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Patients with paraneoplastic cerebellar degeneration (PCD), a form of neuronal 

autoimmunity, have a co-occurring natural immune response against a protein 

called cdr2 in their breast and ovarian carcinomas, and thus provide an 

innovative starting point for understanding how to harness the immune system 

to fight cancer. We previously demonstrated cdr2-specific cytotoxic T 

lymphocytes (CTL) in the peripheral blood of HLA-A2.1+ PCD patients, 

suggesting that CTLs mediate tumor immunity in these patients. Cdr2 is 

expressed by a large proportion of breast and ovarian tumors from individuals 

who do not develop neurological disease, suggesting that immune responses to 

this antigen may develop independently of autoimmune responses. Here we 

explore establishing cdr2 as a target for breast and ovarian cancer 

immunotherapy by identifying naturally processed A2.1-restricted epitopes of 

cdr2. Immunization of A2.1 transgenic mice with recombinant adenovirus 

encoding human full length cdr2 led to the identification of two naturally 

processed A2.1-restricted human cdr2 peptides: cdr2(289-297) and cdr2(290-298). 

Mouse-derived A2.1-restricted cdr2(289-297)-specific CTLs were able to target 

cells expressing endogenous human cdr2, but also cross-reacted with 

endogenous mouse cdr2, resulting in partial tolerance to this epitope. In contrast, 



mouse-derived A2.1-restricted cdr2(290-298)-specific CTL were capable of 

recognizing tumor cells expressing endogenous human cdr2, but were unable to 

recognize mouse cdr2 due to nonhomology of the human and mouse cdr2(290-

298) epitopes. cdr2(290-298)-specific CTL clones were isolated, and their TCR 

gene cloned. Transfer of the mouse-derived TCR into human CD8+ T cells turned 

them into efficient cdr2-specific CTLs. We have detected CD8+ T cells specific for 

both cdr2(289-297) and cdr2(290-298) in peripheral blood from A2.1+ PCD 

patients by tetramer staining. This correlates the presence of T cells specific to 

these epitopes with PCD and effective anti-gynecologic tumor immunity, and 

suggests that these are bona fide tumor-associated CTL epitopes. We conclude 

swthat gene transfer of TCR specific for cdr2(290-298) could provide the basis for 

potent breast and ovarian cancer immunotherapies, while cdr2(289-297)-specific 

T cells, able to target both mouse and human cdr2, offer a platform for 

generating a humanized animal model to investigate the whether cdr2-TCR gene 

transfer is possible without inducing neuronal autoimmunity. 
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CHAPTER I - INTRODUCTION 

Summary 

Patients with paraneoplastic cerebellar degeneration (PCD), a form of neuronal 

autoimmunity, have a co-occurring natural immune response against a protein 

called cdr2 in their breast and ovarian carcinomas, and thus provide an 

innovative starting point for understanding how to harness the immune system 

to fight cancer. We previously demonstrated cdr2-specific cytotoxic T 

lymphocytes (CTL) in the peripheral blood of HLA-A2.1+ PCD patients, 

suggesting that CTL mediate tumor immunity in these patients. Cdr2 is 

expressed by a large proportion of breast and ovarian tumors from individuals 

who do not develop neurological disease, suggesting that immune responses to 

this antigen may develop independently of autoimmune responses. Here we 

explore establishing cdr2 as a target for breast and ovarian cancer 

immunotherapy by identifying naturally processed A2.1-restricted epitopes of 

cdr2. In the following chapters, we will discuss the process of identifying these 

epitopes and then discuss our isolation of a molecular reagent for generating T 

cells specific to them. Finally, we discuss the implications of this research for 

generating human immunotherapies and a humanized animal model to test their 

safety. Before doing that, the rest of this chapter will introduce tumor associated 

antigens and adoptive cell transfer (ACT) therapy, a promising strategy for 

generating immunity to them in the face of a state of functional tolerance in most 

tumor bearing hosts. This will set the stage for an introduction to the 

paraneoplastic neurologic degenerations (PNDs) in general and PCD in specific, 
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which we will view not from the perspective of the clinically-evident neuronal 

autoimmunity, but rather from the invisible tumor immunity that we aim to 

harness in the service of developing gynecologic immunotherapies. 

Challenges Posed by The Immunosurveillance Hypothesis 

In the five decades since Thomas and Burnet postulated that “small 

accumulations of tumor cells may…provoke an effective immunological reaction 

with regression of the tumor”1,2, suppression of tumor cells by the human 

immune system has become a widely accepted, if not widely observed, 

phenomenon3,4. Tumor rejection antigens meeting the important criteria of 

expression in a large proportion of tumors and ability to be recognized by CD8+ 

cytotoxic T lymphocytes (CTL) have been identified, and induction of CTL 

specific for these tumor antigens, through either vaccination or adoptive T cell 

transfer protocols, constitute a major strategy for treating cancer patients5. 

However, few of these antigens are associated with naturally robust immune 

responses and spontaneous regressions. Furthermore, efforts to target tumor 

associated antigens (TAA) with antigen specific CTL have yielded limited clinical 

responses6,7.  

Tumor Associated Antigens in Mice 

Evidence for immune control of tumors initially came from studies in mice. The 

observation that immunodeficiency is associated with increased tumor 

incidence8,9, and the classic studies demonstrating immune rejection of 
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chemically- and irradiation-induced syngeneic tumors10,11, led to the 

understanding that CD8+ CTL play a particularly crucial role in antitumor 

immunity. The antigens targeted by CTL in the murine mutagenized tumor 

models were newly induced “altered self” antigen epitopes that were unique to 

the tumor and thus robustly recognized by the immune system10,12.  

Tumor Associated Antigens in Humans 

Unlike the tumor rejection antigens targeted in immunogenic mouse tumors, 

most human tumor associated antigens are self antigens. Thus, they are 

expressed by normal tissues in addition to tumor tissues. TAA are traditionally 

classified into five groups based on their origin, structure, and tissue expression. 

Several of the earliest identified TAA were melanoma-melanocyte differentiation 

antigens13-15. These antigens, which include MART-1/MelanA, gp100, and 

tyrosinase, are expressed exclusively by cells of the melanocyte lineage. They are 

considered to be shared antigens because they are expressed by the vast majority 

of melanomas tested13,14,16,15,17. A second group of antigens called cancer/testis 

antigens, which include the melanoma-associated antigen-1 (MAGE-1)18 and NY-

ESO-119, are expressed by normal testis and a variety of human tumors including 

melanoma, breast, colon, lung, bladder, ovarian, neuroblastoma, head and neck, 

and prostate cancers3,20,21. Rather than being expressed by all tumors of a 

particular type, these antigens are seen in only a fraction of any tumor type18,19,22-

24. A third category includes antigens derived from viral proteins that are found 

on tumors that are induced by viral infection of human cells3,20. This category 
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includes antigens such as EBNA-3 on Epstein Barr virus-induced lymphomas 

and the E6 and E7 proteins on human papilloma virus-induced cervical cancers25-

27. The fourth group of antigens is created by mutations and include β-catenin 

and CDK4-kinase mutations. Finally, there are antigens that are ubiquitously 

expressed normal tissue at low level and overexpressed in tumors. These include 

proteins such as p5328, telomerase29, and survivin30 which have been implicated in 

tumor growth or progression and are thought to be good antigens to target 

because they are likely to be indispensable to the tumor cell. 

CD8+ CTLs recognize these tumor associated antigens as short peptides, 

generally 8 to 10 amino acids long, presented on the surface of MHC class I 

molecules31.  These peptides, often referred to as CTL epitopes, are generated in 

the cytosol of cells after proteolytic processing of endogenous antigens by the 

proteasome, or in some cases, are generated from exogenous tumor fragments 

collected by dendritic cells (DCs) in a process called cross-presentation32. While 

most of the TAA mentioned above were identified by spontaneous CTL or 

antibody responses generated toward these antigens in tumor bearing hosts, few 

of these antigens are associated with clinically effective immune responses or 

documented tumor regressions4.  

Paraneoplastic neurologic degenerations (PNDs) 

Paraneoplastic neurologic disorders (PNDs) are remote effects of systemic 

malignancies that are not attributable to metastasis33,34. Although they are rare 
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conditions, estimated to affect only 0.1-1.0% of cancer patients33, they are 

probably the best known examples of naturally occurring tumor immunity in 

humans35,36 and as such provide an innovative (albeit often overlooked) source of 

bone fide tumor rejection antigens. In PND patients, their tumors, most 

commonly breast, ovarian, or lung tumors are thought to trigger an immune 

response that successfully suppresses the cancer34. Tumor suppression in PND is 

significant. Patients with PND-associated tumors have limited disease and an 

improved prognosis relative to patients with histologically identical tumors 

unassociated with PND37. Among patients with a PND associated with 

gynecologic tumors called paraneoplastic cerebellar degeneration or PCD, two-

thirds present neurologic symptoms before the diagnosis of cancer and nearly 

90% have limited oncologic disease when diagnosed.  In contrast, only 50-60% of 

unselected breast cancer patients and 25% of ovarian cancer patients present 

with limited stage disease38. Similar findings of limited stage disease characterize 

patients with the Hu syndrome and small cell lung cancer and there are several 

reports of spontaneous regressions of tumors associated with paraneoplastic 

disease39,40. In addition, low titer PND antibodies and tumor immunity have been 

found in patients with small cell lung cancer (SCLCa) who do not have PND41. 

The tumor immunity in PND patients is often so effective that it would go 

unnoticed were it not for a second event--neuronal autoimmunity--that co-occurs 

in these patients and brings them to clinical attention.  
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As alluded to above, the immune response provides the link between the tumor 

regression and the neuronal degeneration. This critical insight was first offered 

by Jerome Posner, who demonstrated the presence of high titer antibodies in the 

serum and cerebral spinal fluid (CSF) of patients with PND42,43. This discovery 

led to the realization that neuron-specific antigens were being aberrantly 

expressed by a systemic tumor, which presumably initiated the immune 

activation that resulted in the tumor immunity and subsequent neuronal 

autoimmunity. These antibodies were used to clone cDNAs for several target 

PND tumor-brain (or so-called “onconeural”34) antigens including the cdr2, the 

antigen associated with PCD, which is the focus of this thesis.  

While high titer circulating antibodies remain a diagnositic criteria, and serve to 

establish a link between the tumor immunity and the autoimmune neuronal 

degeneration in PNDs, the role of antibodies in the pathogenesis of these 

disorders remains elusive. Specifically, passive transfer of patient sera into mice 

fails to induce neuropathology even when it is delivered by intrathecal 

injection44. Mice immunized with PND antigens develop high titers of anti-cdr2 

antibody with no detectable neurologic abnormalities45. In humans, treatments 

that reduce the titer of PND antibodies, such as plasmapheresis or intravenous 

immune globulin, have not been shown to affect the clinical course of disease46 

suggesting that antibodies may not be sufficient to cause disease. Moreover, 

PND antigens are intracellular proteins, suggesting that antibodies may not be 

sufficient to cause the disease.  
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Paraneoplastic Cerebellar Degeneration 

Paraneoplastic Cerebellar Degeneration (PCD), one of the best characterized of 

the paraneoplastic neurologic disorders, is a disorder that most often complicates 

breast and ovarian tumors. As is the case for most of the PNDs, the neurologic 

symptoms, in this case pancerebellar symptoms, often precede the detection of 

an underlying gynecologic malignancy. Since other PNDs can have a similar 

clinical presentation of cerebellar symptoms, the diagnosis of PCD is usually 

confirmed by the presence of a high titer polyclonal antibody, termed “Yo” by 

Posner and Furneaux47, found both in the serum and the CSF. As is the case with 

all of the PNDs, the antibody selectively reacts with both the regions of the 

nervous system affected by the disorder and the tumor tissue. PCD antiserum 

recognizes (and was used to clone) three immunoreactive antigens, cdr1-348,49,50, 

but PCD tumors express only the cdr2 antigen51. 

Cdr2 tumor antigen-specific cytotoxic T cells in patients with PCD 

Recent studies from our lab involving patients with paraneoplastic cerebellar 

degeneration (PCD) have presented the first evidence that humans with 

naturally occurring tumor immunity harbor tumor antigen-specific CTLs. The 

target antigen in PCD is cdr2, a Purkinje cell-specific protein aberrantly 

expressed by breast and ovarian tumor cells51,52. While the presence of a cdr2-

specific antibody is a feature of PCD, Albert and co-workers demonstrated the 

presence of circulating cdr2-specific CTL in the blood of these patients46. 

Specifically, CTL restricted to peptides derived from the cdr2 antigen were found 
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to be present in 5/5 HLA-A2.1 + PCD patients. Moreover, a cytotoxic T cell 

response was detected directly from the blood (without prior in vitro 

restimulation) of patients in the acute phase of disease. This study provided the 

first suggestion that CTLs are critical mediators of the natural tumor immunity in 

these patients.  

Along with this critical observation, Albert and co-workers answered an 

important unanswered question in the field of immunology: Despite evidence of 

these activated tumor-specific CTLs, no physiologic mechanism had been 

defined to account for such a phenomenon. Specifically, it was unknown how the 

tissue restricted PND antigens, which are all intracellular proteins, might be 

handled by professional antigen presenting cells (APCs) for the generation of 

MHC I/peptide complexes, a pre-requisite for their detection by CD8+ T cells of 

the immune system. Instances in which the PND immune responses of 

individual patients correlated with chemotherapy, and consideration of the work 

of Antony Rosen and Michael Bevan, which demonstrated that autoimmune 

lupus antigens are packaged into apoptotic bodies of irradiated keratinocytes53 

and the phenomenon of “cross-priming”54, respectively, led Darnell34 and Albert 

to consider the possibility that apoptotic material from dying tumor cells might 

provide a means for the transfer of antigen to antigen presenting cells (APCs). 

This hypothesis was documented experimentally46. It was demonstrated that 

dendritic cells (DCs) cross-presenting cdr2-expressing apoptotic HeLa cells, 

which endogenously express cdr2, are capable of activating cdr2-specific T cells 
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in patients with PCD but not normal controls. This work helped to define an 

exogenous (or ‘indirect’) pathway for the generation of MHC I/peptide 

complexes and the activation of killer T cells directed towards tumor antigens, 

which led our lab to propose the following model for the initiation of tumor-

specific immunity through an apoptosis-dependent exogenous pathway: 1) 

Immature DCs in the periphery phagocytose apoptotic tumor cells, 2) The DC 

processes antigen derived from the engulfed tumor cell for the generation of 

MHC I and MHC II/peptide complexes and migrates to the draining lymph 

organ, 3) The DC engages tumor-specific CD8+ and CD4+ T cells for the 

induction of potent anti-tumor immunity.  

A question raised by these findings is why PCD patients are able to reject their 

tumors while others succumb to breast and ovarian cancer. A surprising 

discovery is that the PND antigens are expressed in the tumors from the general 

population of cancer patients. Up to 60% of ovarian tumors and 25% of breast 

tumors present in neurologically normal cancer patients express the cdr2 

antigen55. Therefore, while tumor antigen expression is necessary, it is clearly not 

a sufficient trigger for tumor immunity. Tumors actually employ a variety of 

counter strategies to evade the immune system, including the secretion of 

immunosuppressive cytokines such as IL-10 and transforming growth factor β 

(TGFβ)56,57, the generation of regulatory T cells (Tregs), down regulation of MHC 

molecules, sequestration or destruction of APCs, and tolerization of antigen 

specific T cells resulting from cross presentation of tumor antigens by APCs in 
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the absence of CD4 help58. We are particularly interested in this last example of 

immune evasion as it may represent a subversion of the antigen cross-

presentation pathway active in PND patients. It is possible that different classes 

of immune responses are present in cancer patients harboring cdr2-expressing 

tumors—ranging from those without tumor immune responses who may have 

active tolerization (by inactivation or deletion) of cdr2-specific T cells, to those 

who have tumor immunity and demonstrate productive cross-priming of CD4+ 

and CD8+ responses (a clinically invisible subset of patients), to those who have 

tumor immunity and PND, having somehow broken immune tolerance to 

neuronal antigens expressed in the brain.  Understanding what factors account 

for the dramatic difference in the tumor immune response of the PCD patient 

versus the neurologically normal cancer patient will likely provide insights that 

will be broadly applicable to the generation of effective immunity to other tumor 

antigens. 

Adoptive T cell transfer (ACT) Therapy 

Generating immunity to TAA 

A major hurdle for tumor immunotherapy, other than the identification of tumor 

rejection antigens to target, is the generation of tumor antigen-specific T cells in 

tumor bearing hosts. These T cells need to be functional, exhibit high avidity59,60, 

and their numbers must reach levels above the threshold required to mediate 

regression of established tumors61,62. Generation of memory cells to prevent 

tumor recurrence is also desirable. However, because most TAA are nonmutated 
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self antigens, the TAA-specific T cell repertoire is generally of small size and of 

low avidity. As a matter of self preservation, central or peripheral tolerance 

deletes most autoreactive high affinity T cells during development or renders 

them anergic63,64. Antigen expression by tumor tissue may also have a direct 

negative impact on T cell function65.  The results of these mechanisms have been 

seen in both preclinical studies and clinical trials where a lack of T cells with the 

required reactivity is a major factor limiting T-cell-based immunotherapy. For 

example, murine studies have demonstrated that tumor specific T cell responses 

can be readily induced by vaccination when targeting a foreign tumor associated 

antigen. However, when the same tumor-associated antigen is considered “self” 

by the available T cell repertoire, the reactivity to these antigens is highly 

reduced66. In human cancer patients, circulating CD8+ self/tumor antigen-

specific T cells can be sometimes be found, as in a study looking at patients with 

metastatic melanoma67, but these cells are usually selectively unresponsive to 

tumor. Similarly, attempts at the immunotherapy of patients with metastatic 

melanoma by direct immunization with TAA have elicited both humoral and 

cellular responses but tumor regression has only rarely been observed6.  

Ex vivo manipulation and expansion of tumor antigen-specific T cells represents 

one strategy to overcome tolerizing mechanisms and the effects of an 

immunosuppressive tumor microenvironment to augment antitumor T cell 

responses68,69. In a transgenic mouse model where a tumor associated viral 

antigen is expressed in normal tissues during development, the T cell response to 
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the target antigen is anergic and the tumor cells are not rejected; however, T cell 

function can be recovered after appropriate ex vivo manipulation70. Similarly, 

B16 melanoma cells, which express dominant T cell antigens which are shared by 

normal melanocytes, are not rejected unless one of several methods for breaking 

immune tolerance to a self-protein is used, such as ex vivo manipulation of T 

cells and co-adminstration with high-dose IL-2 and antigen specific vaccination71.   

Proof of Principle for Adoptive T cell transfer (ACT) therapy in humans 

Along these lines, replacement of an ineffective endogenous T cell compartment 

through the combination of allogeneic stem cell transplantation (SCT) and donor 

lymphocyte infusion (DLI) is an effective treatment for patients with hematologic 

malignancies such as chronic myelogenous leukemia. It is capable of inducing 

durable complete remissions in 60-75% of patients72-74. Notably, the antileukemic 

effect of this therapy is dependent on the recognition of minor histocompatibility 

antigens of the recipient as non-self by the infused donor lymphocytes, and the 

development of T cell responses against these antigens is predictive of 

remission75. One drawback of this therapy is that the introduced nonself-reactive 

lymphocytes are not tissue-specific in their reactivity against minor 

histocompatability antigens; therefore they can target non-malignant cell types 

and cause graft versus host disease (GvHD). Allo-SCT and DLI may also fail due 

to tumor cells not expressing the immunodominant minor histocompatibility 

antigens. Nevertheless, it and a similar approach involving the use of Epstein-

Barr virus (EBV)-reactive T cells to treat patients with post-transplant 
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lymphoproliferative diseases76,77, have established proof of principle for adoptive 

T cell therapy of human malignancies. 

ACT for the treatment of solid malignancies 

The adoptive transfer of EBV antigen-specific T cells to treat EBV-induced 

malignancies has yielded significant objective responses in patients and has 

demonstrated the feasibility of targeting tumor associated antigens by adoptive 

immunotherapy. However, most solid tumors pose more formidable 

immunologic as well as physical barriers than do EBV-associated tumors since T 

cells specific for non-viral self antigens tend to be less frequent and of lower 

avidity. Still, adoptive cell transfer (ACT) of autologous tumor-reactive T cells 

into the solid tumor-bearing host appears to hold some promise. In the case of 

melanoma, ACT is capable of mediating some tumor regression71,78,79. These 

effects are even more pronounced in the absence of host lymphocytes68,80. The 

promise of this approach was highlighted by the recent demonstration that about 

50% of standard-treatment-refractory metastatic melanoma patients experienced 

tumor regression when they were reconstituted with activated autologous tumor 

infiltrating lymphocytes after chemotherapy-induced lymphodepletion68,81.  

One large hurdle for ACT is its reliance on the successful isolation and expansion 

tumor reactive lymphocytes (usually tumor infiltrating lymphocytes or TIL82 83) 

pre-existing in the patient. Even for melanoma, where ACT has seen the greatest 

success, there are many patients for whom T cells of the appropriate anti-tumor 
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specificity and avidity cannot be isolated, even after immunization84. The hurdles 

are even greater for tumors such as breast and ovarian carcinoma where reactive 

TIL can be more difficult to isolate. 

Generating tumor reactive T cell populations by TCR gene transfer 

Regardless of whether the absence of therapeutically useful autologous T cells 

represents a failure of the tumor to stimulate the generation of a tumor-specific T 

cell response (ignorance) or the active suppression of an immune response 

(tolerance or deletion), shortcomings in the T cell repertoire can be overcome by 

combining adoptive T cell transfer with the genetic modification of T cells with 

high avidity TCR genes specific for tumor associated antigens85,86. Both in vitro87-

89 and in vivo90-92, TCR gene transfer has been demonstrated to be sufficient to 

redirect T cell specificity to the antigen of choice. In a recent clinical application 

of this approach, HLA-A2.1-restricted TCR specific for the melanocyte antigen 

MART-1 was isolated from a patient who experienced tumor remission following 

adoptive T cell therapy for melanoma68,93 and was used to treat HLA-A2.1-

positive patients who share this disease7. While only 2 out of the 15 patients in 

this first clinical study of TCR gene transfer demonstrated a clinical response, 

this strategy still holds therapeutic promise. Potentially therapeutic TCRs can be 

isolated from the allogeneic T cell repertoire94,95 or from HLA-A2.1 transgenic 

mice96,97, when the autologous repertoire is tolerant98.  
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Specific Aims 

There are two big hurdles in tumor immunology. One is to find tumor-associated 

antigens to target. A corollary to this is identifying naturally processed MHC 

class I and class II-restricted epitopes for CD8+ CTL and CD4 Th cell recognition, 

respectively. The second hurdle relates to the fact that most TAA are self 

antigens and thus, for tumor antigen-targeted immunotherapy to be effective, 

there is often a need to overcome T cell tolerance resulting from either deletion or 

anergy. In the remaining chapters, we will discuss our identification of two new 

tumor associated antigen epitopes for breast and ovarian carcinoma antigen cdr2 

and our findings on the ability of TCR gene transfer to generate class I-restricted 

cdr2-specific CTL. Finally, we will place these findings in a larger context and 

discuss how our findings may lead to new immunotherapies as well as a 

humanized animal model to test their safety.  
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CHAPTER II. MATERIALS AND METHODS 

HLA-A2.1 binding peptide prediction 

Human cdr2 protein sequence was submitted to analysis by computerized HLA-

binding prediction based on the freely available online databases, SYFPEITHI 

(http://syfpeithi.bmi-heidelberg.com)99, and the BIMAS “HLA-peptide binding 

prediction” site:  

(http://bimas.dcrt.nih.gov/molbio/hla_bind)100. Both programs provide peptide 

sequences that are likely to be presented by the selected HLA molecules along 

with a ranking or score. SYFPEITHI provides scores based on the presence of 

MHC class I anchor motifs. BIMAS supplies a ranking according to the estimated 

half-life of the peptide/MHC complex. The top 2% of peptides from each 

analysis were chosen for further analysis. 

iTopiaTM peptide screen 

The peptide library for iTopiaTM screening was purchased from Jerini Peptide 

Technologies (Berlin, Germany). All screening assays were performed according 

to the manufacturer’s instructions using the provided reagents (Beckman Coulter 

Immunomics, San Jose, CA). Data were analyzed with the iTopiaTM software 

using Prism (GraphPad, San Diego, CA).  

Peptides 

All other synthetic peptides were ordered from Invitrogen (Carlsbad, CA) or 

American Peptide Company (Sunnyvale, CA) and were determined to be greater 
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than 90% pure. The sequences of the peptides used in this study are as follows: 

human cdr2 (289-297) SLLEEMFLT, murine cdr2 (289-297) SLLEEMFLA, human 

cdr2 (290-298) LLEEMFLTV, human cdr2 (289-298) SLLEEMFLTV, human cdr2 

(273-281) KLVPDSLYV, and FluM1 (58-66) GILGFVFTL101.  

Cell lines and transfectants 

EL4-A2/Kb (EA2Kb) (provided by Dr. Alan Houghton, Sloan-Kettering Institute, 

New York, NY) is a transfectant of the murine thymoma EL4 (H-2b haplotype) 

that expresses A2/Kb. T2 is a lymphoblastoid cell line deficient in TAP function, 

whose HLA proteins can easily be loaded with exogenous peptides102. Other 

human cell lines used were the Adenovirus (Ad)-5 transformed cell line HEK293 

(CRC 1573; ATCC; Rockville, MD), the cervical carcinoma cell line HeLa (CCL-

2;ATTC), the breast carcinoma cell line SKBR2 (HTB-30; ATTC), the breast 

carcinoma cell line MCF7, and the ovarian carcinoma cell line COV413 (both 

provided by Dr. Victor Engelhard, University of Virginia, Charlottesville, VA). 

Other murine cell lines used were the melanoma line B16-F10 (provided by Dr. 

Alan Houghton, Sloan-Kettering Institute, New York, NY), and B16.AAD, an 

AAD stable transfectant of B16-F1 (provided by Dr. Victor Engelhard). The AAD 

plasmid (provided by Dr. Victor Engelhard) is a hybrid MHC class I molecule 

that contains the α1 and α2 domains from HLA-A2.1 and the α3 domain of the 

H-2Dd molecule, and has been described previously103. The stable AAD-

expressing cell lines HeLa.AAD and MCF7.AAD were generated by transfecting 

HeLa and MCF7 cells, respectively, with the AAD plasmid using Fugene6 
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(Roche, Indianapolis, IN) followed by selection with G418 (Gibco). The 

HeLa.A2.1 stable transfectant was generated by transfecting HeLa cells by the 

same method with pA2.1 plasmid (a gift from Dr. Paul Robbins NIH/NCI, 

Bethesda, MD).  

Culture Media 

The T2 and COV413 cell lines were maintained in “R10 medium”, i.e., RPMI 1640 

medium (Mediatech, Herndon, VA) supplemented with 10% (v/v) FBS (Hyclone, 

Logan, UT), 2mM Glutamax (Gibco), sodim pyruvate, non-essential amino acids, 

15 mM Hepes buffer, 50 µM β-mercaptoethanol, and gentimycin. All other cell 

lines mentioned above were maintained in “D10 medium”, i.e., DMEM high 

glucose (Mediatech) containing all of the same supplements as R-10 except for β-

mercaptoethanol. Stable transfectants were maintained in the complete medium 

of the parental cell type supplemented with G418 (Gibco Life Technologies, 

Grand Island, NY). Cells were washed out of G418 containing media for the 48 

hours prior to use in coculture assays. 

Mice 

The A2.1 transgenic HHD2 mice (referred to as HHD in this text) were provided 

by Dr. Francios Lemonnier (Pasteur Institute).  They are derived from a strain 

deficient for mouse β2-microglobulin and H-2Db molecules and transgenic for a 

chimeric MHC class I molecule, HLA-A0201/Db, linked to human β2-

microglobulin. AAD mice, which express the α1 and α2 domains from the HLA-
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A2.1 molecule, and the α3 domain from the murine H-2Dd molecule104, and AAA 

mice, which have fully human A2.1 molecules105, were obtained from Jackson 

Laboratories and bred in our colony at LARC. (See Newberg et al.104 for 

description of hybrid class I genes). AAD transgenic mice were monitored for 

expression of HLA-A2.1 on peripheral blood cells by flow cytometry using the 

BB7.2 antibody. Mice were maintained in specific pathogen-free facilities at the 

Rockefeller University and all protocols were approved by the Institutional 

Animal Care and Use Committee at the Rockefeller University. 

Recombinant Adenovirus 

E1/E3-deleted recombinant adenovirus encoding full-length human cdr2 (Ad-

hcdr2), full-length mouse cdr2 (Ad-mcdr2), or full-length influenza matrix 

protein (Ad-FluM1), were constructed using the AdEasy vector system. Briefly, 

genes were inserted into the pShuttle-CMV vector multiple cloning site--or no 

transgene in the case of Ad-GFP--and the resulting plasmid was coelectroporated 

into BJ5183 E. coli bacteria along with the pAdEasy-1 vector to allow for 

recombination in bacteria as previously described by He et al.106. The resulting 

plasmid was then used to transfect HEK 293 cells. After incubation for 7 days, 

the cells were frozen and thawed to release the virus; the crude viral lysate was 

used for further purification following expansion on HEK 293 cells. Adenovirus 

was purified either by CsCl2 density centrifugation according to published 

procedures107, or using an Adenopure kit (Puresyn) according to the 

manufacturer’s instructions, titrated as pfu per ml and frozen at -80°C until use.  
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T2 binding assays 

T2 cells resuspended in R-10 media were seeded in 96-well U-bottom plates at a 

density of 2 x 105/ml with β2-microglobulin plus peptide at the indicated 

concentrations and incubated overnight at RT. After incubation, brefeldin A was 

added to a final concentration of 10 µg/ml, followed by incubation at 37 °C for 3 

h. The cells were washed and stained with mouse anti-human HLA-A2 antibody 

(clone: BB7.2; Pharmingen), followed by goat anti-mouse PE. Duplicate samples 

were run on a FACScaliber flow cytometer and the data were analyzed using 

Flow-Jo software (Treestar). Binding activity of each peptide was calculated by a 

fluorescence ratio (mean fluorescence of T2 cells loaded with peptide / mean 

fluorescence of T2 cells without peptide).  

Western blot analysis 

Tissue culture cells were washed twice with PBS followed by lysis in Passive 

Lysis buffer (Promega) for 15 min according to the manufacturer’s instructions.  

Membranes were pelleted by centrifugation and protein concentration was 

determined by Bradford assay. 10 µg of each total cell protein was separated by 

10% SDS-PAGE and transferred to PVDF membrane (Millipore, Bedford, MA). 

Membranes were blocked for one hour at room temperature in 10% non-fat milk, 

incubated with PCD patient antiserum overnight at 4°C. After washing with PBS 

+ 0.1% Tween, membranes were incubated with rabbit anti-human-HRP 

(Jackson) at a dilution of 1:10000 at room temperture for 1 h.   
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After washing, bound protein was detected by chemiluminescence (NEN) on 

Biomax MR film (Kodak).  

Generation of peptide-specific HLA-A2.1 restricted CTL 

8-10 wk-old female mice were immunized intradermally in the flank with 109 pfu 

of recombinant adenovirus. As an adjuvant, 400 ng of pertussis toxin (Sigma) 

was administered intraperitoneally at 0 and 48 h. 12-18 d after immunization, 

spleens were removed and RBCs were lysed with ACK buffer (Biofluids). Cells 

were plated at 3.5 x 106 cells/well in a 24 well plate in R-10 media with 0.5 µM 

free peptide.  After 7 to 10 d of culture, and every 9-14 d thereafter, IFN-γ 

production was assessed by ELIPSOT and cells were restimulated by incubating 

105 CTL with 3.5 x 106 peptide-pulsed irradiated (3000 rad) RBC-depleted 

splenocyte stimulators in 24 well plates in R-10 media supplemented with 10 IU 

/ml IL-2 (Chiron).  

Preparation of primary murine kidney epithelial cell cultures 

Primary kidney cell cultures were made by mashing mouse kidneys with the 

back of a syringe, pipetting until a single cell suspension was obtained, and 

passing the suspension over a 70 µM cell strainer. After washing, cells were 

cultured in D10 medium in 10cm tissue culture dishes (Falcon). Cells were fed by 

replacing medium on days 4 and 7. Between d7 and d9, 30 U/ml recombinant 

mouse IFNγ (R&D Systems) was added to the cells to increase surface MHC class 

I expression. 24 h later, 107 pfu of purified adenovirus was added to each plate. 
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The next day, cells were washed three times with PBS and harvested with trypsin 

EDTA for use in the ELISPOT assay.  

Cytotoxicity Assay 

Target cells were labeled with 0.1 mCi 51Cr/106 cells for 2 h.  The target cells were 

washed and counted and 5 x 103 target cells/well were mixed with CTL at 

several E:T ratios in a standard 4 h cytotoxicity assay using 96-well round-bottom 

plates. Tumor cells were pretreated with 100 U/ml IFN-γ (R&D Systems) for 48 

h. Percent-specific lysis was calculated as follows: (experimental cpm - 

spontaneous cpm)/(maximum cpm - spontaneous cpm) x 100. 

Cloning of murine cdr2-specific, HLA-A2.1-restricted TCR-α  and TCR-β 

cDNA 

Total RNA was extracted with the RNeasy kit (Qiagen, Valencia, CA) according 

to the manufacturer’s instructions from 2 x 105 CD8-purified (MACS, Miltenyi 

Biotech) clone 11 and clone 12 T cells. One microgram of total RNA was used to 

clone the TCR cDNAs by a RACE method (GeneRacer kit; Invitrogen Life 

Technologies, Carlsbad, CA). Before synthesizing the single strand cDNA, the 

RNA was dephosphorylated, decapped, and ligated with an RNA 

oligonucleotide according to the instruction manual of the 5’-RACE GeneRacer 

kit. Superscript III RT and the GeneRacer Oligo(dT) were used for reverse-

transcribing the RNA oligonucleotide-ligated mRNA to single strand cDNAs. 5’-

RACE was performed using the 5’ Generacer primer and 3’ primer of gene-
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specific primer TCR-CaRev (5’-ACTGGACCACAGCCTCAGCGTCAT-3’); TCR-

Cb1Rev (5’-TGAATTCTTTCTTTTGACCATAGCCAT-3’); or TCR-Cb2Rev (5’-

GGAATTTTTTTTCTTGACCATGGCCAT-3’) as 3’ primers for murine TCR α-, 

β1-, or β2-chain, respectively. The PCR products were cloned into pCR®4-TOPO 

vector and then transformed into One Shot TOP10 competent Escherichia coli 

(Invitrogen Life Technologies). For each of the two CTL clones, plasmid DNAs 

were prepared from 16 individual clones from TCR α-chain cDNA, and 16 clones 

from TCR β-chain cDNA. Full-length insert of all 64 plasmids was confirmed by 

sequencing in both directions. Two independent 5’RACE PCR reactions were 

performed for each T cell clone.  

Preparation of in vitro transcribed mRNA 

mRNA encoding GFP from pEGFP-N1 (Clontech) and mRNAs encoding TCR α 

and β chains were prepared from PCR products made using gene specific primer 

pairs containing the T7 RNA polymerase promoter sequence (Figure 1). 

mMESSAGE mMACHINE High Yield Capped RNA transcription Kit (Ambion 

Inc. Austin, TX) was utilized to generate in vitro transcribed (IVT) RNA 

according to the manufacturer’s instructions. The IVT RNA was purified using 

an RNeasy Mini Kit (Qiagen) and purified RNA was resuspended in RNase free 

water at 1-3 mg/ml.  
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Figure 1. Sequences of the gene specific primer pairs used to generate 

templates for cdr2 TCR α , cdr2 TCR β, and GFP for IVT RNA 
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Electroporation of in vitro transcribed RNA  

PBLs were collected by leukopheresis, and lymphocytes were separated by 

centrifugation on a Ficoll-Hypaque (Pharmacia) cushion, washed in RPMI1640, 

and then cryopreserved in 10% human serum albumin/10% DMSO/ RPMI until 

use. For the stimulation of the PBL cells, 1 vial of 108 PBMC was thawed into 100 

ml (for a cell concentration of 1 x 106/ml) of complete Stemline medium (CSM), 

i.e. Stemline T cell Expansion Medium (Sigma; St Louis, MO) supplemented with 

5% (v/v) FBS (Hyclone), Glutamax (Invitrogen), and gentamycin. PBL were 

stimulated with IL-2 (300 IU/ml, Chiron Corp; Emeryville, CA) plus 50 ng/ml 

OKT3 for 3 to 4 days. Following the stimulation, the cells were enriched for 

CD8+ T cells by MACS separation (Miltenyi Biotec). Populations were greater 

than 98% pure after this step (data not shown). The purified CD8+ T cells were 

subsequently cultured in CSM with IL-2 (300 IU/mL) and no OKT3 for 10-17 

days before electroporation. Cells were adjusted with CSM to maintain at a 

concentration of 106 cells/ml during this expansion period. The stimulated CD8+ 

T cells were subjected to electroporation following resuspension in OPTI-MEM 

(Invitrogen) medium at a final concentration of 25 x 106 cells/ml. Cells and 

cuvettes were pre-chilled by putting them on ice for > 5min. For electroporation, 

0.2 ml of the cells were mixed with 2 µg/1 x 106 T cells of IVT RNA and 

electroporated in a 2 mm gap cuvette (Harvard Apparatus BTX, Holliston, MA), 

using an ECM830 Electro Square Wave Porator (Harvard Apparatus BTX, 

Holliston, MA) at 500 V/500 µs. Immediately after electroporation, the cells were 
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transferred to fresh CSM without IL-2 and incubated at 37°C until use 6-18 h 

later.  

Electroporated T cell cytokine release assays 

RNA-electroporated CD4+ or CD8+ T cells were tested for specificity in cytokine 

release assays. For these assays, 1 x 105 responder cells and 1 x 105 stimulator 

cells (peptide-pulsed T2 or Ad-transduced KECs) in were incubated for 18-20 h 

in a 0.2 ml culture volume in individual wells of 96-well plates. Cytokine 

secretion was measured in culture supernatants diluted so as to be in the linear 

range of the assay using an IFN-γ ELISA kit (Endogen, Cambridge, MA) 

according to the manufacturer’s recommendations. 

IFN-γ  ELISPOTs murine and human 

Enzyme-linked immunospot (ELISPOT) assay was used to quantify antigen-

specific IFN-γ-producing effector cells. Briefly, nitrocellulose-bottomed 96-well 

plates (MultiScreen HA, Millipore; Bedford, MA) were coated overnight at 4°C 

with anti-IFN-γ mAb (clone AN18 at 5 µg/ml for mouse, clone 1-DIK at 10 µg/ml 

for human; both from Mabtech, Stockholm, Sweden). Wells were washed three 

times with PBS and blocked for 2 h with R-10 culture medium at 37°C. For direct 

ex vivo mouse ELISPOTs, CD8+ T cells were isolated by positive selection from 

spleens using MACS purification (Miltenyi Biotec) and 2 x 105 CD8+ T cells were 

cocultured with 5 x 104 stimulator cells. For ELISPOTs with CTL lines or clones, 1 

x 104 CD8+ T cells, purified by negative selection using a mouse CD8 isolation kit 



 

27 

(Miltenyi Biotec), were cocultured with 5 x 104 stimulator cells. For human 

ELISPOTs with RNA electroporated human PBL, 1x105 CD8+ T cells were 

cocultured with 5x104 irradiated stimulator cells. After incubation for 18 h at 

37°C, plates were washed 6 times with PBS + 0.05% Tween-20. Biotinylated IFN-γ 

mAb (clone R4-6A2 for mouse, Pharmingen; clone 7-B6-1 for human, Mabtech), 

the conjugate (avidin-peroxidase complex; Vectastain avidin-biotin complex 

method Elite Kit; Vector Laboratories, Burlingame, CA) and AEC substrate 

(Sigma) were then used for spot development according to the manufacturer’s 

instructions. All conditions were performed in duplicate or triplicate wells (as 

indicated). Colored spots represent IFN-γ-releasing cells are reported as spot-

forming-cells per 106 cells. The ELIPSOT plate evaluation was performed in a 

blinded fashion by an independent evaluation service (Zellnet Consulting; Fort 

Lee, NJ) using an automated ELISPOT reader (Carl Zeiss; Thornwood, NY) with 

KS Elispot 4.8 software.  

FACs analysis 

All surface antibodies were purchased from Beckton Dickinson (San Jose, CA). 

Cell surface expression of murine TCRVβ, murine CD8, murine CD4, human 

CD8, and human CD107a were measured using FITC or PE-conjugated 

antibodies according to the manufacturer’s instructions. Cell surface expression 

of the native A2.1 and the chimeric A2.1 molecules (A2/Kb, AAD, or HHD) on 

human and murine tumor cell lines was measured using FITC-conjugated A2.1 

(clone BB7.2; BD Pharmingen). 
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Tetramer staining.  

PE-labeled cdr2(290-298)/HLA-A2.1, cdr2(289-297)/HLA-A2.1, FluM1(58-

66)/HLA-A2.1, PSMA(4-12)/HLA.A2.1 and negative tetramer/HLA-A2.1 were 

purchased from Immunomics (iTAg MHC Tetramer, Beckman Coulter, 

Fullerton, CA, USA) and used according to the manufacturer’s 

recommendations. Where indicated, cdr2(289-297)HLA-A2.1 and cdr2(355-

363)HLA-A2.1 tetrameric PE conjugates from the NIH tetramer facility were 

used. Human cells were stained in a FACS buffer made of PBS, 1%(v/v) FBS 

(Hyclone), and 1% (v/v) PHS. Where indicated, human FACS buffer was 

supplemented with 0.02% NaN3. For tetramer staining of human PBMC or 

electroporated CD8+ T cells, 1.0 x 106 cells were incubated with 1:20 dilution of 

tetramer for 20 minutes at room temperature. Antibody to CD8 was then added 

for an additional 10 minutes.  For tetramer staining of murine CTL, cells were 

used at least 7 days after restimulation. CD8+ T cells were purified by negative 

selection (MACs; Miltenyi Biotec) and incubated for 20 minutes on ice in Fc block 

(BD Pharmingen) in a FACS buffer made of PBS, 5% (v/v) FBS (Hyclone), 5% 

(v/v) normal goat serum, and 1% (v/v) PHS. For tetramer staining 2 x 105 - 1.0 x 

106 murine cells were incubated with tetramer for 20 minutes in FACS buffer at 

room temperature. Where indicated, antibody to CD8 was then added to the cells 

during the final 10 minutes. All human and murine cell samples were washed 

and analyzed immediately. Cells were gated on the CD8 + population. Data was 

collected on a FACScaliber and analyzed using Flowjo software (Treestar). 
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CD107a assay 

The cell surface mobilization of CD107a was determined as a measure of 

degranulation and functional reactivity. 105 tumor cells were placed into one well 

of a 24-well plate along with 105 TCR-electoporated or mock-electroporated 

CD8+ T cells in a total volume of 1 mL. 20 µL of FITC-conjugated CD107a 

antibody and 1 µl of GolgiStop (Beckton Dickenson, San Jose, CA) were added to 

the well according to the manufacturer’s instructions. The coculture was 

incubated for 4 h at 37°C followed by washing and flow cytometry. 



 

30 

CHAPTER III. IDENTIFICATION OF HLA-A2.1 RESTRICTED NATURAL 

CTL EPITOPES OF HUMAN CDR2  

Introduction 

While some effective therapies have been described, many human cancers 

remain resistant to the classical therapeutic modalities of surgery, chemotherapy, 

and radiation therapy. Understanding how the immune system participates, or 

fails to participate, in the recognition and effective destruction of tumors may 

offer a novel approach to treatment. This has been an area of intense research as 

it has some very attractive features such as 1) the ability to generate immunity 

that is specific to tumor antigen, thus minimizing destruction of normal tissue 

(e.g. bone marrow toxicity observed in chemotherapy), 2) the ability to generate a 

response with prolonged clinical efficacy through the generation of 

immunological memory, and 3) potential applicability to the whole spectrum of 

human cancers. Still, there has been difficulty realizing this potential, as the 

potency of current immunotherapeutic strategies appears limited. 

One constraint is the need to identify bone fide tumor rejection antigens and CTL 

epitopes against which immunotherapies can be directed. In particular, there is a 

great ongoing effort to identify immunogenic targets for solid tumors other than 

melanoma. While identification of many TAAs has relied upon the immune 

system of the tumor-bearing host, we have approached this endeavor from a 

unique angle, the study of a rare cohort of patients who have clinically evident 

natural immunity to their tumors. 
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The paraneoplastic neurologic disorders (PNDs) provide examples of naturally 

occurring tumor immunity and as such provide an innovative starting point for 

understanding how to harness the immune system in order to fight cancer. For 

example, patients with paraneoplastic cerebellar degeneration (PCD) develop a 

robust antitumor immune response directed against their breast and ovarian 

carcinomas108,109. Tumor immunity in PCD is clinically evident. Patients with 

PND-associated tumors have limited disease and an improved prognosis relative 

to patients with histologically identical tumors unassociated with PND.  

The immune system is thought to initiate PCD when cdr2, a protein whose 

expression is normally restricted to cerebellar Purkinje neurons, becomes 

aberrantly expressed and recognized as a foreign antigen when abnormally 

made in breast or ovarian tumors. Although cdr2 was first identified using 

autoimmune antisera from PCD patients, cloning of the antigen revealed that it 

was an intracellular cytoplasmic protein, and we subsequently demonstrated 

cdr2-specific cytotoxic T lymphocytes (CTL) in the peripheral blood of 5/5 

(HLA-A2.1+) PCD patients46, suggesting that CTLs are critical components of the 

tumor immunity in these patients. This observation marked the first description 

of expanded populations of killer T cells in humans with known tumor 

immunity. Interestingly, cdr2 is expressed by a large proportion of breast (25%) 

and ovarian (60%) tumors from individuals who do not develop neurological 

disease55. Taken together with observations of immune responses made in other 

PNDs41,110, cdr2 expression, and perhaps immune response to it, may develop 
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independently of autoimmune responses. This also suggests that a large 

population of breast and ovarian cancer patients could benefit from cdr2-

directed immunotherapy. 

Specific Aims of this Chapter 

To explore the possibility of establishing cdr2 as a target for immunotherapy of 

breast and ovarian cancer, we first set out to identify naturally processed HLA-

A2.1-restricted epitopes of cdr2 by screening peptides covering the entire human 

cdr2 protein for HLA-A2.1 binding. To determine which of these epitopes were 

naturally processed, we used HLA class I transgenic mice, which have been 

extensively used to evaluate the immunogenicity and natural processing of 

candidate human tumor associated antigens (TAA)28,111,112. Immunization of HLA-

A2.1-transgenic mice with an adenoviral vector encoding human full length cdr2 

(Ad-hcdr2) led to the identification of two naturally processed HLA-A2.1-

restricted human cdr2 peptides, cdr2(289-297) and cdr2(290-298). Mouse-derived 

A2.1-restricted CTLs specific for cdr2(289-297) targeted cells expressing 

endogenous human and mouse cdr2. Because these CTL cross-react with 

endogenous mouse cdr2, we observed what appears to be partial tolerance to 

cdr2(289-297) which precluded the isolation of a high avidity cdr2(289-297)-

specific CTL line. 

In contrast, A2.1 transgenic mouse-derived CTL specific for cdr2(290-298) were 

capable of recognizing and killing a number of tumor cell lines expressing 
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endogenous human cdr2, but were unable to recognize mouse cdr2. Due to 

amino acid differences between human and mouse cdr2 in the 290-298 epitope, a 

high percentage of CTL isolated from immunized mice were able to recognize 

human cdr2(290-298) in a CD8-independent manner.  

To correlate these findings with those in human PCD patients, we examined the 

peripheral blood of two A2.1+ PCD patients for the presence of cdr2(289-297) 

and cdr2(290-298)-specific CD8+ T cells. We detected cells specific for both 

epitopes by tetramer staining, indicating that these two newly defined CTL 

epitopes are bone-fide tumor antigen targets associated with the effective anti-

tumor immune response seen in PCD.  

Results 

Prediction of potential human cdr2 peptides that bind to HLA-A2.1 

To identify potential HLA-A2.1-restricted epitopes of human cdr2, we used two 

publicly available prediction algorithms of peptide/MHC interactions, the 

Bioinformatics and Molecular Analysis Section of the National Institutes of 

Health (BIMAS) and the University of Tubingen (SYFPEITHI). According to 

SYFPEITHI, the top 2% of predicted peptides should contain the naturally 

presented epitopes in 80% of predictions (www.syfpeithi.de). Therefore, as a 

preliminary screen for A2.1-restricted epitopes of cdr2, we synthesized the top 

2% (10) of 446 possible human cdr2 nonamer peptides predicted by both 
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algorithms (Table 1), and examined their ability to stabilize the expression of 

HLA-A2.1 on T2 cells, a gauge of HLA-A2.1 binding ability. Of all the peptides 

tested, cdr2(289-297) SLLEEMFLT, a human cdr2 peptide previously found to be 

recognized by peripheral blood CTLs of A2.1+ PCD patients46, was best able to 

stabilize A2. 1 expression on T2 cells in a stabilization assay (Figure 2). Two other 

peptides that demonstrated efficient binding to HLA-A2.1 were the mouse 

homologue of cdr2(289-297) SLLEEMFLA and cdr2(290-298) LLEEMFLTV. The 

latter is similar to a cdr2 decapeptide (SLLEEMFLTV) that was also shown to be 

targeted by A2.1+ PCD patient peripheral blood CTLs (M. Albert, unpublished 

observation).  
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Table 1. Predicted human cdr2 A2.1 binding nonamers 

The entire protein sequence of human cdr2 was scanned using the epitope 

prediction algorithms (SYFPEITHI, http://syfpeithi.bmi-heidelberg.com; 

BIMAS, http://bimas.dcrt.nih.gov/molbio/hla_bind) to identify nonamer 

peptides predicted to bind to HLA-A2.1.  Listing of the top 2% of peptides. 
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Figure 2. Binding of human cdr2-derived peptides to HLA-A2.1.  

To assess peptide binding, 17 peptides with high scores by both algorithms were 

synthesized to at least 90% purity and pulsed with β2-microglobulin onto TAP-

deficient T2 cells. Stabilization of HLA-A2.1 on control unpulsed and peptide 

pulsed T2 cells using (A) 50 µg peptide, or (B) the indicated peptide 

concentrations of the top binding peptides in (A), was determined by flow 

cytometry using mAb BB7.2. Results are expressed as average relative MFI, 

which was calculated as the mean fluorescence in the presence of peptide over 

the mean fluorescence for unpulsed T2 cells. Values are the average of triplicate 

conditions. 
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Comprehensive screen to identify human cdr2 peptides that bind to HLA-A2.1 

To verify the findings above, we undertook a more comprehensive screening 

approach and assayed a complete library of 446 overlapping human cdr2 

nonamers for binding to HLA-A2.1 plate bound monomers. This was part of a 

larger effort aimed at identifying human cdr2 HLA binding peptides for the 8 

most common human alleles (data not shown). After an initial screen of the 

complete library, peptides binding at a level of greater than 30% of the positive 

control were characterized further by affinity for HLA-A2.1 over a range of 

peptide concentrations (10-4 M to 10-9 M), and by an off-rate assay to determine 

the relative stability of the MHC/peptide complex formed. Peptides were ranked 

by a net score that integrated the peptide binding score, the ED50, and the half-life 

for the MHC/peptide complex for each peptide to plate bound HLA-A2 

molecules (iTopiaTM iScore; Table 2). The three A2.1-restricted human cdr2 

peptides previously found to be recognized by peripheral blood CTLs of A2.1+ 

PCD patients46,113 (i.e., cdr2(289-297) SLLEEMFLT, cdr2(273-281) KLVPDSLYV, 

and cdr2(355-363) ALKVLYEEL) were among the top 38 scoring peptides with 

net scores greater than 0.1 (on a scale of 0 to 1; Table 1). Additionally, the best 

binder to HLA-A2.1 in this screen was cdr2(290-298) LLEEMFLTV. Therefore, the 

comprehensive screen of all 446 possible cdr2 nonamers confirmed our T2 

binding assay results of a small panel of predicted peptides.  
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Table 2. Binding of human cdr2-derived nonamers to HLA-A2.1 

acdr2-1, bcdr2-2, ccdr2-7 (nomenclature from Albert et al.46). The concentration 

of peptide required to fold 50% of the plate bound monomer (ED50) and 

the amount of time in hours required for 50% of the formed complexes to 

decay (T1⁄2) is listed for peptides with a relative binding of >30% of the 

control for HLA.A2.1.  Residues underlined in bold are nonhomologous to 

the mouse sequence. 
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In cases of both nonself114,115 and self antigens116-118, it has been suggested that 

epitope immunogenicity is correlated with MHC class I binding affinity112. 

Therefore we chose to first evaluate cdr2(289-297), the peptide with the highest 

affinity for A2.1 in both of our screens that demonstrated an associated CTL 

reponse in A2.1 PCD patients, for natural processing and presentation on HLA-

A2.1. 

Impaired cdr2(289-297)-specific responses in A2.1 transgenic mice. 

Prior studies have demonstrated the utility of HLA class I transgenic mice for 

evaluating immunogenicity and natural processing of candidate human tumor 

associated antigens (TAA)28,111,112. To investigate cdr2(289-297) as a candidate 

tumor antigen, we generated a CTL line specific for human cdr2(289-297) by 

immunizing A2.1 transgenic HHD mice with replication-defective adenovirus 

expressing full-length human cdr2 (Ad-hcdr2). Because HHD mice harbor 

human HLA-A2.1 molecules on an H-2Db/mouse β2-microglobulin double-

knockout background, all CTL generated in this mouse strain will be restricted to 

the A2.1 molecule119. (See Figure 3 for comparison of A2.1 trangenic mouse 

strains used in this study.) In initial experiments, one of two HHD mice 

immunized with Ad-hcdr2 had spleen CD8+ T cells which were responsive to 

cdr2(289-297) peptide-pulsed EA2/Kb cells (EL4 cells transfected with the 

chimeric A2.1 molecule A2/Kb) by IFN-γ ELISPOT assay, but had no reactivity to 

EA2/Kb cells pulsed with an irrelevant A2.1 peptide (Figure 4). As a positive 

control, both mice were immunized in parallel with adenovirus expressing full-
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length influenza matrix protein (Ad-FluMP), and both developed spleen CD8+ T 

cells specific for the immunodominant FluM1(58-66) epitope pulsed on EA2/Kb 

cells (Figure 4).  
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Figure 3. Schematic of the MHC class I molecules expressed by three different 

HLA-A2.1 transgenic mouse strains used in this study.  

(A) HHD mice119 express a hybrid HLA-A2.1 molecule with a murine α3 domain 

to facilitate interaction with murine CD8+ T cells on a mouse MHC (H-2b) null 

background. (B) AAD mice104 express a hybrid HLA-A2.1 molecule similar to 

that in HHD mice and also express native H-2b molecules. (C) AAA mice105 

express fully humanized HLA-A2.1 (i.e. the α3 domain is human) and also 

express native H-2b molecules. 
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Figure 4. Ex vivo T cell response to human cdr2(289-297) in Ad-hcdr2 

immunized HHD mice as determined by IFN-γ  ELISPOT assay.   

12 d after i.d. immunization of HHD mice with 109 pfu of Ad-hcdr2 or Ad-
FluM1, CD8+ T cells were purified from splenocytes and cocultured with human 
cdr2(289-297) or FluM1(58-66) peptide-pulsed (10-5 M) EA2Kb cells in an 18 h 
IFN-γ ELISPOT assay. Values, representing spot forming cells per million CD8+ 
T cells, are the average of duplicate wells; error bars indicate standard deviation. 
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Given the inconsistent response of HHD mice to Ad-hcdr2, we undertook several 

additional experiments immunizing mice from 3 different A2.1 transgenic mouse 

strains (HHD, AAD, and AAA) with Ad-hcdr2. As represented in Figure 5A and 

summarized in Figure 5B, we found that peptide cdr2(289-297) failed to elicit 

specific CD8+ T cell responses after immunization when tested directly ex vivo, or 

after splenocyte restimulation in vitro with human cdr2(289-297) peptide. 

Conversely, cdr2(290-298) peptide, an high-scoring A2.1 binding peptide which 

is nonhomologous to mouse cdr2 (Table 2, Figure 6), elicited CD8+ T cell 

responses in the same experiments. We were also unable to elicit cdr2(289-297)-

specific CD8+ T cell responses by immunization with peptide emulsified in 

Titermax ClassicTM adjuvant, while mice immunized with cdr2(290-298) peptide 

all developed cdr2(290-298)-peptide specific CD8+ T cell responses (Figure 7). 

Human cdr2(289-297) is homologous to murine cdr2(289-297) at all but the 

position 9 anchor residue (Figure 6), hence a possible implication of the impaired 

cdr2(289-297)-specific responses in mice was that these T cells could cross react 

with homologous naturally processed murine peptide on tolerizing thymic or 

peripheral APCs.  
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Figure 5. CD8+ T cell responses in Ad-hcdr2 immunized A2.1 transgenic mice.  

A2.1 transgenic mice were immunized i.d. with 109 pfu of Ad-hcdr2 or Ad-

mcdr2. 12 d later, CD8+ T cells were purified from splenocytes and cocultured as 

indicated with human cdr2(289-297), human cdr2(290-298), human cdr2(289-298) 

peptide-pulsed (10-5 M) EA2Kb cells, or EA2Kb alone in an 18 h IFN-γ ELISPOT 

assay. (A) Representative direct ex vivo IFN-γ ELISPOT with immunized AAD 

mice. Values, representing spot forming cells per million CD8+ T cells, are the 

average of triplicate wells; error bars indicate standard deviation. (B) Summary 

comparing IFN-γ ELISPOT responses (total number of mice responding/total 

number of mice immunized) to human cdr2(289-297) and human cdr2(290-298) 

in A2.1 Tg mice immunized with Ad-hcdr2, either directly ex vivo or post 8 day 

restimulation with 0.5 µg/ml of the indicated cognate peptide. 
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Figure 6. Sequence homology of murine and human cdr2 surrounding residues 

289-298.  

Murine and human cdr2 proteins have an overall amino acid sequence identity 

of 87%. 
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Figure 7. Direct ex vivo CD8+ T cell response to human cdr2(290-298) but not 

human cdr2(289-297) in peptide immunized AAD mice.   

AAD mice were immunized intrafootpad with 100 µg peptide emulsified in 
Titermax ClassicTM adjuvant. 7 d later, draining popliteal and inguinal lymph 
nodes were isolated and CD8+ T cells were purified and cocultured with 
cdr2(289-297), cdr2(290-298) or FluM1 peptide-pulsed (10-5 M) EA2Kb cells as 
indicated in an 18 h IFN-γ ELISPOT assay. Depicted above are responses from 
lymph nodes pooled from 2 mice per group. Values, representing spot forming 
cells per million CD8+ T cells, are the average of triplicate wells; error bars 
indicate standard deviation. Data are representative of three independent 
experiments. 
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HLA-A2.1-restricted CTLs specific for human cdr2(289-297) cross react with the 

homologous murine peptide cdr2(289-297)  

To investigate the possibility of cross recognition of the human and murine 

cdr2(289-297) peptides, we used the immunized mouse (Ad-hcdr2-2 from Figure 

3) that demonstrated a direct ex vivo CD8 T cell response to cdr2(289-297), to 

establish a cdr2(289-297)-specific CTL line (HHD 289) by weekly restimulation 

with the human cdr2(289-297) peptide (SLLEEMFLT)(Figure 8A). Direct 

evidence for the immunological cross recognition of murine cdr2 (SLLEEMFLA) 

was provided by coculturing the HHD 289 CTL line with EA2Kb cells pulsed 

with either the human cdr2(289-297) or murine cdr2(289-297) peptides. As 

measured by IFN-γ ELISPOT assay, HHD 289 CTL recognized EA2Kb target cells 

that had been pulsed with either the human or murine cdr2(289-297) peptides, 

but not cells alone, or cells pulsed with the irrelevant peptides, FluM1(58-66) or 

cdr2(290-298) (Figure 8B).  

Human and murine cdr2(289-297) are naturally processed and presented  

The preceding results demonstrated that synthetic peptides corresponding to the 

sequences derived from human or murine cdr2(289-297) could be presented by 

HLA-A2.1 when added to cells. To determine whether these peptides could be 

naturally processed and presented in associated with A2.1 molecules, we 

infected primary kidney epithelial cells (KECs, that do not express cdr2 protein;  
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Figure 8. HHD 289 CTL cross react with both human and murine cdr2(289-297) 

peptides.  

(A) Schematic of the generation of the HHD 289 CTL line. Splenocytes from the 

immunized HHD mouse in Figure 4, which demonstrated a direct ex vivo 

response to human cdr2(289-297) peptide, were restimulated every 10-14 d with 

human cdr2(289-297) peptide-pulsed stimulators as described in Materials and 

Methods (Chapter 2). (B) After 2 rounds of in vitro restimulation, the HHD 289 

CTL were tested for recognition of EA2Kb cells pulsed with no peptide, murine 

cdr2(289-297), human cdr2(289-297), human cdr2(273-281), or FluM1 at 10-5 M in 

an 18 h IFN-γ ELISPOT. Values, representing spot forming cells per million CD8+ 

T cells, are the average of triplicate wells; error bars indicate standard deviation.  

(C) The sequences of the murine and human cdr2(289-297) peptides are identical 

except for the position 9 anchor residue. 
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data not shown, and Figure 16) derived from HHD mice with Ad-hcdr2 or Ad-

mcdr2. After pretreatment with IFN-γ for 40 hours to upregulate MHC class I 

expression, KECs infected with either Ad-hcdr2 or Ad-mcdr2, but not Ad-FluM1, 

were specifically recognized by HHD 289 CTL (Figure 9). These results 

confirmed that both human and murine cdr2(289-297) can be naturally processed 

and presented in association with HLA-A2.1 molecules. By IFN-γ ELISPOT assay, 

we observed that HHD 289 CTL had an approximately 4-fold greater response to 

endogenously presented murine cdr2 than to human cdr2 (Figure 9). This was 

not due to significant differences in cdr2 expression levels in the two Ad-infected 

KEC populations (data not shown) or to significant differences in human versus 

murine cdr2 peptide binding to A2.1, as assessed by T2 binding assays (Figure 

2B). An alternative explanation for these findings is that there is a difference in 

the functional avidity of HHD 289 CTL for human or murine cdr2(289-297). We 

tested this possibility by incubating HHD 289 CTLs with EA2Kb stimulator cells 

that had been pulsed with 10-fold serial dilutions of either peptide in 18h IFN-γ 

ELIPSOT assays. Significantly, the concentration of murine cdr2(289-297) peptide 

versus human cdr2(289-297) required to induce half-maximal spot forming cells 

(SFCs) was ∼ 4-fold lower (20.0 nM versus 78.0 nM) (Figure 10). Thus the 

difference in recognition of endogenous human and murine cdr2 protein is likely 

a reflection of differences in the functional avidity of the HHD 289 line for the 

murine and human presented epitopes.  
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Figure 9. HHD 289 CTL recognize endogenous murine and human cdr2 

To test for recognition of endogenous murine and human cdr2, HHD 289 CTL 
(after 3 or 4 rounds of restimulation) were cocultured with HHD KECs that were 
uninfected, or infected with Ad-FluM1, Ad-mcdr2, or Ad-hcdr2 in an 18h IFN-γ 
ELISPOT assay. Values, representing spot forming cells per million CD8+ T cells, 
are the average of triplicate wells; error bars indicate standard deviation. Data 
are representative of 2 independent experiments. 
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Figure 10. Avidity comparison of HHD 289 CTL for murine and human 

cdr2(289-297) peptides.   

The HHD 289 CTL line was generated as described (Chapter 2, Materials and 
Methods).  CD8+ T cells were purified by negative selection and were cocultured 
with EA2Kb cells that had been pulsed with the indicated concentration of 
murine (triangles) or human (square) cdr2(289-297) peptide. IFN-γ production 
was measured in an 18 h ELISPOT assay. Values, representing spot forming cells 
per million CD8+ T cells, are the average of triplicate wells; error bars indicate 
standard deviation. The SC50 values, or concentration cdr2(289-297) murine or 
human peptide required for half-maximal IFN-γ production, is the average of 
three independent experiments. 
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Minimal binding of A2.1/cdr2 (289-297) tetramers by the HHD 289 CTL line. 

As a rule, binding of murine CTL by A2.1 tetramers is CD8 independent, since 

murine CD8 does not interact with the A2.1 molecule and therefore such binding 

reflects high avidity TCR-MHC/peptide interactions120,121. To determine whether 

the HHD 289 CTL line expressed high affinity TCR, we analyzed its ability to 

bind A2.1/human cdr2(289-297) tetramers. We found that this CTL line 

contained only a very small subset of CD8+ T cells (∼0.1%) capable of binding 

these tetramers (Figure 11). The poor binding exhibited by the HHD 289 CTL line 

was not the result of a paucity of T cells in this population that are actually 

specific for this peptide/MHC complex, since approximately 8% (or 80-times 

more cells) were found to be IFN-γ-producing cdr2(289-297)-specific cells by 

ELISPOT assay (Figure 8). Moreover, HHD 289 CTL recognize A2.1 KECs 

engineered to overexpress human or murine cdr2, but demonstrate only minimal 

recognition of human or murine tumor cells expressing physiologic levels of cdr2 

protein (Figure 12). Since the murine and human cdr2(289-297) peptides were 

demonstrated to be processed endogenously, HHD 289 CTL were likely of too 

low avidity to allow recognition of lower levels of natural Ag, consistent with at 

least partial self-tolerance to the cdr2 antigen in A2.1 transgenic mice.  
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Figure 11. Binding of HHD 289 CTL to A2.1/cdr2(289-297) tetrameric complexes 

7 d after the third in vitro restimulation, HHD 289 CTL were purified by CD8 
negative selection (MACs; Miltenyi Biotec) and stained as described in Materials 
and Methods (Chapter 2) with tetrameric PE conjugates for A2.1/cdr2(289-297) 
or A2.1/cdr2(355-363) as a negative control. Both tetrameric conjugates were 
provided by the NIH tetramer facility. Staining is representative of 3 
independent experiments. The percentage of tetramer binding cells did not 
change significantly between 3 and 5 in vitro restimulations.  
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Figure 12. Minimal recognition of physiologic levels of endogenous human 

and murine cdr2 in tumor cell lines by HHD 289 CTL. 

To test for recognition of endogenous cdr2 tumors, HHD 289 CTL were 
cocultured with HeLa, HeLa.AAD, MCF7, MCF7.AAD, B16, or B16.AAD tumor 
cells in an 18 h IFN-γ ELISPOT assay. Values, representing spot forming cells per 
million CD8+ T cells, are the average of triplicate wells; error bars indicate 
standard deviation. 
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Generation of high affinity human cdr2(290-298)-specific CTLs in A2.1 transgenic mice. 

In contrast to the minimal responses to cdr2(289-297) observed in immunized 

A2.1 transgenic mice, we obtained robust CD8+ T cell responses specific for 

cdr2(290-298) in all mice immunized with either Ad-hcdr2 (Figure 4) or human 

cdr2(290-298) peptide (Figure 6). cdr2(290-298) has both of the optimal anchor 

residues for peptide binding to HLA-A2.1 which are leucine and valine at the 

2nd and 9th positions of peptide respectively122, and had the highest net score in 

our peptide screen (Table 1). Human cdr2(290-298) LLEEMFLTV is 

nonhomologous to mouse cdr2(290-298) LLEEMFLAA at position 8, and thus has 

an amino acid difference at an exposed position in the MHC/peptide complex. 

This suggested that it might be possible to generate a higher affinity CTL line 

specific for human cdr2(290-298) because these CTL would not be affected by the 

potential self-tolerance to mouse self cdr2. AAA A2.1 mice105, were originally 

chosen for derivation of A2.1-restricted CTL with the expectation that the 

presence of a human α3 domain on the A2.1 molecule would facilitate the 

selection of CTL capable of CD8-independent antigen recognition. AAD104, rather 

than AAA A2.1, transgenic mice were ultimately selected for these studies as 

they responded most vigorously to the cdr2(290-298) peptide (data not shown). 

We generated a cdr2(290-298) peptide specific CTL line (herein designated AAD 

290) from an Ad-hcdr2 immunized mouse. The AAD 290 CTL line recognized 

human cdr2(290-298) but not murine cdr2(290-298) or FluM1 peptide pulsed T2 

cells in IFN-γ ELISPOT assays (Figure 12B). As demonstrated in Figure 13, the 
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decapeptide cdr2(289-298), which is equivalent to cdr2(290-298) extended NH2- 

terminally by one residue, was recognized as efficiently as the original nonamer. 

We also observed a small but reproducible cross-reactivity to human cdr2(289-

297), but this response was 100-fold lower than the response to cdr2(290-298), 

and was absent at concentrations of peptide lower than 10-6 M. The AAD 290 CTL 

line was approximately 10-fold more avid for its cognate antigen pulsed on T2 

cells (SC50 = 6.8 nM) than the HHD 289 CTL line was for its antigen pulsed on 

EA2Kb (SC50 = 78.0 nM) (Figure 13; Figure 10), similar in magnitude to the 

difference in responses reported in TAA-specific CTL lines derived from WT 

versus antigen null mice123, further consistent with the idea that mice show 

tolerance to mcdr2. A large proportion (∼ 40%) of AAD 290 CTL were high 

affinity antigen-specific cells, as indicated by their ability to bind to 

A2.1/cdr2(290-298) tetramers (Figure 15). Taken together these results 

demonstrate that A2.1 transgenic mice can generate higher avidity T cells for 

non-self cdr2 epitopes than they can for self cdr2 epitopes, and hence highlight 

both the limitations for screening homologous self peptides in A2.1 transgenic 

mice and the possibility of harnessing sequence differences for the purpose of 

generating high avidity CD8-independent T cell lines from which therapeutic 

TCRs might be isolated.  
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Figure 13. Peptide specific response of AAD 290 CTL 

(A) Schematic of the generation of the AAD 290 CTL line. Splenocytes from the 

Ad-hcdr2 immunized AAD mouse with the greatest response to cdr2(290-298) 

peptide after one round of in vitro restimulation were used to generate the AAD 

290 CTL line by restimulation every 10 - 14 d with human cdr2(290-298) 

peptide-pulsed stimulators as described in Materials and Methods. (B) After 2 

rounds of in vitro restimulation, AAD 290 CTL were tested for recognition of T2 

cells pulsed with FluM1, human cdr2(290-298), murine cdr2(289-298), human 

cdr2(289-297), or cdr2(289-298) or at 10-5 M in an 18 h IFN-γ ELISPOT. Values, 

representing spot forming cells per million CD8+ T cells, are the average of 

triplicate wells; error bars indicate standard deviation. (C) Sequences and 

alignment of peptides used in the IFN-γ ELIPSOT. 
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Figure 14. Avidity of the AAD 290 CTL line for human cdr2(290-298) peptide.   

The AAD 290 CTL line was generated as described (Chapter 2, Materials and 
Methods).  CD8+ T cells were purified by negative selection and were cocultured 
with T2 cells that had been pulsed with the indicated concentration of cdr2(290-
298) peptide. IFN-γ production was measured in an 18 h ELISPOT assay. 
Responses, depicted as spot forming cells per million CD8+ T cells, are the 
average of triplicate wells; error bars indicate standard deviation. The SD50 value, 
or dose of human cdr2(290-298) required for half-maximal IFN-γ production is an 
average of two independent experiments. 
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Figure 15. Binding of AAD 290 CTL to A2.1/cdr2(290-298) tetrameric complexes 

9 d after the third in vitro restimulation, AAD 290 CTL were purified by CD8 
negative selection (MACs; Miltenyi Biotec), Fc blocked, and stained as described 
in Materials and Methods (Chapter 2) with tetrameric PE conjugates for 
A2.1/cdr2(290-298), A2.1/cdr2(289-297), or A2.1/FluM1(58-66)or A2.1/cdr2(355-
363) (iTAg MHC Tetramer, Beckman Coulter, Fullerton, CA, USA). Staining is 
representative of 2 independent experiments.  
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Nonhomolgous human cdr2(290-298) peptide is a naturally processed CTL epitope. 

While the generation of cdr2(290-298)-specific T cells through immunization with 

full length human cdr2-expressing adenovirus implied that this epitope was 

naturally processed. We confirmed this by testing the ability of the AAD 290 CTL 

line to respond to KECs transduced with Ad-hcdr2 in an IFN-γ ELISPOT assay. 

As seen in Figure 16, AAD 290 CTL produced IFN-γ specifically in response to 

coculture with KECs infected with Ad-hcdr2. We also observed that AAD 290 

CTL do not cross-react with KECs infected with Ad-mcdr2 or Ad-GFP, thus 

confirming the antigen specificity of the T cells. Recognition of Ad-hcdr2-infected 

HHD KECs (Figure 16, III) indicated that this response was A2.1 restricted. 

Furthermore, AAD 290 CTL were capable of HLA-dependent, CD8-independent 

recognition of endogenous human cdr2, as demonstrated by the response to Ad-

hcdr2 infected KECs derived from AAA mice, which have a human α3 domain 

(Figure 16, II). 
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Figure 16. CD8-independent recognition of endogenous cdr2 by AAD 290 CTL 

To test for recognition of endogenous cdr2, AAD 290 CTL were cocultured with 
either AAD (I), AAA (II), or HHD (III) KECs that had been infected with Ad-
hcdr2, Ad-mcdr2, or Ad-GFP in an 18h IFN-γ ELISPOT assay. Values, 
representing spot forming cells per million CD8+ T cells, are the average of 
triplicate wells; error bars indicate standard deviation. Recognition of AAA 
KECs is CD8-independent because murine CD8 cannot interact with the human 
a3 domain on the AAA molecule. Recognition of Ad-hcdr2 infected HHD KECs 
demonstrates that this response is A2.1 rather than H-2b-restricted. 
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Recognition of cdr2(290-298) in tumor cell lines. 

Having confirmed that the cdr2(290-298) peptide is a naturally processed CTL 

epitope, we tested AAD 290 CTL for recognition of physiologic levels of 

endogenous cdr2 in human tumor cells. We found that cdr2 protein was 

expressed in a number of tumor cell lines, including the breast cancer cell line 

MCF7, and the cervical carcinoma cell line, HeLa (Figure 17). With the exception 

of brain and testis, cdr2 protein is not expressed in normal tissue51, represented in 

Figure 17 by primary cultures of kidney epithelial cells. The cdr2-expressing 

tumor cell lines Hela (A2.1 negative) and MCF7 (A2.1 positive) were stably 

transfected with the chimeric A2.1 molecule AAD to facilitate recognition by 

murine CTL. The resulting cell lines, HeLa.AAD and MCF7.AAD (Figure 18), 

were used as stimulators in an IFN-γ ELISPOT assay. AAD 290 CTL secreted 

IFN-γ in response to coculture with HeLa.AAD and MCF7.AAD, but not to HeLa 

cells alone, and only minimally to MCF7 alone (Figure 19). The IFN-γ ELISPOT 

response to MCF7 (5700 +/- 1212 / 106 CD8+ T cells) may have represented CD8-

independent recognition of cdr2(290-298) presented on the human HLA-A2.1 

molecule since this response was significantly greater than the response to A2.1 

negative cdr2-expressing HeLa cells (133 +/- 58 SFCs / 106 CD8+ T cells). 

Specific recognition of all tumor cell targets was greater after pretreatment with 

IFN-γ (Figure 19), a cytokine known to facilitate target recognition by increasing 

HLA-A2.1 expression, antigen processing, and induction of ICAM 

expression124,125.  
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We also tested whether AAD 290 CTL were also able to specifically kill cdr2-

expressing A2.1 + targets. As shown in Figure 20, AAD 290 CTL could 

specifically lyse both T2 targets pulsed with cdr2(290-298) peptide and the 

AAD/A2.1+ cdr2+ cell line HeLa.AAD in a 4 hour 51Cr release assay. In contrast, 

T2 pulsed with FluM1(58-66) peptide and the parental A2.1 negative cdr2+ cell 

line HeLa were not lysed, indicating that target cell recognition was both A2.1-

restricted and antigen specific. In conclusion, these results demonstrate that 

AAD 290 CTL are highly specific for endogenous cdr2 expressed in tumor cells, 

and that human CD8+ CTL of this specificity might be responsible for mediating 

anti-cdr2 tumor immunity in A2.1+ PCD patients.  
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Figure 17. Analysis of cdr2 protein expression tumor cell lines and normal 

tissue. 

Western blot analysis demonstrates specific expression of cdr2 in mouse 
cerebellum but not in mouse primary kidney epithelial cells. cdr2 protein is 
expressed in all tumor cell lines tested. High levels of cdr2 are expressed in Ad-
hcdr2 transduced kidney epithelial cell cultures. Protein lysates were resolved by 
SDS-PAGE and blotted onto a PVDF membrane. The blot was labeled with PCD 
patient antiserum followed by rabbit anti-human HRP, and cdr2 protein was 
visualized by chemiluminescence.  The blot was stripped and reprobed with a 
mouse mAb to γ-tublin to verify equivalent protein loading. 



 

69 

 

Figure 18. Analysis of HLA-A2.1 expression by human tumor cell lines. 

Tumor cell lines were harvested and the level of cell surface expression of native 
HLA-A2.1 and the transfected chimeric A2.1 molecule AAD was measured using 
FITC-conjugated A2.1 (clone BB7.2; red line) or isotype control antibody (blue 
line) by flow cytometry. 
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Figure 19. AAD 290 CTL recognize endogenous cdr2 in tumors 

To test for recognition of endogenous cdr2 tumors, AAD 290 CTL were 
cocultured with HeLa, HeLa.AAD, MCF7, MCF7.AAD, or COV413 tumor cells 
plus (grey) or minus (blue) pretreatment with IFN-γ for 40 h in an 18 h IFN-γ 
ELISPOT assay. Values, representing spot forming cells per million CD8+ T cells, 
are the average of triplicate wells; error bars indicate standard deviation. 
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Figure 20. HLA-A2.1-restricted lysis of cdr2-expressing HeLa cells by AAD 290 

CTL. 

AAD 290 CTL were assayed for killing activity toward T2 cells that had been 
pulsed (10-5 M) with cdr2(290-298)(filled triangles), cdr2(289-297)(open circles), or 
FluM1(58-66) (open triangles) peptides, or toward IFN−γ pretreated HeLa (open 
squares) or HeLa.AAD cells (filled squares) in a 4 h 51Cr release assay.  
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Detection of cdr2(289-297) and cdr2(290-298)-peptide binding CD8+ T cells in the 

peripheral blood of A2.1+ PCD patients. 

Cdr2(289-297) and cdr2(290-298)-specific CTL are reactive against endogenous 

cdr2 in A2.1+ tumor cells. Could cells of these specificities be responsible for the 

clinically evident immunity to cdr2-expressing tumors in A2.1 PCD patients? To 

begin to address this question, we evaluated two A2.1+ PCD patients for the 

presence of cdr2(289-297) and cdr2(290-298)-tetramer binding peripheral blood 

CD8+ T cells directly ex vivo. For control and comparison, we performed staining 

analysis in parallel using the following tetramers: 1) commercially available 

negative tetramers from Beckman Coulter, 2) HLA-A2.1/FluM1(58-66) tetramers, 

and 3) HLA-A2.1/PSMA(4-12) tetramers. Peripheral blood from A2.1+ PCD 

patient A (Figure 21A) had peripheral blood T cells which demonstrated 

significant staining with A2.1 tetramers of the cdr2(290-298) specificity (0.027% of 

CD8+ T cells) relative to two negative control tetramers, negative tetramer (0% of 

CD8+ T cells) and the A2.1/PSMA tetramer (0.0013% of CD8+ T cells). We did 

not observe a significant population of cdr2(289-297)-specific T cells for this 

population. For comparison, this patient had a discreet population of FluM1-

tetramer staining peripheral blood CD8+ T cells (0.072%), which was correlated 

with a FluM1(58-66) peptide-specific memory CD8+ T cell response as 

determined by direct IFN-γ ELISPOT assay (data not shown). Conversely, while 

the peripheral blood contained cdr2(290-298) tetramer-binding cells, we did not 

observe an IFN-γ ELIPSOT response to cdr2(290-298) peptide-pulsed autologous 

DCs in the same assay (data not shown). Peripheral blood from a second A2.1 + 
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PCD patient (Figure 21B) contained CD8+ T cells that bound specifically to 

A2.1/cdr2(289-297) tetramers (0.2% of CD8+ cells; Figure 20A). A2.1/FluM1 

tetramer binding CD8+ T cells were not detected in this patient, a finding that 

was corroborated by the absence of a memory CD8+ T cell response specific for 

FluM1 peptide-pulsed autologous dendritic cells (DCs) by IFN-γ ELISPOT assay 

(data not shown). The A2.1/cdr2(289-297) tetramer binding cells likely 

represented a population of anergic or unresponsive cells as determined by the 

absence of an IFN-γ ELISPOT response to cdr2(289-297) peptide pulsed 

autologous DCs (data not shown). Among the patients we have analyzed, cdr2 

tetramer staining appears to be specific to PCD patients; cdr2(290-298) tetramer 

did not stain any of several control T cell samples (Figure 22) including one 

A2.1+ normal donors (Figure 22, I), two A2.1+ patients with the paraneoplastic 

Hu syndrome (Figure 22, II and III), and one neurologically normal ovarian 

cancer patient (Figure 22, IV). Therefore these studies correlate the presence of 

cdr2(289) or cdr2(290) tetramer-staining peripheral blood T cells with PCD and 

anti-gynecologic tumor immunity and suggest that cdr2(289-297) and cdr2(290-

298) are bone fide tumor associated CTL epitopes.   
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Figure 21. Detection of cdr2(290-298) and cdr2(289-297)-specific CD8+ T cells in 

the peripheral blood of HLA-A2.1+ PCD patients. 

106 PBMC from two A2.1 + PCD patients were stained with cdr2(289-297), 

cdr2(290-298), FluM1(58-66), PSMA(4-12), or negative A2.1 tetrameric complexes 

for 20 min at room temperature plus CD8 antibody during the final 10 minutes. 

Cells were washed and analyzed immediately on a FACScaliber flow cytometer. 

Results are gated on CD8+ T cells. 
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Figure 22. CD8+ T cells from control individuals do not bind to A2.1/cdr2(290-

298) tetramer 

A2.1/cdr2(290-298) tetrameric complexes did not stain PBMC from a normal 

donor (I), two patients with the Hu syndrome (II and III), or one neurologically 

normal ovarian cancer patient (IV). For control and comparison PBMC were 

stained with FluM1(58-66), CMVpp65(495-503), or negative A2.1 tetrameric 

complexes Results are gated on CD8+ T cells.  
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Discussion 

We became interested in exploring cdr2 as a tumor rejection antigen for breast 

and ovarian cancer immunotherapy after two important observations from our 

laboratory: the discovery of cdr2 peptide-specific CTL in the peripheral blood of 

individuals with tumor immunity and PCD46; and the observation that cdr2 is 

expressed by a large proportion of gynecologic tumors from individuals who do 

not develop neurologic disease55. These findings, along with clinical data from 

other PNDs suggesting that tumor immunity and autoimmunity towards these 

antigens may be able to be uncoupled, encouraged us to identify naturally 

processed CTL epitopes that would deepen our understanding of T cell 

responses to this protein in PCD patients and neurologically normal cancer 

patients, as well as possibly become the basis of cdr2-based immunotherapy.  

We chose to focus on CTL responses restricted by the human leukocyte antigen 

(HLA)-A2.1 molecule because this is the most common class I HLA allele in the 

Western population, with a prevalence of 30-40%126 and because HLA-A2.1 

transgenic mice for this allele were readily available to provide us with an 

unrestricted source of human HLA-restricted T cells. Also, many reports have 

demonstrated the utility of HLA-A2.1 transgenic mice as an in vivo model for 

identifying peptides presented in association with class I MHC. Independent 

identifications of epitopes in transgenic mice and humans, confirm that CTL 

from HLA transgenic mice can respond to the same peptides as humans127 128.  

Here we have taken a two-step approach to the identification of human cdr2 
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epitopes: first, screening all possible cdr2-derived nonamer epitopes for HLA-

A2.1 binding, followed by screening in HLA-A2.1 transgenic mice to identify 

those which are naturally processed. Using this approach we have identified two 

naturally processed and presented HLA-A2.1-restricted CTL epitopes of the 

human PCD antigen cdr2. Furthermore, we found circulating CD8+ T cells 

specific for these epitopes in the peripheral blood of 2 A2.1+ PCD patients but 

not in 4 A2.1 + control individuals, which suggests that cdr2(289-297) and 

cdr2(290-298) are bona fide tumor epitopes associated with gynecologic tumor 

immunity.  

cdr2(289-297)is a naturally processed A2.1-restricted CTL epitope 

Cdr2(289-297) was previously shown to be targeted by PCD patient CTL. The 

study by Albert et al.46 demonstrated that CTL from the peripheral blood of 

A2.1+ PCD patients could specifically lyse cdr2(289-297) peptide-pulsed T2 cells 

after 7 days of in vitro restimulation with autologous peptide-pulsed DCs or, in 

some cases, directly ex vivo. Cdr2 peptide-specific CTL were not detected in 5 

HLA-A2.1+ control individuals, suggesting that these responses were specific to 

PCD patients. However, the ability of these CTL to recognize tumor cells 

endogenously expressing cdr2 was not tested, thereby leaving unresolved the 

issue of whether these peptides are bona fide tumor associated CTL epitopes. 

By isolating and analyzing a human cdr2(289-297)-specific murine CTL line 

(HHD 289), we have established that the cdr2(289-297) peptide is naturally 
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processed and presented by both murine and human cdr2-expressing A2.1+ 

cells. HHD 289 CTL specifically recognized HHD KECs infected with Ad-hcdr2 

and Ad-mcdr2 as well as, to a lesser extent, physiologic levels of cdr2 in the 

human and murine tumor cell lines HeLa.AAD, MCF7.AAD, and B16.AAD. 

Therefore, we can conclude that the cdr2(289-297)-specific CD8+ T cells detected 

in the peripheral blood of PCD patients, both here and in the Albert study, are 

bona fide tumor reactive lymphocytes.  

Evidence for partial tolerance to cdr2 

In the process of establishing the HHD 289 CTL line, we obtained evidence of 

self-tolerance to cdr2. The level of immunologic tolerance to self-proteins appears 

to be related to the level and location of antigen expression, but is best 

determined by empiric experimentation. Most identified tumor associated 

antigens are also expressed at low levels in normal tissues3,129 or, due to the 

autoimmune regulator (AIRE) transcription factor130, in the thymus. However, 

consideration of the robust anti-tumor and autoimmune responses evident in 

PCD patients and the tight restriction of cdr2 expression to “immune privileged” 

tissues51, led us to hypothesize that cdr2 would be treated immunologically as a 

foreign antigen after it became expressed in tumors. Thus, we expected that the 

human cdr2(289-297) peptide, which had a relatively high affinity for HLA-A2.1 

in our assays, would be immunogenic in HLA-A2.1 transgenic mice, since work 

from investigators studying non-self antigens such as viral peptides suggests that 

such a correlation exists114.  
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Unexpectedly, we observed a lack of responsiveness to human cdr2(289-297) in 

cdr2-immunized mice. This was not due to poor priming of the A2.1 transgenic 

mice; we were able to elicit strong responses to both FluM1 and to 

nonhomologous cdr2 peptides, but not to cdr2(289-297), by the same 

immunization regimens in 3 different strains of A2.1 transgenic mice.  

One effect tolerance can have on the immune system is to purge the repertoire of 

T cells that recognize self epitopes with high avidity, while sparing those with 

low avidity for the same epitopes131,132,133. We observed this to be the case with the 

mouse from which the HHD 289 CTL line was derived. Although we could 

isolate a cdr2(289-297)-specific CTL line (HHD 289) and demonstrate that these 

cells recognize endogenous naturally processed overexpressed cdr2 in Ad-

infected HHD KECs, we observed only minimal staining with A2.1/cdr2(289-

297) tetramers, indicating that only a small percentage of HHD 289 CTL were 

high avidity cells capable of CD8-independent recognition of cdr2(289-297). 

Furthermore, HHD 289 CTL demonstrated weak recognition of physiologic 

levels of endogenous cdr2 in B16.AAD, HeLa.AAD, and MCF7.AAD tumors. A 

likely reason for the impaired human cdr2(289-297)-specific responses became 

apparent in our experiments: HLA-A2.1-restricted CTLs specific for human 

cdr2(289-297) can cross-react with the homologous naturally processed and 

presented murine peptide. As a result, any tolerance to the murine peptide 

would preclude the generation of high avidity CTL specific for the homologous 

human peptide. Given our inability to prime high avidity human cdr2(289-297)-
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specific CTL in A2.1 transgenic mice, we conclude that mice are at least partially 

tolerized to cdr2. 

Implications of tolerance to cdr2 

Based on the above findings, we can infer that human cdr2 epitope screening in 

A2.1 transgenic mice will not yield reliable information about immunogenicity in 

cases where the human and murine sequences are identical, since it will be 

difficult to determine whether the lack of a CTL response is a consequence of low 

immunogenicity of the peptide or of self tolerance to cdr2. It will be interesting to 

determine whether the impact of self tolerance is as pronounced for murine-

homologous human cdr2 peptides which bind poorly to HLA-A2.1, such as 

human cdr2(355-363) peptide. Cdr2(355-363) will be a particularly interesting 

example to study because it is targeted by A2.1+ PCD patient CTL, but has yet to 

be confirmed as a naturally processed and presented epitope. 

Definitive demonstration of self tolerance to cdr2 will require analysis of T cell 

responses to cdr2(289-297) in A2.1/cdr2 null mice (currently being made by 

Graeme Couture and Kevin O’Donvan in our laboratory). These mice will allow 

us to distinguish immunological tolerance from other mechanisms that may 

account for the poor immunogenicity of cdr2(289-297) including inefficient 

antigen processing134-136, or insufficiencies in the T cell repertoire not deriving 

from central or peripheral tolerance mechanisms. If immunologic tolerance 

indeed plays a major role in poor reactivity to cdr2, HLA-A2.1/cdr2 null mice 
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will become invaluable reagents for the generation and isolation of high avidity 

cdr2(289-297)-specific T cells from which we can isolate potentially therapeutic 

TCR (as discussed in Chapter 4).  

Our observation of possible tolerance to cdr2 in mice suggests that we may need 

to reconsider the assumptions about how immunity is generated to the cdr2 

antigen in PCD patients in particular, and to other onconeural antigens in PND 

patients in general. The generally accepted dogma is that onconeural antigens 

such as cdr2 are seen by the immune system as “foreign” proteins when they are 

expressed in systemic tumors. In this study we have observed that ectopic 

expression of cdr2 in the context of an inflammatory immunization regimen is 

not sufficient to trigger a CTL response. This suggests that ectopic expression of 

cdr2 in a tumor may not be sufficient to trigger immunity to this antigen, a 

finding that is supported by the apparent widespread expression of cdr2 in 

breast and ovarian tumors of patients without any apparent tumor immunity. 

Based on our findings, the reason for the unresponsiveness to cdr2 in 

neurologically normal cancer patients may be tolerance to this antigen rather 

than ignorance.  

cdr2(290-287)is a naturally processed A2.1-restricted CTL epitope 

In contrast to the unresponsiveness of cdr2-immunized A2.1 transgenic mice to 

human cdr2(289-297), we could consistently prime high avidity human cdr2(290-

298)-specific CTL. This was most likely due to the differences between human 
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cdr2(290-298) peptide and its murine homologue, suggested by the absence of 

cross recognition of murine cdr2(289-298) by AAD 290 CTL. Taken together, 

these results demonstrate the importance of targeting human cdr2 peptides that 

are nonhomologous to mouse/self cdr2 for the purpose of generating high 

avidity T cell lines from which high affinity TCR might be isolated. AAD 290 

CTL were of high enough avidity to recognize cdr2(290-298) in a CD8-

independent manner, as determined by their ability to both bind to 

A2.1/cdr2(290-298) tetrameric complexes and to recognize endogenous 

overexpressed cdr2 in Ad-hcdr2 infected A2.1 AAA KECs. AAD 290 CTL were 

also able to recognize and kill A2.1+ tumor cell lines expressing physiologic 

levels of cdr2. However the efficiency of this recognition of lower (physiologic) 

levels of cdr2 antigen was dependent on the avidity boost provided by the 

murine a3 domain on the AAD molecule which can interact with murine CD8, 

thus highlighting the contribution made by the CD8 coreceptor to target 

recognition by CTL.  

Detection of cdr2(289-297) and cdr2(290-298)-peptide binding CD8+ T cells in the 

peripheral blood of A2.1+ PCD patients 

Having demonstrated that cdr2(289-297) and cdr2(290-298) are naturally 

processed A2.1 restricted epitopes, we next used A2.1/cdr2 tetramers to examine 

the peripheral blood of patients with clinically documented anti-gynecologic 

tumor immunity for cells of this specificity. The use of tetramers is particularly 

attractive because it allows a direct quantitation of Ag specific cells from the 
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blood without the need for their in vitro expansion137,66. In 2 out of 2 A2.1+ PCD 

patients tested, we observed significant populations of either cdr2(289-297) or 

cdr2(290-298)-specific CD8+ T cells suggesting that cdr2(289-297) and (290-298) 

are bona fide tumor antigens.  Interestingly, these tetramer staining CD8+ T cells 

did not appear to be making IFN-γ, suggesting that they may be anergic. We did 

not test these cells for antigen specific production of other cytokines such as 

TNF-α and GM-CSF, and thus cannot rule out the possibility that these are 

memory T cells producing cytokines other than IFN-γ. Nevertheless, direct IFN-γ 

ELISPOT assay appears to not be a reliable strategy for detecting cdr2-specific 

cells in the peripheral blood of patients with PCD. This is true for other PNDs as 

well (Wendy Roberts, unpublished observation), and corroborates the findings of 

another group who was unable to detect cdr2(289-297)-specific T cells in A2.1+ 

PCD patients by IFN-γ ELISPOT assay138. These results suggest that perhaps only 

a fraction of PCD patients, such as those in the acute state of their disease, have 

CTL that can be detected without an in vitro restimulation step46 and underscore 

the value of tetramer reagents for evaluating PCD patients for cdr2-specific 

CD8+ T cells directly ex vivo. 

The finding that 60% of ovarian tumors and 25% of breast tumors from 

neurologically normal individuals express cdr2 suggests that ectopic expression 

of this “immune priviledged” antigen is not sufficient to trigger tumor 

immunity. Our observation of possible tolerance to this antigen in mice suggests 

that unresponsiveness to cdr2 in neurologically normal cancer patients may be 
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due to tolerance to this antigen rather than ignorance. Do neurologically normal 

breast and ovarian cancer patients have circulating cdr2-specific CD8+ T cells 

and, if so, do they express markers characteristic of naïve or anergic cells? The 

epitopes that we have identified and the A2.1/cdr2 tetramer reagents that we 

have validated in this study will allow us to address this important question. In 

sum, the findings presented in this chapter will allow us to take the next step 

towards understanding the naturally occurring tumor immunity in PCD and 

how it might be applied to the general population of cancer patients.  
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CHAPTER 4. ISOLATION AND CHARACTERIZATION  
OF A HUMAN CDR2-SPECIFIC T CELL RECEPTOR 

Introduction 

Background 

A major hurdle for tumor immunotherapy, other than the identification of tumor 

rejection antigens to target, is the generation of tumor antigen-specific T cells in 

tumor bearing hosts. These T cells need to be functional, exhibit high avidity59,60, 

and their numbers must reach levels above the threshold required to mediate 

regression of established tumors61,62. Generation of memory cells to prevent 

tumor recurrence is also desirable. However, because most TAA are nonmutated 

self antigens, the TAA-specific T cell repertoire is generally small and of low 

avidity. ACT protocols have shown some promise, but one large hurdle for ACT 

is its reliance on the successful isolation and expansion tumor reactive 

lymphocytes (usually tumor infiltrating lymphocytes or TIL82,83) pre-existing in 

the patient. Even in the case of melanoma, there are many patients for whom T 

cells of the appropriate anti-tumor specificity and avidity cannot be isolated, 

even after immunization84. Isolating TIL or tumor reactive lymphocytes for solid 

tumors such as breast and ovarian carcinoma is even more difficult. 

Replacement of a tolerized endogenous T cell compartment is theoretically 

possible through the combination of adoptive T cell transfer (ACT) and TCR 

gene transfer. Potentially therapeutic TCR can be isolated from a number of 
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sources including patients with the same tumor type who have undergone 

clinical regression following vaccination or adoptive T cell therapy, an allogeneic 

T cell repertoire94,95 or from HLA-A2.1 transgenic mice96,97, when the autologous 

repertoire is tolerant98.  

Advantages of murine anti-human TCR 

 HLA-A2.1 transgenic mice may be a particularly good source of therapeutic 

TCRs; high-affinity TCRs specific for self/tumor antigens can be generated in by 

immunizations which take advantage of nonhomology between human and 

mouse sequences89,96. Murine TCR are of sufficient structural homology to human 

TCR that they can be incorporated into the human CD3 complex89 and can rescue 

surface expression in mutant T cells139. Gene transfer of HLA-A2.1-transgenic 

mice-derived TCR into human T cells has been shown to circumvent self 

tolerance to the tumor-associated self/tumor antigens murine double minute 2 

(MDM2)89 and p5396,98. Moreover, in the recent study by Kuball et al., it was 

demonstrated that a murine TCR of high enough affinity to function in a CD8 

coreceptor-independent fashion could be used to generate human MHC class I 

restricted CD4+ helper (Th) T cells96. The provision of cognate CD4 help is likely 

to be of great importance to the success of CD8+ CTL-based 

immunotherapy140,141,142,143. Although most tumors lack MHC class II, precluding 

direct attack by CD4 Th cells, antigen specific Th activity has been shown to be 

important for efficient eradication of malignancies144,145. CD4 Th cells can exert 

their antitumor effect independently of CD8+ CTL by recruiting innate immune 



 

89 

and nonimmune effectors to the tumor site144,146, by crosstalk to CTL through 

cytokine release140,141, and by interaction with dendritic cells or other professional 

APC147,148. Furthermore, the colloboration between CD4+ Th cells and CD8+ CTL 

seems to be particularly important for the generation of memory T cells149. The 

recent study by Kuball et al. demonstrated that genetically engineered MHC 

class I-restricted CD4+ T cells could act cooperatively and synergistically with 

CD8+ T cells via dendritic cell intermediates and tumor targets. Therefore, given 

the relative ease of isolating high-affinity CD8-independent TCR from HLA-A2.1 

transgenic mice (taking advantage of either nonhomology between human and 

murine TAA sequences, or by using TAA null mice), this study presents an 

innovative way to circumvent a pervasive problem, namely that the generation 

of tumor antigen-specific CD4+ helper T cells is limited by the paucity of known 

MHC class II-restricted tumor epitopes and by the lack of MHC class II 

molecules on tumor cells.  

There is also some indication that transferred murine TCR function better in 

human cells than do their human counterparts. Cohen et al. had observed that 

transduction of human lymphocytes with p53-specific murine TCR conferred 

enhanced tumor reactivity compared to other human TCR93,97,150. They 

hypothesized that this was because the introduced murine TCR are less likely 

than their human counterparts to mispair with the endogenous human TCR 

chains. Indeed it has been shown that unlike the generation of TCR-transgenic 

mice where allelic exclusion limits the formation of such heterodimers151,152, 
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transfer of exogenous TCR chains into mature T cells, which already express 

endogenous αβ TCR chains, can lead to mispairing with the pre-existing 

endogenous TCR chains153-155. The major determinants for pairing of the TCR α- 

and β- subunits are thought to be located within the constant domains and these 

domains are invariant enough that the assembly machinery is not able to 

distinguish endogenous and exogenous TCR. The formation of mixed 

heterodimers could both impede the generation of cells of the desired tumor 

reactivity and generate cells with new undesired specificity.  

A recent study156 explored the molecular basis of the apparent superior 

performance of murine TCR in human cells by creating hybrid murine and 

human TCRs by swapping the original constant regions with either human or 

mouse ones, respectively. TCR with mouse constant regions functioned better in 

human cells than those with human constant regions; they were overexpressed 

on the surface of human lymphocytes relative to the human or humanized TCR 

and they conferred greater tumor reactivity. They also observed that transfer of 

murine or “murinized” TCR resulted in increased stability of the TCR/CD3ζ 

complex156.  Therefore, this study provides another example of how TAA-specific 

TCR of murine origin could be superior to human TCR in the clinical setting.   

A closer looks at TCRs 

On a molecular level, the TCR represents the direct link between the effector T 

cells and the target cell157. T cell specificity is dictated by two membrane bound 
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chains, which are 280-310 amino acids in length and linked by a disulfide bond. 

These chains are denoted as TCRα- and TCRβ-subunits in the majority of T cells. 

Signaling through the TCR depends on the interaction of the variable TCR α-and 

β-chains with the invariant CD3γ/δ/ε and CD3ζ chains. TCR α and β chains 

consist of a variable (V) segment, a joining (J) segment, and a constant (C) region 

with the β chain also containing a diversity (D) region. Germline rearrangements 

occurring within the TCRα and TCRβ loci during T cell development randomly 

join different V-J or V-D-J regions into a single transcriptional unit. The majority 

of the TCR diversity is the result of the random insertion or deletion of 

nucleotides at the junctions between the V and J segments for the α chain, and 

between the V and D and the D and J segments for the β chain. It is these V-J and 

V-D-J junctions of the α and β chains respectively that encode the third 

complementarity determining region (CDR3), the part of the heterodimeric 

TCRα/β complex that specifically recognizes MHC-presented antigen.  

The variable domains for the α- and β-chains can be classified into distinct 

subfamilies which are often used to identify T cell populations. They can be also 

be used to clone TCRs by creating degenerate primers to cover the whole panel 

of more than 20 subfamily sequences of each TCR chain. A more straightforward 

approach that allows amplification and identification of TCR genes in the 

absence of 5’ sequence information is to use linker ligation and rapid 

amplification of cDNA ends (RACE-PCR). In this approach, an RNA 

oligonucleotide is first ligated to the 5’ end of dephosphorylated, decapped 
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mRNA to create a universal priming site at the 5’ end for reverse transcription to 

cDNA. PCR is then performed using a primer specific for the ligated 

oligonucleotide at the 5’ end and gene-specific primers for each of the three 

possible C regions (Cα, Cβ1, and Cβ2) at the 3’ end. This is the approach we 

chose for cloning a cdr2-specific TCR in this chapter because it eliminates the 

need for multiple V-region-specific primers and also minimizes the likelihood of 

amplifying truncated products. 

Specific Aims of this Chapter 

In the previous chapter we identified two tumor associated CTL epitopes for 

human cdr2. In addition, we demonstrated the importance of targeting human 

cdr2 peptides that are nonconserved between mouse/self cdr2 for generating a 

high avidity T cell lines in HLA-A2.1 transgenic mice. We observed that the AAD 

290 CTL line, specific for a human cdr2 peptide which is nonhomologous to 

murine cdr2, was of significantly higher avidity than the HHD 289 CTL line, 

although both were capable of recognizing naturally processed human cdr2 and 

both were shown to be bona fide targets in PCD patients. The AAD 290 CTL line 

was capable of CD8-independent recognition of endogenous cdr2 in Ad-hcdr2 

infected AAA A2.1 KECs, which suggested that it may be a good source of cdr2-

specific TCRs for human therapy.   

For the studies discussed in this chapter, we isolated several cdr2(290-298)-

specific CTL clones by limiting dilution of the AAD 290 CTL line. While 
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literature states the contrary158,159, we observed that the structural avidity of 

several of the clones did not correlate with functional avidity. We isolated the 

TCR genes from two cdr2(290-298)-specific clones, clone 11 and clone 12, on the 

basis of their demonstrating high functional avidity and intermediate structural 

avidity relative to the other clones. Nucleotide sequence analysis demonstrated 

that the rearranged TCR genes from these clones were identical. Here we provide 

a careful functional analysis of the cloned cdr2-specific TCR genes, and 

demonstrate their ability to transform unresponsive human CD8+ T cells into 

efficient cdr2-specific CTLs. The results presented in this chapter confirm the 

relevance of circulating CD8+ T cells of this receptor specificity in PCD patients, 

and highlight the therapeutic potential of cdr2(290-298)-specific TCR for breast 

and ovarian cancer immunotherapy.  

Results 

The AAD 290 CTL line was cloned by limiting dilution after 4 rounds of in vitro 

stimulation. Twenty one positive wells from the lowest cloning dilutions were 

picked. Eleven clones were initially analyzed by IFN-γ ELISPOT with peptide 

pulsed T2 cells (data not shown), and the eight most reactive clones were 

expanded for further analysis. 
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Analysis of structural and functional avidity of CTL clones derived from the AAD290 

line. 

The intensity of tetramer staining has been accepted as a direct measure of the 

affinity of TCR for the MHC-peptide complex158-160 and has been extrapolated to 

be an indication of the actual sensitivity of the CTL response to MHC-peptide 

antigen density. Following this rationale, we expected to observe a relationship 

between the staining intensity of the cdr2(290-298) clones with A2.1/cdr2(290-

298) tetramers and their ability to secrete IFN-γ in response to coculture with 

cdr2-expressing targets. The broad tetramer staining intensity range of the 

parental AAD 290 CTL line observed by FACS analysis (Figure 23) suggested 

that the daughter clones could have a range of structural and functional avidities. 

As predicted, a broad range of structural avidities was observed among the 8 

clones tested, however, we observed a striking discordance between the tetramer 

staining profiles of the clones (Figure 23), and their functional avidity as 

measured by IFN-γ ELISPOT responses to cdr2-expressing tumor cells (Figure 

24). The clone exhibiting the highest tetramer staining, clone 2 (Figure 23), 

responded relatively poorly to cdr2-expressing tumors in an IFN-γ ELISPOT 

assay (Figure 24). Conversely, clone 1, which exhibited almost no specific 

tetramer staining (Figure 23), demonstrated the highest functional avidity by 

IFN-γ ELISPOT (Figure 24). Total RNA was prepared from all eight clones as 

well as from the parental AAD 290 line. Clones 11 and 12 were chosen for further 

analysis because they both demonstrated functional avidity greater than the 
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parental AAD CTL line while still maintaining intermediate tetramer binding 

(Figures 23 and 24).   
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Figure 23. Structural Avidity of the AAD290 CTL line and daughter cdr2(290) 

clones; binding to A2.1 tetramers.   

The AAD 290 CTL line (after the 6th in vitro restimulation) and eight daughter 

CTL clones were rested for 9 days after their last restimulation and CD8+ T cells 

were purified by negative selection (MACS; Miltenyi Biotec). Following Fc 

blocking for 20 min on ice, 105 purified cells per condition were stained at room 

temperature for 20 minutes with A2.1/cdr2(290-298) tetramer (red line) or with 

the negative control tetramers A2.1/cdr2(289-297) (blue line) and 

A2.1/FluM1(58-66) (green line), washed with FACS buffer, and read 

immediately on a FACSCaliber flow cytometer. 
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Figure 24. Functional avidity of cdr2(290) clones.’[ 

The AAD 290 CTL line (6th restimulation) and 5 daughter clones were rested for 
10 days after their last restimulation and CD8+ T cells were isolated by negative 
selection (MACS; Miltenyi Biotec). CD8+ T cells were cocultured with the human 
cdr2(289-297) or cdr2(290-298) peptide-pulsed T2 cells (10-6 M) or cdr2-expressing 
tumor cells in an 18 h IFN-γ ELIPSOT assay. Values, representing spot forming 
cells per million CD8+ T cells, are the average of triplicate wells; error bars 
indicate standard deviation. 
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Isolation and cloning of Murine TCR 

We chose a straightforward unbiased approach to cloning the clone 11 and clone 

12 TCR genes which was to isolate the full length coding sequences of the TCR 

genes by rapid amplification of cDNA ends (RACE-PCR). 32 α-chain and 32 β-

chain RACE-PCR products, generated from 2 separate PCR reactions for each T 

cell clone, were sequenced. Sequence analysis demonstrated that clone 11 and 

clone 12 expressed an identical TCR. Variable (V) region sequence analysis was 

performed using the IMGT database (IMGT, the international ImMunoGeneTics 

information system® http://imgt.cines.fr (founder and director: Marie-Paule 

Lefranc, Montpellier, France)161-163. Analysis revealed that both T cell clones were 

TRVα14D-1*01J42*01Cα (Vα2.2); CDR3 CAASGASGGSNAKLTF and TRVβ12-

1*01J2-1*01Cβ2 (Vβ5.2); CDR3 CASSLGGWAEQFF. The full nucleotide and 

deduced amino acid sequences of the α- and β- TCR genes are presented in 

Figures 25 and 26, respectively. Vβ profiling on clone 11 was performed to verify 

its clonality as well as to provide confirmation of the sequence analysis (Figure 

27). 
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Figure 25. Nucleotide and deduced amino acid sequence of the cdr2 TCR α 

chain  

The constant region is boxed in red.  The CDR3 domain of the variable region is 

underlined in green. The V gene segment (unboxed) was classified according to 

IMGT, the international ImMunoGeneTics information system® 

http://imgt.cines.fr (founder and director: Marie-Paule Lefranc, Montpellier, 

France) and was determined to be TRVα14D-1*01J42*01; CDR3 sequence: 

CAASGASGGSNAKLTF. 
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Figure 26. Nucleotide and deduced amino acid sequence of the cdr2 TCR β  

chain 

The constant region is boxed in red.  The CDR3 domain of the variable region is 
boxed in green. The V gene segment (unboxed) was classified according to 
IMGT, the international ImMunoGeneTics information system® 
http://imgt.cines.fr (founder and director: Marie-Paule Lefranc, Montpellier, 
France) and was determined to be TRVβ12-1*01J2-1*01; CDR3 sequence: 
CASSLGGWAEQFF. The constant region is Cβ2. 
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Figure 27. Assessment of the TCR Vβ  composition in Clone 11 CTL by flow 

cytometry 

To confirm the TCR sequence analysis, CD8-purified clone 11 CTL were 
analyzed by staining with a panel of Vβ-subfamily domain antibodies (purple 
filled) or isotype control antibody (green line) followed by flow cytometry.  
Clone 11 CTL were determined to express only Vβ5, thus providing independent 
confirmation of both the clonality of the population and the results of the 
sequencing. 
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Recognition of peptide-pulsed and human cdr2-tranduced cells by TCR-electroporated 

human CD8+ T cells. 

We tested the ability of the cloned α- and β- chains to form functional TCR αβ 

heterodimers by electroporating in vitro transcribed RNA into primary human 

lymphocytes, a method previously demonstrated to yield high transfection 

efficiencies with low transfection-related toxicity164. Over 32% of CD8+ human T 

cells co-electroporated with α- and β-chain mRNA formed cell surface 

heterodimers as measured by staining with HLA-A2.1/cdr2(290-298) tetramers 

12 hours after electroporation (Figure 28). This probably represented close to the 

maximum transfection efficiency since over 97% of CD8+ human T cells 

electroporated in parallel with GFP mRNA expressed GFP protein by flow 

cytometry in the same time period. Negative control tetramer did not stain either 

of the electroporated T cell populations, and GFP electroporated cells did not 

stain with the HLA-A2.1/cdr2(290-298) tetramer.  
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Figure 28. Efficiency of RNA electroporation of Human CD8+ T cells.  

PBLs stimulated with OKT3 Ab plus IL-2 for 3 days underwent CD8 purification 

(MACs, Miltenyi Biotec) followed by electroporation 10 days later with in vitro-

transcribed RNA at 2 µg/1 x 106 cells. cdr2 TCR α- and β- chain and GFP RNAs 

were generated by in vitro transcription of PCR-amplified templates bearing T7 

promoter and poly(A) tail at the 5’ and 3’ end, respectively. Twelve hours after 

electroporation, cdr2 TCR or GFP expression was determined by FACS analysis. 

Human CD8+ T cells that had been coelectroporated with the α- and β- chains of 

the cdr2 TCR were stained at room temperature for 20 min in human FACS 

buffer containing 0.02% sodium azide, with a non-specific negative tetramer (1), 

or with HLA-A2.1/cdr2(290-298) tetramer (2). GFP RNA electroporated T cells in 

(3) and (4) served as a positive control for RNA electroporation and as a negative 

control for staining with the negative tetramer (3) and HLA-A2.1/cdr2(290-298) 

tetramer (4). The percentage of cells staining with tetramer (red) or expressing 

GFP (green) was as shown. 
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To determine whether TCR-electroporated lymphocytes could mediate the 

release of the effector cytokine IFN-γ, CD8+ T cells were electroporated with the 

cdr2 TCR α- and β-chain RNAs and then cocultured with T2 cells that had been 

pulsed with different concentrations of specific (cdr2(290-298) and cdr2(289-298) 

or control (FluM1 and cdr2(289-297)) peptides to assess the avidity of the 

electroporated PBL. cdr2(290-298) and cdr2(289-298)-specific IFN-γ release was 

detected in cocultures with T2 cells pulsed with the specific cdr2 epitopes but not 

in cocultures with the control peptides (at 1µM) or no peptide (Figure 29). No 

significant IFN-γ (<15 pg/ml) was observed in cocultures with GFP-

electroporated T cells. The cdr2 TCR electroporated human CD8+ T cell 

populations were capable of releasing IFN-γ 20-fold above background at 

cdr2(290-298) LLEEMFLTV concentrations as low as 0.5 pM, with half maximal 

IFN-γ secretion occurring at peptide concentrations of 35 pM, a more than 3-log 

improvement in avidity from the original AAD 290 CTL line, and was similar to 

previous studies that have demonstrated that expression of an A2.1 transgenic 

mouse-derived TCR in CD8+ human T lymphocytes results in human CD8+ T 

cell with an enhanced functional avidity relative to the parental mouse clone96. 

Similar to the results seen with the parental AAD 290 CTL line, we observed 

cross reactivity of the TCR electroporated CD8+ human T cells to the decamer 

peptide cdr2(289-298) (Figure 29, squares). We can conclude that this is a result of 

promiscuous recognition at the molecular level since human CD8+ T cells 

acquired specificities for both peptides after electroporation with a single cdr2-

TCR. 
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Figure 29. Functional analysis of cdr2 TCR: recognition of specific cdr2 

peptides.  

Following three-day stimulation and CD8 purification, human CD8+ T cells were 
electroporated 12 d later with in vitro transcribed cdr2 TCR α- and β- chain RNA 
and cocultured for 18 h with T2 cells pulsed with different concentrations of 
specific cdr2 peptide (290-298; triangles) or (289-298; squares), or nonspecific 
peptides cdr2(289-297, crosses), or FluM1 (diamonds). For this assay 105 
electroporated T cells were cocultured with 105 peptide-pulsed T2 cells in a total 
volume of 0.2 ml. The concentration of IFN-γ secreted into the medium was 
measured by ELISA. Values are the average of duplicate wells. IFN-γ secretion in 
cocultures with GFP electroporated CD8+ T cells was <15 pg/ml for all peptides 
(data not shown). 
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Having confirmed the ability of the cloned α- and β- TCR chains to respond to 

cdr2 peptide-pulsed stimulators, we next investigated the reactivity of 

electroporated PBL to endogenously processed cdr2. We transduced cultures of 

primary kidney epithelial cells derived from AAA A2.1 (with a human α3 

domain) transgenic mice with Ad-hcdr2 or with control vectors (Ad-mcdr2, Ad-

FluM1, and Ad-GFP). Twenty four hours later, when over 98% of the KECs were 

transfected, they were cocultured with TCR or control (GFP)-electroporated 

CD8+ T cells. IFN-γ production was detected only in the cocultures with Ad-

hcdr2 transduced cells; there was no significant IFN−γ production detected with 

any of the control transduced cells or with any of the transduced KECs 

cocultured with GFP-electroporated PBL (Figure 30A). In the same assay, we 

were able to observe the dramatic specific killing ability accompanying the 

specific IFN-γ production of our TCR-electroporated T cells. Specific lysis of Ad-

hcdr2 KECs but not control KECs could be visualized by loss of GFP expression 

cells by fluorescence microscopy (Figure 30B).  
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Figure 30. Functional analysis of cdr2 TCR; recognition of human cdr2-

transduced cells.  

Following three-day stimulation and purification, human CD8+ T cells were 

electroporated with in vitro transcribed cdr2 TCR α- and β- chain RNA or GFP 

RNA and cocultured for 18 h with AAA A2.1 kidney epithelial cells (KECs) that 

had been transduced with Ad-hcdr2, Ad-mcdr2, Ad-GFP, or Ad-FluM1. For this 

assay, 105 electroporated T cells were cocultured with 105 transduced KECs in a 

total volume of 0.2 ml. (A) The concentration of IFN-γ secreted into the medium 

as measured using ELISA. In this same assay, we were able to observe the lytic 

activity of the TCR-electroporated T cells due to the fact that our adenovirus 

constructs contained dual CMV promoters driving GFP expression along with 

transgene expression in the transduced cells. (B) 15 h after the initiation of the 

coculture, the wells in (A) were assessed for cell lysis by fluorescence 

microscopy. 
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CD8+ T cell mediated killing has historically been assessed by standard 

chromium release assay165. This assay does not directly examine the CD8+ T cells 

that mediate the killing; rather, it examines the death of the target cells. On the 

other hand, since one way that CTL mediate killing of target cells is via a 

granule-dependent (perforin/granzyme) pathway, analysis of degranulation 

through direct measurement of cumulative exposure of the granular membrane 

proteins CD107a and CD107b on the surface of responding antigen specific T 

cells can provide a direct determination of functional reactivity on a per cell 

basis166. In order to directly examine the effector status of our TCR electroporated 

T cells, we performed a CD107a mobilization assay (Figure 31). In this 

experiment, the bulk population of TCR or mock electroporated human CD8+ T 

cells were cocultured with either Ad-hcdr2 or Ad-GFP infected AAA KECs. Data 

in Figure 30 demonstrate that while few (2%) of the cdr2 TCR-electroporated 

cells mobilized CD107a after 5 hours of coculture with control (GFP)-transduced 

KECs, 35% became positive for surface CD107a expression upon coculture with 

hcdr2-transduced KECs. Mock electroporated CD8+ T cells did not show 

significant mobilization of CD107a in response to coculture with either Ad-hcdr2 

or Ad-GFP infected KECs. The percentage of TCR transduced T cells that 

expressed CD107a after coculture with hcdr2-infected KECS was roughly 

equivalent to the percentage of cdr2(290-298) tetramer positive cells (32%, Figure 

28) for this experiment, suggesting a correlation between proper 

heterodimerization of the transferred TCR chains and the acquisition of specific 

killer T cell activity. 
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Figure 31. CD107a mobilization by TCR electroporated human CD8+ T cells. 

FACS analysis for the degranulation marker protein CD107a was performed after 

5 hour coculture of mock- or TCR-electroporated human CD8+ T cells with Ad-

hcdr2 or Ad-GFP-transduced AAA (A2.1) KECs as indicated. Gating was 

performed on live lymphocytes based on FSC and SSC characteristics. The 

percentages of cells staining for CD107a were as indicated.  
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cdr2 TCR-expressing human CD8+ T cells recognize cdr2-expressing gynecologic tumor 

cells. 

It has been reported that up to 60% of ovarian tumors and 25% of breast tumors 

express cdr2. To determine whether this cdr2-specific murine TCR might be 

suitable for the targeting of cdr2 in human tumors, we evaluated the ability of 

TCR electroporated human CD8+ T cells to recognize physiologic levels of 

endogenous cdr2 in tumor cell lines. TCR-modified but not GFP-modified 

human CD8+ T cells were able to recognize malignant A2.1+ targets expressing 

physiologic levels of endogenous cdr2 by INF-γ ELISPOT assay (Figure 32). 

Significant recognition of HeLa cells that had been stably transfected with A2.1 

(HeLa.A2.1) but not the parental A2.1 negative cell line was observed. A 

significant, but lower, number of TCR-transfected CD8+ T cells produced IFN-γ 

specifically in response to the A2.1+ cdr2+ breast cancer cell line MCF7. This 

response was lower than that seen with both the parental clone response to 

MCF7.AAD may have been due to reduced levels of A2.1 expression, since we 

did not pre-treat any of the target cells with IFN-γ for this assay. Finally, while 

the A2.1+ cdr2+ ovarian tumor line COV413 was only minimally recognized by 

the parental murine AAD 290 CTL line, human CD8+ T cells electroporated with 

the murine cdr2 TCR became capable of robust recognition of COV413 cells. 

These experiments demonstrate that we have isolated murine TCR sequence 

capable of reprogramming human T lymphocytes for specific recognition of the 

human cdr2 antigen in the context of breast and ovarian tumors and suggest that 
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there may be a clinical application for cdr2(290-298)-specific TCR in breast and 

ovarian cancer immunotherapy.   
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Figure 32. Recognition of cdr2-expressing gynecologic tumor cells by cdr2 

TCR-electroporated CD8+ T cells. 

Following three-day stimulation and purification, human CD8+ T cells were 

electroporated with in vitro transcribed cdr2 TCR α- and β- chain RNA (black 

bar) or GFP RNA (blue bar) and cocultured (105) with either HeLa, HeLa.A2.1, 

COV413, or MCF7 tumor cells (5 x 104) in an 18 h IFN-γ ELISPOT assay. Values, 

representing spot forming cells per million CD8+ T cells, are the average of 

duplicate wells; error bars indicate standard deviation. Data are representative of 

2 independent experiments. 
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Discussion 

TCR gene transfer is an attractive technology for production of antigen-specific T 

cells for adoptive immunotherapy. Cloned TCR genes can serve as generic “off 

the shelf” reagents that can be combined with adoptive T cell transfer for the 

treatment of patients with malignancies expressing the TCR-recognized antigen. 

This approach bypasses the need for laborious isolation and expansion of pre-

existing autologous tumor-reactive lymphocytes that often do not even exist 

patients. To date, TCR genes have been isolated for a several human tumor 

associated antigens. These include the human-derived MART-193, NY-ESO-1167, 

and gp-100150 TCRs, and the murine-derived MDM289 and p5396 TCRs. To this 

armamentarium we have added a murine-derived human cdr2-specific TCR 

whose isolation and characterization we have described in this chapter.  

Here, we have demonstrated that RNA electroporation of human CD8+ T cells 

with a cdr2-specific TCR can reprogram them toward specific recognition of 

human breast and ovarian tumor cell lines expressing physiologic levels of 

endogenous cdr2. Notably, the TCR-electroporated lymphocytes exhibited 

antigen specific lytic function as well as cytokine-production. Furthermore, we 

found that the fine specificity of the clones was maintained through the TCR 

isolation and transfer: TCR-electroporated CD8+ T cells maintained the ability to 

specifically recognize both the cdr2(290-298) and cdr2(289-298) peptides. An 

interesting consequence of this cross-reactivity is that we cannot determine from 

our current studies whether one or both of these epitopes is being presented by 
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A2.1 on cdr2-expressing tumors. Further studies using acid extraction combined 

with reverse-phase-high-performance-liquid-chromatography (RP-HPLC) and 

mass spectrometry will have to be performed to determine the relative 

contributions of the nonamer and decamer peptides to the observed tumor 

recognition. Furthermore, by transferring a murine-derived TCR into a human 

CD8+ T cell, we observed in two ways the dramatic effect that such TCR 

recontextualization has on A2.1+ tumor recognition. First, we observed a more 

than 3-log improvement in functional avidity (recognition of peptide-pulsed T2 

cells) from the original AAD 290 CTL line. Second, while the original AAD 290 

CTL line demonstrated minimal recognition of the A2.1+ COV413 ovarian 

carcinoma cell line, cdr2 TCR-electroporated human CD8+ T cells demonstrated 

robust recognition of these cells. Both of these results are presumably due to the 

boost to TCR/MHC-peptide interaction provided by the human CD8 molecule.  

Our findings are similar to previous studies that have demonstrated that 

expression of an A2.1 transgenic mouse-derived TCR in CD8+ human T 

lymphocytes results in human CD8+ T cell with an enhanced functional avidity 

relative to the parental mouse clone96. It is surprising that we did not observe a 

similar boost in structural avidity, as gauged by tetramer staining, relative to the 

parental mouse clone. We are currently trying to determine the reason for this 

discrepancy, but it may be related to our lower TCR transfection efficiency, or 

that we did not pick the highest affinity TCR (as discussed below). Nevertheless, 

these studies demonstrate that TCR of this specificity could to have clinical 

application to the adoptive immunotherapy of breast and ovarian cancer. 
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How to pick the “best” TCR 

Although many cellular components are potentially responsible for the avid 

recognition of TAA, the TCR is the main component of this activity155,168. We 

therefore wanted to choose a CTL clone with highly avid anti-tumor activity as 

TCR starting material. However, the best criteria for screening our CTL clones for 

this purpose was not immediately obvious. Several factors influence the avidity 

of interactions between the TCR and MHC I/peptides complexes, including the 

density and stability of TCR/MHC class I peptide complexes169-171, the 

colocalization of TCR and CD8 molecules in the immune synapse169,172-174, and the 

binding of CD8 molecules. 175  Studies have shown that the intensity of staining 

by tetramers158,159 and the stability of tetramer binding to T cell clones176,177 can be 

used as a direct measure of the affinity of TCR for the MHC-peptide complex 

and can be extrapolated to be an indication of the actual sensitivity of the CTL 

response to MHC-peptide antigen density. Following this rationale, we expected 

to observe a direct relationship between the staining intensity of the cdr2(290-

298) clones with A2.1/cdr2(290-298) tetramers and their ability to secrete IFN-γ in 

response to coculture with cdr2-expressing targets. Instead we found an inverse 

relationship between tetramer staining and IFN-γ secretion in 2 out of 5 clones. 

While we ended up isolating the TCR genes from two clones that did not share 

this puzzling discrepancy, the question still remains: Which are the best criteria 

for isolating a high affinity TCR?  
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Closer examination of the literature reveals some experimental evidence 

opposing the view that the stability of the TCR/MHC-peptide contact correlates 

with high avidity T cell-target interactions178,179. Studies with human cells have 

found that even clones with identical TCRs may have different relative avidity 

for peptide loaded APC targets; similar results have been reported in animal 

models where T cells sharing the same TCR have markedly different avidities180. 

The latter case highlights the importance of the CD8 coreceptor for T cell target 

recognition. During antigen recognition, peptide/MHC complexes engage both 

the TCR and the CD8 coreceptor via the α3 domain of MHC. CD8 molecules 

recruit the kinase p56lck to the CD3 complex and this mediates T cell activation181. 

Classically, CD8 is described as a T cell membrane αβ heterodimer, but a CD8αα 

homodimer form has also been described which is significantly less efficient than 

the αβ heterodimers at binding to MHC and p56lck and at producing T cell 

activation180. This highlights two factors that can have an impact on functional 

avidity of a T cell independent of structural avidity: the amount of CD8 on the 

surface of a T cell and the ratio of CD8αβ to CD8αα.  

We did not look for differences in CD8 expression on the AAD 290 T cell clones, 

nor did we examine the possibility that individual clones might have different 

levels of other molecules involved in TCR signaling such as the p56lck and p59fym 

kinases or the CD3ζ chain182,183. All of these factors could affect apparent 

functional avidity. Therefore, it will be interesting to see if clone 2, which had the 

highest structural avidity but low functional avidity, demonstrates poor function 
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only in the context of its current cellular environment. With the highest structural 

avidity of all the clones (at least a half log higher staining than the others), it may 

have a TCR which can confer superior functionality when transferred to a new 

host cell.  

We tried to isolate cdr2(290)-specific clones on the basis of CD8-independent 

recognition of cdr2 antigen with the expectation that that this would lead to the 

isolation of a CD8-indepentdent TCR. Having a murine TCR capable of CD8-

independent recognition would be beneficial for two reasons. First, while all 

murine TCR that are transferred into human CD8+ T cells get an avidity boost 

from the human CD8 molecule, leading to more efficient recognition of human 

HLA-A2.1-associated antigens, this effect is even more pronounced when the 

murine TCR is CD8-independent to start with. Most importantly, a CD8-

independent TCR can be used to turn CD4+ T cells into class I-restricted T helper 

cells. Given the role that CD4+ Th cells play in supporting cross-priming and the 

generation of memory T cell responses, we believe this will be a crucial 

parameter to the success of gene transfer and adoptive T cell therapy. Future 

experiments will evaluate whether our cloned TCR is capable of conferring 

recognition of cdr2 to CD4 +T cells.  

In sum, we have demonstrated the overall robustness of the technology of TCR 

gene transfer for conferring recognition of antigens that might be subject to self 

tolerance in the majority of tumor-bearing hosts. Most importantly, we have 
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demonstrated that this cloned murine TCR has the same specificity (binds the 

same A2.1/cdr2(290-298) tetramer) as the peripheral blood CD8+ T cells from an 

A2.1+ PCD patient.  Taken together, these data confirm the biological relevance 

of cdr2(290-298)-specific T cells in PCD, and suggest that cdr2(290-298)-specific 

TCR may hold therapeutic promise for breast and ovarian cancer 

immunotherapy.  
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CHAPTER V – GENERAL DISCUSSION 

Summary 

The results presented in this thesis represent the identification and careful 

characterization of two naturally processed A2.1-restricted epitopes of the breast 

and ovarian cancer-associated PCD antigen cdr2: cdr2(289-297) and cdr2(290-

298). Using HLA-A2.1 transgenic mice, we have generated A2.1-restricted CTL 

lines specific for each of these peptides and demonstrated that these CTL can 

target cells expressing endogenous human cdr2. We have validated that these are 

bona fide tumor associated CTL epitopes by demonstrating the presence of CD8+ 

T cells specific for both cdr2(289-297) and cdr2(290-298) in peripheral blood from 

A2.1+ PCD patients, but not from normal controls, by tetramer staining. Thus we 

have correlated the presence of T cells specific to these epitopes, which we now 

know represent natural cdr2 epitopes, with PCD and effective anti-gynecologic 

tumor immunity.  

Human and murine cdr2 have 87% identity at the amino acid level. A single 

amino acid difference between human and murine cdr2(290-298) at position 8 

facilitated the isolation of several high avidity CTL clones and a high affinity 

human cdr2-specific TCR from HLA-A2.1 transgenic mice. We have 

demonstrated that transferring this mouse-derived TCR into human CD8+ T cells 

turns the lymphocytes into efficient cdr2-specific CTLs. We conclude that gene 

transfer of TCR specific for cdr2(290-298) could provide the basis for potent 

breast and ovarian cancer immunotherapies. 
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Before we can contemplate any therapeutic use however, we need a better 

understanding of what induces neurologic disease in PCD. Until now we have 

not addressed the neuronal autoimmunity that co-occurs with this effective 

tumor immunity in PCD patients. In this final chapter, we will consider the 

evidence for and against T cell mediated pathogenesis of the neuronal 

degeneration in PCD and then discuss a preclinical animal model that will enable 

us to evaluate whether there is an exploitable therapeutic window between the 

tumor immunity and neuronal autoimmunity in addition to addressing more 

basic questions about neuro-immune interactions. 

Unclear role for CTL in neuronal autoimmunity in PCD 

While it is apparent that cdr2-specific CTL can mediate efficient tumor 

destruction and that the cdr2 onconeural antigen is the target of the immune 

mediated pathology in the nervous system, it remains unclear whether T cells are 

responsible for the pathogenesis of the neuronal degeneration. In the animal 

model experimental autoimmune encephalomyelitis (EAE), T cells are activated 

in the periphery by an injection of a specific protein or peptide, such as myelin 

basic protein (MBP), and then traffic across the BBB where they induce 

inflammation and pathology similar to that observed in patients with multiple 

sclerosis (MS). PCD is hypothesized to have a similar pathogenesis: a systemic 

anti-tumor immune response activates T cells which then are able to cross the 

BBB into the brain parenchyma where they induce autoimmune 

neurodegeneration after coming into contact with cdr2-expressing Purkinje cells. 
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The main pathological change in PCD is the loss of Purkinje neurons in the 

cerebellar cortex184. There are reports of occasional lymphocytic infiltrates in the 

cerebellum, although not generally in the Purkinje cell layer. This may be due to 

the long time lapse between neuronal degeneration and autopsy, since the 

neurologic disease itself is generally not fatal. Recently, Albert et al. found 

activated αβ T cells in the CSF of PCD patients and thus provided the first 

correlation between CSF T cells, an ongoing peripheral anti-tumor CTL response, 

and clinically evident neuronal destruction185. Moreover, the brain is not 

considered to be as profoundly isolated by its “immune privileged” status as was 

once thought. While the passage of antibodies and cells, including resting 

lymphocytes, into the brain is restricted, activated T cells and monocytes are able 

to traffic across the blood brain barrier (BBB) and through the brain 

parenchyma186,187. Neuronal MHC class I molecules may be constitutively 

expressed, and/or induced by cytokines, making them potential CTL targets188,189. 

Recently we have obtained preliminary evidence of cdr2(289-297) and cdr2(290-

298)-specific cells in the CSF of A2.1+ PCD patients by tetramer staining, thus 

associating cdr2-specific CD8+ T cells and the neuronal autoimmunity. These are 

exciting preliminary results, but further studies need to be done with more 

controls to determine whether these populations are enriched relative to other 

tetramer staining populations found in the peripheral blood. 

Still, there are some problems with the idea that T cells are solely responsible for 

the elimination of cdr2-expressing neurons in PCD. Some uncertainty is raised by 
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the work of Michael Oldstone and colleagues. Work using a viral model system 

has demonstrated that LCMV antigen-specific CD8+ T cells are unable to kill 

LCMV-infected neurons in mice, even when they are engineered to overexpress 

MHC class I190. More recent work by others suggests that neurons are protected 

from perforin-dependent CTL attack due to neuronal expression of Fas ligand 

(FasL/CD95L/Apo-1 ligand) which reduces granule release by CTL191. 

Furthermore, neurons have recently been shown to have the ability to convert 

activated T cells into disease-suppressing regulatory T cells192, which raises the 

question of whether some of the CD3+CD25+ “activated” T cells previously 

observed in the CSF of PCD patients 185 were, in fact, CD25-expressing PND-

suppressing regulatory T cells.  

Finally there is the issue of Yo antibodies, which are present at high titers in PCD 

patient CSF, and which recognize the leucine zipper region of cdr2, an important 

functional domain through which interactions with c-myc occur193. It has been 

hypothesized that all onconeural antigens, including cdr2, have critical 

physiologic functions whose disruption by antibodies may trigger neuronal 

death leading to neurologic disease194. There is evidence that autoantibodies can 

and do penetrate living cells both in culture195 and in the intact nervous system196. 

In the later case, cross-linking of cellular prion protein in vivo with monoclonal 

antibodies was found to trigger rapid and extensive neuronal death196. Still, 

attempts to reproduce PCD in mice, either by passive transfer of Yo antibody197 
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or active immunization with recombinant cdr2 protein198 have not been able to 

recapitulate the disease. 

A humanized animal model based on cdr2(289-297)-specific CTL 

We currently lack an animal model of PND. Therefore we do not know which 

immune system components are necessary and sufficient for the induction of 

neuronal autoimmunity versus the killing of a systemic tumor. The work 

described herein provides the framework for generating a PCD animal model 

based on adoptive cell transfer. Having determined that the human and murine 

cdr2(289-297) are nearly identical and are both naturally processed and HLA-

A2.1-restricted, we can create a humanized animal model in HLA-A2.1 

transgenic mice based on cdr2(289-297)-specific T cells that will moreover 

provide information that can be usefully incorporated into the design of clinical 

trials using these epitopes. One possibility would be to clone a high affinity TCR 

from the HHD 289 CTL line by sorting tetramer positive cells for TCR isolation. 

Alternatively, we could clone a TCR of this specificity from tetramer-sorted CSF-

infiltrating PCD patient T cells (the idea being that these might be analogous to 

TIL). Either of these TCR could then be used to create a human-mouse chimeric 

TCR-HLA-AAD transgenic199 or a “retrogenic”200 mouse. Using adoptive transfer 

of cdr2-TCR transgenic T cells, we can evaluate whether there is a therapeutic 

window between the treatment of a cdr2-expressing tumor such as B16.AAD, 

HeLa.AAD, or MCF7.AAD (the later two in NOD-SCID A2.1 mice), and the 

induction of neurologic disease. 
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As discussed earlier, in the case of the Hu syndrome, there appear to be many 

more patients with cancer harboring tumor immunity than there are patients that 

develop neurologic disease, suggesting that a second event may be necessary for 

the development of neurologic disease in such circumstances. Our preliminary 

studies suggest that it is possible to induce cdr2-specific T cells in HLA-A2.1 

transgenic mice, and notably these primed animals do not demonstrate evidence 

of cerebellar degeneration. Therefore we hypothesize that the line from tumor 

immunity to autoimmunity is not crossed simply by the generation of T cells 

with this specificity, but rather may be a consequence of a greater magnitude and 

persistence of the T cell response (perhaps via the provision of CD4 help), 

abnormal access to the CNS, or local immune dysregulation (or any combination 

of these). Autoimmune destruction of melanocytes (vitiligo and, in some cases, 

uveitis) is a relatively common occurrence in patients and mice undergoing 

successful melanoma immunotherapy by adoptive cell transfer or vaccination. 

Since the success of adoptive cell transfer in particular has been shown to depend 

on the depletion of immune regulatory components and the dose and persistence 

of the tumor-specific lymphocytes in vivo, it is possible that autoimmunity is 

largely a numbers game.  

If the adoptive transfer of a large number of cdr2 TCR-specific T cells into cdr2 

tumor-bearing A2.1 transgenic mice mediates tumor regression without leading 

to autoimmunity, we will have important evidence of preclinical safety of cdr2 

TCR gene transfer for gynecologic tumor immunotherapies. In the case that this 
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protocol generates neuronal autoimmunity, we will have established the first 

animal model of PND, from which we can explore neuro-immune interactions as 

well as possible treatments for PND patients. If we transfer a high affinity cdr2-

specific TCR into CD4+ Tregs by lentiviral transduction (thus generating class I 

restricted Tregs), will the co-adminstration of these cells ameliorate neurologic 

disease? Will blocking lymphocyte migration across the blood brain barrier with 

Natalizumab, an α4β1 and α4β7 integrin inhibitor recently approved for the 

treatment of multiple sclerosis201, reestablish a therapeutic window between 

tumor immunity and neuronal autoimmunity?  

It is still unclear what cellular function cdr2 confers onto tumor cells.  That cdr2 

is consistently and selectively expressed in a large percentage of breast and 

ovarian tumors underscores its importance for tumor biology and suggests that it 

may be an especially good immunotherapy target. By the insights gleaned from 

this animal model based on the cdr2(289-297)-specific CTL response, we hope to 

1) better define the pathogenesis of the PNDs 2) elucidate fundamental 

differences between tumor immunity and neuronal autoimmunity; and 3) 

validate safe and effective strategies for the treatment of cancer patients. 
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