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The conditions defining whether microglial activation is detrimental

or beneficial to neuronal survival are still poorly understood. Better

understanding of the factors regulating microglia activation may lead to

improved therapies for neurodegenerative diseases. Clinical and animal

studies point to the neuroprotective and anti-inflammatory effects of steroid

hormones. However, our comprehension of the cellular targets and

mechanisms of action of these hormones in the CNS is still unresolved. In

view of these limitations, the main question addressed in this dissertation

was the role that microglia play in the anti-inflammatory effects of steroid

hormones in the brain, with particular emphasis on the neuroprotective

hormone 17β -estradiol (E2), and the anti-inflammatory steroid,

corticosterone.

To address this problem, microglia culture models were established

using a microglia cell line and primary cultures from transgenic mice that

facilitate the identification of microglia by EGFP expression. Collaborative

studies were also done in mice in vivo. The expression of steroid hormone



receptors was studied as well as their function. This dissertation shows that

microglia cells are not direct targets of estrogen actions, but respond

profoundly to glucocorticoids, which exert anti-inflammatory effects on the

production of cytokines like TNFα, IL-6 and NO. Steroid hormones can be

produced within the brain. In this dissertation, microglia cells are shown to

participate in the metabolism of steroids through expression of steroid-

converting enzymes. Expression of 11βHSD1 in microglia mediated an

autocrine re-activation of glucocorticoids, whereas, expression of enzymes

like 17βHSD1 and 5αR catalyzed the conversion of active androgens and

estrogens from steroid hormone precursors AD and DHEA. These

microglia-derived hormones had estrogenic effects on neuronal cells, as

described in the last section of this dissertation where the characterization

and responsiveness of a neural progenitor cell line are presented.

In summary, microglia cells are highly susceptible to the action of

glucocorticoids, but not estrogens. This specificity is dictated by the

abundant expression of glucocorticoid receptors, and a minimal expression

of estrogen receptors. A novel role of microglia is also presented. Microglia

express steroid-metabolizing enzymes, which mediate the autocrine re-

activation of glucocorticoids, or the production of active androgens and

estrogens from steroid hormone precursors.
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CHAPTER 1

INTRODUCTION

Microglia cells are the resident Central Nervous System macrophages

Early anatomical and cytological studies done by del Rio-Ortega (del

Rio-Ortega, 1932) revealed a unique cell type differing in morphology from

neurons and supporting glial cells designated as microglia (Fig.1A). These

cells, which constitute approximately 12% of the brain, are distinguished by

their small cell body and highly ramified morphology (Fig.1A-B). Microglia

cells populate the brain early in development as bone marrow-derived

monocytes with phagocytic functions, and eventually differentiate into

resident parenchymal brain cells during the postnatal period [rev. by

(Lawson, Perry et al. 1990)]. In the adult, two populations of microglia have

been described: a slow turnover, resident population of cells within the brain

parenchyma, and a high turnover population of cells that are found in the

meninges, choroids plexus, walls of the ventricles, and other structures

devoid of the blood brain barrier (Lawson, Perry et al. 1992).

Microglia are present in large numbers in all major regions of the

brain but are not uniformly distributed (Lawson, Perry et al. 1990). The

majority of microglia are found in gray matter (vs white matter); densely
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populated areas include the hippocampus, olfactory telencephalon, basal

ganglia and substantia nigra, while less densely populated areas include fiber

tracts, cerebellum and much of the brainstem. The cerebral cortex, thalamus

and hypothalamus have intermediate cell densities relative to those discussed

(Lawson, Perry et al. 1990). In the normal/resting (steady state) adult

nervous system very little is known about the functions of microglia. Yet,

emerging evidence indicates microglia actively scan their environment for

any disturbances (Davalos, Grutzendler et al. 2005; Raivich 2005). Being the

resident brain macrophages, microglia have important immunological and

pathological functions (Aloisi 2001; Block and Hong 2005). As effector

cells they are able to directly kill microorganisms and tumor cells, and they

also partake in tissue remodeling processes controlling synaptogenesis and

neuronal death (Marin-Teva, Dusart et al. 2004; Bessis, Bechade et al.

2007). However, microglia are best characterized for their involvement in

brain inflammation.

Inflammation and Neurodegeneration

The inflammatory response is designed to activate local resident

macrophages and attract circulating immune cells to the site of damage or

infection, for the clearance of tissue debris or initiation of adaptive immune
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responses, respectively. Microglia become rapidly activated in response to

brain injury or immunological stimuli (Kreutzberg 1996; Raivich,

Bohatschek et al. 1999). Activated microglia show characteristic

morphological changes that include the shortening of processes and a

hypertrophied cell body. Additionally, activated microglia release a number

of soluble factors, like cytokines, which are pro-inflammatory in nature [rev.

by (Raivich, Jones et al. 1999; Block and Hong 2005)]. These molecules

activate surrounding microglia and astrocytes, change the permeability of

endothelial cells, and induce the infiltration of blood leukocytes and

lymphocytes to the inflamed tissue [rev. (Raivich, Bohatschek et al. 1999)].

Localized inflammatory responses are normally resolved by the late

expression of anti-inflammatory cytokines and other tissue factors [rev.

(Raivich, Bohatschek et al. 1999)], which in turn, resolve the production of

inflammatory molecules and induce the clearance of activated cells.

Inflammation is a normal physiologic response, but without appropriate

regulation it causes damage to the otherwise, healthy tissue. This is

particularly true in the central nervous system (CNS) due to the high

metabolic state of neurons and their susceptibility to environmental changes.

An unregulated response by microglia leads to elevated and sustained

levels of inflammatory mediators such as superoxide, nitric oxide and TNFα
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(Colton and Gilbert 1987; Sawada, Kondo et al. 1989; Liu, Gao et al. 2002),

which become highly neurotoxic (Block and Hong 2005). As demonstrated

by the doubling of research articles about microglia during the last 6 years

(119 titles in 2000 vs 226 in 2006 (NCBI, Pub Med)), an increased interest

in the role microglia play in the initiation and maintenance of inflammation

in the brain is evident. Increasingly, chronic or un-regulated inflammation is

being recognized as a main contributing factor to the progression and

etiology of neurodegeneration (Giovannini, Scali et al. 2003; Morale, Serra

et al. 2006; Bonifati and Kishore 2007), as well as other body diseases like

arthrosclerosis (Chait, Han et al. 2005), arthritis (Mizuno 2006),

osteoporosis (Clowes, Riggs et al. 2005; Ginaldi, Di Benedetto et al. 2005).

Inflammation and steroid hormones

Systemic inflammation increases cytokine levels in the blood stream,

and causes activation of a major neuro-endocrine circuit known as the

hypothalamic-pituitary-adrenal (HPA) axis (Turnbull and Rivier 1995;

Buckingham, Loxley et al. 1996; Beishuizen and Thijs 2003). HPA axis

activation leads to the rapid production of adrenal steroids (glucocorticoids)

and their release into circulation. Glucocorticoids are potent endogenous

anti-inflammatory molecules (Dannenberg 1979; Umland, Schleimer et al.
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2002), which affect cells involved in the inflammatory response by

interfering with the activation of early inflammatory transcription factors

like the p65 NFkB subunit as well as AP-1 (Smith, Burke et al. 1996;

Sakurai, Shigemori et al. 1997; De Bosscher, Vanden Berghe et al. 2000;

Gonzalez, Jimenez et al. 2000). Glucocorticoids also alter the distribution

and trafficking, as well as the differentiation and maturation, of

macrophages/monocytes and other blood leukocytes (Sorrells and Sapolsky

2007).

However, glucocorticoids can also act as immune-enhancing agents

(Yeager, Guyre et al. 2004). For instance, moderate levels of corticosterone,

induced by acute stress or administered directly, enhance skin immune

reactions by increasing leukocyte trafficking, while chronic or high doses are

inhibitory (Dhabhar and McEwen 1999). Thus, it becomes important to view

steroid hormones not solely as immunosuppressant, but rather as modulators

of inflammation.

This regulatory role has also been evident in a different class of

steroid hormones, the sex hormones, where clinical and animal studies of

inflammatory diseases have shown that they too can modulate inflammation

(Whitacre, Reingold et al. 1999; Behl 2002; Wagner, Kaplan et al. 2002).

One of the most widely studied steroids in this area has been the female sex
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hormone 17β-estradiol (E2) (Cutolo, Sulli et al. 1995; Roof and Hall 2000;

Garcia-Segura, Azcoitia et al. 2001; Rogers and Eastell 2001; Behl 2002;

Hodgin and Maeda 2002; Pfeilschifter, Koditz et al. 2002; McCullough and

Hurn 2003; Wise, Dubal et al. 2005).

Sex hormone status dictates severity and progression of inflammatory

disease

Women generally present a more robust immune response than men:

for example, they have more potent antigen presenting cells, higher

circulating immunoglobulin levels, and stronger antigen specific humoral

immune responses. In fact, females have 10 times higher propensity to

develop autoimmune disorders compared to men  [rev. by (Mor, Nilsen et al.

1999)]. E2 has been demonstrated as one of the sex hormones that influences

the progression of different inflammatory pathologies such as cardiovascular

disease, (Hodgin and Maeda 2002; Wagner, Kaplan et al. 2002),

osteoporosis  (Turner, Riggs et al. 1994; Watts 2002), and autoimmunity

(Cutolo, Sulli et al. 1995).

While in the periphery E2 usually is pro-inflammatory, in the CNS it

is considered as an anti-inflammatory hormone. Evidence from clinical trials

and animal studies suggests that E2 is associated with a decreased incidence,
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delayed onset and delayed progression of acute and chronic brain disorders,

ranging from stroke and schizophrenia to Alzheimer’s disease, multiple

sclerosis, and Parkinson’s disease (Chowen, Azcoitia et al. 2000; Roof and

Hall 2000; Lee and McEwen 2001; Behl 2002; Bisagno, Bowman et al.

2003). The reduced susceptibility to acute brain injury, such as cerebral

ischemia, neurotrauma and certain neurotoxic agents, in pre-menopausal

females, both in humans and rodents, strongly suggests a correlation

between the levels of E2 and the severity and progression of inflammatory

diseases.

Steroid hormones affect brain injury and repair

Sex steroids have multiple effects in the CNS. Aside from

reproduction, perhaps the most important role for these hormones is

neuroprotection (McEwen 2001; Behl 2002). Estrogens, progesterone (P),

and androgens, have potent neuroprotective actions (Wise, Dubal et al. 2001;

Stein and Hoffman 2003; Schumacher, Guennoun et al. 2004; Hoffman,

Merchenthaler et al. 2006; Singh 2006; Singh, Dykens et al. 2006). Animal

studies show that these hormones protect against several types of injury,

such as brain trauma, and enhance recovery after stroke and spinal cord

injury (Kalimi, Shafagoj et al. 1994; Cardounel, Regelson et al. 1999; Stein
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2001). In comparison to E2, the neuroprotective effects of androgens such as

testosterone (T) are not as clear, although T deficiency has been associated

with increased symptoms of Parkinson’s Disease (Okun, McDonald et al.

2002; Okun, Walter et al. 2002).

The protective effects of E2 and other sex steroids on neurons have

been extensively demonstrated in CNS damage models such as ischemia,

glutamate excitotoxicity, oxidative stress, amyloid-β toxicity, and neuronal

apoptosis (Wang, Santizo et al. 1999; Belcredito, Vegeto et al. 2001; Garcia-

Segura, Azcoitia et al. 2001; Stein 2001; Behl 2002; Cordey, Gundimeda et

al. 2003; McCullough and Hurn 2003; Rau, Dubal et al. 2003; Rau, Dubal et

al. 2003; Sawada and Shimohama 2003; Guerra, Diaz et al. 2004; Wen,

Yang et al. 2004; Corasaniti, Amantea et al. 2005; Heyer, Hasselblatt et al.

2005; Platania, Seminara et al. 2005; Wu, Wang et al. 2005; Morale, Serra et

al. 2006). However, the mechanisms by which sex hormones affect CNS

inflammation and cytokine production are less well understood.  To address

this issue, several studies have focused on microglia and astrocytes, given

that these cells are pivotal in orchestrating the inflammatory response in the

CNS (Mor, Nilsen et al. 1999; Raivich, Bohatschek et al. 1999; Raivich,

Jones et al. 1999; Jankowsky and Patterson 2001; Hagberg and Mallard

2005; Ladeby, Wirenfeldt et al. 2005; Panickar and Norenberg 2005).
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Evidence to date suggests microglia, like peripheral macrophages, are targets

of direct steroid action through the expression of sex hormone receptors.

Multiple studies in mammalian species (rodents, and lower primates)

document the expression of estrogen receptors (ERα, ERβ) and androgen

receptors (AR) in glial cells (astrocytes and oligodendrocytes) (Gahr,

Metzdorf et al. 1996; Finley and Kritzer 1999; Behl 2002). However reports

describing expression of such receptors in microglia, in vivo, are scarce

(Garcia-Ovejero, Veiga et al. 2002). It has also been shown that glial cells

become increasingly responsive to the actions of these steroids in the injured

CNS, as ERs and ARs are up-regulated after injury (Gahr, Metzdorf et al.

1996; Cooke, Hegstrom et al. 1998; Kruijver, Fernandez-Guasti et al. 2001;

Garcia-Ovejero, Veiga et al. 2002). In the normal rat brain, astrocytes

express low levels of ER and AR, which are transiently up-regulated in

astrocytes following excitotoxic/chemical injury to the hippocampus, or stab

wound to the parietal cortex and hippocampus (Garcia-Ovejero, Veiga et al.

2002). Under these circumstances AR is also induced in microglia (Garcia-

Ovejero, Veiga et al. 2002). Likewise, progesterone receptor (PR)

expression is up-regulated in neurons and glia, after CNS injury in the rat

(Bulloch 2001; Meffre, Delespierre et al. 2005).
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In the mouse CNS, E2 treatment decreases the recruitment of total

inflammatory cells as well as TNFα positive macrophages and T cells at the

onset of experimentally -induced auto-immune encephalitis (Ito, Buenafe et

al. 2002). However, in this study microglia only show a moderate

attenuation of the peak TNFα expression in response to E2 (Ito, Buenafe et

al. 2002). Recently, a comprehensive review of steroid receptor expression

in glial cells has been done by Garcia-Ovejero et al. (Garcia-Ovejero,

Azcoitia et al. 2005), indicating that in vivo, microglia are limited in the

expression of steroid receptors. These studies would suggest that E2 effects

on neuroinflammation may be mediated through other cells expressing

estrogen receptors.

Cytokine regulation by E2 and other hormones

In spite of the lack of evidence demonstrating estrogen receptor

expression in microglia in vivo, E2 is reported to block a number of

inflammatory mediators produced by activated microglia in vitro.

Specifically, E2 pre-treatment of activated microglia in response to

lipopolysaccharide (LPS), phorbol ester, or interferon-γ (IFNγ) stimulation

has been noted in the literature to attenuate phagocytic activity, inducible

nitric oxide synthase and matrix metalloproteinase-9 expression, as well as
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production of superoxide, nitric oxide (NO), and prostaglandin-E2 (Bruce-

Keller, Keeling et al. 2000; Drew and Chavis 2000; Vegeto, Bonincontro et

al. 2001). Additionally, in an in vitro HIV inflammatory model, viral

activation of microglia results in super oxide and NO production, increased

phagocytosis, and tumor necrosis factor-α (TNFα) release. HIV microglial

activation is suppressed by E2 pre-treatment through interference of viral-

mediated MAPK activation (Bruce-Keller, Barger et al. 2001). Other reports

indicate cytokines and surface receptors critical for adaptive immunity such

as IL-10, TNFα, IFNγ, MHC Class I, CD40, and CD86, are also regulated

by E2 in the microglia cell line, N9 (Dimayuga, Reed et al. 2005).

In contrast to the aforementioned studies, other studies have failed to

demonstrate anti-inflammatory actions of E2 on microglia/macrophages

(Dovio, Sartori et al. 2001; Suuronen, Nuutinen et al. 2005; Sierra in

preparation). Additionally, studies on microglia activation have found no

effects of E2, compared to other steroids such as glucocorticoids (Lieb,

Engels et al. 2003; Fowler, Johnson et al. 2005). Suuronen et al. (2005)

report anti-inflammatory effects of various selective estrogen receptor

modulators (SERMs), but not of E2, and further suggest that SERM-induced

modulation of LPS-activated pro-inflammatory signaling cascades is not

estrogen receptor-mediated (Suuronen, Nuutinen et al. 2005).
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In spite of the these apparently conflicting reports, several studies

support a pure anti-inflammatory role of E2 on microglia (Mor, Nilsen et al.

1999; Bruce-Keller, Keeling et al. 2000; Vegeto, Bonincontro et al. 2001;

Vegeto, Belcredito et al. 2003; Baker, Brautigam et al. 2004; Dimayuga,

Reed et al. 2005; Ghisletti, Meda et al. 2005; Liu, Liu et al. 2005; Vegeto,

Belcredito et al. 2006). Another set of studies with β-amyloid induction of

NO in microglia, show E2 acts in a biphasic fashion, dependent on dose and

milieu, in which high doses of E2 are inhibitory (Bruce-Keller, Keeling et al.

2000), and physiological doses of E2 stimulate NO secretion and toxicity

(Harris-White, Chu et al. 2001). In fact, recent papers have shown ovary-

derived E2 is essential for mounting a proper inflammatory response to

bacterial lipopolysaccharides (LPS), suggesting that circulating E2 is

exerting a permissive, pro-inflammatory effect (Soucy, Boivin et al. 2005).

The dichotomous effects of E2 on inflammation have been associated

with the failure of clinical trials to prove the benefits of hormone

replacement therapies (Stork, van der Schouw et al. 2004; Bushnell 2005;

Wise, Dubal et al. 2005). A proposed compounding factor in these clinical

trials could be responsiveness to E2, as Suzuki et al (2007) have suggested

in a model of postmenopausal ischemic stroke. Here the neuroprotective and
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anti-inflammatory actions of E2 were dependent on the extent of the hypo-

estrogenic period (Suzuki, Brown et al. 2007).

Given the aforementioned studies, it is quite clear that there is

controversy about the effects of estrogen on microglia activity. The view

that sex hormones, like E2, are universally anti-inflammatory agents needs

to be reconsidered given the lack of coherence in the literature. Steroid

hormones could be described more accurately as conditional immuno-

modulatory agents, exerting permissive, stimulatory, or inhibitory effects

depending on hormone concentration, endpoints measured, cell types

studied, and inflammation models used (Sternberg 2001; Dinkel, Ogle et al.

2002; Yeager, Guyre et al. 2004).

Sources of Steroid Hormones

The gonads and the adrenal glands are the principal sources of steroid

hormone synthesis in the body. Steroid hormones are derived from the

metabolism of cholesterol [rev. by (Pikuleva 2006)]. The first required step

for steroidogenesis is the transfer of cholesterol into the mitochondria

(Miller 1995), which is mediated by the steroid acute regulatory protein

(StAR) and the peripheral benzodiazepine receptor (PBR) (Hauet, Liu et al.

2002). Within the mitochondrial lumen, cholesterol is converted by the p450
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cytochrome side-chain cleavage (p450scc) into pregenenolone, which is

further metabolized in the cell’s endo-reticular system into progesterone,

dehydroepiandrosterone (DHEA) and androstenedione (AD) by the p450c17

and the 3β-hydroxysteroid dehydrogenase (HSD) enzymes [rev by (Simard,

Ricketts et al. 2005)]. The p450c21 enzyme can convert pregenenolone and

progesterone into the precursors for glucocorticoids and mineralocorticoids,

respectively (Simard, Ricketts et al. 2005). DHEA and AD are the

precursors for the androgens and estrogens, which are synthesized by

various enzymes, principally, 17βHSD, 3βHSD, p450-Aromatase

(p450Arom), and 5α-reductase. The steroidogenic pathway and the enzymes

mentioned are summarized in Figure 2.

Belief of the exclusive synthesis of steroid hormones in the gonads

and adrenals was held for a long time. It was thought that hormones secreted

into the circulation would then enter target tissues to exert their functions

[rev. by (McEwen, Biegon et al. 1982)]. Currently, however, it is recognized

that steroid synthesis/metabolism occurs in a number of tissues and cells,

such as adipose tissue (Feher, Bodrogi et al. 1982), liver (Katagiri, Tatsuta et

al. 1998), skin (Labrie, Luu-The et al. 2000), lungs (Kao, Crosswell et al.

1979), and notably, the brain (Tsutsui, Ukena et al. 1999; Baulieu, Robel et

al. 2001; Stoffel-Wagner 2003). Steroidogenesis (the conversion of
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cholesterol into pregenenolone and downstream steroids) is more limited,

but steroid conversion and metabolism appears to be much more widespread

than previously believed.

End-organ regulation of steroid hormone action

Humans and certain primates secret into circulation large amounts of

the steroid precursors DHEA and DHEA-sulfate (DHEA-S) from the

adrenals. These steroids do not bind any receptors, yet exert estrogenic and

androgenic actions after being converted into active estrogens and androgens

in target tissues (Labrie 1991; Labrie, Luu-The et al. 2001). In fact, in post-

menopausal women almost all sex steroids are produced from adrenal

precursors, and in adult men, approximately half of androgens are made

locally in target tissues (Labrie 2003; Labrie 2004).

Pathological conditions, such as breast cancer and chronic joint

inflammation, have provided some of the best-studied cases of intracrine

steroid synthesis/conversion, where local steroid production plays an active

role in disease. Breast cancer cells can locally synthesize or regenerate

estrogens, which serve as growth factors promoting tumor growth and

persistence [rev by (Labrie 2003; Salhab, Reed et al. 2006)]. Therefore,
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development of inhibitors for steroid-converting enzymes has become an

active area of research (Purohit, Woo et al. 2001). In chronic inflammatory

disease, such as osteoarthritis and rheumatoid arthritis, tissue synovial cells

display increased production of estrogens with pro-inflammatory effects

(Schmidt, Weidler et al. 2005). This pro-estrogen pathway can be blocked

by the androgens, AD and T, which are converted into 5α-hydroxylated

androgens that have anti-inflammatory properties (Schmidt, Weidler et al.

2005).  In cases such as this, appreciation of the steroid-converting

properties in the inflamed tissue can aid in the choice of therapeutic steroids

to be used (Labrie 2003).

Not all intracrine steroid metabolism leads to pathological conditions.

Local steroid synthesis can also contribute to the maintenance of

homeostasis in tissues. Such is the case with the brain, as indicated by

various reports on brain development (Tsutsui 2006), neurotransmission

(Majewska 1992; Paul and Purdy 1992; Schumacher, Guennoun et al. 1997),

and recovery from damage (Azcoitia, Sierra et al. 2001; Azcoitia, Sierra et

al. 2003; Schumacher, Guennoun et al. 2004).
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Neurosteroidogenesis: synthesis of steroids in the brain

In the early 1980s, Corpechot et al. (1981) found a high concentration

of pregenenolone and DHEA in brains of adrenalectomized and castrated

rats. They further demonstrated that these steroids were not affected by

adrenocorticotropic hormone, or by suppression of circulating

glucocorticoids (Corpechot, Robel et al. 1981). Soon after, the p450 side

chain cleavage cytochrome (p450scc), which converts cholesterol into

pregenenolone, was identified in the brain opening the possibility of de novo

brain steroidogenesis (Schumacher, Guennoun et al. 2004). The term

neurosteroid was coined, referring to steroids that are synthesized from

cholesterol or another early precursor in the nervous system (Robel and

Baulieu 1995).

In the CNS, DHEA is synthesized from pregenenolone by astrocytes

and neurons. Astrocytes can further metabolize DHEA into sex hormones

(Zwain and Yen 1999). Brain DHEA levels are higher than those in

circulation, and have been negatively correlated with aging and

neurodegeneration (Weill-Engerer, David et al. 2002). Additionally, DHEA

has multiple effects when administered to the CNS, including modulating

the activity of GABA and NMDA receptors [rev. by (Gibbs, Russek et al.
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2006)], yet no specific receptor for this hormone has been detected

(Regelson and Kalimi 1994; Majewska 1995). This has led investigators to

suggest that in the brain DHEA may be metabolized into active steroid

hormones, which then mediate the observed effects of DHEA (Zwain and

Yen 1999; Schmidt, Kreutz et al. 2000; Jellinck, Lee et al. 2001; Jellinck,

Kaufmann et al. 2006; Jellinck Submitted). Evidence for this model has been

put forth by Veiga, et al. (2003) who have demonstrated that DHEA

mediated neuroprotection in a model of kainic acid toxicity is dependent on

the E2-synthesizing enzyme p450Arom (Veiga, Garcia-Segura et al. 2003).

Moreover, the principal cell types in the brain, including astrocytes, neurons,

and oligodendrocytes have been shown to convert DHEA into

androstenedione (AD), and produce downstream estrogens and androgens

(Zwain and Yen 1999). However, thus far, the participation of microglia in

the metabolism and conversion of steroids in the CNS has not been

addressed.

Neurosteroid levels correlate negatively with neurodegeneration

Neurosteroidogenesis has been described as an adaptive coping

mechanism following brain damage (Garcia-Ovejero, Azcoitia et al. 2005),

in agreement with the neuroprotective effects of DHEA (Mao and Barger
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1998; Lapchak, Chapman et al. 2000; Kaasik, Kalda et al. 2001; Lapchak

and Araujo 2001; Morfin and Starka 2001; D'Astous, Morissette et al. 2003;

Veiga, Garcia-Segura et al. 2003; Charalampopoulos, Alexaki et al. 2006;

Juhasz-Vedres, Rozsa et al. 2006; Wojtal, Trojnar et al. 2006) and estrogen

(Behl 2002). As androgens and estrogens can be pro- or anti-inflammatory

(Straub, Konecna et al. 1998; Jacobson and Ansari 2004; Cutolo, Capellino

et al. 2005), the steroid profile in a tissue may determine the extent of

inflammation (Schmidt, Naumann et al. 2006), and in the case of the brain,

of neurodegeneration. Neurodegeneration has been negatively correlated

with neurosteroid levels (Schumacher, Weill-Engerer et al. 2003).

Measurements of various neurosteroids in Alzheimer’s patients compared to

aged healthy controls showed a trend towards less steroids in the diseased

patients, as well as reduced DHEA metabolites; and a negative correlation

was established between Alzheimer’s biomarker proteins phospho-Tau and

β-amyloid, and these neurosteroid levels (Weill-Engerer, David et al. 2002).

These studies are highly suggestive of the neuroprotective role of steroids

that are synthesized or metabolized within the brain.
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Summary

Microglia cells are the resident brain macrophages, whose role in the

initiation and maintenance of brain inflammation has been firmly

established. Chronic or exacerbated inflammation can be deleterious to

resident cells, particularly in the nervous system. The most common

neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, multiple

Sclerosis, stroke induced neurodegeneration, etc., all share important

inflammatory components, which have become a current therapeutic target.

Steroid hormones are potent regulators of inflammation, particularly the

glucocorticoids and sex hormones. Additionally, sex hormones, such as E2,

have important neuroprotective effects. Neuroprotection afforded by E2 has

been linked to the anti-inflammatory properties of this hormone, yet as

previously stated, whether E2 directly affects microglia activation in vivo

remains unclear.

For the initial stage of my thesis work I set out to test the hypothesis

that estrogen exerts anti-inflammatory effects by acting directly on

microglia. To this end, I developed a cell culture system using a microglia

cell line, BV2, and primary microglia cultures from a transgenic mouse line.

I then tested and compared the steroid hormones, estrogen and

corticosterone, for their ability to modulate the activation of microglia with
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LPS, and found that corticosterone is a potent inhibitor of pro-inflammatory

cytokine production, while estrogen has no effects on microglia activation.

My results were consistent with further studies done in the laboratory

showing that microglia predominantly express glucocorticoid receptors and

show minimal levels of ERα expression in vivo.

The brain can synthesize hormones de novo from cholesterol or

metabolize circulating hormone precursors, like DHEA, into active

androgens and estrogens, which have important roles in the homeostasis of

the CNS. Steroid-converting enzymes are expressed in the various cell types

of the brain, and although steroid metabolism has been implicated in the

brain’s response to injury, the participation of microglia in this process has

not been described.

Given the protective properties of neurosteroids and the critical role

that microglia play in neurodegeneration, in the latter part of this dissertation

I formed the hypothesis that microglia are active contributors in the

synthesis and metabolism of neurosteroids in the brain. To test this

hypothesis I examined the expression and function of the major steroid

converting enzymes in the steroidogenesis pathway through real-time PCR

of ex vivo and in vitro microglia samples, and analyzed the function of these

enzymes with metabolic assays in primary microglia cultures.
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I further characterized a developing neuronal cell line to test its

responsiveness to estrogen and other neurosteroids produced by microglia.

My studies focused on the parenchymal, slow-turnover, resident microglia

population. A novel role of microglia in relation to the effects of steroid

hormones in the brain is presented in this dissertation. Microglia cells are

shown to express various steroid-metabolizing enzymes, which mediate

events such as the autocrine re-activation of glucocorticoids, or the

production of active androgens and estrogens from steroid hormone

precursors, which can influence neuronal and other brain cells.
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CHAPTER 2

MODELS FOR STUDYING HORMONAL REGULATION

OF MICROGLIA ACTIVATION

Steroid hormones simultaneously affect many cell types throughout

the central nervous system (CSN) (Garcia-Segura, Chowen et al. 1994;

McEwen 2001; Behl 2002; Bryant, Sheldahl et al. 2006). One cell type that

has not been thoroughly evaluated for its susceptibility to steroid hormones

is microglia. Microglia are related to the monocytic/macrophage lineage of

immune cells (Raivich and Banati 2004); however they possess a distinctive

morphology and characteristics which set them apart as CNS-specialized

cells (Lawson, Perry et al. 1990; Walker 1999).  To determine if microglia

are targets of hormone action, they must be separated from other

surrounding cell types. A widely used approach is the isolation and culture

of enriched cell populations, which can also be transformed into

permanently viable cell lines. Assay systems can then be developed on

populations of these cells that allow for the systematic evaluation of end

points, which may be potentially regulated by hormones in microglia.

The activation of the innate immune system in the brain leading to

microglial expression of pro-inflammatory cytokines may be central to the
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pathophysiology and etiology of neurodegenerative disorders (Nguyen,

Julien et al. 2002; Lehnardt, Massillon et al. 2003). It is therefore, important

to develop microglia models that can inform us of potential factors

regulating the inflammatory response in these cells. In this section, I

developed microglia cultures and characterized their activation by bacterial

lipopolysaccharides (LPS). Granulocyte-monocyte colony stimulating factor

(GM-CSF) cultured cells had the highest proliferation rates, maintained

steady expression of macrophage/microglia markers, and showed a robust

cytokine response after LPS stimulation.

For this thesis, I initially used the mouse microglia cell line, BV-2, as

a model to determine whether the sex hormone 17β-estradiol (E2) could

block production of inflammatory factors by activated microglia, since there

were reports of such interactions in the literature (Mor, Nilsen et al. 1999;

Bruce-Keller, Keeling et al. 2000; Drew and Chavis 2000; Vegeto,

Bonincontro et al. 2001). The BV-2 cell line was originally generated by

infecting primary microglial cell cultures with a v-raf/v-myc oncogene

carrying retrovirus (Blasi, Barluzzi et al. 1990). This cell line will further be

referred to as BV-2 cells. While cloned cell lines offer ease of

experimentation, it is generally considered that microglia cell lines express

partially activated phenotypes (Carson, Reilly et al. 1998; Nakamura, Si et
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al. 1999; Aloisi 2001), and are not an authentic representation of the in vivo

phenotype. Thus, to verify the authenticity of results found in BV-2 cells and

to have a more reliable model, I also developed the use of primary microglia

cultures. In this Chapter I describe the establishment of the assay systems

used to evaluate hormonal regulation of microglia.

LPS stimulation as a model of neuro-inflammation in microglia

LPS is recognized as a potent activator of all macrophage cells,

including microglia (Nakamura, Si et al. 1999). LPS acts through the innate

immune pathway, comprised of evolutionarily conserved receptors called

Toll-like receptors (TLRs), which detect and alert the immune system of

invading pathogens (Iwasaki and Medzhitov 2004; Takeda and Akira 2005).

TLR-4, coupled to the accessory protein MD2, and CD14, a myeloid

phospholipid-anchored membrane protein, form the specific receptor for

LPS (Palsson-McDermott and O'Neill 2004; Miller, Ernst et al. 2005). Upon

ligand binding, TLR4-MD2-CD14 engages a signaling cascade that activates

many transcription factors, especially NFkB, which mediate the expression

of inflammatory genes (Doyle and O'Neill 2006). LPS has been used to

characterize microglia activation (Nakamura, Si et al. 1999).



28

To establish LPS as a model for the activation of microglia, I

characterized the response to LPS in the BV-2 cells. LPS stimulation of BV-

2 microglia induced slight morphological changes, increased adherence, and

proliferation of these cells (Fig.3), as well as the production of cytokines. I

initially chose to measure 3 inflammatory cytokines and the generation of a

reactive oxygen species as endpoints reflecting LPS-induced activation of

microglia; these were: tumor necrosis factor-α (TNFα), interleukin-6 (IL-6),

interleukin-1β (IL-1β), and nitric oxide (NO).

The results of these studies showed that LPS stimulation of BV-2 cells

induced a time and dose-dependent production of TNFα, IL-6, IL-1β, and

NO (Fig.4) into the cell culture supernatants. Based on these experiments I

chose to use a dose of 100ng/ml LPS for subsequent stimulations. Each

cytokine had a particular time course, TNFα being the earliest cytokine

produced, followed by IL-1β, IL-6, and finally NO (Fig.4E). Secreted IL-1β

levels were low (pg/ml range) (Fig.4C, E), maybe due to inadequate

induction of caspase-1 activity required for its secretion (Thornberry, Bull et

al. 1992). Thus, Western blot analysis was used to evaluate IL-1β

production. These experiments showed that LPS induced a robust production

of immature IL-1β of 33kDa by 3-6hr (Fig.5A). Overexposure of blots
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revealed low levels of mature processed cytokine of 28kDa (Fig.5B).

Resting BV-2 cells showed no detectable cytokine production.

 Primary culture of microglia

To further extend my working model for the activation of microglia,

and its potential regulation by steroid hormones, I developed primary

microglia cultures from neonatal mouse brains. Primary cultures were

derived from the transgenic mouse line p7.2fms-EGFP (C57BL6/6 X CBA

background). This transgenic mouse expresses EGFP, a green fluorescent

protein originally cloned from the jellyfish Aequorea victoria, controlled by

the promoter and regulatory elements of the macrophage colony stimulating

factor receptor gene, cfms (Sasmono, Oceandy et al. 2003). The cfms gene is

exclusively expressed in the monocyte cell lineage, which includes all tissue

macrophages and microglia (Sasmono, Oceandy et al. 2003; Sierra,

Gottfried-Blackmore et al. 2007), providing a clear and reliable source for

the isolation of highly enriched microglia cultures. Additionally, results from

primary cultures of these mice can subsequently be validated in vivo, given

that microglia are easily detected by immunofluorescence, or isolated by

FACS from the tissue by the endogenous expression of EGFP (Sierra

Submitted).
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Protocols for primary culture of microglia were first developed by

Giulian & Baker (1986) and Frei et.al. (1986) (Frei, Bodmer et al. 1986;

Giulian and Baker 1986). Ex vivo isolated adult microglia have a tendency to

undergo cell death after a dew days in culture and present low proliferative

capacity in vitro (Fischer and Reichmann 2001). The use of early post-natal

brains is favored because of high cell proliferation rates, and preparations at

this stage of development present negligible levels of contaminating viable

neuronal cells (McCarthy and de Vellis 1980). Therefore, I chose to use day-

2 old neonatal mouse pups for primary cell cultures. Forebrains were

extracted, meninges removed by micro-dissection, and tissue homogenized

by mechanical dissociation and cell straining. Cells were then plated and

cultured for up to 2 weeks. This method yields a stratified, mixed, culture of

astrocytes, oligodendrocytes and microglia (Giulian and Baker 1986).

I tested two methods for isolating microglia cells from the mixed glial

culture. The first was a method based on mild trypsinization of the astrocyte

layer, yielding an enriched population of adherent microglia on the culture

flask (Saura, Tusell et al. 2003). This method yielded an average of

0.05±0.01x106 cells / mouse brain. The low yield of cells obtained from this

method were mainly due to the fact that microglia attached to the tissue

culture flasks after removal of the astrocyte layer were very difficult to
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detach, even with prolonged trypsin incubations and vigorous shaking. The

second, and most commonly used, is the shaking method in which loosely

adherent microglia cells proliferating on top of the astrocyte layer are

detached and collected in the culture media (Giulian and Baker 1986). This

method yielded an average of 0.28±0.01x106 cells / mouse brain, which

proved to be greater than the mild trypsinization method.

Use of colony stimulating factors for primary microglia culture

Hematopoeitic cytokines, particularly the colony stimulating factors

macrophage-colony stimulating factor (MCSF) and granulocyte-macrophage

colony stimulating factor (GM-CSF) are able to induce proliferation and

differentiation of microglia cells (Giulian and Ingeman 1988; Saura, Tusell

et al. 2003; Ponomarev, Novikova et al. 2005). To determine the optimal

culture conditions I examined the effects of these growth factors on primary

microglia. In the mixed glial cultures microglia proliferation was augmented

by MCSF or GM-CSF (Fig.6A-C), increasing the yields of isolated

microglia, particularly by the shaking method (Fig. 6D).

A notable difference was observed in the morphology of MCSF and

GM-CSF grown cells (Fig.6B, C). MCSF induced the elongation and

ramification of adherent microglia (Fig.6C), where as GM-CSF induced an
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amoeboid morphology (Fig.6B). These results are consistent with previous

reports (Santambrogio, Belyanskaya et al. 2001). In spite of morphological

changes, the expression of the monocyte/macrophage marker, CD11b, was

not affected (Fig.7). GM-CSF is reported to induce a dendritic cell (DC)-like

phenotype in primary microglia (Fischer and Reichmann 2001;

Santambrogio, Belyanskaya et al. 2001; Ponomarev, Novikova et al. 2005).

However, under my culture conditions, the use of GM-CSF did not induce a

DC-like phenotype, as assessed by the expression of two DC-specific

surface antigens, CD11c, which was negative, and DEC-205, which showed

a marginal increase in expression (Fig.7B). The difference between my data

and published reports may be due to multiple factors such as the mouse

strain, source of GM-CSF (recombinant purified protein vs produced by a

transformed cell line) and / or the dose and time of incubation. Longer

incubations with GMCSF were not used because proliferation rates

decreased (Fig.6D).

Purity of microglia preparations

Since microglia were cultured with astrocytes and oligodendrocytes,

exclusion of these cells from the experiments in 1°MG cultures was vital.

The purity of microglia preparations from the shaking protocol was verified
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by EGFP expression and by FACS analysis. Shaken 1°MG showed 99-98%

purity by EGFP expression and FACS analysis (Fig.7). Therefore, the results

obtained from the assays presented below can be attributed to microglia.

LPS activation of primary microglia

In this study, LPS stimulation of primary microglia led to the rapid

(30 minutes) activation of NFkB, observed by its translocation to the nucleus

by immunocytochemical analysis (Fig.8A). The stress-activated MAP kinase

p38, another important transcription factor involved in inflammation (Lee

and Young 1996), was also rapidly activated by LPS, through its

phosphorylation and consequent translocation to the nucleus observed

through immunofluorescence analysis and Western blotting (Fig.8B, C). I

next analyzed the production of inflammatory cytokines and NO in primary

microglia cultures.

MCSF and GM-CSF cultures stimulated with LPS alone showed a

limited production of NO (3-5mM vs 60-80mM of BV-2 cells), consistent

with previous reports of low NO responses to LPS alone in primary

microglia (Saura, Tusell et al. 2003). Interferon-γ (INFγ) can synergize with

LPS and stimulate the production of NO (Ding, Nathan et al. 1988; Chan

and Riches 2001; Saura, Tusell et al. 2003; Powell, Boodoo et al. 2004).
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Therefore, INFγ was added to LPS for the activation of primary microglia.

When stimulated with LPS+INFγ for 24hr, GM-CSF enriched microglia

produced significantly higher levels of NO, and showed similar levels of

TNFα and IL-6 compared to MCSF derived cells (Fig.9A).

The production of cytokines by primary microglia in response to 24hr

LPS+INFγ was also dose-dependent, with a mid range 100ng/ml LPS +

10ng/ml INFγ (Fig.9B). Notably, primary microglia produced less TNFα

and NO than BV-2 cells. The most reproducible and robust cytokine

responses were obtained from GM-CSF cultured microglia.

In addition to TNFα, IL-6 and NO, LPS+INFγ stimulation of 1°MG

caused an increase in other inflammatory cytokines and chemokines such as

IL1β, interleukin-12 (IL-12), monocyte chemo-attractant protein-1 and -5

(MCP-1, MCP-5), the small chemokine RANTES (Regulated upon

Activation, Normal T-cell Expressed, and Secreted), and the secreted TNF

receptor-1 (sTNFR1) (Fig.10). Therefore GM-CSF cultured microglia

obtained by the shaking method were used for the experiments presented in

the following chapters of this thesis; namely, the effects of steroid hormones

on microglia activation (Chapter 3), the autocrine involvement of microglia

on the actions of glucocorticoids (Chapter 4), and the expression and activity

of steroid metabolizing enzymes in microglia (Chapter 5).
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Discussion

Microglia cell cultures have been widely utilized for a variety of

studies as they offer a way of assessing the specific effects of any given

stimulus / manipulation, in the absence of compounding responses from

other cell types. Different microglia cell lines have been established from

mouse, rat and even human cells [examples can be noted in (Blasi, Barluzzi

et al. 1990; Cheepsunthorn, Radov et al. 2001; Nagai, Mishima et al. 2005)],

which have provided useful data for further validations in primary culture,

and in vivo. One example is the initial description of purinergic receptors in

microglia cell lines (Ferrari, Villalba et al. 1996). These studies led to further

functional descriptions of these receptors in microglia cultures (Visentin,

Renzi et al. 1999; Kaya, Tanaka et al. 2002; Gendron, Chalimoniuk et al.

2003) and in models of neuronal injury (Sasaki, Hoshi et al. 2003; Franke,

Gunther et al. 2004); finally leading to in vivo imaging studies describing the

chemo-attractant functions of these ATP receptors in microglia (Davalos,

Grutzendler et al. 2005; Haynes, Hollopeter et al. 2006).

In this Chapter I have utilized BV-2 cells and primary microglia

cultures to establish a model for studying microglia activation and

establishing reliable end-points, which may be regulated by steroid

hormones. The results presented here show that primary microglia cultures
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can be reliably activated by LPS+INFγ . Additionally, the use of

hematopoeitic growth factors such as GM-CSF, induced high proliferation

rates in the mixed microglia cultures without changing the expression of the

monocytes/macrophage marker CD11b nor inducing a dendritic cell

phenotype. Moreover, GM-CSF enriched microglia showed steady cytokine

responses after LPS+INFγ stimulation, which were similar to those of

MCSF-cultured microglia with the exception of NO. These findings are in

contrast to reports showing microglia exhibit different cytokine responses to

LPS if grown in MCSF or GM-CSF (Fischer, Bielinsky et al. 1993).

However, authors in this report used 10-fold higher concentrations of the

growth factors to find cytokine differences, while my objective in using

these growth factors was to increase proliferation without necessarily

changing the microglia phenotype. For their increased proliferation and

steady cytokine production, GM-CSF enriched microglia were selected as

the optimal culture/activation conditions for primary microglia culture.

To monitor microglia activation in subsequent studies, I chose two

main cytokines and a nitrogen radical, which have key roles in

neuroinflammation: TNFα, IL-6, and NO. TNFα  is implicated in the

development of CNS inflammation, by causing expression of chemokines

and its actions on the vascular endothelium leading to the infiltration of
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blood leukocytes [rev by (Aloisi 2001)]. TNFα  is also essential for the

activation of parenchymal microglia during endotoxaemia, and can be

detrimental to the brain by promoting apoptosis of oligodendrocytes and

preventing remyelination, and by augmenting cell death in models of

neurodegeneration [rev by (Rivest 2003)]. TNFα is also a potent inducer of

IL-1β, PGE2 and IL-6. IL-6 induction is considered a ubiquitous and early

marker of tissue damage in the brain and plays a central role in the activation

of astrocytes [rev by (Raivich, Bohatschek et al. 1999; Raivich, Jones et al.

1999)]. Microglia derived IL-6 can interfere with production of new neurons

in the adult brain (Monje, Toda et al. 2003), but has also many neurotrophic

properties [rev by (Benveniste 1998)]. At low, physiological concentrations,

NO has various roles in the homeostasis of the brain [rev. by (Ohkuma and

Katsura 2001; Guix, Uribesalgo et al. 2005)]. However, overproduction of

NO has been implicated in most neurodegenerative diseases (Murphy 2000)

because of its neurotoxic properties (Dawson and Dawson 1996; Moreno-

Lopez and Gonzalez-Forero 2006).

The activation of microglia and subsequent expression of pro-

inflammatory cytokines may be central to the pathophysiology and etiology

of neurodegenerative disorders (Nguyen, Julien et al. 2002; Lehnardt,

Massillon et al. 2003). It is therefore, important to develop microglia models
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that can inform us of potential factors regulating the inflammatory response

in these cells. LPS produced a consistent cytokine response both in BV-2

microglia and in primary microglia cultures grown with MCSF or GM-CSF.

These systems were used as a platform to study the potential anti-

inflammatory effects of steroid hormones, namely the sex hormone E2 and

the glucocorticoid corticosterone.
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CHAPTER 3

MICROGLIA EXPRESS HORMONE RECEPTORS THAT CAN

MODULATE THEIR LPS ACTIVATED RESPONSES

The neuroprotective and anti-inflammatory effects of E2 in the brain

have been widely reported (Wise, Dubal et al. 2000; Behl 2002; Liao, Chen

et al. 2002; Vegeto, Belcredito et al. 2003; Wen, Yang et al. 2004; Hoffman,

Merchenthaler et al. 2006). In vitro studies have claimed that E2 can act

directly on microglia cells to block synthesis of inflammatory molecules.

Contrary to these reports, other findings indicate that E2 has no effects [rev.

in Chapter 1]. To clarify whether microglia cells are direct targets of E2 and

are active mediators of E2 effects in the brain, the expression of estrogen

receptors in microglia was studied. These studies were done in collaboration

with Dr. Amanda Sierra (Stony Brook, NY), a former postdoc in the

McEwen laboratory, who developed a system for isolation of microglia from

adult cfms-EGFP mice using fluorescence-activated cell sorting (FACS) to

measure gene expression. Estrogen receptor studies were also conducted in
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collaboration with Dr. Teresa Milner (Cornell Medical School, NY) with

whom an ultrastructural analysis by electron microscopy was carried out.

I then proceeded to utilize BV-2 microglia and cfms-EGFP mouse-

derived primary microglia cell cultures stimulated with LPS to determine

whether microglia activation is affected by E2 and glucocorticoids.

Glucocorticoids are well-recognized regulators of immune cell activation

(Chapter 1) and were therefore, used as a positive control for comparison to

the effects of E2.

Expression of Steroid hormone receptors in microglia

Microglia cell lines are reported to express mRNA and protein for

both estrogen receptors (ERα and ERβ) (Bruce-Keller, Keeling et al. 2000;

Vegeto, Bonincontro et al. 2001).  However, few reports with primary

microglia cultures, and no in vivo studies with microglia have corroborated

that this cell type expresses estrogen receptors by conventional techniques

such as immunocytochemistry and in situ hybridization (Garcia-Ovejero,

Veiga et al. 2002; Sierra Submitted).

In collaboration with Dr. Sierra, microglia from adult cfms-EGFP

mice were isolated by FACS, which enabled us to analyze ex vivo the

expression of steroid receptor genes by real-time PCR (RT-PCR). Our RT-
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PCR results demonstrated that ex vivo isolated microglia express

glucocorticoid (GR) and mineralocorticoid (MR) receptors, as well as low

levels of ERα  mRNA. Additionally, we further described that in vivo

activation of microglia by i.p. LPS injections led to a down-regulation of

these receptors (Fig.11A) (Sierra Submitted). Furthermore, expression of

ERβ, androgen receptor (AR), or progesterone receptor (PR) was not

identified in resting or LPS-activated microglia (Sierra Submitted). Protein

levels of GR were validated by Western blot, but no ERα protein was

detected by this method, consistent with it’s low mRNA levels (Fig.11B).

In agreement with previous reports, we were unable to detect ERα

protein through conventional methods. For this reason, we established a

collaboration with Dr. Milner, who has done extensive work on the detection

of estrogen receptors in the brain at the ultrastructural level through electron

microscopy. The expression of ERα protein in microglia was studied in

dorsal hippocampal sections of cfms-EGFP female mice. Microglia were

initially visualized by DAB immunohistochemistry using an anti-GFP

antibody. Typical microglial processes were found in stratum radiatum of

the CA1 region, juxtaposed to axons and dendrites and other elements of the

brain’s parenchyma (Fig.12).
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Single labeling with a previously described anti-ERα  antibody

(Okamura, Yamamoto et al. 1992; Alves, Lopez et al. 1998; Milner,

McEwen et al. 2001) revealed the presence of ERα  protein in axons,

dendrites and glial processes (Fig.13), as reported previously (Milner,

McEwen et al. 2001).

For co-localization studies, microglia were identified with the anti-

GFP antibody, which was then detected with a species-specific (chicken)

secondary antibody conjugated to nano-gold particles; ERα was detected

with an anti-ERα  antibody and a species-specific (rabbit) secondary

antibody conjugated to horseradish peroxidase revealed by

diaminobenzidine (DAB) immunohistochemistry. Double staining of tissue

sections revealed rare double-labeled microglia profiles, with most ERα

labeling found on neuronal spines, terminals, and axons (Fig.13).

Nevertheless, in some instances, we did observe rare instances of double-

labeled microglia with ERα in the cytoplasm of cell processes (Fig.13C, D),

and near the cell nucleus (data not shown). A parallel study was done with

sections dually labeled for GFP and ERβ, in which no double-labeled

processes were detected (data not shown). These ultrastructural results are

consistent with our RT-PCR results showing that microglia express low

levels of ERα and do not express ERβ.
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To assess the functional relevance of steroid hormone receptors

expressed in microglia in the context of inflammation, BV-2 cells and

primary microglia cultures were treated with corticosterone or E2, and then

challenged with LPS+INFγ as detailed in Chapter 2.

E2 does not block the activation of p38 MAPK by LPS

An early event in the response of microglia to LPS is the activation of

inflammatory transcription factors, such as the p38 MAPK (Lee and Young

1996). Microglia cells were pre-treated with 10nM E2 for 30 minutes and

then stimulated with LPS for an additional 30 minutes. LPS-induced p38

MAPK phosphorylation was not significantly reduced by E2 in primary

microglia (n=4) (Fig.14A), nor in BV-2 microglia (n=7) (data not shown)

[Note: n= the number of independent experiments done in triplicate]. E2 also

failed to prevent the nuclear translocation of phospho-p38 MAPK in primary

microglia (Fig.14B). Preliminary studies with LPS-induced NFkB nuclear

translocation in primary microglia showed a similar lack of E2 effects (not

shown). Conversely, LPS-induced phosphorylation of p38MAPK was

diminished by a 30 minute pre-treatment with 1µM corticosterone (52.69 ±

1.91%) (n=2) (p=0.05) (Fig.14A, C).
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Corticosterone, but not E2, blocks the production of inflammatory cytokines

in microglia

Cytokines are the principal mediators of microglia-induced

inflammation, and therefore, a critical therapeutic target. Initial studies with

LPS-stimulated BV-2 microglia showed that E2 pre-treatment had no

consistent effect on production of TNFα , IL-6 or NO under various

conditions tested [E2 10nM (n=3), 1uM (n=2), 10pM (n=2); pre-treatments

3hr (n=2), 24hr (n=1), 10 min (n=2)] (data not shown). Therefore, primary

cultures of microglia cells were tested with corticosterone or E2 and then

challenged with LPS+INFγ  to elicit the expression of inflammatory

cytokines (Chapter 2). Corticosterone was used as a positive control in these

experiments, given its reported anti-inflammatory effects (McKay and

Cidlowski 1999; Nadeau and Rivest 2003), and our findings showing

predominant expression of GR in microglia compared to other steroid

hormone receptors (Sierra Submitted).

We tested the effects of corticosterone and E2 over a wide range of

concentrations (10pM, 10nM, and 1µM) (Bruce-Keller, Keeling et al. 2000;

Ghisletti, Meda et al. 2005; Jacobsson, Persson et al. 2006). After 24hr,

LPS+INFγ induced the secretion of the pro-inflammatory cytokines TNFα,

IL-6 as well as NO, which were not detectable in the absence of LPS+INFγ
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or with hormone treatment alone (Chapter 2). Corticosterone at the low dose

(10nM) showed a trend to decrease the production of TNFα secreted by

microglia (Fig.15A) by 16.91 ± 9.5% (n=8) (n.s.); while a higher

concentration (1µM) of glucocorticoid reduced TNFα secretion by 53.72 ±

4.62% (n=15)  (p<0.001). TNFα secreted by microglia remained unaffected

by E2 over the entire range of concentrations tested (Fig.15).

The low concentration of corticosterone had no significant effect on

IL-6 expression, while the high dose of corticosterone (1µM) significantly

prevented the induction of IL-6 by 45.02 ± 3.75% (n=15) (p<0.001)

(Fig.15B). The low concentration of E2 (10pM) produced a similar, but

smaller decrease in IL-6 production of 14.55 ± 6.34% (n=4) (p=0.01). At a

higher dose (10nM), E2 had no significant effect; yet at the highest dose

(1µM) it produced a small but significant increase (16.91 ± 4.97% (n=7)

(p=0.004) (Fig. 15B). The production of NO was reduced by corticosterone

(1µM) by 25.46 ± 3.03% (n=15) (p<0.001) (Fig. 15C), whereas E2 was

ineffective in modulating NO production at any of the concentrations tested

(Fig. 15C).
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E2 does not induce rapid phosphorylation of p44/42 MAPK

The p44/42 extracellular regulated mitogen activated protein kinase

(ERK MAPK), a mediator of multiple signaling pathways, plays an

important role in brain responses to injury (Pearson, Robinson et al. 2001;

Irving and Bamford 2002; Hetman and Gozdz 2004). In the brain, p44/42

MAPK is a main mediator of E2’s neuroprotective effects (Bryant, Sheldahl

et al. 2006). To determine if E2 could induce p44/42 MAPK activation in

microglia, BV-2 cells or primary microglia cultures were acutely treated

with E2 and p44/42 phosphorylation levels were measured by Western blot.

E2 did not induce the phosphorylation of p44/42 MAPK in BV-2 microglia,

even over a wide range of E2 concentrations [10pM (n=2), 1nM (n=2),

10nM (n=7), 1µM (n=2)] and time points of incubation (5 to 60 minutes)

(data not shown). Some experiments showed a stimulatory effect of E2, but

these were inconsistent, non-reproducible, and sometimes opposite. In

primary microglia, E2 [10nM, 15min, (n=6)] consistently showed no effect

on p44/42 phosphorylation levels (Fig. 16).

In view of the limited effects found with E2, and predominant effects

exerted by corticosterone in primary microglia, I assessed the expression of

ERα and GR in these cells by Western Blot. Primary microglia showed no

detectable levels of ERα  when cultured with regular media or in the
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presence of MCSF or GM-CSF (Fig.17A). However, primary microglia had

strong expression of GR (Fig. 15). GR protein levels were not regulated by

LPS+INFγ stimulation (Fig. 17B). Primary microglia, both in resting state or

after LPS+INFγ stimulation, were negative for ERβ (data not shown), as

found in ex vivo microglia (Sierra in preparation).

Discussion

E2 anti-inflammatory effects are not mediated through MG

The data presented above indicate that microglia express

glucocorticoid and mineralocorticoid hormone receptors. However, for the

sex steroids, only ERα was expressed, whereas ERβ, androgen receptor and

progesterone receptor were not. Recently, a membrane bound, G-protein

coupled receptor for E2 has been described (GPR30) (Pedram, Razandi et al.

2006), yet no reports have examined its expression in microglia.

Expression of ERα was low in microglia, which was reflected by our

inability to detect the protein by Western blot and immunohistochemistry.

Indeed, the expression of sex hormone receptors in microglia has been a

controversial issue, since their detection by conventional

immunohistochemistry or in situ hybridization in the adult brain remained

inconclusive (10, 19, 32). A main compounding factor in these studies may
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be the low expression levels of these receptors coupled to their non-nuclear

localization (Sierra, et al 2007). ERα detection was possible by electron

microscopy ultrastructural analysis, which revealed only rare labeling of

ERα in microglia profiles (Sierra, et al, 2007). Non-nuclear localization of

ERα has been described for CA1 neurons of the hippocampus, which is also

not detectable by light microscopy (Milner, McEwen et al. 2001).

Non-nuclear estrogen receptors are implicated in MAPK activation,

yet in BV-2 cells and in primary microglia E2 failed to modulate basal

p44/42 MAPK phosphorylation levels. My findings are both in agreement

and in disagreement with previous reports with different microglia cell lines

(Bruce-Keller, Keeling et al. 2000; Baker, Brautigam et al. 2004).

The low levels of ERα expression are consistent with my results

showing the inability of E2 to exert significant anti-inflammatory effects on

microglia, as assessed by p38 MAPK activation and the production of

TNFα, IL6, and NO. As discussed in the Introduction, reports on E2 effects

on activated microglia in vitro are inconsistent. Culture conditions, species

from which primary cultures are obtained, and transformation of cell lines

could be factors contributing to such discrepancies. However, we further

have reported that in vivo E2 did not regulate the microglial expression of

IL-6, TNFα , TGFβ1 mRNAs (Sierra Submitted). Therefore, the low
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expression of ERα in microglia may play a yet unidentified role in these

cells. Another possible explanation to the results presented here is that E2

may synergize with other, as of yet unidentified factors, to affect microglia

cells. This could be explored by others in future studies.

E2 has widely reported neuroprotective and anti-inflammatory effects

in the brain (Lee and McEwen 2001; Vegeto, Ciana et al. 2002). Based on

the findings presented here, in which ERβ is not expressed and ERα  is

expressed at low levels in microglia, I propose that the anti-inflammatory

effects of E2 observed in the brain in vivo are mediated by cell types other

than microglia. Supporting this model, several groups have reported the

expression of ERs, and corroborated the effects of E2, in cells involved in

the brain’s inflammatory response such as astrocytes (Azcoitia, Sierra et al.

1999; Sortino, Chisari et al. 2004; Dhandapani and Brann 2006), endothelial

cells (Langub and Watson 1992; Galea, Santizo et al. 2002; Stirone, Duckles

et al. 2003), and infiltrating leukocytes (Offner 2004; Shim, Gherman et al.

2006; Stygar, Westlund et al. 2006).

Glucocorticoids play a primary role in MG regulation

Microglia activation by LPS+INFγ was inhibited by corticosterone,

supporting our findings that GR is the predominant steroid hormone receptor
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expressed in these cells at both the mRNA and protein level (Sierra

Submitted). Glucocorticoids play an essential role in protecting the brain

against an inflammatory challenge (Sorrells and Sapolsky 2007). For

instance, the GR agonist dexamethasone increases the survival of

dopaminergic neurons after intranigral injection of bacterial

lipopolysaccharides (LPS), while the GR/PR antagonist RU486 induces a

dramatic degeneration (Castano, Herrera et al. 2002). The results presented

in this Chapter support a model where glucocorticoids, and not E2s, are the

main regulators of activated microglia. A more detailed description of the

actions of glucocorticoids on brain inflammation is presented in the

following chapter (Chapter 4).
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CHAPTER 4

NEUROENDOCRINE MICROGLIA – LOCAL AMPLIFICATION

OF GLUCOCORTICOIDS

In the previous chapter I presented evidence indicating that

glucocorticoids, namely corticosterone, are the main steroid hormone

regulating microglia activation. Glucocorticoids, cortisol in humans and

corticosterone in rodents, are presumably the body’s most effective

regulators of inflammation, exerting permissive, stimulatory, and

suppressive effects [rev by (Munck, Guyre et al. 1984; McEwen 1997;

Yeager, Guyre et al. 2004)]. Systemic inflammation induces a surge in

circulating glucocorticoids as a result of hypothalamic-pituitary-adrenal

(HPA) axis activation by cytokines (Beishuizen and Thijs 2003). This surge

of glucocorticoids is required for survival in experimental animals

challenged with antigens, bacterial lipopolysaccharides (LPS), or tumor

necrosis factor-α  (TNFα) [rev by (Chapman, Gilmour et al. 2006)].

Glucocorticoids regulate inflammation by altering the distribution and

trafficking, as well as differentiation and maturation, of

monocytes/macrophages, neutrophils and granulocytes (McEwen 1997;

Ashwell, Lu et al. 2000). Additionally, they suppress pro-inflammatory gene
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transcription and promote expression of anti-inflammatory cytokines

(Barnes 1998).

The effects of glucocorticoids follow a bell-shaped curve, showing

permissive/stimulatory actions at physiological concentrations, while

exerting suppressive effects at pharmacological doses (Munck and Naray-

Fejes-Toth 1992; Sapolsky, Romero et al. 2000). In this way, physiological

concentrations of glucocorticoids facilitate the initiation of inflammatory

responses, and at supra-physiologic concentrations, achieved through HPA

axis activation, glucocorticoids mediate anti-inflammatory actions to prevent

an unregulated, and potentially lethal, inflammatory response [rev by

(Chapman, Gilmour et al. 2006)].

For the inflammatory response to be effectively resolved, or

perpetuated, the actions of glucocorticoids require specific targeting to the

site of inflammation to exert their proper function. Regulatory targeting

mechanisms include changing the affinity of glucocorticoid binding proteins,

modulating the expression and/or affinity of glucocorticoid receptors (GR),

and/or metabolically activating or inactivating glucocorticoids within the

target cell [rev by (Rook, Baker et al. 2000)].

Glucocorticoids can enzymatically be activated or inactivated,

between their C11-hydroxyl to their C11-ketone forms respectively, by two
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distinct enzymes known as 11β-hydroxysteroid dehydrogenase (11βHSD)

type 1 and type 2 [rev by (Seckl and Walker 2001; Tomlinson and Stewart

2001)]. 11βHSD-2 is a dehydrogenase, inactivating corticosterone (cortisol

in humans) into 11-dehydro-corticosterone (cortisone in humans). 11βHSD-

2 is predominantly expressed in mineralocorticoid target tissues, such as the

kidney collecting tubules, colon and sweat glands, or tissues requiring

protection from glucocorticoid actions, such as the placenta and developing

brain (Brown, Diaz et al. 1996; Diaz, Brown et al. 1998). On the other hand,

11βHSD-1 acts predominantly in vivo and within cells, as an oxido-

reductase, catalyzing the re-activation of corticosterone (cortisol in humans)

from its 11-keto derivative (cortisone in humans) (Seckl and Walker 2001).

Thus, cells expressing 11βHSD-1 increase the levels of available

glucocorticoids for GR activation, whereas cells expressing 11βHSD-2 are

glucocorticoid resistant.

In the 11βHSD-1 null mouse, glucocorticoid–mediated responses are

attenuated (Kotelevtsev, Holmes et al. 1997), consistent with the model that

11βHSD-1 activity contributes significantly to the pool of intracellular

active glucocorticoids (Seckl and Walker 2001; Morris, Brem et al. 2003).

Although this role of 11βHSD-1 in the metabolic actions of glucocorticoids



69

has been clearly established, its role in the immune response has, until

recently, remained unclear.

Initial studies with 11βHSD inhibitors suggested a role for these

enzymes in immunity, yet it remained unclear whether the results pertained

to 11βHSD-1 or 11βHSD-2 activity [rev. by (Chapman, Gilmour et al.

2006)]. Currently, 11βHSD-1 expression and activity has been detected in

the principal cells of the immune system: monocytes, macrophages,

dendritic cells, B and T lymphocytes, both in human and mouse [rev. by

(Chapman, Gilmour et al. 2006)]. 11βHSD-1 null mice show a delay in

acquisition of macrophage phagocytic capacity (Gilmour, Coutinho et al.

2006). Furthermore, a consistent pattern has emerged in which pro-

inflammatory mediators, particularly TNFα and IL-1β, increase 11βHSD-1

expression to increase local glucocorticoid availability and hence, promote

local anti-inflammatory action (Chapman, Gilmour et al. 2006; Hardy, Filer

et al. 2006).

11βHSD-1 is predominantly expressed in metabolically active tissues

such as the liver, adipose tissue, bone, gonads, and the brain (Moisan,

Edwards et al. 1992; Seckl and Walker 2001). Many brain areas are rich in

11βHSD-1 expression, notably the hippocampus, cerebellum, and neocortex

(Moisan, Seckl et al. 1990). It has been proposed that 11βHSD-1expression
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in the brain plays roles in cognitive function, neuroprotection, and

contributes to the negative feedback of glucocorticoids on HPA activity [rev

by (Holmes, Yau et al. 2003)]. However, elevated or prolonged levels of

glucocorticoids are neurotoxic to injured neurons (Reagan and McEwen

1997), and to our knowledge, no studies have addressed whether brain

11βHSD-1 expression plays a role in neuroinflammation.

Therefore, given that un-regulated microglia-mediated inflammation

contributes greatly to neurodegeneration [rev in Chapter 1], and in view of

the regulatory effects of glucocorticoids on microglia (Chapter 3), in the

present Chapter of this thesis I tested the hypothesis that microglia express

glucocorticoid converting enzymes 11βHSD type 1 and type 2, which

modulate the actions of glucocorticoids in the CNS. To this end, I analyzed

11βHSD type 1 and type 2 mRNA expression by real-time PCR, and protein

by immunofluorescence of brain tissue sections and Western blots of

primary cultures. Additionally, the function of these enzymes was studied in

primary microglia cultures using tritiated substrates. The expression and

function of 11βHSDs were examined both in resting and activated microglia.
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Microglia cells express functional 11βHSD-1

Expression of 11βHSD-1 and 11βHSD-2 mRNA was analyzed by

real-time PCR (RT-PCR) in microglia isolated from adult cfms-EGFP mice

by fluorescence-activated cell sorting (FACS) (ex vivo MG). 11βHSD

expression was also assessed in primary cultures derived from neonatal

mouse brains (1°MG) (Fig.18). Adrenal and ovary tissue samples were used

as positive controls. Specific gene cycle threshold (Ct) values were

normalized to Ct values of L27A, a ribosomal housekeeping gene, and

converted to percentage using adrenal values as 100% for 11βHSD-1

(Fig.18A) and ovary as 100% for 11βHSD-2 (Fig.18B). Ex vivo MG and

primary microglia expressed low levels of 11βHSD-1 compared to adrenals

and ovary (Fig.18A), and no significant differences were found in the

expression levels of 11βHSD-1 between ex vivo MG and primary microglia

(Fig. 18A). On the other hand, 11βHSD-2 expression was almost

undetectable in microglia samples (Fig.18B). Although both enzymes were

expressed at low levels, further comparison of 11βHSD expression values in

microglia showed that 11βHSD-1 is the main enzyme expressed (Fig.18C).

This was further corroborated by Western Blot analysis of primary microglia

showing a specific 11βHSD-1 immunoreactive band of predicted molecular

weight (36kDa) (Fig.18D). 11βHSD-1 protein expression in microglia was
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low compared to liver (Fig.18C). 11βHSD-2 was not evaluated by Western

blot, however the possibility of its presence was analyzed in the functional

assays that follow.

To evaluate the possible function of 11βHSD-1 and 11βHSD-2,

1°MG cells were incubated with the tritiated substrates H3-11-dehydro-

corticosterone (11-DH-Cort) or H3-corticosterone (Cort). The conversion of

these steroids, from their 11-hydroxyl to 11-keto forms or vice versa, was

analyzed by thin layer chromatography (Fig.19). 1°MG showed specific

11βHSD-1 conversion of 11-DH-Cort to Cort. Scanning of the TLC plate

revealed only two peaks of radioactivity, indicating cells did not produce

any other metabolites from 11-DH-Cort (Fig. 19A). To estimate the activity

levels of 11βHSD-1, a time-course incubation with 11-DH-Cort was

conducted with primary microglia. Conversion of 11-DH-Cort to Cort was

time-dependent, observed as early as 3hr (57.8±2.3%, p<0.05), with

substrate depletion by 12hr (85.6±0.2%, p<0.05) (Fig.19B). In contrast,

1°MG showed no 11βHSD-2 conversion of Cort to 11-DH-Cort (Fig.19C)

suggesting that the 11βHSD-2 enzyme is absent in microglia. The specificity

of 11-DH-Cort conversion to corticosterone was verified by co-incubation of

the cells with an 11βHSD-1 inhibitor (11-keto-progesterone)
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(Latif, Pardo et al. 2005). Treatment of 1°MG with 11-keto-progesterone

completely blocked the 11βHSD-1 conversion of 11-DH-Cort to Cort

(Fig.19D).

11-dehydro-corticosterone blocks cytokine production via 11βHSD-1

activity in 1°MG

To assess the functional relevance of 11βHSD-1 expression in

microglia, 1°MG cultures were stimulated with LPS to elicit the production

of pro-inflammatory cytokines and the anti-inflammatory effects of 11-

dehydro-corticosterone were compared to corticosterone. At a range of

concentrations (5nM-5µM), 11-dehydro-corticosterone was equal to or even

more effective than corticosterone in blocking the production of the pro-

inflammatory cytokines TNFα  (IC5011C= 51nM vs IC50C= 62.6nM, p<0.0001)

(Fig.20A), IL-6 (IC5011C= 201.8nM vs IC50C= 232.4nM, p<0.0001) (Fig.20B), and

NO (IC5011C= 58.9nM vs IC50C= 67.5nM, p<0.0001) (Fig.20C).

Activated microglia increase expression of 11βHSD-1

Activation of peripheral macrophages and monocytes by pro-

inflammatory stimuli is reported to increase the expression of 11βHSD-1

(Chapman, Gilmour et al. 2006; Hardy, Filer et al. 2006). To establish if
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activation of microglia also affected 11βHSD-1, mRNA expression of this

enzyme was analyzed by RT-PCR in 1°MG cultures treated with LPS+INFγ.

LPS+INFγ-activated microglia showed a 246±63-fold induction (p<0.01) in

11βHSD-1 expression (Fig.21A). To determine if 11βHSD-1 up-regulation

could also be induced by downstream mediators of inflammation, primary

microglia were stimulated with INFγ alone or microglia LPS-conditioned

media (LCM). INFγ and LCM did not affect 11βHSD-1 expression in 1°MG

(Fig.21A) indicating that LPS is a far more potent inducer of 11βHSD-1

mRNA expression than cytokines.

In spite of the increased mRNA levels of 11βHSD-1, there was no

increase in enzymatic activity when LPS+INFγ activated primary cultures

were incubated with H3-11-DH-corticosterone (data not shown). These

results suggest that other factors may be required for increased activity in

activated microglia.

To validate my findings from primary microglia in vivo, I next

analyzed by RT-PCR samples of FACS-sorted microglia from cfms-EGFP

adult male mice that were intraperitoneally (i.p.) injected with saline or LPS

for 24hr. This i.p. injection of LPS induces the activation of microglia as

observed by morphological changes and the expression of inflammatory

cytokines (Sierra, et al, 2007). RT-PCR analysis showed that LPS activation
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of microglia induced a robust increase in the expression of 11βHSD-1

(655±154 fold induction, p<0.01) (Fig.21B). This increase in 11βHSD-1

mRNA  expression was consistent with my findings in primary microglia.

In a parallel study to the above experiment, 30 µm serial sections were

collected from brains of perfused adult male cfms-EGFP mice following i.p.

saline or LPS injections (24hr). Preliminary 11βHSD-1 immunofluorescence

analyses indicated that in saline treated mice, 11βHSD-1 immunoreactivity

was prominent in non-EGFP cells with little to no staining in microglia cells

(assessed by co-localization with EGFP) (Fig.22A). Double-labeling

experiments with anti-11βHSD-1 and a marker for neurons (anti-NeuN),

astrocytes (anti-GFAP), or oligodendrocytes (anti-RIP) indicated that most

11βHSD-1 expression came from astrocytes (Fig.22B). After 24hr of LPS

injection, 11βHSD-1 staining remained at low levels in microglia cells

(Fig.22C). In sharp contrast, 11βHSD-1 immunoreactivity was greatly

down-regulated in astrocytes (Fig.23D). This pattern of staining was

observed at 48hr as well (data not shown), with an indication of returning

levels of 11βHSD-1 in non-EGFP cells, and microglia returning to a resting

phenotype, by day 5 after LPS challenge (data not shown).
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Glucocorticoids regulate 11βHSD-1 expression in microglia

In addition to inducing the activation of microglia, i.p. injection of

LPS causes circulating corticosterone levels to rise (Beishuizen and Thijs

2003; Nadeau and Rivest 2003). Acute treatments of glucocorticoids are

reported to increase 11βHSD-1 expression in the hippocampus. To assess

whether microglia 11βHSD-1 expression is regulated directly by

glucocorticoids, 1°MG cultures were treated with corticosterone.

Preliminary experiments indicated that direct stimulation of 1°MG with

corticosterone (1uM) did not significantly affect 11βHSD-1 expression

(Fig.23). Corticosterone treatment significantly reduces the LPS+INFγ-

activation of 1°MG, therefore, 1°MG cells were also treated with

corticosterone, LPS+INFγ or both. LPS+INFγ induced an expected increase

of 11βHSD-1 expression (406±63.4%, p<0.05) (Fig.23), and corticosterone

had no effect on this up-regulation (442.3±9.0%, p<0.01) (Fig.23). These

preliminary results indicate that acute, micromolar concentrations of

corticosterone do not affect 11βHSD-1 mRNA expression in microglia, and

also suggest they do not block the LPS+INFγ-induced increase in 11βHSD-1

expression.
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Discussion

In the present Chapter of this thesis I have described the expression

and activity of 11βHSD-1 in microglia, providing evidence that suggests an

active role for 11βHSD-1 in regulating brain inflammation through the re-

activation of glucocorticoids.

11βHSD-1 expression in Microglia

In the resting brain, preliminary immunofluorescence analysis

indicated that 11βHSD-1 expression was predominantly found in EGFP-

negative cells (possibly astrocytes and neurons), consistent with the

proposed house-keeping roles of glucocorticoids in the homeostasis of the

CNS [rev. by (McEwen 1997)]. In this chapter, 11βHSD expression and

activity in microglia cells is described for the first time. Although

preliminary findings suggest 11βHSD immunoreactivity is low in tissue

microglia, mRNA levels assessed in ex vivo FACS-sorted microglia were

high, and primary microglia cells showed the presence of mRNA, protein,

and a functional enzyme. The expression levels and activity of 11βHSD-1 in

microglia described here are comparable to other related cell types such as

human monocyte-derived macrophages, which exhibit 95% conversion in

24hr (Thieringer, Le Grand et al. 2001). My results are also similar to  those
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found in other cells that participate in local tissue inflammation, such as

TNFα stimulated synovial fibroblasts (Hardy, Filer et al. 2006) and skeletal

muscle cells (Jang, Obeyesekere et al. 2006), which show reductase activity

and substrate conversion with similar rates. However, the 11βHSD-1 activity

in microglia is considerably lower than the activity observed in highly

metabolic cells like hepatocytes, which exhibit 30% conversion in 30

minutes (Liu, Nakagawa et al. 2003), or that found in steroidogenic cells

such as testicular Leydig cells, which exhibit 95% conversion of substrate

within 30 minutes (private communication, Ge, et al.).

Although an increase in 11βHSD-1 mRNA was detected in activated

microglia, 11βHSD-1 activity was not changed. This may be due to rate-

limiting factors for 11βHSD-1 activity, which were not considered in the

experimental design. The catalytic activity of 11βHSD-1 is determined by

the redox potential set by the NADP+ to NADPH cofactor ratio, which is

modulated by hexose-6-phosphate dehydrogenase (H6PD) activity. H6PD

raises the intracellular level of NADPH favoring the reductase activity of

11ßHSD-1 observed in several tissues [rev by (Ge, Dong et al. 2005)].

Therefore, activity of H6PD and levels of NADPH in activated microglia

should be considered, especially as lack of G6PD can abrogate 11ßHSD-1

activity (Lavery, Walker et al. 2006).
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The adult brain presents expression of 11β-HSD-2 that is limited to

mineralocorticoid sensitive areas involved regulation of blood pressure and

salt appetite (Robson, Leckie et al. 1998). There is also low levels of 11β-

HSD-2 expression reported in selected nuclei of the hypothalamus, as well

as the amygdala, locus coeruleus and nucleus tractus solitarius (Robson,

Leckie et al. 1998). Almost undetectable levels of 11βHSD-2 mRNA were

observed in microglia, and no functional activity was present indicating

these cells do not catalyze the de-activation of glucocorticoids and are not

part of the brain population of cells expressing 11βHSD-2.

Modulation of 11βHSD-1 during neuroinflammation

High levels of glucocorticoids are deleterious to brain homeostasis,

therefore tight regulation of active glucocorticoids is important (Sapolsky

1996). Acute stress, or glucocorticoid treatment in rats, induces a rise in

hippocampal 11βHSD-1 expression (Jamieson, Fuchs et al. 1997; Jamieson,

Nyirenda et al. 1999), which plays a role in mediating the necessary negative

feedback on HPA activity [rev by (Holmes, Yau et al. 2003)]. However,

chronic stress decreases 11βHSD-1 expression (Seckl 1997), as a likely

neuroprotective mechanism to prevent the toxic metabolic effects of

glucocorticoid excess (Rajan, Edwards et al. 1996). The decrease of
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11βHSD-1 expression observed in non-EGFP cell in my studies may likely

be induced by pro-inflammatory stimuli, such as cytokines secreted by

microglia, and/or to the acute elevation of glucocorticoids following LPS

injection.

On the other hand, 11βHSD-1 mRNA up-regulation in activated

microglia following LPS challenge suggests these cells locally increase the

availability of active glucocorticoids following their activation. However,

previously we reported that under the same in vivo experimental paradigm,

glucocorticoid receptors are down-regulated by LPS activation (Sierra

Submitted). These apparently opposing effects of LPS in activated microglia

are reminiscent of the effects of glucocorticoids on immune cells, in which

cytokine production is inhibited, yet cytokine receptor expression is

increased (Sorrell, 2006). Alternately, given that systemic LPS injection

causes elevated corticosterone levels, the down-regulation of GR’s observed

in ex vivo MG could be due to autologous receptor down-regulation

(Burnstein and Cidlowski 1992; Oakley and Cidlowski 1993). This

prediction would be consistent with the fact that GR protein levels were

unaffected by LPS+INFγ in primary microglia, and my preliminary findings

showing that corticosterone does not down-regulate 11βHSD-1 mRNA

expression in LPS+INFγ stimulated microglia.
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Even with reduced GR expression, my results with primary microglia

indicate that in spite of LPS+INFγ activation, 11-DH-Cort was equal to or

more effective than Cort in blocking TNFα, IL-6 and NO production. This

maybe due to the fact that 11-DH-Cort is being converted to Cort within the

cells, where intracellular GRs are expressed. My results suggest that in

activated microglia GR-mediated anti-inflammatory effects are not being

compromised. Considering the down-regulation of 11βHSD-1 in astrocytes

and the possible increased expression in microglia (because protein levels

have not yet been seen to increase in vivo), my results indicate a role of

11βHSD-1 in gating glucocorticoid access to intracellular glucocorticoid

receptors (GR) within specific cell types.

The results presented indicate that local amplification of

glucocorticoids may be occurring at sites of neuro-inflammation through the

expression and activity of 11βHSD-1 in microglia. 11βHSD-1 activity may

be critical in boosting the anti-inflammatory effects of glucocorticoids

locally and therefore, provide a mechanism for the safe resolution of

inflammation and prevention of secondary neuronal toxicity. Future studies

with 11βHSD-1 null mice in models of neuronal injury could validate these

findings.
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Following LPS challenge, preliminary immunofluorescent analyses

noted a sharp decrease of 11βHSD-1 expression in non-EGFP (possibly

astrocytes and neurons). This would suggest a neuroprotective response

mediated by 11βHSD-1, given neuronal cell’s susceptibility to high

concentrations of glucocorticoids. Therefore, a model can be suggested

where, as systemic or brain inflammation proceeds, 11βHSD-1 expression

allows particular cell types in the brain to adapt and respond to elevated

blood glucocorticoid levels resulting from HPA axis activation. This

includes microglia, which engage in the conversion of inert 11-keto-

glucocorticoids to active 11-hydroxl-glucocorticoids.



89

CHAPTER 5

MICROGLIA EXPRESS STEROID-CONVERTING ENZYMES

AND METABOLIZE STEROID PRECURSORS INTO ACTIVE

SEX HORMONES

The brain can synthesize steroids and metabolize circulating hormone

precursors, like DHEA, into active androgens and estrogens. Neurosteroids

have important roles in the homeostasis of the CNS, including

neuroprotection, and their levels correlate negatively with

neurodegeneration. Microglia play a critical role during brain damage

responses, which can be ameliorated by the protective effects of

neurosteroids. The enzymes that catalyze the conversion of cholesterol and

the production of steroid hormones are expressed in the various cell types of

the brain, and although steroid metabolism has been implicated in the brain’s

response to injury, the participation of microglia in this process has not been

described. In view of my findings showing microglia are able to metabolize

adrenal steroids, in this part of my thesis I set out to test the hypothesis that

microglia contribute to the synthesis and metabolism of neurosteroids in the

brain. To do so, I applied the RT-PCR gene expression approach, coupled to

functional assays of steroid conversion for particular enzymes.
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Gene expression of steroid-converting enzymes in microglia

Although the steroid-metabolizing capacity of the principal cells in

the CNS has been described to some extent, there are no reports addressing

the contribution of microglia to brain steroidogenesis. To investigate the

expression of the main steroid-converting enzymes in mouse microglia, I

designed gene specific primers for Real Time PCR (RT-PCR) (Table 1). RT-

PCR analysis of RNA from adult FACS-sorted microglia (ex vivo MG) and

from primary microglia cultures (1°MG) revealed expression of the

following genes: peripheral benzodiazepine receptor (PBR), steroid acute

regulatory protein (StAR), aryl sulfatase (ArsaA), steroid sulfatase (StS) 3β-

hydroxysteroid dehydrogenase type 7 (3βHSD7), 17β-hydroxysteroid

dehydrogenase type 1 (17βHSD1), and 5α-reductase (5αR) (Table 2). On

the other hand, cytochrome p450 side chain cleavage enzyme (p450scc),

cytochrome p450 21-hydroxylase (p450c21), cytochrome p450 17-

hydroxylase (p450c17), DHEA sulfotransferase (Sulft), 3βHSD type 1, 2,

and 4, cytochrome p450aromatase (p450Arom), and 3α-hydroxysteroid

dehydrogenase (3αHSD) were not detected (Table 2). The ratio of specific

gene Ct values to the Ct value of L27A, a housekeeping gene, was calculated

as a way of assessing the relative expression levels of each gene between ex

vivo MG and 1°MG (Table 2).
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Thus, the most abundant genes expressed were the PBR (ratio of 0.80;

0.94) and Arsa (ratio of 0.85; 0.83), while the lowest expression was found

for StAR (ratio of 0.68; 0.62) (Table 2). No differences were found between

the expression levels of ex vivo MG and 1°MG (Student T-test; p=0.16-

0.64), except for the PBR (p<0.0001) and 3βHSD7 (p<0.05), which were

expressed at higher levels in 1°MG (Table 2). A summary of the expression

profile of steroid-converting enzymes in microglia is depicted in Fig.24.

LPS stimulation modulates expression of steroid-converting enzymes in

microglia

To analyze the expression of steroid-converting enzymes in activated

microglia, adult cfms-EGFP male mice were injected i.p. with saline or

5mg/kgLPS; 24hr later, brains were extracted and microglia were isolated by

FACS-sorting (Chapter 4). This in vivo stimulation paradigm with LPS leads

to the activation of brain microglia, indicated by changes in morphology and

the expression of pro-inflammatory cytokines (Sierra, Gottfried-Blackmore

et al. 2007; Sierra Submitted). In vivo stimulation with LPS led to an overall

decrease in the expression of steroid-converting enzymes (Fig.25). StAR

expression was decreased by 38.8±9.3% (p<0.05), Arsa by 26±10.6% (not

significant), 3βHSD7 by 64.1±2.9% (p<0.001), 17βHSD1 by 71.4±0.8%
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(p<0.05), and 5αR by 66.6±1.8% (p<0.05) (Fig. 25). One notable exception

was the PBR, whose expression was significantly increased 7.7±2.2-fold

(p<0.05) (Fig.25). Furthermore, LPS stimulation did not induce the

expression of p450scc, p450c21, p450c17, Sulft, 3βHSD1-2,4, p450Arom,

or 3αHSD.

To further explore the effects of other pro-inflammatory stimuli on

steroid-converting enzyme expression, primary microglia cultures (1°MG)

were used. 1°MG were stimulated for 24hr with LPS+INFγ or INFγ alone

and enzyme expression was assessed by RT-PCR. Stimulation with

LPS+INFγ led to an increase in the expression of all the steroid-converting

enzymes that were expressed in resting 1°MG (Fig.26). PBR expression was

increased 9.6±1.0-fold (p<0.01) (Fig.26A), StAR increased 4.5±0.7-fold

(p<0.05) (Fig.26B), Arsa increased 1.9±0.1-fold (p<0.01) (Fig.26C),

3βHSD7 increased 2.9±0.4-fold (p<0.01) (Fig.26D), 17βHSD1 increased

3.3±0.4-fold (p<0.01) (Fig.26E), and 5αR was increased 5.1±0.6-fold

(p<0.01) (Fig.26F). INFγ stimulation alone only affected the expression of

3βHSD7 (increase of 2.9±0.4-fold (p<0.05)) (Fig.26D).

In vivo, i.p. injection of LPS induces high levels of circulating

cytokines, which can indirectly activate brain MG and induce brain
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expression of pro-inflammatory cytokines (Chakravarty and Herkenham

2005; Sierra, Gottfried-Blackmore et al. 2007). Our in vivo experiments with

LPS yielded a down-regulation of steroid-converting enzyme expression. To

determine whether an enriched milieu of inflammatory cytokines could

mimic our in vivo results, 1°MG cultures were stimulated with microglia

LPS-conditioned media, which contains LPS and high levels of several

inflammatory cytokines such as TNFα, IL-6 and NO (Sierra Submitted), as

well as IL1β, IL-12, MCP-1, MCP-5, and RANTES (Chapter 2). This LPS-

conditioned media (LCM) was used to stimulate fresh cultures of 1°MG.

24hr stimulation with LCM did not induce a down-regulation of steroid-

converting enzymes. Instead, it mimicked the LPS+INFγ effect on 1°MG,

but to a lesser extent (Fig.26).

Finally, 24hr stimulation with cAMP, a known inducer of

steroidogenesis in various endocrine cells, had no effect on the expression of

steroidogenic enzymes in 1°MG (Fig.26). None of the treatments in 1°MG

induced the expression of p450scc, p450c21, p450c17, Sulft, 3βHSD1-2,4,

p450Arom, or 3αHSD (data not shown).
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Steroid-converting activity in microglia

The results from our RT-PCR analysis suggested that microglia

express the enzymes required for the conversion of DHEA into androgens

and estrogens (Fig. 24). Steroid-converting activity of microglia was

evaluated by incubating 1°MG with the steroid precursor

dehydroepiandrosterone (DHEA) and measuring its metabolism. H3-DHEA

conversion of steroids was analyzed by thin layer chromatography (TLC)

and beta counting of radioactive metabolites (Fig. 27). After 24hr

incubation, 1°MG showed a 30±3.3% (p<0.0001) conversion of H3-DHEA,

with Adiol being the only product detected of this conversion, accounting

for 15.5±%1.3 (p<0.0001) of H3-radioactivity (Fig.27A). To determine if the

activation of microglia would induce any change in enzyme activity, 1°MG

were stimulated with LPS+INFγ  and co-incubated with H3-DHEA.

Microglia stimulation had no effect on the conversion or profile of steroids

produced from H3-DHEA compared to resting cells (Fig.27B).

In steroidogenic glands, androstenedione (AD) is the main

intermediary product between DHEA and the downstream synthesis of

androgens and estrogens. 1°MG incubated with H3-AD for 24hr showed a

36.7±1.7% (p<0.0001) conversion of this steroid (Fig.28A), with the main
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products of its conversion being T, 12.8±0.8% (p<0.0001); 5αAD, 3.8±0.8%

(p<0.01); and DHT, 14.4±3.1% (p<0.01) (Fig.28A). Like in my DHEA

experiments, LPS stimulation of the cells did not affect the conversion or the

profile of steroids produced from H3-AD (Fig.28B).

PBR role in microglia

PBR was the most abundant transcript detected in microglia;

additionally, it showed a robust (7.7 to 9.6 fold) increase following

microglia activation. The absence of cholesterol metabolizing enzymes, i.e.

low levels of StAR and absence of p450scc and p450c17, suggest that PBR

may play an alternate role in microglia. Stimulation of microglia with two

selective ligands for the PBR, Ro and PK (10pM), led to a specific reduction

of LPS-induced production of TNFα (16.2±10.8% decrease (p<0.05), and

40.9±8.9% (p<0.05) respectively), but had no effects on IL-6 and NO

(Fig.29), except a 12.4±6.4% (p<0.05) increase by PK on NO (Fig.29). In

contrast to these modulatory actions on cytokines, PBR ligands did not

affect the metabolism of DHEA or AD (data not shown).
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Adiol is an effective estrogen receptor agonist

The sole product of DHEA metabolism in 1°MG was Adiol. This

steroid has been reported to have androgenic and estrogenic properties

(Poortman, Prenen et al. 1975). To determine whether Adiol could function

as a specific estrogen receptor (ER) agonist, we utilized an ER-expressing

neuronal cell line, EtC.1 (Chapter 6) (Gottfried-Blackmore in preparation),

transfected with a luciferase gene reporter coupled to 3 estrogen response

elements (EREs). Incubation of these cells with Adiol induced the

expression of the luciferase gene reporter at a high dose (1µM), but not at a

lower dose (10nM) (Fig.30). Moreover, this induction was completely

abrogated by pre-treatment of the cells with the specific ER-antagonist ICI-

182,780 (100nM) (Fig.30). Microglia were not used for this assay because of

their low expression of ERs and negligible responsiveness to E2 (Chapter 3)

(Sierra Submitted).

Discussion

Neurosteroidogenesis and Microglia

Given the key role of microglia in neurodegeneration and the

protective effects of neurosteroids, in this section of my thesis I attempted to

verify whether microglia contribute to the synthesis and metabolism of
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steroid hormones in the brain. Neuro-steroidogenesis involves the de novo

synthesis of steroid hormone precursors, such as pregenenolone,

progesterone and DHEA, from cholesterol within the brain. Some

controversy still exists about this process occurring in the brain, mainly from

conflicting results in the expression of p450c17 (Baulieu and Robel 1998;

Zwain and Yen 1999), which yields DHEA. My results reveal that microglia

do not express p450c17 nor p450scc, p450c21, or 3βHSD1-2, and therefore

these cells do not have the capacity to synthesize neurosteroids from

cholesterol.

Alternate roles for Steroidogenic Proteins

In spite of the lack of p450scc and p450c17, microglia expressed low

levels of StAR mRNA, which is the main mediator for cholesterol import to

the mitochondria for the initiation of steroidogenesis (Stocco 2000; Sierra

2004). StAR expression in microglia is likely to be playing a different role in

these cells, such as cytosolic free sterol transfer, as has been suggested for

other cholesterol binding proteins in macrophages (Rodriguez-Agudo, Ren

et al. 2006).

Like StAR, the PBR also participates in the import of cholesterol into

the mitochondria (Hauet, Liu et al. 2002). In the brain, PBR expression is
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increased following nerve injury and can increase steroidogenesis locally

(Lacor, Gandolfo et al. 1999). Aside from its role in steroidogenesis (Brown

and Papadopoulos 2001), the PBR is widely expressed in monocytic cells

(Carayon, Portier et al. 1996), and has been identified as a marker of

activated microglia (Banati 2002). In my experiments with microglia PBR

was the most abundant gene expressed. This is consistent with studies

reporting that PBR is mainly expressed in glial cells, and its expression

levels increase following glial activation induced by inflammation or

neuronal damage [rev. by (Casellas, Galiegue et al. 2002)]. 1°MG and ex

vivo MG challenged with inflammatory stimuli (LPS+INFγ or LPS injection

respectively) responded with an increased expression of PBR.

In spite of enhanced PBR expression, PBR ligand stimulation, which

increases steroidogenesis in other tissues (Lacor, Gandolfo et al. 1999;

Brown and Papadopoulos 2001), had no effect on DHEA or AD conversion

in microglia, probably because these PBR ligands affect the initial import of

cholesterol into the mitochondria providing more substrate for p450scc,

which is lacking in microglia. Yet, PBR ligands selectively decreased the

TNFα response to LPS stimulation in 1°MG, in accordance with previous

reports (Taupin, Gogusev et al. 1993; Taupin, Toulmond et al. 1993; Choi,

Khoo et al. 2002). My data corroborate the proposed immuno-modulatory
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role of PBR, which may account for this protein’s expression in microglia

and its reported neuroprotective effects (Leonelli, Yague et al. 2005; Veiga,

Azcoitia et al. 2005).

LPS Activation and expression of Steroid-converting Enzymes in Microglia

Our results showed a significant reduction in all the steroid-converting

enzymes expressed in ex vivo microglia after i.p. LPS activation. However,

in vitro in primary microglia, LPS+INFγ caused an increase in steroid-

converting enzyme expression. These differences between in vivo effects of

LPS and in vitro could be due to a number of reasons. An argument could be

made for the developmental difference between adult FACS-sorted

microglia and neonatal primary microglia, yet both cell populations showed

similar expression levels of mRNA in the resting state, and when activated

showed similar responses to genes like the PBR and 11βHSD-1 (Chapter 4).

Systemic injection of LPS in vivo causes a rapid induction of

circulating cytokines and inflammatory mediators (Chensue, Terebuh et al.

1991), which can induce pro-inflammatory genes in microglia (Rivest 2003;

Sierra, Gottfried-Blackmore et al. 2007). The down-regulation of steroid-

converting enzyme expression in vivo due to cytokines could be ruled-out as

well, given that in vitro, single cytokine stimulation (INFγ) or stimulation
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with a combination of cytokines (LPS-conditioned media) showed only

marginal effects. A caveat of these experiments is that the cytokines from

microglia LPS-conditioned media may not mimic the cytokine milieu in the

brain after i.p. LPS injections.

My results would suggest that other factors in vivo may be causing the

down-regulation of steroid-converting enzymes in microglia, such as

glucocorticoids. Following the systemic rise of cytokines, activation of the

hypothalamic-pituary-adrenal (HPA) axis causes a 3-4 fold increase in

circulating glucocorticoid levels (rev. by (Besedovsky and del Rey 1996)),

which can block steroidogenesis in testicular Leydig cells (Gao, Shan et al.

1996; Badrinarayanan, Rengarajan et al. 2006). Similar effects of

glucocorticoids may be occurring in brain microglia. Preliminary

experiments indicate that corticosterone incubation can inhibit H3-DHEA

conversion in 1°MG (Fig.31). The effects of corticosterone on the

expression of steroid-converting enzymes in microglia should be addressed

in future studies.

In spite of the LPS-induced mRNA regulation of steroid converting

enzymes, LPS+INFγ stimulation of 1°MG did not affect the rate or
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metabolism of H3-DHEA or H3-AD. These results are similar to what I

found with 11βHSD-1 activity. Additional cofactors, such as NADP, may be

required for observing effects of LPS treatment on actual steroid metabolism

(Chapter 4).

DHEA metabolism and formation of active estrogens and androgens by

microglia

In the CNS, DHEA has multiple effects reminiscent of sex hormones

(Majewska 1995). The absence of a specific receptor for this hormone

(Regelson and Kalimi 1994) has led investigators to suggest that DHEA is

metabolized into active sex hormones that mediate the observed effects

(Schmidt, Kreutz et al. 2000; Jellinck, Croft et al. 2005; Jellinck Submitted).

Neurons, astrocytes and oligodendrocytes can metabolize DHEA into sex

hormones (Zwain and Yen 1999). Recently, in collaboration with Dr.

Jellinck (Queen’s University, Canada), we reported that the microglial cell

line, BV2, is able to convert DHEA into Adiol and validated the identity of

this product by high-performance liquid chromatography (Jellinck In press).

My current study corroborates these findings in 1°MG and shows the

expression of 17βHSD1, required for this conversion, both in ex vivo MG

and 1°MG.
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In humans, DHEA levels are higher in brain than in circulation and

have been correlated with aging and neurodegeneration (Weill-Engerer,

David et al. 2002). Moreover, DHEA conversion in the brain into

metabolites like Adiol may be reduced in patients with neurodegenerative

disease (Weill-Engerer, David et al. 2003). Our data indicate that microglia

can metabolize DHEA and specifically convert it to Adiol. This delta-5

steroid has reported androgenic and estrogenic properties in peripheral

tissues (Poortman, Prenen et al. 1975; Adams 1985; Miyamoto, Yeh et al.

1998). Additionally, early studies describe Adiol binding pituitary estrogen

receptors in the male rat brain and exerting estrogenic effects (Thieulant,

Benie et al. 1983). Here I present evidence confirming that Adiol is an

effective estrogen receptor agonist in ER-expressing neuronal cells (EtC.1).

These data suggest that DHEA metabolism by microglia may be a source of

active estrogens in the brain.

The results presented in this chapter indicate that microglia, like the

other cells in the CNS, participate in the metabolism of steroid hormones

through the expression and activity of steroid converting enzymes. Microglia

do not participate in the initial utilization of cholesterol for generation of

steroid hormone precursors, but rather show active metabolism of DHEA
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and AD. The steroid converting capacity of microglia may be regulated by

inflammatory stimuli, yet other factors need to be considered when

performing in vitro studies. DHEA metabolism in microglia showed the

exclusive formation of Adiol, which may function as a source of active

estrogens in the brain.
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CHAPTER 6

EFFECTS OF ESTROGEN ON CELLS FROM THE DEVELOPING

CNS: EtC.1

E2 effects on microglia are marginal at best, compared to

glucocorticoids, as indicated by my results (Chapter 3). However, further

studies indicated that microglia may contribute to the formation of active

estrogens (Chapter 5), which positively impact neuronal cells. Neurons are

profoundly affected by estrogen, even in brain areas that are not related to

reproductive functions (Priest and Pfaff 1995; McEwen, Alves et al. 1997;

McEwen 2001). Most neuronal cells studied so far exhibit responses to

estrogen that include modulation of their synaptic inputs (Woolley and

McEwen 1992; Lewis, McEwen et al. 1995; Woolley, Weiland et al. 1997;

Leranth, Hajszan et al. 2004), a higher resistance threshold to physiological

stressors [rev. by (Behl 2002)], the ability to resist cell death or induction of

apoptosis [rev. by (Amantea, Russo et al. 2005; Suzuki, Brown et al. 2006)],

and even effects on neurogenesis and neuronal differentiation/maturation

(Tanapat, Hastings et al. 1999; Brannvall, Korhonen et al. 2002; Kishi,

Takahashi et al. 2005). However, the extent of E2’s non-reproductive effects

in the developing CNS is less well understood. As part of the laboratory’s
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efforts to further our understanding of estrogen’s neurotrophic effects, and to

investigate estrogen’s effects on developing neurons, I undertook parallel

studies to characterize a neuronal cell line from developing mouse brain

cerebellum, EtC.1, and evaluate its responsiveness to estrogen. Additionally,

throughout my studies with estrogen and microglia, I used elements of this

neuronal system as a positive control of estrogen’s effectiveness in my cell

culture systems.

Characterization of the EtC.1 Cell line

Development of the mouse cerebellum occurs at a late embryonic

stage and continues through the first few weeks of postnatal life.  The EtC.1

cell line was originally cloned from embryonic mouse brain cerebellum and

judged to be neuronal on the basis of its electrical excitability and

characteristic surface antigens (Bulloch, Stallcup et al. 1977; Bulloch,

Stallcup et al. 1978). The cells respond positively in a sodium flux assay that

correlates well with the ability to generate action potentials, and also express

one or more of three antigens previously found to be specific for nerve cells

(Bulloch, Stallcup et al. 1977).

In the present study the EtC.1 cells were examined and analyzed for

the expression of proteins commonly expressed in neural stem cells and
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progenitor cells. This study was carried out jointly with Gist Croft M.S., a

former research assistant in the laboratory. Additionally, the expression of

specific cerebellar transcription factors was evaluated to determine the

lineage and developmental stage of EtC.1 cells. These experiments were

necessary for determining if the EtC.1 cell line could serve as a model for

studying estrogen effects on developing cerebellar neurons.

EtC.1 cells were positive for the neuronal stem cell markers Nestin,

Vimentin, Doublecortin (DCX), and Musashi (Fig.32A). However, EtC.1

were negative for the astrocyte marker GFAP, (Fig.32A), but expressed the

neuronal marker NeuN (Fig.32B). These results confirm the early

characterizations of the EtC.1 cells and substantiate their early

developmental stage (Gottfried-Blackmore in preparation).

The developing cerebellum contains primarily progenitor cells of two

principal lineages: the granule cell lineage and the Purkinje cell lineage. To

distinguish to which lineage of cells the EtC.1 belong to, expression of

lineage specific markers was performed by PCR. Zipro1, a defining

transcription factor for the granule cell lineage (Yang, Zhong et al. 1996)

was expressed in EtC.1 cells, as well as the granule cell precursor

transcription factor Math-1 (Ben-Arie, Bellen et al. 1997), Pax-6

(Engelkamp, Rashbass et al. 1999), and En-2 (Liu and Joyner 2001) albeit
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at low levels (Fig. 33). In contrast, Calbindin, a commonly expressed marker

in Purkinje cells, was not expressed in EtC.1 (Fig.33). In agreement with the

precursor phenotype of the cells, Zic-1 and Zic-2, two transcription factors

expressed in mature cerebellar granule cells (Aruga, Minowa et al. 1998;

Aruga, Inoue et al. 2002), were not expressed in EtC.1 (data not shown),

whereas the Cyclin-D2 gene present in dividing neural progenitor cells

(Ross, Carter et al. 1996) was expressed (Fig.33).

Characterization of E2 receptors expressed in EtC.1 cells

Although estrogen receptors have been identified within the adult

cerebellum (Litteria 1987; Jakab, Wong et al. 2001; Mitra, Hoskin et al.

2003), and during development (Belcher 1999; Price and Handa 2000; Guo,

Su et al. 2001; Ikeda and Nagai 2006), the role of estrogen (E2) in the

development of cerebellar neurons and their function in the adult has yet to

be fully elucidated. Reminiscent of the effect seen on the principal cells of

the adult mouse and rat hippocampus (Woolley and McEwen 1992), E2 is

reported to affect the growth of dendritic spines in developing cerebellar

Purkinje cells (Sakamoto, Mezaki et al. 2003).

Expression and function of ERs in EtC.1 was first assessed by WB

analysis with specific antibodies against ERα and ERβ. ERα staining
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demonstrated an expected band (67 kDa) for EtC.1 protein extracts, which

matched recombinant human ERα transiently expressed in EtC.1 (Fig.34A).

ERβ staining yielded three bands (20kDa 45kDa and 100kDa) for EtC.1

protein samples; these did not match bands from mouse control tissues

(ovary and prostate), nor from the human recombinant ERβ band (54kDa)

(Fig.34B). Given some of the controversy that surrounds estrogen receptor

antibodies, expression of ERα and ERβ transcripts was analyzed by qRT-

PCR. Both ERα and ERβ transcripts were found in EtC.1. Additionally,

ERα, but not ERβ, mRNA levels were reduced after E2 incubation (data not

shown). These results indicate the predominant expression of ERα in EtC.1

cells.

The transcriptional activity of ERα and ERβ in the EtC.1 cell line was

assessed in cells transiently transfected with an ERE-luciferase reporter gene

construct. In this system, the detection of enzymatic luciferase activity in

cell lysates is an indirect measure of transcription induced by activated ERs.

After transfection, unstimulated cells showed minimal luciferase activity,

while a physiological dose (10nM) of exogenous E2 induced a ca. 80-fold

response over basal transcription (Fig.35). Luciferase induction reached a

maximum at 12hr of E2 incubation and remained high at 24hr (data not

shown). Subsequent experiments were performed using the 24hr time point.
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E2-induction of reporter gene transcription was blocked by the ER

antagonist ICI 182,780 (ICI) in a dose-dependent manner (Fig.35). ICI alone

had no effect on reporter gene activity (data not shown). Together, these

results show that EtC.1 cells express functionally active ERs.

To distinguish the participation of ERα and ERβ  in the response

elicited by E2, selective agonists for these receptors were compared, namely

the ERα agonist PPT and the ERβ agonist DPN (Tocris). This work was

jointly done with M.S. Croft. Incubation of the cells with the same dose

(10nM) of E2 or the selective ER agonists revealed that the ERα-selective

agonist PPT was significantly less active than E2, and that the ERβ-selective

agonist DPN did not induce luciferase activity (E2 100%; PPT 46±5.7%

p<0.05; DPN 1.2±0.6; p<0.05) (Fig.36A). These results were verified using

a different set of ER agonists, MC1 for ERα and MC2 for ERβ (Merck) (E2

100%; MC1 62±2.16% p<0.05; MC2 2.4±0.44%; p<0.05) (Fig.36B). ERα

and ERβ agonists were not additive, nor did they differ from the induction

levels obtained from PPT alone (Fig.36). Like E2, both ERα-selective

agonists PPT and MC1 were significantly blocked by ICI (Fig.36 p<0.05).

The results suggest that ERβ is not functionally expressed, whereas ERα is

the predominant receptor for E2 in EtC.1 cells.
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Estrogen is known to activate important second messenger signaling

pathways in neuronal cells, such as those mediated by CREB and ERK1/2

MAPK (Lee and McEwen 2001; Lee, Campomanes et al. 2004). To

determine if E2 activated these pathways in EtC.1 cells, serum-starved EtC.1

cultures were stimulated with E2 (10nM) and phosphorylation of CREB and

ERK1/2 MAPK was assessed by WB.  Both MAPK were constitutively

phosphorylated, yet serum-starvation reduced phosphorylation levels (data

not shown). ERK1/2 phosphorylation was induced by fetal calf serum (FCS)

stimulation, but not by E2 treatment (Fig.37A). CREB phosphorylation was

induced by cAMP (1uM), yet was also not affected by E2 treatment

(Fig.37b), indicating that ERs in the EtC.1 did not engage in these second

messenger signaling pathways.

E2 does not affect maturation or development of EtC.1 cells alone

The cerebellum is rich in the expression of ERα and ERβ throughout

development, where the ratio of these receptor subtypes changes as the

cerebellum matures: ERβ seems to have a low constitutive expression in

early development and becomes the predominant receptor in adulthood,

where as ERα appears to play a role mostly in development (Belcher 1999;

Price and Handa 2000; Guo, Su et al. 2001; Ikeda and Nagai 2006).
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Our results showing the predominant expression of ERα in EtC.1 cells are

consistent with this model.

To evaluate if estrogen plays a role in the maturation or differentiation

of EtC.1, cells were incubated for 24hrs and 36hrs with E2 (10nM) and

expression of the various neural and granule progenitor-cell markers was

measured. E2 treatment had no effect on protein levels for the neural

progenitor cell markers analyzed (Nestin, DCX, NeuN, Vimentin, Musashi),

nor was the expression of GFAP induced (data not shown). Further, estrogen

(10nM, 24hrs) did not affect expression levels of Pax-6 or Zipro1.

Additionally, E2 treatment did not induce expression of Zic-1 and Zic-2

(data not shown). These results indicate that estrogen alone is not sufficient

for the differentiation of the EtC.1 phenotype.

In our screen of neural proteins that might be regulated by E2, we

found that EtC.1 cells expressed the fragile-X mental retardation protein

(FMRP) (Fig.38A), which is involved in dendritic spine maturation (Feng,

Gutekunst et al. 1997; Lu, Wang et al. 2004). Moreover, E2 treatment

increased its expression (Fig.38B). To determine if E2 treatment could

induce maturation of synaptic structures in EtC.1 cells, the expression of

various pre- and post-synaptic proteins was assessed by Western blot.

Resting EtC.1 cells were negative for Synaptophysin, Syntaxin, PSD-95,
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Spinophylin, and connexin-36. Further, 24hrs incubation with E2 (10nM)

failed to induce expression of these proteins (Fig.38C). These data indicate

that estrogen alone is not sufficient for the maturation of EtC.1 cells.

Discussion

EtC.1 cells expressed various protein markers characteristic of

neuronal progenitor cells such as Nestin, Vimentin, DCX, and Musashi,

which confirm their early developmental origin. Additionally, EtC.1 cells

were identified as belonging to the granule cell lineage by their expression

of Zipro1, Math1 and En-2, and the absence of the Purkinje cell marker

Calbindin. To our knowledge, this would establish the EtC.1 cell line as the

first available cell line of developing cerebellar granule cells. Further study

of these cells could therefore, contribute to studies aimed at examining

cerebellar granule cell development or maturation.

EtC.1 cells were positive for the expression of ERα and ERβ at the

mRNA level, but at the protein level, expression of ERβ was inconclusive.

Using an estrogen-sensitive gene reporter assay, I determined the function of

these putative receptors. ERα , but not ERβ , was able to drive gene

expression in EtC.1 cells. The expression of functional ERα, but not ERβ, in

EtC.1 cells is in agreement with previous findings demonstrating the
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predominant expression of ERα in the developing cerebellum (Belcher

1999; Price and Handa 2000; Guo, Su et al. 2001; Ikeda and Nagai 2006).

Despite the presence of functional ERα, our findings that estrogen

stimulation alone was not sufficient to induce the differentiation (change in

neural progenitor markers) or maturation (induction of synaptic proteins) of

EtC.1 cells under the conditions tested. This developmental stage of EtC.1

cells may account for their inability to engage ERK1/2 MAPK and CREB

signaling after E2 stimulations. EtC.1 cells may require established signals

to differentiate, such as bone morphogenic proteins (Angley, Kumar et al.

2003), and it may be likely that E2 could synergize with such differentiation

factors or affect their actions. This line of experiments merits further

attention and may be fruitful in future studies.

Using the ERE-Luciferase assay system in EtC.1 cells, I was able to

test the effects of steroids metabolized by microglia, such as Adiol (Chapter

5). In addition, my experiments with microglia and EtC.1 utilized the same

hormone stocks, providing an internal control for the quality of my reagents.

E Rα  expression in EtC.1 provides a model to further study the

neuroprotective effects of E2 in developing granule cells. A model could be

set-up in which microglia derived Adiol and E2 could be compared for their

neuroprotective, or other, properties in these cells.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

Since the initial anatomic description of microglia in the first decade

of the 20th century, and up until the 1980s, these cells were considered as

mere by-standers in the steady state central nervous system (CNS), with a

definite role in development, and proliferative and phagocytic capacity

following brain injuries in the adult. However, our appreciation and

understanding of microglia cells and their roles in brain homeostasis is

steadily increasing. Today microglia are regarded as the main resident

immune cells of the CNS, distinct from peripheral macrophages and

monocytes, with key roles in the initiation and maintenance of inflammatory

responses in the brain [rev in Chapter 1].

Microglia, once activated, become highly pro-inflammatory cells

through their production of cytokines, chemokines, prostaglandins, and free

radicals. Activated microglia exert beneficial effects following injury or an

immune challenge, yet disregulation of the microglial response can be

deleterious (Block, Zecca et al. 2007). Over-activated microglia have been

implicated in basically all forms of neurodegenerative diseases due to the

high susceptibility of neuronal cells to pro-inflammatory mediators, mainly
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free radicals and TNFα [rev in Chapter 1]. Microglial involvement in

neurodegeneration has given this cell type a new status in neuroscience

research.

Given that the over-activation of microglia results in deleterious and

neurotoxic effects, a considerable interest lies in determining whether

activated microglia can be harnessed as effective targets of anti-

inflammatory therapies in the treatment of neurodegenerative disease. The

work presented in this thesis addresses this issue, and elucidates some of the

regulatory processes involved in microglia activation with a focus on anti-

inflammatory steroid hormones.

Clinical and animal studies have pointed to the neuroprotective and

anti-inflammatory effects of steroid hormones [rev in Chapter 1]. The ample

and varied literature on the effects of steroid hormones on inflammation

indicates that diverse factors such as dose, timing and duration of exposure,

receptor subtype and cell-type specific expression, can cause steroids to

exert stimulatory, permissive, or inhibitory actions (Sternberg 2001; Dinkel,

Ogle et al. 2002; Yeager, Guyre et al. 2004; Sorrells and Sapolsky 2007).

Yet our comprehension of these issues is not complete, and in the case of the

CNS, the cellular targets and mechanisms of action of these hormones are

still unresolved. In view of these limitations, the main question addressed in
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this dissertation was the role that microglia play in the well-documented

anti-inflammatory effects of steroid hormones in the brain, with particular

emphasis on the neuroprotective sex hormone 17β-estradiol (E2), and the

anti-inflammatory adrenal steroid, corticosterone.

Steroid hormones and microglia activation

My studies clearly indicate that E2 does not have any profound effects

on the LPS activation of microglia. These results are inconsistent with many

published studies showing that E2 has an anti-inflammatory effect on

microglia. However, on close examination of the literature, one can note that

the field of E2 studies on microglia is riddled with contradictory reports,

(Chapter 1, 3). These contradictions could be accounted by factors such as

the use of microglia cell lines (Bruce-Keller, Keeling et al. 2000; Bruce-

Keller, Barger et al. 2001; Baker, Brautigam et al. 2004), reports comparing

macrophage cell lines to microglia cells (Vegeto, Ghisletti et al. 2004;

Vegeto, Belcredito et al. 2006), species differences between rat and mouse-

derived microglia (Drew and Chavis 2000; Vegeto, Bonincontro et al. 2001;

Sierra Submitted), and the extrapolation of E2 anti-inflammatory effects in

vivo on microglia (Vegeto, Belcredito et al. 2003; Vegeto, Belcredito et al.

2006). As described in this thesis, the absence of ERβ expression and low
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levels of ERα in vivo in mouse microglia, coupled with the failure of E2 to

regulate LPS-induced cytokines or MAPK activation in primary microglia

cultures are strongly suggestive that E2 does not act directly on stimulated

microglia (Chapter 3). Consistent with this data, we found a down-regulation

of ERα mRNA in activated microglia from i.p. LPS-injected mice (Chapter

3).

Despite the claims of positive E2 effects on the pro-inflammatory

state of microglia, my results do correspond with a lesser number of reports

indicating no direct effects of this hormone on microglia activation (Chapter

1,3). However, it is likely that the literature does not reflect all the studies

where no effects of E2 on inflammatory microglia have been found, given

that negative results are often not published (based on private

communications with at least three other laboratories during the annual,

international, Society for Neuroscience Meetings 2004-2006).

These reports and the work presented here suggest a model whereby

other cell types in the brain, such as oligodendrocytes, astrocytes and

neurons, mediate most of E2’s neuroprotective and anti-inflammatory effects

(Fig.39). For example, NF-κB activation in astrocytes has recently been

found to be a key regulator of inflammation in the CNS, and its inhibition

has beneficial effects on tissue regeneration [rev by (Farina, Aloisi et al.
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2007)]. ERs, which are expressed in astrocytes (Azcoitia, Sierra et al. 1999;

Garcia-Ovejero, Veiga et al. 2002), could interfere with NFκB activation

(Wen, Yang et al. 2004). Further, the anti-inflammatory effects of E2 could

be due to indirect events that impact microglial responses, such as effects on

astrocytes and neurons. Examples of these are the E2-induction of anti-

inflammatory and neuroprotective cytokines like TGFβ by astrocytes (Wyss-

Coray, Lin et al. 2001; Sortino, Chisari et al. 2004); and increased

oligodendrocyte (Takao, Flint et al. 2004) and neuronal survival [rev. by

(Behl 2002)] (Fig. 39). Another key mechanism of the anti-inflammatory

effects of E2 in the brain may be the ability of E2 to abolish the autologous

down-regulation of glucocorticoid receptors in the brain (Ferrini, Lima et al.

1995). Taken together, it is likely that the anti-inflammatory and

neuroprotective effects of E2 are separate and complementary actions. A

useful application of this distinction could be the combination of E2 with

well-established anti-inflammatory drugs for future therapies in

neurodegenerative diseases. An example of this approach is reported for

lesioned retinal ganglion cells, where both neuroprotection and regeneration

were enhanced by the combination of two compounds acting on different

sites: a specific drug, aurintricarboxylic acid, acting directly on the neurons,

and cortisol acting on the glial environment (Heiduschka and Thanos 2006).
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Using glucocorticoids as well-established anti-inflammatory

compounds, I found that the adrenal steroid, corticosterone was an effective

regulator of LPS-induced responses in microglia (Chapter 3,4), which is in

agreement with previous reports. The work provided in this thesis supports

the anti-inflammatory effects of elevated concentrations of glucocorticoids

on microglial cells. However, glucocorticoids can act as a double-edged

sword in the CNS, given that prolonged exposure to elevated glucocorticoid

levels is neurotoxic (Sapolsky 1996), and that low levels of glucocorticoids

are pro-inflammatory [rev by (Sorrells and Sapolsky 2007)].

The glucocorticoid receptor mediates most of the known anti-

inflammatory effects of glucocorticoids, yet the mineralocorticoid receptor,

which has a much higher affinity for corticosterone, is reported to have

down-stream pro-inflammatory activity (Tanaka, Fujita et al. 1997). It has

been postulated that early in the inflammatory response, initial low levels of

corticosterone promote inflammation through the high-affinity

mineralocorticoid receptor and unknown glucocorticoid receptor

mechanisms, and then as glucocorticoid levels rise to supra-physiological

levels they mediate anti-inflammatory effects predominantly through

glucocorticoid receptor (Sorrells and Sapolsky 2007). Although the effects
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of mineralocorticoids were not examined in this thesis, our studies indicate

the expression of mineralocorticoid receptor mRNA in microglia (Sierra

Submitted) suggesting that sub-nanomolar concentrations of corticosterone

might be pro-inflammatory (Tanaka, Fujita et al. 1997). The pro-

inflammatory role of the mineralocorticoid receptor in microglia needs

further investigation, and could be a potentially interesting therapeutic

target.

Glucocorticoids are the body’s most effective regulators of

inflammation, exerting permissive, stimulatory, and suppressive effects [rev

by (Sorrells and Sapolsky 2007)]. In this dissertation I present evidence

showing that microglia are not only responsive to glucocorticoids (Chapter

3), but also have the capacity of re-activating inactive glucocorticoids

through 11βHSD-1 expression (Chapter 4). 11βHSD-1 converts 11-DH-Cort

into active corticosterone, thus re-activating glucocorticoids. The local

amplification of glucocorticoids through microglia 11βHSD-1 activity may

be significant, particularly in the context of inflammation, as LPS-

stimulation induced a robust increase of 11βHSD-1 expression in microglia,

both ex vivo and in vitro. These results are suggestive of a model whereby

following a systemic inflammatory challenge, and subsequent production of

glucocorticoids by HPA-axis activation, microglia increase expression of
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11βHSD-1 to amplify the anti-inflammatory effects of corticosterone, which

regulates production of potentially neurotoxic cytokines and free radicals. It

is interesting that in this setting, astrocytes down-regulated 11βHSD-1

expression, indicated by preliminary in vivo immunofluorescence analyses

(Chapter4). This could be considered a protective response given the

neuronal susceptibility to high concentrations of glucocorticoids (Sapolsky

1996).

It has been proposed that 11βHSD-1 expression in the brain plays

roles in cognitive behavior, neuroprotection, and contributes to the negative

feedback of glucocorticoids on HPA activity [rev by (Holmes, Yau et al.

2003)]. 11βHSD-1 activity during brain inflammation is an untapped area of

research. The results I present in this thesis point to an active role of

11βHSD-1, expressed in microglia, in the re-activation of glucocorticoids.

The existence of viable 11βHSD-1 KO mice could serve as a valuable model

to study the participation of this enzyme following neuronal injury and

microglia activation. Additionally, in vivo studies with selective 11βHSD-1

inhibitors could also be fruitful.
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Brain steroid metabolism and microglia

In this thesis I present data that indicates an active role for microglia

in the conversion of active steroids in the CNS (Chapters 4,5). Steroid

hormones play numerous roles in maintaining the homeostasis of the CNS

(Chapter 1). It is intriguing that the brain, like other tissues of the body, has

evolved and acquired the capacity to metabolize and, in some cases,

synthesize these hormones. Furthermore, it’s been postulated that the

appearance of steroid converting enzymes occurred concomitantly with the

appearance of steroid hormone receptors to provide specificity and

regulatory mechanisms as organs became more complex (Baker 2004).

Intracrine production of hormones, that is synthesis or conversion of

hormones within the target cell or tissue (Labrie 1991; Labrie, Luu-The et al.

2005), provides the brain with basal levels of steroids, which have already

proven to play important roles in processes such as nerve regeneration,

synaptic transmission, and notably responses to CNS injury (Chapter 1,5).

Up until now, no reports have described whether microglia participate

in the metabolism of steroids in the brain. The conversion of glucocorticoids

by microglia spurred me to characterize the participation of microglia in the

broader metabolism of brain steroid hormones. In this dissertation I offer

data suggestive of an active role for microglia in the conversion of steroids
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in the CNS (Chapters 4,5). Microglia express steroid-converting enzymes,

which mediated the conversion of steroid precursors DHEA and AD into

downstream hormones. Therefore, microglia may contribute to the pool of

active steroid hormones in the brain, as shown by the production of Adiol,

an active estrogen in neuronal cells (Chapter 5).

It is unlikely that microglia are only causing deleterious effects to the

injured CNS. In fact, it is becoming more widely accepted that microglial

activation is necessary and crucial for host defense and neuronal survival

[rev by (Block, Zecca et al. 2007)]. As proposed for 11βHSD-1 mediated

amplification of anti-inflammatory effects of glucocorticoids, the steroid-

converting capacity of microglia may be particularly significant during

inflammation. Locally, astrocytic steroid metabolism is inhibited by

inflammatory cytokines (Zwain and Yen 1999), whereas in my studies

microglia steroid-converting activity occurred in spite of their activation

state in vitro (Chapter 5). Although my studies also showed a down-

regulation of mRNA expression in ex vivo microglia from i.p. LPS-injected

mice, it remains to be determined what factors caused this down-regulation,

and whether this would also be observed in the setting of a model of

neuronal damage. Androgen production, particularly testosterone, from

DHEA metabolism in microglia may be a substrate for astrocytic and
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neuronal p450 Arom, which synthesizes E2 required for neuroprotection in

various models of neuronal injury (Sierra, Azcoitia et al. 2003; Veiga,

Garcia-Segura et al. 2003; Veiga, Azcoitia et al. 2005).

Inflammation is also known to suppress sex hormone production by

interfering with neuroendocrine gonadal signaling. Within the brain,

cytokines produced by microglia, like IL-2, IL-6, TNFα and IFNγ, affect the

release of anterior pituitary hormones and block the hypothalamic-pituitary

gonadal (HPG) axis (Jones and Kennedy 1993). Systemically, circulating

cytokines can also disrupt HPG axis (Kalra, Fuentes et al. 1990). In addition

to blocking the HPG-axis, inflammatory cytokines directly block

steroidogenesis in the gonads. Macrophage secreted products, such as TNFα

(Andreani, Payne et al. 1991; Xiong and Hales 1997), IL1β (Hurwitz, Payne

et al. 1991) and NO (Pomerantz and Pitelka 1998), can inhibit production of

DHEA and androgens in the testes via inhibition of p450c17 gene expression

(Hales 1992; Li, Youngblood et al. 1995; Onami, Matsuyama et al. 1996). In

contrast to the gonads, adrenal steroid synthesis is increased in response to

inflammation (Chapter 1, 4). Therefore, after an inflammatory challenge or

neuronal injury, DHEA originating from the adrenals could serve as a

substrate for brain steroid conversion in cells like microglia and astrocytes in

the absence of gonadal steroid production (Figure 40).
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Microglia, friend or foe?

In spite of our increased understanding, there are many questions in

microglial biology that remain un-answered, particularly the role of

microglia in the steady-state brain. Classically, ramified or resting microglia

were considered to be inactive under physiological conditions, however, it is

now known that microglia exhibit pinocytic activity and localized motility

(Booth and Thomas 1991; Glenn, Booth et al. 1991). Recent studies have

also shown that resting microglia are engaged in active surveillance of the

brain tissue through their highly ramified protrusions, scanning the entire

brain parenchyma every few hours (Davalos, Grutzendler et al. 2005;

Nimmerjahn, Kirchhoff et al. 2005). Microglial processes directly contact

neuronal cell bodies, astrocytes and blood vessels (Nimmerjahn, Kirchhoff

et al. 2005), therefore it seems likely that microglia monitor the well-being

of brain cells and also function to clear the extracellular milieu to maintain

tissue homeostasis (Booth and Thomas 1991; Thomas 1992; Fetler and

Amigorena 2005). Determining the effects of physiological concentrations

of glucocorticoids on microglial surveillance or chemotaxis may help

unravel more of microglia’s “house-keeping” functions in the CNS.

Another question that remains unclear is: what are the differences

between microglia populations in different brain regions? A great
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heterogeneity of ramified microglia morphologies in different brain regions

has been reported, which suggests that microglia may adapt to distinct

micro-environments (Lawson, Perry et al. 1990). However, it is unknown

whether this morphological variability reflects functional differences. One

potential and appealing difference may be microglial responses to

inflammatory stimuli or their receptivity to steroid hormones.

During CNS injury or pathology, it is still unclear to what extent

resident microglia versus newly recruited cells from the bone marrow

contribute to the resolution or the augmentation of neuronal cell death. In

transgenic mouse models of Alzheimer’s disease, it has been reported that

blood-derived microglia and not their resident counterparts have the ability

to eliminate β-amyloid deposits by a cell-specific phagocytic mechanism

(Simard, Soulet et al. 2006). Additionally, impairing the accumulation of

blood-recruited microglia at sites of plaque deposition causes increased β-

amyloid load and leads to premature death (Khoury, Toft et al. 2007).

However, β-amyloid is pro-inflammatory and activates microglia to release

neurotoxic factors such as NO, TNFα, and superoxide, which potentiates

neuronal damage and symptoms in Alzheimer’s patients [rev by (Block,

Zecca et al. 2007)]. It is likely that these neurotoxic effects are mediated by

both resident and incoming microglia (Moore, El Khoury et al. 2002). Anti-
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inflammatory drugs, like glucocorticoids, may be useful in slowing the

progression of Alzheimer's disease (AD) through their effects on microglia

activation. However, large-scale studies with anti-inflammatory drugs have

produced negative results (Aisen 2002). Better understanding of the anti-

inflammatory effects of E2 and glucocorticoids may result in beneficial

therapies for progressive neurodegenerative diseases.

The conditions defining whether microglial activation is detrimental

or beneficial to neuronal survival are still poorly understood. However, it is

becoming more widely accepted that although microglial activation is

necessary and crucial for host defense and neuron survival, the over-

activation of microglia results in deleterious and neurotoxic consequences

[rev by (Block, Zecca et al. 2007)]. A better understanding of the conditions

regulating this cell type’s activation will definitely lead to improved

therapeutic approaches for neurodegenerative diseases.

Based on the work presented in this thesis, I propose that activation of

microglia by innate immune pathways, such as LPS stimulation, is

predominantly regulated by glucocorticoids, rather than E2. Under this

model, microglia serve as key mediators of the anti-inflammatory effects of

adrenal steroids, whereas the effects of E2 are mediated through other glial
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cells and neurons. Additionally, microglia can be considered active

contributors to the steroid-converting capacity of the brain; On one hand,

amplifying the local anti-inflammatory effects of glucocorticoids in an

autocrine manner, and on the other, potentially providing active androgens

and estrogens that can affect neurons and astrocytes in view of non

demonstrable effects of E2 on activated microglia and the absence of

androgen receptors, ERβ, and low levels of ERα. Future studies aimed at

elucidating the autocrine and paracrine anti-inflammatory and

neuroprotective roles of microglia-derived steroids during CNS

inflammatory responses to injury are promising and merit consideration.
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MATERIALS AND METHODS

In vitro Culture (BV-2 microglia, 1°MG and EtC.1 cells)

BV-2 microglia cultures: Cells from an early passage (#3) were

cryopreserved in liquid nitrogen according to standard tissue culture

protocols. Cryoprotected cells were quickly thawed and seeded in 20 ml of

Dulbecco’s Modified Eagle Media with 4mM glutamine (DMEM, Gibco,

Carlsbad, CA) containing 20% heat-inactivated Fetal Calf Serum (FCS)

(Sigma, St. Louis, MO) and Penicillin, Streptomycin, Antimycotic (PSA)

(Gibco). Cells were cultured in 75cm2 tissue culture flasks (BD, Franklin

Lakes, NJ) in a CO2 water jacketed incubator at 37ºC with 5% CO2.  After

initial plating, confluent cultures were trypsinized (0.25%, trypsin, Gibco),

centrifuged, and re-suspended in standard culture media (SCM) comprised

of DMEM containing 10% fetal calf serum plus PSA. All cells used in these

experiments were derived from passages 4-10. The properties evaluated in

this study remained stable throughout all passages. Tissue culture

microscopy was performed with a Nikon inverted fluorescent microscope

(Nikon, Melville, NY).
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Primary microglia (1°MG) cultures: Microglia cultures were prepared

following standard protocols (23). Briefly, day 2-old mouse pup brains were

dissected on ice, and the meninges were carefully removed. The forebrains

were minced in 5% FCS-PBS buffer, dissociated using fire polished Pasteur

pipettes, and then passed through a 40µM nylon cell strainer (BD). Cells

were washed once in buffer and seeded in culture media (10% FCS DMEM

+ PSA) at a density of roughly two forebrains per 75mm flask. Cells were

grown at 37°C, 5 %CO2, culture media was changed every 5 days, and,

where indicated, supplemented with 5ng/ml macrophage-colony or

granulocyte-monocyte colony stimulating factor (MCSF, Sigma, St. Louis,

MO; or GM-CSF, Cell Sciences, Canton, MA). After 2 weeks in culture

cells were shaken at 125rpm for 5hrs at 37°C to harvest detached microglia.

Microglia were then counted and seeded in 10%FCS DMEM for different

assays; for RNA-PCR: 6-well plates at a density of 1 million cells/well; or

for hormone metabolism-TLC, and cytokine assays: in 24-well assay plates

at a density of 0.25-0.3 million cells/well. After plating, microglia were

allowed to adhere for 1hr and then rinsed with DMEM to remove non-

adherent glial cells. Finally, 10%DMEM ± MCSF or GM-CSF was added to

the cells and left overnight. The following day cells were rinsed with

DMEM and treated as described below.
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Microglia stimulations: For the activation of BV-2 cells, cells were rinsed

and then incubated with 100ng/ml LPS diluted in DMEM alone.  As LPS

requires a specific serum binding protein for effective delivery to its cognate

receptor (Hailman, Lichenstein et al. 1994), the LPS-induction of cytokines

was dependent on media serum concentrations. Therefore, experimental

conditions were adjusted to 1% FCS (1/10th of normal serum levels) for

effective stimulation of the cells. To induce 1°MG activation, cells were

incubated at 37°C with 1%FCS DMEM plus 100ng/ml LPS+ 10ng/ml INFγ.

INFγ was supplemented to LPS to obtain a robust nitric oxide (NO)

response.

LPS+ INFγ conditioned media (LCM) was obtained by stimulating

1°MG cultures with 1%FCS DMEM plus 100ng/ml LPS+ 10ng/ml INFγ,

collecting the supernatants 24hr later, and centrifuging at 2000rpm for 5min

to clear any debris. LCM contains elevated levels of several inflammatory

cytokines such as TNFα, IL-6 and NO, as well as IL1β, IL-12, MCP-1,

MCP-5, and RANTES (Chapter 2). This LCM was used to stimulate fresh

cultures of 1°MG.
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Estrogen, corticosterone and PBR ligand stimulation: Microglia cultures

were pre-treated for 10 minutes (or other time points, see Chapter 2) in

DMEM with 17β -estradiol (E2), corticosterone (Cort), 11-dehydro-

corticosterone (11-DH-Cort), Ro 5-4864 (Ro) or PK-11195 (PK) (all

compounds from Sigma), before 1%FCS LPS+INFγ stimulation. Stock

solutions of all hormones were made in EtOH and stored at –20C. Final

working dilutions were prepared with DMEM alone. Vehicle (EtOH) was

always used as a control in non-treated cells at the same dilution.

Incubation with tritiated (H3) glucocorticoids: The day after seeding, cells

were rinsed and incubated in 0.25ml DMEM containing 3nM [1,2,6,7H3]-

Corticosterone (70 Ci/mmole) (NEN Life Science Products, Boston, MA) or

2nM [1,2,6,7 H3]-11-dehydro-corticosterone (80 Ci/mmole). [H3]-11-

dehydro-corticosterone was synthesized from [H3]-corticosterone and kindly

provided by the laboratory of Dr. Hardy (Population Council, RU, NY).

Radioactive steroids were incubated for various time points ± 11βHSD

inhibitors, 11-keto-progesterone and 11-OH-progesterone (kind gift of Dr.

Hardy). In experiments with activated microglia, cells were co-incubated

with 100ng/ml LPS+10ng/ml INFγ in 1%FCS DMEM. All incubations were

conducted in a 5% CO2 atmosphere at 37°C. The incubations were stopped
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by collecting the supernatant and vortexing with 2ml of diethyl-ether

(Fisher, Carlsbad, CA). The organic phase extract was isolated and

evaporated to dryness at room temperature, the residue was re-dissolved in

70µl of diethyl-ether, and separated by thin layer chromatography (TLC) for

quantification of each product.

Incubation of tritiated (H3) hormones and steroid extraction: The day after

seeding, cells were rinsed and incubated in 0.2ml DMEM containing

16.7nM [1,2,6,7-H3] DHEA (60 Ci/mmol) or 11nM [1,2,6,7-H3] AD (105

Ci/mmol) (Perkin Elmer Life Science, Shelton, CT) for 22-24hr. All

incubations were conducted in a 5% CO2 atmosphere at 37°C. The reaction

was stopped by vortexing the supernatant with acetone (0.2 ml) and ethyl

acetate (0.5ml) (Fisher). A 0.2 ml portion of the organic phase extract was

evaporated to dryness at room temperature, the residue was re-dissolved in

methanol, and the yield of metabolites was determined after separation by

thin layer chromatography (TLC).

EtC.1 cell culture: The EtC.1 cell line was cloned from embryonic day 17

(E17) mouse brain and tested for its neuronal properties (Bulloch et al.,

1977; Bulloch et al., 1978). Cells from an early passage (#3) were
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cryopreserved in liquid nitrogen for future use, according to standard tissue

culture protocols. Cryoprotected cells were quickly thawed and seeded in 25

ml of DMEM with 4mM glutamine containing 20% heat-inactivated FCS

and PSA in 75cm2 tissue culture flasks in a CO2 water jacketed incubator at

37ºC with 5% CO2.  After initial plating, confluent cultures were

trypsinized, centrifuged, and re-suspended in standard culture media

comprised of DMEM containing 10% FCS plus PSA. All cells used in these

experiments were derived from passages 4-10. The properties evaluated in

this study remained stable throughout all passages.

For experiments with E2 incubations, cells were either serum starved

or cultured in Charcoal Stripped fetal calf serum  (CSS, Hyclone, Logan,

UT), as charcoal stripping removes endogenous bovine hormones and

growth factors that could spuriously influence results. For ERK1/2 and CREB

phosphorylation experiments, cells were serum starved in DMEM without

serum for 12hr and 48hr respectively, before stimulation with E2.

In vivo experiments (cfms-EGFP mice)

Animals: For these studies, the transgenic mouse line p7.2fms-EGFP

(C57BL6/6 X CBA background) was used (Sasmono, Oceandy et al. 2003).
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Enhanced green fluorescent protein (EGFP) expression is driven by the

promoter and the regulatory elements of the c-cfms gene that encodes the

receptor for macrophage colony stimulating factor (CSF-1), resulting in

EGFP expression in cells of the mononuclear phagocytic lineage, including

microglia (Sasmono, Oceandy et al. 2003). The p7.2fms-EGFP mouse line

was generously provided to the lab by Dr. Hume (Queensland, Australia)

and Dr. Pollard (Albert Einstein, NY), and a colony was reared and

maintained in the Rockefeller University Animal Facility for these studies.

Animals were bred under 12:12 ligh:dark cycle and free access to chow and

water. To induce inflammation, male mice received a single intraperitoneal

(i.p.) injection with Salmonella typhimurium lipopolysaccharides (LPS; 1-5

mg/kg; Sigma, L2262). All experimental procedures were approved by the

Rockefeller University Animal Care and Use Committee.

Ex vivo Microglia Isolation by fluorescence activated cell sorting (FACS):

Previously reported methods to obtain a single population of microglia by

FACS were used (Sierra, Gottfried-Blackmore et al. 2007). In brief, adult

mice (2-3 months of age) were anaesthetized with pentobarbital (750mg/kg)

and rapidly decapitated. Brains were removed and placed on ice in Hank’s

balanced salt solution (Gibco, Carlsbad, CA), and meninges, blood vessels
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and choroid plexus were carefully removed under a dissecting scope. Brain

cell suspensions, obtained after incubation with type II-S collagenase (600U;

Sigma) and DNAse (450U; Invitrogen, Carlsbad, CA) for 30min at 37ºC in

15ml HBSS supplemented with 90 mM CaCl2, were homogenized by

repetitive gentle pipetting with fire-polished Pasteur pipettes on ice followed

by filtering through a 40µm cell strainer (BD).

Cells were washed by centrifugation and subject to percoll gradient

centrifugation as described previously (Sierra, Gottfried-Blackmore et al.

2007). Cells collected from the 30/70 interphase, were washed and re-

suspended in 5% FCS (fetal calf serum)-PBS containing 100ng/ml

propidium iodide (PI), before sorting in a FACS Vantage SE Flow

Cytometer (BD, Rockefeller University Flow Cytometry Facility), with

smHighPurity precision. Post-sort analysis was performed to ensure the

purity of the collection process.

Analytical Assays

FACS Analysis of 1ºMG: After shaking for 5hr, microglia were collected and

washed in FACS buffer (5% FCS PBS). Cells were then blocked for 15 min

at 4ºC with 5% mouse serum. Cells were then stained for 15 minutes at 4ºC

with phycoerithryn (PE) conjugated primary antibodies: anti-CD11b (1:200)



156

(BD), or its corresponding PE-conjugated isotype, anti-rat IgG2b (1:200)

(BD); anti-CD11c (1:200), or isotype anti-hamster IgG1 (1:200). Staining

for DEC205 was done with a 15-minute incubation at 4ºC with biotin

conjugated anti-DEC205 (2.8ng/µl), or its biotin conjugated isotype anti-III-

10 (2.8ng/µl) (both antibodies kindly provided by Dr. Ralph Steinman’s

laboratory), and a secondary incubation with PE-conjugated strepavidin

(1:500). Finally, cells were washed 3X in FACS buffer and then analyzed

using a BD FACSCalibur system (BD) under the FITC and PE channels.

Data was analyzed using FlowJo software (Tree Star Inc., OR).

Immunocytochemistry: Cells were seeded onto Poly-L coated glass cover-

slips in a 24-well plate (2x104 cells/well). After treatments, cells were fixed

in 4% paraformaldehyde PBS, permeabilized, and blocked in 5% goat or

horse serum PBS, 0.5% Tween (Sigma) for 1hr at R.T. Primary antibodies

incubations were done overnight at 4ºC in blocking buffer: anti-NFκB p65

(C-20, sc-372) (1:500) (Santa Cruz Biotech, Santa Cruz, CA), or anti-

phospho-p38 MAPK (Thr180/Tyr182) (1:1000) (Cell Signaling Tech,

Danvers, MA). Cells were washed 3X in 1% serum PBS, and then incubated

for 1hr at room temperature with species-specific fluorescent secondary

antibodies coupled to Alexa-594 (1:1000 Molecular Probes). Coverslips
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were washed 5X and then mounted on glass slides using Dako fluorescent

mounting media (Dako, Carpinteria, CA) for microscopy. Confocal images

were acquired using a LSM510 confocal Zeiss Axioplan microscope with a

kripton/argon laser and a HeNe laser (Rockefeller University Bioimaging

Facility).

Cytokine and Nitric Oxide (NO) Measurements: 24hr after microglia

stimulation with LPS or LPS+INFγ, supernatants were collected, cleared of

cell debris by centrifugation at 4°C for 5 minutes at 2500 rpm (Eppendorph

microfuge), and then frozen at –20°C until further analysis. Cytokines

(TNFα and IL-6) were measured by enzyme linked immuno-absorbent assay

(ELISA) following manufacturer’s instructions (eBioscience, CA). NO was

quantified using the Greiss assay (Promega).

Western Blotting: Cultured cells were rinsed in cold PBS supplemented with

Ca2+Mg2+ and scraped in ice-cold protein lysis buffer (6M Urea, 20mM Tris-

HCl pH7.5, 2%SDS, 10% glycerol, 1% protease inhibitor cocktail (Sigma))

supplemented with phosphatase inhibitor (1µM NaVO4; Sigma). Cell

lysates were sonicated to homogeneity and then quantified using the BioRad

Dc protein assay (BioRad, Hercules, CA). Samples were stored at –20°C
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until processed by Western blot. Briefly, equal amounts of protein were

mixed with Laemli loading buffer (Invitrogen), heated at 70°C for 10min,

and separated by SDS-polyacrylamide gel electrophoresis performed under

reducing conditions with 4-12% acrylamide NuPage gels according to

manufacturer’s instructions (Invitrogen). Resolved proteins were transferred

to PDVF membranes (Invitrogen).

Membranes were rinsed in 0.1M Tris-Buffered Saline with 0.1%

Tween-20 (TBS-T) and blocked with a solution of 5% non-fat dry milk in

TBS-T for 1hr at room temperature on an orbital shaking platform.

Membranes were then washed with TBS-T and incubated overnight at 4°C

in 5% bovine serum albumin (BSA) (Sigma) in TBS-T solution with

primary antibody.

Antibodies used for microglia studies included: anti-p38MAPK

(1:2000) (Santa Cruz Biotech); anti-phospho-p38MAPK (1:2000) (Cell

Signaling); anti-IL-1β (1:2000) (Chemicon, Temecula, CA); anti-Actin

A5441 (1:40,000) (Sigma); anti-ERK1/2 MAPK 9102 (1:1000) (Cell

Signaling); anti-phosphoERK1/2 MAPK 9101(Thr202/Tyr204) (1:2000) (Cell

Signaling); anti-ERα 6F-11 (1:1000) (Novocastra); anti-ERβ  80424

(1:25,000) (Merck, Rahway, NJ); anti-GR antiserum (1:2000; M20, Santa
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Cruz Biotechnology, Santa Cruz, CA); and anti-11βHSD-1 125-11 (1:1,000;

Seckl Lab, UK).

Primary antibodies used for the EtC.1 studies included: anti-NeuN

MAB377 (1:2000) (Chemicon); anti-GFAP MAB3402 (1:2000)

(Chemicon); anti-Doublecortin SC-8067 (1:1000) (Santa Cruz Biotech);

anti-Nestin MAB353 (1:2000) (Chemicon); anti-Musashi AB5977 (1:1000)

(Chemicon); anti-Vimentin (1:250) (Hybridoma Bank, University of Iowa,

#40E-C); anti-FMRP MAB2160 (1:2000) (Chemicon); anti-CREB 9192

(1:2000) (Cell Signaling); anti-phospho CREB 9198(Ser133) (1:2000) (Cell

Signaling).

After overnight incubation in primary antibodies, membranes were

washed and incubated with horseradish peroxidase-conjugated species-

specific anti-antiserum (1:20,000) (Pierce, Rockford, IL) in blocking

solution. After washing, membranes were developed with SuperSignal West

Pico substrate (Pierce, Rockford, IL), and then exposed to X-Ray film (X-

OMAT AR; Kodak, Rochester, NY). To control for protein loading,

membranes were incubated in Restore Western Blot Stripping Buffer

(Pierce), washed, and immunoblotted as described above using an anti-Actin

antibody. Developed films were analyzed by densitometry using a

computerized image analysis software (MCID-M4; Imaging Research, Inc,
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St. Catherines, ON), and the data was normalized as follows: protein band

(density*area)/actin (density*area). For phospho-proteins, their

corresponding non-phosphorylated forms were for normalization.

Real-time PCR: Adult microglia were sorted by FACS into RNA lysis buffer

(Absolute RNA Microprep kit (Stratagene, La Jolla, CA)), frozen in dry ice,

and kept at -80ºC until processing. RNA was isolated using the Absolute

RNA Microprep kit.

RNA from 1°MG cultures was obtained by rinsing the cell cultures

with PBS and then lysing cells in 350µl RNA lysis buffer (RNeasy Mini kit

(Quiagen, Valencia, CA)). RNA was extracted using the RNeasy Mini kit

protocol (Qiagen). Both extraction methods included a step with DNAse

incubation (Qiagen) to remove residual DNA.

RNA quality and concentration were then assessed by measurement of

optical density at 260 and 280 nm (1°MG) or RNA was quantified with

RiboGreen RNA Quantitation kit (Molecular Probes) following

manufacturer instructions (ex vivo MG). 10ng of RNA were retrotranscribed

with SuperScript II Reverse Transcriptase (Invitrogen) and 3µl of a 1:3

dilution of the cDNA were amplified by real-time PCR using SYBR Green

master mix (AB) in a 7900HT SDS thermal cycler (AB). The gene
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transcripts quantified were 11β hydroxysteroid dehydrogenase type 1 and

type 2 (11βHSD-1, -2), peripheral benzodiazepine receptor (PBR),

steroidogenic acute regulatory protein (StAR), cytochrome p450 side chain

cleavage enzyme (p450scc), cytochrome p450 21-hydroxylase (p450c21),

cytochrome p450 17-hydroxylase (p450c17), aryl sulfatase (Arsa), steroid

sulfatase (StS), DHEA sulfotransferase (Sulft), 3β  hydroxysteroid

dehydrogenase type 1,2,4,7 (3βHSD-1, -2, -4, -7), 17β hydroxysteroid

dehydrogenase (17βHSD-1), cytochrome p450 aromatase (p450Arom),

steroid 5α reductase (5αR), 3α hydroxysteroid dehydrogenase (3αHSD),

and ribosomal protein L27A (L27A). Primers sequences were designed

using Primer Express Software (ABI) and are indicated in Table 1;

amplicons were designed to span two exons in order to avoid potential

contaminating DNA amplification. All primers were blasted on NCBI

databases for target specificity and tested using appropriate positive control

tissues such as ovary and adrenal glands. All samples were tested in

triplicate in order to eliminate pipetting errors and the average Ct (threshold

cycle) was used to calculate the relative amount of product by the -ΔΔCt-

method (AB), using the ribosomal L27A as a housekeeping gene. The ratio

of enzyme Ct to L27A Ct values was calculated as a way of assessing the

relative expression levels of each enzyme comparing 1°MG and ex vivo MG.
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In each experiment, both positive (1µg ovary mRNA/cDNA 1:3) and

negative (RT minus and water) controls were included to ensure that the

PCR reaction was working properly.

Thin Layer Chromatography (TLC) Identification of Glucocorticoids:

Products from H3-11-dehydro-corticosterone (11-DH-Cort) and H3-

corticosterone (Cort) incubations were separated by TLC on aluminum

sheets pre-coated with silica gel containing a fluorescent indicator (Fisher).

Re-constituted samples and non-radioactive steroids were spotted on TLC

sheets and separated using chloroform/ethyl-acetate (60/40 % by vol.).

Unlabeled steroids were purchased from Sigma. After steroid separation, 11-

DH-Cort and Cort were visualized under UV light and pencil-marked. TLC

plates were then scanned using a BioScan H3 scanner (BioScan, Washington,

DC). Radioactivity peaks were analyzed using WinScan software (BioScan).

In parallel, quantification was also conducted by cutting the TLC aluminum

sheet where 11-DH-Cort and Cort spots were located, and measuring

radioactivity by scintillation counting. Data are presented as % radioactivity

of initial substrate.
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TLC Identification of Steroid hormone Metabolites: Products of tritiated

steroid incubations were separated by TLC on silica gel containing a

fluorescent indicator on pre-coated aluminum sheets (Fisher, Carlsbad, CA)

using chloroform/ethyl-acetate/xylene (68/23/9 % by vol. for [3H] DHEA)

and (62/21/17 % by vol. for [3H] AD). Non-radioactive steroids of known

identity were added to the TLC sheets on lanes adjacent to the putative

metabolites and were visualized and identified by their chromogenic

properties after spraying with 5% (by vol.) sulphuric acid in methanol and

heating on a hot plate. Unlabeled steroids used were 17β-estradiol (E2) and

estrone (E1) (Sigma); and testosterone (T), androstenedione (AD), 5α-

androstenedione (5αAD), dehydroepiandrosterone (DHEA), 5-

androstenediol (Adiol), and dehydro-testosterone (DHT) (Steraloids Inc,

New Port, RI). Purity of [3H]-DHEA and [3H]-AD (<98 %) was determined

by TLC.

Immunofluorescence: 24hr, 48hr or 5 days after I.P. injection of LPS, mice

were transcardially perfused with PBS, followed by 4% paraformaldehyde

(PFA). Fixed brains were extracted, post-fixed overnight at 4°C in 4%PFA,

and then stored at –20°C in cryoprotectant (sucrose %). Coronal sections

(30M) were obtained using a Leica vibratome (Leica, ). Sections were rinsed
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in PBS and then washed 3x in TBS-Triton 1% (TBS-Tr), blocked in 3% goat

serum for 1hr at room temperature, and then incubated overnight at 4°C in

primary antibody dilutions in 3% BSA TBS-Tr: 11βHSD-1 (1:500); GFAP

(1:1000); NeuN (1:1000). The following day, sections were washed 5x in

TBS-Tr and then incubated for 1hr at room temperature with the appropriate

Rhodamine-Red-X conjugated species-specific secondary antibodies.

Sections were washed 5x in TBS-Tr and then rinsed in 0.1M PB before

mounting on glass slides and cover-slipping with Dako aqueous fluorescent

mounting media (Dako). Mounted sections were visualized by confocal

microscopy using a Zeiss LSM confocal microscope. Z-stack image

reconstructions and co-localization analysis were done using LSM software

(Rockefeller University Bioimaging Facility) and images were labeled and

marked in Adobe Photoshop (Adobe, San Jose, CA).

EtC.1 Transfection and Luciferase Assay: EtC.1 cells were seeded in 24-well

plates, 2x104 cells/well, in DMEM containing 10% charcoal stripped serum.

24hr later cells were transfected using Lipofectamine Plus (Invitrogen),

following manufacturer’s instructions, with 0.4µg of plasmid DNA/well.

The 3X ERE-Luciferase plasmid was a generous gift of Don McDonnell
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(Duke University Durham, NC), and the β-Galactosidase plasmid was from

Promega (pSV-β-Gal control vector). 24hr after transfection, cells were

incubated with various concentrations of E2 or Adiol for another 24hr. ICI

pre-treatment was done for 30 minutes. Cell lysates were prepared and

luciferase activity measured using Promega Luciferase Assay System

according to manufacturer’s instructions (Promega). β-Gal activity was

measured from cell lysates to normalize for transfection efficiency.

Statistics:  Statistical analysis was performed using StatView (SAS Institute

Inc., Cary, NC). Experiments involving 2 groups were compared using a

Student t-test. Experiments involving more than 2 groups were compared by

Analysis of Variance (ANOVA), followed by posthoc analysis with Tukey-

Kramer Honestly Significant Difference (HSD) when variances were

homogeneous (using Equality of Variance F test); or with non-parametric

Games-Howell test. Graphs show the mean ± the standard error of the mean

(S.E.M.). P<0.05 was considered statistically significant. *, p<0.05, **,

p<0.01 and ***, p<0.0001; (n.s.), non-significant.
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