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GLIA ARE REQUIRED FOR SENSORY NEURON MORPHOLOGY AND 

FUNCTION IN CAENORHABDITIS ELEGANS 

Taulant Bacaj, Ph.D. 

The Rockefeller University 2009 

 

The nervous system emerges from the coordinated development of neurons and 

glia.  To better understand the processes that enable nervous system development and 

function we have studied the sensory organs of Caenorhabditis elegans because their 

anatomy and function are well-characterized.  Specifically, we have focused on two 

aspects of sensory organs: how do glia interact with neurons to enable proper 

development and function and how are sensory cilia generated.   

To uncover any glial roles, we ablated the major glial cell of the amphid sensilla.  

Embryonic glial ablation did not affect neuronal survival and resulted in sensory neuron 

dendrites that were far too short, revealing a glial role in anchoring sensory neuron 

dendrites. 

To examine post-developmental glial roles, we ablated glia after the amphid 

sensory organ was fully formed.  These glia-ablated animals exhibited profound sensory 

deficits as determined by behavioral assays, failed to maintain the proper morphology of 

some modified sensory cilia, and had defects in neuronal uptake of lipophilic dyes.  

Further, animals lacking glia showed no Ca
2+

 responses in the ASH sensory neuron after 

stimulation with a high osmolarity solution.  To understand the molecular bases of these 

glial activities, we characterized a sheath glia expressed gene, fig-1, that encodes a 



protein with thrombospondin type I domains.  FIG-1 likely functions extracellularly, is 

essential for neuronal dye uptake, and also affects behavior. 

To characterize the molecular basis of cilia morphogenesis and function, we 

cloned the che-12 and dyf-11 mutants which have chemotaxis and dye uptake defects.  

CHE-12 and DYF-11 are conserved ciliary proteins required for maintenance of cilium 

morphology and function.  Furthermore, DYF-11 undergoes intraflagellar transport (IFT) 

and may function at an early stage of IFT-B particle assembly. 

Our results suggest that glia are required for multiple aspects of sensory organ 

function.  Moreover, as thrombospondin 1 is a glial-secreted protein required for synapse 

formation in mice, these results suggest that some of the molecular components 

underlying glia-neuron interactions in C. elegans might be conserved. 
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The ultimate brain teaser 

The human mind and the machine that gives rise to it, the brain, have fascinated 

people for centuries.  The daunting complexity of unraveling the workings of the brain, 

however, requires that one ask and study much humbler questions regarding specific 

issues of nervous system development and function.  In humans as in other animals, the 

main function of the nervous system is to monitor changes in the environment and 

generate appropriate responses.  To achieve this, the nervous system takes advantage of 

its two main cell types: neurons and glia.  Neurons detect, transmit, and integrate stimuli, 

and have, therefore, been the focus of extensive study over the last century.  The ability 

to eavesdrop on neurons and manipulate them using electrodes has enabled and fueled the 

growth of their study.  Glia, on the other hand, have received considerably less attention, 

since their functions are not readily apparent.  To better understand the nervous system, 

we have sought to uncover potential glial roles that aid or enable proper neuronal 

function. 

 

Categorization of glia 

In mammals, where glia were first described, four major types of glia are 

recognized: astrocytes, oligodendrocytes, Schwann cells, and microglia.  Astrocytes are 

stellate cells that project processes that ensheath synapses and contact capillaries 

(Grosche et al., 1999; Bushong et al., 2002).  They are thought to insulate synapses, 

control the chemical composition of the perisynaptic space, and induce the formation of 

the blood brain barrier (Banerjee and Bhat, 2007; Barres, 2008).  Oligodendrocytes and 
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Schwann cells are primarily myelin-producing cells found in the central and peripheral 

nervous system, respectively.  These cells wrap around axons to allow for efficient 

conduction (Geren and Raskind, 1953; Jessen and Mirsky, 2005; Nave and Trapp, 2008).  

Microglia are thought to function as the resident immune cells of the central nervous 

system (Vilhardt, 2005).  

The apparent simplicity in defining glia is misleading, however, as numerous 

other cell types exist that have been described as glia, including Bergmann glia, Müller 

cells, olfactory ensheathing cells, etc.  While no all-encompassing definition of glia 

exists, it is accepted that these non-neuronal cells must be closely associated with 

neurons.  Furthermore, astrocytes, oligodendrocytes, Schwann cells, and nearly all other 

glia derive from the neuroectoderm (Le Douarin et al., 1991; Marshall et al., 2003), 

making this another criterion that is useful in distinguishing glia.  Microglia, the 

exception, derive from the hematopoietic lineage (Streit, 2001), consistent with their 

immune roles. 

 

Glia-neuron interactions 

With the spotlight on neurons, the roles that glia might play in nervous system 

function and dysfunction remain relatively underexplored.  Recent advances, however, 

indicate that these cells might be an integral part of the nervous system, playing many 

important roles (Barres, 2008).  Below, I highlight some of these findings and their 

significance. 
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Trophic interdependence 

Neurons require glia for their survival.  For example, hippocampal neurons 

(Banker, 1980) or retinal ganglion cells (Meyer-Franke et al., 1995) die when cultured 

separately from glia.  Similarly, the death of cortical astrocytes in mice lacking the 

epidermal growth factor receptor (EGFR) is accompanied by neuronal cell death (Wagner 

et al., 2006).  In Drosophila, neuronal degeneration is seen after toxin-induced ablation of 

glial cells (Booth et al., 2000) as well as in mutants that fail to completely specify glial 

fates (Hosoya et al., 1995; Jones et al., 1995; Xiong and Montell, 1995).  Reciprocally, 

glia depend on neurons for their survival.  For example, the axons of dorsal root ganglia 

neurons express neuregulin-1, an EGFR ligand (Holmes et al., 1992), while Schwann 

cells express its receptors, ErbB2/3.  In transgenic mice lacking neuregulin-1 or its 

receptors, Schwann cells die (Meyer et al., 1997; Riethmacher et al., 1997; Woldeyesus et 

al., 1999), suggesting a role for this neuronal protein in glial survival.  Vein, the 

Drosophila neuregulin-1 homologue, also promotes survival of longitudinal glia (Hidalgo 

et al., 2001).  Another neuron-glia matching mechanism is observed in the Drosophila 

midline where ten glia are born in each segment.  These cells compete for Spitz, a TGF-

like ligand, secreted by neurons.  Spitz acts through the MAP kinase pathway to repress 

Hid, a proapoptotic factor (Bergmann et al., 2002), thus promoting cell survival.  Due to 

limiting amounts of neuronal Spitz, only three midline glia survive. 

Why might neurons and glia depend on each other for survival?  One possibility is 

that co-dependent survival provides a matching mechanism that ensures that the 

appropriate number of each cell type is present in the adult nervous system. 
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Migration 

To reach their final destinations, most neurons and glia must migrate through a 

complex environment.  As these two cell types are closely associated in adult structures, 

it has been suggested that they might instruct each other‟s migration.  Indeed, several 

studies support the idea that glia guide neuronal migration and neurite pathfinding.  For 

example, neuronal migration along Bergmann glia in the cerebellum (Rakic, 1971) and 

along radial glia in the cortex (Rakic, 1972) was postulated based on electron microscopy 

time series.  Consistent with this hypothesis, migration of granule neurons along 

cerebellum-derived glia has been observed in culture, where it was imaged directly 

(Edmondson and Hatten, 1987).  In Drosophila, glial ablation can result in axonal 

pathfinding defects (Hidalgo and Booth, 2000), suggesting that glia provide cues that 

guide axonal growth cones.  Indeed, midline glia express guidance molecules such as Slit 

(Rothberg et al., 1990) that act as repellents to prevent ipsilateral axons from crossing the 

midline and commissural axons from recrossing (Battye et al., 1999; Kidd et al., 1999). 

In some instances neurons seem to guide glial cell migration.  In zebrafish, lateral 

line glia follow the axons of neurons in the lateral line mechanosensory organs (Gilmour 

et al., 2002).  In mutants with misdirected axons, glia follow the roundabout route of 

axons.  Furthermore, laser ablation of the extending lateral line axons stops glial 

migration (Gilmour et al., 2002).  Similarly, in the Drosophila visual system, glial 

migration depends on photoreceptor axons as it does not occur if retina innervations are 

eliminated (Dearborn and Kunes, 2004).  And in dachsous mutants, which have aberrant 

axonal projections from the retina, glia follow the abnormal axonal tracks (Dearborn and 

Kunes, 2004), supporting the notion that glia use these axons as a migration scaffold. 
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Modulation of synaptic activity 

Although masters of electrical transmission, most neurons talk to their partners by 

releasing neurotransmitter molecules in the specialized structures where two neurons 

meet, synapses.  Synaptic transmission and its plasticity are thought to underlie many 

nervous system properties, including learning and memory.  In the last decade it has 

become evident that glia listen in on this communication and, in some cases, may be able 

to modulate it.   

Synaptic roles for glia at the neuromuscular junction (NMJ) were demonstrated 

by studying Xenopus perisynaptic Schwann cells (PSC) that ensheath this synapse.  High 

frequency stimulation of motor neurons results in decreased muscle activity as well as 

increased PSC Ca
2+

 levels (Jahromi et al., 1992; Reist and Smith, 1992).  These 

observations suggested a model in which PSCs might detect acetylcholine released by the 

motoneuron, leading to elevated Ca
2+

 in these glia.  Ca
2+

 elevation might, then, promote 

long-term depression in the muscle.  To test this hypothesis, advantage was taken of the 

observation that PSCs express the metabotropic G protein-coupled acetylcholine receptor.  

Glial G proteins were blocked by injecting GTP-βS into the PSC.  Remarkably, this was 

sufficient to block the depression of muscle activity (Robitaille, 1998).  Moreover, 

activation of PSC G proteins by GTP-γS injection induced depression of muscle activity 

even under low frequency stimulation (Robitaille, 1998).  This elegant study showed that 

glia play important roles in synaptic transmission and might affect processes such as 

long-term depression that are thought to be important in memory formation. 
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Many CNS synapses are ensheathed by astrocytes (Spacek, 1985; Grosche et al., 

1999; Ventura and Harris, 1999), which secrete a number of molecules that might affect 

synaptic transmission.  Among these, D-serine, a co-agonist of the NMDA receptor 

(Danysz and Parsons, 1998), has been implicated in long-term potentiation (LTP) and 

depression (LTD).  The astrocytes that ensheath synapses of thalamic supraoptic nucleus 

(SON) neurons normally release D-serine, an endogenous NMDAR co-ligand in this 

brain region (Panatier et al., 2006).  Astrocytes retract their processes from SON synapses 

in lactating female rats (Theodosis and Poulain, 1993), leading to a decrease in D-serine 

concentration in these synapses (Panatier et al., 2006).  Interestingly, while normal LTP 

and LTD could be induced in the SON in virgin female rats, LTP and LTD could not be 

induced in lactating females, which have less perisynaptic D-serine, without addition of 

exogenous D-serine (Panatier et al., 2006).  Consistent with roles for glial D-serine in 

synaptic activity, hippocampal neurons undergo LTP when cultured in the presence of 

astrocytes (Yang et al., 2003).  When D-serine produced by cultured astrocytes was 

enzymatically degraded, LTP was blocked (Yang et al., 2003), suggesting that D-serine 

released by glia might also be important in the hippocampus. 

The NMJ and D-serine studies are convincing findings of glial roles in 

modulation of synaptic transmission and emerging evidence suggests that this glial 

function might be quite widespread.  For example, paralleling the NMJ findings, 

neurotransmitter release at synapses may result in increased astrocytic Ca
2+ 

levels in 

many brain regions through what are thought to be GPCR-dependent mechanisms 

(Agulhon et al., 2008).  Specifically, in cerebellar slices, neuronal activity elicits Ca
2+

 

increases in Bergmann glial cells (Grosche et al., 1999; Kulik et al., 1999; Matyash et al., 
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2001; Beierlein and Regehr, 2006; Piet and Jahr, 2007).  Neuronal stimulation results in 

Ca
2+

 level increases in neighboring astrocytes in hippocampal slices (Pasti et al., 1997; 

Porter and McCarthy, 1997; Kang et al., 1998; Araque et al., 2002; Perea and Araque, 

2007).  In isolated retinas, flickering light induces transient increases in Müller glial Ca
2+

 

levels, a process mediated by neuronal ATP release (Newman, 2005).  Astrocytic Ca
2+

 

responses can be triggered by a number of different neurotransmitters that activate glial 

mGluRs (Porter and McCarthy, 1996; Pasti et al., 1997; Fellin et al., 2004), γ-amino-

butyric-acid B (GABAB) receptors (Kang et al., 1998), muscarinic acetylcholine 

receptors (Araque et al., 2002; Perea and Araque, 2005), and endocannabinoid receptors 

(Navarrete and Araque, 2008). 

More recently, dynamic regulation of Ca
2+

 concentrations has also been observed 

in vivo in response to physiological stimuli.  In vivo two-photon Ca
2+

 imaging of ferret 

visual cortex showed that astrocytes respond to visual stimuli and that the astrocytic 

response exhibits the same tuning to stimulus orientation as nearby neurons (Schummers 

et al., 2008).  This suggests that astrocytic Ca
2+

 is a reflection of underlying neuronal 

activity (Schummers et al., 2008).  In a striking finding, the authors found that astrocytic 

tuning was maintained even in orientation pinwheels, suggesting that in the visual cortex 

there is tight spatial regulation of astrocytic processes, which might enable them to 

associate with particular neurons or synapses, and that astrocytes might possess 

microdomains that can independently undergo Ca
2+

 elevations in response to neuronal 

activation. 

Other studies also support the hypothesis that astrocytes can respond to neuronal 

activation.  Astrocytic Ca
2+

 imaging in the barrel cortex of anesthetized mice revealed 



9 

that glia respond to whisker stimulation (Wang et al., 2006). This response was delayed 

by 3 s from whisker stimulation and was likely mediated by synaptic glutamate spillover 

as it was reduced by inhibition of metabotropic glutamate receptors and did not require 

postsynaptic activity.  In addition, astrocytic Ca
2+

 transients in sensory cortex could be 

detected in mobile mice.  These Ca
2+

 transients trailed neuronal activation by 

approximately 2 s and were correlated with running behavior (Dombeck et al., 2007). 

Thus, evidence from in situ and in vivo studies suggests that increased neuronal 

activity results in Ca
2+ 

transients within astrocytes.  What might be the role of this 

astrocytic Ca
2+

?  Could it be involved in regulating secretion from glia?  An important 

study of neuron-glia co-cultures showed that increasing astrocytic Ca
2+

 levels using 

bradykinin led to NMDA receptor-dependent Ca
2+

 increases in neighboring neurons 

(Parpura et al., 1994).  Several subsequent reports suggest that astrocytic Ca
2+

 elevations 

under certain conditions in situ can result in release of glutamate, which may modulate 

synaptic transmission through pre- or postsynaptic mechanisms (Bezzi et al., 1998; 

Fiacco and McCarthy, 2004; Lee et al., 2007; Navarrete and Araque, 2008).  However, 

the evidence for glutamate release is indirect as it depends on pharmacological 

manipulations that might affect both glia and neurons (Agulhon et al., 2008).  

Furthermore, it is unclear if glutamate release can occur in vivo or if it has any 

physiological role.  For example, to selectively activate astrocytes, the MrgA1 GPCR-

coupled metabotropic receptor from DRG neurons was expressed only in astrocytes.  

Although astrocytic Ca
2+

 levels increased as expected upon stimulation with RF amide 

MrgA1 ligands, synaptic transmission was not affected (Fiacco et al., 2007), suggesting 

that astrocytic Ca
2+

 transients are not sufficient for glutamate secretion.  This study does 
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not prove, however, that glutamate release cannot occur in vivo in response to neuronal 

activity as in this work astrocytes were activated in a non-physiological manner using a 

non-native receptor. 

Stronger evidence suggests that astrocytes might affect synaptic transmission 

through ATP release.  For example, Schaffer collateral (SC) stimulation evokes Ca
2+ 

increases in astrocytes that associate with SC-CA1 synapses (Porter and McCarthy, 

1996).  This glial activation is thought to induce release of ATP that then suppresses 

presynaptic glutamate release (Pascual et al., 2005; Serrano et al., 2006).  This 

mechanism presumably enables astrocytes to tonically suppress synaptic transmission, 

therefore enhancing the dynamic range of LTP.  In agreement with this model, blocking 

astrocytic ATP release, by expressing a dominant-negative synaptobrevin 2 mutant, 

prevented induction of LTP or heterosynaptic depression in situ (Pascual et al., 2005).  In 

support of these findings, GABA released from interneurons led to increased Ca
2+

 levels 

in astrocytes associated with SC-CA1 synapses and chelating Ca
2+

 within astrocytes or 

inhibiting ectonucleotidase activity, which is thought to convert the secreted ATP into 

adenosine, prevented  heterosynaptic depression (Serrano et al., 2006). 

Together, these results suggest that increased synaptic activity promotes glial Ca
2+

 

accumulation that might, in turn, modulate synaptic transmission through secretion of 

neuromodulators.  These findings hint at a more integral glial role in synaptic function 

beyond the usually ascribed glial roles in synaptic cleft homeostasis. 
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Synaptogenesis and circuit remodeling 

A critical part of neurodevelopment is the formation of proper neuronal circuitry.  

Circuits arise by long-range guidance cues that guide axonal migration (Yu and 

Bargmann, 2001) as well as from local interactions that enable connections of the proper 

neurons through synapses (Colón-Ramos et al., 2007).  As already mentioned, many 

synapses in the CNS are ensheathed by astrocytes (Spacek, 1985; Ventura and Harris, 

1999) raising the possibility that glia might play a role in synapse formation and 

elimination. 

Several studies suggest that astrocytes play important roles in synapse formation.  

A particularly useful approach has been to study the synaptogenic potential of highly 

purified retinal ganglion cells (RGCs) (Meyer-Franke et al., 1995) when cultured in the 

absence or presence of glia.  These co-culture experiments have shown that addition of 

astrocytes or astrocyte-conditioned medium to a culture of RGCs leads to a ten-fold 

increase in synapse number as well as a dramatic increase in synaptic efficacy (Pfrieger 

and Barres, 1997; Ullian et al., 2001).  Fractionation studies revealed that one glial 

component responsible for these effects is astrocyte-derived cholesterol, which enhances 

presynaptic function (Mauch et al., 2001).  However, it is unclear whether cholesterol 

acts as a constituent of the plasma membrane or whether it can initiate signaling events.   

The increase in synapse number induced by glia in RGC co-cultures is largely 

mediated by astrocyte-derived thrombospondins (TSPs), large extracellular matrix 

proteins.  TSPs are sufficient to induce the formation of anatomically normal but silent 

synapses that are unresponsive to glutamate (Christopherson et al., 2005).  TSPs consist 
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of a family of five homologous proteins (Adams and Tucker, 2000; Adams, 2001), all of 

which are synaptogenic (Barres, 2008).  At least four TSPs are expressed in the 

developing mammalian brain, and mice lacking both TSP1 and TSP2 have fewer 

synapses (Christopherson et al., 2005), suggesting that TSPs promote synaptogenesis in 

vivo.  The EGF-like type II domain of TSP1/2 binds to the α2δ subunit of the neuronal 

voltage-dependent Ca
2+

 channel and this interaction is required for synapse formation (C. 

Eroglu and B. Barres, personal communication).  Additionally, mice treated with 

pregabalin or gabapentin, two α2δ antagonists, have defects in synapse formation (C. 

Eroglu and B. Barres, personal communication).  The adult brain expresses TSP4 (Arber 

and Caroni, 1995), suggesting possible postdevelopmental roles for TSPs in circuit 

plasticity. 

Like astrocytes, Schwann cells help to promote the formation of the Xenopus 

neuromuscular junction (Peng et al., 2003) through a TGF-β1 pathway (Feng and Ko, 

2008).  Furthermore, Schwann cells promote synapse formation between cultured spinal 

motor neurons (Ullian et al., 2004).  Together, these findings suggest that promoting 

synaptogenesis or stabilizing immature synapses might be key glial activities. 

In addition to stabilizing synapses, glia might also play a role in synapse 

elimination.  For example, transplantation of immature astrocytes into the adult primary 

visual cortex of cats restored ocular dominance plasticity (Muller and Best, 1989), 

supporting the notion that glia are important for synaptic alterations.  In Drosophila, glia 

engulf and consume degenerating axons in the mushroom body (Watts et al., 2003; Watts 

et al., 2004).  Glia are also required for larval neuronal reorganization, as inhibiting 

endocytosis specifically within glia inhibits axon pruning (Awasaki and Ito, 2004).  
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Draper/CED-1, a protein involved in phagocytic clearance of apoptotic cells (Freeman et 

al., 2003), acts within glia to promote axonal pruning during development (Awasaki et 

al., 2006) as well as during injury (MacDonald et al., 2006).  Interestingly, Draper binds 

to Shark, a protein similar to the immune system non-receptor tyrosine kinase Syk, 

through an immunoreceptor tyrosine-based activation motif (Ziegenfuss et al., 2008).  

Thus, glia may use pathways resembling those of the immune system to eliminate axons.  

This mechanism might be conserved in mammals as transcripts of phagocytic genes, 

including CED-1/Draper, are highly enriched in astrocytes (Cahoy et al., 2008). 

When cultured in the presence of astrocytes, RGCs upregulate expression of C1q 

(Stevens et al., 2007), a protein that initiates the classical complement cascade.  C1q 

binds to pathogens or dead cells and triggers a protease cascade that eliminates pathogens 

by phagocytosis (Gasque, 2004).  In the developing brain, C1q localizes to synapses, 

presumably tagging them for elimination; consistent with this hypothesis, C1q null mice 

have too many synapses (Stevens et al., 2007).    

In sum, ample evidence suggests the glia play important roles in synapse 

formation and elimination. 

 

Glial ablation experiments  

The utility of glia-free neuronal cultures in the elucidation of glial roles in 

synaptogenesis suggests that removal of glia in vivo might be a powerful strategy for 

uncovering glial roles in the nervous system.  In vivo glial removal has been attempted 
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using several approaches.  In many instances, these experiments have failed to yield clear 

results, mainly due to the neuronal loss that followed glial ablation.  A brief overview of 

glial removal experiments in different settings follows. 

 

CNS glial ablations 

To ablate glia in mice, the glial fibrillary acidic protein (GFAP) promoter, which 

is expressed in some glia as well as in other cell types, has been used to drive expression 

of the herpes simplex virus-thymidine kinase (HSV-TK) toxin gene (Brenner et al., 

1994).  Mice carrying the GFAP pro::HSV-TK transgene display granule cell loss as well 

as Purkinje cell dendritic defects (Delaney et al., 1996; Bush et al., 1998; Sofroniew et 

al., 1999).  The granule cell loss was attributable to excitotoxicity as it could be prevented 

by treatment with NMDAR antagonists (Delaney et al., 1996).  The Purkinje cell 

dendritic defects were most likely secondary to the granule cell loss as these dendrites are 

shaped by the granule cell input (Delaney et al., 1996).  Ablation of Bergmann glia in the 

cerebellum yielded largely the same results (Cui et al., 2001). 

The myelin basic protein (MBP) promoter drives gene expression in 

oligodendrocytes (Takahashi et al., 1985).  MBP pro::HSV-TK transgenic mice show a 

loss of oligodendrocytes in the cerebellum.  These animals show decreased myelination 

as well as tremors, seizures, and premature death, but have not been studied beyond 

myelination (Mathis et al., 2000).  Importantly, a significant portion of oligodendrocytes 

remains after ablation and their continued proliferation might mask defects that would be 

observed after removal of all oligodendrocytes. 
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Schwann cell ablations 

Elimination of the neuregulin receptors ErbB2/3 results in mutant mice that lack 

most Schwann cell precursors.  Even the few Schwann cells that are born fail to migrate 

to the periphery, thus neuromuscular junctions (NMJs) are devoid of glia.  Although 

motor neurons do migrate in this setting, defects in their fasciculation are observed.  

However, detailed analysis of these bare NMJs is impossible since the vast majority of 

motor and sensory neurons in the DRG undergo cell death shortly after axonal migration 

(Riethmacher et al., 1997; Woldeyesus et al., 1999; Lin et al., 2000).  

Taking advantage of a monoclonal antibody specific for perisynaptic Schwann 

cells, these cells have been ablated from NMJs in adult frogs by complement-induced 

lysis (Reddy et al., 2003).  In ablated NMJs, axonal retraction was seen during the course 

of a week.  No significant short-term defects in synaptic function were observed after 

ablation but before retraction (Reddy et al., 2003), however, synaptic functions such as 

activity-induced depression, known to be regulated by the perisynaptic Schwann cell 

(Robitaille, 1998), were not tested.  Two possible technical concerns limit any 

conclusions that can be drawn from this experiment.  The neuronal degeneration that is 

observed, as indicated by the retracting axons, suggests that glia might play some trophic 

roles.  Furthermore, axonal Schwann cells, which are not ablated by this treatment, might 

compensate for the loss of some perisynaptic Schwann cell roles.  Schwann cell ablation 

studies have clearly shown that these cells provide trophic support to neurons and help 

induce the formation of the NMJ.  However, these studies have been unable to assess the 

presence of more active Schwann cell roles that are suggested by experiments that 

modulate GTP levels in perisynaptic Schwann cells (Robitaille, 1998).   
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Drosophila glial ablations 

Glia in Drosophila have been ablated in two ways.  First, in glial cells missing 

(gcm) mutant animals the cells destined to become glia instead express neuronal fates 

(Hosoya et al., 1995; Jones et al., 1995).  Since these mutants lack some glial functions, 

they have proven useful in analyzing glial roles in neuronal function.  In addition, glial 

gcm-expressing cells have been ablated by expression of ricin A, a protein translation 

inhibitor (Hidalgo et al., 1995; Booth et al., 2000; Hidalgo and Booth, 2000).  

Characterization of gcm mutants and animals lacking gcm-expressing cells revealed that 

glia provide neurons with trophic support, guide axonal migration, provide cues for nerve 

fasciculation, and help form the blood-brain barrier (Hidalgo et al., 1995; Hosoya et al., 

1995; Jones et al., 1995; Booth et al., 2000; Hidalgo and Booth, 2000; Stork et al., 2008).   

Although the analysis of gcm mutants has been fruitful, the transformation of glia 

into neurons is not complete in this background.  For example, it appears that the 

converted cells retain some glial characteristics since they divide and migrate in the 

pattern of glia (Hosoya et al., 1995; Jones et al., 1995; Vincent et al., 1996); and some 

glial cells, such as perineurial glia, are specified normally in gcm mutants (Awasaki et al., 

2008).  Significantly, while gcm mutants have revealed glial roles in nervous system 

development, detailed analysis of glial roles in neuronal function is hindered by the 

neuronal death that occurs in these mutants (Hosoya et al., 1995; Jones et al., 1995).  

Neuronal cell death is also observed when ablating gcm-expressing glia (Hidalgo et al., 

1995; Booth et al., 2000; Hidalgo and Booth, 2000). 
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Other nonspecific methods used for glial ablations in a number of species have 

included radiation (Kalderon et al., 1990; Pippenger et al., 1990), antimitotic agents 

(Smith et al., 1984; Politis and Houle, 1985), and toxic compounds that inhibit cellular 

metabolism (Khurgel et al., 1996; Largo et al., 1996), although complete and consistent 

glial removal could not be achieved in these settings. 

In summary, glial ablation experiments have clearly shown two glial roles in the 

nervous system: trophic support of neurons and developmental requirements, in particular 

for axon guidance.  These experiments have been less useful in characterizing 

postdevelopmental glial roles since often neurons degenerate in the absence of glia, 

precluding further characterization.  Further, most experimental manipulations to remove 

glia have not been able to achieve complete glial removal.  Thus, a novel experimental 

setting is needed in which removal of glia can be performed efficiently and does not 

affect neuronal survival. 

 

Sensory organs as simplified models of the nervous system 

As just described, analysis of neurons in the absence of glia is often precluded by 

the trophic support glia provide neurons.  Moreover, it is often difficult to remove all glia 

present in a particular region of the nervous system or to assess neuronal dysfunction at 

single cell resolution after removal of a limited number of glia.  These problems might be 

limited, or even overcome, by focusing on sensory organs, since these self-contained 

structures typically contain sensory neurons of a specific class associated with only a few 
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glial cells.  Sensory organs provide an attractive model of the nervous system in general 

since the sensory input (light, sound, temperature) can be experimentally controlled and 

perturbations of the organ might result in altered behavior.  In addition, the small number 

of neurons and glia in these organs makes them experimentally accessible.  Thus, one 

approach to understand glial functions in vivo is to study them in the context of sensory 

perception.  A brief description of some sensory organs and glial roles within them 

follows.   

 

Retina 

Vision is mediated by rod and cone photoreceptor cells.  Opposed to these 

photoreceptors is a monolayer of support cells, the retinal pigment epithelium (RPE), 

whose apical microvilli act as membrane sheaths that surround the terminal third of 

individual photoreceptor cilia (Steinberg et al., 1977).  RPE cells play important roles in 

supporting photoreceptor function.  Like astrocytes, RPE cells associate closely with 

blood vessels and mediate the transport of nutrients, particularly glucose, to the 

photoreceptor cells (Strauss, 2005).  RPEs also maintain the pH and regulate the ionic 

composition of the subretinal space to enable photoreceptor excitability (Strauss, 2005).  

In photoreceptors, 11-cis-retinal is converted to all-trans-retinal after photon detection, 

and RPE cells reisomerize all-trans-retinal and make it available to the photoreceptors for 

their continued function (Baehr et al., 2003).  The photoreceptor outer segments are 

continually shed, presumably due to the high oxidative stress within the cilium, and RPE 

cells are responsible for phagocytosing and recycling of these components (Gal et al., 
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2000; Finnemann, 2003).  Thus, although RPEs might not be usually defined as glia, they 

perform several functions generally attributed to glia.   

 

Taste buds 

Taste buds are onion-like structures composed of 50-100 cells whose apical 

surfaces barely protrude from the taste pore in the tongue epithelium (Roper, 1989) 

(Roper, 1992).  At least three cell types are present in the taste bud based on electron 

microscopical criteria.  Type II and III cells are elongated and end with microvilli thought 

to have sensory roles, and type III cells synapse onto presumably afferent fibers (Royer 

and Kinnamon, 1991).  Type I cells are thought to be support cells since they have 

several glia-like properties.  They express the glial glutamate/aspartate transporter 

(GLAST) (Lawton et al., 2000), might regulate K
+
 levels within the taste bud (Bigiani, 

2001), and maintain low extracellular ATP levels by expressing an ecto-ATPase (Bartel 

et al., 2006).  This last function is similar to neurotransmitter clearance at synapses by 

astrocytes as type II cells, which do not have synapses, are thought to release ATP upon 

gustatory stimulation (Finger et al., 2005).  Morphologically, type I support cells are 

distinguished by membrane-bound granules in the apical cytoplasm, which presumably 

are secreted and contribute to the amorphous substance present in the taste pore (Whitear, 

1976).  Furthermore, these glia-like cells are the most abundant cell type in the taste bud 

and might ensheath and insulate the taste receptors within each taste bud (Pumplin et al., 

1997).   
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Olfactory epithelium 

The detection of volatile compounds is mediated by about 1,000 olfactory 

receptors (Buck and Axel, 1991) that reside in the cilia of olfactory sensory neurons.  

These neurons, residing in the olfactory epithelium that lines the dorsal cavity of the 

nose, project a single dendrite that extends through the olfactory epithelium and ends in 

cilia that have access to the nasal cavity (Morrison and Costanzo, 1990, 1992).  

Surrounding the sensory neurons are glia-like cells, named sustentacular cells, which 

produce part of the mucus in which the sensory cilia reside (Okano and Takagi, 1974).  

These support cells perform a number of functions: they physically and chemically 

insulate olfactory sensory neurons (Breipohl et al., 1974; Nomura et al., 2004), actively 

phagocytose dead cells (Suzuki et al., 1996; Makino et al., 2009), and regulate the 

extracellular ionic environment (Getchell, 1986).  Further, these cells are electrically 

coupled to each other (Vogalis et al., 2005) and, like astrocytes, exhibit complex Ca
2+

 

dynamics when stimulated with extracellular ATP, although the physiological importance 

of these dynamics is not known (Hegg et al., 2009).  Olfactory neurons are continually 

replaced, and sustentacular cells seem to promote the generation of new neurons in adult 

animals by producing neuropeptide Y, a mitogenic factor for olfactory neuron precursor 

cells (Hansel et al., 2001). 

 

The Grueneberg ganglia 

The Grueneberg ganglion is a structure composed of about 500 cells found at the 

tip of the nose in mammals (Fuss et al., 2005; Brechbuhl et al., 2008).  The sensory 
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neurons of this ganglion are easily identified by expression of olfactory marker protein 

(OMP) and by their fasciculated axons that project to the olfactory bulb (Fuss et al., 

2005; Koos and Fraser, 2005; Roppolo et al., 2006; Storan and Key, 2006).  Although 

they do not possess distinguishable dendrites, these neurons project 30-40 cilia each.  The 

cilia and at least part of the cell body are ensheathed by glial cells that stain with the 

astrocytic markers glial acidic fibrillary protein (GFAP) and S100β (Brechbuhl et al., 

2008).  Interestingly, the cilia are embedded in the glial cell and have no access to the 

nasal cavity (Brechbuhl et al., 2008).  Grueneberg ganglia may detect volatile 

compounds, perhaps alarm pheromones (Brechbuhl et al., 2008), suggesting that 

pheromones must pass through the ensheathing glial cell before they can interact with the 

cilia-localized receptors.  Because this sensory ganglion has been recognized only 

recently, not much is known about any roles that glia play in its function. 

 

Insect sensory organs 

Insects possess several types of sensory organs that are similar to each other and 

are conserved among species (Hallberg and Hansson, 1999; Mitchell et al., 1999).  The 

mechanosensory and chemosensory sense organs, so called type I organs, are the main 

insect external sensilla.   The former are composed of single bipolar neurons (Hartenstein 

and Posakony, 1989) while the later contain five neurons (Pollack and Balakrishnan, 

1997).  The neuronal cell bodies are located near the epidermis and project ciliated 

dendrites that approach the cuticle.  The dendrites are surrounded by three concentric 

sheaths of support cells.  The inner sheath is made by the thecogen (sheath) cell which is 
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penetrated by the growing dendrite during development (Hartenstein and Posakony, 

1989).  The very tip of the dendrite is not ensheathed by the thecogen but instead is 

embedded in an electron-dense extracellular cap secreted by the thecogen (Pollack and 

Balakrishnan, 1997).  The two outer sheaths are formed by the wrapping of the trichogen 

(bristle) and tormogen (socket) cells around the dendrite (Hartenstein and Posakony, 

1989).  A fourth support cell is present in some sensory organs where it ensheathes part 

of the neuronal cell body and the initial part of the axon (Felt and Vande Berg, 1976).   

The morphogenesis of these sensilla has been studied extensively (Hartenstein 

and Posakony, 1989) as this organ derives from a single lineage, thus providing a nice 

model for studying the segregation of asymmetric cell fates.  However, less is known 

about the functions of the support cells in sensory organ function.  The major proposed 

role of these support cells is to pump K
+
 into the receptor lymph cavity (Hartenstein, 

1997; Pollack and Balakrishnan, 1997).  Another proposed role for these cells is secretion 

of odor-binding proteins, which might facilitate odor recognition by neuronal receptors 

(Vogt and Riddiford, 1981; Vogt et al., 1991).  This latter function is probably limited to 

support cells of taste organs (Shanbhag et al., 2001) and olfactory sensilla (McKenna et 

al., 1994; Pikielny et al., 1994). 

 

Sensory organs and glia in C. elegans 

Like other animals, the nematode Caenorhabditis elegans monitors its 

environment with sensory neurons.  Most of these neurons are organized in sensory 

organs that are similar in morphology to those found in insects.  C. elegans sensilla are 
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composed of one or more sensory neurons associated with two support cells: a sheath cell 

that ensheathes the ending of the sensory dendrites and a socket cell that wraps around 

the cilia present at the tip of these dendrites (Ward et al., 1975).  Sheath and socket cells 

are closely associated with neurons (Ward et al., 1975) and derive from ectodermal 

lineages, their sister cells being either neurons, other glia, or epithelial-like cells (Sulston 

et al., 1983).  Four sheath glia – the cephalic sheath cells – extend processes that ensheath 

the nerve ring, the main neuropil of the animal, where association of these glia with 

specific synapses has been observed (White et al., 1986; Colón-Ramos et al., 2007).  

 

Sensory neurons and cilia function 

The neurons of most sensory organs, including those of C. elegans, possess 

dendrites that project one or more non-motile cilia (Wheatley et al., 1996).  These 

sensory cilia are positioned at the interface between an animal and its environment and 

are believed to be the sites of sensory transduction.  The ability of cilia to act as sensors is 

due in part to their specialized morphologies which allow for compartmentalization of 

signaling components such as cell-surface receptors, signal transduction molecules, and 

specialized ion channels (Pazour and Witman, 2003; Efimenko et al., 2006; Singla and 

Reiter, 2006).  Sensory cilia, like motile cilia, nucleate from a centriolar-like structure 

termed the basal body, or the transition zone in C. elegans (Perkins et al., 1986).  Most 

sensory cilia are composed of an inner doublet microtubule structure which transforms 

into an outer segment composed of single microtubules (Rosenbaum and Witman, 2002). 
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Cilia architecture arises through a transport mechanism that moves ciliary proteins 

from the basal body to the tip of the cilium.  Because it was first observed in the flagella 

of Chlamydomonas reinhardtii (Kozminski et al., 1993; Kozminski et al., 1995), this 

process is named intraflagellar transport (IFT).  Anterograde transport within the cilium 

is powered by two kinesin-2 molecular motors that move IFT particles and cargo to the 

distal part of the cilium (Orozco et al., 1999; Snow et al., 2004).  Interestingly, only one 

of the kinesin-2 motors, OSM-3, is capable of transport along the distal singlet 

microtubules (Snow et al., 2004).  The IFT particle, along with the anterograde motors, is 

then transported back to the base of the cilium by a dynein motor (Orozco et al., 1999; 

Signor et al., 1999; Snow et al., 2004). 

Observation of the movements of the IFT particle by light microscopy suggested 

that this macromolecular complex must be rather large.  Taking advantage of this, 

Rosenbaum and colleagues isolated IFT particles from Chlamydomonas in sucrose 

gradients and determined that the IFT particle is composed of two biochemically-defined 

complexes, A and B (Cole et al., 1998; Cole, 2003).  This also led to the identification of 

proteins that compose the IFT particles.  Since then, a large number of ciliary proteins 

that associate with the IFT particle have been described both in Chlamydomonas as well 

as C. elegans.  The current understanding suggests that IFT-A binds to the Kinesin-II 

motor while IFT-B binds OSM-3 (Snow et al., 2004; Ou et al., 2005), however, because 

the A and B complexes are bound together by the BBS-7/8 proteins, the IFT particle 

moves as a whole (Blacque et al., 2004).  Additional complexity is suggested by the 

observation that OSM-3 is required for the formation of singlet distal segments in some 

neurons but not others (Mukhopadhyay et al., 2007). 
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To obtain a complete list of genes required for cilia biogenesis and function, 

proteomic and comparative genomic studies have been performed that have identified 

sets of proteins conserved in all cilia (Avidor-Reiss et al., 2004; Emoto et al., 2004; 

Blacque et al., 2005; Efimenko et al., 2005).  In C. elegans, the ability to purify single 

cell types has allowed the comparison of the transcriptome of neurons with different 

types of modified sensory cilia with the goal of identifying factors required for cilia 

diversification (Colosimo et al., 2004). 

While the cataloguing and characterization of ciliary genes is leading to a fuller 

understanding of ciliary transport, less is known about the cargo the IFT particle carries.  

Although many signaling molecules localize to cilia (Efimenko et al., 2006; Singla and 

Reiter, 2006), how they get there remains poorly understood.  While it is reasonable to 

expect that signaling molecules move into the cilium by IFT, few such proteins have been 

observed undergoing movements along cilia.  The transient receptor potential channels 

OSM-9 and OCR-2 (Colbert et al., 1997; Tobin et al., 2002), for example, have been 

observed undergoing IFT (Qin et al., 2005).  Other signaling proteins that have been 

shown to undergo IFT are IFTA-2, a Rab-like factor with some cilia defect phenotypes 

(Schafer et al., 2006) and TUB-1, a gene with roles in cilia function and lipid homeostasis 

(Mukhopadhyay et al., 2005).  In general, membrane proteins are thought to get access to 

the cilium in a Rab8-mediated process that might link vesicles transported along the 

dendrite with the IFT particle so that transmembrane proteins can subsequently enter the 

cilium (Nachury et al., 2007). 

Mutations in many C. elegans genes encoding IFT complex subunits lead to 

animals that have sensory defects in chemotaxis, odortaxis, and avoidance of areas of 
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high osmolarity (Scholey, 2003; Inglis et al., 2006).  They also have defects in a practical 

assay, the ability of some sensory neurons to uptake lipophilic fluorescent dyes (Herman, 

1984; Hedgecock et al., 1985).  Although the mechanisms of dye uptake are unclear, only 

some of the amphid neurons that presumably have access to the dye through the amphid 

channel are able to take it up (Perkins et al., 1986).  In wild-type animals, 6 amphid 

neurons (ADL, ASH, ASI, ASJ, ASK, and AWB) and both phasmid neurons (PHA and 

PHB) uptake DiI (Herman, 1984).  Uptake of FITC is largely similar except that instead 

of AWB, ADF takes up dye (Hedgecock et al., 1985).  Most mutants that affect cilia 

morphology and function exhibit abnormal dye filling (Dyf phenotype) (Perkins et al., 

1986), and screens to identify Dyf animals have yielded many mutants with abnormal 

ciliary function (Starich et al., 1995). 

 

The amphid sensory organs 

The main sensilla of C. elegans are the bilaterally symmetric amphids (Figure 

1.1).  The amphid neurons mediate many behaviors including chemotaxis (Ward, 1973), 

thermotaxis (Hedgecock and Russell, 1975), high osmolarity avoidance (Culotti and 

Russell, 1978), dauer pheromone detection (Riddle et al., 1981), odortaxis (Bargmann, 

1993), and nose touch (Kaplan and Horvitz, 1993).  Mutants for each of these behaviors 

have been isolated (Dusenbery et al., 1975; Hedgecock and Russell, 1975; Culotti and 

Russell, 1978; Albert et al., 1981; Swanson and Riddle, 1981; Bargmann et al., 1993; 

Kaplan and Horvitz, 1993). 
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Figure 1.1: The amphid sensory organ
(A) Cartoon representation of the amphid sensory organ.  Twelve sensory dendrites, only 
one of which is depicted, bundle together and project to the anterior tip of the animal.  (B) 
Higher magnification of the square in A showing the sensory cilia.  Eight cilia (only 3 
shown in red) enter the socket channel (blue); three cilia enter the sheath channel briefly 
(one shown) but reside in the sheath glia (green); the AFD cilia are completely embedded 
in the glia.  The location of each neuron is indicated.  (C) The five types of amphid cilia 
morphology.  Six simple cilia are present, only ASE is shown.  Two doubly ciliated neu-
rons are found in the amphid, ADF and ADL.  Scale bar, 1 μm.  Image in B adapted from 
(Perkins et al, 1986).  Image in C adapted from (Ward et al, 1975).
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The amphids are composed of 12 sensory neurons, a sheath cell, and a socket cell.  

In adult animals, each neuron projects a single, 100 m long, unbranched dendrite to the 

tip of the nose where the dendrites end in modified cilia (Ward et al., 1975; Ware et al., 

1975; Perkins et al., 1986), Figure 1.1B.  The sheath cell also projects a single process 

that ensheathes the last portion of the 12 fasciculated dendrites.  The socket glial cell 

makes an opening in the cuticle through which some of the ciliated dendrites can access 

the environment (Figure 1.1B).  To make this opening, the socket cell wraps around and 

forms belt junctions onto itself in a manner analogous to insect tormogen cells.   

Based on their ciliary morphology, the amphid neurons can be assigned to four 

classes (Figure 1.1C): wing-like, comprised of the AWA, AWB, and AWC neurons, 

whose modified dendritic cilia spread within the sheath glial cell; finger-like, comprised 

of the AFD neuron, whose dendritic ending contains several microvilli-like structures that 

are also embedded entirely within the sheath; singly ciliated, comprised of the ASE, 

ASG, ASH, ASI, ASJ, ASK neurons which possess an unmodified cilium; and doubly 

ciliated, consisting of the ADF and ADL neurons (Ward et al., 1975; Perkins et al., 

1986).  The singly and doubly ciliated neurons penetrate through the sheath and access 

the outside environment through the socket channel. 

The sheath cell channel in which the cilia reside is filled with an electron-dense 

matrix which appears to be secreted by the sheath cell (Wright, 1980).  The matrix is 

transported in membrane-bound vesicles that can be seen fusing with the channel lumen 

(Ward et al., 1975; Wright, 1980; Perkins et al., 1986).  Although the chemical 

composition of this matrix remains largely unknown, the sheath glia produce a number of 

factors predicted to be secreted including collagens, metalloproteases, immune-like short 
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peptides, etc (work of Maya Tevlin (Bacaj et al., 2008)).  Resembling the amphids, the 

phasmids are sensilla located in the tail.  Each phasmid is composed of two neurons, a 

sheath, and a socket cell.  They are thought to act as a second chemodetector in the tail 

and might enable the animal to perform nose-to-tail gradient measurements (Hilliard et 

al., 2002). 

 

The amphid as a model for glia-neuron interactions 

The amphid is an excellent setting for studying sensory cilia development.  We 

reasoned that the amphid might also be an appropriate model in which to study glia-

neuron interactions since it would be possible to remove the sheath glia, which contacts 

the sensory neurons, and observe neuronal function in its absence.  Because amphid 

neurons have been well characterized, the function of many of them can be monitored by 

behavioral assays, and any defects observed can be ascribed to dysfunction of a particular 

sensory neuron.  The anatomy of the amphid suggests that the sheath cell might be 

required for the development and function of amphid neurons.  Indeed, anecdotal reports 

have indicated that this might be the case.  Embryonic sheath and socket ablations 

resulted in neurons that inappropriately associate with sockets of other sensilla found in 

the head (Sulston et al., 1983).  The sheath glia is required for dauer entry (Vowels and 

Thomas, 1994), and limited sheath ablations yielded animals with defects in chemotaxis 

and osmolarity sensation (Bargmann et al., 1990).  Furthermore, in mutants with 

abnormal cilia morphology, matrix-filled vesicles accumulate within the sheath glia 

(Lewis and Hodgkin, 1977; Perkins et al., 1986), suggesting that dendrites might control 
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the rate of glial secretion.  Together, these results suggest that the sheath glia might 

influence neuronal function, warranting further examination. 

In this thesis, I attempt to extend our knowledge of sensory organ development 

and function by investigating sensory cilia development as well as the roles that glia play 

within these organs. 
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Developmental requirements for glia in sensory organs 
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Summary 

The nervous system emerges from the coordinated development of neurons and 

glia.  To uncover the roles glia play in neuronal development, one would like to examine 

the effects of removing glia.  This approach proves difficult in most species as glia are 

required for neuronal survival.  To overcome this limitation, we have focused on the 

sensory organs of C. elegans, where we find that neurons survive even after ablation of 

sensory organ glia.  Further, in the absence of glia, the dendrites of sensory neurons fail 

to extend normally, revealing a potential role for glia in dendrite formation. 
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Uncovering glial roles 

The nervous system is composed primarily of two cells types: neurons and glia.  

The birth and morphogenesis of these cells must be precisely coordinated to create the 

proper cellular architecture.  For example, to generate the correct ratio of neurons to glia, 

each cell type secretes mitogenic and survival factors that control the abundance of the 

other (Banker, 1980; Riethmacher et al., 1997; Hidalgo et al., 2001).  Likewise, since 

many neurons are born away from their final position within the nervous system, they 

must migrate to reach their proper location and these movements can be orchestrated by 

glia, which secrete cues to guide neuronal migration (Battye et al., 1999; Kidd et al., 

1999).  Glia can also act as the substrate upon which neurons migrate (Rakic, 1971; 

Edmondson and Hatten, 1987). 

A straightforward and unbiased approach to identify glial roles in nervous system 

assembly is to remove glia and monitor neuronal development.  To observe neuronal 

development in the absence of their associated glia, we have focused on the nematode C. 

elegans.  The nervous system of the C. elegans hermaphrodite is composed of 302 

neurons whose morphology and connectivity has been described (Ward et al., 1975; 

White et al., 1986).  Moreover, the morphology and location of each of the 50 glial cells 

of the animal is also known.  These glia are all associated with sense organs, with each 

sensory neuron contacting only a few glial cells in a stereotyped manner. 

Within C. elegans, we have studied the amphid sensory organs.  Each amphid is 

composed of twelve ciliated sensory neurons which project their dendrites to the tip of 

the animal; a sheath glial cell which ensheathes the terminal part of the dendrites; and a 
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socket glial cell (Ward et al., 1975).  Thus, the amphid sensilla provide a suitable model 

for investigating glia-neuron interactions in vivo as there is a single major glial cell, the 

neurons possess elaborate morphologies, and neuronal function can be assessed by 

behavioral assays. 

 

Results 

Glia are not required for neuronal survival in C. elegans 

To ask whether the amphid sheath glia is required for amphid neuron survival, we 

performed laser ablation (Bargmann and Avery, 1995) of the amphid sheath glial 

precursor cell.  Embryonic ablations in C. elegans are facilitated by the almost invariant 

cell lineage, which has been determined (Sulston and Horvitz, 1977; Sulston et al., 1983).  

Success in ablating the cell was judged by lack of vap-1 pro::GFP expression, an amphid 

sheath cell marker, as well as by visual inspection for the absence of the sheath glial cell 

body under Nomarski optics.  The strain also carried an odr-1 pro::RFP transgene to 

visualize the AWC neuron.  In 3/3 animals, ablation of the sheath glial precursor cell did 

not affect neuronal survival (Figure 2.1B). 

We also observed no amphid neuron cell death when genetically ablating most 

glia in the animal (Figure 2.1, C-D).  To perform these ablations, a 400 bp lin-26 

promoter region, which drives expression in some hypodermal and most glial cells, 

including the amphid sheath glia, but not in neurons (Landmann et al., 2004),  was used 

to express the apoptosis-inducing protein EGL-1 in amphid sheath glia in early embryos.  
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However, we noted that genetically ablated animals were rather unhealthy, probably 

because the lin-26 promoter expresses in many cells including hypodermal cells.  In fact, 

reconstruction by electron microscopy of one such animal revealed large, extracellular, 

vacuole-like spaces filled with a light-staining matrix.  Presumably, these correspond to 

the empty space left after ablation of a large number of cells. 

To ablate glia after the amphid sensilla have formed, a 2 kb promoter region of 

the F16F9.3 gene was used to drive expression of an attenuated diphtheria toxin (DT-

A
G53E

), a protein synthesis inhibitor that catalyzes the ADP-ribosylation of eukaryotic 

aminoacyl-transferase II (EF-2) (DeLange et al., 1979; Fares and Greenwald, 2001).  The 

F16F9.3 promoter drives expression in amphid and phasmid sheath cells (work of Maya 

Tevlin in our laboratory), the phasmid being a sensory organ in the tail similar to the 

amphid.  Expression in the amphid initiates at the three-fold stage of embryogenesis, after 

amphid morphogenesis is complete.  We found that neuronal survival was also unaffected 

by these post-embryonic ablations.  In more than 100 laser-ablated animals and more than 

500 genetically ablated animals scored, no amphid neuronal death was observed as 

judged by marker expression (see Chapter 3).  Further, in all sheath-ablated animals, 

amphid neurons expressed appropriate markers [e.g. odr-3 and odr-10 (AWA), str-1 

(AWB), odr-1 (AWC), gcy-8 (AFD), gcy-5 (ASER), T08G3.3 (ADF)] indicating normal 

gross differentiation.  Thus, in the C. elegans amphid, sheath glia are dispensable for 

neuronal survival and maintenance of cell fate. 
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Figure 2.1: Embryonic glia ablation results in short sensory dendrites
(A, B) Animals bearing odr-1 pro::RFP (AWC, red) and vap-1 pro::GFP (sheath glia, green) 
were subjected to embryonic laser ablation of the sheath glia precursor cell in the left or 
right amphid.  A, a wild-type amphid; B, contralateral amphid of the same animal in which 
the sheath precursor cell was ablated (the GFP at the anterior tip is from z-stacks of the con-
tralateral amphid).  The glia promoter used also expresses faintly in the AFD neuron (green, 
arrowhead).  (C, D) Expression of the death-promoting factor EGL-1 in most glia of the 
animals, including the amphid sheath glia, results in short dendrites.  Cilia appear to form 
normally in these neurons as the odorant receptor ODR-10 localizes normally to the cilia of 
the AWB neuron (C) and cilia morphology appears normal (D).  (D’) Higher magnification 
of the rectangle in D.  Anterior is up.  Scale bar, 10 μm.
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A developmental role for sheath glia in determining dendrite length 

To determine if the sheath glia plays any role in neuronal morphogenesis, we 

examined neurons within amphids in which the sheath glial precursor cell had been 

ablated.  In 3/3 sheath-ablated amphids, the AWC dendrite failed to project to the tip of 

the animal, instead displaying 20-50% of the wild-type length (Figure 2.1B).  The 

contralateral mock-ablated amphids of these same animals were normal (Figure 2.1A). 

Laser ablation of the sheath glial precursor cell also removes the URB neuron, its 

sister cell.  To rule out the unlikely scenario that the observed morphological defects are 

due to URB ablation, sheath glia were also genetically ablated during early development 

by expression of the apoptosis-inducing gene egl-1.  Transgenic animals displayed the 

same dendrite length defects observed in laser-ablated animals (Figure 2.1, C-D).  

Abnormal dendrite length was observed for all amphid neurons tested.  In ablated 

amphids, the twelve dendrites appeared bundled and had the same length based on 

observation of animals expressing markers in two or more amphid neurons.  Examination 

of short dendrites in the same animal in different larval stages revealed that the dendrites 

increased in size as the animal grew in length during larval development.  Thus, glia are 

required specifically for embryonic dendrite growth. 

 

The short dendrites of glia-ablated animals contain sensory cilia 

To determine the extent of dendritic defects in the absence of glia, we examined 

the cilia of the short dendrites that result after glial removal.  Imaging of the ASER 
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neuron cilium in lin-26 pro::egl-1animals using fluorescence microscopy revealed that 

abnormally short dendrites contained a grossly normal cilium (Figure 2.1D).  Thus, cilia 

length was normal, approximately 7 μm, and cilia shape appeared wild-type at the 

resolution afforded by light microscopy.  To assay cilia integrity, at least partially, we 

asked whether these cilia can accumulate proteins that normally reside within them, such 

as sensory transduction molecules.  Specifically, we checked the localization of ODR-10, 

a G protein-coupled receptor normally found in the AWA neuron cilia.  Proper ciliary 

localization of an ODR-10::GFP fusion protein was observed in the short dendrites of the 

AWB amphid neuron indicating that proper intraflagellar transport occurs normally in 

glia-ablated animals (Figure 2.1C).  Thus, glia are required for establishing dendrite 

length and are not required for generating sensory cilia. 

  

Glial removal does not affect axon development 

Examination of glia-ablated animals showed that axon morphology appeared 

grossly normal.  Further, in glia-ablated animals str-2 pro::GFP expression was always 

limited to a single AWC neuron. Asymmetric str-2 expression requires axon-axon contact 

between the two AWC neurons (Troemel et al., 1999), suggesting that the two axons 

form properly in absence of glia.  Therefore, the morphological defects observed are 

limited to dendrites and are not likely to result from gross defects in amphid sensory 

organ development as the axons develop properly in glia-ablated amphids. 
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Discussion 

Glia are not required for neuronal survival in C. elegans 

Here we demonstrate that C. elegans provides a good model for glial studies as 

specific removal of glia associated with a set of neurons allows examination of the 

resulting neuronal phenotypes in vivo.  In most organisms, glial removal leads to 

neuronal death.  Previously, a limited number of ablations performed during 

embryogenesis had not been conclusive as to whether glia are required for neuronal 

survival, since neurons could not always be located in EM reconstructions of glia-ablated 

animals (Sulston et al., 1983).  Our results explain this anomaly: nerurons survive, but 

due to ther shorter dendrites, they would not be seen in the anterior portion that was 

reconstructed in these animals from previous work.  Here, we further show that the 

neuron defect is specific to dendrite length as neurons appear grossly normal, display at 

least partly normal cilia, and express cell-specific markers.  Later work in our laboratory 

has extended these observations to other sensory organs of C. elegans, specifically the 

cephalic sensilla, which also do not require their associated glia for survival (Yoshimura 

et al., 2008). 

 

Glia-dendrite interactions in sensory organs 

Removal of the sheath glial cell prior to amphid development leads to sensory 

dendrites that are far too short.  By imaging sensory neurons in the earliest stages of wild-

type amphid development, Maxwell Heiman has shown that the neurons are born in the 
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anterior part of the embryo and form local attachments there.  Afterwards, the neuronal 

cell body migrates posteriorly leaving behind a trailing edge which becomes the dendrite 

(Heiman and Shaham, 2009).  In mutants in which neurons fail to maintain the initial 

local connection, the dendrite is dragged posteriorly by the cell body, resulting in 

shortened dendrites similar to those seen after glial ablation.  In light of this mechanism 

of dendrite growth, sheath glia might either provide the initial anchoring or stabilize the 

neuronal attachment after it has formed.  Interestingly, mutants that affect dendrite length 

affect the whole dendritic bundle as well as the sheath glia (Heiman and Shaham, 2009), 

suggesting that the length is set at the organ level. As there is a single sheath glia versus 

twelve neurons, it is possible that the length of the organ is set by the glial cell. 

There are several other sensory organs in C. elegans and their length might be set 

in a similar manner to the amphid.  For example, removal of the cephalic sheath glia 

results in cephalic neurons with shorter dendrites (Yoshimura et al., 2008), although in 

this case the dendrite is typically at least 80% of the wild-type length. 

The no-mechanoreceptor-potential A (nompA) mutants of Drosophila also have 

short (about 70-80% of normal length) sensory dendrites in their mechanosensory organs.  

In these mutants the dendrites are initially formed normally but fail to grow appropriately 

(Chung et al., 2001).  nompA encodes a transmembrane protein with a zona pellucida 

(ZP) domain and five plasminogen N-terminal (PAN) modules,  is expressed only in the 

thecogen support cell that ensheathes the mechanosensory dendrite, and localizes to the 

dendritic cap (Chung et al., 2001).  The dendritic cap comprises the thecogen-secreted 

matrix in which the cilia are embedded.  Interestingly, one of the mutants with shortened 

amphids also encodes a ZP domain protein (Heiman and Shaham, 2009) suggesting that 
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the function of this domain in controlling sensory organ structure is conserved.  Further, 

several PAN module (Zhou et al., 1998; Tordai et al., 1999) proteins are expressed by the 

amphid sheath glia (work of M. Tevlin).  These proteins could be responsible for 

mediating dendrite-glia interactions in setting organ length in the amphid. 

Coordinated morphogenesis of glia and neurons is observed in other settings, such 

as in the developing cortex (Rakic, 1972) and cerebellum (Rakic, 1971) where neurons 

migrate along the processes of radial glia and Bergman glia, respectively.  Although these 

migration processes are different from the potential adhesive roles the amphid sheath glia 

might play, better characterization of neuron-glia interactions during C. elegans 

development might uncover common pathways that enable the generation of complex 

neuronal architecture. 
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Summary 

Sensory organs are composed of neurons, which convert environmental stimuli to 

electrical signals, and glial cells, whose functions are not well-understood.  To decipher 

glial roles in sensory organs, we ablated the sheath glial cell of the major sensory organ 

of C.  elegans.  We found that glia-ablated animals exhibit profound sensory deficits as 

determined by behavioral assays.  Further, glia were required for the maintenance of the 

proper morphology of some of the modified sensory cilia, and neuronal uptake of 

lipophilic dyes was abolished in the absence of glia.  Glial removal eliminated the normal 

ASH neuron Ca
2+

 responses elicited by presentation of a high osmolarity solution.  

Providing exogenous Ca
2+

 through channelrhodopsin stimulation restored normal ASH 

behaviors, suggesting that the glia are only required for one of the early steps of sensory 

transduction prior to Ca
2+

 elevation.  Our results suggest that glia are required for 

multiple aspects of sensory organ function. 
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Glial contributions to neuronal development and function 

Glia, the largest cell population in the vertebrate nervous system, have been 

implicated in numerous processes that govern nervous system development and function 

(Haydon, 2001).  However, to a large extent, the functions of these cells remain poorly 

characterized and roles for only a few glial proteins have been described.  In vertebrates, 

the most extensively studied central nervous system glia are oligodendrocytes and 

astrocytes.  Astrocytes are often positioned near synapses, and can respond to and 

participate in synaptic activity (Perea and Araque, 2005; Panatier et al., 2006; Perea and 

Araque, 2007).  Likewise, perisynaptic Schwann cells, which ensheath neuromuscular 

junctions, can also influence the response of postsynaptic cells to presynaptic stimulation 

(Robitaille, 1998). 

Sensory neurons convert environmental stimuli into neuronal activity, and their 

sensory receptive endings are often associated with glia.  Thus, it is possible that glia 

associated with sensory neurons impact neuronal activity in ways analogous to synaptic 

astrocytes or perisynaptic Schwann cells; however, sensory organ glial functions have not 

been extensively explored.  We have studied the major glial cell of the amphid sensory 

organs.  The twelve amphid neurons can be classified based on their association with the 

single amphid sheath glial cell: the dendritic receptive endings of four neurons (AWA, 

AWB, AWC, and AFD) are entirely surrounded by the sheath glial cell in a hand-in-

glove configuration, while the remaining neurons are encased by a tubular channel 

formed by the same glial cell and are exposed to the outside environment through a 

cuticle-lined pore (Ward et al., 1975; Perkins et al., 1986; Perens and Shaham, 2005). 
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To reveal glia-neuron interactions within the amphid, we ablated sheath glia in 

first-stage (L1) larvae, after the organ has formed, either using a laser microbeam 

(Bargmann and Avery, 1995), or by expressing the diphtheria toxin A gene from a sheath 

glia-specific promoter.  We examined three neuronal properties in adults following 

ablation: neuronal function, as determined by animal behavior assays; sensory receptive 

ending morphology; and uptake of lipophilic dyes, a property of some, but not all, 

amphid neurons that correlates with the integrity of their receptive endings (Hedgecock et 

al., 1985; Perkins et al., 1986).  An advantage offered by C. elegans as a model system is 

the extensive functional characterization of most neurons by laser ablations which means 

that behavioral defects can be correlated to dysfunction of specific sensory neurons. 

 

Results 

Post-developmental sheath glial ablation results in dysfunction of ‘wing’ neurons 

To test for post-developmental functions of sheath glia, we ablated these cells 

once the amphid organ was fully formed by expressing an attenuated form of the 

diphtheria toxin A subunit (DT-A
G53E

).  Genomic integration of the F16F9.3 pro::DT-

A
G53E

 transgene afforded two independent lines, nsIs109 and nsIs113 (referred to as “no 

glia 1” and “no glia 2” hereafter), in which the DT-A toxin is expressed in two- to three-

fold embryos and the sheath glia cannot be observed in L1 larvae. 

To determine if sheath glia are required for the function of amphid „wing‟ neurons 

(AWA, AWB, and AWC), we tested both glial ablation lines in odortaxis assays 

(Bargmann et al., 1993).  Briefly, assays are performed on 10 cm plates on which an 
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attractant and diluent (acting as negative control) are spotted on opposite sides.  Sodium 

azide is added to these spots to anesthetize the animals that reach these areas.  About 200 

animals are placed at the lower part of the plate and allowed to roam for one hour at 

which point the assay is stopped.  The chemotaxis index is calculated by counting the 

animals at the attractant minus those at the control spot divided by the total number of 

animals. 

Wild-type animals odortaxed robustly to benzaldehyde while both ablation lines 

showed severe defects (p<0.001, Student‟s t-test in all cases), Figure 3.1A.  Further, both 

lines did not behave significantly different from che-2(e1033) control animals (Figure 

3.1A), a mutant in which sensory cilia do not form properly and hence displays abnormal 

behavior for many amphid senses, including detection of volatile and soluble compounds 

(Fujiwara et al., 1999).  Similar defects were observed for odortaxis toward isoamyl 

alcohol in both ablation lines (Figure 3.1A).  Benzaldehyde and isoamyl alcohol are 

AWC-sensed odorants (Bargmann et al., 1993), suggesting that amphid sheath glia are 

required for proper AWC neuron function. 

Ablated lines also had impaired AWA function (Bargmann et al., 1993) as 

determined by odortaxis defects towards methyl pyrazine (p<0.001) and diacetyl 

(p<0.001), Figure 3.1C.  In contrast, AWB function (Troemel et al., 1997) was not 

affected by sheath glial ablation as both lines avoided 2-nonanone as well as did wild-

type animals, Figure 3.1E.  Preservation of normal AWB function in sheath glia-ablated 

amphids suggests that the observed defects in AWA and AWC do not result from non-

specific damage due to sheath glial removal. 
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Figure 3.1: Sheath glia are required for sensory neuron function and cilia morphology
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Figure 3.1: Sheath glia are required for sensory neuron function and cilia 

morphology 

(A) Glia-ablated animals have defective AWC neuron function as determined by 

chemotaxis toward 1% isoamyl alcohol (Iaa) and 0.5% benzahldehyde (Bz), p<0.001 

(Student‟s t-test).  (B) A wild-type AWC cilium (red, odr-1 pro::RFP) ensheathed by the 

amphid sheath glia (green, vap-1 pro::GFP).  Glial ablation in the contralateral amphid 

results in an amorphous cilium.  (C) Glia-ablated animals have defective AWA neuron 

function as determined by chemotaxis toward 1% methyl pyrazine (Pyr) and 0.1% 

diacetyl (Dia), p<0.001.  (D) Glial removal decreases the degree of branching of the 

AWA cilium (odr-3 pro::odr-3p::GFP).  (E) Glia are not required for AWB neuron 

function as determined by 10% 2-nonanone avoidance.  (F) AWB cilium morphology 

appears grossly normal in many glia-ablated animals although additional branching and 

failure of the two cilia to spread is often observed (str-1 pro::odr-10::GFP).  (G) 

Differential glial requirements in the amphid.  Animals that express the diacetyl receptor 

ODR-10 in both the attractive AWA neuron and repellent AWB neuron (AB) are less 

attracted to diacetyl and so are glia-ablated animals, p<0.001.  These assays were 

performed on square plates so both attraction and repulsion can be measured, hence the 

difference with the diacetyl attraction level of „no glia 1‟ in C.  Dual-sensing animals that 

lack glia are repelled by diacetyl. WT, wild type; no glia, transgenic lines in which 

amphid sheath glia are killed by expression of diphtheria toxin; che-2, che-2(e1033) 

chemosensory mutants; error bars, standard deviation of 12 or more assays.  Anterior, up.  

Scale bar, 5 μm. 
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To confirm these neuron-selective effects of glia on the response of C. elegans to 

odorants, we expressed the ODR-10 diacetyl receptor, normally found only in the 

attractant AWA neurons (Sengupta et al., 1996), also in the AWB neurons which mediate 

avoidance.  As previously described (Troemel et al., 1997), animals expressing ODR-10 

in both neurons are less attracted to diacetyl than wild-type animals, reflecting the 

opposing behavioral outputs of these neurons (Figure 3.1G).  Sheath glia-ablated animals 

expressing ODR-10 in both AWA and AWB were repelled by diacetyl (Figure 3.1G).  

This result is consistent with our assessment that AWA, but not AWB, requires sheath 

glia for function.  In addition, because the extracellular environment of AWA and AWB 

sensory neurons is similar in glia-ablated animals, this result shows that odorant 

molecules can access and interact with neuronal odorant receptors in the absence of glia. 

C. elegans can discriminate between odorants.  Thus, animals can migrate 

properly toward a source of methyl pyrazine in a saturating concentration of diacetyl 

(Bargmann et al., 1993). Both glia-ablated lines could discriminate odors normally 

(Appendix Figure 1A).  We also tested diacetyl adaptation in both lines and observed at 

least the presence of some adaptation in absence of sheath glia, although the data is 

difficult to interpret due to the defects in diacetyl odortaxis the lines display (Appendix 

Figure 1B). 

 

Glial ablation results in abnormal modified cilia morphology of ‘wing’ neurons 

Reasoning that the observed deficits in neuronal function might result from 

underlying morphological defects, we examined the shape of the three winged neurons in 
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ablated animals.  The AWC dendrite ends in a modified cilium that resembles spread 

wings, Figure 3.1B inset.  This wing-like structure is completely ensheathed by the sheath 

glia.  In the same animal, laser ablation of the contralateral sheath glia in L1 larvae – a 

time at which the wing cilia are fully developed – resulted in a complete loss of the wing 

structure, Figure 3.1B.  This phenotype was fully penetrant; in 63/63 laser-ablated 

animals and in more than 100 genetically ablated animals we failed to observe the AWC 

wings spreading properly.  To further examine the AWC morphological defects, electron 

microscopy (EM) of ablated animals was performed.  In control amphids, the AWC cilia 

spread about 140
o
 within the sheath.  Ablated amphids instead displayed an enlarged 

AWC cilium that failed to elaborate wings but did contain normal microtubules (Figure 

3.2C). 

The AWC cilium increases dramatically in size, as does the amphid sheath glia, in 

dauer larvae (Albert and Riddle, 1983), an alternative larval stage C. elegans enters under 

harsh conditions (Cassada and Russell, 1975).  In dauer animals lacking sheath glia, the 

AWC cilium failed to grow (Figure 3.2B) suggesting that the natural remodeling that 

takes place during dauer requires the amphid sheath glia. 

The AWA cilium consists of a network of highly branched cilia (Figure 3.1D).  

Post-developmental genetic ablation of the sheath glia greatly reduced both the extent of 

branching and the size of this modified cilium (Figure 3.1D).  Although the phenotype 

was severe, the AWA cilia did exhibit at least some degree of branching in most animals 

examined.  The remnant branches observed could be the initial branches that developed 

before sheath glial ablation in L1 larvae or, alternatively, they could be new branches that 

have failed to form a proper AWA cilium. 
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Figure 3.2: AWC fails to extend wing-like cilia during dauer in absence of glia
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Figure 3.2: AWC fails to extend wing-like cilia during dauer in absence of glia 

(A) EM image of a wild-type dauer animal, only the dorsal third of a cross section is 

shown.  Two overlapping AWC wings can be seen, arrowheads. (B) A glia-ablated 

animal (“no glia 1”) at the same cross section level has no AWC cilia extensions.  (C) 

The abnormal, bulbous AWC cilium (arrow) of an adult animal is shown.  Glial removal 

was performed by laser ablation in L1 larvae; similar results are seen in genetically 

ablated animals.  Microtubules, the 8-like structures (arrowhead), appear to be normal 

inside the AWC cilium.  Dorsal is up. Scale bar, 500 nm.  
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While some AWB cilia morphology abnormalities could be observed in about 

60% of glia-ablated animals, in many cases the AWB cilia appeared essentially normal 

(Figure 3.1F), indicating that AWB cilia can maintain their shape in the absence of glia. 

In summary, amphid sheath glial ablation results in abnormal AWA and AWC 

cilia morphology as well as function, while the AWB neurons appear normal in both 

aspects in absence of glia. 

 

Glial ablation impairs the morphology and function of the AFD thermosensor 

In a temperature gradient, C. elegans will migrate to the cultivation temperature if 

this is associated with food (Hedgecock and Russell, 1975; Mori and Ohshima, 1995).  

The circuitry underlying this behavior has been characterized.  The main thermosensory 

neuron in C. elegans is the AFD neuron (Mori and Ohshima, 1995) whose microvilli-like 

dendritic ending is completely encased by the sheath glia (Ward et al., 1975).  To test if 

glia-ablated animals can properly sense temperature, we tested them in thermotaxis 

assays.  Assays were performed on a linear temperature gradient with extremities set at 

18
o
C and 26

o
C.  Wild-type animals accumulated at their cultivation temperature (Figure 

3.3A).  For example, when grown at 20
o
C most animals migrate to the center of the 

gradient, approximately 20
o
C (Figure 3.3A).  Both glia-ablated lines failed to migrate 

appropriately and displayed features of thermophilic behavior (Figure 3.3, B-C).  This is 

clearest for animals grown at 20
o
C which accumulate evenly at all temperatures greater 

than 20
o
C (Figure 3.3, B-C).  Note that little difference from control animals is expected 

when ablated animals are cultivated at 25
o
C if they display thermophilic behavior. 
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ttx-1 mutants display cryophilic behavior and also have defects in AFD 

development (Hedgecock and Russell, 1975; Mori and Ohshima, 1995; Satterlee et al., 

2001).  We found that ttx-1(p767) animals in which amphid sheath glia had been 

genetically ablated were also cryophilic (Figure 3.3D).  This finding suggests that glial 

removal specifically affects only some aspects of AFD functions but does not abolish 

thermosensation.  Importantly, it also implies that the AFD defects observed do not result 

from general degeneration of the neuron upon sheath ablation as they can be suppressed 

in ttx-1 mutants. 

To determine whether the observed defects in AFD function could be due to 

underlying morphological defects, we examined the AFD neuron by fluorescent 

microscopy and EM.  In glia-ablated animals, the AFD neuron lacked the microvilli-like 

protrusions that are seen in wild-type animals (Figure 3.3, E-F).  EM analysis supported 

these observations. In animals in which a single amphid sheath glia was laser ablated, the 

mock-ablated amphid contained about 25 microvilli, visible as double-membrane rings 

indicated by arrowheads in Figure 3.3G.  In contrast, no microvilli were detected in the 

glia-ablated amphid (Figure 3.3H). 

In ttx-1(p767) mutants the AFD microvilli are not present and the neuron ends in 

a single, long cilium (Perkins et al., 1986).  As development of a single long cilium is 

probably the default fate of ciliated neurons in C. elegans, the ttx-1 phenotype has been 

interpreted as indicating incomplete differentiation of the AFD neuron (Satterlee et al., 

2001).  Since a long cilium is not observed in glia-ablated animals, AFD differentiation is 

likely to be normal and the glia might be specifically required for microvilli elaboration. 
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The current model proposes that the AFD neuron mediates thermophilic responses 

in C. elegans and that perhaps another neuron is required for cryophilic responses.  This 

other hypothetical neuron might be AWC (Kuhara et al., 2008).  As amphid sheath glial 

removal is likely to affect other amphid neurons including AWC, the thermophilic 

behavior of sheath-ablated animals might be explained by defects in this other 

hypothetical cryophilic neuron with AFD function being intact.  However, as the data in 

support of a second temperature sensing neuron is weak and because AFD morphology is 

abnormal in ablated animals, it is likely that proper AFD function requires the presence 

of sheath glia.  However, laser-ablation of AFD neurons results in athermotactic animals 

(Mori and Ohshima, 1995) suggesting that glial removal does not abolish AFD function. 

 

Channel neuron behavioral deficits in sheath glia-ablated animals 

Eight amphid neurons end in unmodified cilia that have direct access to the 

environment through a channel provided by the sheath and socket glial cells.  One of 

these channel neurons, ASE, mediates chemotaxis toward NaCl (Bargmann and Horvitz, 

1991a).  To examine ASE function, we tested whether glia-ablated animals could 

properly migrate in a NaCl gradient.  As shown in Figure 3.4A, wild-type animals 

preferentially migrate towards the NaCl peak concentration.  Sheath glia-ablated animals 

failed to accumulate at the peak of the NaCl gradient.  Thus, both glia-ablated lines 

migrate randomly in the gradient (p<0.001) and perform as poorly as do che-2(e1033) 

control animals, Figure 3.4A. 
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Figure 3.3: AFD functional and morphological defects in glia-ablated animals
(A) Thermotaxis profile of wild-type animals cultivated at three different temperatures.  (B 
and C) Glia-ablated animals show thermophilic behavior.  (D) Glia-ablated ttx-1(p767) ani-
mals are cryophilic, the reported behavior of ttx-1(p767) mutants.  (E and F)  Glia-ablated 
animals lack the AFD villi seen in wild-type animals (arrowhead).  Scale bar, 5 μm.  (G and 
H) EM showing lack of AFD villi in absence of glia.  Scale bar, 0.5 μm. 
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C. elegans avoids certain noxious stimuli such as high osmolarity (Culotti and 

Russell, 1978).  This behavior is mediated by the ASH amphid neuron, which acts as a 

polymodal nociceptor (Bargmann et al., 1990).  Osmolarity avoidance was tested by 

placing a single animal inside a 4M fructose ring, serving as an osmotic barrier, and 

determining how many times the animal avoided the barrier, indicated by a sharp turn 

upon reaching the barrier.  Most (90%) wild-type animals responded properly, i.e. they 

never crossed the barrier during the ten minutes of observation or did so after being 

repelled by it more than eight times (Figure 3.4B).  Most sheath-ablated animals crossed 

the barrier on their first or second attempt with only 20% (p<0.001) responding to the 

barrier (Figure 3.4B).  Both lines lacking glia tested were as defective as osm-6(p811), a 

mutant with severe osmosensation defects (Collet et al., 1998), Figure 3.4B. 

C. elegans detects volatile repellents with at least three neurons: AWB, ASH, and 

ADL.  To assess the function of ADL, we assayed animals for avoidance of 1-octanol.  In 

long-range assays, 1-octanol avoidance is mediated mostly by the ADL neurons with 

ASH also mediating part of the response (Troemel et al., 1995; Troemel et al., 1997; 

Chao et al., 2004).  Glia-ablated animals were completely defective in long-range 

avoidance of 1-octanol (Figure 3.4C).  Given the severity of the defect, it is likely that 

both ADL and ASH neurons cannot sense 1-octanol properly in absence of sheath glia. 

 

Sheath glia are required for sensory neuron lipophilic dye uptake 

When C. elegans are soaked in a solution of lipophilic dye, such as DiI, some 

amphid channel neurons, as well as the AWB sheath glia-embedded neuron, take up and  



58

Figure 3.4: Glia removal affects channel neuron function
(A) Glia-ablated animals fail to detect the source of a 0.2 M NaCl gradient (p<0.001), an 
ASE-mediated behavior.  (B) Glia-ablated animals fail to avoid a 4M fructose osmotic 
barrier (p<0.001), an ASH-mediated behavior.  osm-6, osm-6(p811) chemosensory mutants.  
(C) Glia-ablated animals fail to avoid 1-octanol in a long-range assay (p<0.001), a behavior 
mediated by the ADL and ASH neurons.  (D) Glia are required for neuronal uptake of 
DiI (red).  Only the right amphid sheath glia is ablated.  The AWC neuron (green, odr-1 
pro::YFP) is shown to indicate the location of the dendrite bundle.  Error bars, standard 
deviation of 12 or more assays.
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concentrate the dye.  Mutants with structurally defective cilia fail to uptake dye (Perkins 

et al., 1986; Starich et al., 1995), indicating that a normal sensory cilium is required for 

this activity.  We found that uptake of DiI was completely blocked in all amphid neurons 

in glia-ablated animals (Figure 3.4D).  In the animal in Figure 3.4D, only the right sheath 

glia is ablated, thus dye filling is abolished only in the right amphid.  Further, we never 

observed dye uptake in more than 1000 genetically ablated animals. 

The mechanisms of dye filling remain unclear.  Based on the chemical structure 

of the dyes, they should label any cell membrane they come in contact with as the 

processes should be passive.  However, while all channel cilia should have equal access 

to the external environment, and presumably dyes, only a subset of the cilia are able to 

concentrate the dye, suggesting that some specialized membrane composition facilitates 

dye uptake in these neurons.  In addition, while most neurons can take up different dyes, 

AWB uptakes DiI but not FITC while ADF concentrates FITC but not DiI (Herman, 

1984; Hedgecock et al., 1985).  Regardless of the underlying mechanisms, dye filling 

might serve as a proxy for neuronal function as it correlates with the presence of 

abnormal cilia and behavioral defects (Perkins et al., 1986; Starich et al., 1995). 

  

Sheath glial ablation does not affect channel neuron cilia morphology 

Because previously we found morphological abnormalities in neurons displaying 

behavioral deficits, we examined the morphology of two neurons, the right ASE neuron 

(ASER) and ADF.  Surprisingly, the morphology of both neurons appeared normal in 

glia-ablated animals as visualized by confocal microscopy (Figure 3.5, A-D). 
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Figure 3.5: Channel neuron cilia are not affected by glia removal
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Figure 3.5: Channel neuron cilia are not affected by glial removal 

(A through D) The morphology of amphid channel neurons is not affected by glial 

removal. ASER, gcy-5 pro::GFP; ADF, T08G3.3 pro::RFP.  Scale bar, 5 μm.  (E) A 

schematic depiction of the amphid opening indicating the level of the cross sections in F 

to J.  Adapted from (Perkins et al., 1986).  Sheath glia, green; socket glia forming the 

pore, dark grey; channel neurons, red; sheath embedded neurons, blue.  In cartoons, 

anterior is up, scale bar 1 μm.  (F) A wild-type amphid near the beginning of the cilia 

(arrowhead).  The cuticle lining the pore is indicated by the arrow.  (G) A glia-ablated 

animal in which the amphid channel appears open.  Arrowhead, beginning of a cilium.  

(H) Another glia-ablated animal in which the beginning of a cilium is seen (arrowhead).  

An abnormal EM-dense matrix (asterisks) is seen within the channel.  (I) Wild-type 

channel cilia (arrowhead) displaying the proper microtubule arrangement.  The 

autocellular junction of the socket glia is indicated by the arrow.  (J) Glia-ablated animals 

also have normal channel cilia (arrowhead). In EM images, dorsal is up, scale bar 200 

nm. 
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EM analysis confirmed that channel neuron cilia morphology remained unaltered 

in glia-ablated animals.  All eight channel neurons possessed cilia that were of wild-type 

length and displayed proper anatomy as judged by microtubule organization (Figure 3.5, 

I-J).  However, EM examination revealed that in about half the animals (4/9) an 

uncharacterized EM-dense matrix accumulated within the socket channel at the very tip 

of the cilia.  Whereas in wild-type amphids the socket channel opening is empty and 

clearly visible (Figure 3.5F), in the glia-ablated amphid of the same animal an EM-dense 

matrix appears to plug the socket channel (Figure 3.5H, asterisks; note the first cilium 

appearing, arrowhead).  In other analyzed animals (5/9), no matrix was seen plugging the 

socket channel, but the channel appeared partially collapsed (Figure 3.5G).  It is unlikely 

that this matrix completely blocks the cilia from accessing the environment or that 

molecules such as fructose and DiI cannot diffuse through the matrix.  In animals in 

which no matrix is observed but the socket channel appears collapsed, small molecules 

should be able to reach the cilia given the size of the channel opening that is observed, 

about 70 nm (Figure 3.5G).  If socket channel collapse was the cause of the Dyf defects 

observed, one might expect a range of severity in the phenotype mirroring the extent of 

channel collapse in different animals.  As genetically ablated animals are 100% Dyf, it is 

unlikely that this phenotype is caused by a defect in physical access to the cilia. 

 

Cilia resident proteins localize normally in absence of glia 

As channel cilia have abnormal function yet wild-type morphology, we asked if 

proteins that localize within these cilia fail to do so after glial removal.  Cilia morphology  
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Figure 3.6: Cilia components localize properly in absence of glia
(A) DYF-11, an IFT-B particle component and (B) CHE-11, an IFT-A particle component 
(Qin et al., 2001), localize normally in amphid cilia of glia-ablated animals.  ODR-10, an 
odorant receptor (Sengupta et al., 1996), localizes normally when expressed in the AWC 
(C), AWA (D), or ASH (E) cilia of glia-ablated animals.  (F) TAX-4, a cyclic nucleotide 
gated channel subunit (Komatsu et al., 1996), localizes normally in glia-ablated animals. 
Anterior is up, scale bar 10 μm.
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and function depends on intraflagellar transport (IFT).  Two IFT component proteins, 

CHE-11 (IFT-A) and DYF-11 (IFT-B), localized normally in animals lacking glia (Figure 

3.6, A-B). 

Furthermore, despite the morphological defects observed in some neurons, normal 

localization to the remaining ciliary rudiments was observed for many olfactory signaling 

proteins: the odorant receptor ODR-10 localized properly in AWB (Figure 3.1F), AWA, 

AWC, and ASH (Figure 3.6, C-E); the G-alpha protein ODR-3 in AWA (Figure 3.1D); 

and the cyclic nucleotide gated channel subunit TAX-4 in AWC (Figure 3.6F).  Together, 

these findings suggest that some cilia functions, minimally IFT, remain normal in glia-

ablated animals. 

 

Glia are required for Ca
2+

 dynamics in the ASH neurons 

The AWA, AWC, and AFD behavioral defects in glia-ablated animals might be 

explained by the abnormal cilia morphology of these neurons.  However, channel neuron 

cilia appear normal in absence of glia, so at least for these neurons, glia are required for 

sensory neuron function.  To examine where in the signal transduction pathway this 

defect might arise, we imaged Ca
2+

 levels in sensory neurons.  We chose to image Ca
2+

 as 

it is thought that the main output of sensory transduction in C. elegans cilia is an 

elevation of somatic Ca
2+

 levels since C. elegans lacks action potentials typical of most 

other organism‟s neurons (Bargmann, 1998).  We used the genetically encoded Ca
2+

 

sensor G-CaMP (Nakai et al., 2001) to test whether the ASH neuron, which cannot 

mediate proper osmosensation in absence of glia, undergoes normal Ca
2+

 level changes in  
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Figure 3.7: Glia are required for Ca responses in sensory neurons
(A) As determined by G-CaMP fluorescence, ASH responds to both the application and 
removal of 1M glycerol.  Shaded region corresponds to stimulus duration, 20 seconds.  
(B) In glia-ablated animals, ASH fails to respond to glycerol.
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response to high osmolarity.  As previously described (Hilliard et al., 2005), wild-type 

animals display increases in intracellular Ca
2+

 following exposure to and removal of an 

osmotic stimulus of 1M glycerol (Figure 3.7A).  ASH neurons in sheath glia-ablated 

animals fail to respond to both the onset and removal of the glycerol (Figure 3.7B).  This 

total absence of any Ca
2+

 dynamics indicates that glia are required for the early steps of 

sensory transduction.  

To determine whether neuronal signaling activity downstream of Ca
2+

 elevation 

was disrupted, we expressed the light-activated cation channel channelrhodopsin-2 

(ChR2) (Nagel et al., 2003) within ASH in sheath glia-ablated animals.  ASH is a general 

nociceptor neuron (Bargmann et al., 1990; Kaplan and Horvitz, 1993; Hilliard et al., 

2005), hence its exogenous activation with light should result in a backing motion as the 

animal tries to avoid the phantom noxious stimulus.  In the absence of retinal, a 

compound not synthesized by C. elegans and an obligate cofactor of ChR2, animals fail 

to exhibit backward locomotion in response to a 1 s light pulse (Figure 3.8).  However, in 

the presence of retinal, both wild-type and glia-ablated animals initiate backward 

locomotion (Figure 3.8).  These results suggest that signaling in ASH downstream of 

Ca
2+

 elevation is intact, and provide evidence that glia are not required for ASH health or 

viability.  Moreover, they suggest that glia can affect Ca
2+

 increases within sensory 

neurons in response to environmental stimuli. 

 

 

 



67

Figure 3.8: Glia are not required for neuronal function downstream of Ca entry
Activation of ASH-expressed channelrhodopsin2 by light, in the presence of retinal, causes 
animals to move backwards.  n=30 for each condition.
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Discussion 

Here we demonstrate that C. elegans provides a good model for dissecting glial 

roles in sensory neuron function.  The simple approach of removing glia and then 

assaying sensory neurons for function and morphology proved fruitful for the amphid and 

can be extended to other C. elegans sensilla.    

Taken together, our observations suggest that glia regulate at least three different 

properties of sensory neurons: 1) cilia morphology, which is defective mainly in AWA, 

AWC, and AFD after glial ablation; 2) neuronal function as assayed by behavior 

generation, which is defective in some channel neurons despite the fact that they appear 

morphologically normal; and 3) neuronal dye uptake, which is defective even in the 

AWB neurons which retain their shape and function after glial removal.  Thus, each of 

these properties in at least some of the amphid sensory neurons requires the presence of 

the sheath glia. 

 

Glia are required for cilium morphology 

The amphid sensillum is composed of twelve sensory neurons whose dendritic 

cilia display stereotyped morphology.  How might glia affect cilia shape?  Two broad 

models can be defined: glia affect intraflagellar transport which is required for cilium 

formation or glia act through signaling events that result in microtubule reorganization.  It 

is unlikely that glia affect IFT per se as channel cilia have no morphological defects in 

glia-ablated animals, but glia might be required for the transport of specific proteins 
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within cilia.  Although we have been unable to find cilia-resident proteins mislocalized in 

absence of glia, there is some evidence that supports this hypothesis. 

Previous EM analysis has shown that mutants with defective IFT possess 

abnormal cilia (Lewis and Hodgkin, 1977; Perkins et al., 1986).  These ciliary defects 

could be grouped in two classes.  The first class, composed of the amphid channel 

neurons which possess simple singly or doubly ciliated dendrites, displays short cilia in 

IFT mutants.  These defects result from abnormalities in the cilium itself which lacks 

parts of its axonemal proteins and is therefore not properly assembled (Scholey, 2003).  

The AWC cilium, defining the second class, fails to properly spread within the sheath 

glia in IFT mutants (Perkins et al., 1986).  The AWA cilia can likely be grouped with 

AWC but their EM reconstruction is difficult so it has not been characterized to the same 

extent.  The AWC cilium defects observed in IFT mutants are unlikely to result directly 

from the shorter cilium but rather from lack of intraflagellar transport of particular 

proteins within the cilium.  For example, mutants with defective dendritic transport, such 

as unc-101, a -1 subunit of the AP-1 clathrin adaptor complex, possess normal cilia in 

terms of microtubule organization but have defective AWC cilia wings (Dwyer et al., 

2001).  Together, these observations suggest that dendritic and IFT transport is required 

for specific molecules to reach the AWC cilium in order to control its morphology.  What 

these molecules might be remains unknown and our efforts to identify them have been 

unsuccessful (see below). 

While IFT is required for the proper formation of almost all amphid cilia, the 

AFD neuron microvilli-like structures do not depend on this process (Perkins et al., 

1986), although a recent report has claimed abnormal thermotaxis in IFT mutants (Tan et 
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al., 2007).  However, glia are required for the proper formation of AFD protrusions.  

Thus, glial removal does not affect channel cilia but does abolish AFD villi, the opposite 

phenotype of IFT mutants, further evidence that glia do not disrupt general IFT.  It is 

interesting to note that although no finger-like projections remain in the absence of glia, 

the animals can still sense temperature as they display thermophilic behavior, indicating 

that these structures are not absolutely required for temperature sensation.  This 

conclusion is supported by ttx-1 mutants, which have no villi but retain some level of 

thermosensation (Satterlee et al., 2001). 

 

AWC dysfunction in absence of glia 

In the simplest explanation, the AWC odortaxis defects of glia-ablated animals 

arise from the underlying morphological defects.  Although it is unclear why AWC cilia 

adopt the wing-like shape, one hypothesis is that this increases the total surface area 

resulting in better odorant detection.  Thus, glial removal decreases the total area of the 

cilium and, therefore, its sensitivity. 

However, the opposite could be true, namely that abnormally functioning cilia 

cannot maintain their proper morphology.  In support of this view, abnormal sensory 

transduction within the AWC cilia results in abnormal cilia morphology.  For example, 

removal of the G-alpha protein odr-3, an olfactory transduction component, or 

overexpression of a constitutively active form of this protein results in abnormal AWC 

wing formation (Roayaie et al., 1998).  Decreasing AWB neuron activity results in 

expansion of the AWB cilia membrane, a defect that is suppressed by increased levels of 
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ciliary cGMP or Ca
2+

 and that requires IFT (Mukhopadhyay et al., 2008).  This suggests 

that, at least for these two sheath-embedded neurons, activity levels might affect cilia 

morphology. 

Of course, a third possibility is that glia are required independently for cilia shape 

as well as function.  

 

Sensory transduction in channel neurons requires glia 

Amphid channel neurons display no morphological defects after glial removal yet 

fail to function properly.  A confounding factor in the analysis of channel neurons is the 

channel opening defects of glia-ablated animals, as behavioral defects might arise due to 

lack of access of the cilia to the environment.  This is unlikely to be the case for several 

reasons.  While both NaCl chemotaxis and osmosensation require an open amphid 

channel, 1-octanol avoidance, a behavior defective in glia-ablated animals, does not.  For 

example, in daf-6 animals in which the sheath channel fails to form and all cilia are 

embedded in the sheath cytoplasm (Perens and Shaham, 2005), the ability to detect 

odorants is preserved.  We found that daf-6 animals can respond to 1-octanol as well as 

AWC- and AWA-sensed odors (data not shown).  Thus, at least the ADL and ASH 

neurons, which mediate 1-octanol avoidance, require glia to function properly.  Further, 

the EM-dense matrix is observed in only half of the animals, while dye uptake is 

defective in 100% of the animals.  And as shown in the next chapter, the channel opening 

is completely normal in fig-1(tm2079) mutants but they fail to dye fill.  fig-1 is only 

expressed in the sheath glia, suggesting a role for these cells in dye uptake. 
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The Ca
2+

 imaging experiments suggest that glia are required for the early steps of 

sensory transduction that lead to somatic Ca
2+

 elevation.  It is difficult to pinpoint the 

defect since we cannot read out activity along each step of the transduction pathway.  To 

rule out the simplest explanations, we verified that several signal transduction proteins 

such as receptors, G-alpha proteins, and the cyclic nucleotide-gated channel localize 

properly in absence of glia.  Furthermore, as the ODR-10 receptor can function normally 

in AWB but not in AWA cilia of glia-ablated animals, it is unlikely that glia are required 

for transportation or presentation of odors to neuronal receptors.  An appealing 

hypothesis to explain glial roles is regulation of the extracellular ionic environment, as 

this can explain the extensive behavioral defects observed.  However, at least AWB can 

function normally in absence of glia, suggesting either that this is not the case or that 

there are differential neuronal requirements for a defined extracellular environment.  

Lastly, the observed defects are limited to the initial Ca
2+

 generating steps as 

elevating Ca
2+

 levels in ASH with channelrhodopsin induces the correct ASH behavior.  

This also indicates that the neurons do not generally degenerate in the absence of glia.  

Somatic Ca
2+

 elevation is thought to occur in a number of steps.  Activation of cyclic 

nucleotide-gated channels allows direct inflow of Ca
2+

 but cytoplasmic Ca
2+

 might be 

further increased by either activation of voltage-gated Ca
2+

 channels or Ca
2+

 release from 

intracellular stores (Hilliard et al., 2005).  It would be interesting to spatially restrict 

channelrhodopsin activation to cilia and assay whether this initial stimulation can cause 

the secondary Ca
2+

 level increases.  
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Identifying molecular components of glia-neuron communications 

The goal of this project was to catalogue any glial roles in sensory neuron 

morphology and function in order to design genetic screens that could identify the 

molecular pathways that enable glia-neuron communication.  The phenotypes discovered 

(defects in behavior, AWC morphology, and dye uptake) are the same as those observed 

in IFT mutants.  Therefore, a screen for any of these phenotypes would yield not only 

mutants that affect sensory neuron development in general but also IFT components, two 

classes of mutants we attempt to avoid.  The IFT proteins are particularly troublesome as 

there are approximately 250 of these proteins, which should cause a large background 

rate.  Reasoning that the presence of all three phenotypes would likely be indicative of 

IFT mutants, we sought to find mutants that affect only one of these phenotypes in hopes 

of isolating mutations affecting sheath glia.  We performed a visual screen for abnormal 

AWC morphology using a fluorescent compound microscope.  Inspection of more than 

12,000 animals yielded 35 mutants with abnormal AWC cilia morphology.  

Unfortunately, a secondary screen for dye uptake yielded no mutants that dye filled 

normally, suggesting that these mutants belong to the IFT class.  In fact, inspection of the 

channel cilia revealed that in many of these mutants cilia were too short, an indication of 

IFT defects.  Perhaps a more fruitful approach would be to screen for AFD shape 

abnormality as the microvilli-like extensions form in the absence of IFT.  This is rather 

difficult due to resolution limitations, but might be facilitated by using membrane-

tethered forms of GFP. 

In conclusion, we have demonstrated that the C. elegans sensory organs are a 

good model system for analyzing glia-neuron interactions and that amphid sheath glia 
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provide their associated sensory neurons with at least three separate activities.  In the next 

chapter, we describe a glial protein that is required for sensory neuron function and dye 

filling thus beginning the molecular characterization of the phenotypes uncovered here. 
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Summary 

Removal of the major glial cell in the amphid sensory organ of C. elegans results 

in sensory neuron deficits.  Specifically, glial ablation affects neuronal morphology, 

behavior generation, and neuronal uptake of lipophilic dyes.  To understand the 

molecular bases of these glial activities, we characterized a gene, fig-1, that encodes a 

labile protein with conserved thrombospondin type I (TSP1) domains.  FIG-1 likely 

functions extracellularly, is essential for neuronal dye uptake, and also affects behavior.  

As thrombospondin 1 is a glial-secreted protein required for synapse formation in mice, 

these results suggest that some of the molecular components underlying glia-neuron 

interactions might be conserved.  
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Molecular pathways of glia-neuron interactions 

Although several glial roles in nervous system function have recently been 

described, to a large extent, the molecular pathways underlying these functions remain 

poorly characterized (Barres, 2008).  As described in the previous chapter, glial removal 

in the amphid sensory organ of C. elegans results in abnormal sensory neuron function, 

altered cilia morphology in some neurons, and inability of neurons to uptake lipophilic 

dyes.  To understand how sheath glia contribute to these neuronal properties, we sought 

to uncover the relevant glial molecular players.  Many C. elegans mutants that disrupt 

neuronal development and intraflagellar transport are defective in amphid sensory neuron 

behavior generation, morphology, and dye filling (Perkins et al., 1986; Starich et al., 

1995).  Therefore, forward genetic screens to identify glia-specific genes required for 

these processes would be encumbered by a large background rate of mutations affecting 

neuronal genes.  To circumvent these difficulties, we took a candidate approach. 

Choosing candidate genes was enabled by the work of Maya Tevlin, a post-

doctoral fellow in the laboratory, who had compiled a list of amphid sheath glia-

expressed genes.  To identify genes enriched in these glia, she dissociated developing 

embryos expressing the amphid sheath glial reporter vap-1 pro::GFP, cultured these 

dissociated cells, and sorted them into GFP-expressing and non-expressing groups using 

fluorescence-activated cell sorting (FACS).  Comparison of the mRNA levels from each 

cell population identified 298 genes exhibiting greater than four-fold enrichment in 

amphid sheath glia.  Of these genes, 159 are predicted to encode transmembrane or 
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secreted proteins that could potentially mediate glia-neuron interactions in the amphid 

sensory organs. 

Three glia-enriched proteins were particularly interesting as they contained 

thrombospondin type I (TSP1) domains (Adams and Tucker, 2000; Adams, 2001).  As 

well as having other roles, thrombospondins are a class of extracellular proteins that are 

secreted by astrocytes and are required for proper synapse formation (Christopherson et 

al., 2005).  To test if TSP1 domain proteins might play a role in the amphid, Maya 

obtained deletions in 2 of these genes and found that a deletion in one of them, F53B7.5, 

prevented neuronal dye uptake. 

Gene-specific knockouts are difficult to obtain in C. elegans and, often, the 

random mutagenesis performed to induce them results in complex rearrangements that 

complicate phenotype analysis.  To screen through these 298 glial genes systematically, 

we performed RNA interference (RNAi) against most of these genes and tested neuronal 

morphology and dye uptake.   

 

Results 

An RNAi screen for glial factors with neuronal phenotypes 

Glial ablations revealed two robust phenotypes that can also be scored in large 

numbers of animals: abnormal AWC morphology and dye filling (Dyf) defects.  We 

sought to phenocopy these defects by performing RNAi against the set of glia-enriched 

genes.  Although postembryonic glial removal is sufficient to induce these phenotypes, 
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we performed RNAi by plating L4 hermaphrodites and scoring the progeny to ensure 

maximal knock-down of the protein levels.  To optimize knock-down efficiency, 

experiments were performed in lin-35 mutants, a genetic background that is more 

sensitive to RNAi (Lehner et al., 2006).  The odr-1 pro::RFP transgene was used to image 

AWC morphology.  Screening of progeny in L4 and young adult stages, when AWC 

morphology is easiest to score, yielded no hits for genes that might alter AWC cilium 

shape. 

A second morphological defect resulting from glial removal is the lack of AFD 

villi-like projections.  A similar RNAi screen was also unsuccessful in identifying glial 

genes that might underlie this phenotype.  However, the difficulty of imaging this 

structure under conventional compound microscopy might result in a high false negative 

rate making it impossible to conclude that none of these genes affect AFD morphology. 

Lastly, we screened the 298 sheath glia-enriched genes by RNAi for defects in 

neuronal dye filling in both lin-35 and wild-type animals.  Both screens yielded a single 

gene, F53B7.5, confirming that this gene is required for dye filling.  Based on its 

phenotype and its glial expression (M. Tevlin), we renamed this gene fig-1 (Dyf, 

expressed in glia). 

 

fig-1 is continuously required for neuronal dye uptake 

RNAi against fig-1 resulted in dye filling defects in both the amphid and phasmid 

sensory organs (Figure 4.1B).  Consistent with these defects, fig-1 is expressed 



80 

exclusively in the amphid and phasmid sheath glia (data of Maya Tevlin).  A 1,117 bp 

deletion in fig-1, allele tm2079, also perturbed amphid and phasmid dye filling (Figure 

4.1B).  This defect could be rescued by introduction of a cosmid spanning the fig-1 locus 

into fig-1(tm2079) mutants, confirming that the fig-1 lesion indeed disrupts amphid and 

phasmid neuron dye filling.  fig-1(tm2079) mutants exhibit normal neuronal and amphid 

sheath glial structure as assessed using fluorescence reporter transgenes and EM 

reconstructions (Figure 4.1, C-D), suggesting that fig-1 functions in a non-structural 

capacity to regulate amphid neuron dye filling.   

Interestingly, fig-1(RNAi) defects can be induced at all developmental stages and 

can be observed within 24 hours of exposure of animals to bacteria expressing fig-1 

dsRNA (Table 4.1), suggesting that FIG-1 does not play a developmental role and is 

required continuously.  This is consistent with the results of the ablation studies which 

revealed a post-developmental requirement for glia in dye uptake. 

  

Table 4.1: fig-1 activity is required continuously for dye filling 

 Normal dye filling (%) 

Larval stage
a 

Amphid Phasmid 

L1 (empty vector) 100 100 

L1 80 35 

L2 85 43 

L4 100 72 

  
a 
Animals were grown on RNAi plates starting at different larval stages and were assayed 

for dye filling as adults.  For L4 animals, this was 24 h of exposure.  n=50 for each. 
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Figure 4.1: The glial gene fig-1 is required for dye filling and neuronal function
(A) FIG-1 domain structure. Red, thrombospondin type 1 domain; green, C6 repeats; blue, 
EGF-like type II domain; bar, 200 amino acids.  The predicted protein produced in  different 
fig-1 alleles.  (B) fig-1 is required for DiI accumulation.  One representative line shown 
for each condition: C38G2, cosmid containing fig-1; glial promoter, T02B11.3; neuronal 
promoter, sra-6; n>40 for each.  fig-1 short isoform unless indicated.  (C) Amphid cartoon 
with the AFD neuron shown in blue, note the villi-like projections at the level of the cross 
section.  (D) In fig-1(tm2079) animals, the AFD villi appear normal (arrowhead) as do the 
channel cilia (arrow).  Dorsal is up, scale bar 200 nm.
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To determine whether FIG-1 protein can act cell non-autonomously, we expressed 

a fig-1 cDNA transgene under either sheath glia (T02B11.3) or sensory neuron (sra-6, 

expressed in ASH, and weakly in ASI, PHA, and PHB) promoters.  We found that both 

transgenes can rescue fig-1(tm2079) mutants (Figure 4.1B), as would be expected if FIG-

1 acted extracellularly. 

 

FIG-1 domain structure 

The fig-1 locus is predicted to generate two alternatively spliced mRNAs 

encoding proteins of 2892 (short) and 3095 (long) amino acids.  Both predicted proteins 

contain an N-terminal signal sequence, followed by a type 1 thrombospondin domain 

(TSP1), 18 C6 domains, and a second TSP1 domain (Figure 4.1A).  The larger protein is 

also predicted to contain an additional single EGF-like type II motif at its C-terminus.  

Although FIG-1 has no mammalian or Drosophila homologues, both the TSP1 and EGF-

like motifs are characteristic domains found in astrocyte-secreted thrombospondin 

proteins implicated in synapse development (Christopherson et al., 2005).  The C6 

domain, so called because it contains six conserved cysteine residues, appears to be 

present only in nematodes and has no known functions. 

To confirm the domain structure of FIG-1, we isolated the fig-1 cDNA.  We 

verified the presence of the short transcript, but were not able to isolate the predicted 

longer isoform.  PCR-amplification from several cDNA libraries resulted in isolation of 

clones that contained the last 4 exons spliced to each other, but these were not properly 

spliced to the rest of the gene and should not result in successful translation.  
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Conservation of these last 4 exons in other species leads us to believe that they are likely 

to be part of the gene locus.  It is possible that the long form is only spliced under certain 

conditions that were not represented in the animals used to make the cDNA libraries. 

However, we cannot be certain when or if the longer isoform containing the EGF-like 

motif is produced in vivo.  In tm2079 mutants, FIG-1 should be truncated at the 14
th

 C6 

repeat thus deleting the last 4 C6 repeats, the second TSP1 domain, and the EGF-like 

domain (Figure 4.1A). 

 

tm2079 mutants are sluggish and avoid bacterial lawns 

Mutants that harbor a deletion in the fig-1 locus have prominent defects in 

bacteria sensation.  When placed on an agar plate that contains a lawn of E. coli, the 

animal‟s food in laboratory conditions, tm2079 mutants accumulate just outside the edge 

of the lawn.  In contrast, wild-type animals prefer to stay on the lawn and disperse evenly 

on it.  This bacteria avoidance phenotype is different from that of npr-1 mutants (de Bono 

and Bargmann, 1998) which accumulate on the thickest part of the lawn, just inside the 

edge, since that is where oxygen levels are lowest (Gray et al., 2004).  Perhaps due to this 

self-induced starvation from avoiding bacteria, tm2079 animals are shorter than wild-type 

animals and appear unhealthy.  Further, tm2079 animals are sluggish on plates and move 

slowly when prodded.  To confirm this observation, we measured body thrashes in buffer, 

a measurement of the animal‟s locomotion.  Instead of the smooth sinusoidal bends of 

wild-type animals, tm2079 animals often kinked and their thrashing rate (109 

thrashes/min) was 59% that of wild-type animals (182 thrashes/min). 
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In contrast to the Dyf phenotype, which was rescued by introduction of the fig-1 

cDNA or cosmid, the bacteria avoidance and locomotion defects of tm2079 were not.  

While this could be because the short cDNA isoform is not sufficient for rescue or 

because the genomic region present in the fosmid does not contain all regulatory 

elements (especially those in the 3‟ region), it raised the question whether these 

phenotypes are in fact due to loss of fig-1 activity or another closely linked gene.    

 

A non-complementation screen for new fig-1 alleles 

One way to confirm that a gene is responsible for a phenotype is to find 

independent alleles of the same gene that have similar phenotypes.  To obtain new alleles 

of fig-1, we performed a non-complementation screen for dye uptake.  Briefly, unc-

6(e78) hermaphrodites, a strain that is almost paralyzed because of an X-linked mutation, 

were mutagenized and crossed to fig-1(tm2079) males.  F1 cross progeny were identified 

by their ability to move properly and these animals were screened for those that failed to 

dye fill.  From these F1 animals, F2 progeny that did not carry the tm2079 deletion were 

selected by PCR analysis and were further verified for failure to uptake dye.  Their fig-1 

locus was then sequenced to identify any mutations present. 

This screen identified two new alleles of fig-1, ns305 and ns306.  DNA 

sequencing revealed that ns305 contains a G-to-A transition 4791bp downstream of the 

start site causing a mutation in the splice-donor site GT at the beginning of intron 10.  

Intron 10 is 44 bp long thus lack of splicing should result in a shift in the reading frame; 

this intron also contains two stop codons.  The ns306 allele contained a 16 bp insertion, 
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TCCTCATATTCCAAAT, in the eighth exon 3805 bp after the start site that causes a 

frameshift.  These two mutants should produce proteins of 1376 and 1088 amino acids 

respectively, Figure 4.1A.  These protein fragments resemble that produced in tm2079 

animals but contain fewer C6 domains.  

Only 76% of fig-1(ns305) animals failed to uptake dye in the phasmid and 

approximately a third of the Dyf phasmids showed very faint fluorescence; these defects 

are less severe than that of tm2079 animals which show no dye filling.  Importantly, 

ns305 animals did not border on bacterial lawns.  This would seem to suggest that 

bordering cannot be attributed to lack of fig-1 activity, however, as this allele does not 

affect dye filling as strongly as tm2079, it is possible that ns305 retains enough fig-1 

activity to not result in bordering defects.  ns306 animals had a severe Dyf phenotype 

with 100% of the phasmids and 90% of amphids failing to uptake dye.  Although we 

have not had the chance to characterize these animals carefully, they appeared to avoid 

bacterial lawns but did not border to the same extent as tm2079 animals. 

  

tm2079 locomotion and bacteria avoidance defects require serotonin 

The bacteria avoidance phenotype of tm2029 animals is rather peculiar as bacteria 

are not only a natural food source of C. elegans but also the sole food provided for them 

on Petri dishes.  There are two characterized C. elegans food responses: basal and 

enhanced slowing (Sawin et al., 2000).  In the basal slowing response, an animal that has 

been briefly removed from food will slow down when encountering a bacterial lawn, 

presumably because this increases the chance it will not leave this nutrient-rich area.  
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This response is abolished in animals that cannot produce dopamine (Sawin et al., 2000).  

The enhanced slowing response occurs when starved animals encounter a bacterial patch 

at which time they come to almost a complete stop; no enhanced slowing is observed in 

animals lacking serotonin and addition of exogenous serotonin causes fed animals to slow 

down (Sawin et al., 2000).    

To test if the phenotypes of tm2079 animals required dopamine, we examined fig-

1(tm2079); cat-2(e1112) double mutants, CAT-2 being a tyrosine hydroxylase required 

for dopamine synthesis (Lints and Emmons, 1999).  While the locomotion of these 

animals improved somewhat, they still avoided bacteria indicating that dopamine is not 

required for this response.  Serotonin synthesis in C. elegans requires TPH-1, a 

tryptophan hydroxylase that catalyzes the rate-limiting step in serotonin biosynthesis (Sze 

et al., 2000), therefore, we examined fig-1(tm2079); tph-1(mg280) animals.  These 

animals did not avoid food, moved normally, and appeared healthy.  However, dye 

uptake was still abnormal in absence of serotonin.  

 

fig-1(tm2079) animals have limited chemotaxis defects 

Behavioral testing of fig-1(tm2079) animals is confounded by their mobility 

defects, so we analyzed fig-1(tm2079); tph-1(mg280) double mutants which move 

normally.  The double mutants performed as well as tph-1(mg280) control animals in 

odortaxis and chemotaxis assays mediated by the AWA, AWB, AWC, and ASE neurons 

(Figure 4.2, A-D), suggesting that FIG-1 is not required for these neuronal functions. 
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Figure 4.2: fig-1 mutants have limited behavioral defects
AWC (A), AWA (B), AWB (C), and ASE (D) function is not affected in fig-1(tm2079) 
animals.  che-2, che-2(e1033) chemosensory mutants; error bars, standard deviation of 8 
or more assays.  (E) fig-1 is required for 1-octanol avoidance, an ADL and ASH mediated 
behavior.  fig-1(tm2079) mutants perform worse at all three concentrations, and these 
defects can be rescued by fig-1(+).  Asterisks, p < 0.001 (Student’s t-test); error bars, 
confidence intervals at 95% from at least 24 assays.  To suppress locomotory defects of 
fig-1(tm2079) animals, all assays were performed in the tph-1(mg280) background.

A B

C D

0.0

0.2

0.4

0.6

0.8

1.0

C
he

m
ot

ax
is

 In
de

x

AWC

Iaa
Bz

tph-1 tph-1; fig-1 che-2

0.0

0.2

0.4

0.6

0.8

C
he

m
ot

ax
is

 In
de

x

ASE

tph-1 tph-1; fig-1 che-2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

C
he

m
ot

ax
is

 In
de

x

AWB

tph-1 tph-1; fig-1 che-2

0.0

0.2

0.4

0.6

0.8

1.0

C
he

m
ot

ax
is

 In
de

x

AWA

Pyr
Dia

tph-1 tph-1; fig-1 che-2

E

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

100% 50% 33%

C
he

m
ot

ax
is

 In
de

x

1-Octanol concetration

tph-1
tph-1; fig-1
tph-1; fig-1; [fig-1 pro::fig-1(short)]

***
***

***

***

ADL + ASH

Nona

NaCl



88 

However, we did identify a modest but significant defect in long-range 1-octanol 

avoidance in these animals (Figure 4.2E).  fig-1(tm2079); tph-1(mg280) mutants 

performed significantly worse than tph-1(mg280) at all three 1-octanol concentrations 

tested.  Importantly, this behavioral defect was rescued by introduction of the short FIG-1 

isoform under its own promoter. 

Avoidance of long-range 1-octanol is mediated by ADL and, to a lesser extent, 

ASH (Troemel et al., 1997) although ASH plays a more important role in short-range 1-

octanol avoidance (Troemel et al., 1995; Chao et al., 2004).  Thus, there are two possible 

explanations for the fig-1 requirement in this behavior.  FIG-1 could be required only for 

the proper function of ASH, which might explain the modest defect observed.  

Alternatively, FIG-1 could be required for ADL function, but acts redundantly with other 

factors hence only the minor defect.  This might also explain why no defects are observed 

for the other neurons (Figure 4.2, A-D). 

 

A potential role for FIG-1 in Ca
2+

 dynamics in ASH  

The behavioral defects suggest that ASH or ADL require FIG-1 for proper 

function.  Because we can monitor ASH status with G-CaMP, we measured its Ca
2+

 

dynamics in response to stimulation with a high osmolarity solution in tm2079 animals.  

In wild-type animals, exposure to 1M glycerol results in an increase in Ca
2+

 levels that is 

sustained for the duration of the stimulus, at least for 20 s, and a second Ca
2+

 increase 

upon removal of the stimulus, which decays in a few seconds (Figure 4.3A).  Although 

the data is preliminary, tm2079 animals respond to the onset and removal of the stimulus 
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Figure 4.3: FIG-1 might play a role in ASH Ca responses
(A) ASH Ca levels remain elevated for the duration of the stimulus (1M glycerol, shaded 
region).  (B) A trial in which a fig-1(tm2079) animal responds to stimulus onset and 
removal, but fails to sustain elevated Ca levels.  (C) Another trial of the same animal as 
in B, this time showing a normal Ca response.
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but, in half of the trials, they fail to sustain high Ca
2+

 levels for the duration of the 

stimulus (Figure 4.3B).  Interestingly, the same animal can give both normal and 

abnormal responses in different trials (Figure 4.3, B-C).  However, as only limited 

number of animals were tested (n=5, all recordings in one day), further characterization is 

required before any conclusion can be drawn.  It would be interesting to increase the 

stimulus duration in order to observe if the Ca
2+

 oscillations become more evident. 

 

Discussion 

Sensory organs in many species are highly conserved in structure and 

organization.  In addition, recent studies suggest that C. elegans glia share developmental 

similarities with vertebrate glia (Yoshimura et al., 2008).  Thus it is possible that at least 

some of the functions and perhaps the molecular pathways of amphid sheath glia might 

be conserved in other sensory systems.  Here we characterize a glial protein, FIG-1, that 

is important for sensory neuron function and dye filling.  This protein contains two TSP1 

domains, which is intriguing, as recent studies have found important postsynaptic roles 

for astrocyte-secreted thrombospondins in synapse assembly and function 

(Christopherson et al., 2005). 

 

FIG-1 function in sensory organs  

Analysis of the tm2079 allele suggests that the TSP1 domains might be important 

for fig-1 function in neuronal dye uptake and behavior.  The fig-1(tm2079) lesion is a 
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deletion predicted to truncate the protein before the second TSP-1 domain, suggesting 

that this domain is required for dye filling and behavior generation which are defective in 

these mutants.  Moreover, both these defects can be rescued by introduction of the short 

FIG-1 isoform (Figure 4.1), suggesting that the TSP1 but not the EGF-like type II domain 

is required for these FIG-1 activities. 

How might FIG-1 act in sensory organs?  The two prominent domains of the short 

FIG-1 isoform are TSP1 and C6 repeats.  The function of the C6 repeats has not been 

characterized as they are a nematode-specific module but given the large number present 

in FIG-1 it is likely that they play a structural role or mediate interactions with the 

extracellular matrix.  The latter function is consistent with the well-characterized matrix 

interactions of TSP1domains in many species (Adams and Tucker, 2000).  We note that 

extracellular localization of FIG-1 could not be established in these studies as we were 

unable to detect GFP fluorescence of FIG-1::GFP chimera proteins.  However, rescue of 

the dye filling defects of fig-1(tm2079) animals could be achieved by neuronal or glial 

expression suggesting that the protein is secreted.  Consistent with this observation, FIG-

1 contains a signal peptide as well as the two extracellular domains, TSP1 and C6 

repeats.  Still, it would be informative to image the extracellular localization of FIG-1 to 

see if it is released specifically within the amphid channel.  Further, FIG-1 might be only 

secreted around the channel neurons but not the sheath-embedded neurons which would 

be consistent with the normal odortaxis in tm2079 mutants. 

The TSP1 domain can interact with many proteins including collagen, fibronectin, 

TGF-β, heparan sulfate, proteoglycans, and many glycoproteins (Adams and Tucker, 

2000).  A major function of thrombospondin is the modulation of extracellular matrix 
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proteases.  Particularly in clotting, thrombospondin 1 downregulates the activity of 

thrombin through a mechanism in which the two proteins form a complex mediated by 

intermolecular disulfide bonds (Browne et al., 1988).  The abundance of interactions of 

TSP1 domains with extracellular matrix components suggests that they might control 

multiple aspects of the environment in which the sensory cilia reside.   

The extracellular matrix present in the amphid channel is most likely secreted by 

the amphid sheath glial cell, which has a prominent secretory organelle as determined by 

EM (Ward et al., 1975; Perkins et al., 1986).  Indeed, the sheath glial cell transcriptome is 

enriched for secreted proteins (M. Tevlin).  These glial secreted proteins probably act 

through a number of mechanisms to form an appropriate extracellular space in which the 

sensory cilia can function.  One of these glial proteins required for neuronal dye uptake is 

FIG-1.  Interestingly, RNAi against fig-1 in adult animals is sufficient to induce dye 

filling defects, suggesting that FIG-1 must have a high turnover rate.  The continuous 

turnover of the amphid channel matrix raises the possibility that the glia might be able to 

change the composition of this matrix depending on environmental conditions (e.g. 

starvation).  This might in turn modulate the function of amphid neurons on the timescale 

of several hours.  This hypothesis predicts that sheath glial gene expression may be 

modulated by environmental factors.  While we have not observed differential expression 

of FIG-1, the expression of a glial receptor tyrosine kinase (ver-1) is upregulated at 

higher temperatures (unpublished data of Carl Procko in our laboratory). 

fig-1 mutants have only limited behavioral defects.  This could be because the 

deletion does not remove the whole protein or, FIG-1 might act redundantly with other 

proteins to promote neuronal function.  The amphid sheath glia secretes at least two other 
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TSP1 domain-containing proteins, suggesting that they might function in the same 

manner as FIG-1, although FIG-1 might act in conjunction with other proteins.  To 

identify these proteins, a candidate approach could be taken by making double mutants to 

enhance the behavioral defects of fig-1(tm2079) animals.  To isolate the neuronal 

molecules that might interact with FIG-1, one could try to suppress the fig-1 defects.  

This is easiest for the dye uptake defects since a very large number of animals can be 

screened allowing the isolation of even rare gain of function mutations.  This screen is 

likely to yield neuronal genes that bypass the need for FIG-1 in dye uptake. 

 

Might FIG-1 modulate neuronal voltage-gated Ca
2+

 channels? 

Recent work has shown that the EGF-like type II motif might mediate a large part 

of thrombospondin glial functions.  Specifically, the EGF-like domain binds to the α2δ 

subunit of the neuronal voltage-dependent Ca
2+

 channel and this interaction is required 

for thrombospondin-mediated synapse formation (C. Eroglu and B. Barres, personal 

communication).  We have been unable to confirm that this domain is part of the FIG-1 

protein in vivo, but it is possible that this domain is spliced only under specific conditions 

so we may speculate about its function.  Interestingly, fig-1 animals appear to have 

defects in their Ca
2+

 responses (Figure 4.3).  Although the data is preliminary, FIG-1 

might be required to maintain high neuronal Ca
2+

 levels during stimulation.  The only C. 

elegans L-type voltage-gate calcium channel EGL-19 is required for proper ASH neuron 

intracellular Ca
2+

 dynamics, as in egl-19 mutants only 50% of the normal Ca
2+

 increase is 

observed (Hilliard et al., 2005).  The C. elegans genome encodes two α2δ subunits, unc-
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36 and T24F1.6, and only unc-36 is required alongside egl-19 for achieving maximal 

Ca
2+

 responses in cultured mechanosensory neurons (Frokjaer-Jensen et al., 2006).  

Further, at least in the mechanosensory neurons, Ca
2+

 release from internal stores is not 

required as blocking internal release does not affect Ca
2+

 dynamics (Frokjaer-Jensen et 

al., 2006).  Therefore, in light of the mammalian data, a likely mechanism by which FIG-

1 affects ASH Ca
2+

 levels could be by interacting with UNC-36 to modulate the activity 

of the L-type calcium channel.  If this is the case, rescue of the abnormal Ca
2+

 dynamics 

of fig-1(tm2079) mutants should require expression of the full-length protein, which is 

the only isoform that contains the EGF-like domain. 

  

Does fig-1 play a role in bacterial avoidance?  

The most obvious defect of tm2079 animals is their avoidance of bacterial lawns.  

However, we have been unable to rescue this defect by expressing the wild-type form of 

fig-1, raising doubts about the causation of this phenotype by the lesion in fig-1.  To 

determine if this phenotype is due loss of fig-1 activity, we isolated two new alleles that 

disrupt this gene.  One of these alleles, ns306, results in bacteria avoidance as most 

animals are found outside of the bacterial lawn, but animals do not congregate at the edge 

as do tm2079 mutants.  Further characterization of these mutants after performing back 

crosses is required to determine if this is a fig-1 phenotype.  However, it is likely that 

FIG-1 plays some role in sensation of bacteria.  Even if ns306 animals do not border, 

analysis of tm2079/ns306 animals might reveal if this phenotype is caused by loss of 

FIG-1. 
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What role might fig-1 play in bacterial avoidance?  In C. elegans, exposure to 

pathogenic bacteria induces olfactory avoidance of that specific pathogenic strain (Zhang 

et al., 2005).  The pathogenic infection results in increased serotonin levels in the ADF 

amphid neurons and tph-1 animals, which cannot synthesize serotonin, cannot learn to 

avoid pathogenic bacteria (Zhang et al., 2005).  Interestingly, the bacterial avoidance of 

fig-1(tm2079) animals is suppressed by tph-1.  Thus, fig-1(tm2079) animals might 

recognize standard E. coli as pathogenic.  One explanation for this phenotype is that 

tm2079 animals have compromised innate immunity and are prone to infection.  We did 

not observe bacterial infection when inspecting these animals under a compound 

microscope but more careful examination is required to rule out this possibility.  

Alternatively, ADF serotonin upregulation might occur constitutively in fig-1 animals, 

causing them to wrongly classify any bacteria present as pathogenic.  As ADF is part of 

the amphid, it is plausible that FIG-1 might modulate the activity of this neuron.  

However, further characterization of this phenotype is required before conclusions can be 

drawn.  It is important to establish that fig-1 lesions lead to bacterial avoidance and it 

must be shown that this phenotype depends on serotonin being present only within ADF 

and not the other serotonergic neurons of the animal. 

 

In summary, we have identified a glial protein mediating some of the glial 

functions uncovered by the glial ablation experiments.  FIG-1 is required for dye filling 

and has some effects on neuronal function.  This suggests that other glial proteins might 

be required for enabling neuronal function.  
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Summary 

Sensory neurons view the world through their cilia, evolutionarily conserved 

dendritic appendages that convert environmental stimuli into neuronal activity.  Although 

several cilia components are known, the functions of many remain uncharacterized.  

Furthermore, the basis of morphological and functional differences between cilia remains 

largely unexplored.  To understand the molecular basis of cilia morphogenesis and 

function, we studied the C. elegans mutants che-12 and dyf-11.  These mutants fail to 

concentrate lipophilic dyes from their surroundings in sensory neurons, and are 

chemotaxis defective.  In che-12 mutants, sensory neuron cilia lack distal segments, 

while in dyf-11 animals, medial and distal segments are absent.  CHE-12 and DYF-11 are 

conserved ciliary proteins that function cell-autonomously and are continuously required 

for maintenance of cilium morphology and function.  CHE-12, composed primarily of 

HEAT-repeats, may not be part of the intraflagellar transport (IFT) complex, and is not 

required for the localization of some IFT components.  DYF-11 undergoes IFT-like 

movement and may function at an early stage of IFT-B particle assembly.  Intriguingly, 

while DYF-11 is expressed in all C. elegans ciliated neurons, CHE-12 expression is 

restricted to some amphid sensory neurons, suggesting a specific role in these neurons.  

Our results provide insight into general and neuron-specific aspects of cilium 

development and function. 
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Sensory cilia biogenesis and function 

Sensory cells, such as vertebrate photoreceptors, mechanosensory hair cells in the 

ear, and olfactory neurons, project non-motile cilia (Wheatley et al., 1996).  These 

sensory cilia are positioned at the interface between an animal and its environment, and 

transduce information through cell-surface receptors, signal transduction molecules, and 

specialized ion channels to the nervous system (Pazour and Witman, 2003; Efimenko et 

al., 2006; Singla and Reiter, 2006).  The ability of cilia to act as sensory transduction sites 

is due, at least in part, to their specialized morphologies that allow for 

compartmentalization of sensory and signaling components.  How this specialized ciliary 

architecture arises and how signaling molecules are organized within cilia remain poorly 

understood, although genomic and proteomic studies have identified sets of proteins 

conserved in all cilia (Avidor-Reiss et al., 2004; Emoto et al., 2004; Blacque et al., 2005; 

Efimenko et al., 2005). 

The hermaphrodite nematode C. elegans contains 60 ciliated sensory neurons, 28 

of which are assembled into the bilateral amphid and phasmid sensilla (Ward et al., 1975; 

White et al., 1986), located in the head and tail of the animal, respectively.  C. elegans 

sensory cilia are comprised of a proximal basal body, a medial segment containing 

doublet microtubules, and a distal segment consisting of singlet microtubules (Ward et 

al., 1975; Perkins et al., 1986).  Some C. elegans sensory neurons end in modified cilia 

that have a wing- or finger-like morphology (Ward et al., 1975).  Defects in amphid cilia 

structure result in behavioral deficits, as manifested by abnormal chemotaxis to soluble 

attractants (Che phenotype) or to volatile attractants and repellants (Perkins et al., 1986; 



99 

Bargmann, 1993).  Some amphid sensory neurons can take up and concentrate lipophilic 

dyes from their surroundings through a pore and channel generated by two associated 

glial cells (Hedgecock et al., 1985; Blacque et al., 2005).  This dye uptake is generally 

disrupted in animals with abnormal cilia (Dyf phenotype) (Perkins et al., 1986), 

providing a convenient assay for identifying mutants with defects in sensory cilia 

biogenesis and function. 

The assembly and maintenance of C. elegans cilia, like that of flagella, depends 

on intraflagellar transport (IFT), the process by which IFT particles are thought to 

transport cargo in and out of the cilium (Scholey, 2003).  Studies of Chlamydomonas 

reinhardtii flagella suggest that each IFT particle is composed of two biochemically-

defined complexes, A and B (Rosenbaum and Witman, 2002).  The anterograde 

movement of the IFT particle is powered by kinesin-2 molecular motors (Orozco et al., 

1999; Snow et al., 2004), while the retrograde movement depends on an IFT-specific 

dynein (Orozco et al., 1999).  In C. elegans, several components of the IFT-A and IFT-B 

subparticles have been characterized and shown to move within cilia.  Disruption of these 

components results in Che and Dyf defects (Collet et al., 1998; Scholey, 2003; Bell et al., 

2006; Chen et al., 2006). 

Mutants in the C. elegans che-12 and dyf-11 genes were isolated in genetic 

screens for animals displaying dye uptake defects (Perkins et al., 1986; Starich et al., 

1995).  The phenotype of these two mutants is consisted with sensory organ dysfunction, 

and they are likely to encode components of the ciliary proteome.  To better understand 

sensory neuron morphogenesis and function, we cloned and characterized these two 

mutants. 
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Results 

che-12 animals exhibit a restricted set of dye uptake and behavioral defects 

Amphid sensory neurons of C. elegans mutants defective in cilium formation and 

function fail to concentrate lipophilic dyes, such as FITC and DiI, from their 

surroundings and fail to perform some sensory neuron-mediated behaviors, such as 

chemotaxis (Perkins et al., 1986).  Three alleles of the che-12 gene, e1812, mn389, and 

mn399, were previously isolated based on the inability of animals carrying these alleles to 

concentrate FITC (Perkins et al., 1986; Starich et al., 1995).  To further characterize these 

alleles, we tested them in dye uptake and behavioral assays.  100% of che-12(e1812), 

che-12(mn389), and che-12(mn399) animals failed to take up FITC in amphid neurons 

(n=100 for each allele; Figure 5.1B). However, only 2% of che-12(e1812) and che-

12(mn389) mutants, and 51% of che-12(mn399) mutants, failed to take up DiI (n=100 for 

each allele) (Figure 5.1E), a selectivity that has not been previously described. 

Contrary to a previous report describing normal chemotaxis of che-12(e1812) 

mutants towards NaCl (Perkins et al., 1986), we observed defects in this ASE amphid 

neuron-mediated behavior (Bargmann and Horvitz, 1991b) for all three che-12 alleles 

(Figure 5.1G).  Furthermore, all che-12 mutants were defective in avoidance of a high 

osmolarity 4 M fructose barrier, a behavior mediated by the ASH amphid neurons 

(Kaplan and Horvitz, 1993) (Figure 5.1G).  However, che-12 mutants were normally 

attracted to the volatile odorants isoamyl alcohol (1%) and methyl pyrazine (1%) (Figure 

5.1G), behaviors mediated by the AWC and AWA  amphid neurons (Bargmann, 1993), 

respectively.  Thus, che-12 is required for some, but not all, amphid cilia functions. 
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Figure 5.1: Characterization of che-12 and dyf-11 mutants
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Figure 5.1: Characterization of che-12 and dyf-11 mutants 

(A) Uptake of FITC by amphid sensory neurons in a wild-type animal.  Left, fluorescence 

image; right, fluorescence and DIC overlay of the same image.  Arrow, cell bodies; 

asterisks, non-specific pharyngeal staining.  (B) A che-12(mn389) mutant showing FITC 

uptake defect.  (C) dyf-11(mn392) animals also fail to take up FITC.  (D) DiI staining 

pattern of a wild-type animal.  (E) che-12(mn389) animals can also take up DiI.  (F) dyf-

11(mn392) animals fail to take up DiI.  (G) Behavioral defects of che-12(mn399) and dyf-

11(mn392) mutants.  Both mutants fail to chemotax to 0.2M NaCl and are unable to 

respond to an osmotic barrier.  dyf-11, but not che-12, animals show defects in odortaxis 

toward 1% isoamyl alcohol and 1% methyl pyrazine.  In all figures anterior is up unless 

otherwise indicated. 
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dyf-11 is required for sensory neuron dye uptake and chemotaxis 

Mutants in the dyf-11 gene were also previously isolated in screens for animals 

exhibiting dye uptake defects (Starich et al., 1995), suggesting that this gene may affect 

cilium structure and/or function.  To further characterize the phenotype of dyf-11 

mutants, we tested these animals in dye uptake and behavior assays.  A single dyf-11 

allele, mn392, is known, and we found that mutants homozygous for this allele displayed 

a fully penetrant defect in concentrating the two lipophilic dyes FITC and DiI (Figure 5.1, 

C and F), consistent with previous studies (Starich et al., 1995).  dyf-11(mn392) animals 

also exhibited strong defects in chemotaxis toward NaCl, isoamyl alcohol, and methyl 

pyrazine, and in avoidance of a high osmolarity barrier (Figure 5.1G).  We further 

noticed that dyf-11 mutants could not enter the dauer state, and mutant males showed low 

mating efficiency, defects that are characteristic of impaired cilia function.  Taken 

together, therefore, these results suggest that dyf-11 is required for normal sensory neuron 

function and is likely to play a role within cilia. 

 

Cilia of che-12 and dyf-11 mutants are structurally abnormal 

To determine the cause of the Dyf and Che defects of che-12 and dyf-11 mutants, 

we examined the structures of amphid cilia in these mutants using fluorescence and 

electron microscopy.  We first focused on the ASE neuron, which mediates attraction to 

NaCl, a behavior defective in both che-12 and dyf-11 mutants.  As observed by 

fluorescence microscopy (Figure 5.2, A-B), the ASER cilium was shortened in che-

12(mn399) animals expressing the gcy-5 pro::GFP ASER-specific reporter transgene (Yu 
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et al., 1997), with an average cilium length of 4.3 ± 0.5 m (n=10) compared to the wild-

type average ASER cilium length of 6.1 ± 0.6 m (n=10).  Cilia were even more severely 

shortened in dyf-11(mn392) animals expressing the same reporter transgene (average 

length of 1.4 ± 0.3 m, n=10; Figure 5.2C).  These morphological defects could account 

for the ASE-mediated NaCl chemotaxis defects of che-12 and dyf-11 mutants. 

Examination of che-12(mn389) and dyf-11(mn392) mutants by electron 

microscopy (EM) revealed defects consistent with the fluorescence imaging studies.  

Specifically, the channel cilia of che-12(mn389) animals lacked distal ciliary structures 

normally pervaded by singlet microtubules (Figure 5.2, J-K; 3/3 animals examined); 

however, the middle ciliary segment and the transition zone were intact in these animals, 

as indicated by the presence of doublet microtubules (Figure 5.2L).  3/3 dyf-11(mn392) 

animals examined by EM lacked all recognizable ciliary structures (Figure 5.2, H-I), 

except for the proximal transition zone.  We did not observe any sheath glial defects at 

the EM level in any of the che-12 alleles, contrary to previous reports (Perkins et al., 

1986) showing glial secretion defects in the e1812 allele. 

Because dyf-11, but not che-12, is also required for AWC-mediated odortaxis, we 

hypothesized that the elaborate wing-like ciliary extensions of the AWC neuron might 

display structural abnormalities in dyf-11 animals, but remain normal in che-12 mutants.  

Indeed, fluorescence imaging revealed that dyf-11(mn392), but not che-12(mn399) 

animals, lack the wing-like ciliary extensions of AWC neurons (Figure 5.2, D-F).  These 

morphological studies suggest that che-12 is important for the assembly of distal ciliary 

structures, and that dyf-11 is absolutely required for cilium biogenesis. 
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Figure 5.2: che-12 and dyf-11 mutants have defects in cilium structure
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Figure 5.2: che-12 and dyf-11 mutants have defects in cilium structure 

(A) The ASER cilium, arrow, of a wild-type animal expressing gcy-5 pro::GFP.  (B) che-

12(mn399) animals have a short ASER cilium.  (C) The stunted ASER cilium, arrow, of a 

dyf-11 animal.  A backward process is visible, arrowhead.  (D) The AWC cilium, arrow, 

of a wild-type animal expressing str-2 pro::GFP.  (E) In che-12(mn399), the AWC cilium 

retains its winged morphology, arrow.  (F) The AWC cilium fails to spread in dyf-11 

animals.  A backward process is present, arrowhead.  Scale bar A-F, 5 m.  (G) A 

cartoon of the amphid channel, adapted from Perkins et al. (1986).  Three of the eight 

channel neurons are depicted.  The locations of EM cross sections are shown.  The 

normal cross-sectional profile of a cilium at each level is diagramed.  (H) EM cross 

section at level "b" of a dyf-11(mn392) animal.  Note the empty cavity (arrowhead) where 

amphid cilia should be located.  (I) EM cross section of a dyf-11(mn392) animal at level 

"c" showing the absence of doublet or any other microtubules in neuronal profiles, 

arrows.  (J) EM cross section of a che-12(mn389) mutant at level "a".  The amphid cilia 

are short, and so only two of the ten neuronal profiles are evident.  Arrowhead, amphid 

opening.  Arrow, the beginning of a cilium.  (K) EM cross section of the distal segment 

of a che-12(mn389) animal at level "b".  No singlet microtubules are seen in most cilia, 

arrowheads.  A cilium containing doublet microtubules is shown, arrow.  (L) Proximal 

EM cross section of a che-12(mn389) animal at level "c".  The cilia appear normal and 

contain doublet microtubules, arrows.  Scale bar H-L, 300 nm.  In H-L, dorsal is up. 
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CHE-12 is a conserved HEAT repeat protein 

Previous genetic mapping experiments placed the che-12 gene in the interval 

between the unc-42 and daf-11 genes on chromosome V (Starich et al., 1995).  To narrow 

this interval further, unc-42(e270) che-12(mn399) egl-9(n586) hermaphrodites were 

crossed to CB4856 (Hodgkin and Doniach, 1997) males, which contain many single 

nucleotide polymorphisms (SNPs) with respect to N2 (Wicks et al., 2001).  From the F2 

progeny, Egl non-Unc and Unc non-Egl animals were selected.  These recombinants were 

soaked in FITC to determine their che-12 genotype.  SNP analysis limited the genomic 

location of che-12 between the SNPs C12D8:34312 and AC3:3025.  Cosmid clones 

containing DNA spanning this region were injected singly into che-12 animals and 

transgenic animals were tested for rescue of the FITC uptake defect.  Interestingly, we 

found that che-12 animals would not yield transgenic progeny when injected, which 

necessitated injection of heterozygous animals.  It is not clear how this phenotype arises.  

Cosmid B0024 was the only one to give rescue (3/3 transgenic lines examined; Figure 

5.3A), suggesting that this cosmid contained the che-12 gene.  Indeed, a 9.2 kb subclone 

of cosmid B0024, containing only the B0024.8 gene, was sufficient for rescue (3/3 lines 

examined).  To confirm that B0024.8 was che-12, we sequenced the exons and 

exon/intron junctions of the gene, and identified lesions in all three che-12 mutants 

described above (Figure 5.3B).  The che-12(e1812) allele contained a G-to-A transition 

that disrupts the predicted splice-donor site of intron 16.  The che-12(mn389) allele 

contained an 88 bp deletion, removing the last 47 bp of exon 13; and the che-12(mn399) 

allele harbored an 849 bp deletion, removing most of intron 12, exon 13, and the first 15 

bp of exon 14, and is, therefore, likely to be the most defective che-12 allele of the three.  
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Sequencing of another reported che-12 allele, e1813, showed that it contained the same 

lesion present in che-12(e1812) animals, and was, thus, unlikely to be an independent 

isolate. 

To confirm the predicted che-12 gene structure (www.wormbase.org, release 

WS170), we isolated the che-12 cDNA.  Sequence analysis of this cDNA revealed that 

exon 10 is 291 bp longer than in the predicted transcript.  By sequencing genomic DNA 

from the che-12 region of wild-type animals, we found that this misprediction arose 

because a C nucleotide at the beginning of intron 10 was not present in the annotated 

genomic sequence. 

Analysis of the che-12 cDNA revealed that it encodes a protein of 1282 amino 

acids.  A search of available protein databases using the BLAST program (Altschul et al., 

1990) showed that the putative CHE-12 protein shares 34% similarity and 20% identity 

with a protein predicted to be encoded by human cDNA clone KIAA0423 (Ishikawa et 

al., 1997), and that has been detected by mass spectroscopy in human fetal brain (Hepner 

et al., 2005).  Sequence analysis of the predicted CHE-12 protein suggests that it 

probably contains at least seven HEAT repeats, 39 amino-acid long elements that fold to 

form two anti-parallel -helices (Andrade and Bork, 1995). 

 

DYF-11 is similar to the mammalian microtubule-associated protein MIP-T3 

Previous work had established that dyf-11(mn392) was located on the left arm of 

chromosome X (Starich et al., 1995).  To refine this position, dyf-11(mn392) 
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hermaphrodites were crossed to CB4856 males.  From this cross, 238 dye-filling 

defective F2 animals were isolated, and DNA prepared from their progeny was 

characterized for the presence of N2 and CB4856 SNPs.  This analysis revealed that dyf-

11 resides between the SNPs F39H12:15494 and F02G3:5645 (Figure 5.3C).  This region 

contains 20 predicted genes, and sequencing of the predicted gene C02H7.1 from dyf-

11(mn392) animals revealed that it contains a C-to-G mutation, altering codon 140, 

encoding serine, to an opal nonsense mutation (Figure 5.3D).  To confirm that C02H7.1 

was indeed dyf-11, we introduced the C02H7 cosmid, as well as a 4.1 kb DNA fragment 

containing only the C02H7.1 coding and regulatory sequences, into dyf-11(mn392) 

animals.  Both transgenes rescued the dye uptake defect (3 transgenic lines examined for 

each transgene; Figure 5.3C).  Together, these observations strongly suggest that 

C02H7.1 is dyf-11. 

To decipher the dyf-11 gene structure, we isolated and sequenced a full-length 

cDNA for the gene, confirming the predicted gene structure (www.wormbase.org, release 

WS170).  Comparison of the predicted 535 amino-acid-long DYF-11 protein to proteins 

in available databases showed that DYF-11 shares 43% similarity and 24% identity with 

the human protein MIP-T3.  MIP-T3 has been shown to interact with taxol-stabilized 

microtubules and with tubulin in vitro (Ling and Goeddel, 2000), suggesting that DYF-11 

may directly contact ciliary microtubules.  Analysis of the DYF-11 protein sequence 

revealed two domains of note: a lysine-rich region between amino acids 122 and 214, and 

a predicted C-terminal coiled-coil region, a domain found in a number of IFT complex B 

proteins (Cole, 2003), between amino acids 420 and 529. 
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Figure 5.3: The genomic structures of che-12 and dyf-11
(A) che-12 was mapped to the indicated region of chromosome V.  The Dyf defect could 
be rescued by injection of the B0024 cosmid or the B0024.8 gene.  (B) Genomic structure 
of B0024.8.  The positions of the three alleles are shown.  (C) dyf-11 was mapped to the 
indicated region of chromosome X.  A single gene, C02H7.1, within cosmid C02H7, could 
rescue the Dyf defect.  (D) Genomic structure of C02H7.1 and position of the mn392 allele.
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che-12 is expressed in a subset of sensory neurons 

The phenotypic characterization of che-12 and dyf-11 suggested that both genes 

are likely to be expressed in sensory neurons.  To test this idea, we determined the 

expression pattern of each gene.  To examine che-12 expression, we generated a 

transgene bearing the 936 bp sequence present immediately upstream of the che-12 

translation start site, fused to the gene encoding GFP, and introduced it into wild-type 

animals.  This same 936 bp promoter fragment, which spans nearly the entire non-coding 

interval between the stop codon of the upstream gene, gcy-6, and the start codon of che-

12, when driving expression of a che-12 cDNA::GFP fusion (see below) was sufficient to 

rescue the dye uptake defects of che-12(mn389) animals.  Inspection of three independent 

che-12 pro::GFP transgenic lines showed that che-12 is expressed in only the subset of 

amphid neurons that lack wing- or finger-like ciliary extensions (Figure 5.4A), and in the 

two phasmid neurons (Figure 5.4B).  To confirm this expression pattern, we generated 

animals bearing two transgenes, a che-12 pro::mCherry reporter and an osm-6 pro::GFP 

reporter, which is expressed in most or all ciliated neurons (Collet et al., 1998).  Overlap 

of expression was only seen in amphid and phasmid neurons.  These results are consistent 

with the structural and behavioral defects exhibited by che-12 mutants and suggest that 

che-12 may only function in amphid neurons possessing simple cilia. 

 

dyf-11 is expressed in all ciliated sensory neurons 

To visualize the expression pattern of dyf-11, we used the 1868 bp immediately 

upstream of the dyf-11 translation start site to drive GFP expression in wild-type animals 
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Figure 5.4: CHE-12 and DYF-11 are expressed in ciliated neurons in a DAF-19 depen-
dent manner
(A) CHE-12 is expressed in a subset of amphid neurons.  Arrow, neuronal cell bodies; 
arrowhead, dendritic processes.  (B) CHE-12 is also present in phasmid neurons.  (C) 
Expression of DYF-11 is seen in most ciliated neurons including those of the amphid and 
labial sensilla, arrows.  (D) Expression of che-12 pro::GFP is greatly reduced in daf-16; 
daf-19 animals.  Compare with panel A.  In D and E, image exposure was at least twice as 
long as in A and C.  (E) The expression of dyf-11 pro::GFP also depends on the transcrip-
tion factor DAF-19.  Compare with panel C.
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 GFP fluorescence was observed in most ciliated neurons, including neurons of the 

amphid, phasmid, and labial sensilla, as well as the neurons AQR, PQR, ADE, and PDE 

(Figure 5.4C).  This result is consistent with a genome-wide survey of ciliated neuron-

expressed genes which demonstrated that C02H7.1 is expressed in the head and tail of C. 

elegans (Kunitomo et al., 2005).  Our expression studies are also consistent with the dye-

uptake and behavioral defects of dyf-11 mutants, and suggest that dyf-11 plays an 

important role in the function of all cilia in C. elegans. 

 

che-12 and dyf-11 expression is dependent on the transcription factor DAF-19 

In C. elegans, the expression of most genes encoding cilia-localized proteins 

requires DAF-19, an RFX transcription factor that recognizes a specific motif, the X-box, 

in the promoter region of its target genes (Swoboda et al., 2000).  To determine whether 

the transcription of che-12 and dyf-11 requires DAF-19, the che-12 pro::GFP and dyf-11 

pro::GFP transgenes were introduced into daf-16(mu86); daf-19(m86) animals.  daf-

19(m86) mutants constitutively arrest in the dauer stage of development, a dormant, 

protective developmental stage normally entered under harsh environmental conditions 

(Riddle, 1988).  The daf-16(mu86) mutation suppresses the dauer arrest of daf-19(m86) 

mutants, allowing for the propagation of daf-19 mutant lines (Vowels and Thomas, 

1992).  Expression of both che-12 pro::GFP and dyf-11 pro::GFP reporter transgenes was 

eliminated, or greatly reduced in daf-16(mu86); daf-19(m86) animals, Figure 5.4, D-E. 

It has been previously noted that the C02H7.1 (dyf-11) promoter contains a 

consensus X-box sequence at position -194 with respect to the translation start site 
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(Blacque et al., 2005).  The region upstream of the che-12 gene contains an X-box motif 

at position -1013 (Blacque et al., 2005), however, this sequence is located within the 

upstream gene, gcy-6, and was not included in the promoter we used to drive GFP 

expression.  While no consensus X-box sites were found in the 936 bp promoter fragment 

we used, we did find a sequence, ATCAGCTTGAAAAC, at position -767, that differs 

from the X-box consensus sequence, RTHNYYWTRRNRAC (Efimenko et al., 2005), at 

only one position, and that might be used to drive che-12 expression in the amphid and 

phasmid neurons.  These results strongly suggest that DAF-19, directly or indirectly, 

controls the expression of both che-12 and dyf-11. 

 

CHE-12 and DYF-11 localize to cilia 

The mutant phenotypes and expression patterns of the che-12 and dyf-11 genes 

suggest that they may encode components of cilia.  To test this hypothesis directly, we 

determined the localization of CHE-12::GFP and DYF-11::GFP fusion proteins.  

Specifically, we examined GFP localization in the ASER amphid neuron of animals 

expressing either che-12 cDNA::GFP or dyf-11 cDNA::GFP transgenes driven by the 

ASER-specific promoter of the gcy-5 gene (Yu et al., 1997).  To visualize the ASER 

dendrite, mCherry was co-expressed from the same promoter, using an SL2 trans-splicing 

acceptor sequence.  CHE-12::GFP and DYF-11::GFP localized throughout the ASER 

cilium (Figure 5.5), and were only faintly detectable in the ASER dendrite.  Since both 

cDNA::GFP fusion transgenes were able to rescue the Dyf phenotype of their respective 

mutants when expressed using their own promoters, these results suggest that CHE-12  
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Figure 5.5: CHE-12 and DYF-11 localize to cilia
Left image of a pair, GFP alone.  Right image, GFP and mCherry (ASER neuron dendrite) 
overlay.  CHE-12 localizes to the cilium of ASER, arrows.  The localization of CHE-12 is 
disrupted in che-13(e1805) and osm-5(m184) IFT-B mutants (note low intensity of GFP 
within cilium), and to a lesser extent in che-11(e1810) IFT-A mutants.  DYF-11 is normally 
localized within cilia of wild-type animals.  This localization is not affected by the che-11, 
che-13, and osm-5 mutations.  All transgenes are driven by the gcy-5 promoter, which is 
expressed specifically in ASER.  Scale bar, 5 µm.
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and DYF-11 proteins are normally targeted to neuronal sensory cilia, consistent with the 

ciliary defects observed in che-12 and dyf-11 mutants. 

 

che-12 and dyf-11 act cell-autonomously within ciliated neurons 

che-12 and dyf-11 activities could be required either within a given ciliated 

neuron for its function, or may influence the activities of nearby neurons non-

autonomously.  To distinguish between these two possibilities, we used the sra-6 

promoter to express the che-12 and dyf-11 cDNAs in only two amphid neurons, ASH and 

ASI (Troemel et al., 1995), in che-12(mn389) and dyf-11(mn392) mutants, respectively.  

Only two neurons in each amphid were able to take up dye in these transgenic animals 

(Figure 5.6, B and F), suggesting that both che-12 and dyf-11 act cell autonomously. 

 

che-12 and dyf-11 activities are required continuously for cilium function 

To determine the time of action of che-12 and dyf-11, we generated plasmids in 

which the cDNA of each gene was placed under the control of the hsp-16.2 heat-

inducible promoter (Jones et al., 1986; Fire et al., 1990).  Amphid neurons of che-

12(mn389) or dyf-11(mn392) larvae or adults harboring these plasmids were unable to 

take up dye at 20ºC (Figure 5.6, A and E).  However, dye uptake was restored to both 

mutant strains after a 30 min heat shock at 34ºC (Figure 5.6, C and G), suggesting that 

dyf-11 and che-12 can function at any time during the life of C. elegans to allow proper 

cilium function.  Heat shock expression was also sufficient to rescue the morphological  
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Figure 5.6: CHE-12 and DYF-11 act cell-autonomously and are required continuously 
for cilium morphology and function
(A) che-12(mn389) animals fail to take up FITC, asterisk indicates nonspecific staining.  
Fourth larval stage (L4) animals are depicted in all images.  (B) Expression of CHE-12 
in a che-12(mn389) mutant animal within only two amphid neurons, ASH and ASI, 
using the sra-6 promoter, rescues the Dyf defect only within these neurons, arrow.  (C) 
A che-12(mn389) animal that is provided CHE-12 via heat shock as an adult, is able to 
take up FITC in several amphid neurons, arrows.  (D) che-12(mn389) embryos carrying 
extrachromosomal arrays containing the hsp-16.2 pro::che-12 cDNA transgene were 
heat shocked for 30 min at 34C.  Dye filling was performed after 24 h to determine initial 
rescue or after 100 h.  (E) dyf-11 animals cannot take up DiI.  (F) Expression of dyf-11 in 
ASH and ASI using the sra-6 promoter enables only these two neurons to fill with dye, 
arrow.  (G) Providing DYF-11 to adult animals via heat shock rescues their Dyf defect.  
Animals contain an hsp-16.2 pro::dyf-11 cDNA transgene.  (H) Same as D, except that 
dyf-11(mn392) mutants carrying an hsp-16.2 pro::dyf-11 transgene were used.
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cilia defects, consistent with previous finding (Fujiwara et al., 1999).  Thus, 12 h after 

heat shock ASER cilium length was 6.2 ± 0.5 m (n=10) in che-12(mn399) animals and 

6.4 ± 0.6 m (n=10) in dyf-11 animals.  The ability to rescue ciliary defects in adult 

animals suggests that it should be possible to devise therapeutic interventions for human 

ciliopathies. 

To determine whether expression of che-12 and dyf-11 is required continuously, 

we administered a heat shock during embryogenesis and examined dye uptake 24 h and 

100 h later.  The percentage of animals rescued for the dye uptake defect declined with 

time (Figure 5.6, D and H), indicating that che-12 and dyf-11 are required both for 

development and maintenance of a functional cilium. 

 

CHE-12 may not be an IFT component, but requires IFT for its localization 

Some ciliary proteins undergo regular movements within cilia, a phenomenon 

termed intraflagellar transport (IFT) (Rosenbaum and Witman, 2002; Scholey, 2003).  To 

determine whether this is the case for CHE-12 and DYF-11, we generated wild-type 

animals carrying extrachromosomal transgenic arrays containing low copy numbers of 

che-12 pro::che-12::GFP or dyf-11 pro::dyf-11::GFP reporters transgenes, and examined 

GFP fluorescence dynamics in cilia using a spinning disk confocal microscope.  We were 

unable to see any movement of a rescuing CHE-12::GFP fusion protein in amphid and 

phasmid neurons in 83 kymographs we generated.  By comparison, movement of the IFT 

component CHE-13 was easily observed in 3/4 kymographs we examined.  These  
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Figure 5.7: Localization of IFT-A and IFT-B proteins in che-12 and dyf-11 mutants
(A) Localization of CHE-13::GFP in a phasmid cilium (arrow) of a wild-type animal.  
(B) In che-12(mn399) animals, CHE-13::GFP localizes properly.  (C) CHE-13::GFP 
fails to localize to the cilia of dyf-11(mn392) animals, the base of the cilium is indicated 
by an arrowhead.  (D) CHE-11::GFP localization in a wild-type phasmid cilium.  (E) In 
che-12(mn399) animals, CHE-11::GFP localizes appropriately.  (F) CHE-11::GFP can 
occasionally localize to the base of the stunted cilia of dyf-11 animals.  Scale bar, 4 µm.
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observations suggest that CHE-12 may not be a component of the IFT machinery and that 

it may not play a role in ciliary protein transport. 

To further test the notion that CHE-12 is not a component of the IFT machinery, 

we examined the localization of IFT particle-associated proteins in che-12 mutants.  The 

IFT particle is thought to consist of at least two subunits, A and B.  We found that 

localization of both CHE-11::GFP (associated with the IFT-A subunit) and CHE-13::GFP 

(associated with the IFT-B subunit) was unaffected in che-12 mutants (Figure 5.7, B and 

E), consistent with the hypothesis that che-12 does not play a role in IFT. 

Although CHE-12 is unlikely to be principally associated with IFT particles, its 

localization within the cilium may still depend on transport by IFT.  To establish whether 

CHE-12 localization is IFT-dependent, we examined the localization of ASER-expressed 

CHE-12::GFP in IFT-defective mutants.  The intensity of CHE-12::GFP signal in the 

cilium was greatly reduced or absent in che-13 and osm-5 mutants (Figure 5.5), two 

components of the IFT-B complex (Haycraft et al., 2001; Qin et al., 2001; Haycraft et al., 

2003).  CHE-12::GFP ciliary localization also appeared disrupted, but to a lesser extent, 

in the IFT-A complex mutant che-11 (Qin et al., 2001; Christensen et al., 2002).  These 

results suggest that CHE-12 at least partially requires IFT for its localization. 

 

DYF-11 is associated with IFT particles 

Unlike CHE-12::GFP, a rescuing DYF-11::GFP  protein fusion displayed 

bidirectional movement within amphid cilia (Figure 5.8, A-B).  23/62 kymographs we 



121 

generated showed that DYF-11-containing particles moved anterogradely along the 

middle segment of amphid cilia with a rate of 0.79 ± 0.08 m/s and along the distal 

segment with a rate of 1.19 ± 0.9 m/s.  These velocities agree with those observed in the 

middle (0.7 m/s) and the distal segment (1.3 m/s) for other IFT proteins such as DYF-

1, DYF-2, OSM-5, and OSM-6 (Christensen et al., 2002; Snow et al., 2004; Chen et al., 

2006), suggesting that DYF-11 associates with IFT particles. 

In bbs-8(nx77) mutants, the A and B IFT particle subunits dissociate and move 

independently, with only subunit B entering the distal segment of sensory cilia 

(Christensen et al., 2002; Blacque et al., 2004).  We found that DYF-11::GFP localizes 

throughout the cilia, including the distal segments, of bbs-8 mutants (Figure 5.8C).  This 

observation suggests that DYF-11 may be a component of the IFT-B subunit, a 

hypothesis supported by the severely stunted cilia of dyf-11 mutants (Figure 5.2C), a 

feature of other IFT-B complex mutants (Perkins et al., 1986). 

To place DYF-11 in the hierarchy of known IFT proteins, we studied its 

localization in three IFT-defective mutants.  DYF-11 localized to cilia in che-11 (IFT-A), 

as well as in che-13 and osm-5 (IFT-B) animals (Figure 5.5).  These observations indicate 

that the function of these proteins is dispensable for DYF-11 localization, and that DYF-

11 probably associates with the IFT particle early in its assembly. 

To test this idea further, we examined the localization of CHE-13::GFP (Haycraft 

et al., 2003) and CHE-11::GFP proteins (Qin et al., 2001) in dyf-11(mn392) animals.  We 

found that CHE-13::GFP (IFT-B) is not localized to phasmid cilia of dyf-11 animals 

(Figure 5.7C), supporting the idea that DYF-11 is part of the IFT-B subunit and that  
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Figure 5.8: DYF-11 may associate with IFT particle B
(A) Localization of DYF-11::GFP in the cilia (arrow) of a wild-type animal.  (B) Kymo-
graph depicting anterograde and retrograde movement of DYF-11::GFP particles in the cilia 
seen in A.  Position is displayed on the horizontal axis, and time on the vertical axis.  The 
transition zone of the cilium is on the left.  Vertical scale bar, 5 seconds.  (C) DYF-11::GFP 
can enter the distal segment of cilia in a bbs-8(nx77) mutant animal, arrow.  Scale bar A-C, 
2.5 µm.
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DYF-11 is likely recruited to the IFT particle before CHE-13.  CHE-11::GFP (IFT-A) 

fluorescence in the cilia of dyf-11 animals was also greatly reduced (Figure 5.7F), also 

consistent with an early role for DYF-11 in IFT particle assembly. 

 

Discussion 

Cilia, present at the tips of sensory neuron dendrites and on the surfaces of most 

vertebrate cells (Wheatley et al., 1996), have been the subject of intense study in recent 

years.  Genomic and proteomic efforts to uncover a core group of cilia proteins has 

revealed the existence of several hundred proteins likely to comprise the cilium 

proteome, and at least some of these have been directly shown to reside within cilia 

(Avidor-Reiss et al., 2004; Emoto et al., 2004; Blacque et al., 2005; Efimenko et al., 

2005).  Many of the ciliary proteins identified to date are components of the intraflagellar 

transport (IFT) machinery, composed of a multi-protein particle shuttled within the 

cilium by molecular motors of the kinesin and dynein families (Rosenbaum and Witman, 

2002; Scholey, 2003).  However, although the IFT mechanism may be complex, it is 

unlikely that all cilia proteins are components of this machinery.  In addition to IFT 

components, structural proteins must exist that give cilia their shape, and signaling 

modules must be present that control information flow through the cilium.  Here we have 

explored the roles of two genes, che-12 and dyf-11.  Our results suggest that whereas dyf-

11 encodes a newly-described IFT component, che-12 is likely to encode a protein that 

acts independently of the IFT machinery to control cilium function and morphology. 
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che-12 may be a non-IFT component of cilia 

In C. elegans, mutations affecting cilium morphology generally block the ability 

of some neurons of the amphid sensory organ to concentrate lipophilic dyes, such as DiI 

and FITC (Perkins et al., 1986).  We show here that among Dyf mutants, che-12 mutants 

are unique in their ability to discriminate between the dyes FITC and DiI.  Specifically, 

we show that all known che-12 mutants are defective in FITC uptake, but only partially 

blocked for the uptake of DiI.  Although the mechanism of dye uptake in C. elegans is 

not known, it is thought to reflect a functional state of particular neurons, since not all 

neurons exposed to dye are able to concentrate it (Hedgecock et al., 1985).  Thus, the 

defects of che-12 mutants suggest that mutations in the gene may affect only a subset of 

neuronal functions, suggesting that CHE-12 may not be a core component of the IFT 

machinery. 

Several of our observations are consistent with this idea.  First, CHE-12 protein 

localizes to cilia, but does so in a diffuse, non-particulate fashion, unlike many IFT 

components (Collet et al., 1998; Christensen et al., 2002; Haycraft et al., 2003).  Further, 

although we analyzed many cilia expressing a rescuing CHE-12::GFP fusion protein, we 

were unable to detect any motion of this protein.  We could, however, easily detect 

movements of CHE-13::GFP and DYF-11::GFP (Figure 5.8B). 

Second, mutations in che-12 had no effect on the movement or localization of IFT 

components we examined, suggesting either that che-12 is not a component of the IFT 

complex, or that it is peripherally associated with it and not required for its integrity. 
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Third, EM studies of all three che-12 alleles revealed that these animals lack part 

of the distal segment of at least some amphid sensory cilia (Figure 5.2, J-L).  This defect 

is somewhat reminiscent of defects in the cilia of animals carrying mutations in the IFT-

A complex components che-11 and daf-10 (Perkins et al., 1986).  However, CHE-12 is 

unlikely to be a component of the IFT-A particle as in che-11 and daf-10 mutants, large 

accumulations of IFT particles along the axoneme are visible (Qin et al., 2001), 

suggesting that the IFT-A complex plays a crucial role in retrograde transport within the 

cilium.  This defect is not seen in che-12 mutants. 

Although our evidence suggests that CHE-12 protein may be a non-IFT 

component of cilia, we show that its ciliary localization is dependent on a functioning 

IFT mechanism.  Therefore, we suggest a model in which CHE-12 entry into cilia 

depends on IFT, but once inside cilia, the protein is released and free to provide IFT-

independent functionality to these cellular compartments (Figure 5.9). 

 

che-12 may control the development and function of specific cilia 

Our studies of che-12 mutants reveal that these animals exhibit defects in only a 

subset of behaviors associated with amphid neurons.  Specifically, behaviors associated 

with the olfactory neurons AWA and AWC seem generally unaffected in che-12 animals, 

consistent with the lack of che-12 expression in these neurons, whereas behaviors 

associated with neurons penetrating the amphid channel and responsive to soluble stimuli 

were defective.  These observations suggest that che-12 may provide specialized 

functions to only a subset of amphid and phasmid neurons bearing simple cilia.  It has 
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already been noted that some cilia genes (osm-5, osm-6, che-2, che-13) are expressed in 

most or all ciliated neurons and are, therefore, required for the general formation of cilia 

(Efimenko et al., 2005), while others, such as osm-3 (Tabish et al., 1995), dyf-3 

(Murayama et al., 2005), and dyf-2 (Chen et al., 2006) are expressed in a subset of 

ciliated neurons and are hypothesized to lead to specialized ciliary structures 

(Mukhopadhyay et al., 2007).  Genes restricted to only subsets of ciliated neurons seem 

to possess an asymmetric X-box sequence, the binding site of the ciliogenic transcription 

factor DAF-19, in their promoters (Swoboda et al., 2000).  The che-12 promoter contains 

such an asymmetric X-box (ATCAGC TT GAAAAC), further suggesting that CHE-12 

might act to promote chemosensory cilia specialization. 

We note that a previous EM study of che-12(e1812) animals reported that these 

animals have decreased levels of an undefined matrix in the amphid sheath cell, a glial 

cell that ensheathes the ciliated dendritic endings of the amphid neurons (Perkins et al., 

1986), leading to the hypothesis that che-12 was likely to function in glia.  However, both 

our studies of che-12 localization and our EM studies are inconsistent with these previous 

results. 

How might CHE-12 function?  Analysis of the CHE-12 protein sequence reveals 

that it contains seven or more HEAT repeats.  These motifs, first described in the proteins 

huntigtin, elongation factor 3, PR65/A subunit of protein phosphatase 2A, and TOR1, are 

39 residues long and are often repeated in tandem three or more times within a protein 

(Andrade and Bork, 1995).  Each HEAT motif folds as two antiparallel -helices, and, as 

observed in the crystal structure of PR65/A (Groves et al., 1999), the helix pairs are 

arranged to form a solenoid with a hydrophobic inner core.  In CHE-12, the first HEAT 
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motif occurs at positions 99-135 while the last spans amino acids 1141-1177.  Since most 

of the CHE-12 sequence is comprised of HEAT repeats, it is likely that the tertiary 

structure of CHE-12 resembles the solenoid formed by PR65/A.  Such a structure could 

act as a scaffold and may be used to anchor ciliary proteins important for both FITC 

uptake, and for building and stabilizing the distal segment of the cilium.  The predicted 

human protein KIAA0423 shares the same HEAT repeat topology as CHE-12, suggesting 

that it may also function within cilia in a manner similar to CHE-12. 

 

DYF-11 protein is required early in IFT-B particle assembly 

While CHE-12 appears to be required for specialized cilia functions, our studies 

suggest that DYF-11 probably serves as a core IFT particle protein.  Consistent with this 

idea, DYF-11 is expressed in most, if not all, ciliated neurons, and dyf-11 animals possess 

stunted cilia that resemble those of IFT-B class mutants.  In addition, we could 

demonstrate that a DYF-11::GFP rescuing fusion protein is able to undergo both 

anterograde and retrograde movements within cilia, at speeds consistent with those 

previously described for IFT.  These observations agree with recent published reports 

(Kunitomo and Iino, 2008; Li et al., 2008; Omori et al., 2008).  

The IFT complex can be dissociated into at least two subcomponents termed A 

and B.  Previous studies have shown that in bbs-8 mutants, the IFT-A and IFT-B particles 

are separated, and IFT-A is transported along the medial segment by kinesin-2, while 

IFT-B is driven along the medial as well as the distal segment by OSM-3 (Christensen et 

al., 2002).  We found that DYF-11 localization to distal regions of cilia was unaffected in 
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bbs-8 mutants, suggesting that DYF-11 is likely to be associated with the IFT-B 

subparticle. 

Previous studies have suggested that the IFT particle is assembled in a series of 

steps.  Analysis of IFT protein localization in different IFT mutant backgrounds has 

revealed some of this hierarchy of assembly.  For example, OSM-5 is mislocalized in 

che-13 animals (Haycraft et al., 2003), indicating that CHE-13 acts prior to or together 

with OSM-5 in IFT complex B assembly.  Furthermore, complex A proteins, such CHE-

11, are largely unaffected by removal of later acting IFT-B proteins.  Interestingly, we 

showed that while DYF-11 localization was not disrupted in osm-5 (IFT-B), che-13 (IFT-

B), or che-11 (IFT-A) mutants (Figure 5.5), localization of OSM-5, CHE-13, and CHE-

11 was disrupted in dyf-11 animals (Figure 5.7, C and F).  These results suggest that 

DYF-11 is likely to function early in IFT particle assembly, and are consistent with a 

model in which DYF-11 is required for recruitment of OSM-5, CHE-13, and CHE-11 

proteins to this particle (Figure 5.9). 

 

DYF-11 might mediate interactions of the IFT particle with microtubules and Rab8 

Comparison of the DYF-11 protein sequence to existing protein databases 

revealed that this protein is conserved in evolution.  Its human orthologue, MIP-T3 

(microtubule-interacting protein that interacts with TRAF3), was identified in a yeast 

two-hybrid screen for factors that interact with tumor necrosis factor receptor associated 

factor 3 (TRAF3) (Ling and Goeddel, 2000).  MIP-T3 binds to taxol-stabilized 

microtubules and to tubulin in vitro, and is able to recruit TRAF3 to microtubules in  
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Figure 5.9: A hypothetical model of CHE-12 and DYF-11 roles in sensory cilia
The IFT subcomplexes A and B, linked by the BBS-8 protein, are moved along the ciliary 
microtubules by the kinesin-2 and OSM-3 motors.  DYF-11 might interact with microtu-
bules as well as with the IFT-B protein complex, acting to promote association of CHE-13 
and OSM-5 proteins with the complex.  CHE-12 is transiently associated with the IFT 
particle in order to be transported into the cilium, where it is released and accumulates.  
Note that not all known IFT particle components are shown in this diagram.
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HeLa cell lines that overexpress both proteins (Ling and Goeddel, 2000), raising the 

intriguing possibility that DYF-11 might be associated with ciliary microtubules (Figure 

5.9).  Although current models suggest that contact of the IFT complex with microtubules 

is mediated by the motors that move the complex, it is possible that a specific association 

of complex components with microtubules is required either for their initial assembly, or 

to facilitate initiation or termination of IFT complex motion by its associated motors. 

In support of this mechanism, yeast two-hybrid interactions were identified 

between Elipsa, the zebrafish DYF-11 homologue, and Rabaptin-5 (Omori et al., 2008).  

Rabaptin-5 is a cytosolic effector of RAB GTPases that is involved in endocytosis and 

interacts primarily with Rab5 (Stenmark et al., 1995).  Omori and colleagues further 

showed that Rabaptin-5 could bind to a constitutively active form of Rab8 (Omori et al., 

2008).  This is particularly interesting as Rab8 is required for proper ciliogenesis, for 

transport of transmembrane proteins into the cilium (Nachury et al., 2007), and 

expression of dominant negative form of Rab8 results in accumulation of vesicles at the 

connecting cilium of photoreceptors (Moritz et al., 2001).  Thus, the interactions of DYF-

11 with Rabaptin-5 and with microtubules could be one of the mechanisms by which 

dendritic vesicles are coupled to the IFT particle and loaded onto the axoneme for ciliary 

transport of transmembrane proteins. 

Studies of MIP-T3 also suggest that this protein interacts with the interleukin-13 

receptor (IL-13R1) (Niu et al., 2003).  Interestingly, the association of MIP-T3 with this 

receptor and with TRAF3 changes after signal transduction has occurred (Ling and 

Goeddel, 2000; Niu et al., 2003).  These observations suggest that DYF-11 may be in a 

position to control aspects of IFT, perhaps loading of IFT particles onto the axoneme, in 
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response to environmental cues received by cilia.  Consistent with a potential regulatory 

role in microtubule association, MIP-T3 also interacts with Disrupted-in-Schizophrenia 1 

(DISC1), and appears to be required for the recruitment of DISC1, a centrosome 

associated protein, to microtubules (Morris et al., 2003). 

 

Primary cilia are found on most human cells, and their roles in many aspects of 

signal transduction are revealed by the pleiotropic defects observed in Bardet-Biedl 

syndrome (BBS) patients (Ansley et al., 2003).  Here we have described two conserved 

cilia proteins: CHE-12, which might act as a structural scaffold promoting specialized 

structure and/or function of some cilia; and DYF-11, which acts as an IFT-B particle 

component.  Further studies of these and other cilia components should help to reveal the 

mechanics of signal transduction and processing performed by this organelle. 
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Summary 

Cell-specific promoters allow only spatial control of transgene expression in C. 

elegans.  The ability to control both the location as well as timing of transgene expression 

can be beneficial in addressing basic questions regarding gene function, such as when in 

development does a gene act, or in expressing transgenes, such as ones encoding toxins, 

when desired.  We describe a method, using cell-specific rescue of heat-shock factor-1 

(hsf-1) mutants, allowing spatial and temporal regulation of transgene expression.  We 

demonstrate the utility of this method for timed reporter gene expression and for temporal 

studies of gene function. 
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Spatial and temporal control of gene expression 

The ability to manipulate transgene expression in animals has facilitated the study 

of many biological processes.  While systemic expression of transgenes can be used as an 

effective tool for studying the consequences of gene activation or inactivation, in many 

instances it is desirable to control both spatial and temporal aspects of transgene 

expression.  For example, restriction of transgene expression to a specific cell type can 

allow determination of whether gene function is cell-autonomous or non-autonomous.  

Likewise, temporal control of transgene expression is critical for determining whether the 

function of a gene of interest is required continuously or only during specific times. 

Several strategies have been developed that allow control of both where and when 

transgenes are expressed.  Spatial resolution is often achieved by the use of tissue- or 

cell-specific promoters, and timing of transgene expression can be controlled by 

introduction or withdrawal of small-molecule gene-expression inducers or inhibitors.  For 

example, a fusion protein consisting of the tetracycline repressor fused to the 

transcription activation domain of VP16 (TetR-VP16), and expressed using a tissue-

specific promoter, can promote tissue-specific expression of genes bearing tetO cis-acting 

DNA sequences.  Addition of the cell-permeable ligand tetracycline, which binds to and 

prevents TetR-VP16 from binding tetO (Gossen and Bujard, 1992; Gossen et al., 1995), 

can be used to extinguish expression at specific times.  Similarly, Cre recombinase fused 

to the estrogen receptor, and expressed in specific tissues, can be temporally activated by 

the addition of tamoxifen (Feil et al., 1996). 
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An alternative to using small molecules for temporal control is afforded by 

proteins whose functions are regulated by temperature.  For example, by modifying the 

GAL4/UAS system for controlling cell-type-specific gene expression in Drosophila 

(Brand and Perrimon, 1993), McGuire et al. achieved temporal control of GAL4-driven 

transgenes by introducing a temperature-sensitive form of GAL80, a GAL4 inhibitor, into 

transgenic flies (McGuire et al., 2003).  At permissive temperatures, animals fail to 

express the transgene because GAL80 inhibits GAL4.  Shifting to non-permissive 

temperatures relieves GAL80 inhibition and allows transgene expression to proceed. 

Another strategy for temporal control of transgene expression exploits the heat-

shock response, a temperature-dependent stress defense mechanism.  The heat-shock 

response is mediated by heat-shock factor (HSF), a transcription factor that is synthesized 

constitutively but remains latent during unstressed conditions (Bargmann, 1993).  In 

response to heat stress, HSF trimerizes and binds with high affinity to promoters 

containing specific binding elements, leading to the transcription of heat-shock proteins 

(Pelham, 1982; Westwood et al., 1991).  Thus, transgenes containing HSF binding 

elements can be induced, albeit with little cellular specificity, following a temperature 

shift.  Attempts to lend spatial resolution to the heat-shock response by using heated 

needles (Monsma et al., 1988; Vekris et al., 2000) or focused laser microbeams 

(Stringham and Candido, 1993; Halfon et al., 1997) to trigger the response in specific 

cells have been described.  However, these physical methods for spatially-restricted heat-

shock delivery are labor intensive and potentially damaging to cells, explaining, in part, 

why they are not in common use. 
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Figure 6.1: Temporal control of cell-specific transgene expression
In an animal lacking the normal heat-shock response due to loss of HSF-1 activity, hsf-1 
is introduced in a desired subset of cells using a cell-specific promoter (pro).  Since 
HSF-1 is present only in targeted cells, heat-shock results in cell-specific transcription 
from heat-shock responsive promoters (hsp).  Therefore, any transgene under the control 
of a heat-shock promoter will be selectively expressed in the desired cells following a 
heat shock.  Blue circles, HSF-1 protein.  Green hexagons, protein of interest.

hsf-1pro

Your Genehsp

hsf-1pro
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Results 

Restricting the heat shock response to desired cells 

Currently, no facile approach is available for combined spatial and temporal 

regulation of transgene expression in C. elegans.  Our interest in spatiotemporal control 

of transgene expression arose from the need to perform genetic ablations of the amphid 

sheath glia in adult animals.  We were unsuccessful in some limited attempts in adopting 

the GAL4 system to C. elegans, therefore, we sought to devise alternative strategies.  To 

develop such a method, we reasoned that cell-specific rescue of mutants defective in the 

heat-shock response should allow expression of transgenes, following a heat shock, only 

in rescued cells.  The C. elegans genome contains a single gene encoding heat-shock 

factor, hsf-1.  An allele of hsf-1, sy441, was previously isolated in a screen for 

suppressors of an activated G protein expressed under the control of a heat-shock 

responsive promoter (Hajdu-Cronin et al., 2004).  Although hsf-1(sy441) animals have 

decreased lifespan, egg-laying defects, and larval arrest at 25ºC, they are otherwise 

healthy at 20ºC (Hajdu-Cronin et al., 2004).  Importantly, however, following a brief 

heat-shock at 34ºC, hsf-1(sy441) animals show a 100-fold reduction in expression of 

endogenous heat-shock protein mRNAs compared to wild-type animals (Hajdu-Cronin et 

al., 2004).  Thus, cell-specific expression of hsf-1, in hsf-1(sy441) mutants, should restore 

the normal heat-shock response only in targeted cells and should allow expression of any 

transgene within rescued cells (Figure 6.1). 
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Spatial restriction of gene expression after heat shock to glia and sensory neurons  

To test this idea, we sought to develop transgenic strains in which we could 

induce green fluorescent protein (GFP) expression in specific cells following a heat-

shock.  To this end, we transformed hsf-1(sy441) mutants with two transgenes 

simultaneously.  The first transgene, referred to as the driver, consisted of the hsf-1 

cDNA under the control of the 5 kb promoter region of the gene vap-1, which is 

expressed specifically within the amphid sheath cell, an easily identifiable glial cell in the 

head of the animal (Blacque et al., 2005).  The second transgene, termed the responder, 

consisted of the gene encoding GFP under the control of the 400 bp promoter region of 

the hsp-16.2 gene (Jones et al., 1986; Fire et al., 1990).  In C. elegans, the hsp-16.2 and 

hsp-16.41 heat-shock responsive genes are divergently transcribed from a shared 346 bp 

region that contains three heat-shock factor binding elements (Jones et al., 1986).  The 

hsp-16.2 promoter expresses most strongly in hypodermal cells and neurons, while the 

hsp-16.41 promoter is more efficient in directing expression in the intestine and 

pharyngeal tissue (Fire et al., 1990; Stringham et al., 1992). 

hsf-1(sy441) animals carrying both transgenes as an extrachromosomal array, and 

raised at 20ºC, did not display detectable GFP expression (Figure 6.2A).  However, 

following administration of a heat-shock at 34ºC for 30 min, GFP expression was 

observed specifically within the amphid sheath cells (Figure 6.2B).  GFP fluorescence 

was visible within 1 h following the temperature shift and was still present  after 24 

hours. 
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Figure 6.2: Spatiotemporal control of GFP expression using a heat-shock promoter
(A-B) Amphid sheath cell-specific labeling.  Sheath cell-specific hsf-1 rescue was achieved 
by driving hsf-1 cDNA expression via the vap-1 promoter; GFP was under the control of the 
hsp-16.2 promoter.  (A) No GFP expression was observed prior to heat-shock.  Right panel, 
DIC image of the same animal.  (B) Heat-shock resulted in GFP expression within the 
amphid sheath cell specifically.  (C) Pharynx GFP expression.  An adult animal expressing 
GFP in pharyngeal muscles after a 30 min heat-shock.  The genotype of the animal shown is 
hsf-1(sy441); nsEx1730 [myo-2 pro::hsf-1; hsp-16.2 pro::GFP; hsp-16.41 pro::GFP; pRF4].  
(D) Ciliated neuron-specific labeling.  Animals in D-F have the genotype hsf-1(sy441); 
nsEx1129 [osm-6 pro::hsf-1; hsp-16.2 pro::GFP; pRF4].  (E) Heat-shock induced GFP 
expression in ciliated neurons of the phasmid.  (F) Neuronal GFP labeling in a two-fold 
embryo.  Arrows, cell body; arrowheads, cell process; scale bar (A-D and E-F), 10 µm.
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To determine whether this method is applicable to other C. elegans cells, we 

established new hsf-1(sy441) transgenic lines in which the HSF driver transgene was 

under the control of the 1.1 kb promoter region of myo-2, a gene expressed in pharyngeal 

muscle (Okkema et al., 1993).  These lines also contained both the hsp-16.2 

promoter::GFP and hsp-16.41 promoter::GFP responder transgenes.  Following heat-

shock, GFP expression was observed only in the pharynx (Figure 6.2C).  We found that 

GFP expression was fainter in lines containing only the hsp-16.2 promoter::GFP 

responder transgene (data not shown), consistent with the reported poorer expression of 

hsp-16.2 in pharyngeal muscles. 

To extend this method to neurons, hsf-1(sy441) transgenic lines in which the HSF 

driver transgene was under the control of the 2.4 kb promoter region of osm-6, a gene 

expressed in all ciliated neurons (Collet et al., 1998).  Whereas no GFP was detectable at 

20ºC, heat-shock resulted in specific GFP expression within most ciliated neuron classes 

(Figure 6.2, D-F).  Importantly, neuronal staining was observed in larvae and embryos 

alike (Figure 6.2F), suggesting that this method of cell-specific timed expression can be 

used in most developmental stages.  Similar results were obtained when both the hsp-16.2 

promoter::GFP and hsp-16.41 promoter::GFP responder transgenes were simultaneously 

transformed.  However, in some of the animals in which both heat-shock promoters were 

used, GFP was also variably expressed in the intestine.  Intestinal expression was also 

occasionally observed with the hsp-16.2 promoter alone.  We suspect that this expression 

might reflect cryptic regulatory elements driving intestinal expression within the vectors 

we used.  Indeed, such intestinal misexpression is common to many transcriptional 

reporter transgenes. 
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To determine whether this method could be used to study gene function, we 

sought to rescue a mutant phenotype in a temporally and spatially restricted manner.  

CHE-2, a conserved WD40 repeat protein, is required for sensory neuron cilium 

formation and function in C. elegans (Fujiwara et al., 1999).  In che-2(e1033) mutants, 

neurons of the amphid sensory organ fail to take up lipophilic dyes, such as DiI, 

presumably because they lack functional cilia.  We examined whether che-2(e1033) 

mutants could be rescued by expression of the che-2 cDNA exclusively within ciliated 

neurons in L4 larvae.  Amphid neurons of hsf-1(sy441); che-2(e1033) double mutants, 

carrying both osm-6 promoter::hsf-1 driver and hsp-16.2 promoter::che-2 responder 

transgenes, were unable to take up DiI at 20ºC (Table 6.1; Figure 6.3A).  However, 

transgenic animals exposed to a 30 min heat-shock at 34ºC, and examined 8 h later, 

displayed robust neuronal dye filling (Table 6.1; Figure 6.3).  These results suggest that 

che-2 may be continuously required for sensory cilia function, consistent with previous 

studies (Fujiwara et al., 1999).  Less efficient, but reproducible rescue was observed 

when animals were examined 1 h after heat-shock.  These results suggest that the time 

required to assemble a functional cilium from its components may be as little as 1 h (see 

also (Fujiwara et al., 1999).  No dye-filling after heat-shock was observed in animals 

carrying only the hsp-16.2 promoter::che-2 responder transgene, consistent with a lack of 

the heat-shock response in hsf-1(sy441) mutants. 

To test whether hsf-1 rescue was cell-autonomous, and to test whether dye uptake 

is a cell-autonomous process or a group property of exposed amphid cilia, we examined 

hsf-1(sy441); che-2(e1033) mutants carrying both sra-6 promoter::hsf-1 driver and hsp-

16.2 promoter::CHE-2 responder transgenes.  The 2.4 kb sra-6 promoter is primarily 
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expressed in the two dye-filling amphid neurons ASI and ASH (Troemel et al., 1995).  

While transgenic animals grown at 20ºC failed to take up DiI, dye-filling was observed 

exclusively in the two sra-6-expressing neurons 8 h after heat-shock (Figure 6.3) 

suggesting that hsf-1 and che-2 indeed function cell-autonomously.  In both the osm-6 

and sra-6 transgenic lines, rescue was very efficient, reaching nearly 90% in some lines 

(Table 6.1).  Importantly, we never observed rescue in non-heat-shock treated animals, 

indicating that any leaky expression from the hsp promoter is not only below detectable 

levels of GFP expression but also below detectable levels in this functional assay. 

 

Table 6.1: Neuron-specific rescue of che-2(e1033) by heat shock 

Promoter 

driving hsf-1 

 % Dye-filling
b
 

Strain
a
 - HS + HS 

 No transgene 0 0 

    
osm-6 line 1 0 73 

 line 2 0 53 

 line 3 0 90 

    
sra-6 line 1 0 83 

 line 2 0 37 

 line 3 0 53 

 

a
 All animals have the genotype hsf-1(sy441); che-2(e1033).   The extrachromosomal 

arrays used were Ex[osm-6 pro::hsf-1, hsp-16.2 pro::che-2, pRF4] and Ex[sra-6 pro::hsf-

1, hsp-16.2 pro::che-2, pRF4] 

b
 Animals were dye-filled 8 h after heat-shock.  Animals exhibiting dye filling in any 

amphid neuron were scored as positive. n=30 in all cases. HS, heat-shock. 
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Figure 6.3: Cell-specific rescue of che-2(e1033) neuronal dye-filling defects
Dye filling in L4 animals of the genotype hsf-1(sy441); che-2(e1033); nsEx1555 [osm-6 
pro::hsf-1, hsp-16.2 pro::che-2, pRF4] before (A) or after a 30 min heat-shock (B).  
Rescue was seen in all dye-filling amphid neurons.  Right, panel, DIC image of the same 
animal.  (C) Rescue of dye-filling by heat-shock in only two amphid neurons that express 
sra-6.  The genotype of the animal shown is hsf-1(sy441); che-2(e1033); nsEx1552 [sra-6 
pro::hsf-1, hsp-16.2 pro::che-2, pRF4].  Anterior, top.  Arrows, neuronal cell bodies.  
Arrowheads, dendritic processes.  Scale bar, 10 µm.

B CA
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Discussion 

Temporal control of transgene expression in C. elegans has been limited to the 

use of heat-shock promoters without spatial restriction.  Here we have described a 

method using the heat-shock response to allow both temporal and spatial control of 

transgene expression.  We have shown that this technique can be used to target transgene 

expression in different cell types, including neurons and glia (Figure 6.2).  Importantly, 

this method allows expression in all larval stages including embryos (Figure 6.2E).    

We envision that this technique will be broadly applicable in C. elegans and can 

be used for a variety of applications.  In particular, our main interest in developing this 

technique was to perform genetic cell ablations in adult animals, a stage in which laser-

ablations are inefficient, by expression of proapoptotic factors or toxic proteins.  From 

our limited experience, we find that toxin selection is particularly important.  For 

example, expression of the proapoptotic genes CED-3 or EGL-1 (Yuan et al., 1993; 

Conradt and Horvitz, 1998) was not sufficient to induce apoptosis in adult animals.  To 

overcome this limitation, one might use the split version of CED-3 in which an active 

caspase is formed by expression of two different CED-3 fragments (Chelur and Chalfie, 

2007).  Only one CED-3 fragment needs to be under expression of the heat-shock 

promoter in this case.  Use of stronger toxic genes has to be balanced by the fact that 

leaky expression might cause non-specific cell death in untargeted tissues. 

Another exiting possible use of this system is to induce temporal and spatial 

specific knock-down of gene function.  Specifically, it should be possible to drive 

expression of an RNAi construct to knock-down gene levels in particular cells at specific 



145 

times.  To prevent intercellular spread of the RNAi effects, these experiments could be 

performed in the sid-1 background, a mutant that prevents the systemic effects of small 

interfering RNAs (Winston et al., 2002).  This could be useful to determine the site of 

action of a gene or to characterize essential genes that are required for viability. 

A limitation of this technique is the requirement for a promoter that targets 

expression of the HSF-1 protein to the desired cells.  It is important that this promoter not 

express in intestinal cells, a common non-specific pattern of expression observed for 

many C. elegans promoters, as even low HSF-1 levels might result in misexpression of 

the desired gene in intestinal cells.  Another drawback of the technique is the variable 

expression of the gene of interest in different animals.  Although heat-shock induction 

varied among different transgenic lines and was also dependent on the promoter used to 

drive hsf-1 expression, we did not observe expression in 100% of the animals in any of 

the extrachromosomal transgenic lines we generated.  This might be ameliorated or even 

overcome by using integrated transgenes.  Lastly, the technique requires that experiments 

be performed in hsf-1(sy441) mutants, restricting its use to temperatures below 25ºC as 

these mutants are not viable at 25ºC (Hajdu-Cronin et al., 2004). 

These limitations notwithstanding, this heat-shock based method of transgene 

expression is robust and useful for most experimental purposes.  Interestingly, a 

Drosophila melanogaster heat-shock factor mutant, hsf
4
, is also viable (Jedlicka et al., 

1997).  Therefore, this method could be extended to this organism as well. 
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Sensory organs as models of glia-neuron interactions 

My interests lie in uncovering the mechanisms that enable the development and 

function of the nervous system.  To understand these processes, we have focused on 

sensory organs as these provide a simple model of the nervous system in general.  In 

particular, we have sought to characterize the roles that glia play within these organs.  

Perhaps not surprisingly, we find that the development of glia and neurons is coordinated 

in the amphid sensory organs of C. elegans as removal of glia results in shorter dendrites.   

Coordinated morphogenesis of glia and neurons is a basic requirement in all 

nervous systems and characterization of the molecular mechanisms that mediate glia-

neuron interactions in amphid development might prove to be more general.  Initially, the 

development of the organ must be visualized to determine how the two glial cells and the 

twelve neurons come in contact with each other and how they reach their final positions.  

This is helpful as different hypotheses about molecular players can be put forth based on 

different types of growth, i.e. which cell type migrates first, do all the neurons contact the 

glia early on, etc.  Further, the role of the socket glial cell has not been investigated and 

imaging along with embryonic ablations of this cell could reveal any potential roles it 

plays in development.  Perhaps most importantly, the glial ablation results provide a 

phenotype that could be used to conduct genetic screens for molecules involved in this 

process.  Such screens are being currently pursued by Maxwell Heiman in our laboratory 

and should identify any glial-neuron interaction modules that might also play a role in 

other nervous system settings outside sensory organs. 
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Identifying glial factors that support neuronal function and morphology 

A major goal of this work was to catalogue neuronal dysfunction phenotypes that 

might result after removal of the glial cell that ensheathes the amphid sensory neurons.  

While not all amphid-mediated behaviors are affected, we find clear roles for glia in 

supporting the function of some neurons.  Moreover, glial absence results in sensory cilia 

morphology defects in three sheath-embedded neurons. 

To better understand how glia function within sensory organs, the molecular 

pathways that mediate these glial roles must identified.  We have made some progress 

towards this by characterizing FIG-1, a glial gene with neuronal phenotypes.  Although 

further characterization of fig-1 mutants is needed, in particular with respect to Ca
2+

 

dynamics, it would be interesting to find neuronal molecules that interact with FIG-1.  

Working with C. elegans, the best approach might be to suppress the dye filling defects 

of fig-1 animals.  Even rare mutations can be identified in this screen as it is easy to pick 

out a dye-filling phasmid even in the presence of many Dyf animals. 

The behavioral defects of fig-1 animals are not as severe as those of glia-ablated 

animals, suggesting that many glial molecular pathways are required to support neuronal 

function.  As discussed in Chapter 3, screens for abnormal AWC morphology or 

behavioral defects are likely to yield genes that act within neurons, especially IFT 

components.  To circumvent these genes, we screened by RNAi a set sheath glia-enriched 

genes but did not discover any genes – apart from fig-1 – that affected dye filling.  

Nonetheless, this should not be viewed as conclusive evidence that none of these genes 

impact neuronal function as RNAi knockdown efficiency can vary for different targets.  
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As a case in point, we have identified another gene, kcc-3, from the set of glia-enriched 

genes that is required for dye filling but does not give a phenotype by RNAi.  kcc-3 (also 

known as K02A2.3) encodes a potassium/chloride cotransporter that is expressed in all 

(or almost all) sheath glia (Jessica Tanis and Michael Koelle, personal communication).  

We found that 100% of kcc-3(ok228) mutants, which harbor a 2.6 kb deletion in the kcc-3 

locus, fail to take up dye in the phasmid. 

Although further characterization of kcc-3 is needed, its molecular identity 

suggests that the glia might control the concentration of chloride or potassium in the 

amphid channel matrix in which the sensory cilia reside.  Regulation of these ions is 

known to be important in other sensory organs.  For example, chloride homeostasis is 

critical for the function of vertebrate olfactory neuron whose cilia contain large 

concentrations of intracellular Cl
-
 (Kaneko et al., 2004).  Odor detection ultimately 

results in opening of Ca
2+

-activated Cl
-
 channels (Kurahashi and Yau, 1993; Lowe and 

Gold, 1993) and Cl
-
 outflow from the cell accounts for up to 90% of the transduction 

current (Boccaccio and Menini, 2007).  All cells control their potassium levels and the 

cochlea displays perhaps one of the most sophisticated mechanism of K
+
 regulation 

particularly in generating the potassium-rich endolymph that is required for hearing 

(Wangemann, 2006).  KCC-3 might affect amphid neuron function in an analogous 

manner by regulating the extracellular concentration of these ions.  Indeed, we have 

found that the amphid channel matrix is abnormally electron-dense in kcc-3(ok228) 

mutants (Appendix Figure 2), suggesting some role for this protein in the homeostasis of 

this environment.  A direct approach to determining if KCC-3 affects neuronal chloride 

levels would be to measure this concentration using clomeleon, a Cl
-
-sensitive GFP 



150 

derivative (Kuner and Augustine, 2000).  Preliminary behavioral analysis of ok228 

mutants did not reveal any defects but these experiments must be repeated and a second 

recently identified kcc-3 allele, tm3649, must also be tested for behavioral defects.  If 

these animals behave normally, it might be informative to test double mutants that lack 

kcc-3 as well as a second channel, such as CLC-type Cl
-
 channels, as this might stress the 

system to the point of neuronal dysfunction. 

 Apart from supporting neuronal function, the sheath glia are also required to 

maintain the proper sensory cilia morphology of three sheath-embedded neurons.  We 

have been unable to follow this process in real time so we do not know if the structures 

are lost because the animal grows while the cilia do not or if the cilia would lose their 

shape in absence of neuronal growth.  To separate these processes, the sheath glia should 

be ablated in animals that do not grow.  Ablating the sheath glia in adult animals is 

difficult since laser ablations are impeded by the thickness of the cuticle and toxins are 

not very efficient due to the large size of the cell.  However, it might be possible to ablate 

the sheath glia in dauer animals, a stage in which the animal does not grow and follow the 

dynamics of cilia morphology.  The ver-1 promoter, which is expressed in sheath glia of 

dauer animals, or the hsf-1 method could be used to express diphtheria toxin specifically 

within sheath glia in dauer larvae.  If the cilia fail to maintain their morphology, it would 

suggest that glia actively control cilia shape.  Although challenging in dauer larvae, laser 

ablations could be performed to determine the time course of loss of cilia shape.  As 

discussed in Chapter 3, the most efficient strategy to isolate glial genes that affect cilia 

morphology is to screen for loss of AFD villi. 
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How might glia affect neuronal function? 

The ablation results show that the presence of the sheath glia is required for most 

amphid sensory functions.  Glial roles in the amphid can be grouped in two broad 

categories: permissive functions, such as homeostatic maintenance of the amphid channel 

milieu; or instructive roles, such as actively modulating neuronal excitability by 

controlled secretion of factors that impact neuronal activation.  Although present in a 

continuum, the key difference is that instructive roles are non-constitutive processes that 

glia modulate.  As an analogy, plant stomata, even though simple pores, play an 

instructive role in photosynthesis because they can regulate CO2 availability.  For 

example, stomata close in dry conditions or during the night. 

Permissive glial roles in nervous system function have long been hypothesized 

and several have been verified experimentally more recently.  These are undoubtedly 

important roles as neuronal activity might not be possible without them.  It is likely that 

sheath glia partake in such support roles within the amphid and their molecular 

elucidation can lead to a better understanding of neuronal-glial physiology.   

More excitingly, could sheath glia play instructive roles in the amphid?  The 

ablation experiments presented here do not address this question; we could not observe 

modulatory glial roles in neuronal activity as we started by removing these cells.  

Conceptually, however, active glial roles can be divided based in the timescale in which 

they exert their effect: minutes or hours.  This distinction is important experimentally as 

different techniques are needed to probe these timescales.  Fast-acting glial modulation 

might be mediated by exocytosis of factors that can affect specific sensory neurons 
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differently or by activation of glial channels that might change the ionic environment of 

the amphid channel, thereby affecting most neurons.  To block glial release, one could 

take advantage of dominant-negative proteins, such as dynamin or SNARE members, that 

can block exocytosis in a temperature-sensitive fashion.  Behavioral analysis or Ca
2+

 

imaging of these animals after a temperature shift might reveal the presence of instructive 

sheath roles.  The difficulty of electrophysiological recordings in the amphid renders 

testing of ionic modulation difficult, but compounds that block only glial channels might 

be added in the hope that they gain access to the glia through the amphid pore.  These 

experiments are complicated by the lack of knowledge about the channels expressed in 

both cell types. 

A hint that the sheath might play such active roles is provided by the recent 

findings that the glial acid-sensitive channel ACD-1 is required for acid avoidance and 

chemotaxis to lysine (Wang et al., 2008).  The ACD-1 channel is constitutively open and 

is inhibited by acidification, the presumed mechanism by which it enables neuronal 

avoidance of acids.  Wang and colleagues speculate that acidification inhibits ACD-1, 

thus lowering glial Na
+
 levels (Wang et al., 2008).  The reduced Na

+
 concentration in turn 

lowers the activity of the Na
+
/K

+
 pump causing increased levels of extracellular K

+
 that 

affect cilia function.  Interestingly, acd-1 mutants behave normally and a defect is only 

visible in double mutants that also lack deg-1, a neuronal degenerin/epithelial Na
+
 

channel (DEG/ENaC) (Wang et al., 2008).  This suggests that ACD-1 might not always 

play a role in sensation but might be required only under some conditions.  For example, 

two parallel mechanisms of H
+
 detection might exists only one of which is modulated by 

the glia.  Furthermore, one may speculate that an animal should ignore all other stimuli 
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until it has left an area of high acidity, and the glia are perfectly situated to perform a 

whole organ temporary inactivation by changing the ionic environment.  This might be 

likened to heterosynaptic depression – depression of nonstimulated synapses after tetanic 

stimulation of nearby Schaffer collaterals – which some evidence suggests is mediated by 

astrocytic ATP release (Pascual et al., 2005). 

Sheath glia might also modulate neuronal activity over larger time scales.  For 

example, the behavioral repertoire of adult animals might be different from that of larvae 

as they must balance feeding with mate searching or sensory perception might be altered 

by long-term environmental cues, including starvation.  Carl Procko in our laboratory has 

shown that the expression of at least one sheath gene, ver-1, correlates with 

environmental temperature, raising the possibility that this is a general mechanism.  

Transcriptional profiling of sheath glia from animals reared in different conditions could 

be a fruitful approach to identify other glial molecules whose expression is regulated in a 

similar manner, providing a handle on these molecular pathways.  For example, regulated 

production of proteins that can regulate neuronal function – perhaps thrombospondin type 

1 domain proteins – might alter amphid sensation over time.  Interestingly, the C. elegans 

genome encodes at least 43 proteins with TSP1 domains and several of them are very 

short, consisting only of the TSP1 domain, and might act as competitive inhibitors.  Thus, 

glia might be able to alter neuronal responses in the long-term based on the animal‟s prior 

experience.  Such long-term glial modulation of neuronal activity might also occur in the 

mammalian brain where glial tumor necrosis factor-α (TNF-α) is thought to mediate 

homeostatic synaptic scaling (Stellwagen and Malenka, 2006), a uniform adjustment in 

the strength of all synapses of a neuron in response to prolonged changes in electrical 



154 

activity that keeps firing rates roughly constant.  Interestingly, thrombospondin 2 and 4 

are among the few genes whose expression is upregulated in the human cortex as 

compared to that of chimpanzees and macaques (Caceres et al., 2003; Caceres et al., 

2007), suggesting that glia, and particularly TSP proteins, might have played some part in 

the evolution of human of cognition. 

In conclusion, this work shows that glia are required for sensory neuron function 

and we anticipate it will provide an opening towards characterizing the undoubtedly 

many roles glia play in sensory organ function.  These findings will hopefully provide a 

small step towards a fuller understanding of the 1.4 kg mass that enabled the writing, 

reading (or skimming), and hopefully appreciation of this thesis. 
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General methods and strains 

C. elegans strains were cultured at 20C as described (Brenner, 1974), unless 

otherwise indicated.  Wild-type animals were Bristol strain N2 and the strain CB4856 

(Hodgkin and Doniach, 1997) was used for polymorphism mapping. 

Alleles used in this work were:  

LGI: hsf-1(sy441), unc-101(m1), che-3(e1124), che-13(e1805), daf-16(mu86, che-

10(e1809)); 

LGII: daf-19(m86), tph-1(mg280), kcc-3(ok228), lin-26(n156,mc1,mc15); 

LGIV: daf-10(e1387), osm-3(p802); 

LGV: fig-1(tm2079), egl-9(n586), che-12(e1812, mn389, mn399), unc-42(e270), che-

11(e1810), bbs-8(nx77), ttx-1(p767), egl-4(ky95), osm-6(p811); 

LGX: dyf-11(mn392), daf-13(m66), che-2(e1033), osm-1(p808, osm-5(m184,p813).  

 

The following integrated transgenes and transgenic arrays were used: 

cbIs1 [vap-1 pro(5kb)::nlsGFP, lin-15(+)] I, 

kyIs90 [odr-3 pro::odr-3(1
st
 35 aa‟s)::GFP, lin-15(+)] III, 

kyIs104 [str-1 pro::GFP, lin-15(+)], 

kyIs136 [str-2 pro::GFP, lin-15(+)] X (Sagasti et al., 1999), 

kyIs156 [str-1 pro::odr-10::GFP] X, 

mnIs17 [osm-6 pro::GFP, unc-36(+)], 

ntIs1 [gcy-5 pro::GFP, lin-15(+)] V (Sarafi-Reinach et al., 2001),  

oyIs17 [gcy-8 pro::GFP, lin-15(+)] V, 

oyIs45 [odr-1 pro::RFP] V, 

oyIs51 [T08G3.3 pro::RFP], 

 

bgEx21 [unc-53 pro::GFP, pRF4], 

kyEx728 [sra-6 pro::G-CaMP], 
kyEx291 [str-2 pro::odr-10::GFP, lin-15(+)], 

kyEx1440 [sra-6 pro::chop2::Cherry, elt-2 pro::GFP],  

kyEx1449 [sra-6 pro::chop2::Cherry, elt-2 pro::GFP], 

myEx10 [che-11 pro::che-11::GFP, pRF4] (Qin et al., 2001), 

yhEx19 [osm-5 pro::osm-5::GFP, pRF4], 

yhEx69 [osm-5 pro::che-13::YFP, pRF4], 

yhEx90 [che-13 pro::che-13::GFP, pRF4] (Haycraft et al., 2003). 
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The following integrated transgenes and transgenic arrays were generated in the course of 

this work: 

nsIs53 [vap-1 pro(2.8kb):RFP, unc-119(+)] IV, 

“no glia 1” nsIs109 [F16F9.3 pro::DT-A(G53E), unc-122 pro::GFP], 

“no glia 2” nsIs113 [F16F9.3 pro::DT-A(G53E), unc-122 pro::GFP] X, 

nsIs184 [fig-1 pro::fig-1 (short), exp-1 pro::GFP], 

 

nsEx856 [F16F9.3 pro::GFP, pRF4], 

nsEx992 [vap-1 pro::hsf-1, hsp-16.2 pro::GFP, pRF4], 

nsEx1096 [F16F9.3 pro::DTA(G53E), unc-122 pro::GFP ], 

nsEx1126 [pTB35 (TOPO-B0024.8), unc-122 pro::GFP + pRF4], 

nsEx1129 [osm-6 pro::hsf-1, hsp-16.2 pro::GFP, pRF4], 

nsEx1249 [B0024, pRF4], 

nsEx1311 [che-12 pro::che-12p::GFP, pRF4], 

nsEx1424 [lin-26 (E1x)::egl-1, pRF4], 

nsEx1441 [che-12 pro::che-12::GFP, pRF4],  

nsEx1448 [che-12 pro::GFP, pRF4],  

nsEx1552 [sra-6 pro::hsf-1, hsp-16.2 pro::che-2, pRF4], 

nsEx1555 [osm-6 pro::hsf-1, hsp-16.2 pro::che-2, pRF4], 

nsEx1558 [hsp-16.2 pro::che-12, pRF4],  

nsEx1561 [sra-6 pro::che-12, pRF4],  

nsEx1702 [dyf-11 pro::GFP, pRF4],  

nsEx1705 [dyf-11 pro::dyf-11::GFP, pRF4],  

nsEx1746 [myo-2 pro::hsf-1, hsp-16.41 pro::GFP, pRF4], 

nsEx1758 [fig-1 pro::GFP, pRF4], 

nsEx1761 [gcy-5 pro::mCherry::SL2::che-12::GFP, pRF4],  

nsEx1764 [gcy-5 pro::mCherry::SL2::dyf-11::GFP, pRF4], 

nsEx1859 [sra-6 pro::dyf-11, pRF4],  

nsEx1862 [hsp-16.2 pro::dyf-11, pRF4],  

nsEx1956 [hsp16.2 pro::che-12 + pRF4] 

nsEx2192 [C38G2, pRF4], 

nsEx2150 [sra-6 pro::fig-1 (short), exp-1 pro::GFP], 

nsEx2155 [T02B11.3 pro::fig-1 (short), exp-1 pro::GFP], 

nsEx2209 [fig-1 pro::fig-1 (long), exp-1 pro::GFP], 

nsEx2212 [sra-6 pro::odr-10::GFP, pRF4, pSL1180], 

nsEx2215 [odr-1 pro::odr-10::GFP, pRF4, pSL1180], 

nsEx2218 [odr-10 pro::odr-10::GFP, pRF4, pSL1180], 

nsEx2221 [odr-1 pro::tax-4::GFP, pRF4, pSL1180], 

nsEx2224 [odr-1 pro::tax-4::GFP, pRF4, pSL1180]. 
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Germline transformations 

To generate transgenic animals, adult hermaphrodites were transformed using 

standard protocols (Mello et al., 1991).  Construct and coninjection markers were usually 

injected at 30 ng/µl each and often an empty vector pSL1180 was added to a total 

concentration of 100 ng/µl.  Often, the coinjection plasmid used was pRF4, which 

contains the dominant marker pRF4 (Mello et al., 1991); exp-1 pro::GFP was kindly 

provided by Eric Jorgensen (Beg and Jorgensen, 2003) and used as a coinjection marker.  

Stable transgenes were obtained by psoralen integration (Yandell et al., 1994). 

Heterozygous che-12/+ animals were used for injections as it was difficult to 

obtain transgenic lines by injecting che-12 animals directly. 

 

Ablations 

Laser ablations were performed as described (Bargmann and Avery, 1995) in L1 

larvae of a strain expressing GFP in amphid sheath glia (cbIs1).  Ablation success was 

determined by lack of GFP expression and also confirmed in eight animals by EM 

reconstruction.  All cilia morphologies were determined in laser-ablated animals as well 

as transgenic lines lacking glia.  An attenuated form of diphtheria toxin A was expressed 

specifically within amphid and phasmid sheath cells using the F16F9.3 promoter region 

to kill these cells genetically.  Transgenic animals carrying pTB29 [F16F9.3 pro::DT-

A(G53E)], injected at 2 ng/μL, and pEP51 [unc-122 pro::GFP], a gift of Elliot Perens, 

were obtained by germline injection followed by psoralen integration.  In the two lines 
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characterized, “no glia 1” (nsIs109) and “no glia 2” (nsIs113), the amphid sheath glia 

appears to die in late embryos or in early L1 larvae.  Laser-ablated animals were tested in 

NaCl chemotaxis and osmosensation assays and they performed similarly to genetically-

ablated animals, indicating that the two ablations are essentially equivalent. 

 

Behavioral analysis 

NaCl chemotaxis and odortaxis assays were performed as previously described 

(Ward, 1973; Bargmann et al., 1993).  Attractants were assayed on circular plates; 

repellents and diacetyl in the experiment shown in Figure 1G were assayed on square 

plates.  All data shown is from 12 assays.  The ring assay was used to test osmosensation 

(Culotti and Russell, 1978).  Briefly, a 1 cm ring of 4 M fructose containing the dye 

Congo Red was made on an NGM plate.  Animals were placed inside the ring and 

followed over the next 10 min to determine the response to the osmotic barrier.  Animals 

avoiding the ring more than six times were classified as normal; those exiting the ring in 

less than six attempts were deemed defective in osmosensation. 

Thermotaxis assays were performed on a 18-26C linear temperature gradient 

(Ryu and Samuel, 2002).  Animals were allowed to lay for 8-24 hours and removed from 

plates.  The staged progeny were tested on the first day of adulthood.  Briefly, animals 

were washed twice with S-Basal and spotted onto a 10 cm plate containing 12 mL of 

NGM agar.  The plate was placed onto the temperature gradient with the addition of 1 

mL glycerol to its bottom to improve thermal conductivity.  The plate was covered with a 

flat piece of glass.  The assay was stopped after 45 min by inverting the plate over 
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chloroform thus killing the animals.  The plates have an imprinted 6x6 square pattern that 

formed the basis of the 6 temperature bins.  The data shown is the average of four assays. 

  

Dye filling 

Stock solutions (20 mg/mL) of fluorescein-5-isothiocyanate (FITC “isomer I”; 

Molecular Probes, Eugene, OR) and 5 mg/mL 1,1‟-dioctadecyl-3,3,3‟,3‟-

tetramethylindocarbocyanine perchlorate (DiI) (Molecular Probes, Eugene, OR) in N,N-

dimethylformamide were stored at -20.  To assay dye uptake, animals were soaked in 

0.4 mg/mL FITC or 5 g/mL DiI diluted in M9 for up to 4 h. 

 

Heat shock 

Animals were placed at 34C for 30 min, allowed to recover at 20 for 6 h, and 

scored for dye uptake or imaged. 

 

Mutagenesis 

Animals were mutagenized with 30 mM ethyl methanesulfonate (EMS) for 4 

hours.  Healthy L4 hermaphrodites were selected and propagated on 10 cm NGM agar 

plates for 6 days.  To obtain F2 animals, these plates were bleached and the embryos 
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were allowed to hatch overnight in M9 buffer.  These synchronized F2 larvae were plated 

as desired and scored after 3 days. 

 

Mapping and cloning of che-12 and dyf-11  

unc-42(e270) che-12(mn399) egl-9(n586) hermaphrodites were crossed to 

CB4856 (Hodgkin and Doniach, 1997) males, which contain many single nucleotide 

polymorphisms (SNPs) with respect to N2 (Wicks et al., 2001).  From the F2 progeny, 

Egl non-Unc and Unc non-Egl animals were selected.  These recombinants were soaked 

in FITC to determine their che-12 genotype.  DNA was prepared from the progeny of 

recombinant animals as previously described (Wicks et al., 2001).  SNP analysis limited 

the genomic location of che-12 between the SNPs C12D8:34312 and AC3:3025.  Cosmid 

clones containing DNA spanning this region were injected singly into che-12 animals and 

transgenic animals were tested for rescue of the FITC uptake defect.  Cosmid B0024 was 

the only one to give rescue.  Shorter regions of B0024 were amplified by PCR and 

introduced into che-12 mutants.  A fragment containing the gene B0024.8 yielded 

animals rescued for dye filling. 

Previous work had established that dyf-11(mn392) was located on the left arm of 

chromosome X (Starich et al., 1995).  To refine this position, dyf-11(mn392) 

hermaphrodites were crossed to CB4856 males.  From this cross, 238 dye-filling 

defective F2 animals were isolated, and DNA prepared from their progeny was 

characterized for the presence of N2 and CB4856 SNPs.  This analysis revealed that dyf-

11 resides between the SNPs F39H12:15494 and F02G3:5645.  Sequencing candidate 



162 

genes from this region revealed that the gene C02H7.1 contained a nonsense mutation in 

dyf-11 animals.  Injection of both the C02H7 cosmid and the C02H7.1 genomic region 

restored dye filling. 

 

Microscopy and imaging 

GFP expression patterns were analyzed in stable transgenic lines by conventional 

fluorescence microscopy using an Axioplan II microscope equipped with an AxioCam 

camera.  Alternatively, imaging was performed on a Zeiss Axiovert 200M microscope 

equipped with an UltraView spinning disk confocal head using a 100x/1.45 NA 

objective.   Expression patterns for each construct were examined in three independent 

transgenic lines. 

Calcium imaging was performed using a microfluidic device as described 

(Chalasani et al., 2007).  Images were captured at 10 frames/s and were analyzed using 

MetaMorph and Matlab (Chalasani et al., 2007).  

IFT was assayed as previously described (Orozco et al., 1999; Christensen et al., 

2002).  Transgenic animals anesthetized with 5 mM levamisole were mounted on agar 

pads and imaged at 21°C.  Imaging was performed on a Zeiss Axiovert 200M microscope 

equipped with an UltraView spinning disk confocal head using a 100x/1.45 NA 

objective.  Images were collected with a Hamamatsu EM-CCD (C9100-12) camera at 

0.333s/frame for 5 min.  Kymographs were created using MetaMorph. 
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Electron microscopy 

Animals were fixed, stained, embedded in resin, and serially sectioned using 

standard methods (Lundquist et al., 2001).  Imaging was performed with an FEI Tecnai 

G2 Spirit BioTwin transmission electron microscope equipped with a Gatan 4K x 4K 

digital camera. 

 

Channelrhodopsin2 

An overnight culture (5mL) of E. coli (strain OP50) was pelleted and 

concentrated to 50 μL.  To this, 1 μL of 50 mM retinal (a gift of Navin Pokala and Cori 

Bargmann) was added.  After vortexing, the mixture was spotted in NGM plates.  

Animals expressing ChR2-mCherry were transferred and cultivated on these plates for at 

least 2 hours.  Animals were assayed on a dissecting microscope by exposing them for 

about 1 s to excitation light using a GFP Plant fluorescence filter 470/40 nm.  Animals 

initiating backward movement within 2 s were scored responsive.  The animals were not 

responding to UV light per se as omission of retinal, a channelrhodopsin2 obligate 

cofactor, resulted in unresponsive animals. 

 

RNAi 

RNAi was performed as described using published clones (Kamath et al., 2003).  

To screen the candidate genes, 4 L4 larvae were placed on seeded RNAi plates and their 

progeny screened after 4 days by dye filling.  
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Plasmid constructions 

Most of the vectors used in this work have the pPD vector backbone (Fire et al., 

1990; Miller et al., 1999).  Most cDNAs isolated were amplified by PCR from a mixed-

stage cDNA library (Schumacher et al., 2005).  In some cases, dual transcripts from the 

same promoter were generated by using the SL2 acceptor sequence (HUANG et al., 2001).  

The diphtheria toxin used was from the pJF142 [unc-122 pro::DT-A(K52E)] plasmid, a 

gift of Hanna Fares (Fares and Greenwald, 2001), which also contains a D79G mutation 

that should not affect toxin activity. 

 

Table 8.1: List of plasmids used in this work 

Name Pro cDNA Notes 

pTB2 vap-1  5kb promoter vap-1 into PstI/BamHI of pPD49.78. 

pTB3 vap-1 CED-3 5kb promoter vap-1 into PstI/BamHI of pPD49.78. 

CED-3 cDNA into BamHI/NcoI. 

pTB4 vap-1 HSF-1 5kb promoter vap-1 into PstI/BamHI of pPD49.78. 

HSF-1 cDNA into XmaI/NheI. 

pTB8 vap-1 DT-A vap-1 promoter as PstI/BamHI from pEP2 into 

PstI/BamHI of pJF142. Backbone pPD95.77. DT-A 

K52E is 10% as active (also has D79G mutation). 

pTB8B vap-1 DT-A(G53E) pTB8 derivative. Has G53E mutation. (also has D79G 

mutation). 

pTB8C vap-1 DT-A(K52E 

G53E) 

pTB8 derivative. Has K52E and G53E mutation. (also 

has D79G mutation). 

pTB11 hsp16.2 nlsGFP SphI/BamHI hsp16.2 promoter from pPD49.78 into 

SphI/BamHI of pPD95.69.  

pTB12 hsp16.41 nlsGFP SphI/BamHI hsp16.41 promoter from pPD49.83 into 

SphI/BamHI of pPD95.69.  

pTB13 vap-1 EGL-1 5kb promoter vap-1 into PstI/BamHI of pPD49.78. 

EGL-1 cDNA into BamHI/NcoI. The EGL-1 cDNA 

not as in wormbase, it starts at position 46. 

pTB28 F16F9.3 EGL-1 2kb  F16F9.3 promoter into PstI/BamHI of pPD49.78 

(made by Carl Procko). EGL-1 cDNA into 

BamHI/NcoI. The EGL-1 cDNA not as in Wormbase, 
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Name Pro cDNA Notes 

it starts at position 46. 

pTB29 F16F9.3 DT-A(G53E) F16F19.3 promoter as Pst/BamHI from Carl Procko 

into Pst/Bam of pTB8B. DT-A G53E (also has D79G 

mutation). 

pTB30 gcy-7 HSF-1 Xma/Spe fragment of pTB4 into Xma/Spe of gcy-

7::mCherry. This replaces mCherry+3UTR with 

HSF1+3UTR. 

pTB31 F16F9.3 HSF-1 2kb F16F9.3 promoter into PstI/BamHI of pPD49.78. 

HSF-1 from pTB4 into Xma/NheI. 

pTB32 hsp-16.2 DT-A(G53E) hs16.2 Sal-Bam promoter (note there are two Sal 

sites) into Sal/Bam of pTB8B. DT-A has G53E 

mutation. (also has D79G mutation). 

pTB34 osm-6 HSF-1 XmaI/SpeI HSF-1+3UTR from pTB4 into Xma/Spe 

of 95.75-osm-6. Maya seems to have droped osm-6 as 

XbaI fragment. 

pTB35  B0024.8 pCR2.1-TOPO-B0024.4.8. The region includes 

B0024.4 and .8 in the forward orientation as in 

genome. That is, .4 is forward while .8 reverse. 

pTB39 che-12 GFP 1kb che-12 promoter including ATc (g was changed) 

in 95.75 as Sal/Bam. 

pTB41 che-12 NLSmCherry 1kb che-12 promoter including ATc (g was changed) 

from pTB39 into 69-NLSmCHERRY as a Sal/Bam 

fragment. 

pTB45 che-12 CHE-12::GFP che-12 promoter from pTB39 as Pst/Xma into 

Pst/Xma. Note this cDNA has two silent mutations at 

about 3kb. CHE-12 is KpnI/AgeI. 

pTB46 lin-26 

E1 

EGL-1 E1 region of lin-26 promoter as a Sal/Xba fragment 

from Max Heiman's vector into Sal/Xba of osm-

6::EGL-1. Also has minimal myo-2 promoter 

pTB47 lin-26 

E1s 

EGL-1 The Xho/BamHI fragment of the lin-26 E1 promoter, 

taken as a Xho/Xba fragment from Max Heiman's 

vector into Sal/Xba of osm-6::EGL-1. Also has 

minimmal myo-2 promoter. 

pTB48 hsp16.2 CHE-12 CHE-12 cDNA as KpnI/SacI into 49.78. It has two 

silent mutations at about 3kb in cDNA as do all my 

CHE-12 cDNAs. 

pTB49 sra-6  2.4kb sr-a6 promoter starting from endogenous Sph 

put into pSM (Bargmann lab pPD48.26 modified 

vector) as Sph/Bam fragment. 

pTB50 sra-6 CHE-12 2.4kb sra-6 promoter from endogenous SphI to ATG, 

put into pSM as a Sph/Bam fragment. CHE-12 added 

as a Xma/Sac piece. 

pTB51 hsp16.2 CHE-2 CHE-2 cDNA as a Bam/Nco fragment into Bam/Nco 

of pPD49.78. 
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Name Pro cDNA Notes 

pTB52 sra-6 HSF-1 2.4kb sra-6 promoter from pTB49 as Sph/Xma into 

Sph/Xma of pTB4. Essentially replace vap-1 with sra-

6. 

pTB53 che-12 CHE-13:: 

mCherry 

1kb che-12 promoter as Sal/Bam. CHE-13 cDNA as 

Xma/Kpn. 

pTB56 dyf-11 nlsGFP dyf-11 promoter Sph/Sal into pPD95.69. 

pTB57  DYF-11::GFP DYF-11 cDNA missing A of TGA as Sal/Bam. 

Sequenced and clean. 

pTB58 dyf-11 DYF-11::GFP dyf-11 promoter as Sph/Sal in pTB59 

pTB59 dyf-11 DYF-11 Replace the DYF-11 cDNA of pTB58 with a cDNA 

that has the stop codon. 

pTB60  DYF-11::GFP SphI/Xba DYF-11 PCR fragment replaced in pTB57 

to introduce NgoM IV site, this removes dyf-11 

promoter. Sequenced and clean. 

pTB61  DYF-11 SphI/Xba DYF-11 cDNA PCR fragment replaced in 

pTB59 to introduce NgoM IV site, this removes dyf-

11 promoter. Sequenced and clean. 

pTB62 gcy-5 mCherry::SL2::

DYF-11::GFP 

NgoMIV/XhoI DYF-11::GFP fragment of pTB60 into 

NgoMIV/XhoI of gcy-5::mCherry::SL2::DYF-7::GFP 

from Max Heiman. So, replace DYF-7 with DYF-11. 

pTB64 gcy-5 mCherry::SL2::

CHE-12::GFP 

XmaI/XhoI CHE-12::GFP fragment of pTB45 into 

NgoMIV/XhoI of gcy-5::mCherry::SL2::DYF-7::GFP 

from Max Heiman. So, replace DYF-7 with CHE-12. 

pTB65 hsp16.2 DYF-11 NgoM/Xma DYF-11 from pTB61 into Xma of 

pPD49.78. 

pTB66 sra-6 DYF-11 NgoMIV/XmaI DYF11 from pTB61 into XmaI of 

pTB49, downstream of sra-6 promoter.  

pTB68 myo-2 HSF-1 HSF1+3'UTR from pTB4 as Xma/Spe into Xma/Spe 

of Max's myo-2::GFP. Note this myo-2 promoter is 

the long version and expresses in pharynx. 

pTB72 odr-1 CHE-12 CHE-12 cDNA + unc-54 3'UTR as Xma/Spe from 

pTB48 into Xma/Spe of and odr-1::mCherry vector 

(pSM background). CHE-12 is KpnI/SacI. 

pTB73 srh-142 EGL-1 1451bp srh-142 promoter (expresses in ADF) into 

PstI/BamHI pTB13. 

pTB74  ODR-10::GFP ODR-10 cDNA PCRed without stop codon into 

BamHI/AgeI of pPD95.75. 

pTB75  OSM-9::GFP OSM-9 cDNA PCRed without stop codon into XmaI 

of pPD95.75. Confirmed orientation but OSM-9 was 

not sequenced so could be dirty. 

pTB76 sra-6 ODR-10::GFP sra-6 promoter as Sph/Bam from pTB49 into 

Sph/Bam of pTB74. 

pTB77 sra-6 OSM-9::GFP OSM-9::GFP + 3'UTR as Xba/Apa into Nhe/Apa of 

pTB49. 
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Name Pro cDNA Notes 

pTB78 odr-1 ODR-10::GFP ODR-10::GFP Xba/Apa fragment from pTB74 into 

Xba/Apa of odr-1::mCherry. 

pTB79 odr-1 OSM-9::GFP OSM-9::GFP Xba/Apa fragment from pTB75 into 

Xba/Apa of odr-1::mCherry. 

pTB82 odr-1 TAX-2::GFP TAX-2 cDNA without stop PCRed as Xma/Age into 

Xma/Age of pTB79. TAX-2 has the mutation 

C1595T (T533L). 

pTB83 odr-1 TAX-4::GFP TAX-4 cDNA without stop PCRed as Xba/Xma into 

Xba/Xma of pTB79. TAX-4 cDNA is clean. 

pTB85 srh-142 TPH-1 3182bp srh-142 promoter as Sph/Bam and TPH-1 

cDNA from clone yk1176f10 (has second intron 

unspliced) as Bam/Nco. Backbone 49.26. 

 

 

 

 

  



168 

 

 

 

 

 

Appendix 

 

 

 

 

 

 

 

 

 

 



169

Appendix Figure 1: Glia are not required for adaptation or discrimination
(A) Animals were starved for one hour on agar plates, to the adaptation group 1 µl of 
diacetyl was added on an agar plug on the cover of the plate.  Standard chemotaxis assays 
towards 0.1% diacetly were performed.  (B) Discrimination assays were performed by 
adding 1µL diacetyl to the agar of the chemotaxis plate.  Assays towards 1% methyl 
pyrazine were performed in standard plates (None) or discrimination plates (Discr).
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Appendix Figure 2: Abnormal glia secretion in kcc-3(ok228) mutants
(A) An EM image of a wild-type animal; the sheath glia-secreted matrix can seen surround-
ing the sensory cilia and AFD villi.  (B-D) In kcc-3(ok228) mutants the glial secretion is 
abnormally electron-dense.  Strcutures resmbling crystals are observed in the extracellular 
matrix, see panel D.  Scale bar, 1 µm.
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