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The mammalian nuclear pore complex (NPC) is a large proteinaceous assembly 

consisting of approximately 30 proteins, collectively termed nups. The NPC is the 

sole gateway between the nucleus and the cytoplasm, and facilitates transport of 

macromolecules across the nuclear envelope. Key steps in the export of mRNA 

from the nucleus to the cytoplasm are the transport through the NPC, and the 

subsequent remodeling of mRNA-protein complexes that occurs at the 

cytoplasmic side of the NPC. Crucial for these events is the recruitment of the 

DEAD-box helicase Ddx19 to the NPC. Nup214 is located on the cytoplasmic 

face of the NPC, is implicated in Ddx19 binding, and is a target for chromosomal 

translocations involved in leukemogenesis.  



 



 

 

 In order to gain a deeper understanding of the role of nups in 

leukemogenesis, and to make sense of the architecture and regulation of the 

mRNA export machinery at the NPC, I set out to biochemically and structurally 

characterize Nup214. In this thesis, I present the crystal structure of the human 

Nup214 N-terminal domain at 1.65 Å resolution. The structure reveals a seven-

bladed !-propeller fold followed by a 30-residue C-terminal extended peptide 

segment (CTE). The CTE folds back onto the !-propeller and binds to its bottom 

face. Conserved surface patches on the Nup214 NTD reveal putative protein-

interaction sites, one of which is crucial for the interaction with Ddx19. Using a 

comprehensive mutational and biochemical analysis, the interaction between the 

Nup214 NTD and Ddx19 is dissected. 

 The structure of the Nup214 NTD•Ddx19 in its ADP-bound state at 2.5 Å 

resolution reveals the molecular basis for the interaction between the two 

proteins. A conserved residue of Ddx19 is shown to be crucial for complex 

formation in vitro and in vivo. Strikingly, the interaction surfaces exhibit strongly 

opposing surface potentials, with the helicase surface being positively and the 

Nup214 surface being negatively charged. Ddx19 is shown to bind RNA only in 

its ATP-bound state, and the binding of RNA and the Nup214 NTD is mutually 

exclusive. Finally, I speculate that Nup214 is the ATP-exchange factor for Ddx19, 

and propose the Ddx19 ATPase cycle as the terminal step in mRNA export. 
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1 INTRODUCTION 

The research reported in this thesis is concerned with the biochemical and 

structural analysis of the nucleoporin Nup214 and its involvement in mRNA 

export. This introductory chapter provides an overview of the nuclear pore 

complex (NPC), of which Nup214 is a component. Sections 1.1 to 1.2 describe 

the general architecture, composition and transport function of the NPC. Sections 

1.3 to 1.6 explain how macromolecules are transported across the nuclear 

envelope, with a focus on the export of mRNA and the nucleoporins and NPC-

associated proteins involved. Finally, section 1.7 details the involvement of 

nucleoporins in cancer development.  

1.1 The nuclear pore complex (NPC) 

An important step in the evolution of eukaryotes was the compartmentalization of 

the cell. Unlike bacteria, which consist of a single compartment surrounded by a 

plasma membrane, eukaryotic cells are divided into several membrane-enclosed 

compartments, or organelles, that each have a distinct and specific function in 

the cell. With compartmentalization, the need for communication between 

organelles and therefore regulated transport arose. One important compartment 

of the eukaryotic cell is the nucleus, which harbors the genetic material and is the 

primary site of DNA and RNA synthesis. The nuclear envelope partitions the 

nucleus from the cytoplasm, where protein synthesis and degradation take place. 

The only gate in the nuclear envelope, and thus responsible for all 
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communication between the cytoplasm and the nucleus, is the nuclear pore 

complex (NPC). 

 

1.1.1 Architecture of the NPC 

Mammalian NPCs were first described as “holes” or “pores” in electron 

microscopy (EM) thin sections of nuclear membranes1 (Figure 1 A to C). The 

NPC is embedded in the nuclear envelope, which is a double lipid bilayer and 

consists of an outer (ONM) and inner (INM) nuclear membrane.  

 

 

Figure 1: Electron microscopy images. EM images of thin sections of (A) a 

mouse pancreas cell1 and (B) an amphibian oocyte nuclear membrane2. The 

cytoplasmic and nuclear sides of the nuclear envelope as well as the NPCs are 

indicated. (C) Freeze fracture micrographs of nuclear membrane from rat liver 

cells3. Field-emission scanning EM image of (D) the cytoplasmic face (scale bar 

= 250 nm) and (E) the nuclear face (scale bar = 50 nm) of the nuclear envelope4. 
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 The NPC is one of the largest proteinaceous assemblies in the cell and 

has a mass of ~120 MDa in vertebrates, a diameter of ~125 nm and a height of 

~110 nm5 (Figure 2). The ~60 MDa yeast NPC is much smaller, with an 

approximate diameter of ~100 nm and a height of ~30 nm6, 7. Despite the 

differences in molecular mass and size of the mammalian and yeast NPC, the 

overall architecture of the NPC is conserved. 

 Electron microscopy images have revealed the NPC to have a doughnut-

like shape, with distinct features on the cytoplasmic and nuclear faces, termed 

the cytoplasmic filaments and the nuclear basket, respectively8, 9 (Figure 1 B). 

EM investigations in the late 1960!s revealed an eight-fold radial symmetry 

perpendicular to the nuclear envelope as well as a pseudo two-fold symmetry in 

the plane of the nuclear envelope (Figure 1 D, E and Figure 3)10. Recent 

advances in cryo-electron tomography (cryo-ET) studies have refined our picture 

of the overall architecture of the NPC11, 12 (Figure 3).  

 The NPC is divided into three distinct parts: the cytoplasmic filaments, a 

symmetrical core and the nuclear basket. The cytoplasmic filaments are localized 

at the cytoplasmic face of the NPC and protrude into the cytoplasm. Although the 

cytoplasmic filaments are largely flexible, a cytoplasmic ring that is connected to 

the symmetric core of the NPC has been observed by cryo-ET11. The symmetric 

core of the NPC is embedded in the membranes of the nuclear envelope and 

consists of the spoke ring and nuclear ring (Figure 3). A lumenal connector 

element spans the space between the INM and ONM. The lumenal connector is 
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attached to the membrane at the perinuclear side of the cytoplasmic and nuclear 

rings and is thought to stabilize the NPC12. The nuclear basket is located on the 

nuclear side of the NPC, and consists of the distal ring and nuclear filaments, 

which attach to the symmetric core. In addition, an electron-dense structure, 

termed the central plug, can be observed by cryo-ET within the central channel9, 

11, 13. The central plug was suggested to be cargo in transit14 and overlaps with 

the observed location of cargo in the central channel12. 

1.1.2 Composition of the NPC 

Despite the large molecular mass of the vertebrate NPC, proteomic studies have 

shown that the NPC consists of only ~30 different proteins15, 16. This seemingly 

small number can be explained by the internal symmetry of the NPC and by the 

large mass of the NPC proteins, which are collectively termed nucleoporins 

(nups). Nups are found in copies of multiples of eight and often consist of several 

modular domains17, 18. In addition to other secondary structure folds, the most 

prevalent secondary folds of the nups are the !-propeller fold, "-helical repeats, 

coiled-coils and the natively unfolded FG-domains featuring repeats of the 

characteristic phenylalanine-glycine (FG) motif18, 19. 

 The nups can be classified according to their position in the NPC as 

determined by immuno-electron microscopy labeling15, 20, as well as sequence 

and structural analysis21-23 (Figure 4). The asymmetrically localized nups form 

the nuclear basket (Tpr, Nup153, Nup50) or the cytoplasmic filaments (Nup88, 
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Figure 2: Cryo-electron tomography structure of the NPC. Surface rendition 

of the structure of Dictyostelium NPC (EMD-1097) at a resolution of 85 Å 

depicting the approximate dimensions of the NPC in a cutaway view (left), a 

cytoplasmic face (middle) and nuclear face view (right)11. For clarity, the 

cytoplasmic plug was omitted. 

 

Figure 3: Overall architecture of the NPC. Cut-away view of the cryo-electron 

tomography structure of the Dictyostelium NPC at 58 Å resolution. Subjective 

segmentation for the nuclear filaments (NF), cytoplasmic ring (CR), spoke ring 

(SR), nuclear ring (NR) and distal ring (DR) are indicated in yellow. The inner 

(INM) and outer (ONM) nuclear membrane are shown in violet. Figure adapted 

from Beck et al12. 
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Figure 4: Schematic model of the NPC. The vertebrate nups that make up the 

cytoplasmic filaments (blue), symmetric core (shades of yellow) and nuclear 

basket (violet) are listed. The transport barrier, consisting of FG-repeat domains 

of nups in the central channel of the NPC, is symbolized by the blue, transparent 

plug. Figure adapted from 24. 
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hCG1, Aladin, Nup214, Nup358). The symmetrically localized nups are found in 

the symmetric core of the NPC. The nups of the symmetric core can be further 

categorized into the integral pore membrane proteins (POMs), the coat, the 

adaptor and the channel nups25 (Figure 4). The POMs contain transmembrane 

domains and anchor the NPC in the nuclear envelope. The coat nups are 

involved in membrane stabilization19, while the adaptor nups are thought to 

cushion dynamic changes of the channel nups24. The FG-repeat domain 

containing channel nups line the central transport channel and provide docking 

sites for the transport receptors25. Additionally, the channel nups were proposed 

to adjust the diameter of the central transport channel by circumferential sliding 

during transport of large cargo21.  

 The modular architecture of the NPC is not only apparent in its internal 

symmetry and modular nup domain structure, but also in the existence of building 

blocks or sub-complexes within the NPC. A dramatic change in cellular 

organization is the nuclear envelope breakdown at the onset of mitosis in higher 

eukaryotes. This breakdown is marked by an increase in nuclear envelope 

permeability initiated by NPC disassembly26. Destabilization of the nup protein 

interactions by phosphorylation26 is followed by dissociation of stable nup sub-

complexes from the NPC27. These sub-complexes can be reconstituted28 or 

isolated from interphase cells using detergents and salts29, 30, and dissected 

biochemically31. 
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1.1.3 Arriving at an atomic-resolution model of the NPC 

Although at ~60 Å resolution the general architecture of the NPC is evident from 

cryo-EM tomography studies, the molecular details of sub-complexes or 

individual proteins will remain elusive until higher resolution information about the 

NPC becomes available12. Several X-ray structures of nups or nup complexes 

have been solved in the last eight years21, 23, 25, 32-46. However, the large mass 

and flexibility of the NPC makes the determination of a high-resolution structure 

of the entire NPC a seemingly impossible mission.  

 To overcome this limitation, a molecular “divide-and-conquer” approach is 

employed. The approach exploits the modular character of the NPC to bridge the 

resolution gap between the cryo-EM map of the NPC (~60 Å) and crystal 

structures (~3 Å)28. The NPC is first “divided” biochemically into sub-complexes, 

for which cryo-electron tomography structures at a higher resolution can be 

obtained. If the resolution is sufficiently high (<20 Å), the NPC can then be 

“conquered” by fitting atomic resolution structures into the cryo-EM density 

envelope with high confidence.  

 This strategy was pioneered using the Y-shaped heptameric complex22, 23, 

28 (Figure 5). The Y-shaped complexes are localized close to the nuclear 

envelope in vivo15 and have been suggested to serve as “membrane-curving 

modules” to ""coat!! and stabilize the curvature between the inner and outer 

nuclear membranes19, 47. In yeast, the Y-shaped complex, also called the Nup84 

complex, consists of Nup133, Nup84, Nup145C, Sec13, Nup85, Seh1 and 
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Nup12048, and can be reconstituted from recombinant proteins or isolated using 

nonionic detergents and salts from budding yeast28, 30. The equivalent Y-shaped 

complex in vertebrates consists of Nup160, Nup133, Nup107, Nup96, Nup75, 

Nup43, Nup37, Seh1 and Sec13, and can also be isolated using detergents and 

salts29, 49, 50. The three-dimensional structure of the yeast Y-shaped heptameric 

complex was determined at a resolution of 35 Å22, and the available crystal 

structures were docked into the EM envelope22, 23 (Figure 5). 

 

Figure 5: The “divide-and-conquer” strategy is exemplified by the 

heptameric complex. (A) Surface rendition of the EM envelope of the 

heptameric complex at a resolution of 35 Å22. (B) Docking of available crystal 

structures into the EM envelope of the Y-shaped complex22, 23. The EM map is 

shown in mesh representation; crystal structures of ySeh1•Nup8532, 38, 

yNup12040, 51, ySec13•yNup145C•yNup8423, 25, 52, Nup107 CTD•Nup133 CTD37 

and the Nup133 NTD34 are shown in ribbon representation. Figure adapted 

from22, 23. 
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1.2 The NPC functions as a selective barrier 

 All transport of macromolecules in and out of the nucleus is dependent on 

the NPC, the only opening in the nuclear envelope. The NPC is a doughnut-

shape complex with a ~60 nm wide central transport channel11. The central 

transport channel is lined with the FG-repeat domains of the channel nups53. 

While molecules smaller than ~40 kDa can passively diffuse through the central 

channel of the NPC, larger molecules require facilitated transport54 (Figure 6). 

The FG motifs serve as binding sites for nuclear transport receptors called 

karyopherins or Kaps and facilitate their transport through the NPC55. 

 The transport of macromolecules is a four-step process and will be 

discussed in detail in the next section. In short, (1) the Kaps recognize and bind 

to their cargo, (2) the cargo-bound Kaps interact with the FG-domains lining the 

central channel of the NPC, (3) the Kap•cargo complex moves through the 

central channel and (4) a small GTPase, called Ran, dissociates the Kap•cargo 

complex at the other side of the nuclear envelope. 

 The transport barrier of the central channel of the NPC consists of the FG-

repeat domains of the channel nups53. The FG-repeat domains are natively 

unfolded and contain multiple phenylalanine-glycine (FG) motifs separated by 

hydrophilic residues56, 57. The transport receptors can bind to the FG motifs and 

traverse the transport barrier of the NPC58, 59. 
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Figure 6: Transport function of the NPC. While molecules smaller than ~40 

kDa (green and blue spheres) can freely diffuse through the NPC, larger 

molecules (orange and violet spheres) require facilitated transport. Image from 24. 
 

 

 The exact mechanism by which the interaction between Kaps and FG-

regions facilitates transport and maintains the barrier for non-Kap proteins is still 

under debate. Transport through the NPC requires the formation and dissociation 

of Kap•cargo complexes, while transit of the complex through the central channel 

of the NPC does not require energy per se60. The direction of transport can be 

reversed in vitro61, excluding explanations involving a molecular motor or an 

affinity gradient of Kap-binding sites on the FG-repeat domains within the central 

channel. Several models have so far been proposed (Figure 7). 

 Rout and coworkers proposed the “virtual gate” model in which the NPC 

can be viewed as an entropic barrier15. The free ends of FG-repeat domains are 

highly mobile and act as repulsive bristles occluding molecules from the central 

channel. The entropic repulsion behavior of FG-domains has been observed in 

vitro56. Specific binding of Kaps to the FG-domains of the peripheral nups 
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increases the probability of Kaps entering the channel and allows transport by 

Brownian motion62. Therefore, binding of the Kaps to the FG-domains overcomes 

the entropic barrier of entering the central channel, allowing Kap•cargo 

complexes to move through the NPC. 

 The “selective phase” model was suggested by Görlich and coworkers and 

proposes that the FG-repeats interact with each other via weak hydrophobic 

interactions, thereby forming a sieve-like hydrophobic FG-mesh, the “selective 

phase”63, 64. Indeed, FG-mediated cross-linking of FG-repeat regions was found 

to form an elastic, reversible hydrogel65. Transport Kap•cargo complexes can 

enter the selective phase and transiently open the FG-mesh barrier by binding to 

the FG-repeats. This allows Kap•cargo complexes to traverse the central 

channel66. 

 Rexach and coworkers proposed the “dual gate” model after an extensive 

in vitro study of FG-domain interactions67. To test for interactions between FG-

domains, soluble fluorescence-labeled FG-domains were mixed with bead-

immobilized GST-FG nups. Binding of the FG-domains was visible as 

fluorescence around the otherwise dark beads with the GST-FG nups. According 

to the dual gate model, the FG-repeat domains of the symmetric NPC core are 

cohesive and function as a selective mesh, whereas FG-domains of the 

peripheral structures function exclusively as repulsive bristles and form a 

“second” gate at the nuclear basket68. 
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Figure 7: The three models of selective transport. In the virtual gate model 

the FG-repeat domains act as repulsive “bristles” and occlude the space in the 

central channel (pink). In the selective phase model the FG-repeats form a sieve-

like hydrophobic FG-mesh (green). The dual gate model proposes that the FG-

domains at the center of the NPC function as a selective mesh (green), while the 

peripheral FG-domains function as repulsive “bristles” (pink). The FG-domains 

are shown as grey lines protruding into the central transport channel of the NPC. 

Kap•cargo complexes (blue) and molecules not bound to a Kap (grey) are 

depicted as spheres. The Kap-binding sites on the FG-repeats and FG-binding 

sites on Kaps are indicated by yellow and red dots, respectively. 
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1.3 Protein transport 

Protein transport through the NPC is dependent on short sequence elements in 

the cargo proteins that are recognized by karyopherins (Kaps), the transport 

factors (Figure 8). The sequence elements are called nuclear localization 

sequences (NLS) and nuclear export sequences (NES). Proteins containing a 

NLS are transported by import Kaps into the nucleus, whereas cargo containing a 

NES are transported into the cytoplasm by export Kaps69. Classical NLSs contain 

a cluster of three to five positively charged residues and can be monopartite or 

bipartite69, 70. The bipartite NLSs contain an additional cluster of arginine/lysine 

residues that is spaced 10 to 12 residues from the first cluster. NESs are diverse 

and less defined, but can contain a short leucine-rich signal71. 

 The transport is driven by a small GTPase called Ran. Ran can be found 

in a GTP-bound and a GDP-bound state in the cell. While Ran-GTP has a high 

concentration in the nucleus, the cytoplasm has a low Ran-GTP concentration, 

which results in a Ran-GTP gradient across the nuclear envelope72. The two 

regulators of GTPase activity, RCC1 and RanGAP1, establish the Ran-GTP 

gradient by their localization to distinct cellular compartments. RCC1 is the 

Guanine nucleotide exchange factor (GEF) and RanGAP1 is the GTPase-

activating protein (GAP) for Ran. While the RanGEF RCC1 is bound to 

nucleosomes in the nucleus and stimulates nucleotide exchange of Ran-GDP on  
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Figure 8: Protein transport through the NPC. Nucleocytoplasmic transport is 

facilitated by nuclear localization (NLS) and nuclear export signals (NES), which 

are recognized by transport factors, collectively called Kaps. The transport of 

Kap•cargo complexes is dependent on the Ran gradient, with high Ran-GTP 

concentration in the nucleus and Ran-GTP hydrolysis in the cytoplasm. Export 

Kap•cargo complexes can only be formed in the presence of Ran-GTP, while 

import Kap•cargo complexes are destabilized by it. Image reproduced from 24. 

 

chromatin, RanGAP1 is localized to the cytoplasm55, 73, 74. RanGAP1 needs 

additional activating cofactors, the Ran-binding proteins RanBP1 and RanBP2, to 

stimulate GTP hydrolysis and disassemble the Kap•cargo complexes75. In higher 

eukaryotes, RanGAP1 becomes sumoylated and binds to the cytoplasmic side of 

the NPC via interaction with RanBP2, also known as Nup35876-80. Therefore, 

GTP-hydrolysis of Ran is only activated at the cytoplasmic face of the NPC.  



INTRODUCTION 

 

 16 

 Transport through the NPC is driven by preventing the return of transport 

complexes to the donor compartment and is regulated by Ran. While Ran-GTP 

dissociates import-cargo•Kap complexes in the nucleus, export-cargo•Kap 

complexes are only formed in the presence of Ran-GTP and are dissociated 

upon GTP-hydrolysis in the cytoplasm55, 81, 82. When transport complexes are 

disassembled, new complexes are transported to the target compartment to 

restore equilibrium. Transport through the pore can therefore be viewed as a 

form of Brownian motion, where energy is required for transport complex 

formation and disassembly. 

1.3.1 Recognition of cargo by the karyopherin transport factors 

The majority of nucleocytoplasmic transport factors belong to the !-karyopherins 

(Kap-!)83.  The Kap-! recognize their cargo molecules either directly via a short 

sequence (the NES or NLS) or via an adaptor karyopherin (Figure 8). The Kaps 

mediating nuclear import are termed import Kap-! (or importins), while Kaps 

mediating nuclear export are termed export Kap-! (or exportins).  

 !#Karyopherins are large, HEAT-repeat containing proteins70. HEAT-

repeats are tandem repeats of about 40 residues that fold into a pair of "-helices. 

Multiple HEAT-repeats stack together in parallel with a slight right-handed twist. 

This Karyopherins fold into a superhelical architecture with an inner concave and 

an outer convex surface. 
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1.3.1.1 Nuclear import 

Proteins carrying classical NLSs are transported by karyopherin-!1 (Kap-!1). 

Kap-!1 binds not directly to NLS-containing cargo, but instead uses Kap-" as 

transport adaptor84. However, Kap-!1 can also bind to some cargo directly, as is 

the case with the sterol regulatory element-binding protein (SHREBP-2) or the 

parathyroid hormone-related protein (PTHrP)85, 86. Kap-" cannot interact with the 

FG-repeats by itself and contains an inhibitory segment at the N-terminus that 

functions as an "auto-NLS! 70, 87. The "auto-NLS! binds to the NLS-binding site of 

Kap-"  and prevents any interaction with cargo. Binding of Kap-!1 to the "auto-

NLS! (also called importin-!-binding domain, IBB) of Kap-" frees up the NLS-

binding site, allowing cargo to bind to the Kap-"•Kap-! complex and transport 

into the nucleus. 

 Structures of Kap-!1 have revealed that the convex surface is used for 

interaction with the FG-repeats59 (Figure 9 A), while the cargo binds at the inner 

concave surface84, 88 (Figure 9 B). 

 The Kap-!1 transport adaptor Kap-" contains an !auto NLS! or IBB 

domain as well as a NLS-binding domain. The NLS-binding domain consists of 

up to 10 armadillo repeats88. Armadillo repeats are structurally similar to the 

HEAT repeat fold, but are less variable in the length of their repeat and in amino 

acid sequence89. Similarly to Kap-!, Kap-" folds into an elongated shape with a 

convex and concave surface88, 90 (Figure 9 C). Kap-" has two clusters of lysine- 
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Figure 9: Structures of Karyopherins. Ribbon representation of Kap-!1 bound 

to (A) FG-motif peptides (stick representation, green) (PDB code 1F59) and (B) 

the IBB of Kap-" (light orange) (PDB code 1QGK). (C) Kap-" bound to a 

classical NLS (stick representation, blue) (PDB code 1BK6). 

 

binding pockets on its concave surface and binds NLS peptides in an extended 

conformation.  

 After transport into the nucleus, the Kap-!•Kap-"•cargo complex is 

dissociated by Ran-GTP55. Binding of Ran-GTP to Kap-! releases the "auto-NLS! 

(IBB) from Kap-!. Intramolecular binding of the auto-NLS in turn induces the 

release of the cargo-NLS from Kap-", thereby releasing the cargo in the nucleus. 

The Ran-GTP-bound Kap-! is then transported back to the cytoplasm to start a 

new cycle of transport. 
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1.3.1.2 Nuclear export 

While Ran-GTP dissociates import-Kap•cargo complexes in the nucleus, 

assembly of export-Kap•cargo complexes requires Ran-GTP. The export-Kap 

Cse1 (CAS in humans) is responsible for the export of Kap-" from the nucleus, 

and structural analyses have confirmed that its architecture is similar to that of 

import Kap-!91 (Figure 10 A). In the ternary complex comprising Kap-", Cse1 

and Ran-GTP, Ran-GTP is bound to the N-terminal arch of Cse1. The cargo, 

Kap-", is bound by both arches of Cse1, and also interacts with Ran-GTP92 

(Figure 10 B). 

 Leucine-rich NESs are recognized by the export-Kap Crm1 (exportin 1). 

Crm1 is also responsible for the export of snurportin from the nucleus. Snurportin 

is the import adaptor for snRNP and and will be discussed in section 1.4.3. The 

structure of the ternary complex comprising Crm1, snurportin, and Ran-GTP 

revealed that Crm1 adopts a ring-like, almost planar conformation93, 94 (Figure 

11). Ran is bound at the inside of Crm1, while snurportin binds to the outside of 

the Crm1 ring and not to the concave surface as seen in other cargo-Kap 

complexes84, 88. 
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Figure 10: Structure of the export-Kap Cse1. Structural overview of (A) Cse1 

unbound (grey) and (B) in complex with its cargo Kap-" (wheat) and Ran-GTP 

(blue). (PDB code 1Z3H and 1WA5). 

 

Figure 11: Structure of the export-Kap Crm1 in complex with Ran-GTP and 

snurportin. Structural overview of Crm1 bound to the cargo snurportin and Ran-

GTP. Crm1 is shown in grey, snurportin (SNUPN) in rose and Ran-GTP in blue 

(PDB code 3GJX). 
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1.4 RNA transport 

The transport of transfer RNA (tRNA), microRNA (miRNA), small nuclear RNA 

(snRNA) and ribosomal RNA (rRNA) follows the general paradigm of protein 

transport in the sense that it also depends on transport receptors of the 

karyopherin family and the Ran-gradient and cycle (Figure 12). However, mRNA 

export uses a transport receptor unrelated to the karyopherin family, which does 

not bind Ran and will be discussed in section 1.5. 

1.4.1 Export of tRNA 

There are roughly 40 different tRNAs in eukaryotic cells. tRNAs are transcribed 

by RNA polymerase III in the nucleus and fold into a clover-leaf like structure95. 

Before tRNAs are transported to the cytoplasm, multiple RNA processing steps 

have to be completed, including the removal of the 5! and 3! trailers, base 

modifications and addition of CCA-nucleotides to the 3! end of the tRNA95. The 

class-specific transport receptor for tRNA is the karyopherin exportin-t96, 97. 

Exportin-t binds directly to tRNAs in a Ran-GTP dependent manner and 

recognizes a tertiary structural element as a nuclear export signal (NES), which 

consists of properly processed 3! and 5! tRNA termini98 (Figure 12 A). 

1.4.2 Export of miRNA 

miRNAs are non-coding RNAs that are involved in the gene regulation of a wide 

range of biological processes including apoptosis, immunity, cell differentiation 
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and development99-101. miRNAs are transcribed by Pol II or III, contain a 

characteristic stem-loop structure, and initially receive a 5! cap and a poly(A)-

tail102, 103. This primary transcript is cleaved by the RNAse Drosha to yield the 

~65-nucleotide long, export-competent intermediate called pre-miRNA. The pre-

miRNA contains a double-stranded stem-loop RNA helix with a short 3! overhang 

that is recognized by the miRNA karyopherin exportin-5 in a Ran-dependent 

manner104 (Figure 12 B). After export into the cytoplasm, GTP-hydrolysis 

disassembles the export complex. The pre-miRNA is further cleaved by Dicer 

and incorporated into the RNA-induced silencing complex (RISC)105. 

1.4.3 Transport of snRNA 

Most spliceosomal RNAs (snRNAs) are synthesized by Pol II and acquire a 5! 

cap106. The snRNAs do not have a distinct karyopherin, but use the general 

karyopherin Crm1 in combination with the NES-containing adaptor protein named 

PHAX. Recruitment of Crm1 to the pre-snRNA requires phosphorylation of PHAX 

in the nucleus as well as the cap-binding complex (CBC) and Ran-GTP107, 108 

(Figure 12 C). After export from the nucleus, GTP-hydrolysis of Ran as well as 

dephosphorylation of PHAX are required to dissociate the export complex and 

release the pre-snRNA107. In the cytoplasm, the pre-snRNA associates with a 

heptameric ring of Sm proteins, inducing tri-methylation of the RNA and 3! 

processing. The tri-methyl cap together with the Sm proteins provides a 

composite NLS that is recognized by the nuclear import-adaptor snurportin and 
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the karyopherin Kap-!109. After re-import into the nucleus the snRNPs assemble 

into the spliceosome110. 

 

 

 

 

 

Figure 12: Assembly of export-competent RNA for tRNA, miRNA, snRNA 

and mRNA. For each RNA class the primary transcript (top) as well as the export 

competent RNA (bottom) with assembled transport factors are shown. The 

transport receptors are (A) Exportin-t (Exp-t) for tRNA, (B) Exportin-5 (Exp-5) for 

miRNA, (C) Crm1 for snRNA and (D) TAP/p15 for mRNA. The transport adaptor 

proteins are the Cap binding protein complex (CBC), PHAX for snRNA, and CBC 

and Aly for mRNA. Ran-GTP is shown as an orange sphere. 
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1.5 mRNA export 

While RNA classes with highly related structures, like tRNAs or miRNAs, can be 

recognized by class-specific transport receptors as described above, mRNAs 

vary substantially in sequence, length and structure. Typically, eukaryotic mRNAs 

are synthesized by Pol II as pre-mRNA and undergo rigorous processing in the 

nucleus. Splicing, 5! capping, editing and polyadenylation deposit a multitude of 

proteins on the mRNA and generate a messenger ribonucleoprotein (mRNP)111 

(Figure 12 D).  

 The transport process of the mRNP through the NPC can be directly 

visualized in the salivary gland cells of Chironomus tentans using EM. The giant 

transcript of the Balbiani ring (BR) genes is cotranscriptionally packaged into a 

large mRNP particle (BR particle). The BR mRNP particle folds into a ring-like 

structure with four domains and a diameter of 50 nm (Figure 13 B)112, 113. 

Domain 1 is synthesized first and contains the 5! end of the mRNA, whereas 

domain 4 contains the 3! end. When the BR particle reaches the NPC, the 

structure of the BR mRNP changes dramatically114 (Figure 13 A). The particle 

unfolds, elongates, and becomes rod shaped. The elongated particle has a 

diameter of ~25 nm as it travels through the NPC and emerges with the 5! end of 

the transcript in the lead115. Instead of reforming the globular particle, the 5! end 

of the unfolded fiber associates with ribosomes almost immediately upon entering 

the cytoplasm115 (Figure 13 C).  
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Figure 13: Translocation of the BR mRNP particle through the NPC. (A) A 

series of electron-micrograph shows the movement of the BR mRNP particles 

(arrow) through the NPC114. The BR mRNP docks as a globular particle to the 

NPC and elongates during transport (left to right). (N, nucleus; Cy, cytoplasm). 

(B) Surface rendition of a cryo-ET structure of a free, nuclear BR mRNP particle 

at 4 nm resolution112. The four domains of the BR particle are indicated. (C) 

Electron micrograph of BR mRNP particles with their leading 5! end associating 

with ribosomes (arrows). (D) Schematic representation of the movement of the 

BR mRNP particle shown in A. The very right picture depicts a particle with 

associated ribosomes. Figures reproduced from115, 116. 
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The four main processing events during formation of a mature mRNP are 

5! capping, splicing, 3!-end cleavage and polyadenylation111. Each of these 

processes impacts mRNA export in two ways. First, if the pre-mRNA is not 

properly processed, the pre-mRNA gets targeted for degradation. Second, during 

the processing, factors necessary for export are recruited. 

After transcription of ~20 to 30 nucleotides, a 7-methylguanosine cap is 

added to the nascent pre-mRNA. This 5! cap protects the transcript from 

degradation in the nucleus117. Microinjection experiments in Xenopus have 

shown that uncapped mRNA is poorly exported118. The 5! cap is bound by the 

nuclear cap-binding complex (CBC), which consists of CBC20 and CBC80119. 

The process of splicing is catalyzed by the spliceosome, a complex composed of 

multiple proteins and RNAs, which removes introns from the pre-mRNA120, 121. 

Splicing deposits a multi-protein complex, the exon-junction complex (EJC), near 

the junction of exons122, 123. Finally the polyadenylation site is recognized in the 3! 

untranslated region (UTR) and the pre-mRNA cleaved by the cleavage and 

polyadenylation specificity factor (CPSF). After cleavage, a poly(A) tail is added 

by the poly(A) polymerase (PAP) and bound by poly(A) binding proteins 

(PABP)124. 

Some of the proteins in the mRNP are mRNA export adaptors and mRNA 

export receptors. The mRNA export receptor complex TAP/p15 consists of a 

large (~70 kDa, TAP) and a small (~15 kDa, p15) subunit that together act as a 
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single functional unit. TAP contains an N-terminal domain, which interacts with 

cargo, and a C-terminal domain that is required for interaction with the FG-

domains125, 126 (Figure 14). The C-terminal domain consists of the p15 

interacting domain and a ubiquitin-associated fold (UBA-like) (Figure 14 B). TAP 

forms a heterodimer with p15 and contains two FG-repeat binding sites: one on 

the p15 interacting domain and one on the UBA-like fold at the C-terminus58, 127. 

p15 lacks an FG-binding pocket. Although TAP/p15 can interact with the FG-

repeats of the nups directly, this mRNA export receptor is structurally unrelated to 

the karyopherin receptor family and does not interact with Ran58.  

The N-terminal of domain of TAP contains an RNA-recognition motif 

(RRM) and a leucine-rich region (LRR) (Figure 14 A). The RRM domain of TAP 

is not essential for general mRNA export activity, but can associate with some 

cargo directly128. For instance, the RRM and LRR domains of TAP bind directly to 

simian virus RNAs containing a constitutive transport element (CTE)125. The CTE 

helps the virus to overcome nuclear retention of unspliced RNAs and allows for 

nuclear export by recruitment of TAP/p15129. However, the bulk of TAP/p15 cargo 

is not recognized directly, but via transport adaptors. 

 From the mRNA export adaptors only a few have been identified. mRNA 

export adaptors are classical RNA binding proteins, and their main function is to 

recruit the mRNA export receptor complex TAP/p15 to the mRNP130. In addition, 

the mRNA export adaptors also serve as communicators between upstream 

processing steps and mRNA export.  
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 The main export adaptor protein for TAP/p15 is Aly. Aly contains a 

conserved RNA-binding domain (RBD)131, 132 which is flanked by sequences that 

interact with the N-terminal domain of TAP133. Aly is recruited to the mRNA via a 

direct interaction with the RNA helicase UAP56, which in turn is recruited by the 

multi-protein subcomplex THO. THO, UAP56 and Aly together form the 

transcription-coupled export complex (TREX). In yeast and unspliced mRNA 

transcripts, TREX is continuously loaded onto the emerging transcripts. In spliced 

transcripts, TREX is recruited to the transcript in a splicing-dependent manner via 

the EJC, as well as in a cap-dependent manner via CBC80118. Aly then facilitates 

association of the mRNA export receptor TAP/p15 with the mRNP. The cap-

dependent recruitment cascade may explain the observation that Balbiani ring 

mRNPs of Chironomus tentants emerge with their 5! cap first in a 5! to 3! direction 

from the NPC115, 134. 

 Two other export adaptors, SRp20 and 9G8, belong to the serine/arginine 

rich proteins (SR proteins). SR proteins are essential splicing regulators that are 

important in constitutive and regulated splicing of pre-mRNA135. SR proteins 

associate with the mRNP in a hyperphosphorylated form, but can also associate 

with the poly(A) tail and via an mRNA export element in intron-less mRNPs136. 

During splicing, the SR proteins are dephosphorylated, which favors recruitment 

of TAP/p15 to the mRNP. Thus, the phosphorylation status of SR proteins can 

act as a signal for export competency of spliced mRNPs137. 
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Figure 14: The mRNA export receptor complex TAP/p15. (A) Structural 

overview of the N-terminal domain of TAP containing the RRM (left) and LRR fold 

(right). A dashed line indicates the unstructured connector between the two folds. 

(PDB code 1FO1). (B) The C-terminal domain of TAP consists of the p15 

interacting domain (left) and a ubiquitin-like fold (right). FG-motifs bound to Tap 

are shown in green. (PDB code 1JN5, 1OAI). 
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1.5.1 Uni-directionality of mRNA export can be achieved by a molecular 

ratchet mechanism 

All macromolecules larger than ~40 kDa require facilitated transport across the 

central channel of the NPC. mRNAs are synthesized in the nucleus and are 

packaged into an mRNP that has to be transported to the cytoplasm where 

translation takes place. Transport of proteins and most classes of RNA is 

achieved by the karyopherin transport factors. Kaps bind the cargo and interact 

with the FG-repeat domains of the NPC. Ran regulates formation and 

disassembly of the transport complexes and determines the direction of 

transport. However, the transport receptor complex for mRNA, TAP/p15, belongs 

to a distinct protein family and is unable to interact with Ran. Therefore, the 

mechanism by which uni-directionality is achieved is still unknown.  

 Recently a molecular ratchet mechanism has been proposed138 (Figure 

15). In this model the mRNP moves through the NPC by thermal motion and by 

the interaction of its export receptor TAP/p15 with the FG-repeat domains. Once 

the mRNP arrives on the cytoplasmic face of the NPC, an RNA helicase uses 

ATP-hydrolysis to remove from the mRNP those molecules that facilitate 

passage through the NPC. The mRNP is unable to slide backwards and 

consequently is transported out of the nucleus. Although the RNA helicase and 

its activating cofactor involved in mRNA export have been identified in yeast, the 
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energy requirements as well as the exact mechanism by which the displacement 

of proteins from the mRNP is achieved are still unclear. 

 

 

 

Figure 15: Schematic illustration of transport of large mRNPs by a 

Brownian ratchet through the NPC. (1) Thermal fluctuations move a mature 

mRNP with several mRNA export receptors bound (blue line with red circles) 

through the NPC. The transit is facilitated by interaction of the export receptor 

and the FG-repeat domains. (2) When the first export receptor reaches the 

cytoplasmic side of the NPC, it is removed by the DEAD-box helicase yDbp5. 

yGle1 stimulates the ATPase activity of yDbp5. (3) The removal of the export 

receptor functions as a molecular ratchet and prevents the mRNP from moving 

back into the transport channel. (4) The next mRNA export receptor is removed 

by another cycle of ATP-hydrolysis. (5) This creates a longer segment of mRNP 

that is prevented from backsliding into the transport channel and ratchets the 

mRNP out of the nucleus. Figure reproduced from Stewart58. 
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1.6 NPC and NPC associated proteins in mRNA export 

To identify proteins involved in mRNA transport, genetic screens for mutants that 

display accumulation of poly(A) RNA in the nucleus as well as genetic 

interactions with known mRNA export factors have been analyzed. Several nups 

and NPC-associated proteins are implicated in mRNA export in yeast139-142 

(Table 1, Figure 16). While the exact role of most nups in mRNA export is still 

unknown, specific functions in mRNA export have been identified for some and 

will be discussed in this section142. 

 

Table 1: Human and yeast homologues of nups and NPC-associated 

proteins involved in mRNA export. 

nups NPC-associated proteins 

human yeast human yeast 

Tpr yMlp1, yMlp2 Ddx19 yDbp5 

Nup98 yNup116 Gle1 yGle1 

Nup75 yNup85 Rae1 yGle2 

Nup62 yNsp1   

Nup88 yNup82   

Nup214 yNup159   

Nup358 -   

hCG1 yNup42   
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Figure 16: Schematic representation of the nups and NPC-associated 

proteins implicated in mRNA export. The relative positions of the yeast (left) 

and human (right) proteins of the cytoplasmic filaments (blue), symmetric core 

(yellow) and the nuclear basket (violet) as well as the NPC associated proteins 

(cyan) involved in mRNA export are indicated. 



INTRODUCTION 

 

 34 

1.6.1 The nuclear basket nups yMlp1 and yMlp2 function in mRNA 

surveillance 

In yeast, the Mlp!s are localized to the nuclear site of the NPC and are involved in 

mRNP quality control at the NPC by assuring that only mature, fully processed 

mRNPs are transported to the cytoplasm143. In a proposed two-step mechanism, 

Mlp1 first concentrates export-competent mRNPs at the NPC by direct interaction 

with the hnRNP Nab2144, which is involved in poly(A)+ length control. Then, 

incompletely spliced mRNPs are tethered and retained at the nuclear basket of 

the NPC. This retention is mediated by an RNA-dependent interaction with the 

branch-point binding protein SF1145. 

 

1.6.2 The cytoplasmic filaments and mRNA export 

1.6.2.1 Nup214 recruits the essential DEAD-box protein Ddx19 to the NPC 

In the human NPC, Nup214 is asymmetrically localized to the cytoplasmic 

filaments of the NPC146, and together with Nup88 and Nup358 forms the Nup88 

complex. The complex is anchored via a conserved interaction with Nup98 and 

Nup62 to the symmetric core of the NPC31, 147-149. Nup214 contains an N-terminal 

all-!-sheet region, which is followed by an "-helical region, and a C-terminal FG-

repeat containing domain (Figure 17 A). One of the main roles of the nups 

involved in mRNA export seems to be to recruit and coordinate essential mRNA 

export factors at the NPC. In the case of Nup214, an N-terminal region has been  
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Figure 17: Domain structures of Nup214, Ddx19 and Gle1. Domain structures 

of (A) Nup214 and its yeast homologue yNup159, (B) the DEAD-box helicase 

Ddx19 and its yeast homologue yDbp5, and (C) Gle1 and its yeast homologue 

yGle1. The approximate domain boundaries are based on secondary structure 

analysis and are indicated above the domains. 

 

found to interact with the DEAD-box helicase Ddx19150. Mutations in Ddx19 that 

disrupt binding to Nup214 inhibit mRNA export and cause poly(A)+ mRNA 

retention in the nucleus in yeast35. 

1.6.2.2 Ddx19 is a DEAD-box helicase involved in mRNA export 

The yeast homologue of Ddx19, yDbp5, is an essential protein that was first 

discovered in a search for DEAD-box protein genes140, 151 as well as in a genetic 

screen for mutants with mRNA export defects152. DEAD-box proteins are a large 

protein family found in all eukaryotes and most prokaryotes153. The family is 

named after the amino acid sequence D-E-A-D of one of the nine conserved 



INTRODUCTION 

 

 36 

consensus motifs. The conserved motifs are distributed over the entire length of 

the protein core and are involved in nucleotide coordination or substrate binding 

(Figure 18). The core sequence of DEAD-box proteins is typically ~350 residues 

long and not conserved at the primary level154. Nevertheless, all DEAD-box 

helicases fold into two globular RecA-like domains that are connected by a 

flexible linker155. The core sequence can be supplemented by N- or C-terminal 

extensions and it is thought that these flanking regions confer specificity. This 

may explain why DEAD-box proteins are unable to substitute for each other. 

 DEAD-box proteins are involved in virtually all processes of mRNA 

biogenesis: from transcription to splicing, export, translation and decay. Although 

DEAD-box proteins typically function in larger protein complexes, which hampers 

their characterization, the few that have been biochemically characterized 

possess ATPase, RNA binding and unwinding activity, and are therefore also 

referred to as DEAD-box helicases. Intrinsically, DEAD-box helicases have a low 

ATPase activity. The ATPase activity is stimulated greatly by RNA as well as 

ATPase activating cofactors, as exemplified by the eIF4A DEAD-box helicase, 

which requires binding of the eIF4B and eIF4F cofactors for its function in 

translation initiation156. 

 Although DEAD-box proteins are often referred to as DEAD-box helicases 

or RNA helicases, helicase activity was demonstrated only for a small subset of 

DEAD-box proteins and the binding of RNA is unspecific and stimulated by  
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Figure 18: Domain structure of DEAD-box proteins. The N-terminal (NTE) 

and C-terminal (CTE) extensions (yellow) and the core domain (white) are 

shown. The nine conserved sequence motifs interacting with nucleotide (shown 

in ball-and-stick representation) or substrate (grey box) are indicated in red.  
 
 

ATP153. While most of the characterized helicases have been shown to require a 

ssRNA overhang to unwind short RNA duplexes, some are able to unwind blunt-

end dsRNA, e.g. eIF4A or RhlE in vitro157. The helicase activity of DEAD-box 

proteins is generally bidirectional, not processive, and highly dependent on the 

stability of the dsRNA duplex. A “destabilization model” for helicase activity has 

been proposed158. In this model, the helicase binds to a single stranded region of 

the RNA, after which the ATPase cycle results in a structural rearrangement of 

the two domains of the helicase. This in turn destabilizes the structure of the 

bound RNA. However, the molecular details of the RNA duplex destabilization 

are still unknown. 
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1.6.2.3 Gle1 

Gle1, which stands for glycine-leucine-phenylalanine-glycine mutant 1, is an 

essential mRNA export factor and was first discovered as a high copy extragenic 

suppressor of a Nup159 temperature sensitive allele141. In yeast, yGle1 was also 

found in a screen for mutations synthetically lethal with an yNup100 disruption159. 

Additionally, genetic and physical interaction between yGle1 and yNup42, 

yNup100, yDbp5 implicate Gle1 as an important factor in mRNA export160. 

Gle1 is an all-"-helical protein, and the human and yeast Gle1 

homologues are highly conserved (Figure 17 C). Although the C-terminal 

domains are 54% identical the human protein is, however, unable to rescue a 

yGle1 null mutation in yeast161. The human Gle1 gene contains a cryptic splice 

site in exon 14 and is expressed as two transcript variants, hGle1A and hGle1B 

that contain distinct C-termini162. Gle1A mRNA is ~1000 fold less abundant, and 

the protein does not localize to the nuclear rim and has not been characterized in 

detail. Gle1B is the prevalent isoform, and will be subsequently referred to as 

Gle1.  

Gle1 is an NPC-associated protein, and is localized to the cytoplasmic 

filaments159, 160 via an interaction with the C-terminal domain of Nup155 as well 

as the non-FG-repeat domain of hCG1162, 163. Gle1 was identified as an ATPase-

activating cofactor for yDbp5, which has a low ATPase activity by itself. In 

addition, Gle1 directly binds to phytic acid, also known as inositol-

hexakisphosphate (IP6). IP6 was found to potentiate yGle1-mediated stimulation 
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by increasing the catalytic efficiency of yDbp5 approximately 16-fold in vivo in the 

presence of yGle1 and RNA164, 165. Therefore, yGle1-IP6 controls the activation of 

yDbp5 in the cell. 

1.6.2.4 Ddx19, Nup214 and Gle1 are involved in the terminal export step of 

mRNA 

Little is known about the enzymatic activity of Ddx19. However, it has been 

shown that Ddx19 can unwind short double stranded RNA duplexes with 5! and 

3! overhangs, and that it has a low intrinsic ATPase activity that requires Gle1-IP6 

and RNA for maximum stimulation in yeast140, 150. yDbp5 and yGle1 are both 

recruited to the cytoplasmic filaments of the NPC47, 150. Therefore, the ATPase 

activity of the helicase is spatially controlled and becomes stimulated only at the 

cytoplasmic side of the NPC166. New results suggest that yDbp5 and yGle1-IP6 

may be involved in the terminal step of mRNA export from the nucleus by 

removing mRNA export receptors from the mRNP166, 167. It is predicted that ATP 

hydrolysis causes a conformational change in the helicase, which results in 

mRNP remodeling. However, yDbp5-ADP was shown to be sufficient for the 

removal of RNA-binding proteins167. In addition, ATP hydrolysis was shown to be 

unnecessary for RNA strand separation, but required for RNA release in three 

different DEAD-box proteins168. Because of these conflicting data, the 

mechanism of RNA remodeling by DEAD-box helicases remains unclear. 
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1.7  mRNA export nups and human diseases 

Many nups that have been shown to have a role in mRNA export were also found 

to play a significant part in the development of cancer. Chromosomal 

translocations have been identified for TPR, Nup358, Nup98 and Nup214, while 

Nup88 overexpression has been linked to tumor progression (Figure 19). 

 

 
 

Figure 19: Nuclear pore complex proteins and cancer. Schematic 

representation of nups involved in mRNA export with nups implicated in cancer 

highlighted by a red star. The yeast homologues are indicated on the left. 
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1.7.1 Nup88 as a prognostic marker for tumor state 

Nup88 is a non-FG repeat containing nup that is localized exclusively to the 

cytoplasmic side of the NPC (Figure 20 A). The Nup88 complex, consisting of 

Nup88, Nup214 and Nup358, is anchored via a conserved interaction with Nup98 

and Nup62 to the symmetric core of the NPC31, 147-149. Nup88 is consistently 

found to be overexpressed in carcinomas, sarcomas, lymphomas and ovarian 

tumors169-171, and the level of overexpression of the Nup88 transcript correlates 

with the malignant phenotype of the cancer172. Staining for Nup88 in tumor cells 

reveals that Nup88 accumulates in the cytoplasm170. The intensity of staining 

correlates with tumor aggressiveness and invasiveness in breast, colorectal and 

hepatocellular carcinomas170, 172-174. Therefore Nup88 has been proposed as a 

marker of tumor state and a potential indicator of patient prognosis175. The exact 

nature of the link between Nup88 overexpression and cancer is unknown. In the 

absence of Nup88, active NF-$B accumulates in the cytoplasm in Drosophila. 

NF-$B is a ubiquitous transcription factor that controls the expression of genes 

involved in immune responses, apoptosis, and cell cycle. Conversely, Nup88 

overexpression may lead to decreased NF-$B export, resulting in an 

accumulation of NF-$B in the nucleus and aberrant upregulation of target 

genes175. 
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1.7.2 TPR receptor tyrosine kinase fusions involved in cancer 

TPR (translocated promoter region) is a 265 kDa protein and is localized 

exclusively to the nuclear side of the NPC, where it is the major component of the 

nuclear basket176. TPR is found in chromosomal translocations that fuse the N-

terminal sequences of TPR to the tyrosine kinase domain of the proto-oncogene 

MET, which results in a 65 kDa cytoplasmic TPR-Met fusion protein177 (Figure 

20 B). Dimerization through the N-terminal TPR domain leads to constitutive 

activation of the Met kinase, which is responsible for the activation of the 

Ras/MAPK and Pl3K pathways. Although TPR-Met translocations are not 

common, they have been found to be associated with gastric carcinomas and are 

thought to represent an early step in carcinogenesis178, 179. 

 TPR has also been found in chromosome translocations resulting in TPR-

TrkA fusion proteins180. TrkA is the transmembrane tyrosine kinase receptor for 

nerve growth factor and the fusion proteins of TPR and other proteins to TrkA are 

associated with the most common type of thyroid cancer175, 180. 

1.7.3  Nup358 translocations 

Nup358 localizes to the cytoplasmic side of the NPC, where it is the main 

component of the cytoplasmic filaments. It is the largest mammalian nup and 

contains an N-terminal "-helical region followed by Ran-GTP-binding domains, 

eight zinc finger motifs, an E3 ligase domain and a C-terminal cyclophilin A 

domain76, 181 (Figure 20 C). 
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 A chromosomal translocation, found in inflammatory myofibroblastic 

tumors, fuses the N-terminal region of NUP358 to the ALK gene182. The 

anaplastic lymphona kinase (Alk) is a membrane associated tyrosine kinase 

receptor, with a role in nervous system development and maintenance183. In the 

fusion protein a ~900 residue long N-terminal region of Nup358 is fused to the 

cytoplasmic segment of Alk. The Nup358-Alk fusion protein is a constitutively 

activated tyrosin kinase and localizes to NPCs. It has been hypothesized that the 

N-terminal domain of Nup358 promotes oligomerization and activation of the Alk 

kinase domain182. 

1.7.4 Nup98 fuses to homeodomain protein genes 

Nup98 is a mobile nup and localizes to both sides of the NPC via interaction with 

Nup96 on the nuclear side and Nup88 on the cytoplasmic side147, 184. Nup98 was 

first identified in chromosomal translocations that fuse the 5! half of the NUP98 

gene with 3! portions of the HOXA9 gene in patients with acute myeloid leukemia 

(AML)185, 186. The 98 kDa fusion protein localizes to the nucleoplasm and 

contains the FG-repeat domain and Rae1-binding site of Nup98, as well as the 

DNA-binding homeodomain of HoxA9187 (Figure 20 D). Subsequently, Nup98 

fusions to a variety of Hox targets have been identified in patients with AML as 

well as chronic myeloid leukemia and pre-leukemic myelodysplastic syndrome 

(MDS)175. Homeodomain proteins are important transcription factors that function 

as regulators of development and differentiation188. There are four clusters of 

class I homeobox genes each containing 8 to 11 of 13 paralog gene groups in 
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humans. The HOX genes of the HOX A, B and C cluster are expressed in stem 

and immature progenitor cell populations, but are downregulated during 

differentiation to mature hematopoietic cells. The less conserved class II 

homeobox genes are dispersed throughout the genome and act as cofactors for 

other Hox transcription factors. 

 In addition to the Nup98-Hox fusions, fusions of Nup98 to a variety of 

other nuclear proteins have been identified. These include topoisomerases, 

histone modifying enzymes like NSD1 and NSD3 methyltransferases, chromatin 

binding proteins like SetBp1 as well as a multitude of other proteins175. The 

identified fusion partners of Nup98 indicate changes in global transcription as a 

mechanism for Nup98-induced leukemogenesis. This notion is backed by the fact 

that gene expression profiling has shown that a number of HOX genes are 

upregulated in cells expressing Nup98-HoxA9 fusions189. 
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Figure 20. Domains structure of nups and nup fusion proteins. Domain 

structure of (A) Nup88, (B) TPR and TPR fusions to the tyrosine kinase domain 

(light red) of Trk and Met. Domain structure of (C) Nup358 and its fusion with the 

Alk receptor tyrosin kinase, and (D) Nup98 and fusions to the homedomain (pink) 

of Hox proteins. 
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1.7.5 Nup214 fusions are found in leukemia 

The Nup214 gene was first identified as a target for chromosome translocation, 

and because of its close location to the oncogene c-ABL on chromosome 9, 

named Cain (CAN)190. Nup214 is essential during development, and Nup214 

homozygous knockout mouse embryos show protein import and mRNA export 

defects and die once the maternal Nup214 protein is depleted191. 

Nup214 fusion proteins have been found in at least three different 

chromosome translocations. The first identified chromosomal translocation fuses 

the DEK and NUP214 genes, another fuses the SET and NUP214 genes, and an 

episomal translocation fuses NUP214 with ABL1 (Figure 21). 

The Dek-Nup214 fusions were first reported in a subtype of AML that 

affects young adults and is characterized by a poor prognosis190. The Set-

Nup214 fusions were found in patients with undifferentiated leukemia (AUL)192 

and T-cell acute lymphoblastic leukemia (T-ALL). Dek and Set are nuclear 

phosphoproteins of 45 and 41 kDa, respectively, and are major components of 

chromatin193. Dek induces positive supercoils into closed circular DNA in vitro194 

and, in complex with casein kinase 2 (CK2), is thought to serve as a histone 

chaperone, thereby enabling or inhibiting chromatin accessibility195, 196 

Dek-Nup214 fusion results in a 165 kDa fusion protein with nuclear 

localization190. The fusion protein includes residues almost the entire sequence of 

Dek and the C-terminal portion of Nup214, including part of the coiled-coil and 

the entire FG-repeat region. The Dek-Nup214 fusion protein is unable to bind to 



INTRODUCTION 

 

 47 

CK2 and it is likely that the chaperone and transcriptional regulation function of 

Dek is impaired195. The exact mechanism of the defect, however, is unknown. 

Set is a member of the inhibitor of histone acetylation and transcriptional 

activation (INHAT) complex197, but was identified as an activator of transcription 

in vitro196 as well as on transcriptionally active sites on polytene chromosomes of 

Drosophila198. Set was found to remove Dek from chromatin in order to permit 

access by the transcription machinery. Therefore, Set and Dek may interact 

functionally as opposing factors in a regulatory cycle to control access to 

chromatin199. In the 155 kDa Set-Nup214 fusion, Set is fused to the exact same 

C-terminal portion of Nup214 as in the Dek-Nup214 fusion. Set-Nup214 is 

localized to the nucleus and was indicated by ChIP experiments to bind to a 

subset of HOXA gene promotors, which may contribute to T-ALL pathogenesis 

by blocking T-cell maturation through transcriptional activation of the HOXA 

genes200. Whether the involvement of the Set- and Dek-Nup214 fusion proteins 

can be explained only by this block of differentiation or whether additional 

mechanisms are involved in leukemogenesis remains to be seen. 

The third chromosomal translocation involving Nup214 is found in  ~6% of 

patients with T-ALL. In these patients, extrachromosomal episomes derived from 

a region of chromosome 9 are found. The episomes are found in 5 - 50 copies 

and contain the 3! part of ABL1, the LAMC3, and the majority of NUP214201. 

Circularization generates an ABL1-NUP214 fusion-gene that lacks the regulatory 

exon 1 of the Abl1 tyrosine kinase and results in a constitutively activated kinase-
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fusion protein. The breakpoint in Nup214 is somewhat variable, between residue 

1106 and 1800; however, the fusion-protein always contains the N-terminal !-

propeller as well as the majority of the coiled-coil domain (Figure 21). The Abl1-

Nup214 fusion protein is highly over-expressed and retains Nup214!s ability to 

localize to the NPC, which is required for the transformation potential202. It is easy 

to envision that Abl1-Nup214 competes with Nup214 for binding at the 

cytoplasmic filaments. The high concentration of Abl1-Nup214 at the pore would 

increase autophosphorylation and activation of the Abl1 kinase, and provide 

close contact to kinase substrates as they travel through the pore, and would 

result in unregulated phosphorylation of proteins at the NPC175. 
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Figure 21: Nup214 is the target of three different chromosomal 

translocations resulting in fusion proteins. Domain structures of the proto-

oncogene Nup214 fusion proteins Dek-Nup214, Set-Nup214 and Nup214-Abl1. 

The Dek-Nup214 contains residue 1- 349 of 375 from Dek fused to the C-terminal 

portion, residues 1209 to 2090, of Nup214. Set-Nup214 contains residue 1- 269 

of 277 from Set and the exact same C-terminal part of Nup214 as in Dek-

Nup214. In the Nup214-Abl1 fusions the breakpoint of Nup214 is between intron 

23 and 24, which results in a fusion protein that includes at least the !-propeller 

and most of the coiled-coil domain. 
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2 RESULTS AND DISCUSSION 

Since high-resolution structural information of the mRNA export machinery at the 

NPC is unavailable, the principles that govern the terminal step of mRNA export 

at the NPC remain poorly understood. In order to deepen our understanding of 

the architecture and the regulation of the mRNA export machinery at the NPC as 

well as of the role of nups involved in leukemogenesis, I set out to biochemically 

and structurally characterize Nup214 for my thesis work. My objective was to 

analyze the interaction of Nup214 with the essential mRNA export factor Ddx19. 

After first determining the crystal structure of the human proto-oncogene Nup214, 

I characterized the interaction of Nup214 with Ddx19, and finally solved the 

structure of the Nup214•Ddx19 complex.  

 

2.1 Biochemical and structural analysis of Nup214 

2.1.1 Domain organization and localization 

Nup214 is positioned at the cytoplasmic side of the NPC and interacts with 

proteins of the mRNA export machinery146, 203, 204. An N-terminal region of 

Nup214 has been found to interact with the DEAD-box helicase Ddx19, and 

mutations in Ddx19 that disrupt binding to Nup214 inhibit mRNA export in 

yeast150. To investigate and clarify the domain organization of Nup214, we 

performed primary structure and sequence conservation analysis, as well as 

secondary structure predictions for the 2090-residue human Nup214. We 
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identified the approximate domain boundaries of three structurally distinct 

domains: an N-terminal ~400-residue all-!-sheet region which is followed by an 

~200-residue unstructured region, an ~500-residue "-helical region, and an 

~900-residue C-terminal region (Figure 22 A, top row). The C-terminal region of 

Nup214 contains a large number of FG-repeats, which are predicted to be 

natively unfolded. 

 Previous studies have shown that Nup214 localizes to the cytoplasmic 

filaments of the NPC together with Nup88 and Nup358146, 149. To identify the 

functions associated with the various domains of Nup214 with respect to the 

integration to the NPC, we analyzed the localization of various HA-tagged 

Nup214 fragments in HeLa cells (Figure 22, B). We found that full-length 

Nup214 is localized to the nuclear envelope in an identical fashion to 

endogenous Nup358, which served as a control for nuclear rim staining. 

Furthermore, Nup214 fragments with a deletion of the NTD (Nup214 %NTD), or 

the FG-repeats (Nup214 %FG), or both (Nup214 %NTD %FG) are still able to 

localize to the nuclear rim. However, HA-tagged Nup214 NTD is dispersed 

throughout the cell, but not enriched at the nuclear rim, which suggest that the 

NPC-targeting region resides in the central helical domain of Nup214. The 

nuclear rim staining of endogenous Nup358 is unaffected by all over-expressed 

Nup214 fragments. 
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Figure 22: Localization of human Nup214. (A) Domainstructure of Nup 214 

and Nup214 deletion constructs used for the in vivo localization study. Individual 

FG-repeats of the FG-repeat domains are indicated by a green line. (B) 

Localization of Ha-tagged Nup214, Nup214 NTD, Nup214 %NTD, Nup214 %FG 

and Nup214 %NTD %FG. The localization of the HA-tagged Nup214 variants is 

shown in (green), Nup358 localization (red) is shown as reference for rim 

staining. 
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2.1.2 Expression 

Since the N-terminal region of Nup214 was shown to bind the mRNA export 

factor Ddx19 by immuno-precipitation150, we designed a series of expression 

constructs for the N-terminal all-!-sheet region of Nup214 (Table 4). The 

constructs were expressed in E. coli and tested for solubility. While the shorter 

Nup214 NTD fragments were largely insoluble, we identified a stable fragment 

composed of residues 1-450, which we termed Nup214 NTD (Figure 23). 

2.1.3 Purification and crystallization of Nup214 NTD 

Human Nup214 NTD was expressed in BL21(DE3) cells, purified using 

appropriate affinity and gel filtration chromatography (for details of the purification 

see Materials and Methods chapter), and concentrated to 50 mg/ml (Figure 24). 

Typically the purification yielded ~15 mg/L of bacterial culture and the purification 

and purity was monitored by SDS-PAGE. 

Crystals of the ~50 kDa Nup214 NTD (50 mg/ml) were obtained at 21°C in 

hanging drops in several conditions (Figure 25 A to D). After optimization, large 

crystals with dimensions of ~350 x 350 x 150 mm3 grew within 1 week in 0.1M 

MES pH 6.4 - 6.5 and 23.5 – 27.0% (w/v) PEG 2000 MME (Figure 25 E). The 

crystals belong to the orthorhombic space group P212121 with unit cell 

dimensions of a = 52.4 Å, b = 81.1 Å, c = 102.6 Å, " = ! = & = 90° and with one 

molecule in the asymmetric unit. 
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Figure 23: C-terminal deletion constructs reveal a stable fragment of the 

Nup214 N-terminal all-beta-sheet domain. Anti-hexa-histidine affinity blot of a 

series of expression and solubility tests of C-terminal deletion constructs 

identified a stable fragment composed of residues 1-450 (red star). The numbers 

represents the length of the fragment, S and P denote the soluble and insoluble 

pellet fraction after cell disruption, respectively. 
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Figure 24: Purification scheme for Nup214 NTD. The flow chart depicts the 

purification of recombinant Nup214 NTD from E. coli. Representative Coomassie 

brilliant blue stained SDS-PAGE gels of the affinity purification step as well as the 

final Nup214 NTD protein, which was used for crystallization, are shown on the 

right. 
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Figure 25: Crystals of the N-terminal domain of Nup241 NTD. Crystals of 

Nup214 NTD were observed in the following conditions: (A) 0.2 M Magnesium 

Formate, 20% w/v Polyethylene Glycole 3350; (B) 0.2 M Potassium Formate, 

20% w/v Polyethylene Glycole 3350; (C) 0.2 M Sodiumdihydrogen Phosphate 

monohydrate, 20% w/v Polyethylene Glycole 3350; (D) 0.1 M MES pH 6.5, 

Polyethylene Glycole Monomethyl Ether 2000. (E) Crystals obtained after 

optimization of (D). 
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2.1.4 Structure Determination of the Nup214 NTD 

The structure of Nup214 NTD was solved by multiple isomorphous replacement 

anomalous scattering (MIRAS), using X-ray diffraction data from a native data set 

and two heavy metal derivatives, Osmiumtetroxid and p-Chloromercuribenzoate. 

No electron density was observed for the 16 residues of the C-terminus of the 

Nup214 NTD, so these 16 residues were omitted from the final model. The final 

model contains residues 1-434 and was refined to a 1.65 Å resolution with an 

Rwork and an Rfree of 19.7% and 23.7% respectively (Table 6, Material and 

Methods). 

 

Figure 26: X-ray diffraction pattern of Nup214 NTD obtained on beamline 

8.2.1 at the ALS. The outermost resolution ring indicates the diffraction limit of 

the native Nup214 NTD crystal. 
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2.1.5 The structure of the Nup214 NTD 

The structure of the Nup214 NTD can be divided into two parts: an N-terminal 

canonical seven-bladed !-propeller domain followed by a C-terminal extended 

peptide segment (CTE) (Figure 27). The Nup214 NTD creates an elliptical, disc-

shaped molecule with an overall diameter of ~70 Å and a thickness of ~40 Å 

(Figure 27 C, D). The canonical core of the !-propeller is generated by four anti-

parallel !-strands in each of the seven blades, which by convention are termed A 

to D from the inside to the outside of the !-propeller (Figure 27 B, C). The loops 

are named according to the !-strands they connect, with the face that contains 

the N-terminal ends of the innermost !-strands defined as the top face. The 

blades are pseudo-symmetrically arranged around a seven-fold axis and create a 

central cavity at the bottom face of the !-propeller (Figure 27 B, C). Typically, the 

!-propeller of many proteins are generated by conserved sequence motifs, such 

as the ~40 residue long WD repeat, in which very short loops connect the !-

strands. In the Nup214 !-propeller, however, long insertions between the !-

strands form extensive loops protruding on both faces of the molecule (Figure 27 

C, D). The lack of such short connecting loops significantly loosens the restraints 

on the primary sequence, and consequently no sequence repeat motif can be 

identified in the !-propeller of the Nup214 NTD. The 30-residue CTE (residues 

405-434) folds back onto the !-propeller, adopts an extended conformation and 

is bound to the bottom face. 
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Figure 27: The structure of the NTD of human Nup214. (A) Crystallization 

construct of Nup214 NTD. The !-propeller, the CTE as well as the two 

phosphorylation sites are indicated. Residues observed in the crystal structure 

are boxed in grey. (B) Schematic representation of the Nup214 NTD structure. 

The blades of the !-propeller are labeled from 1 to 7. The CTE is shown in blue, 

and !-strands forming the double-Velcro closure are indicated with an asterisk. 

(C) Ribbon representation of the Nup214 NTD structure. A 180°-rotated view is 

shown on the right. As a reference, the strands of blade 3 are labeled A–D. The 

blades of the !-propeller and the CTE are labeled as in B. The helical insertions 

are shown in pink. (D) Ribbon representation of side views of the structure of the 

Nup214 NTD. 
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2.1.6 Unique structural features of the Nup214 NTD 

The canonical features of the Nup214 !-propeller, as first seen in the structure of 

methylamine dehydrogenase !-propeller205, are complemented by special 

features, such as the central cavity, structural additions to the !-propeller fold, 

and a double-Velcro closure (Figure 27). The circular packing of the blades 

forms a central, water-filled tunnel connecting the top and the bottom in the vast 

majority of !-propellers, as seen in the Gt! subunit of the hetero-trimeric G-protein 

complex transducin206, 207. However, in the Nup214 !-propeller, the channel is 

closed at the top face, generating a ~30 Å-deep conical cavity with a diameter of 

~15 Å at its opening that is filled with ~50 well-ordered water molecules. 

The structural additions to the canonical !-propeller fold of Nup214 include 

extensive loops measuring up to 23 residues in length and containing helical 

turns and non-canonical !-strands. The remarkably long loops include the inter-

blade connector 6D7A, as well as loop 7AB and the loops that connect strands C 

and D of blades 1, 2, and 5 (Figure 27 C). Two "-helices, "1 and "2, and four 

310-helices, "3 to "6, can be found in these loops. Helix "1 is inserted between 

strands C and D of blade 1 and is located on the side of the !-propeller. Helix "6 

is also located on the side and inserted in the 6D7A loop. The helices "3 and "4 

are located on the top face within loops 2D3A and 3D4A, respectively, whereas 

helices "2 and "5 are located on the bottom face of the !-propeller and are part 

of the 2CD and 6AB loop (Figure 27 B to D). In the Nup214 NTD !-propeller, two 

five-stranded blades are created by non-canonical !-strands. Binding of the very 
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N-terminal !-strand 6E to 6D in a parallel fashion forms the five-stranded blade 6. 

This interaction creates the non-canonical double-Velcro closure (Figure 27 B, 

C). Blade 7 is the second five-stranded blade. The !-strand 7E, which is located 

in the 23-residue long 1CD loop, binds in a parallel fashion to strand 7D! (Figure 

25 C, left). Instead of forming part of the bottom face of the !-propeller, this 

interaction causes the 1CD loop to be pushed towards the side. Similarly, the 19-

residue 7AB loop, which is stabilized by two short accessory !-strands (7A! and 

7B!), flips to the side of the !-propeller. Almost parallel, both loops protrude ~25 

Å from the side of the !-propeller and form hydrogen bonds to each other (Figure 

27 C, D, right views). 

 

2.1.7 The sequence repeat of the Nup214 NTD !-propeller 

In the vast majority of cases, the pseudo-seven-fold symmetry of !-propeller fold- 

containing proteins is reflected in the primary sequence208. For example, the 

primary sequence of the !-propeller of the heterotrimeric G-protein subunit Gt! 

contains seven WD repeats209. Each of the WD repeats contains a conserved GH 

dipeptide ~20 residues from its N-terminus and a conserved WD dipeptide at its 

C-terminus. The conserved tryptophan of the WD dipeptide is buried in a 

hydrophobic environment between !-sheets and usually interacts with conserved 

aspartate, histidine, and serine or threonine residues within the same repeat. The 

hydrogen-bond arrangement of these residues stabilizes the interactions 

between the !-strands in each !-sheet and creates a rigid molecule 208. In 
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addition to the WD repeat, other clearly defined sequence motifs, such as the 

kelch motif, the AxSPD, or the YWTD repeats, can be found in other !-propeller 

proteins206. 

In order to identify structurally equivalent positions within the blades and to 

determine whether the Nup214 !-propeller contains a sequence repeat, we 

superimposed all seven blades of the !-propeller (Figure 28). We found that 

while the canonical !-strands of the seven blades align very well structurally with 

a root-mean square deviation (RMSD) of ~1.2 Å, the loops connecting the !-

strands are structurally diverse (Figure 28 B). Extensive insertions between the 

!-strands cause the length of the sequence repeat to vary between 43 and 64 

residues. Apart from hydrophobic side chains in the central residues of !-strands 

A, B, and C, no recognizable sequence motif can be identified by this structural 

alignment (Figure 28 C). 
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Figure 28: Superposition of the Nup214 NTD !-propeller blades. (A) 

Schematic drawing of a !-propeller fold indicating the !-strands and loops of one 

!-propeller blade. (B) Coil representation of the structural alignment of the seven 

blades of the !-propeller. Blades are colored as in Figure 27. As a reference, the 

C" atoms of blade 2 are shown as orange spheres. A 90°-rotated view is shown 

on the right. (C) Structure-based sequence alignment of the blades. The !-

strands are indicated above the sequence. Similar residues are shown in red, 

and the residues of each blade that participate in !-sheet hydrogen bonds are 

underlined in gray. 
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2.1.8 The C-terminal extension 

The 30-residue CTE binds in an extended conformation to the bottom face of the 

!-propeller and buries ~15% (~2,500 Å2) of the surface area of the !-propeller 

(Figure 29). The majority of the interactions between the !-propeller and the CTE 

are ionic in nature. Eight of the CTE residues form hydrogen bonds with residues 

of the !-propeller, whereas only five are involved in hydrophobic van der Waals 

contacts. Hydrogen bonds with the !-propeller are formed by the CTE residues 

Gln406, Asn407, Lys415, Glu418, Glu423, Glu425, Arg426, and Gln427, while 

the CTE residues Val410, Leu413, Ile 414, Leu420, and Leu422 form 

hydrophobic interactions. The side-chains of the remaining residues of the CTE 

face away from the interface with the !-propeller (Figure 29 and Figure 30). 

 The carbonyl group of Gln406 forms a water-mediated hydrogen bond to 

the '-amino group of Lys381, and the amide nitrogen atom of Asn407 forms a 

hydrogen bond with the side-chain carbonyl group of Asn405. Val410 forms close 

van der Waals contacts with a groove in the !-propeller surface formed by 

Asn405 and Trp313 (Figure 29 B). Leu413 and Ile414 bind to the hydrophobic 

pockets formed by Glu312, Trp313, Tyr369, and Pro387, and Tyr369, Thr370, 

Asn371, Gln372, Pro385, and Pro387, respectively. The main-chain amide of 

Lys415 interacts with the main-chain carbonyl of Tyr369, and the carboxylate 

group of Glu418 forms a salt bridge with the '-amino group of Lys47. The 

hydrophobic residues Leu420 and Leu422 are both lodged into a hydrophobic 

pocket formed by Tyr48, Leu105, Val125, Arg126, Ser129, and Asn130 (Figure 
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29 C). The main-chain carbonyl moiety of Glu423 forms a hydrogen bond with 

Arg126, while the side chain faces away from the surface. The carboxylate group 

of Glu425 interacts with the side-chain amide moiety of Asn130 and forms a salt 

bridge with the '-amino group of Lys133. Arg426 forms the most intimate 

interactions with the !-propeller surface. The guanidinium group of Arg426 

interacts with the main-chain carbonyl moiety of Thr180, the hydroxyl group of 

Thr106, and the main-chain carbonyl of Leu105, as well as with Asp124 via a salt 

bridge. The side-chain carbonyl group of Gln427 forms a hydrogen bond to the '-

amino group of Lys133 (Figure 29 D).  

 C-terminal extensions have been found in other !-propeller-containing 

proteins. For example, in Coronin-1, a regulator of actin cytoskeletal dynamics in 

lymphocytes, the binding of the Coronin-1 CTE to the bottom face of its !-

propeller is primarily achieved by strong hydrophobic packing that involves a 

tryptophan and a tyrosine residue of the CTE210. This interaction has been shown 

to be crucial for the stability of the protein210, 211. In order to determine whether 

the Nup214 CTE is required for the stability of the Nup214 NTD, we expressed a 

C-terminal truncation mutant, which contains the !-propeller (residues 1-405) but 

lacks the CTE (Nup214 NTD1-405). Nup214 NTD1-405 was indistinguishable 

from the crystallized Nup214 NTD in its expression level, stability, localization 

and behavior on a gel filtration column. This observation strongly suggests that 

the CTE is not required for the architectural integrity of the Nup214 NTD. 
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Figure 29: The CTE binds to the bottom face of the Nup214 !-propeller. (A) 

The surface of the Nup214 #-propeller is colored according to the electrostatic 

potential from $10 kBT/ec (red) to + 10 kBT/ec (blue). The CTE is shown in blue 

coil representation with the side chains in ball-and-stick representation. The black 

box indicates the region magnified in Figure 30. (B) Hydrophobic interactions of 

CTE residues Val-410, Leu-413, and Leu-414 (yellow). (C) Interactions of Leu-

420 and Leu-422 (yellow) with residues of the !-propeller. Hydrophobic pocket-

forming residues are shown in gray. The surface of the !-propeller is colored as 

in A. (D) Schematic representation of the contacts between the !-propeller and 

the CTE. Hydrogen and ionic bonds are indicated by orange dashed lines and 

van der Waals contacts with gray grooves. 
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Figure 30: The CTE of Nup214 NTD. (A) A simulated-annealed 2|Fo|-|Fc| 

electron density map, contoured at 1.0 (, is shown for the CTE (ball and stick 

representation). Residues of the !-propeller domain forming hydrogen bonds with 

the CTE are colored in ruby, CTE residues that interact with the !-propeller 

domain are shown in yellow, and CTE residues facing away from the interface 

are colored blue. (B) A stereo-view of the interactions of the CTE with the 

Nup214 !-propeller domain. The CTE-residues are colored as in Figure 29. 

 

Furthermore, the highly charged nature of the CTE-!-propeller interface does not 

appear to lock the CTE in a bound conformation. Therefore, we hypothesized 

that the interaction between the CTE and the !-propeller is dynamic in nature and 

tested if the CTE is able to dissociate from the !-propeller. We tested the binding 

of a synthetic 28-residue CTE peptide (residues 405-432) to the Nup214 NTD1-
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405 !-propeller on a gel filtration column but were unable to see any interaction. 

Since isothermal calorimetry (ITC) has generally a much higher sensitivity, we 

then attempted to measure the binding affinity between the CTE peptide and the 

Nup214 NTD1-405 with ITC. However, the two domains did not interact with 

measurable affinity under the condition tested, suggesting that the affinity was 

below the ITC detection limit. The finding that the CTE is bound to the !-propeller 

in our crystal structure, together with our inability to measure the inter-molecular 

binding affinity suggests that the interaction between the !-propeller and the CTE 

is entropically favored through intra-molecular interactions. In addition, the CTE 

contains several putative phosphorylation sites, and phosphorylation of Ser430 

and Thr437 of the Nup214 CTE was found in a large-scale characterization of 

HeLa nuclear phosphoproteins212. Ser430 is located at the end of the CTE, faces 

away from the !-propeller and is accessible for phosphorylation (Figure 30). 

Thus, the CTE-!-propeller interaction may be regulated and dynamic in nature. 

2.1.9 Comparison to the yeast Nup159 NTD 

Although the ~120 MDa vertebrate and the ~60 MDa yeast NPC share a 

conserved architecture and utilize a similar number of nups6, several vertebrate 

nups lack a homologue in yeast, undergo vertebrate specific modifications, or 

have several homologous nups in yeast16. When we compare the sequence of 

the human Nup214 to its yeast homologue Nup159, it is clear that the various 

domains are rearranged (Figure 31 A). 
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The crystal structure of the !-propeller of the yeast Nup159 is available35. 

However, while the expression construct of the yeast Nup159 contained 

additional residues at the C-terminal end of the core !-propeller, those residues 

were disordered in the crystal structure, suggesting that this region does not 

interact with the !-propeller. Because of the low sequence conservation between 

the human and yeast homologues the prediction of the existence of the CTE in 

lower eukaryotes such as yeast is difficult (Figure 32). The comparison between 

the structures reveals that, apart from the canonical !-propeller folds, both 

proteins are quite different. The yeast structure lacks the CTE as well as the 

significantly more extensive and complex decoration of the human NTD. When 

we compare the !-propeller core of the two homologues, we find that both align 

reasonably well with an RMSD of ~1.5 Å (Figure 31 B). A structural alignment of 

the Nup214 !-propeller with the only other available nup !-propeller structure, 

Nup133, shows that they align equally well and also with an RMSD. of ~1.5 Å. 

We furthermore tested how well other !-propeller proteins that have completely 

different functions in the cell, such as G!
209, the murine Coronin-1210, and the 

yeast Sif2 WD propeller213, align. Interestingly, their !-propeller cores align with 

comparable RMSD of ~1.7 Å. This demonstrates that the human Nup214 !-

propeller is not significantly more closely related to the !-propeller core of 

Nup159 than to the !-propeller of Nup133, G!, Coronin-1, or Sif2. Although only 

~280 residues are required to construct a minimal seven-bladed !-propeller fold, 

the nup !-propellers have been predicted to contain 400 - 500 residues34. Thus, 
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we speculate that instead of the !-propeller core, the specific functions of !-

propeller-containing proteins are conferred by their unique structural features and 

additional structural elements that dominate the surface properties of the domain. 

 

 

Figure 31: Structural comparison of the NTD of the human Nup214 and its 

yeast homologue Nup159. (A) Domain structure of Nup214 and Nup159. The 

construct used for crystallization is indicated above the sequence. The domains 

are colored as in Figure 22. (B) C" trace of a structural superposition of the 

Nup214 NTD (ruby) and the Nup159 !-propeller (gray). 
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Figure 32: Structure-based alignment of the primary sequence of the 

human Nup214 and the yeast Nup159 N-terminal !-propeller domains. 

Secondary structure elements are indicated above (Nup214) and below (Nup159) 

the aligned sequences. Residues of the CTE that either interact with the !-

propeller domain (blue dots) or face away from the interface (red dots) are 

indicated. The positions of the yeast Nup159 mutations V323E and I326E, which 

disrupt binding of the yeast Dbp5 helicase, are indicated with a green dot. Blue, 

!-sheets; black, coil regions; yellow, "-helices; black dots, disordered regions. 
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2.1.10 Conserved features of the Nup214 NTD 

The vast majority of !-propeller folds are known to mediate protein-protein 

interactions206. Several surface areas have been found to serve as docking 

platforms. For example, the inter-blade grooves on the side of the !-propeller are 

often utilized in peptide interactions, while the central channel can bind ligands or 

prosthetic groups206. The !-propeller fold imposes few restraints on its primary 

sequence and is able to tolerate insertions between the canonical !-strands. 

These extended loops protrude from the top and bottom face of the !-propeller 

and can create a variety of binding and regulation sites. 

Several proteins have been found to interact directly with Nup214. The 

Nup88-Nup214 NPC sub-complex is involved in the anchoring of the cytoplasmic 

filaments214, whereas the recruitment of Ddx19 by Nup214 is a crucial step of the 

mRNA export pathway150. In order to identify possible protein interaction sites on 

the surface of the Nup214 NTD, we analyzed its conservation and electrostatic 

potential. While the sequences of Nup214 homologues are not very conserved 

within eukaryotes, sequences can be aligned reliably within higher eukaryotes 

and the majority of the conserved residues were found to be part of the core !-

strands (Figure 33). Nevertheless, three regions on the Nup214 NTD surface 

were pinpointed.  

Two conserved regions, region 1 and region 2, are located at the bottom 

face of the !-propeller (Figure 34). Region 1 is formed by the 4AB loop, has a  
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Figure 33: Sequence alignment of Nup214 NTD within higher eukaryotes. 

The secondary structure is indicated above the sequence as arrows (!-strands), 

black lines (coil regions), and pink helices ("-helices). The numbering below the 

alignment is relative to the human Nup214 sequence. The overall sequence 

conservation at each position is shaded in a color gradient from white (<40% 

identity) to red (100% identity). Residues of region 1, region 2, and region 3 as 

well as phosphorylation sites of the Nup214 NTD are indicated above the 

sequences; a putative phosphorylation site is marked with an asterisk. 
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Figure 34: Conserved regions of the Nup214 NTD. Surface representation of 

the Nup214 NTD showing the surface conservation within higher eukaryotes (left) 

and electrostatic potential (right). The conserved surface is shaded from gray 

(<70% identity) to red (100% identity) according to the alignment in Figure 33. 

Conserved region 1 and 2 are located at the bottom side of the !-propeller. The 

!-propeller domain (residue 1 - 405) is shown in surface representation and the 

C" trace of the CTE is shown in a blue coil representation. 

 

positive electrostatic potential and is the most conserved region within higher 

eukaryotes, whereas region 2 is formed by Phe17, Trp313, Trp341, and Pro387 

and has a negative electrostatic potential (Figure 34). Interestingly, the 4AB loop 

within region 1 is lysine-rich and invariant within higher eukaryotes but shares no 

sequence conservation with any of its yeast homologues (Figure 32 and Figure 

33). Therefore, we speculate that a vertebrate-specific protein might bind to this 

positively charged, highly conserved 4AB loop. In addition, Nup214 has been 

found to be highly post-translationally modified and, in particular, to be 

phosphorylated during interphase and hyperphosphorylated during mitosis215. 

The sequence of the 4AB loop (WSPKGKQL) resembles the consensus site for a 

number of Ser/Thr protein kinases, and we identify Ser201 within this loop as a 
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putative serine phosphorylation site using a bio-informatics analysis with 

NetPhos216 (Figure 33). 

 The third conserved region, region 3 covers about one third of the side 

surface of the Nup214 NTD (Figure 35) and has an invariant core formed by the 

5D6A loop (Tyr295), the 6BC loop (Glu325), and the 6D7A loop (Asp345, 

Arg348, and Glu350). The 6D7A loop of the yNup159 !-propeller has been 

shown to directly interact with the DEAD-box helicase yDbp5, and a mutation of 

two residues within this loop (V323E/I326E) has been shown to disrupt the 

formation of a complex between the two proteins35. Although the yeast and 

human homologues display considerable sequence conservation within this loop, 

residues that have been identified to be crucial for yNup159-yDbp5 complex 

formation are not conserved in Nup214. In fact, one of the two yNup159 residues 

(V323E) that disrupt the yNup159-yDbp5 complex when mutated is already a 

glutamate in the human Nup212 !-propeller (Glu350) (Figure 32). The primary 

sequence of yeast yDbp5 and its human homologue Ddx19 are 45% identical, 

and while it seems plausible that the same region of the surface of the Nup214 !-

propeller binds to Ddx19, the requirement of different residues for complex 

formation appears necessary. 
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Figure 35: Conserved region 3 is located on the side surface of the Nup214 

NTD . (A) Surface representation showing conservation of residues within higher 

eukaryotes. The conserved surface is shaded from gray (<70% identity) to red 

(100% identity) according to the alignment in Figure 33. (B) Electrostatic potential 

of the Nup214 NTD surface (colored as in Figure 34, A). 
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2.2 Analysis of the interaction of Nup214 with the DEAD-box helicase 

Ddx19 

In yeast, the DEAD-box helicase yDbp5 localizes to the cytoplasmic side of the 

NPC by binding to yNup159, and, by removing proteins from mRNA plays an 

essential role in remodeling of mRNP complexes. Mutants of yDbp5 that interfere 

with yDbp5's NPC localization or with its mRNP remodeling activity result in 

mRNA accumulation in the nucleus35, 166, 167. Although the exact mode of binding 

may differ between the yeast and human homologues, targeting of the DEAD-box 

helicase to the NPC appears to be conserved throughout evolution. Ddx19 and 

Nup214 were shown to interact when co-immunoprecipitated from rabbit 

reticulolysate150. To gain deeper insight into the Nup214-dependent recruitment 

of Ddx19 to the cytoplasmic side of the NPC, we undertook an extensive 

biochemical analysis of the evolutionarily conserved Ddx19-Nup214 interaction. 

 

2.2.1 Purification of Ddx19 

Full length human Ddx19 was expressed in E. coli BL21 (DE3) cells and purified 

using appropriate affinity and gel filtration chromatography (Figure 36). To 

overcome stability and aggregation problems during purification, the purification 

buffers contained 10% glycerol and the purification protocol was optimized for 

speed (for details of the purification see Materials and Methods chapter). 

Typically the purification yielded ~10 mg/L of bacterial culture and the purified 

Ddx19 was concentrated to 40 mg/ml. 
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Figure 36: Purification of Ddx19. (A) Purification scheme for Ddx19. The flow 

chart depicts the purification of recombinant full length Ddx19. (B) Representative 

Coomassie brilliant blue stained SDS-PAGE gel of the affinity purification step. 

(C) Representative chromatogram (top) and Coomassie brilliant blue stained 

SDS-PAGE gel (bottom) of the gel filtration purification step of Ddx19. The black 

line in the chromatogram indicates fractions visualized on the SDS-PAGE gel. 
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2.2.2 Identification of the Ddx19 binding region on Nup214  

The structure of Nup214 NTD revealed an N-terminal !-propeller domain followed 

by a ~35 residue C-terminal extension (CTE). The conserved surface features 

suggested several possible protein-protein interaction surfaces46. In order to 

identify the surface that mediates the interaction with the DEAD-box helicases 

Ddx19, we performed two types of experiments. Initially, we generated Nup214 

NTD mutants that lacked the previously suggested protein-protein interaction 

regions35, 46. Then we performed additional mutagenesis to identify key residues 

of Nup214 that mediate the interaction with Ddx19. 

 

2.2.2.1 Nup214 interacts with Ddx19 via its conserved 6D7A loop.  

To identify the interface between Ddx19 and Nup214, we tested several putative 

protein interaction sites on the Nup214 NTD surface for Ddx19 binding. We 

designed Nup214 variants, including Nup214 NTD 1–405 in which the CTE is 

deleted and Nup214 NTD %6D7A in which a flexible linker replaces the highly 

conserved surface loop 6D7A. The recombinant proteins were expressed, 

purified to homogeneity, and monitored for complex formation with Ddx19 using 

size exclusion chromatography (SEC) (Figure 37). While the CTE-deletion 

mutant Nup214 1–405 was capable of complex formation, the loop-deletion 

mutant Nup214 NTD %6D7A resulted in a protein that was incapable of binding to 

Ddx19 (Figure 37 B to D) 
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Figure 37: The 6D7A loop of the Nup214 NTD is essential for Ddx19 

binding. (A) Domain organization of Nup214 and Ddx19. For Ddx19, the N-

terminal extension (NTE) and the two RecA-like domains are indicated. For 

Nup214, the !-propeller domain and its C-terminal extension (CTE), the coiled-

coil domain, and the FG-repeats are indicated. Gel filtration profiles of wild-type 

Ddx19 incubated with the (B) Nup214 NTD, (C) Nup214 NTD 1–405, or (D) 

Nup214 NTD%6D7A. Gel filtration profiles of Ddx19 are colored in gray, the 

Nup214 NTD variants in blue, and the elution profile resulting from incubating 

Ddx19 with Nup214 proteins in red. The red arrow indicates the expected elution 

volume of the Nup214•Ddx19 complex. 
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The 6D7A interblade connector loop is located on the side surface of the 

Nup214 !-propeller domain, encompasses 20 residues and connects the 

outermost !-strand 6D of blade 6 with the innermost !-strand 7A of blade 7 

(Figure 29 A, B). In yeast, it has been shown that two mutations within the 6D7A 

loop, V323E and I326E of yNup159 (the yeast homologue of Nup214), disrupt the 

interaction with yDbp5 (the yeast homologue of Ddx19)35. However, while the 

yeast Nup159 and the human Nup214 display considerable sequence 

conservation in this loop, one of the two mutated Nup159 residues is a glutamate 

(E350) in the human Nup214 !-propeller domain (Figure 38 B). 

To address the differences between the yeast and human Nup214 

homologues in helicase binding, we performed an alanine-scanning mutagenesis 

of the 6D7A loop. A series of 13 single alanine mutants covering the exposed 

residues of the 6D7A loop was generated (Table 2, Material and Methods 

section). In addition, we constructed the V353E mutant and the E350A/V353E 

double mutant, since these residues were found to be critical for complex 

formation in the yeast homologue. All 15 mutants were purified to homogeneity in 

milligram amounts and behaved indistinguishably from the wild-type protein as 

judged by gel filtration. The ability of all 15 mutants to bind to full-length Ddx19 

was analyzed by SEC. However, none of the 15 Nup214 NTD mutants tested 

markedly disrupted complex formation, suggesting that multiple residues of the 

6D7A loop are involved in the binding of Ddx19. 
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Figure 38: A 9-residue region in the 6D7A loop of the Nup214 NTD is 

essential for Ddx19 binding. (A) Location of the 6D7A loop (red) of Nup214 

NTD. (B) Structure-based sequence alignment of the Nup214 and yNup159 

6D7A loops. The secondary structure and residue numbering are indicated above 

and below the sequence for Nup214 and yNup159, respectively. The localization 

of the Nup159 double mutant V323E/I326E is labeled by green dots, and 

conserved residues are highlighted. The residues of the 6D7A loop that are 

deleted in the Nup214 NTD%1, !%2, and !%3 variants are indicated. Gel filtration 

profiles of full-length wild-type Ddx19 incubated with the deletion mutants (C) 

Nup214 NTD%1, (D) Nup214 NTD%2, (E) Nup214 NTD%3 or (F) Nup214 GST-

loop-6D7A. Gel filtration profiles are colored as in Figure 37 and the red arrow 

indicates the expected elution volume of the Nup214•Ddx19 complex. 
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To identify a region of the 6D7A loop that is required for Ddx19 binding, 

we constructed three deletion mutants, Nup214 NTD%1, %2, and %3, covering 

residues 343 to 356 (Figure 38 B). For each mutant, a stretch of 5 consecutive 

residues was deleted from the solvent-exposed part of the 6D7A loop, as seen in 

the Nup214 NTD crystal structure46. Again, the behavior of all three mutants on a 

gel filtration column was indistinguishable from that of the wild-type protein. We 

tested all three proteins for their ability to interact with full-length Ddx19 by SEC. 

While the Nup214 NTD%3 was capable of interacting with Ddx19, the complex 

peak displayed a substantial shift toward lower molecular weight, indicating a 

weakened, more dynamic interaction between the two proteins (Figure 38 E). 

The two remaining deletion mutants, Nup214 NTD%1 and %2, abolished complex 

formation with Ddx19 (Figure 38 C, D). To determine whether the 6D7A loop was 

not only necessary, but also sufficient for complex formation, we tested a GST-

6D7A-His6 loop fusion peptide for complex formation with Ddx19 (Figure 38 F). 

We found that the fusion peptide was unable to bind to Ddx19. In summary our 

data demonstrate that multiple residues of the 6D7A loop of the Nup214 NTD are 

involved in Ddx19 binding and that the 6D7A loop of the Nup214 NTD is required, 

but not sufficient for complex formation with Ddx19. 
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2.2.3 Binding surface on Ddx19 

While the structures of the human Nup214 NTD and yeast Nup159 !-propeller 

domain have been solved, no structural data about the DEAD-box helicases 

Ddx19 or yDbp5 are available35, 46. However, as previously described in section 

1.6.2.2, all DEAD-box helicases share a common architecture in which two 

RecA-like globular domains are connected by a short flexible linker153, 155. In 

addition, all DEAD-box helicases contain nine conserved sequence motifs that 

are dispersed over the entire protein sequence (Figure 18). Therefore we were 

able to generate a homology model for human Ddx19. The homology model is 

based on a sequence alignment of 10 eukaryotic Ddx19 homologues with the 

sequence of the Methanococcus jannaschii Dead-box helicase MjDEAD, for 

which a crystal structure is available217. While the central core region that 

contains the conserved sequence motifs aligned without major sequence gaps, 

the Ddx19-specific N- and C-terminal sequence overhangs are not conserved in 

MjDEAD. Hence, we have high confidence in the accuracy of our structural 

homology model for the core region, but we are unable to deduce structural 

information for the unique N- and C-terminal extensions of Ddx19. 

 To detect Ddx19 peptides that are involved in Nup214 binding, we probed 

a Ddx19 peptide array with radioactively labeled Nup214 NTD (Figure 39). This 

approach identified several consecutive Ddx19 peptide fragments that fall into 

two major regions when mapped onto the surface of a Ddx19 homology model 

(Figure 39 C). The major interaction surface is found within domain 1, occupying 
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approximately half of the surface area. A second, substantially smaller surface 

patch is found within domain 2, closely localized to the surface cleft between the 

two domains (Figure 39). These data suggest that the primary interaction 

between Ddx19 and Nup214 is mediated via the surface of domain 1. 

 To identify Ddx19 residues that are critical for mediating complex 

formation, we performed alanine-scanning mutagenesis. We selected 60 

residues of Ddx19 that were dispersed over the entire Ddx19 sequence based on 

their predicted surface localization, their charge, and their conservation for 

mutagenesis. The surface localization was determined based on our Ddx19 

homology model. We were able to purify 54 of these mutants to homogeneity, 

and their capability to bind to the Nup214 NTD was measured by SEC. The 

behavior of the 54 individual mutants on a gel filtration column was 

indistinguishable from that of the wild-type protein, demonstrating that the 

introduced mutations did not interfere with the folding of the protein. Notably, we 

identified a single mutant of Ddx19, Ddx19 R259A that abolishes the interaction 

between the two proteins (Figure 40 A). 

Based on this finding, we analyzed additional mutations of R259, R259K, 

R259Q, and R259E, as well as five alanine mutants of residues surrounding 

R259 (L222A, D255A, Q256A, I258A, and R262A). The Ddx19 R259K mutant as 

well as the five surrounding mutants had no effect on the ability of Ddx19 to bind 

to the Nup214 NTD (Figure 40 B). However, the R259Q mutant was only 
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capable of forming a weak complex with the Nup214 NTD, while the R259E 

mutant abolished complex formation (Figure 40 C, D). 

 

 

Figure 39: Analysis of the Nup214•Ddx19 interaction by peptide array. (A) 

Ddx19 peptide array probed with the radioactively labeled Nup214 NTD. The five-

identified regions containing at least four consecutive peptide spots are 

numbered I to V and are indicated by a red box. (B) Domain structures of Ddx19 

and the M. jannaschii DEAD-box protein MjDEAD. The five identified regions and 

their corresponding residues are indicated. (C) Homology model of Ddx19 in 

surface representation based on MjDEAD (PDB code 1HV8). Identified peptides 

were mapped onto the surface and colored in red. The residue numbering is 

relative to human Ddx19. 
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Figure 40: Arginine 259 of Ddx19 is crucial for binding to Nup214 NTD. Gel 

filtration profiles of the Nup214 NTD (blue) and the Ddx19 mutants (grey) (A) 

R259A, (B) R259Q, (C) R259K and (D) R259E. The elution profile resulting from 

incubation of Nup214 NTD with Ddx19 (red) are indicated. The red arrow 

indicates the expected elution volume of the Nup214 NTD•Ddx19 complex. 



RESULTS AND DISCUSSION 

 

 93 

2.2.4 The interaction between Nup214 and Ddx19 is conserved in yeast 

The interaction of Nup214 with Ddx19 has been suggested to be conserved from 

man to yeast, and genetic and physical interactions have been reported for the 

yeast homologues of Nup214 and Ddx19, yNup159 and yDbp5, respectively150. 

In order to validate the functional conservation, we first tested for the ability of the 

yeast proteins to substitute for their human counterparts. Then based on our 

finding that arginine 259 is essential for complex formation between Nup214 NTD 

and Ddx19, we tested whether arginine 256, the equivalent residue of the crucial 

arginine 259 in human Ddx19, is essential for complex formation in yeast.  

 yNup159, yDbp5 and the yDbp5 mutants R256A, R256E and R256K were 

cloned, expressed, purified to homogeneity and tested for interaction on SEC 

(Figure 41) We found that both yDbp5 and yNup159 are capable of forming a 

hybrid human-yeast Nup•helicase complex, suggesting a high conservation in 

the recruitment of the essential DEAD-box helicase to the NPC (Figure 41 B, C). 

We furthermore analyzed a series of yDbp5 mutants for interaction with Nup159. 

Similar to the human homologues, the yDbp5 R256A and R256E mutants were 

unable to form a complex with Nup159, while the yDbp5 R259K mutant restored 

complex formation (Figure 41 D to F). This behavior is reminiscent of the human 

proteins and underlines the evolutionary and functional conservation of the 

interaction between the two homologous proteins.  
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Figure 41: The interaction of Ddx19 with Nup214 is conserved from yeast to 

human. Gel filtration profiles of yDbp5 incubated with the (A) Nup159 NTD or (B) 

Nup214 NTD and the yNup159 NTD incubated with (C) Ddx19, (D) yDbp5 

R256A, (E) yDbp5 R256E, (F) yDbp5 R256K. Elution profiles of Nup214 NTD or 

Nup159 are shown in blue; Ddx19, yDbp5 or yDbp5 mutants R256A, R256E and 

R25K in gray, and the elution profile resulting from incubation in red. The red 

arrow indicates the expected elution volume of the yNup159 NTD•yDbp5 

complex. 
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2.3 Crystal Structure of the Nup214 NTD•Ddx19 complex 

2.3.1 Purification and Crystallization of the Nup214 NTD•Ddx19 complex 

mRNA is transcribed, processed, and packaged into an mRNP in the nucleus. 

Subsequently, the mRNP is transported through the NPC to the cytoplasm, 

where translation takes place. A major step in the transport across the NPC is the 

removal of mRNA export receptors by the DEAD-box helicase Ddx19166, 167. 

DEAD-box helicases are enzymes that utilize the free energy change of ATP 

binding and hydrolysis to dissociate or unwind RNA duplexes, and/or displace 

RNA-bound proteins153. During this process, the DEAD-box helicases are thought 

to cycle through distinct conformational states218 

 In order to crystallize the Nup214 NTD•Ddx19 complex, we screened 

several nucleotide states including ADP, or the non-hydrolysable ATP-analogs 

AMPPNP and ATP-&-S, of Ddx19. For complex formation, Nup214 NTD was 

incubated with an equimolar amount of full length Ddx19, and purified by size 

exclusion chromatography without, or in the presence of, nucleotide (Figure 42). 

The fractions containing the complex were pooled and concentrated to 40 mg/ml. 

The Nup214 NTD•Ddx19-ADP, Nup214 NTD•Ddx19-ATP-&-S and 

Nup214 NTD•Ddx19-AMPPNP as well as a Nup214 NTD•Ddx19-nucleotide-free 

complexes were screened for crystal formation. Crystals of Nup214 NTD•Ddx19 

were obtained only in the presence of ADP. The best crystals grew with fresh 

protein at a concentration of 15 to 20 mg/ml in 30% (w/v) PEG 3000, 0.1M CHES  
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Figure 42: Purification of the Nup214•Ddx19 complex. (A) Purification scheme 

for the Nup214 NTD•Ddx19 and Nup214 NTD•Ddx19 NTD complex. 

Representative Coomassie brilliant blue stained SDS-PAGE gels for the (B) 

affinity purification step of full length Ddx19 and Nup214 NTD and (C) gel 

filtration purification step for the Nup214 NTD•Ddx19 complex in the presence of 

ADP (top), ATP-&-S (middle) and AMPPNP (bottom). 

 

pH 9.5 (Figure 43). However, close inspection of the crystals revealed surface 

imperfections and minor growth defects, which suggested an underlying crystal-

packing problem. 
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Figure 43: Crystals of the Nup214 NTD•Ddx19-ADP complex. Initial 

screening hits in (A) 10% (w/v) PEG 8000, 0.1M HEPES pH 7.5, 8% ethylene 

glycol and (B) 30% (w/v) PEG 3000, 0.1M CHES pH 9.5. (C) to (E) Crystal 

obtained after optimization in 30% (w/v) PEG 3000, 0.1M CHES pH 9.5. (F) 

Crystals obtained in the 30% (w/v) PEG 3000, 0.1M CHES pH 9.5 condition were 

washed and analyzed with a SDS-PAGE and detected by Coomassie brilliant 

blue staining. 
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The crystals were cryo-protected in 10% glycerol, 30% (w/v) PEG 3000, 

0.1 M CHES pH 9.5 and flash-frozen in liquid nitrogen-cooled liquid propane and 

the data collected at the Advanced Light Source at the Lawrence Berkeley 

National Laboratories. Although the diffraction of the crystals was anisotropic, we 

were able to collect a full dataset to a 3.2 Å resolution. The crystals belong to the 

monoclinic space-group P21 with two complexes in the asymmetric unit and the 

structure was solved by molecular replacement using the coordinates of Nup214 

NTD as a search model in Phaser and docked the N-terminal domain of MjDEAD 

into the density. The structure resolved the Nup214 NTD bound to the N-terminal 

domain 1 of Ddx19 bound to ADP. Surprisingly no electron density was observed 

for the smaller C-terminal domain 2 of Ddx19.  

To improve the diffraction data of the crystals, we modified our 

crystallization construct of Ddx19 to contain only the NTE and domain 1 (residues 

1 to 300) of Ddx19 (Ddx19 NTD). The complex containing Nup214 NTD•Ddx19 

NTD-ADP was purified similar to the Nup214 NTD•Ddx19 complex and screened 

for crystallization conditions (Figure 44). Crystals of the complex grew readily 

without visible imperfections (Figure 44 D, E). The Nup214 NTD•Ddx19 NTD 

crystals belong to the orthorhombic space group P212121 with one complex in the 

asymmetric unit and diffracted to 2.5 Å resolution with substantially improved 

diffraction data quality (Figure 45). The final model contains residues 8 to 428, 

and 69 to 300 of Nup214 and Ddx19, respectively and was refined to an Rwork 

factor of 19.9% and an Rfree factor of 24.2% (Table 7, Material and Methods). 
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Figure 44: The Nup214 NTD•Ddx19 NTD complex. (A) Domain structure of 

Nup214 and Ddx19 indicating the crystallization fragments of Nup214 NTD and 

Ddx19 NTD (red brackets). (B) Representative Coomassie brilliant blue stained 

SDS-PAGE gel for the affinity purification step of Ddx19 NTD. (C) Typical gel 

filtration profile of the Nup214 NTD•Ddx19 NTD complex on a 16/60 Superdex 

200 column. (D) Crystallization screening hits in a 1.0 M sodium citrate, 0.1 M 

imidazole, pH 8.0 condition (top), and 0.8 M NaH2PO4, 1.2 M K2HPO4, 0.1 M 

acetate, pH 4.5 condition (bottom). (E) Optimized crystals of the Nup214 

NTD•Ddx19 ADP complex grown in 0.8 M NaH2PO4, 1.2 M K2HPO4, 0.1 M 

sodium acetate, pH 4.5. 
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Figure 45: Unit cell and diffraction images of crystals of (A) Nup214 NTD•Ddx19 

and (B) Nup214 NTD•Ddx19 NTD. The unit cell and unit cell parameters as well 

as an asymmetric unit are shown on the left.  Note the anisotropic diffraction of 

the Nup214 NTD•Ddx19 crystals (A) and the improved diffraction quality of the 

Nup214 NTD•Ddx19 NTD crystals (B). Diffraction images with resolution circles 

are shown on the right and the unit cell is indicated on the left. 
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2.3.2 Crystal structure of the Nup214 NTD•Ddx19 NTD complex 

The structure of the Nup214 NTD•Ddx19 NTD complex reveals that the Nup214 

NTD, similarly to what was observed for Nup214 NTD in isolation, forms a seven-

bladed !-propeller domain that is extensively decorated by long inter-blade 

connector loops, and contains a C-terminal extension (CTE) bound to the bottom 

face of the !-propeller46 (Figure 46). For Ddx19 the structure resolves domain 1 

and 27 residues of the NTE. The polypeptide chain of domain 1 of Ddx19 folds 

into the canonical RecA-like domain found in other DEAD-box helicases, such as 

MjDEAD and eIF4A155, 219. This globular domain is formed by an extensive, 

centrally located !-sheet that is composed of seven parallel !-strands (!2-!8) 

sandwiched between four "-helices on each side ("A-"D on one side, and "E-

"H on the other) (Figure 46). In our structure, the unique N-terminal extension of 

Ddx19 (NTE) is primarily unstructured, but the 26 residues that are resolved 

(residues 69 to 94) form an extensive loop, and supplement the !-sheet core of 

domain 1 with an additional anti-parallel !-strand, !1. Moreover, the N-terminal 

part of the NTE forms a lid over the nucleotide-binding pocket, encapsulating the 

bound ADP. Strikingly, the binding of Ddx19 to the extensively decorated Nup214 

NTD results in only minor conformational changes in the Nup214 NTD, as 

indicated by an root-mean square deviation (RMSD) of ~0.6 Å over all atoms 

between the isolated and Ddx19-bound Nup214 NTD structures. 

Overall, the structure is in excellent agreement with our biochemical 

characterization of the interaction between Nup214 and Ddx19. The Nup214 NTD  
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Figure 46: Overview of the Nup214 NTD·Ddx19 NTD structure. Ribbon 

representation of the Nup214 NTD•Ddx19 NTD complex from the side (top) and 

top view (bottom), rotated by 90°. For the Nup214 NTD, the #-propeller domain 

(blue), the 6D7A loop (violet), the C-terminal extension (CTE; yellow), and the 

blade numbers are indicated. For the Ddx19 NTD, the domain 1 (green) and the 

unique N-terminal extension (NTE; orange) are indicated. The ADP molecule 

bound to the Ddx19 NTD is shown in ball-and-stick representation 
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binds with its side surface to the N-terminal domain 1 of Ddx19. The interaction 

between the two proteins is primarily mediated by the interblade connector loop 

6D7A with minor contributions from residues of the #-strand 6E, which forms the 

double Velcro closure, and the 1CD, 5D6A, and 6BC loops of the Nup214 #-

propeller domain. In Ddx19, the 4 helices "E–"H and their interhelical loops 

contribute to the interface. 

 Domain 1 of Ddx19 provides a deep groove for the ADP cofactor that is 

partially covered by the unique NTE. The adenine ring of the ADP molecule is 

specifically recognized by several hydrogen-bond interactions with Q119 and the 

backbone carbonyl of R114 (Figure 47). In addition, the adenine ring is tucked 

into a hydrophobic slot between F112 of the "A-"B loop and L70 of the NTE. 

Altogether, the binding of the ADP cofactor is similar to that observed in the 

structure of UAP56220. In contrast to UAP56, no Mg2+ ion is found to coordinate 

the pyrophosphate moiety of ADP. 

 Strikingly, the association between the two proteins is predominantly 

mediated by surfaces with strongly opposing electrostatic potentials that are 

evolutionarily highly conserved (Figure 48, Figure 49). While the binding surface 

of Nup214 features a highly negative surface potential, the binding surface of 

Ddx19 is highly positively charged. In fact, the highest positive surface potential 

of domain 1 of Ddx19 is buried at the interface with Nup214 (Figure 49). 

Importantly, 22 out of 51 residues are charged and form numerous salt bridges at 
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the interface, dominating the association of the two proteins via electrostatic 

interactions. 

 

 

 

Figure 47: Schematic diagram of Ddx19-ADP interactions showing details 

of hydrogen bonding pattern and non-bonded hydrophobic contacts 

between Ddx19 and ADP. The bonds between Ddx19 atoms are shown in 

green and ADP in orange. Ddx19 residues of the Q motif and Motif I participating 

in ADP binding are highlighted in magenta and violet, respectively, while residues 

of the NTE are highlighted in orange. 
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Figure 48: Multi-species sequence alignment of Ddx19 homologues. The 

overall sequence conservation at each position is shaded in a color gradient from 

yellow (60% similarity) to dark red (100% identity) using the Blosum62 weighting 

algorithm. The secondary structure of Ddx19 as observed in the Nup214 

NTD•Ddx19 structure is shown above the alignment. The residue numbering is 

relative to H. sapiens Ddx19 and grey boxes below the alignment indicate the 

position of the nine conserved DEAD-box helicase motifs. As a reference, the 

primary sequence of the M. janaschii DEAD-box protein MjDEAD is aligned with 

the Ddx19 homologues. 
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Figure 49: Surface properties of the Nup214 NTD-Ddx19 NTD interaction. 

(A) Surface renditions of the NTDs of Nup214 and Ddx19 in an open book 

representation colored according to the participation of the various domains. 

Surfaces that mediate the association between the two proteins are indicated in 

green (Ddx19) and blue (Nup214). As a reference, a ribbon representation of the 

complex is shown in its original orientation. (B) Surface representation colored 

according to a multispecies sequence alignment (Figure 48). The conservation at 

each position is mapped onto the surface and is shaded in a color gradient from 

light yellow (60% similarity) to dark red (100% identity). (C) Surface 

representation colored according to the electrostatic potential. The electrostatic 

potential is plotted onto the surface and colored in a gradient from red ($10 

kBT/ec) to blue (+10 kBT/ec). Black lines indicate the interface borders. 



RESULTS AND DISCUSSION 

 

 111 

 

 



RESULTS AND DISCUSSION 

 

 112 

 These electrostatic interactions appear to be further reinforced by 

additional hydrophobic van der Waals contacts. In total, a surface area of ~1900 

Å2 is buried at the interface between the two proteins. Interestingly, such 

intermolecular associations governed primarily by electrostatic interactions were 

also observed in other nucleoporin structures, namely the Nup58/45 tetramer and 

the Seh1-Nup85 hetero-octamers21, 221.  

2.3.3 The interaction of Nup214 and Ddx19 is electrostatic in nature.  

Given the strong electrostatic potential of the Nup214 and Ddx19 surfaces that 

mediates the interaction between the two proteins, we examined the influence of 

high-salt buffer conditions on the stability of the Nup214 NTD•Ddx19 complex. 

We found that the apparent molecular weight of the complex decreased with 

increasing salt concentrations (Figure 50). While the complex eluted with an 

apparent molecular mass of ~235 kDa in a buffer containing 50 mM KCl (Figure 

50 top), the apparent molecular mass decreased to ~105 kDa when examined in 

a buffer containing 1 M KCl (Figure 50 bottom). Hence the association between 

the Nup214 NTD and Ddx19 is governed by electrostatic interactions that can be 

substantially weakened in high-salt conditions. 



RESULTS AND DISCUSSION 

 

 113 

 

Figure 50: Salt dependence of the Nup214-Ddx19 interaction. Gel filtration 

profiles of the Nup214 NTD•Ddx19 complex at identical protein complex 

concentrations of 50 µM and the indicated salt concentrations. The elution 

positions for molecular weight standards are indicated. 
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2.3.4 R259 of Ddx19 is a key residue for complex formation 

In our biochemical analysis of the Nup214 NTD•Ddx19 complex we found that a 

single charged and conserved residue in domain 1 of Ddx19, R259, is critical for 

the association with Nup214, which supports the conclusion that the association 

is primarily governed by electrostatic interactions. The crystal structure of the 

complex now reveals that R259 is in fact located in the center of the interface and 

forms a critical salt bridge with D359, a water-mediated salt bridge with E350, 

and an additional hydrogen bond with the backbone carbonyl of L351 (Figure 

51). All of the residues that R259 of Ddx19 interacts with are located within the 

6D7A loop of the Nup214 !-propeller domain. However, in addition to the salt 

bridges formed by R259, several additional salt bridges are formed in the 

interface, providing the molecular basis for our biochemical data that the two 

proteins can be dissociated in high-salt conditions (Figure 50). 

 Ddx19 is dispersed throughout the cytoplasm and enriched at the nuclear 

envelope, whereas Nup214 is exclusively localized at the cytoplasmic face of the 

NPC146, 150. In yeast, the deletion of the !-propeller domain of yNup159 prevents 

recruitment of yDbp5 to the nuclear envelope35. To test whether mutations of 

R259 not only disrupt the interaction between Nup214 and Ddx19 in vitro, but 

also inhibit the localization of Ddx19 at the nuclear envelope, we transiently 

transfected HeLa cells with wild-type Ddx19, and with the R259A and R259K 

mutants. While the wild-type Ddx19 and the Ddx19 R259K mutant were recruited 

to the NPC as predicted by our biochemical experiments, the R259A mutant 
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failed to colocalize at the nuclear envelope (Figure 52). Our data therefore 

demonstrate that R259 of Ddx19 is critical for the interaction between the two 

proteins not only in vitro, but also in vivo. 

 

 

Figure 51: The conserved arginine 259 of Ddx19 is a key residue for 

complex formation. (A) Details of the interaction between the NTDs of Nup214 

and Ddx19. The ribbon representation is colored according to Figure 46. (B) 

Multispecies sequence alignment of Ddx19 homologues. The red asterisk 

indicates the location of the invariant R259. The conserved sequence motifs II 

and III are highlighted in gray boxes and invariant residues outside of the 

conserved sequence motifs illustrated in red. The residue numbering is relative to 

human Ddx19 and the secondary structure of Ddx19 is shown above the 

sequence alignment. 
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Figure 52: In vivo localization of Ddx19 and Ddx19 mutants. HeLa cells were 

transfected with Ddx19 and Ddx19 mutants containing a C-terminal HA-tag and 

analyzed with confocal microscopy. The monoclonal antibody mAb414 was used 

as a reference for nuclear envelope staining (red, left panel). The cellular 

localization of HA-tagged proteins was detected with an anti-HA antibody (green, 

middle panel). The merged image (right panel) reveals the colocalization of wild 

type Ddx19 and Ddx19 R259K with the nuclear envelope, while Ddx19 R259A 

displays no detectable nuclear envelope staining. 
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2.3.5 Nucleotide dependent interaction of Ddx19 with RNA 

A comparison of different DEAD-box helicases has revealed that nucleotide 

binding induces conformational changes that affect the association of the two 

RecA-like domains and their spatial arrangement with respect to each other as 

well as RNA substrate binding155, 219, 220, 222. In order to assess the nucleotide 

requirements of RNA binding for Ddx19, we tested the binding of Ddx19 to a 

degenerate single-stranded RNA oligonucleotide in the presence of ADP or 

AMPPNP, a non-hydrolysable ATP-analog (Figure 53). Binding of the RNA 

oligonucleotide to Ddx19 was confirmed by SDS-PAGE and UREA-PAA gel 

electrophoresis. While Ddx19 was unable to bind to RNA in the presence of ADP 

(Figure 53 A, C), Ddx19 formed a complex with RNA in the presence of 

AMPPNP (Figure 53 B, D). 

 We next investigated whether the Nup214 NTD•Ddx19 complex was able 

to interact with RNA (Figure 54) and analyzed binding of RNA to the complex by 

SEC. As was the case with Ddx19, we did not observe binding of the RNA to the 

Nup214 NTD•Ddx19 complex in the presence of ADP (Figure 54 A). In addition, 

we were unable to observe a shift in the elution volume that would indicate 

binding of RNA to the Nup214 NTD•Ddx19 complex in the presence of AMPPNP. 

Instead, we detected peaks that eluted at a similar elution volume to a 

Ddx19•RNA complex (blue arrows) and Nup214 NTD (magenta arrow) (Figure 

54 B). Analysis of the SDS-PAGE and UREA-PAA gels confirmed that a portion 

of the Nup214 NTD•Ddx19 complex was disassembled upon incubation with  
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Figure 53: RNA-binding activity of Ddx19 requires ATP. Gel filtration profiles 

of RNA incubated with (A) Ddx19-ADP and (B) Ddx19-AMPPNP. The elution 

profiles of RNA and Ddx19 are shown in red and grey, respectively. The elution 

profiles resulting from incubation of RNA and Ddx19 are shown in blue. The grey 

arrow indicates the elution volume of Ddx19 and the blue arrows indicate peaks 

containing Ddx19-AMPPNP and RNA. Coomassie brilliant blue stained SDS-

PAGE gels (top) and ethidium-bromide stained PAA-UREA gels (bottom) of (C) 

Ddx19-ADP and (D) Ddx19-AMPPNP incubated with RNA. 
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Figure 54: Nup214 NTD and RNA binding of Ddx19 are mutually exclusive. 

Gel filtration profiles of RNA incubated with the Nup214 NTD•Ddx19 complex in 

its (A) ADP-bound and (B) AMPPNP-bound form. The elution profiles of RNA and 

Nup214 NTD•Ddx19 complex are shown in red and grey, respectively. The 

elution profiles resulting from incubation of RNA and Nup214 NTD•Ddx19 

complex are shown in blue. The magenta arrow indicates the elution volume of 

Nup214 NTD and the blue arrows indicate peaks containing Ddx19-AMPPNP 

and RNA as observed in Figure 53. Coomassie brilliant blue stained SDS-PAGE 

gels (top) and ethidium-bromide stained PAA-UREA gels (bottom) of (C) Nup214 

NTD•Ddx19-ADP and (D) Nup214 NTD•Ddx19-AMPPNP incubated with RNA. 
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RNA (Figure 54 D). These results indicate that Ddx19 dissociates from Nup214 

and form a complex with RNA. The fact that we were unable to detect a ternary 

complex consisting of Nup214 NTD, Ddx19 and RNA, suggests furthermore that 

the binding of Nup214 NTD and RNA to Ddx19-AMPPNP is mutually exclusive 

and that the RNA and Nup214 may use similar binding surfaces on Ddx19.  

2.3.6 Interaction with Gle1 

The terminal step of mRNA export through the NPC is the removal of transport 

factors from the mRNA. In yeast, the DEAD-box helicase yDbp5 is crucial for 

removing the mRNA export receptor as well as other proteins from the mRNP166, 

167. An NPC associated protein, yGle1, binds directly to inositol-

hexakisphosphate (IP6), and together with RNA, stimulates the ATPase activity of 

yDbp5164, 165. Ddx19 and Gle1 are recruited to the cytoplasmic face of the NPC 

and are localized in close proximity to each other47, 150, 160.  

 In order to test whether the human homologues Gle1 and Ddx19 

interacted directly, we aimed to express and purify Gle1. However, all human 

Gle1 constructs tested were insoluble when expressed by themselves or 

coexpressed with known interaction partners in E. coli (Table 5, Material and 

Methods section). Since the interaction between Gle1 and Ddx19 is conserved in 

yeast, we therefore tested whether recombinant yGle1 could be obtained. We 

tested a series of deletion constructs for expression and coexpression with 

yDbp5 or yNup42 (Table 5). Although expression levels were low with less than 

0.5 mg/10L of bacterial culture, we were able to purify an N-terminal deletion 
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fragment of yGle1 (yGle1%N100), which included residues 101 to 538, and test 

for its ability to interact with yDbp5 by SEC (Figure 55). yGle1%N100 was 

capable of interacting with yDbp5 (Figure 55 C), but not with the human 

homologue Ddx19 (Figure 55 B). In addition, we were able to detect formation of 

a complex between yGle1%N100 and yNup159 NTD•yDbp5, which strongly 

suggests that yGle1 and yNup159 use distinct binding sites on the yDbp5 surface 

(Figure 55 D).  
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Figure 55: yGle1 forms a triple complex with yDbp5 and yNup159. Gel 

filtration profiles of (A) yDbp5 incubated with the yNup159 NTD, and 

yGle1%N100 incubated with (B) Ddx19, (C) yDbp5 or (D) yNup159 NTD•yDbp5. 

Gel filtration profiles of yDbp5 are colored in grey, Nup159 NTD in blue, 

yGle1%N100 in violet and the elution profile resulting from preincubated proteins 

in red. 
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3 CONCLUSION AND FUTURE DIRECTIONS 

The NPC is one of the largest known proteinacous assemblies in the cell and we 

are just beginning to understand the architectural principles that govern the 

assembly of the NPC from the structural domains of the nups. About two thirds of 

the 30 nups are predicted to contain !-propeller or "-solenoid domains or a 

combination of both, and almost all of these nups are predicted to contain 

unstructured regions directly adjacent to the structured domains223. Based on 

their rigid fold but high concentration of variable interaction surfaces, !-propellers 

have frequently been found to act as interaction platforms with other proteins in a 

variety of biological contexts206. Therefore, the predicted !-propeller-containing 

nups are of particular interest in the study of the dynamic assembly of the NPC 

as well as for the recruitment of NPC associated factors involved in essential 

processes of the cell. 

 

3.1 The structure of the Nup214 NTD 

The structure of the Nup214 NTD presented in this thesis suggests that, while the 

nup !-propeller domains share a conserved structural design, each one is 

uniquely decorated with elements that dictate its surface properties and may be 

important for protein interactions. Furthermore, the finding that the nup !-

propeller repeats lack conserved sequence motifs makes it difficult during 

structure predictions to discriminate between the core elements and the unique 
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features. This level of information can only be provided by high-resolution 

structural analysis. The Nup214 NTD structure revealed features of the Nup214 

NTD that lead us to two key observations. First, based on the observation that 

two highly conserved surface patches and a potential phosphorylation site are 

located at the bottom face of the Nup214 propeller, bound also by an extended 

peptide (the CTE), we propose a model for the involvement of flexible peptides in 

the assembly of the NPC. Second, the Nup214 NTD structure provided the basis 

for the biochemical and structural analysis of the Nup214 NTD!s interaction with 

an essential mRNA export factor Ddx19, revealing key insights into mRNA 

transport mediated by the NPC. 

 

3.1.1 Implications of the Nup214 CTE for the dynamic reassembly of the 

NPC 

In the cell, many examples have been identified in which the interaction of two 

proteins is facilitated by an unstructured peptide segment87. Intrigued by the 

location of conserved regions 1 and 2 and the CTE at the bottom face of the !-

propeller domain of Nup214, we derived a possible function for the CTE by 

comparing Nup214 to karyopherins (Kaps), the mobile transport factors that 

facilitate nucleo-cytoplasmic transport. The binding of the NLS-containing cargo-

protein to Kap-" is regulated by the hetero-dimerization of Kap-" and Kap-!. In 

the absence of Kap-!, the N-terminal peptide segment of Kap-" (auto-NLS) binds 

intra-molecularly to its NLS-binding site, thereby preventing the NLS of the cargo 
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protein from binding. In the presence of Kap-!, the hetero-dimerization between 

Kap-" and Kap-!, facilitated by the auto-NLS of kap-", frees the binding site for 

the NLS of the cargo protein. After transport, the binding of Ran-GTP to Kap-! 

triggers the dissociation of the hetero-trimeric complex by displacing the auto-

NLS of Kap-" from Kap-! (Figure 56 A)87. 

Based on this system of regulation, we propose a model for the 

involvement of flexible peptide segments, such as the Nup214 CTE, in the 

assembly of the NPC (Figure 56 B). As the CTE binds with low affinity to the 

essentially invariant bottom face of the !-propeller, we speculate that the Nup214 

NTD exists in two states: a closed state that we observe in our crystal structure 

with the CTE bound to the !-propeller, and a presumed open state, in which the 

CTE is released from the !-propeller. The binding of another protein to the CTE 

would release the CTE from the !-propeller and expose the highly conserved 

surface of the bottom face. In this open state, the conserved region 1 and 2 

would then be available for the binding of yet another protein. In contrast to the 

dissociation of the nuclear import complex through Ran-GTP binding, the 

complex could be dissociated by post-translational modifications. Support for this 

idea comes from the observation that the CTE of Nup214 has been found to be 

phosphorylated at two sites (Ser430 and Thr437) in vivo215. Furthermore, the 

bottom face of the !-propeller contains a putative phosphorylation site within the 

4AB loop, suggesting that the hetero-trimeric complex could be dissociated by 

Ser/Thr phosphorylation. 
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We suggest that unique structural features, such as the CTE, exist in a 

number of nups. Thus, it appears plausible that the fully assembled NPC is 

strapped together via numerous phosphorylation-dependent auto-NLS-like 

interactions. Such a model could help explain the close correlation of the 

reversible disassembly of the NPC to the cell cycle, which itself is tightly 

controlled by phosphorylation through an interplay of several Ser/Thr kinases.  

Alternatively, the "-helical domain and FG-repeat region of Nup214, which 

were not included in the crystallization construct, could stabilize the interaction of 

the !-propeller domain with the C-terminal extended peptide in the cell. However, 

further structural studies of nups and nup complexes as well as cell biological 

studies of cell-cycle-dependent post-translational modifications of Nup214 and 

other nucleoporins are required to validate this model.  
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Figure 56: (A) Schematic representation of the regulation of the mobile phase of 

nuclear-cytoplasmic transport. (B) Hypothetical model illustrating the role of auto-

NLS-like peptide segments, such as the CTE of Nup214, in nup interactions. 
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3.2 mRNA export through the NPC 

mRNAs are synthesized in the nucleus and have to be transported through the 

NPC to cross the nuclear envelope and be translated in the cytoplasm. The 

central transport channel of the NPC is lined with the FG-domains of the channel 

nups53. These FG-domains act as a transport barrier. Molecules smaller than ~40 

kDa can passively diffuse through the transport barrier of the NPC24. However, 

larger molecules require transport factors that can bind to the FG-domains to 

cross the NPC55. Most transport factors also interact with a small GTPase called 

Ran72. Ran promotes the assembly and disassembly of transport complexes in a 

location specific manner and drives the import and export of macromolecules. 

  In the case of mRNA macromolecules, the nascent mRNA associates with 

a number of proteins during transcription and processing, thereby creating an 

mRNP111. One of the proteins that associate with the mRNA is the TAP/p15 

complex. TAP/p15 is the dedicated general mRNA export receptor and is able to 

bind to the FG-domains of the NPC transport barrier58. Therefore, TAP/p15 is 

able to ferry mRNPs across the NPC into the cytoplasm. However, TAP/p15 is 

unable to interact with Ran and the questions of how export complexes are 

disassembled and the transport made irreversible are still under debate. The 

current model states that mRNP remodeling events at the cytoplasmic side of the 

NPC displace TAP/p15 and possibly other mRNP export factors from the 

mRNP138. The displacement of TAP/p15 would result in an mRNP that is unable 
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to interact with the FG-domains of the central transport channel and would 

therefore implement mRNP export by a molecular ratchet. 

 Nup214 is an asymmetrically localized nup that can only be found at the 

cytoplasmic side of the NPC146. A conserved interaction was found to recruit the 

DEAD-box helicase Ddx19 to the NPC150. Mutations that abolish recruitment of 

yDbp5, the yeast homologue of Ddx19, cause mRNA export defects35. In 

addition, yDbp5 was found to be essential for the displacement of TAP/p15 in 

vivo166. Therefore, both Nup214 and Ddx19 are involved in a key step of mRNP 

export from the nucleus. 

3.2.1 The structure of the Nup214 NTD•Ddx19 complex 

Our Nup214•Ddx19 structure reveals that the interaction between the two 

proteins is mediated to a large extent via electrostatic interactions. In fact, we 

identified the highly conserved R259 in the N-terminal domain of Ddx19 as a key 

residue for the interaction in vitro and for nuclear envelope localization in vivo. 

 Furthermore, we showed that the ATP-bound form of Ddx19 is capable of 

binding to RNA, and that the interaction with RNA and Nup214 is likely to be 

mutually exclusive. Indeed, structural investigations of Ddx19 have now revealed 

the molecular basis of RNA-binding by Ddx19224, 225. The structure shows that 

AMPPNP-Ddx19 is bound in a closed conformation to RNA (Figure 57 A). 

Similar to other DEAD-box proteins, both RecA-like domains of Ddx19 are 

involved in the binding of RNA222, 226. In the Ddx19 structure, a six nucleotide-long 

single-stranded RNA molecule is bound in a sequence-independent manner with 
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its 3! end at domain 1 and its 5! end at domain 2 of Ddx19. Similar to other 

structures of RNA-bound DEAD-box proteins, Ddx19 introduces a kink in the 

RNA backbone between bases 4 and 5222, 226. Additionally, a region of the NTE 

folds onto domain 1 and contributes to the ATP-binding site before bridging 

across the top of the cleft to domain 2 (Figure 57 A). The RNA-bound structure 

of the Ddx19 is in excellent agreement with our biochemical data, and provides 

the molecular basis for our observation that Nup214 NTD and RNA binding are 

mutually exclusive, as the binding sites for RNA and Nup214 NTD on Ddx19 

partially overlap (Figure 58). 

 Recently, another snapshot of the ATPase cycle of Ddx19 was revealed 

by the structure of Ddx19 in its ADP-bound state. This is the first and only 

structure of both domains of any ADP-bound DEAD-box protein and revealed that 

a significant section of the NTE folds into an "-helix, "1, and wedges into the 

central cleft between the two core domains225 (Figure 57 B). This interaction 

causes the two domains to move apart and results in a ~12 Å shift of the 

conserved motif VI away from the nucleotide. Consequently, helix "1, rather than 

motif VI, contacts the phosphate groups of the ADP. Helix "1 has therefore been 

hypothesized to negatively regulate ATPase activity by displacing the arginine 

finger of motif VI, essential for ATP hydrolysis, from the nucleotide-binding 

pocket225. 
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Figure 57: Structures of Ddx19. (A) Overview of the structure of Ddx19-

AMPPNP in complex with RNA225. (B) Overview of the ADP-bound structure of 

Ddx19225. Ddx19 is shown in ribbon representation with domain 1 (wheat), 

domain 2 (grey), and the N-terminal extension (NTE) with helix "1 (orange). The 

conserved Motif VI with R429 is indicated in brown and the RNA is shown in red.  
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Figure 58: Binding of Nup214 NTD and RNA on Ddx19 are mutually 

exclusive. (A) Overview of the structure of Nup214 NTD•Ddx19 NTD-ADP and 

Ddx19-AMPPNP in complex with RNA used for the structural alignment225, 227. 

The structural alignment is based on domain 1 of Ddx19, indicated by a black 

box. (B) A structural alignment of the Ddx19-AMPPNP•RNA and Nup214 

NTD•Ddx19 NTD-ADP structures reveals overlapping binding sites for Nup214 

and the RNA (highlighted by the red ellipse). For clarity, the Ddx19 domain 1 of 

the Nup214 NTD•Ddx19 NTD-ADP structure is omitted. The ribbon 

representation is colored according to Figure 44 and Figure 57. 
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3.2.2 The ATPase cycle of Ddx19 

A key step in the transport of nuclear mRNPs to the cytoplasm is the transit 

through the NPC. This transit involves mRNP remodeling, whereby proteins 

bound to nuclear mRNA are dissociated. The displacement of mRNA transport 

factors was shown to be essential for mRNA transport into the cytoplasm166. In 

yeast, the DEAD-box helicase Ddx19 displaces the hnRNP protein Nab2 from 

RNA in vitro and was shown to be essential for the dissociation of the mRNP 

export factor TAP/p15 in vivo166, 167. The localization of Ddx19 to the NPC is 

essential for this process, and Ddx19 is recruited via a conserved interaction with 

Nup214 to the cytoplasmic filaments of the NPC35, 150. 

 The general mechanism of mRNP remodeling by DEAD-box proteins 

involves binding of the RNA substrate, unwinding, ATP hydrolysis, and 

concomitant dissociation of RNA-bound proteins228. The activity of DEAD-box 

proteins can be modulated in cis by N- or C-terminal additions to the core protein 

fold, which consists of two RecA-like globular domains. Alternatively, DEAD-box 

proteins can be regulated in trans by interactions with other protein cofactors. 

DEAD-box proteins have been shown to destabilize and “melt” short RNA 

duplexes and to require ATP hydrolysis for substrate release in vitro168. However, 

the mechanism for the RNA remodeling step, including RNA unwinding and 

removal of proteins from the RNA, remains unclear.  

 To date, several structures of snapshots of the Ddx19 that capture various 

states of the Ddx19 ATPase cycle have been determined, including Ddx19-ADP, 
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Ddx19-ADP•Nup214, Ddx19•Nup214 and Ddx19-AMPPNP•RNA, which give us 

insight into the mRNA remodeling step at the NPC224, 225, 227. 

3.2.2.1 RNA-binding and unwinding activity of Ddx19 

Unwinding activity for yDbp5 has only been demonstrated for short RNA 

duplexes in vitro140, 164. The structure of Ddx19-AMPPNP bound to single-

stranded RNA showed that Ddx19 associates with RNA in a closed conformation. 

Binding of Ddx19 introduces a kink in the RNA backbone (Figure 57 A). As this 

kink is incompatible with a perfect double-stranded RNA helix, one hypothesis is 

that the kink constitutes a first step toward helicase binding and represents a 

partially opened duplex226. The structure of the AMPPNP-Ddx19 bound to a 

single-stranded RNA fragment can be considered as the “post-unwinding” 

complex and a structure of a DEAD-box protein bound to a double-stranded RNA 

is not available. The question of whether Ddx19 could locally open duplex 

strands by capturing transiently frayed base pairs and/or by actively inducing 

helix opening, remains open. Further structural studies are necessary to 

elucidate the mechanism of duplex unwinding by DEAD-box proteins. 

3.2.2.2 The mechanism of ATP-hydrolysis for Ddx19 

Another gap in our knowledge of the ATPase cycle of Ddx19, one that is 

essential for the ratchet function, is the mechanism of ATP-hydrolysis activation. 

By analogy to GTPases, it is conceivable that ATP hydrolysis and ADP/ATP 

exchange is enhanced by a specific activating protein (ATPase activating protein, 

AAP) and/or exchange factor (ATP exchange factor, AEF). Indeed, interaction 
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partners extensively regulate the DEAD-box helicase eIF4A of the eIF4F complex 

that is important for recognizing the 5! cap of cytoplasmic mRNPs229. eIF4F is a 

heterotrimer consisting of eIF4A, eIF4G and eIF3. The helicase activity of eIF4A 

is stimulated by additional factors, including eIF4G230. The structure of eIF4A in 

complex with the central domain of eIF4G reveals that eIF4G holds the crucial 

DEAD-box sequence motifs in a semi-closed conformation thereby stimulating 

the ATPase activity of the DEAD-box helicase (Figure 59)231. 

 

 

 

 

Figure 59: Structures of the initiation factor eIF4A. Overview of the structure 

of eIF4A in isolation (PDB code 1FUU) (A) or in complex with the ATPase 

activating protein eIF4G (PDB code 1VSU) (B). eIF4A is shown in blue and 

eIF4G in green. Binding of eIF4G induces a large conformational shift of domain 

2 with respect to domain 1 of eIF4A. For clarity, the view in (B) is rotated by 45˚. 
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 Similarly, the ATPase activity of Ddx19 is modulated by protein cofactors, 

and is maximally stimulated in the presence of Gle1 and RNA164, 165. A structure 

of Ddx19 in complex with Gle1 would provide invaluable insights into the 

mechanistic details of the ATP hydrolysis activation step. We have shown that 

binding of yGle1 and yNup159 to yDbp5 is not mutually exclusive in vitro, 

suggesting distinct binding sites. Although highly likely, it remains to be proven 

whether this is true for RNA and Gle1 as well. Support for this notion comes from 

recent work which showed that four single point mutants of Ddx19 exhibited 

reduced ATPase stimulation by Gle1 in vitro as well as reduced interaction in a 

yeast-2-hybrid assay232. The mutated residues are located in domain 2 distal 

from the interdomain cleft and RNA binding site. It is conceivable that binding of 

RNA and Gle1 to the helicase would dislodge helix "1 of Ddx19 from its 

interdomain cleft and consequently activate ATP hydrolysis. Further support for 

such a mechanism comes from the observation that a deletion construct of 

Ddx19 lacking the entire NTE exhibits an ATPase activity that is independent of 

RNA and Gle1225. 

3.2.2.3 The Nup214 NTD as a possible ATP-exchange factor for Ddx19 

A comparison of the DEAD-box helicases UAP56 and eIF4A has shown that 

nucleotide binding induces conformational changes that affect the association of 

the two domains and their spatial arrangement155, 220, 231. Indeed, binding of 

Ddx19 to RNA and ATP stabilizes a closed conformation of Ddx19, while binding 

to Nup214 NTD promotes mobility of domain 2 as demonstrated by our Nup214 
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NTD•Ddx19-ADP crystal structure that lacks density for domain 2225, 227. Since an 

AEF has not yet been identified for Ddx19, we hypothesize that Nup214 could act 

as AEF. Similar to the pattern of interaction of GTPases with their GAPs, 

nucleotide free Ddx19 binds with high affinity to Nup214, while Ddx19 in its ATP-

bound state has the lowest affinity for Nup214224. Superposition of the Ddx19-

ADP structure with our Nup214 NTD•Ddx19 NTD-ADP structure indicates steric 

clashes of Nup214 NTD with Ddx19 (Figure 60). In particular, loop 1CD and 7AB 

of the Nup214 NTD clash with domain 2 and helix "1 of Ddx19. Previously, we 

had identified the 1CD and 7AB loops as unique features of the Nup214 !-

propeller. Instead of protruding to the bottom face of the propeller domain, the 

loops protrude to the side of the !-propeller for up to ~25 Å (Figure 27 C, D).  

 Therefore one possible mechanism would be that the interaction of Ddx19 

with Nup214 destabilizes the closed conformation of Ddx19 and promotes 

mobility of helix "1 and domain 2, promoting in turn nucleotide release. 

Subsequent ATP binding decreases the affinity of Ddx19 for Nup214 NTD 

substantially, and increases the affinity of Ddx19 for RNA, leading to the release 

of Nup214 by Ddx19-ATP in favor of RNA.  
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Figure 60: Nup214 may function as an AEF for Ddx19. (A) Overview of the 

structure of Ddx19-ADP and Nup214 NTD•Ddx19 NTD-ADP. The structural 

alignment is based on domain 1 of Ddx19, indicated by a black box. (B) A 

structural alignment of the Ddx19-ADP and Nup214 NTD•Ddx19 NTD-ADP 

structures reveals clashes between the Nup214 NTD and domain 2 and the NTE 

of Ddx19 (highlighted by the red ellipse).  For clarity, the Ddx19 domain 1 of the 

Nup214 NTD•Ddx19 NTD-ADP structure is omitted. The ribbon representation is 

colored according to Figure 44 and Figure 57. 
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3.2.3 Transport of mRNA through the NPC 

Considering the available biochemical and structural information, a plausible 

sequence of events for the transport of mRNA through the NPC might be as 

follows (Figure 61): Linearized mRNP (red) moves through the central channel 

toward the cytoplasmic side of the NPC. Nup214 (blue) recruits Ddx19 to the 

NPC and destabilizes the closed conformation of ADP-Ddx19, thereby promoting 

nucleotide exchange. (2) ATP-Ddx19 dissociates from Nup214 and binds 

strongly to the mRNA. (3) Binding of the ATP-Ddx19 to the RNA destabilizes and 

displaces RNA-bound proteins (transport factors) from the mRNA. Subsequent 

ATP hydrolysis (red star), stimulated by Gle1 and mRNA, weakens the 

interaction of Ddx19 with the mRNA (4) and allows Ddx19 to bind to Nup214 

again, thereby completing one cycle of protein removal from a segment of 

mRNA. 
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Figure 61: Schematic view of a potential ATPase cycle of Ddx19. The mRNP 

is shown schematically as a red line with mRNA export receptor complex (grey) 

attached, although it will have extensive secondary structure and many other 

mRNA binding proteins in the cell. For clarity only the central core of the NPC is 

shown. (1) Nup214 acts as AEF and promotes nucleotide exchange by 

destabilizing the closed conformation of Ddx19. After nucleotide exchange, ATP-

Ddx19 dissociates from Nup214. (2) Helix "1 wedges between the two core 

domains of Ddx19 and prevents premature ATP-hydrolysis. (3) Binding of Ddx19 

to mRNA displaces mRNA-export factors from the mRNP, and Gle1 and mRNA 

stimulate ATP hydrolysis. (4) ADP-Ddx19 dissociates from the mRNA and binds 

to Nup214, thereby completing one ATPase cycle. Nup214 is shown in blue with 

loop 1CD and 7AB in dark blue; Gle1 is shown in light green, a displaced export 

receptor complex in violet, and Ddx19 with helix "1 in green and orange, 

respectively. ATP and ADP are indicated as yellow T and D, and ATP hydrolysis 

with a red star. 
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3.2.4 Summary and future directions 

A key step in export of mRNP from the nucleus is the transport through the NPC. 

The transport includes mRNP-remodeling steps to assure a proper sequence of 

events. Premature remodeling in the nucleus would prevent or impede mRNA 

export, whereas newly exported mRNP are not structured optimally for 

translation. Furthermore, the removal of mRNA transport receptors from the 

mRNP has been shown to be crucial for mRNA export by a molecular ratchet 

mechanism. Therefore it is of utmost importance for the cell to spatially control 

mRNP remodeling. Genetic screens and interactions in yeast have implicated the 

nucleoporin Nup214, the DEAD-box protein Ddx19, and the NPC-associated 

protein Gle1 in the spatial control of Ddx19 ATPase activation in the cell. 

 My thesis work focused on the biochemical and structural analysis of 

Nup214 and Ddx19, and provided the first molecular view of this crucial 

interaction. Together with the work of other groups we can now start to paint a 

picture in which the ATPase cycle of Ddx19 drives unidirectional mRNP export 

through the NPC. However, several snapshots are still missing. These include 

the “pre-unwinding” state of Ddx19, the ATP-bound state of Ddx19, as well as 

Ddx19 in complex with its ATPase activating factor Gle1. As described in the 

results, I have already started to analyze the interaction of the helicase with Gle1 

biochemically. However, structural characterization is hampered by the poor 

solubility of Gle1. Therefore further coexpression tests, as well as expression 
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construct modifications and screening of homologues from other species seem 

inevitable. 

 In addition to the pools of Ddx19 and Gle1 that are associated with the 

NPC, both proteins are also found in the cytoplasm141, 150. Two new studies have 

implicated Ddx19 and Gle1 in translation termination233, 234.  Translation 

termination occurs when the polypeptide release factor, eRF1, recognizes a stop 

codon in the A-site of the ribosome. Together with eRF3, polypetidyl-tRNA 

hydrolysis is stimulated and the polypeptide released from the ribosome. New 

evidence suggests that Ddx19 and Gle1 associate with translating ribosomes and 

are required for efficient stop codon recognition in yeast. Ddx19 and Gle1 

physically interact with eRF1 and are required for loading of eRF3 into the 

termination complex233, 234. One function performed by Ddx19 in translation 

termination could be that Ddx19!s remodeling activity triggers an event on the 

mRNP that promotes association of eRF3. The exact location of this remodeling 

step could be either close to the stop codon, or alternatively on the ribosome 

close to the A-site. Translation termination can be dissected in vitro using 

recombinant proteins and purified ribosomes, which should shed light on the 

exact mechanism in the near future. 

 Finally, the number of ATP-hydrolysis cycles of Ddx19 that occur per 

exported mRNP is not known. Studies of Balbiani ring mRNA showed that the 

mRNPs emerge with their 5! end first from the NPC and that the CBC is replaced 

concomitantly with translation initiation factors. Furthermore, it was observed that 
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ribosomes bind to the mRNP at the cytoplasmic side of the NPC and start 

translation before the entire mRNP has been exported235. This association of 

ribosomes with mRNA that is still being transported through the NPC could 

provide an additional pulling force for mRNP export. 

3.3 Conclusion 

Gene expression is one of the mechanisms necessary for a cell to be able to play 

its part in an organism!s developmental program, to achieve homeostasis, or to 

respond to external stimuli. The central dogma, that “DNA makes RNA makes 

protein”, describes the information flow from the genetic material to proteins236. 

An essential step in this process involves the biogenesis of mRNA. In 

eukaryotes, mRNA is transcribed in the nucleus and translated into proteins in 

the cytoplasm. The life cycle of an mRNA molecule includes transcription, 

processing, transport through the NPC into the cytoplasm, translation, and 

degradation237. 

 The mechanisms of transcription and translation are reasonably well 

understood. In vitro assays to study RNA synthesis are established and 

structures of RNA polymerase from different species have provided invaluable 

insights into the mechanisms of transcription238, 239. Likewise, the study of the 

structure and function of the translational apparatus has been a research interest 

since the mid-twentieth century, and has resulted in a molecular and structural 

understanding of the translation mechanism240, 241. 
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 Less is known about the mechanism of mRNA processing and transport, 

probably because these processes cannot be studied in prokaryotes. Processing 

of pre-mRNA involves 5! capping, splicing, and polyadenylation, and is tightly 

coupled to transcription111. Most factors involved in processing have been 

identified and biochemically characterized122, 135. Splicing involves a complex 

consisting of multiple proteins and RNAs, the spliceosome, and remains a major 

challenge for structural biology120, 121. 

Our current understanding of mRNP packaging and transport is that during 

transcription, the nascent mRNA transcript associates with a number of factors, 

including proteins from the family of heterogeneous nuclear ribonucleoproteins 

(hnRNPs). hnRNPs are nuclear RNA-binding proteins that are essential for 

various steps in the mRNA life cycle, including packaging, export and 

translation113. Other factors, like the mRNA transport adaptor Aly and the mRNA 

export receptor complex TAP/p15, are also recruited to the mRNP. The 

packaged mRNP is targeted to the NPC, where TAP/p15 mediates interaction 

with the FG-domains that line the central channel of the NPC. This allows transit 

to the cytoplasmic side, where Ddx19 removes TAP/p15 from the mRNP, and the 

mRNP concludes its journey into the cytoplasm. 

We have yet to characterize the rearrangements of the mRNP that occur 

during packaging and transport. One of the few systems studied is the giant 

transcript of Chironomus Balbiani ring (BR) mRNA. In this case, the mRNA is 

immediately packaged into a 7 nm mRNP fiber during transcription113, and folds 
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into a well defined mRNP particle that docks to the NPC116. At the NPC, the BR 

mRNP undergoes conformational rearrangements that facilitate transport through 

the NPC235. Clearly, the giant Balbiani ring transcripts of Chironomus have been 

a valuable tool for the study of mRNA export. However, the question of whether 

the observed structure of the BR mRNP particles are the norm or, because of the 

large size of the transcript, are a special case, is still unanswered. 

 We also need to decipher the biochemical determinants of the mRNP in 

order to identify what constitutes an export-competent mRNP. Are all mRNPs 

made equal? Which mRNP-binding proteins are needed to dock to the NPC? 

Which accompany the mRNP through the pore? Which are removed after 

transport? 

During transcriptional elongation, the nascent mRNA transcript is 

immediately bound by hnRNPs, and the subsequent processing steps deposit 

additional factors on the transcript. There are 30 different hnRNPs in humans 

and ~10 in yeast111. The different hnRNPs can bind to and disassociate from the 

mRNA at distinct stages of the mRNP biogenesis111. For instance, two of the best 

studied hnRNP proteins are the poly(A)-binding proteins Nab2 and UAP56, which 

both associates with the mRNP during processing220. While UAP56 dissociates 

from the mRNP in the nucleus, Nab2 accompanies it through the NPC242. Further 

studies on nuclear mRNP proteins are needed to generate a dynamic map of 

mRNP composition during different stages of mRNA biogenesis. 
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Finally, the lack of a suitable in vitro system hampers functional studies of 

mRNP transport. Artificial nanopores that contain FG-repeat domains have been 

shown to mimic the transport selectivity of the NPC, and may be the first step 

toward this goal243. Alternatively, a reconstitution of isolated NPC subcomplexes 

into a double lipid bilayer in vitro may be achievable. 
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4 MATERIALS AND METHODS 

4.1 Molecular cloning 

The sequence of the N-terminal domain deletion constructs were amplified by 

PCR from a human Nup214 cDNA construct (KIAA0023) and cloned into a 

pET28a vector (GE Bioscience) modified to contain a PreScission protease-

cleavable N-terminal hexa-histidine tag244. For Nup214 NTD%1 residues 343 to 

374, for Nup214 NTD%2 residues 347 to 351 and for Nup214 NTD%3 residues 

352 to 356 were deleted and cloned in the pET28a-PreS vector, as described 

above. For Nup214 NTD%6D7A, residues 343 to 361 were replaced by a flexible 

linker with the sequence GGSGG and cloned in the pET28a-PreS vector, as 

described above. A DNA fragment encompassing residues 343 to 361 of the 

Nup214 NTD 6D7A loop and followed by a hexa-histidine tag was cloned into the 

pGEX-6P1 vector (GE Healthcare).  

 DNA fragments of the full-length human Ddx19, and a Dxd19 fragment, 

encompassing residues 1 to 300 (Ddx19 NTD), were amplified from HeLa cell 

cDNA, and cloned in the pET28a-PreS vector (GE Bioscience) modified to 

contain a PreScission protease-cleavable N-terminal hexa-histidine tag244. 

Mutants of the Nup214 NTD and Ddx19 were generated using Quickchange site-

directed mutagenesis (Stratagene). The details of the expression constructs and 

the mutants of Nup214 and Ddx19 are listed in Table 2 to Table 5. 
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 Various DNA fragments of the human Gle1 and hCG1 were amplified by 

PCR from HeLa cell cDNA and cloned in the pET28a-PreS and pGEX-6P1 

vectors (GE Healthcare) vector. For the yeast proteins, the DNA sequences of a 

N-terminal domain deletion construct of yNup159 and full-length yDbp5 were 

amplified by PCR from the yeast ORF clones YIL115C and YOR046C (Open 

Biosystems) and cloned into a pET28a vector (GE Bioscience) modified to 

contain a PreScission protease-cleavable N-terminal hexa-histidine tag244. DNA 

fragments of yGle and yNup42 were amplified by PCR from the yeast ORF 

clones YDL207W and YDR192C (Open Biosystems) and cloned in the pET28a-

PreS and pGEX-6P1 vectors (GE Healthcare) vectors. The details of the 

expression constructs are listed in Table 4 and Table 5. Mutants of the yDbp5 

were generated using Quickchange site-directed mutagenesis (Stratagene).  

Table 2: Nup214 Mutants 

Deletion mutants Point mutants  

  Nup214 NTD   Nup214 NTD L343A   Nup214 NTD D355A 

  Nup214 NTD 1-405   Nup214 NTD D345A   Nup214 NTD K356A 

  Nup214 NTD %6D7A   Nup214 NTD S346A   Nup214 NTD S357A 

  Nup214 NTD %1   Nup214 NTD R348A   Nup214 NTD D358A 

  Nup214 NTD %2   Nup214 NTD E350A   Nup214 NTD D359A 

  Nup214 NTD %3   Nup214 NTD V353A   Nup214 NTD V353E 

  GST-6D7A-His6   Nup214 NTD T354A 
Nup214 NTD 

E350A/V353E 



MATERIALS AND METHODS  

 

 149 

Table 3: Ddx19 mutants 

NTE mutants Domain 1 mutants Domain 2 mutants 

  H24A   L99A   R262A 

  K26A   K100A   R266A 

  K40A   L104A*   Q269A 

  K53A   Q105A   D279A* 

  R56A   Y108A   Q286A 

  K64A   Q132A   K287A 

  R67A   Q164A   K298A 

  V77A   E183A   K308A 

  E78A   E191A   N326A 

  R82A   K202A   K344A 

  K92A   E204A   T345A 

   Q207A   V369A 

   S210A   E370A 

   T220A   R372A 

   L222A   V375A* 

   D223A   E377A* 

   S226A   R378A 

   K227A   R380A 

   I231A   E381A 

   K234A   K383A 

   K235A   K385A 

   K237A*   V392A 

   H253A   V412A 

   Q254A   K446A 

   D255A   L452A* 

   Q256A   E457A 

   I258A  
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Table 3 continued  

NTE mutants Domain 1 mutants Domain 2 mutants 

   R259A  

   R259E  

   R259Q  

   R259K  

 

Table 4: Expression constructs I 

Protein Residues Vector 
Restriction 

sites 5!, 3! 

Tags 

N / C 

Nup214 N315 1-315 pET28a-PreS NdeI, NotI His6 / none 

Nup214 N330 1-330 pET28a-PreS NdeI, NotI His6 / none 

Nup214 N345 1-345 pET28a-PreS NdeI, NotI His6 / none 

Nup214 N360 1-360 pET28a-PreS NdeI, NotI His6 / none 

Nup214 N375 1-375 pET28a-PreS NdeI, NotI His6 / none 

Nup214 N390 1-390 pET28a-PreS NdeI, NotI His6 / none 

Nup214 N405 1-405 pET28a-PreS NdeI, NotI His6 / none 

Nup214 N435 1-435 pET28a-PreS NdeI, NotI His6 / none 

Nup214 N450 1-450 pET28a-PreS NdeI, NotI His6 / none 

Nup214 N465 1-465 pET28a-PreS NdeI, NotI His6 / none 

Nup214 N495 1-495 pET28a-PreS NdeI, NotI His6 / none 

Nup214 N510 1-510 pET28a-PreS NdeI, NotI His6 / none 

Nup214 NTD 1-450 pET28a-PreS NdeI, NotI His6 / none 

Nup214 mutants 1-450 pET28a-PreS NdeI, NotI His6 / none 

Nup214 NTD  

1-405 
1-405 pET28a-PreS NdeI, NotI His6 / none 

Nup214  

NTD %6D7A 

1-342, 

GGSGG,  

362-450 

pET28a-PreS NdeI, NotI His6 / none 
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Table 4 continued    

Protein Residues Vector 
Restriction 

sites 5!, 3! 

Tags 

N / C 

Nup214 NTD%1 
1-342,  

348-450 
pET28a-PreS NdeI, NotI His6 / none 

Nup214 NTD%2 
1-347,  

352-450 
pET28a-PreS NdeI, NotI His6 / none 

Nup214 NTD%3 
1-352,  

357-450 
pET28a-PreS NdeI, NotI His6 / none 

GST-6D7A-His6 343-361 pGEX-6P1 EcoRI, NotI GST / His6 

Ddx19 1-479 pET28a-PreS NdeI, NotI His6 / none 

Ddx19 NTD 1-300 pET28a-PreS NdeI, NotI His6 / none 

Ddx19 mutants 1-479 pET28a-PreS NdeI, NotI His6 / none 

yNup159 1-388 pET28a-PreS NdeI, NotI His6 / none 

yDbp5 1-466 pET28a-PreS NdeI, NotI His6 / none 

yDbp5 mutants 1-466 pET28a-PreS NdeI, NotI His6 / none 
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Table 5: Expression constructs II 

Protein Residues Vector 
Restriction 

sites 5!, 3! 

Tags 

N / C 

Gle1 1-450 pGEX-6P1 BamHI, NotI GST / none 

Gle1 1-526 pGEX-6P1 BamHI, NotI GST / none 

Gle1 1-698 pGEX-6P1 BamHI, NotI GST / none 

Gle1 8-450 pGEX-6P1 BamHI, NotI GST / none 

Gle1 8-526 pGEX-6P1 BamHI, NotI GST / none 

Gle1 8-698 pGEX-6P1 BamHI, NotI GST / none 

Gle1 80-450 pGEX-6P1 BamHI, NotI GST / none 

Gle1 115-450 pGEX-6P1 BamHI, NotI GST / none 

Gle1 115-526 pGEX-6P1 BamHI, NotI GST / none 

Gle1 115-698 pGEX-6P1 BamHI, NotI GST / none 

Gle1 265-450 pGEX-6P1 BamHI, NotI GST / none 

Gle1 265-526 pGEX-6P1 BamHI, NotI GST / none 

Gle1 265-698 pGEX-6P1 BamHI, NotI GST / none 

Gle1 1-698 pET28a-PreS NheI, NotI His6 / none 

Gle1 201-698 pET28a-PreS NheI, NotI His6 / none 

Gle1 301-698 pET28a-PreS NheI, NotI His6 / none 

Gle1 401-698 pET28a-PreS NheI, NotI His6 / none 

Gle1 501-698 pET28a-PreS NheI, NotI His6 / none 

Gle1 201-698 pGEX-6P1 BamHI, NotI GST / none 

Gle1 301-698 pGEX-6P1 BamHI, NotI GST / none 

Gle1 501-698 pGEX-6P1 BamHI, NotI GST / none 

Gle1 531-698 pGEX-6P1 BamHI, NotI GST / none 

Gle1 265-698 pGEX-6P1 BamHI, NotI GST / none 

yGle1 1-538 pET28a-PreS NdeI, NotI His6 / none 

yGle1 50-538 pET28a-PreS NdeI, NotI His6 / none 
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Table 5 continued    

Protein Residues Vector 
Restriction 

sites 5!, 3! 

Tags 

N / C 

yGle1 101-538 pET28a-PreS NdeI, NotI His6 / none 

yGle1 275-538 pET28a-PreS NdeI, NotI His6 / none 

yGle1 350-538 pET28a-PreS NdeI, NotI His6 / none 

yGle1 410-538 pET28a-PreS NdeI, NotI His6 / none 

yGle1 50-538 pGEX-6P1 EcoRI, NotI GST / none 

yGle1 101-538 pGEX-6P1 EcoRI, NotI GST / none 

yGle1 275-538 pGEX-6P1 EcoRI, NotI GST / none 

yGle1 350-538 pGEX-6P1 EcoRI, NotI GST / none 

hCG1 1-423 pET28a-PreS NdeI, NotI His6 / none 

hCG1 106-409 pET28a-PreS NdeI, NotI His6 / none 

hCG1 106-210 pET28a-PreS NdeI, NotI His6 / none 

hCG1 1-423 pGEX-6P1 EcoRI, NotI GST / none 

hCG1 106-409 pGEX-6P1 EcoRI, NotI GST / none 

yNup42 1-430 pET28a-PreS NdeI, NotI His6 / none 
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4.2 Solubility analysis 

Proteins were expressed and lysed as described below. The soluble and 

insoluble fractions were separated by centrifugation at 40,000 g for 60 min. The 

pellet was resuspended in lysis buffer in a volume equal to the volume of the 

supernatant. Aliquots of the pellet (P) and supernatant (SN) fractions analyzed by 

SDS-PAGE gel electrophoresis followed by transfer onto PVDF membranes 

(Millipore) using a semi-dry electrophoretic transfer cell (Bio-Rad). Membranes 

were probed with appropriate primary antibodies, penta-histidine antibody 

(Qiagen) or anti-GST antibody (GE Healthcare). After incubation with appropriate 

secondary antibodies coupled to alkaline phosphatase (GE Healthcare), proteins 

were visualized using Sigmafast BCIP/NBT and BZIP tablets (Sigma-Aldrich). 

 

4.3 Expression and purification 

4.3.1 Expression and purification of Nup214 and yNup159 

Nup214 variants and yNup159 NTD were expressed in E. coli BL21 (DE3) cells 

(Stratagene). Cells were grown at 37°C to an OD600 of 0.6, induced with 450 µM 

isopropyl-!-D-thio-galactoside (IPTG), at 18°C for 9 h. Cells were harvested by 

centrifugation, resuspended in lysis buffer containing 20 mM Tris pH 8.0, 500 mM 

NaCl, 5 mM !-mercaptoethanol, 1 mM PMSF, and Complete EDTA-free protease 

inhibitor cocktail tablets (Roche). The cells were lysed with a cell disrupter 
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(Avestin), and the lysate was clarified by centrifugation at 40,000 g for 90 min. 

The clarified lysate was then loaded onto a Ni-NTA column (Qiagen) and eluted 

via an imidazole gradient. Fractions containing His6-Nup214 NTD variants were 

pooled, desalted using a HiPrep 26/20 desalting column (GE Healthcare), and 

the hexahistidine-tag was cleaved with PreScission protease (GE Healthcare) for 

12 h. The protein was further purified by size exclusion chromatography on 16/60 

Superdex 200 and Superdex 75 columns (GE Healthcare) in a buffer containing 

20 mM Tris pH 8.0, 100 mM NaCl, and 5 mM DTT. Nup214 NTD was 

concentrated to 50 mg/ml for crystallization. 

4.3.2 Expression and purification of Ddx19 and yDbp5 

For expression of Ddx19, Ddx19 NTD, Ddx19 mutants as well as yDbp5 and 

yDbp5 mutants, E. coli BL21 (DE3) RIL cells (Stratagene) were grown at 37°C to 

an OD600 of 0.6 and induced with 450 µM IPTG at 17°C for 9 h. Cells were 

harvested by centrifugation and resuspended in a lysis buffer containing 20 mM 

Tris, pH 8.0, 500 mM NaCl, 5 mM !-mercaptoethanol, 1 mM PMSF, and 

Complete EDTA-free protease inhibitor cocktail tablets (Roche). The cells were 

lysed with a cell disrupter (Avestin), and the lysate was clarified by centrifugation 

at 40,000 g for 90 min. The lysate was then loaded onto a Ni-NTA column 

(Qiagen) and eluted via an imidazole gradient. Fractions containing hexa-

histidine tagged Ddx19 were pooled, and glycerol was added to a final 

concentration of 10% (v/v). After cleavage of the hexa-histidine tag, the protein 

was further purified with PreScission protease (GE Healthcare) by size exclusion 
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chromatography on a 16/60 Superdex 200 column (GE Healthcare) that was 

equilibrated in a buffer containing 20 mM Tris, pH 8.0, 100 mM KCl, 10% glycerol 

and 5 mM DTT. 

4.3.3 Purification of the Nup214•Ddx19 complex 

For complex formation, Nup214 NTD was incubated with an equimolar amount of 

either Ddx19 or Ddx19 NTD and purified by size exclusion chromatography on a 

16/60 Superdex 200 column (GE Healthcare) that was equilibrated in a buffer 

containing 20 mM Tris pH 8.0, 100 mM KCl, 5% glycerol, 5 mM DTT and either 

0.5 mM Mg-ADP (Spectrum Chemical), Mg-AMPPNP (Sigma-Aldrich) or Mg-

ATP-&-S (Sigma-Aldrich). The fractions containing the complex were pooled and 

concentrated to 40 mg/ml for crystallization. 

4.3.4 Expression and purification of yGle1 

For expression of yGle1%N100 E. coli BL21(DE3) RIL cells (Stratagene) were 

grown at 37°C to an OD600 of 0.6 and induced with 450 µM IPTG at 17°C for 9 h. 

Cells were harvested by centrifugation and resuspended in a lysis buffer 

containing 50 mM Tris, pH 8.0, 150 mM NaCl, 5 mM !-mercaptoethanol, 1mM 

IP6 (Sigma), 10% glycerol, 1 mM PMSF, and Complete EDTA-free protease 

inhibitor cocktail tablets (Roche). The cells were lysed with a cell disrupter 

(Avestin), and the lysate was clarified by centrifugation at 40,000 g for 90 min. 

The lysate was then loaded onto a GSTrap HP column (GE Healthcare) and 

eluted via a glutathione gradient. Fractions containing GST-tagged yGle1%N100 

were pooled, and glycerol was added to a final concentration of 10% (v/v). After 
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cleavage of the GST tag with PreScission protease (GE Healthcare), the protein 

was further purified by HiTrap Q FF (GE Healthcare) and size exclusion 

chromatography on a 16/60 Superdex 200 column (GE Healthcare) that was 

equilibrated in a buffer containing 20 mM Tris, pH 8.0, 100 mM KCl, 10% 

glycerol, 1mM IP6 and 5 mM DTT.  

 

4.4 Crystallization and structure determination  

4.4.1 Crystallization and structure determination of Nup214  

Crystals of Nup214 NTD (50 mg/ml) were grown at 21°C in hanging drops 

containing 1 µl of the protein and 1 µl of a reservoir solution consisting of 100 mM 

MES pH 6.5 and 23-27% (w/v) PEG 2,000 MME. Large crystals with dimensions 

of 350 x 350 x 150 µm3 grew within one week and were flash frozen in liquid 

nitrogen-cooled liquid propane. Crystals belong to the orthorhombic space group 

P212121 (unit cell dimensions are a=52.4 Å, b=81.1 Å, c=102.6 Å, "=!=&=90°), 

with one molecule in the asymmetric unit. Heavy-atom-derivatized crystals were 

prepared by soaking native crystals for several days with 10 mM p-

chloromercuribenzoic acid (PCMB) or osmiumtetroxide (OsO4).  

 X-ray diffraction data were collected at the National Synchrotron Light 

Source (NSLS), Brookhaven National laboratory (BNL), beamline X9a, and the 

Advanced Light Source (ALS), Lawrence Berkeley National laboratory (LBNL), 

beamline 8.2.1. X-ray intensities were processed using the HKL2000 

denzo/scalepack package245 and the CCP4 program package246 was used for 
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subsequent calculations. Phases were determined using native and anomalous 

X-ray diffraction data derived from native and heavy atom derivativatized crystals 

in SHARP247. This was followed by density modification in DM (CCP4) with 

solvent flattening and histogram matching, and yielded an electron density map 

of excellent quality (Figure 62).  

 A model was build with the program O248, refined with CNS249, and the 

stereochemical quality of the model was assessed with PROCHECK250. The 

refined model includes residues 1 to 434 with no residues in the disallowed 

regions of the Ramachandran plot (Figure 63). Data collection and refinement 

statistics are summarized in Table 6. 

 

 

Figure 62: Stereo-view of a representative region of the experimental electron 

density map contoured at 2.0 ( (blue). The final Nup214 NTD model is shown in 

ball-and-stick format. 
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Table 6: Data collection and refinement statistics for the Nup214 NTD 

 
Crystal 1 
native 

Crystal 2 
PCMB 

 
Crystal 3 
PCMB 

Crystal 4 
OsO4 

Data collection      

Space group P212121 P212121  P212121 P212121 

Cell dimensions        

a, b, c (Å) 

 

a = 52.4, 

b = 81.1, 

c = 102.6 

a = 52.4, 

b = 81.1, 

c = 102.6 

 

a = 52.4, 

b = 81.1, 

c = 102.6 

a = 52.4, 

b = 81.1, 

c = 102.6 

!, ", # (°) !="=#=90° "="=#=90°  !="=#=90° !="=#=90° 

  Peak Inflection Peak Peak 

Wavelength (Å) 1.0000 1.0089 1.0056 1.0080 1.1402 

Resolution (Å) 20.0-1.65 20.0-1.95 20.0-1.88 20.0-1.95 20.0-1.97 

Rsym 6.4 (84.0) 7.8 (93.6) 4.7 (64.2) 7.5 (66.8) 6.6 (60.8) 

I / (I 52.3 (2.8) 26.7 (2.3) 40.0 (2.1) 31.4 (2.5) 28.1 (2.6) 

Completeness (%) 99.3 (93.9) 
100.0 

(100.0) 
97.3 (72.7) 

100.0 

(100.0) 

100.0 

(100.0) 

Redundancy 20.3 7.5 7.4 7.7 7.5 

Refinement      

Resolution (Å) 20.0-1.65     

No. reflections total 

No. reflections test 

set 

49,618 

5,021 (9.4%) 
    

Rwork / Rfree 19.7 / 23.7     

No. atoms  B-factors    

    Protein 3,372     Protein 37   

    Ligand/ion 12  Ligand/Ion 87   

    Water 522     Water 55   

R.m.s deviations      

    Bond lengths (Å) 0.007     

    Bond angles (°) 1.48     

*Highest-resolution shell is shown in parentheses. 
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Figure 63: Ramachandran blot of the Nup214 NTD structure. 
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4.4.2 Nup214 NTD•Ddx19 complex 

4.4.2.1 Crystallization and Data collection 

 Crystals of human Nup214 NTD•Ddx19 and Nup214 NTD•Ddx19 NTD 

were grown at 21°C in hanging drops containing 1 µl of the protein complex (40 

mg/ml), which contained 0.5 mM Mg-ADP and 1 µl of a reservoir solution. 

Crystals of Nup214 NTD•Ddx19 and Nup214 NTD•Ddx19 NTD grew in 0.1 M 

CHES, pH 9.5, 30% (w/v) PEG 3000, and in 0.1 M sodium acetate, pH 4.2-4.5, 

0.8 M sodium di-hydrogen phosphate, and 1.2 M di-potassium hydrogen 

phosphate, respectively. For cryoprotection, Nup214 NTD•Ddx19 and Nup214 

NTD•Ddx19 NTD crystals were stabilized and cryo-protected in 0.1 M CHES, pH 

9.5, 30% (w/v) PEG 3000, supplemented with 10% (v/v) glycerol, and in 0.1 M 

sodium acetate, pH 4.2, 0.8 M sodium di-hydrogen phosphate, 1.2 M di-

potassium phosphate, supplemented with 20% (v/v) glycerol, respectively, and 

flash frozen in liquid nitrogen-cooled liquid propane. X-ray diffraction data was 

collected at beamlines 8.2.1 and 8.2.2 at the Advanced Light Source, Lawrence 

Berkeley National Laboratory. X-ray intensities were processed and integrated 

using the HKL2000 denzo/scalepack package245, and the CCP4 program 

package was used for subsequent calculations246. 

4.4.2.2 Structure determination 

 The structure of the Nup214 NTD•Ddx19 was solved by molecular 

replacement using the coordinates of the Nup214 NTD46 as a search model in 

PHASER251. The resulting electron density map was of high quality and clearly 
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revealed additional density for the N-terminal domain of Ddx19. A model was 

built with the program O248 and Coot252 and refined with CNS249. No electron 

density was observed for the N-terminal 8 and C-terminal 22 residues of Nup214, 

and the N-terminal 69 and C-terminal 181 residues that encompass the entire C-

terminal RecA-like domain (domain 2) of Ddx19. These residues are presumed to 

be disordered, and, therefore, have been omitted from the final model. The final 

model contains residues 9 to 428 and 70 to 298 of Nup214 and Ddx19, 

respectively, and has been refined to 2.9 Å resolution with an Rwork factor of 

24.9% and an Rfree factor of 28.3%. 

The structure of the Nup214 NTD•Ddx19 NTD complex was determined 

using the coordinates of the refined Nup214 NTD•Ddx19 complex as a search 

model in PHASER251. The final rounds of refinement were carried out with 

REFMAC using the TLS option253. The final model contains residues 8 to 428 

and 69 to 300 of Nup214 and Ddx19, respectively, and has been refined to 2.5 Å 

resolution with an Rwork factor of 19.9% and an Rfree factor of 24.2%. The 

stereochemical quality of the final models was assessed with PROCHECK250 and 

Molprobity254. Met291 in Nup214 is the only outlier in the Nup214 NTD•Ddx19 

NTD structure (Figure 64). However, this residue is well defined in the electron 

density map and is located in a canonical !-turn type II'255. Data collection and 

refinement statistics are shown in the Table 7. The structure factors and atomic 

coordinates of the Nup214 NTD•Ddx19 and Nup214 NTD•Ddx19 NTD have 
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been deposited to the Protein Data Bank with the accession codes 3FMO and 

3FMP. 

Table 7: Data collection and refinement statistics for the Nup214 

NTD•Ddx19 complex 

 Crystal 1 Native Crystal 2 Native 

Contents   
Nup214 Nup214 NTD Nup214 NTD 

Ddx19 Ddx19, residues 1-300 Ddx19, residues 1-479 

Data collection   
Synchrotron ALS ALS 
Beamline BL8.2.2 BL8.2.1 
Space group P212121 P21 

Cell dimensions     
    a, b, c (Å) a=59.5, b=115.4, c=143.5 a=61.4, b=112.9, c=142.6 
    a, b, g  (°) "=!=&=90 "=&=90, !=89.9 
   
Wavelength (Å) 1.0000 0.9795 
Resolution (Å) 50.0-2.5 50.0-3.2 
Rsym (%) 10.5 (68.7) 11.3 (39.5) 
<I / sI> 25.0 (2.7) 14.3 (3.6) 
Completeness (%) 98.6 (89.9) 91.3 (70.9) 
Redundancy 13.8 (10.8) 6.8 (5.9) 
Refinement   
Resolution (Å) 50.0-2.5 50.0-3.2 
No. reflections   
    total 29,350 28,125 
    test set 1,528 (4.9%) 1,504 (5.1%) 
Rwork / Rfree (%) 19.9 / 24.2 24.9 / 28.3 
No. atoms 5,189 10,218 
    Protein 5,124 10,164 
    Ligand/ion 33 54 
    Water 32 0 
B-factors 59 86 
    Protein 58 86 
    Ligand/ion 60 89 
    Water 49 N.A. 
R.m.s deviations   
    Bond lengths (Å) 0.014 0.013 
    Bond angles (°) 1.5 1.5 
Ramachandran Statistics   
    Most favored (%) 89.7 82.1 
    Additionally allowed (%) 9.4 16.5 
    Generously allowed (%) 0.7 1.3 
    Disallowed (%) 0.2 0.0 

*Highest-resolution shell is shown in parentheses. 
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Figure 64: Ramachandran plot of the Nup214 NTD•Ddx19 NTD complex at 2.5 

Å resolution. 

 



MATERIALS AND METHODS  

 

 165 

 

Figure 65: Ramachandran plot of the Nup214 NTD•Ddx19 complex structure at 

3.2 Å. 
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4.5 Generation of a Ddx19 homology model.  

 Based on the structure of the M. jannaschii DEAD-box helicase MjDEAD 

(PDB code 1HV8)219 and a sequence alignment of 10 eukaryotic Ddx19 

homologues (Figure 48), we generated a homology model for human Ddx19 

using MODELLER256. While the central core region that contains the ten 

conserved sequence motifs aligned without major sequence gaps, the Ddx19-

specific N-terminal sequence is not conserved in MjDEAD.  

4.6 Protein interaction analysis.  

 Protein interaction experiments were carried out on a Superdex 200 

10/300 GL gel filtration column (GE Healthcare) that was equilibrated in a buffer 

containing 20 mM Tris, pH 8.0, 100 mM KCl, 10% (v/v) glycerol, and 5 mM DTT. 

Complexes were formed by incubating 1 mg of the various purified proteins for 30 

min at 4°C. Complex formation was monitored by injection of the pre-incubated 

proteins as well as the recombinant purified proteins in isolation. All proteins were 

analyzed under the same buffer conditions, and complex formation was 

confirmed by SDS-PAGE of the eluted fractions followed by Coomassie brilliant 

blue staining. 

 

4.7 Peptide binding assay.  

 A peptide array composed of 20-mers with an offset of three residues 

covering the entire sequence of human Ddx19 was synthesized and immobilized 
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onto a nitrocellulose membrane (Rockefeller University Proteomics Resource 

Center). The peptide array was blocked for 7 h in TBS-Tween buffer 

supplemented with 5% (w/v) milk powder and washed 3 times for 10 min in TBS-

Tween buffer followed by a single wash step in transport buffer (20 mM Hepes-

KOH, pH 7.5, 110 mM potassium acetate, 2 mM MgCl2, 0.1% Tween-20). The 

peptide array was then incubated with the in vitro transcribed, translated, and 

[35S]-methionine-labeled Nup214 NTD (Promega, TnT quick coupled 

Transcription/Translation system) in transport buffer at 4°C. Before detection by 

autoradiography, the membrane was washed 4 times for 10 min with transport 

buffer. 

 

4.8 Immunofluorescence confocal microscopy.  

 For immunofluorescence, Ddx19, Nup214 NTD, and their mutants were 

cloned into the pCMV-HA vector (Clontech) containing a C-terminal HA-tag. The 

details of the Nup214 and Ddx19 constructs are listed in Table 8. Mammalian 

cell culture and transfection of HeLa cells were performed as described 

previously257. In short, HeLa cells were grown in DME medium (Invitrogen) 

supplemented with 10% FBS (GibcoBRL). For transient transfection and 

immunofluorescence microscopy cells were grown on coverslips in 12-well 

dishes and transfected with Lipofectamine 2000 (Invitrogen) following the 

manufacturers protocol. HeLa cells were washed in PBS and fixed for 20 min in 

4% PFA (Wako) for Ddx19 variants or 2% formaldehyde for Nup214 variants at 
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room temperature (RT) and then washed twice with PBS again. Cells were then 

permeabilized with 0.3% Digitonin (Electron Microscope Sciences) or 0.2% 

Triton-X-100 and 1% BSA (Sigma) in PBS for 10 min at RT. Cells were blocked 

with 3% BSA in PBS for 20 min. 

For Ddx19 variants, the cells were incubated with "-HA antibody (at a 

dilution of 1:2000, Abcam) for 1 h at RT. The cells were washed twice with PBS 

and were incubated with secondary antibody (goat "-rabbit Alexa Fluor 488, at a 

dilution of 1:2000, Invitrogen) for 1 h at RT. The cells were further incubated with 

"-mAb414 (at a dilution 1:1000, Covance) for 1 h at RT, washed twice with PBS, 

incubated with secondary antibodies (goat "-mouse Rodamine-Red X, at a 

dilution of 1:1000, Invitrogen) for 1 h at RT and mounted onto cover slips with 

ProLong Gold Antifade reagent (Invitrogen). Samples were examined on a Zeiss 

LSM5 EXCITER confocal microscope, and all images acquired by using an 

aplan-Apochromat 63 X with a 1.4-n.a. objective. 

For Nup214 variants, the cells were co-stained with a mouse "-HA 

antibody (at a dilution of 1:1000, Covance) and a rabbit "-Nup358 antibody (at a 

dilution of 1:500)76 for 1 h at RT. The cells were washed three times with PBS, 

incubated with secondary antibodies for 1 h at RT (Alexa Fluor 488 goat "-mouse 

IgG1, Alexa Fluor 647 goat "-rabbit IgG; both at a dilution of 1:200, Molecular 

Probes), washed three times with PBS, and mounted in Fluoromount G (Electron 

Microscopy Sciences). The samples were examined using a Leica spectral 

confocal microscope (model TCS SP). 
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Table 8: Immunofluorescence microscopy constructs 

Protein Residues Vector Restriction sites 5!, 3! Tag 

Nup214 1-2091 pCMV EcoRI, NotI HA 

Nup214 NTD 1-450 pCMV EcoRI, NotI HA 

Nup214 NTD1-405 1-405 pCMV EcoRI, NotI HA 

Nup214 %NTD 451-2091 pCMV EcoRI, NotI HA 

Nup214 %FG 1-1209 pCMV EcoRI, NotI HA 

Nup214 %NTD%FG 451-1209 pCMV EcoRI, NotI HA 

Ddx19 Full-length 1-479 pCMV EcoRI, NotI HA 

Ddx19 R259A 1-479 pCMV EcoRI, NotI HA 

Ddx19 R259K 1-479 pCMV EcoRI, NotI HA 

 

4.9 Illustrations and figures.  

Molecular graphics images were produced using PyMOL (www.pymol.org) and 

the UCSF Chimera package from the Resource for Biocomputing, Visualization, 

and Informatics at the University of California, San Francisco258. Schematic 

diagrams of protein-ligand interactions were done with LIGPLOT259. The 

molecular surfaces were calculated using MSMS260, and the electrostatic 

potential was calculated using APBS261. Sequence alignments were generated 

using ClustalX262 and colored with Alscript263. Figures were generated using 

Adobe Illustrator.  
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