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IN CAENORHABDITIS ELEGANS 

 

Yasunori Saheki, Ph.D. 

The Rockefeller University 2010 

 

Neurotransmitter release at nerve terminals is a fundamental aspect of communication in 

the nervous system.  Voltage changes in the presynaptic membrane are sensed by 

presynaptic voltage-gated calcium channels that mediate calcium influx at the nerve 

terminals to execute exocytosis of various kinds of neurotransmitters.  Defects in 

presynaptic calcium channels lead to many neurological disorders, emphasizing the 

importance of these channels in the regulation of neuronal activities in the brain.  

Previous physiological studies have focused on opening kinetics of the channels and their 

modulation by auxiliary subunits.  Cell biological questions such as trafficking and 

clustering of the channels at the presynaptic site, however, have remained largely 

unanswered, partly due to a lack of an in vivo assay system to monitor calcium channel 

biogenesis in intact animals. 

 In my thesis, I established an in vivo system to visualize the UNC-2 alpha1 

subunit of the C. elegans CaV2 channel.  I showed that GFP-tagged UNC-2 is localized 

to presynaptic active zones of sensory and motor neurons.  Using this system, I conducted 

a direct visual genetic screen for mutants that are defective in UNC-2 localization, 

identifying three genes, calf-1, unc-36 and pqn-53/calf-2.  CALF-1 is a neuronal-specific 

one-pass transmembrane protein that resides in the endoplasmic reticulum, and is 



required for endoplasmic reticulum exit of UNC-2.  Structure-function analysis revealed 

that the transmembrane domain and the cytosolic arginine-based basic motifs are 

important for the function of CALF-1.  Acute induction of calf-1 mobilizes preexisting 

UNC-2 for delivery to synapses, consistent with a direct trafficking role.  The calcium 

channel alpha2-delta auxiliary subunit UNC-36 is also required for endoplasmic 

reticulum exit of UNC-2, but has additional functions.  The polyglutamine protein pqn-53 

is localized to the nucleus; PQN-53 inhibits a non-canonical unfolded protein response 

pathway, and activation of this pathway in pqn-53 mutants leads to the reduced 

expression of UNC-2 and other transmembrane proteins.  Furthermore, pqn-53 mutants 

are resistant to killing by pathogenic bacteria, potentially due to constitutive activation of 

the non-canonical unfolded protein response.  pqn-53 couples multipass transmembrane 

protein biogenesis with endoplasmic reticulum stress, and provides insights into the 

regulation of pathogen resistance by the endoplasmic reticulum stress-sensing pathway.   
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Chapter 1  

Introduction	 

 

Protein trafficking to proper microdomains creates functional diversity within a single 

neuronal cell.  In neurons, different functions are associated with the soma, the axonal 

shaft, presynaptic terminals, and postsynaptic dendrites.  In spiking neurons, the action 

potential travels through the axonal shaft to reach the presynaptic terminal.  In the 

terminal, membrane depolarization activates presynaptic voltage-gated calcium channels 

(Pre-VGCC) to allow calcium ion flux and neurotransmitter release.  In dendrites, 

neurotransmitters activate postsynaptic receptors and associated signaling cascades.  The 

functional specialization of each domain is achieved by the accurate sorting and tethering 

of specialized molecules such as channels.  How the specific localization of each synaptic 

protein is accomplished is an intensive focus of molecular neuroscience.  

Pre-VGCC are the primary calcium source for exocytosis at the presynaptic 

terminal.  Their functions are largely conserved over different kinds of organisms 

including human, rodents, flies and worms.  Disruptions of Pre-VGCC function are 

implicated in human epilepsy, migraine, autism-spectrum disorders, and bipolar disease, 

underlining the importance of these channels in the regulation of neuronal excitability 

and function 1.  Strong loss-of-function mutations in Pre-VGCC in Drosophila 

melanogaster and Caenorhabditis elegans lead to lethality and severe uncoordination, 

respectively 2, 3.  Despite the evolutionary, clinical, and physiological importance of Pre-

VGCCs, their mechanism of localization to the presynaptic terminal is unknown. 
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Under the supervision of Cori Bargmann, I explored the mechanism of Pre-

VGCC localization in the presynaptic terminals, using a genetic approach in 

Caenorhabditis elegans. 

 

Synapse Formation and Presynaptic Assembly 

Synapses are highly organized structures.  Electron microscopic analysis of presynapses 

has revealed electron-dense matrix associated with patches of the axonal plasma 

membrane surrounded by small cluster of synaptic vesicles4, 5.  These ultrastructural 

specializations of the plasma membrane, named active zones, are juxtaposed to a second 

electron-dense specialization present in the postsynaptic membrane, the postsynaptic 

density.  Biochemical purification of the proteins from synaptosome preparations 

identified several proteins associated with the presynaptic electron-dense matrix, 

including Bassoon, Piccolo, RIM1 and ELKS 6.  Stereotypic morphologies of the 

presynaptic active zones in different types of neurons suggest that the active zone is 

structured to tether synaptic vesicles and Pre-VGCC in a regular pattern; the presynaptic 

scaffold proteins must exert special constraints on the synaptic vesicle distribution as well 

as Pre-VGCC.  A presynaptic ankyrin is required for proper synapse formation of 

Drosophila neuromuscular junctions (NMJs) through regulation of microtubules 

indicating the essential role of the cytoskeleton in synapse formation7.  A link between 

the scaffold and synaptic membrane proteins is Drosophila Bruchpilot, a homolog of 

CAST/ELKS presynaptic scaffolding protein that localizes in donut-shaped structures at 

the active zone of NMJs and is required for Drosophila Pre-VGCC localization8.  Below, 
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I will describe briefly the induction of presynapses and the assembly of presynaptic 

components. 

 The differentiation of synapses takes place in multiple steps including synapse 

initiation, induction and maintenance.  In the mammalian CNS, the initiation or 

establishment of an initial contact site between an axon and a dendrite is thought to occur 

through cell adhesion molecules such as immunoglobulin (Ig) domain-containing 

proteins, leucine-rich repeat (LRR) domain-containing proteins, integrins, and members 

of the cadherin superfamily 9, 10.  Either on their own or through intermediate proteins, the 

cell adhesion proteins then trigger pre- and postsynaptic differentiation.  Two complexes 

suggested to drive synaptic differentiation are the Beta-neurexin-neuroligin heterodimeric 

or synCAM homodimeric complexes.  Neurexin-neuroligin and synCAM interactions 

drive the assembly of pre- and post-synaptic components in cell culture 11, 12.  The 

importance of these complexes for synapse formation in vivo is still being established.  

Neuroligin triple knockouts have defects in inhibitory synapse development, but not in all 

aspects of synapse formation as predicted by the initial model 13.  In Drosophila, neurexin 

is required for the proper apposition of active zones to postsynaptic densities, synapse 

number and synaptic transmission 14, 15.  Mouse knockouts of all the isoforms of neurexin 

have not been reported, but alpha-neurexin knockouts show reduced inhibitory synapse 

number and defective neurotransmission 16.  Nervous system phenotypes of synCAM 

knockouts have not been described.   

 Differentiation of the presynaptic terminal includes the formation of active zones, 

clustering of vesicles and recruitment of calcium channels.  Molecules implicated as 

presynaptic organizers in the mammalian CNS based on cell biological studies include 
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neurexin, synCAM adhesion molecules, and soluble factors including WNT-7a, FGF-22 

and glia-derived thrombospondin 17-20.  Scaffolding proteins such as CASK, Mint and 

Veli are suggested contributors to scaffolding function at presynaptic terminals 21. 

 A powerful route to understanding synapse initiation is through the study of 

genetic model systems.  In C. elegans, the HSNL neuron, a primary component of an 

egg-laying circuit, specifies its synapse location by heterodimeric interactions between 

the immunoglobulin superfamily proteins SYG-1 and SYG-2 in vivo 22, 23.  The 

localization of SYG-1 at synapses leads to presynaptic assembly by recruiting other 

scaffolding proteins such as SYD-2 (liprin-alpha) and SYD-1 24.  These induction and 

differentiation steps are followed by structural and functional maturation and 

maintenance processes, which are important for the full function of the synapses in a 

circuit or a network.  More broadly, studies from C. elegans and Drosophila 

melanogaster have identified many players that coordinate synaptic vesicle clustering and 

active zone formation at a variety of synapses.  These include SAD-1 kinase, SYD-

2/liprin-alpha, SYD-1 and RPM-1/Hiw/FSN-1/dFsn ubiquitin ligase complex 25-30.  RSY-

1 directly interacts with SYD-2 and inhibits its synaptic assembly function.  This 

antagonistic regulation implicates a balance between synaptogenic factors and anti-

synaptogenic factors in proper synapse formation and presynaptic assembly31.  Glia-

derived netrin acts non-cell autonomously in neurons to induce local synaptogenesis in C. 

elegans 32.  Synaptogenic proteins organize many components of the presynaptic 

specialization through cell biological mechanisms that are still being worked out. 
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Synapse maintenance and elimination 

Once synapses are established, they can be maintained for weeks to months and perhaps 

years in mature vertebrate brains 33.  These studies indicate that synapses have 

mechanisms to maintain their structure over long periods of time.  Some presynaptic 

proteins such as synapsin, actin, and Munc13 are rapidly exchanged throughout synaptic 

life 34, 35.  Synapses and synaptic molecules can be eliminated in active developmental 

processes regulated by molecules such as Wnt 36, 37, netrin 38 and complement proteins 39.  

In C. elegans, SYG-1 interacts with the E3 ubiquitin ligase, SKR-1, and inhibits 

assembly of SCF complex to protect nearby synapses in HSNL neurons40.  This study 

illustrates the importance of subcellular regulation of ubiquitin-mediated protein 

degradation in elimination of nascent synapses.    

 Individual presynaptic molecule can also be targets of elimination for rapid 

changes in synaptic communication.  In mammalian CNS synapses, SCRAPPER, a 

synaptically-localized E3 ligase, directly binds and ubiquitinates RIM1 complex to 

modulate synaptic vesicle releases 41.  In addition to SCRAPPER, the anaphase-

promoting complex (APC), Siah and Staring E3 ligases selectively target liprin-alpha, 

synaptophysin and syntaxin for degradation respectively 42-44.  The dynamic regulation of 

synapses is a critical feature of synapse maintenance. 

 

Lessons from C. elegans studies of AMPA receptor trafficking 

In the vertebrate central nervous system, fast excitatory synaptic transmission is mediated 

primarily by two families of glutamate receptors (GluRs): alpha-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid (AMPA) receptors and N-metheyl-D-aspartate 

5



 

(NMDA) receptors.  Regulated trafficking of AMPA-type glutamate receptors from 

postsynaptic elements has been implicated as a potential mechanism for changes of 

synaptic strength in learning and memory 45.  Genetic studies with C. elegans have 

contributed significantly to the identification of molecular mechanisms that regulates the 

abundance of AMPA-type glutamate receptors.  The C. elegans genome contains eight 

non-NMDA ionotropic glutamate receptor subunit genes, one of which is glr-1.  GLR-1 

is expressed in ventral cord interneurons, among other places, and it localizes to 

postsynaptic elements at sensory-interneuron synapses 46 as well as interneuron-

interneuron synapses 47.  Studies of GLR-1 trafficking were facilitated by the use of a 

GFP-tagged form of GLR-1.  GLR-1::GFP enabled visualization of the protein in vivo in 

live animals, allowing efficient genetic screens for molecules required for localization of 

the channel 47.   

 Trafficking of GLR-1 from cell bodies to synapses is regulated by CaMKII and 

voltage-gated calcium channels, suggesting that activity-dependent mechanisms regulate 

channel traffic48.  Ubiquitin and the AP180 clathirn adaptor protein mediate endocytosis 

of GLR-1; direct ubiquitination of GLR-1 is required for endocytosis mediated by unc-

11, the C. elegans homolog of AP180, suggesting that ubiquitin and clathrin-mediated 

endocytosis act together to regulate the abundance of GLR-1 in synapses 47.  A second 

ubiquitin regulation pathway is represented by LIN-23, the substrate recognition subunit 

of Skp1/Cullin/F Box (SCF) ubiquitin ligase which regulates the abundance of GLR-1 

indirectly through ubiquitination of the beta-catenin homolog BAR-1.  The effect of 

BAR-1 on synapse structure broadens the role of Wnt signaling in multiple aspects of 

synapse regulation that include synaptogenesis, synapse elimination and regulation of the 
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abundance of synaptic receptors 49.  UNC-108/Rab2 is also required for postendocytic 

trafficking of GLR-1, implicating this specific Rab GTPase in the trafficking of 

transmembrane receptors 50. 

 Mutations in the ligand-binding and pore domains of GLR-1 prevent the channel 

from exiting the endoplasmic reticulum 51.  This study suggests that functional maturation 

is important for passing the quality control system of the endoplasmic reticulum.  

Trafficking of GLR-1 from the endoplasmic reticulum is also regulated by 

phosphorylation of a PDZ protein, LIN-10.  CDK-5/Cdk5 phosphorylates LIN-10/Mint-1 

and regulates the abundance of GLR-1 52.  LIN-10 negatively regulates the abundance of 

GLR-1; CDK-5-mediated phsphorylation of LIN-10 reduces the amount of LIN-10 at 

synapses, which in turn cause increased GLR-1 expression at synapses.  In cdk-5 mutants, 

GLR-1 is retained in the endoplasmic reticulum, indicating that LIN-10 and CDK-5 

regulate efficient GLR-1 endoplasmic reticulum exit 52.  These seminal studies emphasize 

the strength of the genetic approach for understanding receptor trafficking and clustering 

at synapses. 

 

Recent evidence regarding the mechanism of calcium channel clustering 

Neuronal VGCCs are central regulators of synaptic vesicle exocytosis, dendritic 

integration, and calcium-dependent gene regulation 53.  A VGCC consists of one pore-

forming alpha1 subunit that defines intrinsic channel properties, and auxiliary alpha2-

delta, beta and sometimes gamma subunits that modify channel kinetics and channel 

density 54.  
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 Specific genes in the CaV gene family encode physiologically distinct alpha1 

subunits.  Mammalian L-type channels with CaV1 alpha1 subunits are mainly required 

for gene regulation and dendritic integration, N-, P/Q- and R-type channels with CaV2 

alpha1 subunits are required for neurotransmitter release and dendritic calcium transients, 

and T-type channels with CaV3 alpha1 subunits are required for repetitive firing 53.  

CaV1, CaV2, and CaV3-related genes are found in invertebrates as well as vertebrates 55.  

The fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans each 

have one predicted CaV2 alpha1 subunit, encoded by the cacophony and unc-2 genes, 

respectively.  Fly CaV2/cacophony mutants are inviable, with defects in calcium-

dependent neurotransmitter release at the neuromuscular junction suggesting the loss of 

the presynaptic calcium current 2, 56.  A GFP-tagged Cacophony protein is localized to 

presynaptic active zones, consistent with a role at synapses 57.  C. elegans CaV2/unc-2 

mutants are uncoordinated, with defects in evoked neurotransmitter release at the 

neuromuscular junction 3, 58, 59.  These phenotypes suggest a conserved role for CaV2 

channels as presynaptic regulators of synaptic transmission. 

 In mammalian systems, the localization of alpha-1 calcium channel subunits in 

the brain was studied by immunohistochemistry in the early nineties 60-63.  L-type, R-type 

and T-type calcium channels are localized to cell bodies and dendrites, and N and P/Q-

type calcium channels are localized to dendrites and axon terminals.  From their function 

and localization pattern, the N and P/Q-type channels are considered to be the Pre-

VGCCs most often required for neurotransmitter release.  However, this can vary in 

different excitable cells.  For example, ribbon synapses in hair cells and photoreceptors 

use L-type channels as Pre-VGCCs 64, 65. 
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 Several domains of Pre-VGCC are required for their targeting to synapses.  These 

domains include the SH3-binding domain and the PDZ domain-binding motif of the N-

type calcium channel alpha1 subunit, which work synergistically as synaptic targeting 

signals in cultured hippocampal neurons 66.  In addition, the auxiliary subunits can 

function to promote surface expression of Pre-VGCCs.  The alpha2-delta auxiliary 

subunit increases channel activity and promotes Pre-VGCC membrane trafficking 

through its Von Willebrand factor-A (VWA) domain in vitro; mutations in the metal-ion-

dependent adhesion site (MIDAS) of the VWA domain suggest an important role of 

divalent cation binding to this site 67.  The alpha2-delta auxiliary subunit increases 

synaptic expression and activity of Drosophila Pre-VGCC Cacophony protein in vivo 68, 

69.  The beta auxiliary subunit increases plasma membrane expression of multiple 

mammalian VGCC classes 70.  Phophatidylinositol 3-kinase (PI3K) promotes the 

translocation of Pre-VGCC to the plasma membrane, an effect mediated by 

phosphorylation of the calcium channel auxiliary beta subunit by Akt-PKB 71. 

 Extracellular cues promote Pre-VGCC clustering as well.  At the mouse NMJ, 

Laminin-beta2, a basement membrane component, directly binds to Pre-VGCC and 

induces clustering of the channels at motor nerve terminals 72.  In rat hippocampal 

neuronal culture, neuron-neuron contact is required for Pre-VGCC clustering, suggesting 

the existence of an intercellular clustering signal in the CNS 73. 

 Interactions of Pre-VGCC with presynaptic proteins seem to be required for Pre-

VGCC clustering.  In Drosophila melanogaster, Bruchpilot, a homolog of mammalian 

ELKS-1 (ERC or CAST), resides in the presynaptic terminal and is required for Pre-
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VGCC clustering at the NMJ 8.  The Drosophila eight-transmembrane domain protein 

Fuseless is also important in Pre-VGCC localization, but the mechanism is not clear 74. 

 Trafficking and scaffolding proteins are also required for Pre-VGCC clustering.  

The t-complex testis-expressed 1 (tctex1) protein, a light-chain subunit of the dynein 

motor complex, interacts directly with Pre-VGCC.  A dominant negative tctex1 protein 

interferes with the surface expression of Pre-VGCC in cultured hippocampal neurons 75.  

Neurexin 16 and the CASK-Mint-Veli tripartite complex of presynaptic scaffolding 

proteins can interact with calcium channels in purified rat brain synaptosome 21, 76.  They 

are candidates for proteins that drive the presynaptic clustering of calcium channels.  

Mice lacking neurexin alpha have severe defects in presynaptic calcium channel function 

16.  In mice, however, none of the knock-outs of tripartite complex proteins show clear 

disruption of Pre-VGCC clustering 77-79.  

 

Calcium channel subunits in C. elegans 

C. elegans has three predicted alpha1 calcium channel subunits, one related to CaV1 

alpha1D L-type channels (EGL-19), one related to CaV2 alpha1A/alpha1B N/P/Q-type 

channels (UNC-2), and one related to CaV3 alpha1G T-type channels (CCA-1) 80, 81.  C. 

elegans has two alpha2/delta subunits known as UNC-36 and TAG-180 and two beta 

subunits termed CCB-1 and CCB-2.  The existence of gamma subunits is unclear but 

there are numerous proteins with similarity to the superfamily that includes gamma 

subunits, tight junction claudins and AMPA receptor stargazin auxiliary subunits. 

 In vitro reconstitution of C. elegans calcium channels has not been reported, thus 

it is not clear how similar the kinetics of channel opening are between mammalian CaVs 
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and C. elegans CaVs.  However, when mutations of conserved residues that occur in unc-

2 mutants are introduced into mammalian N-type channels, defective currents were 

observed in the mutant channels in vitro, suggesting evolutionary conserved structures of 

the CaV channels 3.  There are some sequence dissimilarities between alpha1A/alpha1B 

and UNC-2.  For example, the synaptic protein interaction site (synprint) that binds to 

NSF attachment protein receptor (SNARE) proteins such as syntaxin, SNAP25, and 

synaptotagmin is missing in invertebrate calcium channels including unc-2.  The synprint 

site was shown to be required for presynaptic localization of CaV2 and proper synaptic 

transmission, suggesting that binding of SNARE proteins to the synprint site is necessary 

for nerve terminal localization of CaV2 calcium channels 82, 83.  Detailed studies of the 

role of synprint sites have been complemented by invertebrate calcium channel studies.  

For example, fresh-water pond snail (Lymnaea staglis) CaV2 alpha1 subunits lack the 

synprint site and are unable to bind to SNARE proteins 84.  This suggests that invertebrate 

CaV2 does not require the synprint site for localization and functions.  In contrast to the 

absence of the synprint site, a proline rich region that binds to SH3 domains (possibly an 

interaction site with CASK) and calcium channel beta subunit binding sites are conserved 

between vertebrate and invertebrate CaV2 calcium channels.  Evolutionary analysis of 

presynaptic calcium channels indicates that the putative CASK binding site and beta 

subunit binding site was added to the ancestral proteins much earlier than the synprint site 

85.  Therefore, the binding of these proteins may be more fundamental to the original 

function and localization of CaV2 than binding of synaptic proteins.  The function of 

these sites in localization of presynaptic calcium channels still needs to be determined.  It 
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will be interesting to characterize the sequence requirement for CaV2 localization using 

unc-2 mutagenesis. 

	   C. elegans lacks the voltage-gated sodium channels that are important for the 

generation of action potentials in other animals 81.  C. elegans neurons are also small 

compared to those of mammals, and neurons may be isopotential 86.  Thus, C. elegans 

may not require specific localization of each calcium channel for general control of 

membrane potential, although channels could still have unique neuronal functions such as 

localized calcium influx at the presynaptic terminal 3, 87.  unc-2 is a good candidate for the 

Pre-VGCC alpha-1 subunit, because of its sequence homology to N and P/Q-type 

channels.  unc-2 is expressed specifically in neurons and null mutants in unc-2 are 

defective in locomotion and neurotransmission at the NMJ, suggesting a role at synapses 

3, 59.  egl-19 is required for sensory-evoked calcium transients in the neuronal cell body, 

but unc-2 is not, suggesting the existence of localized calcium sources in C. elegans 

neurons 88, 89.  Thus, determination of its localization and its function in presynaptic 

neurotransmitter release were critical to establish UNC-2 as a Pre-VGCC in C. elegans.   

To complement studies of VGCCs in cultured cells, and to explore CaV2 channel 

traffic in vivo, we analyzed neuronal calcium channel localization and function in C. 

elegans.  We show that a functional GFP-tagged UNC-2 is concentrated at presynaptic 

active zones of sensory neurons and motor neurons.  In Chapter 2, I will describe the 

importance of the alpha2-delta subunit UNC-36 and a newly-identified endoplasmic 

reticulum protein, CALF-1 (Calcium Channel Localization Factor-1) in UNC-2 

localization.  In Chapter 3, I will describe a role of the voltage-gated calcium channel in 

the determination of left-right asymmetry of two bilateral AWC olfactory neurons.  In 
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Chapter 4, I will describe the relationship between ER stress, innate immunity and UNC-

2 localization through the study of newly-identified nuclear protein CALF-2/PQN-53.  I 

will then discuss future directions for study in Chapter 5. 
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Chapter 2  

Presynaptic CaV2 calcium channel traffic requires CALF-1 and the 

alpha(2)delta subunit UNC-36 

 

Abstract 

Presynaptic voltage-gated calcium channels provide calcium for synaptic vesicle 

exocytosis.  We show here that a GFP-tagged alpha1 subunit of the C. elegans CaV2 

channel, UNC-2, is localized to presynaptic active zones of sensory and motor neurons.  

Synaptic localization of CaV2 requires the alpha2-delta subunit UNC-36 and CALF-1 

(Calcium Channel Localization Factor-1), a neuronal transmembrane protein that 

localizes to the endoplasmic reticulum.  In calf-1 mutants, UNC-2 is retained in the 

endoplasmic reticulum but other active zone components and synaptic vesicles are 

delivered to synapses.  Acute induction of calf-1 mobilizes preexisting UNC-2 for 

delivery to synapses, consistent with a direct trafficking role.  The alpha2-delta subunit 

UNC-36 is also required for endoplasmic reticulum exit of UNC-2, but has additional 

functions.  Genetic and cell biological interactions suggest that CALF-1 couples 

intracellular traffic to functional maturation of CaV2 presynaptic calcium channels. 
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Introduction 

Neuronal voltage-gated calcium channels (VGCCs) are central regulators of synaptic 

vesicle exocytosis, dendritic integration, and calcium-dependent gene regulation 53.  A 

VGCC consists of one pore-forming alpha1 subunit that defines intrinsic channel 

properties, and auxiliary alpha2-delta, beta and sometimes gamma subunits that modify 

channel kinetics and channel density 54.  Specific genes in the CaV gene family encode 

physiologically distinct alpha1 subunits.  Mammalian L-type channels with CaV1 alpha1 

subunits are mainly required for gene regulation and dendritic integration, N-, P/Q- and 

R-type channels with CaV2 alpha1 subunits are required for neurotransmitter release and 

dendritic calcium transients, and T-type channels with CaV3 alpha1 subunits are required 

for repetitive firing 53.  Disruptions of VGCC function are implicated in human epilepsy, 

migraine, autism-spectrum disorders, and bipolar disease, underlining the importance of 

these channels in the regulation of neuronal excitability and function 1.  

CaV1, CaV2, and CaV3-related genes are found in invertebrates as well as 

vertebrates 55.  The fruit fly Drosophila melanogaster and the nematode Caenorhabditis 

elegans each have one predicted CaV2 alpha1 subunit, encoded by the cacophony and 

unc-2 genes, respectively.  Fly CaV2/cacophony mutants are inviable, with defects in 

calcium-dependent neurotransmitter release at the neuromuscular junction suggesting the 

loss of the presynaptic calcium current 2, 56.  A GFP-tagged Cacophony protein is 

localized to presynaptic active zones, consistent with a role at synapses 57.  C. elegans 

CaV2/unc-2 mutants are uncoordinated, with defects in evoked neurotransmitter release 

at the neuromuscular junction 3, 58, 59.  These phenotypes suggest a conserved role for 

CaV2 channels as presynaptic regulators of synaptic transmission. 
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The surface expression and localization of presynaptic VGCCs can be affected by 

channel subunit composition and by other proteins.  The alpha2-delta auxiliary subunit 

increases channel activity and plasma membrane expression of mammalian CaV2 alpha1 

subunits 67, and increases synaptic expression and activity of Drosophila 

Cacophony/CaV2 protein 68, 69.  The beta auxiliary subunit increases plasma membrane 

expression of multiple mammalian VGCC classes 70, 71.  Other proteins that regulate 

presynaptic VGCC localization in vivo include the Drosophila active zone protein 

Bruchpilot/ELKS 8, the Drosophila eight-transmembrane domain protein Fuseless 74, and 

the vertebrate extracellular matrix protein laminin beta2 72.  Many additional candidate 

regulators of presynaptic VGCCs have been studied in cultured cells, including 

scaffolding proteins such as CASK, Mint and Veli 21, and the dynein light chain protein 

Tctex1 75.   

To complement studies of VGCCs in cultured cells, and to explore CaV2 channel 

traffic in vivo, we here analyze neuronal calcium channel localization and function in C. 

elegans.  The C. elegans genome encodes three predicted VGCC alpha1 subunits, egl-19 

(CaV1), unc-2 (CaV2), and cca-1 (CaV3) 55.  UNC-2 is a candidate presynaptic voltage-

gated calcium channel based on its sequence similarity to CaV2 channels, neuronal 

expression, and synaptic transmission defects.  We show that a functional GFP-tagged 

UNC-2 is concentrated at presynaptic active zones of sensory neurons and motor 

neurons.  UNC-2 localization requires the alpha2-delta subunit UNC-36 and a newly-

described endoplasmic reticulum protein, CALF-1 (Calcium Channel Localization 

Factor-1).  CALF-1 and UNC-36 have partly overlapping activities in the traffic and 

functional maturation of UNC-2 channels.  
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Results 

The CaV2 alpha1 subunit UNC-2 localizes to presynaptic active zones 

A full-length, GFP-tagged unc-2 cDNA rescued the uncoordinated movement of unc-2 

mutants when expressed from a pan-neuronal promoter (see Methods).  To examine its 

subcellular localization, GFP::UNC-2 was expressed under cell type-specific promoters 

together with the synaptic vesicle marker RAB-3::mCherry (hereafter, RAB-3)24.  When 

expressed in AWC olfactory neurons, GFP::UNC-2 localized to axonal puncta that 

overlapped with RAB-3, consistent with presynaptic localization (Fig.2-1a-g).  

GFP::UNC-2 was also present in the cell body, but was excluded from the dendrite, cilia, 

and nucleus.  When expressed in VD and DD GABAergic motor neurons, GFP::UNC-2 

localized with RAB-3 in the ventral and dorsal nerve cords (Fig.2-1h-j). When expressed 

in the DA9 cholinergic motor neuron, GFP::UNC-2 localized with RAB-3 in the dorsal 

presynaptic region of the axon (Fig.2-1k-n).  In each case, the GFP::UNC-2 protein was 

present in the cell body, but largely excluded from dendrites and asynaptic regions of 

axons.   

Presynaptic calcium channels function at active zones, the plasma membrane sites 

of synaptic vesicle secretion.  GFP::UNC-2 puncta were often more focal than RAB-3 

puncta (Fig. 2-1), suggesting that UNC-2 might localize to active zones.  In agreement 

with this idea, GFP::UNC-2 in AWC axons colocalized closely with the active zone 

markers ELKS-1::mCherry and SYD-2::mCherry (Fig. 2-1d-f, Supplementary Fig. 2-1a-

c). 

To define genes required for UNC-2 localization to synapses, we first examined 

candidate mutants using GFP::UNC-2 and RAB-3 expressed in AWC.  Synaptic vesicle 
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Figure 2-1. GFP-tagged UNC-2 localizes to presynaptic puncta in sensory neurons and 
motor neurons. 
(a-c) Representative images of GFP::UNC-2 and RAB-3::mCherry in the AWC cell body 
(white arrowhead) and axon (yellow arrowheads). The more dorsal cell body is AWB 
(asterisk). (d-f) Representative images of GFP::UNC-2 and ELKS-1::mCherry. (g) Schematic 
of AWC processes, with synapses in red. (h,i) Representative images of GFP::UNC-2 and 
RAB-3::mCherry in GABAergic motor neurons:  DD axons (dorsal nerve cord) and VD axons 
(ventral nerve cord). (j) Schematic of VD and DD processes, with synapses in red. VD has a 
presynaptic region in its ventral process and DD has a presynaptic region in its dorsal 
process. (k-m) Representative images of GFP::UNC-2 and RAB-3::mCherry in the synaptic 
region of DA9 cholinergic neurons. The central autofluorescent region is the intestine 
(asterisk). (n) Schematic of DA9 processes. In all Figures, the AWC promoter is odr-3, which 
is also expressed weakly in AWB, ASH, AWA, and ADF sensory neurons; the VD/DD promoter 
is unc-25; the DA9 promoter is itr-1; and all data are taken from adult animals, unless 
otherwise noted.  Head is to the left and dorsal is up in all images unless otherwise noted. 
Scale bar, 10 μm.
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Supplementary Figure 2-1. Synaptic markers in wild type and calf-1 animals.
(a-f) Representative images of GFP::UNC-2 and SYD-2::mCherry in AWC neurons. 
(a-c) wild-type animal; (d-f) calf-1(ky867) mutant. Arrowheads mark AWC cell bodies. 
Asterisk, AWB cell body. Scale bar, 10 μm. 
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clustering and active zone structure in C. elegans are regulated by SAD-1 kinase, SYD-

2/liprin-alpha, SYD-1 and RPM-1/Hiw/Esrom/PAM 25-28.  In all of these mutants, 

GFP::UNC-2 puncta associated with RAB-3 in AWC axons, although there were defects 

in the spacing, size, and number of clusters (Supplementary Fig. 2-2a-d).  Several other 

candidate genes had no obvious effect on GFP::UNC-2 localization in AWC:  elks-1, the 

C. elegans homolog of Drosophila bruchpilot 8, nrx-1, the sole C. elegans neurexin 

homolog, lin-2/CASK, lin-7/Veli, and lin-10/MINT PDZ proteins of the tripartite complex, 

or the synaptic exocytosis and endocytosis mutants unc-13, unc-10/RIM, dpy-23/AP2, 

unc-101/AP1, unc-11/AP180, and unc-31/CAPS (Supplementary Fig. 2-2e-o).  A 

mutation in the KIF1A kinesin gene unc-104 caused RAB-3 to disappear from AWC 

axons, consistent with the known requirement for KIF1A in synaptic vesicle traffic 90, but 

GFP::UNC-2 puncta were present and apparently normal in unc-104 mutants 

(Supplementary Fig. 2-2p).  Similarly, a partial loss of function mutation in the KIF5 

kinesin heavy chain gene unc-116 affected RAB-3 localization, but maintained 

GFP::UNC-2 colocalization with RAB-3 (Supplementary Fig. 2-2q).  The absence of 

obvious GFP::UNC-2 phenotypes in these mutants does not exclude subtle functions, 

redundant functions, or functions in other classes of neurons. 

unc-36 alpha2-delta mutants have uncoordinated phenotypes and other neuronal 

phenotypes similar to those of unc-2 mutants 3, 91, 92.  GFP::UNC-2 was barely detectable 

in the AWC axons of a null unc-36 mutant, but was still detectable in the cell body, 

demonstrating a requirement for UNC-36 in the sorting, folding, or localization of UNC-

2 in vivo (Supplementary Fig. 2-2r).  RAB-3 puncta were normal, suggesting that 

synaptic vesicle clustering was unaffected.  
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Supplementary Figure 2-2. GFP::UNC-2 association with RAB-3::mCherry in synaptic 
mutants.  
Representative images of GFP::UNC-2 and RAB-3::mCherry in AWC neurons of L4 
larvae. White arrowheads mark AWC cell bodies. (a-e) Presynaptic organization mutants. 
(a) syd-2(ju37) (b) sad-1(ky289) (c) rpm-1(js410) (d) syd-1(ju82) (e) elks-1(tm1233). (f-i) 
Neurexin and tripartite complex mutants. (f) nrx-1(ds1) (g) lin-2(n1610) (h) lin-7(n308cs) 
(i) lin-10(e1439). (j, k) Exocytosis mutants. (j) unc-13(e51) (k) unc-10(e102). (l-n) 
Endocytosis and membrane trafficking mutants. (l) dpy-23(e840) (m) unc-101(m1) (n) 
unc-11(ky280). (o) Dense core vesicle secretion mutant unc-31(e928). (p, q) Kinesin 
mutants. (p) unc-104(e1265) (q) unc-116(e2310). (r) VGCC alpha2-delta subunit mutant 
unc-36(e251). Morphologically abnormal RAB-3::mCherry clusters in mutants are 
marked with asterisks. Note that GFP::UNC-2 still localizes to axons in all mutants 
except for unc-36(e251), and colocalizes with abnormal RAB-3::mCherry clusters in syd-
2(ju37), sad-1(ky289) and unc-116(e1265) mutants. Based on molecular and genetic 
criteria, likely null alleles are syd-2(ju37) 26, sad-1(ky289)25, rpm-1(js410)93, syd-
1(ju82)28, elks-1(tm1233)24, nrx-1(ds1), dpy-23(e840)94, unc-31(e928)95 and unc-
36(e251)92.  unc-13(e51)96, unc-10(e102)97, unc-101(m1)98, 99, lin-2(n1610), lin-
7(n308cs), lin-10(e1439)100, unc-104(e1265)90 and unc-116(e2310) are predicted to be 
reduction of function alleles, but not null. Scale bar, 10 µm. 
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UNC-2 synaptic puncta are reduced in calf-1 mutants 

A genetic screen for mutants with altered GFP::UNC-2 expression in AWC yielded three 

mutants with few axonal GFP::UNC-2 puncta, but apparently normal RAB-3 puncta (see 

Methods).  Two mutants had an uncoordinated phenotype and failed to complement the 

alpha2-delta subunit mutant unc-36(e251), suggesting that they are mutant for unc-36.  

The third mutant affected a new gene, here named calf-1(ky867) or Calcium channel 

Localization Factor-1.  In calf-1(ky867) mutants, GFP::UNC-2 was nearly undetectable in 

AWC axons, but the synaptic vesicle marker RAB-3 (Fig. 2-2a-c) and the active zone 

markers ELKS-1 (Fig. 2-2d-f) and SYD-2 (Supplementary Fig. 2-1d-f) appeared normal.  

The total fluorescence intensity of axonal GFP::UNC-2 as well as the number of puncta 

per axon were greatly reduced, whereas GFP::UNC-2 fluorescence in the cell body was 

slightly increased (Fig. 2-2g,h); minimal effects were detected upon similar quantification 

of RAB-3 (Fig. 2-2g,h).  These results suggest that calf-1 mutants have a selective defect 

in presynaptic calcium channel localization. 

 calf-1 also affected GFP::UNC-2 localization in motor neurons.  The dorsal nerve 

cord of calf-1 mutants had reduced levels of GFP::UNC-2 fluorescence and few 

GFP::UNC-2 puncta, but near-normal RAB-3 puncta, suggesting a loss of UNC-2 from 

DD synapses (Fig. 2-2i-l).  In the ventral nerve cord, some GFP::UNC-2 puncta were 

visible, but these puncta did not localize with RAB-3 at VD synapses (Fig. 2-2j).  

Consistent with a defect in motor neurons, calf-1 mutants had a distorted sinusoidal 

posture and moved very slowly on agar surfaces or in liquid, like unc-2 mutants (Fig. 2-

2m and data not shown).  
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Figure 2-2. Presynaptic GFP::UNC-2 puncta are lost in calf-1(ky867) mutants
(a-c) Representative images of GFP::UNC-2 and RAB-3::mCherry in AWC neuron of a 
calf-1(ky867) mutant. (d-f) Representative images of GFP::UNC-2 and ELKS-1::mCherry in a 
calf-1(ky867) mutant. White arrowhead, AWC cell body; yellow arrowheads, AWC synapses; 
asterisk, AWB cell body. Compare Fig. 1a-f. (g, h) Quantification of GFP::UNC-2 and 
RAB-3::mCherry in AWC; (g) Normalized total fluorescence intensity and (h) number of 
fluorescent clusters. (i,j) Representative images of GFP::UNC-2 and RAB-3::mCherry in VD 
and DD neurons in a calf-1(ky867) mutant. Compare Fig. 1h,i. (k,l) Quantification of 
GFP::UNC-2 and RAB-3::mCherry in 50 μm covering DD5 and DD6 axons in the dorsal nerve 
cord; (k) Normalized total fluorescence intensity and (l) number of fluorescent puncta. 
Scale bar, 10 μm. (m) Quantification of swimming behavior in M9 buffer. All error bars 
indicate s.e.m. In g,h,k-m, asterisks indicate results different from wild-type controls by unpaired 
t-test at P<0.01 (**). (n) Calcium signals in AIB interneurons upon removal of the attractive 
odor isoamyl alcohol, which is sensed by AWC.  Heat maps of individual recordings are shown 
for wild-type (n=35), unc-2 (n=34), and calf-1 (n=37) adults.  Odor was removed at t=10s.  
AWC responses and AIB odor-on responses are in Supplementary Figure 4. (o) Average AIB 
response to odor removal for traces shown in (n).  Lines mark median response.  Neurons with 
an average DF/F ≤ 0 were scored as failures; both mutants were different from wild type in the 
fraction of failures, P<0.05 (*) or P<0.01 (**) by Chi-squared test.
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In calf-1 mutants, the GFP::UNC-2 signal in AWC cell bodies overlapped with 

the endoplasmic reticulum marker CP450::mCherry 101, suggesting that GFP::UNC-2 was 

retained in the endoplasmic reticulum (Supplementary Fig. 2-3a-c).  Support for this 

conclusion came from examining GFP::UNC-2 in ventral cord processes of VD and DD 

neurons.  In wild-type animals, GFP::UNC-2 in ventral cord processes was largely 

separated from the endoplasmic reticulum marker CP450::mCherry, but in calf-1 

mutants, GFP::UNC-2 and CP450::mCherry overlapped extensively (Supplementary Fig. 

2-3d-i).  These results suggest that GFP::UNC-2 preferentially accumulates in the 

endoplasmic reticulum or related components in calf-1 mutants. 

 The functional consequences of unc-2 and calf-1 mutations were examined by 

calcium imaging of AWC sensory neurons and AIB interneurons, which are postsynaptic 

targets of AWC.  AWC calcium levels reported by the fluorescent indicator G-CaMP fall 

slightly upon addition of the attractive odor isoamyl alcohol, and rise upon odor removal; 

similar signals are subsequently observed in AIB interneurons 102.  In unc-2 and calf-1 

mutants, the AWC sensory responses to odors were of normal magnitude (Supplementary 

Fig. 2-4), but postsynaptic AIB responses to odor removal were reduced (Fig. 2-2n).  

Approximately half of the unc-2 and one third of calf-1 AIB neurons did not respond to 

odor removal, although those AIB neurons that did respond had similar response 

magnitudes to wild type (Fig. 2-2o).  These results suggest that unc-2 and calf-1 affect 

neuronal signaling between AWC and AIB neurons in similar ways, reducing but not 

eliminating synaptic communication (see Discussion).   
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Supplementary Figure 2-3. GFP::UNC-2 is trapped in endoplasmic reticulum 
of calf-1(ky867) mutants.
(a-c) GFP::UNC-2 and the endoplasmic reticulum (ER) marker CP450::mCherry in the AWC cell 
body of an adult calf-1(ky867) mutant. Arrowheads outline the characteristic nuclear-exclusion 
pattern of endoplasmic reticulum. Scale bar, 10 μm. (d-i) Representative images of GFP::UNC-2 
and the endoplasmic reticulum marker CP450::mCherry in ventral processes of VD and DD 
neurons of (d-f) a wild-type control, (g-i) a calf-1(ky867) mutant. Arrowheads mark location of 
endoplasmic reticulum. Scale bar, 5 μm. (j) Mapping and cloning of calf-1. A PCR fragment 
containing the B0250.2 gene rescued the calf-1 mutant phenotype. The ky867 allele has a C to T 
transition in the second exon of B0250.2.
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Supplementary Figure 2-4. Calcium signals in AWC and AIB.
(a-b) Calcium signals in AWC sensory neurons (a) upon addition of the attractive odor isoamyl 
alcohol (b) upon odor removal. Heat maps of individual recordings and average DF/F values are 
shown for wild type (n=12), unc-2 (n=13) and calf-1 (n=12). Odor was added or removed at t=10s. 
Mutant responses were not significantly different from wild type. (c) Calcium signals in AIB 
interneurons upon addition of isoamyl alcohol, same cells as in Fig. 2n,o, presented in the same 
order. Odor was added at t=10s. Lines mark median response of each genotype; mutants were not 
significantly different from wild type.
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calf-1 encodes a neuronal transmembrane endoplasmic reticulum 

protein 

Genetic mapping and transgenic rescue identified calf-1 as the predicted gene B0250.2 

(Fig. 2-3, Methods and Supplementary Fig. 2-3j).  Sequencing of calf-1(ky867) DNA 

revealed a C to T mutation resulting in an early stop codon in the B0250.2 open reading 

frame.  The calf-1 mutant is fully recessive, and a calf-1 gene with the ky867 mutation 

did not affect GFP::UNC-2 localization or locomotion when injected into wild-type 

animals (data not shown).  These results suggest that ky867 is a loss of function allele of 

calf-1/B0250.2. 

 calf-1 encodes a predicted type I transmembrane protein with a hydrophobic 

membrane-spanning region, a highly basic region, and a proline-rich region (Fig. 2-3a).  

The region C-terminal to the transmembrane domain is predicted to be cytosolic.  

Homologs of calf-1 were identified in other nematode species (Fig. 2-3b), but not in other 

organisms.  Among nematodes, conservation of CALF-1 was highest in the predicted 

transmembrane domain and the adjacent basic region (Fig. 2-3c).  

The uncoordinated phenotype and defective GFP::UNC-2 localization in calf-1 

mutants were rescued by a 0.5 kb calf-1 cDNA expressed under 0.8 kb of calf-1 upstream 

sequence (Fig. 2-4a,b).  When the same 0.8 kb promoter was used to drive expression of 

GFP, fluorescence was detected in many or all neurons, but not in other tissues (Fig. 2-

4c,d).  Coexpression with an odr-1::mCherry transgene confirmed that the calf-1 

promoter drove expression in AWC neurons (Fig. 2-4e-g). 

Expression of the calf-1 cDNA under the control of the pan-neuronal tag-168 

promoter rescued the GFP::UNC-2 localization phenotypes and locomotory behavior of 
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Figure 2-3. calf-1 encodes a type I transmembrane protein.
(a) A predicted topology of CALF-1, with a transmembrane domain near its N-terminus and 
basic and proline-rich regions in the predicted cytosolic region. The ky867 allele has a 
termination codon after the transmembrane domain. (b) Phylogenetic tree of CALF-1 in 
nematodes. (c) Alignment of predicted nematode CALF-1 proteins. Invariant amino acids
 are in red. 
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Figure 2-4. CALF-1 acts cell autonomously in neurons and localizes to endoplasmic reticulum.
(a,b) Rescue of calf-1(ky867) mutants with calf-1 cDNA under the endogenous calf-1 promoter, 
pan-neuronal tag-168 promoter, or muscle-specific myo-3 promoter. (a) Swimming behavior in 
M9 buffer. (b) GFP::UNC-2 clusters in AWC axons. Asterisks denote strains different from 
calf-1(ky867) control by Bonferroni t-test, **= P<0.01. (c) Expression of calf-1::GFP, 0.8 kb of 
promoter sequence. Scale bar, 100 μm. (d) Boxed region from (c); motor neurons in the ventral 
nerve cord express calf-1::GFP (white arrowheads mark cell bodies). (e-g) AWC expresses 
odr-1::mCherry and calf-1::GFP. Scale bar, 10 μm. (h, i) Cell specific rescue of calf-1(ky867) 
mutants. (h) GFP::UNC-2 clusters in AWC  axons, odr-3::calf-1 rescue. (i) GFP::UNC-2 clusters 
in DD (dorsal cord), unc-25::calf-1 rescue. Asterisks denote strains different from calf-1(ky867) 
controls at P<0.01 by unpaired t-test. All error bars indicate s.e.m. (j-l) Representative images of 
CALF-1::GFP and RAB-3::mCherry in AWC neurons. CALF-1::GFP is not visible at RAB-3-
positive synapses. White arrowhead, AWC cell body; asterisk, AWB cell body. Scale bar, 10 μm. 
(m-r) Localization of CALF-1 in AWC cell body. (m-o) CALF-1::GFP and the endoplasmic 
reticulum (ER) marker CP450::mCherry in AWC. (p-r) CALF-1::GFP and the Golgi marker 
ManII::mCherry in AWC. Scale bar, 5 μm.
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calf-1 mutants, but expression from the muscle-specific myo-3 promoter did not (Fig. 2-

4a, b).  Expression of calf-1 under the AWC-selective odr-3 promoter rescued 

GFP::UNC-2 localization in AWC neurons, and expression of calf-1 under the VD/DD 

motor neuron promoter unc-25 rescued dorsal GFP::UNC-2 localization in DD neurons 

(Fig. 2-4h,i).  These results suggest that calf-1 acts cell autonomously to localize UNC-2.  

A calf-1 cDNA that was tagged with GFP fully rescued the locomotion defects in 

calf-1 mutants (see Methods).  When expressed in AWC neurons, CALF-1::GFP was 

exclusively localized to the cell body, and not to axons or synapses (Fig. 2-4j-l).  The 

CALF-1::GFP signal overlapped extensively with mCherry-labeled endoplasmic 

reticulum markers CP450, cb5, and RAMP4 (Fig. 2-4m-o, Supplementary Fig. 2-5a-f) 

but not with the Golgi marker ManII::mCherry (Fig. 2-4p-r).  When expressed in VD and 

DD motor neurons, CALF-1::GFP was present in cell bodies and in a few puncta in 

ventral processes; these puncta did not overlap with RAB-3 or the Golgi marker, but did 

overlap with an endoplasmic reticulum marker (Supplementary Fig. 2-5g-r).  These 

results suggest that CALF-1 is a neuron-specific endoplasmic reticulum protein. 

 

Functional motifs within CALF-1 promote endoplasmic reticulum 

retention 

To identify sequences necessary for CALF-1 function, we tested mutant proteins for their 

ability to rescue either GFP::UNC-2 clusters in AWC or coordinated locomotion.  

Deletion of the CALF-1 transmembrane domain or replacement with the integrin PAT-3 

transmembrane domain eliminated its activity (Fig. 2-5a).  CALF-1 was active following 

individual deletion of three other regions, the basic region (deletion I), the proline-rich 
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Supplementary Figure 2-5. CALF-1 is localized to endoplasmic reticulum.
(a-f) CALF-1::GFP colocalization with endoplasmic reticulum markers, 
(a-c) cb5::mCherry or (d-f) RAMP4::mCherry in AWC cell bodies. (g-l) 
CALF-1::GFP and the endoplasmic reticulum (ER) marker CP450::mCherry 
(g-i) or the Golgi marker ManII::mCherry (j-l) in cell bodies of VD or DD 
neurons. (m-r) Endoplasmic reticulum localization of CALF-1 in ventral processes 
of VD and DD neurons. (m-o) CALF-1::GFP and RAB-3::mCherry; 
(p-r) CALF-1::GFP and the endoplasmic reticulum marker CP450::mCherry. 
Yellow arrowheads mark selected CALF-1 puncta. White arrowheads mark 
CALF-1 puncta that did not co-localize with CP450::mCherry. Scale bar, 5 μm.
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(a) Schematic representation of CALF-1 and mutants tested for rescue.  For AWC axon clusters, 
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by expression in intestinal epithelial cells. Bottom, plasma membrane and endoplasmic reticulum 
localization of representative fusion proteins in intestinal cells in L4 larva.  Scale bar, 10 μm.
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region (deletion II), or the C-terminal region (deletion III).  Simultaneous deletion of all 

three regions inactivated CALF-1, but inclusion of either the basic region, or the proline-

rich and C-terminal regions together, was sufficient for rescue (deletion I-VI).  

Any of the three regions of CALF-1 that promote its function -- the 

transmembrane domain, the basic region, and the combined proline-rich and C-terminal 

region -- was sufficient to cause endoplasmic reticulum retention of a GFP-tagged protein 

in intestinal cells (Fig. 2-5b and Methods).  Embedded in the basic region and C-terminal 

region of CALF-1 are multiple arginine-x-arginine (RXR) motifs (Fig. 2-3c), which can 

function as endoplasmic reticulum retention motifs in other transmembrane proteins 103.  

A C-terminal truncation of CALF-1 that removed RQR and RKR motifs was competent 

for rescue (RKR deletion), but a larger C-terminal deletion that eliminated RQR, RKR, 

RAR, and RLR motifs inactivated CALF-1 (RLRE deletion) (Supplementary Fig. 2-6a-

c).  Interestingly, a small fusion protein consisting of the CALF-1 transmembrane domain 

and a 16 amino acid arginine-rich endoplasmic reticulum retention motif from the G-

protein coupled alpha2 adrenergic receptor 104 partly rescued calf-1 mutants 

(Supplementary Fig. 2-6a,b); similar fusions of the CALF-1 transmembrane domain to 

KDEL or KKYL endoplasmic reticulum retention motifs were inactive.  These results 

suggest that arginine-rich endoplasmic reticulum retention motifs contribute to calf-1 

activity. 

 

unc-36 affects UNC-2 maturation and function 

To gain further insight into the relationships between unc-2, calf-1, and unc-36, we 

examined multiple phenotypes and genetic interactions in these mutants.  Both canonical 
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Supplementary Figure 2-6. Arginine-rich sequences enhance CALF-1 activity.
(a) Schematic and sequence of CALF-1 fusion proteins tested for rescuing activity. (b) Swimming 
behavior in M9 buffer. (c) GFP::UNC-2 clusters in AWC axons. Asterisks, different from calf-1(ky867) 
at P<0.05 (*) or P<0.01 (**) by Dunnett’s test. The RAR deletion has an interesting phenotype 
reminiscent of calf-1 overexpression in an unc-36 mutant (Fig. 6h-k), with strong rescue of AWC 
UNC-2 clusters and minimal rescue of locomotion.
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null unc-36 mutations and new unc-36 mutations from our screen caused defects in 

GFP::UNC-2 localization that resembled those of calf-1 mutants:  GFP::UNC-2 was 

absent from AWC axons and dorsal VD and DD processes, but synaptic RAB-3 

localization appeared normal (Fig. 2-6a-d).  In the ventral nerve cord, GFP::UNC-2 in 

VD/DD neurons rarely overlapped with the synaptic vesicle marker RAB-3 (Fig. 2-6e) 

but overlapped extensively with the endoplasmic reticulum marker CP450 (Fig. 2-6f).  

These observations suggest that unc-36 mutations cause GFP::UNC-2 to accumulate in 

the endoplasmic reticulum.  In agreement with this hypothesis, unc-36 mutants had 

increased accumulation of GFP::UNC-2 in the AWC cell body and perinuclear region 

compared to wild type, although the effect was less marked than in calf-1 mutants 

(Supplementary Fig. 2-7a-d). 

A biologically active, GFP-tagged UNC-36 protein was localized both to the 

plasma membrane and to internal membranes of neurons, suggesting that it could 

function either in the endoplasmic reticulum with CALF-1, or in the synapse with UNC-

2, or at both locations (Fig. 2-6g).  In AWC neurons, UNC-36::GFP was largely 

perinuclear, and overlapped with the endoplasmic reticulum marker CP450 

(Supplementary Fig. 2-7e-g); unlike GFP::UNC-2, it was not concentrated at AWC 

synapses.  Perinuclear UNC-36::GFP localization in AWC was unchanged in calf-1 

mutants; similarly, CALF-1::GFP localization in AWC, VD, and DD was unchanged in 

unc-2 and unc-36 mutants (Supplementary Fig. 2-7h-v).  

Genetic interactions were consistent with related functions of calf-1, unc-36, and 

unc-2.  All three mutants and all double mutants were slow-moving but not paralyzed, 

with similar phenotypes (Fig. 2-6h).  Overexpression of untagged UNC-2 from a pan-
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Figure 2-6. CALF-1 and UNC-36 have related trafficking functions. 
(a-c) GFP::UNC-2 and RAB-3::mCherry in AWC neuron of a unc-36(e251) mutant. 
White arrowhead, AWC cell body; yellow arrowheads, AWC synapses; asterisk, AWB 
cell body.  (d) GFP::UNC-2 and RAB-3::mCherry in DD neurons of a unc-36(e251) 
mutant, dorsal nerve cord. (e) GFP::UNC-2 and RAB-3::mCherry in VD and DD neurons 
in a unc-36(e251) mutant, ventral nerve cord. (f) GFP::UNC-2 and the endoplasmic 
reticulum (ER) marker CP450::mCherry in VD and DD neurons in a unc-36(e251) 
mutant, ventral nerve cord.  Compare Fig. 1a-i. (g) UNC-36::GFP expressed under the 
unc-36 promoter, in the head of an adult; image analogous to panels a-c.  Asterisks 
indicate diffuse localization of UNC-36::GFP in axons at nerve ring. Scale bar, 10 µm. 
(h) Swimming behavior in M9 buffer. (i) GFP::UNC-2 clusters in AWC axons. (j) 
GFP::UNC-2 clusters in 50 µm of dorsal cord covering DD5 and DD6 axons.  In h-j, 
asterisks denote results different from relevant single mutant strains at P<0.01 (**) by 
unpaired t-test or Bonferroni t-test, as appropriate; error bars indicate s.e.m. (k) 
GFP::UNC-2 and RAB-3::mCherry in DD neurons, dorsal nerve cord, of unc-36(e251) 
mutant overexpressing tag-168::calf-1.  
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Supplementary Figure 2-7. unc-36(e251) effects on localization and traffic. 
(a-c) GFP::UNC-2 in AWC cell bodies of (a) wild-type control, (b) calf-1(ky867) mutant 
and (c) unc-36(e251) mutant. Arrowheads, perinuclear accumulation of GFP::UNC-2. (d) 
Perinuclear GFP::UNC-2 fluorescence in AWC cell bodies of L4 larvae. Asterisks 
indicate results different from wild-type controls at P<0.05 (*) or P<0.01 (**) by t-test. 
(e-j) UNC-36::GFP and the endoplasmic reticulum (ER) marker CP450::mCherry in 
AWC cell body. (e-g) wild-type animal; (h-j) calf-1(ky867) mutant. (k-p) CALF-1::GFP 
and CP450::mCherry in AWC cell body. (k-m) unc-36(e251) mutant; (n-p) unc-2(lj1) 
mutant. (q-v) Endoplasmic reticulum localization of CALF-1 in ventral processes of VD 
and DD neurons of unc-36(e251) mutants. (q-s) CALF-1::GFP and RAB-3::mCherry; (t-
v) CALF-1::GFP and CP450::mCherry. Yellow arrowheads mark selected CALF-1 
puncta. White arrowheads mark CALF-1 puncta that did not co-localize with 
CP450::mCherry.  Scale bar, 5 µm.  
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neuronal promoter significantly improved the calf-1 locomotion phenotype (Fig. 2-6h).  

This result suggests that the locomotion defect in calf-1 is related to reduced unc-2 

activity, and supports a primary role for calf-1 as a cofactor for unc-2. 

Overexpression of calf-1 from a pan-neuronal promoter rescued synaptic 

GFP::UNC-2 puncta in unc-36 mutants, an effect that was weak in AWC and robust in 

VD and DD (Fig. 2-6i-k).  However, calf-1 overexpression did not rescue the locomotion 

defects of unc-36 mutants (Fig. 2-6h), suggesting that unc-36 mutants are defective in 

locomotion even when some UNC-2 is delivered to synapses.  unc-36 overexpression did 

not rescue GFP::UNC-2 localization or locomotion defects in calf-1 mutants (Fig. 2-6h-j).   

calf-1, unc-2, and unc-36 also function together in a calcium-dependent 

developmental pathway that generates asymmetric gene expression patterns in the left 

and right AWC neurons 105.  Left-right asymmetry is disrupted in about 50% of unc-2 

mutants, an effect that is enhanced in unc-2 egl-19/CaV1 double mutants 92.  As unc-36 

mutations affect both CaV1 and CaV2 channels, unc-36 has a stronger defect than unc-2 

92.  calf-1 mutants had defects in AWC gene expression that closely resembled those of 

unc-2 null mutants, and an unc-2 calf-1 double mutant was similar to the single mutants 

(Supplementary Table 2-1).  These results suggest that the calf-1 mutation specifically 

affects unc-2 function in AWC, and not the genetically separable activities of unc-36 and 

egl-19 in the same cell. 

 

CALF-1 acts acutely to deliver UNC-2 to synapses 

The genetic analysis of calf-1 suggests that UNC-2 accumulates in endoplasmic 

reticulum until CALF-1 allows its exit, but do not demonstrate a direct mobilization of 
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Supplementary Table 2-1  
Neuronal Expression of str-2::GFP

AWC neurons expressing str-2::GFP
(% of Animals) 

Strain 2AWCs 1AWC None n

Wild type 0 100 0 90
unc-2(lj1) 51 45 4 155
unc-36(e251) 97 3 0 70
unc-36(e251);unc-2(lj1) 91 9 0 201
calf-1(ky867) 55 39 6 132
calf-1(ky867);unc-2(lj1) 51 41 8 110
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UNC-2.  To examine the acute effects of calf-1, we used the heat shock promoter hsp16.2 

106 to drive expression of calf-1 under temperature control.  A three hour heat pulse in 

adult animals was sufficient to rescue synaptic GFP::UNC-2 localization in AWC 

neurons, and also restored coordinated locomotion to calf-1 mutants (Fig. 2-7a-c).  The 

adult rescue of calf-1 mutants argues for a role of CALF-1 in ongoing delivery of UNC-2 

to synapses, and against an essential role in synaptic development.   

 The rapid action of calf-1 after heat shock made it possible to examine effects of 

calf-1 on the dynamic behavior of UNC-2 protein.  A pulse-chase protocol was designed 

to test the mobilization hypothesis directly, using hs::calf-1 and a fluorescently labeled 

pool of UNC-2 protein (Fig. 2-7d).  UNC-2 was tagged at its N-terminus with the 

photoconvertible protein Dendra2, which irreversibly changes from green to red emission 

upon UV irradiation 107.  Dendra2::UNC-2 protein behaved similarly to GFP::UNC-2, 

both before and after photoconversion; it had a synaptic location in wild-type animals, 

but accumulated in cell bodies of calf-1 mutants (data not shown).  In the pulse-chase 

experiment, a pool of Dendra2::UNC-2 protein in the cell bodies of the tail was 

photoconverted to red in calf-1; hs::calf-1 animals raised at low temperatures.  After 

photoconversion, these animals were subjected to a heat shock to induce calf-1 

expression (Fig. 2-7d,e).  In 7 of 9 animals subjected to heat shock, red Dendra2::UNC-2 

was mobilized from the cell bodies to puncta within the nerve ring, where many tail 

neurons form synapses (Fig. 2-7f).  No red Dendra2::UNC-2 puncta were found in the 

nerve ring in the absence of heat shock (Fig 7f, n=9 animals).  These results demonstrate 

that UNC-2 within the cell body, most likely the endoplasmic reticulum, is acutely 

mobilized by CALF-1.  In agreement with this conclusion, the heat shock protocol 
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(g) Photoconverted Dendra2::UNC-2 in the cell body. Asterisks denote results different from no 
heat shock controls at P<0.01 (**) by unpaired t-test. All error bars indicate s.e.m. Scale bar, 10μm. 
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significantly reduced the amount of red Dendra2::UNC-2 in the cell body while 

increasing its levels at synapses (Fig. 2-7g). 

 

Discussion 

Calcium channels in C. elegans, like their homologs in other animals, have distinctive 

functions and subcellular locations.  We found that the UNC-2/CaV2 protein is highly 

enriched in presynaptic puncta, where it may provide calcium for exocytosis 3, 58, 59.  

Signaling from AWC neurons to postsynaptic AIB neurons is reduced but not eliminated 

in unc-2 mutants, indicating that UNC-2 cannot be the only source of presynaptic calcium 

in AWC.  These observations were made by in vivo calcium imaging, a relatively low-

resolution method, so they do not provide detailed information about synaptic 

mechanisms.  However, the general conclusions are consistent with electrophysiological 

studies at the C. elegans neuromuscular junction showing that unc-2 mutants have 

reduced synaptic release, but retain residual synaptic function (ref. 59 and J. Madison and 

J. Kaplan, personal communication).  The axonal NCA channels are attractive candidates 

for a second presynaptic activity, since these mutants have variable failures in 

presynaptic calcium signals that are reminiscent of the variable failures in unc-2 mutants 

108.  EGL-19/CaV1 channels are also candidates; although EGL-19 is expressed mainly in 

the cell body (Y.S., unpublished results), inhibitory interactions between EGL-19 and 

UNC-2 may allow EGL-19-dependent compensation in unc-2 mutants 92.  Homeostatic 

compensation may also upregulate postsynaptic glutamate receptors to potentiate the AIB 

response 109. 
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Efficient exit of a GFP-tagged UNC-2 from the endoplasmic reticulum requires 

both the alpha2-delta subunit UNC-36 and the endoplasmic reticulum protein CALF-1.  

Proteins that promote the surface expression of channels can be divided into two 

categories: auxiliary subunits and regulators of biogenesis 110.  Auxiliary proteins like 

TARPs (for glutamate receptors) and MinK (for potassium channels) first associate with 

the channel in the endoplasmic reticulum, but remain associated at the plasma membrane 

where they modify channel properties.  Their function may be primarily channel 

modulation, and secondarily channel traffic.  Our results suggest that the alpha2-delta 

subunit UNC-36 acts as an auxiliary subunit that regulates both UNC-2 exit from the 

endoplasmic reticulum and UNC-2 function (Fig. 2-8).   

Alpha2-delta subunits in other animals are also implicated in CaV2 traffic.  

Drosophila straightjacket alpha2-delta mutants have a major defect in synaptic 

transmission, and a minor decrease in CaV2 channel levels at the synapse (25-40%) 68, 69.  

Similarly mammalian alpha2-delta subunits can affect both CaV2 traffic and function; 

mammalian alpha2-delta-1 and alpha2-delta-2 are the primary targets of the antiepilepsy 

drug gabapentin, which reduces surface expression of CaV2 channels in cultured neurons 

and heterologous cells 67, 111.  The precise trafficking step affected by straightjacket and 

mammalian alpha2-delta subunits has not been defined, but our results indicate that one 

effect of UNC-36 on UNC-2 occurs during exit from the endoplasmic reticulum.  

Mammalian and fly alpha2-delta mutants appear to have a milder trafficking defect than 

unc-36, perhaps because of less redundancy among alpha2-delta genes:  Drosophila has 

three predicted genes encoding alpha2-delta subunits, and mammals have four, but C. 

elegans has only two (unc-36 and the uncharacterized gene tag-180).  However, the 
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Figure 2-8. Model for UNC-2 folding, assembly with UNC-36, and regulated endoplasmic 
reticulum exit dependent on CALF-1. 
CALF-1 may prevent UNC-2 aggregation, assist UNC-2 assembly with other subunits such 
as UNC-36, monitor assembly, recruit coat proteins for endoplasmic reticulum exit, or release 
UNC-2 from endoplasmic reticulum-retention factors. UNC-36::GFP is less prominent at 
synapses than GFP::UNC-2; it may be sub-stoichiometric or transiently
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interpretation of our experiments and those in Drosophila is limited by the fact that 

localization was only examined using overexpressed GFP-tagged CaV2 proteins, which 

could have different sorting requirements from native CaV2 channels. 

CALF-1 appears to function primarily in UNC-2 biogenesis, not as an auxiliary 

subunit (Fig. 2-8).  CALF-1 resides in the endoplasmic reticulum, and CALF-1::GFP is 

not detectable at synapses, whereas synaptic GFP::UNC-2 is easily detected.  Thus if 

CALF-1 remains associated with UNC-2 at the cell surface, that association is transient 

or sub-stoichiometric.  calf-1 acts rapidly and cell-autonomously to affect UNC-2 

localization, apparently by ongoing regulation of UNC-2 exit from the endoplasmic 

reticulum.  This activity is consistent with a role as cargo-specific chaperone, or 

“outfitter”, for UNC-2 112.  Among the overlapping functions of cargo-specific 

chaperones are protein folding activities, prevention of aggregation and retrotranslocation 

of transmembrane proteins from the endoplasmic reticulum into the cytosol, and 

recruitment of COPII vesicle proteins for endoplasmic reticulum exit 113-115.  

CALF-1 contains multiple RXR motifs, sequences that were first identified for 

their ability to retain unfolded or partially assembled potassium channels in the 

endoplasmic reticulum 103, 104.  Cis-acting RXR motifs regulate sorting of Kir and Kv 

potassium channels, cystic fibrosis-associated CFTR channels, NMDA-type glutamate 

receptors, cardiac sodium channels, and GABA-B receptors 115.  Unlike other 

endoplasmic reticulum retention motifs such as KDEL, RXR motifs can stimulate 

endoplasmic reticulum exit in some contexts, particularly when multimerized or when 

bound by 14-3-3 proteins 115.  CALF-1 contains many RXR motifs, but acts in trans to 

UNC-2 and not in cis.  In its small size, transmembrane structure, and proposed function, 
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it resembles the RXR-containing invariant chain that regulates MHC Class II traffic 

through internal membranes 116. 

We suggest that CALF-1 acts at an assembly or endoplasmic reticulum exit 

checkpoint for UNC-2, perhaps by recruiting coat proteins or releasing UNC-2 from 

endoplasmic reticulum retention factors (Fig. 2-8).  CALF-1-dependent endoplasmic 

reticulum exit normally occurs after UNC-2 and UNC-36 interact, but can occur under 

other circumstances when UNC-2 or CALF-1 is overexpressed.  Conserved CALF-1 

homologs are only recognizable in nematodes, but more distantly-related proteins in other 

species could have analogous activities.  For example, the poorly-understood gamma 

subunits of mammalian calcium channels have multiple RXR motifs and multiple 

prolines in their C-terminal cytoplasmic domains, like CALF-1.  Defining the conserved, 

species-specific, and cell type-specific components of presynaptic CaV2 localization is a 

challenge for further experiments. 
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Chapter 3  

unc-2 CaV2 and egl-19 CaV1 calcium channel homologs act 

together in AWC asymmetry 

 

As a part of my thesis, I characterized a role of the voltage-gated calcium channel in the 

determination of left-right asymmetry of two bilateral AWC olfactory neurons. Together 

with an analysis of the RAW repeat protein OLRN-1 in AWC asymmetry conducted by 

Sarah Bauer Huang, this work was published in Neural Development as my second 

author paper.  Below, I briefly describe my findings.  The entire paper is attached to form 

Chapter 3. 

  In the adult C. elegans nervous system, the two bilateral AWC olfactory neurons 

are different in function and chemosensory receptor gene expression; in each animal, one 

AWC randomly takes on one identity, designated AWCOFF, and the contralateral AWC 

becomes AWCON.  Previous studies from our group had demonstrated that a stochastic 

lateral signaling interaction occurs between two developing AWC olfactory neurons 

through a gap junction network and a claudin-related protein, which inhibit a calcium-

regulated MAP kinase pathway in the neuron that becomes AWCON 105, 117-119.  The 

precise site of action and role of calcium channels in this process, however, were 

unknown.  Using genetic approaches such as targeted expression and genetic mosaic 

analysis, I showed that voltage-gated calcium channel activity is essential in AWCOFF, 

and that signals from the calcium channels coordinate left-right asymmetry of the two 

AWC neurons.  I showed that the calcium channels act at the transition between a 
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multicellular signaling network and cell-autonomous execution of the decision.  We 

proposed that the asymmetry decision in AWC results from the intercellular coupling of 

voltage-regulated channels, whose cross-regulation generates distinct calcium signals in 

the left and right AWC neurons.  

 

Summary 

Background.  The left and right AWC olfactory neurons in Caenorhabditis elegans 

differ in their functions and in their expression of chemosensory receptor genes; in each 

animal, one AWC randomly takes on one identity, called AWCOFF, and the contralateral 

AWC becomes AWCON.  Signaling between AWC neurons induces left-right asymmetry 

through a gap junction network and a claudin-related protein, which inhibit a calcium 

channel - Ca2+/calmodulin-dependent protein kinase II (CaMKII) - MAP kinase pathway 

in the neuron that becomes AWCON.   

Results.  We show here that a new asymmetry gene, olrn-1, acts downstream of the gap 

junction and claudin genes to inhibit the calcium – MAP kinase pathway in AWCON.  

OLRN-1, a novel protein with potential membrane-association domains, is related to the 

Drosophila Raw protein, a negative regulator of JNK MAP kinase signaling.  olrn-1 

opposes the action of two voltage-activated calcium channel homologs, unc-2 (CaV2) 

and egl-19 (CaV1), which act together to stimulate the calcium – MAP kinase pathway.  

Calcium channel activity is essential in AWCOFF, and the two AWC neurons coordinate 

left-right asymmetry using signals from the calcium channels and signals from olrn-1.   

Conclusions.  olrn-1 and voltage-activated calcium channels are mediators and targets of 

AWC signaling that act at the transition between a multicellular signaling network and 
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cell-autonomous execution of the decision.  We suggest that the asymmetry decision in 

AWC is made by intercellular coupling of voltage-regulated channels, perhaps through a 

process analogous to sinoatrial node synchronization in the vertebrate heart.  
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Introduction 

Olfactory neurons sense environmental chemicals using large families of chemoreceptor 

genes that are deployed in elaborate patterns.  For example, the main olfactory organs of 

the nematode C. elegans are the bilateral (left and right) amphids, which house twelve 

pairs of ciliated sensory neurons.  Each sensory neuron expresses many receptor genes, in 

contrast with vertebrate olfactory neurons that generally express one receptor gene per 

cell 118.  Every neuron pair expresses a unique complement of receptors, and in addition, 

expression of some receptor genes is asymmetric on the left and right sides.  For 

example, the left and right ASE gustatory neurons (ASEL and ASER) are structurally 

similar, but they express different receptor genes and sense different tastants120, 121.  ASE 

asymmetry, which is established by transcription factors and microRNAs, is stereotyped 

and tightly coupled to the body plan 122.  The left and right AWC olfactory neurons also 

have distinct functions, but AWC asymmetry is variable 105, 123.  The receptor gene str-2 

is expressed stochastically in one of the AWC neurons, such that half of the animals 

express str-2 in AWCL and half of the animals express str-2 in AWCR.  The AWC cell 

expressing str-2 is called AWCON, while the cell lacking str-2 expression is called 

AWCOFF.  These alternative AWC gene expression patterns correlate with different 

olfactory functions: the AWCON cell senses the odor butanone, while the AWCOFF cell 

senses 2,3 pentanedione 123.  Behavioral analysis of animals with an altered complement 

of AWCs has demonstrated that AWC asymmetry increases olfactory discrimination and 

olfactory plasticity 123, 124. 

Signaling between the two AWCs is required for the diversification of AWCON 

and AWCOFF.  If one AWC precursor is killed in the embryo, the surviving cell always 
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becomes AWCOFF, suggesting that AWCOFF is a ground state and AWCON is an induced 

state 105.  The random left-right specification and signaling between equipotential AWCs 

are reminiscent of developmental lateral signaling, which is usually mediated by Notch 

receptors and Delta/Serrate ligands 125, but Notch pathway genes have no apparent role in 

AWC asymmetry.  Instead, the induction of AWCON requires NSY-5, an innexin gap 

junction protein, and NSY-4, a protein similar to claudins and the regulatory g subunits of 

voltage-activated calcium channels 117, 119.  NSY-5 creates a transient gap junction 

network essential for communication between the left and right AWCs.  NSY-5-

dependent ultrastructural gap junctions link the cell bodies of the embryonic AWC 

neurons with many additional neurons; these gap junctions are gone soon after hatching 

117.  Genetic experiments indicate that AWCON induction involves contributions from 

both the left and right AWC neurons as well as other neurons in the network.  nsy-4, 

which is related to proteins that regulate channels and cell adhesion, also has network 

functions – it has cell-autonomous effects within the AWC neuron that expresses it, and 

cell non-autonomous effects on the contralateral AWC 119.  Even in a wild-type genetic 

background, the level of nsy-4 or nsy-5 activity in one AWC neuron is sensed by the 

contralateral AWC, so that the neuron with higher nsy-4 or nsy-5 expression 

preferentially becomes AWCON.  It is likely that the networks on the left and right are 

linked in the nerve ring, where axons from the left and right sides meet 105. 

nsy-5 and nsy-4 induce AWCON by repressing a kinase cascade that includes the 

calcium/calmodulin-dependent kinase II (CaMKII) UNC-43, the p38/JNK MAPKKK 

NSY-1/ASK-1, and the MAPKK SEK-1, along with the signaling scaffold protein TIR-1 

105, 126-128.  The downstream kinase cascade behaves straightforwardly and cell-
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autonomously:  a cell with high activity of the kinase homologs becomes AWCOFF and a 

cell with low gene activity becomes AWCON, regardless of the kinase activity in the 

contralateral AWC 126, 127.   

The results described above define a decision point between the nsy-5/nsy-4 

multicellular signaling network and cell-autonomous execution of the decision by the 

kinase homologs.  In previous studies, two genes encoding subunits of a CaV2-type 

voltage-activated calcium channel were shown to affect AWC asymmetry upstream of 

the kinases 105.  Loss-of-function mutants in unc-2, the CaV2 pore-forming a1 subunit, 

result in a mixed phenotype with wild-type, 2AWCON, and 2AWCOFF animals.  By 

contrast, mutants in the regulatory alpha 2 delta subunit unc-36 have a simple, strong 

2AWCON phenotype; the reason for this difference was unknown.  Here we show that 

unc-2 cooperates with a second calcium channel a1 subunit, the CaV1 homolog egl-19, 

explaining the difference between unc-2 and unc-36.  Rescue experiments and mosaic 

analysis provide evidence that the calcium channels act in cell communication between 

AWCs.  The activity of the calcium channels is opposed by the new AWC asymmetry 

gene olrn-1, which acts downstream of nsy-5 and nsy-4 in the induction of AWCON.  

olrn-1 represses the CaMKII/MAPK kinase cascade in AWCON and provides feedback to 

AWCOFF, allowing coordination of the left and right AWCs. 
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Results 

The olrn-1 gene is expressed in AWC and promotes induction of 

AWCON 

In a screen for AWC asymmetry mutants, we isolated the mutation olrn-1(ky626), which 

was named based on the isolation of another allele, olrn-1(ut305), from an Olfactory 

Learning screen 124.  olrn-1(ky626) animals had a highly penetrant 2AWCOFF phenotype 

(Fig. 3-1A, 1B, Table 3-1), and they were able to chemotax to 2,3 pentanedione, an odor 

sensed by AWCOFF, but not butanone, an odor sensed by AWCON (Fig. 3-1C).  The AWC 

cell fate marker odr-1::dsRed was normally expressed in both AWCs of olrn-1 mutants, 

and AWC axon guidance was also apparently normal (Figure 3-1D).  These results 

suggest that olrn-1(ky626) has one or more functional AWCOFF neurons and no AWCON 

neurons. 

A marker for the AWCOFF neuron provided further evidence that olrn-1 disrupts 

AWCOFF/AWCON asymmetry. srsx-3::GFP is expressed bilaterally in the AWB neurons 

129 and asymmetrically in one of the two AWC neurons (Table 3-2).  In wild-type animals 

expressing an srsx-3::GFP transgene and a str-2::dsRed transgene, the neuron expressing 

srsx-3::GFP was invariably contralateral to the neuron expressing str-2::dsRed (Fig. 3-

1E), indicating that srsx-3::GFP is expressed in AWCOFF.  This interpretation was 

confirmed by mutant analysis:  nsy-1(lf) (ASK1/MAPKKK) and unc-43(lf) (CaMKII) 

failed to express srsx-3::GFP in either AWC neuron, consistent with their 2-AWCON 

phenotype, and unc-43(gf) expressed srsx-3::GFP in both AWC neurons, consistent with 

its 2AWCOFF phenotype (Table 3-2).  olrn-1(ky626) mutants expressed srsx-3::GFP in 
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Figure 3-1.  olrn-1 mutants have  two AWCOFF neurons.
(A-B) str-2::GFP expression in (A) wild type and (B) olrn-1(ky626) animals. Arrowhead, AWC, 
arrow, dim str-2::GFP expression in ASI. (C) Chemotaxis of wild type and olrn-1(ky626) animals 
to the AWCOFF sensed odorant 2,3-pentanedione (pd) and the AWCON sensed odorant 
butanone (bu).  A chemotaxis index of 1 represents 100% animals approaching an odorant, 
while a chemotaxis index of 0 represents random behavior.  (D) odr-1::DsRed expression in 
AWC neurons (arrowheads). (E-F) str-2::DsRed; srsx-3::GFP expression in (E) wild type and 
(F) olrn-1(ky626) mutant animals. Arrowheads indicate AWCs; dots indicate AWBs.  
Scale bars, 20μm.  Images are stacked confocal images.
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Table 3-1 str-2 expression in AWC in single and double mutants.     
 Percentage of Animals (%)  

Strain 2AWCON 
1AWCON/ 
1AWCOFF 2AWCOFF n 

A.  Wild type 0 100 0 158 
olrn-1(ky626) 0 1 99 198 
olrn-1(OE)a 49 51 0 218 
nsy-4(OE) a 69 29 2 92 
nsy-4(ky616) 0 34 66 98 
nsy-5(OE) a 57 42 1 111 
nsy-5(ky634) 0 3 97 124 
unc-36(e251) 84 16 0 73 
unc-2(lj1) 44 44 12 165 
unc-2(e55) 40 37 23 75 
unc-43(n1186) 81 17 2 123 
tir-1(tm1111) 69 31 0 149 
nsy-1(ky542) 96 4 0 103 
sek-1(km4) 74 23 3 125 
nsy-4(OE); olrn-1(ky626) a 0 16 84 51 b 
nsy-4(ky616); olrn-1(OE) a 80 20 0 150 b 
nsy-5(OE); olrn-1(ky626) a 13 38 49 160 b  
nsy-5(ky634); olrn-1(OE) a 70 24 6 120 b 
unc-36(e251);olrn-1(ky626) 4 18 78 88 b 
unc-2(lj1); olrn-1(ky626) 0 0 100 110 
unc-2(e55); olrn-1(ky626) 0 1 99 227 
unc-43(n1186); olrn-1(ky626) 87 11 2 208 
tir-1(tm1111); olrn-1(ky626) 20 80 0 115 b 
nsy-1(ky542); olrn-1(ky626) 95 3 2 217 
sek-1(km4); olrn-1(ky626) 81 16 3 97 
     
B.  Wild-type 0 100 0  
unc-2(lj1) 63 33 4 72 
unc-36(e251) 95 5 0 110 
egl-19(n582rf) 0 100 0 107 
egl-19(ad695gf) 0 100 0 125 
unc-2(lj1) egl-19(n582) 97 3 0 204 b 
unc-2(lj1) egl-19(ad695gf) 0 5 95 128 b 
unc-36(e251) egl-19(n582rf) 88 11 3 64 
unc-36(e251) egl-19(ad695gf) 21 54 25 73 b 
aOverexpression from extrachromosomal transgenic arrays kyEx914 [odr-3::olrn-1b], kyEx822 
[odr-3::nsy-4], or kyEx996[nsy-5 genomic fragment].  
bSignificantly different from either single mutant (Chi square test, significance set at P < 0.025 
to P < 0.006 as Bonferroni correction for multiple comparisons). 
Table 1A and Table 1B were scored at different magnifications, resulting in slightly different 
values for unc-2 and unc-36 mutants. 
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Table 3-2. srsx-3::GFP is expressed in AWCOFF     

 
Percentage of Animals (%) expressing 

srsx-3 in  
Genotype 2 AWC 1 AWC 0 AWC 2 AWB n 
Ex(srsx-3::GFP) 0 94 6 96 135 
nsy-1(ag3lf); Ex(srsx-3::GFP) 0 0 100 93 89 
nsy-1(ok593lf); Ex(srsx-3::GFP)  0 0 100 96 114 
unc-43(n408lf); Ex(srsx-3::GFP) 0 0 100 97 144 
unc-43(n498gf); Ex(srsx-3::GFP) 98 2 1 95 129 
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both AWC neurons, suggesting that the neurons are both specified as AWCOFF (Fig. 3-

1F).  

ky626 was mapped using single nucleotide polymorphisms to a small region on X 

and was determined to be an allele of olrn-1 by failure to complement olrn-1(ut305) (see 

Methods).  olrn-1(ut305) corresponds to the C02C6.2 gene 124.  C02C6.2 has two 

isoforms, C02C6.2a and C02C6.2b (olrn-1a and olrn-1b, respectively), which differ in 

their first 13 or 20 amino acids due to the use of alternative first exons (Fig. 3-2A, 3-2B) 

130.  A G to A mutation was identified in ky626 mutants at position 473 in the olrn-1a 

isoform (position 466 in the olrn-1b isoform), resulting in a missense mutation (G E) 

in both isoforms (Fig. 3-2B).  olrn-1(ut305) is mutated at the splice acceptor site of the 

fourth intron 124 and, like olrn-1(ky626), results in a strong 2AWCOFF phenotype (99% 

penetrant, n=91).  A deletion allele of olrn-1 has a lethal phenotype that is not rescued by 

transgenes covering C02C6.2 (data not shown); it is not clear whether the lethality is the 

null phenotype of olrn-1, or whether it results from a linked mutation in another gene. 

Expression of olrn-1 cDNAs under the AWC-selective odr-3 promoter rescued 

the 2AWCOFF phenotypes of olrn-1(ky626) mutants 124 (Table 3-3).  Additionally, 

overexpression of olrn-1b in a wild type background caused a 2AWCON phenotype (olrn-

1a was not tested)(Table 3-1A, Table 3-3).  These results indicate that high olrn-1 

activity promotes the AWCON phenotype, support AWC as the likely site of olrn-1 

function, and suggest that ky626 is a reduction-of-function allele.  

To establish the potential olrn-1 expression pattern, two regions upstream of olrn-

1 were fused to coding sequences for the fluorescent protein mCherry 131.  The 3.8 kb 

region upstream of the olrn-1a start site was expressed in AWC neurons as well as ASG 
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Figure 3-2.  olrn-1 encodes a protein with Raw repeats and potential transmembrane domains.
(A) Genomic structure of olrn-1, showing alternative first exon for a and b isoforms, whose 5’ 
ends are separated by 3.8 kb. (B) Translation of olrn-1, showing alternative first exons for olrn-1a 
and olrn-1b isoforms.  Two short repeats shared with Drosophila Raw are highlighted in green with 
conserved residues in bold type; potential transmembrane domains are boxed.  The location of the 
splice acceptor site (fourth exon) mutated in ut305 and the residue mutated in olrn-1(ky626) 
(G 473a/466b E) are marked.  Arrow marks the C-terminal insertion site of Cherry in 
odr-3::olrn-1b::Ch (panel 2F).  (C) Expression of olrn-1a::Cherry promoter fusion.  Arrowhead 
indicates Cherry expression in AWC neuron expressing str-2::GFP.  (D) Expression of 
olrn-1b::Cherry promoter fusion in non-neuronal cells.  Arrows, hypodermal cells.  The pharynx 
is a prominent site of expression. Arrowhead, no Cherry expression in AWC neuron expressing 
str-2::GFP.  (E) Expression of N-terminally tagged odr-3::Cherry::olrn-1b in an L4 olrn-1(ky626) 
animal.  odr-3::Cherry::olrn-1b is excluded from the nucleus and is punctate in the axon and dendrite.  
(F) Expression of C-terminally tagged odr-3::olrn-1b::Cherry in an L4 ky626 animal.  
odr-3::olrn-1b::Cherry is excluded from the nucleus, and is punctate in the axon and dendrite. 
Arrowheads, AWC cell bodies.  Scale bars, 20μm.  Images are stacked confocal images.
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Table 3-3.  Rescue of olrn-1, overexpression of olrn-1, and effect of mutations 

   Percentage of animals (%)  
Test 
strain 

Test clone 
(concentration) line 2AWCON 1AWCON 

1AWCOFF 2AWCOFF n 
olrn-1                                 None  0 1 99 1189 

       
olrn-1 odr-3::olrn-1b 1 18 81 1 582 

 (2.5 ng/ul) 2 1 77 22 218 
       

olrn-1 odr-3::olrn-1b 1 48 51 1 639 
 (5 ng/ul) 2 55 43 2 806 
       

olrn-1 odr-3::olrn-1b 1 47 44 9 245 
 (15 ng/ul) 2 52 41 8 293 
       

WT odr-3::olrn-1b 1 63 37 0 1528 
 (15 ng/ul) 2 70 29 1 1282 
       

WT odr-3::olrn-1b 1 68 32 0 660 
 (25 ng/ul) 2 70 30 0 781 

       
olrn-1 odr-3::olrn-1b::Ch line 1 81 16 3 73 

 (15 ng/ul) line 2 83 14 3 70 
   line 3 76 22 2 88 
       

olrn-1 odr-3::olrn-1b(ΔrawR1)::Ch line 1 0 4 96 94 
 (15 ng/ul) line 2 0 1 99 91 
   line 3 0 8 92 39 
       

olrn-1 odr-3::olrn-1b(ΔTM1,2)::Ch line 1 49 51 0 94 
 (15 ng/ul) line 2 53 46 1 96 
       

olrn-1 odr-3::olrn-1b(ΔrawR2)::Ch line 1 61 36 2 88 
 (15 ng/ul) line 2 81 19 0 83 
   line 3 62 27 11 45 
       

olrn-1 odr-3::olrn-1b(G466E)::Ch line 1 6 86 7 81 
 (15 ng/ul) line 2 1 96 3 91 
   line 3 5 91 5 43 
       

olrn-1 odr-3::olrn-1b(ΔRRRR)::Ch line 1 4 95 1 100 
 (15 ng/ul) line 2 20 78 2 110 
  line 3 2 74 23 47 
   line 4 7 88 5 152 
       

olrn-1 odr-3::olrn-1(ΔCterm)::Ch  line 1 0 2 98 51 
 (15 ng/ul) line 2 0 0 100 88 
   line 3 0 0 100 47 
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and BAG sensory neurons (Fig. 3-2C).  The 3.6 kb region upstream of the olrn-1b start 

site was expressed in the marginal cells of the pharynx, anterior hypodermal cells and the 

rectal gland cells (Fig. 3-2D and data not shown).  Although individual promoter 

fragments may not reproduce the entire olrn-1 expression pattern, these results suggest 

that olrn-1 may normally be expressed in AWC and in other cells. 

 

The first Raw repeat and a C-terminal region are important for OLRN-

1 function 

OLRN-1 encodes a previously uncharacterized protein that is conserved along its entire 

length with related proteins from Caenorhabditis remanei and Caenorhabditis briggsae.  

It bears more distant similarity with the Drosophila melanogaster gene raw (or cyrano).  

raw restricts JNK signaling during dorsal closure of the fly embryo, and raw mutants 

have an embryonic dorsal-open phenotype resulting from abnormal cell migration, as 

well as nervous system defects 132.  The similarity between ORLN-1 and Raw is highest 

in two repeated domains of unknown function 132 (Fig. 3-2B).  OLRN-1 has a bipartite, 

highly hydrophobic region of ~40 amino acids at residues 264-280 and 288-304 that is 

likely to mediate membrane attachment; this domain is not present in Raw.  One 

possibility is that these two hydrophobic domains form a hairpin-like transmembrane 

domain, so that both the N- and C-termini of OLRN-1 face the cytoplasm. 

 The predicted OLRN-1B protein was tagged at its N- or C-terminus by inserting 

mCherry into the odr-3::olrn-1 vector.  Both N- and C-terminally tagged OLRN-1 

rescued olrn-1(ky626) mutants (Table 3-3 and data not shown).  The tagged OLRN-1b 
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proteins were localized to punctate structures in the axon, dendrite, and cell body, but 

largely excluded from nuclei (Fig. 3-2E, 3-2F).   

Structure-function analysis of OLRN-1 was conducted to identify important 

domains of the protein (Fig. 3-3A).  Deletions in the odr-3::olrn-1b::Cherry rescuing 

clone were made to remove the predicted Raw repeats (ΔrawR1, ΔrawR2), the 

transmembrane domains (ΔTM1,2) and the region C-terminal to the second Raw repeat 

(ΔCterm).  A set of four adjacent arginines reminiscent of a cleavage or nuclear 

localization signal was deleted from the C terminus (ΔRRRR).  Finally, the G466E ky626 

mutation was engineered into the full-length protein to examine the properties of the 

mutated protein.  All of these Cherry-tagged mutant DNAs were cloned under the AWC-

selective odr-3 promoter and introduced into olrn-1(ky626) mutants at 15 ng/ul, a 

concentration that resulted in a 2AWCON phenotype in ~80% of animals carrying a wild-

type odr-3::olrn-1b::mCherry transgene (Fig. 3-3B, Table 3-3).  Deletion of the first Raw 

repeat (ΔrawR1) nearly eliminated rescue of the olrn-1(ky626) mutant, as did deletion of 

the C-terminal region (ΔCterm).  By contrast, deletions of the transmembrane domains 

(ΔTM1, 2) or the second Raw repeat (ΔrawR2) did not greatly diminish rescue by odr-

3::olrn-1b::Cherry (Fig. 3-3B, Table 3-3).  Transgenes carrying the deletion of the four 

arginines (ΔRRRR) and the G466E missense mutation were intermediate in activity.  Both 

transgenes were able to rescue olrn-1(ky626), but did not cause the overexpression 

phenotype caused by the full-length olrn-1 transgene (Fig. 3-3B).  Their activity was 

similar to that of full-length odr-3::olrn-1 injected at 6-fold lower DNA concentrations 

(Table 3-3).  These results suggest that ΔRRRR and G466E mutations reduce the activity 

of the OLRN-1 protein.   
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Figure 3-3.  Structure-function analysis of odr-3::olrn-1::Cherry
(A) Mutants generated in odr-3::olrn-1b::Cherry affected Raw repeats (ΔrawR1, ΔrawR2), 
potential transmembrane domains (ΔTM1,2), the four adjacent arginines (ΔRRRR), and a 
C-terminal region (ΔCterm).  The ky626 mutation (G466E) was also introduced.  (B) Phenotypes 
of ky626 animals expressing odr-3:olrn-1b::Cherry transgenes.  olrn-1(ky626) control is at left.  
All transgenes except ΔCterm showed significant rescue compared to nontransgenic sibling 
controls; all transgenes except rawR2 were significantly less active than intact 
odr-3::olrn-1b::Cherry (P < 0.008 by Fisher exact test or Chi square test as appropriate; 0.008 
was used as the significance level based on the conservative Bonferroni correction for six 
comparisons; n>100 rescued animals per clone, from at least two independent transgenic lines 
that showed similar degrees of rescue (Table 3)).
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The expression levels and localization of OLRN-1b were examined in olrn-

1(ky626) animals bearing the mutated clones.  All mutated clones produced comparable 

levels of OLRN-1::cherry fluorescence in AWC, suggesting that the defective mutants 

made dysfunctional but stable proteins (Supplementary Fig. 3-1).  It was not possible to 

resolve the subcellular localization of OLRN-1 in embryos, but immediately after 

hatching the OLRN-1b::Cherry protein was present in the AWC cell body, axon and 

dendrite (Supplementary Fig. 3-1A).  All mutant proteins had similar localization to wild-

type OLRN-1b::Cherry (Supplementary Fig. 3-1B-G).  Twelve hours later during the late 

L1 / early L2 stage, the expression of OLRN-1b::Cherry was and all mutants was similar, 

excepting OLRN-1b(ΔTM1,2), which was no longer detectable in axons (Supplementary 

Fig. 3-1H-N).   

 

olrn-1 antagonizes calcium pathways in AWC signaling 

The olrn-1(ky626) mutation and the olrn-1(OE) overexpressing transgene were combined 

with other mutations to ask how olrn-1 interacts with AWC asymmetry genes.  We first 

examined the upstream signaling genes, the claudin-like nsy-4 and the innexin nsy-5 117, 

119.  Loss-of-function mutations in nsy-4, nsy-5 and olrn-1 that caused 2AWCOFF 

phenotypes were combined with overexpressing transgenes for nsy-4, nsy-5 and olrn-1 

that caused 2AWCON phenotypes.  In all combinations, the double mutants resembled the 

olrn-1 parent more closely than the nsy-4 or nsy-5 parent (Table 3-1A), but mixed 

phenotypes were observed.  These results suggest that olrn-1 acts mainly at a step 

downstream of nsy-4 and nsy-5, but the absence of definitive null alleles of nsy-4 and 

olrn-1 limits this interpretation. 
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Supplementary Figure 3-1. Confocal images of odr-3::olrn-1b::Cherry proteins.
Confocal images of odr-3::olrn-1b::Cherry proteins in olrn-1(ky626) animals at (A-G) 0-3 hours 
after hatching and (H-N) L1 / L2 stage, 20 hours after hatching.  Notched arrowheads indicate 
AWC axons, flat arrowheads indicate AWC cell bodies.  The diagrams show the approximate size 
and disposition of AWC neurons in the images (anterior is at left).  In A-G, two AWCs are visible 
in most images; in H-N only one AWC is visible in most images, but both AWCs have similar 
OLRN-1b:Cherry levels.  Scale bars are 10μm.
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Loss-of-function mutations in the unc-2 α1 or unc-36 α2δ calcium channel 

subunits result in a strong (unc-36) or mixed (unc-2) 2AWCON phenotype.  Both unc-36 

olrn-1 double mutants and unc-2 olrn-1 double mutants resembled olrn-1 single mutants, 

with a high fraction of 2AWCOFF animals (Table 3-1A).  Different results were observed 

in double mutants between olrn-1 and loss-of-function mutations in the CaMKII / MAP 

kinase cascade – the kinase genes unc-43 (CaMKII), nsy-1 (MAPKKK), and sek-1 

(MAPKK) 105, 126, 127.  Double mutants between olrn-1 and the three kinases invariably 

resembled the kinase mutants, with a strong 2AWCON phenotype (Table 3-1A). (tir-1 

olrn-1 double mutants had a mixed, nearly wild-type phenotype (Table 3-1A), but as 

neither gene has definitive null alleles, the significance of these results is unclear.)  These 

results suggest that olrn-1 acts between the calcium channels and the CaMKII / MAP 

kinase cassette (see Discussion).  

 

unc-2 CaV2 and egl-19 CaV1 calcium channel homologs act together in 

AWC asymmetry 

The suggestion that olrn-1 acts at a genetic step near the voltage-activated calcium 

channel homolog unc-2 prompted a more detailed examination of unc-2 and unc-36.  

Previous studies showed that the putative CaV2 null mutant unc-2(e55) had a mixed 

AWC phenotype with 30-60% 2AWCON animals and 4-25% 2AWCOFF animals 105(Table 

3-1A).  unc-2(lj1), a second strong loss-of-function mutant, shared this mixed phenotype 

(Table 3-1B), but null mutants for the channel-associated α2δ subunit unc-36 had a 

strong 2AWCON phenotype 105 (Table 1B; see Methods for molecular analysis of unc-

36(e251) and unc-2(e55)).  These results could be explained if multiple α1 subunits 

68



 

participate in AWC asymmetry, sharing the unc-36 α2δ subunit.  The C. elegans genome 

encodes five predicted α1 subunits, including one CaV1 subunit and one CaV2 subunit.  

Null mutations in the CaV1 homolog egl-19 are embryonic lethal, and partial loss-of-

function mutations have normal AWC asymmetry 87(Table 3-1B).  When egl-19 partial 

loss-of-function alleles were combined with null alleles of unc-2, the double mutants had 

a strong 2AWCON phenotype reminiscent of unc-36 mutants (Table 3-1B).  These results 

are consistent with partially redundant functions between egl-19 and unc-2, with both 

channels contributing to AWC asymmetry.   

Calcium channels can serve as scaffolding proteins in addition to their ion-

conducting properties.  The ion-conducting properties of EGL-19 are affected by the 

gain-of-function mutation egl-19(ad695gf), which decreases channel desensitization 87, 

133.  egl-19(ad695gf) unc-2(lf) mutants had a strong 2AWCOFF phenotype, the opposite 

phenotype from the egl-19(lf) unc-2(lf) mutants (Table 3-1B).  This result suggests that 

the ion-conducting activity of EGL-19 contributes to its activity.  

The strong 2AWCOFF phenotype of egl-19(ad695gf) unc-2(lf) was not observed in 

egl-19(ad695gf) single mutants (Table 3-1B).  At a genetic level, this result suggests that 

unc-2 inhibits egl-19 activity in AWC neurons. 

 

olrn-1 acts in the future AWCON neuron, and unc-2/unc-36 act in the 

future AWCOFF neuron, to coordinate AWC signaling. 

Genetic mosaic analysis is a useful approach for distinguishing between the two AWC 

neurons as they signal and respond to each other in development.  Any gene in the 

asymmetry pathway could in principle function in the future AWCOFF cell (the signaling 
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cell) or in the future AWCON cell (the responding cell).  Two kinds of results have been 

observed in previous genetic mosaic studies.  The nsy-4 claudin and nsy-5 innexin genes 

act cell-autonomously to promote induction of AWCON, and also act cell non-

autonomously to prevent AWCON induction in the contralateral AWC 117, 119.  At this 

signaling stage, each AWC appears to monitor the activity state of the other.  By contrast, 

the kinases unc-43, nsy-1, and the scaffold tir-1 act strictly cell-autonomously:  a cell 

with high kinase activity becomes AWCOFF, and a cell with low kinase activity becomes 

AWCON 126, 127.  At this execution stage, the decision has been made and the AWCs are 

independent.  To understand how the decision is made, we used genetic mosaic analysis 

to examine animals in which the two AWCs had different levels of olrn-1, unc-2 and unc-

36 gene activity (Fig. 3-4, 3-5).  Unstable extrachromosomal arrays containing the AWC 

marker odr-1::DsRed and either odr-3::olrn-1, odr-3::unc-2, or odr-3::unc-36 test 

plasmids were introduced into strains with stable expression of the AWCON marker str-

2::GFP (Fig. 3-4A, 3-4C, 3-5B, 3-5D, 3-5F, 3-5H).  Random loss of the arrays from one 

AWC was detected using the odr-1::DsRed marker, and then both AWC neurons were 

scored for the expression of the str-2::GFP AWCON marker.  The methods for these 

experiments were similar to those used in previous studies; control experiments indicate 

that the promoters and markers do not affect AWC asymmetry (see Methods, 119, 126, 127).  

In an olrn-1 mutant background, most mosaic animals with a single rescued AWC 

had the wild-type, asymmetric phenotype:  the rescued cell became AWCON and the 

mutant cell became AWCOFF (Fig. 3-4B).  This result suggests that olrn-1 acts cell 

autonomously in the future AWCON (the responding cell) to induce AWCON.  In wild-

type animals overexpressing odr-3::olrn-1 transgenes, most animals that lost the 
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phenotypes of wild-type mosaic animals that overexpress odr-3::olrn-1b in one AWC.  
For statistical analysis, see Methods. (E) Phenotypes of nsy-4 olrn-1(OE) and nsy-5 olrn-1(OE) 
strains and controls. (F) AWC phenotypes of mosaic animals that express odr-3::olrn-1b in one 
AWC in nsy-4 or nsy-5 mutant backgrounds. 

ns
y-

5 
(k

y6
34

)

ns
y-

4 
(k

y6
16

)

71



unc-2(lj1); no transgene unc-2(lj1); odr-3::unc-2 in both AWC

odr-3::unc-2

unc-2(lj1);
odr-3::unc-2 in both AWC neurons

P
er

ce
nt

 o
f A

ni
m

al
s

lin
e 1

 (n
=4

57
)

No t
ran

sg
en

e

lin
e 3

 (n
=8

40
)

lin
e 2

 (n
=6

25
)

0

100

80

60

40

20

unc-2(lj1);
odr-3::unc-2 in one AWC neuron

line1 (n=86)
line2 (n=84)
line3 (n=95)

odr-3::unc-2

unc-2(+);
odr-3::unc-2 in both AWC neurons

P
er

ce
nt

 o
f A

ni
m

al
s

lin
e 1

 (n
=4

85
)

No t
ran

sg
en

e

lin
e 3

 (n
=7

73
)

lin
e 2

 (n
=1

02
6)

0

100

80

60

40

20

unc-2(+);
odr-3::unc-2 in one AWC neuron

line1 (n=83)
line2 (n=79)
line3 (n=83)

unc-36(e251);
odr-3::unc-36 in one AWC neuron

line1 (n=54)
line2 (n=41)
line3 (n=54)

odr-3::unc-36

unc-36(e251);
odr-3::unc-36 in both AWC neurons

P
er

ce
nt

 o
f A

ni
m

al
s

lin
e 1

 (n
=1

56
)

No t
ran

sg
en

e

lin
e 3

 (n
=1

87
)

lin
e 2

 (n
=4

64
)

0

100

80

60

40

20

odr-3::unc-36

unc-36(+);
odr-3::unc-36 in both AWC neurons

P
er

ce
nt

 o
f A

ni
m

al
s

lin
e 1

 (n
=1

32
)

No t
ran

sg
en

e

lin
e 3

 (n
=4

95
)

lin
e 2

 (n
=4

79
)

0

100

80

60

40

20

unc-36(+);
odr-3::unc-36 in one AWC neuron

line1 (n=46)
line2 (n=32)
line3 (n=50)

B C

D E

F G

H I

P
er

ce
nt

 o
f A

ni
m

al
s

0

100

80

60

40

20

P
er

ce
nt

 o
f A

ni
m

al
s

0

100

80

60

40

20

P
er

ce
nt

 o
f A

ni
m

al
s

0

100

80

60

40

20

P
er

ce
nt

 o
f A

ni
m

al
s

0

100

80

60

40

20

A
2 ON 1 ON/1 OFF

Mut on
WT on

Mut off
WT on

Mut on
WT off

Mut off
WT off

Mut on
WT on

Mut off
WT on

Mut on
WT off

Mut off
WT off

WT on
OE on

WT off
OE on

WT on
OE off

WT off
OE off

WT on
OE on

WT off
OE on

WT on
OE off

WT off
OE off

Figure 3-5. Mosaic analysis of the unc-36/unc-2 calcium channel genes.
(A) Rescue of unc-2(lj1) by [odr-3::unc-2, odr-1::dsRed] array.  Green, str-2::GFP expression.  
(B) Rescue of unc-36(e251) phenotypes in three [odr-3::unc-36, odr-1::dsRed] transgenic lines. 
(C) AWC phenotypes of unc-36 mosaic animals that express odr-3::unc-36 in one AWC. (D) The 
three [odr-3::unc-36, odr-1::dsRed] transgenes from (B) were introduced into a wild-type 
background. (E) AWC phenotypes of wild-type mosaic animals that overexpress odr-3::unc-36 
in one AWC. (F) Rescue of unc-2(lj1) phenotypes in three Ex[odr-3::unc-2, odr-1::dsRed] transgenic 
lines. (G) AWC phenotypes of unc-2 mosaic animals that express odr-3::unc-2 in one AWC. (H) The 
three [odr-3::unc-2, odr-1::dsRed] transgenes from (F) were introduced into a wild-type background. 
(I) AWC phenotypes of wild-type mosaic animals thatoverexpress odr-3::unc-2 in one AWC.  
n, number of animals scored.  For statistical analysis, see Methods.
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transgene in one AWC also had a wild-type asymmetric AWC phenotype.  In these 

animals, the cell overexpressing olrn-1 nearly always became AWCON, and the wild-type 

contralateral cell nearly always became AWCOFF (Fig. 3-4D).  This behavior is unlike the 

behavior of fully wild-type animals in which each cell becomes AWCON or AWCOFF at 

equal frequencies.  The wild-type mosaics suggest that a cell with higher olrn-1 

expression can prevent the contralateral cell from becoming AWCON, and therefore 

implicate olrn-1 in feedback between AWCs.  Very similar results were previously 

obtained in mosaic analysis of nsy-4 and nsy-5 117, 119. 

The results described above might be confounded by nsy-4- and nsy-5–dependent 

signaling between AWCs.  To separate cell-intrinsic functions of olrn-1 from possible 

network functions, we generated mosaics overexpressing OLRN-1 in one AWC in nsy-4 

and nsy-5 mutants (Fig. 3-4E, 3-4F).  In these experiments, olrn-1(OE) behaved exactly 

as it did in the wild-type background, specifically converting the olrn-1-expressing 

neuron to AWCON (Fig. 3-4F).  These results suggest that olrn-1 functions independently 

of, and most likely downstream of, nsy-4 and nsy-5 in AWCON. 

Genetic mosaic experiments were then conducted with the calcium channel genes 

unc-36 (α2δ subunit) and unc-2 (CaV2 α1 subunit).  Expression of either gene from the 

AWC-selective odr-3 promoter in AWC rescued AWC asymmetry, but not coordinated 

movement (see Methods, Fig. 3-5A, 3-5B, 3-5F).  Thus the calcium channels can 

function within AWC neurons.  A mild gain-of-function phenotype was observed with 

odr-3::unc-2, but not with odr-3::unc-36 (Fig. 3-5D, 3-5H). 

 For both unc-36 and unc-2, mosaic animals with a single rescued AWC had the 

wild-type asymmetric phenotype: the rescued cell always became AWCOFF, and the 
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mutant cell always became AWCON (Fig. 3-5C, 3-5G).  This result was substantially 

different from the result with downstream kinases such as unc-43, where a single rescued 

AWC randomly became AWCON or AWCOFF, and the mutant cell always became 

AWCON 127.  The difference suggests that unc-36 and unc-2 can influence the AWCON / 

AWCOFF decision, whereas unc-43 and other kinases act to execute a decision that has 

already been made.  The rescue of the unc-2 mutant cell in these mosaics is particularly 

informative.  unc-2 has an incompletely penetrant phenotype (63% 2AWCON), so ~18% 

of the unc-2 mutant AWCs should have become AWCOFF if they were not affected by the 

transgene.  In fact, fewer than 5% of the unc-2 mutant AWCs became AWCOFF, 

indicating that an unc-2 AWC neuron can sense the rescued AWC on the contralateral 

side. 

Only a mild overexpression phenotype was observed upon introduction of odr-

3::unc-2 into wild-type animals (Fig. 3-5H), suggesting that the tightly regulated calcium 

channels may be relatively resistant to variations in expression levels.  In mosaic animals 

in which only one AWC overexpressed odr-3::unc-36 or odr-3::unc-2 in a wild-type 

background, the overexpressing AWCs or the contralateral AWCs were equally likely to 

become AWCON or AWCOFF (Fig. 3-5E, 3-5I).  These results indicate that unlike nsy-4, 

nsy-5, and olrn-1, relative unc-2 and unc-36 expression levels are not critical to the 

AWCON / AWCOFF decision. 

 

Discussion 

This analysis adds two genes to the pathway for AWC asymmetry:  the new gene 

olrn-1, and the C. elegans CaV1 homolog egl-19, whose cooperation with unc-2 explains 
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the weak phenotype of the unc-2 (CaV2) mutant.  These genes and other genes in the 

AWC asymmetry pathway have been classified in three ways (1) Double mutant analysis, 

which can reveal biological regulatory relationships (2) Targeted rescue and mosaic 

analysis to determine the essential cellular site of expression and (3) Detailed mosaic 

analysis to determine whether expression of the gene in one AWC affects the 

contralateral AWC.  Together, results from these experiments suggest that the 

coordinated decision between AWCON and AWCOFF occurs at the interface between the 

calcium channels (UNC-2/UNC-36/EGL-19) and OLRN-1.   

In C. elegans AWC neurons, olrn-1 has genetically-defined functions that are 

similar to those of the innexin gene nsy-5 and the claudin/calcium channel γ subunit gene 

nsy-4.  All three genes are required for the induction of AWCON, and all have similar cell-

autonomous and non-autonomous effects on AWC in mosaic analysis 117, 119.  olrn-1 

overexpression induced AWCON cell-autonomously in nsy-4 and nsy-5 mutants, 

suggesting that olrn-1 acts downstream of these two genes or independently of them in 

AWCON.  The nature of any olrn-1 regulation by the upstream genes is unknown.  There 

were no obvious effects of olrn-1 mutations on tagged NSY-4 or NSY-5 proteins in 

AWC, nor were there obvious effects of nsy-4 or nsy-5 on tagged OLRN-1 protein (data 

not shown).  However, there could be early effects in the embryo, or effects on 

endogenous proteins, that were missed in these experiments. 

olrn-1 mutations were epistatic to null mutations in the calcium channel genes 

unc-2 and unc-36, whereas calcium channel null mutations are epistatic to nsy-4 and nsy-

5 117, 119.  The behavior of olrn-1 in these double mutants supports the suggestion that it 

acts at a later step in signaling than nsy-4 and nsy-5.  Epistasis analysis does not provide 
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detailed molecular mechanisms, and some conclusions are not firm when null alleles are 

unavailable.  However, since the unc-2 and unc-36 mutations are molecular nulls, the 

epistasis result proves that these particular channel genes are not essential for olrn-1 

activity. 

The kinase mutations unc-43 (CaMKII), nsy-1 (ASK1/MAPKKK), and sek-1 

(MAPKK) were fully epistatic to olrn-1 mutations.  Thus at a genetic level, olrn-1 may 

prevent unc-2 from activating the CaMKII homolog unc-43 in the future AWCON.  In 

molecular terms, this might mean that OLRN-1 inhibits calmodulin (which would act at 

this step) or that OLRN-1 prevents calcium from UNC-2 channels from activating UNC-

43, perhaps by binding the channel or the kinase (Fig. 3-6).  There is no evidence for 

direct interactions between these proteins, and many other possibilities exist.  olrn-1 is 

related to Drosophila raw/cyrano, which is required for epithelial movements that drive 

dorsal closure of the fly embryo, for epithelial morphogenesis, and for neuronal 

development 132, 134.  An olrn-1 domain that is similar to raw is needed for full olrn-1 

activity, supporting the significance of the homology.  The direct targets of Raw are 

unknown, but raw mutants have excessive phospho-Jnk during dorsal closure, suggesting 

that Raw inhibits Jnk MAP kinase pathways 132.  This biochemical analysis of Raw 

appears to parallel the genetic conclusion that olrn-1 directly or indirectly inhibits the 

kinase pathway consisting of unc-43 (CaMKII), nsy-1 (ASK1, a p38/Jnk MAPKKK), and 

sek-1 (MAPKK).  

The analysis of egl-19 CaV1 mutations underscores the importance of calcium 

channels in AWC asymmetry.  unc-2 CaV2 has a weak and mixed phenotype, raising 

doubt about its significance, but the highly penetrant 2AWCON  phenotype of egl-19 unc-
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Figure 3-6.  Model for calcium channel function and OLRN-1 in the AWCON / AWCOFF decision.  
All genes are expressed both in the left and in the right AWCs; color is used to indicate the cell in 
which each gene product is more active.  The future AWCOFF transmits a signal to AWCON via 
NSY-5 gap junctions between AWC and other cells and NSY-4 claudins.  This signal might be 
membrane potential.  In AWCON, the signal suppresses the UNC-2 (CaV2) and EGL-19 (CaV1) 
voltage-activated calcium channels and allows high OLRN-1 activity.  OLRN-1 inhibits the 
UNC-43 (CaMKII) / NSY-1/ SEK-1 kinase cascade cell-autonomously within AWCON.  
A feedback signal from the calcium channels and OLRN-1 is transmitted from AWCON 
back to AWCOFF.  
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2 double mutants suggests that calcium entry through voltage-activated calcium channels 

is essential for specification of AWCOFF.  The strong 2AWCOFF phenotype of the egl-

19(gf) unc-2(lf) double mutant further suggests that sufficient calcium entry through 

EGL-19 can act instructively to specify AWCOFF.  This phenotype was not observed in 

egl-19(gf) single mutants, suggesting that unc-2 inhibits egl-19 activity.  CaV channels 

generate calcium and voltage signals, and are subject to calcium- and voltage-dependent 

activation and inactivation, so there are many levels at which cross-regulation could take 

place 53.  The behavior of unc-36 suggests that it promotes the activity of both unc-2 and 

egl-19.  In previous studies, unc-36 has been proposed to inhibit egl-19 activity 133; we 

suggest that this may be due to its positive effect on unc-2. 

A model for the functions of olrn-1, unc-2, and unc-36 in the signaling pathway, 

based on this work and prior work, is presented in Figure 3-6.  Induction of AWCON from 

an AWCOFF–like ground state requires cooperation between the innexin gene nsy-5, 

which assembles a multicellular gap junction network and preferentially induces AWCR 

to the AWCON state, and the claudin/γ-subunit like nsy-4, which preferentially induces 

AWCL to the AWCON state 117, 119.  Tight junctions (which contain claudins) and gap 

junctions (which are composed of innexins) potentiate one others’ activity in epithelia, 

providing a possible analogy for the nsy-4/nsy-5 cooperation in AWC 135.  A signal must 

be transmitted by this multicellular network; the strong involvement of the calcium 

channel homologs unc-2, egl-19, and unc-36 in AWC asymmetry suggests that the signal 

regulates membrane potential.  Voltage changes are efficiently transmitted through gap 

junctions, whereas calcium is poorly diffusible and is therefore transmitted inefficiently.  

Thus voltage signals from UNC-2, EGL-19, and possibly other channels could be 
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transmitted from AWCOFF to AWCON via gap junctions.  At least two other voltage-

regulated channels, the potassium channels SLO-1 and EGL-2, also affect AWC 

asymmetry 105, 136.  The appeal of this model is that voltage-regulated channels such as 

unc-2/unc-36 could act both to generate a signal in one AWC and to detect the signal in 

the contralateral AWC.  

The coordinated decision to form one AWCON and one AWCOFF requires a 

symmetry-breaking event.  Like many genes in the AWC asymmetry pathway, unc-

2/unc-36 activity is predicted to be high in one AWC, and low in the other; unlike other 

genes, there are plausible mechanisms by which a symmetry-breaking event could 

differentially regulate calcium channels.  An interesting example is provided by the 

pacemaker cells of the vertebrate heart, which are found in the sinoatrial (SA) node.  Gap 

junctions and voltage-activated calcium channels are essential to the synchronization of 

SA pacemaker cells and the generation of a coherent heartbeat 137.  Isolated SA cells have 

rhythmic action potentials that are driven by calcium channels and other conductances.  

When two SA cells come into contact, they form gap junctions that lead to 

synchronization of the two cells, at a rhythm that is dominated by the faster, or leader, 

cell.  Two synchronized SA cells would appear to be similar, but in fact, the result of 

their synchronization is a coupling of membrane potential and an uncoupling of 

individual conductances within the two cells 138.  During the diastolic period between 

heartbeats, the leader cell has an ongoing inward current, while the follower cell has an 

outward current 138.  In other words, the leader cell experiences inward currents both at 

the beginning of the calcium action potential and in the long period between action 

potentials; the follower cell experiences inward currents only during the action potential.  
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As calcium-activated signaling pathways are exquisitely sensitive to the temporal pattern 

of calcium signals 139, 140, different patterns of inward calcium currents in two cells have 

the potential to create sustained differences between them. 

We suggest that in isolation, both AWCs have spontaneous activity sufficient to 

maintain CaMKII activity and the AWCOFF state.  When gap junctions form via NSY-5, 

the spontaneous activity of the AWCs is coupled, and by analogy to the SA node, one cell 

leads and the other follows.  The leader cell maintains ongoing calcium entry and 

becomes AWCOFF; gap junction coupling reduces calcium entry into the follower cell, 

and it becomes AWCON.  In this model, the calcium channels have both an effector 

function (calcium entry and activation of CaMKII) and a signaling function (altering 

membrane potential).  We speculate that similar mechanisms may operate in many 

developing nervous systems during the transient period that gap junctions are prominent.  

Since it acts at a similar step, olrn-1 could affect either the propagation of the signal or its 

effectiveness in the responding cell. 

Gap junctions, claudins, and membrane potential affect left-right asymmetry of 

the Xenopus body axis, suggesting a possible molecular similarity between vertebrate 

asymmetry and the pathways that regulate C. elegans AWC neurons 141-143.  Although the 

later nodal/Shh pathways used in vertebrate left-right patterning are different from those 

used in AWCs, there may be hidden similarities that remain to be discovered.  The left-

right asymmetry of the human brain is more variable than the human body plan; left-

handedness and reversed lateralization of language areas are much more common than 

inversion of the internal organs 144.  Lateralized neurological disorders such as migraine 

headaches and Rasmussen encephalitis randomly affect one side of the brain, providing 
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indirect evidence of variably asymmetric brain functions 145, 146.  An asymmetric migraine 

syndrome in humans is caused by mutations in CaV2 calcium channels, which are 

orthologs of unc-2 146.  Further analysis of asymmetric brain function in humans may 

reveal unexpected connections with the asymmetric nervous system of Caenorhabditis 

elegans. 
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Chapter 4  

Maintenance of CaV2 expression requires the nuclear protein 

PQN-53 

 

Abstract 

Efficient translation and folding of ion channels requires the functional integrity of the 

endoplasmic reticulum.  Presynaptic voltage-gated calcium channels are multi-pass 

transmembrane proteins that provide calcium for synaptic vesicle exocytosis at nerve 

terminals.  We show here that the expression and synaptic localization of the alpha1 

subunit of the C. elegans CaV2 channel, UNC-2, is regulated by PQN-53, a ubiquitous 

polyglutamine protein that regulate the non-canonical endoplasmic reticulum stress 

response.  In pqn-53 mutants, UNC-2 expression is reduced in the endoplasmic reticulum 

but other active zone components and synaptic vesicles are expressed properly and 

delivered to synapses.  Acute induction of pqn-53 induces expression of UNC-2 in the 

endoplasmic reticulum, consistent with a role in UNC-2 biogenesis.  PQN-53 is localized 

to the nucleus, and genome-wide transcriptome analysis revealed that PQN-53 represses 

expression of genes implicated in the non-canonical unfolded protein response.  

Consistent with the previous findings of the involvement of the unfolded protein response 

in pathogen resistance, pqn-53 mutants are resistant to infection of Salmonella enterica.  

Our genetic and cell biological studies suggest that PQN-53 is a component of the 

endoplasmic reticulum stress sensing systems, and couples endoplasmic reticulum 

homeostasis, membrane protein biogenesis, and host defense against pathogenic bacteria.  

82



 

Introduction 

The abundance of plasma membrane transmembrane proteins including ion channels and 

receptors is limited by the efficacy of translation, folding, subunit assembly and 

functional maturation in the endoplasmic reticulum.  Quality control in the endoplasmic 

reticulum monitors nascent proteins and prevents improperly folded or misassembled 

proteins from exiting the endoplasmic reticulum.  Various ER-resident chaperones 

including Bip and lectin-based chaperones such as calnexin and calreticulin promote 

protein folding and assembly and assist retention of incompletely folded proteins 147.  

Endoplasmic reticulum retention of the nascent proteins is mediated by the specific 

retention signals in the proteins or by carbohydrate residues that are attached to misfolded 

domains.  Masking of the endoplasmic reticulum retention motifs such as dibasic residues 

in cytosolic domains is achieved via subunit assembly or other co-factors allowing the 

proteins to leave the endoplasmic reticulum 148.  Misfolded proteins are marked by the 

attachment of N-linked carbohydrates and subsequently recognized by lectin-based 

chaperones.  Properly folded proteins exit from the endoplasmic reticulum upon trimming 

of the glucose from the N-linked core glycans.  UDP-glucose:glycoproteins 

glucosyltransferase, on the other hands, adds glucose residue back to N-glycans near 

regions of disorder so that the glycoproteins re-associate with chaperones 149, 150.  The 

cycle of glucosylation and de-glucosylation continues until the glycoprotein either 

reaches its native conformation or is targeted for degradation 147.  Defects in subunit 

assembly or protein folding decrease total expression of the protein at the cell surface and 

lead to abnormal cell functions 148. 

 The expression of ER-resident chaperones and activation of the degradation 
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pathway are regulated by the load of unfolded proteins in the endoplasmic reticulum.  To 

encounter the overload of unfolded proteins (ER stress), unfolded proteins in the 

endoplasmic reticulum induce the unfolded protein response (UPR) that leads to the 

expression of chaperone proteins and promotes degradation of the unfolded proteins via 

activation of ER-associated degradation (ERAD).  In ERAD, the unfolded proteins are 

retrotranslocated to cytosol and degraded by the ubiquitin-proteasome pathway.  The 

UPR also mediates global downregulation of translation via inhibition of translation 

initiation factors or degradation of messenger RNAs and reduces flux of newly 

synthesized proteins into the endoplasmic reticulum 151, 152.  If adaptation to ER stress is 

not sufficient, an apoptotic response is initiated, leading to cell death.  Protein 

conformational disease such as cystic fibrosis is associated with the accumulation of 

unfolded proteins in the endoplasmic reticulum 153. 

 Physiological roles of the UPR are implicated in development of organisms as 

well as host defense against pathogens 154, 155.  C. elegans has been a powerful model 

organism to study the UPR because of dispensability of the UPR sensing genes; mutants 

lacking the core UPR components are viable.  In the absence of IRE-1, XBP-1 or PEK-1, 

the major ER stress sensors of C. elegans, animals are highly susceptible to ER stress and 

develop abnormally 154.  These mutants can serve as a sensitized system for identifying 

sources of and responses to ER stress.  For example, a non-canonical ER stress system 

was discovered based on its induction in xbp-1 mutants exposed to the glycosylation 

inhibitor tunicamycin.  The proteins in this non-canonical system are called ABU/PQN 

proteins.  They have signal sequences and polyglutamine repeats, and are thought to 

reside in endoplasmic reticulum lumen inside cells.  xbp-1 mutants with RNAi 

84



 

knockdown of abu genes are less resistant to ER stress compared to xbp-1 mutants.  

Thus, the abu genes are likely to encode non-canonical UPR proteins, either functioning 

in a pathway parallel to the canonical UPR or in ERAD of misfolded proteins 156.   

 UPR systems are involved in a variety of cells and tissue functions in C. elegans.  

XBP-1, a transcription factor regulated by IRE-1, is required for host defense against 

immune activation mediated by the p38 mitogen-activated protein kinase pathway.  xbp-1 

mutants are highly susceptible to Pseudomonas aeruginosa infection, and this 

susceptibility is alleviated upon disruption of the p38 kinase pathway 155.  The UPR also 

acts in the nervous system, and is implicated in endoplasmic reticulum exit of GLR-1 

non-NMDA glutamate receptors in C. elegans 157 suggesting a critical role of UPR in 

many tissues. 

 Here, we studied the regulation of CaV2 channel expression in the endoplasmic 

reticulum, analyzing a newly identified mutant, calf-2/pqn-53.  In addition to its role in 

regulating calcium channel traffic, calf-2/pqn-53 is part of the molecular mechanism 

coupling the unfolded protein response with host defense against pathogenic bacteria. 
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Results 

UNC-2 synaptic puncta are reduced in calf-2 mutants 

I conducted a genome-wide EMS screen (see methods) using the kyis442 marker line and 

identified a new calcium channel localization mutant, calf-2.   In calf-2(ky977) mutants, 

GFP::UNC-2 was barely detectable in AWC axons, but the peripheral synaptic vesicle 

marker RAB-3 was not affected (Fig. 4-1a-f).  The total fluorescence intensity of axonal 

GFP::UNC-2 as well as the number of puncta per axon were greatly reduced (Fig. 4-

1g,h); minimal effects were detected upon similar quantification of RAB-3 (Fig. 4-1g,h).  

The active zone markers ELKS-1 (Fig. 4-1i-k) and SYD-2 (Fig. 4-1l-n) appeared normal, 

indicating that calf-2 has a restricted effect on UNC-2 and not all synaptic proteins.  

 calf-2 also affected GFP::UNC-2 localization in motor neurons.  The dorsal nerve 

cord of calf-2 mutants had reduced levels of GFP::UNC-2 fluorescence and few 

GFP::UNC-2 puncta, but near-normal RAB-3 puncta, suggesting a loss of UNC-2 from 

DD synapses (Fig. 4-2a-h).  Expression of the single-pass transmembrane synaptic 

vesicle marker SNB-1::GFP was normal in DD neurons (Fig. 4-2i-l), underscoring the 

selectivity of the calf-2 defect in UNC-2 localization. 

 The overall defect in GFP::UNC-2 localization in calf-2 mutants was weaker than 

that in calf-1 or unc-36, as substantial fluorescent signal was still detectable at the 

synapses in calf-2 mutants.  Accordingly, calf-2 mutants had a normal sinusoidal posture 

with apparently normal locomotory behavior (data not shown).   

 calf-2 mutants were characterized further by examining expression of other 

neuronal transmembrane proteins.  Interestingly, the expression of the G-protein coupled 

odorant receptor ODR-10::GFP was reduced in AWA sensory neurons of calf-2 mutants 
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Figure 4-1. Presynaptic GFP::UNC-2 puncta are reduced in AWC sensory neurons of 
calf-2(ky977) mutants. 
(a-c) Representative images of GFP::UNC-2 and RAB-3::mCherry in the AWC cell body 
(white arrowhead) and axon (yellow arrowheads). The more dorsal cell body is AWB 
(asterisk). (d-f) Representative images of GFP::UNC-2 and RAB-3::mCherry in AWC 
neuron of a calf-2(ky977) mutant. (g, h) Quantification of GFP::UNC-2 and RAB- 
3::mCherry in AWC; (g) Normalized total fluorescence intensity and (h) number of 
fluorescent clusters. (i-k) Representative images of GFP::UNC-2 and ELKS-1::mCherry 
in AWC neurons of a calf-2(ky977) mutant. (l-n) Representative images of GFP::UNC-2 
and SYD-2::mCherry in AWC neurons of a calf-2(ky977) mutant. All error bars indicate 
s.e.m. In g,h, asterisks indicate results different from wild-type controls by unpaired t-test 
at P<0.01 (**). In all Figures, the AWC promoter is odr-3, which is also expressed 
weakly in AWB, ASH, AWA, and ADF sensory neurons, and all data are taken from 
adult animals, unless otherwise noted. Head is to the left and dorsal is up in all images 
unless otherwise noted. Scale bar, 10 µm.	  
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Figure 4-2. GFP::UNC-2 puncta are reduced in VD/DD GABAergic motor neurons of 
calf-2(ky977) mutants.
(a-c) Representative images of GFP::UNC-2 and RAB-3::mCherry in DD axons (dorsal nerve cord) 
of GABAergic motor neurons.  (d-f) Representative images of GFP::UNC-2 and RAB-3::mCherry 
in DD neurons of a calf-2(ky977) mutant.  (g,h) Quantification of GFP::UNC-2 and RAB-3::mCherry 
in 50 μm covering DD5 and DD6 axons in the dorsal nerve cord; (g) Normalized total fluorescence 
intensity and (h) number of fluorescent puncta. Asterisks indicate results different from wild-type 
controls by unpaired t-test at P<0.01 (**).  (i,j) Representative images of SNB-1::GFP in DD 
neurons; (i) A wild type control animal and (j) a calf-2(ky977) mutant.  (k) Quantification of 
SNB-1::GFP in 50 μm covering DD5 and DD6 axons in the dorsal nerve cord; (k) Normalized total 
fluorescence intensity and (l) number of fluorescent puncta.  The VD/DD promoter is unc-25; and all 
data are taken from adult animals.  Scale bar, 10 μm.
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(Fig. 4-3a-d).  ODR-10::GFP is normally localized to sensory cilia, not to synapses, and 

the calf-2 defect was most evident as a reduction in ciliary ODR-10.  These results 

indicate that calf-2 defects are not restricted to calcium channels or synapses, but can 

affect multipass transmembrane proteins in other neuronal compartments.  

 

calf-2 encodes a ubiquitously expressed nuclear protein 

Genetic mapping and transgenic rescue identified calf-2 as the previously uncharacterized 

gene pqn-53 (Fig. 4-4a).  Sequencing of calf-2(ky977) DNA revealed a G to A mutation 

at a splice donor site (Fig. 4-4a).  The effect of the mutation was examined by RT-PCR 

analysis of pqn-53 cDNA from wild type animals and calf-2 mutants.  Wild type animals 

expressed both spliced and unspliced pqn-53 mRNA, consistent with previous transcript 

analysis (Wormbase: www.wormbase.org).  In contrast, calf-2 mutants only expressed 

unspliced mRNA (Fig. 4-4b).  This splicing defect results in an early stop codon in the 

pqn-53 open reading frame (Fig. 4-4c).   

 The calf-2 mutant is recessive, and a pqn-53 gene with the ky977 mutation did not 

affect GFP::UNC-2 localization when injected into wild-type animals (data not shown).  

These results suggest that ky977 is a reduction or loss of function allele of pqn-53. 

 The spliced pqn-53 cDNA encodes a predicted 361 amino acid long 

glutamine/asparagine (Q/N)-rich domain containing protein (Fig. 4-4c).  The pqn genes 

constitute a 79-member nematode gene family characterized by prion-like Q/N-rich 

amino acid sequences 158.  Homologs of pqn-53 have been identified in Caenorhabditis 

nematodes (Fig. 4-4c) and possibly in other nematode species including Brugia malayi.  

Among Caenorhabditis nematodes, conservation of PQN-53 extended across the entire 
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Figure 4-3. ODR-10::GFP cilia expression is affected in calf-2 animals.
(a) A representative image of ODR-10::GFP in AWA sensory cilia.  Yellow arrowhead marks nose.  
(b) Schematic of AWA sensory cilia, with cilia in green.  (c) A representative image of ODR-10::GFP 
in AWA sensory cilia of a calf-2(ky977) mutant.  (d) Quantification of ODR-10::GFP in AWA cilia.  
Asterisks indicate results different from wild-type controls by unpaired t-test at P<0.01 (**).  
Scale bar, 10 μm. 
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Figure 4-4. calf-2 encodes a glutamine/asparagine (Q/N)-rich domain containing protein. 
(a) Mapping and cloning of calf-2.  A PCR fragment containing the operon CEOP5320 
rescued the calf-2 mutant phenotype.  The ky977 allele has a G to A transition at the 
splice donor site in the third intron of pqn-53 gene.  (b) RT-PCR analysis of the splicing 
of pqn-53.  The ky977 mutation disrupts splicing of the third intron, leaving only a non-
spliced isoform; a mature full spliced isoform of pqn-53 is not detectable in calf-2(ky977) 
mutants.  (c) Alignment of Caenorhabditis PQN-53 proteins.  ky977 mutation leaves only 
a non-spliced isoform, which adds extra 10 amino acids at the position 134 and creates 
144 amino acids protein. Small (small+ hydrophobic (including aromatic -Y)) residues, 
acidic residues, basic residues and hydroxyl + amine + basic residues are marked in red, 
blue, purple and green respectively.  (d) Schematic of a pqn-53 cDNA rescuing construct.  
Fully spliced pqn-53 cDNA was expressed under the tag-168 promoter for rescue 
experiments. 
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C.briggsae      MAEKINMTLDDIIKNGQKKIKAEKVVDANN-ANKTANDNKARSGGKTGGQ---GAKNNRK 56
C.elegans       MAEKINMSLDEIIKHGQKKVKSERVSAPAG-ASTS---NKAGNKPTRPGN---AGRNNRR 53
C.remaneri       MTDKLTMSLDDIIKNNKKNAKTDKPGTSNGNKNDNNKSNNAGNNKSRPGVKLGAGRNNRR 60
C.japonica      MADKINMSLDEIIKLKNPKKEVNQNQKPGP-RNKNAGANNKGERAGAKGA---RLGAGRR 56
                *::*:.*:**:***  : : : ::   .    . .   *:  .     *        .*:

C.briggsae      GPPAKNAKIALANKVLKRSRAIAAR---GVGAKRQALGSRG-KPMAAAGLSAVATKKLVN 112
C.elegans       VPPRKSAQVVLANKVLKKSKAIAARR--AAGGQKRVFGARG-KPAAAAGLSAVATKKLVN 110
C.remaneri       PPPAKNARVALANKVLKRSKAIAARKAAGAGAQRRVFGARGGKPVAAVGLSTVATKKLVN 120
C.japonica      APPAKNARVALANKVLKKSQAIARRA--GAGPQRRALGARS---VAATGLNAVATKKLVN 111
                 ** *.*::.*******:*:*** *   ..* :::.:*:*.    **.**.:********

C.briggsae      KLVKNAIRKRINITTNLGIRKRGGVAAFTLAARRTAAIRRNVAAARGIVQPV----QQRP 168
C.elegans       KLVKNALRKRTNITTVPVVRKRGGVAASTLAARRNFALKRNVTAAQ-VIQPVRTIIQQRP 169
C.remaneri       KLVKNALRKRTNITTTQVVRKRGGVAASTLAARRNLTIKRNVAAARGVIQPVRTVVQHVP 180
C.japonica      KLVKNALRKRTNITTAQVVRKRGGVAASTIAARRNFAVRRNFAATRAALQPTRSVIQRPS 171
                ******:*** ****   :******** *:****. :::**.:*::  :**.    *: .

C.briggsae      KAP---RTIIQHVQPAPVRVVRQIITAPPTETHVIRRAPPQQ-VRRAPPQQVRRVQQQQQ 224
C.elegans       ITAP-VRTIVQHVRQAPVKVVRQIITAP-VQSQVIRRAPQQQ-VRQNRPQ---------Q 217
C.remaneri       VAP--VRTIVQHVQPAPVRVVRQVISAPQMETQVIRRGPPQQQGRRNRPQP-----QQQQ 233
C.japonica      VVRAPVRTVVQHVQPAPVRVVRQVITAP--PADVIRRVPAQQ-ARRNRPQQ--------Q 220
                 .    **::***: ***:****:*:**   :.**** * **  *:  **         *

C.briggsae      RRVVVVQPVQQGRRFRPGNN---NSRR-NNTVIRRQV------------PQYEQVVQRVI 268
C.elegans       RRNVIIQ-SQQSRRFRPTNN---NNNN-RPTVIRRQVVQQVPRRAQVQRPQYEQVVQRVI 272
C.remaneri       RRSVVVQQVQQGRRFRQNNN---NRRNDRPTVIRRQVVQQAPRR----VPQYEQVVQRVI 286
C.japonica      QRTVVVQQVQGGRRFRPNNNQRRNVVNERPTVIRRQVVQQPRR------VQYQEVVQRVV 274
                :* *::*  * .****  **   *  . . *******             **::*****:

C.briggsae      QVPVPQQRFQQQ----QQQSRRFQQQNQ-RFQRPQQSG-----GNVRYVNGGGRQVQRKT 318
C.elegans       QTPVAQQRFQRQPQRFQQQQPRFQQQPP-RFQRQQQPQQQQVVRSVRYVN-ARPPVQRNN 330
C.remaneri       QAPVPQQRFQQQ-----QSPRRFQQQQQQRFQRPQQNG-----GNVRYVNAGPRQVQRNT 336
C.japonica      RR-APQQ-------------RQFQ-------QRPQSAGR----NNVRYVNPRPVQQQRRT 309
                :  ..**              :**       ** *.        .*****      **..

C.briggsae      VVR-----QVQ-PVQYRPVQYVSDQAVTSRGRGFRA- 348
C.elegans       VVR-----QVQ-PVQYRPVQYVTDQVVNSRGRGFRAF 361
C.remaneri       VVR-----QVQQPVQYRPVQYVTDQVVTSRGRGFRAY 368
C.japonica      VVQQAVDLQVQ-PVRYQPVQYVTERVVTNRGRGFRGY 345
                **:     *** **:*:*****:::.*..******. 
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361 amino acid coding region (Fig. 4-4c).  PQN-53 has additional notable sequence 

features that are not typical of other PQN proteins, including a preponderance of arginine 

and lysine residues and a highly basic predicted pKa of 13.09.  The splicing defect in 

calf-2(ky977) results in a predicted protein of 144 amino acids lacking much of the 

conserved pqn-53 sequence (Fig. 4-4c). 

The defective GFP::UNC-2 localization in pqn-53 mutants was rescued by a 1.1 

kb spliced pqn-53 cDNA expressed under the tag-168 pan-neuronal promoter (Fig. 4-4d).  

However, a PCR product consisting of the pqn-53 gene with 0.8kb of promoter sequence, 

the distance to the next coding region, did not rescue the mutant phenotype (data not 

shown).  pqn-53 is a upstream gene in an operon that contains another gene, clh-6 159(Fig. 

4-4a).  We hypothesized that regulatory elements required for proper pqn-53 expression 

could be distributed throughout the operon.  Thus, we amplified the entire 7kb operon 

covering both the pqn-53 gene and the clh-6 gene; this 7kb PCR product was ligated into 

the pSM vector (CEOP5320 in the Fig. 4-5e,f), and it was able to rescue defective 

GFP::UNC-2 localization (Fig. 4-4a, 4-5e,f).  clh-6 alone did not rescue, and a clh-6 null 

mutants did not show the calf-2 defect in GFP::UNC-2 expression, excluding clh-6 as the 

coding region affected by the calf-2 mutation (data not shown). 

To characterize the expression pattern of pqn-53, we fused GFP internally to the 

pqn-53 gene in-frame in the 7kb genomic fragment that rescued UNC-2 localization 

(CEOP5320::GFP).  GFP tagged PQN-53 (PQN-53::GFP) fluorescence was detected 

ubiquitously in the nuclei of many cell types, including many or all neurons (Fig. 4-5a).  

Coexpression with an odr-1::mCherry transgene confirmed that pqn-53 is expressed in 

AWC neurons, which were used for the initial genetic screen (Fig. 4-5b-d). 
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Figure 4-5. PQN-53 acts cell autonomously in neurons and localizes to the nucleus. 
(a) Expression of PQN-53 detected by an operon CEOP5320::GFP fusion (see methods);  
PQN-53::GFP translational fusion localizes in the nucleus.  Scale bar, 50 µm. (b-d) AWC 
expresses odr-1::mCherry and PQN-53::GFP.  Scale bar, 10 µm.  (e,f) Rescue of calf-
2(ky977) mutants with pSM::CEOP5320 or pqn-53 cDNA under the pan-neuronal tag-
168 promoter, muscle-specific myo-3 promoter or AWC specific odr-3 promoter.  (e) 
GFP::UNC-2 clusters and (f) Normalized fluorescence intensity of GFP::UNC-2 in AWC 
axons.  Asterisks denote strains different from calf-2(ky977) control by Bonferroni t-test, 
**= P<0.01. 
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Expression of the calf-2 cDNA under the control of the pan-neuronal tag-168 

promoter rescued the GFP::UNC-2 localization phenotypes (see above), but expression 

from the muscle-specific myo-3 promoter did not (Figs. 4-5e,f).  Expression of pqn-53 

under the AWC-selective odr-3 promoter partially rescued GFP::UNC-2 synaptic puncta 

in AWC neurons (Fig. 4-5e,f).  These results suggest that pqn-53 acts cell autonomously 

in AWC to affect GFP::UNC-2 localization. 

To determine the subcellular localization of PQN-53, we tagged pqn-53 cDNA 

with GFP.  We did not obtain full rescue of the defective GFP::UNC-2 localization in 

calf-2 mutants with three GFP-fusions tested (N-terminal fusion, C-terminal fusion, and 

internal fusion), but they were all exclusively localized to the nucleus (internal fusion: 

Fig. 4-5a-d).  Although they are still biologically active (Supplementary Fig. 4-1a,b and 

data not shown), with the caveat that pqn-53 activity is reduced in the tagged proteins, 

these results suggest that PQN-53 is a nuclear protein. 

The expression of pqn-53 under the VD/DD motor neuron promoter unc-25 did 

not rescue GFP::UNC-2 puncta; and in addition, it suppressed dorsal RAB-3::mCherry 

signals in DD neurons, but have not been pursued further.  These results suggest a 

broader effect of pqn-53 on DD neurons development or survival. 

 

PQN-53 acts acutely to increase UNC-2 levels in the endoplasmic 

reticulum 

GFP::UNC-2 fluorescence in the perinuclear endoplasmic reticulum region of AWC was 

reduced in pqn-53 mutants compared to wild type animals, although not as strongly 

reduced as synaptic fluorescence (Fig. 4-6a).  These results contrast with the GFP::UNC-
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Supplementary Figure 4-1. N-terminally tagged odr-3::mCherry::pqn-53 partially rescues 
calf-2(ky977) mutants.
(a,b) Rescue of calf-2(ky977) mutants with pqn-53 cDNA and mCherry::pqn-53 cDNA under 
the AWC specific odr-3 promoter.  (a) GFP::UNC-2 clusters and (b) Normalized fluorescence 
intensity of GFP::UNC-2 in AWC axons.  Asterisks denote strains different from calf-2(ky977) 
control by Bonferroni t-test, **= P<0.01, *=P<0.05
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Figure 4-6. PQN-53 is required for expression of GFP::UNC-2 in the endoplasmic 
reticulum. 
(a) Quantification of GFP::UNC-2 fluorescence in the AWC perinuclear regions of calf-
2(ky977) and calf-1(ky867). Asterisks indicate results different from wild type controls or 
calf-1 mutants by unpaired t-test at P<0.01 (**). (b,c) Heat shock induction of pqn-53 
rescues GFP::UNC-2 localization defects and increases expression of GFP::UNC-2 in the 
endoplasmic reticulum. (b) GFP::UNC-2 puncta in AWC axons and (c) GFP::UNC-2 
fluorescence in the AWC perinuclear region of heat-shocked and non-heat-shocked calf-
2; hsp16.2::pqn-53 animals.  Asterisks indicate results different from non-heat shocked 
controls by unpaired t-test at P<0.01 (**). (d,e) Representative images of GFP::UNC-2 in 
the head region; (d) A wild type control animal and (e) a calf-2(ky977) mutant. Asterisks 
indicate punctate localization of GFP::UNC-2 in axons at the nerve ring; white 
arrowheads mark neuronal cell bodies. (f) Quantification of GFP::UNC-2 in the nerve 
ring.  (g) Schematic illustration of 2xmEos2::UNC-2 pulse-chase experiment; converted 
region circled in purple.  Images from the regions indicated by square boxes were 
obtained and compared.  (h,i) A Representative images before and after photoconversion 
of 2xmEos2::UNC-2 in the head region. Area of nerve ring axons is marked by asterisks. 
(j,k) Quantification of photoconverted 2xmEos2::UNC-2 in the nerve ring of wild type 
control and calf-2(ky977) mutants.  (j) Normalized fluorescence intensity and (k) turn 
over rate of 2xmEos2::UNC-2 obtained by dividing the total fluorescence intensity of 6 
hour time point by original fluorescence signals.  All error bars indicate s.e.m. Scale bar, 
10 µm.  
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2 pattern in calf-1 mutants, where reduced expression in synapses is accompanied by 

higher expression of GFP::UNC-2 in the endoplasmic reticulum 160.  To assess the 

contribution of pqn-53 to protein levels in the endoplasmic reticulum, we examined 

GFP::UNC-2 phenotypes and genetic interactions in calf-1; pqn-53 double mutants.  In 

calf-1; pqn-53 double mutants, GFP::UNC-2 fluorescence was present in the 

endoplasmic reticulum at a reduced level compared to a calf-1 mutants (Fig. 4-6a).  These 

results suggest that PQN-53 acts upstream of CALF-1 to regulate the amount of UNC-2 

protein in the endoplasmic reticulum. 

 To examine the acute effects of pqn-53, we used the heat shock promoter hsp16.2 

106 to drive expression of pqn-53 under temperature control.  A three hour heat pulse in 

L4 animals was sufficient to rescue synaptic GFP::UNC-2 localization and endoplasmic 

reticulum expression of GFP::UNC-2 in AWC neurons (Fig. 4-6b,c).  Heat shock 

induction of pqn-53 increased the expression of perinuclear GFP::UNC-2 to a level above 

that of the wild type control, indicating an active role of PQN-53 in UNC-2 accumulation 

in the endoplasmic reticulum (Fig. 4-6c).  We also examined the overall effects of pqn-53 

by assessing the pan-neuronally expressed GFP::UNC-2 at nerve ring synapses and cell 

bodies in the head region (Fig. 4-6d,e).  The expression levels of GFP::UNC-2 were 

reduced both at synapses and cell bodies, indicating that pqn-53 acts in multiple neurons 

for UNC-2 expression (Fig. 4-6f).  The double mutant analysis and heat-shock rescue of 

pqn-53 suggest that pqn-53 affects GFP::UNC-2 translation or stability in the 

endoplasmic reticulum, and argue against an essential role for pqn-53 that is specific to 

synapses or early development. 
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 If pqn-53 affects overall GFP::UNC-2 stability, it might also affect GFP::UNC-2 

stability at the synapses.  To examine the rate of synaptic UNC-2 turnover, we tagged 

UNC-2 at its N terminus with two copies of the photoconvertible protein mEos2, which 

irreversibly changes from green to red emission upon UV irradiation 161.  

2xmEos2::UNC-2 protein behaved similarly to GFP::UNC-2, both before and after 

photoconversion; it had a synaptic location in wild-type animals, and expression was 

reduced in pqn-53 mutants (see below). 

 A pool of 2xmEos2::UNC-2 protein at the nerve ring was photoconverted to red 

in pqn-53 animals (Fig. 4-6g-i), and after photoconversion, fluorescence intensity was 

measured at the nerve ring after 0 hour and after 6 hours (Fig. 4-6j).  Although the 

original fluorescence intensity of 2xmEos2::UNC-2 in wild type animals was higher than 

that in pqn-53 mutant animals, the rate of reduction in fluorescence over time was 

comparable (Fig. 4-6k).  These results demonstrate that UNC-2 turnover in the nerve ring 

is similar in wild type and pqn-53 mutant animals, arguing against a direct role of PQN-

53 in stabilizing UNC-2 at synapses. 

 

PQN-53 regulates expression of pqn/abu non-canonical unfolded protein 

response genes 

The nuclear localization of PQN-53 suggested that PQN-53 might regulate transcription, 

mRNA splicing or mRNA export of unc-2 itself or of other factors involved in UNC-2 

maintenance in the endoplasmic reticulum.  The GFP::UNC-2 plasmid used for these 

studies had a heterologous promoter and a fully spliced unc-2 cDNA, excluding unc-2 as 

a likely target of gene regulation or splicing by pqn-53, therefore we initially focused on 
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expression of two known regulators of unc-2 trafficking, unc-36 and calf-1.  GFP was 

expressed under calf-1 or unc-36 promoters in pqn-53 mutants background to assess 

expression of these two genes.  The expression levels of calf-1 and unc-36 GFP fusions in 

calf-2 mutants were comparable to those of wild type animals (Fig. 4-7a-d).  In a second 

experiment, rescuing cDNA fragments were used to ask if pqn-53 might regulate calf-1 

or unc-36 splicing.  Overexpression of spliced cDNAs of calf-1 or unc-36 did not rescue 

the GFP::UNC-2 defects of pqn-53 mutants (Fig. 4-7e).  These experiments failed to find 

evidence that calf-1 or unc-36 transcription or splicing were the direct targets of 

regulation by pqn-53.  

 To seek a broader role of PQN-53 in gene regulation, we compared the mRNA 

transcriptome of stage-matched pqn-53 mutants and wild type animals using 

Illumina/Solexa Paired-end mRNA sequencing technology (mRNAseq, see methods).  

mRNAseq data can be used to infer quantitative information about expression levels and 

also qualitative information on splicing and other sequence variations of individual gene 

at a genome-wide scale 162, 163.  No major changes in splicing patterns were detected in 

pqn-53 mutants, suggesting that the primary function of pqn-53 is not related to mRNA 

splicing (data not shown).  In particular, no major qualitative or quantitative differences 

in unc-2, calf-1 or unc-36 mRNA expression levels or transcript structures were observed 

between wild type animals and pqn-53 mutants.  pqn-53 itself was identified as 

incompletely spliced in pqn-53(ky977) mutants, a positive control indicating that the 

technique succeeded (Fig. 4-8a) 

 Direct comparison of expression levels in Cufflink program were used to identify 

genes that were differentially expressed in pqn-53 mutants compared to wild type animals 
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Figure 4-7. calf-1 and unc-36 are not direct targets of pqn-53.
(a-d) Representative images of GFP expression under (a,b) the unc-36 promoter and (c,d) the 
calf-1 promoter in wild type control animals and calf-2(ky977) mutants. (e) Overexpression of 
functional cDNAs of unc-36 and calf-1 under the pan-neuronal tag-168 promoter in calf-2 
mutants; analysis of GFP::UNC-2 clusters in AWC axons.  Error bars indicate s.e.m. 
Scale bar, 100 μm.
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Figure 4-8.  pqn/abu gene expression are regulated by PQN-53.
(a,b) Representative images of mRNAseq data visualized by UCSC genome browser. Reads 
coverage, predicted gene models and splicing junctions are shown for (a) pqn-53 and (b) pqn-54.  
Missplicing of pqn-53 and upregulation of pqn-54 are marked by yellow arrowheads.  
(c) RT-PCR analysis of mRNA abundance of pqn-53, pqn-54, pqn-74, abu-10.  cDNA samples 
were 10-fold serially diluted three times.  act-1 was used as an internal control. 
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(Table 4-1,4-2) (http://cufflinks.cbcb.umd.edu/).  The DAVID bioinformatics tool was 

used to obtain functional annotation clusters of genes that were co-regulated in the 

mRNAseq datasets 164.  The highly upregulated genes in pqn-53 mutants included a 

significant enrichment of pqn and abu genes (p<0.01) (Table 4-1).  Out of 79 pqn family 

genes, eleven genes have been further classified as abu (activated in blocked unfolded 

protein response)156.  5 pqn genes (non abu) and 4 abu genes were included in the top 30 

genes that were upregulated in pqn-53 mRNAseq data (Table 4-1). 

 The mRNAseq data were confirmed by RT-PCR using primers targeting pqn-53, 

pqn-54, pqn-74 and abu-10 (Fig. 4-8c).  pqn-53 was downregulated, and pqn-54 was 

upregulated in pqn-53(ky977) mutants, but changes in pqn-74 and abu-10 were not 

detected.  The reason for this discrepancy is currently unclear. 	 

 Among genes that were downregulated in calf-2 mutants, enriched gene sets 

included genes encoding major sperm proteins and genes encoding germline 

differentiation proteins (Table 4-2).  These results have not yet been retested by RT-PCR. 

 These data suggest that PQN-53 regulates global gene transcription.  They also 

suggest that the GFP::UNC-2 defects in the pqn-53 mutants might originate from 

misregulation of UPR.  We focused on pqn and abu genes for further analysis because 

their proposed function in ER stress-sensing pathway and UPR matched the genetic 

results suggesting an alteration in GFP::UNC-2 levels in the endoplasmic reticulum.   

 

pqn-53 mutants are resistant to pathogenic Salmonella enterica bacteria 

Previous microarray analysis showed that some pqn/abu genes implicated in the non-

canonical UPR pathway are upregulated upon Salmonella enterica infection in a CED-1-
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Table 4-1. Top 30 genes upregulated in calf-2 mutants 
	  

Sequence name Gene name N2 (RPKM) calf-2 (RPKM) Fold change 
AC3.4 pqn-2 0.0272 3.9481 145.2465 
T20F7.7 acs-9 0.0005 0.0300 66.3666 
R09B5.5 pqn-54 0.1462 4.7931 32.7777 
AC3.3 abu-1 0.0248 0.8000 32.3116 
R03C1.1  0.0961 2.4110 25.0819 
T01D1.6 abu-11 0.2006 4.7604 23.7316 
T06E4.12  0.2621 5.9580 22.7279 
T06E4.11 pqn-63 0.1110 2.1006 18.9245 
F35A5.3 abu-10 0.1461 2.6508 18.1418 
C03A7.14 abu-8 0.3989 7.1227 17.8552 
F17E9.12 his-31 0.0459 0.7695 16.7606 
C54D2.1  0.0597 0.9107 15.2602 
C34E11.2  0.0329 0.4721 14.3673 
R12A1.3  0.1569 1.7188 10.9581 
F20B10.3  0.0929 0.9949 10.7146 
E01G6.1  0.0703 0.7384 10.5059 
F07C6.4  1.2830 13.0387 10.1625 
B0228.5 trx-1 0.0652 0.6409 9.8339 
W02A2.3 pqn-74 1.0045 9.6598 9.6169 
ZK1067.7 pqn-95 1.6639 14.6340 8.7948 
C18A3.8 hlh-14 0.0523 0.4589 8.7665 
Y49C4A.9 cyp-33C11 0.0312 0.2583 8.2795 
ZK662.2  0.2961 2.4227 8.1821 
ZK622.t2 rte-4 1.9345 15.7027 8.1171 
K04A8.10  0.0286 0.2228 7.7986 
M03E7.4  0.0278 0.2169 7.7924 
T25E4.1  0.3798 2.9363 7.7314 
C04G6.10  0.1415 1.0833 7.6556 
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Table 4-2. Bottom 100 genes downregulated in calf-2 mutants 
	  

Sequence Name Gene name N2 (RPKM) calf-2 (RPKM) Fold change 
H12I13.5  0.031 0.000 0.000 
T06D8.2  0.053 0.000 0.000 
R102.4  98.046 0.072 0.001 
C16C10.13  0.059 0.000 0.005 
C25A1.2 fkh-10 0.050 0.001 0.020 
K06H6.2  2.196 0.052 0.024 
C14C6.6  0.903 0.042 0.046 
T10C6.14 his-1 0.774 0.036 0.047 
H31G24.4 cyb-2.2 0.585 0.034 0.058 
Y48G1C.5  0.218 0.013 0.059 
ZK858.2  1.451 0.088 0.061 
K06H6.1  1.383 0.084 0.061 
T25F10.1  0.578 0.040 0.069 
C48E7.8 oac-9 0.249 0.018 0.072 
F57C9.7  0.487 0.037 0.075 
F15E11.15  95.056 7.395 0.078 
F55A12.10  0.859 0.067 0.078 
R148.4  0.741 0.066 0.089 
W09D6.4  0.805 0.076 0.094 
K02B9.1 meg-1 0.403 0.038 0.095 
F09D12.2  0.659 0.066 0.100 
Y39B6A.9  4.154 0.424 0.102 
F15E11.12  52.756 5.497 0.104 
F47H4.4 fbxa-185 0.125 0.014 0.108 
Y47D3A.11 wht-8 0.508 0.055 0.108 
T28C12.3 fbxa-202 0.323 0.035 0.108 
C04E6.5  0.264 0.029 0.108 
K02F6.2  0.385 0.042 0.108 
F36A4.4  1.514 0.164 0.108 
T23B3.5  0.724 0.078 0.108 
C53D6.10  1.539 0.171 0.111 
Y39C12A.8 dnj-26 0.359 0.041 0.115 
B0513.6  0.206 0.024 0.115 
F56H9.4 gpa-9 0.317 0.039 0.122 
ZK39.6 clec-97 0.584 0.071 0.122 
F49C12.14  0.497 0.061 0.123 
Y57A10A.6  0.150 0.019 0.125 
ZK970.8  1.666 0.209 0.126 
F58B4.4  1.738 0.218 0.126 
R03D7.2  0.144 0.018 0.127 
ZK617.3 spe-17 0.799 0.104 0.130 
F55C10.4  0.629 0.082 0.130 
Y9C9A.16  0.321 0.042 0.130 
F42F12.9 nspc-10 0.543 0.071 0.130 
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F18A1.1  0.158 0.021 0.133 
W03F11.3 dct-9 1.100 0.148 0.134 
C06A5.5  0.405 0.056 0.139 
Y71G12B.22  0.523 0.073 0.139 
T10B9.4 cyp-13A8 0.212 0.030 0.139 
H27M09.5  0.317 0.044 0.139 
C47D12.3 sfxn-1.4 0.639 0.092 0.144 
C46G7.5  0.790 0.115 0.146 
Y47D7A.6  0.692 0.101 0.146 
F07C6.4  12.661 1.857 0.147 
C08F8.3  1.721 0.256 0.148 
F15E11.13  384.610 57.599 0.150 
F43D2.2  0.205 0.031 0.150 
C31H1.2  0.281 0.042 0.150 
T05B4.11 phat-5 0.328 0.049 0.150 
H20J04.1  0.235 0.035 0.150 
T01G6.3 str-196 0.281 0.042 0.150 
6R55.2  0.680 0.102 0.150 
Y73F8A.14  0.774 0.116 0.150 
T04A8.3 clec-155 0.271 0.041 0.150 
F10D11.5  0.263 0.040 0.154 
C34D4.10  0.405 0.062 0.154 
ZK792.3 inx-9 0.889 0.138 0.155 
F45D11.2  0.762 0.122 0.161 
Y71H2AM.7  0.778 0.125 0.161 
Y71H2B.1  1.135 0.184 0.162 
Y48B6A.10  0.169 0.027 0.162 
Y37H2A.9 fbxc-46 0.308 0.050 0.162 
ZK488.1 nhr-250 0.487 0.079 0.162 
F22B5.3 cut-3 0.438 0.071 0.162 
Y42H9AR.2  0.338 0.055 0.162 
F30A10.14  0.640 0.104 0.162 
F21F8.10 str-135 0.268 0.044 0.162 
C45G9.4  2.759 0.450 0.163 
Y19D10B.7  54.673 8.954 0.164 
R01H2.3 egg-2 1.378 0.228 0.165 
C14A6.6  0.247 0.041 0.168 
B0393.6  1.658 0.278 0.168 
K02B12.6  2.981 0.502 0.169 
W03D8.3  1.359 0.230 0.169 
ZK1098.9  0.893 0.153 0.172 
AH6.3  0.569 0.098 0.172 
F54H12.5  0.336 0.058 0.172 
Y55F3BR.7  0.621 0.107 0.172 
W03D8.5  0.745 0.128 0.172 
W09C3.7  2.739 0.474 0.173 
D1081.9  0.767 0.133 0.174 
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W01B6.6  0.594 0.103 0.174 
F45D11.1  0.911 0.159 0.175 
T23F11.2  0.460 0.081 0.176 
W02A2.8  0.650 0.115 0.177 
R11H6.6  0.243 0.043 0.177 
W05F2.5 fbxa-203 0.260 0.046 0.177 
B0524.5  0.415 0.074 0.177 
C47E8.1  0.455 0.081 0.177 
K12B6.2  0.118 0.021 0.177 
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dependent manner 165.  ced-1 (cell death-abnormality 1) mutants are hyper-susceptible to 

Salmonella enterica infection, indicating that CED-1 and the pqn/abu response are 

involved in host defense against the pathogen 165.  CED-1 is a single pass transmembrane 

receptor originally identified based on its involvement in engulfment of apoptotic cells in 

C. elegans 166.  Based on the results of Haskins et al, we hypothesized that pqn/abu genes 

that are upregulated in pqn-53 mutants might also have beneficial effects against 

pathogens through constitutive activation of the non-canonical UPR.    

 To test this hypothesis, pqn-53 mutants were tested for susceptibility to 

Salmonella enterica-mediated killing by comparing Salmonella enterica killing of wild-

type animals to that of pqn-53 mutants.  Indeed, pqn-53 mutants were resistant to the 

pathogen and lived longer than wild-type animals when fed on Salmonella enterica strain 

1344 (Fig. 4-9a).  The time for 50% of the nematode to die (TD50) when fed at 25°C on 

live Salmonella enterica was 5 days for wild-type animals and 6.5 days for pqn-53 

mutants, which represents an increase of 30%.  pqn-53 mutants did not exhibit extended 

lifespan on the E. coli strain OP50, suggesting that the pqn-53 longevity effect is specific 

to the pathogenic bacteria (Fig. 4-9b,c).   

 

Discussion 

Communication between the endoplasmic reticulum and the nucleus is prominent in the 

UPR.  The rough endoplasmic reticulum is a center of translation, folding, and transport 

of transmembrane proteins and secretory proteins.  Thus, the rough endoplasmic 

reticulum must constantly translate thousands of proteins and monitor their proper 

folding by housekeeping molecules such as chaperones.  An imbalance between the load 
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Figure 4-9. calf-2 mutants are resistant to Salmonella infection.
(a) Salmonella enterica killing assay of calf-2 mutants.  Wild type and calf-2(ky977) animals were 
exposed to Salmonella enterica.  calf-2 mutants are highly resistant to Salmonella enterica infection.  
(b,c) Life-span analysis of calf-2 mutants on E. coli OP50.  Wild type and calf-2 animals were 
exposed to OP50 and grown at (b) 20C° and (c) 25C°.  Error bars indicate s.e.m. 
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of unfolded proteins that enter the endoplasmic reticulum and the endoplasmic reticulum 

capacity creates ER stress, which induces the UPR to cope with a burden of translation 

and folding.  For example, tunicamycin, an inhibitor of protein glycosylation, causes an 

accumulation of unfolded proteins in the endoplasmic reticulum and induces the UPR 154.  

Infection with the pathogen Pseudomonas aeruginosa or assault with bacterial pore-

forming toxins also induce the UPR, suggesting its broad involvement in innate immunity 

and host defense 155, 167, 168.  So far, three different classes of ER stress transducers have 

been identified (IRE1, ATF6 and PERK).  Each class defines a distinct arm of the UPR.  

In each case, an integral membrane protein senses the protein folding state in the 

endoplasmic reticulum lumen and transmits information to the cytosol through its 

cytosolic domain.  IRE1 is an endoplasmic reticulum resident transmembrane protein that 

senses unfolded proteins in the endoplasmic reticulum with its luminal domain.  When 

IRE1 detects unfolded proteins in the endoplasmic reticulum, IRE1 mediates splicing of 

cytoplasmic XBP1 mRNA with its cytosolic nuclease domain and allows translation of 

XBP1 and its import into the nucleus 169.  The nuclear XBP1 protein induces expression 

of a wide variety of proteins including chaperones and ERAD proteins 151, 170.  ATF6 and 

PERK are also activated by ER stress and induce transcriptional activation of UPR genes.  

PERK is phylogenetically related to IRE1, but in addition to its function in transcriptional 

regulation of UPR genes, PERK phosphorylates the alpha-subunit of eukaryotic 

translation initiaion factor-2 (eIF2alpha) and lower the levels of active eIF2 to result in 

global reduction in the load of newly synthesized proteins 154.  IRE1-XBP1 is a conserved 

UPR pathway between yeast and metazoan, and ATF6 and PERK are specifically 

evolved in metazoans, suggesting that the IRE-1-XBP-1 is the ancient UPR pathway.  
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Therefore, the endoplasmic reticulum is able to communicate with the nucleus to 

maintain its functional integrity against ER stress using these unfolded protein sensors.  

 We found that efficient expression of a GFP-tagged UNC-2 in the endoplasmic 

reticulum requires the nuclear protein PQN-53.  PQN-53 is expressed ubiquitously in 

many tissues, but it acts cell autonomously in neurons for GFP::UNC-2 expression.  

Acute expression in late stage animals rescued the defective GFP::UNC-2 expression, 

suggesting that PQN-53 can act acutely on a relatively short time scale.  Either directly or 

indirectly, PQN-53 regulates GFP::UNC-2 expression in the endoplasmic reticulum.  It is 

not yet clear whether PQN-53 affects translation of GFP::UNC-2 at the level of 

endoplasmic reticulum, or processing or mRNA export of the GFP::UNC-2 mRNA from 

the nucleus.  We prefer the first possibility since the mRNA level of endogenous UNC-2 

as well as that of other mRNA export factors was not affected in pqn-53 mutants.  

However, the susceptibility of transgenes to the transgene silencing phenomenon 

suggests that future studies should be done to verify the precise effect of pqn-53 on 

GFP::UNC-2 abundance in the endoplasmic reticulum.  Turnover of GFP::UNC-2 in 

nerve ring axons is normal in pqn-53 mutants, suggesting that PQN-53 does not have a 

role in UNC-2 stability at synapses.   

 PQN-53 is a member of the pqn gene family.  pqn genes were identified 

bioinformatically based on their composition bias towards glutamine and asparagine 158.  

79 genes are assigned as pqn family genes, most of which have unknown biological 

functions.  One clue to the function of PQN-53 was obtained by the mRNAseq analysis.  

In pqn-53 mutants, we observed a global transcriptional activation of other pqn genes that 

are involved in the non-canonical UPR pathway (also known as abu genes 156).  Thus, 
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PQN-53 seems to act as a repressor of these pqn/abu genes.  Urano et al. showed that 

pqn/abu genes are upregulated upon ER stress in animals lacking functional XBP1; xbp-1 

mutants become less resistant to ER stress when expression of these abu genes was 

reduced with RNAi.  Based on these findings, they proposed that abu genes are involved 

in a non-canonical UPR pathway that acts in parallel to the IRE1-XBP1 pathway 156.  

Interestingly, some of these genes are involved in longevity and immunity against 

pathogenic bacteria.  Resveratol inhibits SIR-2.1, a homolog of yeast SIR2 NAD+-

dependent deacetylases, and induces transcriptional activation of pqn/abu genes to 

increase life span 171.  Knockdown of abu-11 confers a reduction in life-span, whereas 

overexpression increases longevity 171.  This effect is apparently independent of the well-

characterized insulin/IGF signaling longevity pathway, which includes the DAF-2 

transmembrane receptor, a series of intracellular kinases, and the DAF-16 forkhead-

transcription factor.   

 The CED-1 phagocytic receptor is required for activation of pqn/abu genes in 

response to infection by Salmonella enterica 165.  ced-1 mutants or animals with RNAi 

knockdown of pqn/abu genes (abu-11, abu-8, abu-7, abu-1, pqn-54, pqn-5) are more 

susceptible to infection by Salmonella enterica, and overexpression of abu-11 or abu-1 

make animals more resistant to the bacteria, indicating that pqn/abu genes are involved in 

innate immunity and host defense 165.  Therefore, some pqn genes are involved in an ER 

stress-sensing pathway that is physiologically important for normal survival and host 

defense against pathogenic bacteria in C. elegans.   

 pqn-53 mutants are also resistant to Salmonella enterica.  This is probably due to 

the constitutive activation of pqn/abu genes in the mutants.  Innate immunity in C. 
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elegans has been characterized using a wide variety of pathogenic bacteria such as 

Pseudomonas aeruginosa and Salmonella enterica 172.  C. elegans possess a single gene 

encoding Toll-like receptor, tol-1, but lacks MYD88 and NF-kB homologs that are 

required for activation of Toll/Toll-like receptor signaling in insects and mammals 173.   

Instead, a Toll/IL-1R (TIR) protein-protein interaction domain containing scaffold 

protein TIR-1, the SARM1 homolog, acts independently from TOL-1 and activates p38 

mitogen-activated protein kinase pathways (TIR-1-NSY-1-SEK-1-PMK-1) to mediate the 

core immune response in C. elegans 174, 175.  Other innate immunity components include 

the DAF-2-DAF-16 insulin-like signaling pathway, BAR-1, a Beta-catenin and a 

component of the C. elegans canonical WNT signaling pathway, and FSHR-1, a homolog 

of the mammalian follicle-stimulating hormone receptor 1 176.  The necessity of each 

pathway depends on which pathogens are involved in infection, and each component 

differentially regulates activation of immune response genes upon infection 173.  PQN-53 

may interact with some of these pathways to control transcription of pqn/abu genes.  We 

intend to study the relationship between CED-1 and PQN-53.  CED-1 is required for 

engulfment of apoptotic somatic cells and of germ-cell corpses by phagocytic cells such 

as ventral hypodermal cells and gonadal sheath cells 165.  CED-1, however, is expressed 

not only in these phagocytic cells but also in many non-phagocytic cells including 

neurons.  This broad expression pattern indicates that CED-1 has other roles besides 

phagocytosis of apoptotic cells.  SCARF1, a mammalian CED-1 homolog, is implicated 

as a receptor of pathogens in macrophages required for recognition of Cryptococcus 

neoformans to activate immune responses 177.  It will be interesting to determine in which 

cell types CED-1 functions and how it activates pqn/abu genes in response to Salmonella 
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infection.  PQN-53 is a good candidate to be the downstream effecter of CED-1, based on 

its ubiquitous expression and its implicated function in the expression of pqn/abu genes.  

The relationship between CED-1 and PQN-53 in neurons as well as other tissues is a 

subject to examine, considering the observation that pqn-53 mutants have defective 

GFP::UNC-2 expression in neurons.  I am planning to conduct rescue experiments to 

identify the tissue responsible for the Salmonella susceptible (ced-1 mutants) and 

resistant (pqn-53 mutants) phenotype and analyze double mutants between pqn-53 and 

ced-1 to determine genetic epistasis in the pathogen infection.  We may identify 

mechanistic linkage between these two systems.   

 PQN-53 is conserved in nematodes, but homologs were not identified in other 

organisms.  Yeast Swi1 protein, however, might have a related function.  The Snf/Swi 

nucleosome remodeling complex is involved in repression and activation of -6% of yeast 

genes 178.  Swi1 is very rich in glutamine and asparagine, and it acts as a prion forming 

protein 179.  The prion form of the Swi1 protein is inactive, and it quenches the function 

of the non-prion form of the Swi1 allowing global transcriptional change.  Environmental 

stress is known to increase the frequency of prion formation, thus prion-forming proteins 

such as Swi1 might act as stress sensors to modulate global gene expression depending 

on the stress levels in the environment 180.  It needs to be determined whether the Q/N 

rich domain of PQN-53 can act as a prion-forming module. Q/N rich domains are also 

suggested to act as protein-protein interaction domains.  Using the Q/N rich domain, 

PQN-53 may interact with other transcription factors or act as a Swi-like molecule to 

regulate global transcription to cope with environment stress. 
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 We propose that PQN-53 suppress the induction of non-canonical UPR under 

non-stressed condition.  Upon ER stress or infection of pathogens, the activity of PQN-53 

is reduced, leading to activation of pqn/abu genes (non-canonical UPR induction).  The 

non-canonical UPR may reduce protein translation burden in the endoplasmic reticulum 

through activation of pathways such as ERAD.  When the non-canonical UPR is active at 

high levels, inhibited translation or enhanced degradation may lead to reduced levels of 

some transmembrane proteins including UNC-2 and ODR-10, and perhaps increased 

translation of proteins required for counteracting the harmful stimulus.  Therefore, PQN-

53 may act in a defensive system that protect against environmental stress.  Longevity 

and innate immunity genes are also implicated in stress sensing.  It will be interesting to 

characterize the interaction between PQN-53, longevity factors and innate immunity 

genes in the future.  
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Chapter 5   

Conclusions and Future Directions 

 

Summary 

Neurotransmitter release for presynaptic nerve terminals is triggered by depolarization 

that is sensed by presynaptic voltage-gated calcium channels.  Many physiological 

studies have addressed the opening kinetics of calcium channels and their modulation by 

auxiliary subunits.  However, how the biogenesis of calcium channels is achieved in 

neurons in vivo has been elusive, partly due to a difficulty in visualizing the channels in 

live samples.  My thesis work focused on elucidating the mechanism that regulates CaV2 

presynaptic voltage-gated calcium channel expression and localization through genetics 

and cell biological approaches.  Although synaptic localization was the goal, the 

conclusions are more general cell biology. 

 My thesis work involved the establishment of in vivo system allowing 

visualization of the UNC-2 alpha1 subunit of the C. elegans CaV2 channel, the 

identification of mutants that are defective in UNC-2 localization through a forward 

genetic screen, phenotypic analysis of the mutants, and the mapping and functional 

analysis of three genes, calf-1, unc-36 and pqn-53/calf-2, that affect UNC-2 expression 

and localization in vivo.  In the first study, I showed that calf-1 and unc-36 act in the 

endoplasmic reticulum to regulated endoplasmic reticulum exit of UNC-2.  In the second 

study, I showed that nuclear protein PQN-53 is involved in the inhibition of non-

canonical UPR pathway, and activation of this pathway in pqn-53 mutants leads to the 

119



 

reduced expression of GFP::UNC-2 and other transmembrane proteins.  Furthermore, I 

showed that pqn-53 mutants confer resistance to pathogenic bacteria, potentially by 

constitutive activation of the non-canonical UPR. 

 

Screen 

I conducted a direct clonal screen of 1594 mutagenized genomes, but the GFP::UNC-2 

localization screen is obviously not saturated.  The steps that could affect UNC-2 

localization and expression include translation, folding, or post-translational modification 

of UNC-2, endoplasmic reticulum to Golgi transport, targeting at the Golgi, axonal 

transport by motor proteins, fusion of targeting vesicles to active zones, proper tethering, 

and internalization and turnover of UNC-2 (Fig. 5-1).  We are still missing molecular 

components that act in many of these steps.  Our identification of UNC-36 and CALF-1 

as regulators of ER exit of UNC-2 gave a clue as to how the UNC-2 maturation occurs in 

the endoplasmic reticulum, but we do not yet know the precise molecular mechanisms of 

UNC-2 delivery to synapses.  These may include unknown motor proteins, Golgi proteins 

or endosomal proteins such as Rab GTPases.  Cell-biological evidence suggests that 

specific vesicles contain active zone components including Piccolo, Bassoon, Pre-VGCC 

and other exocytosis machinery components, and that these vesicles deliver their cargo to 

synapses to form active zones.  The vesicles are large and reminiscent of dense-core 

vesicles (DCVs), which have a role in neuropeptide secretion 181, 182.  Exo- and endo-

cytosis proteins are also implicated in membrane insertion and recycling of active zone 

components.  None of the candidate mutants I examined, however, showed defect in 

GFP::UNC-2 localization in AWC.  The modification of UNC-2 via posttranslational 
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Figure 5-1.The steps that could affect UNC-2 localization and expression. 
1) translation, folding, or post-translational modification of UNC-2, 
2) endoplasmic reticulum to Golgi transport, 
3) incorporation into targeting vesicles, 
4) targeting to axonal segments,
5) axonal transport by motor proteins, 
6) exocytosis/fusion of targeting vesicles to active zones, 
7) proper tethering, 
8) internalization and turnover of UNC-2.

1
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modification such as glycosylation or phosphorylation might also be involved in its 

proper trafficking or stability of at the synapses.   

 There appears to be a high degree of genetic redundancy in synaptogenenic 

pathways.  Elimination of a single synaptogenic protein may not affect synaptogenesis if 

another protein has a redundant or overlapping role.  This issue might apply to UNC-2 

trafficking, clustering and maintenance.  Thus, if there are parallel mechanisms, 

eliminating single proteins may not cause a major defect in GFP::UNC-2 localization.  

More refined second-generation screens using sensitized backgrounds could yield 

additional genetic insights into the pathway.  Alternatively, since I focused only on AWC 

neurons, screens with other neuronal cell types may facilitate mutant identification.  In 

the synaptogenesis screens performed by the Jin, Nonet, and Bargmann labs, some 

mutations had larger effects than others on synaptic vesicle clustering depending on the 

neuronal cell types examined (e.g. VD/DD motor neurons v.s. ASI sensory neurons).  

Thus, it may be worthwhile to use other cell types such as VD/DD or DA9 for the next 

screen. 

 

More quantitative approaches 

So far, our work has focused on identification of genes that are required for absolute 

UNC-2 abundance at the AWC synapses; the visual screen identified three mutants that 

showed dramatic reduction in the GFP::UNC-2 signals.  Because of the limitation in 

detection of fluorescence signals by eye, we could not identify mutants that changed 

synaptic puncta density or size.  Thus, the screen was biased toward identification of 

qualitative rather than quantitative changes of the synaptic puncta signals (either absent 
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or present).  With this in mind, a systematic approach could be used to study the roles of 

other presynaptic proteins in the stability or clustering of UNC-2 at presynapses. 

 Motor neuron synapses onto muscles are evenly spaced, and the synapses are 

large in size, so that individual synaptic puncta are easily quantifiable 26.  It would be 

more practical to quantitatively analyze the GFP::UNC-2 puncta in motor neurons such 

as VD/DD and DA9 than it would be in AWC neurons.  There are many presynaptic 

molecules that are implicated in scaffolding functions at the nerve terminals.  Proposed 

scaffolding proteins such as Neurexin, CASK, Mint and Veli may regulate local stability 

of presynaptic molecules including Pre-VGCC rather than their absolute clustering.  With 

quantitative microscopic analysis, it should be possible to determine their precise 

contributions in regulating cluster size or density of GFP::UNC-2.  To detect turnover 

rate of Pre-VGCC, the photoconvertible fluorescent tagged UNC-2 (e.g. Dendra2::UNC-

2, 2xmEos2::UNC-2) represents a useful tool, as I showed in previous chapters.  

Therefore, we are now equipped with tools to test the hypotheses generated by previous 

in vitro studies quantitatively in vivo.  For example, the role of individual exo- and 

endocytosis genes in the membrane insertion and recycling of Pre-VGCC in vivo is 

unclear.  Examining exo- and endocytosis genes systematically, it should be possible to 

determine the contribution of each component in local insertion and recycling of Pre-

VGCC at presynapses. 

 

Concluding remarks 

In my graduate research, I have used molecular biology, genetic methods, calcium 

imaging and cell biological analysis to answer fundamental questions in neuroscience.  
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Since I was a medical student, I have kept my interest in pathological conditions that are 

currently untreatable.  After spending years in basic research, I still believe that the 

treatment of medical conditions will be achieved through detailed studies of basic 

biological phenomenon.  In future experiences, I would like to elucidate fundamental 

biological questions from the viewpoints of medicine, genetics, and cell biology.   
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Materials and Methods 

Materials and Methods for Chapter 2 

Strains 

Wild-type worms were Bristol variety N2.  Strains were maintained using standard 

methods at 21-23°C.  Some strains were provided by the Caenorhabditis Genetics Center 

and the National Bioresource Project.  Mutants used were calf-1(ky867), unc-2(lj1), unc-

36(e251), syd-2(ju37), sad-1(ky289), rpm-1(js410), syd-1(ju82), elks-1(tm1233), nrx-

1(ds1), lin-2(n1610), lin-7(n308cs), lin-10(e1439), unc-13(e51), unc-10(e102), dpy-

23(e840), unc-101(m1), unc-11(ky280), unc-31(e928), unc-104(e1265), unc-116(e2310). 

Germline transformation was carried out as described 106.  odr-3::GFP::unc-2, 

tag-168::Dendra2::unc-2 and unc-25::GFP::unc-2 were injected at 100 ng/µl.  For 

rescue, overexpression and structure-function analysis, all calf-1 plasmids were injected 

at 20 ng/µl except hsp16.2::calf-1 at 10 ng/µl.  Relatively high levels of GFP::UNC-2 and 

Dendra2::UNC-2 were needed for reliable visualization, and these overexpressed, tagged 

proteins might distort endogenous traffic.  However, GFP::UNC-2 and Dendra2::UNC-2 

were able to rescue unc-2-dependent locomotion, and were reliably trafficked to synapses 

in heat-shocked calf-1 animals carrying hsp16.2::calf-1, indicating that the proteins in 

transgenic animals can interact effectively with the trafficking machinery.  

For localization experiments, calf-1::GFP fusion plasmids were injected at 10 

ng/µl.  unc-36::GFP fusion plasmids were injected at 50ng/µl.  All cell compartment 

markers including odr-3::mCherry::rab-3 and odr-3::CP450::mCherry were injected at 

0.5 to 5ng/µl.  ofm-1::GFP, ofm-1::DsRed, elt-2::mCherry, odr-1::mCherry, odr-
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1::DsRed, odr-1::GFP and flp-17::mCherry were used as coinjection marker and 

injected at 6-20 ng/µl.  

 

Isolation and characterization of calf-1(ky867) 

A strain expressing GFP::UNC-2 in AWC (kyIs442) was mutagenized with EMS 

according to standard protocols 183.  209 F1s were cloned into different plates, and 30 to 

50 F2 animals from individual F1 animals were subjected to a direct visual screen under a 

compound microscope.  The mutants were isolated based on the loss of GFP::UNC-2 

puncta from the AWC axon as observed with a Plan Apochromat 63x objective on a 

Zeiss Axioplan2 microscope. 

 

Mapping and cloning of calf-1 

calf-1(ky867) was mapped to the far right end of LGV using SNP polymorphisms in the 

CB4856 strain 184.  A genomic fragment containing only the B0250.2 reading frame with 

0.8 kb of 5′ sequence and 1.2 kb of 3′ sequence was generated by PCR and injected at 1 

ng/µl into calf-1(ky867) mutants.  The PCR fragment rescued both uncoordinated 

movements and GFP::UNC-2 localization in AWC axons.  To identify the calf-1 

mutation, the calf-1 genomic coding region in ky867 was amplified by PCR, and PCR 

products were sequenced. 

 

Fluorescence microscopy and quantification 

Animals were mounted on 4% agarose pads containing 400 mM tetramisole.   Multiple 

transgenic lines of each transgene were examined for fluorescent expression and 
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localization patterns.  Wide-field fluorescence images were obtained on Zeiss Axioplan2 

imaging system (Fig. 2-1a-f, h,i, k-m; Fig. 2-2a-f, i,j; Fig. 2-4c,d; Fig. 2-6a-f, k; Fig. 2-

7e,f; Supplementary Fig. 2-1a-f; Supplementary Fig. 2-2a-r; Supplementary Fig. 2-3a-i).  

Confocal images were obtained on Zeiss LSM 510 META laser scanning confocal 

imaging system (Fig. 2-4e-g, j-r; Fig. 2-5b bottom panels; Fig. 2-6g; Supplementary Fig. 

2-5a-r; Supplementary Fig. 2-7a-c, e-v). 

 To quantify fluorescence intensities and number of fluorescent clusters, images 

were captured under consistent detector settings with a Hamamatsu Photonics C2400 

CCD camera on a Zeiss Axioplan2 Imaging System with a 63x Plan-Apochromat 

objective and Metamorph software.  ImageJ (NIH) was used to quantify fluorescence in 

AWC axons and cell bodies and DD dorsal axons.  Images of AWC nerve rings and cell 

bodies were projected into a single plane by maximum projection; for DD, a single image 

of best focus was chosen for the quantification.  Background intensity was subtracted and 

fluorescent clusters containing signals above an arbitrary threshold were measured for the 

total fluorescence intensity and the number of fluorescent clusters.  The same thresholds 

were used for all images in each quantification.  Normalized fluorescence intensity was 

obtained by dividing individual values with mean total fluorescence intensity of wild-

type control animals. For the perinuclear region of AWC, a single image of best focus 

was chosen for the quantification and maximum fluorescence intensity was measured 

after background subtraction (Supplementary Fig. 2-7d).  6-10 animals were scored for 

each experiment. 
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Calcium imaging 

Calcium imaging was performed as described 102.  For AWCON imaging, the strain 

CX10536 expressing the calcium indicator G-CaMP2.2b 185 in AWCON under the str-2 

promoter was crossed to unc-2(lj1) and calf-1(ky867) to generate the strains CX11391 

and CX11386.  For AIB imaging, the strain CX7469 expressing G-CaMP1.0 in AIB 

neurons 102 was crossed with unc-2(lj1) and calf-1(ky867) to generate CX11394 and 

CX11383.  Animals were washed in buffer without food for ~20 minutes prior to 

imaging, a protocol designed to mimic the washes before chemotaxis assays, and imaging 

was conducted in a polydimethylsiloxane (PDMS) chamber in which an animal’s nose 

was exposed to a stream of buffer that could be switched between odor-containing and 

odor-free solutions using an electronically gated valve.  The standard stimulus protocol 

consisted of a 5-minute step pulse of the 10-4 dilution of odor in S-basal (without 

cholesterol) followed by odor removal.  G-CaMP fluorescence intensity was measured 

for 10 seconds before and 50 seconds after the onset or offset of the odor stimulus; the 

same animals were imaged for odor onset and offset.  100% values were set by taking the 

average response from 1-4s in the trace.  Controls and mutants were interleaved during 

imaging. 

 

Subcellular localization in neurons and intestinal epithelial cells 

For endoplasmic reticulum markers, cDNAs of C. elegans homologs of mammalian 

cytochrome P450, RAMP4 and cytochrome b5 (abbreviated as CP450 and cb5) were 

obtained using primers flanking the open reading frame C49C8.4, F59F4.2 and C31E10.7 

101.  For the Golgi marker, a cDNA fragment of C. elegans alpha-mannosidase II (ManII 
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in the text, the first 82 amino acids sequences including signal sequence/TM-anchor 

domain) was amplified from F58H1.1 101, 186. cDNAs were fused to mCherry at their C 

termini. 

Individual regions of CALF-1 were tested for endoplasmic reticulum localization 

by expressing GFP-tagged CALF-1 mutants in intestinal epithelial cells, which are larger 

than neurons and easier to examine for subcellular protein localization.  Full-length GFP-

tagged CALF-1 colocalized with the endoplasmic reticulum marker CP450::mCherry in 

intestinal epithelial cells.   

 

Heat shock experiments 

Experiments with hsp16.2::calf-1 were performed on young adult hermaphrodites.  A 

30°C heat shock was given for 3 hours.  The plates were then incubated at 20°C for 2 

hours for recovery before scoring GFP::UNC-2 localization and swimming behavior.   

 

Photoconversion experiments 

Dendra2::UNC-2 was expressed under tag-168 pan-neuronal promoter in calf-

1(ky867);unc-2(lj1) double mutant background; transgenic animals carrying 

hsp16.2::calf-1 were crossed into the Dendra2::UNC-2 expressing animals.  Prior to 

photoconversion, L4 larvae expressing Dendra2::UNC-2 were mounted on an agar pad. 

The tail regions of individual animals were illuminated with UV light with a 63x Plan-

Apochromat objective to achieve local photoconversion.  Animals were recovered on 

agar plates with OP50, and a 30°C heat shock was given for 1 hour.  The plates were then 

incubated at 20°C for 3 hours before scoring Dendra2::UNC-2 localization in the head 

129



 

region. The maximum fluorescence intensity of the photoconverted Dendra2::UNC-2 was 

quantified at the perinuclear region of a single image of best focus after background 

fluorescent intensity subtraction.  Individual animals were mounted on agar pads in the 

same orientation before and after heat shock to allow the comparison of the same tail 

neurons.  

 

Swimming assay 

Individual young adult worms were transferred into a drop of M9 buffer on top of agar 

plate.  After a 30 second recovery period, body bends were counted for 2 minutes.  

 

Statistical Analysis 

For fluorescent images and swimming assay, statistical analysis was performed using 

Student’s unpaired t-test, Bonferroni t-test or Dunnett’s test as appropriate.  For AIB 

calcium imaging experiments, responses with an average value of zero were counted as 

failures, and the fraction of failures was compared for each genotype by Chi-squared test 

(a nonparametric method appropriate for non- normally distributed data).  Consistent 

results were obtained in two independent blocks of experiments. 

 

List of Strains and Transgenes 

UNC-2 localization analysis 

CX9272 kyIs439 and CX9275 kyIs442 [odr-3::GFP::unc-2, odr-3::mCherry::rab-3, ofm-

1::GFP], CX10416 kyIs479 [unc-25::GFP::UNC-2, unc-25::mCherry::rab-3, odr-

1::mCherry], CX11643 kyEx3049 [unc-25::GFP::unc-2, unc-25::CP450::mCherry], 
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CX10338 kyEx2448 [itr-1b::GFP::unc-2, itr-1b::mCherry::rab-3, odr-1::DsRed], 

CX9963 kyEx2242 [odr-3::GFP::unc-2, odr-3::CP450::mCherry, ofm-1::DsRed], 

CX10156 kyEx2328 [odr-3::GFP::unc-2, odr-3::syd-2::mCherry, ofm-1::DsRed], 

CX10157 kyEx2329 [odr-3::GFP::unc-2, odr-3::elks-1::mCherry, ofm-1::DsRed], 

CX10823 calf-1(ky867); unc-2(lj1); kyEx2785 [tag-168::Dendra2::unc-2, ofm-

1::DsRed], CX10408 calf-1(ky867); unc-2(lj1); kyEx2785 [tag-168::Dendra2::unc-2, 

ofm-1::DsRed]; kyEx2787 [hsp16.2::calf-1, ofm-1::GFP]. 

 

calf-1 rescue and overexpression experiments 

CX10918 kyIs442; calf-1(ky867); kyEx2830 [calf-1::calf-1, ofm-1::GFP], CX10922 

kyIs442; calf-1(ky867); kyEx2833 [tag-168::calf-1, ofm-1::GFP], CX10923 kyIs442; 

calf-1(ky867); kyEx2834 [myo-3::calf-1, ofm-1::GFP], CX10925 kyIs442; calf-1(ky867); 

kyEx2836 [odr-3::calf-1, ofm-1::GFP], CX10520 kyIs479; calf-1(ky867); kyEx2578 

[unc-25::calf-1, flp-17::mCherry], CX10167 kyIs442; calf-1(ky867); kyEx2339 

[hsp16.2::calf-1, ofm-1::GFP], CX10614 kyIs442; calf-1(ky867); kyEx2662 [tag-

168::unc-36, ofm-1::GFP], CX10704 kyIs442; unc-36(e251); kyEx2730 [tag-168::calf-1, 

ofm-1::GFP], CX10706 kyIs479; calf-1(ky867); kyEx2732 [tag-168::unc-36, odr-

1::GFP], CX10524 kyIs479; unc-36(e251); kyEx2582 [tag-168::calf-1, flp-

17::mCherry], CX8811 unc-2(lj1); kyEx1625 [tag-168::unc-2, ofm-1::GFP], CX11423 

calf-1(ky867); kyEx1625 [tag-168::unc-2, ofm-1::GFP] Line1, CX11424 calf-1(ky867); 

kyEx1625 [tag-168::unc-2, ofm-1::GFP] Line2, CX11426 unc-36(e251); kyEx1625 [tag-

168::unc-2, ofm-1::GFP] Line1, CX11425 unc-36(e251); kyEx1625 [tag-168::unc-2, 

ofm-1::GFP] Line2. 
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CALF-1 structure-function analysis 

CX10515 kyIs442; calf-1(ky867); kyEx2573 [calf-1::calf-1 Deletion I, ofm-1::GFP], 

CX10178 kyIs442; calf-1(ky867); kyEx2344 [calf-1::calf-1 Deletion II, ofm-1::GFP], 

CX10513 kyIs442; calf-1(ky867); kyEx2571 [calf-1::calf-1 Deletion III, ofm-1::GFP], 

CX10270 kyIs442; calf-1(ky867); kyEx2399 [calf-1::calf-1 Deletion IV, ofm-1::GFP], 

CX10698 kyIs442; calf-1(ky867); kyEx2724 [calf-1::calf-1 Deletion V, ofm-1::GFP], 

CX10268 kyIs442; calf-1(ky867); kyEx2397 [calf-1::calf-1 Deletion VI, ofm-1::GFP], 

CX10180 kyIs442; calf-1(ky867); kyEx2346 [calf-1::calf-1 TM Deletion, ofm-1::GFP],  

CX10342 kyIs442; calf-1(ky867); kyEx2452 [calf-1::calf-1 TM Replacement, ofm-

1::GFP], CX10318 kyIs442; calf-1(ky867); kyEx2429 [calf-1::calf-1 RAR Deletion, ofm-

1::GFP], CX10321 kyIs442; calf-1(ky867); kyEx2432 [calf-1::calf-1 RR Deletion, ofm-

1::GFP], CX10360 kyIs442; calf-1(ky867); kyEx2470 [calf-1::calf-1 RKR Deletion, ofm-

1::GFP], CX10362 kyIs442; calf-1(ky867); kyEx2472 [calf-1::calf-1 RLRE Deletion, 

ofm-1::GFP], CX10565 kyIs442; calf-1(ky867); kyEx2624 [calf-1::calf-1 C-terminus 

KDEL, ofm-1::GFP], CX10568 kyIs442; calf-1(ky867); kyEx2627 [calf-1::calf-1 C-

terminus KKYL, ofm-1::GFP], CX10574 kyIs442; calf-1(ky867); kyEx2633 [calf-1::calf-

1 Adrenergic a2 C-terminus, ofm-1::GFP], CX10570 kyIs442; calf-1(ky867); kyEx2629 

[calf-1::calf-1 NMDAR C1 domain, ofm-1::GFP]. 

 

CALF-1 Endoplasmic reticulum retention motif search 

CX10503 kyEx2564 [odr-3::calf-1TM::GFP, odr-3::CP450::mCherry, ofm-1::DsRed], 

CX10511 kyEx2569 [odr-3::PAT-3TM::GFP, odr-3::CP450::mCherry, ofm-1::DsRed], 
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CX10457 kyEx2520 [odr-3::PAT-3TM::calf-1(entire cytosolic region)::GFP, odr-

3::CP450::mCherry, ofm-1::DsRed], CX10537 kyEx2596 [odr-3::PAT-3TM::calf-

1(basic & proline rich region)::GFP, odr-3::CP450::mCherry, ofm-1::DsRed], 

CX10514 kyEx2572 [odr-3::PAT-3TM::calf-1(basic region)::GFP, odr-

3::CP450::mCherry, ofm-1::DsRed], CX10540 kyEx2599 [odr-3::PAT-3TM::calf-

1(proline rich region)::GFP, odr-3::CP450::mCherry, ofm-1::DsRed], CX10526 

kyEx2584 [odr-3::PAT-3TM::calf-1(basic region & C-terminus)::GFP, odr-

3::CP450::mCherry, ofm-1::DsRed], CX10543 kyEx2602 [odr-3::PAT-3TM::calf-1(C-

terminus)::GFP, odr-3::CP450::mCherry, ofm-1::DsRed], CX11072 kyEx2915 [odr-

3::PAT-3TM::calf-1(proline rich region & C-terminus)::GFP, odr-3::CP450::mCherry, 

ofm-1::DsRed]. 

 

CALF-1 localization and expression and UNC-36 localization analysis 

CX10273 kyEx2401 [odr-3::calf-1::GFP, odr-3::mCherry::rab-3, ofm-1::DsRed], 

CX10345 kyEx2455 [odr-3::calf-1::GFP, odr-3::CP450::mCherry, ofm-1::DsRed],  

CX10351 kyEx2461 [odr-3::calf-1::GFP, odr-3::cb5::mCherry, ofm-1::DsRed], 

CX11689 kyEx3150 [odr-3::calf-1::GFP, odr-3::RAMP4::mCherry, ofm-1::DsRed], 

CX10350 kyEx2460 [odr-3::calf-1::GFP, odr-3::ManII::mCherry, ofm-1::DsRed], 

CX10262 kyEx2394 [unc-25::calf-1::GFP, unc-25::mCherry::rab-3, odr-1::DsRed],  

CX10344 kyEx2454 [unc-25::calf-1::GFP, unc-25::CP450::mCherry, odr-1::DsRed], 

CX10356 kyEx2466 [unc-25::calf-1::GFP, unc-25::ManII::mCherry, odr-1::DsRed], 

CX10916 kyEx2828 [calf-1::GFP, odr-1::DsRed], CX11478 kyEx3050 [odr-3::unc-
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36::GFP, odr-3::CP450::mCherry, elt-2::mCherry], CX11025 kyEx2887 [unc-36::unc-

36::GFP, ofm-1::DsRed]. 

 

Calcium imaging 

CX10536 kyEx2595 [str-2::G-CaMP2.2b, ofm-1::GFP], CX11391 kyEx2595; unc-2(lj1), 

CX11386 kyEx2595; calf-1(ky867), CX7469 kyEx903 [odr-2b::G-CaMP1.0, ofm-

1::GFP], CX11394 kyEx903; unc-2(lj1), CX11383 kyEx903; calf-1(ky867). 

 

Molecular Biology 

odr-3::unc-2 and odr-3::GFP::unc-2  

The odr-3::GFP::unc-2 was constructed by insertion of GFP into the N-terminus of unc-

2 at an artificially created NotI site in a previously described odr-3::unc-2 plasmid 92.  To 

construct the unc-2 mini-gene, a full-length unc-2 cDNA was first assembled from three 

PCR fragments generated from a C. elegans cDNA library, flanked by the 5’ and 3’ 

primers: 

5’ unc-2C Frag1:  

GAGCTAGCCCCGGGGATGATACCAATCGCCGCATCGGAAATTATAC 

3’ unc-2C Frag3: 

GTCATCATGCATCTCGAGCTAAACAATTGCCCATCGAGGATCATCTTC  

The full-length cDNA in a pBluescript SK(-) vector was highly toxic to bacteria, and 

suffered from frequent rearrangements.  To overcome this issue, bacteria were grown at 

30°C, and a small synthetic intron was inserted at exon 6 of the unc-2 cDNA by site-

directed mutagenesis to create the mini-gene. 
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The synthetic intron sequence was, 

GTAAGTTTAAACTATTCGTTACTAACTAACTTTAAACATTTAAATTTTCAG 

Flanking sequences were, 

CTAGGTTCTTTTTTCATGCTCAATC – TCGTTCTCGGAGTATTGTCTGGAGA 

Promoter and 3’ UTR ligation: 

The odr-3 promoter was amplified from an existing pSM vector and ligated into the NheI 

site of the unc-2 mini-gene.  Primers were: 

5’ NheI odr-3P: GAATCGTAGCTAGCGGCCGGCCATCTCAACATAGTAGATTTTT 

3’ pSM (Orig) new: CTGATGACAGCGGCCGATGCGGAGCTCAG 

The unc-54 3’ UTR was isolated from a pSM vector and ligated between XhoI and ApaI 

sites in the mini-gene construct. 

For N-terminal GFP tagging, a NotI site was added in front of the initial ATG of the unc-

2 mini-gene by mutagenesis, and GFP was inserted, using the following primers: 

unc-2 c QC NotI up:  

CATAACATAGAACATTTTCAGGAGgcggccgcgctagcATGATACCAATCGCCGCAT

C 

unc-2 c QC NotI down:  

GATGCGGCGATTGGTATCATgctagcgcggccgcCTCCTGAAAATGTTCTATGTTATG 

5’ NotI GFP pSM: 

 GAATCGTAgcggccgcATGAGTAAAGGAGAAGAACTTTTCACTG 

3’ NotI GFP pSM: GATTGGAAgcggccgcTTTTGTATAGTTCATCCATGCCATGTG 
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The full-length unc-2 cDNA and all junctions were verified by sequencing. When the 

odr-3 promoter was replaced by pan-neuronal tag-168 promoter, both the tag-168::unc-2 

and the tag-168::GFP::unc-2 rescued the locomotion defects of unc-2(lj1). 

 

Dendra2 cDNA synthesis and tag-168::Dendra2::unc-2  

Dendra2 cDNA was synthesized from -50-mer oligonucleotides according to the 

GeneDesign protocol 187 with the substitution of PfuTurbo polymerase (Stratagene, La 

Jolla, CA) for ExTaq polymerase. Dendra2 transgene expression was increased by codon-

optimizing the Dendra2 sequence for C. elegans and adding synthetic intron sequences. 

The tag-168::Dendra2::unc-2 was constructed by insertion of the Dendra2 cDNA into 

the N-terminus of unc-2 at the NotI site in the tag-168::unc-2 construct.  tag-

168::GFP::Dendra2::unc-2 rescued the locomotory defect of unc-2(lj1) (data not 

shown). 

 

odr-3::unc-36 and odr-3::unc-36::GFP  

unc-36 cDNA was obtained by PCR from a C. elegans cDNA library using primers 

flanking the ORF C50C3.9a. Primers used were,  

5’ unc-36C: 

GAATCGTAGCTAGCCCCGGGGATGCGAGTGGTTCATCTGCTCGTCGTG 

3’ unc-36C: GATTGGAAGGTACCCCGCGGTTAAAATATGCAAAAATGAAGGAA 

The PCR product was cloned into the pCR4Blunt-TOPO. The unc-36 cDNA was excised 

and ligated between NheI and Asp718 in the pSM vector. The odr-3 promoter was 

amplified by PCR and ligated between FseI and AscI to create odr-3::unc-36.  
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For C-terminal GFP tagging, the unc-36 cDNA was amplified by using the following 

primers: 

5’NheI unc-36: GAATCGTAGCTAGCATGCGAGTGGTTCATCTGCTCGTCGTG 

3’Asp718 unc-36:  

GA TTGGAAGGTACCGTAAATATGCAAAAATGAAGGAAAACACCGAAAAG 

The PCR product was ligated between NheI and Asp718 in the C-terminal GFP pSM 

vector containing the odr-3 promoter to create odr-3::unc-36::GFP. 

The full-length unc-36 cDNA and all junctions were verified by sequencing. When the 

odr-3 promoter was replaced by the endogenous unc-36 promoter, both the unc-

36P::unc-36 and unc-36P::unc-36::GFP rescued the locomotion defect of unc-36(e251). 

 

odr-3::mCherry::rab-3  

odr-3::mCherry::rab-3 was constructed by replacing the promoter in a plasmid 

containing mCherry::rab-3 (a gift from K. Shen) using FseI and AscI sites.   

 

Promoters 

Promoters were obtained by PCR from N2 genomic DNA using the following primers.  

Genomic sequences are shown in lower case. 

calf-1 promoter 

5' FseI calf-1P: GAATCGTAGGCCGGCCctgcggaaaagaggtaaacactacaaaaatag 

3' AscI calf-1P: GATTGGAAGGCGCGCCtttagtggaaaatattagctaaaaattgag 

odr-3 promoter 

5' FseI odr-3P: GAATCGTAGGCCGGCCatctcaacatagtagatttttaaaaatag 
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3' AscI odr-3P: GATTGGAAGGCGCGCCatctaaaaaaacaatgatctatgagtaattg 

unc-25 promoter: 

 5’ FseI unc-25P: GAATCGTAGGCCGGCCcaaaaaacacccactttttgatctcaaatttg 

 3’ AscI unc-25P: GATTGGAAGGCGCGCCttttggcggtgaactgagcttttccctattc 

itr-1B promoter 

5' FseI itr-1Pb: GAATCGTAGGCCGGCCatctattccagagttcgttcccgag 

3' AscI itr-1Pb: GATTGGAAGGCGCGCCcaattcgtgtgcttccaccaccac 

unc-36 promoter 

5’ FseI unc-36P: GAATCGTAGGCCGGCCgcagtaattagtgtccgttattcc 

3’ AscI unc-36P: GATTGGAAGGCGCGCCtctcgttttactctttgaaatccg 

myo-3 promoter 

5’ FseI myo-3P: GAATCGTAGGCCGGCCgggctgcaggtcggctataataag 

3’ AscI myo-3P: GATTGGAAGGCGCGCCtggatctagtggtcgtgggtttgatgg 

tag-168 promoter 

5’ FseI tag-168P: GAATCGTAGGCCGGCCtctccttgaagctcatccagacgtcgctg 

3’ AscI tag-168P: GATTGGAAGGCGCGCCacacgggccagagctgcagctggatggca 

 

Active zone and endoplasmic reticulum markers 

cDNAs were obtained by PCR from a C. elegans cDNA library using the following 

primers.  cDNA sequences are shown in lower case. 

elks-1 cDNA 

5' SalI elks-1C: GAATCGTAGTCGACatggcacctggtcccgcaccatacagcagccgaac 

3' AgeI elks-1C: GATTGGAAACCGGTGGggcccaaattccgtcagcatcgtcgtgatc 
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syd-2 cDNA 

5' NheI syd-2C: GAATCGTAGCTAGCatgagctacagcaatggaaacataaattgtgatat 

3' Asp718 syd-2C: GATTGGAAGGTACCGTggtatataaatgaaactcgtaggattttgctatg 

CP450 cDNA 

5' NheI CP450: GAATCGTAGCTAGCatgattttacttattctcacttcg 

3' Asp718 CP450: GATTGGAAGGTACCGTatatctttccttcattgaaactctg 

RAMP4 cDNA 

5' NheI RAMP4: GAATCGTAGCTAGCatggccccaaagcaacgtatgacac 

3' Asp718 RAMP4: GATTGGAAGGTACCGTccatcccatcttgacgtagcggatg 

Cb5 cDNA 

5' NheI Cb5: GAATCGTAGCTAGCatggccgatcttaagcaaatcaccc 

3' Asp718 Cb5: GATTGGAAGGTACCGTcgcagcgataagataataaacaag 

ManII cDNA 

5' NheI ManII: CAGAATGCTAGCatgggaaaacgcaatttctatattat 

3' Asp718 ManII: TTGTTCGGTACCACttctttttcttcatcaaaatctaccg 

These cDNAs were ligated between NheI and Asp718 except SalI and AgeI for elks-1 

cDNA in the C-terminal mCherry pSM vector, and appropriate promoters were ligated 

between FseI and AscI.  

 

calf-1 cDNA cloning and GFP tagging 

calf-1 cDNA was obtained by PCR from C. elegans cDNA library using the following 

primers.  cDNA sequences are shown in lower case. 

5' NheI calf-1C: GAATCGTAGCTAGCatgtcatctccacaacaattcacaattccgg 
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3' NcoI calf-1C w/ Stop: GATTGGAACCATGGctacacaatatggatcgatcctcgaggttg 

The PCR product was ligated between NheI and NcoI in the pSM vector, and appropriate 

promoters were ligated between FseI and AscI. The hsp16.2::calf-1 plasmid was created 

by ligating calf-1 cDNA between NheI and NcoI in pPD49.78.  

For GFP internal tagging, GFP was amplified by PCR from pSM::GFP using the 

following primers: 

5' EcoRI GFP: 

GAATCGTAGAATTCATGAGTAAAGGAGAAGAACTTTTCACTGGAG 

3' EcoRI GFP: 

GATTGGAAGAATTCTTTGTATAGTTCATCCATGCCATGTGTAATC 

The PCR product was ligated at the EcoRI site in the calf-1cDNA, which precedes the 

proline-rich region.  When expressed from the endogenous calf-1 promoter, calf-1::GFP 

rescued the uncoordinated phenotype of calf-1(ky867) (data not shown).   

 

calf-1::calf-1 TM deletion and calf-1::calf-1 TM replacement  

calf-1(entire cytosolic region) was amplified by PCR from calf-1 cDNA using the 

following primers. 

5' NheI calf-1 TMdel: GAATCGTAGCTAGCATGaataaatgcaagcagtgggagctggacaagg 

3' NcoI calf-1C w/Stop: GATTGGAACCATGGctacacaatatggatcgatcctcgaggttg 

The PCR product was ligated between NheI and NcoI in the pSM vector containing calf-

1 promoter to create calf-1::calf-1 TM deletion. 

pat-3 membrane sequence was amplified from pPD133.51 using the following primers. 

5' NheI_PAT-3 MLS: GAATCGTAGCTAGCatgccaccttcaacatcattgctgctcctcg 
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3' NheI_PAT-3 MLS: GATTGGAAGCTAGCtacctcggatctatcatgaagtactgtgagc 

The pat-3 transmembrane PCR product was ligated into the NheI site of the calf-1::calf-1 

TM deletion to create calf-1::calf-1 TM replacement. 

 

calf-1 deletion analysis and endoplasmic reticulum retention  

For deletion analysis of CALF-1, primers flanking target regions were created and 

individual cDNAs were amplified either directly or by using fusion PCR methods from 

calf-1 cDNA 188. These cDNAs were inserted between NheI and NcoI in the pSM vector 

containing the endogenous calf-1 promoter.   

For the endoplasmic reticulum retention search of CALF-1, primers flanking 

target regions were created and individual cDNAs were amplified either directly or by 

using fusion PCR methods from the calf-1::calf-1 TM replacement plasmid. These cDNA 

were inserted between NheI and AgeI in the C-terminal GFP pSM vector containing the 

odr-3 promoter.  

 

calf-1::calf-1 Adrenergic a2 C-terminus and calf-1::calf-1 NMDAR c1 domain  

calf-1 Adrenergic a2 C-terminus and calf-1 NMDAR c1 domain were synthesized from -

50-mer oligonucleotides by adding NheI and NcoI sites according to the GeneDesign 

protocol with the substitution of PfuTurbo polymerase for ExTaq polymerase. These 

fragments were ligated between NheI and NcoI in the pSM vector containing calf-1 

promoter to create calf-1::calf-1 Adrenergic a2 C-terminus and calf-1:: calf-1 NMDAR 

c1 domain respectively. 
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calf-1::calf-1 C-terminus KDEL and calf-1::calf-1 C-terminus KKYL  

calf-1::calf-1 C-terminus was mutagenized by the following oligos to create calf-1::calf-

1 C-terminus KDEL and calf-1::calf-1 C-terminus KKYL respectively. 

C-term KDEL mut UP: 

GGCTGTCATCAACCTCGAGGATCGAAAGATGAGCTTTAGCCATGGTATTGAT

ATCTGAGC 

C-term KDEL mut DOWN: 

GCTCAGATATCAATACCATGGCTAAAGCTCATCTTTCGATCCTCGAGGTTGAT

GACAGCC 

C-term KKYL mut UP: 

GGCTGTCATCAACCTCGAGGATCGAAAAAGTACCTTTAGCCATGGTATTGAT

ATCTGAGC 

C-term KKYL mut DOWN: 

GCTCAGATATCAATACCATGGCTAAAGGTACTTTTTCGATCCTCGAGGTTGAT

GACAGCC 

 

Materials and Methods for Chapter 3 

Strains 

Wild-type strains were C. elegans variety Bristol, strain N2.  The CB4856 strain was 

used for mapping olrn-1 184.  Strains were maintained by standard methods 189.  

Germline transformation was carried out as previously described 190.  Co-injection 

markers were ofm-1::GFP, ofm-1::RFP or elt-2::GFP.  Integrated transgenes used in this 

study include kyIs140 I [str-2::GFP, lin-15(+)], kyIs323 II [str-2::GFP, ofm-1::GFP], 
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zdIs5 [mec-4::GFP].  Mutations used in this study included olrn-1(ky626) X, olrn-

1(ut305) X, egl-19 (n582) IV, egl-19(ad695gf) IV, nsy-4(ky616)IV, nsy-5(ky634) I, unc-

36(e251) III, unc-2 (lj1) X, unc-2(e55) X, unc-43(n1186) IV, unc-43(n408) IV, unc-

43(n498gf) IV, tir-1(tm1111) III, nsy-1(ky542) II, nsy-1(ag3) II, nsy-1(ok593) II, sek-

1(km4) X.   

Transgenes maintained as extrachromosomal arrays included the following lines used for 

mosaic analysis: kyEx914 (line 1) & kyEx918 (line 2) [odr-3::olrn-1b 15ng/ul, odr-

1::dsRed 7.5ng/ul, ofm-1::gfp 20ng/ul], kyEx1072 (line 1) & kyEx1074 (line 2) [odr-

3::olrn-1b 5ng/ul, odr-1::dsRed 7.5ng/ul, ofm-1::gfp 20ng/ul], kyEx1097 (line 1) & 

kyEx1098 (line 2) [odr-3::olrn-1b 2.5ng/ul, odr-1::dsRed 7.5ng/ul, elt-2::GFP 10ng/ul], 

kyEx1102 (line 1) & kyEx1103 (line 2) [odr-3::olrn-1b 25ng/ul, odr-1::dsRed 7.5ng/ul, 

elt-2::GFP 5ng/ul].  For unc-2 and unc-36 mosaics, the same extrachromosomal arrays 

were examined in wild-type and mutant backgrounds:  kyEx1628 (line 1) kyEx1629(line 

2) & kyEx1630(line 3) [odr-3::unc-2 20ng/ul, odr-1::RFP 2.5ng/ul, ofm-1::GFP 

10ng/ul]; kyEx1229(line 1) kyEx1387(line 2) & kyEx1388(line 3) [odr-3::unc-36 20ng/ul, 

odr-1::RFP 2.5ng/ul, elt-2::GFP 10ng/ul]. 

Additional transgenic arrays were kyEx822 [odr-3::nsy-4a 75ng/ul, ofm-1::GFP 

20ng/ul], kyEx996 [18.5kb nsy-5 PCR fragment 13ng/ul, odr-1::DsRed 12.5ng/ul, ofm-

1::GFP 25ng/ul], kyEx1075 [srsx-3::GFP 10ng/ul, str-2::DsRed 50ng/ul, elt-2::gfp 

10ng/ul], kyEx1096 [odr-1::dsRed 7.5ng/ul, elt-2::GFP 10ng/ul], kyEx1182 [odr-

3::olrn-1b::Ch 5ng/ul, ofm-1::GFP 15ng/ul], kyEx1320 [olrn-1a::Ch 25ng/ul, ofm-

1::GFP 15ng/ul], kyEx1315 [olrn-1b::Ch 50ng/ul, elt-2::GFP 10ng/ul], kyEx1310 [odr-

3::Ch::olrn-1b 25ng/ul, elt-2::GFP 10ng/ul]. 
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The following arrays were used in the deletion analysis: (A) odr-3::olrn-1b::Ch = 

kyEx1318 (line 1) , kyEx1319 (line 2), kyEx1317 (line 3); (B) odr-3::olrn-1bΔrawR1::Ch 

= kyEx1337 (line 1), kyEx1345 (line 2), kyEx1344 (line 3); (C) odr-3::olrn-

1bΔTM1,2::Ch = kyEx1297 (line 1), kyEx1298 (line2); (D) odr-3::olrn-1bΔrawR2::Ch = 

kyEx1338 (line 1), kyEx1339 (line 2), kyEx1340 (line 3); (E) odr-3::olrn-1b(G466E)::Ch 

=  kyEx1358 (line1), kyEx1357 (line 2), kyEx1359 (line 3); (F) odr-3::olrn-

1b(ΔRRRR)::Ch = kyEx1332 (line 1); kyEx1296 (line 2), kyEx1300 (line 3), kyEx1299 

(line 4); (G) odr-3::olrn-1bΔCterm::Ch = kyEx1382 (line 1), kyEx1352 (line 2), 

kyEx1351 (line 3).  These transgenes were injected at 15ng/ul with 10-15 ng/ul of ofm-

1::GFP co-injection marker. 

 

Isolation and characterization of olrn-1(ky626)  

kyIs140 I animals were subjected to EMS mutagenesis according to standard procedures 

183.  A chemotaxis enrichment was used to isolate F2 animals that sensed 2,3 

pentanedione (an AWCOFF-sensed odorant) but failed to sense butanone (an AWCON-

sensed odorant) 119.  F2 mutants that failed to migrate to butanone were screened for the 

AWCOFF str-2::GFP phenotype using a fluorescence dissecting microscope.  The failure 

to express str-2::GFP was confirmed using 400X magnification under a compound 

microscope.  Additional rounds of screening were done without the behavioral 

enrichment. 

 olrn-1(ky626) was mapped on LGX between single nucleotides polymorphisms 

pkP6166 (physical position: X: 14678988) and pkP6172 (physical position X:17707311) 

using the CB4856 strain 184.  A complementation test between ky626 and ut305 resulted 
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in a failure to complement:  93.5% of ky626/ut305 (n=138) animals at 25° were 

2AWCOFF.  olrn-1(ut305) has previously been shown to correspond to C02C6.2 

(X:15539330-15546729) 124.  To identify the olrn-1(ky626) mutation, genomic coding 

regions of C02C6.2 were amplified by PCR and sequenced on both strands.  The olrn-

1(ky626) mutation was a G→A transition, resulting in a G→E missense mutation at 

residue 473 in the olrn-1a isoform, and position 466 in the olrn-1b  isoform.  

 

Molecular biology 

Identification of unc-2(e55) and unc-36(e251) mutations 

Resequencing unc-2(e55) revealed that the stop mutation originally assigned to residue 

458 was actually present at reside 511 of T02C5.5b gene model (Q>stop nonsense 

mutation), but supported the identification of e55 as a strong loss-of-function mutation. 

Sequencing of unc-36(e251) revealed that the unc-36(e251) mutation was G>A transition, 

resulting in a Trp>stop nonsense mutation at residue 496 in the C50C3.9a gene model.  

This mutation should truncate the UNC-36 protein immediately after the vWA domain. 

odr-3::unc-2 

unc-2 cDNAs were obtained by PCR from a C. elegans cDNA library using primers 

flanking the ORF T02C5.5b.  Due to toxicity of the full-length cDNAs in bacteria, they 

were maintained as minigenes with a synthetic intron interrupting their coding regions.  

When expressed from the pan-neuronal H20 promoter, the unc-2 minigene rescued the 

uncoordinated phenotype of unc-2(lj1).  The minigene was subcloned behind the odr-3 

promoter for mosaic analysis. 

odr-3::unc-36 
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unc-36 cDNAs were obtained by PCR from a C. elegans cDNA library using primers 

flanking the ORF C50C3.9a.  Expression of the cDNA under 2 kb of unc-36 upstream 

region rescued the uncoordinated phenotype of unc-36(e251). The cDNA was subcloned 

behind the odr-3 promoter for mosaic analysis. 

odr-3::olrn-1b 

odr-3::olrn-1b was constructed by inserting a KpnI-C02C6.2b-SmaI fragment into the 

pPD49.26 vector at the KpnI and EcoRV sites.  A KpnI-C02C6.2b-ApaI fragment from 

this clone was then inserted downstream of the odr-3 promoter in the odr-3::GFP vector 

191 removing the GFP. 

odr-3::mCherry::orln-1b & odr-3::olrn-1b::mCherry 

The mCherry coding sequence was amplified using primers with linkers on each side of 

mCherry, and subcloned into either the 5’ NheI site upstream of the olrn-1b start site or 

an internal EcoRV site in the C-terminus in the odr-3::olrn-1b vector.  This insertion site 

was C-terminal to the second Raw repeat domain (rawR2).  

odr-3::olrn-1b deletions 

To make the domain deletions described in Figure 3, the odr-3::olrn-1b::Cherry vector 

was deleted at residues 77-108 (ΔrawR1), 265-304 (ΔTM1/2), 396-428 (ΔrawR2), 510-

513 (ΔRRRR), and 429-539 (ΔC-term)  by PCR overlap extension with suitable primers 

78, 192.  The same technique was used to introduce the G466bE mutation. 

olrn-1a::mCherry and olrn-1b::mCherry 

3.8 kb 5’ to the olrn-1a start site and 3.6 kb 5’ to the olrn-1b start site were subcloned 

into the pSM-mCherry vector.  The second clone represented the entire intron between 

the alternative first exons of the OLRN-1 isoforms.   
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Genetic mosaic analysis.   

Loss of function mosaic analysis was performed on six independent lines with unstable 

extrachromosomal transgenic arrays [odr-3:olrn-1b, odr-1::dsRed] in a kyIs140 I, olrn-

1(ky626) X mutant.  Gain-of-function mosaic analysis was performed on four 

independent lines in a kyIs140 I wild type strain.  Each data point in Figure 4 represents 

combined data from two independent lines injected with the same concentration of DNA.  

The presence or absence of the transgene in mosaics was inferred by the presence of odr-

1::dsRed, which is expressed in AWC and AWB neurons.  The str-2::GFP expression 

phenotype in mosaic cells was examined under a compound scope at 100-400X.  

Previous experiments have used a similar strategy 117, 119, 126, 127.  Statistical analysis was 

performed for mutant mosaics rescued at 2.5 or 5 ng/ul of odr-3:olrn-1b, and for wild-

type mosaics injected with 15 or 25 ng/ul of odr-3:olrn-1b, to test (1) the null hypothesis 

that both AWC neurons behaved as independent units, purely as predicted by the 

proportions in the non-mosaic controls (2) the null hypothesis that the DsRed-positive 

(rescued) AWC behaved purely as predicted by the rescued controls (3) the null 

hypothesis that the DsRed-negative (non-rescued) AWC behaved purely as predicted by 

the non-rescued controls.  In all cases, results were different from the null hypothesis at P 

< 0.001 by Chi square test or Fisher exact test as appropriate, using the calculator at 

www.graphpad.com.  Both the rescued AWC and the non-rescued AWC in olrn-1; odr-

3::olrn-1b mosaics became AWCON more often than predicted by the null hypothesis.  

Thus there is both autonomous and non-autonomous rescue of olrn-1.  In wild-type 

mosaics overexpressing olrn-1, the overexpressing AWC became AWCON more often 
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than predicted by the null hypothesis, and the wild-type AWC became AWCOFF more 

often than predicted. 

In rare olrn-1 mosaic animals, the transgene was lost in both AWC neurons but 

retained in either or both AWB neurons.  These animals did not express str-2::GFP (n=5 

animals), suggesting that olrn-1 expression in AWC accounts for its major role in AWC 

asymmetry. 

Mosaic analysis of olrn-1 in nsy-4 or nsy-5 mutants was performed a single line 

per genetic background.  A single unstable extrachromosomal array was examined in 

wild type, nsy-4(ky616) or nsy-5(ky634) backgrounds bearing stable integrated str-

2::GFP transgenes. 

Loss-of-function mosaic analysis for unc-2 was performed on three independent 

lines with unstable extrachromosomal transgenic arrays [odr-3::unc-2, odr-1::dsRed] in 

a kyIs140 [str-2::GFP] I; unc-2(lj1) X mutant. Gain-of-function mosaic analysis for unc-

2 was performed on three independent lines in the kyIs140 I strain. Loss-of-function 

mosaic analysis for unc-36 was performed on three independent lines with unstable 

extrachromosomal transgenic arrays [odr-3::unc-36-SL2-CFP, odr-1::dsRed] in a 

kyIs140 I; unc-36(e251) III mutant. Gain-of-function mosaic analysis for unc-36 was 

performed on three independent lines in the kyIs140 strain. Loss of the transgene was 

inferred by loss of the coinjection marker odr-1::dsRed in AWC neurons.  Results from 

all lines were combined for statistical analysis, which was performed as described above 

for olrn-1.  In all cases the null hypothesis that the two AWCs behaved as independent 

units could be excluded at P < 0.001.  Both the rescued AWC and the non-rescued AWC 

in unc-2; odr-3::unc-2 mosaics were strongly affected by the contralateral cell -- the 
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rescued AWC became AWCOFF more often than predicted by the null hypothesis, and the 

non-rescued AWC became AWCON more often than predicted (P < 0.001 in both cases).  

Thus a single unc-2(+) AWC can bias both AWC neurons.  In wild-type mosaics 

overexpressing unc-2, the wild-type AWC became AWCOFF more often than predicted by 

the null hypothesis (P = 0.003), but the overexpressing AWC was not affected by the 

wild-type AWC (P = 0.1943).  In unc-36; odr-3::unc-36 mosaics, the wild-type AWC 

became AWCOFF more often than predicted by the null hypothesis (P < 0.001), but the 

mutant AWC was not significantly affected (P = 0.075).  There was no significant effect 

of unc-36 overexpression in a wild-type background. 

 

Microscopy 

50-100 gravid adults were picked and allowed to lay eggs overnight.  Adults were 

washed off the plate with M9, and eggs were allowed to hatch for three hours.  L1 larvae 

were examined on a compound microscope at 400-630X magnification or used for 

confocal microscopy.  To obtain late L1/early L2 animals, ~50-60 gravid adults were 

picked to a plate and allowed to lay eggs for 3 hours, after which the adults were removed 

from the plate.  Progeny were examined 30 hours later under the confocal microscope. 

 

Materials and Methods for Chapter 4 

Strains 

Wild-type worms were Bristol variety N2.  Strains were maintained using standard 

methods at 21-23°C.  Some strains were provided by the Caenorhabditis Genetics Center 
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and the National Bioresource Project.  Mutants used were calf-2(ky977), calf-1(ky867), 

unc-2(lj1), unc-36(e251), odr-4(n2144), ced-1(e1735). 

Germline transformation was carried out as described 106.  For rescue and heat-

shock analysis, all pqn-53 plasmids were injected at 20 ng/µl except hsp16.2::pqn-53 at 

10 ng/µl and pSM::CEOP5320 injected at 5 ng/µl.  tag-168::GFP::UNC-2 and tag-

168::2xmEos2::UNC-2 were injected at 50ng/µl and 100 ng/µl, respectively.  Relatively 

high levels of 2xmEos2::UNC-2 were needed for reliable visualization, and these 

overexpressed, tagged proteins might distort endogenous traffic.  However, 

2xmEos2::UNC-2 were able to rescue unc-2-dependent locomotion, and were reliably 

trafficked to synapses, indicating that the proteins in transgenic animals can interact 

effectively with the trafficking machinery.  

For expression and localization experiments, CEOP5320::GFP fusion plasmids 

were injected at 5 ng/µl.  elt-2::mCherry, odr-1::mCherry were used as a coinjection 

marker and injected at 6-20 ng/µl.  

 

Isolation and characterization of calf-2(ky977) 

A strain expressing GFP::UNC-2 in AWC (kyIs442) was mutagenized with EMS 

according to standard protocols 183.  5 F1 animals were plated into each plate, and 30 to 

50 F2 animals from the F1 animals were subjected to a direct visual screen under a 

compound microscope (F1 semi-clonal screen, total 1385 F1s were screened).  The 

mutants were isolated based on the loss of GFP::UNC-2 puncta from the AWC axon as 

observed with a Plan Apochromat 63x objective on a Zeiss Axioplan2 microscope. 
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Mapping and cloning of calf-2 

calf-2(ky977) was mapped to the middle of LGV using SNP polymorphisms in the 

CB4856 strain 184.  A genomic fragment containing the R07B7.3 and R07B7.1 reading 

frames with 1.4 kb of 5′ sequence and 0.8 kb of 3′ sequence (operon CEOP5320) was 

generated by PCR and cloned into pSM vector (see below for details).  The plasmid was 

injected at 5 ng/µl into calf-2(ky977) mutants.  The plasmid rescued both uncoordinated 

movements and GFP::UNC-2 localization in AWC axons. calf-2(ky977) and clh-

6(tm617) null mutants complemented each other for the GFP::UNC-2 localization defect, 

suggesting that the clh-6 is not involved in the UNC-2 phenotype.  In addition, there was 

no detectable change in the mRNA expression level of clh-6 in calf-2 mutants 

(mRNAseq, data not shown).  To identify the calf-2 mutation, the pqn-53 genomic coding 

region in ky977 was amplified by PCR, and PCR products were sequenced. 

 

Fluorescence microscopy and quantification 

Animals were mounted on 4% agarose pads containing 400 mM tetramisole.   Multiple 

transgenic lines of each transgene were examined for fluorescent expression and 

localization patterns.  Wide-field fluorescence images were obtained on Zeiss Axioplan2 

imaging system (Fig. 4-1a-f, i-n; Fig. 4-2a-f, i,j; Fig. 4-3a,c; Fig. 4-5a-d; Fig. 4-6e,f; Fig. 

4-7a-d). 

 To quantify fluorescence intensities and number of fluorescent clusters, images 

were captured under consistent detector settings with a Hamamatsu Photonics C2400 

CCD camera on a Zeiss Axioplan2 Imaging System with a 63x Plan-Apochromat 

objective and Metamorph software.  ImageJ (NIH) was used to quantify fluorescence in 
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AWC axons and cell bodies, DD dorsal axons, and AWA cilia.  Images of AWC nerve 

rings and cell bodies and AWA cilia were projected into a single plane by maximum 

projection; for DD, a single image of best focus was chosen for the quantification.  

Background intensity was subtracted and fluorescent clusters containing signals above an 

arbitrary threshold were measured for the total fluorescence intensity and the number of 

fluorescent clusters.  The same thresholds were used for all images in each quantification.  

Normalized fluorescence intensity was obtained by dividing individual values with mean 

total fluorescence intensity of wild-type control animals. For the perinuclear region of 

AWC, a single image of best focus was chosen for the quantification and maximum 

fluorescence intensity was measured after background subtraction.  6-10 animals were 

scored for each experiment. 

 

Heat shock experiments 

Experiments with hsp16.2::pqn-53 were performed on L4 animals.  A 30°C heat shock 

was given for 3 hours.  The plates were then incubated at 20°C for 3 hours for recovery 

before scoring GFP::UNC-2 localization.   

 

Photoconversion experiments 

2xmEos2::UNC-2 was expressed under tag-168 pan-neuronal promoter in unc-2(lj1) 

mutant background (extrachromosomal array kyEx3522), and unc-2(lj1); kyEx3522 

animals were crossed into calf-2(ky977) mutants to create unc-2(lj1); calf-2(ky977); 

kyEx3522.  L4 larvae expressing 2xmEos2::UNC-2 were mounted on an agar pad.  The 

head regions of individual animals were illuminated with UV light with a 63x Plan-
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Apochromat objective to achieve local photoconversion (green to red conversion).  We 

imaged the photoconverted 2xmEos2::UNC-2 at the nerve rings to estimate the turnover 

rate of UNC-2 at the synapses.  After taking images from individual animals, animals 

were recovered on agar plates with OP50 for 6 hours and imaged again.  Images of the 

nerve rings were projected into a single plane by maximum projection, and the total 

fluorescence intensity of the photoconverted 2xmEos2::UNC-2 was quantified after 

background fluorescence intensity subtraction.  Individual animals were mounted on agar 

pads in the same orientation before and after heat shock to allow the comparison of the 

same nerve rings.  

 

List of Strains and Transgenes 

UNC-2 localization analysis 

CX9275 kyIs442 [odr-3::GFP::unc-2, odr-3::mCherry::rab-3, ofm-1::GFP], CX10416 

kyIs479 [unc-25::GFP::UNC-2, unc-25::mCherry::rab-3, odr-1::mCherry], CX10156 

kyEx2328 [odr-3::GFP::unc-2, odr-3::syd-2::mCherry, ofm-1::DsRed], CX10157 

kyEx2329 [odr-3::GFP::unc-2, odr-3::elks-1::mCherry, ofm-1::DsRed], 

CX12623 unc-2(lj1); kyEx3522 [tag-168::2xmEos2::unc-2], CX12670 calf-2(ky977); 

unc-2(lj1); kyEx3522 [tag-168::2xmEos2::unc-2], CX12620 kyEx3521 [hsp16.2::pqn-53, 

elt-2::mcherry], CX8874 unc-2(lj1); kyEx1671 [tag-168::GFP::UNC-2], CX12621 unc-

2(lj1); calf-2(ky977); kyEx1671 line-1, CX12622 unc-2(lj1); calf-2(ky977); kyEx1671 

line-2 

 

ODR-10, SNB-1 localization analysis 
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CX3344 kyIs53 [AWA::odr-10::GFP], CX4010 juIs1 [unc-25::SNB-1::GFP] 

 

pqn-53 rescue and overexpression experiments 

CX11954 kyIs442; calf-2(ky977); kyEx3261 [tag-168::pqn-53, elt-2::mcherry], CX12442  

kyIs442; calf-2(ky977); kyEx3460 [myo-3::pqn-53, elt-2::mcherry], CX12411 kyIs442; 

calf-2(ky977); kyEx3453 [odr-3::pqn-53, elt-2::mCherry], CX12270 kyIs442; calf-

2(ky977); kyEx3401 [tag-168::unc-36, elt-2::mCherry], CX12411 kyIs442; calf-

2(ky977); kyEx3459 [tag-168::calf-1, elt-2::mCherry], CX12113 calf-2(ky977); 

kyEx2828 [calf-1::GFP, odr-1::DsRed], CX12115 calf-2(ky977); kyEx1258 [unc-

36::GFP, odr-1::DsRed], CX12743 kyIs442; calf-2(ky977); kyEx3580 

[pSM::CEOP5320, elt-2::mCherry], CX12757 kyIs442; calf-2(ky977); kyEx3583 [odr-

3::mCherry::pqn-53, elt-2::mCherry] 

 

PQN-53 localization and expression 

CX12811 kyEx3601 [CEOP5320::GFP, odr-1::mCherry] 

 

Molecular Biology 

mEos2 cDNA synthesis and tag-168::2xmEos2::unc-2  

mEos cDNA was synthesized from -50-mer oligonucleotides according to the 

GeneDesign protocol 187 with the substitution of PfuTurbo polymerase (Stratagene, La 

Jolla, CA) for ExTaq polymerase.  mEos plasmid was sent to Loren Looger's lab for 

further mutagenesis to create mEos2.  mEos2 transgene expression was increased by 

codon-optimizing the mEos2 sequence for C. elegans and adding synthetic intron 

sequences. The tag-168::2xmEos2::unc-2 was constructed by insertion of the mEos2 

154



 

cDNA into the N-terminus of unc-2 at the NotI site in the tag-168::unc-2 construct.  tag-

168::2xmEos2::unc-2 rescued the locomotory defect of unc-2(lj1) (data not shown). 

 

pqn-53 cDNA cloning and GFP tagging 

pqn-53 cDNA was obtained by PCR from C. elegans cDNA library using the following 

primers.  cDNA sequences are shown in lower case. 

5' NheI pqn-53c: GAATCGTAGCTAGCatggctgaaaaaatcaacatg  

3' KpnI pqn-53c w/ Stop: GATTGGAAGGTACCttagaaggcacggaatccacg 

 

The PCR product was ligated between NheI and KpnI in the pSM vector, and appropriate 

promoters were ligated between FseI and AscI. The hsp16.2::pqn-53 plasmid was created 

by ligating pqn-53 cDNA between NheI and KpnI in pPD49.78. 

 

Operon CEOP5320 was amplified by PCR from C. elegans genomic DNA using the 

following primers: 

5' NheI Pro, GAATCGTAGCTAGCccattcaatggtcaaggtgtcaattg 

3' KpnI Pro1, GATTGGAAGGTACCctgaagcgttataatgattattaatt  

The PCR product was ligated between NheI and KpnI in the pSM vector to create 

pSM::CEOP5320.  pSM::CEOP5320 rescued the GFP::UNC-2 expression defect 

phenotype of calf-2(ky977). 

For GFP internal tagging, GFP was amplified by PCR from pSM::GFP using the 

following primers: 

5' MluI GFP:  
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GAATCGTAacgcgtcATGAGTAAAGGAGAAGAACTTTTCACTGGA 

3' MluI NoStop GFP: 

GATTGGAAacgcgtTTGTATAGTTCATCCATGCCATGTGTAATCC 

The PCR product was ligated at the MluI site in the second exon of pqn-53 gene in frame, 

which precedes the glutamine-rich region, to create CEOP5320::GFP.  When GFP was 

replaced with mCherry (CEOP5320::mCherry) the GFP::UNC-2 defect of calf-2(ky977) 

was partially rescued (three lines tested), indicating that this fusion retains some calf-2 

function (data not shown).   

 

Construction of all other plasmids used in this study was previously described 160.  

 

mRNAseq and RT-PCR 

Animals were synchronized by bleaching gravid animals that were grown at 20°C.  The 

eggs were thoroughly washed by M9 buffer and transferred to a new agar plate.  The 

animals were incubated with OP50 at 20°C for 47 hours.  L3/L4 mixed animals were 

collected and washed with M9 buffer, and total RNA was isolated using Trizol 

(Gibco).  Construction of RNA-seq libraries was carried out following manufacture's 

protocols (Illumina: mRNA-Seq Sample Prep Kit).  The cDNA templates were size-

fractionated on 2% agarose gel, and the 200 bp fractions were excised.  Cluster 

generation and sequencing was performed on the Illumina cluster station and Illumina 

GAIIx with Paired-end module following manufacturer's instructions.  Paired-end 

sequences were extracted from the resulting image files using the onboard software 

application (SCS2.6) run with default parameters.  Read lengths were 35 bases from both 

ends and average insertion size was 30bp.  Reads were aligned to WS190 C. elegans  
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genome using Bowtie 193, and splice junctions were detected by TopHat 194.  Gene model 

used were downloaded from Ensembl.  Ensembl 

Caenorhabditis_elegans.WS190.54.gtf.gz <ftp://ftp.ensembl.org/pub/release-

54/gtf/caenorhabditis_elegans/Caenorhabditis_elegans.WS190.54.gtf.gz> 

ftp.ensembl.org/pub/release-54/gtf/caenorhabditis_elegans/.  RPKM values were obtained 

using Cufflink (http://cufflinks.cbcb.umd.edu/).  UCSC genome browser was used to 

visualize reads coverage, predicted splicing junctions and gene models. 

 For RT-PCR, poly(A)+ RNA was isolated from total RNA by using the oligotex 

mRNA kit (QIAGEN).  We used the oligo-dT primers from the SuperScript III First-

Strand Synthesis System (Invitrogen) to generate a cDNA template.  PCR was performed 

to amplify full-length cDNAs by using following primers, 

5' NheI pqn-53: GAATCGTAGCTAGCatggctgaaaaaatcaacatg 

3' KpnI pqn-53: GATTGGAAGGTACCttagaaggcacggaatccacg 

5' NheI pqn-54c: GAATCGTAGCTAGCatgcgcttcacctccctcgccattgc 

3' KpnI Stop pqn-54c: GATTGGAAGGTACCtcactttcttctacagcactgtccat 

5' NheI pqn-74c: GAATCGTAGCTAGCatggcgcgcttcctcctcattatcgg 

3' KpnI Stop pqn-74c: GATTGGAAGGTACCttagaaacgacgggccttcttgcgga 

5' NheI abu-10c: GAATCGTAGCTAGCatgttccgctctgcattttcaatttttg 

3' KpnI Stop abu-10c: GATTGGAAGGTACCttaggcgatcgatcgctttgccttgc 

act-1F: GTGTGACGACGAGGTTGCCGCTCTTGTTGTAGAC 

act-1R: GGTAAGGATCTTCATGAGGTAATCAGTAAGATCAC 

 

cDNA samples were 10-fold serially diluted three times.  A total of 30 cycles were used 
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for PCR of act-1 control primers.  A total of 40 cycles were used for PCR of candidate 

genes.  Cycle parameters used were 96°C 3min, "94°C 30sec, 60°C 30sec, 72°C 3min, (x 

the number of cycles)" 72°C 5min. 

 

C. elegans Killing Assay 

The Escherichia coli OP50 189 and Salmonella enterica serovar Typhimurium 1344 

195strains were used.  Nematodes were maintained at 20°C on nematode growth medium 

(NGM, minimal medium containing NaCl, agar, peptone, cholesterol, CaCl2, MgSO4, 

and potassium phosphate 189) that contains a lawn of OP50.  Synchronous populations 

were obtained either by bleaching gravid animals or by placing gravid adults on NGM 

plates containing OP50 for 5 hours at 20°C.  The gravid adults were removed, and the 

eggs were allowed to hatch and develop into young adults at 20°C.   

 Individual bacterial colonies were inoculated into LB and grown overnight on a 

rotary wheel at 26°C, and a drop of the LB was put on each NGM plate.  Young adult 

hermaphrodites were transferred to lawns of the bacteria and transferred daily to a fresh 

lawn until progeny were no longer produced.  All experiments were performed at 25°C.  

Animals were considered dead upon failure to respond to touch, and animals missing 

from the agar plate were censored on the day of loss. 

 

Statistical Analysis 

For fluorescent images, statistical analysis was performed using Student’s unpaired t-test 

or Bonferroni t-test as appropriate.  
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