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ABSTRACT

     The size and complexity of eukaryotic genomes require that specific mechanisms exist

for ensuring both the stability as well as the accessibility of DNA.  One such mechanism

is the association of DNA with histones to form chromatin, the physiological substrate of

gene expression.  An important means by which histones impact transcriptional activity is

through site-specific enzymatic modification of the amino terminal histone “tails”, which

can alter the spectrum of chromatin-associated proteins and hence transcriptional states.

Among the known modifications of histones, lysine methylation has been proposed to

represent a relatively stable mark which might mediate stable activation or repression,

depending upon the site modified.

     The immune system provides an ideal system in which to test the physiological

functions of particular chromatin-modifying activities, since proper lymphocyte

development and function requires integration of multiple signals, both cell autonomous

and receptor-mediated, with complex DNA recombination reactions which are unique to

lymphocytes.  We have exploited these features to explore the possible functions of

histone 3, lysine 3 (H3K9) methylation in the immune system through conditional

inactivation of the H3K9-specific methyltransferases G9a and GLP.

     These studies demonstrate that G9a is essential for B cell development in the mouse,

but is dispensable for T cell development.  The defect in B lymphopoiesis in the absence

of G9a is caused by a block in development at the pro-B cell stage, corresponding to the

onset of immunoglobulin heavy chain recombination.  The overall normal behavior of

G9a-deficient peripheral B cells argues in favor of the specificity of this effect.



     Furthermore, through analysis of G9a and GLP protein sequences, we have identified

a novel mechanism by which chromatin-modifying complexes can be regulated.  We find

that both G9a and GLP contain conserved H3K9-like motifs, on which the main

biochemical features of H3K9 itself are recapitulated.  Considering both the sequence and

functional conservation between these sites and histones, we term these motifs in non-

histone proteins “histone mimics”.  Our initial analysis indicates that many chromatin-

associated proteins potentially contain H3K9-type histone mimics, and that this

phenomenon is therefore likely to be a general one.
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If you seek Truth, you will not seek to gain a victory by every possible means;
and when you have found Truth, you need not fear being defeated.

Epictetus
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CHAPTER 1: INTRODUCTION

1.1  Histone modifications and gene expression

     A fundamental problem facing all organisms is the question of how to package, access

and transmit genetic information.  These three aims would appear to be mutually

exclusive, since packaging and transmission of the genome clearly require compaction of

DNA, whereas accessing DNA to allow transcription requires decondensation.  All three

of these problems are addressed in eukaryotes through the association of DNA with

histones.  Histones are small, highly basic proteins which interact directly and sequence

non-specifically with DNA, forming the nucleoprotein complex known as chromatin.

Packaging of DNA into chromatin allows compaction of up to 10,000-fold, allowing

stable storage as well as propagation of the genome through mitosis.

     The fundamental repeating unit of chromatin is the nucleosome core particle,

consisting of 147 bp of DNA wrapped in 1.75 turns around a core histone octamer.  This

octamer consists of a histone 3/histone 4 (H3/H4) tetramer (itself made of two H3/H4

dimers) and two H2A/H2B dimers (Khorasanizadeh, 2004; Luger et al., 1997).  The

compaction of DNA caused by its packaging into chromatin can be increased by the

further association with the linker histone, H1.  Incorporation of H1 stabilizes a more

condensed packing of nucleosomes in vitro, and promotes compaction into a 30 nm

diameter fiber (Hayes and Hansen, 2001).

     Histones were originally thought to be relatively inert “scaffolding” molecules, which

themselves played little part in the regulation of gene expression.  This view has given

ground, though, with recent rapid advances made in understanding the many active

processes which manipulate histones.  These include ATP-dependent chromatin
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remodeling (Lusser and Kadonaga, 2003), histone replacement with variants having

distinct functional properties (Ahmad and Henikoff, 2002), and direct post-translational

modification of core histones (Strahl and Allis, 2000).  The study of histone modification

in particular has seen explosive growth as it has become clear that a vast array of

modifications can and do occur on all of the core histones.  These modifications include

serine and threonine phosphorylation (Nowak and Corces, 2004), lysine acetylation

(Kouzarides, 2000; Mizzen and Allis, 1998; Roth et al., 2001), lysine and arginine

methylation (Kouzarides, 2002; Lachner and Jenuwein, 2002), lysine ubiquitination

(Briggs et al., 2002; Sun and Allis, 2002), as well as other less studied modifications (e.g.

sumoylation, ADP-ribosylation, glycosylation and biotinylation).  A list of the most well-

studied modifications and the enzymes carry them out is given in Figure 1.1.

Figure 1.1  Partial description of histone modifications and modifying enzymes.
Reproduced from Margueron et al., 2005.
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     Histone modifications can be broadly divided into those associated with active

transcription (euchromatin-associated), and those associated with transcriptional

repression (heterochromatin-associated).  A subset of these are shown schematically in

Figure 1.2.  One prominent mark seen on active loci is histone phosphorylation,

especially on H3 serine 10 (H3S10), which is associated both with chromosome

condensation during mitosis as well as transcriptional activation (Nowak and Corces,

2000; Wei et al., 1999).  Histone acetylation is also strongly correlated with

transcriptional activity, and is perhaps the most well-studied mark of transcriptional

activation (Allfrey et al., 1964; Kouzarides, 2000; Kuo et al., 1996).  While it is still not

completely clear how or indeed whether these modifications directly promote

transcription, the existing evidence strongly indicates a causal relationship (Anest et al.,

2003; Brownell et al., 1996; Chan and La Thangue, 2001; Yamamoto et al., 2003).

Figure 1.2  Histone modifications associated with euchromatin and
heterochromatin.  Abbreviations: Ac, acetylation; Me, methylation; P,
phosphorylation.  Adapted from Jenuwein and Allis (2001)
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     In contrast to phosphorylation and acetylation, the effects of histone lysine

methylation on transcriptional activity seem to depend critically on the site of

modification.  Thus, while methylation of lysine 4 in the amino-terminal “tail” of histone

3 (H3K4) correlates with activation of transcription (Santos-Rosa et al., 2002),

methylation of lysines 9 or 27 of the H3 tail (H3K9 and H3K27) is strongly correlated

with transcriptional repression (Cao et al., 2002; Rea et al., 2000; Snowden et al., 2002).

Lysine methylation is further complicated by the possibility of mutually exclusive

modification on the same residue (e.g. acetylation versus methylation of H3K9), as well

as by antagonism of modifications on different residues.  One example of this antagonism

is the described inhibition of H3K9 methylation by preexisting H3S10 phosphorylation

(Rea et al., 2000).  Furthermore, differences in modification density (e.g. mono-, di- and

tri-methylation) can significantly effect the distribution of these marks: while H3K4

trimethylation in yeast is found mainly at the 5’ end of actively transcribed genes,

dimethylation in generally located in the middle of the open reading frame, and

monomethylation at the 3’ end (Pokholok et al., 2005).

1.2  Writing and reading histone modifications

     To date, all except one of the known histone methyltransferases (HMTases) contains

the evolutionarily conserved SET domain (Dillon et al., 2005).  The SET domain was

named for the three founding members of the family, SuVar(3-9), Enhancer of Zeste

[E(z)], and Trithorax.  All three of these proteins were known from their respective

mutant phenotypes in Drosophila to be involved in epigenetic regulation (Alvarez-

Venegas and Avramova, 2002; Schotta et al., 2002; Schumacher and Magnuson, 1997).
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It has since become clear that these proteins all have intrinsic SET domain-dependent

HMTase activity: SuVar(3-9), E(z) and Trithorax (as well as their mammalian homologs,

Suv39H1/2, Ezh1/2 and MLL), catalyze H3K9, H3K27 and H3K4 methylation

respectively.

     For the most part, multiple HMTases seem to contribute to methylation of any given

site in histones (Figure 1.1).  However, knockout studies in mice have demonstrated that

a subset of these HMTases are necessary for the vast majority of the methylation mark

which they place.  For instance, disruption of the murine E(z) homolog Ezh2 or its

obligate binding partner Eed leads to a dramatic decrease in total H3K27 trimethylation,

demonstrating that little redundancy exists for methylation of this site (Montgomery et

al., 2005; Su et al., 2003; Su et al., 2005).  Similarly, double mutation of Suv39H1/2

leads to complete loss of heterochromatic H3K9 trimethylation (Peters et al., 2001; Rea

et al., 2000).  Remarkably, although triMeH3K9 is lost, H3K9 dimethylation

(diMeH3K9), a transcriptionally repressive mark normally present in euchromatic

chromosomal territories, is unaffected (Peters et al., 2003; Rice et al., 2003).  This is

logical, as placement of the diMeH3K9 mark is catalyzed not by Suv39H1/2, but by the

HMTases G9a and G9a-like protein (GLP, also known as EuHMTase-1).  Loss of either

G9a or GLP severely decreases euchromatic diMeH3K9, while leaving triMeH3K9 levels

unchanged (Peters et al., 2003; Rice et al., 2003; Tachibana et al., 2002; Tachibana et al.,

2005).

     A major breakthrough in our understanding of the physiological functions of these

varying histone modifications came with the discovery that particular modifications

produce binding sites for “effector modules”, which recognize modified residues with
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high specificity.  This is true, for instance, of acetyllysine, which is recognized and bound

by proteins containing the bromodomain (Dhalluin et al., 1999; Jacobson et al., 2000;

Owen et al., 2000), which is found in nearly all histone acetyltransferases (HATs).

Similarly, methyllysine can be specifically recognized by the chromodomain (Bannister

et al., 2001; Jacobs et al., 2001; Lachner et al., 2001), and has more recently been shown

to interact with Tudor domains as well (Huyen et al., 2004).

     Methylation of lysine 9 in H3 (H3K9) is recognized by chromodomain-containing

proteins of the Heterochromatin Protein 1 (HP1) family, whereas methylation of H3K27

is recognized by chromodomain-containing Polycomb group proteins (Fischle et al.,

2003b).  In at least one protein, the Arabidopsis chromodomain-containing DNA

methyltransferase CMT3, recognition of methylated H3 seems to require simultaneous

methylation of both K9 and K27 (Lindroth et al., 2004).  In addition, a recent report

demonstrated that the chromodomain helicase CHD1 specifically binds methylated H3K4

(Pray-Grant et al., 2005).  These interactions are summarized in Figure 1.3.  Binding of

Figure 1.3  Summary of methylated histone binding proteins. Histones shown
in red, DNA in blue. Abbreviations: CHD1, chromodomain helicase DNA-binding
protein 1; HP1, heterochromatin protein 1; PC, Polycomb protein; p53BP1, p53-
binding protein 1; CRB2, Cut5-repeat-binding protein 2.  Adapted from Bannister
and Kouzarides (2005).
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effector modules to methylated lysine is thought to recruit protein complexes which

enforce either active or inactive transcriptional states, and thus perpetuate transcriptional

memory (Kouskouti and Talianidis, 2005; Lorentz et al., 1994; Nakayama et al., 2001;

Ogawa et al., 2002; Peters and Schubeler, 2005; Stewart et al., 2005).

     The complexity of histone modifications and their recognition by specific effector

modules led to the proposal that these modification/recognition systems constitute a

“histone code”, defined as a system in which “multiple histone modifications, acting in a

combinatorial or sequential fashion on one or multiple histone tails, specify unique

downstream functions” (Strahl and Allis, 2000).  The existence of such a code is highly

controversial, since it is difficult to formally prove that multiple modifications occurring

after histone deposition on a single histone tail are distinguished combinatorially

(Henikoff, 2005), as predicted by the model.  What is clear, however, is that histone

modifications can have profound effects on gene expression, and that some cross-talk

between modifications is possible, as with the previously discussed example of

recognition of dual-modified H3 by CMT3.

1.3  Methylation of non-histone targets

     Recent reports have begun to expand the “language” of covalent histone modifications

to non-histone proteins.  It has been known for some time, for instance, that proteins

other than histones can be acetylated by canonical HATs (Chan and La Thangue, 2001;

Imhof et al., 1997).  Most of the other known modifications of histones (phosphorylation,

ubiquitination, ADP-ribosylation etc.) have similarly been well characterized to occur on

non-histone proteins.  Similarly, arginine methylation is known to exist on numerous
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proteins, many of them transcriptional regulators or proteins involved in translation

(Blanchet et al., 2005; Lee et al., 2005a; Miranda et al., 2005; Strahl et al., 2001; Teyssier

et al., 2005; Tidwell et al., 1968).  Until recently, the only exception was lysine

methylation, which had been poorly studied outside of histones.  Although reports of

protein lysine methylation have existed for over thirty years (Allfrey et al., 1964; Paik

and Kim, 1971), the identification of both the targets of methylation as well as the

enzymes that modify them remained elusive.

     Recent years have seen significant progress, beginning with the observation that the

basal transcription factor TAF10 is lysine methylated, and that this methylation is carried

out by the SET9 methyltransferase (Kouskouti et al., 2004).  SET9 was previously

described as a H3K4-specific enzyme, which was proposed to facilitate transcription both

through methylation of H3K4, as well as through an inhibitory effect of H3K4

methylation on methylation of H3K9 (Chuikov et al., 2004; Nishioka et al., 2002).

TAF10 monomethylation was shown to increase interaction of TAF10 with RNA

Polymerase II, thereby potentiating transcription of target genes.  This finding was

consistent with initial studies indicating that SET9 could stimulate transcription, despite

the fact that nucleosomal histones were poor in vitro substrates for SET9-mediated

methylation (Nishioka et al., 2002).

     Subsequent experiments have demonstrated that TAF10 is not the only non-histone

target of SET9 methyltransferase activity.  It was recently shown that the critical tumor-

suppressor protein p53 also undergoes lysine monomethylation, and that this methylation

is mainly carried out by SET9 (Chuikov et al., 2004).  Methylated p53 was strictly

nuclear, and was stabilized relative to unmethylated p53, suggesting a possible increase
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in transactivation activity.  Indeed, methylated p53 could be detected by chromatin

immunoprecipiation (ChIP) at the p53-responsive p21 promoter after treatment of cells

with adriamycin, although the relative affinity of methylated versus unmethylated p53 for

promoter binding was not examined.  As p53 is known to be subject to myriad post-

translational modifications (Yang, 2005), it is possible that methylation may influence the

presence and/or absence of these other marks as well.

     The most recently reported non-histone target of lysine methylation is the yeast

kinetochore protein Dam1 (Zhang et al., 2005).  Dam1 was found to be methylated on

multiple lysines, and this methylation was greatly reduced, but not eliminated, by

mutation of the H3K4 methyltransferase Set1.  Set1 itself is best known for its role in

transcriptional activation through interaction with the RNA Pol II holoenzyme, via the

Paf1 complex (Briggs et al., 2001; Roguev et al., 2001; Tenney and Shilatifard, 2005).

Zhang et al. also demonstrated that lysine methylation of Dam1 reduces the ability of Ipl1

(the endogenous H3S10 kinase) to phosphorylate an adjacent serine, possibly suggesting

a functional crosstalk between the two sites.  However, the physiological relevance of

these findings are questionable, since while mutation of a single methylation site in Dam1

is lethal, deletion of Set1, the enzyme claimed to be responsible for carrying out the

methylation, has no effect on cell viability (Zhang et al., 2005).

     Overall, three important points stand out from the existing data on non-histone lysine

methylation.  To begin with, all three of the proteins discussed above (TAF10, p53 and

Dam1) are involved directly in transcriptional control or chromosome function.  While

this could be due to chance (considering the small number of non-histone targets

identified to date), it is also possible that the pool of lysine methylated proteins is
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inherently enriched in chromatin-associated proteins.  Such enrichment in particular

cellular compartments is plausible, considering that a large fraction of the arginine

methylated proteins identified previously in an unbiased mass-spectrometry based

analysis were unexpectedly found to be cytoplasmic proteins involved in translation (Ong

et al., 2004).

     The second important point is that the enzymes that methylate non-histone proteins

are the same enzymes that methylate histones.  The mouse genome encodes for

approximately 55 SET-domain containing proteins (SCS, unpublished observation), only

a small number of which have been characterized to date.  Thus, it was formally possible

that histone and non-histone methylation were carried out by separate groups of enzymes;

however, this does not seem to be the case.  An important implication of this is that

mutant phenotypes for histone methyltransferases studied to date must be interpreted with

caution, as they may reflect loss of both histone and more general protein methylation

functions.

    Finally, it is striking that none of the methylation sites identified to date bear any

similarity to known target sites in histones (Chuikov et al., 2004; Kouskouti et al., 2004;

Zhang et al., 2005).  This is certainly surprising, given the remarkable target specificity of

histone methyltransferases in general.  The fact that targets sites in histones and non-

histones are so dissimilar raises important questions about whether the fundamental

tenets of the histone code will be generally applicable to all proteins, or whether they are

unique to histones.
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1.4  Lymphocyte development

     In adult mammals, the development of B and T lymphocytes begins in the bone

marrow, where common lymphoid progenitors (CLPs) reside.  B cell development

continues further in the bone marrow, whereas T cell precursors migrate to the thymus,

where their development is completed.  B cell development is a complex program, during

which clonal antigen specificity is produced through the process of V(D)J recombination.

The earliest steps of this process are carried out in progenitor (pro) B cells, in which

recombinational coupling of diversity (D) to joining (J) segments occurs biallelically at

the immunoglobulin heavy chain (IgH) locus.  Successful completion of D-J joining is

followed by monoallelic V-DJ joining, ultimately producing functional heavy chain of

the µ isotype (IgH µ).  The expression of membrane-bound µ chain in combination with

surrogate light chain (SLC, comprised of λ5 and v-pre-B subunits) and various signaling

components constitutes a functional pre-B cell receptor (pre-BCR), which signals clonal

expansion, allelic exclusion at IgH (preventing further V-DJ recombination), and V-J

recombination at the Ig light chain (IgL).  Synthesis of complete surface IgM (IgH + IgL)

signals the cessation of V(D)J recombination and the testing of immature B cells for both

signaling capacity (positive selection) and autoreactivity (negative selection).  Only

newly produced B cells which have correctly rearranged Ig loci and display little

reactivity towards self-antigens are stably selected into the peripheral population of

mature, naïve B cells.

     Whereas naïve B cells are marked by expression of surface IgM and IgD, antigen-

activated B cells produce Ig of other functional classes, known as isotypes.  Isotype

switching is accomplished through the process of class switch recombination (CSR),
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which, similar to V(D)J recombination, is a lymphocyte-specific, developmentally

programmed DNA elimination event.  In contrast to V(D)J recombination, however, the

purpose of DNA rearrangement in this context is not to generate antigen specificities, but

to alter the functional class of immunoglobulin produced by activated cells (IgA, IgG,

IgE, etc.).  This is accomplished by altering constant chain (CH) usage via a deletional

mechanism.  CSR is initiated when naïve peripheral B cells are activated in the

appropriate cytokine and cellular context, which together act to initiate transcription from

cytokine-responsive promoters (I regions) upstream of the target switch (S) regions

(Snapper et al., 1997).  Transcription of the switch region corresponding to the target CH

is an invariant feature of CSR, and is required for efficient switching (Gu et al., 1993;

Jung et al., 1993).  After transcription has begun, the excision of Cµ/Cδ is accomplished

by recombination between Sµ and the target switch region, releasing the intervening

DNA as an episome (Iwasato et al., 1990).  S regions have a highly unusual sequence

composition, consisting mainly of repetitive and palindromic elements (Davis et al.,

1980; Shimizu et al., 1982).  This finding has fueled speculation that higher order

structures produced during S region transcription might contribute to the specificity of

DNA breakage at these sites during CSR (Kinoshita and Honjo, 2001; Ramiro et al.,

2003; Shinkura et al., 2003).

     While V(D)J and class switch recombination share many features in common,

including transcription of target sequences, dependence on cytokine signaling for

specificity, and restriction to particular developmental stages, they also differ in several

significant respects.  Most importantly, while CSR and the process of somatic

hypermutation (SHM), a targeted mutagenesis program which results in increased
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antibody affinity, are strictly dependent on the activity of the recently-discovered

Activation-Induced cytidine Deaminase (AID), V(D)J recombination is not (Muramatsu

et al., 2000).  While the exact role of AID in control of CSR and SHM remains highly

controversial, the dispensability of AID for V(D)J recombination strongly suggests basic

mechanistic differences between this process and CSR.  Conversely, while V(D)J

recombination is completely dependent on activity of the Recombinase Activating Genes

(RAG), CSR is not (Rolink et al., 1996).  Finally, the sequence of Recombination Signal

Sequences (RSSs), the recognition sites for the RAG recombinase during V(D)J

recombination, bears no resemblance to that of S regions, suggesting that while RAGs

may act as sequence specific endonucleases, S regions may rely on more general

structural features to accomplish targeting during CSR.

1.5  Histone modification in the immune system

     Several data point to a role for histone modification in the control of B cell

development.  For instance, while it has been recognized for some time that transcription

of target loci precedes DNA rearrangement during V(D)J recombination (Sleckman et al.,

1996), it was recently demonstrated that this developmentally programmed shift in

transcriptional activity and recombinase accessibility is correlated with increased local

levels of histone acetylation (Chowdhury and Sen, 2001; McMurry and Krangel, 2000).

Moreover, D and J(H) segments were found to be acetylated earlier than V(H) segments,

mirroring the order of recombination events at IgH.  These findings suggest that at the

molecular level, the established concept of “locus accessibility” might be defined by

differential patterns of histone modification.
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     This possibility is supported by data suggesting that accessible D and J loci in both T

and B cells are associated with diMeH3K4 and a lack of phosphorylation of H4 serine 1

(Morshead et al., 2003).  Furthermore, recombinationally active gene segments are also

enriched in H3K79 methylation, a mark placed by the single known non-SET domain

HMTase, Dot1 (Feng et al., 2002; Ng et al., 2003).  In contrast, recombinationally

inactive loci are enriched in H3K9 methylation (Morshead et al., 2003), which in B cells

is specifically removed in a process requiring the critical B cell lineage transcription

factor Pax5 (Johnson et al., 2004).  These findings are summarized in Figure 1.4.

     A possible  link between locus accessibility and particular histone modification

patterns was further supported by the observation that 3’ V(H) genes, which are

preferentially utilized early in B cell development, are acetylated prior to 5’ V(H)

segments (Chowdhury and Sen, 2001; Yancopoulos et al., 1984).  In addition, 5’ V(H)

genes were found to be hyperacetylated specifically in response to interleukin-7 (IL-7),

Figure 1.4  Patterns of histone modification on active and inactive
antigen receptor loci.  Abbreviations: P, phosphorylation; Me,
methylation; Ac, acetylation; K, lysine.  Adapted from Margueron et al.
(2005).
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correlating well with the observation that mice lacking IL-7Rα have defects specifically

in usage of 5’ V(H) genes, and that these defects are associated with a lack of germline

transcripts corresponding to these segments (Chowdhury and Sen, 2001; Corcoran et al.,

1998).

     Strikingly, it was recently found that mice lacking the H3K27-specific histone

methyltransferase Ezh2 harbor very similar defects in variable chain usage to those

observed in IL-7Rα mice, despite any discernible effect of Ezh2 deficiency on IL-7

signaling per se (Su et al., 2003).  The defect in 5’ V(H) usage in Ezh2-null mice was, in

fact, even more specific than in IL-7Rα-null mice, since germline transcription of these

sequences was not altered by loss of Ezh2 function.  This finding suggests the possibility

that while histone acetylation may regulate locus accessibility broadly defined, histone

methylation may be responsible for recombinase targeting itself (Su et al., 2003).

Together, the existing studies on histone methylation and acetylation strongly imply that

histone modification may be a key regulatory pathway in lymphocyte development, and

that ordered recruitment of various histone-modifying activities may underlie the

exquisite specificity of DNA recombination reactions in lymphocytes.

     The hypothesis that histone methylation may “mark” target sequences during DNA

rearrangement events in the immune system is supported by a similar function of histone

methylation in the unicellular eukaryote Tetrahymena thermophila.  This organism is

unique in that it contains two nuclei: the germinal micronucleus is transcriptionally silent

and responsible only for transmission of genetic information during mating (called

conjugation), while the somatic macronucleus is transcriptionally active and responsible

for the phenotype of the cell, but is lost during mating.  The process of conjugation
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between cells of compatible mating type involves serial meiotic and mitotic division of

each micronucleus, reciprocal transfer of haploid pronuclei, pronuclear fusion to form a

zygotic micronucleus, and production of a new macronucleus from the zygotic

micronucleus.  During development of the new macronucleus, thousands of interspersed

genetic elements, termed Internal Eliminated Sequences (IESs), are removed from the

genome through a deletional process (Coyne et al., 1996).  Recently, it was found that

this DNA elimination program is tightly correlated with H3K9 methylation of histones

associated with DNA destined for elimination, and that “tethering” to ectopic sites of a

chromodomain protein which recognizes the methyl-lysine mark (Pdd1p) was sufficient

to promote deletion (Taverna et al., 2002).  Likewise, disruption of parental Pdd1p was

found to interfere with DNA deletion (Coyne et al., 1999; Madireddi et al., 1996).

     The similarities between programmed DNA elimination in Tetrahymena and processes

in the immune system, such as V(D)J recombination and CSR, are numerous.  Both

nuclear downsizing and CSR, for instance, are developmentally programmed, depend

upon transcription of target sequences, and occur at sites marked by irregular repetitive

elements.  Similarly, DNA elimination in Tetrahymena has been reported to coincide

with bidirectional transcription of the sequences to be eliminated, and processing of these

transcripts to form small RNAs capable of guiding DNA elimination (Chalker et al.,

2005; Chalker and Yao, 2001; Mochizuki et al., 2002; Mochizuki and Gorovsky, 2004;

Yao et al., 2003).  Remarkably, a recent report indicated that V(D)J recombination at the

Ig heavy chain locus is also associated with production of antisense intergenic transcripts,

which might be capable of being further processed via an RNAi-like mechanism (Bolland

et al., 2004).  Considering that H3K9 methylation is required for DNA elimination in
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Tetrahymena (Liu et al., 2004), it is possible that DNA modification programs in the

immune system, such as V(D)J recombination and CSR, might also be guided by H3K9

methylation.

     In addition to its possible role in providing specificity for particular processes in B cell

development, H3K9 methylation may hold more general meaning for the function of

peripheral lymphocytes.  In their normal unactivated state, naïve B and T cells are non-

proliferative and have limited lifespan.  Conversely, spontaneous activation and

proliferation of these cells in the absence of appropriate stimuli is pathogenic, and thus

associated with autoimmune disease.  Recently, it was demonstrated that a transcriptional

complex capable of repressing E2F, Myc and Brachyury-responsive promoters is

specifically active in quiescent cells (Ogawa et al., 2002).  Strikingly, this complex was

found to contain the human homologs of the related H3K9-specific methyltransferases

G9a and Eu-HMTase (also known as G9a-like protein, GLP).  These proteins have now

been shown to associate with multiple transcriptionally repressive complexes, and are

thought to be the dominant HMTases mediating MeH3K9-dependent repression in

euchromatic chromosomal domains (Ogawa et al., 2002; Shi et al., 2003; Tachibana et

al., 2002).  This conclusion is consistent with the embryonic lethality caused by complete

loss of G9a or GLP function (Tachibana et al., 2002; Tachibana et al., 2005).

1.6  Hypothesis and goals of this study

     Based on the observations mentioned above, we propose that G9a and GLP may be

involved in the transcriptional repression of cell-cycle associated genes in quiescent,

naïve lymphocytes.  Moreover, multiple lines of evidence point to the possibility that
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H3K9 methylation might play a role in guiding DNA recombination reactions in

developing lymphocytes.  Should this be the case, the proven importance of G9a and

GLP for proper euchromatic H3K9 dimethylation make them excellent candidates for

carrying out this function, as well.  Taken together, it is clear that significant insight into

the functions of histone methylation in the immune system could be gained through

production of mutants lacking G9a or GLP function.  Since complete deletion of either of

these genes in the mouse is lethal (Tachibana et al., 2002; Tachibana et al., 2005), we

chose to investigate these issues further by producing conditional knockout alleles of G9a

and GLP.
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CHAPTER 2: MATERIALS AND METHODS

2.1 Cloning of targeting constructs

     For isolation of the G9a genomic clone, a BAC (RPCI24-165L4; BL/6; CHORI,

Oakland CA, USA) containing the murine G9a locus was obtained.  This was digested

with a cocktail of enzymes to release a ~10kb fragment containing the entire region

containing the long and short arms of homology, which was subcloned into

pBlueScriptIIKS+.  This was partially digested with SapI, and an annealed double-

stranded oligonucleotide containing the upstream loxP site and a HindIII site was

inserted.  The vector was then digested with BsaBI, and a NsiI fragment from pZero-

loxP-FRT-neo-FRT(-) (D. O’Carroll, Rockefeller University) containing the downstream

loxP site and FRT-flanked neo gene was inserted and screened for proper orientation.

The resulting plasmid was digested with NheI and AflII to release the targeted locus,

which was inserted into XhoI-digested pDTA-TK (D. O’Carroll, Rockefeller University)

to produce the final targeting construct.

     The GLP genomic locus was recombinogenically subcloned from a BAC clone

(RPCI24-156K12; BL/6; CHORI, Oakland CA, USA) essentially as described (Yu et al.,

2000; Lee et al., 2001) into pBlueScriptIIKS+ using primers which inserted a 5’ AscI site

and 3’ FseI site.  Briefly, EL350 cells were grown overnight in 5 ml of LB at 32C.  0.5-1

ml of the overnight culture was innoculated into 50ml of fresh LB in a 500ml flask and

grown at 32C with shaking to OD600 0.5-0.8.  The cells were then shaken in an ice bath

slurry by hand to cool the sample down quickly. 10 ml of the culture was pelleted for 8

minutes at 7000 rpm (5500g) at 4C.  The cell pellet was washed 3 times with 1 ml of cold

sterile water and resuspended in 100ul of ice-cold water for electroporation.  50 ul of
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competent cells was transferred to pre-chilled electroporation cuvettes (0.1 cm Bio-Rad

Cat# 165-2089), 1 ug of freshly prepared BAC DNA was added and electroporated at

1.8kV on a Bio-Rad Gene Pulser set at 25uF and 200 ohms.  1 ml of LB medium was

added to the cuvette and transferred to an eppendorf tube, incubated at 32C for 1-1.5

hours and plate on chloramphenicol plates.

     To excise the genomic fragment by recombineering, the BAC-containing EL350 strain

was grown overnight in 5 ml of LB at 32oC.  0.5-1 ml of the overnight culture was

innoculated in 50ml of fresh LB in a 500ml flask and grown at 32C with shaking to

OD600 0.5-0.8.  RED induction was performed by transferring 10 ml of the growing

culture into a 125ml conical flask in a water bath at 42C with shaking (200 revs/min) for

15 min.  Immediately after induction, the flask was placed into an ice bath slurry and

shaken by hand to cool the sample.  10 ml of the culture was spun for 8 min at 7000 rpm

(5500g) at 4C, and the cell pellet washed 3 times with 1ml of cold sterile water.  After the

final wash the cells were resuspended in 100 ul of ice-cold water, and 50 ul of cells was

transferred to a pre-chilled electroporation cuvette (0.1 cm). 100ng of pBS PCR amplicon

was added and electroporated at 1.8kV on a Bio-Rad Gene Pulser set at 25 uF and 200

ohms. 1 ml of LB medium was immediately added to the cuvette, transferred to an

eppendorf tube, and shaken at 32C for 1-1.5 hours before plating on ampicillin plates.

     The properly recombined plasmid was digested with NheI, and an annealed double-

stranded oligonucleotide containing the upstream loxP site and a BsrGI site was inserted.

The vector was then digested with BamHI, and a NsiI fragment from pZeroloxP-FRT-

neo-FRT(-) (D. O’Carroll, Rockefeller University) containing the downstream loxP site

and FRT-flanked neo gene was inserted and screened for proper orientation.  The
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resulting plasmid was digested with AscI and FseI to release the targeted locus, which

was inserted into XhoI-digested pDTA-TK (D. O’Carroll, Rockefeller University) to

produce the final targeting construct.

2.2 ES cell methods and production of mice

     Embryonic stem cell culture was performed as described (Torres and Kuhn, 1997)

using the ES cell line E14.1 (129/Ola).  ES cells were cultured on embryonic feeder (EF)

cells in ES cell medium containing leukemia inhibitory factor (LIF).  Both LIF

conditioned medium and EF cells harboring a neor-gene were prepared as described

(Torres and Kuhn, 1997). The batch of FCS used for ES cell culture was tested to yield

optimal plating efficiency without differentiation of ES cells.  EF cells were passaged at

most four times and treated with Mitomycin C (Sigma) (10 µg/ml in EF cell medium) for

2 hours at 37C immediately before use for ES cell culture.  To maintain their

undifferentiated state, ES cells were always passaged at a subconfluent stage.  For

passaging, ES cells were washed twice with PBS and trypsinised at 37C for 1-3 minutes.

Trypsinization was stopped by adding 3-5 volumes of ES cell medium, followed by

pipetting to yield a single cell suspension.  ES cells were passed at 1:10-1:20 dilutions.

Cells were frozen at –80C in ES cell medium containing 10% dimethylsulfoxide

(DMSO).  After freezing, ES cells were transferred to liquid nitrogen for long term

storage.

     All procedures concerning the manipulation of ES cells in vitro were performed as

described (Torres and Kuhn, 1997).  Briefly, 1x107 ES cells were mixed with 25 µg of

linearised targeting vector DNA (0.5 µg/ml) in 0.8 ml PBS.  Following transfection by



22

electroporation (500 µF, 230V), ES cells were plated at 2x106 per 10 cm tissue culture

dish. G418 selection (350 µg/ml) for the presence of the neor-gene was started at 24 hrs

and gangcyclovir selection (2 µM; to select for absence of the TK gene) was started 5

days after transfection.  The selection medium was changed daily.  Between day 7-10

after transfection, G418/gangcyclovir resistant ES cell colonies were picked and

trypsinized.  Cells were split in two, and half the sample used for PCR screening (see

below, “PCR”).  Positive clones were serially expanded in EF coated 48, 12 and 6-well

plates subconfluently, and also plated at time of passage into 6 wells onto 6-well dishes

pre-coated with gelatin as described (Torres and Kuhn, 1997).  ES cells grown in the

absence of feeders were used for Southern typing, while the cells grown on feeders in 6-

well dishes were frozen as described above.

     Preparation of ES cells for blastocyst injection was done as described (Torres and

Kuhn, 1997).  Injections were performed by the Rockfeller University Transgenics

Facility.  Chimeric mice were crossed to BL/6 and assessed for germline transmission by

coat color.  Deletion of the FRT-flanked neo gene was accomplished by crossing to

eFLP-transgenic mice (Rodriguez et al., 2000).  Routine typing was performed by tail

biopsy and PCR.

2.3 Mice

     Mice were maintained in the Rockefeller University Laboratory Animal Resource

Center under Specific Pathogen Free (SPF) conditions.  All procedures were approved by

the Institutional Animal Care and Use Committee (IACUC).  G9a and GLP mice were

maintained on a mixed BL/6-129 genetic background.
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2.4 Genomic DNA isolation

     For analysis of targeted mice, genomic DNA was isolated from single cell suspensions

of total splenocytes.  ~1X108 cells were lysed in 0.5 ml tail lysis buffer [10 mM Tris-

HCl pH8.5, 5mM EDTA, 0.2% sodium dodecyl sulfate (SDS), 200 mM NaCl, 100 µg/ml

proteinase K] at 55°C over night. After centrifugation at 15,000g for 10 min, the

supernatant was transferred to a fresh 1.5 ml reaction tube. 1 ml 100% ethanol was added

and shook vigorously.  The precipitate was spun for 5 min at 15,000g, washed once in

70% ethanol and briefly air dried.  Samples were resuspended in 100-500 µl 10 mM Tris-

HCl pH 8.0.  For analysis of ES cells, pelleted cells were lysed directly in tail lysis buffer

and processed as described above.

2.5 Genomic DNA digestion

     For standard Southern blot analysis, 15 ug of genomic DNA prepared as described

above was digested overnight in a 50 ul reaction with 100 units of the appropriate

enzyme in 1X reaction buffer (all enzymes and buffers from NEB).  After overnight

digestion, 20 units of enzymes were added and the reaction continued for a further 2

hours.  Reactions were stopped with 1X Orange G loading buffer for electrophoresis.

     For analytic restriction digests, 5-10 fold excess of enzyme was used to digest DNA

for 1 hour at 37C per manufacturers protocol (all enzymes purchased from NEB) before

stopping with loading buffer.
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2.6 Southern blotting

     DNA was electrophoresed on either 2% (for RT-PCR products) or 0.8% (for genomic

DNA) agarose gels and rotated in transfer buffer (0.6 M NaCl, 0.4 M NaOH) for 45 min.

DNA was transferred by upward capillary transfer onto Hybond-N membrane

(Amersham) overnight.  Blots were rotated in neutralization buffer [0.5 M Tris-HCl (pH

7.0), 1 M NaCl] for 15 min and crosslinked in a Stratalinker (Stratagene) on “auto” mode.

Blots were incubated briefly in 2XSSC, and transferred into pre-warmed hybridization

buffer [50 mM Tris-HCl (pH 7.5), 1 M NaCl, 1% SDS, 10% dextran sulfate, 300 ug/ml

sonicated salmon sperm DNA] and pre-hybridized for 3 hours at 65C.

     Probes were PCR amplified from 0.01-0.1 ng BAC DNA and gel purified (Qiagen).

DNA (50 ng) was labeled with 5 ul 32P-α-dCTP using Ready-to-Go labeling beads

(Amersham) and purified over ProbeQuant G50 spin columns per manufacturers

protocol.  Eluted DNA was boiled for 5 min and iced for 5 min prior to addition to pre-

hyrbidized blot.  Hybridization was carried out overnight at 65C.  Blots were washed

twice for 10 min each in 2XSSC/0.1% SDS, 1XSSC/0.1% SDS and 0.5XSSC/0.1% SDS,

wrapped in SaranWrap and exposed to film (Kodak XAR).

2.7 RT-PCR and oligonucleotide Southern blot

     A maximum of 5X106 cells were lysed in 1 ml Trizol (Gibco) and total RNA was

prepared per manufacturers protocol.  GlycoBlue coprecipitant (Ambion) was added to

50 ug/ml before isopropanol precipitation.  1 ug total RNA was reverse transcribed using

oligo(dT) primer (Invitrogen) and SuperScript III reverse transcriptase (Invitrogen) per

manufacturers protocol.  1 ul first strand cDNA was used for PCR amplification in a 20
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ul reaction volume with the appropriate primers as detailed under “General PCR”.

Southern blots were performed as described under “Southern blotting” with the following

modifications.  Oligonucleotide probes (20 pmol) were labeled with 5 ul 32P-γ-ATP in a

20 ul reaction using T4 Polynucleotide Kinase (NEB) and purified over ProbeQuant G25

spin columns (Amersham) per manufacturers protocols.  Hybridization was performed at

50C overnight and washed/exposed as described under “Southern blotting”.  When

needed, blots were exposed on a PhosphorImager screen (Amersham) and quantitated

using ImageQuant software.

2.8 PolyI:C treatment

     For induction of deletion in mice carrying the MX-cre transgene, mice were injected

twice (separated by 72 hr) intraperitoneally with 200 ug polyI:C (Amersham).  polyI:C

was prepared by dissolving solid powder in sterile DPBS, heating at 56C for 3 hours and

cooling slowly to room temperature.  The dissolved polyI:C was sterile filtered and stored

in aliquots at –20C.

2.9 FACS analysis

     For routine FACS analysis of lymphocytes, mice were sacrificed by CO2 euthanasia

and organs collected sterilely.  For splenocytes and thymocytes, single cell suspensions

were prepared by scraping through a sterile plastic mesh in Hanks Balanced Salt Solution

(BSS) with phenol red.  Erythrocytes were lysed in 1 ml per spleen erythrocyte lysis

buffer (0.75% NH4Cl, 100 mM Tris/HCl pH 7.65) for 3 min at room temperature, and

the lysis stopped by addition of 10 ml cold BSS.  5X105 cells were used per staining,
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which was performed in U-bottom 96 well plates (Corning).  Cells were stained in 15 ul

BSS with antibody at the concentration listed below for 20 min at 4C , washed once with

BSS and either stained with secondary antibody or resuspended in BSS with 2 nM ToPro-

3 (Molecular Probes) for FACS.

2.10 Antibodies

FACS antibodies (all purchased from BD Pharmingen unless otherwise noted)

     α-mouse CD19 (clone 1D3) FITC 1:100; α-mouse CD4 (clone GK1.5) PE 1:200; α-

mouse CD43 (clone S7) FITC 1:100; α-mouse CD8 (clone 53-6.7) FITC 1:100; α-mouse

CD90.2 (clone 53-2.1) PE 1:400; α-mouse IgD (clone 11-26C.2a) FITC 1:100; α-mouse

IgM (clone 711116152) PE 1:300 (Jackson lab); α-B220 Cychrome (1:75).

Western blot/immunoprecipitation antibodies

     αG9a (RU1061), rabbit, 1 ug/ml; α4xdiMeK9 (kind gift of T. Jenuwein, IMP,

Vienna), rabbit, 6 ug/ml; αTubulin (source unknown), mouse, 1:5,000; αFLAG M2

(Sigma), mouse, 10 ug/ml; αdiMeG9aMS2 (RU1218), rabbit, 2 ug/ml; αLamin B (Santa

Cruz Biotech), goat, 1:500; αHP1γ (Upstate), rabbit, 1:500; αHP1α (Upstate), rabbit,

1:500; αGLP (RU1160), rabbit, 1 ug/ml; αdiMeH3K9 (Upstate, #07-212), rabbit, 1:500.

2.11 PCR

      For routine PCR (typing, etc) 1 ul sample was used in a 20 ul reaction containing 1X

KlenTherm buffer [67 mM Tris-HCl (pH 9.1), 16 mM ammonium sulfate, 2.5 mM

MgCl2, 150 ug/ml BSA], 2.5 mM each dNTP, 0.4 uM each primer and 1 unit Taq

polymerase (Sigma).  Typing PCR conditions:  94C, 2 min; 94C, 1 min; 65C, 1 min, 72C,
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1 min; 35 cycles.  For ES cell screening PCR, PlatinumTaq (Amersham) was substituted

in the reaction, and 42 cycles of amplification were performed.

2.12 PCR primers

Primer name Sequence Purpose

G9a type 1 TGCAGACTCTGCACCTTGCTCTTCTG G9a typing

G9a type 2 GTGTGAGCCTGTGTTCTGGGGATTA G9a typing

G9a type 3 CCGGAGATGAGGAAGAGGAGAACAG G9a typing

GLP type 1 GGGTTGTGCTCAGAGTTTCTACCTC GLP typing

GLP type 2 TCCCTCATCGCCCACATTTCTG GLP typing

GLP type 3 CCGGAGATGAGGAAGAGGAGAACAG GLP typing

G9a Probe G

FWD

GGGCTCCTGGGCTCTATGAG G9a probe G

G9a Probe G

REV

ATCAGCTGGCAGAGGCCCAAC G9a probe G

Probe E FWD CGGGATCCGGACGTAGCCCGAGGCTATGAG G9a probe E

Probe E REV CGGGATCCCTTGTCATACCAGCATCGGATAC G9a probe E

Probe 18-19

FWD

CCTCTTTCTTTCTCGGGATTCAG GLP probe A

Probe 18-19

REV

CTGCAAATGAGTGATGTTCCTG GLP probe A

LAH extl probe

FWD (should be

SAH)

CCTGTTAAACATGGCTGCTTG GLP probe B
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FWD (should be

SAH)

LAH extl probe

REV (should be

SAH)

TTCTCTTTTTCCTTGTCTGCCC GLP probe B

CD19C AACCAGTCAACACCCTTCC CD19cre

typing

CD19D CCAGACTAGATACAGACCAG CD19cre

typing

CRE7 TCAGCTACACCAGAGACGG CD19cre

typing

MX CRE F CATGTGTCTTGGTGGGCTGAG MXcre typing

MX CRE R CGCATAACCAGTGAAACAGCAT MXcre typing

SD24 CTAATGTTGTGGGAAATTGGA FLPer typing

SD25 CTCGAGGATAACTTGTTTATTG FLPer typing

2.13 B cell purification

     Splenic B cells were purified using α-CD43 microbeads (Miltenyi Biotec) per

manufacturers protocol.  Purity as judged by B220 staining was consistently >90%.

Table 2.1  PCR Primers used in this study.  All sequences are given 5’-3’.
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2.14 CFSE labeling and B cell stimulation

     Purified splenic B cells were washed twice in plain RPMI and resuspended at 1X107

cells/ml in plain RPMI with 2.5 µM carboxyfluoroscein diacetate succinimidyl ester

(CFSE; Molecular Probes).  After incubation at 37C for 10 min, 10 ml cold serum was

added and cells were washed twice with complete medium [RPMI 1640, 10% Fetal

Bovine Serum, 1X Penicillin/Streptomycin (Gibco), 1X L-Glutamine (Gibco), 50 uM

betamercaptoethanol] before resuspension in complete medium for cell culture.  2x105

cells were cultured per well of a 96-well flat bottom plate for 3-4 days in complete

medium  with varying stimuli at the following concentrations: α-F(ab)2 of IgM (1-5

µg/ml), rIL-4 (25 U/ml), LPS (5 µg/ml).

2.15 Protein lysate preparation

     For routine protein lysate preparation, cells or purified nuclei were resuspended in an

appropriate volume M2 lysis buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM

EDTA, 1% Triton X-100) with 1X protease inhibitor cocktail (Sigma) and rotated at 4C

for 30 min.  After centrifugation at 14000 rpm for 15 min at 4C, the supernatant was

moved to a new tube and quantitated by Bradford assay (Biorad).  50 ug of lysate were

typically loaded per lane.

2.16 Western blotting

     Gels were blotted in a submerged transfer chamber (Biorad) in 1X transfer buffer [48

mM Tris-HCl, 39 mM Glycine, 0.037% (w/v) SDS, 20% MeOH] overnight at 15 volts,

4C, onto 0.2 micron pore nitrocellulose (Schleicher and Schuell).  Membranes were
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stained with Ponceau S (Sigma) and destained with dH2O before cutting individual strips

for probing.  Strips were blocked 1 hr at room temperature with 4% autoclaved milk in

PBS.  Antibodies (see separate list for concentrations) were diluted in block and added

for 1 hr at room temperature.  For all antibodies except FLAG M2, blots were washed 4

times 5 min in PBS/0.1% Tween 20 (PBST).  For FLAG M2 blots, washing was done

twice for 5 min in PBS.  All secondary anibodies were used at 1:10,000 dilution in block,

and all blots were washed 4 times 5 min in PBST.  Detection was performed with ECL

(Amersham) or Visualizer (Upstate) as required.

2.17 Peptides

     All G9a peptides were produced by the Rockefeller University Proteomics Resource

Center and were at least 85% pure.  G9a MS2 peptides all included a C terminal cysteine

and contained the base sequence KVHRARKTMSKPGC.  H3 peptides were kindly

provided by C.D. Allis (Rockefeller University).

2.18 Calcium phosphate transfection

     For transfection of 1 10 cm dish, 5X106 293 cells were plated 1 day prior to

transfection, and the medium was changed the next day prior to transfection.  10 ug

plasmid DNA in 480 ul was mixed with 120 ul 1.25 M CaCl2 and added dropwise to 600

ul 2X HBS (pH 7.0) with gentle vortexing.  After 30 min incubation at room temperature,

the precipitate was added dropwise to cells.  Medium was replaced after 24 hr, and all

cells were harvested 48 hr after transfection.
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2.19 Nuclear fractionation

     For fractionation of nuclei, 1X107 cells were collected by trypsinization, washed once

with cold DPBS, and resuspended in Buffer A [10 mM HEPES (pH 7.9), 5 mM MgCl2,

0.25 M sucrose].  NP-40 was added to 0.1% final concentration, the mixture pipetted

through an 18 guage needle 4 times, incubated at 4C 10 min, and spun 10 min at 8000

rpm, 4C.  The supernatant was taken as the cytosolic fraction, and the pellet as the

nuclear fraction.

2.20 Histone methyltransferase assays

     HMTase assays were performed essentially as described (Rea et al., 2000) with the

following modifications: reactions were scaled down to 20 ul volumes, using 2.5-5 ug

peptide per reaction.  For assay on beads, immunoprecipitations from ~0.5-1X107

transiently transfected 293 cells were used per reaction.  Samples were stopped with 4X

Laemmli buffer (to 1X final concentration) and separated by SDS-PAGE on 15%

acrylamide gels.  After Coomassie staining and destaining in 30% MeOH/10% acetic

acid, gels were dried 1hr at 80C under vacuum before exposure to a PhosphorImager

screen (described above).

2.21 Immunoprecipitation

     For small scale immunoprecipiation (IP) of FLAG-tagged protein, 20 ul packed

volume M2-agarose beads (Sigma) was washed extensively with M2 lysis buffer and

added to lysed protein samples (see above).  Samples were rotated overnight at 4C,

washed 3 times with 0.5 ml lysis buffer and boiled in 1X Laemmli buffer.
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     For large scale FLAG M2 IP and small scale IP using αG9a antibody, M-270 Epoxy

Dynabeads (FLAG) or Protein A Dynabeads (G9a; both from Dynal Biotech) were

coated per manufacturers instructions.  100 ul (FLAG) or 10 ul (G9a) beads were used

per IP, and washing was done as above.  To elute FLAG protein for mass spectrometry,

Dynabeads were resuspended after washing in 250 ug/ml 3xFLAG peptide (Sigma) and

rotated for 1 hr at 4C.  The supernatant was used for SDS-PAGE.

     For coimmunoprecipitation of G9a with endogenous HP1γ, transfected 293 cells were

arrested for 12 hr with 2 mM thymidine (Sigma) in medium 24 hr after transfection.  18

hr later, the fresh medium containing 20 uM MG-132 (Peptides International) was added,

and this was left on the cells until harvesting.

2.22 Antibody generation

     For generation of αG9a antibody, residues 1-281 of murine G9a were fused to GST in

pGEX-6P-1.  Protein production in transformed bacteria (E. coli BL21) was induced with

1 mM IPTG (Sigma) for 3 hr at 37C.  Cells were lysed by sonication in lysis buffer (PBS,

1 mM EDTA, 1 mM EGTA, 1X protease inhibitor cocktail) and clarified by

centrifugation.  The supernatant was passed over a Glutathione-Sepharose column

(Amersham Pharmacia Biotech), the column washed extensively with PBS and eluted

with excess glutathione per manufacturers protocol.

     GST-G9a antigen was coupled to KLH and used to immunize rabbits by Cocalico

Biologicals.  Sera were screened by Western blot against the immunizing antigen and a

highly reactive serum (RU1061) was affinity purified against immobilized antigen on

AffiGel 10 (Biorad) per manufacturers protocol.  Peak fractions were pooled, dialyzed
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against PBS/50% glycerol and stored at –80C.  For peptide antibodies, affinity

purification was performed by immobilization of peptides via a C-terminal cysteine on

SulfoLink coupling gel (Pierce) per manufacturers protocol.  Peak fractions were

dialyzed and stored as above.

2.23 Peptide dot blots

     For dot blots, 2 ul 0.5 mM peptide solution was spotted on pre-wetted moist

nitrocellulose (0.2 micron pore, Scheicher and Schuell).  Blots were dried overnight at

room temperature before use, and were processed as described under “Western blotting”.

2.24 Peptide pulldown assays

     G9a peptides were coupled to SulfoLink beads (Pierce) per manufacturers protocol.

25 ul (bed volume) beads were added to nuclear extracts prepared in M2 lysis buffer and

rotated overnight at 4C.  Beads were washed 3 times in 0.5 ml lysis buffer and boiled in

1X Laemmli sample buffer.

     Binding to in vitro translated proteins was performed essentially as described (Lachner

et al., 2001).  Where necessary, peptides were dephosphorylated with 25 units PP1 (NEB)

for 30 min per manufacturers protocol.  Samples were electrophoresed on 7.5-15% linear

gradient acrylamide gels, and stained with Coomassie blue, destained, dried and exposed

to PhosphorImager as described above.
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2.25 Adenoviral infection and subcloning

     Cre-expressing adenovirus was a kind gift of I. Su (Rockefeller University).

Infections were carried out as described (Su et al., 2005).  2-3 passages after deletion,

cells were plated at 0.2 cells/well in 96 well plates and allowed to expand to confluence.

Wells showing growth were further expanded and tested for deletion.  Two clones (#3

and #16) showing 100% deletion by PCR were selected for retroviral reconstitution.  All

experiments were performed with derivatives of clone #3.

2.26 Retroviral infection

     SV40-large T retrovirus was kindly provided by S. Buonomo (Rockefeller

University).  FLAG-hG9a and mutations thereof were subcloned into pMSCV-Puro

(Invitrogen).  For production of retrovirus, 7.5X105 BOSC packaging cells were plated in

1 well of 6 well dish and transfected 24 hr later with 1.4 ug retroviral vector and 0.6 ug

pCL helper plasmid using Fugene (Roche) per manufacturers protocol.  48 hr later the

supernatant was collected, passed through a 0.2 micron filter, and added directly to

subconfluent target cells in the presence of 20 mM HEPES and 10 ug/ml polybrene

(Sigma).  48 hr after infection, cells were selected by addition of medium containing 4

ug/ml puromycin (Sigma).  Lines were subsequently maintained as bulk populations to

avoid integration site effects.

2.27 Indirect Immunofluorescence on Mouse Embryonic Fibroblasts

     Cells were seeded into 6 well dishes containing acid washed, poly D-lysine (Sigma)

coated coverslips at 1x105 cells per well.  After 12-18  hr, the medium was removed, the
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coverslips were washed twice with PBS at room temperature, and were fixed 10 min at

room temperature in freshly prepared 4% parafomaldehyde/PBS.  Coverslips were then

washed twice in PBS, permeabilized with 0.5% Triton-X 100/PBS for 10 min at room

temperature, washed twice with PBS, and blocked overnight at 4°C in PBS/5% skim

milk/0.2% Tween 20.  For detection, the coverslips were washed four times with AbDil

(TBS/0.1% Triton-X 100/2%  BSA) and incubated for 1 hr at room temperature with

affinity purified αG9a (RU1061, 2 µg/ml), αHP1γ (2355 µg/ml; AbCam #ab10480),

αdiMeH3K9 (1:200; Upstate #07-212), or control rabbit IgG (2 µg/ml) diluted in AbDil.

Coverslips were then washed 4 times with AbDil and incubated with Alexa 488-

(Molecular Probes), FITC- (Jackson), or X-Rhodamine-conjugated (Jackson) secondary

antibodies diluted in AbDil for 1 hr at room temperature, washed 4 times with AbDil,

incubated briefly with 0.25 µg/ml Hoechst 33258 in AbDil to counterstain DNA, washed

once with AbDil, and mounted in 90% glycerol/PBS.

Imaging was performed using a Carl Zeiss Axioplan 2 microscope equipped with a

Photometrics CoolSnap HQ cooled CCD camera, and controlled by MetaMorph software

(Universal Imaging).  Images were processed with MetaMorph and Adobe Photoshop.

2.28 Kinase Assay

     Preparation of Xenopus egg extracts, immunoprecipitation using αIncenp antibody

and Aurora B kinase assays were performed essentially as described (Sampath et al.,

2004; Ohi et al., 2004).  2.5 ug peptide were used per reaction and samples were

separated by SDS-PAGE, Coomassie stained, destained, dried and imaged as discussed

above.
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CHAPTER 3: GENERATION AND ANALYSIS OF G9A AND GLP MUTANTS

3.1  Domain structure and expression of G9a and GLP

     G9a and GLP are SET-domain containing proteins of the Suv39 family, all of which

to date have been shown to act as H3K9-specific histone methyltransferases in vitro and

in vivo (Dillon et al., 2005).  Both proteins contain a C-terminal SET domain, which is

responsible for enzymatic activity, as well as pre-SET and post-SET domains, which

contribute to catalysis (Figure 3.1;(Dillon et al., 2005; Tachibana et al., 2001; Tachibana

et al., 2002; Tachibana et al., 2005).  Both G9a and GLP also contain 5-6 centrally

located ankyrin domains, whose functions are unknown (Figure 3.1).  In contrast to the

high degree of sequence similarity between the C-termini of G9a and GLP (>65%

sequence identity), the amino termini of the two proteins are relatively poorly conserved

with one another (<35% sequence identity; data not shown).  The lack of conservation in

this region is consistent with the absence of identifiable protein domains, the only

exception being a stretch of 27 consecutive glutamic and aspartic acid residues in G9a

(denoted “E” in Figure 3.1).  Despite this poor conservation, small “islands” of sequence

Figure 3.1  Domain structure of G9 and GLP.  Schematic domain structure of
murine G9a and GLP/EuHMTase-1. ANK, ankyrin repeat; SET, Su(var)3-9, E(z),
Trithorax domain; E, gluatmic/aspartic acid repeats.
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identity can still be identified in the amino termini of G9a and GLP (discussed further in

Chapter 4).

     Homologs of both G9a and GLP can be found in most vertebrates, while G9a

homologs are also present in invertebrates, including Drosophila.  Interestingly, in

addition to the domains found in vertebrates, Drosophila G9a also contains an amino-

terminal AT-hook, a protein domain thought to be involved in direct binding to AT-rich

DNA sequences (data not shown).  Strikingly, this AT-hook is embedded within one of

the microdomains of sequence conservation between vertebrate G9a and GLP homologs

(see Chapter 4).

Figure 3.2  RT-PCR analysis of G9a and GLP expression patterns.  Total RNA was
extracted from the indicated tissues and amplified by RT-PCR with primers specific for
either G9a (A) or GLP (B), followed by Southern blotting and hyrbidization with a
transcript-specific internal probe.  –DNA indicates no RT samples was added for PCR.
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     In order to determine whether G9a and GLP might have functional roles in the

immune system, we first sought to examine the expression pattern of these genes in

various immune and non-immune cell types.  Total RNA was extracted from five

different immune cell populations (total thymocytes, total bone marrow, CD4+ T cells,

CD8+ T cells and splenic B cells) as well as four control tissues (liver, kidney, heart and

testis).  These samples were reverse-transcribed and PCR-amplified using primers

specific for either G9a, GLP or HPRT (loading control).  The PCR products were

separated by agarose gel electrophoresis, Southern blotted, and hybridized with internal

probes specific for each transcript.  As shown in Figure 3.2A and B, expression of G9a

and GLP was readily detectable in all cell types tested, and at approximately equal levels.

Expression of G9a was moderately increased in testis, but neither G9a nor GLP showed

any significant overexpression in immune cell types.

3.2  Generation of conditional G9a and GLP mutant mice

     In order to produce genetic systems for understanding the physiological functions of

G9a and GLP, it was necessary to produce targeted deletions in these genes.  Both G9a

and GLP have previously been disrupted by conventional gene targeting, resulting in total

loss of function and embryonic lethality beginning at approximately gestational day E9.5

(Tachibana et al., 2002; Tachibana et al., 2005).  For this reason, it was necessary to

produce conditional mutations, which allow specific deletion of the target gene in

particular tissues, thereby bypassing the complication of premature lethality

(Lewandoski, 2001).  In order to conditionally inactivate G9a, a targeting construct was

generated which contained exons 23 and 24 flanked by loxP sites (“floxed”; Figure 3.3).
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These two exons encode the last third of the pre-SET domain and first quarter of the SET

domain, respectively, both of which are necessary for catalytic activity (Tachibana et al.,

2001).  Thus, deletion of these exons in vivo by Cre recombinase expression should cause

production of a catalytically inactive protein.  In addition, Cre-mediated deletion is

predicted to cause out-of-frame splicing of exons 22 and 25, leading to nonsense-

mediated decay (NMD) of the mutant transcript.  The targeting vector also contained a

neomycin-resistance gene (neo) for positive selection, as well as Thymidine Kinase (TK)

and Diphtheria Toxin (DTA) cassettes outside the arms of homology to allow negative

selection.  The neo gene was flanked by FRT sequences (recognition sites for the FLP

recombinase), in order to allow removal of the selection cassette in vivo.

Figure 3.3  G9a conditional targeting strategy.  Partial diagram of the G9a
genomic locus.  Exons are indicated by unfilled rectangles, loxP sites by filled
triangles, FRT sites by shaded octagons, and the location of Southern probes by dark
rectangles.  Restriction sites are abbreviated as follows: RI, EcoRI; B, BamHI; H,
HindIII.
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     E14.1 ES cells (129/Ola genetic background) were electroporated with the G9a

targeting construct, and cells were selected for resistance to G418.  Resistant colonies

were expanded and screened by Southern blot for proper targeting using probes G

(external to the short arm of homology) and E (internal to the long arm of homology).

Proper targeting was achieved in multiple clones (Figure 3.4A), and these were injected

by the Rockefeller University Transgenics facility into blastocysts from pseudopregnant

BL/6 female mice.  Chimeric progeny were bred to BL/6 partners, and germline

transmission was obtained from a single male founder (derived from ES cell clones 1A4

and 1F10).  Germline progeny were crossed to mice expressing the enhanced FLP

transgene (Rodriguez et al., 2000) in order to delete the neo cassette, leaving behind a

single scarring FLP site and the conditionally targeted locus (Figure 3B.1).  Proper

deletion of the neo cassette was confirmed by Southern blotting of splenocyte DNA from

floxed (fl) mice (Figure 3.4B).
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     Prior to conditional targeting of G9a with the loxP-FRT construct, we also attempted

to produce G9a mutants using the more traditional “three loxP” system, in which the neo

gene is flanked by loxP sites, and removed in ES cells after targeting by transient

transfection with a Cre-expressing plasmid.  While proper targeting was achieved with

this construct, we were never able to derive heterozygously floxed ES cells, since

transient expression of Cre invariably drove complete recombination to produce the

deleted allele (data not shown).  This was most likely due to the presence of an extremely

small floxed region in our targeting strategy (957 bp), making complete deletion highly

Figure 3.4  Evaluation of G9a targeting by Southern blot.  A. Genomic DNA
samples from the indicated ES cell clones were digested with HindIII and blotted
sequentially with probes E and G.  B. Splenocyte DNA from progeny of the
indicated genotypes after neo cassette removal was digested with HindIII and
probed with probe G (left) or probe E (right).  Probe E fragment sizes: WT, 7.3 kb;
Targeted (with upstream loxP site), 2.5 kb; Targeted (without upstream loxP site),
3.4 kb; Floxed, 2.5 kb. Probe G fragment sizes: WT, 7.3 kb; Targeted (with or
without upstream loxP site), 6.1 kb; Floxed, 4.8 kb.
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efficient.  Nonetheless, this targeting did produce heterozygously deleted ES cells, which

we were able to use to examine whether the mutant transcript underwent NMD.

     Total RNA was extracted from three parental and three deleted ES cell clones, and

used for RT-PCR with primers spanning the deleted exons.  After electrophoresis and

Southern blotting, the bands were quantitated by PhosphorImager analysis and

normalized to the HPRT control.  While a smaller band corresponding to the deleted

transcript was not seen in the parental clones, such a band was readily seen with all three

heterozygously deleted clones (Figure 3.5A).  Quantitation revealed that the deleted band

was present at only 10% the level of the wild type band in the deleted cells (Figure 3.5B).

Assuming biallelic transcription of G9a, this reduced abundance indicates that the mutant

transcript efficiently undergoes NMD.

Figure 3.5  Nonsense-mediated decay of G9aΔ transcript.  A. RT-PCR and Southern
blotting was performed on three-fold serial dilutions (1, 1:3, 1:9) of first-strand cDNA
from three G9aTarg/+ ES cell clones (13, 34, 51) and three G9aΔ/+ clones (13-2A, 51-9F,
51-11E).  Expected band sizes: WT transcript, 509 bp; deleted transcript, 306 bp.  B.
The results from A. were quantitated by PhosphorImager analysis and normalized to
HPRT values.  Error bars represent the standard deviation for three clones.
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     The targeting strategy for GLP was very similar to that for G9a.  The overall exon-

intron structure of the two proteins is well conserved (Dillon et al., 2005), making a

similar strategy feasible.  The SET domain of GLP is encoded by exons 22, 23 and 24,

but deletion of exon 22 (corresponding to exon 23 of G9a) was not possible due to the

likelihood of subsequent in-frame splicing.  Instead we chose to flox exon 23 of GLP

(corresponding to exon 25 of G9a), which encodes the second quarter of the SET domain,

and deletion of which should lead to out-of-frame splicing of exons 22 and 24 (Figure

3.6).

Figure 3.6  GLP conditional targeting strategy.  Symbols are as described in Figure
3.3.  Abbreviations: DTA, Diphtheria Toxin gene; neo, Neomycin resistance cassette;
TK, Thymidine Kinase gene.
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     A loxP-FRT targeting construct was prepared for GLP in essentially the same manner

as for G9a.  Proper targeting in ES cells was assessed by hybridization of Southern blots

of BsrGI-digested ES cell DNA with probes A (external to the long arm of homology)

and B (external to the short arm of homology).  Correctly targeted ES cells (Figure 3.7A)

were injected into BL/6 blastocysts by the Rockefeller University Trangenics facility.

Germline transmission was obtained from several male chimeras, all derived from clone

1D7.  These were bred to eFLP-transgenic mice to delete the neo cassette, leaving the

properly targeted floxed allele (Figure 3.7B).

Figure 3.7  Evaluation of GLP targeting by Southern blot.  A. Genomic DNA
samples from the indicated ES cell clones were digested with BsrGI and blotted
sequentially with probes A and B.  B. Splenocyte DNA from progeny of the
indicated genotypes after neo cassette removal was digested with HindIII and
probed with probe B.  Probe A fragment sizes: WT, 10.2 kb; Targeted (with
upstream loxP site), 6.7 kb; Targeted (without upstream loxP site), 12.3 kb. Probe
B fragment sizes: WT, 10.2 kb; Targeted (with upstream loxP site), 5.5 kb;
Targeted (without upstream loxP site), 12.3 kb Floxed, 3.5 kb.
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3.3  Analysis of G9a deletion in central lymphoid organs

     To begin to address the issue of the contribution of G9a to the development of

lymphocytes, we crossed the G9aflox allele to the MX-cre driver strain (Kuhn et al.,

1995).  This strain carries Cre under the control of the interferon-responsive MX

promoter, which can be induced by intraperitoneal injection of mice with the double-

stranded RNA mimic, polyI:C.  G9afl/+ or G9afl/fl MX-cre+ mice were injected with 200

µg polyI:C twice over 72 hours, and sacrificed ten days later for analysis (Figure 3.8A).

Deletion of the G9a locus was first assessed by PCR typing of deleted tissues.  As has

been observed with other conditional mutants using the MX-cre driver, deletion was

extremely efficient in both bone marrow and thymus, but incomplete in peripheral

lymphoid organs such as the spleen (Su et al., 2003).

     We first examined B cell development in the bone marrow by flow cytometry.  Pro-

and pre-B cells can be distinguished from more mature B cell lineages in the bone

Figure 3.8  Deletion of G9a in vivo with MX-cre.  A. Strategy for deletion using
MX-cre.  B. PCR analysis of genomic DNA harvested from the indicated tissues 10
days after the final polyI:C injection.
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marrow by expression of the CD45 glycosylation isoform B220 and their lack of surface

µ chain (IgM) expression (B220+IgM-).  As cells complete V(D)J recombination to

produce a functional B cell receptor, they become surface IgM+ immature B cells.  These

eventually emigrate to the peripheral lymphoid organs (spleen and lymph nodes), and

recirculate through the bone marrow as B220hiIgM+ cells.  As shown in Figure 3.9 (left

upper and lower panels), the overall fraction of B220+IgM- pro- and pre-B cells was

unchanged in G9a-deleted mice ten days after the final injection of interferon.

     In contrast, a clear reduction in the frequency of B220+IgM+ immature B cells was

noted, with a slight increase in the frequency of recirculating B cells.  As B cells mature,

Figure 3.9  Loss of G9a function causes a block in B cell development.
Mice of the indicated genotypes were sacrificed 10 days after the final
polyI:C injection and total bone marrow was stained as indicated and
analysed by FACS.  B220/CD43 staining in the right-hand panels was
gated on IgM-B220+ cells as indicated in the left-hand panes.
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they lose IgM expression and begin to express heavy chain of the IgD isotype due to

biased alternative splicing of the heavy chain transcript.  The depletion of IgM+ immature

B cells was also apparent in stainings for IgM and IgD in bone marrow (Figure 3.9,

middle panels), where a corresponding increase in IgD+ was also noted.  These cells

represent mature recirculating cells, most of which are likely to be undeleted (Figure

3.8B).

     The block in development of B cells to the sIgM+ stage could reflect a defect either in

progression of pro-B cells to the pre-B cell stage, which depends upon successful heavy

chain recombination, or failure of pre-B cells to complete light chain recombination.  The

precise location of this block can be determined by staining of the pro/pre-B cell

population with αCD43 antibody, which preferentially stains pro-B cells.  This staining

revealed that the B220+IgM- population in G9a-deleted mice was dramatically enriched

in CD43+ cells, indicative of a block in pro-to-pre B cell development.  This phenotype is

qualitatively very similar to the effect of deletion of the H3K27-specific histone

methyltransferase Ezh2 in bone marrow (Su et al., 2002), and also resembles the

phenotype of mice lacking a functional receptor for Interleukin 7 (IL-7), a key trophic

factor for pro-B cells (Corcoran et al., 1998).

     A major concern in interpretation of lymphocyte developmental phenotypes is the

possibility that removal of key molecules in cells that are undergoing rapid rounds of cell

division (such as occur during development to the immature B cell stage) can have non-

specific toxic effects which may superficially appear quite specific.  One way to address

this possibility is to examine the effect of loss of function on the development of other
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cell lineages, such as T cells.  We thus examined whether T cell development in the

thymus was affected by loss of G9a function.

     The earliest stages of thymic α:β T cell development are characterized by the lack of

expression of both the CD4 and CD8 co-receptors (double negative stage).  Thymocytes

that successfully undergo recombination of the TCRβ chain expand rapidly and mature to

the CD4-CD8 double positive (DP) stage, during which TCRα recombination occurs.

The small percentage of DP cells which survive positive and negative selection silence

either CD4 or CD8 expression to become CD8 single positive (SP) or CD4 SP cells,

respectively.  Although deletion of G9a in thymocytes with MX-cre was very efficient

Figure 3.10  Loss of G9a function does not grossly perturb T cell development.
Total thymocytes or splenocytes from the mice described in Figure 3.9 were stained as
indicated and analysed by FACS.
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(Figure 3.8B), we saw no effect of G9a deficiency on T cell development by FACS

(Figure 3.10, left panels).  Consistent with this finding and the inefficient deletion

observed in total splenocytes, the ratio of T cells (CD90+) to B cells (CD19+) in the

spleen was also unchanged (Figure 3.10, middle panels).  However, the number of

immature B cells (IgM+IgDlo) in the periphery was reduced (Figure 3.10, right panels), as

would be expected on the basis of decreased IgM+ B cell production in the bone marrow.

Thus while G9a function is essential for B cell development, it is dispensable for T cell

development.

3.4  Analysis of G9a function in mature B cells

     G9a and GLP were previously identified as components of a E2F6-containing

transcriptional repressor complex linked to maintenance of cells in the G0 (quiescent)

stage of the cell cycle (Ogawa et al., 2002).  This stage corresponds to the resting state of

naive mature lymphocytes, thus raising the possibility that G9a and/or GLP might be

involved in maintenance of cell quiescence.  It was therefore of significant interest to us

to investigate the effect of G9a deletion in peripheral lymphocytes.  In order to begin to

address this issue, we first examined expression of G9a and GLP in resting and activated

peripheral B cells.  Purified wild type splenic B cells were activated with either LPS

alone or LPS and Interleukin 4 (IL-4), and G9a and GLP expression were measured by

RT-PCR and Southern blotting as previously.  Since triggering of naive B cells causes

dramatic upregulation of “housekeeping” genes such as HPRT, expression of IgM

germline transcripts was used as a loading control.  As shown in Figure 3.11A, neither

G9a nor GLP was significantly upregulated in response to B cell activation.
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     Since G9a deletion in bone marrow causes a block in B cell development, it was

necessary to use a different driver strain in order to investigate possible functions of G9a

in mature B cells.  As mentioned previously, deletion of Ezh2 in hematopoietic stem cells

with MX-cre also causes a severe block in B cell development at the pro-to-pre B cell

transition.  However, deletion starting at the pro-B cell stage with the CD19-cre driver

allows production of peripheral B cells (Rickert et al., 1997; Su et al., 2003).  We

therefore crossed G9afl/fl mice to the CD19-cre driver strain.  G9a deletion in peripheral B

cells, as measured by Western blotting with a αG9a polyclonal rabbit antiserum produced

in the lab (described in Chapter 4), was complete (Figure 3.11B).  As observed for Ezh2,

conditional deletion of G9a with the CD19-cre driver strain did not significantly perturb

B cell development in the bone marrow (Figure 3.12).  Likewise, B cells were present in

spleen and the ratio of IgM+/IgD+ cells was unaltered (data not shown).

Figure 3.11  G9a/GLP expression during B cell activation and deletion of G9a
with CD19-cre.  A. Purified wild type splenic B cells were activated with the
indicated stimuli and total RNA was collected on a timecourse.  RT-PCR and
Southern blotting were performed as in Figure 3.2.  B. Splenic B cells were
purified from G9afl/fl mice with or without the CD19-cre knock-in allele, and
lysates were immunoblotted with the indicated antibodies.  The lower band in the
αG9a blot represents a cross-reacting cytoplasmic protein (discussed in Chapter
4).
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     In order to assess the contribution of G9a to maintenance of the G0 state, we examined

the response of wild type and G9a-deficient cells to mitogenic stimuli in vitro.  Purified

splenic B cells loaded with the cell division tracker dye carboxyfluorescein succinimidyl

ester (CFSE) were stimulated with sub-optimal (1 µg/ml) or saturating (5 µg/ml)

concentrations of αIgM antibody or LPS in the presence or absence of IL-4.  Cell

division is accompanied by linear dilution of the CFSE dye, allowing quantitation of cell

division by FACS.

Figure 3.12  Unaltered B cell development in G9afl/fl CD19-cre mice.  Total bone
marrow cells from mice of the indicated genotypes were stained as in Figure 3.9 and
analysed by FACS.
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     As shown in Figure 3.13, both wild type and G9a-deficient B cells proliferated

robustly in response to triggering by αIgM+IL-4, LPS ± IL-4, or LPS+αIgM.  The only

difference in proliferation was seen under conditions of limited triggering with αIgM in

the absence of IL-4, in which samples a modest decrease in division of the mutant cells

could be measured.  Importantly, no spontaneous division of G9a-deficient cells was

observed in the absence of stimulation, arguing against a fundamental role for G9a

activity in maintenance of quiescence.

Figure 3.13  In vitro activation profile of G9a-deficient B cells.  Purified splenic
B cells from G9afl/fl and G9afl/fl CD19-cre mice were labeled with CFSE and
activated with the indicated stimuli in vitro.  Cells were analysed by FACS 72
hours after stimulation.
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     Recently, it was reported that G9a physically interacts with the SET-domain

containing protein Blimp-1, a known “master regulator” of B cell differentiation into

plasma cells (Gyory et al., 2004; Shapiro-Shelef et al., 2003).  Although Blimp has not

been shown to possess histone methyltransferase activity itself, it is thought to promote

plasma cell differentiation by inactivation of the B cell gene expression program through

interaction with multiple families of transcriptional repressors (Lin et al., 2003; Piskurich

et al., 2000; Shaffer et al., 2002; Yu et al., 2000).  The interaction between G9a and

Blimp was shown to be essential for a separate Blimp-dependent activity, namely

repression of Interferon β (IFN-β) after induction in vitro.  This raised the possibility that

G9a might contribute to Blimp-mediated plasma cell development as well.

     We addressed this possibility by measuring induction of CD138/Syndecan-1

expression, an established plasmablast marker (Shapiro-Shelef et al., 2003), in the B cell

activation experiment described previously (Figure 3.13).  Four days after stimulation,

strong plasmablast differentiation was seen in both wild type and mutant cells stimulated

with LPS only, and this was accompanied by extensive division of the cells as measured

by CFSE dilution (Figure 3.14).  Similar results were obtained for wild type cells

stimulated with LPS+IL-4, but under this condition approximately half as many

plasmablasts were seen in the mutant sample.  Stimulation of B cells with both LPS and

αIgM has been described to deliever an inhibitory signal which inhibits plasma cell

differentiation, even in the presence of strong division.  This inhibitory effect was

maintained in mutant B cells (Figure 3.14), demonstrating that this effect in unlikely to be

mediated by induction of specific H3K9 dimethylation.
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3.5  Summary

     Overall, our studies of G9a conditional knockout mice indicate that G9a activity is

critically required for B cell development, but is not required for T cell development.

Within the B lineage, we find that G9a contributes to the pro-B to pre-B cell transition

during development, but is largely dispensable for activation and proliferation in the

periphery.  We found no defect in upregulation of activation markers after stimulation in

vitro (data not shown), and cells proliferated at wild type levels in response to most

stimuli.  In addition, plasmablast differentiation was completely unaffected in response to

Figure 3.14  Effect of G9a deficiency on plasma cell differentiation in vitro.
CFSE-labeled wild type or mutant B cells were activated in vitro with the indicated
stimuli and analysed by FACS 4 days after stimulation for plasmablast differentiation,
as measured by expression of CD138/Syndecan-1.
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LPS, ruling out an essential role for G9a in Blimp-mediated repression in differentiating

B cells.  Small differences were seen in the proliferative response of G9a-deficient B

cells to purely BCR-driven activation in the absence of IL-4, as well as in plasma cell

differentiation in response to LPS+IL-4.  However, since the CD19-cre driver used in

these experiments is a knock-in into the CD19 locus, G9a-deficient cells are also

heterozygously deficient for the CD19 co-receptor.  Complete loss of CD19 function is

known to cause defective T-cell dependent immune responses in vivo (Rickert et al.,

1995), and thus quantitatively different results on a heterozygous background must be

interpreted with caution.
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Chapter 4: Analysis of G9a methylation

4.1  G9a is lysine methylated in vitro and in vivo

     While performing sequence alignments between the amino-termini of murine G9a and

GLP, we identified a stretch of eight amino acids which showed perfect identity between

the two (Figure 4.1).  Extending the alignment to include human G9a and GLP, as well as

G9a homologs in Xenopus and Drosophila, we noted a high degree of conservation

within this motif, which contrasts with the relatively poor conservation of the

surrounding sequence.  Most intriguing was the degree to which the core conserved motif

resembled the canonical H3K9 target sequence of G9a (Figure 4.1).  This observation led

us to ask whether this H3-like sequence in G9a might be a target for lysine methylation.

Figure 4.1  G9a and GLP carry a conserved H3K9-like motif in their N terimini.
Protein sequences of G9a and GLP homologs from several species were aligned using
ClustalW software.  Identical residues in at least four of six sequences are shown in red,
and the amino terminus of H3 is shown for comparison.  The sequence listed
corresponds to residues 140-190 of human G9a. The positions marked “1” and “2”
above the sequences denote the two lysine residues conserved between human and
mouse G9a/GLP homologs.  Abbreviations: h, human; m, mouse; x, Xenopus; d,
Drosophila.
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     To address this possibility, we first assayed the ability of a peptide containing the

putative methylation site of human G9a (K165) to act as a substrate in an in vitro

methylation reaction.  As a source of methyltransferase activity, we initially chose to use

human G9a itself, since this enzyme has been shown to possess high intrinsic HMTase

activity towards H3K9 (Tachibana et al., 2001).  Methyltransferase assays using

immunoprecipitated FLAG-tagged hG9a demonstrated robust methylation of peptides

containing either the wild type H3K9 sequence or the wild type G9a K165 sequence

(Figure 4.2).  Since the K165 peptide contains an additional conserved lysine, K169, we

also attempted to methylate a peptide containing the lysine of interest mutated to an

alanine (K165A).  This mutant peptide failed to be methylated by hG9a in vitro,

demonstrating the specificity of the methylation reaction for the single lysine which most

closely resembles H3K9 (Figure 4.1).  In addition, peptides carrying chemically

dimethylated K165 were completely refractive to further methylation (Figure 4.2), a

Figure 4.2  G9a K194 can be methylated in vitro.  αFLAG immunoprecipitates
from 293 cells transiently transfected with the indicated constructs were used in an
in vitro HMTase assay against the peptide substrates listed.  WT, unmodified
peptide; diMe, dimethyl K194 peptide; K-A, K165A mutant peptide; triMe,
trimethyl H3K9 peptide.
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finding consistent with previous reports demonstrating that G9a is specifically a di-, but

not tri-methylating enzyme (Peters et al., 2003).

     Having established that the H3K9-like K165 site in G9a can be methylated in vitro,

we next sought to determine whether this site is actually methylated in vivo.  Studies of

histone methylation have been greatly aided by the production of antisera capable of

specifically recognizing modified residues.  Of particular interest is an antiserum that was

raised against a branched-peptide antigen bearing the dimethyl H3K9 sequence

(α4xdiMeK9); this antibody has been shown to recognize various degrees of methylation

of H3K9, as well as lysine methylation of other sites in various histones, and has

therefore been termed a “multi-methyl” lysine specific antibody (Perez-Burgos et al.,

2004). We investigated whether this antibody might also react with methylated G9a K165

peptide. As shown in Figure 4.3, the α4xdiMeK9 antibody was able to recognize the

dimethylated but not unmethylated or alanine mutant K165 peptide by Western blot,

Figure 4.3  Methylated G9a K194 peptide is recognized by a “multi-methyl”
lysine-specific antibody.  The indicated peptides were probed by Western blot
with an antibody (α4xdiMeK9) which recognized methyllysine in multiple
sequence contexts (see text).  WT, unmodified peptide; diMe, dimethyl K194
peptide; K-A, K165A mutant peptide; triMe, trimethyl H3K9 peptide.
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demonstrating specific recognition of the methyl-modified form of G9a.  We therefore

further used this antibody to determine whether G9a exists in a methylated state in vivo.

     In order to purify endogenous G9a, we raised an antiserum against an amino-terminal

fragment of murine G9a.  The affinity-purified antibody recognizes both human and

mouse G9a in nuclear extracts, and immunoprecipitates H3K9- and G9a K165-

methylating activity (Figure 4.4A and B, and data not shown).  Endogenous hG9a

immunoprecipitated from HEK293 nuclear extracts using αG9a antibody was probed by

Western blot with the α4xdiMeK9 antibody (Figure 4.4C).  Reactivity with the multi-

methyl lysine antibody was readily observed, indicating that G9a is in fact methylated in

vivo.

Figure 4.4  G9a exists in a methylated state in vivo.  A. Schematic
representation of the region used to raise αG9a antibody.  B. Western blot of
immunoprecipitations from nuclear or cytoplasmic 293 extracts using αG9a
antibody.  Red asterisk marks the position of G9a; the strong signal below ~50
kD  corresponds to cross reaction of the secondary antibody wih that used for
IP.  C. Immunoprecipitation of endogenous hG9a from 293 cells, followed by
Western blot with αG9a or α4x(diMeK9) antibody as indicated.

*
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     To determine the site of methylation recognized by the α4xdiMeK9 antibody, we

began by constructing point mutations of human G9a, mutating either one or both

conserved lysines in the originally-identified motif to alanine (Figure 1A, K165A or

K165,169A).  To our surprise, mutation of a single lysine to alanine (K165A,

corresponding to the site of methylation in vitro) completely abolished recognition of

FLAG-hG9a by the α4xdiMeK9 antibody (Figure 4.5A).

     In order to directly confirm the finding of G9a methylation on K165, we investigated

methylation of this site by mass- and tandem-mass spectrometry (MS and MS-MS).

Trypsin digests of immunoprecipitated FLAG-hG9a (Figure 4.5B) produced an MS peak

Figure 4.5  Identification of G9a methylation sites.  A. Wild type or point mutant
G9a was immunoprecipiated from transiently transfected 293 cells and analysed by
Western blot with the indicated antibodies.  Asterisk indicates cross-reaction with
light chain of the immunoprecipitating antibody.  B. Immunoprecipitated FLAG-
hG9a was separated by SDS-PAGE followed by staining with Coomassie Blue.  C.
Sites of methylation identified by mass spectrometry (indicated in red); both sites
were purely dimethylated.  D. Alignment of MS1 and MS2 with H3K9 and H3K27.
Identical residues are shown in red, and conservative substitutions in yellow.
Abbreviations: EV, empty vector; WT, wild type FLAG-hG9a; K1, FLAG-hG9a
K165A; K1K2, FLAG-hG9a K94A K165A.
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consistent with the mass of a peptide (KTMSKPGNGQPPVPEK) bearing an oxidized

methionine and two methyl groups (Figure 4.5C).  Further fragmentation of this peptide

and analysis by MS-MS yielded a spectrum consistent with the sequence of the predicted

peptide, including dimethylation of K165 (data not shown).  Intriguingly, no peptides

bearing mono- or trimethylated lysines were observed, and unmethylated peptides were

similarly not detected, suggesting that the vast majority of the expressed G9a exists in the

dimethylated state.  In addition to K165, we also identified an additional site of lysine

methylation, K94 (Figure 4.5C).  Like K165, K94 was also dimethylated, and also existed

in a sequence context which closely resembled H3K9 (Figure 4.5D).  For clarity, the

upstream K94 site is hereafter referred to as MS1 (Methylation Site 1) and the

downstream K165 site as MS2 (Methylation Site 2).

     In order to further confirm our finding of endogenous G9a methylation, we raised an

antiserum against the dimethylated G9a MS2 peptide.  Dot blot analysis of the affinity-

purified antibody demonstrated strict requirement of methylation for recognition of the

immunizing peptide (Figure 4.6A).  Surprisingly, peptides bearing dimethylation on MS2

as well as phosphorylation of the adjacent threonine were not recognized by this serum,

suggesting that recognition is specific for the methylated, non-phosphorylated version of

this site (data not shown).  We further found that the immune, but not the preimmune

serum specifically recognized bands of the correct size for G9a in 293 nuclear extracts

(Figure 4.6B, indicated by red asterisk).  Despite the sequence similarity between MS1

and MS2, it is clear that both the α4xdiMeK9 and αdiMeMS2 antisera specifically

recognize MS2 methylation, as MS1 point mutation had no effect on recognition by

antibody (Figure 4.6C).  Since the MS2 site bears the strongest resemblance to H3K9 and
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is uniquely recognized by the α4xdiMeK9 antibody, we chose to further investigate the

biochemical consequences of methylation on this lysine.

4.2  G9a methylation controls interaction with HP1

     Groundbreaking studies previously demonstrated that methylation of H3K9 is

sufficient to create a specific binding site for chromodomain-containing proteins of the

Heterochromatin Protein 1 (HP1) family (Lachner et al., 2001).  Intriguingly, G9a  has

Figure 4.6  Two different methyl-specific antibodies recognize methylation of G9a
MS2.  A. Dot blot analysis using the indicated peptides and either the affinity purified
αG9a diMeMS2 antibody or pre-immune serum from the same rabbit.  B. Western
blot analysis of cytoplasmic (Cy) or nuclear (Nu) 293 cells extracts, using the sera as
in (A).  Red asterisk marks the position of endogenous G9a.  C. Immunoprecipitates of
wild type or point mutant FLAG-hG9a probed with the indicated antibodies.  Signal
from input samples probed with αFLAG antibody was visible on longer exposure
(data not shown).
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been shown to exist in a complex containing the predominantly euchromatic HP1

isoform, HP1γ, and to interact directly with HP1γ in vitro (Ogawa et al., 2002; Roopra et

al., 2004).  These observations, together with the extensive sequence similarity between

MS2 and H3K9, as well as the finding that G9a exists in a methylated state in vivo, led us

to speculate that methylation of G9a on K165 could create a binding site for HP1γ.  To

address this possibility, we asked whether interaction of G9a with HP1γ depended on the

presence of a methylatable lysine at the MS2 site.  Wild type or MS2 KA point mutant

hG9a were expressed in 293 cells, and assayed for their ability to associate with HP1γ. As

shown in Figure 2D, wild type G9a was able to co-immunoprecipitate HP1γ, whereas the

MS2 K165A mutation completely eliminated this interaction, despite the presence of an

unmutated MS1 site. By contrast, the previously reported interaction between G9a and

GLP was not affected by the MS2 KA mutation (data not shown).

Figure 4.7  Interaction of G9a with HP1γ requires an intact MS2 methylation
site.  Immunoprecipitates of transiently transfected wild type (WT) or K165A (KA)
FLAG-hG9a were analysed by Western blot for co-immunoprecipitation of
endogenous HP1γ.  Asterisk indicates cross-reaction with the heavy chain of the
immunoprecipitating antibody.

*
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     These results suggest, but do not directly prove that interaction of HP1γ with G9a

depends on methylation of MS2. We therefore examined whether the presence of methyl

groups per se was required for HP1 binding. MS2 peptide matrices containing either

unmodified lysine, dimethylated lysine or a lysine to alanine mutation were incubated

with unmanipulated nuclear extracts in order to determine whether HP1γ could directly

interact with the methylated peptide.  We found that recovery of HP1γ as well as HP1α

on the beads was significantly enhanced by pre-existing methylation of the MS2 peptide,

and was completely blocked by mutation of the methylated lysine to alanine (Figure 4.8).

In contrast, the nuclear protein Lamin B was not recovered with any peptide.

    The interaction of HP1 isoforms with unmethylated peptide, while substantially less

efficient than in the presence of methylation, was still detectable.  This could represent

either low-affinity interaction between HP1 and unmethylated lysine, or de novo

methylation of the MS2 peptide by methyltransferases present in the extract. These

possibilities can be distinguished through the use of in vitro translated HP1 protein, as

contaminating HMTases should be less abundant or absent in the reticulocyte lysates

Figure 4.8  Methylation of MS2 strongly promotes binding of HP1 isoforms.  The
indicated peptides were covalently coupled to beads and incubated in unmanipulated
293 extracts.  After thorough washing, associated proteins were examined by Western
blot.  WT, unmodified peptide; diMe, dimethyl MS2; KA, MS2 K165A peptide.
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used for translation.  We therefore incubated wild type, dimethylated or point mutant

MS2 peptides with in vitro-translated HP1 proteins, followed by SDS-PAGE and

autoradiography (Figure 4.9).  Only the methylated MS2 peptide was able to interact with

HP1 under these conditions, demonstrating that the interaction of methylated G9a with

HP1 requires lysine methylation.

4.3  Studies of G9a methylation in vivo

     Further investigation of the mechanism and possible consequences of G9a methylation

required a cell system lacking endogenous G9a expression.  To create such a system, we

utilized the conditional G9a mouse mutant described earlier (Chapter 3).  Since G9a-

deficient Mouse Embryonic Fibroblasts (MEFs) fail to proliferate in culture (Tachibana

et al., 2002), we chose to use a multistep strategy to derive deficient MEFs.  First,

immortalized G9afl/fl (“floxed”) cell lines would be derived by infection of primary MEFs

Figure 4.9  Methylation of G9a MS2 is required for HP1 binding.  Beads
conjugated with the indicated peptides were incubated with in vitro-translated HP1
isoforms, and binding assessed by SDS-PAGE and autoradiography.
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with a retrovirus expressing SV40 large-T antigen.  These would be subsequently

infected in bulk with a Cre-expressing adenovirus to produce G9a deficiency (G9aΔ/Δ),

and subcloned by limiting dilution to produce clonal populations.  Finally, the subcloned

cells would be infected with retroviruses carrying either an empty vector (KO), wild type

FLAG-hG9a (WT), MS2 K165A FLAG-hG9a (KA) or FLAG-hG9a carrying a single

amino acid point mutation in a residue known to be critical for enzymatic activity in other

SET-domain contain HMTases (H1093K, abbreviated HK). The overall strategy is

summarized in Figure 4.10.

     To examine the efficiency of adenoviral Cre expression, we first performed a

timecourse of Adeno-Cre deletion in primary MEFs.  Two independent G9afl/+ or G9afl/fl

embryos were used to establish primary cultures, which were infected at high multiplicity

of infection with Adeno-Cre.  Samples were taken at 24 hour interval, and deletion was

monitored by Western blot with αG9a antibody.  As shown in Figure 4.11, complete

deletion at the protein level was seen within 24 hours.  Interestingly, a band cross-

reacting with the αG9a antibody was seen to increase in expression level in parallel with

G9a deletion.

Figure 4.10  Scheme for creation of G9a-deficient reconstituted MEFs.
Abbreviations: RV, retrovirus; TAg, SV40 Large T antigen.
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     The presence of a cross-reacting band which increased upon G9a deletion raised the

possibility that G9a deletion might actually produce an in-frame splice product.  To

understand the properties of this cross-reacting band further, we immunoprecipitated G9a

from floxed cells using our αG9a antibody either with or without deletion using Adeno-

cre treatment, and then performed Western blot with the same antibody (Figure 4.12A).

Surprisingly, the cross-reacting band was immunoprecipitated even in deleted cells, while

co-IP of endogenous GLP (examined using our own αGLP antibody) was abolished. We

sought to further understand the nature of the cross-reacting protein by performing

nuclear fractionation (Figure 4.12B).  This demonstrated that the cross-reacting protein is

purely cytoplasmic, and thus most likely not significant for our experiments relating to

nuclear functions of G9a and G9a methylation, although this observation may be very

significant in other contexts (discussed below).

Figure 4.11  Deletion of G9a in vitro with Adeno-Cre.  Independent primary
MEF littermate cultures of the indicated genotypes were infected with Cre-
expressing adenovirus and followed by Western blot to monitor deletion.
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     Deleted immortalized cells were subcloned to produce homogeneous populations, and

then reconstituted with retrovirus as indicated in Figure 4.10.  Genotyping of the

retrovirally infected cell lines by PCR demonstrated that all lines remained completely

deleted for G9a at the genomic DNA level after extensive passage in culture (Figure

4.11A).  Western blot analysis of nuclear lysates from the reconstituted cell lines

demonstrated the expected overexpression of G9a in the retrovirally transduced cell lines

(Figure 4.11B).  Complete loss of G9a expression has been shown to result in a severe

decrease in euchromatic H3K9 dimethylation, with partial relocalization of the dimethyl

H3K9 mark to pericentric heterochromatin (Peters et al., 2003; Rice et al., 2003).

Consistent with these observations, both fully mutant MEFs and those reconstituted with

catalytically inactive G9a showed a dramatic reduction in the overall level of H3K9

dimethylation, as detected by immunoblotting with a modification-specific antibody

(Figure 3B).  In contrast, the overall levels of HP1γ remained unchanged (Figure 3B).

Figure 4.12  G9a deletion with Adeno-cre disrupts interaction with GLP and does
not produce a nuclear truncation product.  Primary MEF cultures were mock-
infected or infected with Adeno-cre.  A. Whole cell extracts were immunoprecipitated
with αG9a antibody and examined for co-IP of GLP by Western blot.  B. Nuclear and
cytoplasmic fractions were prepared to examine the distribution of the cross-reacting
band seen with αG9a antibody.
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     In order to determine whether the euchromatic distribution of HP1γ was altered in the

presence of the MS2 point mutation, we performed indirect immunofluorescence (IF)

using either HP1γ, G9a or diMeH3K9-specific antibodies.  G9a-deficient cells showed

the expected loss of euchromatic diMeH3K9, with weak accumulation of dimethyl H3K9

at pericentric heterochromatin (Figure 4.12 and data not shown).  G9a deficiency also

induced increased localisation of HP1γ to pericentric heterochromatin, which, given the

unchanged overall levels of HP1γ, implies impaired euchromatic localisation.

Reconstitution of deficient cells with wild type G9a completely rescued the effects on

both diMeH3K9 and HP1γ  distribution (Figure 4.12).

     Cells lacking endogenous G9a and expressing only the non-methylatable point mutant

showed an HP1γ localisation pattern that was grossly identical to cells expressing wild

type G9a, indicating that methylation of G9a is not required for bulk euchromatic

Figure 4.13  Analysis of reconstitution in G9aΔ/Δ MEFs.  A. G9a genotyping PCR
on genomic DNA from undeleted G9afl/fl MEFs (-Ad) or two independent subclones of
G9aΔ/Δ MEFs (+Ad) reconstituted with empty retrovirus (EV), wild type (WT), MS2
KA (KA) or catalytically inactive (HK) FLAG-hG9a.  Expected product sizes: floxed,
371 bp; deleted, 574 bp.  B. Reconstituted lines from clone #3 were analysed by
Western blot with the indicated antibodies.
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localisation of HP1γ.  Likewise, both G9a and diMeH3K9 were distributed as in wild

type cells, indicating that MS2 methylation is dispensable for G9a localization and

histone methylation activity.  Interestingly, cells reconstituted with catalytically inactive

G9a continued to demonstrate mislocalisation of HP1γ, suggesting that, as with targeting

of HP1α to pericentric heterochromatin (Lachner et al., 2001), proper euchromatic

targeting of HP1γ depends mainly on histone methylation per se (Figure 3C).

Figure 4.14  G9a methylation on MS2 is not necessary for bulk G9a, HP1γ or
diMeH3K9 localization in vivo.  MEF lines of the indicated genotypes were
examined by indirect immunofluorescence using the listed antibodies and
couterstained with DAPI.  Only the specific stain is shown (DAPI channel excluded).
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     The creation of cell lines which do not express endogenous G9a further allowed us to

address the question of which HMTase is responsible for G9a methylation on MS2.

Initial experiments indicated that while G9a can robustly methylate G9a peptides in vitro,

the related H3K9 methyltransferase Suv39H1 cannot (data not shown).  This finding is

consistent with the observation that G9a catalytic activity is ~20-fold higher than that of

Suv39H1, most likely due to a histidine to arginine substitution within the G9a SET

domain which hyperactivates the enzyme (Tachibana et al., 2001).  However, the two

non-histone targets of lysine methylation reported to date, TAF10 (Kouskouti et al.,

2004) and p53 (Chuikov et al., 2004), were both shown to be targets of the SET9

methyltransferase, which has not yet been demonstrated to possess any in vivo HMTase

function, thus raising the possibility that the enzymes targeting histones and non-histone

proteins may be mutually exclusive.

     We first chose to test whether G9a might be responsible for its own methylation.

FLAG-hG9a was immunoprecipitated from reconstituted MEF clones expressing either

G9a WT, MS2 K165A or the H1093K catalytic mutant, followed by immunoblotting

with the α4xdiMeK9 antibody, which uniquely recognizes MS2 methylation.  Whereas

wild type G9a was readily recognized by this antibody, both the MS2 and catalytic point

mutants were not (Figure 4.13).  The lack of G9a methylation in the presence of a

catalytic point mutation demonstrates that G9a is required for its own methylation.

Whether this methylation occurs in cis or in trans remains an outstanding question.
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     The presence of a methylatable target site within the G9a methyltransferase clearly

raised the possibility that this site could behave in a manner similar to that seen in

kinases, where pseudo-substrate sites located in cis are able to modulate kinase activity

(Kemp et al., 1994).  Since G9a is known to homodimerize (Tachibana et al., 2005), we

therefore took advantage of the reconstituted MEFs to measure the catalytic activity of

MS2 KA mutant G9a in a background devoid of endogenous G9a methyltransferase

activity.  FLAG-tagged wild type or MS2 KA G9a were immunoprecipitated from MEFs

and assayed in vitro for methyltransferase (MTase) activity against either H3 or G9a MS2

peptides.  Equal amounts of G9a were recovered from all cell lines, and MTase activity

of wild type and MS2 KA G9a were equal on both substrates (Supp. Figure 4).  Since

MS2 KA G9a retains its ability to heterodimerize with endogenous wild type GLP, it was

possible that the activity measured with the methylation site point mutation was due to

co-IP of GLP.  We therefore also assayed the MTase activity of the G9a H1093K

catalytic dead mutant, which is unable to reconstitute G9a activity in vivo but still

interacts with GLP (Figure 3B, C, and data not shown).  This mutant still exhibited an

Figure 4.15  Methylation on MS2 requires G9a catalytic activity.  Wild type
(WT), MS2 KA (KA) or catalytically inactive (HK) G9a was immunoprecipiated
from reconstituted G9a-deficient MEFs and examined by Westwen blot with the
indicated antibodies.
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~65% reduction in catalytic activity in vitro, demonstrating that the activity measured for

the MS2 point mutation is not simply due to interaction with GLP (Supp. Figure 4).

4.4  Potential control of HP1 binding by phosphorylation

     A major issue in the study of lysine methylation has been the possibility of reversal of

this mark.  Significant progress has been made recently through identification of an

enzymatic activity capable of active demethylation of lysines 4 and 9 in H3 (Lee et al.,

2005b; Metzger et al., 2005; Shi et al., 2004).  It has also been proposed that ejection of

HP1 bound to methyllysine could be achieved through phosphorylation of serine residues

found adjacent to H3K9 and H3K27 (Fischle et al., 2003a).  Such “methyl-phos

Figure 4.16  G9a MS2 methylation is not required for catalytic activity.  Wild type
(WT), MS2 KA (KA) or catalytically inactive (HK) FLAG-hG9a were
immunoprecipitated from reconstituted MEF cell lines.  A. Western blot analysis of
G9a recovery from each cell line.  B. HMTase assay on unmodified H3(1-20) or G9a
MS2 peptide using immunoprecipitated protein from (A).  C. Quantitation of the
results shown in (B).
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switches” have been proposed to comprise a reversible mechanism for localized

regulation of HP1 binding to histones.  The presence of phosphorylatable residues (serine

and threonine, respectively) at the positions corresponding to H3 serine 10 in the MS1

and MS2 sites (Figure 4.15A) raised the possibility that phosphorylation at these sites

could have a similar regulatory effect on HP1 binding to G9a.

     To investigate this possibility, we first sought to determine whether the threonine at

position 166 in MS2 could be phosphorylated by the dominant mitotic H3S10 kinase,

Aurora B (Hsu et al., 2000).  As a source of endogenous Aurora B, we used extracts

prepared from unfertilized Xenopus oocytes, which are naturally arrested at meiotic

metaphase II and contain high Aurora B kinase activity (Bolton et al., 2002; Murray,

1991).  The Aurora B-containing Chromosomal Passenger Complex (CPC) was

immunoprecipitated from Xenopus egg extracts using an antibody directed against the

CPC member Incenp (Sampath et al., 2004), and the immunoprecipitated material was

used in an in vitro kinase assay on various peptide substrates.  As shown in Figure 4.15B,

the Aurora B complex readily phosphorylated a peptide containing the H3K9 sequence.

This phosphorylation was completely blocked by mutation of serine 10 to alanine,

consistent with the known specificity of Aurora B (Bolton et al., 2002; Crosio et al.,

2002; Giet and Glover, 2001).  A G9a peptide containing the MS2 methylation site was

also robustly phosphorylated, and this phosphorylation was unaffected by the presence of

dimethylation on MS2.  Since the MS2 peptide contains multiple phosphorylatable

residues, we also produced a peptide carrying both MS2 dimethylation as well as

phosphorylation on T166; this peptide was completely resistant to further
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phosphorylation, demonstrating that phosphorylation by Aurora B is specific for T166,

the single residue in the MS2 peptide which aligns with H3 serine 10.

     We next investigated whether phosphorylation of T166 could modulate HP1 binding

to G9a in vitro.  Bead matrices coupled with either no peptide, wild type, dimethyl or

dimethyl-phospho G9a MS2 peptide were incubated with in vitro-translated HP1γ as

previously.  As expected, neither the empty beads nor the unmodified peptides bound

significant amounts of HP1γ, while the dimethyl MS2 beads bound HP1γ strongly

Figure 4.17  G9a MS2 peptide can be phosphorylated by Aurora B in vitro.  A.
Alignment G9a/GLP MS2 sites with H3K9 and H3K27 demonstrates conservation
of a phosphorylatable residue (shown in yellow) adjacent to the methylation site
(shown in red).  B. The Aurora B-containing Xenopus chromosomal passenger
complex (CPC) was immunoprecipitated and used in an in vitro kinase assay with
the indicated peptides as substrates.  Coomassie staining of the same gel is shown
below.  The labeled high molecular weight species correspond to known Aurora B
targets within the CPC.  WT, unmodified peptide; S10A, H3 Ser10Ala mutant
peptide; diMe, dimethyl MS2 peptide; MePh, dimethyl MS2 T166 phosphorylated
double-modified peptide.
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(Figure 4.16A).  Significantly, this binding was completely eliminated by the presence of

phosphorylation on the adjacent threonine (T166).  The lack of HP1γ binding to the

dimethyl-phospho beads was not due to reduced coupling efficiency of the peptide, since

binding could be quantitatively restored by pre-treatment of the phosphorylated peptide

matrix with Protein Phosphatase 1 (PP1; Figure 4.16A, quantitation shown in 4.16B).

These results demonstrate that, as with H3, phosphorylation adjacent to a site of

methylation in G9a has the potential to reverse the biochemical readout of this mark.

Thus the “tail” of G9a mimics the biochemical properties of the H3 tail itself in the

following ways: the G9a amino terminus is multiply methylated; this methylation is at

least in part carried out by an H3K9-specific methyltransferase; methylation creates a

binding site for HP1; a G9a tail peptide can be phosphorylated by a mitotic kinase; and

finally, methyl-dependent HP1 binding is blocked by adjacent phosphorylation.

Figure 4.18  Phosphorylation of T166 blocks binding of HP1γ to methylated MS2.
A. Beads conjugated with the indicated peptides were incubated with in vitro
translated 35S-labeled HP1γ or Pax5, and binding examined by SDS-PAGE and
autoradiography.  The dimethyl-phospho MS2 peptides were also pre-treated with
Protein Phosphatase 1 (PP1) to control for peptide coupling efficiency.  Abbreviations:
Pre, pre-pull down sample; Sup, post-pull down supernatant; PD, bead fraction after
pull down.  B. Quantitation of the results in (A).
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CHAPTER 5: DISCUSSION

5.1  Studying histone modification in the immune system

     The study of chromatin structure and function has been challenging for many of the

same reasons that make the subject compelling: the extreme conservation of histones and

the proteins that bind and modify them make genetic approaches in higher eukaryotes

difficult.  It is therefore not surprising that significant insights into the physiological

functions of histone modification in vertebrates have been made through studies of the

immune system, where loss of function phenotypes do not necessarily cause lethality

(Corcoran et al., 1998; Johnson et al., 2004; Su et al., 2003; Su et al., 2005).

     Within the immune system, the processes that have been examined the most

intensively from a chromatin perspective have unsurprisingly been those involving DNA

recombination reactions: V(D)J recombination and class switch recombination (CSR).

While the potential contribution of chromatin-based mechanisms for control of CSR are

only beginning to be addressed (see Chapter 1), “locus accessibility” has been an issue at

the forefront of studies on V(D)J recombination for quite some time (Corcoran et al.,

1998; McMurry and Krangel, 2000; Sleckman et al., 1996).  V(D)J recombination in B

cells poses a particular challenge, as the immunoglobulin heavy chain locus spans several

megabases, and must be activated in a stepwise manner for recombination in a process

that may require physical contraction of the locus (Chowdhury and Sen, 2001; Fuxa et

al., 2004).

     Intriguingly, many of the molecules and pathways demonstrated by knockout studies

to be important for immunoglobulin V(D)J recombination demonstrate similar loss of

function phenotypes: disruption of the IL-7 receptor α chain, the transcription factor Pax5
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or the histone methyltransferase Ezh2 all cause a block in pro- to pre-B cell development,

with progressively less efficient use of variable genes located at a distance from the D

and J loci (Corcoran et al., 1998; Hesslein et al., 2003; Su et al., 2002).  However, an

important point to consider in analysing the results of such gene targeting studies is that

the marked similarity in phenotype may reflect either a common function for these

disparate molecules, or a non-specific effect of perturbing lymphocyte development.

     The possibility that failure of B cell development might reflect a more general cell

biological problem is significant, since many genes whose deletion has a phenotype in

lymphocyte development demonstrate developmental failure at precisely the stages

during which cells undergo their most dramatic bursts of cell division (Chi et al., 2003;

Cobb et al., 2005; Corcoran et al., 1998; Muljo et al., 2005; Su et al., 2002).  It is

therefore plausible that deletion of crucial chromatin regulators with cell-type

independent functions causes a non-specific stress leading to developmental arrest.  This

would imply that many of the “specific” phenotypes generated in developing

lymphocytes are specific mainly due to the experimental system used.  This issue is of

particular concern in the setting of conditional mutagenesis, which by its nature produces

an artifactual degree of specificity.

     However the argument in favor of a specific effect is supported by many lines of

evidence, including the fact that while the overall effect of these knockouts may be

similar, there are many specific differences as well.  For instance, while loss of either

Pax5 or IL-7Rα blocks development at the pro-B stage with reduced usage of 5’ V genes,

Pax5 deficiency is not associated with a lack of accessibility of these gene segments (as

measured by histone acetylation and germline transcription), while IL-7Rα deficiency is



79

(Corcoran et al., 1996; Hesslein et al., 2003).  Similarly, while the pro-B cell block in

Ezh2 deficiency can be rescued by providing a pre-rearranged Ig heavy chain, Pax5

deficiency cannot (Su et al., 2002; Thevenin et al., 1998), arguing for a specific function

for Ezh2 in V(D)J recombination per sé.

     Also arguing for the specificity of these developmental blocks are the observations

that some proteins, such as Ezh2 and G9a, appear critical for B cell development, but

largely dispensable for activation and proliferation of peripheral B cells (Figure 3.13 and

3.14;(Su et al., 2002).  Similarly, while G9a deletion severely blocks B cell development,

its loss appears to have no obvious effect on α:β T cell development, which is also

accompanied by rapid cell division during the double negative to double positive

transition (Figure 3.10).  These instances of undisturbed cell division in the absence of

proteins such as G9a and Ezh2 lend credence to the suggestion that the observed

developmental phenotypes are specific.  However, it is difficult to overcome the formal

argument that developing B cells are intrinsically more sensitive to the overall “health” of

the cell, and therefore more non-specifically sensitive to manipulation.  It will therefore

be necessary to continue to interpret developmental phenotypes with caution.

5.2  Possible functions for G9a and GLP in developing lymphocytes

     Our studies and those of other groups have shown that G9a and GLP are essential for

the vast majority of euchromatic H3K9 dimethylation (Tachibana et al., 2002; Tachibana

et al., 2005).  Several groups have attempted to address the possible roles of euchromatic

H3K9 methylation in the control of V(D)J recombination in T and B cells.  This has

mainly taken the form of chromatin immunoprecipitation (ChIP) analysis of the Ig and
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TCR loci with modification-specific antibodies (Johnson et al., 2004; Morshead et al.,

2003), which collectively suggested that diMeH3K9 might be enriched on inactive gene

segments.  This hypothesis was strengthened by the finding that direct recruitment of the

G9a SET domain to the VEGF promoter was sufficient to initiate silencing (Snowden et

al., 2002), and that artifically “tethering” a catalytic fragment of G9a to a TCR locus

minigene was sufficient to inhibit germline transcription and subsequent V(D)J

recombination (Osipovich et al., 2004).  Such experiments imply that localized

recruitment of G9a and/or GLP could represent a powerful mechanism for diminishing

locus accessibility.  However, such experiments are limited by their artificiality and

inability to distinguish between simple correlation and a more causal role for diMeH3K9

in gene silencing.

     The main alternate hypothesis, that localized histone methylation might “mark” target

loci for recombination, has to date not been addressed in the immune system.  However,

there is a precedent for such a marking system in the unicellular eukaryote Tetrahymena,

where localized domains of H3K9 methylation may function to tag sites of recombination

during macronuclear development (Taverna et al., 2002).  The unimpaired germline

trancription observed in Ezh2-deficient B cells is also compatible with a model in which

histone methylation either directly or indirectly targets recombination activity to

particular variable region genes.  If this were indeed the case, it is possible that such an

effect might be overridden in the “tethering” experiments discussed earlier by the use of

truncated G9a, which is unlikely  to partner correctly with its endogenous binding

proteins [Figures 4.7 and 4.12; (Osipovich et al., 2004; Roopra et al., 2004)].
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     The results reported here may allow discrimination between these two models for the

function of histone methyltransferases in lymphocyte development since, in contrast to

Ezh2, we only observe defective development of B cells in the absence of G9a (Figure

3.9 and 3.10; (Su et al., 2005).  The grossly normal development of G9a-deficient T cells

would seem to exclude a non-redundant role for H3K9 dimethylation in “marking” of VH

genes for recombination, although cell-type specific effects cannot be excluded.  Overall,

the existing data on G9a are most consistent with a role for diMeH3K9 in promoting

immunoglobulin heavy chain recombination specifically, possibly through

heterochromatin-induced contraction of the Ig locus.

     While our data do not directly address whether G9a-mediated methylation might also

restrict recombination to particular TCR loci as proposed previously (Osipovich et al.,

2004), this question is addressable using the genetic systems reported here.  One

prediction of models in which diMeH3K9 limits recombination is that loss of this mark

should allow promiscuous recombination.  It will therefore be of interest to determine

whether disruption of G9a expression allows, for instance, productive TCRα/β

recombination in non-T cells, or co-expression of κ and λ light chains in individual B

cells.  Similarly, a classical experiment in molecular immunology was the demonstration

that RAG-1 and RAG-2 were capable of potently inducing V(D)J recombination when

co-transfected into NIH-3T3 cells (Oettinger et al., 1990; Schatz et al., 1989).  It would

be interesting to repeat such an experiment in G9a-deficient fibroblasts, which would be

expected to undergo recombination at a much higher rate if diMeH3K9 functioned

endogenously to decrease recombinase access to its substrates.
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5.3  G9a methylation as an extension of the histone code

     Over four decades ago, Allfrey, Mirsky and colleagues made the initial observation

that histones could exist in a lysine methylated state in vivo (Allfrey et al., 1964).  The

first evidence for protein lysine methylation, however, came from studies a decade earlier

of a non-histone target, the flagellar protein of Salmonella (Ambler and Rees, 1959).  A

possible connection between histone and non-histone methylation systems was proposed

by Jenuwein and colleagues in their description of the first cloned histone

methyltransferase, Suv39H1, where it was speculated that the same HMTases that

modified histones might also act as more general “MTases” on non-histone targets (Rea

et al., 2000).  Credibility was lent to this hypothesis by the recent description in yeast of

Set1-mediated methylation of a kinetochore component, Dam1 (Zhang et al., 2005).

However, as with the previously described targets TAF10 and p53, lysine methylation of

Dam1 was observed on a site lacking similarity to histones, leaving possible functional

similarities between histone and non-histone methylation obscure (Chuikov et al., 2004;

Kouskouti et al., 2004; Zhang et al., 2005).  Thus the possibility that “modification

cassettes” might exist in non-histone proteins has until now rested on the basis of

sequence similarity alone (Fischle et al., 2003a).

     The results reported here on G9a methylation directly demonstrate that the

modification systems operating on histones are indeed conserved to non-histone proteins,

and therefore likely represent a universal feature of protein regulation in eukaryotes.  We

find that highly conserved histone-like sequence motifs, which we term histone mimics,

exist in the amino-terminal “tail” of the histone methyltransferase G9a, and that at least

one of these motifs behaves in a manner almost identical to H3K9 with respect to
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methylation, binding of methyllysine by HP1, and the ability of this interaction to be

relieved by phosphorylation of an adjacent residue (Figures 4.4, 4.7, 4.15 and 4.16).

     While our studies to date have been confined to the MS2 methylation site, it is clear

that an important area of investigation for the future will be to define the degree to which

the MS1 site behaves analogously to MS2 and H3K9.  Recently the S. cerevisiae

chromodomain-containing protein Chd1 and the mammalian WD40-repeat protein

WDR5 were described to specifically interact with methylated H3K4 (Pray-Grant et al.,

2005; Wysocka et al., 2005).  The MS1 site demonstrates little sequence similarity to

H3K4 (Figure 5.1A), but also differs from H3K9 and MS2 in that MS1 does not contain a

consensus Aurora phosphorylation site [R/K-X-S/T, Figure 5.1A; (Ohi et al., 2004)].

This raises the possibility that, similar to H3K4, lysine methylation of MS1 may define

interaction with a distinct class of effector modules.

     In addition to the potential interaction of unique binding proteins with methylated

MS1, the scope for combinatorial modification of G9a may also be significantly extended

by additional modifications.  For instance, we note that the MS2 site contains a lysine

Figure 5.1  Alignments of G9a MS1 and MS2  A.  Alignment of MS1 from
various species with H3K4.  B. Alignment of MS2 with H3K9.  Residues identical
in G9a homologs (A) or between G9a and GLP (B) are indicated in red;
conservative substitutions are indicated in yellow.  Abbreviations: Mm, Mus
musculus; Hs, Homo sapiens; Rn, Rattus norvegicus; Xl, Xenopus laevis.
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(K169) that is conserved between G9a and GLP homologs in human and mouse, and

which aligns within one amino acid of H3K14, a major site of histone acetylation in H3

[Figure 5.1b; (Strahl and Allis, 2000)].  We believe that G9a K169 will also prove to

exist in an acetylated state in vivo, and indeed that the entire range of post-translational

modifications on histones may also be present on G9a.

     The complexity of G9a modification may itself represent only one mode of regulation

of G9a activity.  We have consistently observed that our G9a antibody cross-reacts with a

cytoplasmic band of ~120 kD (Figure 4.4).  This band is reproducibly induced by stimuli

which cause cell stress, including adenoviral infection and freeze-thawing (Figure 4.11

and data not shown).  Importantly, deletion of G9a with CD19-cre, which should not

induce a stress response, causes a dramatic reduction in the amount of this cytoplasmic

cross-reacting band, implying that it is produced from the G9a locus (Figure 3.11B).  We

believe that this band may therefore represent a stress-inducible cytoplasmic G9a splice

variant.  This possibility is supported by the fact that the G9a genomic locus is contained

within the MHC class III region, which is known to encode many proteins upregulated in

response to stress and immune activation (Brown et al., 2001; Hauptmann and Bahram,

2004; Spike and Lamont, 1995).  The recent finding that the predominantly nuclear

histone methyltransferase Ezh2 may have unexpected cytoplasmic functions (Su et al.,

2005) suggests that cytoplasmic G9a might have important roles in the cellular response

to “innate” activation.
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5.4  Possible functions of G9a methylation

     What are the physiological corollaries of G9a automethylation and HP1 binding?  One

obvious possibility is that methylation of G9a regulates its ability to control transcription.

However, we did not detect any significant difference in steady-state transcriptional

activity by microarray analysis of G9a-deficient MEFs reconstituted with either wild type

or MS2 point mutant G9a (data not shown).  This may reflect inherent redundancy in this

system, since the related protein GLP carries an identical set of methylation sites, and has

been described to heterodimerize with G9a [Figure 4.1; (Tachibana et al., 2005)].  We

find this explanation unsatisfactory however, given that HP1γ was not recovered

following immunoprecipitation of G9aMS2KA, despite the presence of co-precipitated GLP

(Figures 4.7, 4.12 and data not shown).  Alternatively, although methylation of MS2

uniquely defines the interaction between G9a and HP1γ, it is possible that the MS1 site is

physiologically redundant to MS2 in vivo.  However the evolutionary conservation of

both sites would not be expected if they were in fact redundant to one another.

     Rather, we believe that our findings reflect the inherent plasticity of chromatin

modification systems, where several activities are typically brought to bear

simultaneously to regulate gene expression.  For example, G9a has been found to exist in

large repressor complexes containing HMTases (G9a and GLP), repressive transcription

factors (CtBP, E2F6 and CDP/cut), histone deacteylases (HDACs 1 and 2) and an H3K4

demethylase (LSD1/NPAO), the activity of each of which is capable of transcriptional

repression (Lee et al., 2005b; Nishio and Walsh, 2004; Oberley et al., 2003; Ogawa et al.,

2002; Shi et al., 2004; Shi et al., 2003; Trimarchi et al., 2001).  Indeed, it has been

reported that H3K9-methylation by the G9a SET domain alone is sufficient to induce
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HDAC-dependent gene silencing in the absence of HP1 recruitment (Stewart et al.,

2005).  These findings are consistent with our observation that reintroduction of the

catalytically inactive G9aH1093K allele into G9aΔ/Δ cells itself only deregulates the

transcription of a relatively small number of genes (data not shown), despite the near-

total absence of euchromatic H3K9 dimethylation (Fig. 3C).  This may reflect a relative

stability of the existing transcriptional program in these cells, which might be maintained

through mechanisms requiring neither histone nor G9a methylation (e.g. histone

deacetylation and demethylation).

     A clearer assessment of the role of G9a methylation in G9a-mediated repression will

ultimately require the analysis of animals harbouring both conditional deletions and

single and compound knock-in alleles at the methylation sites of interest.  Such tools will

allow the analysis of methylation function at endogenous expression levels, and in a

developmental context in which gene expression must be dynamically controlled in order

to establish and perpetuate transcriptional memory (Peters and Schubeler, 2005).

Considering the impossibility of performing genetics in mammals on the multicopy

histone genes, as well as the potential for histone-like complexity of G9a modification, it

is possible that the G9a conditional knockout model will also provide the first genetic

platform in mammals for studying key predictions of the histode code hypothesis.

5.5  Potential histone mimics in chromatin-associated proteins

     In addition to their relevance for our understanding of G9a function, the present

studies strongly suggest that histone mimicry is a widespread and conserved

phenomenon.  An informative example of this conservation is seen in the G9a homologue
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of Drosophila (dG9a, Figure 4.1); dG9a clearly contains a potential methylation site, but

this exists in a simplified sequence context lacking both an upstream (MS1-type)

methylation site and an adjacent phosphorylatable residue.  One intriguing possibility is

that the H3K9 mimic in dG9a represents an ancestral methylation site, which has

subsequently been expanded and elaborated upon in vertebrate G9a homologues.  Such a

scenario is reminiscent of the C-terminal domain (CTD) of the RNA polymerase II RPB1

subunit, in which the number of heptapeptide repeats has increased through evolutionary

time (26 repeats in yeast, 44 in Drosophila and 52 in humans), in step with increasing

developmental and organismal complexity (Meinhart et al., 2005; Stiller and Hall, 2002).

     In contrast to the simplified methylation site of dG9a, we find complete potential

H3K9-type methylation/phosphorylation mimics in many vertebrate proteins involved in

transcription and chromatin regulation.  These include the heterochromatic histone

variant macroH2A1, the H2A/H2B-interacting histone chaperone FACT (Facilitates

Chromatin Transcription) and the RNA polymerase I subunit RPA194 (Figure 5.2).  The

occurence of H3 mimics in so many proteins involved in transcriptional regulation

Figure 5.2  Potential H3K9 histone mimics in chromatin-associated
proteins.  H3K9-like sites are highlighted in red, and potential H3S10-like
sites in yellow.  Abbreviations: FACT, facilitates chromatin transcription;
RPA194, RNA Polymerase I 194 kD subunit; PBCV, Paramecium bursaria
chlorella virus.
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suggests a basic role in the coordination of transcription with histone dynamics (e.g.

modification, deposition and/or removal).  This again raises an analogy with the RNA Pol

II CTD, which is known to function in coordination of transcription with co-

transcriptional events such as capping, splicing and polyadenylation (Proudfoot et al.,

2002).  Indeed, it was recently demonstrated that both diMeH3K9 and HP1γ are present

specifically in the coding regions of actively transcribed genes, and that their presence

requires Pol II-mediated elongation through chromatin (Vakoc et al., 2005).  The

possibility that H3K9 HMTases might be recruited to the Pol II holoenzyme is supported

by the known association of the H3K4-specific Set1 and H3K36-specific HYPB

HMTases with the elongating Pol II complex (Hampsey and Reinberg, 2003; Sun et al.,

2005).

     Significantly, many proteins containing potential histone mimics further resemble G9a

in that they contain multiple mimic sites and/or an extremely acidic region (in hG9a, a

stretch of 28 consecutive glutamic or aspartic acid residues).  Examples include FACT,

the telomere repeat binding factor TRF1, RNA Pol I β subunit, and the cytosolic pro-

Figure 5.3  Expanded alignment of potential histone mimics.  H3K9-like
motifs are shown in red with potential phosphorylation sites in yellow.  Acidic
domains indicated in green. Abbreviations: FACT, facilitates chromatin
transcription; TRF1, Telomeric Repeat-binding Factor 1; RPA194, RNA
Polymerase I 194 kD subunit; NALP6, NACHT/LRR/Pyrin-domain containing
protein 6.
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inflammatory signal transducer NALP6 (Figure 5.3).  Highly acidic domains are in

general characteristic of molecules which possess histone chaperone activity (e.g.

nucleoplasmin, CAF-1), the ability to promote histone deposition onto naked DNA

templates (Philpott et al., 2000).  FACT in particular is known to behave as a histone

chaperone, and is required both for transcription through chromatinized templates, as

well as for redeposition of histones after Pol II-mediated transcription (Belotserkovskaya

and Reinberg, 2004; Schwabish and Struhl, 2004).  The acidic C-terminus of FACT has

been studied in detail, and is critically required for histone chaperone activity

(Belotserkovskaya et al., 2003).

     Taken together, these finding suggest a model in which G9a and/or GLP could

become associated with the elongating RNA Pol II complex.  This association would

allow co-recruitment of HP1γ to actively transcribed genes via G9a MS2

automethylation, in addition to recruiting other (as yet unidentified) proteins via MS1

methylation.  The acidic domain of G9a might then function as a histone chaperone,

similar to FACT, in order to evict histones ahead of the Pol II complex or redeposit

replacement histones behind the complex.  Such association between G9/GLP and Pol II

could allow redeposition of modified histones co-transcriptionally, thus perpetuating the

pre-exising pattern of histone modification, as has been observed to occur endogenously

(Kouskouti and Talianidis, 2005).

5.6  Possible extension of histone mimicry to viruses

     While the precise functions of histone mimics currently remain elusive, the

cumulative evidence indicates that histone mimicry may represent a fundamental protein
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regulatory mechanism.  An interesting test of this hypothesis is whether histone mimicry

as a mechanism is conserved in viruses, which naturally evolve to exploit key cellular

processes.  Abundant evidence exists that viruses actively utilize host chromatin

functions to promote their replication.  An example of this is the adenoviral E1A protein,

which functions to force quiescent G0 cells into the cell cycle, thus promoting viral

replication.  This is accomplished through derepression of target genes normally silenced

by the pRb-related protein p130, and this reactivation is associated with dramatic loss of

H3K9 methylation on target promoters and replacement of this mark with H3K9

acetylation (Ghosh and Harter, 2003).  An even clearer example of viral use of host

chromatin factors is the double bromodomain-containing protein Brd4, which is directly

used by the bovine papillomavirus E2 protein to tether the viral genome to mitotic

chromosomes (McBride et al., 2004; You et al., 2004).  Finally, it was recently found that

both Flock House Virus (FHV, an animal virus normally infecting insects), as well as

Human Immunodeficiency Virus (HIV) encode proteins which act as suppressors of

cellular RNAi-mediated immunity (Bennasser et al., 2005; Li et al., 2002; Lu et al.,

2005).

     To date, only one viral SET-domain containing histone methyltransferase has been

described, that encoded by the double-stranded DNA virus Paramecium bursaria

chlorella virus, PBCV-1 (Manzur et al., 2003).  PBCV is a large (180 nm diameter, >330

kb genome) virus which infects zoochlorellae, eukaryotic algae which normally live

symbiotically within hosts such as Paramecium bursaria (Van Etten and Meints, 1999).

Chlorella viruses are unusual in that they encode enzymes similar to eukaryotic DNA

methyltransferases, as well as prokaryote-like restriction-modification systems (Van
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Etten and Meints, 1999), suggesting a complex interplay between virally-encoded

proteins and the host genome.

     The PBCV HMTase, referred to as vSET, was found to specifically methylate H3K27

(Manzur et al., 2003).  Searches of the viral sequence databases with the H3K9 sequence

demonstrated that a protein from PBCV contains a very similar site (Figure 5.2).

Remarkably, manual inspection revealed that this protein (accession number NP_048536)

contains three different H3K9-type sequences.  Moreover, this protein is annotated as

having similarity to the mammalian SWI/SNF chromatin remodeling complex subunit

OSA2.  Thus, the genome of PBCV simultaneously encodes both a functional histone

methyltransferase, as well as a protein potentially capable of being multiply modified by

this enzyme.  The similarity of this putative methylation target to a known chromatin

remodeler suggests that histone mimicry in this context may allow viral control of host

chromatin remodeling machines, potentially contributing to the competition between viral

and host genomes.

5.7  Conclusion

     Studies of histone biology have entered an exciting phase, in which it has become

possible to directly test the contribution of particular histone modifications to cellular and

organismal physiology.  Using conditional mutagenesis, we have begun to address the

role of the H3K9-specific histone methyltransferase G9a in lymphocyte development and

function.  We find that while G9a is largely dispensable for T cell development, it is

critically important for developing B cells.  While the mechanism by which G9a, and

H3K9 dimethylation more generally, contributes to B cell development remains to be
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determined, the grossly normal behavior of G9a-deficient peripheral B cells argues for

possible specificity of the developmental defect.

     In the course of studying G9a and GLP, we found that histone methyltransferases are

themselves capable of recapitulating many of the main biochemical features of histones.

Through automethylation on an H3K9-like “histone mimic” site, G9a regulates its

association with the methyllysine binding protein, HP1.  The ability of this association to

be further modified by phosphorylation of an adjacent residue speaks to the generality of

the histone code, as well as the complexity of the regulatory mechanisms to which

histone-modifying activities are subject.  The finding that many other chromatin-

associated proteins have the potential to be similarly modified, and that this mode of

regulation may even extend to viral proteins, should guide the way for further studies to

elucidate the varied functions of protein lysine methylation.
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