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INSECT HOST SEEKING: INVESTIGATIONS INTO 

THE MOLECULAR MECHANISMS OF 
CHEMOSENSATION 

 
Walton D. Jones 

The Rockefeller University 2007 

 Among other functions, chemosensory systems play a crucial role in the 

host-seeking behaviors of insects that allow them to find their preferred food 

sources. Quite often, however, these host-seeking behaviors have a negative 

impact on either human health or livelihood. The following details investigations 

into the evolution and molecular mechanisms of two distinct pathways involved in 

insect chemosensation. 

 The atypical odorant receptor gene, Or83b, is co-expressed with other 

ORs in most olfactory sensory neurons (OSNs) of the Drosophila antenna. 

OR83b acts as a generic heterodimeric partner for other ORs coupling them to 

the ciliary trafficking machinery, which is responsible for delivering the OR 

complexes to their site of action, the OSN dendrites. Flies lacking Or83b have 

marked electrophysiological and behavioral olfactory defects presumably 

because the OR cargo of OR83b is degraded when it cannot traffic properly. The 

amino acid sequence of OR83b has been remarkably well conserved over the 

course of evolution. Homologues have been identified in insects as diverse as 

beetles, moths, honeybees, and locusts. Several of these are true orthologues 

that can rescue the Or83b mutant phenotype indicating that the function of 

OR83b has also been conserved.  



 At least one population of neurons in the fly antenna is Or83b-

independent. These neurons, which respond to changes in CO2 concentration, 

co-express a pair of chemosensory receptors belonging to the gustatory receptor 

family, Gr21a and Gr63a. Transgenic misexpression of these two receptors can 

confer CO2 sensitivity on a neuron that is normally CO2-insensitive. Gr63a1 

mutant flies lack all electrophysiological and behavioral responses to CO2. Clear 

homologues of these two genes are co-expressed in the mosquito organ that 

responds to CO2 implying that they act as the mosquito CO2 receptors as well.  

 It seems that many insects, including the malaria mosquito, use these two 

pathways—one Or83b-dependent and one Or83b-independent—to track host 

odors, which synergize with CO2 plumes to modulate host-seeking behavior. 

Thus, not only is the evolutionary history of these insect chemosensory pathways 

incredibly interesting, both pathways make attractive targets for the rational 

design of novel insect control measures designed to interrupt host seeking.
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1 Introduction to Drosophila chemosensation 

1.1 Insect chemosensation 

1.1.1 The agricultural, economic, and medical impact of insects 

 Insects account for almost 75% of all animal species and make up a larger 

portion of the Earth’s biomass than any other Class. Insects are everywhere. 

Over the course of evolutionary history, insects have achieved their incredible 

success because of the variety of adaptive strategies with which they have 

solved some of nature’s most difficult challenges. Yet, while insects are 

fascinating in their own right, we also study them for more egocentric reasons. 

 The relationship between humans and insects is complicated; both 

positive and negative depending on the particular species in question. Insects 

pollinate many of our crops. We farm them for honey, silk, and other products. 

We have also learned to use certain species in the biological control of others. 

Unfortunately, however, these beneficial aspects are not the whole story. To 

date, roughly 3,000 species of insects are known to have a negative impact on 

humans costing over a million lives and billions of dollars per year (Hill and 

Biology, 1997).  Several types of beetles destroy our crops, termites destroy our 

homes, and biting insects directly attack us and our livestock (Daly et al., 1998). 

Many insects can act as human and animal disease vectors. Insects are 

responsible for transmitting to humans the microbial agents that cause malaria, 

yellow fever, dengue fever, several varieties of encephalitis, filariasis, epidemic 

typhus, bubonic plague, sleeping sickness, and Chagas’ disease, among others. 
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Malaria, which is transmitted by anopheline mosquitoes, is the most devastating 

of these diseases, afflicting between 300 and 500 million people a year 

(Korenromp, 2004), leading to over 1 million deaths annually. Interestingly, much 

of the blame for the agricultural, economic, and human health impact of insects 

can be placed squarely on their highly sensitive chemosensory systems. 

 

1.1.2 The importance of chemosensation to insects 

 Unlike humans, who rely primarily on vision for impressions of our 

environment, most other animals take a more balanced approach to the 

reception of environmental stimuli. In fact, although many insect species have 

excellent visual systems, their olfactory and gustatory systems are critical in 

determining the location and quality of foodstuffs, in identifying potential mates, in 

communicating with conspecifics, and in avoiding danger. It is through these 

sensory systems that agricultural pests like the medfly (Ceratitis capitata) can 

locate and ruin our orange groves. By smelling our volatile emissions (i.e. our 

breath and body odor), black flies, sand flies, and most importantly, mosquitoes 

can locate people on which to feed and potentially inoculate with disease-causing 

microbes. What are these sensory systems and how do they work? 

 

1.2 What is chemosensation? 

 Chemosensation is the reception of chemical signals from the 

environment and their transformation into trains of neuronal action potentials that 

can be ‘read’ by the brain as a perception of odor or taste. Unlike vision or 
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audition, which transform continuous spectral stimuli into sensory perception, 

chemosensory systems have no recognizable continuous spectrum with which to 

work. Chemicals come in many shapes and sizes, with different functional 

groups, carbon chain lengths, and concentrations, and they may be present 

alone or in blends. Chemical stimuli have different volatilities that help us classify 

them as either odorants (volatile) or tastants (non-volatile).  Since, however, 

these stimuli, especially in olfaction, are so complex, the way the brain decodes 

them into a particular perception is still largely a mystery. Only recently have we 

begun to understand olfaction and gustation. A model genetic organism, the fruit 

fly Drosophila melanogaster, has been an absolute boon to scientists seeking to 

understand how these systems work.  

 

1.3 Olfaction in Drosophila  

1.3.1 Peripheral olfactory anatomy 

 The main insect olfactory organ is the antenna. In many insects, another 

head appendage, the maxillary palp, also participates in olfactory perception 

(Fig. 1.1A). These organs are covered with hollow, porous cuticular projections, 

termed sensilla, which house the olfactory sensory neurons (OSNs). The 

branched dendrites of one to four OSNs project into the lumen of each sensillum. 

There they are bathed in a fluid called sensory lymph that is produced by support 

cells at the base of the sensillum (Fig. 1.1B). Olfactory sensilla in Drosophila 

come in three types, named according to their morphology: sensilla basiconica 

(thick and club-shaped), sensilla trichodea (long and slender), and sensilla 



4 

coeloconica (short and conical) (Stocker, 1994). These classes have been further 

sub-divided on the basis of high resolution morphological analysis (Shanbhag et 

al., 1999) and according to their odor-response profiles (de Bruyne et al., 1999; 

de Bruyne et al., 2001). 

   

 

Figure 1.1: Olfactory organs of Drosophila and a model sensillum 
A) A scanning electron micrograph of the head of Drosophila melanogaster. The 
olfactory organs are indicated with green lines. These organs are covered with 
small cuticular projections known as sensilla. (Photo credit: Jürgen Berger, Max 
Planck Institute, Tübingen, Germany). B) A schematic of a basiconic olfactory 
sensillum, which houses two OSNs (A and B) with branched dendrites. Support 
cells are labeled SC. Adapted from de Bruyne et al. (1999). 
 

1.3.2 Neuroanatomical organization 
 Groups of OSNs that respond to the same odorant ligands bundle their 

axons into the antennal nerve, which projects back into the brain to a structure 

called the antennal lobe (AL). The Drosophila AL is made up of at least 45 

distinguishable structural and functional units called glomeruli. It is in these 

glomeruli that OSN axons form synapses with the second-order olfactory 
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neurons, the projection neurons (PNs). PNs relay the odor-induced message to 

two higher brain centers. The first is the mushroom body, which is involved in 

odor memory. The second is the lateral horn of the protocerebrum, which is 

involved in odor detection and processing. Both are essential for the ultimate 

behavioral output (Fig. 1.2). Another population of cells, a network of lateral 

inhibitory interneurons (LNs) diffusely innervating the AL may be important in 

processing or refining the glomerular activation pattern that is ‘read’ by the PN 

dendrites (Ng et al., 2002). 

 

 

Figure 1.2: Schematic innervation of a single AL glomerulus by axons of 
OSNs with equivalent response profiles 

A model fly brain is superimposed on a scanning EM of a fly head.  Blue OSN 
axons coming from the 3rd segment of the antenna bundle into the antennal 
nerve, project back to the AL (red), and innervate a single olfactory glomerulus.  
Optic lobes (green), mushroom bodies (dark blue), the suboesophageal ganglion 
(yellow), and the central complex (orange) also appear.  Adapted from 
(Heisenberg, 2003). 
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 However, before any of this central brain processing occurs, the 

information about odor identity and intensity has already undergone a dramatic 

transformation in the OSNs themselves. For any perception of odor in any insect, 

odor molecules must pass through a sensillum’s cuticular pores, dissolve in its 

sensillar lymph, and then diffuse to the OSN dendrites. But what happens when 

the odorant molecules reach the OSN dendrites? Something has to transform a 

complicated chemical signal into an electrical OSN activation pattern. This is the 

job of the odorant receptors (ORs). 

 

1.3.3 Odorant receptors 

 The biggest breakthrough in our understanding of the sense of smell in all 

organisms came with the discovery of the rat odorant receptors by Linda Buck 

and Richard Axel (Buck and Axel, 1991). Their work, which was recognized with 

a Nobel Prize in Physiology or Medicine in 2004, shed light on the inner workings 

of the OSN black box. The thousands of odorants mammals are capable of 

smelling are recognized by their odorant receptors, which form a large sub-family 

of the G protein-coupled receptor (GPCR) group of seven-pass transmembrane 

proteins. This family, representing 1% of all mammalian genes, is the largest in 

mammalian genomes (Mombaerts, 1999). Its members are highly divergent, 

presumably indicating the vast structural diversity of the ligands they recognize. 

However, they retain the conserved hallmarks of the GPCR super-family, notably 

the DRY residue located at the intracellular face just after the third 

transmembrane domain (Liu et al., 2003; Sakmar, 2002). The ORs bind odorant 
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molecules dissolved in the mucous covering the OSN dendrites in the 

mammalian olfactory epithelium. Ligand-binding increases cAMP levels through 

a G protein-dependent mechanism and leads to neuronal activation (Ronnett and 

Moon, 2002). 

 Interestingly, that which applies in rodents and people is not necessarily 

true for insects. The insect ORs were discovered in 1999 in Drosophila (Clyne et 

al., 1999; Gao and Chess, 1999; Vosshall et al., 1999). Despite appearing at 

first-glance similar to mammalian ORs in having seven transmembrane domains 

and discrete expression in OSNs, the insect ORs form a distinct family of 

receptors with inverted membrane topology (i.e. an intracellular N-terminus) that 

are unlikely to be GPCRs (Benton et al., 2006; Wistrand et al., 2006). Drosophila 

melanogaster has 62 ORs, most of which are expressed in distinct and 

stereotyped sub-populations of OSNs in both the antennae and maxillary palps. 

Generally, each subtype of OSN expresses a single OR, although exceptions to 

this rule have been described (Couto et al., 2005; Fishilevich and Vosshall, 2005; 

Goldman et al., 2005). OSNs expressing the same ORs, and thus having the 

same odor response profiles, together project toward and innervate single 

stereotyped AL glomeruli (Fig 1.2). The ensemble of these glomeruli, all 

innervated by OSNs expressing different receptors, forms an odortopic map that 

faithfully represents a given chemical stimulus to higher brain centers through the 

PNs. 
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1.4 Gustation in Drosophila  

 As the ‘other’ chemosensory system in flies, gustation has some parallels 

with the olfactory system, but many striking differences. Soluble tastant 

molecules are detected by gustatory sensory neurons (GSNs) found in several 

types of sensilla on the fly labial palps, legs, wing-margins, female genitalia, and 

inside the pharynx (Stocker, 1994). The relatively wide distribution of taste 

sensilla in flies necessarily means that gustatory neuroanatomy is less 

straightforward than in the olfactory system. Whereas OSNs project to single 

glomeruli in the antennal lobe before their message reaches the central brain, 

GSNs project to one of a few different relay stations (i.e. the tritocerebrum, and 

the suboesophageal (SOG) and thoracic-abdominal ganglia) depending on their 

location in the body (Stocker, 1994; Wang et al., 2004). The SOG, which acts as 

the relay center for GSNs in the labial palps, does not have discrete neuropil 

subdivisions like the AL glomeruli. There are data to suggest, however, that 

GSNs responsible for sensing different taste modalities (i.e. sweet versus bitter) 

project to non-overlapping portions of the SOG that are not otherwise 

distinguishable (Marella et al., 2006; Thorne et al., 2004; Wang et al., 2004). 

 The distinct response properties of these cells, as is the case in olfaction, 

are likely to result from their expression of different gustatory receptor genes. 

The 68 Drosophila gustatory receptor (GR) genes, which are scattered all over 

the genome, form a diverse family whose members show as little as 8-12% 

amino acid-level sequence identity (Amrein and Thorne, 2005; Robertson et al., 
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2003; Scott et al., 2001). The degree of diversity in this family points to its ancient 

origin, and in support of this idea, a few genes in the nematode C. elegans 

genome appear to be distantly related to Drosophila GRs (Robertson, 2001). The 

expression pattern of GRs has been best studied in the labial palps, and there, 

unlike in the olfactory system, many GRs are often co-expressed in the same 

GSN population (Thorne et al., 2004; Wang et al., 2004).  

 

1.5 Evolution of the OR/GR superfamily and its role in host-

seeking  

 Both Drosophila ORs and GRs share a limited degree of similarity, leading 

to the hypothesis that these two gene families may, in fact, represent 

subdivisions of a larger superfamily of insect chemosensory receptor genes 

(Robertson et al., 2003). Understanding the origin of this superfamily and when 

its functional split into olfactory and gustatory halves occurred will require tracing 

its development through the sequencing of many more insect genomes, 

especially those of primitive insects at the base of the hexapod lineage. Since 

insects were some of the earliest animals to inhabit the land over 400 million 

years ago (Grimaldi and Engel, 2005), it is possible that the subdivision of their 

chemosensory systems may have occurred with the transition from aquatic life to 

terrestrial life and the corresponding switch from sensing soluble ligands to 

airborne volatiles (Robertson et al., 2003). 

 It is also tempting to speculate that the further evolution of insect 

chemosensory systems can actually have a causative role in altering both mate 
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and host selection preferences, which in turn could spur the evolution of new 

species. The hedonic value an insect assigns to a given chemical stimulus likely 

has little to do with the repertoire of chemosensory genes from this superfamily 

possessed by the insect. This repertoire would, however, determine the spectrum 

of chemicals that an insect can detect, and to which this hedonic value can be 

assigned through processing in higher brain centers. Thus, variable repertoires of 

chemosensory genes (mainly ORs for long range chemical cues) provide the 

evolutionary raw materials for changes in host selectivity, which in turn may drive 

speciation itself.   

 Evidence in support of this hypothesis can be found in a comparison of the 

OR repertoires of Drosophila melanogaster, a strict fruit feeder, and Anopheles 

gambiae, which feeds on either nectar or blood depending on sex and life stage. 

Although some direct homologues of Drosophila ORs exist in Anopheles, there 

are also several species-specific groups.  This has led to the compelling 

hypothesis that these non-homologous groups of ORs may be responsible for 

detecting volatiles associated with species-specific host preferences (Hill et al., 

2002). Electrophysiological studies on mosquito olfactory organs reveal them to 

be remarkably sensitive to many human-derived odors (Meijerink et al., 2001; 

Meijerink and van Loon, 1999; Qiu et al., 2006; van den Broek and den Otter, 

1999). One particular OR specific to Anopheles gambiae, GPRor1, is expressed 

in blood-feeding adult female mosquitoes and not in nectar-feeding adult males 

(Fox et al., 2001). In addition, when GPRor1 is expressed in an “empty” 

Drospophila OSN lacking its endogenous ORs it confers sensitivity to 4-
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methylphenol, an odorant found in human sweat that may be important in 

mosquito host-seeking (Hallem et al., 2004b). 

 Additional evidence supporting the role of chemosensory receptors and 

host preference in evolution can be found in the recent (<150 years ago) switch 

in host preference of a population of apple-maggot flies (Rhagoletis pomonella) 

from hawthorn fruit to apples. It is clear that their choice between food sources is 

made on the basis of fruit olfactory cues (Linn et al., 2003), and that F1 hybrids 

between the two parental populations have reduced electrophysiological and 

behavioral responses to these host volatiles (Linn et al., 2004; Olsson et al., 

2006). This likely represents a significant barrier to productive mating in that 

offspring of the two groups are less able to find appropriate food resources. Thus 

it seems that by observing these simple changes in the olfactory system, which 

have affected host preference, this population of flies may have been caught in 

the act of sympatric speciation (i.e. speciation without geographic isolation). It is 

difficult to determine whether the olfactory changes themselves are the cause of 

or a result of speciation, but it is clear that the two are closely linked. 

 The remainder of this dissertation will focus on two distinct investigations 

into members of this chemosensory receptor gene family that seem to play 

separate but complementary roles in insect host-seeking behavior. First, I will 

discuss the results of studies on the both the function and evolution of Or83b, an 

atypical member of the OR subfamily that has a pivotal role in olfactory 

perception and host-seeking behaviors in flies, and most likely in all insects. This 

will be followed by a discussion of carbon dioxide chemosensation in insects, the 
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various roles it plays in species-specific host preferences, and the molecular 

mechanisms of its detection. 
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2 The function and evolution of Or83b 

2.1 Introduction 

2.1.1 Initial discovery 

 In the early days of experiments on the molecular nature of insect olfaction, 

Drosophila was used as a model organism to gain insight into the far more 

complicated mammalian olfactory system with its hundreds of receptors and 

thousands of glomeruli. Even after the initial discovery of the insect ORs, 

because of their apparently similar seven-pass transmembrane structure and the 

fact that they seemed to follow the reasonably well-accepted one-neuron one-

receptor rule found in the mammalian system (Mombaerts, 2004; Serizawa et al., 

2003), this model organism relationship was seldom questioned. One curious 

finding, however, in the initial descriptions of the insect OR gene family cast 

some doubt on the system’s similarity to the mammalian olfactory system. One 

member of the family, initially known as A45 (Vosshall et al., 1999) or AN5 (Gao 

and Chess, 1999), but now known as Or83b, was found to have an expression 

pattern unlike any other. While most ORs are expressed in small (~20 cells) non-

overlapping groups of OSNs, Or83b is expressed broadly in all OSNs of the 

maxillary palps and almost all OSNs of the antennae (Fig. 2.1). 
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Figure 2.1: Or83b is expressed in most OSNs of the fly antenna 
Alkaline phosphatase visualization of RNA in situ hybridization on antennal 
sections reveals expression of Or83b in many OSNs. 
 

2.1.2 Or83b mutant reveals function 

 The unique function of this highly conserved atypical OR became clear 

only when a mutant fly lacking Or83b was generated. Or83b mutants have 

severe deficits in both electrophysiological and behavioral assays of olfactory 

function. Electroantennograms (EAGs), which give a gross readout of local field 

potentials in the antenna, reveal little if any electrical activity in Or83b mutant 

flies. Or83b mutant larvae are unable to chemotax toward an odor source, and 

adults show impaired odor-guided attraction (Larsson et al., 2004). 

 The broad antennal expression pattern of Or83b led to the hypothesis that 

it may act as some sort of universal co-factor for the typical ORs with which it is 

co-expressed. Consistent with this hypothesis, the dendritic trafficking of both 

OR22a (Fig 2.2) and OR43a is completely abolished in flies lacking Or83b 

(Larsson et al., 2004).  



15 

 

Figure 2.2: OR83b is required for dendritic trafficking of OR22a 

Immunostaining of antennal sections using antibodies against OR83b (green) 
and OR22a (red). A) Wild type antennae have normal dendritic trafficking of the 
OR22a antigen, with very little staining in the OSN cell bodies. Only a small 
number of OR83b-positive cells also stain for OR22a. B) Staining of Or83b 
mutant antennae reveals a complete lack of OR83b antigen, and a 
mislocalization of OR22a antigen in the OSN cell bodies instead of the dendrites. 
 

 Instead of being trafficked to the OSN dendrites where they can encounter 

odorant molecules, in the absence of OR83b the OR proteins remain stuck in the 

endomembrane system of the OSN cell body and are degraded. It is now clear 

that OR83b physically associates with other ORs (Benton et al., 2006; Neuhaus 

et al., 2005) and couples them to the ciliary trafficking machinery of the OSNs so 

that they can be transported to their site of action (Benton et al., 2006). OR83b 

does not seem to recognize ligands by itself. OSNs lacking a given odorant 

receptor but retaining OR83b fail to show odor responses (Dobritsa et al., 2003; 

Elmore et al., 2003). However, OR83b appears to perform a generic function 

necessary for all odorant receptors. If conventional ORs are transgenically 

expressed in mutant sensilla lacking their native complement of ORs, but 

containing Or83b, these genetic reconstitutions faithfully recapitulate odor 
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responses of the sensilla where the transferred ORs are normally expressed 

(Hallem and Carlson, 2006; Hallem et al., 2004a). This means OR83b performs a 

critical, but generic function in each of the sensilla in which it is expressed. 

 

2.1.3 Evolutionary implications 

 Reinforcing this unique position of Or83b in the chemosensory superfamily, 

when the primary protein structure of the Drosophila ORs and GRs are aligned in 

order to generate a phylogenetic tree, OR83b is a clear outlier between the two 

subfamilies as the OR closest in sequence to the GRs (Robertson et al., 2003). 

Thus, in the insect lineage, Or83b may be the link between the OR subfamily and 

the more ancient GRs. In addition, although most other OR and GR family 

members are highly divergent in both intra- and inter-species comparisons, 

OR83b is well-conserved in all insect orders tested so far (Jones et al., 2005; 

Krieger et al., 2004; Krieger et al., 2003; Melo et al., 2004; Pitts et al., 2004). 

 Despite its conservation in insects, there are no obvious homologues of 

Or83b in any mammalian genome. This reinforces the idea that the 

organizational similarities shared by the insect and mammalian olfactory systems 

may stem from their relationship as analogous structures formed through 

convergent evolution and not because they are directly related. Regardless of the 

implications for Drosophila as a model system for studying the mammalian 

olfactory system, the dramatic evolutionary conservation of Or83b in insects 

reinforces the role of Drosophila as an important model organism for olfactory 

research in disease vector insects. Since the olfactory systems of these insects, 
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including the malaria mosquito Anopheles gambiae, are of more immediate 

relevance to global human health than even our own olfactory systems, the 

function and evolution of Or83b becomes an important object of research. 

 The investigation of the functional importance of Or83b in the olfactory 

systems of insects that negatively affect both human health and agriculture is 

difficult without the sophisticated molecular genetic tools that have been 

developed in Drosophila melanogaster. Therefore, in order to investigate the 

function of Or83b in other species we used Drosophila as an expression system 

to determine whether or not distantly related Or83b homologues from a few pest 

insect species could functionally rescue the fly Or83b mutant phenotype. 

 

2.2 Materials and methods 

2.2.1 Drosophila stocks 

 Fly stocks were maintained on conventional cornmeal-agar-molasses 

medium at 25ºC. Constructs for the transgenic stocks were injected into either yw 

or w1118 embryos. Single transformants were then isolated and balanced 

according to standard fly genetic methods. The following flies were used in this 

study: wild type Berlin (M. Heisenberg); Or83b-GAL4; Or22a-GAL4; 

Or83b2/Or83b3; UAS-Or83b; UAS-CcOr83b; UAS-GPRor7; UAS-HzOr83b. 

2.2.2 Cloning of Or83b Orthologues 

 The following full-length cDNA sequences have been deposited in 

Genbank: Anopheles gambiae, AY843205; Ceratitis capitata, AY843206; 

Helicoverpa zea, AY843204. 
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2.2.2.1 Cloning of Anopheles gambiae GPRor7 cDNA 

 The Drosophila melanogaster Or83b cDNA sequence was used with the 

BLAST to search a collection of random Anopheles gambiae genomic DNA 

sequences, which were compiled by Genoscope and the Institut Pasteur, France. 

Two sequence fragments with significant similarity to the query sequence were 

identified. These A. gambiae sequences were used to design oligonucleotide 

primers to amplify a portion of the A. gambiae AgOr83b gene (since renamed 

GPRor7) via PCR using mosquito genomic template DNA. The resulting 3kb 

PCR product was used to screen an A. gambiae genomic DNA library.  

 Several genomic clones were isolated and sequenced. The intron/exon 

structure of GPRor7 was predicted using GENSCAN. Oligonucleotide primers 

designed to amplify the predicted GPRor7 open reading frame were synthesized 

and used in RT-PCR of A. gambiae adult head mRNA. PCR products were 

purified, cloned into pGEM-T Easy and sequenced. One clone was chosen and 

subcloned into pUAST (Brand and Perrimon, 1993) for fly injection. 

2.2.2.2 Cloning of Ceratitis capitata CcOr83b cDNA 

 The D. melanogaster Or83b cDNA was used to screen a Ceratitis capitata 

genomic DNA library at low stringency as described above in section 2.2.2.1. 

Several clones were isolated and sequenced. The intron/exon structure of the C. 

capitata CcOr83b gene was predicted using GENSCAN. Oligonucleotide primers 

flanking the predicted C. capitata Or83b ORF were synthesized and used to 

amplify CcOr83b cDNA by RT-PCR from C. capitata adult antennal mRNA. PCR 
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products were purified, cloned into pGEM-T Easy and sequenced. One clone 

was chosen and subcloned into pUAST (Brand and Perrimon, 1993) for fly 

injection. 

2.2.2.3 Cloning of Helicoverpa zea HzOr83b cDNA 

 An H. zea antennal cDNA library constructed in lambdaZAP was screened 

with D. melanogaster Or83b cDNA at low stringency by prehybridizing at 42ºC in 

5X SSCP (10X Denhardt’s, 25% formamide, 0.1% SDS, 0.25 mg/ml salmon 

sperm DNA). Filters were hybridized with a 32P-labelled probe in the same buffer 

overnight at 42ºC. Filters were washed at low stringency (2x30 minutes in 2X 

SSC/0.1% SDS at 25ºC; 2x30 minutes in 0.5X SSC/0.1% SDS at 42ºC). 

Plasmids containing positively hybridizing inserts were obtained by in vivo 

excision and sequenced. One clone was chosen and subcloned into pUAST 

(Brand and Perrimon, 1993) for fly injection. 

2.2.3 Multi-protein alignment and phylogenetic tree construction 

 Protein sequences for Or83b orthologues were predicted from cDNA 

sequences and aligned using the default settings of the ClustalW algorithm 

supplied with the sequence analysis package MacVector. A best-fit phylogenetic 

tree was constructed using the neighbor-joining method also supplied in 

MacVector. 

2.2.4 RNA in situ hybridization 

 Antennae of each insect were embedded in OCT freezing medium and 

sectioned on a cryostat. RNA in situ hybridization using DIG-labeled antisense 

riboprobes was carried out as described except that detergents were omitted 
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(Vosshall et al., 1999). In addition, all sample manipulations after sectioning were 

carried out horizontally without cover slips to avoid losing the tissue. 

2.2.5 Antennal immunostaining 

 Visualization of OR22a dendritic trafficking was carried out with several 

modifications to a previously described protocol using a rabbit anti-OR22a 

antibody (J. Carlson) (Dobritsa et al., 2003). Briefly, 10 µm fresh frozen sections 

of transgenic Drosophila antennae were collected on SuperFrost slides (Fisher) 

and fixed in 4% paraformaldehyde in PBS for 7 minutes. Slides were washed 2x5 

minutes in PBS, and permeabilized in P/T (PBS, 0.1% TritonX-100) for 30 

minutes. Slides were then blocked horizontally for 30 minutes with 500 µl P/T/S 

(P/T + 5% heat inactivated normal goat serum). The primary antibody was diluted 

1:100 in P/T/S, and 500 µl was added to the slides, which were then incubated 

overnight at 4ºC. The next day, slides were washed 3x10 minutes in P/T, blocked 

again for 30 minutes, and incubated with a goat anti-rabbit-Cy3 conjugated 

secondary antibody (1:800 in P/T/S) for 2 hours in the dark. After three more 5 

minute washes the slides were mounted with Vectashield (Vector Labs) and 

visualized on a Zeiss LSM510 confocal microscope. 

2.2.6 Electroantennograms 

 EAGs were performed with several modifications to a previously described 

protocol (Ayer and Carlson, 1992). Using a fly aspirator two to four day old flies 

(equal numbers of males and females) were inserted into the end of a plastic 

pipet tip cut at an angle of roughly 25 degrees from horizontal. The fly was 
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pushed forward from behind with cotton such that part of the thorax and the 

anterior head were protruding, while the mouthparts remain inside the pipet tip.  

The other end of the pipet tip was secured using modeling clay and the fly was 

visualized in a dissection microscope. 

 Glass needle electrodes were pulled from borosilicate glass capillary 

tubes (1.5mm OD, 0.75mm ID from F.H.C.) using a PB-7 micropipette puller 

(Narishige) and filled with 0.1 M KCl and 0.5% polyvinyl propylene. These were 

placed in electrode holders and attached to a high impedance guarded input 

AC/DC probe (Syntech) attached to a manual micromanipulator. The reference 

electrode penetrated the upper thorax and entered the hemolymph. The 

recording electrode was pushed against the dorsomedial portion of one antenna 

and adjusted to obtain satisfactory electrical contact. Odor-evoked voltage 

changes were recorded using an IDAC-USB attached to a PC loaded with the 

EAGPro software (Syntech) and analyzed offline. 

 Odorants of the highest grade available (Sigma-Aldrich) were diluted 

1:100 in paraffin oil (Fluka) and 30µl was added to strips of filter paper. These 

were then loaded into 1ml glass tuberculin syringes (Becton Dickinson) fitted with 

1/16” tubing. One-second odor pulses, under the control of the CS-05 stimulus 

controller (Syntech), were added to a constant air stream directed at the antenna. 

 To verify consistent contact with the antenna, all Or83b mutant antennae 

were tested with carbon dioxide before and after application of other odorants. 

CO2-responsive OSNs are Or83b-independent (Larsson et al., 2004) and 

produce robust potentials. 
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2.3 Results 

2.3.1 Conservation of sequence and gene expression pattern 

 Since Or83b has the distinction among members of the OR family of 

having clear orthologues in other species (i.e. several moths, a beetle, the 

honeybee, several flies, and two mosquitoes), we asked whether this remarkable 

sequence conservation also reflects an essential function that has been 

conserved through insect evolution. To this end, we cloned Or83b orthologues 

from three major insect pests: the medfly, a citrus pest; the corn earworm moth, 

which damages corn and tobacco; and the malaria mosquito. The medfly and the 

mosquito, along with the fruit fly, all belong to the order Diptera. The corn 

earworm moth, from the order Lepidoptera, is the most evolutionarily divergent 

from Drosophila. Orthologous cDNAs were obtained either by library screening or 

RT-PCR. RNA in situ hybridization using antisense riboprobes specific to each 

orthologous gene reveals widespread OSN-specific expression in antennal 

sections from each respective insect (Fig. 2.3). 
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Figure 2.3: Or83b orthologues have a conserved gene expression pattern 
Broad expression of Or83b orthologues in large populations of antennal OSNs 
from four divergent species as revealed by RNA in situ hybridization. Insect 
photo credits: fruit fly (Jürgen Berger, Max Planck Institute, Tübingen, Germany); 
medfly (USDA); mosquito (Ekisei Sonoda); moth (John L. Capinera, University of 
Florida).  
 

 A multi-protein alignment constructed with the predicted protein coding 

sequence from each gene reveals 65-87% amino acid identity in whole-sequence 

pair-wise comparisons to Drosophila OR83b. Certain portions, near the C-

terminus in particular, are noticeably more conserved than others (Fig. 2.4).  
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Figure 2.4: Multi-protein alignment of Or83b orthologues 
Proteins predicted from cDNA sequence were aligned using the ClustalW 
algorithm (MacVector). Identical amino acids are indicated with gray shading. 
 A phylogenetic tree constructed using this protein alignment is consistent 

with the inferred phylogeny of these insects based on morphological 

characteristics and fossil evidence (Fig. 2.5). 
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Figure 2.5: Or83b phylogenetic tree 
A best-fit Or83b phylogenetic tree. Values above the branches are uncorrected 
(‘p’) distance, with the scale indicated at the lower left. Percent amino acid 
identities of Or83b orthologues as compared to Drosophila Or83b are circled in 
red. The phylogenetic distance of each species to Drosophila (in millions of 
years, Myr) is indicated in blue. 
 

 Since both Drosophila and Ceratitis are brachyceric Dipterans they are the 

most closely related, and probably diverged around 65 million years ago 

(Grimaldi and Engel, 2005). The mosquito is also a member of Diptera, but is 

much more distantly related having diverged from the common ancestor it shares 

with Drosophila roughly 250 million years ago (Kulathinal et al., 2004; Yandell et 

al., 2006). Dating the last common ancestor of Drosophila and Helicoverpa 

(Lepidoptera) is considerably more difficult. The oldest Lepidopteran fossil is 190 

million years old, but the divergence of the group Panorpida (to which both 

Lepidoptera and Diptera belong) probably occurred around 290 million years ago 

(Grimaldi and Engel, 2005). 
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2.3.2 Conservation of function 

 We next examined whether these Or83b orthologues can functionally 

complement the physiological defects found in Or83b-/- flies, namely the 

mislocalization of typical ORs and the defect in odor-evoked activity in the 

antenna (Larsson et al., 2004). Using the binary GAL4/UAS gene expression 

system (Brand and Perrimon, 1993), Drosophila Or83b and its orthologous 

cDNAs were expressed in Or83b-/- OSNs under the control of the Or83b 

promoter. This transgenic expression rescues both the block in OR22a/b 

trafficking to the sensory dendrites (Fig. 2.6) and the odor-evoked 

electrophysiological defects (Fig. 2.7) of the Or83b mutant. 

 Multiple fly stocks representing several independent insertions of each 

transgenic rescue construct were tested giving variable degrees of rescue. In the 

immunostaining experiments, both the medfly and the mosquito still had 

OR22a/b antigen in the OSN cell bodies, but the fruit fly and moth rescues were 

indistinguishable from wild type. In the EAG experiments, the mosquito UAS-

GPRor7 rescue construct gave consistently lower amplitude responses than the 

other rescuing transgenes and lower responses than wild type to all four 

odorants tested. Transgenic position effects, sequence divergence, or both may 

cause this variability in the degree of rescue. We favor the position effect 

hypothesis, because the Or83b-/- rescue experiment expressing the most 

divergent Or83b orthologue, moth HzOr83b, is indistinguishable from wild type. 
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Figure 2.6: Transgenic rescue using Or83b orthologues restores OR22a 

dendritic localization in Or83b-/- flies 
A) Normal localization of OR22a/b to the OSN dendrites in +/+ (wild type Berlin) 
flies is blocked in Or83b-/- (Or83b-GAL4; Or83b2/Or83b3) flies. The only OR22a/b 
antigen is not degraded is located in the OSN cell bodies. B) Transgenic rescue 
with Drosophila Or83b and with the medfly (UAS-CcOr83b), mosquito (UAS-
GPRor7), and moth (UAS-HzOr83b) Or83b orthologues restores OR22a/b 
localization in the OSN dendrites. Genotypes: Or83b-GAL4/UAS-species; 
Or83b2/Or83b3). 
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Figure 2.7: Transgenic rescue using Or83b orthologues restores odor-

evoked antennal potentials in Or83b-/- flies 
A) Electroantennograms (EAGs) measure robust odor-evoked activity in wild 
type antennae that is abolished in Or83b mutants (Left two panels). Or83b and 
its orthologues from medfly (CcOr83b), mosquito (GPRor7), and moth (HzOr83b) 
rescue this odor-evoked activity (right). Representative plots for isoamyl acetate 
and the solvent control (paraffin oil) are shown. Genotypes as in Fig 2.6. B) 
Summary of EAG data plotted as mean ± SEM of the peak response voltage, n = 
9 or 10 antennae per genotype per odorant. Responses of each transgenic 
rescue to the four odorants tested were significantly different from Or83b-/- mutant 
responses to the same odorants in pair-wise comparisons (p<0.001; two-tailed t 
test). 
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2.4 Conclusion 

 These data reveal that an atypical OR gene has been functionally 

conserved across almost 300 million years of evolution since the evolutionary 

divergence of the Lepidopteran and Dipteran lineages. The strong selective 

pressure required to maintain this level of conservation must reflect the critical 

importance of this gene in insect olfaction. As we now know, OR83b is required 

for proper localization of insect ORs to their site of activity, the ciliated OSN 

dendrites (Benton et al., 2006). OR83b likely does not directly participate in 

receptor-ligand interactions in the dendrites, but its heterodimerization with other 

insect ORs is required for coupling to the ciliary trafficking machinery. The 

conserved nature of its function across insect olfaction and its absence in the 

mammalian system suggests that OR83b may represent the insects’ “Achilles 

heel.” It may soon be possible to express insect ORs reliably in an in vitro 

expression system.  This would permit high-throughput screening of chemical 

compound libraries for small molecule inhibitors of insect OR protein complexes.  

Novel insect control strategies that specifically target OR83b could very well 

succeed in interrupting the diverse olfactory host-seeking behaviors that allow 

insects to act so efficiently as disease vectors. 
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3 Carbon dioxide chemosensation 

3.1 Introduction to gas sensation 

3.1.1 The role of hemoproteins in sensing diatomic gases 

 In addition to the pervasive requirement for chemical odorant detection in 

the animal kingdom, organisms also need to be able to detect and behaviorally 

regulate internal concentrations of several metabolic gases on both short- and 

long-term time scales. Oxygen, carbon monoxide, and nitric oxide are all 

diatomic gases that readily bind the heme moieties of hemoproteins. 

Hemoproteins make up a large, structurally and functionally diverse group of 

proteins responsible for storage, transport, and catalysis of various ligands. 

Almost every protein known to directly detect gases is a hemoprotein (Rodgers, 

1999). Heme-based sensor proteins must be able to detect their ligand at 

appropriate concentrations and translate its presence or absence into an 

appropriate response. In general, when the heme moiety of a heme-based 

sensor binds its ligand an allosteric change activates another domain of the 

same protein or even a separate protein. It is critical that a sensor protein be able 

to distinguish between true and false positive signals, because their gaseous 

ligands are small and similar in structure (e.g. they are all diatomic gases) 

(Gilles-Gonzalez and Gonzalez, 2005).  To this end, recent advances have 

elucidated some basic principles in the pairing of protein structure (i.e. the amino 

acid residues coordinating the heme-moiety) with ligand specificity (Chan, 2001). 

 There are at least four types of heme-based sensors categorized on the 

basis of their heme-binding domains or their mechanisms of signaling: those that 
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bind DNA, proteins with a PAS domain, the GCS family, and the HNOB family 

(Gilles-Gonzalez and Gonzalez, 2005). Heme-coupled DNA binding proteins 

include both the e75 nuclear receptor in Drosophila and CooA. The e75 nuclear 

receptor is thought to respond to either nitric oxide or carbon monoxide and play 

a role in fly development (Reinking et al., 2005). CooA is a transcription factor 

initially identified in the photosynthetic bacterium Rhodospirillum rubrum. Upon 

binding carbon monixide, CooA homodimerizes and binds the coo operon, which 

is a genetic element that controls the expression of genes necessary for utilizing 

carbon monoxide as an energy source (Roberts et al., 2004; Shelver et al., 

1997).   

 The heme-binding PAS domain is found in several different kinds of 

proteins responsible for detecting various signals in addition to the presence of 

diatomic gases. These include light, redox potential, voltage, and xenobiotics 

(Gilles-Gonzalez and Gonzalez, 2004).  The most well studied example of a 

PAS-domain containing protein is FixL (Gilles-Gonzalez and Gonzalez, 2005). 

FixL is an membrane-bound oxygen sensor found in the symbiotic Rhizobia 

bacteria responsible for nitrogen fixation in the root nodules of many plants. In 

the absence of oxygen, the PAS domain of FixL regulates its own histidine 

kinase domain through auto-phosphorylation. This leads to the phosphorylation 

of a transcription factor, FixJ, which initiate the expression of genes involved in 

nitrogen fixation (Gilles-Gonzalez et al., 1991; Lois et al., 1993). 

 Globin-coupled sensors, or GCS proteins, combine the globin fold found in 

myoglobins and hemoglobins with a signaling domain that was initially found in 
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the E. coli serine chemoreceptor Tsr called the methyl-accepting chemotaxis 

protein (MCP) domain (Gilles-Gonzalez and Gonzalez, 2005). GCSs were 

originally identified in both the archaeon Halobacterium salinarum (the HemAT-

Hs) and the bacterium Bacillus subtilis (the HemAT-Bs) as oxygen sensors that 

mediate aerotaxis (Hou et al., 2000). GCSs are now known to form a family of at 

least 30 sensors across Archaea and Prokaryota (Freitas et al., 2003). 

 Another group of hemoproteins, the heme-NO-binding (HNOB) family, 

have higher affinity for nitric oxide than for the other diatomic gases.  The 

mammalian soluble guanylate cyclase (sGC) is a well-characterized member of 

this family.  sGC is a cytosolic “receptor” that mediates several physiological 

responses including neurotransmission, smooth muscle relaxation, and 

photoreception depending on the tissue subtype in which it is expressed. The 

alpha and beta subunits of sGC heterodimerize and produces cGMP from GTP 

when activated by NO (Bredt and Snyder, 1992; Hobbs, 1997). Nitric oxide 

sensation is not specific to vertebrates, however, as homologues of sGC exist in 

other organisms like Drosophila, where they also seem to play a role in NO-

mediated neurophysiology (Liu et al., 1995; Shah and Hyde, 1995). Atypical 

members of the sGC family have been characterized in C. elegans and 

Drosophila that may be more specific to oxygen than nitric oxide (Gray et al., 

2004; Vermehren et al., 2006; Wingrove and O'Farrell, 1999).  In C. elegans, 

GCY-35, an atypical sGC, is expressed in chemosensory neurons and is 

responsible for mediating aerotaxis (Gray et al., 2004). 
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3.1.2 Mammalian oxygen sensing 

 Despite all that is known about heme-based gas sensors, the molecular 

mechanism underlying one of the most well-studied examples of physiologic 

oxygen sensation has yet to be identified. Mammals detect hypoxia nearly 

instantaneously with the carotid body (CB), a vascular bulb located at the 

bifurcation of the carotid arteries.  The CB feeds into the sympathetic nervous 

system, which affects the cardiovascular and respiratory systems with the net 

effect of increasing blood oxygenation (Lahiri et al., 2006). Several molecular 

mechanisms, including a hemoprotein (i.e. hemoxygenase-2), have been 

proposed as candidate CB oxygen sensors, but none of these candidates have 

been proven (Baysal, 2006; Wenger, 2000). 

 Although the short-term hypoxia sensor is unknown, the mechanism 

mammals use to respond to falling oxygen levels on a longer time scale, such as 

those encountered by moving to a higher altitude, is clearer. It is accomplished 

through indirect activation of a transcription factor, hypoxia inducible factor (HIF)-

1 (Ratcliffe et al., 1998). This transcription factor is activated by non-hemoprotein 

oxidases whose activities are modulated by oxygen.  HIF-1 initiates many 

downstream genetic adaptations to chronic hypoxia including erythropoietin 

production and the expression of angiogenic factors (Stockmann and Fandrey, 

2006). 

 

 

 



34 

3.1.3 Introduction to CO2 chemosensation 

 One interesting footnote to the investigation of the function of Or83b was 

the discovery of at least one group of cells in the antenna of Drosophila that is 

completely independent of Or83b. OSNs designated ab1C (see section 3.1.4) 

respond specifically to carbon dioxide (CO2) (de Bruyne et al., 2001) and remain 

fully functional in Or83b mutant flies (Larsson et al., 2004). In addition, there is a 

large behavioral and electrophysiological literature on CO2 as an important 

environmental stimulus for a wide variety of insects (Nicolas and Sillans, 1989; 

Stange, 1996; Stange and Stowe, 1999).  Thus, the Or83b-dependent olfactory 

pathway responsible for sensing host odorants and the Or83b-independent CO2 

chemosensory pathway may play synergistic roles in the host-seeking behaviors 

that allow some insects to act as disease vectors. 

 

3.1.3.1 Environmental CO2 gradients 

 Carbon dioxide is a pervasive chemical stimulus that is important in the 

ecology of many insect species (Nicolas and Sillans, 1989). Current, post-

industrial atmospheric CO2 levels hover around 0.035% or 350 ppm, but insects, 

depending on the species, detect behaviorally relevant CO2 concentrations from 

atmospheric levels up to around 10-15% in some microenvironments (Anderson 

and Ultsch, 1987; Ziesmann, 1996). Although meaningful to insects, these 

environmental gradients, often originating from multiple CO2 sources, are 

invisible to humans because we are only capable of sensing CO2 concentrations 

above 20% via trigeminal nerve nociception (Thurauf et al., 2002). An 
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environmental CO2 concentration gradient does not, however, have the same 

ethological meaning to every insect. The separation of insects into two major 

categories, blood-feeders and non-blood-feeders (i.e. hematophagic 

categorization), is very useful in understanding carbon dioxide’s role in insect 

behavior. 

 

3.1.3.2 CO2-evoked behavior 

3.1.3.2.1 Non-hematophagous insects 

 Plant and nectar feeders use environmental CO2 information in two main 

ways. By sensing CO2 gradients, insects can locate sources and sinks of CO2, 

which can help guide them to food sources or oviposition sites. In addition, by 

monitoring changing ambient CO2 concentrations, social insects can respond 

accurately to help control their living conditions. 

 Tephritid fruit flies like the medfly (see chapter 2) and the Queensland fruit 

fly (Bactrocera tryoni) are major agricultural pests. They use their piercing 

ovipositors to lay eggs in oranges and apples. As the fly larvae grow they eat the 

fruit from the inside, destroying it. Even though these flies are capable of 

penetrating the tough skins of their host fruits, they prefer to use an existing 

lesion, which leaks CO2, for oviposition. In fact, even small increases in CO2 

concentration, anywhere from 0.04% to 3%, are highly attractive and stimulate 

oviposition behavior in Bactrocera (Stange, 1999).  

 Most Lepidopteran larvae are phytophagous, and most plants generate 

CO2 gradients by alternately acting as sources or sinks for atmospheric CO2 
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depending on the time of day and season. Although the nature of CO2 sensation 

is unknown in the larval stage, these CO2 gradients should be useful cues 

containing specific information about food quality (i.e. those plant tissues 

undergoing active photosynthesis). Consistent with this idea, at least some moth 

larvae seem to orient toward their preferred food sources using CO2 gradients 

(Rasch and Rembold, 1994). Furthermore, adult hawkmoths (Manduca sexta) 

use the information contained in CO2 gradients while foraging for higher quality 

sources of their preferred food, Datura wrightii flowers; newly opened flowers 

emit more CO2 and contain more nectar (Thom et al., 2004). 

 Not all insects, however, use CO2 information to locate and judge the 

quality of food sources. Social insects, living in large groups, face different 

environmental challenges than solitary insects. With so many individuals living 

together, respiratory CO2 production often accumulates faster than it can diffuse 

away. Thus, many social insects have evolved sensitive CO2 detection systems 

that alert them to the danger overcrowding. These systems and their 

corresponding behavioral output allow the social insects to maintain strict climate 

control in their hives, nests or mounds. In both honeybees and bumblebees, 

workers respond to increases in hive CO2 by moving to the entrances and 

performing a wing fanning response that ventilates the hive, maintaining 

homeostatic CO2 levels (Seeley, 1974; Southwick and Moritz, 1987; 

Weidenmuller et al., 2002). 

 Another social Hymenopteran, leaf-cutter ants (Atta vollenweideri) also 

have specialized CO2 detection systems (Kleineidam et al., 2000). However, 
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instead of fanning like bees, ants maintain optimal climate conditions by 

manipulating a wind-driven nest ventilation system; using soil and plant matter to 

seal and unseal nest openings (Kleineidam et al., 2001; Kleineidam and Roces, 

2000). Similarly, when mound CO2 concentrations rise, some termites modify 

mound walls to be more porous and CO2-permeant (Ziesmann, 1996). Outside 

the nests, some subterranean termites also seem to use CO2 gradients to locate 

better food sources (Bernklau et al., 2005). 

 

3.1.3.2.2 Hematophagous insects  

 In contrast to a relatively flat landscape of atmospheric CO2 at 0.035%, a 

filamentous plume of 4-5% CO2 emitted periodically with each breath of a 

respiring host animal seems to be a ubiquitous activator of upwind search 

behavior in all hematophagous insects studied thus far (Stange, 1996). This 

discussion, however, is far from simple, especially in the most highly studied 

vector insect, the female mosquito. Therefore, I will focus mainly on the 

behavioral responses of mosquitoes toward CO2, followed by a brief outline of 

work in other hematophages. 

 Mosquito host-seeking in general is a complex multi-sensory behavior 

involving mainly olfaction at long to mid-range, olfactory and visual cues for the 

final approach, and mechanical, olfactory, and gustatory cues immediately prior 

to biting. Blood feeding behaviors by mosquitoes can be divided into several sub-

behaviors that are each differentially modulated by a variety of environmental 

stimuli. The stages include rest, flight and searching, settling on the host, probing 
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and biting, and finally leaving the host (Kalmus and Hocking, 1960). Host-seeking 

behavior is a subset of blood-feeding behavior that really only includes activation 

from rest and upwind guided flight toward the host. 

 Olfactory stimuli are the most important cues involved in host-seeking 

(Takken and Knols, 1999), but the precise ethological relevance of each of the 

various olfactory stimuli modulating the steps of host-seeking behavior is still not 

clear despite hundreds of papers being published on the subject.  In fact, one 

researcher working in the field said, “Rarely has so much work yielded so little 

consensus of opinion; results which are apparently contradictory abound, even in 

the same paper and more so among different workers,” (Hocking, 1971). Much of 

the inconsistency in the literature stems from non-uniform and/or poorly 

controlled experimental methods in both the laboratory and the field. In addition, 

if the entire sequence of host-seeking behavior is thought of as a complex chain 

of events, it is understandable that experiments designed to test single steps 

along the chain, to the neglect of the rest, may come to different conclusions than 

experiments beginning with the first step (Hocking, 1971). 

 CO2 is probably the most controversial of all olfactory stimuli that have 

been linked to mosquito host-seeking, in that numerous reports exist claiming 

CO2 as being alternatively attractive or repulsive (Reeves, 1990; Willis and Roth, 

1952). Both stimulus-specific and insect-specific factors are likely to blame for 

the controversy that exists in this field. First, CO2 stimuli used in different studies 

are never standardized; multiple sources and delivery methods have been used. 

CO2 from a block of dry ice, which produces pure CO2 along with a massive 
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temperature gradient, is not the same as purified CO2 diluted to 5% in a pre-

mixed compressed air tank at room temperature. CO2 delivered at a constant 

flow rate is less attractive than CO2 that is pulsed from a point source producing 

filamentous plumes (Geier et al., 1999). Very few studies in the laboratory, and 

no field studies control all of the variables necessary to mimic the CO2 output of a 

respiring human unless an actual human is used as bait.  

 In natural settings such as those using a human as bait, CO2 is not 

encountered alone, but always in combination with numerous other host 

odorants. Certain mosquitoes, especially the Anopheles gambiae species 

complex, are more anthropophilic than others, and this seems to have an 

olfactory basis (Dekker et al., 2001; Gibson, 1996). CO2, however, is a non-

specific signal that does not distinguish human from animal, much less account 

for the dramatic differences in attractiveness seen among individual humans 

(Kelly, 2001; Mukabana et al., 2002). Almost 350 different volatile chemicals are 

emitted from human skin, but aside from a few that have been confirmed in 

behavioral studies, the relevance of each compound to mosquito behavior is 

unknown (Bernier et al., 2000). Two specific volatiles, L-lactic acid and 1-octen-3-

ol, have been confirmed to act synergistically with CO2 to enhance attraction in 

several species (Bosch et al., 2000; Kemme et al., 1993; Steib et al., 2001; 

Takken and Kline, 1989; Van Essen et al., 1994). Artificial combinations of bait 

chemicals still fail, however, to even come close to the attractive power of real 

human baits or extracted human skin odors supplemented with CO2 (Costantini 

et al., 1996; Dekker et al., 2005).  
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 Apart from all of these stimulus-specific variables, the host-seeking 

behaviors of female mosquitoes also vary widely with respect to many other 

factors. Some of the most important variables include the particular mosquito 

species or sub-species the experimental location (atmospheric conditions and 

mosquito density), the time of year, the time of day, the age of the mosquitoes 

and their stage of maturity, their nutritional state and mating status, and the time 

since their last blood meal (Bowen, 1991; Bowen, 1996; Gibson, 1996; Klowden, 

1996). In summary, identical stimuli that elicit host seeking in one mosquito at 

one time, may not elicit the same behavior in the same mosquito a few hours 

later. 

 All this being said, and despite the controversy surrounding the various 

stimuli used by mosquitoes for human host-seeking, it is clear that CO2 is the 

most important single compound acting as an olfactory kairomone capable of 

both activating mosquitoes and drawing them upwind toward a human host 

(Gillies, 1980). This is best evidenced in the large number of studies published 

on mosquito trap designs, whose effectiveness is always dramatically enhanced 

by adding CO2 (Knols et al., 1994; Mboera et al., 2000; Njiru et al., 2006).  

 In addition, mosquitoes are not the only hematophagous insects that use 

CO2 as a cue for host seeking. Many hematophagic flies that act as disease 

vectors (e.g. sleeping sickness, filariasis, leishmaniasis etc.) are also known to 

be attracted to CO2 (Gibson and Torr, 1999). These include tsetse flies 

(Glossinidae) (Voskamp et al., 1999), horse flies (Tabanidae) (McElligott and 

McIver, 1987), black flies (Simulidae) (Fallis and Raybould, 1975), the stable fly 
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(Stomoxys calcitrans) (Alzogaray and Carlson, 2000), biting midges 

(Ceratopogonidae) (Ritchie et al., 1994), and sandflies (Phlebotominae) (Pinto et 

al., 2001). 

 Ticks and fleas, responsible for spreading Lyme disease and the bubonic 

plague respectively, are both attracted to host CO2 emissions (Benton and Lee, 

1965; Steullet and Guerin, 1992). Triatoma infestans, the reduviid bug, is the 

disease vector for the trypanosome T. cruzi, which causes Chagas’ disease. This 

insect, a member of the order Hemiptera, orients upwind in response to pulsatile 

release of CO2 (Barrozo and Lazzari, 2006). Similar to that found in mosquitoes 

and other hematophagous insects, Triatoma also use CO2 as a synergistic cue 

with other host volatiles to locate their next blood meal (Barrozo and Lazzari, 

2004a; Barrozo and Lazzari, 2004b). 

 

3.1.3.3 CO2 receptor neurons  

 Carbon dioxide is distinct among odorants because of its small size, 

relative inertness, extremely high volatility and diffusibility in air, and its solubility 

in both water and lipids. CO2 is also environmentally ubiquitous at a relatively 

high concentration (350 ppm) in comparison to more typical odorants. As such, 

behaviorally relevant information about environmental CO2 includes both its 

ambient concentration and any rapid changes in concentration encountered in 

CO2 gradients. 

 The electrophysiological profiles of all the insect CO2 receptors studied 

thus far support this idea, in that they all display a phasic-tonic response profile. 



42 

Basically, in response to a change in CO2 concentration, a phasic burst of action 

potentials responds quickly, clearly resolving the onset of the stimulus. Then, if 

the change in CO2 concentration is prolonged (>5 seconds), this phasic response 

plateaus into a sustained firing frequency that conveys information about the 

absolute concentration currently being detected. In most insects this tonic 

plateau is non-adapting in contrast with the responses to more typical odorants, 

which do adapt (Kaissling et al., 1987). One experiment in an ant species 

stimulated the CO2 receptor neurons for over an hour without any evidence of 

fatigue or adaptation (Kleineidam et al., 2000). The only known exception to this 

rule of non-adaptation is in the moth Cactoblastis cactorum (Stange et al., 1995). 

Discounting this exception, the non-adapting, phasic-tonic dual functionality of 

insect CO2 receptor neurons allows both the tracking of a filamentous plume of 

5% CO2 by mosquitoes and the precise following of ambient CO2 levels by 

honeybees that is necessary for climate control in the hive.  

 Despite these apparent functional similarities, however, CO2 receptor 

neurons display many distinct variations among and even within the major insect 

orders. These include species-specific response modalities (i.e. excitatory or 

inhibitory), adaptation properties, receptive ranges, sensitivities, and variations in 

anatomic location and morphology (Stange, 1996; Stange and Stowe, 1999) 

(summarized in Table 1). 
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Order – sensory organ 

Common name – Genus species 
Type of CO2 

response 
Response to 
other odors Adaptation Working 

range 

Isoptera – antenna 
Termite – S. lamanianus – + – 0-100% 

Chilopoda – temporal organ 
Centipede – T. hilgendorfi – – – 0.01-5% 

Acarina – Haller’s organ 
Tick – Amblyomma variegatum 

Cell type 1: – 
Cell type 2: + 

– 
– 

– 
– 

0.04-1% 
0.1-5% 

Hymenoptera – antenna 
Honeybee – Apis mellifera 

Ant – Atta sexdens 

 
+ 
+ 

 
– 
? 

 
– 
– 

 
0-100% 

? 
Lepidoptera – labial pit organ 

Moth – Rhodogastria spp. 
Moth – Cactoblastis cactorum 

 
+ 
+ 

 
+ 
? 

 
– 

+ at high [CO2] 

 
0-5% 
0-5% 

Diptera –maxillary palp/antenna 
Biting midge – Culicoides furens 

Mosquito – Aedes/Anopheles 
Fruit fly – D. melanogaster 
Tephritid fruit fly – B. tryoni 

Tsetse – Glossina morsitans 

 
+ 
+ 
+ 
+ 
+ 

 
– 
– 
– 
+ 
? 

 
– 
– 
– 
? 
? 

 
0-0.5% 
0-5% 

0-10% 
0-5% 
0-5% 

 
Table 1: Summary of CO2 response properties in several arthropods 
Type of response: “–“ indicates inhibitory; “+” indicates excitatory. “?” indicates 
conflicting or inadequate information. Adapted from (Ziesmann, 1996) with 
additional information from (Bogner et al., 1986; Grant and Kline, 2003; Grant et 
al., 1995; Hull and Cribb, 2001; Kellogg, 1970; Kleineidam et al., 2000; Lacher, 
1964; Stange et al., 1995; Steullet and Guerin, 1992; Suh et al., 2004; Yamana 
et al., 1986) 
 

 Most CO2 receptor neurons are excited by increases in CO2 concentration, 

but neurons that are inhibited by CO2 have been reported in one species of 

termite, the Japanese house centipede (an carnivorous arthropod, but not an 

insect), and in the tropical bont tick (also an arthropod, but not an insect) (Steullet 

and Guerin, 1992; Yamana et al., 1986; Ziesmann, 1996). These CO2 receptor 

neurons still respond in a non-adapting phasic tonic way, but in the opposite 

direction. The termite is particularly interesting, because, unlike in most insects, 

the CO2 receptor neurons of Schedorhinotermes are inhibited by CO2 and 
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excited by other odors. The responses do not saturate, even at 100% CO2, 

perhaps because the termite can be exposed to extremely high CO2 levels inside 

its enclosed mound. At the elevated background concentrations of CO2 inside a 

termite mound these neurons do not respond to odors, but outside the mound in 

atmospheric CO2 their full response profile becomes available (Ziesmann, 1996). 

Presumably, this resulting location-dependent modulation of olfactory perception 

results in odor-evoked behaviors that are matched to the environment in which 

the termite finds itself. 

 The tropical bont tick, Ambylomma variegatum, is not an insect and has 

no antennae. It does, however, have two different types of CO2 receptor neurons 

located within a specialized encapsulated sensory structure on the dorsal side of 

the first leg (tarsus) called Haller’s organ. One is inhibited by CO2 and very 

sensitive to small changes in concentration around ambient levels. The other 

type is excited by CO2 and tuned to concentrations from 0.1% to 5% (Steullet 

and Guerin, 1992). This arrangement, using two receptors with complementary 

receptive ranges, seems odd considering the ability of other insect CO2 receptor 

neurons to cover ranges from 0-100%. 

 Moths may have nature’s most sensitive CO2 receptor neurons located in 

a specialized organ at the tip of their labial palp appendages called the labial palp 

pit organ (LPO). The LPO can contain anywhere from one to almost 2,000 CO2 

receptor neurons depending on the species (Stange et al., 1995). By recording 

from LPO neurons, individual species from many Lepidopteran groups including 

Arctidii, Noctuidae, Pieridae, Nymphalidae, Pyralidae, Danainae, Sphingidae, 
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and Saturniidae have all been shown to respond specifically and sensitively to 

minute changes in CO2 concentration (Bogner, 1990). A set of experiments on 

the sensitivity of the CO2 neurons in one particular moth, Heliothis armigera, 

found significant resolution of changes in CO2 concentration as small as 9 ppm 

around background (350 ppm), but by using sinusoidal pressure modulation to 

quickly and reliably simulate CO2 concentration changes, these neurons were 

found to be sensitive enough to detect changes as small as 0.5 ppm (Stange, 

1992). 

 Poorly controlled amputation experiments initially placed the mosquito 

CO2 receptor neurons in the antenna (Willis and Roth, 1952), but later 

palpectomy experiments corrected the mistake (Omer and Gillies, 1971). 

Mosquito CO2 receptor neurons are located on the maxillary palps and innervate 

thin-walled capitate peg sensilla (Sutcliffe, 1994). These neurons have been best 

characterized electrophysiologically in Aedes aegypti, and display specific non-

adapting phasic-tonic excitation to changes in CO2 concentration (Grant et al., 

1995; Kellogg, 1970). In Anopheles gambiae there is a significant sexual 

dimorphism in the number of capitate peg sensilla, and therefore CO2 neurons; 

females have almost 70 on palp segments 2-4, and males have less than 20 only 

on segment 4. At first this seems consistent with the fact that only females 

display human host-seeking behaviors, but because other mosquitoes, such as 

Aedes aegypti, that also feed on blood do not have this sexual dimorphism, its 

role in behavior is unclear (McIver, 1982; McIver and Siemicki, 1975). 
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 Despite the vast amount of work that has gone into describing the diversity 

of form and function among insect CO2-evoked behaviors and CO2 receptor 

neurons, the molecular mechanism of CO2 chemosensation is still unclear. 

Insight into this mechanism has been difficult to obtain because of a lack of 

genetic resources in all of these insects. One particular Dipteran, however, the 

model organism Drosophila, has a wealth of molecular genetic tools with which to 

study CO2 chemosensation. 

 

3.1.3.4 CO2 chemosensation in Drosophila 

 Adult Drosophila antennae have a small population of about 25 CO2-

responsive OSNs that are designated ab1C (de Bruyne et al., 2001). This 

designation indicates that they innervate the first class of antennal basiconic 

sensilla, which houses four OSNs. The CO2 neuron gives the third largest spike 

amplitude out of these four neurons, hence its designation as the “C” neuron. 

These neurons respond in much the same way the mosquito CO2 neurons do, 

they are excited in a non-adapting phasic-tonic way to changes in CO2 

concentration. The ab1C neurons seem to be very specific to CO2, in that they do 

not respond to any of the odorants with which they have been tested (de Bruyne 

et al., 2001; Stensmyr et al., 2003a; Stensmyr et al., 2003b). 

 In the Drosophila antennal lobe, a single bilateral ventrally-situated 

glomerulus (V) responds selectively in a dose-dependent manner to changes in 

CO2 concentration from 0%-10% (Suh et al., 2004). The V glomerulus is located 

in between the AL and the SOG. This is reminiscent of the central projection 
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pattern of CO2 receptor neurons in the only other insects in which it has been 

studied, moths and mosquitoes. In moths, information about changing CO2 

concentrations is relayed to the central brain via the labial palp nerve to the LPO 

glomerulus (LPOG), which lies ventrally between the AL and the SOG (Bogner et 

al., 1986; Guerenstein et al., 2004; Kent et al., 1986). The CO2 neurons in 

mosquitoes project via the maxillary nerve to a single, bilateral, but slightly more 

dorso-medial glomerulus in the AL, which is much larger than neighboring 

glomeruli (Anton et al., 2003; Distler and Boeckh, 1997). The Drosophila V 

glomerulus is innervated by a population of neurons expressing the gustatory 

receptor Gr21a (Scott et al., 2001). 

 The behavioral relevance of CO2 in Drosophila is unclear, but unlike the 

attraction seen in mosquitoes, increasing concentrations of CO2 repel both larvae 

and adults. In larvae, which have a single bilateral Gr21a-expressing neuron 

innervating a gustatory structure called the terminal organ, CO2 concentration 

could indicate the age and suitability of rotting fruit, the fly’s preferred food source 

(Faucher et al., 2006). In adults, however, it seems to be a component of a stress 

odorant released by flies when physically stressed (i.e. by shaking or electrical 

shock) (Suh et al., 2004). Regardless, both of these CO2-avoidance behaviors 

are eliminated upon genetic silencing of Gr21a-expressing neurons, confirming 

that these neurons are the only CO2-sensitive neurons in Drosophila (Faucher et 

al., 2006; Suh et al., 2004). Using a combination of electrophysiological, 

behavioral, and molecular genetic techniques, we asked whether Gr21a is 
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directly involved in CO2 chemosensation or whether it is merely a marker for 

these neurons. 

 

3.2 Materials and methods 

3.2.1 Drosophila stocks 

  Transgenic fly stocks were produced and maintained as described in 

section 2.2.1. The following flies were used in this study: wild type-Berlin (M.  

Heisenberg); w1118; 70FLP,70I-SceI/Cyo and w1118; 70FLP (K. Golic); UAS-

CD8-GFP (L. Luo); Gr21a-GAL4 (K. Scott); Or22a-GAL4; UAS-GFP-Gr21a (R. 

Benton). Gr63a-sytRFP flies were constructed by fusing the coding region of n-

synaptotagmin to RFP and placing this under the control of the Gr63a promoter 

(P. Cayirlioglu, I. Grunwald Kadow, and S.L. Zipursky). 

 

3.2.2 RNA in situ hybridization 

 Adult flies (specific genotypes listed with the description of each 

experiment) or adult mosquitoes (Anopheles gambiae G3; MRA-112) were 

placed in custom-machined stainless steel fly collars and covered in O.C.T. prior 

to freezing. After cutting 14 µm antennal sections with a cryostat, the slides 

processed using Cy5- and FITC-TSA kits (Perkin Elmer) to amplify RNA signals 

as described without protocol modifications (Fishilevich and Vosshall, 2005). 

Mosquitoes were provided by P. Howell and M.Q. Benedict of MR4 at the CDC, 

Atlanta, GA. 

 



49 

3.2.3 Whole-mount brain and antennal section immunostaining 

 Whole mount brain immunostaining of Gr63a-syt-RFP; Gr21a-GAL4, UAS-

CD8-GFP flies was performed as previously described (Laissue et al., 1999) 

using 1:1000 anti-GFP (Molecular Probes) and 1:10 nc82 (a gift of Reinhard 

Stocker) with 1:100 anti-rabbit-Alexa488 (Molecular Probes) and 1:100 anti-

mouse-Cy3 (Jackson ImmunoResearch) secondary antibodies. Ten micron 

antennal sections were fixed and stained as previously described using mouse 

anti-GFP 1:1000 (Molecular Probes) and rabbit anti-OR83b (EC2) 1:5000 

(Larsson et al., 2004). 

 

3.2.4 GR transgene generation 

 Gr10a was amplified from Oregon-R antennal cDNA using  

primers 5’- ATGACATCGCCGGATGAGCGT-3’ and 5’-

CTAGGACTTCTTGCGCAAATA-3’. Gr63a was amplified from yw genomic DNA  

using primers 5’- ATGCGTCCGTCTGGCGAAAAA -3’ and 5’-  

CTAGCCTTTCCGGCCCTTTAG -3’. PCR products produced using the Expand 

High Fidelity PCR kit (Roche) were subcloned into pGEM-T Easy (Promega). Fly 

GRs were subcloned into pUAST (Brand and Perrimon, 1993) or a modified 

pUAST containing GFP (Benton et al., 2006) and transgenic animals were 

produced (Genetic Services Inc., Cambridge, MA, USA) and balanced using 

standard methods. GPRgr22 was amplified from Anopheles gambiae G3 

antennal cDNA using primers 5’-ATGATTCACACACAGATGGAA-3’ and 5’-

TTAGGTGTTCACTTTGTCTGC-3’. The first exon of GPRgr23 was amplified 
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from Anopheles gambiae G3 antennal genomic DNA using primers 5’- 

ATGCGCTGGAACGGTTGT-3’ and 5’- CGATGTGAGCAGTTCCCG-3’. GPRgr24 

was amplified from Anopheles gambiae G3 antennal cDNAs using primers 5’- 

ATGGTGTTTGAAAGCTCCAAA-3’ and 5’-CTAAGAATGAGACGAATTACT-3’. 

These PCR products were cloned into pGEMT-Easy and used to generate DIG 

or FITC labeled riboprobes for RNA in situ hybridization. 

 

3.2.5 Single sensillum electrophysiology 

Extracellular recordings of ab1 and ab3 sensilla from individual flies (2-10 days 

old) were made as described (de Bruyne et al., 2001; Larsson et al., 2004) using 

a 10X AC probe connected to the Syntech IDAC-4 acquisition controller and 

analyzed offline using the software Autospike (Syntech, Hilversum, The 

Netherlands). Thirty µl of odorant, diluted 10-4 in paraffin oil, were added to filter 

paper strips and placed inside 1ml plastic tuberculin syringes. One-second odor 

stimuli were added to a constant air stream under the control of the Syntech CS-

55 Stimulus controller. Prior to CO2 recordings each sensillum was identified by 

its published characteristic odorant response profile: ab3A, ethyl hexanoate; 

ab3B, 2-heptanone; ab1A, ethyl acetate; ab1B, acetoin; ab1D, methyl salicylate 

(de Bruyne et al., 2001; Stensmyr et al., 2003b). All odorants were obtained from 

Sigma-Aldrich and were of the highest purity available. CO2 stimuli were applied 

by filling 20 ml syringes from pre-mixed CO2 in air tanks from Matheson Tri-Gas 

(Parsippany, NJ). Maximum stimulus concentrations (odors ~3x10-5; CO2 ~2-3%) 

at the exit point of the stimulus device were calculated by measuring system 
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airflows. Responses were quantified by counting all spikes within a 500 ms 

window from the onset of the response. Air responses were then subtracted from 

CO2 responses from the same sensillum and the resulting number of spikes was 

doubled to obtain a corrected CO2 response in spikes/second. After checking the 

response distributions for normality, we proceeded with parametric means 

comparisons using the Tukey HSD test. 

 

3.2.6 Gr63a targeting construct and mutant screen 

 Genomic DNA both 5’ and 3’ of the Gr63a coding sequence was amplified 

from yw flies using Expand High Fidelity PCR kit (Roche) and TA cloned into 

pGEM-T Easy (Promega, Madison, WI, USA). Inserts were end-sequenced and 

internally sequenced to verify coding regions embedded in the arms and 

subcloned into CMC105 (Larsson et al., 2004). 5’ homologous arm: primers 

corresponding to nucleotides 3880204-3880228 and 3883041-3883062 of 

Drosophila melanogaster chromosome 3L (Genbank entry NT_037436) amplified 

a 2.859 kb fragment. 

 Four independent insertions of the targeting construct were screened as 

described (Larsson et al., 2004). The progeny of approximately 16,500 virgin 

mosaic or white-eyed females (~330,000 flies) were screened for re-insertion on 

the 3rd chromosome, and we recovered a single mutant line, Gr63a1. PCR 

confirmation of Gr63a1 was performed on genomic DNA preparations of the 

mutant line and its corresponding wild type parental targeting construct insertion 

with primers within Gr63a itself (nucleotides 3879912-3879930 and 3880180-
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3880204 of Genbank entry NT_037436) and within the neighboring gene 

CG1079 (nucleotides 3877256-3877274 and 3877702-3877720 of Genbank 

entry NT_037436). A similar screen for a Gr21a mutant produced no mutants 

among ~350,000 progeny derived from five independent targeting construct 

insertions. 

 

3.2.7 CO2 avoidance behavior 

 CO2 T-maze avoidance experiments were performed essentially as 

described (Suh et al., 2004). Avoidance Index is calculated as # flies on CO2 side 

- # flies on air side/ total # flies. Flies that failed to choose one of the two stimulus 

tubes were excluded from the Index. Experiments were carried out in the dark at 

25ºC and 70% relative humidity with a 15W red-light positioned behind and 

perpendicular to the T-maze. Pure CO2 (0.28 ml) was added to 14 ml tubes for a 

final concentration of ~2%. The stimulus was added to alternating sides to 

preclude any side bias. Each individual experiment included between 15 and 50 

flies (mean=30). 

 

3.2.8 Phylogenetic tree 

 Multiple protein alignments were made using ClustalX version 1.83  

with default parameters (Chenna et al., 2003). A neighbour-joining tree was 

generated with PHYLIP v. 3.6 using default settings [Felsenstein, J. 2005. 

PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. 

Department of Genome Sciences, University of Washington, Seattle] and viewed 
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using the web-based Phylodendron tree viewer 

(http://iubio.bio.indiana.edu/treeapp/treeprint-form.html). 

 

3.3 Results 

3.3.1 CO2-responsive OSNs co-express two GR family members 

 Knowing that the CO2-responsive neurons express Gr21a, and guided by 

previous reports of co-expression of multiple GRs in GSNs of the fly proboscis, 

we began by looking for the expression of other GRs in ab1C neurons. Two other 

GRs are known to be expressed in the Drosophila antenna, Gr63a and Gr10a 

(Scott et al., 2001). Fluorescent double in situ hybridization reveals that Gr63a is 

co-expressed with Gr21a (Fig. 3.1A), but that Gr10a is expressed in the adjacent 

ab1D neuron (Fig. 3.1B) (Fishilevich and Vosshall, 2005). Thus, the full 

complement of receptors expressed in the ab1 sensillum has been discovered 

(Fig. 3.1C) (Couto et al., 2005). 

 

Figure 3.1: OSNs expressing Gr21a also express Gr63a, but not Gr10a. 
A) Fluorescent double in situ hybridization on the third antennal segment of 
Drosophila (wild type Berlin) reveals co-expression of Gr21a (green) and Gr63a 
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(magenta). B) Gr21a (green) is not co-expressed with the only other GR 
expressed in the antenna, Gr10a (magenta). C) Schematic receptor expression 
profile for ab1 sensilla. ab1C (red) expresses both Gr21a and Gr63a. ab1D 
expresses one GR and two ORs. The receptor pairs expressed in the remaining 
OSNs are known, but have not been definitively assigned to either ab1A or ab1B. 
 

 In confirmation of the co-expression of Gr21a and Gr63a in the OSNs 

responsible for sensing CO2, genetic markers constructed with the promoters of 

either gene label the neurons that project to the CO2-responsive V glomerulus 

(Fig. 3.2). 

 

Figure 3.2: Both Gr21a and Gr63a promoter regions drive expression in 
OSNs that project to the V glomerulus. 
Gr21a-GAL4 drives expression of UAS-CD8-GFP (green) in the same OSNs that 
express a marker constructed by fusing the Gr63a promoter with synaptotagmin-
RFP (magenta). These neurons project to the bilateral ventral-most antennal lobe 
glomerulus, the V. This whole mount brain immunofluorescence preparation is 
counter-stained with the neuropil marker nc82 (Laissue et al., 1999) (blue) to 
reveal AL glomerular structure. 
 

3.3.2 Receptor misexpression confers CO2-sensitivity 

 To investigate the role of these GRs as putative CO2 receptors, we 

ectopically expressed the antennal GRs both alone or in pairs in neurons 

normally unresponsive to CO2 using the Gal4/UAS system (Fig. 3.3). 



55 

 

 
Figure 3.3: Schematic outlining the receptor mis-expression experiments 
The Or22a-GAL4 line is used to drive the expression of candidate CO2 receptors 
normally expressed in ab1C neuron (red) in the ab3A neuron (blue). Single 
sensillum recordings can then reveal the conferred CO2-sensitivity of a neuron 
that is normally unresponsive to CO2 (see figure 3.4). 
 

 Or22a-GAL4 drives expression in ~75% of the electrophysiologically 

accessible ab3A neurons that express Or22a/b (Dobritsa et al., 2003). No single 

antennal GR was capable of conferring CO2 responsiveness on the ab3A 

neurons (Fig. 3.4). Since, however, it has been previously demonstrated that 

Drosophila ORs are obligate OR/OR83b heterodimers (Benton et al., 2006), we 

asked whether a combination of two GRs could function as a CO2 receptor. 

Neither Gr21a nor Gr63a confer responses to CO2 when combined with Gr10a, 

but the combination of Gr21a and Gr63a produces a significant response to a 

stimulus of ~3% CO2 (Fig. 3.4). It is therefore the specific combination of these 

two GRs that is sufficient to induce CO2 sensitivity rather than a generic 

requirement for the co-expression of any two antennal GRs. 
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Figure 3.4: CO2 responses of ectopically expressed GR combinations 
The combinations of antennal GRs indicated on the left were ectopically 
expressed in ab3A (large spikes) neurons using the Or22a-GAL4 driver. Single 
sensillum electrophysiological recordings on ab3 sensilla, recognized by their 
characteristic response to ethyl hexanoate (ab3A) and 2-heptanone (ab3B) 
(Dobritsa et al., 2003), were made for both room air (~0.035% CO2) and ~3% 
CO2. The number of spikes in a 500 ms window following air stimulation were 
tallied and subtracted from a similar window following CO2 stimulation. The 
resulting number was multiplied by two to get a corrected response in spikes per 
second. Representative traces (stimulus bar = 1 second) and mean responses (± 
SEM; n = 15-18 sensilla per genotype with roughly equal numbers of males and 
females) are shown. Significant responses to CO2 are only found with the 
combination of Gr21a and Gr63a (Tukey HSD test; p<10-6). In all other cases, 
ab3A seems to be slightly inhibited by CO2. The slight activation of ab3B during 
the stimulus is due to either mechanical stimulation or slight odor contamination. 
 

 Gr21a and Gr63a together also increase the level of spontaneous activity 

in the ab3A neuron. We considered the possibility that this reflects activity in 

response to ambient CO2 levels, but found that the activity of these neurons is 
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not reduced in response to a CO2-free airstream (data not shown). Prior results 

indicate that ORs have some substantial odor-independent activity (Hallem and 

Carlson, 2006), and this suggests that GRs share this property. 

 Further analysis of ectopically expressed Gr21a/Gr63a reveals a dose-

dependent increase in response to stimuli of increasing CO2 concentration, but 

this response is less sensitive than that of the native ab1C neuron (Fig. 3.5). 

 

 

Figure 3.5: CO2 dose response curves in native and non-native sensilla 

Misexpression of Gr21a and Gr63a confers dose-dependent CO2 sensitivity on 
the ab3A OSN (blue), but expression of Gr21a alone does not (green). The 
sensitivity of the reconstituted CO2 receptor is lower than that of the native ab1C 
neuron (red). N = 10 antennae per genotype per CO2 stimulus concentration. 
 

 This decreased sensitivity of the ab3A CO2 receptor reconstruction when 

compared to the receptor in its native ab1C OSN is concerning, but there are 

several reasonable explanations. Since the Or22a-GAL4 line is only expressed in 
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75% of ab3A neurons and we have no way of distinguishing an ab3 sensillum 

that expresses the GRs from one that does not, non-transgenic ab3 sensilla are 

likely dampening the size of the response when they are averaged into the total.  

In addition, the slight inherent inhibition of ab3A by CO2 (seen in the green line of 

figure 3.5) probably also dampens the response. The other ORs that are 

expressed in the ab3A neuron (Or22a/b and Or83b) likely interfere with proper 

function of the CO2 receptors. One group found that when a particular OR, Or47a, 

was expressed in these same ab3A neurons it retained the proper ligand 

specificity, but gave lower responses to its signature odors. If Or47a was 

expressed in a mutant ab3A neuron lacking its native ORs, Or22a and Or22b, 

both the response profile and response amplitudes matched those of the Or47a 

neuron itself (Dobritsa et al., 2003). In addition to these straightforward 

explanations, the existence of sensillum-specific co-factors could also play a role. 

Insect CO2 receptor neurons typically have highly branched dendrites when 

compared to other olfactory neuron dendrites, and Drosophila is no exception 

(Shanbhag et al., 1999; Stange and Stowe, 1999). These specialized dendrites in 

the native neuron, coupled to higher receptor gene expression levels, may allow 

more receptor proteins to contact environmental CO2 stimuli than when the 

receptors are expressed in the dendrites of a non-CO2 neuron that are better 

suited to typical odorant detection. Regardless of the reason for the reduced 

sensitivity, it is clear that Gr21a and Gr63a together are sufficient to confer dose-

dependent CO2-responsivity on OSNs that are normally unresponsive to CO2. 
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3.3.3 Generating a CO2 receptor mutant 

 To investigate the role of these GRs in the CO2 responses of the native 

ab1C neuron, we screened for Gr21a and Gr63a null mutants by homologous 

recombination (Gong and Golic, 2003; Larsson et al., 2004) (Fig. 3.6). 

 

 

Figure 3.6: Gr63a homologous recombination strategy 
Schematic of the Gr63a homologous recombination gene targeting construct and 
the Gr63a genomic locus. Upstream and downstream arms were cloned into the 
CMC105 vector (Larsson et al., 2004) surrounding the mini-white eye marker 
gene. A precise homologous recombination event would thus replace the coding 
region of Gr63a with mini-white. The location of PCR primers for the experiment 
in figure 3.7A are indicated with small arrows above CG1079 and Gr63a.  
 

 Gr21a proved to be resistant to mutagenesis, but we obtained a single null 

mutant allele of Gr63a. PCR analysis of Gr63a1 indicates the selective loss of 

Gr63a coding sequence without affecting a neighboring gene, CG1079 (Fig. 

3.7A). Gr63a1 flies lack the Gr63a transcript when compared with parental 

controls, but have normal levels of Gr21a (Fig. 3.7B). 
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Figure 3.7: Gr63a1 flies lack Gr63a coding sequence and mRNA transcript 

A) PCR primers corresponding to the locations denoted in figure 3.6 amplify 
fragments of Gr63a and a neighboring gene in wild type flies, but reveal the 
selective loss of the Gr63a coding sequence in Gr63a1 flies. B) Fluorescent 
double in situ hybridization of Drosophila antennae reveals a selective loss of 
Gr63a mRNA transcript (magenta) in Gr63a1 flies when compared to the wild 
type parental control strain. Gr21a mRNA (green) levels remain unchanged. 
 

 Electrophysiological recordings of ab1 sensilla in Gr63a1 flies reveal a 

complete indifference to stimuli of ~2.25% CO2, in stark contrast to wild type 

parental control flies, whose ab1C neurons strongly respond. The Gr63a1 allele is 

genetically recessive, because sensilla of heterozygous individuals have an 

essentially wild type CO2 response. CO2 responses in Gr63a1 flies are restored 

by rescuing Gr63a expression in the ab1C neurons using the Gal4/UAS system, 

while control Gr63a1 flies bearing either the Gr21a-GAL4 transgene or the UAS-

Gr63a transgene alone fail to respond (Fig. 3.8). 
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Figure 3.8: Gr63a1 flies are electrophysiologically insensitive to CO2 
Gr63a1 mutant ab1 sensilla (-/-) do not respond to ~2.25% CO2 when compared 
to parental wild type (+/+) or heterozygous (+/-) flies. Responses are rescued by 
the combination of Gr21a-GAL4 and UAS-Gr63a in the mutant Gr63a1 
background, but not by either transgene alone. Representative traces of sensillar 
recordings whose response was closest to the mean response are on the left 
(stimulus bar = 1 sec). Mean corrected CO2 responses (± SEM; n = 12 antennae 
for all genotypes with equal numbers of males and females) quantified as in Fig. 
3.4 are on the right. After checking the data distributions for normality, statistical 
significance was calculated using a Tukey HSD test comparing all pairs of means 
(p<0.001). Bars labeled with different letters are significantly different. 
 

 Since genetic silencing of the ab1C neurons expressing Gr21a eliminates 

olfactory CO2 avoidance behavior in a T-maze (Suh et al., 2004), we asked 

whether Gr63a1 flies also have CO2 avoidance defects. Whereas the wild type 

parental control flies robustly avoid CO2 in a T-maze, Gr63a1 flies fail to 
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distinguish room air from a ~2% CO2 stimulus. Consistent with their 

electrophysiological responses, Gr63a1 heterozygotes show a wild type 

avoidance response, while Gr63a1 flies bearing either the Gr21a-GAL4 or UAS-

Gr63a transgenes fail to differentiate room air from 2% CO2. When combined, 

however, these two transgenes rescue olfactory CO2 avoidance in the mutant 

(Fig. 3.9). 

 

 

Figure 3.9: Gr63a1 flies are behaviorally insensitive to CO2 
Gr63a1 flies and the GAL4 and UAS controls are all indifferent to CO2 in a T-
maze, while wild type and heterozygous Gr63a1 flies show robust avoidance. 
This deficit is rescued in Gr21a-GAL4/UAS-Gr63a; Gr63a1 flies. Mean avoidance 
± SEM is indicated (n = 15 for each genotype). Statistical significance was 
calculated using a Tukey HSD test comparing all pairs of means (p<0.01) after 
checking the distributions for normality. Bars labeled with different letters are 
significantly different. 
 

 The failure of the rescue to reach wild type levels in either the 

electrophysiological recordings or the behavior is likely a consequence of the 

lower levels of Gr63a expression in rescued ab1C neurons when compared to 

wild type ab1C neurons (data not shown). These results prove that Gr63a is 
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necessary for CO2 chemosensation in Drosophila and support our hypothesis 

that the Drosophila CO2 receptor comprises a heterodimer of both GR21a and 

GR63a. 

 

3.3.4 Dendritic trafficking of GFP tagged GRs 

 The requirement of the co-expression of two members of the gustatory 

receptor family for proper function of the CO2 receptor is reminiscent of the 

requirement for heterodimerization of typical ORs with OR83b. We therefore 

wondered if one of the two CO2 receptors acts as a chaperoning co-factor 

delivering its partner to the sensory dendrite in the same way that OR83b 

functions with the ORs. A version of GR21a with an N-terminal GFP tag traffics to 

the sensory dendrites in its own ab1C neurons, which lack OR83b. In OR83b-

expressing neurons GFP-GR21a cannot reach the dendrites, and instead 

accumulates in the cell bodies (Benton et al., 2006). This indicates that some 

unknown factor, present in ab1C neurons, but absent in others, permits the 

dendritic localization of GFP-GR21a. The most obvious hypothesis is that GR63a 

provides the missing functionality to traffic GFP-GR21a in non-GR21a neurons. 

The best way to test this hypothesis would be with custom antibodies against one 

or the other GR, but we were unable to create a working antibody despite 

multiple attempts. GFP-tagged GRs were, therefore, the only option to test this 

hypothesis. 

 GFP-GR21a never traffics properly in Or22a/b neurons even when it is 

expressed with a functional, untagged version of GR63a. A small amount of 
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GFP-GR63a traffics to the dendrites alone, but this is dramatically enhanced in 

the presence of a functional, untagged version of GR21a (Fig. 3.10). Thus, it 

seems that these two GRs are co-dependent in a similar way to that seen in 

OR/OR83b heterodimers. 

 

 

Figure 3.10: Dendritic localization of GFP-GRs in Or22a/b neurons 

GFP-GR21a (green) expressed either alone or with an untagged GR63a using 
the Or22a/b-GAL4 reagent fails to traffic to the sensory dendrites (top). Dendritic 
localization of GFP-GR63a (green) is enhanced (white arrow) when it is 
expressed with an untagged GR21a (bottom). OR83b is counterstained in 
magenta. 
  

 Since ORs generally tolerate amino-terminal tags but not carboxy-terminal 

tags (Benton et al., 2006), these GR constructs were tagged on the N-terminus in 

hopes of retaining function. Unfortunately, however, single sensillum recordings 
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from ab3 sensilla expressing these GFP-tagged combinations fail to respond to 

CO2 like the untagged versions do (see Fig. 3.4). Since the GFP tags disrupt the 

function of these receptors it is impossible to know whether or not the enhanced 

dendritic trafficking seen in the combination of GFP-GR63a and GR21a is 

meaningful. 

 

3.3.5 Phylogenetic analysis of the Drosophila CO2 receptors 

 In order to generalize our results to other insects, we searched the 

sequenced insect genomes for Gr21a and Gr63a homologues using the BLAST. 

Gr21a and Gr63a are closer in sequence to each other than to other GR genes 

implying a close evolutionary relationship, but clear homologues of each are 

easily recognizable in other species. Very similar genes exist in several sister 

Drosophila species, the malaria mosquito Anopheles gambiae, the yellow fever 

mosquito Aedes aegypti, and the red flour beetle Tribolium castaneum. The other 

Drosophilids have both Gr21a and Gr63a homologues, but mosquitoes have 

Gr21a and Gr63a homologues (GPRgr22 and GPRgr24 respectively in 

Anopheles gambiae (Hill et al., 2002)) and an additional related gene. This gene, 

GPRgr23 is slightly closer in sequence to GPRgr22 than GPRgr24. Interestingly, 

the red flour beetle has a Gr21a homologue and a GPRgr23 homologue, but no 

recognizable Gr63a homologue (Fig. 3.11).  
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Figure 3.11: CO2 receptor homologues 
This neighbor-joining tree based on an alignment of predicted amino acid 
sequences reveals the phylogenetic relationships of the CO2 receptor 
homologues from several species. Drosophila genes are preceded by Dm, 
Anopheles by An, Aedes by Aa, and Tribolium by Tc. Drosophila GR5a and 
GR10a were added as outgroups.  
 

 GPRgr22, GPRgr23, and GPRgr24 are all co-expressed in a population of 

Anopheles maxillary palp neurons, the sensory organ that detects CO2 in 

mosquitoes. This expression pattern is consistent with the hypothesis that these 

receptor homologues, as in Drosophila, detect CO2 in malaria mosquitoes. Also, 

as in Drosophila, these receptors seem to be independent of the Anopheles 

Or83b orthologue, GPRor7 (Fig. 3.12). It is unclear, however, if the two 
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homologues closest to Gr21a and Gr63a are the only genes required for CO2 

chemosensation or if the mosquito genes have evolved to function as 

heterotrimers instead of heterodimers. 

 

 

Figure 3.12: Co-expression of mosquito CO2 receptor homologues. 
A) Fluorescent RNA in situ hybridization of Anopheles gambiae maxillary palps 
reveals co-expression of GPRGr22 (green) and GPRGr23 (magenta). B) 
GPRGr22 (green) and GPRGr24 (magenta) are also co-expressed. C) GPRGr22 
(green) and the Or83b orthologue GPROr7 (magenta) are not co-expressed. 
 

 In honeybees the situation seems to be quite different. Although bees 

clearly sense elevated CO2 levels in their hives and respond with stereotyped 

climate control behaviors, there are no recognizable homologues of Gr21a or 

Gr63a in the newly annotated honeybee (Apis mellifera) genome (Robertson and 

Wanner, 2006). Without homologues of the fly CO2 receptors, honeybees must 

use another mechanism. Consistent with this idea, the honeybee CO2 receptors, 

which are tuned to CO2 concentrations ranging from 0-100%, are 

electrophysiologically distinct from the Dipteran CO2 receptors, which saturate 

between 5-10% CO2 (see Table 3.1). This is also consistent with recent 

advances in understanding of the evolutionary relationships between the four 
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major orders of holometabolous insects (i.e. insects with complete 

metamorphosis); Diptera (flies), Lepidoptera (butterflies and moths), Coleoptera 

(beetles), and Hymenoptera (bees, wasps, ants). Instead of two sister groups 

pairing Diptera with Lepidoptera and Coleoptera with Hymenoptera as was 

previously thought, extensive nuclear gene sequence analysis suggests that 

Hymenoptera may have branched off first from the base of the holometabolous 

radiation (Savard et al., 2006). Thus, the absence of Gr21a and Gr63a 

homologues in bees could mean that a CO2 receptor precursor gene arose in a 

gustatory receptor subfamily expansion over 275 million years ago and then 

diversified such that its derivatives exist in all other extant holometabolous 

insects. With the sequencing of more insect genomes, especially those of 

Lepidopterans, the phylogeny of the CO2 receptors may become more clear. 

 

3.4 Conclusion 

 Taken together, these data reveal the role of a pair of chemosensory 

receptors as the proteins responsible for CO2 detection in Drosophila 

melanogaster. Gr21a and Gr63a are co-expressed in Drosophila CO2 neurons. 

Transgenic misexpression confers dose-dependent CO2 sensitivity on neurons 

that do not normally respond to CO2. Selective deletion of Gr63a disrupts CO2 

detection and CO2-evoked behaviors. Homologues of these receptors exist in 

mosquitoes, which along with GPRgr23 are likely responsible for the CO2-evoked 

host seeking behaviors that allow mosquitoes to act as human disease vectors. 
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4 Implications of the current study and prospects 

for future research 

 This dissertation describes the results of two separate investigations, both 

using the model organism, Drosophila melanogaster, into distinct chemosensory 

pathways that insects use in host-seeking behaviors. The first pathway involves 

the atypical OR Or83b, which heterodimerizes with other ORs to form a 

functional chemosensory complex in OSN dendrites. Or83b has been conserved 

over millions of years of evolution as a generic partner that is broadly co-

expressed with more typical ORs. This pathway is responsible for sensing most 

of the host volatiles that direct insects to their preferred food sources; fruit flies to 

rotting fruit and female mosquitoes to humans. 

 The second pathway is independent of Or83b and is responsible for 

detection of another chemical cue that is of general interest to most insects, 

carbon dioxide. In Drosophila, CO2 is detected by a pair of chemosensory 

receptors belonging to the gustatory receptor family of proteins. These receptors, 

unlike Or83b seemed to have co-evolved and are specifically paired with each 

other in both mosquitoes and flies (although Anopheles CO2 neurons also 

express another related receptor). Although its significance is unclear, it is 

interesting to note that both the Or83b-dependent odor perception pathway and 

the Or83b-independent CO2 pathway rely on presumed heteromeric receptor 

complexes. Since it exists in both ORs and GRs, this is likely an ancient feature 

originating in the earliest insect lineages that merits further investigation. 
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 The division of the chemosensory receptor superfamily in Drosophila into 

ORs and GRs was made on the basis of sequence similarity, but we now know 

that some proteins classified as GRs are expressed in olfactory organs and 

respond to volatile ligands. Thus, the division into gustatory and olfactory halves 

may not be as clean as previously thought. Understanding the interface between 

these divisions of the chemosensory receptor superfamily may lie in both the 

sequencing of many more insect chemosensory receptor repertoires and in 

further analysis of the relationship of the structure of Or83b to its function, as it is 

the closest OR in sequence to the GRs. It will be interesting to learn what 

structural motifs are responsible for various properties of ORs and GRs; 

specifically, the protein domains responsible for trafficking, coupling to other 

receptors or the signal transduction machinery, ligand specificity, the promoter 

elements that determine expression patterns in olfactory versus gustatory 

neurons, etc. 

  The CO2 receptors themselves also merit further research. CO2 is an 

important environmental cue in so many insect lineages, but the CO2 receptor 

neurons in different insects have distinct electrophysiological properties. In 

addition, beetles are the most divergent insects that have homologues of the 

Drosophila CO2. Thus, CO2 receptors seem to have originated at multiple points 

over the course of evolutionary history. Identification of these other molecular 

mechanisms for CO2 detection and understanding their evolutionary history will 

be very interesting. 
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 At this point, it is also unclear exactly what CO2 receptors are detecting. 

Molecular CO2 is only slightly soluble in water, and therefore in the sensory 

lymph surrounding the CO2 neuron dendrites. It is possible that the CO2 

receptors actually detect changes in pH or the concentration of bicarbonate 

(HCO3
-) ions, which are immensely more water-soluble. In this case, the activity 

of antennal carbonic anhydrase (CA) enzymes, which catalyze the hydration of 

molecular CO2 into bicarbonate, would be crucial for the quick response to 

changing CO2 concentrations that have been observed in a number of insects. In 

rather weak support of this idea, CA activity has been found in subpopulations of 

OSNs in several organisms (not insects) that are known to respond to CO2 

(Brown et al., 1984; Coates et al., 1998; Kimoto et al., 2004; Wong et al., 1983). 

Although it may have no relevance to the Dipteran CO2 receptors because of 

their lack of Gr21a and Gr63a homologues, honeybee CO2 neurons are 

dramatically affected by the CA inhibitor acetazolamide (Stange, 1974). 

 In a mechanism coupled to bicarbonate production through CA enzymes, 

CO2 detection in species lacking Gr21a and Gr63a homologues may occur 

through a cytoplasmic signal transduction mechanism involving soluble adenylyl 

cyclase (sAC). Rodent sAC is a sensitive intracellular bicarbonate sensor 

required for the activation of spermatozoa that makes them competent to fertilize 

an egg (Chen et al., 2000). Related transmembrane versions of the sAC catalytic 

domain function in CO2/HCO3
- sensing in fungal pathogens (Klengel et al., 2005). 

This gene, although not present in Drosophila (Roelofs and Van Haastert, 2002), 

is present in red flour beetles (Genbank accession number XP 966646.1) and 
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mosquitoes (Kobayashi et al., 2004). Since honeybees have the only published 

genome that lacks homologues of the fly CO2 receptors, it will be especially 

interesting to learn if bees use sAC in olfactory CO2 detection. In addition to the 

sACs that are activated by bicarbonate, a bacterial adenylyl cyclase that is 

activated by molecular CO2 instead of bicarbonate has also been reported 

(Hammer et al., 2006). Many more experiments will be required to determine the 

active chemical ligand in insect CO2 chemosensation. 

 The non-adapting nature of the CO2 receptors, which sets them apart from 

other chemosensory receptors, could imply the existence of two distinct signal 

transduction pathways. Many investigators in the field of insect olfaction maintain 

that, like the vertebrate ORs, the insect chemosensory receptors must be 

GPCRs because of their seven predicted transmembrane segments. No 

reasonable experimental evidence supports this conclusion, and, in fact, some 

evidence points to the opposite. The insect chemosensory receptors seem to be 

a novel family of seven-pass transmembrane proteins, and although it is purely 

speculative, they may be odor-gated ion channels, bypassing the need for a 

distinct signal transduction system (Benton, 2006). 

 It is also possible that the insect CO2 receptors are not receptors at all, but 

gas channels required for the entrance of CO2 into the cells where it can reach 

the actual receptor proteins. As far fetched as this may sound, there is precident 

for this hypothesis. The Amt proteins of plants, bacteria, and yeast form gas 

channels for the passage of ammonia (Khademi et al., 2004). Some evidence 

exists implicating the only homologues of these proteins in higher eukaryotes, the 
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Rh proteins, as gas channels for molecular CO2 (Kustu and Inwood, 2006; 

Soupene et al., 2002). For any hypothesis that relegates GR21a/GR63a to a 

accessory role in the process of CO2 chemosensation to prove accurate, 

whatever the true CO2 receptor is, it must at least be present in the acetate 

sensitive ab3A neurons, because GR21a and GR63a were sufficient to confer 

CO2 sensitivity on these neurons. 

 Experimental evidence supporting any of these ideas will be hard to come 

by until reliable in vitro assays can be developed to make biochemical and 

biophysical analysis of insect chemosensory receptors feasible. Determining the 

rules of proper receptor trafficking and protein folding for in vitro cell expression 

systems, now in their infancy, is clearly the next important hurdle to overcome in 

order to advance our understanding of insect receptor molecular biology. 

 These expression systems will also be crucial in the development of novel 

insect control measures. Despite living in the modern era of molecular medicine, 

millions of people are still at risk of contracting and dying from largely treatable 

illnesses that are spread by disease vector insects. In almost all of the 

developing world the control of malaria, which is the greatest parasitic threat to 

human health, is grossly inadequate (Phillips, 2001). It is clear that the fight 

against malaria could greatly benefit from new insect control measures rationally 

designed to target the chemosensory systems that mosquitoes use to detect their 

human hosts. Understanding the molecular mechanisms of host odor and CO2 

detection by mosquitoes coupled with an in vitro system optimized for high-

throughput screening of chemical libraries will speed the discovery of OR/GR 
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inhibitors that could help make humans harder to detect. Although it is always 

wise to temper our enthusiasm with significant pragmatism, the combination of 

such chemical inhibitors with existing and future infection control and disease 

treatment methods could make malaria the next modern medical and public 

health success story.  
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