplasmic extracts prepared from hypothalami incubated ex 
vivo in DMEM with either low (5 mM) or high (16 mM) glucose, in the absence or presence of 10 
ng/mL of human recombinant insulin. 

 
In order to study the effects of constitutive inactivation of Foxa2 in the 

hypothalamus, we analyzed high fat diet-induced obese mice, which provide a 

hyperinsulinemic model of type 2 diabetes.  As expected, high fat diet-induced 

Figure 56.  Insulin induces nuclear
exclusion of hypothalamic Foxa2.
Immunoblot analysis of nuclear and
cytoplasmic extracts prepared from
pooled hypothalami from 3 mice each that
were either fasted overnight or ad libitum
fed. TBP, TATA binding protein.
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obesity and the corresponding increases in plasma insulin result in constitutive 

nuclear exclusion of Foxa2 in the hypothalami of these mice.  While Foxa2 is 

completely nuclear in fasted chow fed mice, cytoplasmic levels of Foxa2 in 

hypothalmi from high fat diet-fed mice are similar to those of ad libitum fed 

controls (Figure 58).   

 

Figure 58.  Foxa2 is constitutively cytoplasmic in hypothalami from high fat diet-fed mice.  
Immunoblot analysis of nuclear and cytoplasmic extracts prepared from hypothalami of fasted, fed or 
fasted high fat diet-fed mice.  Each lane represents hypothalami pooled from 2 mice.  γ-Tubulin was 
used as a general loading control, and LSD1 (Lysine-specific demythlase 1) and GAPDH served as 
nuclear and cytoplasmic extraction controls, respectively. 
 
  

Correspondingly, expression of both MCH and orexin was decreased by 

~60% in hypothalami of fed and high fat diet-fed mice, compared to fasted 

controls (Figure 59).  Further work in the lab has shown that MCH and orexin 

are direct targets of Foxa2 in transactivation and chromatin 

immunoprecipitation experiments. 
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Figure 59.  Real-time RT-PCR analysis of MCH and orexin in fasted, chow fed  and fasted, high fat 
diet-fed (HF) mice.  Results are expressed as amount of cDNA normalized to GSPDH cDNA. The 
values represent the mean ± sem (n=5 in all groups; *, P<0.05; **, P<0.01). 

5.3  Constitutive activation of Foxa2 in the hypothalamus 

In order to show that Foxa2 activation is sufficient to induce metabolic 

changes associated with MCH and orexin we constitutively activated Foxa2 in 

hypothalamic nuclei by 3 different means.  First, conditional mutant mice with 

a constitutively active Foxa2-T156A allele were generated by introducing loxP 

sites upstream and downstream of exon 3, which encodes most of the open 

reading frame of Foxa2 as well as the 3’ untranslated region.  An exon 3 

duplication, harboring the T156A mutation, was introduced downstream of the 

floxed wildtype exon 3 and neuron specific recombination was obtained by 

breeding to nestin-Cre mice.  These mice show significantly increased 

expression of MCH and orexin, as well as CPT1, MCAD and VLCAD, Foxa2 

target genes involved in mitochondrial β-oxidation (Figure 60).   

Accordingly, these mice show a significant enhancement of metabolic 

function.  Serum glucose levels, plasma insulin levels and serum free fatty acid 

concentrations are all decreased in the fed state in Nes-Cre/Foxa2T156Afl/fl 
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mice compared to control littermates (Figure 61).  Glucose clearance from the 

circulation following an insulin tolerance test is modestly increased in Nes-

Cre/Foxa2T156Afl/fl mice, indicating increased insulin sensitivity (Figure 61). 

 

Figure 60.  Real-time RT-PCR analysis of gene expression in mice with neuron-specific activation of 
Foxa2.  cDNA was prepared from  hypothalami of fed Nescre/+, Foxa2T156Afl/fl mice, fed 
Foxa2T156Afl/fl mice and fed Nescre/+ mice.  Relative expression of MCH, Orexin, CPT1, Mcad, and 
Vlcad was normalized to β-actin or GAPDH housekeeping genes. The results are expressed as fold-
induction over fed Foxa2T156Afl/fl mice and represent the mean ± SEM. 

 

 

Figure 61.  Altered serum parameters in Nes-Cre/Foxa2T156Afl/fl mice.  Blood glucose, percentage of 
starting plasma glucose concentration during an insulin tolerance test, plasma insulin and plasma 
Free fatty acids were measured in in Nescre/+, Foxa2T156Afl/fl mice, Nescre/+ mice, and 
Foxa2T156Afl/fl mice. 
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Measurements of metabolic rates reveal that Nes-Cre/Foxa2T156A fl/fl 

mice have increased O2 consumption and CO2 production, and exhibit 

dramatic increases in spontaneous physical activity over 24 hours compared to 

Nes-Cre/+ and Foxa2T156A fl/fl control mice (Figure 62).  Food 

consumption and drinking volume are also increased in Nes-Cre/Foxa2T156A 

fl/fl animals (Data not shown).  

 

Figure 62.  Altered metabolic parameters in Nes-Cre/Foxa2T156A fl/fl mice.  Spontaneous physical 
activity during a light phase 12 hr interval, oxygen consumption and CO2 production were determined 
simultaneously during a 24-h period in individual mice using an oxymax metabolic chamber system. 

 
To ensure that these effects were not due to activation of Foxa2 in 

neurons outside of the hypothalamus we used two alternate methods to express 

constitutively active Foxa2 specifically in the hypothalamus:  injection of 

constitutive Foxa2-T156A adenovirus into the hypothalamus of wildtype mice, 
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and direct injection of adenovirus CRE into hypothalami of Foxa2T156A fl/fl 

mice.  Cellular fractionation confirmed the expression and constitutively 

nuclear localization of Foxa2-T156A in fed mice injected with either Ad-T156A 

or Ad-Cre, while endogenous Foxa2 is cytoplasmic (Figure 63, Figure 64).  

Both of these methods achieved similar results to the Nes-Cre/Foxa2T156A 

fl/fl experiments, demonstrating that the metabolic phenotypes are due to 

constitutive activation of Foxa2 in the hypothalamus. 

 

Figure 63.  Hypothalamic expression and localization of Foxa2 after AdT156A injection.  C57Bl/6 
mice were given hypothalamic injections of adenovirus expressing GFP or Foxa2-T156A.  
Immunoblots of cellular fractionation experiments are shown.   

 

 

Figure 64.  Hypothalamic expression and localization of Foxa2 after AdCre injection in Nes-
Cre/Foxa2T156A fl/fl mice.  Nes-Cre/Foxa2T156A fl/fl mice given hypothalamic injections of either 
GFP or Cre adenovirus.  Immunoblot analysis of nuclear and cytoplasmic fractions are shown. 
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5.4  Summary 

These studies reveal a molecular mechanism by which insulin controls 

the feeding/fasting response of the lateral hypothalamus.  In fasting conditions, 

Foxa2 acts as a direct transcriptional activator of MCH and orexin genes, 

thereby stimulating classical fasting responses such as feeding, behavioral 

arousal and spontaneous physical activity. In the fed state, Foxa2 is 

phosphorylated by insulin/PI3K/Akt signaling, which leads to Foxa2 

inactivation and nuclear exclusion.  Interestingly, MCH and orexin expression 

is regulated by the same metabolic stimuli and molecular signaling pathway, 

thereby integrating metabolic and adaptive behavioral responses.  Similar to 

what we have shown for the liver and lung, Foxa2 is permanently inactive in 

MCH and orexin neurons in hyperinsulinemic states such as type 2 diabetes, 

resulting in reduced MCH and orexin expression. Conditional constitutive 

activation of Foxa2 in the hypothalami of these mice leads to increased physical 

and metabolic activity, improved glucose homeostasis, and increased insulin 

sensitivity. 
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DISCUSSION 

Affect of genetic variation on Foxa2 regulation and associated metabolic 

activity  

While data support a role for Foxa2 as a metabolic transcription factor, 

there is conflicting evidence regarding its inactivation, particularly its nuclear 

exclusion by insulin.  Our studies confirm that Foxa2 can be inactivated 

through insulin-induced nuclear exclusion in all mouse strains tested.   

However, marked differences exist in the modulation of metabolic pathways by 

insulin signaling with respect to background genetic strain differences.  The 

inherent metabolic differences in the strains studied are exemplified by their 

responses to high fat diets.  C57Bl/6 mice are generally more obese, glucose 

intolerant, and hyperinsulinemic on high fat diets and exhibit higher levels of 

liver triglycerides, increased hepatic steatosis, and insulin sensitivity than their 

129 counterparts (101) (102).   These findings are in line with our observations, 

which demonstrate that in addition or due to having lower insulin levels, Sv129 

mice have higher rates of β-oxidation and increased oxygen consumption in 

comparison to C57/B6 mice.  Accordingly, only in C57Bl/6 and dba mice were 

the postprandial levels of insulin high enough to effect nuclear exclusion of 

Foxa2 under physiological circumstances.  These data provide a plausible 
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explanation for the observed discrepancies in nuclear exclusion of Foxa2 

reported by Zhang et al (11).  

 We also demonstrate that primary hepatocytes from hyperinsulinemic 

insulin resistant mice (ob/ob, db/db and HF-diet induced obese mice) are 

capable of shuttling Foxa2 back into and out of the nucleus in culture, while 

Foxa2 is always cytoplasmic in livers of these mice in vivo.  These data 

demonstrate that hepatocytes from these mice are not defective, but accurately 

reflect the insulin concentrations to which they are exposed. 

Not only do our data demonstrate the importance of genetic background 

on metabolism and Foxa2 regulation, but we also find the inverse to be true:  

the activation state of Foxa2 is sufficient to account for some of these observed 

metabolic alterations.  While constitutive activation of Foxa2 in Sv129 mice has 

little effect (Foxa2 is already active), constitutive activation in C57Bl/6 mice 

normalizes β-oxidation between fasting and feeding states by increasing β-

oxidation in the fed state, corresponding with Foxa2-dependent activation of 

target genes such as Mcad, Vlcad and CPT1.  

The increased insulin levels in “obesity-prone” C57Bl/6 inbred mice (in 

the fed state) result in the translocation of insulin-dependent hepatic factors 

Foxo1 and Foxa2 from the nucleus, which leads to the inhibition of 

downstream target genes involved in glucose and lipid metabolism. This could 

also serve to set up a negative feedback loop whereby genetic factors in certain 
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strains lead to decreased Foxa2 activity (or to increased insulin and thereby 

decreased Foxa2 activity) , which in turn leads to decreased metabolism and 

enhanced metabolic differences between strains.  In such a case, with the 

addition of a high fat diet or additional environmental stresses, this negative 

feedback could be even further exacerbated in the “obesity-prone” mice, 

resulting in this exaggerated phenotype.  

The development of diabetes and the associated metabolic syndrome in 

humans is also dramatically affected by background genes.  In mice, this was 

first reported for the ob/ob and db/db traits (53) and has been shown 

subsequently in mice with genetically induced lipodystrophy (103), and diet-

induced obesity (104). Furthermore, a recent study showed that in the insulin 

receptor/IRS-1 double-heterozygous knockout, the background genes of 

C57/B6 mice caused severe hyperinsulinemia and diabetes, whereas 

background genes of the Sv129 strain protected against diabetes (105). This 

"thrifty" phenotype displayed by the C57/B6 mice as shown by weight gain, 

hyperinsulinemia, and increased hepatic lipid content is similar to that observed 

in various human populations that exhibit an increased susceptibility to obesity 

and diabetes, given an average caloric intake (106, 107).  Even though the 

causes of increased release of insulin are unclear, it may be possible to 

counteract some of the pathophysiological conditions that are a direct result of 

the metabolic syndrome.  Thus, it is of the utmost interest to elucidate ways to 
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modulate Foxa2 activity through dephosphorylation and nuclear reactivation, 

with the goal of influencing hepatic lipid metabolism and thereby alleviating 

symptoms such as hepatic steatosis and insulin resistance. 

 

Inhibition of Foxa2 occurs independently of nuclear exclusion 

Previous data from our lab provide evidence for a strong correlation 

between insulin signaling, T156 phosphorylation, nuclear exclusion and 

inactivation of Foxa2 (10, 36).  While nuclear exclusion certainly leads to 

inhibition of transcriptional activity, there was previously no means to 

differentiate between these correlative observations. The novel identification of 

a functional NES in Foxa2 has now allowed us to uncouple these events.   

Interestingly, alignment of the Foxa2 NES shows that it is well-

conserved throughout vertebrate homologues of Foxa2.  Minor variations 

within the sequence occur from Xenopus to human (methionines instead of 

leucines at amino acids 110 and 113), but these changes conserve the overall 

character of the export sequence and are not likely to hinder nuclear export 

capability.  Indeed, it has been shown that hydrophobic residues other than 

leucine (including isoleucine, valine, methionine, and phenylalanine) may 

constitute a functional CRM1 NES (62, 108). By contrast, this sequence 

conservation does not extend to Fork head, the Drosophila homolog of Foxa2.  
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Consequently, Drosophila Fork head may not be capable of shuttling in response 

to insulin stimulation, suggesting that the nuclear export capability may have 

arisen later in evolution.  Notably, the T156 phosphorylation site (T207 in 

Drosophila) is conserved (36).  It will therefore be interesting to see whether the 

same mechanism of insulin-induced phosphorylation exists in flies, and 

whether this also results in Fork head inactivation. 

Mechanisms to this effect have also been reported for the Foxo family 

of transcription factors.  Phosphorylation of three critical residues in Foxo1 has 

been shown to contribute to nuclear export and subsequent loss of 

transcriptional activity in response to insulin/IGF signaling (46, 47, 58).  In vitro 

data suggest that Serine 256 acts as a “gatekeeper” to subsequent regulatory 

events, with phosphorylation at this residue resulting in transcriptional 

inhibition of nuclear Foxo1 (50, 109).   However, additional posttranscriptional 

modifications have also been shown to contribute to the regulation of FoxO 

family members, including acetylation, ubiquitination and methylation 

(reviewed in (110, 111).  The relative contribution and exact mechanisms of 

these modifications are still being worked out. 

Our data support a model whereby phosphorylation of Foxa2 acts as the 

dominant signal for transcriptional inactivation; however we cannot exclude the 

possibility that additional post-translational modifications exist.  Since we 

generally observe that Foxa2 runs about 9 kDa above its predicted molecular 
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weight, we asked whether it might be sumoylated or ubiquitinated.  Running 

the rat Foxa2 amino acid sequence through a sumoylation site predicting 

program identified several sites with high probability, and several with low 

probability (Figure 65).  Intriguingly, one of the high probability sites is very 

close to the Akt phosphorylation site.   

 

Figure 65.  Sumoylation site prediction.  The amino acid sequence for rat Foxa2 was put into 
SumoPlot, a sumoylation prediction program.  The following high and low probability sites were 
predicted.  The Foxa2 Akt phosphorylation site is shown in green, for reference. 

 
To test whether Foxa2 is sumoylated we used whole cell lysates from 

insulin-treated primary hepatocytes infected with the four Foxa2 variant 

viruses.  Surprisingly, we observe a very strong sumoylation signal in 

immunoprecipitates, and even in whole cell lysates of all insulin-stimulated 

primary hepatocytes, except GFP controls (Figure 66).  There did not seem to 

be any difference in sumoylation state between the viruses however, and more 

data will need to be acquired to determine the function of Foxa2 sumoylation, 

and whether it is regulated by insulin. 



82 
 

 

Figure 66.  Foxa2 is sumoylated.  Primary hepatocytes were infected with the indicated adenovirus, 
serum starved overnight and stimulated with 100nM insulin for 15 min.  Whole cell lysates were then 
saved as input, or immunoprecipitated (IP) with an anti-HA antibody.  Immunoblots of input and IPs 
were probed with an antibody against SUMO1. 

 
  In an attempt to determine whether the phosphorylation site is 

sufficient to induce inactivation of Foxa2 we generated Foxa2-T156E or -

T156D phosphomimetic variants.  These both appear to result in constitutively 

nuclear Foxa2 when stably expressed in HepG2 cells, although further studies 

are needed to sufficiently assay its activation state (data not shown).  Thus, 

whether this single phosphorylation event is sufficient for inactivation of Foxa2 

remains to be determined.   

One plausible hypothesis for the regulation of Foxa2 by 

phosphorylation, is that T156 phosphorylation, which occurs N-terminal of the 

DNA binding domain, directly decreases the DNA binding affinity of Foxa2.  

While EMSA data suggest that this is not the case, it was not possible to 

monitor the phosphorylation state of Foxa2 in these assays (36).   Alternatively, 
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or additionally, phosphorylation (or other modifications) could affect 

coactivator or histone binding.    

Our data thus provide a novel perspective on the regulation of Foxa2 by 

insulin, which can potentially be applied to the hormonal regulation of other 

transcription factors.  Additionally, the discovery of an essential NES 

controlling insulin-induced nuclear export of Foxa2 lays a strong foundation 

for the identification of additional signaling pathways and/or post-translational 

modifications involved in the regulation of Foxa2 activity. 

The constitutive inactivation of Foxa2 by insulin, in addition to the 

beneficial effects of constitutively active Foxa2 in mouse models of obesity 

make understanding the molecular mechanisms of its regulation of great 

scientific, and potentially therapeutic interest.  Taken together, our data show 

that Foxa2 is subject to active nuclear export in response to insulin signaling, 

that this export is not prerequisite for transcriptional inactivation and that 

Foxa2 phosphorylation is the most direct readout of Foxa2 activity. 

 

Pulmonary and embryonic regulation of Foxa2 by insulin 

We clearly observe insulin-induced nuclear exclusion of Foxa2 in lung 

cells, just as has been previously described for hepatocytes.  Expression of 

Foxa2 is enriched in lung, as it is in liver, so to some degree it is not surprising 
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that it behaves similarly in both tissues.  Curiously, though, there is no well 

established metabolic reason for gene expression in lung tissue to be regulated 

by the routine insulin fluctuations that accompany fasted and fed states.   

We hypothesize that an indirect connection between insulin and 

metabolism may be found in the production of lung surfactant proteins.  Lung 

surfactant maximizes the surface area of the lung available for gas exchange, 

and therefore expression of surfactant genes may increase the efficiency of 

respiration.  Efficient respiration, in turn, may permit more efficient use of 

energy during periods of activity, and studies have shown that caloric 

restriction stimulates locomotion.  Indeed, in chapter 5 we report the novel 

regulation of Foxa2 by insulin in the hypothalamus, where nuclear Foxa2 

(induced by fasting), increases locomotion and food-seeking behavior.  In this 

way, insulin-dependent regulation of Foxa2 in the lung may correlate with the 

overall metabolic state of the organism.  This model would also implicate 

Foxa2 in one of the developmental disorders associated with type 2 diabetes:  

impaired lung function in infants of mothers with uncontrolled gestational 

diabetes (84, 85).  These mothers are generally hyperinsulinemic, but insulin 

resistant and therefore hyperglycemic.  While insulin does not cross the 

placenta, glucose does, and an excess of blood glucose stimulates the fetal 

pancreas to produce more insulin, thus rendering the fetus hyperinsulinemic. 

We hypothesize that this results in the cytoplasmic localization and inactivation 
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of Foxa2 in the lungs of fetuses developing in insulin resistant mothers, leading 

to reduced surfactant production just prior to their transition to air breathing at 

birth.  There is also some evidence for an associated risk of respiratory diseases 

like asthma and chronic obstructive pulmonary disease in adults with obesity 

and type II diabetes (80-82). 

The most obvious way for Foxa2 to regulate surfactant production is 

through transcriptional control of surfactant genes.  Surfactant protein B (SP-

B) and clara cell secretory protein (CCSP) are both reported Foxa2 target genes 

in the lung (76, 112), however our initial realtime PCR analysis for fasted and 

fed adult lung show very minor, if any, changes in these genes.  Interestingly, a 

different surfactant protein, SP-A, was significantly decreased.  Furthermore, 

several genes from our microarray analysis on embryonic lung look promising 

in terms of being potential Foxa2 targets that are also implicated in lung 

function:  Reg3g, Scgb3a1, and muc5b.  While these genes do not encode 

surfactant proteins per se, they are all implicated in host defense, suggesting a 

possible alternative or additive function for insulin sensitivity in the lung.  

Our observations do not preclude the possibility of surfactant regulation 

by Foxa2 in a more indirect manner or on a longer timescale.  Indeed, the fact 

that Foxa2 is expressed in lung and is regulated by insulin strongly suggests that 

it mediates some metabolic regulation of this organ.  Further study is required 

to more fully investigate the possibility of insulin-dependent regulation in lung 
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tissue, and to understand the molecular mechanisms responsible for diabetes-

associated lung disorders. 

Finally, our studies demonstrate that Foxa2 target genes in the liver can 

be disregulated by insulin signaling during development, as early as E19.  The 

long term effects of this early disregulation are not known, however it is 

possible that it starts the negative feedback loop discussed earlier, and so sets 

the stage for insulin resistance or obesity later in life.  If so, this would be 

relevant to human forms of the disease which can be “inherited” but are not 

always directly linked to genetics. 

Regulation of Foxa2 in the Hypothalamus 

A well established connection has been noted between the neurons of 

the lateral hypothalamus and feeding behavior or arousal (113-116).  For 

instance, trauma to the LHA may result in decreased arousal, failure to meet 

metabolic challenges by modifications in behavior, and ultimately death by 

starvation (117, 118).  Our studies elucidate a molecular mechanism through 

which metabolic state may influence behavioral responses:  insuilin-dependent 

signaling in the lateral hypothalamus inhibits Foxa2-dependent expression of 

MCH and orexin neuropeptides.   

As observed in the liver, Foxa2 in MCH and orexin neurons is nuclear 

and active in fasted C57Bl/6 mice, but inactive in fed C57Bl/6 mice and fasted, 
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hyperinsulinemic obese mice.  We have identified MCH and orexin as novel 

targets of Foxa2, and show that their expression is reduced when Foxa2 is 

inactivated through insulin signaling.  MCH and orexin are known to regulate 

food intake and movement, respectively (114, 116, 119, 120).  MCH increases 

food consumption, and gene deletion causes hypophagia.  Interestingly, 

increased expression of MCH on its own results in obesity in susceptible mice; 

however increased expression of MCH in Nescre/+,Foxa2T156Afl/fl mice did 

not have this effect.  This can be attributed to the coregulation of orexin, which 

mediates wakefulness and results in increased activity.  Orexin gene deletion is 

associated with narcolepsy and obesity.    As MCH and orexin signaling are 

associated with activity and feeding behavior, their downregulation in this 

hyperinsulemic model may constitute a system of negative feedback, which 

exacerbates the phenotype.  Indeed, decreased activity is a common 

phenomenon overweight individuals, in humans and in mice, and is now 

recognized as a major factor contributing to the continuing rise in obesity. 

Interestingly, introduction of constitutively active Foxa2-T156A in these 

mice leads to improved metabolic properties, including ameliorated glucose 

homeostasis, decreased fat and lean body mass, and increased physical activity.  

These observations suggest that Foxa2 activation in the hypothalamus may be a 

novel therapeutic approach to overcome the metabolic pathologies in diabetic 

individuals.  
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EXPERIMENTAL PROCEDURES 

Materials.  Human recombinant insulin (I9278), Collagen (Type I, C3867), 

phosphate-buffered saline pH 7.4 (PBS) and Leptomycin B (L2913) were 

purchased from Sigma.  HALT phosphatase inhibitor cocktail was from Pierce, 

and Complete protease inhibitor cocktail was from Roche.  Antibodies to: HA 

(Covance and Santa Cruz), Foxa1 (a gift from J. Darnell, Rockefeller 

University; or from Abcam, ab23738), rabbit or goat polyclonal to Foxa2 

(Abcam), phosphorylated Foxa2 (T156) antibody was generated and described 

previously (Cell Signaling) (10), LSD1 (Cell Signaling), GAPDH (Abcam), 

Orexin A (Abcam, ab35337), pro-MCH (Santa Cruz, sc-14509) gamma tubulin 

(Sigma), AKT (Cell Signaling), Foxo1 (Santa Cruz), TAF100 (a gift from R.G. 

Roeder, Rockefeller University), SUMO-1 (Zymed, 38-1900).   

 

Animal Models.   C57BL/6 and ob/ob mice were purchased from Charles 

River.  All animals were maintained on a normal chow diet and a 12 h 

light/dark cycle.  All mutant animals were crossed to a C57Bl/6 background.  

Diet induced obese animals were fed a high fat diet (Harland Teklad) 

containing 50% fat for 12 weeks.  Gestation was dated by detection of the 

vaginal plug, which was considered gestational/embryonic day 1.  
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Sreptozotocin-induced diabetes was initiated on gestational day 14; mice were 

given 3 injections of 75 mg/kg stz over 3 days. 

 

Generation of FOXA2 T156A knock-in mice.  FOXA2T156Afllox/flox mice 

were generated using a targeting construct.  The short arm spanning exon 1 and 

2 (3.4 kb in length) from bp position -2517 to +919, relative to the translation 

start site (+1). The long arm, which contained exon 3 with the T156A mutation 

was 4.7 kb in length from bp position +1034 to +5782, relative to the 

translation start site.  Wild type exon 3 was located between the long and short 

arm and flanked by a loxP sequence.  A neo/tk cassette, flanked by loxP sites, 

was inserted upstream of wild type exon 3. An outside probe was used to 

visualize homologous recombination and Cre recombination events. The 

targeting vector was electroporated into R1 ES cells from mouse strain 129 

(Nagy et al., 1993) and neomycin-resistant colonies were recovered. The 

colonies were screened by Southern blotting using probe 1 and positive 

colonies were confirmed by Southern blotting with a probe located 

downstream of the 3’ homology arm. To delete the neo/tk-cassette from the 

targeted allele, recombinant ES clones were transiently transfected with a 

plasmid expressing Cre-recombinase. ES clones with partial recombination and 

deletion of the neo/tk cassette were injected into B6(D2B6F1) blastocysts to 

produce chimeric mice. Germline transmission was confirmed by Southern 
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blotting.  FOXA2T156Aflox/flox mice were first backcrossed for 7 generations to 

C57Bl/6J mice. To obtain brain-specific FOXA2T156A knock-in mice, 

FOXA2T156Aflox/flox mice were bred to Nestin-Cre mice (B6.Cg-Tg(Nes-

cre)1Kln/J, Jackson Laboratories) (14), which had been backcrossed to 

C57Bl/6J for at least 6 generations. To confirm expression of the Foxa2T156A 

allele, Foxa2T156A transcripts were amplified from brain and liver using 

primers spanning one intron of the mouse Foxa2 gene 

(AGCGGCCAGCGAGTTAAAGTATGC and 

CTGCCGGTAGAAAGGGAAGAGGTC).  RT-PCR products were cloned 

into the TOPO3 vector (Invitrogen) and sequenced. 

 

Plasmids and Adenovirus. HA-tagged Foxa2, Foxa2-T156A, and Akt2 were 

in PCDNA3 expression vectors as previously described (36).  Emut (L110A, 

L113A) and TAE (L110A, L113A, T156A) constructs were generated by site-

directed mutagenesis using overlap extension PCR.  Adenoviruses were 

generated using the Rapid Adenovirus Production System (Viraquest). With the 

exception of Ad-GFP-C1Foxa2, GFP was coexpressed from an independent 

promoter in addition to HA-Foxa2 or Foxa2 variants. Ad-GFP, Ad–Foxa2 and 

Ad–T156A were described previously (10). For in vivo experiments, mice were 

injected with 8x108 PFU of adenovirus through the tail vein. 

 



91 
 

Cell culture.  HepG2 cells and primary hepatocytes were maintained on 

collagen-coated plates in DMEM (Gibco, containing 4.5 g/L glucose, 110 

mg/L sodium pyruvate, 4 mM L-glutamine) supplemented with 10% fetal 

bovine serum (Sigma) and 100 U/mL penicillin/ streptomycin, in a humidified 

incubator at 37°C and 5% CO2.  Serum starvation was carried out for 18 h in 

DMEM without FBS and Pen/Strep.  Stable cell lines were generated by 

transfection of 4.5x106 HepG2 cells with 6 μg of plasmid DNA using Fugene6 

transfection reagent (Roche), and selection with 1 mg/mL of G418 

(Calbiochem) over 2-3 weeks.  Clonal populations were isolated and analyzed 

for expression of Foxa2 constructs by western blotting using an anti-HA 

antibody (MMS-101P, Covance).  

 

Primary Hepatocytes.  Mice were anesthetized with pentobarbital. A catheter 

(24 gauge) was inserted into the portal vein, and the liver was perfused with a 

buffer containing 10 mM HEPES (pH 7.4), 143 mM NaCl, 7 mM KCl, and 0.2 

mM EDTA at a flow rate of 1 ml/min. Effluent exited via the vena cava 

inferior. After 10 ml of perfusion, the buffer was switched to a collagenase 

buffer (50 mM HEPES (pH 7.4), 100 mM NaCl, 7mM KCl, 5mM CaCl2, and 

0.2% collagenase type IV (Sigma)). After 6 ml of perfusion, the liver was cut 

out and minced in Dulbecco’s modified Eagle’s medium (with 10% fetal bovine 
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serum) containing 4.5 g/liter glucose.  Hepatocytes were released from the liver 

during 15 min of light shaking at 37 °C.  The cell suspension was filtered 

through a 40 μm nylon mesh cell strainer (BD Falcon) and centrifuged at 80 x g 

to pellet the hepatocytes.  The cell pellet was washed three times with warm 

media, and the cells were plated onto collagenized plates. Cells were allowed to 

attach for 6 h after which cells were washed and medium was changed. 

 

Whole Cell Extracts.  From HepG2 cells:  Cells were washed, scraped and 

centrifuged at 500 x g for 5 m at 4°C in cold 0.01 M PBS.  The cell pellet was 

then resuspended in whole cell extract buffer (150 mM NaCl, 50 mM Tris pH 

7.4, 5 mM EDTA, 0.1% SDS, and complete protease inhibitor (Roche)).  The 

soluble fraction was collected after centrifugation at 13,000 rpm for 5 m at 4°C.  

A two-step lysis was used for tissue whole cell extracts:  tissues were dounced 

10-15x with a tight pestle in cold buffer A (10 mM HEPES pH 7.9, 1.5 mM 

MgCl2, 10 mM KCl, 0.6% NP40) containing 1.67x phosphatase inhibitor 

cocktail (Pierece HALT) and 1.67x protease inhibitor cocktail (Complete 

mixture Roche Applied Science) and incubated on ice for 10 m.  Lysates were 

then vortexed for 5 s, followed by dropwise addition of 140 μL of buffer B (1.2 

M NaCl, 20 mM Hepes pH 7.9, 0.2 mM EDTA, 1.5 mM MgCl2, 25% 

glycerol;without additives) and overhead rotation for 40 m at 4°C to ensure 
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lysis.  Insoluble cellular components were removed by centrifugation at 16,000 

x g for 30 m at 4°C, and the supernatant was collected. 

 

Protein measurement.  In all cases, protein concentrations were determined 

bicinchoninic acid (BCA) assay using a bovine serum albumin standard curve 

prepared in the cell lysate buffer.  (In the case of buffers containing DTT the 

standard curves were always made fresh for most accurate quantitation). 

 

Nuclear Fractionation.  Initial nuclear extraction experiments were by 

sucrose gradient fractionation.  Tissues were dounced 20x in homogenization 

buffer (10 mM Hepes pH 7.9, 25 mM KCl, 2 M Sucrose, 10% glycerol, 1 mM 

EDTA) containing protease inhibitor cocktail (added fresh).  Homogenates 

were carefully layered over a 1 cm cushion of homogenization buffer in SW55 

ultracentrifugation tubes (Beckman) and centrifuged at 100,000 x g (29,000 

RPM in SW55) for 40 minutes at 4°C.  Supernatant was carefully removed by 

pipetting and discarded, and nuclear pellets were resuspended in 2 mL of 

nuclear lysis buffer (10 mM Hepes pH 7.9, 100 mM KCl, 3 mM MgCl2, 0.1 

mM EDTA) containing 1 mM DTT and protease inhibitor cocktail (added 

fresh).  Nuclear lysates were incubated on ice for 20 minutes, followed by the 

addition of 0.1 volume (NH4)2SO4 over 30 m to precipitate chromatin, and 
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centrifuged at 100,000xg (29,000 RPM) for 60 min at 4°C.  The supernatant 

was collected and 0.66 g of (NH4)2SO4 was added  over 15 m to precipitate 

protein, which was pelletted by centrifugation for 30 minutes at 100,000g at 

4°C and resuspended in nuclear resuspension buffer (25 mM Hepes pH 7.4, 40 

mM KCl, 0.1 mM EDTA, 10% (v/v) glycerol) containing 1mM dTT (added 

fresh).  Protein was dialyzed overnight against 3 x 2 L of nuclear resuspension 

buffer. 

 

Nuclear/Cytosoplasmic Extracts.   HepG2 cells were grown in 10 cm plates 

to 80% confluency and serum-starved for 18 h, followed by the indicated 

treatments (LMB: 2 h with 2.5 ng/mL leptomycin B, Insulin: 500 nM human 

recombinant insulin for 15 min at 37°C).  Nuclear and cytoplasmic extracts 

were prepared as previously described (23).  Briefly, cells were swollen on ice in 

hypotonic lysis buffer (10 mM HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl) 

containing 1 mM dithiothreitol and protease inhibitors (Complete mixture, 

Roche Applied Science), and permeabilized by the addition of NP40 to 0.6%.  

After centrifugation at 10,400xg for 30 sec at 4°C, the supernatants 

(cytoplasmic extracts) were collected, and nuclear pellets were resuspended in 

nuclear lysis buffer (10 mM HEPES pH 7.9, 100 mM KCl, 3 mM MgCl2, 0.1 

mM EDTA) containing 1 mM dithiothreitol and protease inhibitors.  Nuclei 
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were lysed by the gradual addition of one-tenth volume of 4 M (NH4)2SO4 over 

30 min.  For liver experiments, ~50 mg of liver was dounced directly in 

hypotonic lysis buffer on ice, 10x with a tight pestle.   

 

Quantification of Cytosolic and Nuclear Foxa2.  Western blots were 

scanned and band intensity quantified by densitometry using Kodak imaging 

software. Each value was normalized to the corresponding γ-tubulin value. To 

account for differences in blotting and exposure, each blot contained the same 

standard, and all values were adjusted to the intensity measured for this 

standard. 

 

Transfection and Transactivation assays.  HepG2 cells were plated at 

70,000 cells per well in 24-well plates and transfected the following day with 25 

ng p6xCdx-TkLuc reporter gene (36), 10 ng pRL-Tk, and 25 ng of Foxa2 

expression vectors alone or in combination with 5 ng of a human Akt2 

expression vector using Lipofectamine 2000 (Invitrogen).  Cells were harvested 

40 h post-transfection and luciferase was measured using the Dual Luciferase 

System (Promega) according to manufacturer’s protocol on a Promega GloMax 

luminometer.  
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Immunofluorescence Microscopy.  Liver pieces were frozen directly in OCT 

(optimal cutting temperature) compound at –80°C.  9 μM cryosections were 

fixed in 4% paraformaldehyde in 0.01 M PBS at 4°C for 30 min, permeabilized 

in 0.2% NP40 in PBS, blocked in 5% NDS, 1% BSA, 0.1% NP40 in PBS, and 

incubated with anti-HA antibody (1:25, Santa Cruz Biotechnology, sc-805) 

overnight at 4°C in a humidified chamber.  Donkey anti-rabbit IgG Alexa Fluor 

488 (Molecular Probes) was used as a secondary antibody, and mounted with 

VECTASHIELD mounting media with Dapi (Vector Labs) to visualize nuclei.  

For hypothalamus staining, mice were CO2-anesthesized and intracardially 

perfused with 5 ml of phosphate-buffered 2% paraformaldehyde (pH 7.4). 

Brains were postfixed in phosphate-buffered 2% paraformaldehyde (pH 7.4) 

for 10 minutes at room temperature, equilibrated in phosphate-buffered 30% 

sucrose at + 4O C for 24 hours and frozen in tissue-tek OCT compound 

(Sakura). Brains were cryo-sectioned into 12μm thick coronal sections, which 

were stored at -20 °C until further use. Cryosections were permeabilized for 1 h 

at room temperature in 10mM PBST (10 mM PBS, pH 7.4, 0.1%-Triton X-

100), blocked with 1% BSA, 5% serum in PBST for 1 h at room temperature 

and incubated overnight at 4 °C with the primary antibody at a 1:50 - 1:300 

dilution in 1% BSA, 5% serum in PBST. After three washes, sections were 

incubated for 1 h at room temperature with secondary antibodies (Alexa Fluor 
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488 or Alexa Fluor 568 conjugated; Molecular Probes, Invitrogen) diluted 1:500 

in 1% BSA, PBST.  Immunofluorescent staining was visualized with a Leica 

confocal microscope at 40x magnification.   

 

Immunoprecipitation.  Primary hepatocytes from three wildtype C57Bl/6 

mice were pooled and plated onto ten 10 cm collagen-treated plates.  Cells were 

washed extensively and allowed to recover over 48 h, after which they were 

infected with 2.5x107 PFU of the indicated virus.  After an additional 24 h, cells 

were serum-starved overnight, followed by 15 min stimulation in the absence 

or presence of 100 nM insulin.  Cells were washed twice in cold 0.01 M PBS 

(containing 10mM NaF, and 0.5X HALT phosphatase inhibitor cocktail from 

Pierce) and moved directly to ice, scraped and centrifuged at 500 x g for 5 m at 

4°C.  Cell pellet was resuspended in 200 μL of buffer A (10 mM HEPES pH 

7.9, 1.5 mM MgCl2, 10 mM KCl, 0.6% NP40) containing 1.67x phosphatase 

inhibitor cocktail (Pierece HALT) and 1.67x protease inhibitor cocktail 

(Complete mixture Roche Applied Science).  Incubated cells on ice for 10 m, 

vortexed 5 s, followed by dropwise addition of 140 μL buffer B (1.2 M NaCl, 

20 mM Hepes pH 7.9, 0.2 mM EDTA, 1.5 mM MgCl2, 25% glycerol) without 

additives.  Rotated (overhead) 40 m at 4°C to ensure lysis.  Centrifuged at 

16,000 x g for 30 m at 4°C to pellet chromatin and debris, and collected 

supernatant as whole cell lysate.  Brought 120ug of protein lysate up to 276 μL 
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with A/B lysis buffer (mixed 1.5:1), added 600 μL IP buffer (0.01 M PBS pH 

7.4, .01 mM EDTA, 0.02% NP40) containing phoshpatase and protease 

inhibitor) to each and subjected all to immunoprecipitation overnight at 4°C 

with monoclonal HA agarose (Sigma A2095) in SigmaPrep spin columns.   

Washed 5 x  800 μL with IP buffer containing 10 mM NaF.  Centrifuged 1 m 

at 1000xg to remove excess liquid, plugged columns and added 60 μL 1X laemli 

buffer (50 mM Tris pH 6.8, 2% SDS, 10% glycerol, 1 mM bromophenol blue) 

to elute.  

 

Chromatin Immunoprecipitation.  Primary hepatocytes from three wildtype 

C57Bl/6 mice were pooled and plated onto ten 10 cm collagen-treated plates.  

Cells were washed extensively and allowed to recover over 48 h, after which 

they were infected with 2.5x107 PFU of the indicated virus.  After an additional 

24 h, cells were serum-starved overnight, followed by 15 min stimulation in the 

absence or presence of 100 nM insulin.  11X fixing solution (50mM Hepes-

KOH pH 7.5, 100mM NaCl, 1mM EDTA pH 8.0, 0.5mM EGTA p H8.0, 11% 

formaldehyde) was added to the cells to a final concentration of 1X and 

incubated for 10 min at 37°C.  Cells were then moved to ice, washed twice with 

ice cold 0.01 M PBS and scraped in 1 mL ChIP cell lysis buffer (10 mM Tris–

Cl, pH 8.0, 10 mM NaCl, 1.5 mM MgCl2, 0.2% NP-40, with protease 
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inhibitors).  Lysates were centrifuged for 5 min at 5400xg at 4°C.  Pellets were 

resuspended in 450 μL of SDS Lysis buffer (Upstate Biotechnology) and 

sonicated 4x20 sec on, 30 sec off, at amplitude 16 on a Misonix Sonicator 4000.  

Lysates were further processed according to the manufacturers protocol 

(Chromatin immunoprecipitation assay kit, Upstate Biotechnology).  DNA 

complexes were immunoprecipitated overnight using 2.6 μg of HA-antibody 

(Santa Cruz Biotechnology, sc-805) or rabbit IgG (ChromPure, Jackson 

ImmunoResearch).  Primer sequences are given in Table 5. 

Table 4.  Primer Sequences and annealing temperatures for ChIP. 
Primer 
Name 

Forward Sequence Reverse Sequence Ta 
(°C) 

CPT1α AAGGCATACATCACCACAACCAGT TTCACAACAACACTGTGGTGTGC 57
Gck TCTCCACACCAGCTTGGAACC TTTCACCACCATCAGTATGCAC 57
HMGCS1 TGCACTGTTCCTGGCTGGTATCTA TGATTGTTGGATGTGTTAGAAGGA 57
LPK TCTCTATTGAAGCTGATGGACTG AGTCCCCACATCTTCCCTTCC 57
PEPCK ATACGTACATACTGACCCCTGCTC GATCATCAGAGTTCCATTTCAAGA 57
 

Gene Chip.  Adult lung RNA was prepared from 5 fasted and 5 fed mice by 

Trizol extraction, pooled and purified using RNEasy columns (Qiagen).  RNA 

was then submitted to the functional genomics center (ETH Zurich) for 

labeling and hybridization.  Whole snap-frozen embryonic lungs from two 

fetuses of stz-induced diabetic mothers, and two from fasted mothers were 

submitted to Miltenyi for RNA extraction, labeling, and hybridization onto a 

one-color 4x44K Agilent genechip.  Data was analyzed using Genespring 

software. 
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Gene Expression.  Total RNA was extracted from lung tissue using TRIzol 

reagents following the manufacturer’s instructions (Invitrogen).  Contaminating 

genomic DNA was removed by a 3 hour DNase I treatment (Ambion).  RNA 

quality was confirmed by denaturing gel electrophoresis stained with ethidium 

bromide. cDNA was synthesized using Superscript III with random hexamer 

primers and oligo dT according to the manufacturer’s protocol (Invitrogen).  

Combined extraction of mRNA and cDNA synthesis were performed from 50 

mg of liver tissue with the μMACS One-step cDNA Kit (Miltenyi Biotec) 

following the manufacturer's protocol, with an additional 10 minute RNase-free 

DNase I treatment (NEB).  Gene expression was measured quantitatively as a 

function of SYBR green incorporation during PCR using gene-specific exon-

spanning primers, LightCycler 480 SYBR Green I Master mix (Roche) and the 

Mx3005P Real-Time QPCR Detection System (Stratagene).   Values shown are 

given in arbitrary units based on a standard curve, and normalized to GAPDH.  

Primer sequences are given in Table 5. 
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Table 5.  Primer sequences and annealing temperatures for real-time PCR. 
Primer 
Name 

Forward Sequence Reverse Sequence Ta

°C
Apq3 GCTGGGATTGTTTTTGGGCTGTAC GCGGCTGTGCCTATGAACTGATC 63
CCSP TCACTGTGGTCATGCTGTCCATCT TGAAAGGCTTCAGGGATGCCACAT 63
CPT1α AGCGACTCTTCAATACTTCCCGCA TCTGTGGTACACGACAATGTGCCT 63
Foxa2  AAGTATGCTGGGAGCCGTGAAGAT CGCGGACATGCTCATGTATGTGTT 60
GAPDH CTGACGTGCCGCCTGGAGAAA CCGGCATCGAAGGTGGAAGA 63
HMGCS1 AATCCAGCTCTTGGGATGGACGAT ACCTGTAGGTCTGGCATTTCCTGT 63
MCAD AGTACCCGTTCCCTCTCATCAA TACACCCATACGCCAACTCTTC 60
SP-A TGCACCTGGAGAACATGGAGACAA ATGGATCCTTGCAAGCTGAGGACT 63
SP-B CCTGCCCCTGGTTATTGACTACTTC GCAGCACAGGGAGGACCAG 63
SP-C CGCCTTCTCATCGTGGTTGT AGGAGCCGCTGGTAGTCATA 63
VLCAD GGTTACCCATGGGCTCCCTGAAAAG TTGAAGCCATCTCCCACCTCTCCTA 60
Orexin CTGCCGTCTCTACGAACTGTTG CGCTTTCCCAGAGTCAGGATA 60
MCH TTCAGAAGGAAGATACTGCAGAAAGA CGCTCTCGTCGTTTTTGTATTG 60
β-actin GAGAAGCTGTGCTATGTTGCTC AGGAAGAGGATGCGGCA 60
 

Immunoblotting.  Protein extracts were separated by SDS-PAGE (10%) and 

transferred onto nitrocellulose membranes (Perkin Elmer) by electroblotting. 

Membranes were immunoblotted according to standard protocols using 5% 

non-fat dry milk in TBST.  Blots were stained with Ponceau S to ensure equal 

loading and incubated with primary antibodies overnight at 4 °C (rabbit anti-

HA 1:500; rabbit anti-Foxa2 (Abcam) 1:10,000; all others were at 1:1000).  

Secondary antibody was added for 1 h at room temperature (1:10,000; 

Calbiochem). 

 

Antibody Production.  Rabbit polyclonal antibody to Foxa2 was generated by 

injection of GST-purified Foxa2 (Bethyl) and affinity purified over a GST-

Foxa2 column. 
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Physiological measurements.  Retro-orbital blood samples were taken into 

non-heparinized capillary tubes.  Blood glucose was measured using a standard 

glucometer (Ascensia Contour, Bayer).  Plasma insulin was measured with the 

Sensitive Rat Insulin RIA kit (Linco Research).  Liver triglycerides were 

extracted by the Folch method and quantitated by colorimetric assay (Roche).  

Plasma cholesterol and plasma triglycerides were measured by colorometric 

assay (Roche). 

 

Metabolic Measurements.  Locomotion (x-, y- and z-axis), food and water 

intake, oxygen consumption, CO2 and heat production were simultaneously 

determined for four mice in separate cages per experiment during a 24 h period 

in an Oxymax metabolic chamber system (Columbus Instruments) at the ages 

of 4 and 8 weeks. 

 

Mitochondrial isolation.  Mitochondria were isolated as previously described 

(121).  200 mg of PBS-perfused mouse livers were dounced in 4 volumes of 

MSM buffer (220 mM mannitol, 70 mM sucrose, 5 mM Mops pH 7.4) 4 x with 

a loose pestle.  The homogenate was diluted with MSM buffer to a final tissue 

concentration of 10% , and EDTA was added to 2 mM.  Nuclei, unbroken 

cells, and cell debris were removed by differential centrifugation at 400 x g for 

10 m.  Mitochondria were isolated from the supernatant by additional 
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centrifugation at 7000 x g for 10 m and washed once with MSM buffer.  

Mitochondrial pellets were resuspended in a small volume (20 μL) MSM buffer, 

and normalized to protein concentration.   

 

Beta Oxidation/Ketone Body Formation.  We assessed the β-oxidation of 

and ketone body production from [1-14C]palmitic acid by liver mitochondria in 

samples normalized to mitochondrial protein, as described (122).  1 mg of 

mitochondrial protein was brought up to 360 μL with preincubation medium 

(70 mM sucrose, 43 mM KCl, 3.6 mM MgCl2, 7.2 mM KH2PO4, 36 mM Tris-

HCl pH 7.4, 0.2 mM adenosine triphosphate, 50 μM L-carnitine, 15 μM 

CoASH) and incubated for 5 m at 37 °C.  40 μL of incubation media (400 μM 

[1-14C]palmitic acid (0.4 μCi/40 μL), 2.5 mg/mL BSA) was then added  and 

tubes were closed with Whatman paper-lined caps soaked in 100 mM NaOH 

and incubated for 30 m at 37 °C with in a water bath shaking at 85 RPM.  The 

reaction was stopped by adding 100 μL of 5% perchloric acid to the incubation 

mixture, and further incubated for 60 m at 37 °C with gentle shaking.  CO2 

trapped on the filter papers was counted for 14C activity by scintillation counter.  

To measure ketone body formation, the incubation mixture was centrifuged at 

4,000xg for 10min, and 14C acid-soluble products of mitochondrial palmitate 

metabolism were counted from an aliquot (200 μL) of the supernatant. 
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Statistical Analysis.   Results are given as mean ± SEM, if not otherwise 

indicated. Statistical analyses were carried out by using a two-tailed Student’s 

unpaired t test, and the null hypothesis was rejected at the 0.05 level. *, p <.05; 

**, p<.01, ***, p<.001 
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