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 Retroviruses are a family of clinically significant and scientifically fascinating 

viruses that infect a wide array of organisms from all vertebrate classes. The two 

hallmark events in the life cycle of retroviruses are the reverse transcription of the single 

stranded RNA (ssRNA) genome generating a double stranded DNA (dsDNA) and the 

integration of this dsDNA into the host genome. Because integration is irreversible and 

the infected cells are usually difficult to target for elimination in the host, the infection is 

generally permanent. HIV-1, the most important and well-studied member of all 

retroviruses, is the causative agent of acquired immune deficiency syndrome (AIDS) for 

which no vaccine or cure is known. Since recognition of the AIDS epidemic, around 25 

million people have died from HIV-1 related causes, including 2 million in 2007. 

Currently, 33 million people are believed to be living with the virus, with most of these 

people living in sub-Saharan Africa, where 67% of all infected people reside and 75% of 

AIDS deaths occurred in 2007.  

 When retroviruses infect germ cells or germ cell progenitors, the virus can 

become endogenized. These viruses, called endogenous retroviruses (ERV), make up 

more than 8% of the human genome. The integrated virus will be present in the genome 



 

 

of all cells of the individual derived from the infected germ cell, and be passed on to 

progeny in a Mendelian manner to following generations. Both chance and the insertion’s 

effect on the fitness of the host can determine the allelic frequency in the population. 

Hence, elements which produce large quantities of viral proteins and progeny or elements 

that insert into a necessary gene will likely reduce the fitness of the host and as an allele 

will be negatively selected in the host population. 

 Currently, there is no known replication competent HERV, as most proviruses are 

filled with deletions and premature stop codons. However, one family of Class II HERV, 

HERV-K(HML-2), seems to have been replicating until recently. The HERV-K(HML-2) 

family includes human specific members and elements that are polymorphic in the human 

population, suggesting replication since the divergence of humans from chimpanzees 6 

million years ago and potentially more recently as well.  

 In this body of work, the problem of the lack of a replication competent virus 

sequence is circumvented by deducing a consensus sequence from the youngest set of 

HERV proviruses. Named HERV-KCON, we find that many of its components are 

functional individually and together enable infection of target cells in a single-cycle 

infection system. Using this system, we have characterized the previously unknown 

aspects of HERV-K(HML-2) life cycle, such as location of assembly and budding, 

dependency on cell replication, and more extensively, its integration site preference. 

HERV-KCON’s interaction with current anti-retroviral host proteins is accessed, and 

evidence of the same interaction occurring in vivo is presented in the context of 

APOBEC3G. 
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I.  INTRODUCTION 

 

1. Retroviridae 

Retroviruses are a family of clinically significant and scientifically fascinating 

viruses that infect a wide array of organisms from all vertebrate classes [reviewed in 

(Goff, 2007)]. The two hallmark events in the life cycle of retroviruses are the reverse 

transcription of the single stranded RNA (ssRNA) genome generating a double stranded 

DNA (dsDNA) and the integration of this dsDNA into the host genome (Baltimore, 1970; 

Temin and Mizutani, 1970). Because integration is irreversible and the infected cells are 

usually difficult to target for elimination in the host, the infection is generally permanent.  

The classification of retroviruses is based on phylogenetic analysis using the 

highly conserved RT sequence (Figure 1) [reviewed in (Goff, 2007)]. Alpharetroviruses 

are avian retroviruses that are often oncogenic, such as Rous sarcoma virus (RSV). 

Betaretroviruses include protoptype members mouse mammary tumor virus (MMTV) 

and Mason Pfizer monkey virus (MPMV), which both assemble at a perinuclear region, 

then are transported to the plasma membrane for release (Chopra and Mason, 1970; 

Jensen et al., 1970; Rhee and Hunter, 1990a). Gammaretroviruses has the largest number 

of members and also is the only genus that infects multiple vertebrate classes (Gifford 

and Tristem, 2003; Goff, 2007). The most widely studied member is the group of murine 

leukemia viruses (MLV), which can be divided into subgroups based on their receptor 

usage (Goff, 2007). Deltaretroviruses infect primates and cattle, and contain multiple 

accessory proteins (Goff, 2007). Human T-lymphotropic virus 1 (HTLV-1), the prototype 

member that was the first human retrovirus discovered, causes T cell leukemia and 

lymphoma in humans (Poiesz et al., 1980; Yoshida et al., 1982). Epsilonretroviruses 
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infect fish and reptiles and have large and complex genomes up to 13kb in length, with 

the walleye dermal sarcoma virus as the prototype (Martineau et al., 1992; Martineau et 

al., 1990). Spumaretroviruses, as exemplified by chimpanzee foamy virus, are often 

highly cytopathic in cell culture, but are not associated with any disease in host (Linial, 

1999). Lentiviruses have a unique cone shaped core morphology that distinguishes them 

in electron microscopy from other retroviruses (Goff, 2007). The name is derived from 

the slow infection and disease progression in the infected hosts from the Latin word 

lentus, which means “slow” (Desrosiers, 2007). The group can be roughly divided into 

primate and nonprimate members, with the highly related human immunodeficiency 

viruses (HIVs) and simian immunodeficiency viruses (SIVs) making up the primate 

group.  

 

Figure 1 Phylogenetic analysis of Retrovirus family 

An unrooted neighbor-joining phylogenetic tree based on the amino acid sequence of RT protein. SnRV, 
snake retrovirus. WDSV, walleye dermal sarcoma virus. PERV, porcine endogenous retrovirus. GALV, 
gibbon ape leukemia virus. FeLV, feline leukemia virus. FFV, feline foam virus. BFV, bovine foamy virus. 
SFV, simian foamy virus. SRV, squirrel monkey retrovirus. BLV, bovine leukemia virus. Other viruses are 
discussed in the text. This figure is taken from Weiss (Weiss, 2006). 
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 HIV-1, the most important and well-studied member of all retroviruses, is the 

causative agent of acquired immune deficiency syndrome (AIDS) for which no vaccine 

or cure is known. In 1981, Centers for Disease Control and Prevention reported five cases 

of Pneumocystis carinii pneumonia in young, homosexual men, a disease that normally 

affects only severely immunosupressed patients (CDC, 1981). The causative agent was 

identified by two separate groups in 1983 and 1984 from patients exhibiting AIDS or pre-

AIDS symptoms (Barre-Sinoussi et al., 1983; Popovic et al., 1984). Since recognition of 

the AIDS epidemic, around 25 million people have died from HIV-1 related causes, 

including 2 million in 2007 (UNAIDS, 2008). Currently, 33 million people are believed 

to be living with the virus, with most of these people living in sub-Saharan Africa, where 

67% of all infected people reside and 75% of AIDS deaths occurred in 2007 (UNAIDS, 

2008).  

Retrovirus genomes range between 7kb to 13kb in length, but the basic genomic 

features are common to all retroviruses (Figure 2). Two copies of the long terminal repeat 

(LTR) that flank the ends of the viral genome are identical at the time of integration. 

They contain important cis elements such as the promoter sequence, TATA box, and 

polyA signal. The repeat nature of LTR is important in the process of reverse 

transcription, and ensures that the entire viral sequence is copied to following virus 

generations. Between the LTRs are the three protein coding open reading frames (ORFs), 

gag, pol, and env. The gag ORF encodes the structural protein domains that target Gag to 

a membrane (matrix, MA), form the virus core (capsid, CA), and encapsidate the viral 

genome (nucleocapsid, NC), and is sufficient to form virus-like particles. The pol ORF 

encodes the protease, responsible for cleaving the polyproteins into individual  
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Figure 2 Basic genomic layout of retroviruses 

All retroviruses have the same basic genomic layout. LTR, long terminal repeats, includes three regions U3, 
R, and U5. The solid line between the two LTRs represents the genomic sequence. Three main ORFs gag, 
pol, and env are depicted by the open boxes between the two LTRs. No accessory proteins are depicted.  
 

components during maturation, reverse transcriptase (RT), and integrase (IN) proteins. 

However, betaretroviruses and deltaretroviruses encode protease in a separate ORF from 

Pol. The env ORF encodes for the Env protein, necessary for interaction with host receptor and 

virus entry. Some viruses encode additional proteins, collectively called accessory 

proteins, which are usually products of different splice events. 

HIV-1 life cycle, shown in Figure 3, has been studied in great detail and serves as 

an example for all retroviruses. The infection begins with the interaction between the 

virus Env and a host cell membrane protein or proteins that is recognized and bound by 

Env, also called a receptor. Most viruses use one receptor protein, such as MMTV, which 

uses transferrin receptor (Tfr-1) as its receptor (Ross et al., 2002), but primate lentiviruses 

utilize CD4, and an additional coreceptor of either CCR5 or CXCR4 (Alkhatib et al., 

1996; Choe et al., 1996; Dalgleish et al., 1984; Deng et al., 1996; Doranz et al., 1996; 

Feng et al., 1996; Maddon et al., 1986). For most retroviruses, the interaction between 

Env and its receptor leads to the fusion of the virus membrane and the host cell plasma 

membrane and the entry of the viral core into the cell cytoplasm (Marsh and Helenius, 

1989; McClure et al., 1990; Stein et al., 1987). A few exceptions of this method of entry 
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Figure 3 Life cycle of HIV-1 

A simplified life cycle of HIV-1 is depicted. gp120 and gp41 are the transmembrane and surface subunits 
of HIV-1 Env. p24 is HIV-1 CA. The three classes of antiretroviral drugs, fusion inhibitors, RT inhibitors, 
and protease inhibitors, are depicted at the location of their action. NRTI, nucleoside RT inhibitor. NNRTI, 
non-nucleoside RT inhibitor. This figure is taken from Simon et al (Simon and Ho, 2003). 
 

are MMTV, some strains of MLV, and subgroup A of avian leukosis virus (ALV), which 

are thought to be dependent on pH-dependent conformational change of Env in 

endosomes prior to fusion of the host and virus membranes (McClure et al., 1990; 

Mothes et al., 2000; Ross et al., 2002). Recently, data suggesting an endocytosed route of 

entry for HIV-1 as also been published (Miyauchi et al., 2009).  

 The fusion of the two membranes leads to the entry of the virus core into the 

cytoplasm. The core is composed of a shell of CA, and within the shell two copies of the 

viral genome and the associated virus proteins such as NC, RT, and IN. Different viruses 

form different core shapes according to genera, which are distinguishable by electron 
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microscopy. The disassembly of the virus core, a process named uncoating, is not well 

understood, but permits reverse transcription to begin in most retroviruses. What triggers 

reverse transcription is unknown, but is likely linked to a proper disassembly of the core, 

as mutations that disrupt the stability but not the formation of the core impairs reverse 

transcription (Forshey et al., 2002). It has also been postulated to be the exposure to high 

concentrations of dNTPs in the cytoplasm during uncoating (Goff, 2007). Foamy viruses 

are an exception, where reverse transcription begins as early as assembly in the producer 

cell, and virus particles contain partially or completely reverse transcribed virus genomes 

(Moebes et al., 1997; Yu et al., 1999).  

 The reverse transcription complex (RTC) is a large ribonucleoprotein structure 

composed of the two strands of ssRNA coated with NC, and also associated with RT, IN, 

CA, and Vpr, an accessory protein, in HIV-1 in which reverse transcription takes place 

(Bukrinsky et al., 1993; Fassati and Goff, 2001; Heinzinger et al., 1994). In MLV, the 

RTC is composed minimally of the viral genome, CA, RT, and IN (Fassati and Goff, 

1999). The two ssRNA are used as template for the synthesis of the final dsDNA viral 

genome by RT in a series of discrete and highly ordered steps depicted in Figure 4 

(Gilboa et al., 1979a; Gilboa et al., 1979b).  

After reverse transcription, the dsDNA and associated proteins are called 

preintegration complex (PIC), a large complex that contains elements necessary for 

nuclear entry and integration. In addition to the viral dsDNA, MLV PIC is known to 

contain CA, and likely also contains RT and IN proteins (Bowerman et al., 1989). HIV 

PIC contains the dsDNA genome, Vpr, IN, and RT, but no longer contains CA and NC, 
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Figure 4 Reverse transcription of retroviruses 

The black line represents RNA, light and dark orange lines represent minus and plus strands of DNA, 
respectively. Reverse transcription is primed by 3’ end of tRNA bound to the primer binding site (PBS) to 
begin the synthesis of minus-strand strong stop DNA. Once RT reaches the 5’ end of RNA, the DNA is 
degraded by the RNase-H portion of RT. In first strand transfer, the minus-strand DNA anneals to the 3’ 
end of RNA by the repeated (R) sequence to resume minus strand DNA synthesis, along with RNaseH 
digestion of the RNA in RNA:DNA hybrid sequence. A polypurine tract (PPT) in the RNA genome that is 
relatively resistant to RNaseH primes the synthesis of plus strand strong stop DNA, which continues until 
the PBS of the minus strand. RNaseH removes the tRNA, exposing the PBS in the plus strand that is 
complementary to PBS in the minus strand. In second strand transfer, the PBS in the minus and plus strands 
anneal. Each strand serves as the template for the other for completion of reverse transcription. This figure 
is taken from Telesnitsky et al (Telesnitsky and Goff, 1997). 
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which likely has disassociated from the complex since reverse transcription (Bukrinsky et 

al., 1993; Heinzinger et al., 1994; Miller et al., 1997; Vodicka et al., 1998).  

 Retroviral PICs access the host genome for integration via different methods. 

MLV requires mitosis for the breakdown of the nuclear membrane to access the host 

genome, as they do not possess a means to cross the nuclear membrane (Lewis et al., 

1992; Lewis and Emerman, 1994). In contrast, lentiviruses can infect nondividing cells, 

due to the ability of lentiviral PICs to actively cross the intact nuclear membrane in an 

ATP dependent manner (Lewis et al., 1992; Lewis and Emerman, 1994; Weinberg et al., 

1991). An exception to these two methods is RSV, which can infect nonreplicating cells 

at low efficacy, although it infects dividing cells much more efficiently (Hatziioannou 

and Goff, 2001).    

After the nuclear import of PIC, the dsDNA is integrated into the host genomic DNA via 

3’ end processing, strand transfer, and gap repair (Figure 5). In 3’ end processing, the 

blunt dsDNA viral genome is processed by IN whereby the two terminal nucleotides at 

the 3’ strand are removed (Brown et al., 1989; Roth et al., 1989). The resulting 3’ OH 

groups are used to transfer the viral DNA into the host genome via attack of the 

phosphodiester bonds in the host DNA in strand transfer (Brown et al., 1989; Engelman 

et al., 1991; Fujiwara and Mizuuchi, 1988). The 5’ ends are then repaired by unknown 

factors (Roe et al., 1997), leaving a repeat of 4-6 nucleotides from the host DNA flanking 

the integrated virus where the strand transfer occurred. As there is no mechanism to 

target the integrated virus sequence and excise it from the genome, integration is 

irreversible.  

The integrated virus sequence, now called a provirus, contains promoter 
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Figure 5 Retrovirus integration 

The orange line represents the viral cDNA, while the yellow line represents the genomic DNA. The U3, R, 
and U5 regions in the LTR are represented as grey, black and white boxes. In 3’ end processing, IN 
removes two nucleotides from the 3′ ends of the viral DNA, exposing 3′ hydroxyl groups. In  strand transfer, 
IN joins the 3′ ends of viral DNA to the genomic DNA. DNA repair enzymes fill the gaps and repairs the 
break. The resulting provirus is flanked by repeated segments of the target DNA. 
 

sequences in the U3 region of 5’ LTR to host RNA polymerase II system for 

transcription. In HIV-1 and HTLV-1, accessory proteins Tat and Tax promote the 

elongation of the transcript and induce higher levels of transcript, respectively (Cann et 

al., 1985; Felber et al., 1985; Kao et al., 1987). Like most RNA polymerase II transcripts, 

the viral transcript is capped at the 5’ end, processed, and polyadenylated at the 

polyadenylation site in the 3’ LTR (Goff, 2007). The full length transcript is also spliced 

to yield transcripts for Env and accessory proteins. 
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There are two means by which retroviruses export partially spliced or unspliced 

transcripts from the nucleus to the cytoplasm, such as the full length genomic transcript. 

Many retroviruses, such as HIV-1, HTLV-1, and MMTV, encode for an accessory 

protein named Rev, Rex, and Rem, respectively, which bind to full length transcripts and 

export them to the cytoplasm in a CRM-1 dependent manner (Bogerd et al., 1998; Felber 

et al., 1989; Hammarskjold et al., 1989; Indik et al., 2005b; Inoue et al., 1987; Mertz et 

al., 2005b; Neville et al., 1997). In contrast, unspliced MPMV transcripts contain a 

constitutive export element (CTE) near the 3’ end of the genomic RNA that enable 

transcript export without additional viral proteins (Bray et al., 1994). RNA with CTE are 

exported in a TAP/NXF1-mediated pathway (Braun et al., 2001; Gruter et al., 1998; 

Guzik et al., 2001; Katahira et al., 1999).  

Viral proteins are translated from exported transcripts as polyproteins. The three 

main ORFs, gag, pol, and env, encode for the structural proteins, enzymatic proteins, and 

the Env protein. In betaretroviruses and deltaretroviruses, the protease protein, which is 

located 5’ in the pol ORF in other viruses, is a separate ORF from the rest of pol. Pol or 

prot-pol ORFs are translated as an extension of gag via translational read-through, where 

the stop codon in Gag is suppressed by the ribosome, which inserts a tRNAgln at the stop 

codon a fraction of the time (Yoshinaka et al., 1985), or translational frameshifting where 

the ribosome slips near the end of gag ORF and continues translation in a different 

reading frame (Jacks and Varmus, 1985). Hence, Gag, Gag-Prot, Gag-Prot-Pol, or Gag-

Pol polyproteins are translated depending on the virus.  

The translated proteins and full length viral genome assemble to produce new 

virus particles. Most retroviruses assemble at the plasma membrane via MA in the form 
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of either a stretch of basic residues, named membrane-binding domain (M domain) 

(Verderame et al., 1996; Zhou et al., 1994), and/or myristoylation of MA (Henderson et 

al., 1983). At the plasma membrane, Gag is thought to multimerize by the effects of the 

interaction domain (I domain) located at the amino terminus of NC (Campbell and Vogt, 

1995; Carriere et al., 1995; Hansen and Barklis, 1995). The binding of RNA by NC is 

thought to promote Gag multimerization by acting as a structural scaffold where Gag 

proteins can interact (Campbell and Vogt, 1995). Betaretroviruses and spumaretroviruses 

are exceptional, as the particles first assemble in a pericentriolar region in the cytoplasm 

instead of the plasma membrane, then are transported to the plama membrane for release 

(Rhee et al., 1990; Yu et al., 2006). The RNA genome is packaged into the particle 

usually via the packaging (Ψ) sequence located in the untransted region between the 5’ 

LTR and gag ORF, which is either near or overlaps with sequences important for viral 

RNA dimerization and splicing and binds to the Cis-His motifs in NC [reviewed in 

(D'Souza and Summers, 2005)].  

The final release of virus particle from the host cell is accomplished via the late 

domain (L domain), which are found in various locations in the Gag protein of different 

viruses [reviewed in (Bieniasz, 2006)]. PT/SAP, PPXY, and YPXL motifs have been 

identified thus far as L domains, and each helps recruit a network of proteins called 

endosomal sorting complexes required for transport (ESCRT) that are normally involved 

in vacuolar protein sorting pathway. HIV-1 contains the PTAP motif which is recognized 

by Tsg101 (Garrus et al., 2001; Martin-Serrano et al., 2001; VerPlank et al., 2001). RSV, 

MPMV, HTLV-1, and MLV contain the PPPY motif which is recognized by Nedd4 

family members (Blot et al., 2004; Kikonyogo et al., 2001; Martin-Serrano et al., 2005; 
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Sakurai et al., 2004; Yasuda et al., 2002). Equine infectious anemia virus (EIAV) 

contains the YPDL motif, which binds to Alix (Martin-Serrano et al., 2003; Strack et al., 

2003). Viruses with mutations in L domains fail to separate from the host cell membrane 

remain tethered by a membraneous stalk (Gottlinger et al., 1991; Wills et al., 1994; Xiang 

et al., 1996), indicating that the ESCRT complexes may help the final scission of the lipid 

bilayer between the virus and the cell. After the separation of the virus particle and the 

host cell, virus protease cleaves the polyproteins into the individual components, which 

reassemble in the virus to form a new, mature virus particle.   

The methods by which retroviruses cause diseases are diverse. Oncogenic 

retroviruses were first recognized in 1911 by Peyton Rous by the discovery that transfer 

of cell-free supernatant from chicken sarcoma can cause sarcoma in a new host (Rous, 

1910, 1911). This discovery was followed by the discovery of viral agent in mice called 

Bittner’s agent transmitted by breast milk that causes breast cancer (Bittner, 1936, 1942; 

Lyons and Moore, 1962; Moore, 1963), as well as a retrovirus that caused “spontaneous 

leukemia” in AKR mice (Gross, 1951). These agents, RSV, MMTV, and MLV 

respectively, are the first retroviruses described and can cause cancer via different 

methods. RSV and MLV are examples of transducing oncogenic retroviruses. RSV 

carries the v-src gene, an avian oncogene which can transform infected cells. MLV is also 

capable of transferring viral oncogenes, such as v-abl (Ableson MLV), v-ras (Harvey 

MLV), and v-mos (Moloney murine sarcoma virus) (Goff et al., 1980; Shih et al., 1979; 

Van Beveren et al., 1981). The discovery that viral oncogenes actually derive from the 

host opened up a new field of molecular cancer research (Flint et al., 2004; Hanafusa et 

al., 1977; Stehelin et al., 1976). Cellular counterparts of these genes are now known as 
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proto-oncogenes, and often are involved in cell cycle or death, hence any changes to their 

expression or activity may induce abnormal states, such as cancer. Non-transducing 

oncogenic retroviruses do not carry oncogenic genes, but may induce cancer via 

insertional mutagenesis; hence, all retroviruses are potentially non-transducing oncogenic 

retroviruses. A clinical example of viral insertional mutagenesis causing cancer is the five 

gene therapy patients who were treated for SCID-X, an X-linked disorder caused by a 

lack of a functional γc cytokine receptor, which results in the lack of T and NK 

lymphocytes (Hacein-Bey-Abina et al., 2008; Hacein-Bey-Abina et al., 2003; Howe et 

al., 2008). In two separate studies, 19 of 20 patients developed functional T and NK 

lymphocytes, but five developed leukemia. All five patients displayed an over-abundance 

of cell clones with insertion in or near proto-oncogenes, as well as additional 

chromosomal irregularities in three patients.   

Non-cancer related immunodeficiency is a second means by which retroviruses 

commonly cause human disease. Primate lentiviruses infect CD4+ cells, hence can infect 

various immune cells such as T cells, macrophages, and dendritic cells (Dalgleish et al., 

1984; Klatzmann et al., 1984). HIV-1 infection is characterized by a slow decline of 

CD4+ T cells over years, which eventually results in immunodeficiency [reviewed in 

(Simon and Ho, 2003; Stevenson, 2003)]. Whether the CD4+ cells die from virus 

infection or immune reaction against the infection is still unclear. Nonprimate lentiviruses 

often infect macrophages or dendritic cells, and can cause immunodeficiencies (feline 

immunodeficiency virus, bovine immunodeficiency virus), arthritis-like diseases (caprine 

arthritis encephalitis virus, Visna Maedi virus), and anemia (EIAV).  
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2. Integration site preference of retroviruses 

 Many of these diseases are due to the integration of the viral genome, which 

accounts for the persistence of infection and insertional mutagenesis. Integrase is the viral 

protein that catalyses the integration of the viral sequence into the host genome, one of 

the hallmarks of retrovirus infection. An interesting and important aspect of integrase 

function is how it determines where in the genome to integrate the viral genome. Studies 

have shown that most retroviruses have a unique preference for the location of integration. 

This preference correlates strongly with genomic markers such as transcription units or 

promoter regions rather than a specific nucleotide sequence. For example, HIV-1 has a 

two-fold preference to integrate into active transcription units over matched random 

controls, a feature which is also independent from the target cell type used (Barr et al., 

2006; Mitchell et al., 2004; Schröder et al., 2002a). This preference may be dependent on 

the association between IN protein and the host protein LEDGF/p75, which rescues IN 

from proteosomal degradation in the cytoplasm, enhances DNA binding of IN, and 

tethers IN to host chromatin (Busschots et al., 2005; Cherepanov et al., 2003; Llano et al., 

2004a; Llano et al., 2004b; Maertens et al., 2003). LEDGF also interacts with IN proteins 

of other lentiviruses, namely HIV-2, EIAV, BIV, VMV, FIV, and EIAV, and may help 

determine their preferences as well (Busschots et al., 2005; Cherepanov, 2007; Llano et 

al., 2004b).  

 Conversely, the IN proteins of nonlentiviruses, such as RSV (alpharetrovirus), 

MPMV (betaretrovirus), MLV, feline leukemia virus (FeLV, gammaretroviruses), and 

HTLV-1 (deltaretrovirus) do not interact with LEDGF (Busschots et al., 2005; 

Cherepanov, 2007; Llano et al., 2004b). HTLV-1 and MMTV have been shown to have 
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no integration site preference (Derse et al., 2007; Faschinger et al., 2008). MLV has a 

strong integration preference for promoter regions and CpG islands (Hematti et al., 2004; 

Mitchell et al., 2004; Wu et al., 2003). Lastly, avian sarcoma-leukosis virus (ASLV) has a 

largely random integration with minor preference for genes (Barr et al., 2005; Mitchell et 

al., 2004). What determines this difference, whether it be other host proteins or intrinsic 

differences in the IN proteins, is unknown.   

 

3. Endogenous retroviruses 

 When retroviruses infect germ cells or germ cell progenitors, the virus can 

become endogenized [reviewed in (Bannert and Kurth, 2004; Gifford and Tristem, 2003; 

Lower et al., 1996)]. These viruses are called endogenous retroviruses (ERV). The 

provirus will be present in the genome of all cells of the individual derived from the 

infected germ cell, and be passed on to progeny in a Mendelian manner to following 

generations. Both chance and the insertion’s effect on the fitness of the host can 

determine the allelic frequency in the population. Hence, elements which produce large 

quantities of viral proteins and progeny or elements that insert into a necessary gene will 

likely reduce the fitness of the host and as an allele will be negatively selected in the host 

population. 

 Endogenous retroviruses exist as either a provirus or a solo LTR. Over time, the 

two LTR sequences in a provirus can homologously recombine, deleting all internal 

sequence and leaving behind only a solo-LTR that is a composite of the two original 

LTRs. How long an element remains as a provirus until its LTRs recombine is unknown, 

but likely variable and stochastic. One study has shown that one nucleotide difference 
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may reduce the likelihood of recombination by ten-fold (Belshaw et al., 2007). In 

humans, around 85% of all human ERVs (HERVs) exist in the solo-LTR form (Lander et 

al., 2001). Theoretically, exogenous retroviruses can also form solo-LTRs, but this 

potential is probably of little importance in the face of the pathogenesis of the full length 

virus. A preintegration site describes a state within the host population where the 

integration has not occurred. Potentially, all sequence in a host is a preintegration site, but 

the term is applied as a relative state to an integrated element rather than to signify the 

integration potential at that location.   

 As discussed earlier, integration can be detrimental via insertional mutagenesis of 

genes, but integration into introns can provide alternate splice sites and premature polyA 

signals. While most likely harmful, these insertions can provide new transcript isoforms 

(Kapitonov and Jurka, 1999; Mager et al., 1999). Also, as an LTR includes promoter and 

enhancer sequences, integration near a gene can alter transcription levels or the tissue 

specificity with which a given gene is expressed (Dunn et al., 2003; Landry et al., 2002; 

Medstrand et al., 2001; Medstrand et al., 2002). At a genomic scale, ERVs can induce 

genomic rearrangements between highly similar elements, such as ecotopic 

recombination (Hughes and Coffin, 2001, 2005).  

 Endogenous retroviruses are present in the genomes of all vertebrates except 

Agnathas, and are closely related to all genera of retroviruses except deltaretroviruses 

(Herniou et al., 1998; Jern et al., 2005; Martin et al., 1997) . The naming of HERVs has 

been erratic, but many are named after the primer binding site and the tRNA most likely 

used to prime reverse transcription (Bannert and Kurth, 2004). Thus, HERV-K indicates 

a HERV that likely uses tRNA-lysine as its RT primer. 
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 Most ERVs align closely with beta-, gamma-, and spumaretroviruses, which are 

otherwise named as Class I, II, and III, respectively. In humans, there are around 72 

HERV Class I families, such as HERV-H, HERV-W, and HERV-FRD, which intermix 

with known exogenous gammaretroviruses in phylogenetic analysis (Jern et al., 2005; 

Lander et al., 2001; Tristem, 2000). HERV-W and HERV-FRD include rare examples of 

endogenous retroviral sequence being co-opted by the host. One locus each of HERV-W 

and HERV-FRD proviruses have maintained expression and fusogenic capacity of the 

Env protein in trophoblast cells in the placenta (Blaise et al., 2003; Blond et al., 2000; 

Bonnaud et al., 2004; Mi et al., 2000). Named syncytin-1 and syncytin-2, the fusion 

mediated by these ERV Env proteins are thought to create a layer of fused cells in the 

placenta, called syncytiotrophoblasts, which is important for placentogensis and 

pregnancy. Similar proteins and phenomenon have been described in mice and sheep, and 

have also been shown to be necessary for a successful pregnancy in sheep (Dunlap et al., 

2006; Dupressoir et al., 2005). 

 An interesting nonhuman gammaretrovirus-related ERV is the koala retrovirus 

(KoRV). Discovered while studying the high incidence of leukemia and lymphomas in 

koalas, KoRV seems to be currently undergoing endogenization (Hanger et al., 2000; 

Tarlinton et al., 2006). Both exogenous and endogenous forms of KoRV can be found, 

and isolated populations do not have the endogenous form, suggesting that the 

endogenization has occurred in the past 100 years after the separation of koala 

populations (Tarlinton et al., 2006). How infection by this virus is related to the leukemia 

and lymphoma is unclear, but plasma viral RNA levels correlate positively with disease 

(Tarlinton et al., 2005). 
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 In humans, class II ERVs consist of ten subfamilies which align most closely with 

each other in phylogenetic analysis than with any other retrovirus known, and are known 

as HERV-K superfamily due to their tRNA binding site (Bannert and Kurth, 2004; 

Lander et al., 2001). Betaretroviruses MMTV and Jaagsiekte sheep retrovirus (JSRV), 

which infect mice and sheep respectively, exist in both endogenous and exogenous forms 

and align closely with HERV-K superfamily (Gifford and Tristem, 2003). Class III has 

around 20 families in the human genome, including HERV-L and HERV-S (Cordonnier 

et al., 1995; Jern et al., 2005; Lander et al., 2001; Yi et al., 2004). Recently, endogenous 

lentiviruses from rabbits (RELIK) and grey mouse lemurs (pSIVgml)  have been 

discovered, and likely form a separate class of ERVs (Gifford et al., 2008; Gilbert et al., 

2009; Katzourakis et al., 2007). 

 In humans, around 8% of the genome is composed of sequences of retroviral 

origin, independent from retrotransposon sequences (Lander et al., 2001). All known 

HERVs are defective, replete with mutations, premature stop codons, and truncations. 

The retroviral insertions are found on all chromosomes, although the number does not 

correlate with chromosomal size (Kim et al., 2004a; Villesen et al., 2004). Most 

insertions are found outside of genes, and when in genes, are more often in the opposite 

transcriptional orientation relative to the gene (van de Lagemaat et al., 2006; Villesen et 

al., 2004). 

  As all retroviral insertions found in the human genome are defective, how the 

insertions proliferate in the genome is worth considering. There are two general 

mechanisms by which ERVs may proliferate. ERVs can proliferate via bone fide 

extracellular particle formation and infection of a new target cell, which requires an intact 
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virus sequence. Interestingly, all HERVs with a high copy number seem to have 

proliferated via means additional to true replication (Gifford and Tristem, 2003). 

Defective ERVs may proliferate by methods other than bone fide virus replication, such 

as via exogenous infection events following complementation in trans, where functional 

proteins are supplied by other endogenous or exogenous viruses. This may result in 

retention of only sequences important for transcription and packaging, hence protein 

ORFs should deteriorate over time. HERV-H and ERV-9 may have proliferated by this 

method (Belshaw et al., 2005b). Alternatively, envelope-independent retrotransposition in 

cis may occur, where an element copies itself and inserts into a new genomic locus within 

the same cell, forgoing the normal extracellular phase of the retroviral life cycle. Via this 

method, all ORFs except env are likely to retain a functional sequence, as Gag and Pol 

will still be required for replication. HERV-K(HML-3) is a potential example of this 

scenario, as its pol sequence seems to have been maintained (dN/dS = 0.15), while env 

ORF has been changing more rapidly (dN/dS = 0.73) (Belshaw et al., 2005b). Defective 

proviruses can also proliferate as a result of long interspersed element 1 (LINE-1) aided 

retrotransposition, where the enzymes of LINE-1 provide necessary function for the viral 

sequence to be reverse transcribed and integrated, akin to the proliferation of Alu 

elements. In this scenario, only the sequences required for transcription and packaging 

will be required, and most protein ORFs will not be maintained. Indeed, two major 

groups of the HERV-W family can be traced back to either independent replication or 

LINE-1 dependent replication, based on the proviral and flanking genomic sequence 

(Belshaw et al., 2005b; Costas, 2002).  
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 Currently, there is no known replication competent HERV, but one family of 

Class II HERV, HERV-K(HML-2), seems to have been replicating until recently. The 

HERV-K(HML-2) family includes human specific members and elements that are 

polymorphic in the human population, suggesting replication since the divergence of 

humans and chimpanzees 6 million years ago and potentially more recently as well 

(Barbulescu et al., 1999; Turner et al., 2001).  

 Although inactive, many HERVs are expressed in various tissues, and as a result 

many diseases have been connected to HERV expression of RNA, protein, or virus 

particles, or generation of anti-HERV antibodies [reviewed in (Blomberg et al., 2005; 

Moyes et al., 2007)]. This includes various cancers (melanoma, breast cancer, germ cell 

tumors), neurologic diseases (schizophrenia, bipolar disorder, multiple sclerosis), 

autoimmune diseases (psoriasis, arthritis, systemic lupus erythematosus, type I diabetes), 

HIV-1, and pregnancy. Notably, healthy individuals also express various HERV 

products. Overall, none of the correlations with diseases establish clear evidence of 

HERVs as the cause of the disease. The best correlation between HERV expression and 

disease is between HERV-K(HML-2) and seminoma, where two independent studies 

found that a high percentage (60% and 70%) of patients are positive for anti-Gag 

antibody (Boller et al., 1997; Sauter et al., 1995). This type of correlation may be useful 

for diagnostic or therapeutic vaccine purposes. 

 

4. History of the discovery of HERV-K superfamily 

Much of HERV research has focused on HERV-K(HML-2), a subfamily of the 

Class II HERV-K superfamily. HERV-K(HML-2) first garnered attention due to its 
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sequence similarity to MMTV, and more recently due to its young age and replication 

potential.  

The discovery of HERV-K superfamily was spurred by the desire to find a viral 

etiology for breast cancer. By 1940s, it was already known that MMTV, at the time 

known as Bittner agent or milk agent, could cause spontaneous mammary tumors in mice 

regardless of genetic background, and that this agent was filterable and passed to 

offspring via milk (Bittner, 1936, 1942). In an attempt to find an analogous agent in 

humans, scientists looked for signs of virus in human milk and breast cancers. In 1969, 

Moore et al reported finding particles morphologically similar to MMTV in human milk, 

the occurrence which correlated with breast cancer (Moore et al., 1969). A few years later, 

they also found that sera from some women with breast cancer could neutralize MMTV 

infection in mice, and that MMTV-like virus particles were found in milk of women with 

family history or women from populations with high incidence of breast cancer more 

frequently than those who are not (Charney and Moore, 1971; Moore et al., 1971). These 

particles showed RNA-dependent DNA polymerase activity and sensitivity to 

ribonuclease (Ohno et al., 1977; Schlom et al., 1971), as well as the existence of a high 

molecular weight RNA in human milk (Schlom et al., 1972), two features thought to be 

unique to oncogenic RNA viruses at the time. Simultaneously, Axel et al showed that 

human breast cancer cells express RNA that is homologous to MMTV RNA (Axel et al., 

1972), supporting the idea that an MMTV-like virus exists in human breast, and may be 

associated with cancerous states. 

 Despite these signs of a retrovirus, no clear candidate virus emerged. As it was 

already established that the Bittner agent could integrate into infected cells and become 
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heritable (Moore, 1963), the search for the “human breast cancer virus” eventually turned 

to genomic DNA. During early 1980s, two groups independently detected an MMTV-like 

sequence in the human genome using probes designed based on the sequence of MMTV 

gagpol (Callahan et al., 1982; May et al., 1983). This sequence had a recognizable 

retroviral organization, with similarities in parts to known retroviruses based on both 

DNA hybridization and sequence (Callahan et al., 1985; Deen and Sweet, 1986; May and 

Westley, 1986). Studies using probes based on the reverse transcriptase region of the 

Syrian hamster intracisternal A particle (IAP) also identified similar human endogenous 

retroviral sequences (Ono, 1986).  This study named the group of the identified 

proviruses HERV-K, based on the lysine tRNA binding site sequence, the presumed 

primer for reverse transcription. The same group also sequenced the HERV-K10 provirus 

in its entirety, thus establishing the first prototype HERV-K (Ono et al., 1986). After 

realizing that the MMTV-based probes hybridized to different clones with varying 

strength, Franklin et al teased apart their collection into nine subgroups, NMWV-1 to 

NMWV-9, based on hybridization differences (Franklin et al., 1988). The groups remain 

largely intact today after analysis based on sequence data, but have been renamed human 

MMTV like-1 (HML-1) to HML-10, in an altered order (Andersson et al., 1999). 

Furthermore, studies showed that  sequences similar to HERV-K is found in other 

hominoids and Old World monkeys, but not New World monkeys or prosimians 

(Mariani-Costantini et al., 1989), suggesting that the first germ cell integration occurred 

around 35 million years ago after the divergence of New World and Old World monkeys. 

 In a separate line of inquiry, ultrastructural examination and electron microscopy 

of cells derived from a testicular cancer revealed retrovirus-like particles budding from 
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the cell, which were named human teratocarcinoma derived virus (HTDV) (Bronson et 

al., 1979; Bronson et al., 1978). Transfer of supernatant from virus like particle (VLP) 

producing cells to fresh cells did not result in detectable virus particles in the new cells, 

suggesting either that these viruses were not infectious, or that the target cells were 

nonpermissive (Lower et al., 1984). However, the supernatant contained high molecular 

weight RNA and detectable reverse transcriptase activity at a sucrose density 

characteristic of animal retroviruses of 1.16g/ml (Boller et al., 1983; Lower et al., 1987). 

Furthermore, these viruses did not cross react with antibodies against other animal 

retroviruses, and were visually and immunologically distinguishable from HTLV-1 and 

HIV-1, the two human retroviruses known at the time (Lower et al., 1987). However, 

excitement at discovering a new human retrovirus was soon dashed, as studies using 

antibody derived against HERV-K Gag for immunoelectron microscopy and western blot 

analysis of teratocarcinoma cell lines showed that HDTV and HERV-K(HML-2) are 

identical viruses (Boller et al., 1993b).  

 

5. Activity and replication potential of HERV-K(HML-2) 

 Since its discovery, research on HERV-K(HML-2) has focused on characterizing 

the multiple proviruses in the genome, testing the activity of its individual components in 

an effort to understand viral replication, and searching for a replication competent 

provirus. Prior to the completion of the human genome sequencing project, screening was 

manually conducted by Southern blotting analysis, Northern blotting analysis, or PCR 

from cellular genomic DNA or libraries (Andersson et al., 1999; Barbulescu et al., 1999; 

Barbulescu et al., 2001; Mayer et al., 1999a; Medstrand and Blomberg, 1993b; 
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Medstrand and Mager, 1998; Sugimoto et al., 2001; Tonjes et al., 1999; Turner et al., 

2001; Zsiros et al., 1998). After genome sequencing, both manual genomic screens via 

blots and bioinformatic approaches have been used (Belshaw et al., 2005a; Belshaw et 

al., 2004; Costas, 2001; Hughes and Coffin, 2004, 2005; Romano et al., 2006).   

 Collectively, these studies show that components of HERV-K are still functional. 

Structural proteins are capable of assembling into particles and budding from cells (Bieda 

et al., 2001; Mueller-Lantzsch et al., 1993; Tonjes et al., 1999; Tonjes et al., 1997), and 

protease, RT, and IN are functional in vitro (Berkhout et al., 1999; Kitamura et al., 1996; 

Mueller-Lantzsch et al., 1993; Schommer et al., 1996). However, as most of the clones 

tested were derived from PCR reactions that did not distinguish between the proviruses, 

the identity of the proviruses to which the functional components belong is unknown. 

And while not all HERV-K env ORFs encode an active protein, one Env that can 

pseudotype SIV particles and permit infection has been identified (Dewannieux et al., 

2005).  

 More work has been conducted on an accessory protein, Rec/K-Rev. Retroviruses 

often use overlapping ORFs or multiple splice products to enable expression of multiple 

protein products. The splice sites, while useful for generating new transcripts, creates 

another problem, namely nuclear retention of full length or partially spliced viral 

transcripts. Some retroviruses, such as HIV-1, HTLV-1, and MMTV, have solved this 

problem by encoding a nuclear-cytoplasm shuttling protein, which specifically binds full 

length and partially spliced viral transcripts and exports them to the cytoplasm, named 

Rev, Rex, and Rem, respectively (Chang and Sharp, 1989; Emerman and Malim, 1998; 

Hidaka et al., 1988; Indik et al., 2005a; Mertz et al., 2005a).  
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 In HERV-K, northern blot analysis of polyA+ RNA from the GH teratocarcinoma 

cell line using an U5 region specific probe showed the expected transcripts of GagPol and 

Env, as well as smaller transcripts around 1.8-1.5 kb (Lower et al., 1993). Sequencing 

these transcripts showed a doubly spliced mRNA encoding a protein whose amino acid 

sequence revealed an arginine-rich motif reminiscent of HIV-1 Rev and HTLV-1 Rex 

proteins. This protein, named Rec or K-Rev, has been shown to be expressed in 

teratocarcinoma cell lines such as GH and Tera-2, and localizes to the nucleolus (Lower 

et al., 1995). Like its HIV-1 counterpart Rev, Rec/K-Rev contains a leucine-rich nuclear 

export signal (NES) and an arginine-rich nuclear localization signal (NLS), and can 

export unspliced or partially spliced viral transcripts via a CRM-1 dependent manner 

(Boese et al., 2001; Boese et al., 2000; Magin et al., 2000; Magin et al., 1999; Yang et al., 

1999). The Rec response element (RcRE), an RNA element that Rec/K-Rev recognizes 

on the full length and partially spliced transcripts, has been mapped to the U3 region of 

the 3’ LTR, which is likely folds into a complex structure (Magin-Lachmann et al., 2001; 

Magin et al., 1999; Yang et al., 2000; Yang et al., 1999). 

 HERV-K also encodes for a dUTPase, a ubiquitously expressed protein that 

catalyzes the conversion of dUTP to dUMP and PPi. This protein, encoded by 

herpesviruses (EBV, VZV, and HSV-1), poxviruses (Orf virus and vaccinia virus) and 

retroviruses (Baldo and McClure, 1999), is thought to reduce the fatal incorporation of 

dUTP into the viral genome during replication. The acquisition of dUTPase by viruses is 

believed to have occurred as a result of horizontal transfer of the dUTPase gene from a 

host (Baldo and McClure, 1999).  In retroviruses, three groups contain the dUTPase gene, 

namely betaretroviruses, non-primate lentiviruses, and an ancient mammalian ERV-L 
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family (Cordonnier et al., 1995). These three groups encode dUTPase in different 

locations in their genomes, suggesting that the acquisition of dUTPase may have 

occurred independently three times in retroviral evolution. 

 Like MMTV and MPMV, HERV-K families encode for a dUTPase protein 

(Harris et al., 1997a; Mayer and Meese, 2003). A consensus dUTPase, derived from an 

alignment of PCR derived HERV-K dUTPase sequences from human cell lines, is 

functional in vitro (Harris et al., 1997a; Harris et al., 1999). HERV-K dUTPase is 

expressed in some human cell lines, but the proviral origin and its functional capability or 

effect on host is unknown (Harris et al., 2000). 

 Beyond individual proteins, scientists were also interested in discovering new 

HERV-K proviruses, with the hopes of finding a replication competent provirus. In 

screens prior to the human genome sequencing, multiple full length proviruses were 

identified (Barbulescu et al., 1999; Barbulescu et al., 2001; Mayer et al., 1999a; 

Sugimoto et al., 2001). The most exciting of these finds are the human specific and the 

polymorphic proviruses, the youngest and the most likely to be active (Barbulescu et al., 

1999; Belshaw et al., 2005a; Herrera et al., 2006; Hughes and Coffin, 2004; Macfarlane 

and Simmonds, 2004; Turner et al., 2001).  

 There are multiple signs in the human specific proviruses that hint at their young 

age. First, the human specificity indicates that the proviruses likely integrated after the 

divergence of humans and chimpanzees, estimated to have occurred around six million 

years ago (Bannert and Kurth, 2004; Barbulescu et al., 1999). The polymorphic insertions 

may be even younger (Barbulescu et al., 1999; Turner et al., 2001), is based on the idea 

that fixation time for neutral mutations in the human population with an effective 



 

27 
 

population size of 10,000 and generation time of 20 years will be around 800,000 years 

(Graur and Li, 2000; Hughes and Coffin, 2004). Hence, any unfixed neutral insertion is 

likely to have inserted less than 800,000 years ago. Furthermore, insertions that have 

identical LTR sequences are thought to be less than approximately 200,000 years old. 

The two LTRs of a provirus, identical at the time of integration due to the nature of 

reverse transcription, will accumulate mutations independently from each other over 

time, hence the number of differences between the two LTRs may serve as a molecular 

clock for the insertion (Johnson and Coffin, 1999). Based on calculations of the 

divergence between insertions in both humans and chimpanzees and the time since that 

divergence, one change between the two LTRs is expected to occur per 200,000 to 

450,000 years (Johnson and Coffin, 1999; Turner et al., 2001). Thus, identical LTRs in a 

provirus is an indication that the insertion may have occurred as recently as 200,000 or 

fewer years ago. One provirus, K113, incited particular excitement, as it exhibited all the 

characteristics just described, in addition to its complete set of open reading frames that 

exhibited no obvious mutations or truncations (Turner et al., 2001).  

 Bioinformatic search is a more thorough method to identify HERV-K(HML-2) 

elements in the human genome. One study identified 553 HERV-K(HML-2) insertions, 

of which 113 are human specific (Belshaw et al., 2005a). Most identified elements, 

including all the human specific ones, likely inserted independently (Belshaw et al., 

2004; Romano et al., 2006). Two characteristics of these insertions suggest that HERV-

K(HML-2) was replication competent until recent times. First, the independently inserted 

elements show a purifying selection on all ORFs, suggesting that the protein sequence 

and likely its function has been preserved (Belshaw et al., 2005c; Belshaw et al., 2004; 
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Costas, 2001). This is true for Env ORF as well, suggesting that retrotransposition in cis 

(retrotransposition within the same cell) is unlikely to be a major method of proliferation. 

Secondly, stop codons do not seem to be inherited from one provirus to another, which is 

likely to occur if the viruses replicated via retrotransposition in trans.  

 The low activity of most HERVs is not surprising, as high levels of viral protein 

expression or continuous replication is likely harmful to the host. One way by which 

hosts may defend themselves against constant genomic assault is via antiviral host 

proteins called restriction factors.  

  

6. Restriction factors 

 Various SIVs and HIVs are highly similar to each other in sequence and behavior, 

but also exhibit species-specific characteristics that may govern interspecies transmission 

and adaptation in a new host. One determinant of the transmission or the lack thereof 

between closely related species may be restriction factors, host proteins that are 

expressed in many types of cells, including non-immune cells. Three major classes of 

restriction factors described and studied here are the Fv-1 and TRIM5 group of proteins, 

the APOBEC family of proteins, and tetherin.   

 Fv-1, which confers resistance to the Friend strain of MLV in various strains of 

mice in a dominant and heritable by single locus manner (Lilly, 1967) [reviewed in 

(Bieniasz, 2004a; Goff, 2004)], is a Gag like protein similar to that of the MuERV-L 

endogenous retrovirus in mice (Benit et al., 1997; Best et al., 1996; Qi et al., 1998). Two 

major alleles of the locus were found in different strains of mice which dictated their 

susceptibility to different strains of MLV: cells from NIH3T3 mice carrying only the 
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Fv1n allele are infectable by N-tropic MLV but block B-tropic MLV, while cells with 

only the Fv1b allele, found in BALB/c mice, show the opposite susceptibility phenotype 

(Gardner et al., 1980; Goff, 2004). Mice with both alleles block infection from both 

strains of viruses, showing that resistance is dominant (Odaka et al., 1978). The 

restriction occurs at a step after reverse transcription, but before the nuclear transport of 

the virus preintegration complex and the target of Fv-1 on the virus maps to amino acid 

110 of MLV CA (DesGroseillers and Jolicoeur, 1983; Kozak and Chakraborti, 1996; 

Rommelaere et al., 1979). Furthermore, Fv-1’s restriction activity saturates at high 

quantities of incoming virus, suggesting that a limiting factor is being used up.   

 Although intriguing in itself, the restriction phenotype of Fv-1 is also important 

because a similar block in retrovirus infection occurs in primates (Besnier et al., 2003; 

Cowan et al., 2002; Towers et al., 2003). The factor in human cells that restrict N-tropic 

MLV was termed Ref-1 (restriction factor 1), and a similar factor in various nonprimate 

cells that restrict HIV-1 and other retroviruses was termed Lv-1 (lentivirus susceptibility 

factor 1).  

Lv-1 was identified from rhesus macaque cells as TRIM5α (tripartite motif 5α) 

(Stremlau et al., 2004). Subsequent studies showed that Ref-1 is the human homolog of 

Lv-1, and characterized the susceptibility of numerous retroviruses to each protein 

(Hatziioannou et al., 2004; Keckesova et al., 2004; Perron et al., 2004; Yap et al., 2004). 

TRIM5 protein is a member of the TRIM family, whose characteristic tripartite motifs 

include an N terminal RING domain, a B-box domain, and a coiled-coil domain, with an 

additional C terminal domain in many members [reviewed in (Johnson and Sawyer, 

2009b)].  
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TRIM5α, the longest splice variant of the trim5 gene, contains a C-terminal 

B30.2/SPRY domain, which is the most variable portion of the protein between species 

and determines restriction specificity (Nakayama et al., 2005; Perez-Caballero et al., 

2005; Sawyer et al., 2005a; Sebastian and Luban, 2005; Stremlau et al., 2005; Yap et al., 

2005). The functions of RING and B box domains in TRIM5α remain unclear but both 

are important for the protein’s restriction activity (Diaz-Griffero et al., 2006; Javanbakht 

et al., 2005; Perez-Caballero et al., 2005; Stremlau et al., 2004). The coiled-coil domain 

is important for multimerization, which is necessary for restriction (Mische et al., 2005; 

Perez-Caballero et al., 2005). The mechanism of TRIM5α action is still unclear, but may 

involve the disruption of disassembly of the viral core (Anderson et al., 2006; Perron et 

al., 2007; Sebastian and Luban, 2005; Shi and Aiken, 2006; Stremlau et al., 2006; Wu et 

al., 2006). Furthermore, TRIM5α has been shown to function as a RING-type finger E3 

ubiquitin ligase (Yamauchi et al., 2008), suggesting a potential role independent from 

retroviral infection related to protein degradation.  

In a twist to the story, TRIM-Cyp, a TRIM5 protein with a retrotransposed CypA, 

was described in owl monkeys that is also capable of restricting HIV-1 (Nisole et al., 

2004a; Sayah et al., 2004a). Astoundingly, an independent retrotransposition event 

resulting in similar TRIM-Cyp protein have been found in macaque species as well 

(Macaca nemestrina, Macaca fascicularis, and Macaca mulatta) (Brennan et al., 2008; 

Liao et al., 2007; Newman et al., 2008; Virgen et al., 2008; Wilson et al., 2008). 

The second family of restriction factors is the APOBEC (apolipoprotein B mRNA 

editing enzyme, catalytic polypeptide-like) family of cytidine deaminases. Prior to their 

identification as an antiretroviral factor, signatures of the activity of APOBEC3 proteins 
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had already been detected in the HIV-1 grown in ex vivo cultures and peripheral blood 

mononuclear cells (PBMCs) of HIV-1+ patients as mutations of Gs to As in the context of 

either GG or GA dinucleotides (Borman et al., 1995; Janini et al., 2001; Vartanian et al., 

1991). These changes were thought to be a result of misincorporation by RT, which is 

highly error prone (Preston et al., 1988; Roberts et al., 1988).  

The actual cause of these changes was identified in a search for the host target of 

HIV-1 accessory protein Vif. It was already established that Vif was necessary for the 

production of replication competent HIV-1 particles from cells such as CEM cells, but 

not in others such as CEM-SS and 293T cells (Gabuzda et al., 1992; von Schwedler et al., 

1993). A complementary DNA subtraction strategy was used to selectively amplify 

cDNA unique to the nonpermissive cell population (CEM) from a related, permissive cell 

population (CEM-SS) (Sheehy et al., 2002). These cDNAs were used as probes in 

Northern blotting analysis to identify APOBEC (A3G) as the factor in nonpermissive 

cells responsible for producing noninfectious particles from Vif-deficient HIV-1 (Sheehy 

et al., 2002). In the absence of Vif, A3G is packaged into virus particles during assembly 

in the producer cell and inactivates the virus for the next round of infections (Bogerd and 

Cullen, 2008; Khan et al., 2007; Khan et al., 2005; Sheehy et al., 2002; Zennou et al., 

2004). 

The initial studies of APOBEC proteins showed that the cytidine deaminase 

activity, which resulted in a “hypermutation” of the viral genome, was important for its 

restriction activity (Bishop et al., 2004b; Harris et al., 2003; Mangeat et al., 2003; Zhang 

et al., 2003). A3G deaminates Cs to Us on the ssDNA, negative strand intermediate of 

reverse transcription, which is read by RT as Ts and thus transcribed as As in the positive 
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strand (Iwatani et al., 2006; Yu et al., 2004c). This results in the G to A change ultimately 

detected on the positive strand of the viral DNA sequence. Other APOBEC3 family 

members were also shown to have cytidine deaminase and antiviral activity (Bishop et 

al., 2004a; Dang et al., 2008; Dang et al., 2006; Harris and Liddament, 2004b; OhAinle et 

al., 2006; Yu et al., 2004a; Zennou and Bieniasz, 2006). Furthermore, other viruses and 

repeat elements, including hepatitis B virus (HBV), HPV, LINE-1, Alu elements, HTLV-

1, foamy viruses, adeno-associated virus (AAV), MLV, and murine endogenous 

retroelements, were also shown to be susceptible to antiviral effects of APOBEC family 

of proteins (Bogerd et al., 2006a; Chen et al., 2006; Chiu and Greene, 2006; Delebecque 

et al., 2006; Esnault et al., 2006; Muckenfuss et al., 2006; Niewiadomska et al., 2007; 

Sasada et al., 2005; Stenglein and Harris, 2006; Turelli et al., 2004a; Vartanian et al., 

2008b).  

 Ensuing studies using mutant APOBEC proteins that lack cytidine deaminase 

activity showed that hypermutation may not be the sole component of restriction (Bishop 

et al., 2006; Newman et al., 2005; Opi et al., 2006; Shindo et al., 2003). Blocks in reverse 

transcription and integration have been proposed as additional mechanisms, with the 

caveat that the studies were conducted using APOBEC overexpression systems (Guo et 

al., 2006; Holmes et al., 2007; Mbisa et al., 2007; Yang et al., 2007). However, when 

A3G is titrated to natural levels, the catalytic activity seems to be the main determinant of 

A3G’s antiviral activity (Browne et al., 2009; Miyagi et al., 2007).  

Unfortunately, human APOBEC proteins cannot restrict HIV-1. HIV-1 Vif 

prevents the encapsidation of human A3G (hAG) and A3F (hA3F) into the virus particles 

by recruiting the cullin-RING ubiquitin ligase complex which leads to the 
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polyubiquitination and degradation of A3G and A3F (Kao et al., 2003; Liu et al., 2005a; 

Mehle et al., 2004; Sheehy et al., 2003; Yu et al., 2003; Yu et al., 2004e).  

 Studies of Vpu, another HIV-1 accessory protein, led to the discovery of tetherin. 

Vpu was known to enhance budding of a variety of retroviruses, suggesting that it likely 

acts on a host factor rather than directly on the virus particles (Gottlinger et al., 1993; 

Klimkait et al., 1990; Strebel et al., 1989; Strebel et al., 1988; Terwilliger et al., 1989). Its 

effect is cell-type specific: Vpu defective particles assemble and bud normally in simian 

cells such as African green monkey COS-1 cells but are blocked in others, and 

accumulate at the plasma membrane as fully assembled and mature particles (Sakai et al., 

1995). Heterokaryons of permissive and nonpermissive cells result in a block, suggesting 

that the factor is present in the nonpermissive cells and is dominant (Varthakavi et al., 

2003). Furthermore, IFN treatment enhances the block of Vpu defective HIV-1 release, 

suggesting that the host factor responsible for the block is upregulated by IFN (Neil et al., 

2007). 

 Comparative microarray assay of permissive and non-permissive cell lines, as 

well as IFNα treated and untreated permissive cells pinpointed the factor responsible for 

blocking HIV-1 particle release in the absence of Vpu as tetherin (Neil et al., 2008a; Van 

Damme et al., 2008b). Tetherin, also known as CD317, Bst-2, and HM1.24, is a 

membrane protein with unknown function, but is highly expressed in B cells and multiple 

myeloma-derived cells (Goto et al., 1994; Kupzig et al., 2003). Its extracellular domain 

contains a coiled coil domain and three cysteines, while the C-terminus is anchored to the 

membrane via a GPI-anchor and the N-terminus via a transmembrane domain (Kupzig et 

al., 2003). Prior to its association with HIV-1, tetherin was thought to participate in 
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vesicular trafficking due to its localization at both the plasma membrane and intracellular 

compartments and its ability to be internalized (Kupzig et al., 2003). The mechanism of 

tetherin’s activity on virus particles and the converse mechanism of Vpu on tetherin is 

currently under investigation.   

 There are a few characteristics of the restriction factors described above that 

further support their antiviral nature. The most prominent characteristic is positive 

selection, detected by a high dN/dS ratio (nonsynonymous changes to synonymous 

changes). This ratio quantifies the nucleotide changes that result in amino acid change 

relative to nucleotide changes that do not, and reflect the need for and pattern of 

evolution of the host in the face of evolving or new pathogens, particularly their evasion 

of the host immune defense. TRIM5α, six of seven APOBEC3 family members, and 

tetherin all exhibit this sign of positive selection (Conticello et al., 2005; Liu et al., 

2005b; McNatt et al., 2009a; Rhodes et al., 2005; Sawyer et al., 2004; Sawyer et al., 

2005a). Another sign of adaptation is the expansion of the locus, whereby duplicate 

copies of the same gene can each adapt in different ways to different pressures, and 

thereby specialize in function. For example, the APOBEC3 protein family is composed of 

seven highly related members that are capable of targeting different pathogens, as noted 

earlier [reviewed in (Harris and Liddament, 2004a)]. In humans, the TRIM5 locus 

includes three other family members TRIM6, TRIM34, and TRIM22, the latter protein 

also having evolved under under positive selection; in cows, TRIM5 locus has expanded 

to five potential coding genes (Sawyer et al., 2007). Furthemore, these proteins are 

upregulated by IFN, suggesting that they may be a part of a concerted effort by the host 
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to combat pathogens (Asaoka et al., 2005; Neil et al., 2007; Sakuma et al., 2007; Tanaka 

et al., 2006).  

 The constant adaptation of restriction factors is suggestive of an ongoing battle 

between host and old and new pathogens. The identity of these pathogens is unknown, as 

current state of restriction factors is likely a result of selective pressure from multiple 

pathogens. Isolating the influence of a single pathogen is difficult, and also does not help 

identify the pathogen. Furthermore, many of these battles likely occurred millions of 

years ago, potentially against ancestors of modern pathogens, or against pathogens that 

have been successfully controlled by the host and may no longer exist.    

 The only ancient pathogens whose genomic information is available are those 

which have integrated their genome into that of the host, such as endogenous retroviruses 

and other repeat elements. Endogenous retroviruses are fossils of ancient infections, and 

their sequence provides a snapshop of the pathogen from millions of years ago. 

Furthermore, as constant genomic companions to the host, any virus activity such as the 

expression of viral proteins or virus replication may provide continuous interaction 

between the virus and the host. Thus, ERVs likely exerted a constant selective pressure 

on the host, and may have played a large role in shaping how hosts defend themselves 

against current retroviruses.    

 A major problem of working with ERVs is the deteriorated state of the sequence, 

which over years in the host genome has accumulated numerous mutations and 

truncations that shrouds the original sequence at the time of infection. In this body of 

work, this problem is circumvented by deducing a consensus sequence from the youngest 

set of HERV proviruses. Named HERV-KCON, the function of its individual components 
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and the replication potential of this virus is tested, and its life cycle is characterized. 

Lastly, HERV-KCON’s interaction with current anti-retroviral host proteins is accessed, 

and evidence of the same interaction occurring in vivo is presented.  
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II.  MATERIALS AND METHODS 

 

1. Cloning of endogenous HERV-K proviruses 

 BAC plasmid containing HERV-K113 provirus (BAC RP11-398B1) was 

prepared according to instructions from the manufacturer (Invitrogen). K113 was PCR 

amplified using the purified BAC DNA as template into two fragments using primers 

targeting the flanking genomic sequence and SacI restriction site (4415) in pol ORF. For 

clarification, all the restriction sites in HERV-K113 and HERV-KCON (discussed in 

Results) used for construction of HERV-K plasmids are noted in Figure 6. The primers 

targeting the flanking genomic sequence were designed based on the NCBI Nucleotide 

entries AF387847 and AF387849. The 3’ half of K113 was first cloned into pXF3 using 

SfiI and NheI restriction sites in the multiple cloning site (MCS) of pXF3 (K113-3’ For 

SfiI:  TCAACCCATGGGGCCGAGGCGGCCTGGG, K113-3’ Rev NheI: CATGTTT 

CCTG CTAGCCCACAAACACATGCAGACG). The 5’ half of K113 was amplified 

(K113-5’ For SfiI: TCATTCTAGGCCGAGGCGGCCTTGCATGGGGAGATTCAGAA 

CC, K113 Rev1: TCTTATCAGATGCTATTGCCAGTCC) and cloned into pXF3 

containing the 3’ half of K113 into SacI (4415) and SfiI restriction sites (pXF3 MCS) to 

construct pXF3/K113 (Figure 6). pXF\3 is a low-copy plasmid for expression in 

mammalian cells.  

 CMVP was cloned into the 5’ LTR U3 region up to the TATA box by overlap 

PCR to construct pXF3/CMVP K113 using ClaI (pXF3 MCS) and SalI (1037) restriction 

sites (Figure 6). BAC plasmid DNA containing the K108 provirus was prepared 

according to instructions from the manufacturer from BAC 33P21 (Invitrogen). K108 
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sequence from SacII (6488) to the end was amplified from purified DNA (HERVK SacII 

For:  GCACCTCCGCGGAGACGGAGACATCGCAATCG, K108 Flanking 3': GACCA 

GCCTGACCAAGATGGTGAAACCTGTAGGGGTG), and inserted into SacII (6488) 

and NheI (pXF3 MCS) restriction sites of either pXF3/K113 or pXF3/CMVP K113 to 

construct pXF3/K113 K108 and pXF3/CMVP K113 K108 (Figure 6). 

 

 

Figure 6 Location of restriction sites in HERV-K(HML-2)  

The restriction sites used for constructing HERV-K113 and HERV-KCON plasmids are listed by name and 
location in the genome. The locations are identical for K113 and HERV-KCON.  
 
 
 
2. Derivation and synthesis of HERV-KCON 

The complete HERV-K113 proviral sequence was used to search human genome 

sequence using National Center for Biotechnology Information nucleotide-to-nucleotide 

BLAST. Multiple entries of the same HERV-K proviruses were identified by inspection 

of flanking genomic sequence and only the most recently sequenced entries were used for 

the alignment. The first ten hits were aligned using AlignX program (Vector NTI 

Advance 10.0.1, Invitrogen, http://www.invitrogen.com) to derive a consensus sequence 

that was termed HERV-KCON. Namely, the ten hits were K101, K102, K104, K107, K108, 

 

Gag
Prot

Pol

Env
LTRLTR

Age I (3975) DraIII (5756)EcoRV (1800)

KpnI (6851)

Sac I (4416)

SpeI (3260) SwaI (8265)
XbaI (6640)

XhoI (1013)

Sac II (6488)SalI (1037)
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K109, K113, K115, 11q22, and 12q13. Information about these proviruses is listed on 

Table 2. 

The complete HERV-KCON proviral sequence was synthesized using overlapping 

oligonucleotides of approximately 60 bases spanning the entire genome. Oligonucleotides 

were assigned to 13 groups corresponding to 13 HERV-KCON fragments of approximately 

700 nucleotides and assembled using sequential PCRs. 1μl of each 100μM 

oligonucleotide was mixed with other oligonucleotides of each group to make an equal 

molar mix. In the first round PCR, 1μl of the mix was used in the reaction and 15 cycles 

of synthesis were executed using Pfu DNA polymerase (94 °C for 10 s, 45 °C for 20 s, 

72 °C for 30 s), which fills the gaps between the oligonucleotide overlaps. Thereafter, 2µl 

of the reaction product was subjected to amplification using the 5′ and 3′ oligonucleotides 

in each fragment group (94 °C for 20 s, 45 °C for 20 s, 72 °C for 3 min; 15 cycles). 

Fragments from regions of the HERV-K genome lacking convenient restriction sites were 

assembled into longer fragments of up to 1.5 kb via overlap extension PCR. A derivative 

of the low-copy-number plasmid vector, pXF3, was cloned by inserting a synthetic 

oligonucleotide encoding the restriction sites ClaI (pXF3 MCS), XhoI (1013), EcoRV 

(1800), SpeI (3260), AgeI (3975), SacI (4416), DraIII (5756), XbaI (6640), and NheI 

(pXF3 MCS) that corresponded to convenient restriction sites in the HERV-KCON 

genome (Figure 6). These sites were used to sequentially insert the synthesized DNA 

fragments, thereby generating the final pXF3/HERV-KCON proviral plasmid. The entire 

HERV-KCON was sequenced.  
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3. HERV-KCON–derived expression plasmids 

Various versions of HERV-KCON were synthesized as packageable viral genome 

for experiments by replacing the U3 region of 5’ LTR with cytomegalovirus (CMV) 

promoter/enhancer sequence to enhance transcription and inserting a selectable marker 

into the Env open reading frame to detect infection (Figure 21). CHKCG was created 

from the pXF3/HERV-KCON proviral plasmid by first replacing HERV-K U3 sequences 5′ 

to the TATA box of the 5’ LTR with CMV promoter/enhancer sequences using 

overlapping PCR and ClaI (pXF3 MCS) and EcoRV (1800) restriction sites to generate 

pXF3/CMVP HERV-KCON (Figure 6). In parallel, an EGFP cDNA (Clontech) was 

inserted into pCR3.1 (Invitrogen), followed by PCR amplification and insertion of the 

CMVP-EGFP into KpnI (6851) site of pXF3/CMVP HERV-KCON to create CHKCG. 

Similarly, a Puro cDNA was digested from pMSCV Puro (Clontech) with HinDIII and 

XbaI and inserted into pCR3.1. Thereafter, a CMVP-Puro cassette was PCR amplified 

and cloned into the KpnI (6851) restriction site of pXF3/CMVP-HERV-KCON to construct 

CHKCP.  

CCGBX, a derivative of CHKCG, was constructed by inserting a CMVP-EGFP 

cassette into XbaI (6640) and SwaI (8265) restriction sites of CHKCG, resulting in a 

vector genome that is slightly smaller than CHKCG and gives higher infectious titers. 

CCGBX-P was derived from CCGBX by inserting a 53-bp HIV-1-derived sequence 

(GATCTGAGCCTGGGAGCTCTCTGGCTTGTGACTCTGGTAACTAGAGATCCCT

C) into the 5' end of the 3' long terminal repeat (LTR) to allow specific amplification of 

de novo HERV-KCON sequences upon infection of human cells. The insertion was made 

using overlap extension PCR and SwaI (8265) and NheI (pXF3 MCS) restriction sites in 
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the HERV-KCON vector sequence. CCBXS is a modified CCGBX with a blasticidin 

resistance gene in place of EGFP for clone selection. Reverse transcriptase mutant 

versions of all Pol containing plasmids were constructed by mutating the conserved 

YIDD (amino acids 195-198) RT domain into AIAA, then inserting the amplified 

fragment with nucleotide changes into pol ORF using SacII (6488) and DraIII (5756) 

restriction sites.  

 HERV-K protein expression plasmids pCRVI/Gag, pCRVI/Gag-PR, and 

pCRVI/Gag-PR-Pol were generated by insertion of the respective ORFs from 

pXF3/HERV-KCON into the NotI restriction site of pCRVI, an HIV-1 based expression 

plasmid that also expresses HIV-1 accessory proteins Tat, Rev, and Vpu (Figure 7). 

Similarly, a PCR-amplified HERV-KCON Env-encoding fragment was inserted using 

EcoRI and NotI restriction sites, generating pCRVI/Env. A mutant version of 

pCRVI/Gag-PR, pCRVI/Gag-PR(mut), was generated by substituting the conserved 

putative active site residues DTG (amino acids 33-35) to AAA. The two Rec exons were 

PCR amplified from BAC RP11-33P21 (Invitrogen) containing the HERV-K108 

sequence, which encodes a Rec protein that is identical to the consensus sequence, joined 

using overlapping PCR, and inserted into the EcoRI and XhoI sites of pCR3.1 to generate 

pCR3.1/Rec. pCR3.1 is a commercially available plasmid (Invitrogen) designed to 

transiently express a cloned sequence at high levels in mammalian cells and includes the 

human cytomegalovirus virus promoter and the BGH polyA signal. pCRVI/Gag-GFP 

was cloned by first deleting an NcoI restriction site (1251) near the start of gag ORF by 

site-directed mutagenesis. This Gag sequence was cloned into pCAGGS-HA via NcoI 

and EcoRI sites, then the EGFP sequence inserted into the EcoRI site, and screened for 



 

42 
 

correct EGFP orientation. Like pCR3.1, pCAGGS is a plasmid designed to transiently 

express cloned inserts at high levels in mammalian cells, and includes the enhancer from 

human cytomegalovirus immediate early promoter, the chicken β-actin/rabbit β-globin 

hybrid promoter, and the rabbit β-globin polyadenylation signal. Gag-GFP was then 

cloned into the NotI restriction site in pCRVI. 

 

 

Figure 7 Map of pCRVI 

pCRVI is a high copy plasmid for transient expression in mammalian cells derived by combining sequences 
of HIV-1 and pCR3.1 (Invitrogen). Inserts cloned into the MCS are expressed at high levels by the CMV 
promoter enhancer sequences and the expression of HIV-1 accessory protein, Tat. Tat activation region, the 
viral sequence Tat recognizes to promote transcript elongation is located in the RU5 region. The transcripts 
are exported efficienty by Rec and Rec response element (RRE) by CRM-1 dependent RNA export 
pathway. Exon1 and exon2 encode for Tat and Rev in different open reading frames. Splice donor and 
acceptor sites are marked by yellow and red dots, respectively.  
 

 pCR3.1/K113 LTR GFP, a plasmid that expresses GFP under the control of 

HERV-K113 LTR, was constructed by a three-way ligation with K113 LTR from 

pXF3/K113 described earlier (SpeI and EcoRI sites), EGFP from pEGFP-N1 (EcoRI and 

NotI sites, Invitrogen), and pCR3.1 (NotI and SpeI sites). pEGFP-N1 is a commercially 
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available plasmid designed to express the cloned insert in fusion with EGFP transiently at 

high levels in mammalian cells (Invitrogen). The EGFP contains two amino acid changes 

from GFP sequence (F64L and S65T) for higher expression and brighter fluorescence 

(Invitrogen). This cloning strategy eliminates the CMVP from pCR3.1. 

 

4. Other expression plasmids 

CSGW, a packageable HIV-1 vector plasmid expressing enhanced green 

fluorescent protein (EGFP), and HIV-1NL4-3 GagPol expression plasmids have been 

described elsewhere (Bainbridge et al., 2001; Cowan et al., 2002). Plasmids expressing 

various human APOBEC3 proteins, namely hA3A, hA3B, hA3C, hA3F, and hA3G, have 

been described previously (Bishop et al., 2004a). Plasmids expressing additional human 

APOBEC3 proteins (hA3DE and hA3H) were constructed using the same pCMV4-HA 

vector and HindIII and XbaI restriction sites. 

 

5. Cell lines 

293T, MDTF (mouse), NIH3T3 (mouse), Pindak (squirrel monkey), TE671 

(human), HeLa, CRFK (cat), and HT1080 (human) cells were maintained in Dulbecco's 

modified Eagle's medium (DMEM),  CHO745 (Chinese hamster) cells and TRIM5-

expressing derivatives in Ham's F-12 medium, and CEM (human) cells in RPMI medium, 

all supplemented with 10% fetal calf serum and gentamicin.  
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6. Transfection 

To generate virus-like particles, 293T cells were seeded on 10-cm plates at 6 × 

106 cells per plate or in six-well plates at 1 × 106 cells per well. The following day, the 

cells were transfected using 4 µg of polyethylenimine (PEI) per µg of DNA.  

To generate VSVG pseudotyped HERV-KCON particles, 293T cells in six-well 

plates were transfected with 1.3 μg of HERV-KCON packageable genome plasmid, 1 μg of 

pCRVI/Gag-PR-Pol, 0.5 μg of pCR3.1/Rec, and 0.2 μg of VSVG. Alternatively, 293T 

cells in 10-cm dishes were transfected with 6.5 μg of HERV-KCON packageable genome 

plasmid, 4 μg of pCRVI/Gag-PR-Pol, 3 μg of pCR3.1/Rec, and 1.5 μg of VSVG. To 

generate infectious HIV-1 virions, 293T cells were transfected in six-well plates with 

0.75 µg of CSGW, 0.75 µg HIV-1 Gag-Pol, and 0.2 µg VSVG. To generate HIV-1 

(HERV-KCON) pseudotypes, 293T cells in 10-cm plates were transfected with 6 μg of 

HIV-1-GagPol, 6 μg of CSGW, and either 3 μg of pCRVI/HERV-KCON Env or empty 

pCRVI as a control. Additional plasmids or empty control vectors were transfected when 

necessary and as noted for each experiment. Medium was changed 5 or 12 hours after 

transfection with fresh medium containing 5µM sodium butyrate, and virus-containing 

supernatants were collected 48 hours after transfection. No Vif protein was expressed 

during the generation of virions for APOBEC experiments in Figures 38, 39, and 40.  

 

7. Infection 

For infection, cells were seeded on 24-well plates the previous day (293T and 

TE671 cells at 5 x 104 cells per well, CHO745 cells at 4 x 104 cells per well, HT1080 

cells at 3 x 104 cells per well, Pindak, CRFK, NIH3T3, and MDTF cells at 2 x 104 cells 
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per well). Filtered supernatant from transfected cells (0.2 µm) was layered onto cells with 

fresh medium supplemented with 5 µg of polybrene/ml. For experiments in Chapter 4, 

cells were also spinoculated at 2,000 rpm for 2 hours at room temperature. Two days after 

infection, the infected cells were quantified either by counting foci microscopically, by 

fluorescence-activated cell sorter analysis for GFP+ cells, or by selecting cells for drug 

resistance depending on the packageable genome plasmid used for particle production. 

For drug selection, cells were expanded 24 hours post infection, and placed under 

blasticidin (0.25 μg/ml) or puromycin (2.5 μg/ml) for approximately ten to fourteen days.  

  

8. Reverse Transcription Assay 

Reverse transcriptase activity in 293T culture supernatants was measured using a 

commercially available Lenti RT Activity Kit (Cavidi, http://www.cavidi.se) in which 

BrdUTP is incorporated into a plate-bound oligo(dT)/poly(rA) substrate. Thereafter, solid 

phase polymerized BrdU is detected using an anti–BrdU–alkaline phosphatase conjugate 

and a colorimetric substrate. Activity is standardized using a recombinant HIV-1 RT 

standard. The Lenti RT Activity Kit was used, as HERV-K(HML-2) RT had been shown 

to preferentially use Mg2+ over Mn2+ as the divalent cation like HIV-1 (Berkhout et al., 

1999).  

 

9. Generation of anti-HERV-K CA antibody 

To generate an anti-CA polyclonal antiserum, the N-terminal cleavage site of CA 

was first determined by Edman sequencing of the putative CA protein isolated from 

purified HERV-KCON
 virion particles. 293T cells were transfected with pCRVI/Gag-PR, 
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and the supernatant was replaced 12 hours post transfection with fresh medium 

containing 5µM of sodium butyrate. After an additional 48 hours, the virus particles were 

purified through a 30% sucrose gradient, and the proteins separated in a protein gel by 

SDS-PAGE. The proteins were stained using amido black stain, and two bands at 30kDa 

and approximately 15kDa were cut from the gel for Edman sequencing. The bands were 

sent to University of Texas Medican Branch (UTMB) at Galveston Texas Protein 

Chemistry Core for Edman sequencing 

(http://www.utmb.edu/brf/cores/ProteinChemistry/index.html).   

The exact location of cleavage is depicted in Figure 9. As CA is estimated to be 

around 30 kDa, the position of the C-terminal CA cleavage site was estimated based on 

the determined position of the CA N terminus. The deduced CA-encoding sequence was 

cloned into pGEX-6P-1 (GE Healthcare Life Sciences) to express a glutathione S-

transferase (GST)-tagged CA protein that was purified using glutathione-agarose beads. 

The GST tag was eliminated by PreScission protease cleavage as per the manufacturer's 

instructions (GE Healthcare Life Sciences). The purified recombinant CA protein was 

used to generate the antiserum (Covance).  

 

10. HERV-K protein analysis 

The 293T cells were transfected with HERV-K plasmids as described above. 

Supernatant was collected two days post-transfection, filtered (0.2 μm), and 

ultracentrifuged through a 20% sucrose layer at 100,000g for 90 min at 4 °C to pellet 

virus-like particles (VLPs). Transfected cells were lysed via sonication in SDS-PAGE 

loading buffer and separated on 10% SDS-PAGE gels (Bio-Rad, http://www.biorad.com). 
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Proteins were transferred onto nitrocellulose membrane and probed with a commercially 

purchased anti–HERV-K Gag antibody (Austral Biologicals, 

http://www.australbiologicals.com), or the generated anti-HERV-K CA polyclonal 

antiserum. Alternatively, VLPs were separated on 4% to 20% gradient or 10% SDS-

PAGE gel (Bio-Rad) and silver stained using a kit, as per the manufacturer's instructions 

(Sigma-Aldrich, http://www.sigmaaldrich.com). 

 

11. Analysis of de novo integrated HERV-KCON proviral DNA 

CHO745 cells were infected with CHKCP-carrying HERV-KCON(VSVG) virus 

stock and transduced cells selected in 2.5 μg/ml puromycin for approximately 10 days. 

From the puromycin-resistant population comprising several hundred colonies, four 

single cell clones were derived by limiting dilution and expanded in culture for 

approximately 2 weeks. Total DNA was extracted from each clone using the Qiagen 

DNeasy Blood and Tissue Extraction kit as per manufacturer’s instructions 

(http://www.qiagen.com). The extracted DNA was used as template for PCR analysis 

using HERV-KCON gag-specific primers Gag-S (nucleotides 1236 to 1262) and Gag-AS 

(nucleotides 1991 to 1946). Additionally, host DNA sequences flanking the integrated 

CHKCP proviral DNA were cloned using the GenomeWalker kit (Clontech) according to 

the manufacturer's instructions and PCR primers directed to the HERV-KCON LTRs. 

Specifically, LTR-AS (GCA AGA GAG ATC AGA TTG TTA CTG TGT CTG) and 

LTR-S (TAC GAG AAA CAC CCA CAG GTG TGT AGG) oligonucleotides were used 

to clone sequences flanking the 5′ and 3′ LTRs, respectively. Additional PCR primers, 

targeting flanking hamster DNA sequences identified via the GenomeWalker approach, 
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were used to authenticate the presence of preintegration sites in uninfected CHO745 cells 

and integrated provirus in three CHKCP transduced cell clones. In the example (clone No. 

1) shown in Figure 27D, the primers Ham-S (GCT ACC CTG AAG ATT TGA GCC 

AGT GTG C) and Ham-AS (TCT TGC AAG TTG TCC TGT GGC ATG G) were used. 

For all PCR reactions, 30 cycles of amplification were completed using 200 ng of cellular 

DNA, with no DNA, uninfected CHO cell DNA, or human DNA templates analyzed as 

negative and positive controls, as appropriate. 

 

12. HERV- K sequence analysis  

Full-length HERV-K(HML-2) sequences in the human genome were identified 

using a TBLASTX search (www.ensembl.org/Multi/blastview) of the human genome 

with the HERV-KCON Gag sequence as the query sequence. Sixteen unique (by 

chromosomal location) human-specific full-length HERV-K(HML-2) proviruses were 

identified by cross-referencing with insertions identified by Belshaw et al. and Romano et 

al. (Belshaw et al., 2005a; Romano et al., 2006). All identified insertions were included in 

subgroup N, as defined by Romano et al. (Romano et al., 2006). Specifically, the 

proviruses included K101, K102, K104, K106, K107, K108, K109, K113, K115, 11q22, 

12q14, 19q12, 1p31 (K4), 3q27 (K50b), 3q21 (KI), and 21q21 (K60). All GenBank 

accession numbers for these sequences are found in the reports by Barbulescu et al. and 

Romano et al. In addition, the K60 sequence was deduced from GenBank entry 

AL109763 (Barbulescu et al., 1999; Romano et al., 2006). The proviruses were aligned to 

HERV-KCON using AlignX (Invitrogen) for comparison. Figures 34 and 38, below, depict 

G-to-A differences between the provirus and HERV-KCON
 and were derived using the 
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HYPERMUT program 

(http://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html). The p values 

that accompany the sequence analyses were calculated by a chi-square test of 

independence to determine whether the frequency at which each nucleotide occurred at 

each position flanking each mutation was significantly different relative to its expected 

frequency based on nucleotide composition.  

 

13. HERV-K hypermutation assay  

Infectious HERV-KCON particles were generated as described above using 

CCGBX-P in place of CCGBX. Prior to infection, supernatant was supplemented with 10 

mM MgCl2 and treated with DNase I (0.1 U per µl; Roche) for 1 h at 37°C to eliminate 

residual transfected DNA. Fresh 293T cells were infected as described above. Ten hours 

postinfection, total DNA was collected using the DNeasy blood and tissue kit (Qiagen). 

Partial EGFP (Clontech) and HERV-K sequence of 762 nucleotides were amplified using 

oligos designed to target EGFP (CGC ACC ATC TTC TTC AAG GAC GAC G) and the 

inserted HIV-1 sequence (GAG GGA TCT CTA GTT ACC AGA GTC ACA AGC C) 

using Phusion polymerase (Invitrogen) (98°C for 10 s, 55°C for 10 s, and 72°C for 15 s; 

30 cycles). Amplified DNA was purified using a gel extraction kit (Qiagen) and cloned 

into pCR-Blunt II-TOPO according to the manufacturer's instructions (Invitrogen). To 

confirm the complete elimination of transfected DNA, amplification of plasmid sequence 

using primers targeting the plasmid backbone sequence and the untranslated region of 

HERV-K using similar PCR conditions was attempted. Also, to confirm that the 

amplified sequences were derived from de novo reverse-transcribed DNA, HERV-K 
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particles containing a mutationally inactivated reverse transcriptase were subjected to the 

same infection procedure and PCR analysis. Twelve clones were sequenced for each 

APOBEC3 protein studied, as well as the empty vector control, and compared to the 

original CCGBX-P sequence for evidence of hypermutation.  

 

14. Aphidicolin induced cell arrest and infection 

 HT1080 cells were seeded in 24-well plate at 5 x 104 cells per well and treated 

with 2 µg/ml of aphidicolin 24 hours prior to infection to arrest at G1/S phase. The same 

concentration of aphidicolin was maintained during infection. 48 hours post-infection, the 

cells were fixed with 4% PFA, permeabilized in 0.1% Triton/1X PBS, and stained with 

propidium iodide (1 µg/ml), and checked for cell cycle arrest and infection by FACS.   

 

15. Infection and recovery of integration sites 

 For infection, 293T and HT1080 cells were seeded at 2.5 × 105 and 1.5 × 105 cells 

per well, respectively, in six-well plates the previous day. Cells were spinoculated with 

the DNase-treated HERV-KCON virus at 2000 rpm for 2 h at room temperature. Total 

DNA was collected 48 h post-infection.  

 Recovery of integration sites was performed as described (Wang et al., 2007). 

Two micrograms of genomic DNA were digested overnight with MseI or ApoI, ligated to 

linkers overnight at 16°C, and digested a second time with PstI and DpnI. Nested PCR 

was then carried out under stringent conditions using LTR primers complementary to 

HERV U3 sequences. Oligonucleotides used in this study are listed in Supplemental 

Table 1. DNA barcodes were included in the second-round PCR primers in order to track 
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sample origin (Hoffmann et al., 2007). Amplification products were gel-purified and 

sequenced by massively parallel pyrophosphate sequencing. Only sequences that 

uniquely aligned to the human genome by BLAT (hg18, version 36.1, >98% match score) 

and began within 3 bp of the LTR end were used in downstream analyses. Integration 

sites sequences have been deposited in GenBank under the accession numbers FI497131–

FI498695.  

 Of the 25,102 sequences analyzed, 6873 showed a high-quality match to the 

HERV-KCON vector using BLAT. Sequences were classified as 2-LTR circle if there was 

a match to the U5 LTR end in the expected orientation, while allowing indels of 100 bp. 

One-thousand-fifty-eight were an internal fragment derived from the internal U3 LTR 

and flanking sequences. A total of 3784 sequences showed the viral DNA end abutting 

internal HERV-KCON sequences and were classified as autointegration products. Another 

14 sequence reads had complex structures and were not included in the above categories.  

 Analysis of other retroviruses and genomic HERVs integration site data sets 

published previously (Table 3) were analyzed using the bioinformatics pipeline 

mentioned above. Discrepancies in data set sizes likely result from differences in quality-

control thresholds compared with the original publications. The ERV2 data set was 

generated using RepeatMasker and the human genome (hg18, version 36.1). For the 

HML2(85) data set, the HERV-KCON LTR sequence was used as a query to search for 

sequences 85% or higher in nucleotide similarity and longer than 600 bp using the 

Ensembl BLASTN (http://www.ensembl.org/Multi/blastview). The remaining sequences 

were organized by chromosomal location, and LTRs <9000 bp apart were manually 

determined as either solo-LTRs or LTRs of the same provirus based on the LTR flanking 
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sequence and identification of target site duplication sequence. Duplicate hits due to 

genome duplications or belonging to the same provirus were condensed into a single 

entry.  

 

16. Analysis of integration site distributions 

 Analyses were carried out as described (Berry et al., 2006; Marshall et al., 2007). 

Analyses of gene expression used data from 293T cells, with expression measured using 

the Affymetrix HU133 plus 2.0 gene chip array. Expression values were ranked and 

divided into eight bins according to rank. Consensus sequence analysis at the point of 

integration was performed using WebLogo (http://weblogo.Berkeley.edu/logo.cgi), and 

the primary sequence features found to match those expected for HERV-K integration 

(data not shown).   

 CD4+ T cells were used to generate ChIP-Seq data (Barski et al., 2007), differing 

from the cell types studied here. However, genome-wide surveys of modification 

densities in different cell types from the ENCODE project show that a substantial fraction 

of epigenetic marks are common to most cell types analyzed probably because a large 

fraction of transcription is from “housekeeping genes.” For example, for HIV data sets, 

there is no stronger correlation with epigenetic marks measured in T cells than for 

integration site data sets from T cells than from other cell types (C.C. Berry, T.L. Brady, 

F.D. Bushman, and K. Ronen, unpublished.). Furthermore, differences due to 

experimental error were generally greater than differences due to cell type (ENCODE 

Project Consortium, 2004). Thus the data from Barski et al represent a useful 

approximation to the cell types studied here. 
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III.  RESULTS 

 

Chapter 1. Endogenous HERV-K proviruses 

1.1 Introduction to human endogenous retroviruses 

 Retrovirus-like LTR elements, also known as human endogenous retroviruses 

(HERV), make up more than 8% of the human genome (Lander et al., 2001). There are 

three main groups of human endogenous retroviruses: class I, II, and III, which are 

similar to gammaretroviruses, betaretroviruses, and spumaretroviruses, respectively 

(Bannert and Kurth, 2004). Regardless of genus affiliation, all HERVs known to date are 

heavily mutated with insertions, deletions, premature stop codons, and truncations, and 

are unlikely to be replication competent.  

The class II HERVs are also known as the HERV-K superfamily, a designation 

based on the tRNA-lys binding site on the viral sequence, the interaction of which is 

believed to prime reverse transcription (Ono, 1986). The superfamily is subdivided into 

ten families from HML-1 to HML-10 based on LTR and RT sequence (Andersson et al., 

1999; Medstrand and Mager, 1998). Each family is composed of insertions that are 

around 80% or more similar to each other in RT sequence (Andersson et al., 1999; 

Medstrand and Blomberg, 1993a). Of the ten subfamilies, HERV-K(HML-2) family has 

been a source of particular interest, as it is believed to be the youngest of the HERV-K 

superfamily, and most likely to include replication competent members.  
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1.2 HERV-K(HML-2)  

 Many insertions of HERV-K(HML-2) family are human-specific, indicating that 

they inserted after the human-chimpanzee divergence approximately six million years 

ago; some are polymorphic within human population indicating an even more recent 

insertion time (Belshaw et al., 2005a; Hughes and Coffin, 2004; Turner et al., 2001). 

Table 1 list the HERV-K(HML-2) LTRs that were found by Ensembl nucleotide to 

nucleotide BLAST using HERV-KCON LTR (HERV-KCON discussed later), organized by 

chromosome location. Only hits that were 600 bps or longer and 85% or higher in 

sequence similarity to HERV-KCON LTR were included. The 600 bps limit was selected 

to eliminate SVA elements, a repeat element which include partial Env and 3’ LTR 

sequences from HERV-K(HML-2) of around 490 bps in length and greatly outnumbers 

HERV-K elements (Wang et al., 2005). The 85% sequence similarity cut off was based 

on sequence similarity within HML-2 group and sequence divergence between HML-2 

and HML-1, the subfamily closest in sequence to HML-2 (Medstrand and Blomberg, 

1993a). 402 insertions were found. Including K113 and K103, which were discovered in 

a BAC screen and is not present in the NCBI human genome sequencing project sample, 

a total of 404 insertions are listed in Table 1 (Turner et al., 2001).   

 The number of insertions were compared to chromosome size (Lander et al., 

2001). If HERV-K integrates randomly, the insertions should be found evenly across the 

chromosomes despite the differences in size, hence the number of insertions in a given 

chromosome should correlate proportionately with its size. Figure 8 displays the ratio of 

proportion of HERV-K insertions in each chromosome of total insertions to 



 

 
 

Table 1 HERV-K(HML-2) LTRs in the human genome (pages 55-61) 

HERV-KCON LTR sequence was used as query in the Ensembl BLASTN search tool (http://www.ensembl.org/Multi/blastview) to identify HERV-K(HML-2) 
LTRs. Hits that were less than 600 bps were eliminated in final list. All LTRs are 85% or more identical to HERV-KCON LTR, and organized by chromosome. 
Both solo-LTRs and LTRs associated with proviruses are listed. The LTRs in proviral context are only listed once, and the provirus identified. LTRs that were 
less than the distance of a full length HERV-K(HML-2) of 9472 bps were manually checked for proviral sequence or flanking five to six nucleotide repeats to 
confirm status.  
 

Chromosomal location Statistics Notes Chromosomal location Statistics Notes
Start End Length Start End E-val % ID Start End Length Start End E-val % ID

Chromosome 1 1 965 970 108861590 108862554 0 92.9
1 968 969 1335050 1336016 0 96.8 14 737 732 111704102 111704821 9E-305 88.9
1 858 859 1505586 1506443 0 96.3 1 965 974 114402293 114403262 0 92.2

252 965 717 10409558 10410267 0 92.9 1 725 732 143314771 143315496 0 90.4
123 965 845 15578104 15578945 0 96.0 254 849 602 144213168 144213765 0 91.0

1 965 972 25786928 25787892 0 92.1 1 725 731 144779880 144780605 0 91.0
1 965 966 29537184 29538146 0 96.1 1 639 647 145044648 145045283 1E-246 88.4

123 965 845 29558546 29559386 0 95.9 1 737 744 145178373 145179105 0 90.1
1 668 676 33301704 33302369 2E-245 88.3 14 965 956 145672607 145673553 0 92.5
5 668 670 36727459 36728118 2E-279 90.3 1 725 731 146076983 146077708 0 91.0
1 965 970 40810285 40811250 0 93.5 1 725 732 146723221 146723946 0 90.7
4 965 964 45766362 45767324 0 96.4 1 725 732 146832410 146833135 0 90.6
1 965 975 46558555 46559519 0 92.3 1 965 967 153835955 153836920 0 96.1

220 965 757 46568022 46568771 0 91.2 1 968 968 153863081 153872260 0 99.3 K102
1 968 970 52244505 52245471 0 97.9 1 968 968 154415638 154416605 0 99.3
5 965 965 65378071 65379030 0 93.8 1 965 970 154417876 154418833 0 92.9

123 968 847 66663086 66663931 0 98.1 1 965 965 158004210 158005174 0 95.9
3 737 740 70698933 70699668 0 91.1 1 729 738 158888553 158889277 5E-303 89.3
1 965 967 73367572 73368536 0 93.8 1 965 968 158927199 158936427 0 95.0 K18
1 968 968 75615359 75621731 0 99.0 K4 1 737 745 159185475 159186205 1E-300 88.7
1 851 854 78221263 78222109 0 96.7 1 961 967 159253249 159254211 0 95.0

123 968 849 89305134 89305980 0 96.4 1 639 649 163328444 163329078 4E-204 86.1
1 968 968 93514927 93515894 0 99.1 1 965 972 205875083 205876042 0 90.3



 

 

 

Chromosomal location Statistics Notes Chromosomal location Statistics Notes
Start End Length Start End E-val % ID Start End Length Start End E-val % ID

1 968 968 222594156 222595123 0 99.0 1 968 968 47276028 47276995 0 99.1
1 965 966 226122667 226123632 0 95.5 123 968 848 50532441 50533283 0 97.5
1 670 673 244312610 244313279 0 94.2 1 968 969 53986581 53987548 0 97.4

123 965 844 245245711 245246553 0 96.7 1 716 721 75525034 75525743 7E-284 89.9
Chromosome 2 1 616 621 75777169 75777782 0 88.9

14 737 730 26826246 26826970 0 91.0 157 965 810 101474031 101474838 0 94.6
1 968 968 27536350 27537317 0 99.3 5 965 973 101537863 101538821 0 91.9
1 968 968 30689842 30690809 0 98.9 304 965 663 101867678 101868338 0 95.6
1 965 972 32354158 32355122 0 93.0 1 965 970 102901581 102902546 0 95.6     olo LTRs
1 968 968 37305965 37306932 0 99.0 1 965 969 102905370 102906335 0 95.9
1 965 972 39401803 39402769 0 94.1 125 965 850 113765620 113766460 0 90.9

293 965 676 55360205 55360871 0 91.9 123 968 846 114225814 114234858 0 99.3 K106
1 965 967 86341933 86342898 0 95.2 1 639 649 119741740 119742376 0 87.5

14 737 729 98112994 98113717 0 91.8 123 786 664 127092106 127101103 0 97.9 KI
1 737 744 100667760 100668495 0 89.7 1 786 786 130842811 130843595 0 97.3
1 965 972 112436894 112437857 0 93.0 1 732 738 131258822 131259548 9E-274 89.6
1 965 972 113408302 113409266 0 93.2 300 965 672 135717474 135718133 0 91.1

123 965 848 130436011 130436854 0 95.6 14 736 730 146909964 146910682 0 89.2
254 965 717 193114916 193115627 0 91.6 14 737 730 147722750 147723473 3E-302 90.7

1 965 973 201711970 201712932 0 92.2 1 968 969 177106032 177106999 0 97.1
123 968 847 207609916 207610762 0 99.1 1 968 968 186763030 186772209 0 98.6 K50B

1 598 602 208772524 208773125 9E-296 95.0 123 965 845 188087360 188088203 0 96.6
307 965 661 215376160 215376818 0 96.1 1 965 966 188093703 188094666 0 96.8
115 965 858 223763553 223764402 0 91.1 1 965 967 190451857 190452821 0 94.4

1 965 967 228936605 228937569 0 96.8 1 968 968 197138793 197139760 0 99.4
123 968 848 231416598 231417441 0 97.2
123 968 846 232149853 232150698 0 97.9 Chromosome 4
292 965 679 232996251 232996916 0 89.8 1 968 968 135521 136488 0 99.1

4 965 968 234741451 234742413 0 92.2 4 734 740 191826 192551 3E-287 88.5
1 732 738 3978297 3979022 8E-283 89.3

Chromosome 3 63 732 676 9342737 9343403 2E-285 88.9
1 737 746 12690614 12691346 2E-290 89.5 51 767 718 9738282 9738990 0 91.9
1 968 968 14107686 14108653 0 99.3 294 965 676 15687679 15688350 0 93.6
1 668 675 14289349 14290011 7E-278 90.4 1 769 773 47982337 47983105 0 89.9
1 965 966 23561161 23562120 0 95.6 1 968 969 63489191 63490158 0 97.7

293 965 680 39434797 39435469 0 91.5 1 965 971 66907073 66908036 0 93.1



 

 
 

 

Chromosomal location Statistics Notes Chromosomal location Statistics Notes
Start End Length Start End E-val % ID Start End Length Start End E-val % ID

1 968 968 73213805 73214772 0 99.6 1 965 966 180186875 180187835 0 95.6
123 965 845 118323838 118324681 0 96.5 1 737 744 180626704 180627433 0 91.7

1 968 968 120483137 120484102 0 99.2
1 965 967 120536969 120537932 0 96.2 Chromosome 6

123 968 846 157445364 157446209 0 99.1 1 965 969 2853896 2854860 0 94.4
1 668 675 161117393 161118053 8E-282 88.9 1 737 740 24508490 24509226 0 91.9
1 968 968 161799388 161800355 0 99.3 1 965 973 26107438 26108401 0 91.6
4 965 966 166046119 166047082 0 96.2 1 737 745 26864459 26865189 3E-265 88.9
1 965 970 166130985 166131949 0 93.0 1 965 968 27850221 27851186 0 96.4
1 965 973 166136290 166143515 0 92.3 K5 1 965 970 32853826 32854790 0 95.0
1 725 730 175540755 175541480 2E-285 91.2 123 968 847 33885715 33886560 0 97.8
1 725 730 175558486 175559210 2E-266 90.1 1 965 968 34795218 34796183 0 96.2

1 668 669 44404059 44404724 0 96.0
Chromosome 5 1 668 674 52734587 52735250 0 88.7

1 968 971 1649092 1650059 0 97.4 123 968 847 52895551 52896397 0 98.9
1 965 968 4978041 4979006 0 96.1 1 679 683 74571757 74572435 0 94.3
1 968 969 8990854 8991820 0 98.0 123 968 846 78483381 78492688 0 99.4 K109
1 965 967 18614320 18615285 0 96.2 1 968 968 79625224 79626191 0 99.1

123 968 848 30522517 30531624 0 97.8 K104 1 968 968 89148026 89148993 0 99.1
1 968 971 35212244 35213212 0 97.6 2 968 969 93939805 93940769 0 97.7

304 965 664 43616583 43617245 0 93.7 1 872 873 99983968 99984839 0 96.5
1 968 969 44766346 44767313 0 98.1 254 965 720 121294551 121295255 0 88.2

123 968 846 54902779 54903624 0 98.8 1 965 971 126138689 126139654 0 93.7
1 737 746 55488581 55489314 1E-275 89.1 1 968 969 135021941 135022908 0 98.5
1 965 967 58795369 58796334 0 95.9 294 965 673 151818041 151818712 0 97.5

123 968 846 74937414 74938259 0 99.7 1 737 743 158093470 158094201 0 89.2
1 613 619 92818429 92819040 2E-294 90.2 1 965 967 160135762 160136717 0 94.4

14 640 632 105623100 105623722 1E-285 90.7 123 968 851 169488305 169489152 0 96.2
123 968 847 116184848 116185693 0 98.1

1 786 788 119558459 119559245 0 98.5 Chromosome 7
1 636 646 149302586 149303220 4E-217 85.9 1 965 967 2395571 2396533 0 94.4

14 737 733 149813747 149814464 0 88.7 1 968 968 4588583 4606557 0 99.3 K108
1 968 968 156017295 156026474 0 99.2 K107 1 732 741 6908153 6908879 7E-282 88.7

123 968 846 169356457 169357302 0 98.1 115 917 814 7007983 7008786 7E-304 89.8
5 618 620 178157687 178158298 5E-230 90.2 1 968 968 16203872 16204839 0 99.6
1 968 968 178873570 178874537 0 98.0 1 968 968 23046000 23046967 0 99.2



 

 
 

 

Chromosomal location Statistics Notes Chromosomal location Statistics Notes
Start End Length Start End E-val % ID Start End Length Start End E-val % ID

1 668 677 23763659 23764323 1E-226 88.3 123 965 845 145003872 145004708 0 95.7
1 965 968 27747807 27748765 0 94.7 1 965 966 145992083 145993047 0 96.8

14 737 733 47995810 47996523 3E-302 89.2
115 818 707 54710547 54711250 0 91.9 Chromosome 9
123 965 846 64340835 64341677 0 96.2 1 737 748 11884757 11885489 9E-260 88.0

1 737 745 65721614 65722348 3E-278 88.6 1 968 970 17435359 17436326 0 97.4
1 965 967 100579858 100580822 0 96.0 366 965 603 26705151 26705751 0 93.0
1 968 969 104175605 104176571 0 98.4 1 968 968 31622877 31623844 0 98.6

123 965 846 112768812 112769654 0 96.7 1 668 677 33505170 33505834 3E-264 89.2
1 643 652 118527860 118528500 2E-262 89.3 123 968 846 67767163 67768008 0 98.7
1 968 968 123207927 123208894 0 99.1 1 968 968 71567873 71568840 0 98.8
1 968 968 124648460 124649427 0 99.3 2 965 966 74891946 74892910 0 96.0
1 968 968 125595450 125596417 0 98.4 123 968 846 110396828 110397673 0 98.6
1 965 972 138802691 138803656 0 93.4 1 737 744 112628352 112629081 2E-256 88.2
1 968 968 157722244 157723211 0 99.5 14 737 733 113677413 113678133 3E-272 89.4

1 968 968 123231205 123232172 0 99.2
Chromosome 8 123 968 846 133222041 133222884 0 99.1

1 968 968 7342807 7352155 0 99.3 K115 123 965 846 135812837 135813681 0 97.0
1 968 968 18695739 18696706 0 99.3 4 965 964 135947382 135948344 0 97.2
1 968 968 37170044 37171011 0 99.9 1 668 680 136746896 136747562 0 87.7
1 737 744 39627707 39628434 8E-274 89.5
1 965 968 42769997 42770963 0 95.7 Chromosome 10
1 968 970 43713839 43714806 0 96.9 1 965 969 6906150 6915609 0 93.0 K33

280 968 690 48206821 48207509 0 98.0 1 968 968 27222405 27223372 0 99.2
1 968 968 55106794 55107761 0 99.6 1 968 968 27182398 27183366 0 99.0 K103

123 968 848 58274716 58275563 0 97.1 1 968 969 41846062 41847027 0 98.3
1 737 745 59747085 59747817 5E-302 90.7 1 968 971 43152657 43153624 0 97.5
1 968 968 91765436 91766403 0 98.6 1 965 968 66838997 66839960 0 94.2

123 968 847 91766405 91767250 0 98.5 1 968 969 69955435 69956399 0 97.6
1 732 738 113853579 113854311 0 90.9 268 908 645 99166645 99167278 0 92.9

110 962 860 120998825 120999675 0 90.8 123 754 633 101570798 101571430 0 96.8
14 733 726 138496009 138496728 2E-296 90.5 1 707 709 104141192 104141899 0 96.9
1 968 968 140541331 140542298 0 98.6 1 965 972 104204125 104205082 0 91.1
1 736 746 143907261 143907988 6E-237 88.2 1 965 968 132316211 132317170 0 94.1
1 965 967 144440838 144441796 0 95.8
1 968 970 144986147 144987115 0 97.5



 

 
 

 

Chromosomal location Statistics Notes Chromosomal location Statistics Notes
Start End Length Start End E-val % ID Start End Length Start End E-val % ID

Chromosome 11 1 668 673 57223515 57224172 6E-268 89.8
1 968 968 10369432 10370399 0 98.6 1 737 742 71689007 71689742 5E-296 89.9

14 639 635 18878249 18878870 9E-242 87.2 1 670 676 84387145 84387812 2E-285 90.8
123 968 846 24424330 24425174 0 98.6 1 965 967 91992310 91993273 0 96.3

1 958 963 54955047 54956001 0 92.2 1 965 968 104396470 104397435 0 96.3
5 737 742 55581713 55582438 4E-277 89.1 1 968 968 109492226 109493193 0 99.2
1 968 969 61179061 61180024 0 96.3 123 965 845 117028286 117029128 0 96.9
1 965 968 61718708 61719673 0 96.3 14 732 726 121801603 121802322 0 91.1

14 737 732 61850657 61851377 3E-290 89.6 275 965 692 122543380 122544070 0 95.8
123 965 847 62382569 62383410 0 96.3

1 965 967 63052022 63052986 0 96.8 Chromosome 13
1 968 968 63054362 63055329 0 98.6 1 968 969 19072358 19073325 0 97.7

123 968 846 67127401 67128246 0 99.3 1 737 741 22286024 22286759 1E-297 91.5
1 737 741 67281936 67282660 7E-280 89.3 1 965 967 49071159 49072124 0 96.6

123 968 847 67392011 67392856 0 98.4 1 965 973 53738946 53739902 0 89.9
1 968 968 71553066 71554033 0 99.0 1 965 973 69087014 69087975 0 91.7
1 737 743 95962343 95963072 3E-282 89.6 1 664 679 94718276 94718939 8E-225 87.6
1 968 968 101071004 101080469 0 99.4 11q22
1 737 747 104640788 104641519 1E-265 88.6 Chromosome 14
1 965 967 118096937 118106093 0 96.3 K37 1 965 972 19622586 19623552 0 92.1

264 965 706 118415195 118415894 0 91.5 1 965 969 19806922 19807886 0 93.5
1 965 967 22263737 22264701 0 95.6

Chromosome 12 1 965 967 37657055 37658020 0 95.7
2 965 973 4700661 4701626 0 93.2 1 968 968 64515059 64516026 0 98.8
1 668 675 5516444 5517111 8E-289 91.0 1 737 745 77171609 77172341 3E-277 88.6
1 968 968 6865285 6866246 0 97.0 1 965 970 77197497 77198461 0 94.2
1 965 968 8505795 8506759 0 94.9 123 965 846 77330773 77331616 0 96.2
1 968 969 9644328 9645295 0 98.5 1 965 971 99847884 99848848 0 91.8
1 737 745 10615370 10616102 2E-272 89.8
1 968 970 29976254 29977221 0 98.5 Chromosome 15
1 968 968 32143712 32144679 0 99.1 1 716 721 56913073 56913787 0 91.1
5 732 734 36418393 36419120 2E-282 88.8 1 968 970 63305933 63306900 0 97.6
1 968 968 50134338 50135305 0 99.2 1 965 967 63813045 63814010 0 96.0
1 968 969 54013482 54014450 0 98.8 3 965 964 73950253 73951216 0 95.6
1 964 964 55080416 55081376 0 98.6 1 968 968 86884787 86885754 0 99.0
1 968 968 57007509 57016965 0 99.3 K41 1 968 970 100217703 100218670 0 97.9



 

 
 

 

Chromosomal location Statistics Notes Chromosomal location Statistics Notes
Start End Length Start End E-val % ID Start End Length Start End E-val % ID

Chromosome 16 Chromosome 19
1 964 964 5744394 5745357 0 99.6 130 965 838 337801 338634 0 96.1
1 968 968 8168764 8169731 0 99.0 127 769 648 8285858 8286501 0 90.7
4 965 967 14637508 14638461 0 92.8 1 680 680 12203926 12204605 0 96.2

14 618 610 21140961 21141561 1E-252 90.7 14 668 663 20054160 20054811 1E-291 89.0
123 968 848 23518420 23519265 0 98.1 1 737 742 20440977 20441705 0 89.2
123 965 844 34090800 34091640 0 97.8 1 961 964 21542584 21543546 0 94.4

1 965 967 35047430 35048394 0 95.5 1 968 968 21633376 21633376 0 99.0 K113
1 968 968 46455871 46456838 0 99.3 246 965 722 22258423 22259142 0 96.7
1 957 957 73390803 73391759 0 99.3 83 769 688 22549664 22556398 0 92.6 K51

76 968 893 32820338 32821230 0 98.8
Chromosome 17 1 965 970 33313377 33314342 0 93.3

1 968 969 4918699 4919665 0 98.0 1 965 967 33872062 33873027 0 95.9
1 965 969 19348866 19349827 0 94.9 1 668 678 40102922 40103586 3E-255 88.9
2 737 746 25914572 25915305 7E-272 89.0 1 737 741 41416343 41417074 0 91.5
1 968 968 26051185 26052152 0 99.0 123 786 664 41429889 41430552 0 99.0
1 965 969 31491551 31492519 0 96.4 1 965 968 42188901 42189859 0 94.9

123 965 844 38787962 38788804 0 95.1 1 639 645 42298271 42298906 5E-301 88.8
1 965 970 41716760 41717724 0 93.6 14 885 876 42712628 42713500 0 93.6
1 968 969 49633934 49634901 0 98.0 1 885 886 42812769 42813653 0 97.6
1 965 969 60356602 60357560 0 92.7 1 968 968 43048657 43049624 0 99.7

115 965 859 62753427 62754279 0 91.5 137 965 836 43813622 43814444 0 91.8
123 968 847 64111728 64112573 0 97.8 110 965 860 45156981 45157833 0 90.7

1 965 967 76139606 76140571 0 96.3 1 968 969 49789258 49790225 0 98.4
1 965 968 78295700 78296662 0 95.4 1 965 965 54084705 54085664 0 95.9

1 668 674 57100757 57101423 1E-275 91.1
Chromosome 18 1 965 967 57103260 57104222 0 95.7

1 968 968 1990815 1991782 0 98.2 1 965 967 57238197 57239162 0 96.9
1 968 969 4907278 4908246 0 98.0 1 618 624 57534186 57534797 2E-295 87.2
1 965 967 22035800 22036764 0 95.8 38 965 931 57616024 57616952 0 94.5
1 668 674 27644462 27645126 4E-253 89.6 5 737 742 57680607 57681333 7E-261 88.1
1 737 745 37017830 37018561 1E-265 89.0 1 737 744 57753762 57754488 5E-262 88.2
1 736 744 62895237 62895969 7E-295 90.2 1 962 965 57892811 57893771 0 93.9
1 737 747 63923695 63924425 3E-268 88.5 1 965 968 59033692 59034655 0 93.7

14 732 728 64760725 64761441 1E-285 89.8 1 959 964 60153473 60154429 0 92.3
1 965 967 64861072 64862037 0 96.0 3 731 748 63026807 63027532 2E-180 84.1



 

 
 

 

 

Chromosomal location Statistics Notes Chromosomal location Statistics Notes
Start End Length Start End E-val % ID Start End Length Start End E-val % ID

Chromosome 20 Chromosome 22
1 767 771 7884847 7885613 0 92.2 1 968 968 17306187 17315361 0 98.9 K101
1 668 678 23623299 23623964 1E-224 87.8 1 737 745 21322053 21322789 1E-279 89.5

123 947 827 23789256 23790081 0 95.8 1 737 745 22208249 22208982 3E-273 89.7
1 733 742 23911278 23912007 4E-253 89.0 1 965 967 22579271 22580233 0 93.7

14 965 960 25162477 25163429 0 92.6 123 965 846 22936863 22937703 0 96.0
1 965 972 25169882 25170848 0 93.2
1 968 969 33313343 33314310 0 97.4 Chromosome X
1 968 968 40032950 40033917 0 99.1 83 737 661 57378544 57379199 0 89.9

1 668 678 89354986 89355649 5E-243 88.5
Chromosome 21 282 965 693 122641474 122642160 0 89.8

1 965 970 14114072 14115037 0 92.8 1 639 647 133992041 133992677 3E-231 88.1
1 821 825 14575284 14576104 0 90.3
1 961 967 17988412 17989372 0 92.5 Chromosome Y
1 965 970 18226910 18227874 0 92.7 1 968 969 6676930 6677896 0 97.0
1 966 967 18862868 18863833 0 97.8 1 965 969 13084687 13085651 0 92.7
1 965 965 41714669 41715633 0 95.5 1 968 970 13725131 13726097 0 96.5

123 968 847 43440309 43441154 0 98.4 1 670 681 16394742 16395407 1E-202 86.9
115 965 855 44527174 44528018 0 90.5 1 965 967 20320758 20321721 0 93.8

1 968 968 23448574 23449541 0 99.7
1 968 968 25082323 25083290 0 99.7
1 968 968 25697883 25698850 0 99.6
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proportion of each chromosome length of total chromosome length. A ratio of 1 should 

indicate that the number of insertions reflect the size of the chromosome. Unexpectedly, 

chromosome 19 has far more insertions than expected by size while chromosomes 13, 15, 

and X have far less. Other chromosomes have modest or no differences relative to 

expected according to chromosome size. Aside from chromosomal size, other factors, 

such as the selection of insertions based on their effect on host fitness and the fixation of 

insertions at the population level may also determine HERV accumulation after infection. 

A more detailed study is needed to determine the true integration preference and forces 

influencing the fixation of HERV-K(HML-2) in primate genome. How chromosomal 

characteristic affects HERV-K integration preference will be addressed in Chapter 4. 

 

 

Figure 8 Chromosomal distribution of HERV-K(HML-2) LTRs. 

The chromosomal distribution of HERV-K(HML-2) LTRs is represented as the ratio between the 
proportion of HERV-K insertions per chromosome of total insertions and proportion of each chromosome 
length of total genome length. A ratio of 1 should indicate that the number of insertions reflect the size of 
the chromosome. The chromosome size is taken from Lander et al, and the number of insertions from Table 
1 (Lander et al., 2001). 
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 Although LTRs are the most abundant forms of HERV, there are also numerous 

full length and truncated proviruses. Table 2 lists the insertions that include proviral 

sequence in addition to LTR, including both full-length and truncated insertions. The 

amino acid sequence of HERV-KCON Gag (discussed later) was used as query to search 

for HERV-K insertions with coding sequence via TBLASTN search tool. Only hits that 

were 85% or higher in sequence similarity to HERV-KCON were included based on 

reasons described above. This search yielded forty one hits, of which twenty three are full 

length, arbitrarily defined as 90% or greater in total sequence length relative to the full 

length HERV-K (9472 bp) (Ono et al., 1986). Of these, seventeen proviruses are found in 

human but not chimpanzee reference genome, although the sequence and location of 

K103 is unknown (Barbulescu et al., 1999). Three proviruses, K4, K106, and K113, have 

identical LTRs, suggesting insertion events 200,000 years ago or less (Belshaw et al., 

2005a; Johnson and Coffin, 1999).  

 A few insertions had non-matching flanking nucleotide repeats, suggesting that 

the insertion contains sequences derived from more than one provirus. Other groups have 

suggested that such insertions likely reflect homologous recombination or gene 

conversion of the genomic locus with a solo-LTR, which outnumber full-length elements 

by ten-fold or more, rather than a recombination of two full length elements at internal 

ORF sequences (Belshaw et al., 2004; Hughes and Coffin, 2001; Johnson and Coffin, 

1999). Inspection of other primate genomes may be able to resolve this issue depending 

on the length of host genomic sequence included in the recombination or gene conversion.  



 

 
 

Table 2 Proviral HERV-K(HML-2) in the human genome (pages 64-65) 

Amino acid sequence of HERV-KCON Gag was used as query to search for HERV-K(HML-2) insertions with internal sequence in the Ensemble TBLASTN 
search tool (http://www.ensembl.org/Multi/blastview). Only sequences 85% or higher in similarity were included. One flanking short repeat sequence is included 
when the two ends are identical, two ends are included when they do not match or cannot be clearly determined. The numbering of each insertion is according to 
the HERV-KCON sequence. The proviruses described by Hughes et al have been cross-referenced (Hughes and Coffin, 2001). The names of insertions are from 
previous publications (Barbulescu et al., 1999; Hughes and Coffin, 2004; Romano et al., 2006; Sugimoto et al., 2001; Turner et al., 2001). FL, full length; HS, 
human specific; ID LTRs, identical LTRs. 
  

Location Flanking Name Contig Features State
1p31.1 ATGGAA K4 AC093156 HS, ID LTRs 1-3505, 6313-6502, 6795-end
1q22 GGGATG K102, K50A AL353807 HS FL. By ensembl blast, only one provirus found.
1q23.3 TGAGAC K110, K18 AL121985 FL
1q32.2 GCATTC None AL137789 5929-end
2q21.1 AGAACT None AC079776 6094-end
3p25.3 CTTGGT/GAAAGT K11 AC018809 Missing 3684-5940
3q12.3 GAGGT KII AC084198 FL
3q13.2 GGCTGG K106, K68 AC078785 HS, ID LTRs FL
3q21.2 GGCCC KI  AC092903 HS FL
3q24 Unknown None AC069410 961-4887
3q27.2 GGTACA K50B AC099661 HS FL
4q32.3 CTTTCT/TTTTAT K5  AC106872 Missing 3686-5992. 
5p13.3 CAGAAC K104, K50d AC025757 HS FL. K104 and 50a are the same element. 
5p11 CTCCC K8 AC126750 FL, with insertion
5q33.3 ACTGC K107, K10 AC016577 HS FL
6p22.1 CCTGGG HERV-K20 AL121932 196-end, has internal solo LTR with flanking seq GATCCC.
6q14.1 ATATGC K109 AL590785 HS FL
7p22.1 GGTTTC K108, C7 AC072054 HS FL
7q22.2 Unknown None AC079796 969-4887
7q34 Unknown None AC004979 937-4886
8p23.1 CCTTT K115 AC134684 HS FL



 

 
 

 
 

Location Flanking Name Contig Features State
8q24.3 Unknown None AC087354 947-2246
10p12 ATGGGG K103 AF164611 HS FL
10p14 TCATTC K33 AL392086 FL
10q24.2 CAGGTG None AL392107 940-end, missing chunk of Env
11q12.3 TGGATT/ATCATT None AP003064 Two parts, start-6966, 6955-end.
11q22.1 TTGTG 11q22, K36 AP000776 HS FL
11q23.3 AGCCT K37 AP002954 FL
12p11.1 CTGCTC/unclear K50e AC144535 FL, 88% identical to HERV-Kcon
12q14.1 TTGGTA 12q14, K41 AC025420 HS FL
12q24.11 AGTATT/Unknown None AC002350 1-1484
16p11.2 CTGAGG None AC135776 6795-end
19p13.3 Unknown/CAGGTC None AC010641 6922-end
19p12 Unknown/TGTAAT K51 AC011467 83-end, missing 3685-5940
19p12 CTCTAT K113 AY037928 HS, ID LTRs FL
19q12 AGGTAT None AC112702 HS 947-end, but flanking sites both there.
19q13.12 Unknown None AD000090 3329-3922, 5328-8625
19q13.42 Unknown/GGCTGA None AC010467 4788-5713, insertion of 1011bps, 5709-end.
20q11.22 Unknown, unclear None AL031668 4604-6161, insertion of 1916bps, 6610-end
21q21.1 GCCAGG/Unknown K60 AL109763, AF2HS Start - 8761
22q11.21 ACCCAG K101 AC007326 HS FL
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1.3 HERV-K113 LTR 

 Of the twenty three full length HERV-K(HML-2) proviruses (Table 1), HERV-

K113 is believed to be the most likely candidate to be replication competent (Turner et al., 

2001). This idea is based on three major points: its polymorphic state, the identical 

sequence of its LTRs, and its complete open reading frames (Burmeister et al., 2004). As 

described in the Introduction, an element that is polymorphic in the human population is 

thought be less than 800,000 years old based on Kimura’s neutral theory (Graur and Li, 

2000). The identical nature of K113’s LTRs decrease its estimated age to around 200,000, 

based roughly on substitution rate between humans and chimpanzees (Johnson and 

Coffin, 1999). Lastly, K113 is the only provirus described to date with the complete open 

reading frames that lack obvious mutations such as premature stop codons, mutations that 

inactivate essential motifs, or large truncations of sequence. Hence, replication potential 

of K113 was examined. The LTRs were chosen as the first subject of inquiry. 

 Transcriptional tropism of a virus depends on the expression level of the 

necessary host factors the LTR interacts with to induce transcription. HERV-K(HML-

2)’s expression tropism in teratocarcinomas was discovered in the late 1970s, when virus 

particles were detected in cells derived from teratocarcinomas by EM (Boller et al., 

1993b; Bronson et al., 1978; Lower et al., 1981). To become endogenized, all ERVs must 

infect germ cells or progenitors, but the actual target cell of any ERV is unknown. 

Teratocarcinomas, as malignant cancer of germ cells derived from the testes, are closely 

related to potential natural target cells for ERV, and transcriptional activity in these cells 

may reflect the natural situation of HERV-K infection and endogenization. Work by 

Ruda et al have shown that HERV-K LTR is as active as SV40 promoter in 
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teratocarcinoma cell line, Tera-1, which is tenfold or more active relative to other cell 

lines (Ruda et al., 2004). Also, Ruprecht et al showed that numerous HERV-K(HML-2) 

transcripts are expressed in Tera-1 cell line, especially HERV-K101, and packaged 

preferentially into particles over other RNA (Ruprecht et al., 2008). Thus, it is well 

established that the HERV-K LTR can induce transcription and is active in 

teratocarcinoma-derived cells.   

To test whether K113 LTR is functional, 293T cells were transfected with 

pCR3.1/K113 LTR GFP and HTLV-1 Env. 12 hours post transfection, 293T cells were 

fused to either fresh 293T or NCCIT cells, which are  teratocarcinoma cells known to 

express HERV-K proteins at high levels which assemble into particles (Bieda et al., 

2001). As expected, 293T cells expressed an increased quantity of GFP when fused to 

NCCIT cells, but not 293T cells (Figure 9). This data indicates that K113 LTR is 

functional, and transcription from it and the resulting virus replication is cell type 

dependent. This also suggests that factor or factors responsible for the increased 

expression from K113 LTR is dominant and expressed in NCCIT cells, but not 293T 

cells.  

 

1.4 HERV-K113 and YY2 

 Retrovirus long terminal repeats contain regulatory elements that control the 

transcription of the viral genome, which in turn controls the replication of the virus. The 

LTR is divided into three main regions U3 (unique 3’), R (repeat), and U5 (unique 5’), 

which are defined by the start (U3-R) and end (R-U5) of transcription. R region is 

especially important for reverse transcription, ensuring that all necessary virus sequence 
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Figure 9 The activity of HERV-K(HML-2) LTR inducing factor or factors in NCCIT cells 

293T cells were transfected with pCR3.1/K113 LTR-GFP and HTLV-1 Env, which uses GLUT-1 glucose 
transporter as a receptor to enable fusion of membranes expressing the two proteins. 12-hours post 
transfection, the cells were incubated with untransfected 293T cells or NCCIT teratocarcinoma cells, and 
grown for an additional 24 hours. 293T cells fused to 293T cells do not show an increase in GFP levels 
detectable by eye, while those fused to NCCIT cells are noticeably brighter. The pictures shown are 
representative of three experiments.    

 

The TATA box is located towards the end of U3 at the 5’ LTR. The 3’ LTR also contains 

the same functional promoter sequences, but only the 5’ LTR is used for the proviral 

transcription. The remaining U3 region likely contains regulatory sequences to aid 

transcription, such as binding sites for transcription factors. The HERV-K LTR is nearly 

ten-fold more active in teratocarcinoma derived cell line than non-teratocarcinoma 

derived human cell lines, but the determinants of this tropism is unknown (Casau et al., 

1999; Ruda et al., 2004). A putative glucocorticoid responsive element sequence 

(nucleotides 75-88) has been found in the HERV-K LTR but remains functionally 

untested (Ono, 1986; Ono et al., 1986). Another partially overlapping fragment of around 

20 nucleotides (nucleotides 62 to 83) was found to be important for transcription 

enhancement in teratocarcinoma derived cells via several DNA-binding complexes by 

two independent groups (Akopov et al., 1998; Knossl et al., 1999). One complex was 

found to include the transcription factor YYI, but this complex was not responsible for 
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the teratocarcinoma cell line specificity of HERV-K transcription, as it was found also in 

non-teratocarcinoma cell lines HeLa and HepG2 as well (Knossl et al., 1999). Another 

complex, which was specific to teratocarcinoma cell lines tested and binds to the same 

sequence region, remains unidentified.   

 Since the study of YY1 and its effects on HERV-K LTR, a second family member 

has been discovered. YY2 is the result of a YY1 mRNA retrotransposition event that 

occurred around 60 to 100 million years ago, as it is found only in placental mammals 

(Kim et al., 2007).  YY2 shares 56.2% sequence similarity to YY1 in amino acid 

sequence, and 86.4% similarity in the DNA binding zinc finger region (Nguyen et al., 

2004). It has also been shown to have the same DNA binding motif as YY1, and can bind 

and modulate sequences that YY1 binds and regulates (Kim et al., 2007; Nguyen et al., 

2004). Thus, YY2 is a valid alternative regulatory factor to YY1, and a candidate for the 

teratocarcinoma cell line -specific factor for enhancing HERV-K transcription.   

 To test this idea, 293T cells were transfected with plasmids expressing GFP under 

the control of either HIV-1 or HERV-K113 LTR and pCR3.1/Flag-YY2 or control 

plasmid pCR3.1. As shown in Figure 10, expression of GFP increased modestly in both 

LTRs when coexpressed with YY2: 1.5-fold in HIV-1 LTR and less than 3-fold in K113 

LTR relative to controls not expressing YY2. Similar results were obtained with 

untagged YY2 and HERV-K LTR, suggesting that the flag tag did not interfere with 

protein activity. Although GFP expression did increase when YY2 was overexpressed, 

the three fold increase does not account for the tenfold or higher increase detected in 

other teratocarcinoma cell lines (Casau et al., 1999; Ruda et al., 2004). This data suggests  



 

70 
 

 

Figure 10 The modest transcription enhancing activity of YY2 

1.5 µg of pCR3.1/HIV-1 LTR-GFP or pCR3.1/K113 LTR-GFP plasmids were transfected into 293T cells 
in a 6-well format with 1.5 µg of FLAG-YY2 or pCR3.1. Two days post transfection, the percent of GFP+ 
cells was accessed by FACS.  
 

that YY2 is unlikely to be the only or the main upregulator of HERV-K expression in 

teratocarcinomas. 

 

1.5 Replication capacity of K113 and K108 

Thus far, with its active but tissue specific LTR, K113 still remains as the most 

likely candidate fo r replication competent HERV. Hence, K113 was cloned to test its 

replication potential. The constructed proviral plasmids are depicted in Figure 11. As 

K113 LTR was shown to be inactive in 293T cells, a derivative where the 5’ LTR’s U3 

region was replaced with a cytomegalovirus promoter sequence to enhance transcription 

was also constructed. However, one study showed that K113 Env could not induce 

infection of retroviral VLPs despite K108 Env being able to do so, suggesting that K113 

Env, while full length, is functionally defective (Dewannieux et al., 2005). Despite its 

functional Env, HERV-K108 has a premature stop codon in the Gag ORF, a frameshift in 
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protease, as well as a mutation of a highly conserved YIDD motif in reverse transcriptase 

into CIDD (Mayer et al., 1999b; Reus et al., 2001). This mutation is believed to render 

the full length virus replication incompetent, making K108 an unlikely candidate for 

replication.  

Although K113 and K108 may be individually nonfunctional, it was possible that 

a hybrid between the two proviruses may be replication competent. To test this 

hypothesis, K113 K108 hybrid construct was cloned by replacing the K113 Env and 3’ 

LTR sequence with that of K108 (Figure 11). A CMVP containing K113 K108 hybrid 

was constructed as well.  

The plasmids were transfected into 293T cells; two days post-transfection the 

cells were lysed and the VLPs in the supernatant spun through 20% sucrose gradient to 

purify and concentrate and the particles. Western blotting analysis of the cell lysate and 

VLPs using the commercially available antibody (Austral Biologicals) showed no 

expression of HERV-K Gag or VLPs (data not shown), indicating that both K113 and 

K113K108 hybrid proviruses may not express viral proteins at a detectable level 

regardless of the promoter used.   

The HERV-K genome has an unusual nucleotide composition in that it is 

relatively A-rich (Zsíros et al., 1999). For example, K113 is composed of 32% A, 26% T, 

21% G, and 21%C. This feature, which is characteristic of lentiviruses such as HIV-1, is 

partly responsible for the nuclear retention of HIV-1 mRNAs and contributes to the 

requirement for Rev in mediating export of incompletely spliced HIV-1 transcripts. 

 Indeed, HERV-K encodes a functional ortholog of the Rev protein, termed K-Rev 
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Figure 11 K113 and K108 derived proviral constructs 

K113 construct and its derivatives CMVP-K113, K113 K108, and CMVP K113 K108 are depicted. LTRs 
and ORFs are depicted as boxes. The 5’ LTR U3 region is replaced with the CMVP up to the TATA box, 
represented by the yellow box. The green and blue boxes represent K113 and K108 sequences, respectively. 
K108 sequences are inserted into the SacII restriction site in Env ORF, which is 37 nucleotides from the 
ATG of Env and is identical in amino acid sequence between the two proviruses.   
 

or Rec, which mediates nuclear export of HERV-K RNA (Boese et al., 2000; Magin et al., 

2000; Magin et al., 1999; Yang et al., 2000; Yang et al., 1999). Therefore, because of the 

likely requirement for a Rev-like post-transcriptional activator for efficient HERV-K 

mRNA export, K108 Rec was cloned to test its effect on K113 and K113-K108 

replication. K108 Rec differs only in amino acid 52 (Ser to Thr) from a functionally 

tested Rec (Magin et al., 1999; Yang et al., 1999). Thus, K108 Rec was co-transfected 
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with viral genomic plasmids to enhance nuclear export of viral transcripts. No VLPs were 

detected in the supernatant via western blotting analysis (data not shown).  

 Thus far, infection capability of HERV-K(HML-2) was tested by enhancing 

transcription by insertion of CMVP, replacing a defective Env with a functional Env, and 

increasing transcript nuclear export by co-expression of Rec. The expression and function 

of viral proteins were also tested independently from rest of the virus via cloning the 

ORFs into a different expression plasmid. Gag, Gag-protease (PR), and Gag-PR-Pol of 

HERV-K113 were cloned into HIV-1 based expression vector pCRVI, which eliminates 

potential expression problems of K113 due to expression of HIV-1 accessory proteins 

that aid in transcription, and nuclear export of transcript (Figure 7). Hence, any sequence 

cloned into this plasmid should be expressed at high levels. Despite these optimal 

conditions, the transfection of pCRVI based HERV-K plasmids resulted in poorly 

expressed proteins that were inefficiently released as VLPs, like the whole genomic 

plasmids (data not shown). 
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Chapter 2. Derivation of HERV-KCON and the single-cycle infection system 

 

2.1 Derivation of HERV-KCON 

 Despite the aid for transcription from CMVP and transcript export from Rec, and 

the cloning of the ORFs into high-expression plasmids, K113 and K113-K108 failed to 

produce detectable quantities of VLPs. Reasons may be numerous, but as there are no 

obvious mutations in K113, it is difficult to locate the source or sources of the problem. 

To bypass this difficulty, a consensus HERV-K sequence was derived. This idea was 

based on the assumption that any inherent replication defects encoded within HERV-

K(HML-2) proviruses present in contemporary human DNA are either unique to each 

provirus or shared only by a minority of recently integrated proviruses. If this assumption 

is correct, then each individual defect should be selected out from a sequence 

representing the consensus of a collection of proviruses, even if each individual provirus 

that contributes to the consensus is defective.  

To derive the consensus sequence, HERV-K113 was used to search for similar 

full-length HERV-K proviruses in the human genome via nucleotide to nucleotide 

BLAST. Only human-specific and non-redundant insertions were selected. The top ten 

matches were chosen for alignment, which are K101, K102, K104, K107, K108, K109, 

K113, K115, and proviruses K11q22 and K12q14, named after their genomic location 

(Table 2). All of these proviruses are human specific, indicating integration into the 

germ-line within the last 6 million years (Barbulescu et al., 1999; Belshaw et al., 2005a; 

Hughes and Coffin, 2004; Turner et al., 2001). Moreover, several show insertional 

polymorphism in humans, with intact preintegration sites present in a fraction of the  
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Figure 12 Undisrupted open reading frames in HERV-K proviruses 

Diagram of HERV-K(HML-2) provirus. ORFs are depicted as boxes. Proviruses used in the design of 
HERV-KCON that contain intact versions of Gag, protease, Pol, and Env are listed under each ORF. *K108 
encodes a full-length Pol ORF, but a presumed essential YIDD motif is mutated. 
 

human population (K108, K109, K113, K115, K11q22, K12q14), suggesting an even 

more recent replication for these proviruses. While all insertions except HERV-K113 

encoded an obvious defect in at least one ORF, all proviruses also had an undisrupted 

ORF for at least one of the putative HERV-K proteins (Figure 12). 

 

2.2 HERV-KCON sequence 

The nucleotide encoded by the majority of the ten proviruses was deduced for 

each of the 9,472 nucleotide positions to derive the consensus sequence using the AlignX 

program. This sequence was named HERV-KCON. Thereafter, using a set of synthetic, 

approximately 60 base oligonucleotides spanning the entire HERV-KCON sequence and a 

PCR-based strategy to progressively link them together, a plasmid containing the entire 

HERV-KCON proviral genome was constructed. As expected, the HERV-KCON sequence 
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was positioned close to the root of a phylogenetic tree constructed using HERV-KCON 

itself and each of the ten proviruses used to derive it (Figure 13).  

HERV-KCON is 9472 nucleotides long, with intact major protein open reading 

frames (Figure 14). The long terminal repeats are 968 bps, with a consensus TATA box 

and poly-A signal. All identifiable motifs important for retroviral protein function can be 

 

  

 

Figure 13 Phylogenetic analysis of HERV-K proviruses and HERV-KCON 

HERV-KCON and the ten proviruses used to deduce it were phylogenetically analyzed. The tree was 
constructed using Kimura 2-parameter algorithm in the Treemaker program after gap-stripping the 
sequence alignment (http://www.hiv.lanl.gov/content/hivdb/CONTAM/Treemker/TreeMaker.html). 
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found on HERV-KCON sequence. The MA protein contains the consensus myristoylation 

signal at the start (MGXXXS/T). A PTAP motif, often found in late assembly domains 

and important for the final scission of the particle membrane from the host membrane, is 

found in Gag as well, although its function has not been tested. The CA protein contains 

the major homology region (QXXXEXXXXAromaticXXR) that is present in all 

retroviruses, and the NC protein contains two CCHC-type zinc binding motifs, 

presumably for binding the viral RNA for packaging. The dUTPase is the sole protein 

with possible functional defect in HERV-KCON: of the five highly conserved motifs, two 

motifs contain an amino acid change each (motif 3 GVVDSDYKG to SVVDSDYKG and 

motif 5 KRIGGFGSTD to KRIGGLGSTD) (Harris et al., 1997b). Of the sixteen human-

specific proviruses whose sequence is available, three proviruses each encode for a G in 

motif 3 (19q12, K50B, and K60) and a F in motif 5 (K50B, K104, and 3q21). Thirteen 

proviruses encode for the potentially inactivating amino acid, suggesting that the correct 

HERV-K consensus sequence was derived. Whether Con dUTPase retains its enzymatic 

activity and whether its activity is still necessary for replication is unknown. Protease, RT, 

and IN each retain the correct, highly conserved DTG, YIDD, and DD(35)E motifs, 

respectively. Incidentally, HERV-KCON Rec is  identical to K108 Rec in amino acid 

sequence, and contains the arginine rich motif at N terminus (nuclear localization signal) 

and a leucine rich stretch at the C terminal (nuclear export signal). 



 

 
 

Figure 14 Sequence of HERV-KCON (pages 78-88) 

The nucleic sequence of HERV-KCON and the amino acid sequence of the open reading frames are shown. The start and end of both LTRs are marked above the 
nucleic sequence by arrows. The TATA box (TATAAAA) and polyA signal (AATAAA) are underlined. The presumed primer binding site is bolded. Gag, Pro, 
Pol, Env, and Rec ORFs are shown in red, green, blue, purple, and orange. The C terminus cleavage sites in Gag of p15 and CA (discussed later) are shown in 
pink. The myristoylation signal of MA, PTAP motif, MHR of CA, Cis-His boxes of NC, DTG motif of Prot, YIDD motif of RT, and DD(35)E motif of IN are 
highlighted. The DD(35)E motif of IN was estimated based on alignments with other retrovirus IN proteins.  
 
       →                                                                                        
1      TGTGGGGAAAAGCAAGAGAGATCAGATTGTTACTGTGTCTGTGTAGAAAGAAGTAGACATAGGAGACTCCATTTTGTTAT  80 
                                                                                        
81     GTACTAAGAAAAATTCTTCTGCCTTGAGATTCTGTTAATCTATGACCTTACCCCCAACCCCGTGCTCTCTGAAACGTGTG  160                                                                                        
                                                                                        
161    CTGTGTCAACTCAGAGTTGAATGGATTAAGGGCGGTGCAGGATGTGCTTTGTTAAACAGATGCTTGAAGGCAGCATGCTC  240 
                                                                                                                                                                               
241    CTTAAGAGTCATCACCACTCCCTAATCTCAAGTACCCAGGGACACAAAAACTGCGGAAGGCCGCAGGGACCTCTGCCTAG  320 
 
321    GAAAGCCAGGTATTGTCCAAGGTTTCTCCCCATGTGATAGTCTGAAATATGGCCTCGTGGGAAGGGAAAGACCTGACCGT  400 
                                                                                        
401    CCCCCAGCCCGACACCCGTAAAGGGTCTGTGCTGAGGAGGATTAGTAAAAGAGGAAGGAATGCCTCTTGCAGTTGAGACA  480 
 
481    AGAGGAAGGCATCTGTCTCCTGCCTGTCCCTGGGCAATGGAATGTCTCGGTATAAAACCCGATTGTATGCTCCATCTACT  560 
 
561    GAGATAGGGAAAAACCGCCTTAGGGCTGGAGGTGGGACCTGCGGGCAGCAATACTGCTTTGTAAAGCACTGAGATGTTTA  640 
                                                                                        
641    TGTGTATGCATATCTAAAAGCACAGCACTTAATCCTTTACATTGTCTATGATGCAAAGACCTTTGTTCACGTGTTTGTCT  720 
                                                                                        
721    GCTGACCCTCTCCCCACAATTGTCTTGTGACCCTGACACATCCCCCTCTTTGAGAAACACCCACAGATGATCAATAAATA  800 
 
801    CTAAGGGAACTCAGAGGCTGGCGGGATCCTCCATATGCTGAACGCTGGTTCCCCGGGTCCCCTTATTTCTTTCTCTATAC  880 
 
881    TTTGTCTCTGTGTCTTTTTCTTTTCCAAATCTCTCGTCCCACCTTACGAGAAACACCCACAGGTGTGTAGGGGCAACCCA  960 
             ←                                                                           
961    CCCCTACATCTGGTGCCCAACGTGGAGGCTTTTCTCTAGGGTGAAGGTACGCTCGAGCGTGGTCATTGAGGACAAGTCGA  1040 
 



 

 
 

Figure 14 continued 
                                                                                        
                                                                               M  G  Q  
1041   CGAGAGATCCCGAGTACGTCTACAGTCAGCCTTACGGTAAGCTTGTGCGCTCGGAAGAAGCTAGGGTGATAATGGGGCAA  1120 
                                                                                        
        T  K  S  K  I  K  S  K  Y  A  S  Y  L  S  F  I  K  I  L  L  K  R  G  G  V  K  V 
1121   ACTAAAAGTAAAATTAAAAGTAAATATGCCTCTTATCTCAGCTTTATTAAAATTCTTTTAAAAAGAGGGGGAGTTAAAGT  1200 
 
         S  T  K  N  L  I  K  L  F  Q  I  I  E  Q  F  C  P  W  F  P  E  Q  G  T  L  D      
1201   ATCTACAAAAAATCTAATCAAGCTATTTCAAATAATAGAACAATTTTGCCCATGGTTTCCAGAACAAGGAACTTTAGATC  1280 
                                                                                        
       L  K  D  W  K  R  I  G  K  E  L  K  Q  A  G  R  K  G  N  I  I  P  L  T  V  W  N  
1281   TAAAAGATTGGAAAAGAATTGGTAAGGAACTAAAACAAGCAGGTAGGAAGGGTAATATCATTCCACTTACAGTATGGAAT  1360 
                                                                                        
        D  W  A  I  I  K  A  A  L  E  P  F  Q  T  E  E  D  S  V  S  V  S  D  A  P  G  S 
1361   GATTGGGCCATTATTAAAGCAGCTTTAGAACCATTTCAAACAGAAGAAGATAGCGTTTCAGTTTCTGATGCCCCTGGAAG  1440 
                                                                                        
         C  I  I  D  C  N  E  N  T  R  K  K  S  Q  K  E  T  E  G  L  H  C  E  Y  V  A   
1441   CTGTATAATAGATTGTAATGAAAACACAAGGAAAAAATCCCAGAAAGAAACGGAAGGTTTACATTGCGAATATGTAGCAG  1520 
                                                                                        
       E  P  V  M  A  Q  S  T  Q  N  V  D  Y  N  Q  L  Q  E  V  I  Y  P  E  T  L  K  L  
1521   AGCCGGTAATGGCTCAGTCAACGCAAAATGTTGACTATAATCAATTACAGGAGGTGATATATCCTGAAACGTTAAAATTA  1600 
                                                                                        
        E  G  K  G  P  E  L  V  G  P  S  E  S  K  P  R  G  T  S  P  L  P  A  G  Q  V  P 
1601   GAAGGAAAAGGTCCAGAATTAGTGGGGCCATCAGAGTCTAAACCACGAGGCACAAGTCCTCTTCCAGCAGGTCAGGTGCC  1680 
                                                                                        
         V  T  L  Q  P  Q  K  Q  V  K  E  N  K  T  Q  P  P  V  A  Y  Q  Y  W  P  P  A   
1681   CGTAACATTACAACCTCAAAAGCAGGTTAAAGAAAATAAGACCCAACCGCCAGTAGCCTATCAATACTGGCCTCCGGCTG  1760 
                                                                                        
       E  L  Q  Y  R  P  P  P  E  S  Q  Y  G  Y  P  G  M  P  P  A  P  Q  G  R  A  P  Y  
1761   AACTTCAGTATCGGCCACCCCCAGAAAGTCAGTATGGATATCCAGGAATGCCCCCAGCACCACAGGGCAGGGCGCCATAC  1840 
                                                                                        
        P  Q  P  P  T  R  R  L  N  P  T  A  P  P  S  R  Q  G  S  E  L  H  E  I  I  D  K 
1841   CCTCAGCCGCCCACTAGGAGACTTAATCCTACGGCACCACCTAGTAGACAGGGTAGTGAATTACATGAAATTATTGATAA  1920 



 

 

Figure 14 continued 
                                                                                        
         S  R  K  E  G  D  T  E  A  W  Q  F  P  V  T  L  E  P  M  P  P  G  E  G  A  Q   
1921   ATCAAGAAAGGAAGGAGATACTGAGGCATGGCAATTCCCAGTAACGTTAGAACCGATGCCACCTGGAGAAGGAGCCCAAG  2000 
                                                                                        
       E  G  E  P  P  T  V  E  A  R  Y  K  S  F  S  I  K  M  L  K  D  M  K  E  G  V  K  
2001   AGGGAGAGCCTCCCACAGTTGAGGCCAGATACAAGTCTTTTTCGATAAAAATGCTAAAAGATATGAAAGAGGGAGTAAAA  2080 
                                                                                        
        Q  Y  G  P  N  S  P  Y  M  R  T  L  L  D  S  I  A  H  G  H  R  L  I  P  Y  D  W 
2081   CAGTATGGACCCAACTCCCCTTATATGAGGACATTATTAGATTCCATTGCTCATGGACATAGACTCATTCCTTATGATTG  2160 
                                                                                        
         E  I  L  A  K  S  S  L  S  P  S  Q  F  L  Q  F  K  T  W  W  I  D  G  V  Q  E   
2161   GGAGATTCTGGCAAAATCGTCTCTCTCACCCTCTCAATTTTTACAATTTAAGACTTGGTGGATTGATGGGGTACAAGAAC  2240 
                                                                                        
       Q  V  R  R  N  R  A  A  N  P  P  V  N  I  D  A  D  Q  L  L  G  I  G  Q  N  W  S  
2241   AGGTCCGAAGAAATAGGGCTGCCAATCCTCCAGTTAACATAGATGCAGATCAACTATTAGGAATAGGTCAAAATTGGAGT  2320 
                                                                                        
        T  I  S  Q  Q  A  L  M  Q  N  E  A  I  E  Q  V  R  A  I  C  L  R  A  W  E  K  I 
2321   ACTATTAGTCAACAAGCATTAATGCAAAATGAGGCCATTGAGCAAGTTAGAGCTATCTGCCTTAGAGCCTGGGAAAAAAT  2400 
                                                                                        
         Q  D  P  G  S  T  C  P  S  F  N  T  V  R  Q  G  S  K  E  P  Y  P  D  F  V  A   
2401   CCAAGACCCAGGAAGTACCTGCCCCTCATTTAATACAGTAAGACAAGGTTCAAAAGAGCCCTATCCTGATTTTGTGGCAA  2480 
                                                                                        
       R  L  Q  D  V  A  Q  K  S  I  A  D  E  K  A  R  K  V  I  V  E  L  M  A  Y  E  N  
2481   GGCTCCAAGATGTTGCTCAAAAGTCAATTGCCGATGAAAAAGCCCGTAAGGTCATAGTGGAGTTGATGGCATATGAAAAC  2560 
                                                                                        
        A  N  P  E  C  Q  S  A  I  K  P  L  K  G  K  V  P  A  G  S  D  V  I  S  E  Y  V 
2561   GCCAATCCTGAGTGTCAATCAGCCATTAAGCCATTAAAAGGAAAGGTTCCTGCAGGATCAGATGTAATCTCAGAATATGT  2640 
                                                                                        
         K  A  C  D  G  I  G  G  A  M  H  K  A  M  L  M  A  Q  A  I  T  G  V  V  L  G   
2641   AAAAGCCTGTGATGGAATCGGAGGAGCTATGCATAAAGCTATGCTTATGGCTCAAGCAATAACAGGAGTTGTTTTAGGAG  2720 
                                                                                        
       G  Q  V  R  T  F  G  G  K  C  Y  N  C  G  Q  I  G  H  L  K  K  N  C  P  V  L  N  
2721   GACAAGTTAGAACATTTGGAGGAAAATGTTATAATTGTGGTCAAATTGGTCACTTAAAAAAGAATTGCCCAGTCTTAAAC  2800 



 

 
 

Figure 14 continued 
                                                                                        
        K  Q  N  I  T  I  Q  A  T  T  T  G  R  E  P  P  D  L  C  P  R  C  K  K  G  K  H 
2801   AAACAGAATATAACTATTCAAGCAACTACAACAGGTAGAGAGCCACCTGACTTATGTCCAAGATGTAAAAAAGGAAAACA  2880 
                                                                                        
         W  A  S  Q  C  R  S  K  F  D  K  N  G  Q  P  L  S  G  N  E  Q  R  G  Q  P  Q   
                                         K  W  A  T  I  V  G  K  R  A  K  G  P  A  S  G 
2881   TTGGGCTAGTCAATGTCGTTCTAAATTTGATAAAAATGGGCAACCATTGTCGGGAAACGAGCAAAGGGGCCAGCCTCAGG  2960 
 
       A  P  Q  Q  T  G  A  F  P  I  Q  P  F  V  P  Q  G  F  Q  G  Q  Q  P  P  L  S  Q  
         P  T  T  N  W  G  I  P  N  S  A  I  C  S  S  G  F  S  G  T  T  T  P  T  V  P   
2961   CCCCACAACAAACTGGGGCATTCCCAATTCAGCCATTTGTTCCTCAGGGTTTTCAGGGACAACAACCCCCACTGTCCCAA  3040 
                                                                                        
        V  F  Q  G  I  S  Q  L  P  Q  Y  N  N  C  P  P  P  Q  A  A  V  Q  Q  *  
       S  V  S  G  N  K  P  V  T  T  I  Q  Q  L  S  P  A  T  S  G  S  A  A  V  D  L  C  
3041   GTGTTTCAGGGAATAAGCCAGTTACCACAATACAACAATTGTCCCCCGCCACAAGCGGCAGTGCAGCAGTAGATTTATGT  3120                                                                                        
 
        T  I  Q  A  V  S  L  L  P  G  E  P  P  Q  K  I  P  T  G  V  Y  G  P  L  P  E  G 
3121   ACTATACAAGCAGTCTCTCTGCTTCCAGGGGAGCCCCCACAAAAAATCCCCACAGGGGTATATGGCCCCCTGCCTGAGGG  3200 
 
         T  V  G  L  I  L  G  R  S  S  L  N  L  K  G  V  Q  I  H  T  S  V  V  D  S  D   
3201   GACTGTAGGACTAATCTTGGGAAGATCAAGTCTAAATCTAAAAGGAGTTCAAATTCATACTAGTGTGGTTGATTCAGACT  3280 
 
       Y  K  G  E  I  Q  L  V  I  S  S  S  I  P  W  S  A  S  P  G  D  R  I  A  Q  L  L  
3281   ATAAAGGCGAAATTCAATTGGTTATTAGCTCTTCAATTCCTTGGAGTGCCAGTCCAGGAGACAGGATTGCTCAATTATTA  3360 
                                                                                        
        L  L  P  Y  I  K  G  G  N  S  E  I  K  R  I  G  G  L  G  S  T  D  P  T  G  K  A 
3361   CTCCTGCCATATATTAAGGGTGGAAATAGTGAAATAAAAAGAATAGGAGGGCTTGGAAGCACTGATCCAACAGGAAAGGC  3440 
 
         A  Y  W  A  S  Q  V  S  E  N  R  P  V  C  K  A  I  I  Q  G  K  Q  F  E  G  L   
3441   TGCATATTGGGCAAGTCAGGTCTCAGAGAACAGACCTGTGTGTAAGGCCATTATTCAAGGAAAACAGTTTGAAGGGTTGG  3520 
                                                                                        
       V  D  T  G  A  D  V  S  I  I  A  L  N  Q  W  P  K  N  W  P  K  Q  K  A  V  T  G  
3521   TAGACACTGGAGCAGATGTCTCTATCATTGCTTTAAATCAGTGGCCAAAAAATTGGCCTAAACAAAAGGCTGTTACAGGA  3600 



 

 
 

Figure 14 continued 
 
        L  V  G  I  G  T  A  S  E  V  Y  Q  S  T  E  I  L  H  C  L  G  P  D  N  Q  E  S 
3601   CTTGTCGGCATAGGCACAGCCTCAGAAGTGTATCAAAGTACGGAGATTTTACATTGCTTAGGGCCAGATAATCAAGAAAG  3680 
 
         T  V  Q  P  M  I  T  S  I  P  L  N  L  W  G  R  D  L  L  Q  Q  W  G  A  E  I   
3681   TACTGTTCAGCCAATGATTACTTCAATTCCTCTTAATCTGTGGGGTCGAGATTTATTACAACAATGGGGTGCGGAAATCA  3760 
 
       T  M  P  A  P  L  Y  S  P  T  S  Q  K  I  M  T  K  M  G  Y  I  P  G  K  G  L  G  
3761   CCATGCCCGCTCCATTATATAGCCCCACGAGTCAAAAAATCATGACCAAGATGGGATATATACCAGGAAAGGGACTAGGG  3840 
                                              N  K  S  R  K  R  R  N  R  V  S  F  L  G  
        K  N  E  D  G  I  K  V  P  V  E  A  K  I  N  Q  E  R  E  G  I  G  Y  P  F  *    
3841   AAAAATGAAGATGGCATTAAAGTTCCAGTTGAGGCTAAAATAAATCAAGAAAGAGAAGGAATAGGGTATCCTTTTTAGGG  3920 
 
        A  A  T  V  E  P  P  K  P  I  P  L  T  W  K  T  E  K  P  V  W  V  N  Q  W  P  L 
3921   GCGGCCACTGTAGAGCCTCCTAAACCCATACCATTAACTTGGAAAACAGAAAAACCGGTGTGGGTAAATCAGTGGCCGCT  4000 
 
         P  K  Q  K  L  E  A  L  H  L  L  A  N  E  Q  L  E  K  G  H  I  E  P  S  F  S   
4001   ACCAAAACAAAAACTGGAGGCTTTACATTTATTAGCAAATGAACAGTTAGAAAAGGGTCATATTGAGCCTTCGTTCTCAC  4080 
 
       P  W  N  S  P  V  F  V  I  Q  K  K  S  G  K  W  R  M  L  T  D  L  R  A  V  N  A                                                                                         
4081   CTTGGAATTCTCCTGTGTTTGTAATTCAGAAGAAATCAGGCAAATGGCGTATGTTAACTGACTTAAGGGCTGTAAACGCC  4160 
 
        V  I  Q  P  M  G  P  L  Q  P  G  L  P  S  P  A  M  I  P  K  D  W  P  L  I  I  I 
4161   GTAATTCAACCCATGGGGCCTCTCCAACCCGGGTTGCCCTCTCCGGCCATGATCCCAAAAGATTGGCCTTTAATTATAAT  4240 
 
         D  L  K  D  C  F  F  T  I  P  L  A  E  Q  D  C  E  K  F  A  F  T  I  P  A  I   
4241   TGATCTAAAGGATTGCTTTTTTACCATCCCTCTGGCAGAGCAGGATTGCGAAAAATTTGCCTTTACTATACCAGCCATAA  4320 
 
       N  N  K  E  P  A  T  R  F  Q  W  K  V  L  P  Q  G  M  L  N  S  P  T  I  C  Q  T  
4321   ATAATAAAGAACCAGCCACCAGGTTTCAGTGGAAAGTGTTACCTCAGGGAATGCTTAATAGTCCAACTATTTGTCAGACT  4400 
 
        F  V  G  R  A  L  Q  P  V  R  E  K  F  S  D  C  Y  I  I  H  Y  I  D  D  I  L  C 
4401   TTTGTAGGTCGAGCTCTTCAACCAGTTAGAGAAAAGTTTTCAGACTGTTATATTATTCATTATATTGATGATATTTTATG  4480 



 

 
 

Figure 14 continued 
 
         A  A  E  T  K  D  K  L  I  D  C  Y  T  F  L  Q  A  E  V  A  N  A  G  L  A  I   
4481   TGCTGCAGAAACGAAAGATAAATTAATTGACTGTTATACATTTCTGCAAGCAGAGGTTGCCAATGCTGGACTGGCAATAG  4560 
 
       A  S  D  K  I  Q  T  S  T  P  F  H  Y  L  G  M  Q  I  E  N  R  K  I  K  P  Q  K  
4561   CATCTGATAAGATCCAAACCTCTACTCCTTTTCATTATTTAGGGATGCAGATAGAAAATAGAAAAATTAAGCCACAAAAA  4640 
 
        I  E  I  R  K  D  T  L  K  T  L  N  D  F  Q  K  L  L  G  D  I  N  W  I  R  P  T 
4641   ATAGAAATAAGAAAAGACACATTAAAAACACTAAATGATTTTCAAAAATTACTAGGAGATATTAATTGGATTCGGCCAAC  4720 
 
         L  G  I  P  T  Y  A  M  S  N  L  F  S  I  L  R  G  D  S  D  L  N  S  K  R  M   
4721   TCTAGGCATTCCTACTTATGCCATGTCAAATTTGTTCTCTATCTTAAGAGGAGACTCAGACTTAAATAGTAAAAGAATGT  4800 
 
       L  T  P  E  A  T  K  E  I  K  L  V  E  E  K  I  Q  S  A  Q  I  N  R  I  D  P  L  
4801   TAACCCCAGAGGCAACAAAAGAAATTAAATTAGTGGAAGAAAAAATTCAGTCAGCGCAAATAAATAGAATAGATCCCTTA  4880 
 
        A  P  L  Q  L  L  I  F  A  T  A  H  S  P  T  G  I  I  I  Q  N  T  D  L  V  E  W 
4881   GCCCCACTCCAACTTTTGATTTTTGCCACTGCACATTCTCCAACAGGCATCATTATTCAAAATACTGATCTTGTGGAGTG  4960 
 
         S  F  L  P  H  S  T  V  K  T  F  T  L  Y  L  D  Q  I  A  T  L  I  G  Q  T  R   
4961   GTCATTCCTTCCTCACAGTACAGTTAAGACTTTTACATTGTACTTGGATCAAATAGCTACATTAATCGGTCAGACAAGAT  5040 
 
       L  R  I  I  K  L  C  G  N  D  P  D  K  I  V  V  P  L  T  K  E  Q  V  R  Q  A  F  
5041   TACGAATAATAAAATTATGTGGAAATGACCCAGACAAAATAGTTGTCCCTTTAACCAAGGAACAAGTTAGACAAGCCTTT  5120 
 
        I  N  S  G  A  W  Q  I  G  L  A  N  F  V  G  I  I  D  N  H  Y  P  K  T  K  I  F 
5121   ATCAATTCTGGTGCATGGCAGATTGGTCTTGCTAATTTTGTGGGAATTATTGATAATCATTACCCAAAAACAAAGATCTT  5200 
 
         Q  F  L  K  L  T  T  W  I  L  P  K  I  T  R  R  E  P  L  E  N  A  L  T  V  F   
5201   CCAGTTCTTAAAATTGACTACTTGGATTCTACCTAAAATTACCAGACGTGAACCTTTAGAAAATGCTCTAACAGTATTTA  5280 
 
       T  D  G  S  S  N  G  K  A  A  Y  T  G  P  K  E  R  V  I  K  T  P  Y  Q  S  A  Q  
5281   CTGATGGTTCCAGCAATGGAAAAGCAGCTTACACAGGGCCGAAAGAACGAGTAATCAAAACTCCATATCAATCGGCTCAA  5360 



 

 

Figure 14 continued 
 
        R  A  E  L  V  A  V  I  T  V  L  Q  D  F  D  Q  P  I  N  I  I  S  D  S  A  Y  V 
5361   AGAGCAGAGTTGGTTGCAGTCATTACAGTGTTACAAGATTTTGACCAACCTATCAATATTATATCAGATTCTGCATATGT  5440 
 
         V  Q  A  T  R  D  V  E  T  A  L  I  K  Y  S  M  D  D  Q  L  N  Q  L  F  N  L   
5441   AGTACAGGCTACAAGGGATGTTGAGACAGCTCTAATTAAATATAGCATGGATGATCAGTTAAACCAGCTATTCAATTTAT  5520 
 
       L  Q  Q  T  V  R  K  R  N  F  P  F  Y  I  T  H  I  R  A  H  T  N  L  P  G  P  L  
5521   TACAACAAACTGTAAGAAAAAGAAATTTCCCATTTTATATTACTCATATTCGAGCACACACTAATTTACCAGGGCCTTTG  5600 
 
        T  K  A  N  E  Q  A  D  L  L  V  S  S  A  L  I  K  A  Q  E  L  H  A  L  T  H  V 
5601   ACTAAAGCAAATGAACAAGCTGACTTACTGGTATCATCTGCACTCATAAAAGCACAAGAACTTCATGCTTTGACTCATGT  5680 
 
         N  A  A  G  L  K  N  K  F  D  V  T  W  K  Q  A  K  D  I  V  Q  H  C  T  Q  C   
5681   AAATGCAGCAGGATTAAAAAACAAATTTGATGTCACATGGAAACAGGCAAAAGATATTGTACAACATTGCACCCAGTGTC  5760 
 
       Q  V  L  H  L  P  T  Q  E  A  G  V  N  P  R  G  L  C  P  N  A  L  W  Q  M  D  V  
5761   AAGTCTTACACCTGCCCACTCAAGAGGCAGGAGTTAATCCCAGAGGTCTGTGTCCTAATGCATTATGGCAAATGGATGTC  5840 
 
        T  H  V  P  S  F  G  R  L  S  Y  V  H  V  T  V  D  T  Y  S  H  F  I  W  A  T  C 
5841   ACGCATGTACCTTCATTTGGAAGATTATCATATGTTCATGTAACAGTTGATACTTATTCACATTTCATATGGGCAACTTG  5920 
 
         Q  T  G  E  S  T  S  H  V  K  K  H  L  L  S  C  F  A  V  M  G  V  P  E  K  I   
5921   CCAAACAGGAGAAAGTACTTCCCATGTTAAAAAACATTTATTGTCTTGTTTTGCTGTAATGGGAGTTCCAGAAAAAATCA  6000 
 
       K  T  D  N  G  P  G  Y  C  S  K  A  F  Q  K  F  L  S  Q  W  K  I  S  H  T  T  G  
6001   AAACTGACAATGGACCAGGATATTGTAGTAAAGCTTTCCAAAAATTCTTAAGTCAGTGGAAAATTTCACATACAACAGGA  6080 
 
        I  P  Y  N  S  Q  G  Q  A  I  V  E  R  T  N  R  T  L  K  T  Q  L  V  K  Q  K  E 
6081   ATTCCTTATAATTCCCAAGGACAGGCCATAGTTGAAAGAACTAATAGAACACTCAAAACTCAATTAGTTAAACAAAAAGA  6160 
 
         G  G  D  S  K  E  C  T  T  P  Q  M  Q  L  N  L  A  L  Y  T  L  N  F  L  N  I   
6161   AGGGGGAGACAGTAAGGAGTGTACCACTCCTCAGATGCAACTTAATCTAGCACTCTATACTTTAAATTTTTTAAACATTT  6240 



 

 
 

Figure 14 continued 
 
       Y  R  N  Q  T  T  T  S  A  E  Q  H  L  T  G  K  K  N  S  P  H  E  G  K  L  I  W  
6241   ATAGAAATCAGACTACTACTTCTGCAGAACAACATCTTACTGGTAAAAAGAACAGCCCACATGAAGGAAAACTAATTTGG  6320 
 
        W  K  D  N  K  N  K  T  W  E  I  G  K  V  I  T  W  G  R  G  F  A  C  V  S  P  G 
6321   TGGAAAGATAATAAAAATAAGACATGGGAAATAGGGAAGGTGATAACGTGGGGGAGAGGTTTTGCTTGTGTTTCACCAGG  6400 
 
                                                          M  N  P  S  E  M  Q  R  K  A  
         E  N  Q  L  P  V  W  I  P  T  R  H  L  K  F  Y  N  E  P  I  G  D  A  K  K  S   
                                                          M  N  P  S  E  M  Q  R  K  A  
6401   AGAAAATCAGCTTCCTGTTTGGATACCCACTAGACATTTGAAGTTCTACAATGAACCCATCGGAGATGCAAAGAAAAGCA  6480 
        P  P  R  R  R  R  H  R  N  R  A  P  L  T  H  K  M  N  K  M  V  T  S  E  E  Q  M 
       T  S  A  E  T  E  T  P  Q  S  S  T  V  D  S  Q  D  E  Q  N  G  D  V  R  R  T  D  
        P  P  R  R  R  R  H  R  N  R  A  P  L  T  H  K  M  N  K  M  V  T  S  E  E  Q  M 
6481   CCTCCGCGGAGACGGAGACACCGCAATCGAGCACCGTTGACTCACAAGATGAACAAAATGGTGACGTCAGAAGAACAGAT  6560 
 
         K  L  P  S  T  K  K  A  E  P  P  T  W  A  Q  L  K  K  L  T  Q  L  A  T  K  Y   
        E  V  A  I  H  Q  E  G  R  A  A  D  L  G  T  T  K  E  A  D  A  V  S  Y  K  I  S 
         K  L  P  S  T  K  K  A  E  P  P  T  W  A  Q  L  K  K  L  T  Q  L  A  T  K  Y   
6561   GAAGTTGCCATCCACCAAGAAGGCAGAGCCGCCGACTTGGGCACAACTAAAGAAGCTGACGCAGTTAGCTACAAAATATC  6640 
 
       L  E  N  T  K  V  T  Q  T  P  E  S  M  L  L  A  A  L  M  I  V  S  M  V   
         R  E  H  K  G  D  T  N  P  R  E  Y  A  A  C  S  L  D  D  C  I  N  G  G  K  S   
       L  E  N  T  K  V  T  Q  T  P  E  S  M  L  L  A  A  L  M  I  V  S  M  V  V  S  L  
6641   TAGAGAACACAAAGGTGACACAAACCCCAGAGAGTATGCTGCTTGCAGCCTTGATGATTGTATCAATGGTGGTAAGTCTC  6720 
 
       P  Y  A  C  R  S  S  C  S  *  
        P  M  P  A  G  A  A  A  A  N  Y  T  Y  W  A  Y  V  P  F  P  P  L  I  R  A  V  T 
6721   CCTATGCCTGCAGGAGCAGCTGCAGCTAACTATACCTACTGGGCCTATGTGCCTTTCCCGCCCTTAATTCGGGCAGTCAC  6800 
 
         W  M  D  N  P  I  E  V  Y  V  N  D  S  V  W  V  P  G  P  I  D  D  R  C  P  A   
6801   ATGGATGGATAATCCTATAGAAGTATATGTTAATGATAGTGTATGGGTACCTGGCCCCATAGATGATCGCTGCCCTGCCA  6880 
 



 

 
 

Figure 14 continued 
 
       K  P  E  E  E  G  M  M  I  N  I  S  I  G  Y  R  Y  P  P  I  C  L  G  R  A  P  G  
6881   AACCTGAGGAAGAAGGGATGATGATAAATATTTCCATTGGGTATCGTTATCCTCCTATTTGCCTAGGGAGAGCACCAGGA  6960 
 
        C  L  M  P  A  V  Q  N  W  L  V  E  V  P  T  V  S  P  I  S  R  F  T  Y  H  M  V 
6961   TGTTTAATGCCTGCAGTCCAAAATTGGTTGGTAGAAGTACCTACTGTCAGTCCCATCAGTAGATTCACTTATCACATGGT  7040 
 
         S  G  M  S  L  R  P  R  V  N  Y  L  Q  D  F  S  Y  Q  R  S  L  K  F  R  P  K   
7041   AAGCGGGATGTCACTCAGGCCACGGGTAAATTATTTACAAGACTTTTCTTATCAAAGATCATTAAAATTTAGACCTAAAG  7120 
 
       G  K  P  C  P  K  E  I  P  K  E  S  K  N  T  E  V  L  V  W  E  E  C  V  A  N  S  
7121   GGAAACCTTGCCCCAAGGAAATTCCCAAAGAATCAAAAAATACAGAAGTTTTAGTTTGGGAAGAATGTGTGGCCAATAGT  7200 
 
        A  V  I  L  Q  N  N  E  F  G  T  I  I  D  W  A  P  R  G  Q  F  Y  H  N  C  S  G 
7201   GCGGTGATATTACAAAACAATGAATTTGGAACTATTATAGATTGGGCACCTCGAGGTCAATTCTACCACAATTGCTCAGG  7280 
 
         Q  T  Q  S  C  P  S  A  Q  V  S  P  A  V  D  S  D  L  T  E  S  L  D  K  H  K   
7281   ACAAACTCAGTCGTGTCCAAGTGCACAAGTGAGTCCAGCTGTTGATAGCGACTTAACAGAAAGTTTAGACAAACATAAGC  7360 
 
       H  K  K  L  Q  S  F  Y  P  W  E  W  G  E  K  G  I  S  T  P  R  P  K  I  V  S  P  
7361   ATAAAAAATTGCAGTCTTTCTACCCTTGGGAATGGGGAGAAAAAGGAATCTCTACCCCAAGACCAAAAATAGTAAGTCCT  7440 
 
        V  S  G  P  E  H  P  E  L  W  R  L  T  V  A  S  H  H  I  R  I  W  S  G  N  Q  T 
7441   GTTTCTGGTCCTGAACATCCAGAATTATGGAGGCTTACTGTGGCCTCACACCACATTAGAATTTGGTCTGGAAATCAAAC  7520 
 
         L  E  T  R  D  R  K  P  F  Y  T  V  D  L  N  S  S  L  T  V  P  L  Q  S  C  V   
7521   TTTAGAAACAAGAGATCGTAAGCCATTTTATACTGTCGACCTAAATTCCAGTCTAACAGTTCCTTTACAAAGTTGCGTAA  7600 
 
       K  P  P  Y  M  L  V  V  G  N  I  V  I  K  P  D  S  Q  T  I  T  C  E  N  C  R  L  
7601   AGCCCCCTTATATGCTAGTTGTAGGAAATATAGTTATTAAACCAGACTCCCAGACTATAACCTGTGAAAATTGTAGATTG  7680 
 
        L  T  C  I  D  S  T  F  N  W  Q  H  R  I  L  L  V  R  A  R  E  G  V  W  I  P  V 
7681   CTTACTTGCATTGATTCAACTTTTAATTGGCAACACCGTATTCTGCTGGTGAGAGCAAGAGAGGGCGTGTGGATCCCTGT  7760 
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         S  M  D  R  P  W  E  A  S  P  S  V  H  I  L  T  E  V  L  K  G  V  L  N  R  S   
7761   GTCCATGGACCGACCGTGGGAGGCCTCACCATCCGTCCATATTTTGACTGAAGTATTAAAAGGTGTTTTAAATAGATCCA  7840 
 
       K  R  F  I  F  T  L  I  A  V  I  M  G  L  I  A  V  T  A  T  A  A  V  A  G  V  A  
7841   AAAGATTCATTTTTACTTTAATTGCAGTGATTATGGGATTAATTGCAGTCACAGCTACGGCTGCTGTAGCAGGAGTTGCA  7920 
 
        L  H  S  S  V  Q  S  V  N  F  V  N  D  W  Q  K  N  S  T  R  L  W  N  S  Q  S  S 
7921   TTGCACTCTTCTGTTCAGTCAGTAAACTTTGTTAATGATTGGCAAAAAAATTCTACAAGATTGTGGAATTCACAATCTAG  8000 
 
         I  D  Q  K  L  A  N  Q  I  N  D  L  R  Q  T  V  I  W  M  G  D  R  L  M  S  L   
8001   TATTGATCAAAAATTGGCAAATCAAATTAATGATCTTAGACAAACTGTCATTTGGATGGGAGACAGACTCATGAGCTTAG  8080 
 
       E  H  R  F  Q  L  Q  C  D  W  N  T  S  D  F  C  I  T  P  Q  I  Y  N  E  S  E  H  
8081   AACATCGTTTCCAGTTACAATGTGACTGGAATACGTCAGATTTTTGTATTACACCCCAAATTTATAATGAGTCTGAGCAT  8160 
 
        H  W  D  M  V  R  R  H  L  Q  G  R  E  D  N  L  T  L  D  I  S  K  L  K  E  Q  I 
8161   CACTGGGACATGGTTAGACGCCATCTACAGGGAAGAGAAGATAATCTCACTTTAGACATTTCCAAATTAAAAGAACAAAT  8240 
 
         F  E  A  S  K  A  H  L  N  L  V  P  G  T  E  A  I  A  G  V  A  D  G  L  A  N   
8241   TTTCGAAGCATCAAAAGCCCATTTAAATTTGGTGCCAGGAACTGAGGCAATTGCAGGAGTTGCTGATGGCCTCGCAAATC  8320 
 
       L  N  P  V  T  W  V  K  T  I  G  S  T  T  I  I  N  L  I  L  I  L  V  C  L  F  C  
8321   TTAACCCTGTCACTTGGGTTAAGACCATTGGAAGTACTACGATTATAAATCTCATATTAATCCTTGTGTGCCTGTTTTGT  8400 
 
              S  A  G  V  P  N  S  S  E  E  T  A  T  I  E  N  G  P  * 
        L  L  L  V  C  R  C  T  Q  Q  L  R  R  D  S  D  H  R  E  R  A  M  M  T  M  A  V 
8401   CTGTTGTTAGTCTGCAGGTGTACCCAACAGCTCCGAAGAGACAGCGACCATCGAGAACGGGCCATGATGACGATGGCGGT  8480 
                               → 
         L  S  K  R  K  G  G  N  V  G  K  S  K  R  D  Q  I  V  T  V  S  V  *  
8481   TTTGTCGAAAAGAAAAGGGGGAAATGTGGGGAAAAGCAAGAGAGATCAGATTGTTACTGTGTCTGTGTAGAAAGAAGTAG  8560 
 
8561   ACATAGGAGACTCCATTTTGTTATGTACTAAGAAAAATTCTTCTGCCTTGAGATTCTGTTAATCTATGACCTTACCCCCA  8640 
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8641   ACCCCGTGCTCTCTGAAACGTGTGCTGTGTCAACTCAGAGTTGAATGGATTAAGGGCGGTGCAGGATGTGCTTTGTTAAA  8720 
 
8721   CAGATGCTTGAAGGCAGCATGCTCCTTAAGAGTCATCACCACTCCCTAATCTCAAGTACCCAGGGACACAAAAACTGCGG  8800 
 
8801   AAGGCCGCAGGGACCTCTGCCTAGGAAAGCCAGGTATTGTCCAAGGTTTCTCCCCATGTGATAGTCTGAAATATGGCCTC  8880 
 
8881   GTGGGAAGGGAAAGACCTGACCGTCCCCCAGCCCGACACCCGTAAAGGGTCTGTGCTGAGGAGGATTAGTAAAAGAGGAA  8960 
 
8961   GGAATGCCTCTTGCAGTTGAGACAAGAGGAAGGCATCTGTCTCCTGCCTGTCCCTGGGCAATGGAATGTCTCGGTATAAA  9040 
 
9041   ACCCGATTGTATGCTCCATCTACTGAGATAGGGAAAAACCGCCTTAGGGCTGGAGGTGGGACCTGCGGGCAGCAATACTG  9120 
 
9121   CTTTGTAAAGCACTGAGATGTTTATGTGTATGCATATCTAAAAGCACAGCACTTAATCCTTTACATTGTCTATGATGCAA  9200 
 
9201   AGACCTTTGTTCACGTGTTTGTCTGCTGACCCTCTCCCCACAATTGTCTTGTGACCCTGACACATCCCCCTCTTTGAGAA  9280 
 
9281   ACACCCACAGATGATCAATAAATACTAAGGGAACTCAGAGGCTGGCGGGATCCTCCATATGCTGAACGCTGGTTCCCCGG  9360 
 
9361   GTCCCCTTATTTCTTTCTCTATACTTTGTCTCTGTGTCTTTTTCTTTTCCAAATCTCTCGTCCCACCTTACGAGAAACAC  9440 
                                     ← 
9393   CCACAGGTGTGTAGGGGCAACCCACCCCTACA  9472 
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2.3 HERV-KCON proteins 

To determine whether HERV-KCON proteins were capable of assembling into 

retrovirus-like particles, pCRVI based plasmids expressing the consensus Gag, Gag-PR 

and Gag-PR-Pol ORFs were constructed. Transfection of the plasmids resulted in the 

expression of a protein of approximately 70 to 80 kDa, detected by Western blotting 

using a commercially available antibody raised against HERV-K Gag (Covance) (Figure 

15A). This approximated to the expected size (74 kDa) of intact HERV-K Gag. A 

concurrent analysis of proteins pelleted from culture supernatant through 20% sucrose 

revealed that Gag expression alone could efficiently generate extracellular particles 

(Figure 15A). In addition to the 74-kDa Gag precursor, a protein of approximately 40 

kDa that reacted with the HERV-K Gag antibody was detected in lysates of cells 

transfected with Gag-PR and Gag-PR-Pol expression plasmids. While the precise identity 

of the 40-kDa protein is unknown, it likely represents a proteolytically processed form of 

Gag, which suggests that the HERV-KCON protease is active.  

Analysis of extracellular particles by SDS-PAGE and silver staining revealed that 

HERV-KCON Gag expression alone produced a protein band around 74 kDa as expected 

for the full length Gag (Figure 15B and C). Particles generated by Gag-PR contained a 

dominant protein of 30 kDa, which based on previous studies likely represents HERV-

KCON capsid (CA) (Bieda et al., 2001; Boller et al., 1993a; Mueller-Lantzsch et al., 1993). 

A smaller protein or proteins of 20 kDa were also observed in Gag-PR particles, which 

presumably represent other mature Gag processed products such as MA or NC proteins 

(Figure 15B). Additionally, a protein of 40 kDa that likely corresponded to the 40-kDa 

band detected by Western blotting was also observed on  
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Figure 15 Expression of HERV-K proteins and release of virus-like particles 

293T cells were transfected with HERV-K protein expression vectors, pCRVI/Gag, pCRVI/Gag-PR, 
pCRVI/Gag-PR-Pol, or pCRVI/Gag-PR(mut), and harvested two days after transfection. A. Western blot 
analysis of HERV-K protein expression in cell lysates (left) or virus-like particle expression in the cell 
supernatant (center and right) using a commercially available anti-HERV-K Gag antibody. The expected 
size of full length Gag polyprotein is 74kDa. Decreasing quantities of virion lysate (0.1, 0.05, and 0.025µl 
for Gag, center panel, or 0.4, 0.2, and 0.1µl for Gag-PR and Gag-PR-Pol, right panel) were loaded to 
estimate relative levels of VLP production. B. Silver stain analysis of a 4% to 20% gradient SDS-PAGE gel 
loaded with VLPs harvested from 293T cells transfected with HERV-K protein expression plasmids or 
empty plasmid control. An asterisk marks a nonspecific 66kDa protein band, most likely BSA. C. Silver 
stain analysis of VLPs harvested from 293T cells transfected with HERV-K protein expression plasmids 
including pCRVI/Gag-PR(mut) which has an active site mutation (DTG to AAA) in protease. An asterisk 
marks a nonspecific 66kDa band.  
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silver-stained gels. However, the 40-kDa protein was a minor species in Gag-PR particles, 

and it is therefore likely that this protein represents a partly processed intermediate. 

HERV-K Gag-PR-Pol expression also yielded particles containing the same apparently 

processed Gag proteins as those generated by Gag-PR but at slightly lower levels (Figure 

15B). The 30-kDa putative CA protein on silver stained gels was abolished when three 

predicted active site residues (Asp-Thr-Gly) in the HERV-KCON protease ORF were 

mutated to Ala-Ala-Ala (Figure 15C). Additionally, a higher molecular-weight protein, 

possibly representing the Gag-PR precursor, was observed in particles harvested from 

cells expressing the mutant Gag-PR protein (Figure 15C). These data are consistent with 

proper translation of the proteins, assembly and budding of particles, and cleavage of 

polyprotein by protease.  

Although their low abundance relative to contaminating extraneous cellular 

proteins and the lack of available antibodies precluded unambiguous identification of Pol  

 

Figure 16 RT activity of HERV-KCON VLPs 

Reverse transcriptase activity was assayed in culture supernatants of 293T cells transfected with empty 
pCRV1 (vector) or vectors expressing HERV-KCON Gag, Gag-PR, or Gag-PR-Pol proteins using 
commercially available RT assay (Cavidi). Enzymatic activity was determined relative to a recombinant 
HIV-1 reverse transcriptase standard and is representative of three experiments. Supernatants from 293T 
cells transfected with an HIV-1–based proviral plasmid are included for comparison. 
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proteins in SDS-PAGE analyses of HERV-KCON VLPs, supernatants of 293T cell 

cultures transfected with the HERV-KCON Gag-PR-Pol expression plasmid contained 

quite high levels of reverse transcriptase activity, as detected by an ELISA-based assay 

designed for the detection of HIV-1 reverse transcriptase (Figure 16). No reverse 

transcriptase activity was detected in control cultures transfected with HERV-KCON Gag 

or Gag-PR expression plasmids. 

To determine the location of protease cleavage sites in Gag, the N terminus of two 

bands (p30 and p15) detected in the silver stain analysis of HERV-KCON VLPs in the 

presence of protease were identified by Edman sequencing. The result shows that the p30 

band, predicted to be the CA protein, begins at the 283rd amino acid of Gag (PVTLE). 

The smaller band showed a cleavage site at the 149th amino acid of Gag (YNQLQ). This 

data implies that the MA protein is 148 amino acids in length and estimated to weigh 

16.7 kDa, and may correspond to the smallest band detected in silver stain of VLPs 

between 20 and 15 kDa (Figure 15B). The protein that resides between MA and CA 

(amino acids 149-282) is estimated to be 15 kDa, and includes a late domain PTAP motif. 

The location of p15 between MA and CA is to the same as that of p24 in MPMV, which 

also contains late domains (PPPY and PTAP motifs) that have been shown to be 

important for MPMV particle release (Gottwein et al., 2003), indicating a similar role for 

p15 in HERV-K. Based on the molecular weights of MA, p15, and CA, the molecular 

weight of NC is estimated from the total molecular weight of Gag to be around 12 kDa, 

but there is no direct evidence of this estimation.  

The molecular weight of CA is estimated from previous studies to be around 30 

kDa (Bieda et al., 2001; Boller et al., 1993b). Despite not knowing the exact cleavage site 
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between CA and NC, knowing the N-terminus of CA allows for a rough calculation of 

the position of the C-terminus based on the molecular weight of CA. Based on this 

estimation, CA was expressed and purified for the generation of anti-CA polyclonal 

antiserum in rabbits (Covance). CA (amino acids 289 to 532, the C terminus 

conservatively estimated) was cloned into bacterial expression vector as a glutathione S-

transferase (GST) tagged protein, which was purified using glutathione-agarose beads. 

The GST tag was cleaved, and the purified recombinant CA protein used to generate the 

antiserum (Figure 17). The western blotting analysis using HERV-KCON Gag transfected 

293T cell lysate show both a full length 74 kDa band and a smaller 30 kDa band (Figure 

18), confirming that the p30 protein is CA. The proteins recognized by this polyclonal 

antibody is different from the commercially available anti-HERV-K Gag antibody, which 

recognizes the full length 74 kDa band and a band around 40 kDa that is a minor band in 

silver stain of VLPs (Figure 15A).  

 

Figure 17 In vitro purification of HERV-
KCON CA 

The deduced HERV-KCON CA sequence was 
cloned into pGEX-6P-1 (GE Healthcare Life 
Sciences) to express a glutathione S-
transferase (GST)-tagged CA protein that 
was purified using glutathione-agarose beads. 
The GST tag was eliminated by PreScission 
protease cleavage as per the manufacturer's 
instructions (GE Healthcare Life Sciences). 
The purified CA protein was separated in 
SDS-PAGE gel, and stained with Coomassie 
dye for visualization. Expected sizes of CA 
and GST are 30kDa and 26kDa, respectively, 
and are noted by the arrows. The minor band 
between CA and GST (middle arrow) is 
believed to be a minor degradation or 
cleavage product of CA. The concentration 
of CA was measured by Bradford assay to be 
7.35 µg/µl.  
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Figure 18 Efficacy of polyclonal HERV-KCON CA antibody 

Cell lysates separated by SDS-PAGE on PVDF membrane was probed with 
polyclonal HERV-KCON CA antibody at 1:5000. The first lane contains the 293T 
cell lysate transfected with pCRVI/Con Gag-PR-Pol, and the second lane 
contains untransfected 293T cell lysate. The expected sizes of full length Gag and 
CA are 74kDa, and 30kDa. Gag-PR and Gag-PR-Pol are not visible. 
 
 
 The localization of Gag for virus particle assembly and 

budding was also examined. Co-expression of HERV-KCON Gag 

and Gag–green fluorescent protein (GFP) fusion proteins in 293T 

cells revealed that HERV-KCON Gag localized predominantly to the plasma membrane, 

where numerous fluorescent puncta were observed (Figure 19). Moreover, electron 

microscopic examination of 293T cells expressing HERV-KCON Gag-PR revealed the 

presence of cell-associated retrovirus-like particles and structures that appeared to 

represent assembly intermediates (Figure 20). Most particles appeared to be between 100 

to 150 nm in diameter, apparently spherical immature virions, with a minority assembled 

as aberrant particles that appeared as two or more connected, partly assembled, virions. 

While no unambiguously mature virions associated with the surface of Gag-PR  

 

Figure 19 Plasma membrane 
localization of HERV-KCON Gag 

Two representative 293T cells 
transfected with HERV-KCON Gag and 
Gag-GFP expression plasmids. Cells 
were fixed 18 hours post-transfection, 
and nuclei were stained with DAPI (blue) 
prior to visualization by deconvolution 
microscopy. Top, images acquired at the 
mid-section of the cell to show 
localization of Gag-GFP proteins; 
bottom, focused on the bottom of the 
cell to show accumulated VLPs at the 
cell-coverslip interface. 
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Figure 20 Electron microscopy of HERV-KCON VLPs 

Gallery of images of 293T cells transfected with a Gag-PR expressing plasmid. Black scale bars in the 
upper and middle panels represent 500 nm, while scale bars in the lower two panels represent 100 nm.  
 
 
expressing cells were observed, it is possible that full maturation, which was clearly 

indicated by the biochemical analysis of extracellular VLPs (Figure 15 and 18), occurred 

only after the completion of particle release from cells. Completely or incompletely 

assembled particles appeared exclusively at the plasma membrane with a morphology 

resembling partly assembled alpharetroviruses or gammaretroviruses. Even though 

betaretroviruses represent HERV-Ks closest exogenous retrovirus relatives, no 

cytoplasmic, nonenveloped particles, typically observed in betaretroviruses, were found.  
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2.4 Establishment of single-cycle infection system 

After confirming that the viral proteins can assemble into VLPs and that protease 

and RT are functional, a single-cycle infection system was established using these 

components along with a viral genome that should be packaged into VLPs, reverse 

transcribed, and integrated to complete the cycle. Frequently, a marker is inserted into the 

genomic sequence to allow for detection of a successful infection. Therefore various 

versions of the HERV-KCON genome were constructed with CMVP-GFP or CMVP-drug 

resistance genes inserted into the Env ORF via KpnI restriction site (Figure 21). This 

strategy disrupts the Env ORF, but infectious pseudotyped particles could, in principle, 

be generated by the co-expression of vesicular stomatitis virus glycoprotein (VSVG). 

VSVG is known to have a wide tropism, and thus helpful in single-cycle infection 

systems as any cell can be used as target cells to study other steps of virus infection. The 

HERV-KCON which contains the CMVP in the 5’ LTR and the CMVP-marker in the Env 

ORF is named CMVP-HERV-KCON-CMVP marker (CHKCG for GFP and CHKCP for 

puromycin-resistance gene).   

As the insertion of the marker lengthens the total packaged sequence (additional 

1464 bps for CMVP-GFP), the modified genome may not be packaged into the virus 

particle as effectively. To address this issue, versions of the genome where the sequence 

has been shorted to reflect the actual length of HERV-K (9472 bps) were constructed. 

Deletions of the viral sequence around Gag, PR and Pol ORFs (Bgl II to Bgl II, a deletion 

of 3918 bps which includes most of Gag to the 3’ half of Pol; Hpa I to Hpa I, a deletion 

of 2526 bps which includes the 3’ half of Gag to 5’ third of Pol; Age I to Dra III, a 

deletion of 1782 bps which includes the 5’ two thirds of Pol) did not result in infection  
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Figure 21 Diagram of HERV-KCON derived packageable genome constructs 

The packageable genomes derived from HERV-KCON with the various features are depicted. CMVP-
HERV-KCON contains a CMVP in the 5’ LTR U3 region, and is shown for length comparisons. CHKCG 
and CHKCP contain CMVP-GFP and CMVP-puromycin resistance gene inserted into the SwaI restriction 
site of Env ORF. CCGBX is shortened in the Pol and Env ORFs (6643-7784) to reduce the length of the 
construct to 9287 bps for efficient packaging. CCGBX-P includes a 53 bp HIV-1 sequence in the 3’ LTR, 
as depicted by the red bar.    

 

(data not shown). These deletions all include the elimination of Age I to Hpa I fragment 

of 827 bps located in the Pol ORF encoding for RT, which is near the center of the viral 

genome. In HIV-1, a sequence located around that position called the central polypurine 

tract (cPPT) is important for maximum efficiency of reverse transcription and is highly 
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conserved (Goff, 2007). MMTV and MPMV, the closely related betaretroviruses, are not 

known to contain a cPPT; none was found in HERV-K as well. Hence, why these 

deletions resulted in the lack of transfer of the marker is unknown.  

The final shortened genome that gave the highest virus titer retains the CMVP in 

the 5’ LTR, but the CMVP-marker is cloned into the Kpn I and Swa I restriction sites of 

Env ORF, eliminating 1414 bps of Env sequence. An additional truncation from the Xba 

I to KpnI restriction site in the Env ORF eliminates an additional 211 bps. This final 

construct was named CCGBX, reflecting the GFP as the marker (Figure 21). The length 

of CCGBX is 9287 bps, 185 bps shorter than HERV-KCON. Other markers are named 

accordingly; for example, CCBBX encodes for the blasticidin resistance gene. For each 

experiment, the genome used is noted in the figure legend for clarity.   

To determine whether particles containing the HERV-KCON genome, Gag, PR, 

and Pol proteins were capable of infectious transfer of the HERV-KCON genome to target 

cells, the plasmids were transfected into 293T cells for VLP production (Figure 22). As 

expected, transfection of the Env-defective CHKCG construct resulted in GFP expression 

in transfected 293T cells, but inoculation of target cells with 0.2-µm filtered supernatant 

harvested from these cells did not result in infectious transfer of the reporter gene. 

However, when VSVG was expressed in trans, GFP expression was observed in rare foci 

of target cells inoculated with filtered supernatant from CHKCG-transfected cells. 

Moreover, when Rec was expressed in trans with CHKCG and VSVG, infectious particle 

yield was in excess of 102 infectious units/ml. Similarly, when the HERV-KCON Gag-PR-

Pol expression plasmid was provided in trans for the combined expression of CHKCG, 

VSV-G, HERV-K Gag-Pol, and Rec, the highest infectious titers were  
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Figure 22 Generation of single cycle infectious HERV-KCON VLPs  

Infectious titers of HERV-KCON VSV-G pseudotyped virions generated following transfection with the 
indicated plasmid mixtures using 293T target cells. GFP-positive foci were enumerated visually and 
expressed as infectious units per milliliter of virion-containing supernatant. CHKCG was used as the 
packageable genome.  
 
 
detected (up to 103 IU/ml, Figure 22). Thus, this combination of plasmids (or an 

improved packageable HERV-K genome as noted) was used to generate infectious 

HERV-KCON VSV-G pseudotyped particles in subsequent studies, which generated titers 

approaching 104 IU/ml. While this infectious titer is low compared to that generated by 

many exogenous retroviruses (e.g., murine leukemia virus [MLV] and HIV-1), the yield 

of infectious HERV-K particles was of the same order as or greater than that obtained 

with similarly constructed human T-cell lymphotropic virus-1 (HTLV-1) based vector 

systems ((Derse et al., 2001) and unpublished data). 

HERV-KCON particles with mutations in the reverse transcriptase protein were 

also tested as controls. VLPs were generated using CCBXS RTX (HERV-KCON with a 

blasticidin resistance gene and RT mutation) and either WT or RTX Con Gag-PR-Pol. 

RTX plasmids were synthesized by mutating the highly conserved YIDD RT motif to  
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Figure 23 Lack of infection by RT mutant HERV-KCON VLPs 

CCBXS was used as the packageable genome for production of VLPs. 293T cells were used as target cells 
for infection. 12 hours post-infection, infected cells were selected via addition of blasticidin (0.5 µg/ml) in 
cell culture media for two weeks. The resistant colonies were quantified by eye, and infectious units were 
calculated based on eye count.  

 

AIAA. In RTX VLPs, no blasticidin resistant colonies were observed after selection of 

infected cells, while numerous colonies were observed after infection with the WT VLPs 

(Figure 23).  

HERV-K108, a provirus which exists as multiple alleles, contains a YIDD to 

CIDD  mutation in its RT, and therefore assumed to encode an inactive protein (Mayer et 

al., 1999b; Reus et al., 2001). However, when the CIDD mutation was tested in the 

context of HERV-KCON for activity in an exogenous RT assay, CIDD RT was in fact 

consistently slightly more active than YIDD RT (Figure 24). As K108 RT differs from 

HERV-KCON in three additional amino acids, the activity of CIDD HERV-K RT does not 

confirm that K108 RT is active.  

Additionally, 293T cells were inoculated with VSVG pseudotyped HERV-KCON 

particles containing the CHKCG genome in the presence of azidothymidine (AZT), a 
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Figure 24 Infection of HERV-KCON VLPs with RT mutation 

CHKCG was used as the packageable genome for VLP production with either HERV-KCON Gag-Prot-Pol 
with WT RT (YIDD motif), or mutant RT (CIDD motif). Two days post transfection, supernatant was used 
to infect fresh 293T cells. GFP+ cells were quantified by FACS two days post infection.  

 

reverse transcriptase inhibitor. AZT is a thymidine analog chain terminator and is known 

to inhibit reverse transcriptases from a wide variety of retroviruses (Rosenblum et al., 

2001). As can be seen in Figure 25, application of AZT to target cells inhibited HERV-

K–mediated reporter gene transduction by approximately 30-fold, suggesting that the 

reporter gene transfer by HERV-KCON was dependent on reverse transcription. 

In some cases, low levels of reporter gene expression mediated by retroviral gene 

transfer can be mediated by reverse-transcribed but nonintegrated retroviral DNA, which 

can exist as linear or circular forms in target cells (Saenz et al., 2004; Wu and Marsh, 

2001; Yanez-Munoz et al., 2006). However, these retroviral DNA forms are diluted 

during cell division and eventually lost. Stable retrovirus-mediated gene transfer that is 

transferred to both daughter cells requires that retroviral DNA be integrated into the 

target cell genome. While the formation of clear multicellular foci of GFP positive cells 
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Figure 25 AZT sensitivity of HERV-KCON infection 

Infectious titers of CHKCG containing VSVG pseudotyped HERV-KCON using 
293T target cells in the presence or absence of 50 µM AZT was accessed. 

 

 suggested the reporter gene was maintained in daughter cells, 

integration events are most effectively assayed by daughter cell 

colony formation under antibiotic selection using retroviral 

genomes that carry resistance markers. Therefore, VSVG 

pseudotyped HERV-KCON particles carrying CHKCP, packageable 

genome with a puromycin resistance gene, were used to infect new 

target cells (Figure 26). Puromycin-resistant colonies formed following exposure of 293T 

target cells to these virions and antibiotic selection for two weeks post infection, 

suggesting that true integration had occurred. Indeed, the infectious titers of puromycin 

resistance transducing particles were similar to that of GFP-transducing particles.  

To further demonstrate that HERV-KCON genomes were capable of integration, 

hamster CHO745 cells were infected with HERV-KCON particles carrying the CHKCP 

 

Figure 26 Transduction by HERV-KCON Gag-PR-Pol and genomes 

Puromycin-resistant colonies of 293T cells infected with either VSVG pseudotyped (left) or Env defective 
(right) virions carrying the CHKCP genome. Infected 293T cells were selected in 0.5 µg/ml puromycin for 
2 weeks and then fixed and stained to reveal colonies of viable cells. Data are representative of at least 
three experiments. 
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genome and four single cell clones were derived from the resulting puromycin-resistant 

cell population by limiting dilution. Cellular genomic DNA was extracted following 

expansion of the clones for two weeks in culture and analyzed for the presence of 

integrated HERV-K DNA using a PCR-based strategy (Figure 27). Hamster CHO745 

cells were used for these experiments because they were found to be as sensitive as 

human cells to HERV-KCON infection (see below), but unlike human cells, they lack 

endogenous HERV-K proviruses that would complicate detection and analysis of de novo 

HERV-K integration events. As can be seen in Figure 27B, PCR analysis using HERV-K 

gag specific PCR primers revealed that each of the CHKCP-transduced clones, but not 

parental CHO745 cells, carried HERV-K DNA. Next, sequences flanking the integrated 

proviruses were identified using a PCR-based strategy (GenomeWalker kit; Clontech, 

http://www.clontech.com) and in each case revealed the presence of a six nucleotide 

duplicated sequence immediately flanking the provirus (Figure 27C). For three CHKCP- 

transduced CHO745 cell clones, PCR primers were designed that targeted hamster DNA 

sequences flanking the integrated HERV-KCON provirus (Figure 27A), and these were 

used to authenticate the presence of the intact preintegration site in uninfected hamster 

cells (e.g., Figure 27D). Moreover, PCRs using combinations of the hamster DNA-

specific and HERV-K–specific PCR primers were used to authenticate the presence 

HERV-K provirus/hamster cellular DNA junctions in three of the CHKCG-transduced 

clones (e.g., Figure 27D). Overall, these experiments demonstrate that HERV-K genomes 

can be replicated via exogenous infection in a reverse transcriptase–dependent manner, 

resulting in stable and authentic integration into the target cell genome.  

 Next, it was determined whether VSVG pseudotyped HERV-KCON particles could 
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Figure 27 Identification and confirmation of HERV-KCON integration sites 

A. Experimental strategy for detection of HERV-KCON proviruses in CHO745 cells using PCR primers 
targeted to HERV-KCON Gag and LTR sequences, or flanking hamster DNA sequences. B. PCR 
amplification of HERV-KCON gag DNA using Gag-S and Gag-AS primers in four expanded clones of 
puromycin-resistant CHO745 cells transduced with CHKCP-containing HERV-KCON particles. C. 
Nucleotide sequences at the 59 and 39 ends of integrated CHKCP proviral DNA, revealing six nucleotide 
duplicated sequences at the CHKCP integration sites. D. Verification of the presence and absence of an 
integrated provirus and the empty preintegration site in CHKCP-transduced and naive 
CHO745 cells using combinations of HERV-K and hamster DNA targeted PCR primers (see [B] for primer 
design strategy). DNA templates and PCR primer pairs used are indicated above each lane, and the 
expected PCR product size is given below each lane. A representative analysis of a single CHKCG-
carrying CHO745 cell clone is shown; similar results were obtained with two additional clones. Uninfected 
CHO745 cells and human 293T cells serve as controls.  
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transduce reporter genes into cells other than 293T and CHO745. As can be seen in 

Figure 28A, several target cells of human, squirrel monkey, feline, and rodent origin 

could be infected by HERV-KCON. However, it was noticeable that murine NIH3T3 cells 

and squirrel monkey Pindak cells were somewhat less sensitive to HERV-KCON, 

compared to the human and feline cells. The human cells were each quite similar in their 

sensitivity even though 293T cells display little or no TRIM5α-dependent resistance to 

retroviruses such as EIAV or N-tropic MLV, while TE671 and HT1080 exhibit strong 

TRIM5α-dependent resistance to N-tropic MLV and EIAV. This finding suggested that 

HERV-KCON may not be sensitive to human TRIM5α.  

 Additionally, to test whether the HERV-KCON envelope sequence was functional, 

it was inserted into the HIV-1–based expression vector pCRV1 and expressed along with 

HIV-1 Gag-PR-Pol proteins and the packageable GFP-expressing HIV-1 vector CSGW. 

 

 

Figure 28 Tropism of HERV-
KCON 

A. Human, squirrel monkey, 
feline, hamster, or murine cells 
were infected with VSVG 
pseudotyped HERV-KCON particles. 
Two days postinfection, GFP+ foci 
were quantified microscopically, 
and titers are expressed as number 
of infectious units (i.u.) per 
milliliter of virus containing 
supernatant applied. B. Human, 
squirrel monkey, feline, or murine 
cells were infected with HERV-
KCON Env pseudotyped HIV-1 
particles as in A. Two days 
postinfection, GFP-positive foci 
were quantified. All data are 
representative of at least three 
experiments. 
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This transfection mixture should generate HIV-1 particles, putatively pseudotyped 

with the HERV-KCON envelope protein. Notably, these particles were capable of infecting 

293T cells, with titers of around 3 x 102 IU/ml (Figure 28B), while particles generated in 

the absence of HERV-KCON Env were noninfectious. Inoculation of cells from a small 

panel of mammalian species revealed that several, including those of human, squirrel 

monkey, murine, and feline origin, could be infected with HERV-KCON Env pseudotyped 

HIV-1 VLPs (Figure 28B).  

While attempts were made to generate infectious particles that contained both 

HERV-KCON cores and Env proteins, infection events using this combination were 

undetectable. Nevertheless, these experiments indicate that the HERV-KCON genome 

contains all functional components required to complete an exogenous retroviral 

replication cycle. 

As mentioned previously, HERV-KCON is a betaretrovirus. Of the seven genera of 

Retroviridae, lentiviruses are unique in their ability to infect non-diving cells. Most other 

retroviruses depend on the cell cycle to dissolve the nuclear membrane for the PIC to 

access the host genomic DNA for integration. How HERV-K accesses the host genome 

was examined by treating HT1080 cells with aphidicolin, which blocks the cell cycle at 

early S phase, prior to infection (Figure 29). When the target cells were effectively 

blocked in cell cycle, HERV-KCON was unable to infect HT1080. This was in contrast to 

HERV-KCON infection of untreated HT1080s or HIV-1 infection of treated HT1080 cells. 

This data clearly demonstrates that HERV-K, like most nonlentiviral retroviruses, 

depends on the cell cycle for successful infection.  
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Figure 29 Cell cycle dependency of HERV-KCON 

HT1080 cells were treated with 2µg/ml of aphidicolin 24 hours, then infected with HIV-1, MLV, or 
HERV-KCON VLPs. The cells were treated with aphidicolin at the same concentration during the entire 
experiment. For HIV-1 VLPs, 293T cells were transfected with CSGW and NL4-3 GPol plasmids. For 
MLV VLPs, cells were transfected with CNCG and MLV GPol plasmids. For HERV-KCON VLPs, cells 
were transfected with CCGBX, pCRVI/Con Gag-Prot-Pol, and pCR3.1/K108 Rec. All VLPs are 
pseudotyped with VSVG. Successful cell cycle arrest and infection was checked via FACS. 
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Chapter 3. Restriction factors and HERV-K 

 

3.1 Introduction to restriction factors 

 Restriction factors are host proteins that help defend the host cell against virus 

infections (Bieniasz, 2004b). Although also up-regulated by IFN, they are constitutively 

expressed, potentially in any cell, providing an immediate front-line defense against 

invading viruses (Bieniasz, 2004b). To date, three major groups of restriction factors 

have been described for retroviruses; all were discovered in relation to HIV-1, but some 

have been shown since to be active against other retroviruses and non-retroviruses as well 

(Esnault et al., 2005; Harris et al., 2003; Jouvenet et al., 2009b; Turelli et al., 2004b; 

Vartanian et al., 2008a; Yu et al., 2004b).  

The first group of proteins, including Fv-1, TRIM5α and TRIM5-Cyp, target the 

incoming viral core, although the exact mechanism of restriction is unclear (Bieniasz, 

2004b; Johnson and Sawyer, 2009a). The second group of restriction factors is the 

APOBEC3 cytidine deaminase family. APOBEC3G (A3G) was first described as an 

antiretroviral factor capable of inhibiting Vif deficient HIV-1 (Sheehy et al., 2002), but 

other APOBEC3 proteins have since been shown to have antiviral activity as well 

(Bishop et al., 2004a; Dang et al., 2008; Dang et al., 2006; OhAinle et al., 2006; Yu et al., 

2004a; Zennou and Bieniasz, 2006). The major mechanism of restriction by A3G is likely 

by extensive mutation of Cs to Us in the minus strand of the ssDNA viral genome during 

reverse transcription (Bishop et al., 2004a; Harris et al., 2003; Mangeat et al., 2003; 

Miyagi et al., 2007). The most recently described retroviral restriction factor is tetherin, 

which tethers fully assembled and budded particles to the infected cell’s plasma 
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membrane and prevents the virus from moving away and infecting a new cell (Neil et al., 

2008b; Van Damme et al., 2008a).  

 TRIM5α and A3G proteins have been under positive selection in primates for at 

least 35 million years (Sawyer et al., 2004; Sawyer et al., 2005b), as has tetherin for at 

least 25 million years (McNatt et al., 2009b). Likely, these proteins have been 

functioning against many retroviruses and perhaps other viruses during that time 

(Johnson and Sawyer, 2009a). As an ancient retrovirus that infected primate and Old 

World monkey ancestors, HERV-KCON is an ideal candidate to test the retroviral activity 

of these restriction factors in an effort to understand the long-standing interaction 

between the proteins and retroviruses. 

 

3.2 Effects of TRIM proteins on HERV-KCON infection 

To test the sensitivity of HERV-K to retrovirus restriction factors that it might 

encounter in human cells and might be responsible for attenuation or extinction of 

replication therein, unmodified or human TRIM5α expressing hamster (CHO)-derived 

cell lines were challenged with VSVG pseudotyped HERV-KCON. The human TRIM5α 

expressing cell line was greater than 100-fold resistant to N-tropic MLV relative to the 

control cell line or B-tropic MLV, confirming that the transduced human TRIM5α was 

functioning as expected in the cell line (Figure 30A). Unlike MLV, HERV-KCON infected 

unmanipulated and human TRIM5α -expressing cells with nearly identical efficiency 

(Figure 30B). Additionally, CHO cells expressing rhesus macaque TRIM5α or the 

unusual owl monkey variant of TRIM5 (TRIM-Cyp) were also similarly sensitive to 

HERV-KCON infection compared to unmanipulated control cells (Figure 30B). This was 
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despite the fact that CHO cells expressing rhesus monkey TRIM5α and owl monkey 

TRIMCyp were about 30-fold and 100-fold, respectively, resistant to HIV-1 infection 

compared to HIV-1 carrying an SIVMAC CA (Figure 30A). Whether HERV-K(HML-2) 

has evolved to resist the effects of human TRIM5α and by chance is also resistant to 

rhesus macaque TRIM5α and owl monkey TRIM-Cyp or is completely unaffected by 

TRIM5 proteins is unknown.  

Human TRIM5 exists as a gene cluster of four TRIM proteins on chromosome 11, 

TRIM6, TRIM34, TRIM5, and TRIM22, which likely resulted from tandem gene 

duplication (Sawyer et al., 2007). Like TRIM5, TRIM22 is up-regulated by IFN  

 

 

Figure 30 Effect of TRIM5 proteins on HERV-KCON infection 

A. Unmanipulated CHO cells or variants stably expressing human TRIM5α, rhesus monkey TRIM5α, or 
owl monkey TRIM-Cyp were infected with VSVG pseudotyped retroviral vectors that are sensitive to one 
or more of the TRIM5 proteins (N-MLV or HIV-1) or TRIM5-resistant controls (B-MLV or HIV-1 
carrying SIVmac CA HIV(SCA)), as indicated. Two days postinfection, the percentage of GFP+ cells was 
determined using FACS. B. The same panel of CHO-derived TRIM5-expressing CHO cell lines were 
inoculated with VSVG pseudotyped HERV-KCON. Two days postinfection, GFP+ foci were quantified by 
FACS. 
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treatment and, unusually, has been under episodic positive selection in primates over the 

past 23 million years (Bouazzaoui et al., 2006; Gongora et al., 2000; Sawyer et al., 2007). 

TRIM22 also has been shown to reduce HIV-1 replication in primary human 

macrophages and cell lines such as HOS and HeLa cells, but the mechanism by which 

TRIM22 restricts the virus remains unclear (Barr et al., 2008; Bouazzaoui et al., 2006; 

Gongora et al., 2000).  

To test the restrictive potential of TRIM22 on HERV-KCON, CHO745 cells were 

stably transduced with TRIM22 proteins from human, gorilla, rhesus macaque, owl 

monkey, and squirrel monkey. The localization of these proteins, examined via confocal 

microscopy of GFP tagged versions, shows that human, gorilla, rhesus macaque, and 

squirrel monkey TRIM22 proteins are punctate and cytoplasmic (Figure 31A). Squirrel 

monkey TRIM22 also existed as small ring structures within the nucleus. Owl monkey 

TRIM22 is found as both punctate cytoplasmic form and as a large nuclear mass, 

resembling the nucleolus. Regardless, when these cells were infected with HERV-KCON, 

no change in infection was seen (Figure 31B), suggesting that TRIM22 proteins tested do 

not restrict HERV-K between virus entry and integration.     

   

3.3 Effect of tetherin on HERV-KCON release 

Next, the effect of tetherin on HERV-K infection was tested. Tetherin was discovered as 

the target of an HIV-1 accessory protein Vpu, the interaction which leads to increase 

HIV-1 particle release (Neil et al., 2008b; Van Damme et al., 2008a). Expression of 

tetherin seems to block the release of other virus particles as well (Jouvenet et al., 2009b).  

How Vpu antagonizes the effects of tetherin is unknown. Co-expression of human 
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Figure 31 Localization and effect of TRIM22 on HERV-KCON infection 

A. Confocal microscopy of PGSA cells stably transduced with human, gorilla, rhesus macaque, squirrel 
monkey, and owl monkey TRIM22 proteins fused with an HA tag. The cells were permeabilized, fixed 
with 4% PFA, and stained with anti-HA antibody. B. PGSA cells stably transduced with TRIM22 proteins 
were infected with HERV-KCON VLPs and fixed two days after for FACS analysis. CCGBX packageable 
genome was used to make the VLPs.   
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tetherin with pCRVI/Con Gag-PR-Pol in 293T cells resulted in a dramatic decrease of 

VLPs in the supernatant, from a ten-fold decrease at the lowest concentration of tetherin 

tested to almost complete inhibition at the highest concentration (Figure 32) (Jouvenet et 

al., 2009b). Co-expression of HIV-1 Vpu partially restored the amount of VLP in the 

supernatant to within half of the level released when no tetherin was co-expressed (Figure 

32).  

 This demonstrates that tetherin can effectively reduce the amount of HERV-K 

particles produced from an infected cell. As the entire virus was not used in the 

experiment, it is possible that proteins not expressed in pCRVI/Gag-PR-Pol such as Env 

may have a Vpu-like activity to counter the antiviral effects of tetherin. Indeed, the Env 

protein of HIV-2ROD10 strain has a Vpu-like ability to enhance retrovirus release (Bour 

and Strebel, 1996).  Whether HERV-KCON Env has similar ability has not been tested. 

Furthermore, as tetherin targets a very wide array of enveloped viruses, it is unclear 

whether HERV-K truly interacted with tetherin in the past, or is susceptible because of 

tetherin’s general mechanism of action. Furthermore, as tetherin is only expressed in 

 
 

Figure 32 Effect of tetherin on HERV-KCON VLP release 

HERV-K particles were generated by transfecting 1.8 µg of CCGBX, 
0.5 µg of pCRV1/ConGag-PR-Pol, and 0.5 µg of pCR3.1/Rec, along 
with 0, 100, 200, or 400 ng of pCR3.1/Tetherin-HA, in the presence 
or absence of pCR3.1/Vpu. Semi-quantitative analysis of western blot 
was carried out by scanning using an Alpha Innotech imaging system 
and rendering the blots as TIFF files. Band intensities (given in 
arbitrary units) associated with released VLPs, at each amount of 
transfected tetherin expression plasmid, were quantitated using Image 
J software (W. S. Rasband, U.S. National Institutes of Health, 
Bethesda, MD [http://rsb.info.nih.gov/ij/], 1997 to 2008). Histograms 
of pixel intensity for each lane were generated using the plot lane 
function in the Gels Analysis toolbox, and the area under the curve of 
the histogram peak was then calculated. 
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the presence of type-I IFN in most cells, if HERV-K does not induce an IFN response 

during infection, then tetherin may not affect its replication in vivo at all (Neil et al., 

2007). Hence, it is difficult to conclude that HERV-KCON has influenced the evolution of 

tetherin.  

 

3.4 Effect of APOBEC proteins on HERV-KCON infection 

Like tetherin, A3G was discovered as the target of an HIV-1 accessory protein 

(Sheehy et al., 2002). While human A3G cannot block infection of HIV-1 due to the 

actions of Vif, it may still counteract infection from other viruses which have not evolved 

to avoid it. The effect of human APOBEC3 proteins on HERV-K infection was 

determined. Although it would be optimal to test infection using physiologically relevant 

APOBEC3 protein levels, the expression level of most APOBEC3 proteins in various 

tissues is unknown. Moreover, the tissue tropism of HERV-K is unknown; hence it is 

difficult to find the APOBEC expression level at which HERV-K naturally infects. 

Instead, by titrating the amount of expression vector in the assays, APOBEC3 proteins 

were expressed at various, and relatively low, levels that mimicked the range of protein 

levels at which hA3G, hA3F, and hA3B inhibit HIV-1 infection in the absence of Vif 

(Figure 33A). HERV-KCON VLPs were generated in 293T cells in the presence of each of 

the C-terminally HA-tagged human APOBEC3 proteins. Western blot analysis of cell 

lysates showed that APOBEC3 protein expression varied (Figure 33A), but the range of 

expression levels for most of the proteins overlapped as a result of transfecting various 

levels of the corresponding expression plasmids. However, hA3DE and hA3H were 
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Figure 33 Expression and effect of human APOBEC3 proteins on HERV-KCON infection 

A. Anti-HA (top panel) and anti-HERV-K CA (bottom panel) Western blot of 293T cell lysates transfected 
with HERV-KCON, VSVG, and APOBEC-HA plasmids. B. Infection of CEM cells with HIV-1 (left panel) 
or 293T cells with HERV-KCON virions, generated in the presence of the indicated APOBEC3-HA 
proteins. Infectious units were quantified as GFP+ cells using fluorescence-activated cell sorter analysis 2 
days postinfection, and are expressed as a percentage of the number of infected cells (typically 15 to 30%) 
that were obtained in the absence of an APOBEC3 protein. 
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comparatively poorly expressed. Importantly, HERV-K Gag was expressed equally in all 

conditions. The only exception to this was at high levels of hA3B expression, which 

appeared to slightly reduce the levels of HERV-K Gag expression, presumably due to 

marginal toxicity. Fresh 293T target cells were infected with HERV-K virions generated 

in the presence of each of the APOBEC3 proteins. As can be seen in Figure 33B, hA3A, 

hA3B, and hA3F inhibited HERV-KCON infection by approximately fivefold at the 

highest concentration tested. Only marginal inhibition of infection was seen with hA3G, 

while hA3C, hA3DE, and hA3H did not inhibit infection. Clearly, the relative sensitivity 

of HERV-K to the various APOBEC3 proteins differ greatly from that of HIV-1 (Figure 

33B). 

 

3.5 Hypermutated HERV-K proviruses in modern human DNA 

While several APOBEC3 proteins appeared capable of inhibiting HERV-K 

infection in vitro, to determine whether restriction of HERV-K infection might have 

occurred in vivo, evidence of APOBEC3-induced mutation in HERV-K proviruses that 

are present in modern human DNA was sought. Specifically, 16 human-specific full-

length HERV-K(HML-2) proviruses were examined and especially for biases in the 

patterns of mutation therein, relative to the pseudo-ancestral HERV-KCON sequence.  

Overall, G-to-A and C-to-T substitutions were the most abundant changes in the 

proviruses as a whole (Figure 34A), as would be expected from genomic sequences that 

are not under purifying selection. Fourteen HERV-K proviruses showed a comparatively 

minor increase in the frequency of G-to-A changes and C-to-T changes relative to other  
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Figure 34 Nucleotide changes in human-specific HERV-K proviruses relative to HERV-KCON 

A. The numbers of changes of each type from the HERV-KCON to sequences in endogenous proviruses  are 
plotted. For comparison of sequences flanking HERV-K60 and HERV-KI, 2 kb of genomic sequence 
immediately proximal to the 5’ and 3’ ends of the proviruses were compared for changes from chimpanzee 
to the orthologous human sequence. For each sequence comparison, the numbers of changes were 
normalized to enable direct comparison with the numbers of changes in the individual HERV-K60 and 
HERV-KI proviruses. B. Graphical representation of nucleotide changes relative to HERV-KCON in the 16 
human specific proviruses. Red, GG to AG; cyan, GA to AA; green, GC to AC; magenta, GT to AT; black, 
non-G-to-A transitions; yellow, gaps in the sequence. 
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changes (Figure 34A). However, two proviruses, HERV-K60 and HERV-KI, were 

exceptional in the total quantity and type of changes. Overall, they exhibited similar 

frequencies of C-to-T mutation as did the other 14 proviruses, but both HERV-K60 and 

HERV-KI exhibited a very high frequency of G-to-A changes relative to the HERV-KCON 

(Figure 34A and B). Indeed, each of these individual proviruses had more G-to-A 

mutations than the other 14 proviruses combined; two-thirds and one-half of all the 

changes in K60 and KI, respectively, were G-to-A mutations (Figure 34A). 

To ensure that the exceptional properties of the two apparently hypermutated 

proviruses were not due to their insertion into an unusually hypermutated region of the 

human genome, 2 kb of flanking genomic sequence at each end of the two proviruses 

were examined for evidence of hypermutation. Specifically, changes between the 

equivalent loci in humans compared to chimpanzees were examined. This is a 

conservative approach, since these HERV-K insertions are absent in chimpanzees and 

have, therefore, been resident in the human genome for less time than the flanking 

sequences have been diverging in the two species. As expected, G-to-A, C-to-T, and 

reciprocal A-to-G and T-to-C changes were found to be most abundant in comparisons of 

the human and chimpanzee flanking sequences (Figure 34A). However, G-to-A changes 

did not greatly outnumber other changes, suggesting that that the apparent hypermutation 

in the inserted proviruses occurred independently of the genomic context sequence, likely 

prior to their integration.  

In addition to the 16 aforementioned proviruses, additional human-specific partial 

HERV-K sequences that lacked LTRs, as well as HERV-K proviruses (defined as group 

N by Romano et al.) that were not human specific, and group N CERV-K proviruses 
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(chimpanzee counterparts of HERV-K), including four chimpanzee-specific insertions, 

were also examined, as were related group O proviruses. No evidence of hypermutation 

was evident in these sequences (data not shown). 

 

3.6 Flanking nucleotide characteristics of G-to-A changes in hypermutated HERV-K 

proviruses.  

A common cause of G-to-A and C-to-T substitutions in genomic DNA is 

spontaneous cytosine deamination. This occurs most often after methylation of cytosines 

in CG dinucleotides, followed by spontaneous deamination of 5-methylcytosine to a 

thymine (CG to mCG to TG; altered nucleotide underlined). This series of events would 

lead to an overabundance of plus-strand C-to-T changes with G in the +1 position relative 

to the C-to-T mutation (CG to TG). Conversely, the same deamination event on the 

minus strand would lead to plus strand G-to-A changes with an overabundance of C at 

the -1 position relative to the mutated nucleotide (CG to CA). Indeed, in most of the 

HERV-K proviruses examined (the 14 nonhypermutated proviruses), C-to-T changes 

were significantly enriched for G in the +1 position (Figure 35A), and G-to-A changes 

were significantly enriched for C in the -1 position (Figure 35B), suggesting most C to T 

and G-to-A changes were a result of spontaneous cytosine deamination, as would be 

expected of DNA elements that are long-term residents of the human genome.  

To determine whether the excessive G-to-A changes present in HERV-K60 and 

HERV-KI were indicative of APOBEC3- induced hypermutation, and if so, to determine 

the identity of the responsible protein, the nucleotides flanking the G-to-A changes were 

examined (Figure 36). At least some of the APOBEC3 proteins have signature 
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A 

 

B 

 

 

Figure 35 Flanking nucleotides of C-to-T and G-to-A changes in non-hypermutated HERV-K 

Nucleotide occurrence at five positions 5’ and 3’ to (A) C to T and (B) G-to-A changes was catalogued, 
using the HERV-KCON sequence as a reference in non-hypermutated HERV-K proviruses. The absolute 
number of times that each nucleotide occurred at each position relative to each change in the 
nonhypermutated proviruses is plotted.  
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dinucleotide preferences; for example, hA3B and hA3F prefer to deaminate cytosines 

within TC dinucleotides, resulting in GA-to-AA mutations on the viral plus strand, while 

hA3G exhibits a bias for deaminating CC dinucleotide, leading to plus-strand GG-to-AG 

changes. In fact, of all the human APOBEC3 proteins, only hA3G exhibits the bias 

toward GG-to-AG changes.  

In both HERV-K60 and HERV-KI, a strong GG dinucleotide bias was detected at 

G-to-A changes (Figures 36 and 37A). This preference indicates that hA3G was likely 

responsible for the excessive G-to-A mutations in HERV-K60 and HERV-KI. In other 

proviruses, and the genomic DNA flanking HERV-K60 and HERV-KI, no such 

dinucleotide preference was detected (Figure 35B and data not shown). Furthermore, a 

strong, statistically significant bias for GGG trinucleotides at G-to-A mutated positions 

was also evident upon examination of the third nucleotide in all GG-to-AG substitutions 

(Figure 37B). Notably, the GGG preference has been detected in previous studies of 

hA3G with a Vif-deficient HIV-1 (Yu et al., 2004d), further supporting the notion that 

hA3G was responsible for the excessive G-to-A mutations in HERV-KI and HERV-K60. 

 

3.7 Hypermutation of HERV-K by APOBEC3 proteins during in vitro replication.  

To test whether the in vivo hypermutation changes could be recapitulated in vitro, 

HERV-KCON virions were generated in the presence of each human APOBEC3 protein 

using the HERV-K packaging construct CCGBX-P (Figure 21). This construct contains 

GFP as the marker and a 53 bp HIV-1 sequence (GATCTGAGCCTGGGAGCTCT CTG 

GCTTGTGACTCTGGTAACTAGAGATCCCTC) 34 bps after the start of 3’ LTR to  
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Figure 36 Flanking nucleotides of G-to-A changes in hypermutated HERV-K 

Nucleotide occurrence at five positions 5’ and 3’ to G-to-A changes was catalogued, using the HERV-KCON 
sequence as a reference. The absolute number of times that each nucleotide occurred at each position 
relative to each G-to-A mutation in (A) HERV-K60 and (B) HERV-KI is plotted. The P value in panel B 
for deviation from random nucleotides at +1 and +2 positions was > 0.0001, calculated using a chi-square 
test of independence. 
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Figure 37 Frequency of di- and trinucleotide for all G-to-A and GG-to-AG changes 

Frequencies of each di- (A) and trinucleotide (B) for all G-to-A and GG-to-AG changes, respectively, in 
HERV-K60 and HERV-KI are plotted as black bars. The expected numbers of G-to-A mutations in each 
sequence context, based on di- and trinucleotide composition, of HERV-KCON is represented as a horizontal 
gray line. The P value, for deviation from random di- and trinucleotide preference, was > 0.0001, 
calculated by a chi-square test of independence. 
 

allow selective amplification of newly synthesized HERV-K in a background of existing 

HERV-K proviruses present in human cells. This extra sequence should be copied into 

both LTRs during reverse transcription, and provide the means to distinguish de novo 

integration events from endogenous HERV-K proviruses. As integration is largely 

determined by the IN protein independently of the virus sequence, this extra sequence 

should have minimal effect on the integration site preference (Lewinski et al., 2006).  
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HERV-K and APOBEC plasmids were transfected into 293T cells. Five hours 

post transfection, the medium was replaced with fresh DMEM. Two days post 

transfection, the supernatant was DNase treated at 37°C for an hour, then used to infect 

fresh 293T cells. 11 hours post infection, the cells were harvested for total DNA 

extraction using QiaAmp Blood and Tissue Kit (QIAGEN). A 762-bp sequence of 

nascent HERV-KCON DNA was then amplified from the total DNA using primers 

targeting the EGFP insert in the vector genome and the inserted HIV-1 sequence. Two 

controls were done to establish the success of this strategy and to show that DNase 

treatment reduced contaminating plasmid DNA in the virion preparations to 

subdetectable levels. First, PCR amplifications were done using primers targeting the 

plasmid backbone. Second, infections were done using virions harboring an inactivating 

point mutation in the HERV-K reverse transcriptase. In both cases, PCR products were 

not detected, indicating that the sequences generated following HERV-K infection 

genuinely represented infection-dependent, de novo-synthesized HERV-K DNA, not a 

transfer of residual transfected DNA. 

hA3A, hA3B, hA3F, and hA3G were found to induce hypermutation of HERV-

KCON during in vitro infection. However the patterns and frequency of hypermutation 

were different (Figure 38). In particular, nearly all HERV-K clones generated in the 

presence of hA3G had G-to-A mutations, but each had a low to moderate number of 

changes (median of six G-to-A changes per clone). Conversely, hA3A, hA3B, and hA3F 

each induced hypermutation in a minority of clones, but hA3A and hA3B hypermutated 

clones had a very high burden of mutations (37 changes for the sole hA3A hypermutated 

clone, and a median of 43.5 G-to-A changes for hA3B hypermutated clones). Only a few  
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Figure 38 Hypermutation of HERV-KCON during in vitro infection 

All changes in HERV-KCON reverse transcripts relative to preinfection sequence were analyzed for +1 site 
preference using HYPERMUT, and the sequences of 12 HERV-K clones generated during infection in the 
presence of each APOBEC protein are represented as horizontal lines. Mutations are indicated as vertical 
lines. Red, GG to AG; cyan, GA to AA; green, GC to AC; magenta, GT to AT; black, non-G-to-A 
transitions. 
 

changes were seen in HERV-K DNA generated in the presence of hA3F (median of four 

changes per clone). Of the four human APOBEC3 proteins found to hypermutate HERV-

K in vitro, only hA3G exhibited the GG dinucleotide and GGG trinucleotide bias for the 

generation of G-to-A mutations (Figures 38  and 39), as has previously been reported for 

hA3G mutation of HIV-1 (Yu et al., 2004c). Moreover, hA3F and hA3B exhibited the 

expected GA dinucleotide bias at positions where G-to-A mutations were generated 

(Figures 38 and 39). hA3A also showed the same GA bias, with the caveat that only a 

single HERV-KCON clone was found to be mutated by hA3A (Figures 38  and 39). Hence,  
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Figure 39 Flanking nucleotides of G to A changes incurred during in vitro infection of HERV-KCON 

Flanking nucleotide sequence context surrounding mutations generated by APOBEC3 proteins during 
HERV-K infection in the presence of hA3A, hA3B, hA3F, and hA3G. The numbers of times that each 
nucleotide occurred at five positions 5’ and 3’ to each G-to-A change were plotted. 
 

among all seven of the human APOBEC3 proteins, four appear intrinsically capable of 

inducing hypermutation in HERV-K, but only hA3G was capable of hypermutating 

HERV-K during in vitro infection with a characteristic bias that very closely resemble 

mutations found in the endogenous HERV-K60 and HERV-KI proviruses (compare 

Figures 36 and 39).  

Moreover, when the 273 bp of HERV-KCON sequence that was analyzed in the 

hA3G mutagenesis assay were compared with the corresponding sequence in HERV-K60 

and HERV-KI, 10 out of the possible 75 G-to-A mutations were found in either or both 
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HERV-K60 and HERV-KI, while 15 out of the possible 75 G-to-A mutations were 

represented in corresponding sequences that were mutated by hA3G during in vitro 

infection (Figure 40). Notably, six of these G-to-A mutations were at identical positions, 

a highly significant correlation (P = 0.003, Fisher’s exact test), lending further supporting 

to the notion that hA3G was responsible for hypermutation of HERV-K60 and HERV-KI. 

 

 

Figure 40 Comparison of in vivo and in vitro 
mutations 

Comparison of mutations relative to HERV-KCON that 
appear in naturally hypermutated proviruses (HERV-
K60 and HERV-KI) and in the 273 nucleotides of 
mutated HERV-K sequence generated in vitro in the 
presence of hA3G. Changes relative to HERV-KCON are 
represented graphically on horizontal lines and are color 
coded according to the nucleotide appearing at the -1 
site for HERV-K60 and HERV-KI and 12 HERV-K 
clones generated during infection in the presence of 
hA3G. Mutations are indicated as vertical lines. Red, 
GG to AG; cyan, GA to AA; green, GC to AC; magenta, 
GT to AT; black, non-G-to-A transitions; yellow, gaps 
in sequence. 
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Chapter 4. Integration of HERV-KCON 

 

4.1 Introduction to retrovirus integration 

 Integration is one of two hallmark events of retrovirus replication. Where a 

retrovirus integrates may affect its transcriptional efficiency, as well as the host cell’s 

viability due to insertional mutagenesis. Each retrovirus has its own integration site 

preference, but the preference usually relates to genomic features, such as CpG islands or 

transcription units, rather than a specific sequence that the integrase recognizes. For 

example, studies have shown that HIV-1 prefers to integrate into active transcription 

units, MLV prefers CpG-rich promoter regions, while ASLV integrates relatively 

randomly with a minor preference for transcription units (Barr et al., 2005; Mitchell et al., 

2004; Narezkina et al., 2004; Schröder et al., 2002b; Wu et al., 2003). The preference 

based on genomic features means that the number of potential sites for integration is large 

and predicting the exact insertion location is impossible, presenting an obvious drawback 

for the use of retroviruses as vectors for gene therapy. 

As no replicating HERV-K was available until recently, studies of HERV-K 

integration have thus far focused on examining the resident proviruses in the human 

genome sequence. Previous studies, and examination of the 404 insertions in this work 

identified in Table 1 relative to chromosome size suggests that HERV-K accumulation is 

not a random event, which would predict the number of insertions per chromosome to 

positively correlate with chromosome size (Figure 8) (Medstrand et al., 2002; van de 

Lagemaat et al., 2006; Villesen et al., 2004). Rather, HERV-K is found more frequently 

outside of transcription units and when in genes, in reverse transcriptional orientation 
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relative to the gene (Medstrand et al., 2002; Smit, 1999; van de Lagemaat et al., 2006; 

Villesen et al., 2004). Whether this integration pattern reflects a true preference of 

HERV-K or is a result of post-integration selection is unknown, but understanding the 

preference will help assess the mutagenic potential of HERV-K.  

The following work was conducted as a collaboration between the Bieniasz 

laboratory and Bushman laboratory at University of Pennsylvania. The infection of 293T 

and HT1080 cells, DNA extraction, and HML2(85) data set collection was conducted by 

myself, the preparation of the DNA samples for the pyrophosphate mass sequencing by 

Dr. Troy Brady, the MMTV data set was derived by Dr. Keshet Ronen, the analysis of de 

novo insertions relative to genomic markers by Dr. Charles Berry (UCSD), and the 

analysis of de novo insertions relative to endogenous HERVs by Dr. Troy Brady and Dr. 

Nirav Malani.  

 

4.2 HERV-K integration preference relative to genomic markers 

 The HERV-KCON single cycle infection system is an optimal system to test 

integration preference. Attempts were made to find a germ cell-like cell line as target 

cells, as these would most closely mimic the cell populations that would have been 

infected to generate endogenous proviruses. Teratocarcinoma cells Tera-1, Tera-2, and 

PA-1 were tested for their susceptibility to retrovirus infection, but they were all 

relatively resistant to HERV-K infection (less than 10% GFP+ cells, data not shown). 

Thus two human cell lines, 293T and HT1080, already known to be susceptible to 

HERV-KCON infection, were used as target cells. Numerous studies of HIV-1, ASLV, and 

MLV integration showed that the preference did not change between different cell lines, 
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including cell lines of a different species, hence it is likely that using 293T and HT1080 

cells will not result in a significant discrepancy relative to the native target cells (Barr et 

al., 2006; Barr et al., 2005; Mitchell et al., 2004). Furthermore, 293T and HT1080 cells 

are both human cell lines, but are derived from different organs (293T and HT1080 cell 

lines are derived from fetal kidney and fibrosarcoma, respectively), but this difference did 

not affect the integration site preference, further supporting the notion that these cell lines 

are representative of natural HERV-K target cells for integration preference.  

To approximate the native conditions of HERV-K infection as closely as possible 

and enable use of human cells as target cells, CCGBX-P was used as the packaging 

genome, the same construct used to identify APOBEC hypermutated HERV-K sequence 

in Chapter 3.7. CCGBX-P and relevant HERV-K expression plasmids were transfected 

into 293T cells for virus production. Two days post transfection, the supernatant was 

treated with DNase for 1 hour at 37°C, then used to infect fresh target cells. The infection 

efficiency determined by FACS was between 10-20%. The genomic DNA of target cells 

was harvested two days post-infection and digested (MseI for 293T cells, MseI or ApoI 

for HT1080 cells) and ligated to linker sequences. The integration sites were PCR 

amplified using primers specific to the inserted HIV-1 sequence and linker sequence, and 

the amplicons used for template in pyrophosphate mass sequencing. A total of 1565 de 

novo integration sites (1064 sites from 293T cells, 501 sites from HT1080 cells) were 

identified and characterized. Despite the different organ and gender origins of 293T and 

HT1080 cells, comparison of integration relative to genomic markers did not show any 

discrepancy between the two cell lines, except insertion into Y chromosome in HT1080 
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cells that is not expected in 293T cell line, as it is derived from a female donor. Hence, 

data for the two cell lines are combined for analysis below, except when noted.  

Controls were derived for each HERV-KCON integration site. A large library of 

random sites was generated in silico, then the distances to restriction enzyme recognition 

sites were scored. Each experimental site was matched with three random control sites 

that were positioned the same number of nucleotides from a restriction site for the 

enzyme used to isolate the experimental site. That is, if an integration site was isolated 

after cleavage with ApoI, and the distance from the ApoI site to the edge of the HERV-

KCon sequence was 80 bp, then three random control sites were drawn from the pool that 

were also 80 bp from an ApoI site. Integration sites and matched random controls were 

annotated for proximity to genomic features, and the distributions were compared. The 

data is depicted as the ratio between observed HERV-KCON sites to control matches. A 

ratio of 1 indicates that integration is random for the particular genomic feature, where as 

a ratio more or less than 1 indicates a preference or an aversion for the genomic feature.  

  The genomic characteristics examined in retrovirus integration include 

transcription units, gene density, gene expression, CpG islands, and DNase sites. Active 

transcription units have been hypothesized to be potential integration sites due to either 

the accessible nature of the genome during transcription, or the binding of viral proteins 

with transcription factors associated with the region (Schröder et al., 2002a). Gene 

density and gene expression are correlated features, as highly expressed genes tend to 

reside in regions of high gene density. These genomic features correlate with HIV-1 

integration (Mitchell et al., 2004; Schröder et al., 2002a; Wu et al., 2003). CpG islands 
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and DNase sites are indicators of promoter regions, and correlate with MLV integration 

(Bird et al., 1985; Lander et al., 2001; Mitchell et al., 2004; Wu et al., 2003).  

HERV-KCON integration showed a minor but significant preference for 

transcription units, and correlated positively with gene density and expression (Figure 

41A, D, E). More significantly, HERV-KCON displayed a two and a half fold increased 

preference for proximity to CpG islands and a two-fold preference for proximity to 

DNase sites over matched controls (Figure 41B, C), which is similar but more subdued 

than the integration preference of MLV. Integration site information derived from studies 

of other viruses is analyzed together with the data derived from this study of HERV-K to 

give a relative perspective. The source of data is listed in Table 3.  Notably, the retrovirus 

to which HERV-K is the most closely related whose integration preference has been 

analyzed is MMTV. Despite their sequence similarity, the integration preferences of 

these two retroviruses of the same genera seem to be different. The difference between 

HERV-K and MMTV is unlike the integration preference of two other related 

retroviruses, HIV-1 and EIAV, whose preference are highly similar (Hacker et al., 2006).   

 Insertions were also examined by chromosome (Figure 42). The null hypothesis 

of de novo insertions equaling the random insertions was statistically rejected (p < 10-16), 

indicating that insertions do not correlate to the size of the chromosome. Chromosomes 1, 

17 and 19 were highly favored, and chromosomes 4, 13, 18, X, Y were heavily 

disfavored. Earlier in this work, the number of endogenous HERV-K as a ratio to the size 

of chromosome was presented (Figure 8). In that data set, the insertions were heavily 

favored in chromosome 19 and disfavored in chromosomes 13, 15, and X. The de novo 

HERV-K integration preference discussed above may explain some of these 
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Figure 41 Integration target site selection of HERV-KCON relative to other retroviruses 

Values are reported as the proportion of integration events divided by random events. The bar at 1.0 
represents the expected random distribution. The statistical significance of differences from the matched 
random controls is shown by the asterisks next to the legends. (*) 0.05 > P > 0.01; (**) 0.01 > P > 0.001; 
(***) P < 0.001. A. Integration frequency within RefSeq genes. B. Integration frequency as a function of 
gene density. The X-axis shows six bins of increasing gene density from lowest (left) to highest (right). C. 
Integration frequency relative to gene expression. All genes tested in 293T cells using the Affymetrix 133 
array were divided into eight equal bins, then the proportions of integration sites in genes at each activity 
level were quantified and compared with random. The X-axis shows bins of increasing expression rank 
from lowest (left) to highest (right). D. Integration frequency relative to CpG islands, scored as the 
proportion of integration sites within 2 kb of an annotated CpG island. E. Integration frequency relative to 
sites of DNase I cleavage (Crawford et al. 2004), scored as the proportion of integration sites within 2 kb of 
an annotated cleavage site. 
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Table 3 Integration data sets used 

 
(Ciuffi et al., 2005; Faschinger et al., 2008; Lander et al., 2001; Marshall et al., 2007; Miller et al., 2005; 
Mitchell et al., 2004) 
 
 
 
 

 
Figure 42 Integration target site selection of HERV-KCON by chromosome 

Values are reported as the proportion of integration events divided by random events. A ratio of 1.0 
represents the expected random distribution. The statistical significance (p) of differences from the matched 
random controls is less than 10-16. 
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characteristics. HERV-KCON’s preference to integrate into transcription units and 

promoter regions, which should also be affiliated with transcription units, and 

chromsome 19’s characteristic as most gene dense chromosome in the human genome, 

explains why chromosome 19 is highly favored for HERV-K insertions (Grimwood et al., 

2004). In contrast, chromosome 13 contains the fewest endogenous HERV insertions and 

HERV-KCON insertions likely because it has the lowest gene density of all chromosomes 

(Dunham et al., 2004). As insertions will be under selection pressure independent from 

the integration preference later on, it is not surprising that the distribution of de novo 

HERV-KCON and endogenous HERV-K differ.  

 Both sex chromosomes are known for their high density of repeat elements. The 

two sex chromosomes, X and Y, were originally a pair of autosomes that have evolved 

into sex chromosomes over the past 300 million years (Ross et al., 2005). They now have 

diverged so far that only 5% of the Y chromosome overlap with sequences in X 

chromosome (Graves, 2006a; Skaletsky et al., 2003). Hence, unlike autosomal 

chromosomes, X chromosome only undergoes homologous recombination in females, 

while Y chromosome does not, except the 5% of its sequence that still resembles X 

chromosome (Ross et al., 2005). The heavy disfavoring for both de novo integration and 

endogenous insertions into X chromosome may be due to the low density of genes 

relative to autosomal chromosomes (estimated 1098 genes, 7.1 genes per Mb) (Ross et al., 

2005). The reduced amount of homologous recombination, an opportunity to eliminate 

unwanted sequences, may explain the high quantity of other HERVs on the X 

chromosome despite the low level of HERV-K de novo integration. A more detailed 

analysis of Chromosome Y is presented later.  
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4.3 HERV-KCON integration preference relative to endogenous HERV-K integration sites 

 

 For various biologically interesting reasons, the pattern of HERV-K insertions in 

the human genome may not match that generated following HERV-KCON infection. To 

analyze the differences, the sites of de novo HERV-KCON insertions were compared with 

those of two groups of endogenous proviruses: the HERV-K(HML-2) subfamily, and 

HERV-K superfamily. For the HERV-K(HML-2) data set, sequences with 85% matches 

to the HERV-KCON LTR sequences were collected, marking the most recently acquired 

and evolutionarily youngest HERV-K (HML-2) elements. This dataset was termed 

termed HML2(85) and contained a total of 402 integration sites. The 85% cutoff was 

determined by comparison of the percent nucleotide identity among HML-2 elements, 

which ranges from 99% to 85%, with the percent identity between HML-2 and the next 

closest HERV-K subfamily, HML-1, which ranges between 70% and 80% (Medstrand 

and Blomberg, 1993a). For the HERV-K superfamily data set, RepeatMasker 

(http://www.repeatmasker.org) was used to generate a large set of all Class II HERV 

related sequences in the human genome (ERV2 data set; 10,573 integration sites). The 

ERV2 set combines all subfamilies of the HERV-K superfamily (HML1 through 

HML10), including both old and young ERV2s.  

 Integration of each data set relative to transcription units, CpG islands, DNase 

sites, gene expression, gene density, and GC content were examined. As previously noted, 

HERV-KCON has a minor preference for integration in transcription units (Figure 41A and 

43A). HML2(85) and ERV datasets, however, have a clear preference for integration 

outside transcription units (Figure 43A), a statistically significant difference with HERV-
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KCON data set. HERV-KCON showed a two-fold preference over random matched controls 

for CpG islands, while HML2(85) and ERV2 showed a one and a half fold and just over 

one fold preference over controls (Figure 43B). For DNase sites, HERV-KCON had a two-

fold preference, while HML2(85) and ERV2 were disfavored from DNase I sites (Figure 

43C). The preference of HERV-KCON increases gradually proportionally to GC content, 

while the peak and decline before the highest GC content group, and ERV2 peaks before 

HML(85) data set and declines as well (Figure 43D). Hence, for all genome feature 

examined, a general pattern emerged where HERV-KCON data set displayed a preference 

at one end of a range and the ERV2 data set at another, with HML2(85) having an 

intermediate phenotype between the two data sets. This suggests a two-step model of 

HERV accumulation where HERV-K integrates according to its preference, then the 

proviruses are selected upon over time. Hence, HML-2(85) data set may represent 

insertions that had the phenotype of HERV-KCON insertions before, and will become like 

the ERV2 data set later on. 

 The preference for gene density increased proportionally for all data sets, with the 

biggest increase for HERV-KCON and smaller increases for the older data sets (Figure 

43E). Gene expression also correlated positively with HERV-KCON integration, but were 

disfavored by HML2(85) and ERV2 data sets, except at the highest gene expression 

group for HML(85), where integration was preferred at one and a half fold over controls 

(Figure 43F). Combined with the HERV-KCON’s preference for transcription units, these 

data suggest that after integration into gene dense regions, HERV-K elements which have 

inserted into expressed parts of gene dense region are selected out. Hence, in gene dense 

regions, HERV-K will accumulate outside of genes over time.  
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Figure 43 Integration of HERV-KCON versus resident ERV2 elements 

Values are reported as the proportion of integration events divided by random events. The bar at 1.0 
represents the expected random distribution. The statistical significance of differences between data sets is 
shown by the asterisks next to the legends: (*) 0.05 > P > 0.01; (**) 0.01 > P > 0.001; (***) P < 0.001. A. 
Integration frequency relative to transcription units as defined by the RefSeq database. B. Integration 
frequency relative to CpG islands. C. Integration frequency relative to DNAse I cleavage sites, 2-kb 
windows. D. Integration frequency relative to G/C content, 5-kb windows. E. Integration frequency relative 
to gene density. F. Integration frequency relative to gene activity. In this plot, Affymetrix microarray 
analysis was used to rank the activity of all genes queried, then the ranks were distributed into eight bins. 
The genes hosting integration events were then distributed into the bins and the frequencies compared with 
matched random controls. 
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Figure 44 HERV-K integration into the Y 
chromosome 

Values are reported as the proportion of integration 
events divided by random events. The bar at 1.0 
represents the expected random distribution. The 
statistical significance of differences between data sets is 
shown by the asterisks next to the legends: (*) 0.05 > P > 
0.01; (**) 0.01 > P > 0.001; (***) P < 0.001. Only the 
HT1080 data set was used in this analysis, as it is 
derived from a male cell line, while 293T cells are not. 
 

 

 The Y chromosome has been noted previously to contain an extraordinarily high 

quantity of repeat elements, including an average of 14 HERVs per Mb (Graves, 2006b; 

Kim et al., 2004b; Kunkel et al., 1976; Skaletsky et al., 2003; Villesen et al., 2004). To 

test whether the abundance of HERVs in the Y chromosome is caused by a natural 

integration preference or an accumulation post selection, the de novo insertion of HERV-

KCON was examined. Compared to matched random controls, HERV-KCON insertions in 

Y chromosome were underrepresented but the difference did not reach statistical 

significance (Figure 44). The HML2(85) data set displayed a one and a half fold 

preference to insert over random matches, but ERV2 integration sites were enriched on 

the Y chromosome five fold over random matches, in agreement with studies of other 

HERVs (Kim et al., 2004b; Villesen et al., 2004). The small number of HERV-KCON 

insertions in Y chromosome is expected based on its preference for transcription units 

and CpG islands and the dearth of genes in the Y chromosome. The low number of de 

novo insertions suggests that the high quantity of resident HERVs in Y chromosome is 

not due to a natural preference of integration. Y chromosome is a small, gene poor 

chromosome of 60 Mbs, of which 95% of the sequence does not participate in 
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homologous recombination, and therefore, unlike other chromosomes, lacks a potential 

method to eliminate deleterious insertions, which may explain the abundance of HERVs 

(Graves, 2006b). Furthermore, like the analysis relative to genomic markers, the pattern 

for the three data sets has a gradient pattern, suggesting that the HML2(85) data set 

represents a intermediate state between the de novo integrations and the more ancient 

ERV2 integrations.   

Lastly, the orientation of insertions into transcription units was examined. Similar to 

other HERVs described, ERV2 and HML2(85) were integrated with a heavy bias in the 

opposite transcriptional orientation relative to the gene (Figure 45).  

 

 

Figure 45 Proviral orientation of de novo HERV-KCON vs resident HERVs 

A. Diagram showing proviral orientations and the potential for transcriptional disruption by 
provirusencoded transcription signals. (SD) Splice donor; (SA) splice acceptor; (PolyA) polyA signal. B. 
Transcriptional orientation of ERV2, HML2(85), and HERV-KCON sequences found within gene-coding 
regions as defined by the RefSeq database. 
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 Surprisingly, the bias was stronger for the HML2(85) data set than ERV2 data set. 

This phenotype may attest to the presence and the stronger influence of splice acceptors 

and donors and premature polyA signals in the younger group. The ERV2 group contains 

members with more sequence deterioration, and may include insertions without effective 

SA and SD sites and polyA signals, hence may be less detrimental to the transcript 

expression, and thus under less pressure to be negatively selected from the population. 

 In contrast to HML2(85) and ERV2, HERV-KCON showed no preference in 

orientation when inserted in a gene. This is perhaps the strongest evidence of a two-step 

model of HERV-K genomic accumulation. Integration likely occurs according to the 

actual preference of HERV-K, as determined here using HERV-KCON, then over time 

individual insertions are negatively selected based on their negative influences on host 

survival, such as abnormal gene expression due to integration into or near a gene. What 

remains in the host genome is a result of constant ‘cleansing’ of detrimental repeat 

elements at the population level.  
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IV.  DISCUSSION 

 

 Endogenous retroviruses are fossils of ancient infections that contain hidden 

information about host-pathogen interactions, genomic rearrangements, and history of 

population migration and speciation. The first human endogenous retroviruses were 

discovered in the early 1980s: a type-C-like endogenous retrovirus similar to MLV and 

Baboon endogenous retrovirus (BaEV), and a type-D-like endogenous retrovirus similar 

to MMTV (Callahan et al., 1982; Martin et al., 1981; May et al., 1983). These two 

HERVs are now known as HERV-E and HERV-K, which belong to the genera 

gammaretroviruses and betaretroviruses, respectively (Ono, 1986; Steele et al., 1984). 

Further studies showed that HERV-K is in fact a family of closely related viruses, and is 

now referred to as the HERV-K superfamily (Franklin et al., 1988). Of the ten 

subfamilies of HERV-K, the HERV-K(HML-2) subfamily is of particular interest 

because it is believed to be the youngest of all HERVs known, and thought perhaps to 

include replication competent members.   

 This body of work has focused on the replication of HERV-K(HML-2), and its 

interaction with antiretroviral restriction factors. In Chapter 1, the HERV-K(HML-2) 

elements in the human genome gathered by BLAST search are presented, with details on 

their location. Many of these elements have been previously described or characterized 

(Barbulescu et al., 1999; Belshaw et al., 2005a; Belshaw et al., 2004; Macfarlane and 

Simmonds, 2004; Romano et al., 2006). Characterization of two proviruses, K113 and 

K108, is also presented. Chapter 2 describes the derivation of HERV-KCON, a consensus 

sequence of ten human specific proviruses and the establishment of a single-cycle 
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infection system using this virus. Known anti-retroviral factors are tested against HERV-

KCON in Chapter 3, along with a more extensive analysis of the previous and current 

interactions between HERV-KCON and APOBEC3G protein. Lastly, where HERV-KCON 

prefers to integrate is described in Chapter 4, as well as the comparison of de novo 

integrations with those of endogenous HERV-K elements.  

 

Chapter 1.  

 In this chapter, a BLAST search of the human genome for endogenous HERV-K 

insertions using either the LTR sequence or the amino acid sequence of HERV-KCON Gag 

is presented (Table 1, Table 2). These collections of insertions likely reflect HERV-K 

infections of hominoid and Old world monkey ancestors after the divergence from New 

world monkeys. A previous study found 553 HERV-K(HML-2) insertions, but as the 

identity of the insertions or the criteria for distinguishing HML-2 from other HERV-K 

subfamilies is not discussed in the previous study, a comparison is not possible (Belshaw 

et al., 2005a). Similar to other HERVs, 90% of insertions are solo-LTRs and 10% are 

associated with complete or partial internal sequence (41 of 404 insertions, Table 2). The 

404 insertions are integrated across all chromosomes and largely correlate with the size 

of the chromosome except for chromosome 19, which as more insertions than expected 

by size, and chromosomes 13, 15, and X, which have less than expected. These 

exceptions are discussed later. 

 No naturally occurring replication competent provirus has been identified, and the 

replication potential of the best candidate, K113, has been disappointing. However, the 

apparent expression of HERV-K proteins in teratocarcinoma-derived cell lines may yield 
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some useful information about the nature of the factor or factors that induce transcription 

from HERV-K LTR and the natural tropism of HERV-K. A recent publication which 

examined the identity of HERV-K(HML-2) transcripts in Tera-1 teratocarcinoma cell line 

via sequencing, eight proviruses were identified as major contributors of transcripts 

encoding either Gag or Env sequences (Ruprecht et al., 2008). Consistent with this study 

and the finding that HERV-K proteins are expressed in teratocarcinoma cells, K113 LTR 

was more active in NCCIT teratocarcinoma cell line than 293T cell line (Figure 9). The 

heterokaryon experiment shows that the factor or factors are dominant and present in the 

NCCIT cells, but its identity is still unknown. Discovery of this factor or factors may 

narrow down the list of potential natural target cells, as its expression is likely be a 

requirement for a productive infection. The low level expression induced in the 

overexpression of YY2 does not account for the much larger induction in teratocarcinoma 

cell lines detected by Knossl et al, and hence unlikely to be the sole or the main factor 

responsible for the upregulation in transcription from HERV-K LTR.  

 Despite the efforts to induce higher levels of transcription by insertion of a CMVP 

and a functional Env of K108, CMVP-K113 and CMVP-K113K108 constructs did not 

produce detectable levels of Gag by Western blotting (data not shown). The expression of 

Rec in trans enhanced Gag expression, but it was still difficult to detect via Western 

blotting. This shows that Rec is expressed and that K108 Rec and RcRE of K113 and 

K108 are functional, but there are likely other defects in the proviruses which results in 

efficient expression of Gag. 

 The undetectable level of Gag from a full length genome and the lack of 

replication of K113 may be due to multiple factors. Aside from the low level of activity 
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of K113 LTR in 293T cells and the nonfunctional Env, K113 also has a substitution in 

CA (I516M), which greatly reduces viral particle formation in the context of HERV-

KCON Gag (Heslin et al., 2009). Furthermore, K113 RT is inactive, although its activity 

can be restored by changing six amino acids that differ from RT sequence of HERV-K10 

(Beimforde et al., 2008). Hence, despite its complete nucleotide sequence, K113 is 

defective on multiple levels, and is demonstrably inactive. 

 In contrast, K108 has become more promising in its replication potential since its 

discovery. The K108 locus, also known as HERV-K(C7) and HERV-K(HML2-HOM), is 

composed of two almost identical proviruses that share an internal LTR (Reus et al., 

2001). K108 alleles contain three major mutations, a stop codon in Gag, a frameshift in 

Prot, and a YIDD to CIDD in the highly conserved RT, in various combinations (Mayer 

et al., 1999a; Reus et al., 2001). Its LTRs differ from each other by six nucleotides, 

suggesting that it inserted more than a million years ago (Mayer et al., 1999a). For these 

reasons, K108 was thought to be incapable of replication. However, against expectation, 

the CIDD mutation does not inactivate RT (Figure 24). The most common allele of K108 

lacks the stop codon and frameshift mutations, which are clearly inactivating mutations, 

and only includes the CIDD RT mutation  (Reus et al., 2001). Given that the Env and Rec 

proteins of K108 are functional (Dewannieux et al., 2005), and Gag-Prot-Pol ORFs are 

complete in some alleles, K108 may now represent the most likely candidate for a 

replication competent HERV-K.  
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Chapter 2. Derivation of HERV-KCON and the single-cycle infection system 

 Here, a HERV-K provirus whose sequence resembles that of an ancestral human-

specific HERV-K(HML-2) was constructed. All viral proteins encoded by this provirus 

were demonstrated to be capable of functioning in the context of a retroviral replication 

cycle. While some recent studies have reconstituted “live” viruses from synthetic DNA 

(Cello et al., 2002; Tumpey et al., 2005), this and a similar study of HERV-K published 

nearly simultaneously (Dewannieux et al., 2006) are the first examples in which the 

replication cycle of a virus has been reconstituted using a group of sequences that 

represent ancient fossils and are demonstrably defective. The methods used here are 

conceptually similar to those applied to the reconstitution of the transposable element 

Sleeping Beauty, in which a functional Tc1/mariner-type transposon present only in 

defective forms in fish DNA was reconstituted (Ivics et al., 1997). Successful 

reconstitution in that study was achieved using a majority consensus sequence to 

synthesize an active transposase protein and selecting cis-acting sequences from a 

representative element that closely resembled those of the majority consensus sequence 

(Ivics et al., 1997). 

 It was not obvious what the optimal approach to reconstitute functional HERV-K 

sequences would be, since variation in HERV-K sequence could arise through natural 

variation via error-prone reverse transcription, mutational degradation after deposition in 

the primate germ-line, or cytidine deamination before, during, or after during initial 

germ-line deposition (see below). Moreover, it was possible that the population of 

proviruses accessible to us in modern DNA represented a highly biased sample of 

HERV-K genomes where defects might have been positively selected during primate 
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evolution. Thus, rather than attempt reconstruct the evolutionary history of HERV-K in 

primates, a conservative approach to reconstitute functional sequences was adopted, 

selecting ten proviruses that were most similar to K113, reasoning that these were the 

least likely to have undergone substantial sequence degradation. As described earlier, all 

of the selected proviruses were unique to human DNA, and some were polymorphic in 

humans, suggesting comparatively recent replication. While it was possible that all of the 

selected proviruses would have a common lethal defect, this appeared not to be the case. 

Indeed, by compiling a simple majority consensus sequence, individual lethal defects 

represented in the group of proviruses that contribute to the consensus sequence were 

successfully removed, allowing replication of the consensus genome in a bona fide 

reverse transcription–dependent manner that resulted in the stable integration of HERV-

KCON genomes into target cells. 

 Assembly of HERV-K virions at the plasma membrane is notable (Figures 19 and 

20), given that the exogenous retroviruses that are most closely related to HERV-K 

include mouse mammary tumor virus and Mason-Pfizer monkey virus, both of which are 

betaretroviruses that assemble complete capsids within the cytoplasm of infected cells. 

Nonetheless, previous analyses have suggested that the small number of human cell lines 

that express HERV-K exhibit plasma membrane localized assembly intermediates (Bieda 

et al., 2001; Boller et al., 1993b), as was observed here for HERV-KCON. Moreover, 

previous work has shown that a single amino acid mutation in MPMV Gag protein can 

change its assembly characteristics from cytoplasmic to plasma membrane associated 

assembly (Rhee and Hunter, 1990b). Thus, it should not be surprising that HERV-K 

assembly appears morphologically different to that of its betaretrovirus relatives. 
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Chapter 3. Restriction factors and HERV-K 

 In recent years, several gene products with antiretroviral activity have been 

identified, such as TRIM5, tetherin, and the APOBEC3 family of proteins. Positive 

selection pressure has been placed on many of these genes during primate evolution 

(Conticello et al., 2005; McNatt et al., 2009b; Sawyer et al., 2004; Sawyer et al., 2005b; 

Song et al., 2005). As HERV-K has been repeatedly colonizing the genomes of Old 

World primates since the divergence of Old and New World monkeys approximately 35 

million years ago, it is a potential source of recurrent selective pressure on primate hosts 

(Bannert and Kurth, 2004).  

 HERV-K infection was not inhibited by the TRIM5 proteins that were tested 

(Figure 30). In the case of human TRIM5α, this was not unexpected, because HERV-

KCON was derived from human-specific proviruses that must, by definition, have 

replicated in humans at some point in their evolution and may, therefore, have evolved 

resistance to human TRIM5α. However, HERV-KCON was also resistant to rhesus 

monkey TRIM5α and also TRIM-Cyp, a form of TRIM5 that is unique to owl monkeys 

(Nisole et al., 2004b; Sayah et al., 2004b), a New World monkey species that does not 

carry HERV-K. At present, therefore, there is no evidence that TRIM5 proteins and 

HERV-K have exerted reciprocal evolutionary pressure during primate evolution. 

However, analysis of CA sequences reconstructed from more ancient groups of HERV-K 

proviruses and inserted into HERV-KCON, as well as inclusion of more TRIM5α variants, 

may be illuminating. The studies described herein suggest that such approaches to study 

interactions between ancient retroviruses and their hosts should be feasible. 
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 Unlike TRIM5α, tetherin was able to restrict HERV-KCON virus release (Figure 

32). Thus far, tetherin seems capable of restricting release of particles from all viruses 

tested, including retroviruses from six of seven genera, as well as Marburg and Ebola 

filoviruses and the arenavirus Lassa virus (Jouvenet et al., 2009a; Neil et al., 2008a; 

Sakuma et al., 2009). However, most of these assays were conducted using viral 

structural proteins rather than full length viruses. Hence, any anti-tetherin activity in other 

parts of these viruses will not be detected. Indeed, some SIVs that do not encode for Vpu 

seem to use another accessory protein, Nef, to counter the effects of tetherin (Jia et al., 

2009; Zhang et al., 2009). It is possible that other enveloped viruses have their own 

mechanism of counteracting tetherin. 

 The study of the interaction between APOBEC proteins and HERV-K has been 

more illuminating. When comparing full-length human-specific HERV-K proviruses to 

HERV-KCON, an abundance of G-to-A and C-to-T substitutions were found (Figure 34). 

These substitutions, the most common change found in genomes (Lander et al., 2001), 

can occur when DNA methyltransferase methylates cytosines in CG dinucleotides to 5-

methylcytosine, which spontaneously deaminates to thymine, resulting in a CG-to-TG 

change. These methylation events, important for development via genomic imprinting 

and X chromosome inactivation, can also silence retroelements. This effect has been 

demonstrated in mice, where knocking out DNA methyltransferase Dnmt1 or Dnmt3L 

leads to transcriptional activation of mouse retroelements intracisternal A particles and 

LINE-1 (Bourc'his and Bestor, 2004; Walsh et al., 1998). In addition, previous studies of 

a selection of HERV-K LTRs in the teratocarcinoma cell line Tera-1 showed that 

methylation and transcription are inversely related (Lavie et al., 2004). Given these two 
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facts, one would expect to find that HERV-K proviruses would be cytosine methylated by 

the host, and consequently G-to-A and C-to-T mutations should be abundant. This was 

indeed the case, and in 14 of 16 HERV-K proviruses examined, the CG dinucleotide 

methylation/spontaneous deamination pathway appeared to be the major source of G-to-A 

and C-to-T mutations (Figure 35).  

 Another common cause of G-to-A, and less frequently C-to-T (Bishop et al., 

2004b), changes in viral DNA is APOBEC3-mediated cytidine deamination. Fortuitously, 

the two events are easily distinguished. DNA methyltransferases methylate cytosines in 

CG dinucleotides, while APOBEC proteins deaminate cytosines in XC dinucleotides, 

where X can differ depending on the APOBEC protein that is responsible for deamination. 

Hence, by examining the nucleotides immediately 5' and 3' to the mutated cytosine, one 

can largely assign G-to-A and C-to-T changes to either mechanism. One exception is 

when both DNA methyltransferase and APOBEC preferred nucleotides flank the altered 

cytosine, such as CCG trinucleotides, where CC represents the dinucleotide preference of 

hA3G and CG the preference of DNA methyltransferase. However, exclusion of these 

ambiguous samples in the analyses did not alter the conclusions.  

 The characteristics of HERV-K hypermutation found both in vivo and in vitro 

match several of the characteristics previously observed in the context of APOBEC-

induced mutations in other retrovirus infections. First, G-to-A mutations constituted a 

large fraction of the total mutations in HERV-K60 and HERV-KI (Figures 34 and 36), as 

has previously been found for hypermutated viral sequences in HIV- and HBV-infected 

patients (Janini et al., 2001; Simon et al., 2005; Suspene et al., 2006; Vartanian et al., 

1991). Furthermore, the GGG trinucleotide preference found during in vitro HERV-K 
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infection in the presence of hA3G has been documented in HIV-1 infection assays by 

several groups (Figures 36 and 37) (Bishop et al., 2004a; Wiegand et al., 2004; Yu et al., 

2003). The combination of these two major characteristics found in HERV-K60 and 

HERV-KI, plus the failure of any other human APOBEC3 protein to induce a similar 

pattern of mutation during HERV-K replication in vitro, makes a strong argument for 

hA3G as the sole source of hypermutation in ancient HERV-K proviruses.  

 Another reported characteristic of viral hypermutation by hA3G is the gradient of 

changes along the viral genome. This characteristic is thought to derive from the position-

dependent length of time that the nascent viral DNA is in the form of single-stranded 

DNA, the preferred nucleic substrate of hA3G. However, this was not observed in the 

HERV-K60 and HERV-KI sequences (data not shown). The reasons for this are unclear 

at present. Nonetheless, the ability to fairly precisely recreate the hypermutation patterns 

present in ancient proviruses specifically using hA3G during in vitro HERV-K replication 

assays suggests that the interaction between this protein and HERV-K occurred and was 

physiologically and evolutionarily relevant. HERV-K is therefore an eminently 

reasonable candidate for an infectious agent that has applied selective pressure on A3G 

during primate evolution. However, it is notable that HERV-K is one of a number of 

agents that could potentially have imposed selective pressure on antiretroviral defenses. 

Other abundant endogenous retroelements, such as Alu and LINE-1 elements in humans, 

have also been shown to be restricted by APOBEC3 proteins (Bogerd et al., 2006b; Chiu 

et al., 2006; Hulme et al., 2007; Niewiadomska et al., 2007; Stenglein and Harris, 2006), 

and these elements as well as other exogenous and endogenous retroviruses may also 

have contributed to the expansion and positive selection that is evident in APOBEC3 
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genes. Indeed, among the ancient retroviruses, only those that colonized the germ line are 

accessible to this type of analysis, and it is completely unknown what fraction of ancient 

retroviruses that replicated in ancestral primates are fossilized in modern DNA. 

Nonetheless, A3G has been under positive selection for many millions of years (Sawyer 

et al., 2004), and HERV-K could, potentially, have contributed to this pressure.  

 Given that HERV-K(HML-2) appears intrinsically mutable by hA3G and a 

hypermutated provirus is likely to be less harmful than an intact provirus and hence more 

likely to become fixed in a host genome, it is perhaps surprising that only 2 out of 16 

HERV-K human-specific proviruses and none of 4 chimpanzee-specific proviruses were 

clearly hypermutated. Several factors may have contributed to this, and perhaps the most 

important influence would be viral tropism. The appearance of a hypermutated provirus in 

human DNA indicates that HERV-K likely replicated in an A3G-expressing maternal or 

paternal tissue immediately prior to deposition of the provirus into the germ line. 

Conversely, the deposition of a nonhypermutated virus suggests that the preceding 

generations involved replication in APOBEC3G-negative tissues. The simplest 

explanation for the appearance of hypermutated and nonhypermutated proviruses in the 

human genome is that HERV-K replicated in both A3G-expressing and nonexpressing 

somatic cells prior to germ line infection.  

 Moreover, the frequency of hypermutated proviruses in modern genomes may not 

reflect the frequency at which hypermutation occurred during ancient infections. Indeed, 

while hypermutation would generally inactivate a particular provirus, hypermutation itself 

is unlikely to be always necessary or sufficient to result in fixation of the element, where 

chance-influenced mechanisms, such as drift or bottlenecking, may play a dominant role 
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in provirus fixation. Of note, older HERV-K sequences belonging to group O as defined 

by Romano et al. (Romano et al., 2006) did not exhibit signs of hypermutation compared 

to HERV-KCON. Moreover, a previous study of endogenous murine leukemia viruses also 

found that only a minority of proviruses were overtly hypermutated, perhaps for the same 

aforementioned reasons.  

 While there was a reasonable qualitative correlation between the appearance of 

APOBEC3-induced G-to-A mutations and infection inhibition during in vitro HERV-K 

replication, there was a notable lack of a quantitative correlation between the burden of 

mutations and the extent to which infection was inhibited. Specifically, hA3A, hA3B, and 

hA3F caused mutation in a minority of nascent HERV-K reverse transcripts yet inhibited 

infection to a greater degree than hA3G, which mutated the majority of nascent HERV-K 

DNA molecules (Figure 38). Since no evidence of hA3A, hA3B, or hA3F hypermutation 

was found in endogenous proviruses, inhibition of HERV-K infection by these cytidine 

deaminases may be physiologically irrelevant or might occur primarily via mechanisms 

that would not leave remnants of the viral encounter with the APOBEC protein, such as 

inhibition of DNA synthesis or integration (Bishop et al., 2006; Guo et al., 2006; Holmes 

et al., 2007; Mbisa et al., 2007; Yang et al., 2007).  

 The lack of strong inhibition of HERV-K infection by hA3G in the single-cycle 

replication assay should not be overinterpreted as suggesting that hA3G lacks anti-

HERV-K activity in vivo. As documented here and elsewhere, A3G appears to have 

evolved to target GG dinucleotides, especially GGG trinucleotides. This property makes it 

a particularly efficient mutator of tryptophan codons. G-to-A mutation of tryptophan 

codons invariably leads to the generation of new stop codons, which would almost always 
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be lethal to a retrovirus, even if a provirus were successfully established with a relatively 

low burden of A3G-induced mutation. Importantly, the HERV-K infection assay requires 

a single cycle of infection by a reporter virus that encodes the commonly used EGFP as 

the reporter gene. EGFP contains only a single tryptophan, and thus a moderate level of 

hA3G-induced mutations might not score as strong inhibition during an in vitro single-

cycle infection assay but would abolish further rounds of replication in an in vivo 

spreading infection. Indeed, HERV-K60 and HERV-KI represent clear examples of viral 

sequences that have been fossilized in the human genome in defective form as a 

consequence of hA3G-induced hypermutation. 

 

Chapter 4. Integration of HERV-KCON 

 Here, a study of integration target site selection by HERV-KCON and its 

relationship to the distribution of fixed HERV sites in the human genome is reported. 

Sites of HERV-KCON integration were slightly enriched in transcription units, in gene-

dense regions, and in a collection of features associated with gene activity (Figure 41). 

The endogenous HERV-K elements, ERV2 and HML2(85), showed a very different 

distribution and were enriched outside genes (Figure 43). The HERV-K(HML-2), 

represented by the HML2(85) data set, showed a pattern intermediate between the older 

HERV-K superfamily ERV2 sites and the de novo integrated HERV-KCON (Figures 43 

and 45). These data support a two-step model for accumulation of fixed HERV elements 

in the human genome, in which integration targeting preferences dictated the initial 

placement of integration sites, while subsequent purifying selection eliminated the 

majority of insertions because they were deleterious to host viability.  
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 Previous studies have reported differing distributions among the distinct HERV 

element families and investigated the mechanisms that mediate gene disruption upon 

integration (Mager et al., 1999; Smit, 1999; van de Lagemaat et al., 2006). These studies 

support the idea that strong splice sites and poly(A) sites within HERV elements can 

disrupt gene transcription, as has been seen with other genomic parasites (Britten, 1996; 

Jordan et al., 2003; van de Lagemaat et al., 2006). However, these studies did not identify 

a distinctive distribution pattern for the most recently integrated HERV sequences. This 

study used homology searching to form a collection of the most similar, hence youngest, 

genomic HERV-K(HML-2) elements, and it was by analyzing this collection that the 

intermediate distribution of HML2(85) sequences between the older ERV2 elements and 

newly integrated HERV-KCON was detected. In contrast to the relationship to genomic 

features, the orientation bias within genes is evident and similar for both the HML2(85) 

and ERV2 data sets. This is consistent with the idea that particularly disruptive proviruses 

integrated within genes may be removed relatively quickly by purifying selection.  

 Previous studies of retroviral integration targeting have shown that retroviruses 

from the same genus tend to share the same targeting patterns, but HERV-KCON appears 

to be an exception. HERV-KCON is most closely related to exogenous betaretroviruses, 

and its integrase protein sequence clusters with MMTV, a prototype betaretrovirus rather 

than integrases from other retroviral genera (data not shown). As discussed above, 

HERV-KCON integration is more frequent in gene-rich regions and genomic features 

associated with active transcription, somewhat resembling MLV (Wu et al., 2003). 

Surprisingly, the reported MMTV distribution is almost perfectly random (Faschinger et 

al., 2008). The only other data set with such a random distribution is AAV, but AAV is 
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believed to become integrated at cellular DNA double-strand breaks by the action of 

cellular DNA repair enzymes (Rutledge and Russell, 1997; Song et al., 2001). MMTV, in 

contrast, encodes an integrase protein, and MMTV integration events show the usual 

sequence features associated with retroviral integration. It will be useful to obtain more 

data on integration site distributions from the betaretrovirus genus to clarify this puzzling 

observation.  

 Another previously noted surprising difference between the members of 

betaretroviridae is the location of assembly. Assembly of related betaretrovirus MPMV 

takes place at a perinuclear region (Rhee and Hunter, 1987), whereas HERV-K assembly 

takes place at the plasma membrane. These two phenotypic differences (assembly and 

integration targeting) within betaretroviridae suggest that the genus may not be 

monophyletic. Thus, although the integration targeting data for HERV-KCON seems likely 

to model trends for all of the HERV-K elements, it is uncertain to what extent, if any, the 

data for HERV-KCON models the other HERV families that most closely resemble 

exogenous retroviruses of other genera. 

 The two-step model for HERVs accumulation is likely operating on endogenous 

retroviruses and other integrating elements of many vertebrates (Bushman, 2001; Han 

and Boeke, 2005; Kazazian, 2004). In a previous study, Barr et al. compared de novo 

ASLV integration events in chicken cells to fixed proviruses in the chicken germline that 

were derived from the same retroviral group (Barr et al., 2005). They found that de novo 

ASLV integration showed a modest preference for transcription units, while fixed ASLVs 

in the germline accumulated outside of transcription units. Fixed ASLVs in the germline 

also showed an orientation bias, so that proviruses within genes tended to accumulate in 
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opposite transcriptional orientation relative to the host gene, while the de novo 

integration events showed no such bias. Similar biases in endogenous provirus 

accumulation have also been observed in mouse and rat (Barr et al., 2005; van de 

Lagemaat et al., 2006). These findings suggest that purifying selection is operating 

similarly on the endogenous retroviruses inhabiting the genomes of many vertebrates 

(Barr et al., 2005; Brookfield, 2005; Cutter et al., 2005; Lowe et al., 2007; Roy-Engel et 

al., 2005). 

 

Other questions 

Is HERV-K still replication competent? 

 The findings from the HERV-K sequence data, such as the purifying selection on 

ORFs, supports the idea that HERV-K has been replicating until recent evolutionary time 

(Belshaw et al., 2005a; Costas, 2001). However, so far all insertions have been identified 

via manual screening of cell lines, a handful of human samples, or BAC libraries and 

mining the genomic sequence data, meaning that only a few individuals’ genomes have 

been screened. To identify a replication competent virus, more polymorphic elements 

need to be identified, as replication competent virus is likely to be among these sequences, 

if it exists at all. However, currently, the detection method is limited, as mass sequencing 

of individuals is expensive, and various blotting techniques are less sensitive. 

Furthermore, even after a wide array of human individuals and populations have been 

screened, proving de novo infection by HERV-K will be difficult, as it will require 

identification of an insertion in an offspring that does not exist in either parent. Hence, 

proof of natural replication of HERV-K in vivo is still currently unlikely.  
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Which cells did HERV-K infect? 

 ERVs must infect germ cells or germ cell progenitors to become endogenized, but 

it is unclear whether these are the natural or rare targets. If cells other than germ cells and 

progenitors are HERV-K’s most common target cells, then the virus may be capable of 

horizontal transmission to new, unrelated hosts. This idea is based on the concept of 

purifying selection. If HERV-K infects somatic cells but does not infect new individuals, 

the infection in the somatic cells will be lost once the host dies, as no effective additional 

copies of the virus have been generated. In other words, if the somatic infection had not 

occurred, there would be no difference to the virus population. Without replication, there 

is no selection to retain the sequence, and the somatic cell tropism will likely be lost over 

time. However, if upon infection of somatic cells, the virus can transmit to a new host, 

the propagation and hence selection to retain sequences important for exogenous life 

cycle may be retained. What these other natural target cells may be is entirely unknown.  

 Another factor in question in identifying the target cell is the gender of the host. 

Unlike most somatic cells such as CD4+ T cells of HIV-1, gametogenesis is a gender 

specific process; thus, HERV infection may be gender specific. It is certain that male 

germ cells and/or progenitors are infected, as Y chromosome harbors HERV insertions. 

The insertions found on X chromosome may have occurred in either male or female host, 

hence it is not possible to rule out female germ cells as potential targets. 

 The stage of germ cell development at which HERV-K infection occurs is also 

difficult to identify. The transcriptional activity of HERV-K LTR in teratocarcinoma-

derived cell lines, a tumor in the testes which includes pluripotent germ cells, suggests 
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that HERV-K LTR activity may be linked to earlier parts of germ cell development. 

Furthermore, study of HERV-K LTR in human and mouse teratocarcinoma cells showed 

higher LTR activity relative to nonteratocarcinoma cells, which was lost after 

differentiation of teratocarcinoma cell lines, suggesting that there may be an unknown 

point in development after which the LTR become inactive (Casau et al., 1999). Also, in 

HERV-K LTR transgenic mice, the LTR was active in the testes, especially in the 

undifferentiated spermatocytes (Casau et al., 1999). In human samples, HERV-K(HML-2) 

elements were expressed at low levels in both the testes and ovary (Seifarth et al., 2005). 

Collectively, the LTR seems to be more active in the earlier male germ cell development 

stages than later, and suggests that the virus may be more replication competent during 

this time. 

 

Can HIV-1 become endogenized?  

 As a retrovirus, it is possible that HIV-1 can also become endogenized by either 

infecting developing or mature gametes. In oocytes, in vitro incubation of oocytes and 

cell free HIV-1 does not result in infection; in vivo infection is unknown (Baccetti et al., 

1999). In males, HIV-1 is found in semen soon after infection (Tindall et al., 1992). 

Furthermore, virus DNA can be detected in sperm at various stages of development 

(spermatogonia, spermatids, and spermatocytes) from testes of HIV-1 infected men via 

PCR in situ hybridization and PCR (Muciaccia et al., 1998; Nuovo et al., 1994). In 

animal models, viral RNA and proteins are found in testes and epipididymis of pig-tail 

macaques (Macaca nemestrina) infected with SIVmac251or SHIVmn229, suggesting that 

these locations of spermatogensis contain productively infected cells (Shehu-Xhilaga et 
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al., 2007). A caveat to these studies is the potential of presence by cell-free virus or 

infected lymphocytes. HIV-1 may also infect spermatozoa in the semen, where cell-free 

virus is found (Krieger et al., 1991). Spermatozoa purified from other cells and semen 

fluid have been shown to contain HIV-1 DNA, but no direct evidence of a provirus has 

been shown (Muciaccia et al., 2007) [reviewed in (Cardona-Maya et al., 2006)]. Hence, 

infection of spermatozoa and progenitors is still inconclusive.  

 Another problem of endogenization of HIV-1 is the lack of CD4, the HIV-1 Env 

receptor, in both gametes (Baccetti et al., 1999; Gil et al., 1995). As an alternate, 

mannose receptor CD206 has been identified from solubilized spermatozoa proteins as 

binding partners of cell free HIV-1 virus particles or HIV-1 Env protein, and proposed to 

act as the receptor on spermatozoa in the absence of CD4 (Bandivdekar et al., 2003; 

Fanibunda et al., 2008). Mannose receptor has already been shown to mediate HIV-1 Env 

binding in astrocytes, macrophages, and dendritic cells, although in the latter two cell 

types, this binding is thought to mediate virus transfer to CD4+ T cells, rather than 

inducing infection in macrophages and DCs (Liu et al., 2004; Nguyen and Hildreth, 2003; 

Turville et al., 2001). In astrocytes, the interaction between HIV-1 Env and mannose 

receptor is thought to enable infection (Liu et al., 2004). However, there is no direct 

evidence of spermatozoa infection via the mannose receptor. Hence, thus far, there is no 

direct evidence that HIV-1 will become endogenized. 
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