
Rockefeller University
Digital Commons @ RU

Student Theses and Dissertations

2009

Perceptual Learning Of Object Shape
Doruk Golcu

Follow this and additional works at: http://digitalcommons.rockefeller.edu/
student_theses_and_dissertations

Part of the Life Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and
Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact mcsweej@mail.rockefeller.edu.

Recommended Citation
Golcu, Doruk, "Perceptual Learning Of Object Shape" (2009). Student Theses and Dissertations. Paper 114.

http://digitalcommons.rockefeller.edu?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations/114?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mcsweej@mail.rockefeller.edu


 
 
 
 

PERCEPTUAL LEARNING OF OBJECT SHAPE 
 
 
 

A Thesis Presented to the Faculty of 

The Rockefeller University 

in Partial Fulfillment of the Requirements for 

the degree of Doctor of Philosophy 

 

 

 

 

by 

Doruk Golcu 

June 2009



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Copyright by Doruk Golcu 2009 



PERCEPTUAL LEARNING OF OBJECT SHAPE 

Doruk Golcu, Ph.D. 

The Rockefeller University 2009 

Recognition of objects is accomplished through the use of cues that depend 

on internal representations of familiar shapes.  We used a paradigm of 

perceptual learning during visual search to explore what features human 

observers use to identify objects.  Human subjects were trained to search for 

a target object embedded in an array of distractors, until their performance 

improved from chance levels to over 80% of trials in an object specific 

manner.  We determined the role of specific object components in the 

recognition of the object as a whole by measuring the transfer of learning 

from the trained object to other objects sharing components with it.  

Depending on the geometric relationship of the trained object with untrained 

objects, transfer to untrained objects was observed.  Novel objects that 

shared a component with the trained object were identified at much higher 

levels than those that did not, and this could be used as an indicator of which 

features of the object were important for recognition.  Training on an object 

transferred to the less complex components of the object when these 

components were embedded in an array of distractors of similar complexity.  

There was transfer to the different components of object, regardless of how 



well they distinguish the object from distractors.  These results suggest that 

objects are not represented in a holistic manner during learning, but that their 

individual components are encoded.  Transfer between objects was not 

complete, and occurred for more than one component, suggesting that a joint 

involvement of multiple components was necessary for full performance.  

The sequence of this learning indicated a possible underlying mechanism of 

the learning.  Subjects improved first in a single quadrant of the visual field, 

and the improvement then spread out sequentially to the other quadrants.  

This location specificity of the improvement suggests that, with training, 

encoding information about object shape occurs in early, retinotopically 

mapped cortical areas.  fMRI work suggests that the learning of novel 

objects in this manner involves a reciprocal switch between two cortical 

networks, one that involves the normally object-sensitive regions of LOC, 

and one that involves the temporal and parietal cortices. 
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CHAPTER 1:  INTRODUCTION 

 

Visual identification and categorization of objects one encounters is a 

widespread cognitive ability amongst a range of species.  Humans, being 

predominantly visual creatures, are especially adept at this process.  They 

develop the ability to distinguish object categories and identify specific 

objects as early as 30 weeks in infancy (Cohen 1979, Strauss 1979), and 

adults are extremely rapid at accomplishing these tasks (Thorpe et al. 1996, 

Delorme et al. 2004).  

 

One of the most important questions posed about the object recognition 

system is how the brain makes sense of the very complex and variable 

information that arrives from the eyes.  So far, there has not been great 

success in duplicating this ability using artificial systems, which illustrates 

the complexity of the problem.  Computer simulations often fail at 

recognition of objects under natural viewing conditions, where the objects 

need to be segmented from a background that can be very similar to the 

object in basic visual properties like brightness and color.  Even once 

objects are segmented, their appearance is heavily influenced by viewing 

conditions such as angle, distance, and illumination.  Again, artificial 



 2 

systems have great difficulty dealing with all these variations, whereas the 

brain usually overcomes them very efficiently.  Below, we will discuss 

some of the more prominent models devised to explain the ability of the 

brain at overcoming these difficulties so easily, and the neural mechanism 

that are potentially responsible.  We will also discuss visual search, which 

can be a powerful method at investigating the properties of object 

recognition behaviorally.  

 

1.1 Models of object recognition: 

 

A variety of models have been put forward to explain how the recognition 

is achieved.  The main query of the majority of these models has been what 

cues and mental representations the brain uses to match an object that is 

being observed to the memory of previously encountered objects.  Even 

though in certain instances cues such as characteristic motion (the motion 

of a fly), color (quickly finding a red shirt in a pile of clothes), or texture 

(identifying a piece of tree bark) can help with the recognition of an object, 

most of the time such properties of an object are secondary to its shape in 

terms of facilitating recognition.  Modeling efforts using shape cues are 

divided into two major schools of thought:  one that proposes that objects 
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are recognized holistically, and one that claims they are analyzed in a 

parts-based fashion. 

 

The holistic models postulate that information about an object is 

represented in the brain in the form of complete two-dimensional images 

of the object.  These models propose that transformation invariant 

recognition of an object can be accomplished by approximating all 

appearances of the object from a limited number of stored viewpoints 

(Poggio and Edelman 1990, Bülthoff and Edelman 1992, Ullman 1989, 

1992, 1996).  A number of studies show that performance at recognizing 

novel views of objects degrades with increasing distance from a familiar 

view  (Booth and Rolls 1998, Tarr and Gauthier 1998, Vogels 1999), 

which supports this type of model.  A severe criticism of holistic models of 

object recognition comes from the variation of the appearance of objects in 

real-life conditions.  There are many factors that contribute to variability in 

object appearance, including viewing angle, distance, visual field position, 

and illumination.  The combinatorial explosion of all possible object 

attributes makes storing internal representations of each appearance 

unlikely, in addition to the need to recognize the object when seen in a 

novel viewing condition.  The internal representation of object shape must 
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therefore be invariant to all of these attributes.  Parts-based models of 

recognition are generally seen as an alternative to holistic models that 

bypass this problem more efficiently.  The parts-based models propose that 

information about objects is represented in the brain as parts or fragments 

that can be extracted from objects.  According to these models, specific 

combinations of a relatively small number of components can represent a 

very high number of objects.  This sort of representation can thus 

dramatically reduce the computational load the recognition of a high 

number of objects and their variations.  In these models, effects of 

viewpoint dependence are often explained through the occlusion of 

informative parts.  Most of the discussion on parts-based object recognition 

models has been what parts have the necessary properties to be useful for 

this process. 

 

One of the first models to propose a set of shapes to define the pool of real 

world objects that need to be recognized is that of Marr (Marr and 

Nishihara 1978, Marr 1980).  He proposes three criteria that parts must 

fulfill to be useful for object recognition.  These are a) accessibility:  parts 

need to be such that they can be easily extracted from whole objects; b) 

scope and uniqueness:  parts need to be able to define all objects, and a 
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definition of an object through parts needs to be unique to that object; and 

c) stability and sensitivity:  parts need to define the similarities between 

objects, but they also need to define an object specifically enough that it 

can be distinguished from other objects that are very similar.  The parts he 

proposes following these criteria are generalized cones defined through 

specific axes of orientation with respect to an object-centered coordinate 

system.  This results in a representation of the objects in a manner 

reminiscent of stick figures.  A study by Kovács and Julesz (1994) shows 

that contrast sensitivity is enhanced within enclosed spaces, in a manner 

determined by the global properties of the enclosing shape.  These data 

support a model of object recognition where ‘skeletons’ are extracted from 

the shape of object and used for storage of object information, similar to 

the model of Marr.  

 

Marr’s generalized cones are criticized as being good for defining objects 

of the animal kingdom, especially humans and most other mammals, but 

they are often insufficient for defining objects outside this group.  

Hoffman, while not offering an alternate class of objects to replace Marr’s, 

suggests a method by which the objects can be segmented into informative 

parts based specifically on their geometric properties.  He claims that 
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natural segmentations of objects occur at points of concavity, or at lines of 

curvature minima for smooth surfaces (Hoffman and Richards 1984).  

Using this sort of segmentation, Biederman offers his own set of object 

parts that he called ‘geons’ (Biederman 1987).  According to this model, 

such volumetric parts can be inferred from two-dimensional images using 

the existence of five non-accidental properties. These are:  i) colinearity, ii) 

curvilinearity, iii) symmetry, iv) parallelness, and v) vertices.  When 

observed in two-dimensional images, these properties indicate the 

existence of similar relationships in the three-dimensional structure of the 

object as well.  The relative placement of components is significant in 

recognition with this type of model.  This is supported by behavioral 

studies.  For example, the recognition of three bars embedded in complex 

background improves if the bars are placed in a manner that is reminiscent 

of a face (Gorea and Julesz 1990).  With the ‘geon’ model, a small number 

of visible components are sufficient to recognize an object, but for more 

complex objects performance increases with increased number of available 

components.  Furthermore, structural information through the parts takes 

precedence over information of color or texture; line drawings of objects 

are recognized as efficiently as color photographs (Biederman 1987).  The 

importance of the recognizability of components is supported by studies on 
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face recognition.  Recognition of faces is reduced by coarse quantization, 

which turns the structure of the face into apparent blocks.  In this form, 

components of an object are transformed into simple blocks due to the 

coarse sampling, thus can no longer be recognized as what they really are, 

and performance drops significantly (Harmon and Julesz 1973).  The 

recognition of the face improves if noise is added to the images since the 

increased noise prevents the components from appearing as blocks 

(Morrone et al. 1983).  Additionally, different objects of similar 

appearance can be more easily differentiated through the presence of 

different geons than they can be through their metric properties 

(Biederman and Bar 1999).   

 

Two other important models make use of object parts.  The nonlinear 

maximum operation uses a cortical response scheme where the 

postsynaptic response of a neuron is determined by the strongest of the 

incoming information, and therefore shows the best match of parts of the 

stimulus to the preferred features of the cells earlier in the cortical 

hierarchy (Riesenhuber and Poggio 1999).  The model of fragment-based 

hierarchy uses a different method of extracting parts from an object than 

most other models (Ullman 2002, 2007).  Instead of being an internal 
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property of objects, the components in this model are generated by the 

brain through the interaction of images of objects with the images of the 

environment of the object.  Fragments of an object that are most 

informative about the identity and category of the object are used for 

recognition.  Fragments are most informative when they occur with 

reliability within the object, and very rarely or never in the environment of 

the object.  Computer simulations are able to classify images of objects at 

above human levels using this type of computation.  

 

1.2 Neural Substrates of object recognition: 

 

With evidence existing for both sides of the issue, there has been 

significant discussion in the field about whether a parts-based or a holistic 

mechanism is predominantly used by the human brain for object 

recognition (Biederman et al. 1995, Tarr et al. 1995).  A look into the 

selectivity of neurons in the brain and how they are organized can be 

helpful in determining what type of mechanism the brain is better set up to 

use for recognition.   
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The flow of visual information in the brain is generally accepted to be 

divided into two distinct streams; of these, the dorsal stream is mainly 

involved with the processing of visually guided movement, while the 

ventral stream is involved with analyzing object shape, color, and texture 

(Van Essen 1979, Felleman and Van Essen 1991, Van Essen and Gallant 

1994, Figure 1).  The analysis of shape in the ventral stream is believed to 

be hierarchical, i.e. cells in the early cortices of the stream such as V1 are 

sensitive to very simple properties of an object such as contour orientation, 

position, or curvature, and they have small receptive fields.  As one 

progresses further along the stream to higher centers of processing, the 

cells are found to have increasingly larger receptor fields and be sensitive 

to increasingly more complex stimulus properties (Hubel and Wiesel 1962, 

1965, 1968, Gallant et al. 1993, Pasuphaty and Connor 1999, Ito and 

Komatsu 2004).  These observations have led to the conclusion that 

individual cells in a specific visual cortex receive input from multiple cells 

in an earlier cortex and are sensitive to a combination of stimulus 

properties that trigger these earlier cells.  Early studies postulate that this 

complexification process will continue to the point where at the top of the 

ventral stream there will be cells that are individually sensitive to the 

entirety of the visual stimulus, i.e. to a whole object.  Such hypothetical 
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cells have come to be known as ‘grandmother cells’, due to the notion that 

among them there will be cells that are sensitive to the appearance of one’s 

grandmother (Gross et al. 1972, Perrett et al. 1982).  

 

 

 

Figure 1.  Flow of visual information in macaque monkey brain.  The 

dorsal pathway (red) regulates visual attention and visually directed 

movement while the ventral pathway (black) is responsible for the analysis 

of the shape of the stimulus.  

 

Cases of brain lesion in animals and humans with cognitive defects point 

to the possible seat of the representation of objects in the brain.  In 
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monkeys, ablations of inferotemporal cortex (IT) lead to significant defects 

in object recognition, implicating this as the region responsible for 

computations necessary for object recognition.  For the same reason, in 

humans, parts of the fusiform and occipito-temporal junction appear to be 

involved in this process (Farah et al. 1989, Damasio 1990, Damasio et al. 

1990, Goodale et al. 1991, Farah 1992).  Electrophysiological recordings 

of neurons in monkey IT confirm that neurons in this region have the 

properties necessary for performing object recognition.  Initial results have 

shown that IT neurons had large receptive fields and had very specific and 

complex triggers.  Most of these triggers were then identified as complex 

three-dimensional objects, most notably small populations of cells 

extremely selective for faces and hands (Desimone et al. 1984). Optical 

imaging studies reveal that pictures of a single head from different 

viewpoints activate distinctly separate patches of the brain tissue (Wang et 

al. 1998).   Another evidence for such sparse coding of objects comes from 

studies done using single-cell recordings in humans during surgical 

procedures to treat epilepsy.   These studies found that cells in medial 

temporal lobe responded very specifically to different images of a single 

individual (Quiroga et al. 2005, Conner 2005). 
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 The presence of such object-specific cells leads to the assumption that 

objects are represented in the brain as entire units, which correlates well 

with holistic models of recognition.  This view, however, is contested with 

more detailed studies of the specificity of IT neurons.  The study of Tanaka 

et al. (1991) is one of the most detailed, aimed to determine the exact 

triggers of the IT cells.  In this study, they use a number of three-

dimensional objects and simple geometric shapes as stimuli, and examine 

how well these images stimulate the activation of IT neurons.  When they 

found cells that responded well to objects, they use progressively more 

simplified two-dimensional models of the object to see if the cells 

responded better to whole objects or to features extracted from the objects.  

They find that most of the IT neurons that were sensitive to objects 

actually responded to features of these objects.  On the average, the 

neurons responded best to stimuli that are more complex than simple bars, 

but not complex enough to be real objects.  In humans, the cortical 

representation of objects is extensively studied using fMRI, first by Malach 

et al. (1995) and many others following him (Grill-Spector et al. 1998, 

2001, Kourtzi and Kanwisher 2000).  These studies looked at the brain 

regions that are activated more strongly by objects compared to scrambled 

images of objects.  Such regions are activated specifically by the presence 
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of the object and not by the physical properties of the stimuli since 

scrambled images retained the same properties as intact objects.  The 

lateral occipital cortex came out as the region most strongly associated 

with object recognition from these studies.  Furthermore, occipital, 

fusiform, and superior temporal sulcus, anterior collateral sulcus, and some 

regions anterior to the fusiform gyrus are found to be specifically 

responsive to faces (Sergent et al. 1992, Haxby et al. 1994, Puce et al. 

1996, Kanwisher 1997, Hadjikhani and de Gelder 2003,Tsao et al. 2003, 

2006, 2008a,b).  Other specialized centers exist for other object categories 

like body parts (Downing et al. 2001, Peelen and Downing 2005, 

Schwarzlose et al. 2005), and places (Epstein and Kanwisher 1998).  

Objects are sparsely coded in the monkey IT, with object-selective cells 

organized in a columnar fashion, i.e. neurons that are activated by a 

specific object are clustered into a number of small discrete patches.  Cells 

within one patch all share the same specificity and respond to a simplified 

model of the object (Fujita et al. 1992, Tsunoda et al. 2001, Brincat and 

Connor 2004, 2006).  fMRI studies both in humans and non-human 

primates show that there is significant overlap between regions activated 

by different types of objects.  This overlap is an indicator of the presence 

of cells sensitive to components shared between objects, and therefore 
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activated by objects belonging to different categories (Ishai et al. 1999, 

2000, Grill-Spector et al. 2001, Op de Beeck et al. 2008, Bell et al. 2009).  

In general, these properties of the neurons appear to favor a parts-based 

mechanism of object recognition.  

 

It is argued that the conflicting data about how objects are represented in 

the brain can be a result of the fact that different objects are represented 

through different mechanisms (Farah et al. 1998).  One potential source of 

this difference is expertise (Logothetis 2000).  Experts are usually better at 

detecting fine distinctions between objects relating to their expertise and 

categorizing them faster and more accurately than non-experts.   Sparser 

coding can be beneficial for such rapid distinction by storing exact 

representations of each possible category.  Therefore, it is possible that the 

representation of an object changes as a result of expertise, becoming more 

sparse and holistic.  Faces are one type of object that appears to be more 

holistically represented in the studies mentioned above.  For both humans 

and monkeys, the ability to recognize and distinguish faces is of extreme 

social importance.  Most members of these species thus already are experts 

at recognizing faces.  Evidence for the special treatment of faces by the 

brain comes from patients of prosopagnosia, who, due to damage to certain 
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regions of the brain can no longer distinguish individual faces, but remain 

largely normal at recognizing other objects (reviewed in Damasio et al. 

1990, Farah 1996).   In addition to this functional evidence for special 

treatment of faces, there also exists significant behavioral evidence, such as 

the effect of inversion, which severely impairs recognition of faces.  This 

impairment is noticeably higher for faces compared to other objects, 

suggesting that there is a significant role of expertise in the recognition of 

the upright-oriented faces, which is the more common orientation, much 

more so than for non-face objects (Yin 1969, Valentin and Bruce 1986, 

Valentin 1998).  It is argued that these effects are due to a holistic 

representation of the faces where the specific configuration of the features 

is important (Rhodes et al 1993, Farah et al. 1995, Farah 1996, Tanaka and 

Sengco 1997).  All these studies are seen as evidence that faces and 

possibly other objects of expertise are represented differently and more 

holistically than common objects (however, see also Wright and Barton 

2008, McKone et al. 2006). 
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1.3 Visual Search: 

 

Another possible way of making inferences about how the brain processes 

incoming information is based on perceptual behavior.  The behavioral 

performance at recognition of objects under different conditions can give 

valuable clues about what cues the brain is using to perform this role.  One 

of the behavioral paradigms frequently used for this type of study is the 

visual search.  A simple visual search task involves finding a specific 

target object within a field of related but different distractors.  Original 

examination of visual search tasks have shown that performance in such 

tasks followed a clear dichotomy:  under certain conditions, the targets pop 

out from the distractors and are easily found, while in others, there is no 

such clear distinction between target and distractors.  These two conditions 

were named parallel and serial search, respectively (Treisman and Gelade 

1980, Sagi and Julesz 1985, Figure 2).  Performance in a serial search task 

diminishes with increasing number of distractors while it remains constant 

in a parallel search task.  The prevailing theory of the time stated that the 

difference between the two conditions was in how attention was used.  

Parallel search tasks are pre-attentive, and happen simultaneously across 

the visual field.  Serial search tasks on the other hand require the attention 
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to be shifted to each individual location of the stimulus array sequentially 

to find the target.  The most elaborate explanation of why this difference 

exists comes from Treisman and Gelade (1980) in the form of the feature 

integration theory of attention.  According to this theory, the visual field is 

mapped in the early visual cortex with respect to the elementary features, 

such as color, orientation, direction of motion, etc.  If an object stands out 

from the rest of the objects in the visual field with respect to an elementary 

feature, then it is perceived in a parallel, pre-attentive fashion, and pops 

out.  If instead it differs from the rest of the objects in terms of the 

combination of multiple elementary features, then this combination needs 

to be analyzed at a higher center where information from early visual 

cortices is combined.  Therefore the object no longer pops-out as easily 

and is instead processed in a serial fashion. 
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A. B.  

Figure 2.  A) Easy (parallel) and B) hard (serial) search task. In the 

parallel search task the target pops out due to being different from the 

distractors by a single elementary feature, whereas in the serial search task 

a conjunction of features need to be used, resulting in a less efficient search 

(based on Treisman and Gelade 1980). 

 

It was soon realized, however, that performance in visual search is not 

solely dependent on the physical properties of an object.  Wang et al.  

(1994, Figure 3) have shown that number 2’s among 5’s (written with 

straight lines similar to seven-segment-display) pop out, yet they lose this 

pop-out quality when the stimulus is rotated by ninety degrees, rendering 

the images unfamiliar.  Essentially, the loss of familiarity without changing 

any other visual property of the object causes the type of search required to 

complete the task from parallel to serial.  Later studies have made an even 

stronger case by using characters from different alphabets (Malinowski and 
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Hubner 2001, Shen and Reingold 2001).  Those individuals familiar with 

the alphabet that the stimuli are based one performed the task using parallel 

search, yet those whom were unfamiliar with the symbols used serial 

search, despite the stimulus being exactly the same without even the 

change associated with a rotation.  These results have clearly shown that 

familiar objects were found more efficiently than unfamiliar objects. 

 

A. B.  

 

Figure 3.  A) A serial search task that can be rendered parallel by B) 

rotating each object within the array by ninety degrees, forming the more 

familiar 2 and 5 shapes (based on Wang et al. 1994). 

 

The dichotomy of parallel and serial search was also challenged later by a 

series of studies by Ken Nakayama and colleagues (Bravo and Nakayama 

1992, Maljkovic and Nakayama 1994, Joseph et al. 1997).  Using a 

number of different, attentionally demanding tasks concurrently with the 
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visual search task, they have shown conclusively that attention was still 

required for parallel search.  Performances suffer significant drops when 

attention for the search task was thus depleted.  Furthermore, priming 

heavily influences the performance.  These results prove that parallel and 

serial search tasks were extreme ends of a continuous spectrum instead of 

two discreet mechanisms.  

 

Studies involving perceptual learning in visual search task have shown that 

the recognition of an object can be taken from one end of this continuum to 

the other (Sigman and Gilbert 2000, Leonards et al. 2002).  This change 

simulates the effects of familiarity on the visual search.  In these 

experiments a search task involving an unfamiliar object as a target is used.  

Under normal conditions, such an object does not pop out among similar 

distractors and performance levels were low.  However, the performance 

steadily improves across several days of repetition to reach much more 

reliable levels.  These experiments suggest that there can be a top-down 

reorganization of the object recognition pathway so that objects can 

become elementary features.  Several lines of evidence exist to support this 

hypothesis.  It is now known that neurons in V1 can respond to much more 

complex features than originally thought (Kapadia et al. 1995, Sillito et al., 
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Das and Gilbert1999, Posner and Gilbert 1999, Gilbert et al. 2000, 2001, 

Li and Gilbert 2002, Li et al. 2004, 2006, 2008).  There is a considerable 

measure of plasticity in adult V1, both at the level of receptive field 

properties (Kaas et al. 1990, Kaas 1991, Garraghty and Kaas 1992, 

Kapadia et al. 1994, Gilbert and Wiesel 1992, Crist et al. 2001) and in the 

capacity of local circuits in V1 to undergo sprouting and synaptogenesis 

(Darian-Smith and Gilbert 1994, Gilbert et al. 1996, Obata et al. 1999, 

Stettler et al. 2006, Yamahachi et al. 2008), which creates a plausible 

mechanism by which such reorganization can take place. 

  

fMRI studies were conducted to provide functional support of these 

behavioral observations.  Sigman et al. (2005) have used a task of 

searching for T’s of a specific orientation between T’s of other 

orientations.  Using a block-based design, they have investigated the 

changes in brain activity when searching for a familiar orientation 

compared to the brain activity when searching for an unfamiliar 

orientation.  Their findings show that for untrained orientations, an 

extended network mainly consisting of parietal and frontal cortices and 

lateral occipital cortex, which was consistent with the commonly accepted 

localization of object recognition in humans.  Trained shapes on the other 
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hand more highly activated a smaller region in the middle occipital cortex 

that corresponds to early visual regions, possibly V1.  These studies show 

that a functional reorganization of brain activity was indeed occurring 

during learning.  However, the study localizes the activity changes 

anatomically, and therefore the exact cortices involved remain speculative. 

 

In this study we use a visual search task to disambiguate if information 

about objects are represented in the brain as whole units or in the form of 

combination of parts.  We look at the transfer of learning between objects 

that share components to see if the components of objects have a role at the 

recognition of objects.  We investigate the transfer of learning between 

objects and their components in order to determine if the learning of 

objects occurs through the learning of components. We also use different 

sets of distractors and examine how geometric relationships between target 

and distractors influence the use of components for the recognition of 

targets.  We make certain inferences about the changes of cortical 

representation of objects as a result of training based on the sequence of 

learning, and test these inferences using functional MRI.  
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CHAPTER 2:  HUMAN PSYCHOPHYSICS 

 

To understand the brain’s mechanisms of object recognition, a key 

question is what object features are used for recognition, how these 

features interact with each other, and how the characteristics of the 

background influence which features contribute perceptually to object 

identification.  There are two major theories about how object recognition 

takes place.  Of these, the first is a holistic model, where the whole object 

is learned and recognized as a single independent entity.  These models are 

based on the hierarchical nature of the visual stream of information 

processing, and assume that pieces of visual information about an object 

keeps getting combined as they travel upstream, until the full information 

about the object is assembled together.  This information is compared to a 

previously stored template of the object.  One of the most prominent 

criticisms of such template-based models is the potential explosion of the 

number of transformational variants that appears to be needed to account 

for all the visual variations of all possible objects that are known by an 

individual (Gray 1999, von der Malsburg 1999).  This is often thought to 

constitute an implausibly large load on the available neurological 

resources.  The second type of model that is offered as an alternative to 



 24 

holistic models is the parts-based model of object recognition.  These 

models postulate that instead of having a single template that stores object 

information, objects are instead coded as a combination of smaller, simpler 

parts that are largely viewpoint invariant (Marr 1978, Marr et al. 1980, 

Hoffman et al. 1984, Biederman 1987).  This allows different 

combinations of a finite number of parts to code for large numbers of 

objects and their variations, reducing the required amount of storage 

significantly.  Computer simulations support the possibility of a parts-

based object recognition mechanism that makes use of parts of medium 

complexity as very good indicators of both identity and category of an 

object (reviewed in Ullman 2007).  There has been significant discussion 

in the field about which one of these two kinds of mechanisms is used for 

object recognition in the human brain (Biederman and Gerhardstein 1995, 

Tarr and Bülthoff  1995). 

 

To obtain a psychophysical measure of what is encoded by the brain in 

object recognition, we have employed perceptual learning in a visual 

search paradigm.   Recognition of an object embedded in an array of 

distractors can, with practice, improve from chance levels to much more 

reliable performance (Sigman and Gilbert 2000).  We can measure what is 
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learned by looking at the transfer of perceptual learning between objects 

related through shared parts, and thereby determine which of the two 

models are predominantly used in the recognition of objects.  We used a 

variety of different search conditions to simulate and investigate the effects 

of the visual characteristics of the environment on the recognition of an 

object. 

 

2.1 Methods: 

 

2.1.1 Subjects: 

 

Fifty-one subjects (34 female, 17 male, 31 of these subjects were asked to 

report their handedness, of these, 29 were right-handed and 2 were left-

handed) that were adults ranging in age from 18 to 70 participated (median 

age=29).  They were recruited according to the regulations set forward by 

the Rockefeller University Institutional Review Board, and gave written 

informed consent.  All subjects except one (author D.G.) were naïve on the 

specific task used when they started the study, and had good or corrected 

vision.  
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2.1.2 Task: 

 

Psychophysical experiments were designed to study the transfer of training 

between objects via shared components.  Stimuli were presented on a 

SONY Trinitron flatscreen CRT monitor with a refresh rate of 60 Hz.  

Objects were created using Inkscape open source vector editor, and 

displayed using E-Prime 1.1 (Schneider et al. 2002a, b).  Subjects were 

seated at 180 cm distance from the monitor.  A chinrest was used to 

stabilize head position relative to the monitor. 

 

The search task involved a set of arbitrary shapes consisting of three connected 

line segments. The size of each object was 0.3 degrees of visual angle along 

each of the three component lines.  For each study, one object, at a specific 

orientation, was chosen as a target.  In each trial, the object was embedded in an 

array of distractors, which bore similarities to the target, in that they consisted 

of three connected lines, but differed from the target in their orientation or the 

angles between the constituent line segments.  Two variations of the stimulus 

setup were used (Figure 4).  The first setup used was a rectangular 5x5 grid, 

with the central position taken by a fixation point in the form of a white dot.  A 

single object was presented in each of the other positions of the grid, for a total 
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of 24 objects in the stimulus.  The second stimulus configuration was a circular 

grid with the fixation spot placed at the centre, so that all objects were 

equidistant from the fovea.  The objects were placed with equal separation 

along the circumference of the circle, at three degrees eccentricity, but with the 

horizontal and vertical meridians left empty.  For all objects, the point where 

the three lines intersected was placed on the circumference, and the separation 

distances between objects was measured from these points.  Circular grids with 

8 or 12 objects were used in different experiments, with the lower number of 

objects intended to reduce task difficulty.  The stimulus array was displayed as 

white objects (187 cd/m2) on a black background (34 cd/m2) at high contrast.  It 

was presented for 300 ms, followed by a 3700 ms blank period, during which 

the subjects were asked to report the presence or absence of the target object 

within the array (Figure 5).  If the subjects reported seeing the object, they were 

also asked to report its location within the array by entering a number 

corresponding to the array position where they think they have seen the target 

shape.  The responses were collected using an Ergodex DX-1 Input System. A 

one second long visual feedback was given at the end of each trial.  The degree 

and rate of learning did not noticeably change between the rectangular and 

circular grids.  
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Figure 4. Stimulus array.  The stimuli consisted of arbitrary 3-line shapes 

distributed in either A) a square 5x5 array or B) a circular array of 12 objects 

(target shapes are encircled in red).  Subjects were asked to report if they have 

seen the target shape or not.  In trials where they responded positively, they 

were also asked to report the location of the target object by entering a number 

corresponding to one of C) 24 positions within the square array and D) 12 

positions within the circular array. 
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The total number of trials per session ranged from 500 to 1500.  Sessions 

were divided into rounds of 60 trials, and each round divided into blocks of 

10 trials, at the beginning of which the target object was displayed in 

isolation for 3 seconds to remind the subjects of the target shape.   After 

this display, there was a 6 second period during which only the fixation 

point was present to enable subjects to maintain fixation.  Consecutive 

trials were separated by a 1500ms interval (Figure 5). The subjects were 

allowed to rest between rounds and to start each round at a time of their 

own choice.  Sessions took about one hour, and the subjects did three to 

five sessions per week.  Whenever possible, the sessions were scheduled 

for the same time of the day in order to reduce the impact of external 

factors on performance. We analyzed the data using a two-tailed, paired 

student’s t-test when comparing performance levels before and after 

training.  Performances are given as the percentage of correct responses, 

including the correct location, compared to the total number of trials where 

the target was present.  Since different subjects showed different rates of 

learning and different starting performance levels, the plots of changes in 

performance over time are shown for individual subjects, with the error 

bars corresponding to the variation of performance between blocks.   
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E.  

 

Figure 5. The stimulus timeline. The cue shape is displayed once every nine 

trials. 
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2.2 Results: 

 

2.2.1 Detectability of target: 

 

We conducted a set of experiments with changing stimulus parameters in order 

to determine the parameters best suited for our study.  First, we looked at the 

properties of distractor shape.  For any perceptual learning to take place, the 

object needs to be detectable among the distractors, if even at a low level of 

performances.  Therefore, we examined how different from the target the 

distractors need to be for the target to be detected.  For this purpose we used 

multiple copies of the same object as distractors.  In the trials where the target 

object was present, it was displayed together with 11 copies of one object in the 

other positions of the stimulus array.  We used this setup to display the target 

object with distractors bearing similarities with the trained object.  The 

distractors used were similar to the target in one of the following two ways:  

either they were a rotated version of the target object; or they were composed of 

a modified form of the target, with changes in the angle between the three line 

segments of the target.  We have found that, for small differences in orientation, 

naïve subjects were able to discriminate the target object from the distractors 

with difficulty, and therefore performed at very low levels.  For large 
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orientation differences the performance was higher. The performance was also 

highest when the distractor showed the greatest geometric differences from the 

target (Figure 6). 

 

Next, we tested the effect of changing the number of types of distractors on 

target detection by naïve subjects.  Experimental conditions with 4, 8, 16, and 

33 different distractors were compared.  There was a visible overall trend of 

higher level of performance at conditions with more distractors.  The subjects 

performed significantly better when there were fewer types distractors 

(performance with 4-distractors 37.4±12.0%, performance with 33-distractors 

19.4±12.8%, p<0.0008, two-tailed paired t-test, average of three subjects).  This 

difference was maintained after training (performance of 85.0±2.8% vs. 

33.0±2.8%, respectively, p<0.05, two-tailed paired t-test, one subject).  
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Figure 6.  A) Search setup with a single type of distractor.  The target object is 

encircled in red.  B) Performance on target identification when embedded in an 

array of a single type of distractor. The distractors were rotated (underlined red) 

or modified (underlined blue) versions of the target, or an unrelated object 

(underlined green), and are illustrated underneath the relevant bar in the graph. 
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Figure 6  
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2.2.2 Pre-and post-training performance: 

 

For the purpose of the perceptual learning experiments, we chose a set of 

targets and distractors that were similar enough in appearance and sufficiently 

unfamiliar so that the subjects performed at chance level at the beginning of 

training.  The level of performance was measured as the fraction of trials when 

they detected the target correctly relative to the total number of trials where the 

target was present.  Trials were marked as “correct” when the subjects properly 

indicated the object location.  Thus, trials where the object was present and was 

reported as being seen, but whose location was not correctly indicated, were 

marked as error trials.  For experiments where indication of object location was 

not required, the proportion of correct responses was corrected for false 

positives by using the following formula:  p' = (p-fp)/(1-fp) where p is the 

percentage of positive responses, fp is the rate of false positives (rate of trials 

where the subject reported seeing the object when the object was not present) 

and p' is the ‘real’ percentage of correct responses.  By repeating the task daily, 

subjects’ performance steadily increased over a period of 10-15 days.  Subjects 

improved from a near chance level of performance before training (correct 

detection=16.1±5.4%) to a performance level of 70-80% correct responses after 

training, at which point we stopped training (correct detection=71.3±5.5%; 
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significance of the change p<10-51, two-tailed paired t-test, average of 38 

subjects).  This process took 10-15 days (Figure 7).  Longer periods of training 

resulted in further improvement above this level (not shown).  
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A.   

B.    

 

Figure 7.  A) Target and distractors used for training. B) Increase in 

performance at detection of a target object embedded in an array of distracters 

of similar shape, through several days of training.  Performances are given as 

the percentage of correct detection of the target against the total number of 

appearances of the target.  Dashed line represents chance level.  Single subject, 

error bars represent standard errors across individual blocks. *= p<0.01, 

**=p<0.001, in comparison to the performance of the first day. 
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2.2.3 Effects of Position: 

 

The performance levels in figures 6 and 7 reflect averages across all positions in 

the array.  We wanted to determine the visuotopic specificity of the learning, in 

particular whether it occurred globally across the entirety of the visual field or if 

it happened over a sequence of locations.  We analyzed the improvement in 

performance on object recognition at each location of the array as the training 

progressed (Figure 8).  The target object appeared randomly and an equal 

number of times at each location of the array per session to avoid biasing 

learning to any specific location.  Despite this, the increase in performance 

occurred over a sequence of locations, with the subject initially detecting the 

target correctly in a small number of nearby positions, and then gradually 

spread to the whole array.  
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Figure 8. Point by point learning within the array.  The target position was 

changed from trial to trial, in a random block design, for a total of 18 

presentations per position.  The shading of the squares indicates the level of 

performance at each day of training.  Although the sequence of target 

presentation was random, the learning did not emerge evenly at all positions, 

but tended to develop in a sequence of positions over the training period.  

Single subject.  



 40 

2.2.4 Transfer between objects that share components 

 

One of the central questions concerning the mechanisms of object recognition is 

whether the brain stores information in the form of whole objects or as parts of 

objects.  Visual psychophysics can help us determine the answer to this 

question by showing what is being learned during the perceptual learning of a 

novel object.  To accomplish this, we have looked at the transfer of learning 

between objects.  Based on two prevalent models of object recognition, there 

are two alternative possibilities for how objects are represented in the brain.  If 

a holistic system of object recognition were at work, one would expect that the 

training would be specific to the trained shape.  A parts-based mechanism on 

the other hand would result in a transfer of training from trained to untrained 

objects that share those components that contribute to the recognition of the 

trained objects.  We therefore measured performance before training on the 

object to be trained as well as on several other objects that either shared or did 

not share components with the trained object.  We then measured the 

performance of the subjects on recognizing both the trained and untrained 

objects after the period of training on the target (Figure 9).  There was 

significant improvement in the recognition of objects that shared components 

with the trained target (before training=27.7±10.0%; after training=54.0±6.4%; 
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p<10-3, two-tailed paired t-test, average of eight subjects) while objects that did 

not share any components with the trained target did not show significant 

improvement (before training=28.1±8.3, after training=28.7±13.1, p>0.8, two-

tailed paired t-test).  After training, subjects recognized objects sharing 

components with the trained target significantly better than those that did not 

(significance p=10-16, two-tailed paired t-test).  This effect was seen for a 

variety of object types, for repeating the same experiment with more complex 

objects yielded similar results (Figure 10).  
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Figure 9. Performance on recognition of trained (blue) versus untrained shapes 

that either shared (red and yellow) or did not share (green) a component with 

the trained shape.  For the purposes of this illustration the shared components 

are highlighted in red.  There was significant improvement in recognizing 

untrained shapes that shared a component with the trained shape, but not for 

shapes with no unshared components.  One subject, error bars represent 

standard errors across subjects.  *=p<0.01, **=p<0.001, in comparison to the 

pre-training levels of performance.   
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Figure 10. Performance on recognition of trained (blue) versus untrained 

shapes that either shared (red) or did not share (yellow) a component with the 

trained shape, for 4-line shapes.  For the purposes of this illustration the shared 

components are highlighted in red.  There was significant improvement in 

recognizing untrained shapes that shared a component with the trained shape, 

but not for shapes with no unshared components.  Here training and transfer for 

4-line shapes followed the same pattern as for 3-line shapes.  Single subject, 

error bars represent standard errors across individual blocks. *=p<0.01, 

**=p<0.001, in comparison to the pre-training levels of performance. 
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2.2.5 Transfer from objects to components 

 

If the components are indeed important for the transfer we observed, then it is 

likely that training in an object would increase the subjects’ performance in 

recognizing objects composed of only of a single component of the trained 

object.  To test this, we trained subjects in the recognition of a target object 

made up of three lines.  Once they reached to ~70% performance, we tested 

their ability to recognize two-line components of this object within arrays of 

two-line distractors (Figure 11).  We observed that components of the trained 

objects were recognized at a higher performance level (before 

training=7.4±2.3%; after training=45.0±6.3%, two-tailed paired t-test, two 

subjects) by the subjects, than two-line objects that were not components of the 

trained object.   
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Figure 11. Performance on recognition of trained (blue) shape versus 

components that were either part (red and purple) or were not part (green) of the 

trained shape.  For the purposes of illustration, the components that were part of 

the trained shape are highlighted in red and yellow.  There was significant 

transfer to both components of the shape, but not to the unrelated component. 

Single subject, error bars represent standard errors across individual blocks 

*=p<0.01, **=p<0.001, in comparison to the pre-training levels of performance. 
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Similarly, if the components are instrumental in the transfer of learning between 

objects, then one would expect that improvement in the ability to recognize a 

trained simple shape that is a component of a more complex shape would 

improve a subject’s ability to recognize the more complex shape.  We have 

tested this by training subjects to recognize two-line objects among an array of 

objects of similar complexity (Figure 12).  In these experiments the distractors 

were chosen to match the complexity of the target, e.g. two-line distractors for 

the trained two-line shape, three line distractors for the untrained three-line 

shape.  This ensured that the targets did not automatically pop-out from the 

distractors by making the target/distractor difference too obvious.  The degree 

of improvement in the components was comparable to that observed when 

training subjects on the more complex three-line objects (before 

training=21.3±4.5, after training=61.8±2.7, p<10-17, two-tailed paired t-test, 

single subject).  After training was completed, we looked for improvements in 

the recognition of three-line objects.  The subjects showed increased 

performance at detecting objects that contained the trained components (before 

training=22.2±5.1, after training=41.8±6.1; p<10-7, two-tailed paired t-test), but 

not at detecting objects without the trained component (before 

training=10.6±3.3, after training=12.3±3.8; p>0.6, two-tailed paired t-test).  
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Figure 12. Performance on recognition of trained (blue) component versus 

untrained object that contains the trained component (red).  For the purposes of 

illustration, the component is highlighted in red.  There was significant transfer 

of training from the component to the object.  Single subject, error bars 

represent standard errors across individual blocks.  *=p<0.01, **=p<0.001, in 

comparison to the pre-training levels of performance. 
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2.2.6 Effect of distractor similarity on performance: 

 

Objects do not appear in isolation in natural environment, but together with 

numerous other objects that bear a variety of relationships to the target object.  

In order to investigate the effects of such an environment on object recognition, 

we studied how relationships of the shape of distractors to that of the target 

influenced recognition.  For this experiment, we compared the performance of 

subjects to recognize target objects under two different conditions.  The first 

condition was one where none of the distractors shared components with the 

target, to simulate a situation where the object was present in a background that 

shared no features with the target.  The next condition was one where all 

distractors shared a component with the target.  In each condition six different 

distractors were used.  In the second condition each of the three components of 

the target were shared with two of the distractors.  Under both conditions, naïve 

subjects performed at chance level with little observable difference.  However, 

there was a significant reduction of performance in the condition of shared 

components for subjects that had some experience with the target shape 

(performance with shared components in distractors:  20.9± 14.8%, 

performance without shared components in distractors:  43.8± 14.9%, p<10-4, 

two-tailed paired t-test, Figure 13, single subject).  
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Figure 13. A) Target and Distractors.  In the first condition, none of the 

distractors shared components with the target.  In the second condition, each 

distractor shared one component with the target.  For the purposes of this 

illustration the shared components are highlighted in red.  Each component of 

the target object appeared in two of the six distractors.  B)  Performance on 

recognition of a target shape when no distractor shared components with it 

(blue) versus when all of them did (red).  Performances are shown when the 

subject was untrained (left) and partially trained (right).  The components that 

the distractors shared with the target are highlighted in red.  Performance was at 

chance level for both conditions without training, but was reduced for the 

condition where the distractors shared components with the target with training. 

Single subject, error bars represent standard errors across individual blocks. 
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Figure 13 

A.  

B.       
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Since there was such a significant effect on performance, one might expect that 

perceptual learning of the object would be affected as well.  To test how 

learning is affected by distractors sharing components with the target, we 

trained subjects under the condition where all distractors shared components 

with the target object.  Even after extended training, none of our subjects 

showed appreciable improvement in their levels of recognition.  Since 

performance in difficult search tasks is proportional to the number of distractors 

(Bergen and Julesz 1983, Steinman 1987, Treisman and Gelade 1980); we 

reduced task difficulty by reducing the number of shapes present in the array 

from twelve to eight.  This had the effect of increasing performance in 

recognizing the target before training (42.2% ±6.7%, average of five), and also 

made it possible for the subject to increase performance as a result of training.  

After successful training to a performance of 65% or higher correct detection, 

(72.3%±6.7%, significance of change after training p<10-5, two-tailed paired t-

test, average of five) we looked at the transfer of this training to objects sharing 

components with the trained target.  Even though the components of the trained 

object were shared with the distractors used during training, we nevertheless 

observed a significant transfer to the objects that shared components with the 

target (Figure 14).  Furthermore, transfer was seen both for objects that served 

as distractors, as well as to those that did not.  As before, no transfer was 
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observed to a control shape that shared no components with the trained target 

(correct detection before training 30.2%,±5.9, after training 41.1%±8.8%, 

p>0.01, two-tailed paired t-test).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 53 

 

 

 

Figure 14.  A) Target and Distractors.  During training, each distractor shared 

one component with the target.    For the purposes of this illustration the shared 

components are highlighted in red.  Each component of the target object 

appeared in two of the six distractors.  B) Performance on recognition of trained 

(blue) versus untrained shapes that either shared (red) or did not share (green) a 

component with the trained shape, after training in a condition where all 

distractors shared components with the trained target.  For the purposes of this 

illustration the shared components are highlighted in red.  There was significant 

improvement in recognizing untrained shapes that shared a component with the 

trained shape, but not for shapes with no unshared components. Single subject, 

error bars represent standard errors across individual blocks.  *=p<0.01, 

**=p<0.001, in comparison to the pre-training levels of performance. 
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Figure 14 

 

 

A.  

B.  
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If components of an object were learned solely on the basis of how informative 

they were, then one might expect there to be significantly more transfer of 

learning to the more informative components.  We manipulated the 

“informativeness” of individual components in distinguishing the trained object 

from its distractors by changing how frequently the components appeared 

among the distractors, and then measuring the influence of the frequency with 

which components were shared with the distractors on transfer of training 

(Figure 15).  Of the total of six objects used as distractors, four shared one 

component with the target, and the remaining two shared the other component.  

As a result, one component was on the average displayed twice as often the 

other component within the stimuli.  We trained our subjects under this 

condition until their performance reached an arbitrary chosen ~70% level 

(performance before training= 30.8±5.0%, performance after training= 

70.7±10.2%, p<0.0058, average of three subjects).  After subjects reached 

saturation in their performance, we measured transfer of detection to other 

objects sharing either component with the trained object.  The average 

performances of the subjects were significantly higher for objects sharing the 

more commonly occurring component with the trained target after training, but 

only if the objects were tested with the same distractors used during training 

(performance before training= 24.1±11.5%, performance after training with 
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different distractors= 32.3±12.6%, with the same distractors= 46.5±16.6% 

average of three subjects, p>0.16 and p<0.023, respectively, two-tailed paired t-

test).  There was also significant post-training transfer of learning to an object 

that shared the less commonly occurring component with the trained target 

when presented with the distractors used during training (performance before 

training=25.2±6.6, performance after training=41.4±8.0%, p<0.02, two-tailed 

paired t-test, average of three subjects).  This experiment was also repeated with 

the frequencies of the target components among the distractors flipped, i.e. the 

component that appeared in two distractors now appeared in four and vice 

versa.  After training there was again a high degree of transfer to objects sharing 

either component with the target, but this did not appear to depend on the 

frequency with which the component appeared in the distractors.  
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Figure 15. A) Target and Distractors.  During training, each distractor shared 

one component with the target.  For the purposes of this illustration the shared 

components are highlighted in red.  One component appeared in four of the six 

distractors while the other component appeared in the remaining two.  B) 

Performance on recognition of trained (blue) versus untrained shapes that either 

shared (red and yellow) or did not share (green) a component with the trained 

shape. There was significant improvement in recognizing untrained shapes that 

shared either component with the trained shape, but not for shapes with no 

shared components. Single subject, error bars represent standard errors across 

individual blocks.  *=p<0.01, **=p<0.001, in comparison to the pre-training 

levels of performance. 
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Figure 15 

 

 

 

A.  
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2.3 Discussion: 

 

We studied what is being learned in object recognition by training subjects on a 

visual search task and looking for transfer from trained to untrained objects.  

Previous research has shown that performance in recognizing objects in this 

type of task is subject to perceptual learning.  The learning in our task was 

comparable to that seen in early studies, with steady improvement over several 

days that progressed in a location-specific manner (Sigman and Gilbert 2000).  

In the current study we saw significant transfer of learning between objects that 

shared components.  This suggests that novel objects are learned in a parts-

based fashion.  As further support of this idea, learning of an object was 

accompanied by learning of its individual components.  Conversely, 

improvement in recognition of a simple object improved the ability to recognize 

more complex objects that contained the trained object as a component.  Both 

of these observations further support the notion that parts are important for 

object recognition.  

 

Psychophysical experiments show that components are necessary for 

recognition of objects, objects can be identified by partial exposure to a subset 

of their components, and similar objects can easily be differentiated through 
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differing parts (Biederman 1987, Biederman and Gerhardstein 1993, Biederman 

and Bar 1999).  Here we showed that object components were used for the 

learning of novel objects, and same components could be used to recognize 

multiple objects.  Furthermore we observed that transfer of learning between 

objects that shared one component was not complete.  This observation, 

coupled with the evidence that all components of an object were learned during 

training, indicates that combinations of multiple components were necessary for 

recognition.  

 

It should be noted that in certain instances there was no transfer of training to an 

object that shared components with the trained target. In these cases the object 

either had an extremely different orientation from the trained target, or the third 

line of the object was placed in the middle of the shared component. Two 

conclusions can be drawn from these observations:  the orientation of an object 

is used in conjunction with its components for recognition, and a component 

needs to be clearly visible and undivided to be used. 

 

The visual shape of the distractors affected the recognition of the target as well.  

The presence of components of the target within distractors severely reduced 

both performance and learning.  According to the fragment-based hierarchy 
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model of recognition by Ullman (2007), components of an object are most 

useful for recognition when they are highly informative about the object, i.e. 

when they appear often within the object and rarely in the environment.  

Therefore by using distractors that contain components of the target shape, we 

reduced the usefulness of those components for the recognition of the target.  

Even in this condition, however, it appeared that parts were still being used for 

recognition.  Although each component appeared among the distractors, it could 

still be used as a feature in recognition of the object, as evidenced by the 

transfer of learning to objects sharing that component.  In this experiment no 

single component uniquely identified the object, and therefore even components 

that occurred less frequently among the distractors contributed to identifying 

the target.  It is likely that the visual system picks out the target by performing 

an “and” operation, requiring the presence of multiple components to recognize 

the object.   

 

It has been suggested that objects in a visual search task pop-out if they differ 

from the distractors by an elementary feature.  If, on the other hand, they differ 

by specific combinations of elementary features, then the search is inefficient 

(Treisman and Gelade 1980).  Our study shows that with practice specific 

combinations of object parts can become elementary features.  It has been also 
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suggested that performance in visual search is not a dichotomy of parallel and 

serial search, but a continuum (Wolfe et al. 1989, 1997, Joseph et al. 1997, 

Wolfe 2003).  The gradual improvement of performance rather than an abrupt 

switch from poor to good performance in this study supports this possibility.  In 

our experiments the distractors appear to have a significant effect on how easily 

the target can be recognized.  We have seen that the number of distractors has a 

direct effect on task difficulty.  Untrained performance increased noticeably 

when the size of the stimulus array was reduced from 12 objects to 8 objects, 

and training became possible in conditions where it wasn’t with the larger array.  

This result is in good agreement with earlier studies that show that in an 

inefficient (serial) search task the difficulty increases with increasing number of 

distractors (Bergen and Julesz 1983, Steinman 1987, Treisman and Gelade 

1980).   It should be noted that on some instances, pre-training performance was 

noticeably higher than the predicted chance level performance, especially with 

lower number of distractors.  Even during the early stages of the training, it is 

possible for the subjects to limit their attention at multiple locations of the 

array, such as the entirety of a specific quadrant, enabling them to detect the 

target at these locations somewhat reliably.  This potentially allows for initial 

performances above chance level.  However, there was still a statistically 

significant improvement in performance as a result of training. 
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The results here, supporting the representation of objects by their component 

parts, resonates with findings on the feature selectivity of neurons in monkey 

inferotemporal cortex.  There, a large fraction of neurons are sensitive to 

simplified parts of objects, and objects activate cortical columns that are 

selective for their components (Desimone et al. 1984, Tanaka et al. 1991, 

Tsunoda et al. 2001).  fMRI studies suggest a similar organization within the 

human LOC (reviewed in Grill-Spector et al. 2001).  These properties fit very 

well with object recognition mechanisms that are parts-based.  However, our 

results show that learning of new objects occurs in a location-specific fashion, 

which is generally thought not to be a property of LOC or of inferotemporal 

cortex, but of areas at earlier stages in the ventral visual stream.  A top-down 

reorganization of the object processing to early visual cortices was suggested by 

earlier studies (Sigman and Gilbert 2000, Sigman et al. 2005), and can account 

for the pattern of learning we observe.  Cells in V1 can respond to more 

complex features than originally believed (Das and Gilbert 1999, Posner and 

Gilbert 1999, Gilbert et al. 2000, 2001, Li and Gilbert 2002, Li et al. 2004, 

2006, 2008).  Furthermore, we have seen a considerable measure of plasticity in 

adult V1, both at the level of receptive field properties (Gilbert and Wiesel 

1992, Obata et al. 1999, Crist et al. 2001) and in the capacity of local circuits in 

V1 to undergo sprouting and synaptogenesis (Darian-Smith and Gilbert 1994, 
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Gilbert et al. 1996, Stettler et al. 2006, Yamahachi et al. 2008).  In the context 

of the current study, this plasticity can be used to reorganize elementary feature 

maps to represent object parts and their specific combinations.  How different 

areas along the visual form pathway contribute to the representation of object 

features will continue to be elaborated.  But one potential advantage of shifting 

feature representation towards earlier cortical stages is an increased ability to 

recognize objects rapidly and in parallel with other, similar objects.  
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CHAPTER 3: FUNCTIONAL MRI 

 

In the classical view of the brain’s representation of visual form, early visual 

cortices analyze local attributes, such as orientation, and subsequent levels of 

visual cortical processing are selective for more complex shapes.  Along with 

this “complexification” of receptive field properties along a hierarchy of visual 

cortical areas, there is presumed to be a decrease in retinotopic specific, with 

small, retinotopically organized receptive fields at early areas, and large 

receptive fields showing translational invariance at higher level areas (Hubel 

and Wiesel 1962, 1965, 1968, Tanaka et al. 1991). The brain regions involved 

with a task can be inferred by how much the performance in the task is affected 

by the location of the task within the visual field.  The brain regions with 

matching retinotopic specificity are usually responsible for the computations 

necessary to accomplish the task (Berardi and Fiorentini 1987, Karni and Sagi 

1991, Sigman and Gilbert 2000).  Complex objects contain numerous features 

that need to be integrated for their recognition, and this recognition is usually 

independent of the visual field location.  Under normal circumstances, both 

integration of features and locational invariance are properties of regions high 

in the visual processing hierarchy, which are therefore implicated as being 

responsible for object recognition.  Studies using electrophysiology in monkeys 
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and fMRI in humans have implicated the inferotemporal cortex (Desimone et 

al. 1984, Tanaka et al. 1991, Tsunoda et al. 2001) and lateral occipital cortex 

(Malach et al. 1995, Grill-Spector et al. 1998, 2001, Kourtzi and Kanwisher 

2000) as the areas in which object shape is represented. 

 

Recent studies have questioned the classical view of object recognition. Early 

visual centers like V1 are shown to be sensitive to more complex stimuli than 

originally thought (Das and Gilbert1999, Posner and Gilbert 1999, Gilbert et al. 

2000, 2001; Li and Gilbert 2002, Li et al. 2004, 2006, 2008).  Furthermore, 

familiar objects can be recognized within arrays of distractors efficiently, 

independent of the size of the array (Wang et al. 1994, Malinowski and Hubner 

2001, Shen and Reingold 2001), which is a property of features mapped in early 

visual cortices (Treisman and Gelade 1980).  Individuals can gain such 

efficiency at the recognition of novel objects through perceptual learning that is 

retinotopically specific, again suggesting a role of earlier visual cortices in the 

process (Sigman and Gilbert 2000).  Based on the results of these studies it is 

suggested that training causes the visual processing system to reorganize itself 

so that the processing of the learned objects are remapped to early visual 

cortices.  fMRI studies offer functional support for these behavioral 

observations. In a block-based design of detecting T’s of a specific orientation 



 67 

among T’s of other orientations, an extended network mainly consisting of 

parietal and frontal cortices and lateral occipital cortex is activated for untrained 

shapes.  After training, on the other hand, the trained shapes lead to higher 

activation of a region in the middle occipital cortex, corresponding to early 

visual regions (Sigman et al. 2005).  

 

In the current study we combine retinotopic mapping and the use of functional 

localizers to identify the visual cortical areas in human subjects (Malach et al. 

1995, Grill-Spector et al. 1998, 2001, Tootel et al. 1998Kourtzi and Kanwisher 

2000) enabling us to determine which areas show differential activation and 

connectivity as a result of perceptual learning trained on an object recognition 

task.  This allows us to investigate how the cortical representation of objects 

changes as a result of perceptual learning by using a visual search task. 
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3.1 Methods: 

 

3.1.1 Subjects: 

 

Subjects were three adults (two female, one male, all right-handed) of 

below 30 years of age.  They were recruited according to the regulations 

set forward by the Rockefeller University Institutional Review Board, and 

gave written informed consent.  All subjects had good or corrected vision.  

Each subject participated in two scanning sessions, one for functional 

mapping of the brain and one for functional scan during visual search task. 

 

3.1.2 Stimulus generation, scan and processing: 

 

All the stimuli were generated using E-Prime program for visual stimulus 

generation (Schneider et al. 2002), which was synchronized with the MRI 

scanner using the Integrated Functional Imaging System (IFIS).  The stimuli 

were displayed using an arrangement of mirrors, with the final mirror placed in 

front of the subjects’ faces.  The screen size was ca. 12x9 degrees.  Scans were 

performed with a GE-Sigma 3-Tesla MRI scanner (maximum gradient strength, 

50 mT/m; maximum gradient slew rate, 150 T/m/s) with an 8-channel headcoil 
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at the Bioimaging Core Facility of Weill Medical College of Cornell University 

in New York. 27 slices of 4mm thickness were acquired for the functional scan, 

with a sampling rate of TR=1.5 s/volume. The whole brain was sampled in an 

anterior-posterior direction. Immediately before the functional scanning an 

anatomical image of the subject’s brain was acquired using a sagittal 3D-

MPRAGE sequence with acquisition matrix size of 256 × 192 × 120, a field of 

view of 24 cm, and slice thickness of 1.5 mm. 

 

For analysis of the fMRI signal acquired from the scanner, we used SPM5 (see 

http://www.fil.ion.ucl.ac.uk/spm/software/spm5/) software in the MATLAB 

(MathWorks, Inc., Sherborn, MA) environment.  Standard image processing 

procedures of SPM5 were performed on the data:  The functional images were 

realigned to correct for small head movement artifacts and coregistered with the 

anatomical scans of the corresponding subjects.  The image acquisition time 

differences between slices were corrected with an interleaved slice sampling, 

using the first acquired slice as reference.   The Marsbar toolbox (Brett et al. 

2002) was used for the ROI analysis of the functional data ROI’s generated 

from functional maps (see below). 
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3.1.3 Retinotopic mapping of early visual cortices: 

 

To define the areas engaged in the object recognition task, we mapped early 

visual cortex and lateral occipital cortex (LOC).  Early visual cortices are 

organized in a repeating retinotopic fashion, and can therefore be mapped by 

determining where each position in the visual field corresponds on the cortex.  

For this retinotopic mapping we used the following stimuli:  a ring to map 

retinal eccentricity and a rotating double-wedge to map polar angle (Figure 16).  

Two blocks of each stimulus condition were used, with the ring expanding in 

one block and contracting in the other, and the wedges rotating clockwise in 

one block and counter-clockwise in the other.  The width of the ring took up a 

quarter of the maximum radius of the ring. A full expansion or contraction of 

the ring took 24 seconds and happened 10 times per block.  Each wedge 

described a 45-degree arc, for a total of 90-degrees visual angle for the two 

wedges.  A half rotation of the two wedges took 24 seconds (a half rotation 

resulted in an image identical to the starting point since there were two wedges) 

and happened 10 times per block.  Both stimuli were constructed of a flickering 

(4 Hz) checkerboard pattern to avoid visual adaptation. To maintain the 

attention of the subjects on the screen, they were asked to fixate to a short 

horizontal red line at the center of the screen and asked to respond when the line 
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changed orientation from horizontal to vertical.  This orientation change had a 

50% chance of happening every 1.5 seconds, and lasted for 250 ms.  The 

anatomic location in the visuotopic map that corresponds to each pixel on the 

screen was determined by convolving the activities generated by the two 

stimuli, as described by Dougherty et al. 2003 (Figure 17). 

 

A.  B.  

C.     D.  

Figure 16. Stimulus images for mapping.  A) Rotating wedges for eccentricity 

mapping B) expanding/contracting ring for polar angle mapping C) objects and 

D) scrambled objects for functional mapping of LOC 
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3.1.4 Mapping of LOC: 

 

For the mapping of LOC, retinotopic localizers cannot be used since this region 

does not have a very specific retinotopic organization.  Instead, a functional 

localizer is used.  Since LOC is sensitive to objects, voxels that are activated 

more strongly by objects compared to scrambled images of objects will belong 

to LOC.  Two types of images were presented at the center of the screen in 

separate blocks (Figure 16).  The first group of stimuli consisted of grayscale 

photographs of various kinds of both natural and man-made objects, obtained 

royalty-free from the Internet.  The second group was images that were 

scrambled versions of the same photographs.  The images were represented for 

250 ms, with 750 ms intervals between them, for a total of 24 images per block.  

Two runs were conducted, with five alternating blocks per condition per run.  

Between two blocks there were 12-second rest periods with no stimuli.  The 

subjects were asked to fixate a central location marked by a red cross.  The 

attention of the subjects was engaged by asking them to report if any image was 

repeated twice in succession, which happened four times per block.  The LOC 

was defined as the regions that showed significantly higher signal in the fMRI 

data as a response to objects compared to scrambled objects (Kourtzi and 

Kanwisher 2000, Figure 17).  
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A B  

C  

 

Figure 17. Retinotopically mapped cortices projected onto the A) normal B) 

inflated and C) flattened images of the right hemisphere of the brain. Both 

ventral (v) and dorsal (d) segments of V1 (blue), V2 (red), and V3 (pink) are 

depicted, along with the entire V3A (green), hV4 (purple), and LOC (yellow). 

 

 



 74 

3.1.5 Psychophysical Task: 

 

For the functional imaging, we used a visual search task that involved 

responding to the presence or absence of a specific target object composed of 

three lines within a circular array of 12 objects of similar appearance, with the 

vertical and horizontal meridians of the circle left empty.  The approximate 

radius of the array was 3 degrees and the length of individual line segments of 

the objects was 0.3 degrees.  The stimulus array was presented for 300 ms and 

subjects were asked to respond within 4 seconds.   No visual feedback was 

provided. Both target and distractors used in this experiment were three short 

lines of different orientations that connect at one single point.  They were 

displayed in white on a uniform black background, with a circular fixation spot 

in the center of the array.  The array was designed to maintain the same 

eccentricity for all objects within the array.  The target object was present in 

two thirds of the trials.  The location of the target each time it appeared was 

semi-randomized in a fashion that fulfills the following conditions:  a) the target 

appeared in each individual location an equal number of times and b) the 

appearance of the target in each quadrant was balanced, i.e. an appearance in 

each quadrant was followed by an appearance in each other quadrant an equal 

number of times.  Each different object used was presented in blocks of nine 
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trials.  The target object for an upcoming block was presented for 3 seconds at 

the center of the screen at the beginning of each block. The onset of the first 

stimulus of the block was 6 seconds after this display.  The subjects responded 

to the stimuli by pressing a button under their right-hand thumb when they saw 

the target, and under their right-hand index finger when they did not.  Due to 

the requirements of synchronizing the task presentation computer with the 

fMRI scanner, they were not asked to report the location of the objects during 

the scan session.  The total block length was 45 seconds.  Each run contained 

two blocks with each test objects and the target objects alternated in each block.  

A total of six runs were conducted in each session. At the end of each run there 

was a 16.5 second long blank screen with only the fixation spot present to allow 

for the BOLD response to dissipate.  The first three volumes of each run are 

omitted from the analysis to reduce scanner artifacts. 

 

Subjects were trained for the recognition of one target object before any 

scans were performed.  The training consisted of 54 blocks of 9 trials per 

session, for a total of 486 trials.  Sessions were run for 3 to 5 five times per 

week.  In addition to the task setup detailed above, subjects were also 

asked to identify the location of the target to eliminate false positives, and 

were given visual feedback.  They were trained until their performance at 
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correctly detecting the target object reached an arbitrarily set cut-off point 

of 70%. During training, stimuli were presented on a Viewsonic Graphics 

Series G90fB CRT monitor with a refresh rate of 60 Hz.  Subjects were 

seated at 180 cm distance from the monitor.  A chinrest was used to ensure 

consistent distance and reduce head movement. 

 

3.1.6 Analysis: 

 

We determined the changes in fMRI activity as a result of training by 

comparing activity levels in the trained and untrained conditions using the 

standard statistical procedures of SPM.  For this analysis, we used a whole-

brain, voxel-by-voxel multiple linear regression model (general linear model).  

General linear models explain the blood oxygenation level dependent response 

(BOLD) measured by the fMRI as a linear summation of multiple regressors.  

The weight of each regressor is fitted in such a way as to minimize the error 

term of the model.   Regressors that are of actual interest (i.e. the variables that 

are being studied) are called principal regressors.   The principal regressors 

were set to a model of neural activity convolved with a prototypical 

hemodynamic response function (HRF). The ‘canonical HRF’ that is built in to 

the SPM5 software was chosen, which is a mixture of two γ functions that 
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peeks at 6 seconds and later undershoots the baseline with a minimum at 16 

seconds, with a time derivative that allows the peak response to vary by plus or 

minus one second.  Trained and Untrained conditions were modeled as 

principal regressors, weighted negative and positive, respectively.  The changes 

are displayed using TkSurfer tool  (linear opaque threshold, min=2.5, max=5, 

see http://surfer.nmr.mgh.harvard.edu/fswiki/TkSurfer) of FreeSurfer toolset.  

To improve statistical power, a second analysis was performed using the same 

statistical approach, but limited to restricted regions of interest (ROI’s) rather 

than the whole brain. The regions previously mapped as retinotopic cortex and 

LOC were used as ROI’s for this analysis. The marsbar toolbox of SPM5 is 

used to restrict the analysis to these ROI’s.  

 

Within the time frame of one block the fMRI activity shows significant 

fluctuations.  If two distinct regions of the brain are involved with the 

processing of the same task, these regions most likely communicate with each 

other.  As a result, the fluctuations of activity are expected to correlate.   To 

analyze this correlation of activity between brain regions we used the voxels 

mapped as belonging to V1 as reference.  We calculated the average time-

course of activity of these voxels, and compared the fluctuations of activity in 

each individual voxel of the brain to the fluctuations in this average (Fox et al. 



 78 

2005, 2006, for a sample comparison, see Figure 18).  We determined a 

correlation coefficient ranging from -1 to 1 for each voxel depending on how 

well these fluctuations correlated.  High levels of correlation corresponded to a 

high absolute value of correlation coefficient.  Positive values indicated a 

positive correlation while negative values indicated a negative correlation.  The 

results are displayed on brain slices using FSL View v3.0 (threshold min=0.2, 

max=0.8, see http://www.fmrib.ox.ac.uk/fsl/fslview/index.html), and on 

flattened brain images using TkSurfer tool (linear opaque threshold, min=0.2, 

max=0.8) of FreeSurfer toolset.  For the comparison of different brain regions, 

the average correlation coefficient of each region was calculated.  For this 

analysis, the regions that were not mapped functionally were determined 

through automated anatomical segmentation during initial image processing.  
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Figure 18.  Fluctuations in fMRI activity of V1 over one block.  x-axis 

represents time in seconds, y-axis represents a unitless value corresponding to 

the activity measured by the MRI scanner. Timecourse of activity in A) V1 B) 

V1 (black) compared to a voxel in LOC (red) in untrained condition C) V1 

(black) compared to a voxel in LOC (red) in trained condition, are shown.  The 

plots of the timecourse of V1 and LOC are better correlated in the untrained 

condition compared to the trained condition 
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Figure 18 

A.  

B.  
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Figure 18 continued 

 

 

 

 

 

C.  
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3.2 Results: 

 

3.2.1 Psychophysical performance: 

 

In order to be able to compare cortical activation when searching trained and 

untrained objects, we needed a perceptual task where the performance showed a 

strong effect of learning.  The task we chose was a visual search task that 

involved the detection of a target object in an array of distractors of similar 

appearance. In this task, the level of performance was measured as the fraction 

of trials when the subjects detected the target correctly relative to the total 

number of trials where the target was present.  The performance was corrected 

for false positives by using the following formula:  p' = (p-fp)/(1-fp) where p is 

the percentage of positive responses, fp is the rate of false positives (rate of 

trials where the subject reported seeing the object when the object was not 

present) and p' is the ‘real’ percentage of correct responses.  Subjects were 

extensively trained in one object before the fMRI scan session as described for 

the psychophysics experiments until they reached at least 70% correct detection 

ratio.  During the imaging session, subjects were asked to look for the trained 

shape and an untrained shape in alternating blocks of nine trails each, for a total 

of 18 blocks per object.  Within the MRI scanner, the improvement of 
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performance through learning was maintained for the trained shape, showing 

that the training was robust to the changing physical conditions (correct 

detection performance 77.3+-11.6%). The subjects performed more poorly at 

detecting the untrained target (correct detection performance 21.3+-12.7%).  

  

3.2.2 Effect of object familiarity on cortical activity: 

 

To determine whether cortical representation changed with training we 

compared the fMRI activity levels when subjects were looking for trained and 

untrained objects.  To increase statistical power, we limited the analysis to 

specific regions of interests that were early visual cortices in the retinotopic 

cortex as determined by our mapping procedure, that were implicated as the 

location of object recognition post-training in earlier publications (Sigman 

2005).  In all the regions of retinotopic cortex tested, we found that activities 

are higher for the untrained target compared to the trained target (Figure 19).  A 

similar reduction was observed in the LOC. 
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Figure 19.  A) Cortical regions activated more strongly by untrained shapes 

compared to trained shapes (yellow), given in t-values of the statistical 

significance of the difference. In the expected vicinity of the visual cortices, a 

large area near the lateral posterior side of the brain (marked with blue 

crosshairs) appeared as more strongly activated in untrained condition. This 

area of high activity overlapped with the areas that were functionally mapped as 

LOC. B) fMRI Activity difference between trained and untrained target in V1 

(blue), V2 (red), V3A (yellow), V3A (green), and hV4 (purple). For the 

purposes of this illustration, a positive t-value indicates higher activity in the 

untrained condition whereas a negative t-value indicates higher activity in the 

trained condition. For all brain regions analyzed, there was higher activity in the 

untrained condition. 
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Figure 19 

A.              

B.        
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3.2.3 Correlation of activity between brain cortices:  

 

The correlation of activity between different brain cortices is seen as a measure 

of the connectivity between these regions (Biswal et al. 1995, Lowe et al. 1998, 

McIntosh et al. 1998, Bhattacharya et al. 2006, He et al. 2007, Marreiros et al. 

2008).  It is possible that changes in functional localization due to training will 

also change the communication, and therefore connectivity, between the brain 

cortices involved. Such a change will be visible as changes in the correlation of 

fMRI activity between these cortices.  To analyze this possibility, we examined 

how well the fMRI activity at several functionally or anatomically determined 

brain regions correlated with the fMRI activity at V1. This analysis was done 

by correlating the average time course of activity in V1 to those of the other 

regions (Biswal et al. 1995 and He et al. 2007, Figure 17).  We observed that 

there was a distinct difference in correlation of activity between trained and 

untrained conditions (Figure 20). With training there was a change in the 

correlation between V1 and LOC activity, and an opposite change in the 

correlation between V1 and superiorparietal, inferiortemporal and middle 

temporal cortices.  Although all subjects showed this reciprocal relationship 

between these two networks, the direction of the change was not the same for 

all subjects. 
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Figure 20. A) Correlation of fMRI activity with V1 when looking for trained 

(left) and untrained (right) object projected on an image of the flattened 

occipital pole, with the early visual cortex and LOC marked by enclosing black 

boundaries based on the functional maps.  Shades of red indicate a positive 

correlation, shades of blue indicate a negative correlation with V1.  A larger 

area of the brain was correlated with V1 in the untrained condition. Single 

subject.  B) Correlation coefficients of average fMRI activity of different brain 

cortices to the average fMRI activity of V1 for two subjects, when the subjects 

searched for trained (blue), or untrained (yellow) objects.  Two subjects.  Of the 

regions tested, V2, V3, and LOC were determined functionally while the rest 

were determined anatomically.  Values of correlation coefficients ranged from 1 

(perfect correlation) to -1 (perfect negative correlation).  In this instance all 

regions tested were positively correlated with V1.  The correlation of V2 and 

V3 with V1 remained relatively constant between the three conditions, whereas 

that of LOC changed significantly.  This change was accompanied by a 

reciprocal change for superiorparietal, inferiortemporal, inferiortemporal, 

middletemporal cortices, and cuneus. Both subjects showed this reciprocal 

relationship between the two networks; however, the direction of the change 

was opposite. 
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Figure 20 

    TRAINED 

A.            UNTRAINED 
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Figure 20 continued 

 

    

 

B.  
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3.3 Discussion: 

 

Our results in general showed higher fMRI activity when subjects searched for 

untrained objects compared to trained objects.  Furthermore, activity levels in 

early retinotopic cortices were also better correlated for untrained objects 

compared to trained objects.  These patterns of change in fMRI activity stand in 

partial contrast with results previously reported by our lab that also show a 

reorganization of cortical activity following training, but with higher activity in 

the retinotopic cortex for trained objects, which was also better correlated with 

performance in this region compared to untrained objects (Sigman et al. 2005).  

There is, however, a diversity of findings concerning the direction of change of 

cortical activation with training.  Some studies show that an increase in 

performance during training is correlated with an initial increase followed by a 

decrease in cortical activity (Mukai et al. and Yotsumoto et al.).  One can 

imagine either outcome could lead to an improved performance, depending on 

the effect of training on the tuning properties of cortical neurons.  An increase 

in activation could reflect a process of cortical recruitment, where more neurons 

become engaged in the task, and as a result of probability summation, this leads 

to an improvement in psychophysical performance (Recanzone et al. 1992, 

1993, Nudo et al. 1996, Xerri et al. 1998).  A decrease in activation could 
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represent a sharpening of the tuning of neurons to the trained attributes 

(Schoups et al. 2001, Faber et al. 1999, Kobatake et al. 1998, Logothetis et al. 

1995, Miyashita and Hayashi 2000), which would lead to an improvement in 

the threshold of the task and a decrease in the number of neurons involved.  The 

differences in the fMRI studies might be attributed to differences in the duration 

of training.  The Sigman et al. study involved shorter periods of training, while 

here the training extended for longer periods of time.  One might therefore 

speculate that as the learning becomes consolidated over time, there are 

increased efficiencies in the representation of the learned information, and as a 

consequence fewer, more sharply tuned neurons become activated during task 

execution. 

 

A complicating factor affecting the level of cortical activation is the change in 

task difficulty with perceptual learning.  Arguably, searching for untrained 

objects requires more effort than searching for trained objects, which tend to 

pop-out more readily from the distractors.  The untrained condition may 

therefore be accompanied by a larger attentional load (Joseph et al. 1997).  

Increases in neural activity due to attention have been shown both with 

electrophysiological (Luck et al. 1997) and fMRI studies (Brefczynski and 

DeYoe 1999, Gandhi et al.1999, Martinez et al.1999, Somers et al. 1999).  Such 
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activity is independent of the presence of the stimulus and is purely due to 

attention to stimulus location (Kastner et al. 1999, Ress et al. 2000, Silver et al. 

2007) and is very strong in V1 for fMRI data. At this stage it is difficult to 

disambiguate changes in activation with training that are due to changes in the 

tuning characteristics of neurons from those that are due to changes in task 

difficulty. 

 

We observed two major centers of change in activity levels as a result of 

training that did not fall into any of the visual centers that we mapped 

functionally.  Anatomically, this observed activity fell into the parietal lobe and 

into the inferior temporal cortex.  Of these, the parietal lobe is a part of the 

dorsal stream of processing and is mostly involved in spatial attention.  The 

change in activity observed in this region likely reflects the different levels of 

attention required to complete the search task in the trained and untrained 

conditions.  The probable reason for the activity changes in the IT is, however, 

less obvious.  Unlike its anatomical counterpart in monkeys, this region is not 

necessarily involved in object recognition in humans (except perhaps faces, see 

Allison et al. 1994); this role is instead taken over by LOC, which lies more 

posterior and lateral.  Discussion with the subjects reveals a possible reason 

why a change in this region is observed.  Most subjects mentioned that they 
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tried to liken the target objects to objects with which they were already familiar 

to aid them during the search task.  One type of object that was often mentioned 

as being used was letters.  There is some evidence that the human IT might be 

involved in the processing of letters and letter strings, even when they are 

nonsensical (Nobre et al. 1994, Allison et al. 1994).  Therefore, such a strategy 

can potentially involve this region.  It is likely that this strategy is used more 

heavily for unfamiliar shapes compared to familiar shapes, which can be 

recognized by themselves without such mental aids.  This difference can 

explain why there is stronger activation of the IT in the untrained condition. 

 

The changes in correlations between different brain regions we observed 

suggest that under different circumstances, communication between V1 to 

higher brain centers could be diverted to a different pathway that bypasses LOC 

and instead goes through temporal and parietal cortex and cuneus.  However, it 

should be noted that both cuneus and parietal cortex (Kertzman et al. 1996, 

Kusunoki and Goldberg 2003) are involved in visual guidance of motion 

representation of spatial location.  During the training, subjects were asked to 

report the location of the target object to correct for false positive responses.  It 

is possible that the subjects were continuing to judge the position of the target 

even within the MRI scanner where they were not required to report it.  The 
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subjects were accustomed to look for target location in the trained condition and 

not in the untrained condition.  Therefore, it is possible that the differences of 

connectivity between V1 and the location-sensitive cuneus and parietal cortices 

in trained and untrained conditions were due to this habit of the subjects.  The 

change of connectivity between V1 and LOC surprisingly does not happen in 

the same condition in all subjects.  Instead, two subjects have their LOC better 

correlated with V1 when they are looking for the trained target whereas the 

third subject has a higher correlation between these two regions when looking 

for the untrained target.  This difference suggests that the brains of different 

people might adopt different strategies to solve the same perceptual problem.  

Because the correlation analysis involves smoothing of the fMRI signal at the 

voxel level, a statistical bias was introduced that prevented us from determining 

the statistical significance of the observed changes at the single subject level in 

a meaningful manner.  Further studies are needed so that the statistical 

significance of the changes may be determined at the level of multiple subjects, 

and also to show if the differences between individuals we observed are a 

common occurrence. 
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