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LOCATING THE THERAPEUTIC THRESHOLD OF FUNCTION IN 

PERIPHERAL NERVE DEVELOPMENT  

 

Prabhjot Singh Dhadialla, Ph.D. 

The Rockefeller University 2009 

 

Peripheral neuropathies are a significant cause of morbidity and mortality, with a 

population prevalence of 2,400 per 100,000 (2.4%) that increases in the elderly 

to 8,000 per 100,000 (8%)(C. N. Martyn and R. A. Hughes, 1997).  The variations 

in symptom distribution and etiologic attribution have resulted in the classification 

of over 100 types of peripheral neuropathy with specific patterns of development 

and prognoses.  In the first study, we use a mouse model of hereditary peripheral 

neuropathy that results in hind-limb paralysis to investigate the therapeutic 

efficacy of adult, adipose derived stem cells (ADSC).  The paralyzed mice that 

received ADSC transplantation demonstrated significantly improved motor 

function, likely due to stromal support provided by ADSCs.  The ultrastructure of 

the nerve was not significantly improved, indicating that the threshold of 

functional motor improvement can be met through alternative means.  In the 

second study, we developed a process to identify highly-connected genes in a 

model of peripheral nerve development using entropy maximized network 

analysis of gene microarrays.  We found that Tumor Necrosis Factor (TNF) 

mediates axonal-Schwann cell communication, and that disruption of TNF 

signaling results in sensory and tissue dysfunction.   These findings indicate that 



the threshold of wild-type physiological function in peripheral nerve development 

can be addressed by disrupting or strengthening specific signaling processes 

without significant changes to tissue structure. 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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Peripheral Neuropathies 

 

Peripheral neuropathies are a significant cause of morbidity and mortality, with a 

population prevalence of 2,400 per 100,000 (2.4%) that increases in the elderly 

to 8,000 per 100,000 (8%)(C. N. Martyn and R. A. Hughes, 1997).  Each 

peripheral nerve has a specialized function that must be relayed to the brain and 

spinal chord, resulting in a wide array of symptoms when they are damaged.  

These constellations of symptoms are the effects that people usual feel when 

they contact a doctor for diagnosis.  Because peripheral nerves can carry both 

motor and sensory information, people may experience symptoms ranging from 

temporary numbness, sensitivity and muscle weakness to burning pain, muscle 

wasting, paralysis and organ dysfunction.  These symptoms can be isolated to 

one nerve (mononeuropathy), multiple physically related nerves (polyneuropathy) 

or multiple physically unrelated nerves (mononeuritis multiplex).  The variations in 

symptom distribution and etiologic attribution have resulted in the classification of 

over 100 types of peripheral neuropathy with different histories of development 

and prognoses.  Although there is considerable overlap in patterns of disease 

progression, there is no common framework for treating or investigating 

peripheral neuropathies.  
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Peripheral neuropathies can be acquired through systemic disease, trauma 

environmental wear, infections or autoimmune processes.  In addition, there are 

clearly defined inherited peripheral neuropathies such as Charcot-Marie-Tooth 

syndrome and Merosin-Deficient Muscular Dystrophy, which are characterized by 

gait abnormalities, wasting of muscles in the lower legs and feet and numbness 

in the lower limbs (K. Matsumura et al., 1997; M. L. Feltri and L. Wrabetz, 2005; 

Y. Parman, 2007). In many cases, inherited defects remain sub-clinical until 

environmental damage through the acquired pathways listed above result in 

clinical presentation. The interaction between inherited and acquired peripheral 

neuropathies has not been well described. To date, there are no medical 

treatments to cure an inherited peripheral neuropathy.  Thus far, therapeutic 

approaches for the vast majority of peripheral neuropathies have been limited to 

amelioration of symptoms through nutritional support, physical rehabilitation and 

general immunosuppressive therapy (R. A. Hughes, 2002).  

The underlying etiology varies according to cell type and function targeted by the 

disease process.  For many neuropathies, nerve dysfunction results from 

Schwann cell defects. Schwann cells not only insulate axons, but also maintain 

their long-term functional integrity.  Loss of glial support results in progressive 

axon degeneration and local inflammation, contributing to the development of 

peripheral neuropathies (K. A. Nave and B. D. Trapp, 2008).  Although difficult to 

disambiguate entirely, doctors classify peripheral neuropathies as predominantly 
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motor, predominantly sensory, sensory-motor or autonomic; classification is 

related to the type of Schwann cell-axon interaction involved.   

 

1.2. Schwann Cell Development and Neuropathy 

 

Schwann cells differentiate from the neural crest, and as they mature, sort axons 

by inserting cytoplasmic protrusions between axons until no unsheathed axons 

remain (R. Mirsky and K. R. Jessen, 1996; R. Mirsky et al., 1996; K. R. Jessen 

and R. Mirsky, 1997).  Schwann cells can either myelinate one axon or envelop 

multiple axons with their cytoplasm in order to provide insulation and 

environmental support (Figure 1).    
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Figure 1. The mouse Schwann-cell lineage (modified from Jessen 
and Mirsky, 1999b; Basic Neurochemistry, 6th Ed, 1999, Fig 27-16). 
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The myelin sheath forms as multiple layers of Schwann cell membrane enwrap a 

single axon.  Myelination of axons is essential for proper function of the nervous 

system, predominantly because it allows for the fast conduction of action 

potentials.   Myelination of the peripheral nervous system (PNS) is accomplished 

by Schwann cells, the major glial cells of the vertebrate PNS.  During embryonic 

development, Schwann cell precursors are derived from the neural crest, which 

occurs at embryonic day (e) 12-13 in the mouse.  The survival of Schwann cell 

precursors is dependent on axon-derived signals (K. R. Jessen and R. Mirsky, 

2002; R. Mirsky et al., 2002).  When immature Schwann cells are generated from 

Schwann cell precursors (e13-15 for mouse), they lose this axon dependence 

and support their own survival by establishing autocrine loops (K. R. Jessen and 

R. Mirsky, 2005).  At this time, some Schwann cells destined to myelinate will 

proliferate vigorously and differentiate into promyelinating Schwann cells, from 

which individual cells extend their cytoplasmic processes into bundles of axons, 

progressively separate them into even smaller bundles, and finally establish a 1:1 

relationship with each larger diameter axon, a process known as radial sorting 

(H. D. Webster, 1993).  These cells will further differentiate and wrap axons 

concentrically with the extension of their membrane and produce myelin sheaths 

(myelinating Schwann cells). Non-myelinating Schwann cells appear late in the 

PNS, at approximately P15-20, and they can only envelop a definite number of 

small caliber axons (5~30 axons) (E. J. Arroyo et al., 1998).  Development of 

myelinating Schwann cells precedes nonmyelinating Schwann cells, and 
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nonmyelinating Schwann cells enwrap multiple small caliber axons only after the 

myelinating Schwann cells reach a 1:1 ratio with individual large axons (P. A. 

Eccleston et al., 1987).  Nonmyelinating Schwann cells envelop multiple small 

caliber axons (C fibers, <1 µm diameter) to form a Remak bundle and keep 

individual axons separated by membrane extensions, but they do not form myelin 

sheaths(K. R. Jessen and R. Mirsky, 2005).  Remak bundles convey sensory 

information along the peripheral nerve bundle (Figure 2)  

 

Disruption of myelinating Schwann cell development results in peripheral motor 

neuropathies. Mutations in laminin α2 cause Merosin Deficient Congenital 

Muscular Dystrophy in humans (CMD1A), which is the most common type of 

congenital muscular dystrophy (A. Helbling-Leclerc et al., 1995). Studies from 

mice and Dorsal Root Ganglia co-cultures lacking the laminin family of genes in 

Schwann cells provide extensive evidence that laminins play multiple essential 

roles during the various aspects of PNS development.  These include the 

proliferation, survival, and differentiation of Schwann cells. In CMD1A patients, 

both muscle and peripheral nerves are affected, and the phenotypes are a 

combination of nerve and muscular pathology, including progressive hind limb 

paralysis due to peripheral nerve hypomyelination (W. Kuang et al., 1998). This 

suggests that deficiency of Schwann cell laminins contribute to the pathogenesis 

of peripheral nerve neuropathy. In addition to CMD1A, mutations of laminin 

signaling components also contributes to the pathogenesis of other heritable 

peripheral neuropathies such as Charcot-Marie-Tooth 4F (mutations in periaxin 
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gene) and neurofibromatosis (mutation in NF2/schwannomin gene) (M. L. Feltri 

and L. Wrabetz, 2005).  The disruption of laminins compromises the ability of 

myelinating Schwann cells to provide structural and signaling support to axons.   
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Figure 2.  Peripheral Nerve Structure.  Electron micrograph of a peripheral 
nerve showing glial cell processes that interdigitate and envelop single axons 
(left). The relationship is similar to that of nonmyelin-forming Schwann cells that 
envelop small-caliber C-fiber axons in the mouse sciatic nerve (right). Scale bar, 
1 μm.(K. A. Nave and B. D. Trapp, 2008) 
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Schwann cells have a well-defined role in peripheral nerve tissue homeostasis in 

times of disease beyond the structural features of myelin formation and axon 

insulation. It has been recognized that Schwann cells are immunocompetent, and 

can modify the peripheral nerve tissue environment through immunomodulation 

of local cytokines. Schwann cells can produce and secrete a range of cytokines, 

including Interleukin-6, transforming growth factor β, and Tumor Necrosis Factor 

(TNF)α (K. Bergsteinsdottir et al., 1991; G. Stoll et al., 1993; O. Bourde et al., 

1996) (Figure 3). Previous studies have shown that TNF is expressed in 

Schwann cell cytoplasm (C. Cheng et al., 2007) in an autocrine and local 

paracrine fashion (Y. Qin et al., 2008) can directly modulate synaptic scaling in 

the spinal chord(D. Stellwagen and R. C. Malenka, 2006).  Some cytokine 

receptors, such as TNF Receptor 1 (TNFR1) are constitutively expressed on 

Schwann cells, facilitating a TNFα response (B. Bonetti et al., 2000).  The role of 

these components has been extensively explored during the course of 

inflammatory neuropathies as well as non-inflammatory hereditary neuropathies 

(G. Meyer zu Horste et al., 2008).  In addition, nuclear transcription factor-κB 

(NFκB), a traditional regulator of cytokines, is activated in human Schwann cells 

(R. M. Pereira et al., 2005).  The natural inhibitor of NFκB, IκB, it abundantly 

present in Schwann cells, indicating an active rather than passive role for NFκB 

in peripheral nerve physiology (B. Andorfer et al., 2001). Anti-inflammatory 

treatment of non-inflammatory hereditary neuropathies such as Charcot-Marie-

Tooth disease has been controversial, as the suppression of one neuropathy can 
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Figure 3. Immunocompetence of Schwann cells. (a) Schwann cells can 
express the major histocompatibility (MHC) class I molecules as well as MHC 
class II molecules along with co-stimulatory molecules (b) Schwann cells can 
recognize antigens via Toll receptors, such as LPS, activating the nuclear 
transcription factor NF-κB. (c) Schwann cells regulate the immune response 
post-stimulation by secreting soluble factors like cytokines, growth factors, and 
other immune mediators. (d) Schwann cells terminate the immune response via 
the interaction of Fas and FasL, triggering apoptosis in inflammatory T cells. 
LPS, lipopolysaccharide; GDNF, glial cell line– derived neurotrophic factor; 
PGE2, prostaglandin E2; IL, interleukin; TNF, tumor necrosis factor; TGF, 
transforming growth factor. (Adapted from (G. Meyer zu Horste et al., 2008) 
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lead to the development of a new one in the form of sensory loss or 

dysmyelination (M. Berghoff et al., 2005).  The ambiguous role of cytokines in 

normal Schwann physiology is highlighted by the emergence of sensory 

neuropathies during systemic administration of TNFα for a range of unrelated 

conditions (C. Sommer et al., 2001; J. P. Stubgen, 2008). Although this has been 

largely attributed to the sequelae of an immune response, an alternative 

hypothesis is that nervous system tissues that use these molecules for 

communication are disrupted (M. Empl et al., 2001; J. C. Czeschik et al., 2008).  

Indeed, these hypotheses are not mutually exclusive.  It has been difficult to 

disambiguate the primary role of cytokines in disease processes from secondary 

immune responses.  After stimulation with proinflammatory cytokines, FasL (a 

member of the TNF family) can interact with T-Cells to promote apoptosis, 

suggesting that Schwann cells may also have a role in terminating secondary 

immune responses. 

 

1.3  Adult Stem Cells and Therapeutic Potential 

 

Stem cells can serve as a source of cells to repopulate injured tissues, produce 

molecules that provide a supportive environment for endogenous tissue, and 

may be useful as renewable biological delivery vectors for targeted gene therapy.  

The design of stem cell therapy is heavily influenced by the type of stem cell 

used for transplant.  Embryonic Stem Cells (ESCs) are the earliest non-germ 
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stem cell line, and offer the widest potential of cell types in tissue repair.  ESCs 

become increasingly differentiated over time, developing towards ectodermal 

(including neural crest lineage tissues), endodermal or mesenchymal fates.  

However, because of the wide range of cell types that they may generate, 

several animal studies of transplanted ESCs have resulted in teratoma-type 

malignancy generation, which may limit ESCs therapeutic usefulness.  One 

avenue that investigators have employed to circumvent teratoma formation is to 

push ESCs towards a tissue-specific lineage.  Neural precursor cells and 

dopaminergic neurons have been generated from ESCs, and it has been shown 

that these cell lines can migrate and further differentiate into appropriate 

neuronal cell types in the rodent CNS (A. L. Perrier et al., 2004).  This same 

group has recently developed methodologies to generate neural crest stem cells 

from ESCs (G. Lee et al., 2007).  Newly derived neural crest stem cells may 

afford a unique opportunity to repopulate developmentally aberrant peripheral 

nerves in a tissue-appropriate manner. 

 

The relatively restricted fates of adult stem cells make these populations a 

potential alternative when applied to appropriate tissue environments.  In the 

adult animal, there are populations of stem cells that can be isolated from a 

variety of tissues.  Although generally more fate committed than embryonic-type 

stem cells, mesenchymal stem cells in particular are multipotent, with the 

potential to give rise to many non-mesenchymal cell types, including Schwann 

cells and neurons.  Adipose tissue is a readily available source of mesenchymal 
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stem cells, termed Adipose Derived Stem Cells (ADSCs).  ADSCs are easily 

isolated from adipose tissue, and can be maintained in culture through at least 

eight cell passages.  Mesenchymal stem cell lines such as ADSCs have the 

added advantage of being relatively immune-privileged.  These cells have been 

shown to differentiate into a number of cell types including bone, cartilage, 

muscle, adipose and stromal support cells (Figure 4).  They do not express 

major histocompatibility antigen (MHC) class I molecules on their cell surface and 

thus do not elicit significant immune reaction when transplanted into even 

unrelated animal species.  For instance, ADSCs derived from human lipoaspirate 

have been used to seed skeletal muscle in dystrophin knockout mice for 

extended periods of time.  Transplants are maintained without the necessity for 

immunosuppressant therapy.  ADSCs offer the advantage of easy accessibility, 

multipotency and immune privilege status, although the longevity and 

functionality of transplant is not yet established. 



  14 

 

 

 

 

 

 

Figure 4. Differentiation of ADSCs.  White adipose is separated into 
Adipocytes and stem cells.  The stem cells can be further differentiation into 
bone, cartilage, adipose and muscle.  Nerve/Schwann cell lineages have been 
reported. (Adapted by Karen B. Carlson from Cytotrix) 
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Several studies have examined the potential for transplanted stem cells to 

repopulate injured peripheral nerves.  In a model of chronic denervation, neural 

stem cells could improve electrophysiologic function of the injured nerve and be 

engineered to supply supportive factors such as GDNF (Glial Derived 

Neurotrophic Factor) to targeted tissues (G. Stoll and H. W. Muller, 1999). Adult 

hair follicle stem cells, a non-neuronal adult multipotent stem cell line, have also 

been used to support repair in transected sciatic nerves (Y. Amoh et al., 2005).  

The non-neuronal stem cells repopulated the injured nerve with myelinating 

Schwann cells and subsequently restored hind limb function according to gross 

functional measurements.   

 

Stem cell transplant strategies have been explored for many tissue types, 

including injured neuronal tissues.  However, transplant into models of heritable 

peripheral neuropathies such as CMD1A in which glial development is arrested 

have not been explored.  Similarly, the molecular mechanisms by which stem 

cells impact the PNS microenvironment, and by which the PNS 

microenvironment impacts transplanted stem cells have also not been 

determined. Efforts to understand the gene interactions that orchestrate the 

nerve tissue microenvironment during development are crucial to improving the 

therapeutic potential of stem cells.   
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1.4 Maximum Entropy Analysis of Gene Microarray 

 

As the density of genetic regulatory information increases, so does the 

importance of identifying pivotal molecules that regulate complex processes such 

as peripheral nerve development.  Perturbation of these molecules provides 

insight into the relationship between development processes and therapeutic 

possibilities for peripheral neuropathies.  Gene microarray analysis has been 

successfully used to identify crucial molecular components of genetic systems.  

The magnitude of gene expression is commonly inferred from microarray 

analysis of tissues using computational methods.  A variety of grouping 

techniques, such as cluster analysis, Bayesian statistics, independent 

component analysis (ICA), principle component analysis (PCA) and network 

component analysis (NCA) are employed to categorize transcriptional profiles 

from microarrays while assuming steady state conditions (N. S. Holter et al., 

2000; N. S. Holter et al., 2001; F. Azuaje, 2002; W. Liebermeister, 2002; W. Pan, 

2002; I. Shmulevich et al., 2002; J. C. Liao et al., 2003; N. Bolshakova and F. 

Azuaje, 2006).  Time delayed, complex relationships that are further complicated 

by measurement noise are difficult to capture within the parameters of these 

methods.  Nevertheless, these groupings can be useful because proteins 

encoded by genes in biological processes are often co-regulated.  Although 

useful to understand aggregate patterns, they provide little insight into inferred 

gene network interactions (P. D'Haeseleer et al., 2000; P. D'Haeseleer, 2005).   
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Linear models of gene network interactions are particularly sensitive to 

undersampled datasets, because poor parametric assumptions are amplified as 

the underdetermination increases (J. Tegner et al., 2003; S. Li et al., 2006).  This 

is particularly accentuated in expression data captured over time-series, where 

only a few time points may be all that are available to parse arrays of thousands 

of genes measured in parallel into biologically useful gene interaction network 

models. Boolean networks of cellular processes, Bayesian network models, 

relevance networks and those predicated upon particular underlying statistical 

distributions create constraining assumptions about the nature of the network 

from the outset (S. Liang et al., 1998; T. Akutsu et al., 2000; N. Friedman et al., 

2000; N. Friedman, 2004).  Enriching networks with qualitative information from 

systematic literature mining, as well as targeted experiments becomes difficult as 

the number of with genes and possible network configurations increase (T. Ideker 

et al., 2001; J. Tegner et al., 2003). 

 

Maximum entropy analysis of gene arrays takes a different approach to the 

problem of undetermination in large data sets. This approach is based upon 

Boltzmannʼs concept of entropy maximization, which supports statistical 

inference with minimal reliance on missing information.  In this analysis, a given 

biological process is considered a macroscopic state composed of microscopic 

states (i.e. gene expression).  Since there are many possible configurations of 

microscopic states that could result in the macroscopic state, the state that 
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corresponds to the largest number of correlated microscopic states is most likely.  

Since information and entropy, as defined by Shannon, are inversely related, the 

network selected by the entropy maximizing procedure has the least reliance on 

missing information (C. E. Shannon, 1997). This procedure is predicated upon 

constructing a network topology from pairwise interactions that use the least 

information (maximizing entropy) to empirically explain the resulting 

transcriptional profile.  Any alternative network state would lower the entropy of 

the entire system, by requiring missing information.  Entropy maximization 

analysis has been used to successfully represent complex interactions in diverse 

nonequilibrium systems including genetic and neural networks based upon 

pairwise interactions (T. R. Lezon et al., 2006; E. Schneidman et al., 2006; A. 

Sayyed-Ahmad et al., 2007).  This approach is not free of assumptions: the use 

of mRNA transcription levels rather than a comprehensive cell model is 

dependent upon tight overall relationships between the genome, proteome and 

metabalome.   

 

1.5 Genetic Network Maps and Target Prioritization  

 

Biological network visualization focuses on the interplay between individual 

genes and apparent sub-groups.  This tool does not require detailed quantitative 

descriptions of subsystem dynamics in order to suggest information about gene 

function and the potential impact of transcriptional loss (N. Yeung et al., 2008).  
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The trade-off is that a network map is indicative rather than predictive for 

pertinent interactions between biological components.  A systematic approach to 

target prioritization is required to make use of these maps in resource-limited 

experimental contexts. 

 

Gene networks are usually represented as graphs in the form of nodes (genes or 

gene products) and edges (interactions).  Since the magnitudes of interactions 

are rarely captured in this form, the general structure/topology of networks has 

received more attention.  As reviewed by Khanin and Wit, biological networks 

(gene – g-space, protein p-space, and metabolic – m-space) have largely shown 

the following characteristics: 1) each node is connected to other systemic nodes 

through a short path (small world topology), 2) there are many nodes with few 

connections and a few nodes with many connections (hubs), and 3) hubs are 

enriched with essential/lethal genes (centrality/lethality) (R. Khanin and E. Wit, 

2006) (Figure 5). Previous studies have indicated that metabolic, protein and 

genetic networks appear to be scale-invariant and follow power laws, such that 

relationship between genes and the number of linkages to other genes in the 

network increased logarithmically (A. Rzhetsky and S. M. Gomez, 2001; D. E. 

Featherstone and K. Broadie, 2002; E. Ravasz et al., 2002; A. L. Barabasi and Z. 

N. Oltvai, 2004; V. van Noort et al., 2004; A. Fernandez, 2007).  This property is 

attractive in biological systems because scale-free networks allow for fast 

communication and resistance to breakdown (E. Almaas et al., 2005).  Further 
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careful study of these same and related biological networks has shown that they 

are rarely truly scale-free, although some of the major features of scale-free 

networks are present (E. Alm and A. P. Arkin, 2003; R. Khanin and E. Wit, 2006).  

Nevertheless, the number of connections per node in a network in an important 

way of parsing network topographies for genes with potential functional relevance 

to the biological process described by microarray data (D. S. Lee et al., 2008). 

Genes with a high number of connections per node and demonstrated 

physiological relevance are termed “influential.”  These network maps provide 

useful starting points for experimental exploration of influential genes.  Gene 

interactions in a simple tissue system, such as those between Schwann cells and 

neurons undergoing peripheral nerve development, have not yet been explored.   
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Figure 5. Cellular Biological Networks.  This representation of cellular 
biological networks includes closely interconnected and interrelated spaces. Here 
G-space stands for a space of gene interactions, P -space is a space of protein 
interactions, and M-space is a space of interactions between metabolites. Solid 
arrows represent direct causal interactions, whereas the dotted arrows are 
indirect gene interactions, which occur via intermediate causal interaction(s). All 
three types of networks have been previously studied using a graph approach, 
and they have all been shown to share certain characteristics, such as small-
world property and existence of hubs with a high proportion of essential/ lethal 
nodes. (Adapted from (R. Khanin and E. Wit, 2006). 
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1.6 Objectives 

                                     

Peripheral neuropathies represent a heterogeneous group of pathologies that 

present with a constellation of overlapping symptoms.  Despite common effects 

on nervous tissue, broad classes of common mechanisms have not been 

identified.  As a result, current therapeutic avenues address the symptoms of 

peripheral neuropathies rather than the underlying cause.  Therefore, new 

therapeutic options and means of identifying influential genes in peripheral nerve 

development and function are crucial.  We seek to use stem cell therapeutics and 

analytic tools to find influential genes with functional relevance to a disease 

model and normal process of peripheral nerve development, respectively. 
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CHAPTER 2  

 

MATERIALS AND METHODS 

 

2.1 Mice 

 

Mice were maintained in the Rockefeller University Laboratory Animal Research 

Center (LARC) and treated in accordance with protocols approved by LARC.  All 

experiments involving animals was performed with the approval of the 

Institutional Animal Care and Use Committees.  The Wildtype mice C57/BL6 

background) were obtained from Jackson Laboratory (Bar Harbor, ME).  The 

Laminin-γ1 Mice were generated through a knockout approach.  To knock out 

laminin-γ1 in Schwann cells, mice in which Cre expression is under the control of 

the Schwann cell specific- myelin P0 promoter (M. L. Feltri et al., 1999) were 

crossed with mice in which the laminin γ1 gene is flanked by LoxP sites (fLamγ1 

allele) (Z. L. Chen and S. Strickland, 2003; W. M. Yu et al., 2005).  Mice were 

genotyped by PCR for both the Cre transgene and homozygosity of the fLamγ1 

allele.  Mutant (P0Lamγ1-/-) mice were homozygous for the fLAMγ1 allele and 

carry one copy of the P0-Cre transgene.  Mice used as controls in these 

experiments were heterozygous for both the fLAMγ1 allele (Lamγ1f/+) and the 

P0-Cre transgene (hereafter referred to as control mice).  The Tumor Necrosis 

Factor -/- mice were obtained from Jackson Laboratory (Bar Harbor, ME). They 
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were generated by deleting 40 base pairs of the 5' UTR, all the coding region, 

including the ATG translation initiation codon of the first exon and part of the first 

intron of the muTNFa gene.  All mice used in this study were bred on a C57/BL6 

background for at least 5 generations.   

 

2.2 Stem cell culture and verification 

 

ADSCs were isolated according to a standard technique as follows (S. H. Gee et 

al., 1993; L. Y. Yang et al., 2004; Y. S. Choi et al., 2006):  peri-inguinal fat pads 

were removed from adult mice and rinsed twice with sterile PBS (Gibco-

Invitrogen; Carlsbad, CA).  Fat pads were then placed in DMEM (Gibco-

Invitrogen; Carlsbad, CA) containing Pen-Strep antibiotics (Sigma; St. Louis, 

MO), 2mg/mL collagenase (Sigma; St. Lous, MO), and 1% BSA (Gibco-

Invitrogen; Carlsbad, CA), minced, and digested with agitation at 37°C for 45 

minutes.  Tissue homogenate was then treated with FBS (Gibco-Invitrogen; 

Carlsbad, CA), and centrifuged at 200g x 4 minutes.  The supernatant containing 

adipocytes was discarded, and the stromal-vascular pellet was resuspended in 

DMEM with 10% FCS and antibiotics.  The resulting cell suspension was then 

filtered through a 70 micron filter and plated at a density of 10,000 cells/cm2.  

Cultures were grown to approximately 80% confluence prior to subculturing.  Cell 

cultures were used between passage 2 and 5.  Identity of ADSCs was initially 
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verified by flow cytometry for Thy1, CD44, and CD49b (98%, 95%, 92% 

respectively) as has been previously described (A. M. Rodriguez et al., 2005).  

The 3T3/L1 cells (ATCC; Manassas, VA) were grown as described previously in 

DMEM containing 10% FBS and antibiotics (S. J. Yarwood and J. R. Woodgett, 

2001).   

 

2.3 Stem cell transplant 

 

Adult mutant mice were anesthetized, and sciatic nerves were surgically exposed 

using aseptic surgical techniques. Cells (ADSC or 3T3/L1) suspended (J. 

Fujimura et al., 2005) in 20-40 µl of culture media or murine laminin-1 (23 µg; 

Sigma ;St. Louis, MO) were pipetted onto the indicated nerve.  The contralateral 

nerve received an equivalent volume of media without cells.  Surgical wounds 

were then closed with a 5-O SofSilk suture and vet-bond tissue adhesive (3M; 

Minneapolis, MN).  Images, tissue samples and electrophysiological recordings 

were collected seven to 21 days post-injection as indicated in each figure.   
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2.4 Electrophysiology 

 

There is some variance between mutant mice with respect to the severity of 

hindlimb phenotype.  Therefore, comparisons were always made between limbs 

of the same mouse. Electrophysiologic analysis showed minimal variance 

between limbs of the same mutant mouse.  Electrophysiological measurements 

were made using standard stimulating and recording methods. Mice were 

anesthetized with an avertine/atropine mixture and placed on a plexiglass 

platform affixed to a stereotaxic apparatus.  Sciatic nerves were surgically 

exposed, and a blunt tip stimulating electrode was placed on the proximal sciatic 

nerve. A recording electrode was then inserted into the muscle with the observed 

twitch.  Constant current pulses (0.15msec duration; 10-1000 µA) were 

administered and recordings were collected from the resultant evoked potential. 

The amplitude of each potential was calculated as the amplitude between the 

start of the positive deflection and maximum amplitude.  The nerve conduction 

latency (NCL) was calculated by dividing the length of time between stimulus 

onset and start of evoked potential by the distance between stimulating and 

recording electrodes.  Each measurement was made three times and averaged. 

 

2.5 Electron Microscopy 

Seven days after stem cell/ media transplant, sciatic nerves were collected and 

fixed in 2.5% paraformaldehyde/ glutaraldehyde and 2% osmium tetroxide  
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solution (Electron Microscopy Sciences; Hatfield, PA)(Z. L. Chen and S. 

Strickland, 2003; W. M. Yu et al., 2005).  Nerves were prepared, embedded in 

resin, cut into ultra-thin sections, and visualized by electron microscopy as 

previously described (Z. L. Chen and S. Strickland, 2003; W. M. Yu et al., 2005). 

Electron micrographs of DRG-co cultures were obtained by scraping the fixed 

monolayer intact, creating a pellet that does not disrupt cell interactions, and 

transecting it to obtain a random sampling of the DRG co-culture. 

 

2.6 Immunostaining 

 

Seven to 21 days post-transplant, mice were anesthetized with 2.5% avertine 

solution and transcardially perfused with PBS followed by 2.5% 

paraformaldehyde. Sciatic nerves were removed and post-fixed overnight in the 

same solution.  Tissues were cryoprotected in 30% sucrose solution for two days 

prior to sectioning.  Nerves were sectioned into 10 µm intervals using a Leica 

cryostat, and sections were adhered to superfrost plus glass slides (Fisher 

Scientific) (Z. L. Chen and S. Strickland, 2003; W. M. Yu et al., 2005).  Cell 

cultures were grown on Poly-D-lysine-coated coverslips (BD Biosciences; San 

Jose, CA) and then processed in the same manner as tissue samples detailed 

below.  Tissue and cell samples were processed for immunofluoresence by 

fixation in 4% paraformaldehyde for 20 minutes followed by thorough rinsing in 
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PBS.  Samples were blocked in PBS containing 5% normal goat serum for one 

hour.  Samples were incubated overnight at 4 °C with primary antibodies (1:500 

for MBP, Chemicon; Temecula, CA; or 1:1,000 for laminin-1, Sigma; St. Louis, 

MO).  After thorough rinsing in PBS, secondary antibodies (1:1000 for Alexa 488-

labeled anti-rat and Alexa 488-labeled anti-rabbit IgG; Invitrogen; Eugene, OR) 

were applied for one hour at room temperature. Samples were then well rinsed 

and visualized using a Zeiss LSM 510 confocal microscope at The Rockefeller 

University Bio-Imaging Resource Center.   

 

2.7 DRG co-culture and associated reagents 
 
 

Wild type mice are obtained at E13.5 for the extraction of dorsal root ganglia 

(DRG), which contain two main cell populations, Schwann cells and neurons.  

The DRG is disassociated and maintained until a dense layer of Schwann cells 

exists in tight proximity to neurons (-9 days).  The onset of Schwann cell-axonal 

maturation was triggered by adding ascorbic acid, defining time point zero as 

previously described (Z. L. Chen et al., 2008).  Samples for microarray analysis 

were obtained in triplicate from separate co-culture slips at 0, ½, 1, 6, 12, 36 and 

48 hours post ascorbic acid addition and prepared for use on Illumina Mouse-8 

chips (Illumina, Inc.) by the Rockefeller Microarray Core Facility.  Co-culture for 

EM analysis were obtained at day +9.  aTNF neutralizing antibody (Abcam) was 

administered to co-cultures at saturating concentrations (reported ND50=0.08-0.1 
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ug/ml; 1ug/ml used).  A polyclonal IgG control (Abcam) was used at the same 

concentration.  rmTNF (R&D Systems) was prepared at the following 

concentrations: 5ng/ml, 0.5 ng/ml, 0.5 ng/ml and 0.05 ng/ml. 

 

 

2.8 Maximum Entropy Analysis and Network Mapping  

 

For microarray data, the expression levels of genes, at time t, can be considered 

to be a vector, x, of n genes. Sampling gene expression levels at different times 

leads to a distribution over these vectors, which describes the behavior of the 

network. One simplification is to assume that the behavior of the network is 

determined completely by interactions between pairs of genes and not by any 

higher interactions (such as interactions between triplets). As shown by Lezon et 

al., the matrix of interaction strengths M between genes is simply the inverse of 

the covariance matrix of the expression levels of these genes(T. R. Lezon et al., 

2006).   

 

The raw expression data was normalized and averaged using Illumina software. 

Further analyses were performed using custom software written in Matlab 

(Natick, MA). Genes were selected that are reliably detected at all time points 

with a detection p-value greater than 0.9. Expression levels for each gene were 

rendered relative to baseline by subtracting out expression levels at time 0. Then 
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n genes (typically 200-500) were selected that had the highest variance 

expression levels over the course of the experiment. This formed an N-by-t array, 

X, of n genes, sampled at t times. The covariance matrix of this array Cij was 

calculated, which describes the variance of each gene i with every other gene j. 

Since this matrix is generally noninvertible, the pseudoinverse, Mij, which 

contains the interaction strengths for each gene i with every other gene j was 

calculated. To determine which genes have a significant interaction, a threshold 

for interaction strengths was established: interactions which are 2 or 3 standard 

deviations above (or below) the mean were counted as positive (or negative) 

interactions (Figure 6).  
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Figure 6.  Determination of covariance factor cutoff. A covariance factor is 
calculated for all gene profiles in relation to all other included gene profiles (500 
genes).  This results in an individual gene profile like those represented, with the 
center representing the number of included genes with no covariance factor, 
positive values representing temporal gene profiles with correlated covariance 
factors and negative values representing anti-correlation.  The magnitude of this 
value indicates the strength of the covariance factor, and the overall distribution 
of each gene profile allows a standard deviation cutoff from baseline to be user-
defined, resulting in a variable size network based upon this value (2 or 3 
standard deviations were chosen in this study).  The figure on the left depicts a 
vertical red bar representing a standard deviation cutoff that does not admit any 
genes that should be included as “connected” to this gene, while the figure on the 
right depicts cutoff values that admit multiple connections. 
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The commented Matlab code is displayed below: 
 
%% 
 
% Remove data with pvalues<0.10 
 
[not_detectedI]=find(DataPVal<=0.05); 
 
DataAvg(not_detectedI)=0; 
 
% Find no mRNA signal for all time points 
 
colSum=sum(DataAvg,2); 
 
GenesNotExpressed=find(colSum==0); 
 
size(GenesNotExpressed); 
 
GenesExpressed=find(abs(colSum)>0); 
 
%Throw out not expressed genes 
 
DataAvg=DataAvg(GenesExpressed,:); 
 
DataPVal=DataPVal(GenesExpressed,:); 
 
GeneName=GeneName(GenesExpressed); 
 
GeneDefinition=GeneDefinition(GenesExpressed); 
 
GeneTargetID=GeneTargetID(GenesExpressed); 
 
%Keep only genes expressed at all timepoints 
 
[findzerosI,findzerosJ]=find(DataAvg==0); 
 
rows2keep=setxor(findzerosI,[1:size(DataAvg,1)]); 
 
DataAvg=DataAvg(rows2keep,:); 
 
GeneName=GeneName(rows2keep); 
 
GeneTargetID=GeneTargetID(rows2keep); 
 
GeneDefinition=GeneDefinition(rows2keep); 
 
DataVar=DataAvg-repmat(DataAvg(:,1),1,8); 
 
DataVar=var(DataAvg,0,2); 
 
%VarList=sort(DataVar); 
 
DataVar=[DataVar (1:length(DataVar))']; 
 
VarList=sortrows(DataVar,1); 
 
VarList=flipud(VarList); 
 
VarList=VarList(1:200,:); %For a larger network, increase this to >200, but it will run slower 
 
DataKeep=zeros(length(VarList),size(DataAvg,2)); 
 
for i=1:length(VarList) 
 
    index=VarList(i,2); 
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    DataKeep(i,:)=DataAvg(index,:); 
 
    GeneDefinitionKeep(i)=GeneDefinition(index); 
 
    GeneTargetIDKeep(i)=GeneTargetID(index); 
 
    GeneNameKeep(i)=GeneName(index); 
 
end 
 
%% 
 
The network was visualized using Cytoscape software (National Institutes of 

Health) using spring-embedded and degree-weighted views without considering 

the directionality of interactions. 

 

 
2.9 Motor and Sensory Function Testing 
 
 

There is some variance between mutant mice with respect to the severity of 

hindlimb phenotype.  Therefore, comparisons were always made between limbs 

of the same mouse. Changes in hind-limb function following cell-treatment were 

measured by determining the minimum current needed to produce an observable 

muscle twitch (MCST). MCST function-testing showed minimal variance between 

limbs of the same mutant mouse (data not shown).  Mice were anesthetized with 

an avertine/atropine mixture and placed on a plexiglass platform affixed to a 

stereotaxic apparatus.  Sciatic nerves were surgically exposed, and a blunt tip 

stimulating electrode was placed on the proximal sciatic nerve.  Minimum current 

needed to produce a muscle twitch (MCST) was determined by applying 

0.15msec current pulses starting at 100 µA and successively increasing the 
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amplitude until a twitch was detected.  Exposed muscle was observed under a 

dissecting microscope for evidence of muscle twitch.  This technique was 

performed in triplicate for each nerve.  Motor ability was also assessed using the 

accelerating Rotarod (IITC Life Science, California) from each group of wild type 

and TNF-/- mice (F. Prestori et al., 2008).  Sensory function was assessed by 

determining the latency (sec) to jump or lick the front or hind paws after being 

placed on a 52°C hot plate.   

 
2.10 Image and Statistical Analysis  
 
 

Electron Microscope Image Analysis 

 

Electron micrographs of 21 day old male WT and TNF-/- mice were obtained for 

sciatic nerve analysis.  Axon size variation was measured from digital electron 

micrographs of sciatic nerves using ImageJ (National Institutes of Health).  Axon 

juxtaposition and envelopment was determined by consistently applying a metric 

of <60%=juxtaposition and >60%=envelopment to Schwann cell cytoplasmic 

envelopment of axons where all cells have intact borders as viewed on the 

transecting field.   

 

 



Statistical Analysis 

 

All values are expressed as mean and standard deviation (s.d.) as indicated. 

Analyses of significance were performed using the two-tailed student's t-test for 

two groups, (control versus mutant, or media versus cell- or protein-treated limb, 

respectively). We considered P <0.05 (indicated * in figures) as significant and P 

< 0.01 (**) as highly significant. All analysis was performed using Prism Graph 

Pad software. 

 

35 
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RESULTS 

 

CHAPTER 3 

 

Overview: Adult Mesenchymal Stromal Cells Facilitate Axon Sorting and 

Myelination in Mice Deficient in Schwann Cell-Derived Laminin 

 

Normal peripheral nerve development is dependent on a regulated process of 

axon and Schwann cell development.   Myelinated axons are sorted such that 

one Schwann cell envelops only one axon, and non-myelinated axons are 

completely encircled by non-myelinating Schwann cell cytoplasm.  Congenital 

neuropathies in which these processes do not occur cause gross peripheral 

nerve dysfunction, for which there is no therapy.  In this study, the sciatic nerves 

of mice in which both axon sorting and myelination fail to occur were treated with 

adult mesenchymal stromal cells derived from murine adipose tissue (mADSC).  

ADSC-treated mutant nerves showed improvement in hind-limb function as a 

result of improved axon sorting, myelination and diameter.  ADSC-treated mutant 

nerve electrophysiology is consistent with these ultrastructural changes 

suggesting that these effects are functionally significant for the animals.  

Although the rare ADSC derivative can be found within the nerve parenchyma, 

the majority of ADSCs are localized to the perineurium of the mutant nerves.  
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These results suggest that mADSCs are providing stromal support for the mutant 

nerves, and importantly, that this type of support is sufficient to facilitate 

improvement in nerve function. 

 

3.1 Stem cell treatment improves gross motor function 

 

The laminin γ1-/- mice are born in a normal litter size but exhibit poor survival 

under normal conditions.  These mice exhibit muscle wasting, increasingly poor 

motor coordination that results in complete hind-limb paralysis by 21 days and 

poor autonomic control that can result in death under conditions of high stress or 

transport.  With careful care, they can survive anesthetic and a surgical 

procedure although many die in the process of stem cell or vehicle surgery(Z. L. 

Chen and S. Strickland, 2003; W. M. Yu et al., 2005; W. M. Yu et al., 2007).   

To examine the potential for adult stem cells to rescue function of laminin-

deficient sciatic nerves, one limb of the mutant mice was treated with 50,000 

ADSCs and the contralateral limb was treated with stem cell growth media (J. 

Fujimura et al., 2005).  Within 14 days, gross motor improvements were visible in 

the stem cell treated limbs.  3T3/L1 cells produce laminin and are a pre-adipocyte 

non-stem cell line (T. Niimi et al., 1997) and were injected in place of ADSCs as a 

cell-based control.  This strategy allowed for direct comparison between limbs of 

the same animal and alleviated concerns regarding variable penetrance of the 



mutant phenotype. The 3T3/L1 cell treated mice did not exhibit gross 

improvements in motor function. 

 

 

To measure changes in hindlimb function with ADSC or 3T3/L1 injection, 

electrophysiologic sciatic nerve measurements were pursued because it allows 

for quantitation along a number of parameters that describe nerve function (B. 

Johnsen and A. Fuglsang-Frederiksen, 2000; M. D. Weiss et al., 2001). The 

electrophysiologic equivalent of the gross motor observation is the MCST, which 

is a compound measurement of muscle-nerve function. Less current is needed to 

stimulate a muscle twitch in an intact neuromuscular unit. A similar strategy has 

been previously used to look at improvement in sciatic nerve function following 

hair follicle stem cell injection (Y. Amoh et al., 2005). Other behavioral 

measurements such as rotarod testing rely on improved limb function in all limbs 

for test performance and would not allow use of contralateral limbs as an internal 

control. For the purpose of comparison, MCST was also determined in sciatic 

nerves of mutant and control littermate mice that had not undergone prior surgery 

(Table 1 and Figure 7A). Untreated mutant animals required significantly more 

stimulus current to trigger downstream muscle twitch than did control littermates. 

Treatment of mutant nerves with ADSCs, but not with media or 3T3 cells resulted 

in significant improvement in motor function in comparison to surgical control 

38 
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limbs, although MCST did not return to that of normal control littermates (Table 1 

and Figure 7B).  There was no significant difference in MCST between media-

treated and untreated mutant nerves showing that the surgical procedure itself is 

not responsible for the improvement in MCST with ADSC treatment.  These data 

demonstrate that enhancement of sciatic nerve function is possible after the 

onset of hind-limb paralysis.  This finding is consistent with recent studies that 

indicating that mesenchymal stem cells can lead to improvements in peripheral 

nerve function in the context of injury models (H. C. Pan et al., 2007) as well as 

diabetic polyneuropathies models (T. Shibata et al., 2008). 
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Table 1. Sciatic nerve electrophysiology of control, mutant and cell- and 
laminin-treated mutant nerves. 
 
Mouse Genotype Nerve Conduction 

Latency (m/s) 
Standard Error 
Margin 

Number 
of Mice 

Significance 

Control 5.05 0.21 16   
Mutant 1.84 0.12 17 <0.0001 
P0Lamg1-/-  Mice + 
[Treatment] vs 
control limbs 

        

+ 3T3 2.69 0.15 7 0.21 
+ ADSCs 3.91 0.33 9 0.0019 
+ Laminin (soluble) 2.41 0.19 12 0.6272 
          
Mouse Genotype Compound Muscle 

Evoked Potential 
(mV) 

      

Control 18.4 1.4 15   
Mutant 2.40 0.59 14 <0.0001 
P0Lamg1-/-  Mice + 
[Treatment] vs 
control limb 

        

+ 3T3/L1 2.48 0.45 6 0.0247 
+ ADSCs 6.27 1.02 11 0.0021 
Laminin (soluble) 2.01 0.40 12 0.0467 
          
Mouse Genotype Minimum Current to 

Stimulate Twitch 
(mA) 

      

Control 150 30 12   
Mutat 680 50 11 0.0026 
P0Lamg1-/-  Mice + 
[Treatment] 

        

+ 3T3/L1 530 60 7 0.714 
+ ADSCs 320 20 11 0.0001 
+ Laminin (soluble) 580 40 12 0.947 
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Figure 7. ADSC but not 3T3/L1 treatment of mutant sciatic nerves improves 
hind limb function by electrophysiology.  (A) MCST was measured for mutant 
and littermate control (heterozygous for floxed Lamininγ1 allele and P0Cre 
transgene) sciatic nerves.  (B) MCST was measured for mutant nerves that were 
treated either with DMEM or 5 x 105 F/F ADSCs or 3T3/L1 cells.  Dashed line 
indicates the values for the control mice. * indicates p<0.05, ** indicates p<0.01, 
*** indicates P<0.001.
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3.2 ADSCs are primarily localized to the perineurium  

 

ADSCs injected around the sciatic nerves of mutant mice result in quantifiable 

improvement in hind limb motor function.  This may have been a result of ADSC 

population of the mutant sciatic nerves and differentiation towards glia or 

neuronal cell types.  Alternatively, ADSCs may have played a stromal support 

role without themselves replacing the endogenous and developmentally arrested 

cells and axons.  To determine which was the case, ADSCs were labeled with DiI 

prior to injection and then examined the sciatic nerves were then examined by 

fluorescence microscopy to assess ADSC localization.  Media treated controls 

did not result in DiI labeling, while 3T3-treated sciatic nerves contained trace 

amount of labeled cells.  When nerves treated with ADSCs were analyzed at 7-

days post transplant, Di-I labeled cells were visible on the perineurium.  At the 

same time point at which MCST was measured and functional improvement was 

observed (21 days post-transplant), DiI-labeled ADSCs were extensively 

localized around the periphery of cell-treated sciatic nerves.  Only rare DiI-

labeled ADSCs were found within the nerve parenchyma. As anticipated, ADSCs 

did not form new neurons/axons, as DiI label never co-localized with 

neurofilament immunostaining (data not shown).  These results suggest that 

ADSCs are providing stromal support for endogenous Schwann cells and axons 

rather than themselves myelinating axons. Mutant nerves treated with DiI-labeled 
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3T3/L1 cells did not contain surviving cells, consistent with their inability to 

mediate significant functional improvement in sciatic nerve function.   

 

ADSC- treated nerves show morphological and physiological evidence of axon 

sorting and nascent myelin production, indicating that component(s) of the 

mutant nerves are being affected by ADSC injection.  One possibility is that the 

endogenous Schwann cells are being pushed past their point of developmental 

arrest and are further sorting and myelinating axons. To determine whether this is 

the case, electron microscopy was used to examine sciatic nerves of mutant 

mice that had received treatment with ADSCs, 3T3/L1 cells or media.   There are 

sparse normally-myelinated axons in the mutant nerves.  This myelin is derived 

from Schwann cells that either escaped recombination or are near an alternative 

source of laminin such as a capillary (Z.-L. Chen et al., 2003; Z. L. Chen and S. 

Strickland, 2003; W. M. Yu et al., 2005).  All other axons are within unsorted axon 

bundles in which there are no Schwann cell cytoplasmic pojections separating 

axon membranes.  The ultrastructure of media-treated limbs was identical to that 

untreated mutant sciatic nerves (Figure 8A).  Although there were often 

Schwann cells near the axon bundles, they did not insert cytoplasmic extrusions 

between axon bundles nor encircle individual axons.  Therefore there was no 

evidence of new myelination with media or surgery alone. 
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In the stem cell treated mutant nerves, there were bundles in which individual 

axons were sorted (Figure 8B).  Multiple axons were fully encircled by 

cytoplasmic extrusions from adjacent glial-like cells fully encircling them, and 

some showed evidence of nascent myelination.  Although this new myelin was 

not as thick as the myelin from a normal adult myelinated axon, it clearly had 

several layers.  The glial cells that sort and myelinate axons also appeared to 

have associated basal lamina.  These thinly myelinated axons with an associated 

glial basal lamina were never observed in untreated- (Z. L. Chen and S. 

Strickland, 2003; W. M. Yu et al., 2005), media-, or 3T3/L1 treated mutant nerves 

(Figure 8C). 
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Figure 8. ADSC-treated nerves show morphologic evidence of nascent 
myelin production. Electron microscopy of media-treated sciatic nerves 
revealed ultrastructure that was unchanged from untreated mutant mice (W. M. 
Yu et al., 2005). The Schwann cell shown in panel A (arrowhead) is immature, 
without cytoplasmic extension into the adjacent axon bundle.  (B)  Twenty-one 
days after stem cell transplant, there was evidence of axons that were sorted and 
separated (arrows) from an unsorted bundle.  There was also evidence of 
nascent myelin formation (arrowheads) and a basal lamina surrounding the glial 
cell sorting axons (open arrowheads).  The area marked by the white box in the 
first panel is shown in higher magnification in the second panel.  (C)  EM of 
3T3/L1 treated sciatic nerves failed to show any morphologic changes. 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For nascent myelin formation to be functionally significant, it should result in 

electrophysiological changes consistent with improved myelination.  Significant 

differences in axon sorting and myelination should be reflected in both nerve 

conduction latency (NCL), a measurement of the initiation of a motor response 

following nerve stimulation, and the maximum amplitude of the compound motor 

evoked potential (CMEP), which reflects the number and efficacy of axons 

capable of relaying current to the muscle.  As a baseline, both parameters were 

measured in mutant and littermate control sciatic nerves.   Both parameters were 

significantly lower in mutant animals, consistent with the impaired axon sorting 

and myelination observed by electron microscopy (Z. L. Chen and S. Strickland, 

2003; W. M. Yu et al., 2005) (Table 1, Figures 9A and B).   

 

To determine any electrophysiological improvement in axon sorting and 

myelination, NCL and CMEP were determined for mutant mice after treatment 

with ADSCs, 3T3/L1 cells, and media (Table 1, Figures 9C and D).  NCL and 

CMEP were not significantly different between untreated and media-treated 

limbs, indicating that the surgery itself did not impact mutant sciatic nerve 

electrophysiology.  Treatment of the mutant sciatic nerves with ADSCs 

significantly enhanced NCL and CMEP compared to treatment with media alone 

or with 3T3/L1 cells. These data show that the NCL in ADSC-treated nerves was 

equivalent to that of control nerves, suggesting drastically improved myelination 

for some axons (Figure 8C and Table 1).  The CMEP of the mutant sciatic 
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nerves treated with stem cells versus media was also significantly improved, 

showing a 3-fold increase from untreated mutant nerves (Figure 9D and Table 

1).  This result suggests that more axons are capable of transmitting current or 

that less current is dissipated secondary to improved axon insulation, which is 

consistent with the increased axon sorting and myelination seen by electron 

microscopy.  

.  
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Figure 9. Electrophysiological profile of control and treated mutant mice.  
NCL (A) and CMEP (B) of mutant and control mice were determined.  (C) NCL 
and (D) CMEP were measured for mutant nerves that were treated either with 
DMEM or 5 x 105 F/F ADSCs or 3T3/L1 cells.  For both NCL and CMEP, there 
was significant improvement although not normalization in mutant sciatic nerves 
following ADSC treatment.  Treatment with 3T3/L1 cells induced a small but still 
statistically significant improvement in both values.  Dashed line indicates the 
values for the control mice. * indicates p<0.05, ** indicates p<0.01, *** indicates 
P<0.001. 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3.3 ADSCs produce laminin in vitro following transplant   

 

Schwann cell differentiation and axon myelination requires laminin.  We further  

investigated was whether ADSC expression of laminin was important for 

functional, electrophysiologic or structural repair of the mutant nerves.  ADSCs 

grown in culture on poly-D Lysine coated coverslips were immunostained for 

laminin expression using a polyclonal antibody that recognizes laminin subunits 

α1, β1, and γ1.  In vitro, laminin subunit expression was readily apparent in all 

cells visualized.  To examine ADSC-expression of laminin in vivo, DiI-labeled 

ADSC-treated mutant nerves were collected and analyzed for laminin expression 

by immunostaining.  Although the majority of ADSCs do not co-localize with 

laminin staining in vivo, some DiI-labeled cells can be found with an associated 

laminin-containing basal lamina, suggesting that at least a subpopulation of 

ADSCs do produce laminin in vivo as well.   Because laminin-expression by 

ADSCs in vitro is widespread, it is also possible that the DiI labeled cells that are 

not co-localized with a laminin-containing basal lamina secrete laminin, but have 

not generated an organized basal lamina that can be detected by 

immunofluoresence.   
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3.4 Soluble laminin alone is insufficient to mediate complete repair of 

mutant sciatic nerves 

To determine if laminin alone was sufficient to mediate the functional, 

electrophysiologic, and morphologic changes observed in stem cell-treated 

nerves, soluble mouse laminin-1 was injected in place of ADSCs (Figure 10 A-C, 

Table 1).  MCST, NCL and CMEP were not significantly improved from media 

treated nerves, showing that laminin-treated nerves did not show improvement in 

function or physiology.  

In case there were subtle morphologic changes in the mutant sciatic nerves with 

soluble laminin injection, we also examined the ultrastructure of laminin-treated 

nerves (Figure 10 D and E).  Nerve morphology was predominantly identical to 

that of media-treated nerves, although there were a few axon bundles in which 

cytoplasmic processes were beginning to sort and envelop individual axons.  A 

single laminin injection was thus not as effective as a single ADSC-treatment 

since nascent myelination was never found in the laminin-treated nerves.  

Furthermore, functional or electrophysiologic measurements did not improve. 
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Figure 10. ADSCs produce laminin, however soluble laminin alone is 
insufficient to mediate complete rescue of mutant nerves.   MCST (A), 
CMEP (B), and NCL (C) were measured for each of these treatment groups.  
Dashed line indicates the values for the control mice .* indicates p<0.05, ** 
indicates p<0.01, *** indicates P<0.001.  Electron microscopy of media-treated 
nerves shows the axon bundles remain unsorted (D), while laminin-treated 
nerves show occasional initiation of sorting (E).  
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CHAPTER 4 

 

Overview:  Maximum Entropy Network Analysis Reveals a Role for Tumor 

Necrosis Factor in Peripheral Nerve Development and Function 

 

Gene regulatory interactions that shape developmental processes can often be 

inferred from microarray analysis of gene expression, but most computational 

methods used require extensive data sets that can be difficult to generate.  Here, 

we show that maximum entropy network analysis allows extraction of novel 

genetic interactions from limited microarray data sets.  Maximum entropy 

networks indicated that the inflammatory cytokine TNF-alpha plays a pivotal role 

in Schwann cell-axon interactions, further suggesting that TNF mediates its 

effects by orchestrating cytoplasmic movement and axon guidance.  In vivo and 

in vitro experiments confirmed these predictions, showing that Schwann cells in 

TNF-/- peripheral sensory bundles fail to envelop axons efficiently, and that 

recombinant TNF can partially correct these defects.  These data demonstrate 

the power of maximum entropy network-based methods for analysis of 

microarray data, and indicate that TNF-alpha plays a direct role in Schwann cell-

axon communication.    
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4.1 Entropy maximized network structure of DRG co-culture microarray is 

stable 

 

Previous microarray studies of peripheral nerve development have used in vivo 

sciatic nerve tissue to cluster genes with similar transcriptional profiles(W. M. Yu 

et al., 2005; E. J. Ryu et al., 2008).  The  DRG co-culture system was used 

because the addition of ascorbic acid triggers the maturation of Schwann cell and 

neuronal interactions (R. Nagarajan et al., 2002), allowing finer temporal 

sampling than previously achieved: at 0, ½, 1, 6, 12, 24, 36, 48 hours post 

addition of ascorbic acid (Figure 11A).  After choosing the 500 most variant 

transcriptional profiles (~2-3 fold changes from baseline), an individual interaction 

profile of each gene was constructed with all others in the network to determine 

an appropriate covariance cutoff score (Figure 6).  The resulting pairwise 

interaction network was visualized when the cutoff score was defined as 2 or 3 

standard deviations from a covariance score of 0 for individual interaction 

profiles.  Under these conditions 148 and 70 genes, respectively, were included 

as nodes in the resulting map (Figure 11B).  To determine if this network was 

representative of previously described scale-free genetic network structures, the 

number of links in each node was analyzed, and found it to be consistent (Figure 

11C) (E. Ravasz et al., 2002; A. F. Svenningsen et al., 2003; A. Fernandez, 

2007).  The nodes with the greatest number of links were consistent if the 

covariance cutoff score was set at 2 or 3 standard deviations, indicating that the 
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network structure was stable (Table 2).  The DRG co-culture network hubs 

included netrin-1, Chemokine (C-X-C motif) ligand 2, EDAR-associated death 

domain and TNF— all members of the NFkB transcriptional network (A. H. Tong 

et al., 2004; M. J. Barallobre et al., 2005; A. Morlon et al., 2005; N. K. Phulwani et 

al., 2008).  These proteins encoded by these genes are involved in neurite 

outgrowth, axon insulation and the activation of Schwann cells (M. P. Mattson, 

2003; A. Paradisi et al., 2008a).   
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Figure 11: Entropy maximized network structure of DRG co-culture 
microarray.  (A) Triplicate samples of wild type DRG co-cultures were obtained 
at 0, ½, 1, 6, 12, 24, 36, and 48 hour after the addition of ascorbic acid.  (B) 
Visualization of the resulting entropy maximized network with 2 and 3 standard 
deviation covariance factor cutoffs, with 148 and 70 genes included, respectively.  
(C) For the 2 and 3 standard deviation cutoff, the number of links is plotted 
against the number of genes in the network as a histogram, defining influential 
genes as those with the most network interconnections.   
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Table 2: Highly linked gene nodes are similar in order and composition across 
2 and 3 standard deviation covariance factor cutoffs, indicating that the network 
structure is stable.   
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4.2 TNF is a network hub in peripheral nerve development that links 

cellular processes 

 

 TNF emerges as a highly linked node as the covariance cutoff stringency 

increases (Table 2).  Previous studies have shown that TNF is involved in the 

activation of Schwann cells, long-term potentiation of sensory nerve fibers after 

injury and the development of neuropathic pain (W. M. Campana, 2007; S. Hao 

et al., 2007; S. J. Armstrong et al., 2008).  The  first degree neighbors of TNF 

were isolated  in the model network and explored the literature for known 

interactions with TNF or TNF related signaling networks (Figure 12).  Of the 11 

genes in the local TNF network, two major groups of genes with related signaling 

components emerged on an axis of decreasing connectedness to other local TNF 

network genes.  The group with a greater degree of network connectedness with 

TNF was related to NFkB, which has a well characterized role in the 

transcriptional regulation of peripheral nerve development. This group included 

netrin-1, which plays a role in axon guidance.  The second group includes genes 

related to networks involved in cytoplasmic extension, enervation and Schwann 

cell function (K. Hiramoto et al., 2006; I. Hester et al., 2007; L. Jiang and S. T. 

Crews, 2007; Y. L. Liu et al., 2007; G. Upadhyay et al., 2008; Y. Zhang et al., 

2008) (Table 3).  TNF is tightly connected with the first group at the more 

fundamental level of transcriptional control related to NFkB, as compared to the 
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cellular effectors represented in the second group, suggesting that TNF is a 

network node that intersects with these two groups.    
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Figure 12: The first-degree neighbor network of TNF at a 3 standard 
deviation covariance factor cutoff includes two major groups of genes in 
decreasing degrees of connectedness, those that have NF-kappaB related 
functions (blue nodes)  and those that have functions related to beta-catenin 
signaling and motor proteins (green nodes).   
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Table 3: Reported biological functions and relationships of genes included 
in the TNF first-neighbor network. 
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4.3 TNF-/- mice experience sensory latency to thermally painful stimuli 

 

In order to assess the role of TNF in peripheral nerve function, gross phenotypic 

defects in TNF-/- sciatic nerves were analyzed.  Previous studies have indicated 

that anti-TNF neutralizing antibody reduces peripheral nerve sensory function in 

pain models as well as in normal patients (M. Schafers et al., 2001; C. Sommer 

et al., 2001; W. M. Campana, 2007; S. Hao et al., 2007; K. Takano et al., 2007), 

potentially through ion channels in nociceptive neurons (C. Sommer et al., 1998).  

Sensory function was assessed in response to thermal stimuli using the hot plate 

test.  Wild-type mice withdrew their paws significantly faster than TNF -/- mice 

(P=0.0082), indicating that TNF-/- mice experience sensory latency (Figure 

13A).  In order to assess differences in motor function between the TNF-/- and 

wild-type mice, a rotarod test was used.  There were no significant differences in 

motor performance (Figure 13B), indicating that interactions between 

myelinating Schwann cells and axons are functional.   
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Figure 13: TNF -/- mice have sensory but not motor defect.  (A) TNF-/- mice 
have significantly increased sensory latency as compared to wild type mice using 
the hot plate sensory test (P=0.0093) and (B) there is no significant difference 
between the motor function of wild type and TNF-/- mice.   
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4.4 TNF-/- mice have abnormal axon size variation in Remak sensory 

bundles 

 

To order to explore the basis of the sensory latency in TNF -/- mice, cross 

sections of the Remak bundles were compared in sciatic nerve cross sections of 

21 day old wildtype and TNF-/- mice. Remak sensory bundles convey pain 

information through the interaction of individual Schwann cells with multiple 

axons.  As compared to wildtype mice, the Remak bundles of TNF-/- mice 

appeared to have greater axonal size variation and decreased circularity (Figure 

14A).  We analyzed the images using ImageJ software to quantitate these 

perceived differences, and found significantly greater variation in axonal size in 

TNF-/- Remak bundles (F-test, P<0.00001), but not in circularity (F-test, 

P<.07534) (Figure 14B).  Closer examination of the Remak bundles revealed 

poor incorporation of axons in Schwann cell cytoplasm and incomplete 

envelopment (Figure 15).  These results suggested that TNF is involved in the 

process of axonal envelopment by Schwann cell cytoplasm as well as modulation 

of axonal size, supporting previous molecular studies describing local interactions 

between Schwann cells and axons (J. C. Czeschik et al., 2008).  
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Figure 14: TNF-/- mice have significant variation in the area of axons within 
sciatic nerve Remak/Sensory bundles.  (A) Electron micrographs of Remak 
bundles (*) suggest differences in the circularity and size variation of axons in 
wild type vs TNF-/- mice sciatic nerves.  (B) The relative variation of area of 
axons in wild type vs. TNF-/- Remak sensory bundles is significant (P<0.0001), 
with more outliers in axonal size in TNF-/- sciatic nerves.  The variation in Remak 
axon circularity did not meet significance (P=0.7534).  
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Figure 15.  Closer examination of Remak bundle schwann cell-axon 
relationships revealed greater spaces between TNF-/- schwann cells and axons 
(red arrows), as well as incomplete schwann cell cytoplasmic envelopment of 
axons (blue arrows) resulting in adjacent, uninsulated axons.  
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4.5 Non-myelinating Schwann cells in TNF-/- DRG co-cultures do not 

efficiently incorporate axons 

 

In order to investigate the relationship between Schwann cells and axons, DRG 

co-cultures from TNF-/-  and wild-type mice were generated for analysis by 

electron microscopy (Figure 16A).  Both TNF-/- and WT mature DRG co-cultures 

contained myelinated axons and Schwann cells with multi-axon relationships.  

Schwann cells can myelinate one axon or envelop multiple non-myelinated 

axons.   These latter Schwann cells are characterized by the envelopment of 

multiple, circular axons with short cytoplasmic extensions at the leading edge in 

wildtype co-cultures (Figure 16B).  In TNF-/- co-cultures, multiple unmyelinated 

axons were juxtaposed with Schwann cells that have extensive cytoplasmic 

extensions rather than enveloped into the cytoplasm (Figure 16C).  The axons 

also appeared to be irregularly shaped with wide size variation.  To determine 

whether the differences in axon envelopment were significant, the number of 

axons juxtaposed with and enveloped in the cytoplasm of non-myelinating 

Schwann cells was assessed.  Wildtype Schwann cells have significantly fewer 

axons juxtaposed with them as compared to TNF-/- Schwann cells (1.0 vs 4.3, 

P=0.0012) (Figure 16D).  These same wildtype Schwann cells had significantly 

more axons enveloped in their cytoplasm than those in the TNF-/- co-culture (8.1 

vs 2.0, P=0.009) (Figure 16E).  These results suggest that there is a decrease in 
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functional interaction between non-myelinating Schwann cells and axons in the 

absence of TNF. 
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Figure 16: TNF-/- non-myelinating schwann cells do not efficiently envelop 
axons.  (A) Timeline for fixation of co-culture samples in preparation for EM, 
allowing time for the maturation of myelinating schwann cell-axon interactions.  
(B)  Wild type schwann cells envelop multiple axons into their cytoplasm (#), 
which have a uniformly round appearance.  (C ) TNF-/- schwann cells extend 
long cytoplasmic processes in search for axons while bypassing potential 
productive interactions (*).  (D) The number of axons directly juxtaposed with 
schwann cells is significantly higher in TNF-/- co-cultures (P=0.0012) and (E) The 
number of axons enveloped by the same schwann cell (as quantified in D) 
cytoplasm is significantly higher in wild-type co-cultures (P=0.009).   
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4.6 The administration of anti-TNF antibody disrupts non-myelinating 

Schwann cell-axon interactions 

 

Previous studies have shown that blocking TNF receptors mediates a decrease 

in sensory function in models of thermal, mechanical and neuropathic pain 

sensitization (C. Sommer et al., 1998; C. Sommer et al., 2001; G. V. Michailov et 

al., 2004).  We speculated that the mechanism of decreased pain is due to 

disruptions in Schwann cell/multi-axon interactions. The effect of saturating 

quantities of TNF blocking antibody was explored for different durations (added at 

day -3, -1, 0; IgG antibody was added on day -3 ) in the wildtype co-culture 

system prior to the addition of ascorbic acid (time 0) according to the timeline 

shown in Figure 17A.  The number of axons juxtaposed with Schwann cells was 

significantly higher when TNF-blocking antibody was added at day -3 as 

compared to control antibody (Day -3, 3.44 vs 0.44; P=0.0005)(Figure 17B).  

Conversely, the number of axons enveloped by Schwann cells was significantly 

lower (Day -3, 1.0 vs 9.67; P<0.0001)(Figure 17C).  Electron micrographs of 

non-myelinating Schwann cell-axon interactions in the presence of IgG or anti-

TNF antibody are shown in Figure 17D, depicting the increase in juxtaposed 

axons and decrease in enveloped axons when the TNF pathway is disrupted.   

 

In order to understand the spatial localization of TNF in relation to Schwann cells 

and neurons, immunofluorescence was performed with IgG and TNF blocking 
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antibody (day-3) treatment.  In the presence of a control antibody, Schwann cells 

and neurons overlap while TNF is found in localized plumes next to the cells.  In 

contrast, Schwann cells and neurons do not overlap in the presence of TNF-

blocking antibody, and TNF localized around cells (Figure 18A).  The expression 

of netrin-1 and TNF receptor 1 is correlated to NFkB transcription (M. Empl et al., 

2001; G. M. Kim et al., 2001).  The localization of netrin-1 in relation to TNF and 

TNF receptor 1 was examined to determine the validity of a network predicted 

relation.  In the presence of a control antibody, netrin-1 was present in localized 

aggregates while the TNF receptor 1 was relatively diffuse and this relationship 

was inverted in the presence of TNF blocking antibody (Figure 18B).  Together 

these findings indicate that TNF signaling and netrin-1 act in concert to mediate 

Schwann cell-axonal interactions along with TNF receptor 1. TNF signaling 

pathway is a necessary component of physiologic Schwann cell-axonal 

interactions and is specifically disrupted in the presence of TNF blocking 

antibody. 
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Figure 17.  TNF-blocking antibody administration (aTNF) in WT DRG co-
cultures results in decreased schwann-cell axon envelopment. (A) aTNF 
and Control IgG added at Day -3, along with aTNF at Day -1 and Day 0 until 
samples fixed for EM at Day +9. (B) The number of axons juxtaposed with 
Schwann cells is significantly increased when aTNF is administrated at Day -3 as 
compared to control antibody (3.44 vs 0.44, P=0.005). (C) The number of axons 
enveloped by Schwann cells is significantly decreased when aTNF is 
administrated at Day -3 as compared to control antibody (1.00 vs 9.67, 
P<0.0001).  (D) Electron micrograph of control antibody and TNF blocking 
antibody treatment at Day -3 showing an increase in axons juxtaposed to 
schwann cells with TNF blocking antibody treatment (*) 
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Figure 18. Localization of TNF, Netrin 1 and TNFR1 is modulated in the 
presence of aTNF.  (A)  Immunofluorescence of co-cultures with control IgG and 
TNF blocking antibody of neurons (red), schwann cells (blue) and TNF (green).  
Schwann cells and neurons co-localize with control antibody administration, as 
compared to separation evident with TNF blocking antibody, and TNF expression 
is localized vs diffuse.  (B) Netrin-1 (blue) is clustered and TNFR1 is diffuse in the 
presence of control antibody while this relationship is switched in the presence of 
TNF blocking antibody.
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4.7 rmTNF partially restores impaired Schwann cell/multi-axon interactions 

in TNF-/- co-cultures 

 

To order to determine if impaired Schwann cell/multi-axon interactions in TNF-/- 

co-cultures could be restored, rmTNF was added in 10-fold dilution (5ng/ml, 

0.5ng/ml, 0.05ng/ml) to co-cultures at day -3 until fixation at day +9 (Figure 19A).  

The addition of 5ng/ml of rmTNF resulted in significantly fewer axons juxtaposed 

with Schwann cells as compared to 0.5ng/ml and 0.05ng/ml (p=0.025 and 

p=0.044, respectively) (Figure 19B).  Conversely, the addition of 5ng/ml of 

rmTNF resulted in significantly more axons enveloped in Schwann cells as 

compared to 0.5ng/ml (p=0.028) (Figure 19C). Electron micrographs of Schwann 

cell-axonal interactions with 0.5ng/ml depict Schwann cell cytoplasmic extensions 

enveloping an axon (dashed black line, Figure 19D inset) adjacent to a fully 

incorporated axon.  With 5ng/ml of rmTNF the Schwann cell cytoplasm continued 

to encircle multiple axons (solid black arrows, Figure 19D inset) rather than fully 

incorporating them.  Increasing concentrations of rmTNF partially disrupted 

TNFR1 clusters (red) and resulted in partial netrin-1 (blue) clustering, indicating 

that rmTNF administration does not fully restore TNF-/- co-cultures to match 

wildtype markers (Figure 20).  These data indicate that initial Schwann cell-axon 

interactions of recognition and envelopment are mediated by TNF, and that 

further incorporation of axons into the Schwann cell cytoplasm is mediated by 

other factors.
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Figure 19. rmTNF partially restores Schwann cell-axonal interactions in 
TNF-/- co-cultures (A) rmTNF administered at Day -3 at 5ng/ml, 0.5ng/ml and 
0.05ng/ml. (B) The administration of 5ng/ml of rmTNF results in significantly 
fewer juxtaposed axons to Schwann cells as compared to a 10-fold lower dose 
(1.50 vs 4.75, p=0.025). (C) The administration of 5ng/ml of rmTNF results in 
significantly more axons enveloped in schwann cell cytoplasm as compared to a 
10-fold lower dose (5.00 vs 2.75, p=0.028).  (D) Electron micrograph of Schwann 
cell-axonal interactions with 0.5ng/ml rmTNF and 5ng/ml depicting Schwann cell 
cytoplasmic extensions enveloping multiple axons (dashed black line) and 
encircling multiple axons (solid black arrows) in the inset. 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Figure 20. Increasing concentrations of rmTNF partially disrupt TNFR1 
clusters (red) and result in partial netrin-1 (blue) clustering. 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CHAPTER 5 

 

DISCUSSION 

 

 

5.1 Crossing the Therapeutic Threshold into Functionality 

 

In many instances of injury or hereditary disease, the PNS is able to repair itself 

or compensate to achieve function.  However, adequate peripheral nerve repair 

does not occur in congenital or even some acquired neuropathies.  The data 

presented here show evidence that mesenchymal stem cell therapy has the 

potential to improve function in congenital or long-lived laminin-associated 

peripheral neuropathies such as CMD1A.   

There has been a recent surge of interest in the use of mesenchymal stem cells 

as biological therapy.  This interest is related to the risk of unwanted teratoma 

formation and thus severe limitations when using less differentiated cell types 

such as embryonic stem cells.  The immune-privileged status and 

immunomodulatory effect of mesenchymal stem cells, and their role as a stromal 

support cell for a variety of tissue types.   

Our results show that mesenchymal ADSCs have the potential to induce 

functional and structural repair of developmentally dysregulated peripheral 

nerves.  This is most likely an indirect effect of ADSCs on endogenous Schwann 
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cells and axons, although there may be some small contribution from ADSC 

differentiation into myelin-producing cells.  The occasional appearance of sorted 

axon bundles without nascent myelin formation following laminin injection shows 

that the endogenous laminin-deficient Schwann cells retain the potential to 

overcome their developmental arrest and begin axon sorting.  ADSCs may also 

mediate improvement in mutant nerve physiology by providing a continuous 

laminin source within the laminin-deficient nerve parenchyma, or may produce 

neurotrophins that could stimulate the increased axon diameter. 

One possible explanation for the lack of improvement in electrophysiology and 

nascent myelination despite improved axon sorting following soluble laminin-

injection could be that laminin-1 (α1, β1, γ1) was used, while the predominant 

laminin found in adult sciatic nerves is laminin-2 (α2, β1, γ1).  However, soluble 

laminin-1 has been used in vitro to completely rescue axon myelination defects in 

laminin-2 deficient dorsal root ganglia co-cultures (unpublished results) (S. C. 

Previtali et al., 2003; A. Paradisi et al., 2008b), and two of the three subunits are 

identical.  This seems like an unlikely reason for the lack of rescue with laminin 

injections.  Alternative explanations for the failure of a single injection of laminin 

to improve function and electrophysiology and only partially alter ultrastructure of 

mutant nerves include the absence of continuous laminin secretion or 

neutrotrphin secretion by ADSCs.  

The focus of future studies based on this work will necessarily encompass further 

clarification of the role of laminin and the ECM in mesechymal stem cell function 
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and identification of the exact factors that the ADSCs supply the mutant nerves 

and trigger changes in nerve morphology and physiology.  

 

5.2 Locating the Therapeutic Threshold of Vulnerability 

 

To our knowledge, this is the first study where gene candidate predictions made 

employing maximum entropy networks have been experimentally confirmed to 

reveal novel functional information, suggesting that this process is a useful 

approach to prioritize studies of complex interactions using pre-existing or new 

microarray data.  Maximum entropy analysis of microarray data differs from 

clustering because it moves beyond covariance to describe the interrelated 

structure of complex systems such as gene networks.  Because previous 

microarray datasets used to explore the utility of maximum entropy analysis in 

genetic networks have either been periodic, heavily sampled or have included 

transcriptional profiles that vary far greater than ~2-3 fold (R. Pittier et al., 2005), 

we did not expect functionally thematic neighborhood network maps from our 

data.  We were encouraged by the presence of genes with known or tangentially 

related function to nervous system development, function or attendant cellular 

processes.  By exploring a wild-type process in an in vitro DRG co-culture model 

system, we showed that TNF is a predicted component of normal maturation of 

Schwann cell-neuronal interactions via maximum entropy network analysis. The 
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availability of transgenic mice and molecular tools made TNF an ideal choice for 

exploring the relationship between a cytokine in the context of endogenous 

peripheral nerve function.  Further analysis of the first-degree TNF network 

implicated intersecting signaling processes that involve components of the NFkB 

transcriptional pathways as well as downstream cytoplasmic motor function.  

These components have been previously implicated in Schwann cell and axonal 

function, providing sufficient information to construct a hypothesis in concert with 

published literature.   

 

TNF-/- mice showed increased latency to thermal stimuli and normal motor 

function, suggesting that there would be abnormalities in the Remak bundles of 

sciatic nerves.  The spatial constraints of an organized tissue provide structural 

boundaries that can minimize the effects of dysfunctions that would be more 

apparent in cell culture.  We returned to the disrupted DRG tissue that comprises 

the co-culture system in order to exploit this potential. Through histologic and 

DRG co-culture analysis of TNF-/- mice by electron microscopy, we 

demonstrated that Schwann cell/multi-axonal interactions were disrupted.  These 

data suggest that TNF mediates communication between Schwann cells and 

axons in concert with associated signaling networks during peripheral nerve 

development, including netrin-1 signaling.  This is underscored by partial 

restoration of Schwann cell-axon interactions in TNF-/- co-cultures in the 

presence of rmTNF.  The pursuit of TNF was also motivated by clinical studies of 
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anti-TNF antibody treatment that implicate TNFʼs role in the nervous system as 

secondary to immune reactions.  Further experimental studies have shown that 

TNF is capable of acting as a primary effector of nervous system function.  We 

found that administration of anti-TNF antibody in the in vitro DRG co-culture 

system recapitulated the effects of the TNF-/- mice, suggesting that it is possible 

to induce impaired sensory function by modulating access to TNF signaling 

networks between non-myelinating Schwann cells and axons.  This, however, 

does not preclude the possibility that TNF may act on the peripheral nervous 

system as a cytokine.  These findings indicate that patients undergoing systemic 

administration of anti-TNF antibody should be carefully monitored for the 

management of neuropathies that emerge during the course of treatment.  

Although we suggest signaling networks for further exploration, the precise 

molecular interactions that mediate this complex phenotype remain unclear.  The 

availability of TNF neighborhood networks in conjunction with known signaling 

transduction pathways will facilitate the elucidation of the molecular mechanisms. 

 

The maximum entropy network we describe to explore the role of TNF can be 

broadly applied to the richly available microarray data of complex processes and 

can provide an entrée to understanding relevant molecular relationships.  The 

network we describe in this study has been limited to the 500 most variant genes 

during the 48 hours following the triggering of a maturation process between two 

dominantly represented cell types.  As the time boundaries and experimental 
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conditions change, variant network maps will emerge.  If these variant networks 

are mapped in relation to each other, it will be possible to better understand the 

common molecular network features that underlie complex processes across 

tissues.  In the meantime, screening of predicted gene candidates should be 

informed by the availability of resources, cost of exploration and clinical 

relevance.  This process is depicted in Figure 21.  We suggest that in order to 

exercise the utility of preexisting microarray data, entropy should be maximized 

as part of an orderly process. 
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Figure 21. Process for gene candidate assessment and model refinement 
via network analysis.  Microarray analysis of an in vitro experimental system is 
used to generate an entropy maximized network structure that isolates highly 
linked gene candidates.  Depending on the system, a rapid in vivo screen for 
histological and functional relevance will indicate if further experimental follow-up 
is warranted within this schema.  If so, further rounds of in vitro experimentation, 
followed by potential reframing of the microarray time window or conditions can 
lead to biological model refinement that reflects the dynamic nature of complex 
systems.         
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CHAPTER 6 

 
 
FURTHER STUDY 
 

There are three potential steps that could result in the merging of these parallel 

studies, allowing the insight of each to bear upon the other. In this section, 

evidence for further study and speculative reasoning will be used to chart a path 

forward. First, information from this study will be integrated with evidence from 

the central and peripheral nervous system to describe a homeostatic function of 

TNF in physiologic context.  Secondly, experiments to determine the molecular 

mechanisms of the role of TNF in peripheral experiment will be explored.  Thirdly, 

in the course of describing evidence that points to ADSCs as potential source of 

TNF, we will describe a possible experimental system for future work. 

 

TNF in Neural Systems 

 

In 1985, the Cerami lab reported that a molecular that played a key role in the 

development of sepsis, Cachectin, was the same as Tumor Necrosis Factor.  

Tumor Necrosis Factor was given its name for the remarkable in vitro ability of 

this molecule to specifically destroy developing tumors.  The excitement about 

this function led to Phase II clinical trials for safety in humans that were halted 

due to unexplained toxicity in patients.  The reason for this toxicity became 

immediately clear when two streams of experimental work merged showing that 
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Tumor Necrosis Factor/Cachectin (TNF), were in fact the same molecular.  In a 

remarkable stream of studies, the Cerami group showed that the same ability to 

kill tumors was responsible for lethal sepsis and wasting in animals and humans 

(B. A. Beutler et al., 1985; J. M. Dayer et al., 1985; K. J. Tracey et al., 1987; A. 

Cerami and B. Beutler, 1988; B. Beutler and A. Cerami, 1989; Y. Fong et al., 

1989; T. R. Lezon et al., 2006).    

As studies of the role of TNF in wasting progressed, it became clear that TNF 

had broad systemic effects on metabolism and protein redistribution.  Further 

studies showed that TNF has direct effects on the synthesis of endocrine 

hormones. It is now known to be a powerful modulator of Neuroendocrine 

function ranging from adrenal stimulation to glucocorticoid production to 

melatonin synthesis (J. M. Dayer et al., 1985; K. J. Tracey et al., 1988; R. 

Braczkowski et al., 1995; I. J. Elenkov et al., 2000; G. di Comite et al., 2006; P. 

A. Fernandes et al., 2006).   

The connection between the Neuroendocrine system and TNF was further 

strengthened when a group reported that stimulation of the vagus nerve results in 

the inhibition of TNF production at nerve terminals, now termed the “inflammatory 

reflex” (I. J. Elenkov et al., 1992).  Extensive work done by the McEwen 

laboratory has demonstrated that the environmental inputs and outputs of the 

Neuroendocrine system contribute to the “allostatic load” on the physiological 

state, which can result in organ level dysfunction in the context of chronic stress 

(K. J. Tracey, 2002; B. McEwen and E. N. Lasley, 2003).   
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At the molecular scale, experimental work using anti-TNF antibody has 

demonstrated that neuropathic pain can be diminished.  Obversely, the injection 

of TNF alpha into the endoneurium induces neuropathic pain behaviors.  Since 

neuropathic pain response requires central nervous system integration, current 

evidence suggests that local administration or ablation of TNF triggers an 

integrative response (B. S. McEwen, 1998; T. A. Ignatowski et al., 2005; P. 

Dubovy et al., 2006; S. Sharma et al., 2007).   

Finally, The role of TNF in blunting or exacerbating neurological effects has been 

most recently shown in a model of ischemic brain injury where TNFR1 directly 

facilitate the action of erythropoietin and VEGF to achieve a protective effect (R. 

Wagner and R. R. Myers, 1996).  These studies coupled with the work presented 

here suggest that TNF may play an integrative role at the axis of the nervous, 

immune and endocrine systems.   So where do these broadly suggestive but 

largely disparate studies leave us in light of the work presented here? 

The work presented in this study makes it possible to speculate that one 

mechanism for the role of TNF in the nervous system may be the selective 

modulation of physical associations between Schwann cells and axons.  There is 

precedent for this suggested physical mechanism in the role of astroglial 

pseudopodia retraction and extension in the hypothalamic-pituitary axis in 

response to oxytocin levels, which is where TNF mediates some of its effects on 

melatonin and glucocorticoid synthesis.  The evidence presented above indicates 

that in the presence of TNF, associations between glial cells and axons increase 
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while the addition of anti-TNF antibody results in looser association.  A 

modulatory activity rather than a binary of association/disassociation is within the 

dynamic operating range evident in the quantitation of envelopment in TNF-/- and 

WT sciatic nerves and co-cultures (see Figure 15 and 17).  Furthermore, the 

addition of rTNF appears to result in “tighter” association rather than cytoplasmic 

fusion and envelopment.  This proposed mechanism is speculative, but is 

motivated by understanding how the intersection of TNF in various nervous 

system contexts can have pleitropic effects on multiple systems such as the 

endocrine system.  A plausible mechanism must allow for a local mechanism to 

manifest itself in a heterogeneous manner given its context.  For instance, this 

fits with a scenario of neuropathic pain where the addition of rTNF intensifies pain 

behaviors while anti-TNF antibody diminishes it.  In order to explore this 

possibility further, the molecular mechanisms of this interaction must be 

elucidated. 

 

Molecular Action of a “TNF Zipper” 

 

In order to understand the molecular mechanisms of TNF and TNFR1 in 

mediating the envelopment and release of axons by Schwann cells, further 

studies must establish whether TNF is membrane bound or soluble.  TNF can be 

cleaved by TACE, a metalloprotease to release it from its membrane bound 

state.  This could be better understood by an experiment where a dominant 
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negative of the TNFR1 trimer or TNF is expressed in the cytoplasm of neurons or 

Schwann cells.  Previous studies indicate that it is most likely that Schwann cells 

express TNFR1 as well as TNF, and should be the first hypothesis tested due to 

the relative ease of transfection over neurons.  The studies presented strongly 

indicate that the TNFR1 is membrane bound, although the localization of TNF is 

less clear.  Though would be difficult to visualize soluble TNF in the manner 

presented in Figure 18, it is possible that TNF is membrane bound in proximity to 

TNFR1 until it is cleaved by TACE or other metalloproteases.  This would allow 

the membrane bound TNFR1 to associate into functional trimers with the 

appropriate concentration of TNF ligand.  This is testable in an experimental 

system by modulating levels of TNF, TACE or TNFR1 to achieve productive 

signaling through known pathways such as MAPK outputs.   

The patch and dispersion of TNFR1 and netrin-1 are likely a result of 

concentration dependence on levels of rTNF through a mechanism called 

homesis.  From toxicology, this term describes a dynamic concentration curve 

where too little or too much ligand or receptor can block productive interactions 

through associations that are too tight or too loose.  A situation of tight 

association may result in multiple layers of Schwann cell encircling axons without 

fusion as seen with high concentrations of rTNF in Figure 19 and 20.  It is 

possible that TNF and TNFR1 associate to form a “TNF zipper” that results in the 

association of Schwann cell membranes and axons while precluding 

envelopment and fusion.  The productive modulation of this relationship provides 
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a mechanism for the modulation of glial cell-axon relationships suggested above.  

This possibility requires rigorous experimental work to develop this speculative 

hypothesis.   

 

ADSCs and TNF 

 

The concentration of TNF and TNFR1 in an in vitro or in vivo system are likely to 

substantially effect the outcome of any experiment depending on the 

concentration, duration and location of administration – potentially at extremely 

sensitive ranges.  Further studies will require a more context appropriate and 

localized delivery vehicle to modulate levels of TNF.  As presented in the first 

study, ADSCs can serve as physiologically appropriate vehicles to deliver 

functionally critical components.  Recent reports indicate that angiotensin 

regulates differentiation of ADSCs through the modulation of TNF.  ADSCs 

express high lvels of TNF, which are down regulated as ADSCs commit to 

adipose cell lineages (Figure 22) (R. A. Memon et al., 1993).  It would be useful 

to determine if the expression of TNF by ADSCs in the TNF-/- DRG co-culture 

model would result in rescue of axonal-Schwann cell disruption with or without 

fusion defects.  The variance of angiotensin levels in the co-culture would result 

in the modulation of TNF delivery by ADSCs.  If this approach is successful, stem 

cells could serve as a natural tool for delivering contextually appropriate amounts 

of a target molecule without knowing the quantity beforehand.  This would be a  
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Figure 22. Two different mechanisms of adipocyte differentiation. (A) In 
differentiated adipocytes TNF-, is decreased and beneficial cytokines such as 
adiponectin are increased whereas the opposite is observed in MSCs. (B) 
Preadipocytes treated with an ARB differentiate into small adipocytes and 
secrete decreased inflammatory cytokines, such as TNF- and increased 
beneficial cytokines, such as adiponectin, and are regarded as well-differentiated 
adipocytes.(M. Mogi et al., 2006)  
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powerful way to study the effect of broadly influential but locally sensitive 

molecules such as TNF.  This system allows for a dynamic quantity of target 

molecule delivered by tuning the stem cell differentiating factor, which has 

potentially fewer local effects in the system in question.   

 

Conclusions and Final Thoughts 

 

Further questions remain about the utility of maximum entropy network analysis 

in uncovering functional interactions.  The relationship between the TNF 

neighborhood network and the rest of the network map is unclear.  The molecular 

interactions suggested by the neighborhood network still require further study, 

especially in the case of netrin-1.  While this type of analysis may not select for a 

particular type of biological function, it is likely this procedure selects for those 

sets of molecules that have broadly interconnected relationships given the data 

and context presented.  The nature of these interactions is likely to be most 

evident in a dynamic ongoing process like peripheral nerve development.  If this 

system was at rest, it is more likely that cyclically functional genes would be 

identified that may be of lower magnitude than those listed in Appendix A.  This 

analysis will likely result in the loss of crucial subnetworks and network 

relationships, but the relationships presented provide a strong hypothesis 

generating basis for further experimentation.   
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APPENDIX A 

List of Genes from Maximum Entropy Analysis by # of links at the three standard 
deviation cutoff (from original list of 200 most variable genes).  Genes that had 0 
links are not included below. 

Gp49a         17 Mus musculus glycoprotein 49 A (Gp49a), mRNA.                                                                                                                                             

BC023814      13 
Mus musculus cDNA sequence BC023814 (BC023814), 
mRNA.                                                                                                                                     

Tnf           11 Mus musculus tumor necrosis factor (Tnf), mRNA.                                                                                                                                           
Ntn1          11 Mus musculus netrin 1 (Ntn1), mRNA.                                                                                                                                                       

Sult1c1       10 
Mus musculus sulfotransferase family, cytosolic, 1C, 
member 1 (Sult1c1), mRNA.                                                                                                            

Cnnm4         10 Mus musculus cyclin M4 (Cnnm4), mRNA.                                                                                                                                                     

Chl1          9 
Mus musculus cell adhesion molecule with homology to 
L1CAM (Chl1), mRNA.                                                                                                                  

Slc8a3        8 
Mus musculus solute carrier family 8 (sodium/calcium 
exchanger), member 3 (Slc8a3), mRNA.                                                                                                 

1110030H02Rik 8 
Mus musculus RIKEN cDNA 1110030H02 gene 
(1110030H02Rik), mRNA.                                                                                                                            

Cxcl2         7 
Mus musculus chemokine (C-X-C motif) ligand 2 (Cxcl2), 
mRNA.                                                                                                                              

              6                                                                                                                                                                                           

Edaradd       6 
Mus musculus EDAR (ectodysplasin-A receptor)-associated 
death domain (Edaradd), mRNA.                                                                                                     

F730015K02Rik 5 
Mus musculus RIKEN cDNA F730015K02 gene 
(F730015K02Rik), mRNA.                                                                                                                            

Slc19a3       5 
Mus musculus solute carrier family 19 (sodium/hydrogen 
exchanger), member 3 (Slc19a3), mRNA.                                                                                              

Unknown_2     4 
Mus musculus DNA cross-link repair 1A, PSO2 homolog (S. 
cerevisiae) (Dclre1a), mRNA.                                                                                                      

Ush3a         4 
Mus musculus Usher syndrome 3A homolog (human) 
(Ush3a), mRNA.                                                                                                                             

Dhfr          4 Mus musculus dihydrofolate reductase (Dhfr), mRNA.                                                                                                                                        

Gulp1         4 
Mus musculus GULP, engulfment adaptor PTB domain 
containing 1 (Gulp1), mRNA.                                                                                                              

Lmbr1         4 Mus musculus limb region 1 (Lmbr1), mRNA.                                                                                                                                                 
Csmd3         4                                                                                                                                                                                           

Cfh           4 
Mus musculus complement component factor h (Cfh), 
mRNA.                                                                                                                                   

Slc14a1       3 
Mus musculus solute carrier family 14 (urea transprorter), 
member 1 (Slc14a1), mRNA.                                                                                                      

Plek          3 Mus musculus pleckstrin (Plek), mRNA.                                                                                                                                                     

Sgca          3 
Mus musculus sarcoglycan, alpha (dystrophin-associated 
glycoprotein) (Sgca), mRNA.                                                                                                        

Adamts20      3 

Mus musculus a disintegrin-like and metalloprotease 
(reprolysin type) with thrombospondin type 1 motif, 20 
(Adamts20), mRNA.                                                              

Nxf           3 
Mus musculus bHLH-PAS type transcription factor NXF 
(Nxf), mRNA.                                                                                                                          

Ptp4a1        2 Mus musculus protein tyrosine phosphatase 4a1 (Ptp4a1), 
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mRNA.                                                                                                                             

Rbp2          2 
Mus musculus retinol binding protein 2, cellular (Rbp2), 
mRNA.                                                                                                                            

Pxt1          2                                                                                                                                                                                           
Ewsh          2                                                                                                                                                                                           
Ak4           2 Mus musculus adenylate kinase 4 (Ak4), mRNA.                                                                                                                                              
Olfr616       2 Mus musculus olfactory receptor 616 (Olfr616), mRNA.                                                                                                                                      
Lin7a         2 Mus musculus lin 7 homolog a (C. elegans) (Lin7a), mRNA.                                                                                                                                  
Unknown_3     1 Mus musculus aspartate-beta-hydroxylase (Asph), mRNA.                                                                                                                                     

Ing5          1 
Mus musculus inhibitor of growth family, member 5 (Ing5), 
mRNA.                                                                                                                           

Lad1          1 Mus musculus ladinin (Lad1), mRNA.                                                                                                                                                        

1700106N22Rik 1 
Mus musculus RIKEN cDNA 1700106N22 gene 
(1700106N22Rik), mRNA.                                                                                                                            

9630015D15Rik 1 
Mus musculus RIKEN cDNA 9630015D15 gene 
(9630015D15Rik), mRNA.                                                                                                                            

A2m           1 Mus musculus alpha-2-macroglobulin (A2m), mRNA.                                                                                                                                           
Fut8          1 Mus musculus fucosyltransferase 8 (Fut8), mRNA.                                                                                                                                           

Rbm12         1 
Mus musculus RNA binding motif protein 12 (Rbm12), 
transcript variant 1, mRNA.                                                                                                            

A130038L21Rik 1 
Mus musculus RIKEN cDNA A130038L21 gene 
(A130038L21Rik), mRNA.                                                                                                                            

E130010M05Rik 1 
Mus musculus RIKEN cDNA E130010M05 gene 
(E130010M05Rik), mRNA.                                                                                                                            

5330414O08Rik 1 
Mus musculus RIKEN cDNA 5330414O08 gene 
(5330414O08Rik), mRNA.                                                                                                                            

Klhl1         1 Mus musculus kelch-like 1 (Drosophila) (Klhl1), mRNA.                                                                                                                                     

Hao3          1 
Mus musculus hydroxyacid oxidase (glycolate oxidase) 3 
(Hao3), mRNA.                                                                                                                      

Bapx1         1 
Mus musculus bagpipe homeobox gene 1 homolog 
(Drosophila) (Bapx1), mRNA.                                                                                                                  

Icos          1 Mus musculus inducible T-cell co-stimulator (Icos), mRNA.                                                                                                                                 

Slc37a1       1 
Mus musculus solute carrier family 37 (glycerol-3-
phosphate transporter), member 1 (Slc37a1), mRNA.                                                                                       

Ptch1         1 Mus musculus patched homolog 1 (Ptch1), mRNA.                                                                                                                                             
Ktn1          1 Mus musculus kinectin 1 (Ktn1), mRNA.                                                                                                                                                     

H2-M1         1 
Mus musculus histocompatibility 2, M region locus 1 (H2-
M1), mRNA.                                                                                                                        

Zfp108        1 Mus musculus zinc finger protein 108 (Zfp108), mRNA.                                                                                                                                      

Nqo1          1 
Mus musculus NAD(P)H dehydrogenase, quinone 1 (Nqo1), 
mRNA.                                                                                                                               

Osbp          1                                                                                                                                                                                           

Matk          1 
Mus musculus megakaryocyte-associated tyrosine kinase 
(Matk), mRNA.                                                                                                                       

AW146020      1 
Mus musculus expressed sequence AW146020 
(AW146020), mRNA.                                                                                                                                

Dock4         1                                                                                                                                                                                           

BC026439      1 
Mus musculus cDNA sequence BC026439 (BC026439), 
mRNA.                                                                                                                                     
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