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Lipid Chemistry and mechanical state of the membrane

modulate ion channel function

Daniel Schmidt, Ph.D.

The Rockefeller University 2010

My research focused on voltage-dependent K+ (Kv) channels. Kv channels serve

many different functions in different cells, but most notably underlie action poten-

tials in electrically excitable cells, such as neurons and muscle (Hodgkin and Huxley,

1952, 1945). Kv channel gating is governed by the transmembrane voltage, they are

therefore voltage-dependent switches for ionic current (Hille, 2001). Changes in the

transmembrane voltage are sensed by the channel’s voltage sensor domains, which

contain charged amino acids (most often arginines) called gating charges.

Shortly before I started to work on my PhD project, the crystal structure of the

eukaryotic Kv1.2 channel had been solved. This structure reinforced the idea that

the voltage sensors are arranged as independent domains at the perimeter of a Kv

channel facing the lipid membrane, thus exposing some of the gating charges to the

lipid. The obvious question to ask at that time was, given the energetic penalty for

placing charged amino acids inside the hydrophobic core of the membrane, how does

the lipid membrane stabilize the arginine residues? By studying the recombinantly-

expressed archæal Kv channel KvAP in an artificial membrane system that allowed me

to create a defined lipid environment, I could show that the lipid membrane provides

an environment that is suitable for voltage sensors because the lipid’s phosphate

groups serve as countercharges for the voltage sensor’s arginine residues. I came

to the conclusion that a direct interaction between the arginine side chains and lipid

phosphodiesters stabilizes the voltage sensor through multidentate hydrogen bonding.

I suggested that the usage of positively charged amino acids in voltage sensors is an

adaptation to the phospholipid composition of the cell membrane.



Prompted by these results, I studied the gating properties of KvAP in different lipid

systems and was able to derive the first quantitative kinetic gating model for KvAP. I

found that, unlike the well studied eukaryotic Shaker Kv channel, KvAP possesses an

inactivated state that is accessible from the pre-open state of the channel. Changing

the lipid composition of the membrane influences multiple gating transitions in the

model, but most dramatically the rate of recovery from this inactivated state. I

also showed that inhibition by the spider toxin VSTx1 is most easily explained if

VSTx1 binds only to the depolarized conformation of the voltage sensor. By delaying

the voltage sensor’s return to the hyperpolarized conformation VSTx1 favors the

inactivated state of KvAP.

Aside from varying the chemical composition, I also studied how the mechanical

state of lipid membranes influences Kv channel gating. I found that Kv channels are

mechanosensitive proteins and that a model in which membrane tension influences

a single parameter (the equilibrium constant governing pore-opening after the volt-

age sensors have moved) can account quantitatively for complex changes in voltage-

dependent gating, that are caused by the formation of tight lipid/glass seal in patch

clamp recordings. The mechanical state of the membrane also governs the apparent

affinity of spider toxins for Kv channels. This unexpected relationship between volt-

age sensor toxin affinity and the mechanical state of the membrane suggests that the

toxin modifies the membrane mechanical forces experienced by the Kv channel.

In summary, my thesis research describes how both the chemical and mechanical

properties of lipid membranes regulate Kv channel function and pharmacology. These

results demonstrate that the lipid membrane is not solely a passive solvent for mem-

brane proteins, but that its composition and structure might be considered a source

for functional diversity, enabling a membrane protein’s function to be tuned to the

requirements of a particular cell type.
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Chapter 1

Background

1.1 Membrane Models

The cell membrane is a structural scaffold that ensures the physical integrity of

the cell while at the same time is flexible to allow for the growth and changes in cell

shape. The primary role of biological membranes is to separate the cellular compo-

nents from the external environment. Because of this separation, it is possible to

create and maintain gradients of molecules between the cell and its surroundings. By

the virtue of membrane components that allow for selective transport processes across

the membrane, cells use such gradients for a variety of processes, for example cell sig-

naling, nutrient uptake and the production of energy equivalents. The molecules that

make up biological membranes reflect these requirements. The chemical structure

of lipid molecules facilitates their self-assembly into a lipid bilayer with a hydropho-

bic region sandwiched between two hydrophilic outer layers. The hydrophobic layer

forms a insurmountable barrier to the free diffusion of hydrophilic molecules. This

barrier can only be overcome by specific protein carriers and transport systems. It is

estimated that in the absence of specific transport systems 4000 water molecules per

second and per phosholipid molecule can pass the lipid bilayer compared to only one

sodium ion every 70 hours (Deamer and Bramhall, 1986). Another defining property

of biological membranes is their extremely large aspect ratio. This again is due to the

lipid molecules’ self-assembly into a bilayer with lateral dimensions that are typically

much larger than the bilayer thickness of 5 nm. As a consequence, the elastic models

that describe membrane deformations are two-dimensional and focus on stretching &

bending of a planar sheet (Wiggins and Phillips, 2005). Early models of biological

membranes such as the Singer-Nicolson (S-N) fluid mosaic membrane model (Singer

and Nicolson, 1972) approximate them to be a “two-dimensional solution of integral

1



1 BACKGROUND

membrane proteins. . . in the viscous phospholipid bilayer”. The S-N model assumes

macroscopically uniform lipid composition, easy lateral movement of membrane pro-

teins that are distributed randomly across the membrane and cannot move out of the

plane of the bilayer. However, this description does not consider the compositional

complexity of biological membranes. Membranes can contain hundreds of different

lipid species, peripheral and integral membrane proteins, all of which can be modified

by various carbohydrates. Both lipid and protein often associate with other cellular

components such as the cytoskeleton or the extracellular matrix. Experimental data

support the idea that this compositional heterogeneity gives rise to a great deal of

structural heterogeneity (Dowhan, 1997; Edidin, 2003). In recent years the S-N model

has been modified to shift its emphasis away from fluidity towards mosaicity. Mo-

saicity has mostly been studied through optical methods, like confocal microscopy or

single particle tracking (Edidin, 2003). These studies congruently support the notion

of a mosaic distribution of membrane proteins and lipids into microdomains, aka lipid

rafts (see Chapter 1.3).

1.2 Lipid Diversity

It is estimated that 5% of a cell’s genes are involved in the synthesis of the more

than 1000 different lipid species (Dowhan, 1997). The connected energetic cost of

gene upkeep implies that both cellular structure and function must depend on this

diversity. Lipid molecules are chemically very diverse (see Figure 1.1), but can be

broadly characterized as belonging to two groups. Glycerophospholipids consist of

a hydrophilic headgroup and a hydrophobic diacylglycerol that contains saturated

or cis-unsaturated fatty acyl chains of varying length. Phosphatidylcholine (PC),

phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS)

and phosphatidic acid (PA) make up the five structural lipids in eukaryotes. PC

accounts for more than 50% in most membranes and most PC molecules contain at

least one cis-unsaturated acyl chain to ensure that the planar bilayer remains in the

liquid crystalline phase over a biologically relevant temperature range (i.e. 0− 45 ◦C)

(Figure 1.2). Because of their almost perfect cylindrical shape, PC molecules self-

organize into planar bilayers. Conversely, the conically shaped PE and cardiolipin

(CL) introduce curvature stress, as does the asymetric distribution of various lipids

between the leaflets of a lipid bilayer. Regions of local curvature stress are called

frustrated bilayers; they are important in many biological processes such as mem-

brane fission, fusion and folding (Marsh, 2007). They are also important for accom-

2



1.2 LIPID DIVERSITY
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phatidylglycerol b, Sphingomyelin c, Cardiolipin d, Lyso-Phosphatidic Acid e,
Cholesterol f, Prostaglandin E.
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1 BACKGROUND

modating and modulating the activity of peripheral membrane proteins (Dowhan

and Bogdanov, 2002; Marsh, 2007).The other main class of structural lipids is sph-

ingolipids. Their hydrophobic backbone is made up of ceramide (Cer) which is a

condensation product of one fatty acyl chain and sphingosine, both of which can

be saturated or trans-unsaturated. The major mammalian sphingolipids are sphin-

gomyelin (Sm) and glycosphingolipids, which make up the majority of the lipid in

neuronal tissue. Due to the absence of cis-unsaturated bonds in sphingolipids, they

can pack more tightly and by themselves would form a lipid gel phase. Hydrophobic

molecules such as sterols (cholesterol in mammals and ergosterol in fungi) fluidize

sphingolipid-containing membrane phases. A large battery of signaling lipids can

be generated from both glycerophospo- and sphingolipids: lyso-PC (LPC), lyso-PA

(LPA), diacylglycerol (DAG), spinghosine (Sph), ceramide-1-phosphate (C1P) and

many others (Wymann and Schneiter, 2008). Some of them readily partition into the

aqueous environment and can communicate paracrine cell-to-cell signals (Meyer zu

Heringdorf and Jakobs, 2007). Another class of important signaling lipids are phos-

phorylated derivates of PI, that can recruit both soluble and membrane proteins to

specific membranes, thus defining organelle identity (Munro, 2002).

1.3 Lipids Organize the Membrane into Microdomains

What chemical and physical forces give rise to the oberserved microdomains? Some

focus has been put on the very nature of the lipid molecules themselves and the

reason why there is such a variety of them. It was suggested that lipids and other

membrane-associated small molecules like cholesterol tend to form multiple types of

microdomains with lateral dimension of 4 to 700 nm in fluid-mixed bilayers governed

by their chemical properties, molecular shape and the charge distribution (Edidin,

2003; Simons and Ikonen, 1997; Somerharju et al., 1999; Virtanen et al., 1998; Volonte

et al., 1999). It was proposed that these microdomain structures do not cover all of

the membrane but are in rapid equilibrium with other membrane areas in which the

lipids are distributed randomly. Lipid probes with saturated acyl chains spend an

average of 13 milliseconds in a given local microdomain (Schütz et al., 2000). In

freshly fused cell it takes certain membrane protein components approximately 20

minutes to intermix, while other membrane components mix quickly (Nagy et al.,

2001). This suggests a hierarchy of membrane organization with some membrane

areas at fast and some at slow equilibrium with the bulk lipid phase.

4



1.3 LIPIDS ORGANIZE THE MEMBRANE INTO MICRODOMAINS
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1 BACKGROUND

Membrane proteins themselves could alter the structure of microdomains through a

free energy optimization of protein-lipid interaction profiles. It was shown experimen-

tally that the composition of an α-helix can determine the specific lipid environment

it prefers (Lewis et al., 2001). Other examples of selective lipid accumulation that

best matches the transmembrane segment of an integral membrane protein are de-

scribed for the E.coli lactose-permease reconstituted into liposomes (Lehtonen and

Kinnunen, 1997) and bacteriorhodopsin in a binary Didodecyl-PC/Dioleoyl-PC (DDo-

decPC/DOPC) lipid system (Dumas et al., 1997). When a membrane consists of two

or more lipid phases, the free energy of embedding a membrane protein can be lowered

by surrounding it with the lipid phase that provides the lowest protein-lipid inter-

action potential. This preferred phase is said to wet the protein (Gil et al., 1997).

Sharing the wetting layer between two or more proteins can give rise to capillary

condensation: membrane proteins can aggregate and thus reduce the surface area

that is interacting unfavorably with another phase. Capillary condensation has been

demonstrated to drive the oligmerization and activity of bacteriorhodopsin (Botelho

et al., 2006). Wetting and capillary condensation are means to organize membrane

proteins in lipid membranes of complex composition (Gil et al., 1998).

1.4 The Nature of Protein-Lipid Interactions

Electron spin resonance studies (ESR) employ spin-labeled lipids that can be incor-

porated into both native and reconstituted lipid membranes; they provide information

about the mobility of lipid molecules. ESR spectra of spin-labeled lipids in native

membrane or reconstituted lipid-protein systems show that a number of labeled lipids

are immobilized when compared to protein-free membranes (Brotherus et al., 1981;

Jost and Griffith, 1978; Marsh and Horváth, 1998; Marsh et al., 1982; Powl et al.,

2005). The presence of this subpopulation can be explained by the reduced mo-

tional freedom of a lipid molecule that has to pack against the uneven exterior of

a membrane protein in order to maintain the integrity of the lipid membrane as a

permeability barrier. These lipid molecules adopt a disordered conformation to max-

imize the contact area with the protein. The ensemble of distorted lipid molecules

around the exterior of a membrane protein is called the annular lipid shell.

ESR studies can be used to estimate the number of annular lipids around a mem-

brane protein such as the Ca2+-ATPase. The measured number of annular lipids, 32,

agrees well the minimal number of lipid molecules required to form a bilayer shell one

6



1.5 THE NATURE OF PROTEIN-LIPID INTERACTIONS

Table 1.1: Lipid association constants relative to Phosphatidylcholine

Protein Association Constants

CL PA PS PG PE

Cytochrome c oxidase 2.7 1.9 1.0 1.0 1.0
Cytochrome c reductase 0.7 2.4 1.8 1.7 1.3
Na+,K+-ATPase 1.9 1.5 1.7 0.9 0.9
Acetylcholine Receptor -/- 2.7 0.7 -/- 1.1
Bacteriorhodopsin 1.0 1.0 1.0 1.0 1.0

lipid wide around the circumference of the protein (Marsh and Horváth, 1998). This

indicates that the annular lipid shell does not extend much beyond one or two lipid

molecules into the surrounding bulk lipid phase. Apart from annular lipids binding at

the exterior of the protein, there are specific binding pockets for lipid molecules within

the core of the protein. These pockets are called non-annular sites and most lipids

that bind in such sites fulfill a specialized function (oligomerisation, catalytic activity

etc.), acting as a prostethic group (de Foresta et al., 1989; Simmonds et al., 1984,

1982). In fact, a wide range of hydrophobic molecules can bind in these non-annular

sites, as shown in the case of the Ca2+-ATPase (de Foresta et al., 1989; Froud et al.,

1986), bacteriorhodopsin (Cartailler and Luecke, 2003; Luecke et al., 1998), acetyl-

choline receptor (Jones and McNamee, 1988) and the Photosystems I&II (Guskov

et al., 2009; Jordan et al., 2001).

ESR studies, together with studies of the quenching of protein fluoresence by spin-

labelled or brominated phospholipids can also provide an estimate of relative binding

constant for various lipid species (Brotherus et al., 1981; East and Lee, 1982; Jost and

Griffith, 1978; London and Feigenson, 1981a,b; Marsh and Horváth, 1998). Assuming

that lipid-protein interactions can be described as a competitive binding equilibrium

of different lipid species at a number of sites on the protein, there will be an association

constant KA that can express the relative lipid affinities. Table 1.1 reproduces the

association constants of several lipid species to membrane proteins.
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Figure 1.3: Relative Lipid Binding Constants for OmpF, KcsA and Ca2+-
ATPase. Relative binding constant of Phosphatidylcholines with varying acyl chain
length compared to DOPC. Modified from (East and Lee, 1982; O’Keeffe et al., 2000;
Williamson et al., 2002).

1.5 Influence of Headgroup Chemistry on Lipid

Binding

As apparent from Table 1.1, most investigated proteins do not have a strong selec-

tivity for a particular annular lipid headgroup chemistry. The small preferences for

anionic phospholipids can be decreased with increasing ionic strength indicating an

important electrostatic component of the interaction (Marsh and Horváth, 1998). It

is important to point out, however, that the presence of some mol-fraction of anionic

phospholipid together with zwitterionic phospholipids is often required for high pro-

tein activity (Bell and Burns, 1991; Valiyaveetil et al., 2002). While it is not trivial to

distinguish whether these anionic phospholipids bind to annular as opposed to non-

annular sites, they can increase the protein activity by acting as a prostethic group.

For example, studies with the bovine heart cytochrome c oxidase have shown that

sequential and increasingly harsher detergent washes can remove different lipid pop-

ulations: 40 lipid molecules are loosely associated, 8 more tightly bound and 3 very

tightly bound; those very tightly bound lipids were found to be cardiolipin (Robinson,

1982). Other examples of membrane proteins that require a tightly bound anionic

lipid for function are NADH dehydrogenase, cytochrome bc1, ATP synthase, the

KcsA K+ channel and the acetylcholine receptor AchR (Heginbotham et al., 1998;
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1.6 INFLUENCE OF ACYL CHAIN LENGTH ON LIPID BINDING

Heimpel et al., 2001; Jiang et al., 2000; Rankin et al., 1997; Sunshine and McNamee,

1994; Valiyaveetil et al., 2002).

1.6 Influence of Acyl Chain Length on Lipid Bind-

ing

A lipid membrane of a given lipid composition will have an equilibrium hydrophobic

thickness that has to match to the thickness of the hydrophobic exterior of membrane

proteins. There are two ways the thickness can be matched: First, since membrane

proteins are ususally much more rigid than lipid molecules, the lipid molecules ad-

jacent to the membrane protein can distort to locally thicken or thin the bilayer.

Alternatively, if the membrane protein contains relatively flexible α-helical elements,

those can tilt to reduce their effective length across the bilayer. Figure 1.3 illustrates

the relative association constant of lipids with different acyl chain length (East and

Lee, 1982; London and Feigenson, 1981a,b; O’Keeffe et al., 2000; Williamson et al.,

2002) to the β-barrel containing OmpF and the mainly α-helical KcsA or Ca2+-

ATPase. In principle, a lipid species that can bind to a membrane protein without an

energetically costly bilayer deformation should have the highest affinity. In the case of

OmpF this is Dimyristoyl-PC (DMPC). Shorter or longer acyl chains clearly bind less

strongly. Interestingly, KcsA and the Ca2+-ATPase, both mainly α-helical proteins,

do not show a strong preference for a particular acyl chain length. This could reflect

the inherently greater flexibility of α-helical proteins to adopt to different bilayer

thicknesses when compared to β-barrel proteins.

Such flexibility in response to an altered bilayer thickness will not be without a

functional consequence. Interestingly, the lipid acyl chain length has a marked effect

on the activity of the Ca2+-ATPase with a maximum for Dioleoyl-PC (DOPC) (Fig-

ure 1.4)(Lee, 1998). The differences in apparent lipid affinity and protein activity

as a function of acyl chain length indicate that while a protein can be biochemically

behaved over a wide range of bilayer thicknesses, it is adopting a functional confor-

mation only in specific bilayer conditions. Studies with bilayers that contain varying

mol-fractions of lipids with different acyl chain length indicate that the underlying

conformational change is highly cooperative (Figure 1.4b)(Lee, 1998). Such coopera-

tivity most likely reflects an energetic cost of conformational change being balanced
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by the associated summed differences in free energy of 30 bound lipid molecules (see

Chapter 1.4).
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Figure 1.4: Lipid Effects on Ca2+-ATPase Activity. a, ATPase activity as a
function of acyl chain length. All lipids are monounsaturated and in liquid crystalline
state at 25 ◦C. b, Dependence of ATPase activity on mol-fraction of DOPC. Modified
from (Lee, 1998).

1.7 Lipid Microdomains as Signaling Platforms

Lipid-protein interactions can give rise to secondary lipid-mediated protein-protein

interactions. These induced interactions can in theory be seen as a way to indirectly

organize the protein components of the membrane into distinct functional units. In

fact, the ability to sequester specific lipids and proteins while excluding others is

proposed to play a role in a range of cellular processes, such as signal transduction

(Damjanovich et al., 1997; Field et al., 1997; Simons and Toomre, 2000; Young et al.,

2003), lipid sorting (Anderson, 1998; Anderson and Jacobson, 2002; Hooper, 1999;
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1.8 ION CHANNELS CAN BE LOCALIZED TO MICRODOMAINS

Kurzchalia and Parton, 1999; Okamoto et al., 1998; Simons and Toomre, 2000; Simons

and van Meer, 1988), protein trafficking (Ikonen, 2001; Sharma et al., 2003) and

organization of the cytoskeleton (Caroni, 2001; Laux et al., 2000).

Lipid-protein interactions also influence the localization of peripheral membrane

proteins. Their binding to microdomains can depend on the mol-fraction of cholesterol

in the membrane (Benachir and Lafleur, 1995), lipid acyl chain composition (Başaran

et al., 1999; Giorgione et al., 1998; Pande et al., 2005) and the charge of the lipid

headgroup (van den Brink-van der Laan et al., 2001). Some peripheral proteins, such

as G proteins, target preferentially to microdomains because of covalently attached

saturated acyl chains that interact strongly with liquid-ordered lipids in microdomains

through van der Waals forces (Khan et al., 2003; Moffett et al., 2000; Schroeder et al.,

1997).

1.8 Ion channels can be Localized to Microdomains

There is extensive literature on the differential localization of ion channels to mul-

tiple types of lipid microdomains (for a review see (Martens et al., 2004)). The ex-

perimental evidence is usually footed on biochemical colocalization of certain marker

lipids and membrane proteins; Kv2.1 for example is shown to be enriched in bio-

chemically isolated detergent-resistant membranes from transfected fibroblasts and

rat brain tissue (Martens et al., 2000). Often times, the functional dependence of a

specific ion channel on localization can also be shown; again, the example of Kv2.1,

whose steady-state inactivation is shifted to hyperpolarized voltages by the treatment

of transfected fibroblast with cyclodextrin, a cholesterol-depleting agent (Brown and

London, 2000). Other Kv channels, such as Kv4.2 expressed in fibroblasts are unaf-

fected, suggesting that they are localizing to a different membrane environment.

The list can easily be expanded: Kv1.5 resides in caveolæ (Martens et al., 2001),

whereas Kv2.1, Kv1.4 and Kir2.1 target to non-caveolar microdomains, and Kv4.2

is not microdomain associated (Martens et al., 2000; Romanenko et al., 2004; Wong

and Schlichter, 2004). The same holds true for other voltage-dependent and ligand-

gated channels: Kir3.1 associated with microdomains in CHO cells and neuronal cell

culture (Delling et al., 2002). TRP1, Nav and L-type Cav channels are localized to

caveolæ; TRP1’s activity is altered by cholesterol depletion; so is that of olfactory

cyclic-nucleotide-gated channels (Brady et al., 2004; Darby et al., 2000; Lockwich

et al., 2000; Yarbrough et al., 2002). Cholesterol-rich microdomains and the α7 nico-
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tinic acetylcholine receptor become progressively colocalized during synpatogenesis in

somatic spines of ciliary neurons (Brusés et al., 2001).

Why these ion channels localize with lipid microdomains is not always known;

the channel-microdomain localization might occur through direct protein-lipid inter-

action (see Chapter 1.4), or they could occur through protein-protein interactions

with auxiliary protein subunits that have a preferential localization to these mi-

crodomains themselves (see Chapter 1.7). Examples are “K+ channel interacting

proteins” (KChIPs), which are a class of EF-hand containing Ca2+ binding proteins.

They require proper palmitoylation to efficiently enhance the cell-surface expression

of Kv channels (Takimoto et al., 2002).

1.9 Membrane Properties alter Ion Channel Func-

tion

The functional importance of microdomain localization is evident from cholesterol-

depletion experiments that dramatically change the gating properties of some ion

channels (Barrantes, 2002; Hajdú et al., 2003; Romanenko et al., 2004). There could

be, however, other biophysical properties, other than the presence of cholesterol, that

set microdomains apart from the surrounding bulk lipid phase; parameters like bilayer

fluidity & thickness, surface charge and bending rigidity, for example. These parame-

ters can theoretically contribute to the membrane deformation free energy associated

with the conformational change of an ion channel during gating (see Chapter 1.10.2).

There are many other examples of how the lipid membrane influences ion channel

function. They can be categorized into (a) specific lipid molecules acting as prosthet-

ics groups or (b) the material properties of the lipid membrane, e.g. bilayer stiffness

and thickness, that modulate some property of the ion channel.

Inward-rectifying K+ channels, such as IRK1 and ROMK are directly activated by

binding phosphatidylinositol-4,5-bisphosphate (PIP2). For G protein-coupled chan-

nels like GIRK1/4, PIP2 binding acts synergistically with the activation by Gβγ

(Huang et al., 1998). The interaction with PIP2 also mediates the mechanosensitiv-

ity of GIRK4 (Zhang et al., 2004). Similarly, it has been shown that binding of PIP2
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1.9 MEMBRANE PROPERTIES ALTER ION CHANNEL FUNCTION

is necessary to maintain the function of voltage-dependent Ca2+ channels (Cav (Wu

et al., 2002)).

Aside from activation, the inactivation properties of Kv channels can be regulated

by membrane lipids as well. The application of PIP2 to the cytoplasmic side of ex-

cised membrane patches can remove the fast N-type inactivation in Kv1.1 and Kv3.4;

addition of the fatty arachidonic acid reintroduces the fast inactivation. Through its

negatively charged headgroup the addition of PIP2 leads to electrostatic trapping of

the positively charged inactivation peptide. Arachidonic acid is also implicated in

altering mechanical membrane properties (Oliver et al., 2004).

Microdomains are thought to be enriched with sphingomyelin (Samsonov et al.,

2001); as described in Chapter 1.8 some Kv channels are enriched in these domains.

It recently has been reported that certain Kv channels are activated through the

enzymatic modification of sphingomyelin by sphingomyelinase (Ramu et al., 2006).

Taken together these observations make a strong case for the possibility that cell

excitability may be regulated by altering the chemical properties of lipids in the

plasma membrane, possibly by either modification of lipid chemistry or by altered

membrane protein targeting.

It also has been suggested that various channels respond to changes in the me-

chanical state of the membrane: the cardiac muscarinic K+ channel (GIRK1/4) (Ji

et al., 1998), the S-type K+ channels (Patel et al., 1998), the NMDA receptor (Casado

and Ascher, 1998), the Shaker Kv channel (Gu et al., 2001), the BK channel (Naruse

et al., 2009), N- and L-type Ca2+ channels (Calabrese et al., 2002; Lyford et al.,

2002), and the Skm Na+ channel (Tabarean et al., 1999). As of yet, the changes at

the lipid membrane that underlie this mechanosensitivity are not well understood and

as I will discuss in detail in a later section of my thesis, Chapter 3.3.2, using patch

clamp measurements might in fact be inappropriate to study mechanosensitivity for

the majority of these studies.

Small molecule toxin blockers and modifiers of ion channels are influenced by the

lipid membrane as well. Some toxins partition into the lipid membrane before they

interact with their binding site on the voltage sensor of ion channels, thus increasing

their effective concentration (Lee and Mackinnon, 2004; Milescu et al., 2007). Other

toxins partition into the bilayer but can interact with their target as both L- and
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D-enantiomer, suggesting that they act through perturbing of the lipid packing and

line tension adjacent to the channel as opposed to direct protein-protein interaction

(Suchyna et al., 2004). In either case, the partition coefficient depends on the lipid

composition of the membrane (Posokhov et al., 2007).

1.10 ‘Design’ Principles of Mechanosensitivity

Ever since the first cells were fully encapsulated in a semipermeable lipid mem-

brane, they must have had mechanosensitive processes that provide mechanisms for

cell protection against changes in osmotic conditions of the surrounding environment.

At first there may have been large non-selective pores that open in response to osmotic

swelling of the cell and reduce the intracellular pressure and membrane tension by

literally spewing out the cell’s contents. Over time these processes may have evolved

to be part of the cell’s signaling repertoire. A survey of the literature suggests that

mechanosensitive processes are part of hearing (Hackney and Furness, 1995; Howard

et al., 1988), aterial vessel tone (Burnstock, 1999; Davis and Hill, 1999), touch and

pain sensation (Burnstock and Wood, 1996; Nakamura and Strittmatter, 1996; Tav-

ernarakis and Driscoll, 1997), cell volume regulation (Nilius et al., 1997; Wang et al.,

1996) and tissue growth (Lammerding et al., 2004).

Several well established genetic systems seem amenable to study mechanosensitive

processes in multicellular organisms: Caenorhabditis elegans (nematode) movement

relies of touch sensation, Drosophila melanogaster (fruit fly) have mechanosensitive

hair bristles, and the lateral-line organelles in Danio rerio (zebrafish) enables them

to detect directional water movement (Duggan et al., 2000; Gillespie and Walker,

2001). Nevertheless, while some researchers claim that over the last two decades the

molecular nature of specific mechanosensitive membrane processes have been iden-

tified, closer inspection of the actual data often reveals unidentified activities that

need very specific experimental conditions to be studied. Arguably, the most serious

problem with such studies is that pressure difference (J/m3) across the membrane is

taken as the important input variable, when in fact tension (J/m2) is the membrane

parameter that governs mechanosensitivity. The fact remains, for most mechanosen-

sitive processes, we do not know the clonal nature of the involved proteins or the

underlying cellular framework.
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1.10 ‘DESIGN’ PRINCIPLES OF MECHANOSENSITIVITY

1.10.1 The Composite Structure of the Cell Boundary

The Cytoskeleton

The structural basis of mechanosensation in animal cells is the composite structure

of extracellular matrix, lipid bilayer, and cytoskeleton. By the virtue of membrane

proteins these three layers form an integrated composite structure. Any externally

applied force produces strains in multiple elements within these three layers.

The cytoskeleton provides shear rigidity to a lipid bilayer. It is anchored to the lipid

bilayer by interactions between ankyrin and other cytoskeletal proteins with various

integral membrane proteins. Because it is localized directly below the plasma mem-

brane, it also allows the cell to assume non-spherical shapes by acting as a scaffold

and to increase the surface area for a given volume beyond that of a smooth sphere.

The amount of membrane excess area can range between 40-1,000% depending on the

cell type and typically is achieved by membrane folds such as micro- and macrovilli

or caveolæ (Dulhunty and Franzini-Armstrong, 1975; Zhang and Hamill, 2000). The

cytoskeleton is a viscoelastic structure that is highly expandable. During mechani-

cal deformations of the cell, cytoskeleton-stabilized excess membrane reservoirs can

smooth out. This process provides additional surface area before significant tensions

can build up in the bilayer (Hochmuth et al., 1996; Sens and Turner, 2006, 2004). Ad-

ditional support for this idea comes from capacitance measurements of mast cells that

can inflate four-fold in volume with little-increase in membrane capacitance (Solsona

et al., 1998). Also, Sheetz and collegues (Raucher and Sheetz, 1999) found that the

tether force on an optically trapped bead did not depend on the tether length over

a wide range of tether lengths, indicating that the material for the membrane tether

is supplied by flattening out a membrane reservoir and not by stretching the mem-

brane. When cells were treated with the cytoskeleton-disrupting drugs cytochalasin

B or D, the tether length increased dramatically, indicating that it is the cytoskeleton

that creates folds in the plasma membrane which can contribute to this membrane

reservoir.

The cytoskeletal meshwork is highly integrated with cells-spanning microfilaments

and microtubule support and has been proposed to behave as a tensegrity structure in

which mechanical deformation can be communicated cell-wide (Ingber, 1997, 1993).
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The Extracellular Matrix

The external extracellular matrix of animal cells is made of various proteins and

carbohydrate components; it serves as the bonding material between the cells of

tissues and is connected to the intracellular cytoskeleton through integral membrane

proteins such as integrins. The extracellular matrix allows external force cues to be

filtered or focused and communicated effectively to specialized cells within a tissue.

Merckel cells, the pacinian cell capsule at the tip of certain neurons or hair cells of the

inner ear are examples for such specialized cells that often possess unique structures

that confer high directionality and vibrational sensitivity on the mechanotransduction

process (Boulais and Misery, 2008).

The Lipid Bilayer

The lipid bilayer can be considered an elastic solid (Dan and Safran, 1998; Helfrich,

1973; Nielsen et al., 1998; Rawicz et al., 2000); one of its most important features is

in-plane fluidity, which would allow the equilibration of membrane tension throughout

the whole area of the membrane, were it not for the cytoskeleton. The cytoskeleton

effectively compartmentalizes the lipid membrane into smaller areas with different

amounts of in-plane tension. Each leaflet of the bilayer resists change in the angle

between adjacent lipid molecules, giving rise to bending stiffness of the membrane.

The specific chemistry of lipid molecules also gives them a preferred in-plane spacing,

which will cause them to resist any changes in spacing due to external tension. Lastly,

the lipid composition of the lipid bilayer will give rise to a equilibrium hydrophobic

thickness, which for embedded membrane proteins can lead to an energetically costly

hydrophobic mismatch.

These four properties are described by four elasticity constants (moduli) that de-

scribe the response of a bilayer to shear, bending, expansion and compression(Evans

and Hochmuth, 1978). The larger a modulus, the more the bilayer resists that form

of deformation. Because these deformation are elastic, they follow the application

of external forces instantaneously. Mechanical forces and their corresponding defor-

mations constitute the most important class of external cues for mechanosensitive

processes.
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1.10.2 The Modes of Bilayer Deformation

Two models have been suggested for how a membrane can sense external mechanical

cues: (a) through physical linkers that pull or push on some part of the protein

resulting in gating or (b) the surrounding bilayer directly communicating mechanical

forces to alter the protein conformation. They are called tether-based or bilayer model

for mechanosensitivity, respectively.

While the mechanical manifestation of a tether-based model is straightforward

to understand (Hooke’s Law), a convenient way to explain the bilayer model is to

consider the channel as a two-state system with an open and a closed state. A simple

model describes how the elastic properties of a lipid bilayer can be used to determine

the bilayer’s contribution to the energy of these two states. Boltzmann statistics can

be used to calculate the open probility (Po) of the channel:

Po =
1

1 + e

(
∆Gtot
kBT

) (1.1)

The total change in free energy ∆Gtot is defined as the total free energy difference

between the closed and open state. Changes in electrostatic gating energy (∆Gelect),

internal protein conformation free energy (∆Gprot) and bilayer deformation free energy

(∆Gmemb) all contribute to ∆Gtot of channel gating.

a) b) c)

Figure 1.5: Modes of Bilayer Deformation a, Midplane Bending. b, Bilayer
Compression. c, Footprint Dilation. Modified from (Ursell et al., 2008).

How large is the membrane contribution ∆Gmemb to the free energy change of

channel gating? The bilayer deformations that a transmembrane protein can produce

are broadly split in three main classes (see Figure 1.5): those that deform the midplane

of the bilayer (midplane bending), those that deform the leaflet thickness (bilayer

compression) and those deformations that accompany a change on the cross sectional

area of the membrane protein (footprint dilation).
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As analysed elsewhere (Ursell et al., 2008), in the midplane deformation model, the

shape of the membrane protein can influence the slope of the bilayer at the protein-

lipid interface which, in addition to the protein radius, will give the deformation

energy:

Gmid(R, τ) = πR
√
κbτ(θ)2 (1.2)

where R is the radius of the protein, θ is the interface tilt angle, κb is the bending

modulus and τ is the membrane tension. As is obvious from Equation (1.2), for a

given interface tilt angle and protein radius, an increase in membrane tension will

make midplane bending deformations more costly. Therefore, increased membrane

tension will prefer a flatter membrane (i.e. θ towards 0 ◦) or a smaller protein radius.

In the case of midplane deformation, the deformation free energy scales to the square

root of tension.

The basis for hydrophobic mismatch deformation is the fact that compared to lipid

molecules proteins are relatively rigid. Hence, the lipid will undergo the majority of

deformation when the hydrophobic transmembrane regions of a protein are matched

with the hydrophobic core of the bilayer. The deformation energy due to thickness

variation of the surrounding lipids that is induced by embedding a membrane protein

is given by:

Gthick(R, τ) = πκb

(
u0

λ
+

τ

KA

l

λ

)2(
1 +
√

2
R

λ

)
with λ =

(
l2κb
KA

) 1
4

' 1nm (1.3)

Where KA is the bilayer stretch modulus, u0 is the hydrophobic mismatch, l is the

leaflet hydrophobic thickness, R is the radius of the protein, κb is the bending mod-

ulus and τ is the membrane tension.

Like midplane deformation, hydrophobic mismatch deformation prefers a smaller pro-

tein radius. While for midplane deformation increased tension always increase the

deformation energy, in the case of hydrophobic thickness deformation the tension can

either increase or decrease the deformation energy depending on the sign of the hy-

drophobic mismatch (uo), i.e. the protein can be either thicker or thinner than the

bilayer. Given very small values of τ/KA, the thickness free energy scales approxi-

mately with tension.

The most straightforward derived expression for free energy is that of the footprint

dilation. If the protein footprint area increases, the membrane will yield to external

tension τ . Therefore, the free energy of the footprint dilation can be expressed in
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1.10 ‘DESIGN’ PRINCIPLES OF MECHANOSENSITIVITY

terms of a change in channel area:

Gdil = −τ
A︷︸︸︷
πR2 (1.4)

with τ is the membrane tension and R being protein radius.

Again the footprint dilation free energy scales linearly with applied membrane tension.

If one had to cast the above equations into basic design principles of how to make

a membrane protein sensitive to mechanical bilayer deformations then it would be

the following: under non-zero membrane tension, a increase in protein radius is al-

ways favored. Conversely, midplane and hydrophobic mismatch deformation prefer a

smaller channel radius, because this will lead to a smaller annulus of deformed lipid,

hence a smaller free energy penalty. These two competing interests on protein radius

allow for the existence of several stable energy states associated with different protein

conformations (i.e. different radii, interfacial slopes etc.) that a protein can occupy

in response to changes in external mechanical force caused by tension.
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Chapter 2

Thesis Research

2.1 Phospholipids and Cationic Gating Charges

2.1.1 Introduction

Kv channels open and close in response to changes in transmembrane voltage. These

changes are sensed by the channel’s voltage sensor domains, which contain charged

amino acids called gating charges (Sigworth, 1994). Upon membrane depolarization

all four voltage sensors of a Kv channel undergo a conformational change that is

moving the equivalent of 14 elementary charges across the lipid membrane; they are

electromechanical force transducers (Aggarwal and MacKinnon, 1996; Schoppa et al.,

1992). The voltage sensors are connected to the Kv channel pore through a linker

domain that couples the movement of the voltage sensor to the opening and closing

of the pore. Various atomic structures have suggested that the voltage sensor is

located at the protein-lipid interface and that the arginine gating charges may be

exposed to the membrane (Jiang et al., 2004, 2003a,b; Lee et al., 2005; Long et al.,

2005a,b). This raises the possibility that the interaction of the voltage sensors with

the membrane is important to Kv channnel function and leads to the question of how

the membrane is creating a suitable environment to accommodate positively charged

arginines. Why do voltage sensors use positively charged amino acids, in particular

why arginine, to sense voltage in the first place? Could the selection of arginine for

this purpose represent an adaptation to a ubiquitous feature of most cell membranes:

the presence of the anionic phosphodiester of phospholipids? The positive charge and

multidentate hydrogen bonding capacity of arginine’s guanidinium group makes it an

excellent chemical match for favorable electrostatic and hydrogen bonding interactions

with the lipid phosphodiester.
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2 THESIS RESEARCH

To gain an understanding of the lipid-dependent aspects of Kv channel function and

to test the ideas mentioned above, I began to study the voltage-gated potassium K+

channel KvAP from the Archæa Aeropyrum pernix in an artificial membrane system,

the planar lipid bilayer (PLB) (Ruta et al., 2003). Only in this system the lipid

bilayer composition can be directly controlled; other heterologous expression systems

such as Xenopus lævis oocytes and mammalian cell lines are limited in their capacity

for lipid modification.

2.1.2 Results

Figure 2.1 shows voltage-dependent KvAP K+ channels in three different exper-

imental conditions. In each condition the membrane voltage was held at -100 mV

and then stepped to more positive depolarizing voltages to open the channels. When

KvAP channels were present in phospholipid membranes the channels opened in a

voltage-dependent manner (Figure 2.1b). By contrast, when channels were present

in membranes consisting of a lipid known as 1,2-Dioleoyl-3-Trimethylammonium-

Propane (DOTAP)(Campbell et al., 2001), which contains a positively charged tri-

methylammonium group instead of a negatively charged phosphodiester (Figure 2.1a),

no channel activity was observed (Figure 2.1d). The absence of channel activity is

not due an irreversible change of KvAP when reconstituted into DOTAP vesicles.

When channels were first reconstituted into pure DOTAP lipid vesicles, which were

then fused with a planar lipid membrane of phospholipids, KvAP functioned in the

regular voltage-dependent manner (Figure 2.1c). The presence of functional chan-

nels in this phospholipid membrane means that functional KvAP channels had to be

present in the DOTAP lipid vesicles that were used to deliver channels to the planar

membrane.

As a control I looked at the Ca2+-dependent K+ channel, MthK, and asked whether

it is able to function in pure DOTAP membranes. MthK has a pore that is similar to

KvAP but contains a gating ring structure in the cytoplasm (instead of voltage sen-

sors in the membrane) that enables intracellular Ca2+ to open the pore (Jiang et al.,

2002). In DOTAP membranes MthK is activated by Ca2+ and inhibited by the scor-

pion toxin charybdotoxin (CTX) (Figure 2.2). This control experiment shows that

DOTAP vesicles can indeed fuse with DOTAP planar membranes and that DOTAP

membranes do not prevent the pore of a K+ channel from functioning. The control

also implies that the inability of DOTAP membranes to support KvAP function is

related to the voltage sensing mechanism.
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Figure 2.1: Assessment of KvAP function in phospholipid and DOTAP
membranes. a, Chemical structures of POPE, POPG and DOTAP. b, KvAP (black
squares in cartoon) in 3:1 POPE:POPG (PE/PG) vesicles (red circle) fused into a
3:1 POPE:POPG bilayer (red) yielded voltage-dependent currents (left traces). c-d,
KvAP in DOTAP vesicles (blue circles) gave functional channels (trace in c) after
fusion into a POPE:POPG bilayer (red line), but failed to function (trace d) after
fusion into a DOTAP bilayer (blue line). Voltage pulses in (b-c): -100 to 40 mV, ∆V
= 10 mV, holding potential (h.p.) -100 mV. The pulse in (d) was from h.p. -100 mV
to 100mV
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Figure 2.2: Assessment of MthK function in DOTAP membranes. Single
channel recordings of MthK in DOTAP membranes with no CaCl2 (top), 10 mM
CaCl2 (middle), and after the addition of 2.0 µM CTX (bottom). h.p. is -150 mV,
and channels open downward.

The inability of KvAP to function in pure DOTAP membranes could in principle

be due to either the inability of DOTAP vesicles to fuse with DOTAP membranes

or DOTAP not supporting KvAP function. By adding phospholipids to the silent

DOTAP membranes, it might be possible to “wake-up” inactive KvAP channels,

distinguishing these two possibilities. Several minutes after fusing channel-containing

DOTAP vesicles with DOTAP planar membranes empty phospholipids vesicles (with-

out KvAP) were fused, resulting in channel activity (Figure 2.3). Since the phospho-

lipid vesicles themselves did not contain KvAP channels, the channels were presum-

ably present in the DOTAP planar membrane but were not functional. In these

experiments the number of active channels was always small and in several respects

their function were altered compared to pure phospholipid bilayers. Most importantly,

however, the channels began to function in a voltage-dependent manner only after

phospholipids were delivered to the membrane, that is, in the context of a DOTAP

planar membrane KvAP is a “phospholipid-activated” voltage-dependent K+ channel.

If DOTAP membranes fail to support channel function then we might expect to

observe channels exhibiting intermediate behavior between normal and nonfunctional

in composite membranes containing DOTAP and phospholipids at different molar

percentages. I therefore studied the effect on voltage-dependent gating of systemati-
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Figure 2.3: KvAP function depends on membrane lipid composition. KvAP-
containing DOTAP vesicles were fused into a DOTAP bilayer. Channel activity
was monitored with pulses from -100 mV to 100 mV every two minutes. Empty
POPE:POPG vesicles were introduced between traces 3 and 4. A triple-exponential
function was used to subtract capacitance transients. Traces 2-8 were shifted upward
successively by 50 pA.

cally decreasing the mol-fraction of phospholipids (Figure 2.4a-c). A dilute solution

of phospholipid vesicles containing KvAP channels at a high protein-to-lipid ratio

was used for fusion: this condition best ensured that after fusion the lipid compo-

sition of the planar membrane was dominated by the planar membrane lipids (the

phospholipid-DOTAP mixture) rather than the vesicle lipids. As the mol-fraction of

phospholipids was decreased, successively larger depolarization voltages were required

to open the channels, and the activation curve became less steep (Figure 2.4a,b). It

is clear that gating becomes progressively more abnormal as the mol-fraction of phos-

pholipids is decreased (Figure 2.4b,c). The absence of function in pure DOTAP mem-

branes (Figure 2.1d) appears to represent the limit of the dilution experiment (Figure

2.4a-c), and the restoration of voltage-dependent activity upon addition of phospho-

lipids (Figure 2.3) appears to reflect the fulfillment of a phospholipid requirement for

voltage-dependent channel function.

The inability of DOTAP to support KvAP function could be related to the ab-

sence of a negatively charged phosphodiester or to the presence of a positively charged

trimethylammonium group (Figure 2.1a). To distinguish these two possibilities I stud-

ied additional non-phospholipid membranes, 1,2-Dioleoyl-Glycero-3-Succinate (DOGS)

and soy Glucocerebrosides (GlucCer), which do not have a trimethylammonium group

(Figure 2.5a,b). DOGS is a carboxyl-containing anionic lipid at neutral pH. DOGS
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Figure 2.4: KvAP function depends on membrane lipid composition. a,
KvAP in POPE:POPG vesicles at a protein-lipid ratio (PLR, w/w) of 1.0 was fused
into bilayers of mixed DOTAP and POPE:POPG with DOTAP% 0 (1st panel), 50
(2nd), and 67 (3rd). Voltage pulses: h.p. -100 mV to 20 mV (1st and 2nd panels)
and h.p. -80 mV to 70 mV (3rd), ∆V = 10 mV. b, Boltzmann functions (solid lines)
fit data from (a) with V0.5 (mV) and Z (mV-1): -42, 3.1 (0%, blue); -25, 1.9 (50%,
green);14, 1.7 (67%, red). c, V0.5 (mean±s.e.m. or range of mean, n = 2-5) versus
DOTAP%.

forms large unilamellar vesicles into which KvAP can be reconstituted and in which

KVAP is functional when fused into POPE:POPG planar membranes. DOGS also

forms stable planar membranes, however, no channel activity is observed. GlucCer is

a neutral lipid with a ceramide backbone and sugar head group. Rare (1 to 3 chan-

nels) opening events are observed at very positive membrane voltages (Figure 2.5b).

One has to keep on mind that this lipid preparation is very heterogenous and when

I performed a thin-layer chromatography phosphate assay with this lipid, I could de-

tect trace amounts of phosphate, suggesting contamination with phospholipids. I can

also not exclude the possibility that this lipid may exhibit complex phase behavior.

Therefore I cannot be certain whether GlucCer or contaminant lipids support the rare

openings at very positive voltages. In either case, KvAP function in this membrane

is very abnormal. DOTAP, DOGS, and GlucCer are chemically very different from
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each other. None of them appear to create a suitable environment for normal KvAP

function.
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Figure 2.5: KvAP function depends on membrane lipid composition. a,
KvAP in DOGS vesicles fused into bilayers of POPE:POPG (left) and DOGS (right).
Voltage pulses: -80 to +180 mV, ∆V = 10mV, h.p. -100 mV (left); from h.p. -100
to 120 mV (right). b, KvAP in DOTAP vesicles fused into a glucosyl-cerebroside
bilayer. Voltage pulses: -150 to 130 mV, ∆V = 40 mV, h.p. -150 mV.

In an effort to further investigate which part of phospholipid membranes is needed

for Kv channel function, I examined membranes composed of DOTAP and phospho-

lipids containing acyl chains of varying length. In DOTAP bilayers that were sup-

plemented with either Dioleoyl-phosphatidylcholine (DOPC), Dimyristoyl-phospha-

tidylcholine (DMPC) or Didecyl-phosphatidylcholine (DDecPC) (Figure 2.6a) I could

record voltage-dependent KvAP function (Figure 2.6b-d). Of note, DMPC and

27



2 THESIS RESEARCH

a)

DOPC

DMPC

DDecPC

20 ms

20 ms

20 ms

1
.0

 n
A

5
0

0
 p

A
5

0
 p

A

DOTAP

DOTAP

DOTAP

d)

c)

DOPC/

DOTAP

DDecPC/

DOTAP

DMPC/

DOTAP

b)

Figure 2.6: Phosphate group is important for KvAP voltage-dependent gat-
ing. a, Chemical structures of DOPC, DMPC and DDecPC. (b)-(d) Channels in
DOTAP vesicles were fused into bilayers of 1:1 ratio of DOTAP and DOPC (C18)
(b), DMPC (C14) (d) and DDecPC (C10) (d). Voltage pulses: -100 to 100 mV, ∆V
= 20 mV, h.p. = -100 mV. Recordings of CTX (200 nM) treated bilayers were used
to subtract capacitance transients from the original traces. The residual peaks at the
beginning and end of the pulse are due to the incomplete subtraction of capacitance
components.
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DDecPC do not form stable bilayers in the planar bilayer system by themselves.

I could conclude from this experiment that it is not the acyl chain length that is cru-

cial for KvAP function, but the headgroup requirement that these short chain lipids

fulfill by plugging into the lipid bilayer.

Figure 2.7 demonstrates the requirement of a charged phosphate group in a differ-

ent lipid system. Dioleoyl-Glycerol (DOG) is an uncharged (neutral) lipid that does

not contain a phosphate group and Dioleoyl-Phosphate (DOPA) is the phosphory-

lated derivative of DOG (Figure 2.7a). KvAP channels do not function in membranes

containing only DOG (Figure 2.7b) even though they can exist in such membranes, as

demonstrated by the fusion of KvAP containing DOG vesicles into phospholipid pla-

nar membranes (Figure 2.7c). DOPA membranes support voltage-dependent channel

function (Figure 2.7d). Channels also function in 1:1 mixtures of DOG and DOPA

but the midpoint of activation is shifted approximately 65 mV positive compared

to POPE:POPG membranes and 55 mV compared to DOPA membranes (data not

shown). Here again, a charged phosphodiester group appears to be important for

voltage-dependent channel function.

Next I investigated the chemical properties of the phosphate ester that are re-

quired for voltage sensor function. The phospholipid 1,2-Dioleoyl-Glycero-3-Ethyl-

phosphocholine (EDOPC) is similar to DOPC with respect to many of its physical

properties, however, due to ethylation the resulting phosphotriester is uncharged and

it does not participate in intermolecular hydrogen bonding with itself (Figure 2.8)

(MacDonald et al., 1999). EDOPC does not support KvAP function, and further-

more, as normal phospholipids (POPE : POPG) are diluted by increasing the mol-

fraction of EDOPC the effects on gating are qualitatively similar to those observed in

DOTAP membranes (Figure 2.4a-c and Figure 2.8b-d). In control experiments with

EDOPC membranes the MthK channel conducts K+, is Ca2+-activated, and inhib-

ited by CTX (Figure 2.9). Therefore EDOPC membranes support the function of a

non-voltage-dependent K+ channel. I concluded that the negative charge on the lipid

phosphodiester and possibly its hydrogen bonding potential is specifically important

for the function of the KvAP voltage-dependent K+ channel.

2.1.3 Discussion

KvAP channels function in a variety of different lipid membranes including those

presented here and in lipids not presented here (e.g. Diphytanoyl-PC, Dioleoyl-
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Figure 2.7: Phosphate group is important for KvAP voltage-dependent gat-
ing. a, The chemical structure of DOG and DOPA. b, DOG planar membranes do
not support channel activity, whereas channels in DOG vesicles fused into PE/PG
planar membranes (c) or DOPA planar membranes (d) give rise to channel activity.
Voltage pulses: step to 100 mV, h.p. = -100 mV.
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Figure 2.8: Role of the negative charge on the phosphate group. a, Chemical
structure of EDOPC. b, KvAP in POPE:POPG vesicles (PLR 1.0) fused into bilayers
of mixed EDOPC and POPE:POPG with EDOPC% 33 (1st panel), 66 (2nd) and
80 (3rd). Voltage pulses: -100 to 100 mV, ∆V = 5 or 10 mV, h.p. -100 mV. c,
Boltzmann functions (continuous lines) from normalized tail currents (black dots)
measured from traces in (b) with V0.5 (mV) and Z (mV-1): -25, 2.0 (33%, blue); 19,
1.7 (66%, green); and 70, 1.5 (80%, red). d, “Activation voltage” V0.5 (mean±s.e.m.,
n=3) versus EDOPC%.
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Figure 2.9: Assessment of MthK function in EDOPC membranes. Single
channel recordings of MthK in EDOPC membranes with no CaCl2 (top), 10 mM
CaCl2 (middle), and after the addition of 1 µM CTX (bottom). h.p. is +150 mV,
and channels open upward.

PC, Dieicosenoyl-PC, Phosphatidylserine). Rates of opening and closing and mid-

points of activation vary among membranes of different composition, but in all cases

voltage-dependent gating is fundamentally intact. These observations suggest that

the voltage-dependent mechanism is sensitive to but fairly tolerant of significant chem-

ical variation in the lipid head group and acyl chains. However, the negatively charged

phosphodiester seems to be a requirement for KvAP channel function.

The crystal structures of voltage-dependent K+ channels KvAP, Kv1.2 and Paddle

Chimæra revealed that voltage sensor arginine residues probably interact to some ex-

tent with the lipid membrane (Jiang et al., 2004, 2003a,b; Lee et al., 2005; Long et al.,

2005a,b, 2007). The experiments presented here suggest that these interactions play

an energetically significant role in voltage sensor function. Among the various prop-

erties of a lipid bilayer the presence negatively charged phosphodiester is of utmost

importance. I envision that phospholipid molecules surrounding a voltage-dependent

channel, even if not specifically bound to it, could mediate transient ionized hydrogen

bonds (i.e. salt bridges) between the phosphodiester and the arginine guanidinium

groups of the voltage sensor (Figure 2.10). Such interactions, by stabilizing specific

conformations of the voltage sensor, would render the membrane a functionally im-

portant component of the voltage sensing machinery. I would argue that the usage of
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Lipid

Voltage Sensor

S4
S3b

Figure 2.10: Multidentate hydrogen-bonding between lipid phosphodiester
and voltage sensor arginines. The hypothesized interaction between the side
chains of Arginine residues (R117 and R120) in the voltage sensor (PDB 1ORS)
and lipid phosphodiester groups. Notice the deformation of lipid molecules directly
adjacent to the voltage sensor.

positively charged amino acids with a preference toward arginine in voltage sensors

is an adaptation to the phospholipid composition of the cell membrane.

2.2 KvAP’s Refractory State

2.2.1 Introduction

For historical reasons most studies on the function of Kv channels have been per-

formed on the eukaryotic Shaker Kv channel (Hoshi et al., 1994; Schoppa and Sig-

worth, 1998b,c,a; Zagotta et al., 1994a,b). All models assume that upon membrane

depolarization, the four voltage sensors undergo a conformational change indepen-

dently from each other. This conformational change is detectable as a transient

gating current that results from the motion of charged amino acids across the mem-

brane electric field. Only after all four voltage sensor have moved to their depolarized
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conformation, the pore opens in a concerted manner allowing for ions to conduct. The

ion conduction (i.e. current) turns on with a sigmoidal shape in the Shaker channel

after membrane depolarization due to the multiple transitions that must occur.

Even if the membrane is kept at a depolarized voltage, inactivation occurs sponta-

neously. As such, inactivation does not represent a return to the closed conforma-

tion, because the voltage sensos remain in their depolarized conformation and the

pore’s gate remains opened. The pore itself, however, becomes plugged by the chan-

nel’s N-terminus, thus blocking the ion permeation pathway (Hoshi et al., 1990).

This mechanism is termed N-type inactivation and distinct from the remaining C-

type inactivation that occurs in channels where the N-terminal peptide has been

removed. C-type inactivation is not well understood, but thought to originate at the

selectivity filter itself (Hoshi et al., 1991). In recent years Kv channels have been

discovered in the most unlikely organisms. A Kv channel called KvAP from the ther-

mophilic archæa æropyrum pernix yielded the first atomic structural information on

any voltage-dependent channel (Jiang et al., 2003a). The KvAP channel, which can

be synthesized by E.coli and is biochemically robust, has become a focus of study in

many laboratories. It is known to open upon membrane depolarization, inactivates,

and interacts with well-known Kv channel toxins (Ruta and Mackinnon, 2004; Ruta

et al., 2003).

2.2.2 Results

The relationship between activation and inactivation

Figure 2.11a show the K+ current response to a paired depolarization pulse carried

by KvAP. During the first pulse, after the capacitive transient, KvAP channels start

to open with a sigmoid-shaped time course, and inactivate after reaching a maximum

current level. A second depolarization pulse elicits the same response except that

the total number of active channels seems to be reduced below the level of remaining

active channels in the first pulse (dotted line, Figure 2.11a). When this paired depo-

larization pulse is recorded with the Shaker Kv channel (a version with the N-terminal

inactivation gate removed) a more typical response is observed: the current level at

the beginning of the second pulse starts where the end of the first pulse left off (Fig-

ure 2.11b). The current level in the second pulse remains low, because the time in

between the pulses is not sufficient for the channels to recover from inactivation.The

unusual aspect of KvAP is that there are fewer active channels in the second pulse

than were present at the end of the first pulse. Other differences include the rates
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Figure 2.11: A Comparison of Inactivation in KvAP and Shaker Kv Chan-
nels. DPhPC vesicles containing KvAP (a) or Kv1.2-Kv2.1 Paddle Chimæra (b) were
fused into DPhPC bilayers. The current response to a paired depolarization pulse
from a holding voltage -120 mV (KvAP, a) -100 mV (Paddle Chimæra, b) to +100
mV was recorded. The dotted lines indicated the current levels at the end of the first
and the beginning of the second depolarization pulse.

35



2 THESIS RESEARCH

of opening and inactivation. While the sigmoid-shaped activation can be observed

with KvAP, it occurs too rapidly in the Shaker channel and thus is obscured by the

capacitive transient. How is it possible that for KvAP there are fewer channels open

in the seconds pulse than at the end of the first pulse? This observation is explicable

if KvAP can open or inactivate rather than open and then inactivate. On elabora-

tion, if upon membrane depolarization, channels move from the closed to the open

and then to the inactivated state according to this scheme:

Scheme 1.

C � O � I

then the fraction of the active channels in the second depolarization pulse can

never be smaller than in the first pulse because all channel would have to move

through the open state in order to inactivate, a process that would not happen as the

membrane is held at hyperpolarized voltages in between the two pulses. If, on the

other hand, channels can either open or inctivate according to this scheme:

Scheme 2.

C � O

↓

I

then the fraction of open channels can be smaller in the second pulse than at the

end of the first pulse. In scheme 2, as the channel moves from the closed conformation

upon membrane depolarization it has the choice to either open or to inactivate.

In fact, given sufficiently brief time periods in between the pulse and sufficiently

brief pulses, Scheme 2 predicts that the fractional current after the nth pulse will be

given by:
In
I0

= An (2.1)

In this expression the constant A is a function of the rate constant governing the

transitions from C � O or C � I. Figure 2.12a shows the current elicited by a

series of four pulses n=0 to 3; Figure 2.12b graphs the fraction of initial current

(n=0) remaining as a function of n pulses. The solid curve shows Equation (2.1)

fit to the data. From this simple analysis I conclude that KvAP, upon membrane

depolarization, can either open or inactivate directly from a closed conformation.
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Figure 2.12: The accumulation of inactivation between pulses follows a ge-
ometric series. a, Repetitive pulse from holding voltage -120 mV to +100 mV.
Accumulation of inactivation can be seen between pulses as a fractional decrease in
current that is larger than the inactivation that occurred during the previous pulse.
b, The fractional decrease in peak current (mean In/I0± s.e.m, n=5) during depolar-
ization as function of number of pulses (n) can be fitted to a geometric progression
In/I0 = An with A = 0.302±0.01.

A minimal scheme for KvAP gating

I modified Scheme 2 to account for the sigmoid-shaped time course of opening and

arrived at a more general form:

Scheme 3.

(C0 � C1)4 •� O

↓↑

I

in which the closed state is represented by the state C0 and C1 raised to the power

of 4. This form expresses the general idea that four voltage sensors must first undergo

and conformational change before the pore can open (Hoshi et al., 1994; Schoppa and

Sigworth, 1998b,c,a; Zagotta et al., 1994a,b). From atomic structures of Kv channels

we know that the voltage sensors are arranged as independent domains surrounding

and being attached to the central pore. Implicit in Scheme 3 is the idea that each

voltage sensor can independently undergo a conformational change C0 � C1; once

all four voltage sensors have reached the conformation representing C1, the channel
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is in a pre-open state represented by the dot in Scheme 3 primed to open or to

inactivate. This scheme represents the simplest gating model possible and is omitting

various steps of a necessarily more complex molecular process, but can it explain the

experimental recording of KvAP in planar lipid bilayers?

Figure 2.13 (following page): A detailed kinetic gating scheme for KvAP in
DPhPC decane bilayers. a, The rate constants and their voltage dependences
(±estimated standard deviations, see Chapter 2.2.2) as derived from fitted data be-
low for gating scheme 3 (see text). b-g, The solid lines in each right panel represent
numerically modeled data using parameters from table in (a). Unless otherwise noted
data points represent mean values of at least three independent measurements. b,
G/V data: A representative family of currents is shown (middle panel) for voltage
pulses from a common holding voltage (-120 mV) to increasingly more positive depo-
larization voltages (final +40 mV, ∆V 10 mV). Corresponding tail currents (I/Imax)
are plotted (right panel). c, Voltage dependence of deactivation: Currents were
elicited by stepping from a common holding voltage to a common depolarization
voltage. Open channels were closed (deactivated) by stepping back to increasingly
negative hyperpolarization voltages (-30 mV to -150 mV, ∆V 10 mV). Two repre-
sentative examples are shown, -50 mV and -140 mV. Tail currents were to fitted
single exponential functions and the fitted values for τ were plotted as a function
hyperpolarization voltage (right panel, n=1). d, Fractional current response (I/Imax,
dotted lines) after prolonged depolarization to +20 mV and +100 mV respectively.
e, Recovery from inactivation: Paired 200 ms depolarization pulses to +100 mV with
increasing interpulse length were used to determine the fractional recovery of chan-
nel activity (I/Imax) at different holding voltages (-100 mV to -160 mV) during the
interpulse. All channels were completely inactivated at the end of the first of the
paired pulses. The fractional recovered currents are plotted as a function of inter-
pulse length (representative examples, middle panel) and fitted to single exponential
functions. The fitted values for τ are plotted as a function of interpulse holding
voltage (right panel). f, Steady State inactivation: From increasingly more negative
holding voltages (-60 mV to -160 mV, ∆V 10 mV), currents were elicited by step-
ping to a common depolarization voltage of +100 mV. Representative recordings are
shown (middle panel). Fractional elicited currents (I/Imax) are plotted as a function
of holding voltage (right panel). g, Repetitive pulse of varying length tp from a hold-
ing potential of -120 mV to +20 mV or +100 mV. Exemplary data for the fractional
decrease in peak current I/Imax during depolarization as function of number of pulses
(n) is shown (middle panel) for pulses to +20 mV and three different pulse lengths
(20, 30 and 50 ms). The solid line represents a fit to In/I0 = An. The fraction of
inactivated channel 1 − A is plotted against pulse length tp for depolarization pulse
to +20 mV (closed circles) and +100 mV (open circles).
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All of the experiments were carried out in planar lipid bilayers with 150 mM KCl

in the internal and external solutions. Figure 2.13 shows examples of raw current

traces as well as graphs of quantities extracted from multiple current measurements

for a set of conventional voltage protocols. Smooth solid curves correspond to the

model prediction, with rate constants (k0) and degree of voltage-dependence (z) for

each step, derived through global fitting to the Scheme 3, shown in Figure 2.13a.

The activation curve (Figure 2.13b), the rate of deactivation (Figure 2.13c), the rate

of recovery from inactivation (Figure 2.13e), the voltage dependence of steady state

inactivation (Figure 2.13f), and the fraction of channels that inactivate after a given

time as a function of voltage (Figure 2.13g) all demonstrate the voltage dependence

of KvAP gating. Fits of the six rate constants and their voltage dependence suggest

that all transitions exhibit some degree of voltage dependence, with the strongest in

the C0 � C1 transitions. The existence of some voltage dependence in the transition

between the pre-open state and the open state gives rise to a continued increase

of current after an initial plateau in the activation curve (Figure 2.13b). The very

strong voltage dependence in the rate of deactivation can be account for by the

fact that the voltage dependence of the C0 � C1 transition occurs mostly in the

C1 → C0 direction (Figure 2.13c). Such asymmetry in the distribution of voltage

dependence over a forward and backward reaction is common and does not imply

that the reaction necessarily follows a different pathway in the two directions. The

asymmetry is explicable if the transition state is offset to one side of the reaction

pathway, in this case toward C0.

The inactivation process is also voltage dependent, especially in the I → C1 transi-

tion. This voltage dependence is directly observable in the voltage protocol to study

the rate of recovery from inactivation (Figure 2.13e). We note that Scheme 3 can

account for the inactivation observed during a depolarizing pulse (Figure 2.13d) even

though there is no direct connection between the open and inactivated states. This

is because the model permits the channel to transition back and forth between the

opened and the pre-opened state. From the pre-opened state the channels can enter

the inactivated state, which ultimately acts as a sink. Thus, according to the model,

inactivation observed during a depolarizing pulse represents channels transiting from

O to pre-opened • to I. These data do not demonstrate the absence of a direct con-

nection between O and I. They simply indicate that given the currently available

data it is not necessary to invoke such a connection.
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2.2 KVAP’S REFRACTORY STATE

A subtle feature of the voltage-dependence of inactivation is also compatible with

the absence of a direct connection between O and I. Figure 2.13g presents in greater

detail data from series of depolarizing pulses, similar to Figure 2.12. The graph in

the middle of Figure 2.13g shows the fraction of remaining current as a function

of pulse number for a series of depolarizing pulses of different duration. The data

are fit to exponential functions of pulse number. The graph on the right shows

one minus the exponential base, which approximates the fraction of inactivation in

successive pulses of the series as a function of pulse duration. Two curves are for pulse

depolarization voltages of 20 mV (filled circles) and 100 mV (empty circles). For

short duration pulses the 100 mV depolarization causes a larger fraction of channels

to inactivate (Figure 2.13g, right panel inset). This is easy to understand in terms of

Scheme 3 because at 100 mV the voltage sensors transit from C0 to C1 more rapidly,

causing channels to achieve the pre-open state from which they can inactivate. As the

pulse duration is lengthened, however, the curves cross over, meaning fewer channels

inactivate at 100 mV compared to 20 mV. This observation seems to suggest that

channels are relatively protected from inactivation when the open state is favored by

strong depolarization.

Lipid dependence of gating

KvAP gating has been shown to depend on properties of the lipid membrane

(Schmidt et al., 2006). The experiments described in this study so far were carried out

using planar bilayers formed from Di-phytanoylphosphatidylcholine (DPhPC). Figure

2.14a-g shows the current response to the same voltage protocols described in Figure

2.13a-g but in membranes formed from Palmitoyl-Oleoyl-phosphatidylethanolamine

(POPE) and Palmitoyl-Oleoyl-phosphatidylglycerol (POPG) at a ratio of 3 to 1. The

currents in POPE:POPG membranes are qualitatively similar, but there are quanti-

tative differences. For example, channels activate at more negative voltages and the

shape of the activation curve is somewhat different (Figure 2.13b and Figure 2.14b).

The inactivation observed during a depolarizing pulse occurs at a slower rate (Fig-

ure 2.13d and Figure 2.14d) and the curve describing the time constant for recovery

from inactivation is shifted to more negative voltages in the POPE:POPG membranes

(Figure 2.13e and Figure 2.14e). This latter effect is manifest in the tables of rate

constants as a significantly smaller rate constant for exit out the inactivated state

in POPE:POPG membranes (Figure 2.13a and Figure 2.14a). The practical conse-

quence of this difference is that it is much easier to study KvAP channels in DPhPC
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membranes: at a holding voltage of -100 mV recovery following a depolarizing pulse

requires 10 seconds in DPhPC and 90 seconds in POPE:POPG.

States accessible to the voltage sensor toxin VSTx1

Voltage sensor toxins from tarantula venoms inhibit Kv channels by partitioning

into the outer leaflet of the cell membrane and binding in a reversible manner to

Figure 2.14 (following page): A detailed kinetic gating scheme for KvAP in
POPE:POPG. a, The rate constants an their voltage dependences (± estimated
standard deviations, see Chapter 2.2.2) as derived from fitted data below for gating
scheme 3 (see text). b-g, The solid lines in each right panel represent numerically
modeled data using parameters from table in (a). Unless otherwise noted datapoints
represent mean values of at least three independent measurements. b, G/V data:
A representative family of currents is shown (middle panel) for voltage pulses from
a common holding voltage (-100 mV) to increasingly more positive depolarization
voltages (final +20 mV, ∆V 10 mV). Corresponding tail currents (I/Imax) are plot-
ted (right panel). c, Voltage dependence of deactivation: Currents were elicited by
stepping from a common holding voltage to a common depolarization voltage. KvAP
channels were closed (deactivated) by stepping back to increasingly negative hyper-
polarization voltages (-60 mV to -160 mV, ∆V 10 mV). Two representative examples
are shown (middle panel). Tail currents were fitted single exponential functions and
the fitted values for τ plotted as a function hyperpolarization voltage (right panel,
n=1). d, Fractional current response (I/Imax, dotted line) after prolonged depolar-
ization to +20 mV and +100 mV respectively. e, Recovery from inactivation: Paired
200 ms depolarization pulses to +100 mV with increasing interpulse length were used
to determine the fractional recovery of channel activity (I/Imax) at different holding
voltage (-100 mV to -150 mV, ∆V 10 mV) during the interpulse. All channels were
completely inactivated at the end of the first of the paired pulses. The fractional
recovered currents are plotted as a function of interpulse length (representative ex-
amples, middle panel) a fitted to single exponential functions. The fitted values for τ
are plotted as a function of interpulse holding voltage (right panel). f, Steady State
inactivation: From increasingly more negative holding voltages (-40 mV to -140 mV,
∆V 20 mV), currents were elicited by stepping to a common depolarization voltage
of +100 mV. Representative recordings are shown (middle panel). Fractional elicited
current (I/Imax) are plotted as a function of holding voltage (right panel). g, Repet-
itive pulse of varying length tp from a holding potential of -100 mV to +20 mV or
+100 mV. Exemplary data for the fractional decrease in peak current I/Imax during
depolarization as function of number of pulses (n) is shown (middle panel) for pulses
to +100 mV and three different pulse lengths (100, 150 and 200 ms). The solid line
represents a fit to In/I0 = An . The fraction of inactivated channel 1 − A is plot-
ted (right panel) against pulse length tp for depolarization pulse to +20 mV (closed
circles) and +100 mV (open circles).
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the voltage sensor paddle (Lee and Mackinnon, 2004; Milescu et al., 2007; Ruta and

Mackinnon, 2004; Swartz and Mackinnon, 1997b,a). In binding to the voltage sensor

paddle voltage sensor toxins modify Kv channel gating. One type of voltage sensor

toxin called VSTx1 inhibits KvAP channels (Ruta and Mackinnon, 2004; Ruta et al.,

2003). When VSTx1 is applied the K+ currents are reduced as shown (Figure 2.15a-

b).

The graph in Figure 2.15c plots the fraction of uninhibited KvAP channels as a

function of the VSTx1 concentration. This appears to be a reasonably standard

titration curve except that at high toxin concentrations the uninhibited fraction does

not approach zero. The reason for incomplete inhibition at high VSTx1 concentrations

is that a fraction of the channels become uninhibited during the interval between

depolarizing pulses. Figure 2.15d shows this effect of recovery from inhibition in a

graph of the ratio of currents (I/Imax) in a pair of depolarizing pulses as a function

of the intervening time duration (∆t) at the holding voltage. Two curves correspond

to the absence (squares) and presence (circles) of a constant concentration of VSTx1.

When the two depolarizing pulses are closely spaced the second pulse has less current.

As the pulses are spaced further apart the current in the second pulse approaches that

in the first. This behavior is qualitatively similar to the inactivation observed in KvAP

in the absence of VSTx1 (Figure 2.11a and Figure 2.12). Inactivation is not observed

even at the shortest time interval in the absence of VSTx1 in Figure 2.15d because

at -120 mV (the holding voltage in this experiment) in DPhPC the time constant for

recovery from inactivation is very brief (Figure 2.13e).

Figure 2.16a shows that a high concentration of VSTx1 has almost no effect over

a time period of 600 seconds as long as the channels are held closed by negative

membrane voltage (i.e. the first depolarizing pulse after a 600 second exposure to

VSTx1 has close to control levels of current). Following a single depolarizing pulse,

however, nearly all channels are inhibited on subsequent depolarizing pulses. The

inhibition is completely reversible: if after inhibition the membrane is held at a

negative voltage for a sufficiently long period of time the channels recover completely

(Figure 2.16b).

These effects of VSTx1 on KvAP channels are compatible with two possible inter-

pretations. A first interpretation is that VSTx1 binds to the voltage sensors inde-

pendent of whether they are hyperpolarized or depolarized, and by binding the toxin
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Figure 2.15: Voltage sensor toxin VSTx1 and nature of the inactivated state.
All shown data was recorded with KvAP in the DPhPC decane bilayer system. Fam-
ilies of currents before (a) and after (b) the addition of 500 nM of VSTx1. Voltage
pulses: -120 mV to +100 mV, ∆V 20 mV, interpulse length 20 seconds. c, VSTx1
affinity titration: Fraction of unblocked current I/Imax (mean±s.e.m, n=3) is graphed
as a function of log(VSTx1 concentration). Voltage pulses: -120 mV to +100 mV,
interpulse length 20 seconds. The solid line represents a fit to the titration data with
Fu = (1 + [V STx1] /KD)−1 with KD = 346±51 nM. d, The fractional unblocked cur-
rent I/Imax in a paired pulse experiment (mean±s.e.m, n=3) is plotted with (filled
circles) and without (filled squares) 500 nM VSTx1 present as a function of interpulse
length. As the interpulse length increases the fraction of unblocked current increase,
indicating an apparently decreased toxin affinity.
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Figure 2.16: Voltage sensor toxin VSTx1 and nature of the inactivated state.
a, VSTx1 is state dependent: Voltage pulse from -120 mV to +100 mV were elicited
every 20 seconds. As the bilayer is held at -120 mV, 1 µM VSTx1 was added to the
extracellular side of the channel. After a waiting period of 8 minutes without pulsing
the above voltage protocols was resumed at an interpulse sequence of 20 seconds.
During the hyperpolarized period no channel were blocked by VSTx1. Toxin block
came on very rapidly after successive bilayer depolarizations. b, VSTx1 block can be
overcome by prolonged hyperpolarization: Channels from (a) are blocked by addition
of 1 µM VSTx1. Paired depolarization pulses with increasing interpulse length were
used to determine the fractional recovery of channel activity by hyperpolarization in
the presence of toxin. All channels were completely inactivated at the end of the first
of the paired pulses by a set of 4 post train pulses. The fractional recovered currents
are plotted as a function of interpulse length (representative example, inset) and fit
to single exponential function (solid line). c, Normalized currents for pulses from -120
mV to +100 mV from families in (Figure 2.15a) and (Figure 2.15b) before (solid line)
and after (dotted line) addition of 500 nM VSTx1. d, Boltzmann functions fit data
from (Figure 2.15a) (filled circles) with V0.5 (mV) and Z (mV-1): -36.4±1, 9.5±0.9
and data from (Figure 2.15b) (open squares): -36.2±1.5, 7.4±1.35.
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stabilizes the inactivated state. For example, a KvAP channel with VSTx1 attached

to its voltage sensors might have an increased rate into or a decreased rate out of

the inactivated state. A second interpretation is that VSTx1 follows a simple rule:

that it can bind to voltage sensors only when they are in a depolarized conformation.

All of the properties described in Figure 2.15 and Figure 2.16 would follow naturally

from this rule because amongst the states associated with depolarized voltage sen-

sors the inactivated state is the most stable. Thus, by binding to the voltage sensor

paddle VSTx1 would capture the voltage sensor depolarized, delay its return to the

hyperpolarized conformation, and thereby prolong inactivation.

Figure 2.16c shows that when the residual uninhibited current in the presence of

VSTx1 (or the current that has recovered from inhibition by holding the membrane

voltage negative in the presence of VSTx1, as in Figure 2.16b) is superimposed on

traces recorded prior to the addition of VSTx1 they are kinetically indistinguishable.

The voltage-activation curves are also the same (Figure 2.16d). The simplest expla-

nation here is that the uninhibited currents are due to channels that do not have

VSTx1 attached to their voltage sensors, because it seems rather unlikely that toxin-

bound channels would activate and deactivate with normal kinetics. On the basis of

this reasoning I think the interpretation that VSTx1 binds only to the depolarized

conformation of a voltage sensor is more likely. In other words the voltage sensor

paddle becomes accessible to VSTx1 upon membrane depolarization, and can return

to its hyperpolarized position only after VSTx1 dissociates.

2.2.3 Discussion

We have shown that upon membrane depolarization an approximately fixed fraction

of KvAP channels inactivate instead of opening. This explains why in a series of

depolarizing pulses separated by a short time interval the current level decreases as

a function of pulse number. This gating behavior is unusual but not unique; it has

been described in a number of Kv channels as well as Nav channels (Aldrich et al.,

1979; Aldrich, 1981; Klemic et al., 2001, 1998; Marom and Abbott, 1994; Marom and

Levitan, 1994), and it accounts for a specific short-term memory effect in certain

hippocampus neurons (Marom and Abbott, 1994).

The KvAP gating data are consistent with Scheme 3, which in overall connectivity

is similar to models developed previously to describe gating of the Shaker K+ chan-

nel (Hoshi et al., 1994; Schoppa and Sigworth, 1998b,c,a; Zagotta et al., 1994a,b).
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The main difference between KvAP and Shaker is that for KvAP inactivation is con-

nected to the pre-open state rather than the open state. Scheme 3 lends itself to

a relatively simple structure-based physical interpretation. The C0 � C1 transition

represents the conformational changes in a voltage sensor connecting hyperpolarized

and depolarized conformations. During this transition the S4 gating charges cross

the membrane voltage difference. This of course is the primary pulse in which the

electric field within the membrane directly drives the protein conformation. The pre-

open state would correspond to a channel with four depolarized voltage sensors just

prior to pore opening. Assuming independent voltage sensors the pre-open proba-

bility is the probability of C1, given that the channel is not open or inactivated, to

the fourth power. From the pre-open state the channel can either open or inactivate,

the partition fraction being determined by the relative magnitudes of k•→O and k•→I .

During a sustained depolarizing pulse channels slowly inactivate through the sequence

O � • → I . I is the lowest energy state given four depolarized voltage sensors and

therefore channels eventually inactivate completely, or nearly so, with a sufficiently

long depolarizing pulse.

This description of KvAP gating can explain the observed effects of VSTx1 if

the toxin can bind only to the depolarized conformation of the voltage sensor, a

conclusion that is strongly supported by the data in Figure 2.15 and Figure 2.16. Not

only does it appear that the toxin cannot associate with a voltage sensor until the

depolarized conformation is achieved, but the data also suggest that the voltage sensor

cannot return to the hyperpolarized conformation until VSTx1 dissociates. This

situation causes VSTx1 to effectively capture the voltage sensors in their depolarized

conformation. This ultimately will favor inactivation because the inactivated state is

the lowest energy conformation available to a channel with four depolarized voltage

sensors. In terms of Scheme 3, VSTx1 inhibition of KvAP is most easily described as

a reduction of the kC1→C0 rate constant.

Studies show that the function of Kv channels is very sensitive to chemical and

mechanical properties of lipid membranes (Schmidt and Mackinnon, 2008; Schmidt

et al., 2006; Tabarean and Morris, 2002). My thesis research shows that membrane

lipid composition influences several different transitions in KvAP gating. It will be

interesting to understand mechanistically how different chemical components of lipid

molecules, such as head group, glycerol backbone, ester and ether linkages, degree of

saturation and structure (alkyl versus isoprenyl) of the tail, influence specific tran-
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sitions in gating. Because of the extreme lipid sensitivity exhibited by Kv channels,

any description of Kv channel function is only meaningful in the context of a defined

membrane. The gating properties described here refer to KvAP in DPhPC-decane

and POPE:POPG-decane lipid bilayers.

2.3 Gating Comparison of Kv Channels

2.3.1 Introduction

This part of my thesis research started with an experiment my thesis advisor Rod

MacKinnon performed. He tested the sensitivity of the Paddle Chimæra, a Kv1.2

channel with a voltage sensor paddle from the Kv2.1 channel (Long et al., 2007; Tao

and Mackinnon, 2008) in the planar bilayer system and found that Paddle Chimæra in

this system was sensitive to the voltage sensor toxin VSTx1, even though according to

previous studies it should not have been (Alabi et al., 2007). I set out to investigate

whether this difference could be due to the different membrane environment that

Xenopus oocytes provide when compared to planar lipid bilayers.

As described in Chapter 1.9, the function of certain membrane proteins depends

upon properties of the cell membrane. In some cases protein activity can only be

observed in the presence of specific lipid molecules (Robinson, 1982; Schmidt et al.,

2006; Valiyaveetil et al., 2002). In other cases the membrane can have more subtle

effects on the activity of a protein, as if the lipid environment exerts a regulatory

effect on the membrane protein’s function (Oliver et al., 2004; Perozo et al., 2002;

Ramu et al., 2006).

Aside from creating a distinct chemical environment, the structure of the lipid

bilayer gives it distinct material properties like fluidity, local curvature, thickness and

tensile strength. How does this ensemble of both chemical and mechanical properties

of the lipid membrane influence the function of a membrane protein? And could these

differences be the reason why VSTx1 can block the Paddle Chimæra Kv channel in

planar lipid bilayers?
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Figure 2.17: The membrane regulates gating. a, Paddle chimera in POPE:POPG
vesicles was fused into POPE:POPG bilayers. Voltage pulses: holding potential (h.p.)
-100 mV to 70 mV, ∆V = 10 mV. b, Oocytes expressing paddle chimera from mRNA
in two-electrode voltage clamp (TEVC). Voltage pulses: h.p. -100 mV to 70 mV,
∆V = 10 mV. c, Boltzmann functions (solid lines) fit data (mean±s.e.m, n = 13)
from (a) (filled circles) with V0.5 (mV) and Z (mV-1): -57.8±0.4, 3.4±0.14 and data
(mean±s.e.m, n = 5) from (b) (filled squares): 6.5±0.5, 1.6±0.05.

2.3.2 Results

The membrane regulates gating

Figure 2.17 shows several basic properties of two apparently different Kv chan-

nels. Upon membrane depolarization the channels in Figure 2.17a open (activate)

very rapidly and then begin to undergo gradual closure while the membrane is still

at the depolarized voltage (inactivation). Upon hyperpolarization channels return

to their closed conformation (deactivate). The activation phase upon depolarization

is so rapid that the capacitive current associated with charging the membrane to

its new voltage obscures the K+ current upstroke. In contrast to the fast activat-

ing channels, the Kv channels in Figure 2.17b activate much more slowly and no

inactivation is evident during the duration of the depolarized pulse. Other proper-

ties further distinguish these channels. The midpoint voltage of the voltage-activation

curve (voltage corresponding to half maximal activation) is -58 mV and 7 mV for fast-

and slow-activating channels, respectively (Figure 2.17c). The fast-activating chan-

nels are also sensitive to the tarantula venom toxin VSTx1 (Figure 2.18a) whereas

the slow-activating channels are insensitive (Figure 2.18b).
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Figure 2.18: The membrane regulates toxin sensitivity. a, Paddle chimera in
POPE:POPG bilayers, before (black) and after (red) addition of 500 nM VSTx1.
Pulse from h.p. -100 mV to 70 mV. b, Paddle chimera in oocytes in TEVC, before
(black) and after (red) addition of 1 µM VSTx1. Pulse from h.p. -100 mV to 70 mV.

The distinct behavior of two apparently different Kv channels described in Figure

2.17 and Figure 2.18 actually represent the very same channels functioning in different

membranes; the Kv channel is paddle chimæra. The properties of rapid activation,

inactivation, a negative midpoint voltage and sensitivity to VSTx1 are observed when

the channels are reconstituted into planar bilayers consisting of the lipids Palmitoyl-

Oleoyl-phosphatidylethanolamine (POPE) and Palmitoyl-Oleoyl-phosphatidylglycerol

(POPG) in a 3:1 ratio. The properties of slow activation, absence of inactivation, a

midpoint voltage shifted by approximately 60 mV, and insensitivity to VSTx1 are

observed when the channels are expressed in the membranes of Xenopus oocytes.

Channels studied in planar bilayers first have to be synthesized in yeast cells and

then purified in detergent, reconstituted into lipid vesicles and fused with the planar

bilayer (Tao and Mackinnon, 2008). Channels studied in oocyte membranes are syn-

thesized by the oocytes after injection of RNA. In order to compare channels with the

same history I fused yeast-synthesized channels directly into oocyte membranes by

injecting vesicles into the oocyte (Figure 2.19a) (Morales et al., 1995). This maneu-

ver enables a direct comparison of compositionally identical channels fused into cell

membranes and planar bilayers. With respect to activation, inactivation, midpoint

voltage and VSTx1 sensitivity currents measured in oocytes after RNA injection and
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Figure 2.19: The membrane regulates gating. a, Cartoon depicting the injection
of reconstituted paddle chimera protein (red stars) into Xenopus oocytes. b, Paddle
Chimæra vesicle injected oocytes in TEVC. Voltage pulses: h.p. -100 mV to 70 mV,
∆V=10 mV. c, Boltzmann functions (solid lines) fit data (mean±s.e.m, n=5) from
(Figure 2.17) (filled circles) with with V0.5 (mV) and Z (mV-1): 6.5±0.5, 1.6±0.05
and data (mean±s.e.m, n=7) from (b) (filled squares): 0.7±1.2, 1.7±0.14. d, Paddle
chimera vesicle injected oocytes in TEVC, before (black) and after (red) addition of
1 µM VSTx1. Pulse from h.p. -100 mV to 70 mV.
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after vesicle injection were indistinguishable (Figure 2.19b-d). Therefore, the distinct

channel properties observed in oocyte membranes and planar bilayers must be due to

environmental differences, either in the membrane or in the oocyte cytoplasm.

Effect of membrane lipid composition

To evaluate the effect of lipid composition on function, I produced planar bilayers

from lipids that mimic the oocyte membrane (Hill et al., 2005). In the oocyte-like

bilayers the Kv channels are more similar to channels in oocytes in that they do not

inactivate (Figure 2.20b) and their voltage-activation curve is shifted to somewhat

more positive voltages (Figure 2.20d). However, the midpoint of activation is still not

near that observed in oocytes. Of course, I are not able to produce a genuine oocyte

membrane mimic in the bilayer system for a number of reasons; oocyte membranes

probably have different lipid components in their inner and outer leaflets (i.e. they are

asymmetric), many minor components of the oocyte membrane are still unknown, and

the planar bilayers contain decane (Miller, 1986). It might seem reasonable to think

that if we could accurately replicate the composition of an oocyte membrane then

I would observe oocyte-like Kv function in the bilayer system. However, previous

studies (Gu et al., 2001; Laitko et al., 2006) and the experiments described below

show that physical properties of the membrane other than lipid composition are also

important to Kv channel function.

Effect of membrane mechanical state

Figure 2.21 compares Kv channels in planar bilayers of POPE and POPG to Kv

channels in oocyte membranes membranes using whole cell recording and isolated

membrane patches with different configurations. The corresponding recording from

SF9 insect cells are shown in Figure 2.22. The Kv channels in isolated membrane

patches of both Xenopus oocytes and SF9 cells (Figure 2.21b-e and Figure 2.22a)

exhibit properties that are intermediate between planar bilayers (Figure 2.21a) and

oocytes recorded in the whole cell mode (Figure 2.21f and Figure 2.22b). Moreover,

for Xenopus oocytes, there is a graded response depending on the patch configuration.

On-cell patches in the absence of negative pipette pressure and outside-out patches

cause channels to be more whole cell-like in their behavior, whereas on-cell patches

after application of negative pipette pressure and inside-out patches cause channels to

exhibit more bilayer-like behavior. The response can be quantified using the midpoint

voltage (Figure 2.21g). In addition to the midpoint shift there is a noticeable change
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Figure 2.20: The effect of lipid composition. Paddle chimera in POPE:POPG
vesicles was fused into bilayers of POPE:POPG (a) or 1,2-Dieicosenoyl-sn-Glycero-
3-Phosphocholine : Brain Sphingomyelin : Cholesterol 2:1:1 (b). CTX was used
for capacitance transient subtraction in (a) and (b). c, Oocytes expressing paddle
chimera from mRNA in two-electrode voltage clamp (TEVC). Voltage pulses (a-c):
h.p. -100 mV to 70 mV, ∆V = 10 mV. d, Boltzmann functions (solid lines) fit
data (mean±s.e.m, n = 13) from (a) (filled circles) with V0.5 (mV) and Z (mV-1):
-57.8±0.4, 3.4±0.14, data (mean±s.e.m, n = 3) from (b) (open circles): -37.1±1.9,
1.7±0.16 and data (mean±s.e.m, n = 5) from (c) (filled squares): 6.5±0.5, 1.6±0.05.
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Figure 2.21: The effect of membrane configuration. a-f, Paddle chimera in
various membrane configurations as denoted by the accompanying label. All voltage
pulses h.p. -100 mV to 70 mV, ∆V = 10 mV. g, Boltzmann functions (solid lines)
fit data (mean±s.e.m, n = 4-13, except (b,c) from (a) (red) with V0.5 (mV) and Z
(mV-1): -57.8±0.4, 3.4±0.14, (b) (lilac): -38.6±1, 2.7±0.27, (c) (purple): -24.4±0.7,
2.9±0.2, (d) (indigo): -44.8±0.8, 2.6±0.19, (e) (light blue): -21.5±1, 2.4±0.21, (f)
(black): 6.5±0.5, 1.6±0.05
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in the slope of the activation curves: more negative midpoint voltages are associated

with steeper activation curves.
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Figure 2.22: The effect of membrane configuration. a, Paddle Chimæra in on-
cell patch (a) or whole-cell configuration (b) recorded from the same SF9 insect cell.
c, Boltzmann functions (solid lines) fit data from (a) with V0.5 (mV) and Z (mV-1):
-63.69±0.53, 3.65±0.4 (on-cell patch), and from (b) -8.69±0.65, 13.4±0.58 (whole
cell).

Figure 2.23 shows that Paddle Chimæra channels in an outside-out patch can be

converted from oocyte-like behavior to bilayer-like behavior by applying positive pres-

sure inside the pipette. This effect is irreversible, meaning that once the positive

pressure inside the pipette is returned to zero the behavior of the channels remains

bilayer-like for the remainder of the experiment. Voltage-activation curves corre-

sponding to three different stages during the conversion are shown (Figure 2.23a-c).

As pressure is applied the curves change in three respects: the midpoint voltage shifts

negative, the slope increases, and the maximum amplitude increases. The midpoint

voltage shift and slope increase are similar to differences in the curves shown in Fig-

ure 2.21g. In Figure 2.21g data for each curve were obtained from a different patch,

rendering a comparison of the amplitudes meaningless. For this reason the data in

Figure 2.21g have been normalized to unity.

In Figure 2.23d the data were recorded from a single patch, thus the systematic

increase in current amplitude is meaningful. The current could possibly increase by

one or a combination of three possible occurrences: the single channel current (i)
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Figure 2.23: The effect of membrane forces. Paddle chimæra in the same outside-
out patch with 0 mmHg (a, black), 5 mmHg (b, blue) and 15 mmHg (c, red) of
transient pressure applied. Voltage pulses a-c: h.p. -100 mV to 70 mV, ∆V = 10
mV. d, The solid curves are fit globally to the data from (a-c) with Equation 2.4 (see
Chapter 2.3.2 using the relationship 〈I〉 = xPO: L(0mmHg) = 1.98±0.11, L(5mmHg)
= 5.9±0.42, L(15mmHg) = 79.3±10.6, Vm = -17.8±1 mV, z = 1.07±0.03 qe, x =
8805±39.
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Figure 2.24: The effect of membrane forces a, Average traces (50 - 60 sweeps
each) of paddle chimera in the same outside-out patch for pulses from h.p. -100 mV
to 50 mV. Applied pressure is 0 mmHg (black) and 15 mmHg (red). f, Nonstationary
Fluctuation analysis for patch data after 0 mmHg (black) and 15 mmHg (red) applied

pressure. The solid curve is fit to the data with the relationship σ2 = I · 〈I〉− 〈I〉
2

N
(see

Chapter 2.3.2), with i = 0.812± 0.002 pA and N = 1245±8 channels for 0 mmHg
(black) and i = 0.802±0.003 pA and N = 1399±9 channels for 15 mmHg (red).

could increase, the number of channels in the patch (N) could increase, or the open

probability (Po) could increase. By analyzing the relationship between mean current

〈I〉 and variance σ2 for channels in a membrane patch before and after conversion

from oocyte-like behavior to bilayer-like behavior it is possible to determine the origin

of the current increase through the expressions (Sigworth, 1980):

〈I〉 = iNPo (2.2)

σ2 = i 〈I〉 − 〈I〉
2

N
(2.3)

This analysis shows that N and i remain approximately constant (the curves are

nearly the same) while maximum Po increases (data points extend to higher values of

〈I〉) (Figure 2.24a,b). In the example shown maximum Po increased from 0.79 to 1.0.

Analysis of multiple patches shows that maximum Po increases from a range 0.6 to

0.8 initially to near 1.0 when channels convert from oocyte-like to bilayer-like gating

behavior. In summary, three changes in the voltage-activation curve occur when the

channels convert: the midpoint voltage shifts negative, opening becomes a steeper

function of membrane voltage, and a higher maximum Po is achieved. These gating

effects are not unique to the paddle chimera channel. The Shaker Kv channel and
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Kv2.1, for example, undergoes a similar conversion following patch excision from the

oocyte surface (Figure 2.25 and Figure 2.26).

Membrane tension

The conversion of gating behavior in an excised oocyte membrane patch cannot

be attributed to lipid composition of the membrane. The effect here is presumably

related to the mechanical state of the membrane. What do planar bilayers and mem-

brane patches on a glass pipette have in common that distinguishes their mechanical

state from that of intact cell membranes? Past studies indicate that planar bilayers

and membrane patches on glass pipettes are both under tension. Work by Haydon

and colleagues estimated the tension of phosphatidylcholine bilayers with decane to

be in the range of 3 to 5 dyn/cm (Cook et al., 1968; Requena et al., 1977). Webb

and colleagues measured the line adhesion tension on cell membrane patches in glass

pipettes and showed that its value is variable, ranging from 0.5 to 4 dyn/cm, de-

pending on the specific patch (Opsahl and Webb, 1994). The source of membrane

tension in these systems probably originates in the boundary. In a planar bilayer the

boundary is formed by the torus of lipid and solvent and perhaps the solid support

surrounding the bilayer. In a patch pipette the boundary is formed by lipid adhering

to the glass at the patch perimeter.

The effect of lipid adhering to the patch pipette glass is demonstrated in the se-

ries of still-frames in Figures 2.27. Here giant unilamellar vesicles (GUVs) made of

DOPC brought in contact with Borosilicate glass. Lipid adheres so strongly, that a

lipid membrane without an underlying cytoskeleton will disintegrate within a matter

of seconds. In contrast to membrane patches, large membrane vesicles unrestrained

by boundaries can have very low tensions (< 10-2 dyn/cm) (Kwok and Evans, 1981;

Rawicz et al., 2000). Likewise, the tension of cell membranes under normal physi-

ological conditions is near zero (Dai et al., 1998; Hochmuth et al., 1996; Wolfe and

Steponkus, 1983). Cell membranes typically have excess membrane area in the form

of folds and invaginations. This is particularly true of stage 6 Xenopus oocyte mem-

branes, in which electrical capacitance measurements show that the actual membrane

area is approximately ten times greater than the area calculated on the basis of the

oocyte radius (Zhang and Hamill, 2000). We have not measured membrane tension

in our experiments, however, the similar gating behavior in patch pipettes and planar

bilayers (both high tension systems) compared to whole-cell oocyte membranes (a low
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Figure 2.25: Membrane forces alter gating in Shaker Kv. Shaker Kv in the
same outside-out patch at different time points after patch excision: 0 minutes (a,
black), 4 minutes (b, blue) and 8 minutes (c, red). Voltage pulses a-c: h.p. -100 mV
to 70 mV, ∆V = 10 mV. d, The solid curves are fit globally to data from (a-c) with
Equation 2.4 (see Chapter 2.3.2) using the relationship 〈I〉 = xPO: L(t=0 minutes) =
0.8±0.05, L(t=4 minutes) = 1.7±0.15, L(t=8 minutes) = 10.6±2.26, Vm = -45.6±1.3
mV, z = 1.5±0.08 qe, x = 847±22.
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Figure 2.26: Membrane forces alter gating in Kv2.1. Kv2.1 channels in the same
on-cell patch with 0 mmHg (a, black), 5 mmHg (b, blue) and 15 mmHg (c, red) of
transient suction applied. Voltage pulses a-b: h.p. -100 mV to 70 mV, ∆V = 10 mV,
c: h.p. -120 mV to 70 mV, ∆V = 10 mV. d, The solid curves are fit globally to data
from (a-c) with Equation 2.4 (see Chapter 2.3.2) using the relationship 〈I〉 = xPO:
L(0 mmHg) = 0.56±0.05, L(5 mmHg) = 3.1±0.41, L(15 mmHg) = 165±86.1, Vm =
-46.8±2.7 mV, z = 1.2±0.1 qe, x = 118±2.2.
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Figure 2.27: Lipid adheres to glass. a, Experimental Setup. b-d, Giant Unil-
amellar Vesicles (GUVs) formed with DOPC and Rhodamine-DOPE under different
amounts of membrane tension [low (a), medium(b), high(c)] are brought in contact
with a molten borosilicate glass rod. Invariably, the lipid/glass adhesion leads to
destruction of the GUV. Timepoints are indicated in each frame.
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tension system) suggests that the mechanical property of the membrane influencing

the channels in Figure 2.23, Figure 2.25 and Figure 2.26 might be membrane ten-

sion. The irreversibility, I suspect, stems from the fact that positive pressure in the

pipette is having its effect by increasing the contact between the lipid membrane and

the glass. Even when no pressure is applied to a patch the channels convert, albeit

more slowly than when pressure is applied, to bilayer-like behavior, as if the system

always moves toward an equilibrium state in which adhesion forces at the boundary

eventually become balanced by membrane tension. The data in Figure 2.25 for the

Shaker Kv channel provide an example of spontaneous conversion over time in the

absence of applied pressure.

A structure-based hypothesis

Detailed kinetic studies of Shaker Kv channel gating show that upon membrane

depolarization the channel undergoes multiple transitions during its sojourn from a

closed state to the open state (Hoshi et al., 1994; Schoppa and Sigworth, 1998b,c,a;

Zagotta et al., 1994a,b). Most of the voltage dependence occurs in the early kinetic

transitions, prior to pore opening, and then eventually the pore opens in a concerted

manner. Atomic structures of Kv channels are entirely consistent with this kinetic

description (Long et al., 2005a, 2007). The structures reveal four voltage sensors

disposed as nearly independent domains surrounding the pore, suggesting that con-

formational changes can occur within each voltage sensor independently. Each voltage

sensor is connected to the pore through an S4-S5 linker helix (Figure 2.28a). Four

S4-S5 linker helices are positioned as if to constrict the pore when the voltage sensors

are in their closed hyperpolarized conformation. Presumably when the four voltage

sensors achieve their depolarized conformation the S4-S5 linker helices move and thus

influence the pore’s equilibrium between its closed and opened conformations.

A simple state diagram captures this description (Yifrach and Mackinnon, 2002):

Scheme 4. (
C1

K1(V )−⇀↽− C2

K2(V )−⇀↽− C3 . . .
Km(V )−⇀↽− Cm+1

)4
L−⇀↽− O

Here m transitions must occur within each of four independent voltage sensors

before the pore can open. Voltage-dependent equilibrium constants Ki(V ) character-

ize conformational transitions within the voltage sensors, the equilibrium constant L

characterizes the conformational transition of the pore from closed to open. If all volt-

age dependent steps are collapsed into a single transition, K(V ) = ezF (V−Vm)/RT , and
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Figure 2.28: A structural description. a, Sideview of the transmembrane region
of paddle chimera (PDB 2R9R). Pore domains are colored in blue, Voltage sensor
domains are colored light-red. S4-S5 linkers are colored in dark-red. Only 2 voltage
sensor domains are shown for simplicity. b, Pore domain of the KcSA structure (PDB
code: 1K4C) in a closed conformation. c, Pore domain of the KcsA structure in an
open conformation based on the MthK structure (PDB 1LNQ).
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L is assumed to be voltage-independent, then the open probability Po as a function

of the equilibrium constants is given by (see Appendix 5.2 for derivation):

Po =

L ·
(

ezF (V−Vm)/RT

1 + ezF (V−Vm)/RT

)4

1 +

(
ezF (V−Vm)/RT

1 + ezF (V−Vm)/RT

)4

· L
(2.4)

Vm is the membrane voltage at which the probability that all four voltage sensors are

in the up position Pup = 0.5; z is the apparent valence of each voltage sensor. Using

this simple realization of this model, I can account for the three curves in Figure 2.23

by adjusting a single parameter L. Recall that these curves differ in three quantitative

aspects: midpoint voltage, steepness, and maximum Po. All three aspects are satisfied

simultaneously through the adjustment of L (but not Ki(V )). Similarly, data for the

Shaker Kv channel and Kv2.1 can also be fit by this model with adjustment of L alone

accounting for the gating conversion after patch excision (Figures 2.25 and 2.26, solid

curves). The agreement between theory and data suggests that the mechanical effect

of the membrane exerts its influence predominantly on the pore-opening step in Kv

channel activation.

Atomic structures of closed and opened K+ channels show that pore opening in-

volves a substantial conformational change that expands the cross sectional area

within the membrane’s inner leaflet and changes the pore shape from that of wedge

when closed, narrower near the cytoplasmic surface, to cylindrical when opened (Fig-

ure 2.28b,c) (Jiang et al., 2002). These conformational changes tie in nicely with the

hypothesis that different membrane tensions underlie the curves in Figure 2.23d, Fig-

ure 2.25d and Figure2.26d. In the theory of thin film mechanics, membrane proteins

should be affected by the influence of tension on membrane thickness, curvature, and

area dilation (Ursell et al., 2008). The shape change and area dilation associated with

pore opening in K+ channels suggests that this transition should be very sensitive to

membrane tension.

If the effect of membrane tension on pore opening were mediated solely through

area dilation of the pore ∆A, then a change in the free energy difference (between

closed and opened conformations of the pore) brought about by a change in membrane

tension ∆γ, would relate to the ratio of equilibrium constants at low and high tension,
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L1

L2
, according to:

∆A∆γ = RT ln
L2

L1

(2.5)

In Figure 2.23d the theoretical curves correspond to L1 = 2 in the presumed low-

tension limit and L2 = 80 in the presumed high-tension limit, which according to

Equation (2.5) corresponds to a free energy change for the pore opening equilibrium

of 3.7RT (2.6RT for Shaker, and 5.1RT for Kv2.1 (Figure 2.25d and Figure 2.26d).

The tension change in our experiments is unknown, but if I insert the maximum value

of 4 dyn/cm (1RT/nm2) reported by Opsahl and Webb (Opsahl and Webb, 1994) for

membrane patches on glass electrodes the value ∆A comes out around 3 to 4 nm2,

which would represent an approximate 20% expansion of the pore cross-sectional

area. Without a direct measurement of tension and description of the contributions

made by area expansion, curvature and thinning I do not take these absolute numbers

seriously, but they serve as a check on the physical plausibility of the hypothesis.
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Figure 2.29: Global Fit for tension scaling. a, Global fit of 57 families of current
extracted from 11 outside-out patches. Solid blue lines represent a fit of each family
(black dots) to Equation 2.4 (see 2.3.2) with 〈I〉 = iNPo. Fitting residuals are graphed
above (red dots). Fitting parameters are summarized in Table 2.1.
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Tension Scaling

I have at this point no direct knowledge of the membrane tension that paddle

chimæra channels are subjected to in oocytes or membrane patches. However, if

I assume that the observed mechanosensitity can be explained solely by footprint

dilation deformation of the channel and I use the value of 4 dyn/cm (1RT/nm2) as

the maximal membrane tensions of a patch, I can assign each fitted value of L to a

specific value of tension γ′.

The dataset used for this analysis contains 11 individual patches from which 57

families of current were extracted. Each family represents one value of membrane

tension γ′ that was altered either by spontaneous or pressure induced lipid/glass ad-

hesion. Each G/V curve is fitted according to Equation (2.4) with 〈I〉 = xPo. The

results of this global fit are shown in Figure 2.29 and the fitting parameters are sum-

marized in Table 2.1. While the voltage dependence of the voltage-sensor movement,

K(V ) = ezF (V−Vm)/RT , was constrained to be the same across all patches, the product

of channel number and single channel conductance(x = iN) was constrained only

within the families belonging to the same patch. These constraints express the hy-

pothesis that the difference between the G/V curves can be explained solely by a

membrane tension dependent change in the late-opening step equilibrium constant L.

An unknown tension γ′ can be found as (see Appendix 5.1 for derivation):

γ′ = γmax ·
ln
(

Lγ′

Lγ=0

)
ln
(
Lγmax
Lγ=0

) (2.6)

Lγ=0 and Lγmax are the minimum and maximum fitted parameter L, respectively (see

Table 2.1). Figure 2.30 shows plots of channel open probability as a function of scaled

tension γ′ at different depolarization voltages. The open probability Po is calculated

with for each family using the relationship 〈I〉 = iNPo by dividing the patch current

with the fitted parameter x = iN . The resulting plots recast data from whole-cell and

patch recordings: At zero tension (i.e. whole-cell oocytes) the midpoint of activation

(Po = 0.5) can be found at +10 mV (Figure 2.30, middle row, right panel). At

maximal tension γmax = 4 dyn/cm (1 RT/nm2) the midpoint is found at -50 mV

(Figure 2.30, top row, second to left panel). Interestingly, a closer inspection of the

data reveals that the channel open probability is most sensitive to modest changes in

tension at membrane voltages around -20 mV. A change in membrane tension by 1.6

dyn/cm (0.4 RT/nm2) will increase the open probability by 50% at -20mV, whereas

67



2 THESIS RESEARCH

the same change of membrane tension at -40mV or +20mV will increase it only by

5% or 20% respectively (see Figure 2.30, top row, second to right panel and Figure

2.30, bottom row, left panel).
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Figure 2.30: Tension sensitivity at different membrane voltages. a, Paddle
Chimæra open probability as a function of calculated tension γ′ at different membrane
voltages.

Membrane mechanical state and voltage sensor toxins

The most puzzling initial observation in this study concerns the dependence of

VSTx1 sensitivity on the membrane: channels are sensitive to this toxin in planar

bilayers but insensitive in oocytes (Figure 2.18). VSTx1 and other voltage sensor

toxins partition into the membrane in order to modify Kv channel gating (Lee and

68



2.3 GATING COMPARISON OF KV CHANNELS

Table 2.1: Global Fitting Parameters for Tension Scaling

Globals Vm -25 ±0.5 [mV]
z 1.12 ±0.02

Locals late-step equilibrium constant L x = iN

Patch 1 1.97 1.97 1.95 2.4 3.02 7.4 23.4 41.9 64.7 88.4 15675
±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.4 ±1.8 ±3.5 ±5.7 ±8 ±87

Patch 2 4.5 13.74 12.4 15.3 23.7 4108
±0.6 ±2.5 ±2.3 ±2.9 ±4.9 ±90

Patch 3 3.1 9.8 50.5 445 4688
±0.4 ±1.5 ±9.8 ±99 ±86

Patch 4 6 5.7 5.3 6 12.6 55.2 13215
±0.4 ±0.4 ±0.4 ±0.4 ±1.1 ±5.8 ±155

Patch 5 7.1 82.4 261 821
±5.5 ±88 ±296 ±76

Patch 6 4.3 12.3 39.9 73.9 691
±3.5 ±12.7 ±49 ±94 ±81

Patch 7 4.8 9.86 80.39 4171
±0.7 ±1.8 ±19 ±103

Patch 8 4.5 21.7 65 90 121 5806
±0.4 ±3 ±10 ±14 ±20 ±63

Patch 9 8.7 43 46.6 44.9 1210
±4.7 ±30 ±32 ±31 ±73

Patch 10 23.3 27 46.4 57.8 64.4 54.7 69.4 81.7 3228
±5.5 ±6.5 ±12 ±15 ±17 ±14 ±19 ±22 ±47

Patch 11 2.2 4.2 16.5 60.7 54.2 254
±4.4 ±9 ±48 ±206 ±183 ±78
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Mackinnon, 2004; Milescu et al., 2007). Moreover, the type of lipid in the membrane

is known to influence the partition coefficient and therefore one might expect lipid

compositional differences to be at the root of the differential VSTx1 sensitivity in

the two membrane systems (Jung et al., 2005; Lee and Mackinnon, 2004). Against

expectation, experiments show that VSTx1 sensitivity is in fact dependent upon the

mechanical state of the membrane (Figure 2.31). When applied to channels in an

outside-out patch from oocytes VSTx1 causes a slowing of activation (Figure 2.31a,b)

similar to the effect observed in planar bilayers (Figure 2.18a). The kinetic changes

are also associated with a shift in the midpoint voltage to more positive values (Figure

2.31c, open circles).

Insensitivity of the paddle chimera channel to VSTx1 applied to whole oocytes

cannot be attributed to an inability of the toxin to reach the surface: VSTx1 does not

affect paddle chimera channels recorded in whole cell mode in devitellinized oocytes

(data not shown) and the pore-blocking toxin CTX, which is similar in size to VSTx1,

inhibits the paddle chimera channel in whole oocytes and in planar lipid bilayers

with similar affinities (Figure 2.32). Furthermore, Swartz and colleagues have shown

that in whole oocytes VSTx1 inhibits a chimera Kv2.1 channel containing the KvAP

voltage sensor paddle (Alabi et al., 2007). Therefore VSTx1 must be able to reach

the oocyte surface.

The apparent affinity of VSTx1 for paddle chimera in excised membrane patches

and in planar bilayers is high, as it exerts its effect in the 10 to 50 nM range (Figure

2.33a,b). Molecular specificity is also an essential component of the VSTx1-paddle

chimera interaction: VSTx1 does not affect Kv1.2 in planar bilayers (Figure 2.33c,d).

Paddle chimera and Kv1.2 differ only in the amino acid composition of the voltage

sensor paddle, which has been shown to form the binding site for voltage sensor toxins

(Swartz and Mackinnon, 1997b,a). Apparent high affinity and molecular specificity

distinguish in a fundamental manner the VSTx1-paddle chimera interaction from the

previously reported GsMTx4-stretch-activated channel interaction (Suchyna et al.,

2004). GsMTx4 modifies stretch-activated channel gating with low affinity (500 nM

range) and in the absence of traditional molecular specificity, as the D-enantiomeric

form of the toxin was reported to be as effective as the L-enantiomer (Suchyna et al.,

2004). Amphipathic, membrane active molecules such as capsaicin have been shown

to alter gating of voltage-dependent Na+ (Nav) channels. These agents exert their

effects in the 10 µM range and can be mimicked by detergents (Lundbaek, 2008). In
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Figure 2.31: Membrane mechanics and voltage sensor toxins.All voltage pulses
from h.p. -100 mV to 70 mV, ∆V = 10 mV. a-b, Paddle chimera in an outside-out
patch, before (a) and after (b) addition of 500 nM VSTx1. c, Boltzmann func-
tions (solid lines) fit data (except data from (b) mean±s.e.m, n = 5-13) from Figure
2.17 (POPE:POPG bilayer, filled circles) with V0.5 (mV) and Z (mV-1): -57.8±0.4,
3.4±0.14, data from (b) (open circles) with V0.5 (mV) and Z (mV-1): -9.1±2, 0.9±0.07
and data from Figure 2.17 (whole-cell oocyte, filled squares) with V0.5 (mV) and Z
(mV-1): 6.5±0.5, 1.6±0.05.

contrast to low-affinity amphipathic agents acting on Nav channel gating and GsMTx4

acting on stretch-activated channels, VSTX1 functions at low concentration, exhibits

molecular specificity mediated by the protein surface of the voltage sensor paddle,

and yet it is sensitive to the mechanical state of the membrane.

How can we understand voltage sensor toxin sensitivity being a function of the

mechanical state of the membrane? Theoretical studies predict that under certain

circumstances tension-dependent aggregation of membrane proteins can occur (Gou-

lian et al., 1993). It is therefore possible that tension changes can influence toxin

affinity. A more likely explanation, I think, is implied by a feature of the data:

VSTx1-inhibited channels in planar bilayers and patches actually appear similar in

behavior to channels recorded from whole oocytes (Figure 2.31a,b and Figure 2.33a).

VSTx1 inhibited channels in planar bilayers, for example, exhibit slow activation,

little inactivation, and the midpoint voltage is shifted to positive voltages (Figure

2.31c). These features are all qualitatively similar to paddle chimera channels in

whole oocytes. Therefore voltage sensor toxins might actually modify gating by al-

tering the mechanical forces acting between the channel and the membrane. In this
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Figure 2.32: Pore-blocking toxin CTX affinity. a, Paddle chimera in
POPE:POPG bilayers with 0 nM (top trace), 5 nM (middle trace) and 165 nM (bot-
tom trace) Charybdotoxin (CTX) added. b, Paddle chimera in Xenopus oocytes
with 0 nM (top trace), 10 nM (middle trace) and 1000 nM (bottom trace) CTX
added. c, CTX affinity titration with Paddle chimera in POPE:POPG bilayers (blue
squares) and Xenopus oocytes (red circles). Fraction of unblocked current I/Imax
(mean±s.e.m, n = 3-4) is graphed as a function of log(CTX concentration). The solid
line represents a fit to the data with I/Imax = (1 + [CTX] /KD)−1 with KD(bilayer)
= 1.6±0.09 nM and KD(oocyte) = 5.3±0.14 nM.

view I hypothesize that by binding through specific protein-protein interactions at

the protein-lipid interface VSTx1 causes the paddle chimera channel to experience

low-tension like forces even in a high-tension membrane.

These data have revealed a new aspect of voltage sensor toxins: not only do they

partition into the membrane but their effect on a voltage-dependent channel appears

to be somehow mediated through the mechanical state of the lipid membrane and its

interaction with the channel.

2.3.3 Discussion

The functional characteristics of Kv channels can depend on both the lipid com-

position and the mechanical state of the membrane. The effects of composition on

the paddle chimera channel are modest, being somewhat similar in magnitude to the

effects of lipid head group modifying lipases on various Kv channels (Ramu et al.,

2006). The effects of the mechanical state are large and appear to act predominantly

through the pore-opening transition, which occurs after the voltage sensor conforma-

tional changes have occurred. Interpreting our results in the context of past studies
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Figure 2.33: Membrane mechanics and voltage sensor toxins. a, Paddle
chimera in POPE:POPG bilayers. VSTx1 was added to the indicated concentra-
tion. b, VSTx1 affinity titration with Paddle chimera (black circles) and Kv1.2
channels (red squares) in POPE:POPG bilayers. Fraction of residual current I/Imax
(mean±s.e.m, n = 3) at t = 70ms after depolarization is graphed as a function of
log(VSTx1 concentration). The solid line represents a fit the titration data with
I/Imax = (1 + [V STx1] /KD)−1 with KD = 54±8.8 nM. c-d, Kv1.2 in POPE:POPG
bilayers, before (c) and after (d) addition of 500 nM VSTx1.
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of membrane tension in planar bilayers (Cook et al., 1968; Requena et al., 1977) and

membrane patches on glass electrodes (Opsahl and Webb, 1994), I hypothesize that

increased membrane tension in these systems favors the area-expanded open confor-

mation of the pore. Numerous past studies have shown that Shaker Kv channel gating

can be modified (10 mV shifts of midpoint voltage) by applying high pressures (30

to 60 mm Hg) to cell-attached patches (Laitko et al., 2006; Tabarean and Morris,

2002). The effects described here are different and correspond to mechanical effects

associated with zero pressure membrane patches on glass electrodes and zero pressure

planar lipid bilayers. Our findings imply that the conventional electrophysiological

tools used to characterize channel function may, by affecting the mechanical state of

the membrane, perturb significantly the behavior of some voltage-dependent channels.

Voltage sensor toxins were first understood as allosteric modifiers that bind to

voltage sensors through protein-protein interactions that determine their molecular

specificity (Swartz and Mackinnon, 1997b,a). That original view was then modified to

include the concept that voltage sensor toxins partition into the membrane in order to

gain access to their binding site on the voltage sensor paddle and increase their local

concentration near the channel (Lee and Mackinnon, 2004; Milescu et al., 2007). The

findings presented here suggest that the reason for membrane partitioning may be

more than site access and local toxin concentration. I suspect that the fundamental

mechanism of VSTx1 action is connected to its ability to modify membrane forces

experienced by the ion channel.

74



Chapter 3

Conclusions and Outlook

In the preceding chapters I have presented my work that describes how both the

chemical and mechanical properties of lipid membranes regulate Kv channel function

and pharmacology. These results clearly demonstrate that the lipid membrane is not

solely a passive solvent for membrane proteins. By putting my work into context

with previous studies, I will expand on the impact of my thesis research on our

understanding of protein-lipid interactions in general and membrane-dependent Kv

channel function in particular.

3.1 The origin of cationic gating charges

Shortly before I started to work on a lipid-related project, the first crystal structure

of a eukaryotic Kv channel had been solved, the rat Kv1.2 (Long et al., 2005a,b). This

structure reinforced the concept first observed in the KvAP crystal structure (Jiang

et al., 2003a,b), that the voltage sensors of Kv channels are arranged as independent

domains at the perimeter of the protein facing the lipid membrane. Most importantly,

some of the arginines that carry the gating charge are themselves exposed to the

lipid environment. After the KvAP crystal structure was published, the most often

repeated criticism involved how energetically unreasonable it is to place gating charge

arginines within the hydrophobic core of the membrane; with the new Kv1.2 structure,

history was bound to be repeated.
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3.1.1 The lipid membrane stabilizes voltage sensor confor-

mation during gating

The obvious question to ask at that time was, given the lipid exposure of gating

charges, how does the lipid membrane stabilize the arginine residues and what is the

true energetic penalty for their placement?

This question had previously been addressed in studies by von Heijne and col-

leagues. Using an in vitro translocation assay that measured the efficiency of mem-

brane insertion of helical segments with different amino acid composition, they found

that the energetic penalty of placing a charged arginine in the middle of the membrane

could be offset by having hydrophobic residues flanking it (Hessa et al., 2005b,a). In

fact, when they used a helical segment that reflected the S4 helix of KvAP, the prob-

ability for insertion into the membrane was 50%. They also found that the cost of

placing the arginines within the hydrophobic membrane core depends on their posi-

tion within the helical segment and is lowest when placed at the edges. Such placed

arginines can participate in lipid-headgroup interactions or benefit from hydration.

Molecular dynamic simulations lend strong plausibility to the existence of such inter-

actions (Freites et al., 2005), experimental evidence, however, was missing.

Since a multidentate hydrogen bond between the positively charged guanidinium

group of the arginines and the negatively charged phosphodiester of the lipids was

the likeliest interaction pair, I designed an experimental system that allows the re-

placement of the phosphodiester with lipid species that provide different hydrogen

bonding patterns (i.e. DOTAP or EDOPC). I found that Kv channel gating was

absolutely dependent on the presence of a negatively charged phosphodiester. This

presented the first experimental evidence that during specific gating steps the gating

charge arginines are stabilized by interacting with the headgroups of phospholipid

molecules, thus strongly reducing the energetic cost of placing them within the mem-

brane.

3.1.2 Molecular Evolution of Voltage Sensors

These experiments also provide some insight as to why all known voltage sensors

use positively charged amino acids to sense changes in voltage. Theoretically, negative

charges could be utilized as well, if the electromechanical transduction connection to

the pore was inverted. The answer to this conundrum has to be connected to the
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3.1 THE ORIGIN OF CATIONIC GATING CHARGES

evolution of voltage sensors themselves. Arguably cell membranes evolved before the

first membrane proteins. Most theories on the emergence of the first cells suggest

that the simplest bilayer forming molecules are long chain (>C9) fatty acids, car-

boxylic acids and monoglycerides such as those extracted with organic solvent from

the Murchison meteroite. These lipids readily formed vesicles at intermediate pH,

micelles at high pH and an oil phase at low pH (Deamer and Pashley, 1989; Deamer

and Bramhall, 1986; Monnard et al., 2002). Dworking and colleagues suggest that

more complex phospholipids emerged later (Deamer and Dworkin, 2005). As work

on the evolution of the genetic code by Davis and others suggests, this may have

coincided with the inclusion of the amino acids arginine and lysine in the genetic

code. It has been proposed that primitive, self-sustaining biochemical pathways ex-

isted before a gene-based hereditary system (Davis, 1999, 2002). These included the

reductive citrate cycle, the reductive pentose phosphate pathway and the so-called

central trunk. They make up the central biochemical pathway (CBP). Davis proposes

that the emergence of genetically encoded amino acids correlates with the number

of additional chemical reactions (starting from the CBP) that are required to gen-

erate each amino acid. While amino acids such as glutamate that require only one

additional reaction may have evolved early, hydrophobic amino acids such as leucine

and isoleucine (4 reactions) emerged later. They emerged however, at the same time

that primitive fatty acid synthesis was invented with the addition of acyl-CoA to

the chemical make-up of primitive life. Interestingly, the amino acid arginine and

lysine emerged together with phospholipids (10 steps). It is therefore entirely con-

ceivable that this co-evolution signifies a deep biochemical and function connection

of arginines, lysine and phospholipid from the earliest forms of life.

Voltage sensors are thought to have evolved independently from channel pores

(Kumánovics et al., 2002) and pore-less voltage-sensor containing proteins are still

found in modern organisms (Murata et al., 2005; Ramsey et al., 2006; Sasaki et al.,

2006). The function of the primordial voltage sensor is unknown, but is probably

moved or tumbled in response to changes in transmembrane potential caused by

fluctuations in the ionic composition of the surrounding medium. The biological

maxim that structure subserves function implies that the simplest voltage sensor

relied on already existing structures for function. The omnipresent phosphodiester

with an extremely low pKA of 1-2 (thus a permanent negative charge) is the obvious

interaction partner. For this reason positive charges were chosen to sense voltage

changes.
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Other membrane proteins contain lipid-facing arginines that are important for their

gating, for example the prokaryotic membrane protein, MscS, a mechanosenitive chan-

nel. They are located in a helical hairpin at the periphery of the membrane spanning

region. Although a detailed molecular mechanism for MscS gating has not yet been

described, this channel’s modulation by voltage and membrane tension is attributed

to a movement of these arginines in response to membrane depolarization (Bass et al.,

2002).

3.1.3 Voltage sensors enrich phospholipids in the protein vicin-

ity

I have mentioned the concepts of wetting and capillary condensation as means of

protein organization in the introductory Chapter 1.3. Briefly, these concepts state

that membrane proteins surround themselves with the lipid species that results in the

lowest energy lipid-protein interaction profile. As a consequence, certain lipid species

can be concentrated around a membrane protein as an annular lipid shell (Gil et al.,

1997). It is very likely that KvAP embedded in mixed phospholipid/cationic lipid

bilayers is an example of such system. The mol-fraction of DOTAP (or EDOPC) in

the bilayer has to be greater than 50% to observe appreciable shifts in midpoint of

activation (see Figure 2.4c and Figure 2.8d). This nonlinear response can be explained

if the interaction of the gating charge arginines with the phosphodiester of POPE or

POPG lowers the free energy of KvAP being embedded in the bilayer. KvAP thus

will reside in a phospholipid enriched phase that buffers the addition of DOTAP or

EDOPC to the bilayer. Once a certain mol-fraction of phospholipids has been replaced

with cationic lipids, the wetting effect alone cannot concentrate a sufficient number

of phospholipids around the channel. That these annular phospholipids seem to act

in a cooperative fashion, is obvious from the steep increase of midpoint of activation

after the 50% threshold in crossed (see Figure 2.4c and Figure 2.8d).

An unresolved question is the the actual conformation of the voltage sensor do-

main in lipid membrane containing high mol-fractions of DOTAP (or EDOPC). We

do not know the answer for the planar bilayer system. A recent study in Xenopus

oocytes shed light on this question. In oocytes, a subfraction of Kv channels asso-

ciates with sphingomyelin and the gating of these channels can be altered by the

action of Sphingomyelinase D (SMase D), an enzyme that cleaves the choline of sph-

ingomyelin, thus leaving behind ceramide-1-phosphate. Another enzyme, SMase C,
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cleaves choline-1-phosphate, leaving behind ceramide, a lipid molecule without a neg-

atively charged phosphodiester. SMase C treatment of oocytes altered the gating of

Shaker Kv, Kv1.3 or Kv2.1 as well as Kir1.1. While the modification of K+ currents

carried by the voltage-sensor-less Kir1.1 indicates that a electrostatic component of

the gating is altered, both ionic and gating currents of the Kv channels decreased.

This observation suggests that the absence of phosphodiesters on the external mem-

brane leaflet creates an insuperable energy barrier to the gating charge movement,

essentially trapping the voltage sensor at the internal membrane leaflet (Xu et al.,

2008).

3.2 Voltage Sensor Toxins

Small protein toxins that bind the voltage sensor from the extracellular side of the

membrane and alter gating of the channel were first isolated from tarantula venom.

The best studied member of this family is Hanatoxin, which inhibits the Kv2.1 chan-

nel with nanomolar affinity (10-100 nM). The binding site of Hanatoxin has been

identified through alanine-scanning mutagenesis and mapped to parts of the S3b of

the voltage sensor domain (Swartz and Mackinnon, 1997b,a). Early studies indicated

that Hanatoxin can bind to the closed channel and alter energetics of channel acti-

vation (Lee et al., 2003). This together with the apparent slow binding kinetics was

construed as evidence that voltage sensor toxin remain bound during channel gating.

Later another voltage sensor toxin, VSTx1, was purified from the same spider which

inhibits KvAP with nano-molar affinity ( 25nM) (Ruta and Mackinnon, 2004; Ruta

et al., 2003). Lee and colleagues have shown that VSTx1 exhibits a very low affinity

for KvAP suspended in detergent micelles (Lee and Mackinnon, 2004). However, the

amphiphilic nature of VSTx1 allows it to partition into the lipid bilayer, thereby in-

creasing its effective concentration and apparent affinity for KvAP. They suggested

that VSTx1 binds and dissociates rapidly from the KvAP channel, invalidating the

assumption made to conclude that the toxin stays bound with the voltage sensor pad-

dle during gating. Later studies concluded that membrane partitioning is a concept

often times used by small molecule toxins (Posokhov et al., 2007).

Data I presented indicates that VSTx1 can only bind to the depolarized conforma-

tion of the voltage sensor. What conformation of KvAP does the inactivated state

represent? I cannot answer this question for KvAP, or in fact with certainty for

any Kv channel undergoing what has been termed C-type inactivation (Hoshi et al.,
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1991). C-type inactivation might represent different physical processes in different

Kv channels. In the Shaker channel, the C-type inactivated state is associated with

a change in the reactivity of cysteine residues substituted at certain locations near

the selectivity filter (Yellen et al., 1994). This observation has led to the proposal

that a conformational change of the selectivity filter underlies C-type inactivation

(Baukrowitz and Yellen, 1995). Studies of gating in Kv2.1 and Kv3.1 show that these

channels can inactivate from the pre-open state and the open state by a mechanism

that is thought to be distinct from C-type inactivation in Shaker (Klemic et al., 1998,

2001). It is likely that inactivation occurs through different physical mechanisms in

different Kv channels. In KvAP channels, given the extreme degree to which inac-

tivation occurs prior to pore opening, it is natural to wonder whether inactivation

in KvAP could be related to the efficiency with which the voltage sensors open the

pore. For example, when the voltage sensors go from hyperpolarized to depolarized

the S4-S5 linkers presumably relieve their constriction on the S6 helices, which form

the gate at the intracellular pore entryway, and perhaps even lift the S6 helices so

they open. If the linker helices can disengage with some probability (related to the

fraction of channels that successfully open) one could imagine that the gate would

close even though the voltage sensors remain in a depolarized conformation. This kind

of slippage mechanism would be mechanistically akin to desensitization in glutamate

receptor channels in which activated ligand binding domains cause pore opening and

then dislodge while still bound to ligand, allowing the pore to close again (Armstrong

et al., 2006). Further studies will be required to support or refute such a mechanism.

What I have also shown is that VSTx1 activity can depend on the mechanical state

of the membrane. This represents a new step in the understanding of the function

of these toxins. It seems possible that they are not classical allosteric inhibitors as

previously thought, but rather exhibit their effects through an alteration of the way

ion channels senses the material properties of the bilayer. An important unanswered

question is whether VSTx1 does not have an effect on Kv channel gating in Xenopus

oocytes because it binds but does not show efficacy or because it does not bind in

the first place. Does the alteration of membrane tension induce the binding of the

toxin? Molecular dynamics simulations have suggested that VSTx1 partitioning can

locally deform the bilayer; such deformation would result in local changes of surface

tension and fluidity (Wee et al., 2008). The presence of molecular specificity argues

that VSTx1 has to interact with the channel at some level. This interaction could be

a direct protein-protein interaction, or it could be mediated by specific lipid molecules
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to form a ternary interaction complex. In the latter case, the molecular specificity

of VSTx1 would be a consequence of specific lipid molecules associating with the Kv

channel that mediate the contact with the toxin. Lu and colleagues found that, in

the presence of Hanatoxin, the lipase SMase C had a decreased effect on Kv channel

gating, which itself depends on the presence of intact sphingomyelin molecules (Xu

et al., 2008). This suggests that either Hanatoxin binding involves the formation of a

ternary complex between toxin, lipid and channel that is sufficiently stable to protect

the participating lipid from cleavage by the lipase or that hanatoxin binding creates

a sufficiently large exclusion volume that protects sphingomyelin molecules located

nearby.

Recently, Schwartz and coworkers have used the modification of GxTx1 affinity to

Kv2.1 by SMase D to investigate exactly this question (Milescu et al., 2009). They

come to the conclusion that one way to explain the effect of lipid modification on

toxin affinity would be to postulate that Tarantula toxin binds the paddle motif with

higher affinity when sphingomyelin is bound (K+SM
D < K−SMD ); in effect they propose

that the presence of sphingomyelin is required for high-affinity toxin binding, akin

to a ternary toxin-lipid-channel complex; mutations on the channel would weaken

toxin binding by disrupting paddle-lipid interactions, rather than altering the protein-

protein interaction between toxin and channel.

However, postulating that tarantula toxins bind with higher affinity when sphin-

gomyelin is bound may not warranted by their data: wildtype Kv2.1 binds GxTx1

with an affinity of 203 nM; after the sphingomyelin cleavage with Smase C, this affin-

ity is increased to 52 nM. An alternative explanation for their results is that the

choline headgroup of sphingomyelin is interfering with high affinity toxin binding.

Because the choline headgroup is cleaved, wildtype Shaker binds GxTx1 with higher

affinity after treatment with SMase D. In the case of the E277A mutant of the Kv2.1

channel in Schwartz’s and colleagues’ study, it is possible that the mutation causes

the sphingomyelin headgroup binding pocket to be reordered in a way that is strongly

interfering with toxin binding. Therefore the affinity drops sharply to 30,000 nM. Af-

ter treatment with SMase D the disordered choline headgroup is cut out of the way

and toxin binding is rescued (KD = 3570 nM). The case of V282A can be interpreted

the same way. The difference in magnitude of rescue can be explained if electrostatic

interactions between toxin and channel residue E277 are involved; it is possible that

E277 is one of the major contributors to toxin binding. Treatment with SMase D will
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not restore the glutamate, which is why affinity levels are not recovering to wildtype

levels, as they are in the case of V282A. In the context of protein-protein interactions,

a valine to alanine substitution is arguably less disruptive. However, the fact that

there is some recovery in the case of E277A could be explained if the creation of a

negatively charged ceramide-1-phosphate increased the local negative charge in this

region of the voltage sensor.

This possible alternative explanation for the results of Swartz and colleagues aside,

their study clearly demonstrates that the voltage sensor toxin affinity can be mod-

ulated by adjacent lipid molecules. It is therefore not surprising that a mechanical

alteration of the lipid bilayer can lead to qualitatively similar effects. The mechanical

alteration itself can be the causative agent that increases the apparent toxin affin-

ity. Alternatively, the increase in membrane tension can lead to the dissolution of

lipid microdomains in patched membranes. In low tension membranes, specific lipid

species in these microdomains could interact tightly with the voltage sensor, obscur-

ing toxin binding sites. If these microdomains dissolve under the influence of higher

membrane tension, the toxin binding sites could become accessible and toxin affinity

might increase. This scenario is entirely conceivable when considering the alterna-

tive interpretation of the study by Swartz and colleagues. I propose investigating

the affinity of the paddle chimæra Kv channel in other cell systems such as HEK or

SF9 cells to investigate whether the oocyte membranes possibly provide a specific

and tightly binding lipid species that obscure the VSTx1 activity. Alternatively, the

effect of Smase C and Smase D treatment of oocytes on VSTx1 affinity and activity

will be illuminating as well.

3.3 Intrinsic Mechanosensitivity

Based on the membrane system dependent gating properties of the eukaryotic Pad-

dle Chimæra Kv channel, I proposed that voltage-dependent K+ channels possess an

intrinsic mechanosensitivity (see Chapter 2.3.2). I interpreted this finding in the con-

text of past studies regarding membrane tension in different membrane systems. I

hypothesized that the mechanical state of the membrane acts predominantly through

the concerted late opening step of the pore, independently of voltage sensor confor-

mational changes that occur in preceding steps.
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I would like to start this chapter with a short review of the existing literature on

mechanosensitivity in eukaryotic ion channels. This background shall serve as a point

of reference for a discussion of the broader implications of hypothetical Kv channel

mechanosensitivity.

3.3.1 Precedent for mechanosensitivity in eukaryotic ion chan-

nels

Skm Nav channel

Morris and collegues (Tabarean et al., 1999) have reported on the effect of mem-

brane stretch on the human Skm1 Nav channel expressed in Xenopus oocytes. In

their initial characterization using cell-attached patches, they noticed that when the

Skm1 α subunit was expressed alone without the β subunit, Na+ currents showed

an unpredicatable mix of slow and fast components. After observing that the mode

of gigaohm seal formation which subjects the membrane to a variable amount of

membrane tension, was predictive of the resultant slow/fast component mix, they

suggested that the mechanical history of the patch was responsible for this variabil-

ity. In cell-attached patches that were obtained without applying negative pressure

there was much less of the fast component. Application of suction for several minutes

to such patches could completely switch the Na+ current from slow to fast gating

mode. Channels remained in the fast gating mode after the release of suction; the

conversion was therefore irreversible. The G/V curve of the fast component acti-

vated at more negative potentials, identical to when both Skm1 α and β subunit

are coexpressed in the oocyte. These observations are qualitatively congruent with

those I made for various Kv channels (Shaker, Kv1.2, Kv2.1 and Paddle Chimæra,

see Chapter 2.3.2). However, in the study of Skm1 the peak Na+ current sometimes

increased by 25% and other times decreased by the same amount. This is different

from my observation of Kv channels; a pressure-induced conversion of gating mode in

cell-attached patches is always accompanied by an increase in peak K+ current.

Brehm and collegues reported similar findings when they compared the Skm1 Nav

channel in cut-open oocytes and macropatch recordings (Shcherbatko et al., 1999).

Specifically, recording the Nav in macropatches both in the absence and presence

of β subunit led to a left-shifted voltage dependence of inactivation and activation.

Patch excision and treatment with cytoskeleton disrupting drugs led to an accelera-

tion of this conversion. They also found that application of suction can induce a shift
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to fast inactivation and through video imaging they revealed that this pressure in-

duced shift coincides with the detachment of the lipid membrane from the underlying

cytoskeleton.

Morris speculates that membrane stretch could directly affect the folding state of

the Nav channel, by “lowering a large energy barrier, thereby allowing some domain

to assume a previously inaccessible low energy secondary or tertiary conformation.”

Both reports suggest that the loss of an intact cytoskeleton is the causative agent

for the observed conversion. They both reference well established reports of specific

interaction between cytoskeleton-binding proteins and the Skm1 α subunit through

a C-terminal PDZ-binding domain (Gee et al., 1998; Wood and Slater, 1998). The

fact that coexpression of the β subunit resembles a suction-induced fast gating mode

is compatible with such cytoskeletal interactions if the β subunit interferes with the

normal binding of the components to the α subunit. Based on this observation, Brehm

and colleagues speculate that coexpression the β subunit decreases the cytoskeleton-

conferred mechanoprotection that the Nav channel would usually experience.

The uni-axial stretching of cells on an extensible substrate beyond the elastic re-

sponse of the cytoskeleton should in theory mimic the pathological conditions of patch

recording. In a recent study Morris and colleagues subjected HEK cells stabily trans-

fected with αNav1.6 to pathological stretches of 50% or more (Wang et al., 2009).

Using Na+ sensitive dyes they find that cytoplasmic Na+ levels rapidly (within 2

minutes) increase after stretching. This is consistent with the activation curve of

this channel shifting to more hyperpolarized voltages, an effect they observed with

conventional electrophysiology in patched membranes. The Na+ levels remain high

after the release of cell stretch. Unlike for Skm1, the coexpression of a β1 subunit did

not change the response of αNav1.6 to abrupt membrane stretch. The authors liken

HEK cell stretching experiments to pathological trauma of myelinated axons and

speculate that abrupt stretching is causing an irreversible disruption of the cytoskele-

ton, thus removing the cell’s protection against transient and maintained membrane

stress. They suggest that the membrane stretch induced conversion of Nav activation

to more hyperpolarized voltages leads to a Na+ leak in stretch-traumatized axons,

explaining the neuroprotective effect of Nav blockers in head trauma models.
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BK channel with STREX exon

Sokabe and collegues (Naruse et al., 2009) identified a stress hormone-induced splic-

ing variant of the BK channel in chicken cardiomyocytes that includes a C-terminal

cysteine-rich sequence (STREX domain). The STREX domains confer sensitivity

to whole cell shear stress. Overexpression of the STREX domain in trans leads to

a loss of BK channel mechanosensitivity, implicating that binding to an unknown

membrane-associated component confers said mechanosensitivity in the first place.

Another study showed that the STREX exon contains a palmitoylation site, indicat-

ing that this segment is membrane anchored in vivo (Tian et al., 2004).

NMDA receptor

Ascher and colleagues (Casado and Ascher, 1998; Paoletti and Ascher, 1994) re-

port that in excised outside-out patches, NMDA receptor responses are depressed

similarly by suction and addition of lysophospholipid, whereas they are potentiated

by applying positive pressure and arachidonic acid. They propose that NMDA re-

ceptor activity is modulated by amphiphatic compounds that cause pressure changes

in the lipid bilayer: amphiphatic compounds of different shape partition asymmet-

rically into the bilayer and thus alter the spontaneous local curvature. Compounds

with a large hydrophilic head (lysophosholipid) mimic the effects of suction on an

outside-out patch, which they interpret as negative areal strain; compounds with a

small hydrophilic head (arachidonic acid) mimic the effects of positive pressure (i.e.

increased areal strain). Citing earlier studies that demonstrate a cytoskeletal connec-

tion of the NMDA receptor (Kornau et al., 1997), they consider the possibility that

such connection to cytoskeletal elements could be a candidate for force transmis-

sion; they reject this idea, however, pointing out that mechanosensitivity is preserved

in excised patches in which the cytoskeletal connection of the NMDA receptor are

probably severed (Paoletti and Ascher, 1994).

Cardiac Muscarinic Potassium Channel GIRK1/4

Weiss and colleagues (Ji et al., 1998) study the effect of hypotonic swelling on

Xenopus oocytes that express Kir3.1/Kir3.4 heterotetramers together with excess

Gβγ. They find a 25% reduction in K+ current carried by these channels upon

oocyte swelling; Kir1.1 and Kir2.1 do not show this effect. In an attempt to measure

the unitary conductance of Kir3.4 channels, they note a rapid rundown of K+ current

in cell-attached patches of 1-3 µm diameter. When they use giant patches (20-30
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µm) the rundown is slowed significantly. Patch excision always led to an immediate

disappearance of channel activity. While they interpret their results in the context

of mechanical forces acting on Kir3.4 channel, the possibility remains that patch

formation and subsequently increased membrane tension can lead to the dissolution

of lipid rafts that concentrate Gβγ (see Chapter 1.7)(Khan et al., 2003; Moffett et al.,

2000; Schroeder et al., 1997). The observed reduction in K+ current could therefore

be an expression of loss of Gβγ mediated activation.

N-type Ca2+ channels

Morris and collegues (Calabrese et al., 2002) report that N-type Cav channels re-

combinanently expressed in HEK cells can reversibly elicit 1.5-fold increased peak

Ba2+ currents when the cell is inflated under hydrostatic pressure in whole-cell clamp.

A T-type Cav channel did not show the same peak current increase. In this study,

Morris and coworkers had to battle the cytoskeleton of the HEK cell; it was necessary

to apply positive pressures in excess of 40 mmHg for more than 10 seconds before the

cell was visibly inflated. The increase in peak Ba2+ current coincided with the cell

inflation and not with the application of positive pressure. While the steady-state

inactivation of the Cav channel shifted to more hyperpolarizing voltages by -18 mV,

the activation G/V curve remained unaltered.

In an effort to explain the origin of the increased peak currents, the researchers

use cell-attached recordings to measure the single channel conductance. When they

apply suction to these patches (equivalent to applying pressure in whole cells), they

report that the single channel conductance remains unaltered and a slight increase

in channel open probability. I want to point out, however, that the cell-attached

recordings are flawed because the prepulse holding voltage (-70mV) is not sufficient

to fully recover the channel from steady-state inactivation they reported in the same

paper. While not explicitly mentioned, the presented data would argue that the open

probability in pressurized and unpressurized cell-attached patches is not significantly

different. In fact, it is the same within the error reported. I propose that by moving

from whole cell to cell-attached recordings the open probability has already increased,

similar to my observations for Kv channels (see Chapter 2.3.2).

86



3.3 INTRINSIC MECHANOSENSITIVITY

L-type Ca2+ channel

Farrugia and colleagues (Lyford et al., 2002) report that exposure of Cav1.2 ex-

pressing HEK or CHO cells to shear stress increases whole-cell peak Ba2+ and Ca2+

conductances by 20%. The activation G/V curve was not shifted for either Ba2+ or

Ca2+ currents. The inhibition of intracellular kinase signaling with kinase inhibitor

and deletion of the C-terminal proline-rich domain did not disrupt this response. They

have expressed Kv2.1 as a control and subjected the cells to the same shear stresses

but did not see a similar response as observed for Cav1.2. Additional experiments are

needed to reconcile the latter observation with my data of Kv2.1 mechanosensitivity

when expressed in oocytes.

TREK-1 and TRAAK

Barhanin and coworkers identified a family (K2P) of weakly inward-rectifying K+

channels that is characterized by four transmembrane and two-pore forming domains.

The first family member was TWIK-1 (Lesage et al., 1996) and subsequently two

other members, TREK-1 and TRAAK were identified to be mechanosensitive chan-

nels (Patel et al., 1998; Maingret et al., 1999). Osmotic swelling and shrinking of cells

increases and decreases, respectively, whole cell TREK-1 currents. The amphiphatic

crenators trinitrophenol (anionic) and lysophosphocholine (neutral) mimic the effect

of high micro-molar concentrations of arachidonic acid or -50 mmHg suction applied

to on-cell patches, suggesting that TREK-1 and TRAAK respond to the local spon-

taneous curvature of the bilayer. Conversely, the cationic cupformers chlorpromazine

and tetracaine inhibited activity. It seems therefore that the expansion of the outer

bilayer leaflet is responsible for TREK-1 and TRAAK gating. This leaflet expansion

sensitivity is dependent on the presence of the C-terminal region of TREK-1 that

contains a RKKEE charge cluster, which is likely interacting electrostatically with

the inner leaflet of the membrane.

MECs in C.elegans

The first members of the Mec (mechansensory abnormal) family were identified in

mutant screen for touch-insensitive C.elegans (Chalfie, 1993; Chalfie and Au, 1989;

Driscoll and Chalfie, 1991). Mec-4 was shown to be homologous to deg-1, a gene prod-

uct that mediates the swelling induced degeneration of certain neurons (Tavernarakis

and Driscoll, 1997). Together with mec-10, unc-8, unc-105, flr-1, mec-4 and deg-1

were proposed to belong to the superfamily of degenerins (Bianchi, 2007). When
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mec-4 and mec-10 are coexpressed in Xenopus oocytes they carry amiloride-sensitive

Na+ currents (Bianchi et al., 2004). In 2005 Goodman and colleagues (O’Hagan et al.,

2005) presented direct electrophysiological evidence from touch receptors in C.elegans

that changing external force but not sustained force evoke mechanoreceptor current

that again were carried by Na+ and were sensitive to amiloride. They showed that

null mutations in mec-4, mec-2 and mec-6 eliminated these responses and suggest

that mec-4/mec-10 oligomers form Na+ channels that are mechanically coupled to

external forces by the accessory proteins mec-2 and mec-6.

Based on sequence similarity, an epithelial Na+ channel (EnaC) has been classified

as a DEG family member. Interestingly, when reconstituted into planar lipid bilayers

the open probability of EnaC increase from 0.5 to 0.95 after the application of 0.25

mmHg of hydrostatic pressure (Awayda et al., 1995). This mechanosensitivity is not

evident when EnaC is expressed in whole cells in which the underlying cytoskeleton

is compensating for membrane tension changes (Awayda and Subramanyam, 1998;

Palmer and Frindt, 1996).

nompC and TRP channels

Studies of mechanoreceptive-defective Drosophila mutants that also showed the ab-

sence of mechanoreceptor potentials recorded from external sensory bristles led to the

identification of nompC (Kernan et al., 1994; Walker et al., 2000). NompC contains

29 N-terminal ankyrin repeats and the C-terminus of NompC shares approximately

20% sequence identity with the transient receptor potential (TRP) class of ion chan-

nels (Colbert et al., 1997; Harteneck et al., 2000). The zebrafish and mouse orthologs

of nompC, called TRPN1 and TRPA1, respectively, were shown to be critical for sen-

sory hair cell mechanotransduction (Corey et al., 2004; Sidi et al., 2003). The removal

of nompC function leads to larval deafness and imbalance, functional consequences

of the eliminated electrical responses on zebrafish and mouse hair cells. Howard

and Bechstedt later hypothesised that the N-terminal ankyrin repeats of TRPN1 or

TRPA1 form a helical structure that acts as a gating spring coupling the channel part

to the microtubule structures of the cell (Howard and Bechstedt, 2004).
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3.3.2 Artifacts from lipid glass interaction - increased mem-

brane tension

The preceding section summarizes examples of eurkaryotic mechanosensitive chan-

nels; this collection is by no means complete. It is important to realize that even

within this small sample of mechanosensitive processes, experimental procedures, as-

sumptions and observations vary widely. Aside from studies on Nav channels, the

observed mechanosensitivity was always reversible. Some studies compared whole

cell recordings to patch recordings. The intrinsically higher resting tension of mem-

brane patches was not specifically taken into account in any of these studies. Virtually

every study had a different mode of altering membrane tension.

Mechanosensitivity as an artificact

If I postulate that patch recordings alter the mechanical state of the membrane,

how do I see the supposed mechanosensitivity? As something artifactual or as some-

thing of biological relevance? Early on after the first mechanosensitive channels had

been described, the possibility was raised that membrane changes induced by the

tight seal formation give rise to an artifactual mechanosensitivity in specific channels.

There are reports that question the reality of mechanosensitive channels as biologi-

cal transducers and propose that such channel activity is an artifact of patch-clamp

recording (Gustin, 1991; Milton and Caldwell, 1990; Morris and Horn, 1991a). The

“artifact” idea originally arose from a discrepancy observed between membrane patch

and whole cell mechanosensitivity in snail neurons (Morris and Horn, 1991b). This

study reported that although single mechanosensitive K+ channels could be activated

in membrane patches, macroscopic currents could not be elicited in mechanically ac-

tivated whole cells. While there have been subsequent reports demonstrating that

the above observation cannot be generalized to all cell types (Cui et al., 1995; Davis

et al., 1992), they all downplayed the obvious concern that recordings from patches

can lead to an overestimation of the intrinsic mechanosensitivity of certain proteins.

Sakmann and Neher raised concerns three decades ago as to whether the mechani-

cal perturbation associated with tight seal formation would result in changes in the

physiological properties of the patch (Sakmann and Neher, 1984). However, at that

time, the general agreement between data recorded from whole cell and patch clamp

appeased these concerns. Looking more closely however, there is a long history of

patch and whole cell characterization of ion channels not adding up. In several cases

time-dependent irreversible shifts in gating properties have been observed. Zhou et.
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al (1991) and Moorman et al. (1990) observed that in both cell-attached and outside-

out patches, Na+ channels tended to switch to fast gating by the end of the recording

(>12 minutes) (Moorman et al., 1990; Zhou et al., 1991). Jonas and colleagues in-

troduce a “fudge” factor to explain difference in outside-out patches and whole cell

recordings (Engel and Jonas, 2005). After recording Na+ currents from patches they

can only make their gating model work when they assume a 12mV shift ”as a result

of Donnan potentials” resulting from patch formation.

Patch physiology

Imaging of patched membranes indicated that even in the absence of applied pres-

sure or suction, the patch membrane is pulled flat and perpendicular to the wall

of the patch pipette (Opsahl and Webb, 1994; Sokabe and Sachs, 1990; Zhang and

Hamill, 2000). Opsahl and Webb were the first to measure the intrinsic membrane

tension that is generated at the lipid/glass interface (Opsahl and Webb, 1994). Elec-

trical membrane capacitance measurement indicate that the patch’s area is consistent

with that of a flat membrane disk (Zhang and Hamill, 2000), quite different to the

plasma membrane of Xenopus oocytes and animal cells before patch formation (see

Chapter 1.10.1). The likeliest scenario by which tight-seal formation alters the mem-

brane structure is that the lipid/glass adhesion is smoothing out surface folds and

microvilli. Even though part of the cytoskeleton is initially drawn into the nascent

membrane patch (Hamill and McBride, 1992; Ruknudin et al., 1991; Sokabe and

Sachs, 1990) there is good evidence that in the process the underlying cytoskeleton

becomes decoupled from the lipid bilayer (Hamill and McBride, 1992, 1997; Zhang

et al., 2000). Cytoskeleton-bilayer interactions can be expected to depend on various

factors, most importantly cell preparation and mechanical history of the patch. The

degree of preservation of the cytoskeleton in patch recordings is therefore completely

uncontrollable and represents a continuum from fully intact to completely decoupled.

Morphological and functional changes of the patched membrane will manifest them-

selves in a time-dependent manner even in the absence of mechanical stimulation. For

example, polymerized F-actin is in equilibrium with the free G-actin monomer form.

Patch excision is equivalent to infinitely diluting the free G-actin; as a consequence F-

actin will depolymerize. Mechanical stimulation in particular will specifically induce

these changes.

In their initial study of membrane patch morphology, Sakmann and Neher (Sak-

mann and Neher, 1995) observed that tight seals obtained with applied suction had a
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characteristic omega-shape, while in tight seals that formed spontaneously (i.e. with-

out suction) no membrane was drawn into the pipette and no membrane deformation

was evident. When Sachs and colleagues imaged the patch formed on chicken skeletal

muscle, they observed that with repetitive suction and pressure steps, the membrane

could be separated from the underlying cytoskeleton; a clear space developed between

the two (Sokabe and Sachs, 1990). The same has been shown for patches made on

Xenopus oocytes (Hamill and McBride, 1992). Analogous to this membrane detach-

ment in patches, cell ghosts can be produced by applying positive pressure during

whole cell recordings. The required initial pressure to inflate a HEK cell, for exam-

ple, is quite high (>50mmHg), however after cytoskeleton detachment, much smaller

pressure (<5mmHg) can inflate the cell (Calabrese et al., 2002). The absolute dif-

ference in these pressure values is a testament to the mechanoprotective role of the

cellular cytoskeletal network.

3.3.3 Mechanoprotective role of the cytoskeleton

There is no question that a membrane reservoir exists to protect the bilayer from

excessive mechanical loads. The earliest report providing evidence that Nav and Kv

channels rely on the cytoskeleton for such mechanoprotection came from Terakawa et

al. (Terakawa and Nakayama, 1985). Using electron microscopy and electrophysiol-

ogy, they demonstrated that the cytoskeleton in squid axons is destroyed when they

are perfused with KCl or KBr, but not KF. Inflating KF-perfused axons had little

effect as evident in action potentials and voltage-clamped currents, wherease KCl- or

KBr-perfused axons reversibly depolarized and showed altered gating properties of Kv

and Nav channels. Similarly, TREK and NMDA channels become more mechanosen-

sitive after the cortical cytoskeleton is disrupted (Paoletti and Ascher, 1994; Wan

et al., 1999).

As pointed out earlier for Nav channels, there are numerous examples for ion chan-

nel interactions with the cytoskeleton, for example through G-ankyrin with β-spectrin

elements or through PDZ-binding domains to the dystrophin-actin membrane skele-

ton (Gee et al., 1998; Wood and Slater, 1998). Similar interactions are reported for

Ca2+ channels (Sadeghi et al., 2002). From a viewpoint of cellular organization these

interactions localize such ion channels in proper density at specific junctional, peri-

and extra-junctional regions.
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It is entirely conceivable that the apparent mechanosensitivity of Kv and other

channels is secondary to the disruption of the cytoskeleton that underlies the lipid

membrane. The important point, however, is that such a scheme is compatible with

an altered membrane tension as the principal stimulus for the induced functional

conversion. It is a well established fact that the cytoskeleton underlying the plasma

membrane stabilizes membrane invagination (see Chapter 1.10.1). Membrane invagi-

nations of this kind are areas of excess membrane that can buffer changes in membrane

tension and are likely to be the reason for the low resting tension in cells (Dai et al.,

1998; Raucher and Sheetz, 1999; Sens and Turner, 2006, 2004). If the membrane asso-

ciated cytoskeleton is disrupted, either physically by transiently applied excess tension

on a patch or by spontaneous depolymerization of F-actin upon patch excision, then

the membrane tension buffering system could be rendered nonfunctional.

An example of how this could work comes from a study conducted in Salamander

retinal ganglion (Schubert and Akopian, 2004). It reports that Kv and Cav channels

are modulated by the actin cytoskeleton. Disruption of F-actin with either Lactrun-

culin B or Cytochalasin B resulted in inhibition of substained outward K+ currents

and high-voltage activated Ca2+ currents. This state is accompanied by a left-shift

in the G/V curve for IK but not ICa.

Still, the question remains: What is the operating element that is altered after disrup-

tion of the cytoskeleton? Does the disruption of the cytoskeleton expose ion channels

to excessive membrane tension, thus acting directly? Or does it act indirectly, through

a scheme like has been suggested for the regulation of pressure sensing in kidney cells

by the polycystin TRPP1 (a cell-matrix interaction membrane protein) and TRPP2

(a TRP family 6TM channel) (Sharif-Naeini et al., 2009)? Filamin A was identified

as an interaction partner for TRPP2 in a proteomic screen. Filamin A stiffens the

cytoskeleton and organizes the plasma membrane into microvillo with a small radius

of curvature (Rc 0.1 µm) by crosslinking actin filaments and increasing their poly-

merization. According to the Laplace-Young-Relation
(
τ = ∆P ·Rc

2

)
, the small radius

of curvature would reduce the membrane tension that develops for a given osmotic

or hydrostatic pressure, thus mechanosensitive channels localized in the vicinity of

TRPP2 would reside in a relatively mechano-protected zone unless, of course, the

underlying cytoskeleton is destroyed.
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3.3.4 The biological relevance of tension regimes

We have to consider the possibility that mechanosensitivity is just another aspect of

protein regulation, and that there is no such thing as a truly specialized mechanosen-

sitive protein with no other function but to be a force transducer. The clonal nature

of the majority of mechanosensitive proteins is unknown, most likely because every

ion channel is mechanosensitive to some extent, making the identification of one spe-

cific component impossible when using natural cell preparations.

I think the discussion on whether mechanosensitivity is an artifact is besides the

point: there is no question that membrane proteins are intrinsically mechanosensi-

tive, as discussed in the introduction (see Chapter 1.10.1). I am convinced, however,

that conceptually the idea of intrinsic mechanosensitvity of ion channels is correct.

We are not looking at an experimental artifact, because the patch induced conversion

has also been described for several Kv channels (Shaker, Kv1.2, Kv2.1 and Paddle

Chimæra) and a member of the Nav family (Skm). It would not be too far a stretch

to propose that this intrinsic mechanosensitivity could be a property of all 6 trans-

membrane domain containing channels. To this family belong: voltage-dependent

sodium, potassium and calcium channels and also transient receptor potential chan-

nels. Mechanosensitivity may be an unavoidable property of any membrane protein if

at least one of its conformations has a different shape than the others. Restricting a

membrane protein to shape-neutral conformation changes would significantly restrict

the possible molecular motions and is thus highly unlikely.

We as researchers have to be aware of the limitations of experimental systems for

studying mechanical forces in the lipid bilayer. The biggest limitation is that we

do not have good models that describe the response of living tissue to mechanical

deformation on any scale. Whole cells necessarily have a cytoskeleton that helps the

bilayer resist deformation; in effect the deformation of a bilayer with an underlying

cytoskeleton is plastic or viscoelastic at best (Ingber, 2008; Ji et al., 2008). Con-

versely, due to lipid/glass adhesion, membrane patches are necessary under a tension

that exceeds the resting tension of cells by three orders of magnitude. The cytoskele-

ton in patches is most likely destroyed and thus the bilayer in patches will follow

deformation elastically. Any protein that responds to biologically relevant force cues

is mechanically saturated in patches. This implies that studying membrane proteins

93



3 CONCLUSIONS AND OUTLOOK

in patches will produce results that are irrelevant to the actual biological nature of

mechanosensation.

Kv channels are superior mechanosensitive channels

We have as of now no direct way to study the open probability of Kv channels in

a system that allows the control of membrane tension. Other groups, however, have

tried to use the Laplace-Young-Relation
(
τ = ∆P ·Rc

2

)
to relate the radius of curvature

of a pressurized patch to membrane tension (Moe and Blount, 2005; Sukharev et al.,

1999). These measurements have resulted in graphs plotting quantities such as open

probability against membrane tension. The implicit assumption in these studies is,

that in the absence of applied pressure, the membrane tension is zero. We know from

various studies that this is not true. The residual tension of unpressurized patches is

between 0.5-4 dyn/cm (Opsahl and Webb, 1994). The actual tension of the pressur-

ized patches is therefore larger by this amount. Since the gating of channels such as

MscL and MscS occurs at large values of membrane tension, in the context of MscL

the introduced error would be maximally 10% of the presumed gating tension. It is

however instructive to compare the mechanosensitivity of MscL to that of Kv chan-

nels. Based on the tentative scaling of membrane tension in various patch recordings

(Chapter 2.3.2), I found that paddle chimæra’s open probability can be raised by

50% at physiological membrane voltages of -20mV by increasing the membrane ten-

sion by 1.6 dyn/cm (0.4 RT/nm2). This value is 1/10th that of MscL gating (Moe

and Blount, 2005; Sukharev et al., 1999). I would therefore argue that Kv channels

are superior to MscL as reporters of lower bilayer tension regimes. This supreme

sensitivity could hint at a biological role of Kv channel mechanosensitivity that needs

further exploring. Together with the fact that various single amino acid mutations

can render MscL sensitive to much lower tension values (Blount et al., 1996), it is

very likely that the relative gating properties of Kv channels and mechanosensitive

channels of MscL’s nature are matched with their physiological roles: Kv channels

modulate cell excitability, while MscL channels open when the cell is exposed to dra-

matic osmotic conditions under near lytic tensions, to avoid catastrophic loss of cell

integrity.
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Chapter 4

Material and Methods

4.1 Protein purification and reconstitution

4.1.1 KvAP

KvAP channel protein (M14-K295) inserted in the pQE60 vector (Qiagen) with

a C-terminal hexahistidine tag, was expressed using E.coli XL1-Blue cell culture

grown in LB medium supplemented with 10 mM BaCl2. Protein production was

induced with 0.4 mM isopropyl-β-D-thiogalactopyranoside (IPTG). Cells were har-

vested and lysed in lysis buffer containing 50 mm Tris-HCl pH 8.0, 100 mM KCl, and

protease inhibitors Leupeptin, Pepstatin, Aprotinin and Phenyl-methyl-sulphonyl flu-

oride (PMSF). Protein was extracted with 40 mM decylmaltoside (DM) for 3 hours

at room temperature in lysis buffer and purified with Co2+ IMAC resin using resin

buffer containing 5 mM DM, 20 mM Tris-HCl pH 8.0 and 100 mM KCl. After one

wash with resin buffer plus 15 mM imidazole, the protein was eluted with resin buffer

containing 400 mM imidazole. Immediately after elution, 1 unit thrombin per 3mg

of protein was used to cleave the hexahistidine tag overnight at room temperature.

Thereafter, the protein was concentrated to 10 mg/ml and run on a Superdex-200

(10/30) column in resin buffer.

Following gel filtration the eluted channel was concentrated to 5-10 mg/ml before

reconstitution. Depending on the lipid species two different methods were used for

reconstitution. In the first method, which is a modification of a published procedure

(Ruta et al., 2003), lipids in chloroform were transferred with a glass syringe into a

glass test tube, dried with an argon stream, washed with pentane, and then placed

under room vacuum for 30 minutes. Dried lipids were then hydrated with dialysis

buffer containing 450 mM KCl and 10 mM Hepes-KOH pH 7.4 at a lipid concentra-
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tion of 10 mg/ml. The lipid suspension was vortexed briefly and sonicated 5-10 times

(30 second each) to produce small unilamellar vesicles. Decylmaltoside (DM) was

added into the vesicle suspension to a final concentration of 10 mM. The mixture was

rotated for 30 minutes at room temperature and then KvAP protein was added to

the lipid/detergent mixture to a protein-to-lipid ratio (w/w) ranging from 0.1 to 1.0.

Detergent concentration was then raised to 17.5 mM. The mixture was incubated for

two hours at room temperature and then dialyzed against the dialysis buffer. The

buffer was changed every 12 hours. After three days the vesicles were collected, flash-

frozen with liquid nitrogen, and stored at −80 ◦C.

In a second method for reconstitution of KvAP into DOPA, DOG and DOGS vesi-

cles, the lipids were prepared as described above. A mixture of 50 mM DM and 50

mM β-octyl-glucoside (β-OG) was used to dissolve the lipids completely. Concen-

trated KvAP protein was added to the lipid-detergent micelles and then incubated

and dialysed as described above.

4.1.2 MthK

MthK (M107I) channel protein inserted into the pQE70 vector (Qiagen) with a

thrombin cleavage site between the C-terminal hexahistidine tag and the channel

was expressed using E.coli XL1-Blue cell culture grown in LB. Protein production

was induced with 0.4 mM isopropyl-β-D-thiogalactoopyranoside (IPTG). Cells were

harvested and lysed in lysis buffer containing 50 mm Tris pH8.0, 100 mM KCl, and

protease inhibitors Leupeptin, Pepstatin, Aprotinin and Phenyl-methyl-sulphonyl flu-

oride (PMSF). Protein was extracted with 40 mM decylmaltoside (DM) for 3 hours

at room temperature in lysis buffer and purified on a Co2+ IMAC resin using resin

buffer containing 5 mM DM, 20 mM Tris-HCl pH 8.0 and 100 mM KCl. After one

wash with resin buffer plus 25 mM imidazole, the protein was eluted with resin buffer

containing 300 mM imidazole. Immediately after elution, 1 unit thrombin per 3mg

of protein was used to cleave the hexahistidine tag. After 3 hours at room tempera-

ture cleavage was halted by addition of 4-Amidino-phenyl-methyl-sulphonyl fluoride

(APMSF). Protein was concentrated to 10 mg/ml and run on a Superdex-200 (10/30)

column in buffer containing 5 mM DM, 20 mM Hepes-KOH pH 7.0 and 100 mM KCl.

Following gel filtration the eluted channel was concentrated to 5-10 mg/ml before

reconstitution. The reconstitution method followed the same protocols as for KvAP

(see above).
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4.1.3 Kv1.2 and Paddle Chimæra

Kv1.2 and Paddle Chimæra channels were cloned as an N-terminal hexahistidine

tagged construct with a thrombin cleavage site into the pICZ-C vector (Invitrogen)

together with rat the β2 gene. Both channel contain two amino acid substitutions

(L15H, N207Q, C31S, C32S, C435S and C482S). Transformation of Pichia pastoris

and expression were performed as previously described (Long et al., 2005a); fermented

cell were frozen at −80 ◦C. Cell were lysed by in a bead mill (Retsch) under cryogenic

conditions and extraction for 3 hours at room temperature with 60 mM DM in buffer

containing 50 mM Tris-HCl pH 7.5, 150 mM KCl, 10 mM β-Mercaptoethanol, 20

mM TCEP and protease inhibitors Leupeptin, Benzamidine, Soy Trypsin Inhibitor,

Pepstatin, Aprotinin and PMSF. Channel protein was purified using Co2+ IMAC

resin and maintained in lysis buffer without protease inhibitor but with 0.1 mg/ml

lipids (POPE:POPC:POPG 1:1:1 w/w) (resin buffer). The resin is washed with resin

buffer containing 30 mM imidazole and 6 mM DDM and eluted with resin buffer

containing 300 mM imidazole and 6mM DM.

After elution from the IMAC resin the protein was concentrated to 20 mg/ml and

further purified on a Superdex-200 (10/30) column. The gel filtration buffer contained

20 mM Tris-HCl pH 7.5, 100 mM KCl, 2 mM DTT, 2 mM TCEP, 6 mM DM and 0.1

mg/ml lipids.

The eluted channels were reconstituted using the reconstitution method described for

KvAP (see above) with minor modifications: 4% Octyl-D-maltopyranoside (OM) was

used for lipid solubilization and the dialysis buffer contained 2 mM DTT. Dialysis

was performed at 4 ◦C for 4-6 days.

4.2 Electrophysiology

4.2.1 Bilayer Recordings

The bilayer experiments followed published procedures (Heginbotham et al., 1998;

Ruta et al., 2003). Lipids of desired compositions were prepared by dissolving dried

lipids at 20 mg/ml in decane. Lipid dissolved in decane was painted over a 300 µm hole

in a polystyrene partition that separated two aqueous chambers (Miller, 1986). Once

formation and thinning of a planar lipid membrane was detected through monitoring

of the electrical capacitance, lipid vesicles were delivered to the membrane surface

with a pipette. Vesicle fusion was facilitated by the presence of a salt gradient across

the membrane: 15 mM KCl on the side opposite vesicle addition (trans side) and 150
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mM KCl on the side of vesicle addition (cis side). Both sides were buffered with 10

mM Hepes-KOH at pH 7.4. After vesicle fusion, the salt concentration on the trans

side was raised to 150 mM.

For channel activation experiments described in Figure 2.3 KvAP in DOTAP vesicles

were fused into the DOTAP bilayer. Membrane voltage was pulsed as described in

the figure legend. After 1̃5 minutes, empty (void of channel) POPE:POPG vesicles

were fused with the bilayer during the interval between two pulses.

For channel recordings of MthK in DOTAP or EDOPC membranes, channel-containing

vesicles were fused with the membrane, KCl was added to the trans side to abolish

the salt gradient, and then CaCl2 was added to the trans side (corresponding to the

intracellular side of the channel) to a concentration of 5-10 mM. Charybdotoxin was

added to the cis side (corresponding to the extracellular side of the channel).

Voltage-clamp measurements in whole-cell mode were made using an Axopatch 200B

amplifier (Axon Instruments) that was interfaced to a PC via a DigiData 1440A

AD/DA converter (Axon Instruments). Clampex software (Axon Instruments) was

used to control the hardware. The membrane current was filtered at 1.0 - 2.0 kHz and

sampled at least 5.0 kHz. All voltages are reported according to electrophysiological

convention, with the extracellular side of the channel taken as ground.

4.2.2 Whole Oocyte Recordings

mRNA encoding the Shaker Kv, Kv1.2, Kv2.1 or Paddle Chimæra protein α sub-

unit was prepared by T7 polymerase transcription and injected into Xenopus laevis

oocytes. Reconstituted paddle chimæra protein in POPE:POPG 3:1 (w/w) vesicles

was dialyzed against 100 mM KCl, 10 mM Hepes-KOH pH 7.4 for 2 hours and in-

jected into Xenopus laevis oocytes. K+ currents were recorded under two-electrode

voltage clamp (OC725C, Warner Instrument Corp.) 1-2 days after mRNA injection

or 12-24 hours after vesicle injection. Electrodes were drawn from borosilicate glass

capillaries (VWR) and filled with 3 M KCl. Oocyte bath solution contained (mM): 98

KCl, 0.3 CaCl2, 1 MgCl2, 5 Hepes-KOH pH 7.4. Analog data from the amplifier were

filtered (1kHz) using the built-in 4-pole Bessel filter, digitized at 10kHz (Digidata

1440A, Molecular Devices) and stored on a computer hard-disk.

4.2.3 Patch Clamp Recordings

K+ currents from Shaker Kv, Kv2.1 and Paddle Chimæra were recorded in on-

cell, inside-out and outside-out configuration from oocytes 5-6 days after mRNA
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injection or in on-cell or whole cell configuration 4 days after viral infection of SF9

cells (Paddle Chimæra only). Electrodes were drawn from borosilicate patch glass

(VWR) and polished (MF-83, Narishige Co.) to a resistance of 0.8 - 1.2 MΩ. For

all oocyte patch configurations the extracellular solution contained (mM): 100 KCl, 2

MgCl2, 5 Hepes-KOH pH 7.4 and the intracellular solution contained (mM): 100 KCl,

1 EGTA, 5 Hepes-KOH pH 7.4. For SF9 cell patch configurations the extracellular

solution contained (mM): 135 NaCl, 10 KCl, 4 CaCl2, 5 MgCl2 and MES-KOH pH

6.4 and the intracellular solution contained (mM): 85 KCl, 60 KF, 1 MgCl2, 5 EGTA

and 10 Hepes-KOH pH 7.2. The analog signals were filtered (1kHz) using the built-in

4-pole Bessel filter of an Axopatch 200B patch clamp amplifier (Molecular Devices) in

patch-mode, digitized at 10 kHz (Digidata 1440A, Molecular Devices) and stored on

a computer hard-disk, except for the nonstationary fluctuation analysis experiments,

for which the analog signals were filtered at 5kHZ and digitized at 20kHz. Patch

pressure was generated using water-filled U-shaped tubing connected to atmospheric

pressure and applied via the patch pipette sideport. The pressure was monitored

using an in-line manometer (Sper Scientific Ltd.).

4.3 Kinetic Modeling

Numerical modeling was performed using the Runge-Kutta integration method

and the composite data were fitted for rate constants by χ2 minimization using

the Levenberg-Marquardt algorithm algorithm in Igor Pro (Wavemetrics Inc.) via

custom-written procedures. For G/V , steady-state inactivation and inactivation data

the residuals were derived from the linear deviation between measured and modeled

data. For recovery from inactivation and deactivation data the residuals were derived

from the expression
[
0.5 · lnCalculated values

Observed values

]
. All rate constants were fitted for expo-

nential voltage dependence according to k(V) = k0 · e(z·V ). The fitting errors (Figure

2.13 and Figure 2.14) are estimated standard deviations of the fitting coefficients.

They are based on the coefficient values one would get if the same fit was performed

an infinite number of times on the same underlying data (but with different noise

each time) as implement in Igor Pro.
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Chapter 5

Appendices

5.1 Tension Scaling

abbreviations

γ, membrane tension

L, late opening step equilibrium constant

Tension scaling

Case 1. for γ = 0 C 
 O 0 = ∆G = ∆G0 +RT lnLγ=0

Case 2. for γ = γmax C 
 O 0 = ∆G = ∆G0 +RT lnLmax − γmax∆A

∴ ∆G0 = −RT lnLmax + γmax∆A

−RT lnLmax = ∆G0 − γmax∆A

Lmax = e
−∆G0+γmax∆A

RT

Difference between Case 1 and Case 2:

0 = RT lnLγ=0 −RT lnLγmax = γmax∆A (5.1)

∆A =
1

γmax

[
RT ln

Lγmax
Lγ=0

]
(5.2)
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For an intermediate (unknown) tension γ’ we have

0 = RT lnLγ=0 −RT lnLγ′ + γ′∆A (5.3)

= RT lnLγ=0 −RT lnLγ′ + γ′
[

1

γmax
RT ln

Lγmax
Lγ=0

]
(5.4)

= RT ln
Lγ=0

Lγ′
+

γ′

γmax
·RT ln

Lγmax
Lγ=0

(5.5)

= −RT ln
Lγ′

Lγ=0

+
γ′

γmax
·RT ln

Lγmax
Lγ=0

(5.6)

∴ Lγ′ = Lγ=0 · e
[

1
RT

(
γ′

γmax
·RT ln

Lγmax
Lγ=0

)]
(5.7)

or
γ′

γmax
·RT ln

Lγmax
Lγ=0

= RT ln
Lγ′

Lγ=0

(5.8)

We can solve for the unknown tension γ’:

γ′ = γmax ·
ln
(

Lγ′

Lγ=0

)
ln
(
Lγmax
Lγ=0

) (5.9)

5.2 Kv channel open probability derivation

abbreviations

P, probability

V, membrane voltage

Probability of voltage sensor (VS) being ’up’

P (VS up) = Pu

P (Pore open) = Po

given 4 independent voltage sensors

P (n up) =

(
4

n

)
Pu

n · (1− Pu)4−n (5.10)

=
4!

n! · (n− 4)!
Pu

n · (1− Pu)4−n (5.11)

102
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Pu
1− Pu

= e
zFV
RT (5.12)

Pu = e
zFV
RT · (1− Pu) (5.13)

Pu + Pu e
zFV
RT = e

zFV
RT (5.14)

Pu =
e
zFV
RT

1 + e
zFV
RT

(5.15)

opening is controlled by

P (4 up)
lo−⇀↽−
lc

O

P

(
4 up

not O

)
· P (not O) · lo = Po · lc (5.16)

P

(
4 up

not O

)
=

(
4

4

)
Pu

4(1− Pu)0 = Pu
4 =

[
e
zFV
RT

1 + e
zFV
RT

]4

(5.17)

Pu
4(1− Po) lo = Po lc (5.18)

Pu
4(1− Po) L = Po with

lo
lc

= L (5.19)

X(1− Po) = Po with X = Pu
4 · L (5.20)

X −XPo = Po (5.21)

X = Po +XPo = Po(1 +X) (5.22)

Po =
X

1 +X
=

Pu
4 · L

1 + Pu
4 · L

(5.23)

Po =

[
e
zFV
RT

1+e
zFV
RT

]4

· L

1 + L ·
[

e
zFV
RT

1+e
zFV
RT

]4 (5.24)

Because Pu 6= 0.5 at V = 0 we actually have to introduce one more unknown into

equation(5.24): let V = V − Vm such that at V = VM  Pu = 0.5

∴ Po =

[
e
zF (V−Vm)

RT

1+e
zF (V−Vm

RT

]4

· L

1 + L ·
[

e
zF (V−Vm)

RT

1+e
zF (V−Vm)

RT

]4 (5.25)
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Duggan, A., Garćıa-Añoveros, J., and Corey, D. P. (2000). Insect mechanoreception:

what a long, strange TRP it’s been. Curr Biol, 10(10):R384–7.

Dulhunty, A. F. and Franzini-Armstrong, C. (1975). The relative contributions of

the folds and caveolae to the surface membrane of frog skeletal muscle fibres at

different sarcomere lengths. J Physiol (Lond), 250(3):513–39.

109



REFERENCES

Dumas, F., Sperotto, M. M., Lebrun, M. C., Tocanne, J. F., and Mouritsen,

O. G. (1997). Molecular sorting of lipids by bacteriorhodopsin in dilauroylphos-

phatidylcholine/distearoylphosphatidylcholine lipid bilayers. Biophysical Journal,

73(4):1940–53.

East, J. M. and Lee, A. G. (1982). Lipid selectivity of the calcium and magnesium

ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a

brominated phospholipid. Biochemistry, 21(17):4144–51.

Edidin, M. (2003). The state of lipid rafts: from model membranes to cells. Annual

review of biophysics and biomolecular structure, 32:257–83.

Engel, D. and Jonas, P. (2005). Presynaptic action potential amplification by voltage-

gated Na+ channels in hippocampal mossy fiber boutons. Neuron, 45(3):405–17.

Evans, E. and Hochmuth, R. (1978). Mechanochemical properties of membranes.

Academic Press, Inc.

Field, K. A., Holowka, D., and Baird, B. (1997). Compartmentalized activation of the

high affinity immunoglobulin E receptor within membrane domains. J Biol Chem,

272(7):4276–80.

Freites, J. A., Tobias, D. J., von Heijne, G., and White, S. H. (2005). Interface connec-

tions of a transmembrane voltage sensor. Proc Natl Acad Sci USA, 102(42):15059–

64.

Froud, R. J., East, J. M., Rooney, E. K., and Lee, A. G. (1986). Binding of long-chain

alkyl derivatives to lipid bilayers and to (Ca2+ - Mg2+)-ATPase. Biochemistry,

25(23):7535–44.

Gee, S. H., Madhavan, R., Levinson, S. R., Caldwell, J. H., Sealock, R., and Froehner,

S. C. (1998). Interaction of muscle and brain sodium channels with multiple

members of the syntrophin family of dystrophin-associated proteins. J Neurosci,

18(1):128–37.

Gil, T., Ipsen, J. H., Mouritsen, O. G., Sabra, M. C., Sperotto, M. M., and Zuck-

ermann, M. J. (1998). Theoretical analysis of protein organization in lipid mem-

branes. Biochim Biophys Acta, 1376(3):245–66.

Gil, T., Sabra, M. C., Ipsen, J. H., and Mouritsen, O. G. (1997). Wetting and

capillary condensation as means of protein organization in membranes. Biophys J,

73(4):1728–41.

110



REFERENCES

Gillespie, P. G. and Walker, R. G. (2001). Molecular basis of mechanosensory trans-

duction. Nature, 413(6852):194–202.

Giorgione, J. R., Kraayenhof, R., and Epand, R. M. (1998). Interfacial membrane

properties modulate protein kinase c activation: role of the position of acyl chain

unsaturation. Biochemistry, 37(31):10956–60.

Goulian, M., Bruinsma, R., and PINCUS, P. (1993). Long-range forces in heteroge-

neous fluid membranes. Europhys Lett, 22(2):145–150.

Gu, C. X., Juranka, P. F., and Morris, C. E. (2001). Stretch-activation and

stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophysical Journal,

80(6):2678–93.

Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W.

(2009). Cyanobacterial photosystem ii at 2.9 A resolution and the role of quinones,

lipids, channels and chloride. Nat Struct Mol Biol, 16(3):334–42.

Gustin, M. (1991). Single-Channel Mechanosensitive Currents. Science,

253(5021):800.

Hackney, C. M. and Furness, D. N. (1995). Mechanotransduction in vertebrate hair

cells: structure and function of the stereociliary bundle. Am J Physiol, 268(1 Pt

1):C1–13.
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Patel, A. J., Honoré, E., Maingret, F., Lesage, F., Fink, M., Duprat, F., and Lazdun-

ski, M. (1998). A mammalian two pore domain mechano-gated S-like K+ channel.

EMBO J, 17(15):4283–90.

Perozo, E., Kloda, A., Cortes, D. M., and Martinac, B. (2002). Physical principles

underlying the transduction of bilayer deformation forces during mechanosensitive

channel gating. Nat Struct Biol, 9(9):696–703.

Posokhov, Y. O., Gottlieb, P. A., Morales, M. J., Sachs, F., and Ladokhin, A. S.

(2007). Is lipid bilayer binding a common property of inhibitor cysteine knot ion-

channel blockers? Biophys J, 93(4):L20–2.

Powl, A. M., Carney, J., Marius, P., East, J. M., and Lee, A. G. (2005). Lipid

interactions with bacterial channels: fluorescence studies. Biochem Soc Trans,

33(Pt 5):905–9.

Ramsey, I. S., Moran, M. M., Chong, J. A., and Clapham, D. E. (2006). A voltage-

gated proton-selective channel lacking the pore domain. Nature, 440(7088):1213–6.

Ramu, Y., Xu, Y., and Lu, Z. (2006). Enzymatic activation of voltage-gated potas-

sium channels. Nature, 442(7103):696–9.

120



REFERENCES

Rankin, S. E., Addona, G. H., Kloczewiak, M. A., Bugge, B., and Miller, K. W.

(1997). The cholesterol dependence of activation and fast desensitization of the

nicotinic acetylcholine receptor. Biophysical Journal, 73(5):2446–55.

Raucher, D. and Sheetz, M. P. (1999). Characteristics of a membrane reservoir buffer-

ing membrane tension. Biophysical Journal, 77(4):1992–2002.

Rawicz, W., Olbrich, K. C., McIntosh, T. J., Needham, D., and Evans, E. A. (2000).

Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophysical

Journal, 79(1):328–339.

Requena, J., Brooks, D., and Haydon, D. A. (1977). van der waals forces in oil-water

systems. J Colloid Interf Sci, 58(1):26–35.

Robinson, N. C. (1982). Specificity and binding affinity of phospholipids to the

high-affinity cardiolipin sites of beef heart cytochrome c oxidase. Biochemistry,

21(1):184–8.

Romanenko, V. G., Fang, Y., Byfield, F., Travis, A. J., Vandenberg, C. A., Rothblat,

G. H., and Levitan, I. (2004). Cholesterol sensitivity and lipid raft targeting of

Kir2.1 channels. Biophysical Journal, 87(6):3850–61.

Ruknudin, A., Song, M. J., and Sachs, F. (1991). The ultrastructure of patch-

clamped membranes: a study using high voltage electron microscopy. J Cell Biol,

112(1):125–34.

Ruta, V., Jiang, Y., Lee, A., Chen, J., and Mackinnon, R. (2003). Functional analysis

of an archaebacterial voltage-dependent K+ channel. Nature, 422(6928):180–5.

Ruta, V. and Mackinnon, R. (2004). Localization of the voltage-sensor toxin receptor

on KvAP. Biochemistry, 43(31):10071–9.

Sadeghi, A., Doyle, A. D., and Johnson, B. D. (2002). Regulation of the cardiac

L-type Ca2+ channel by the actin-binding proteins alpha-actinin and dystrophin.

Am J Physiol Cell Physiol, 282(6):C1502–11.

Sakmann, B. and Neher, E. (1984). Patch clamp techniques for studying ionic chan-

nels in excitable membranes. Annu Rev Physiol, 46:455–72.

Sakmann, B. and Neher, E. (1995). Single-channel recording. Plenum Press.

121



REFERENCES

Samsonov, A. V., Mihalyov, I., and Cohen, F. S. (2001). Characterization of

cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Bio-

physical Journal, 81(3):1486–500.

Sasaki, M., Takagi, M., and Okamura, Y. (2006). A voltage sensor-domain protein is

a voltage-gated proton channel. Science, 312(5773):589–92.

Schmidt, D., Jiang, Q.-X., and Mackinnon, R. (2006). Phospholipids and the origin

of cationic gating charges in voltage sensors. Nature, 444(7120):775–9.

Schmidt, D. and Mackinnon, R. (2008). Voltage-dependent K+ channel gating and

voltage sensor toxin sensitivity depend on the mechanical state of the lipid mem-

brane. Proceedings of the National Academy of Sciences of the United States of

America, 105(49):19276–81.

Schoppa, N. E., McCormack, K., Tanouye, M. A., and Sigworth, F. J. (1992). The

size of gating charge in wild-type and mutant Shaker potassium channels. Science,

255(5052):1712–5.

Schoppa, N. E. and Sigworth, F. J. (1998a). Activation of shaker potassium channels.

i. Characterization of voltage-dependent transitions. J Gen Physiol, 111(2):271–94.

Schoppa, N. E. and Sigworth, F. J. (1998b). Activation of Shaker potassium channels.

ii. Kinetics of the V2 mutant channel. J Gen Physiol, 111(2):295–311.

Schoppa, N. E. and Sigworth, F. J. (1998c). Activation of Shaker potassium channels.

iii. an activation gating model for wild-type and V2 mutant channels. J Gen Physiol,

111(2):313–42.

Schroeder, H., Leventis, R., Rex, S., Schelhaas, M., Nägele, E., Waldmann, H., and
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