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Work in Caenorhabditis elegans has been instrumental in deciphering the molecular

basis of programmed cell death. However, despite extensive characterization of broad-

acting cell death genes, the molecular events triggering cell-specific activation of the

cell death machinery remain, for the most part, unknown. In some C. elegans somatic

cells, transcription of the egl-1/BH3-only gene is believed to promoted cell-specific

death. EGL-1 protein inhibits the CED-9/Bcl-2 protein, resulting in release of the

caspase activator CED-4/Apaf-1. Subsequent activation of CED-3 caspase by CED-4

leads to cell death. But despite the important role of egl-1 transcription in promoting

CED-3 activity in cells destined to die, it remains unclear whether temporal control

of cell death is mediated by egl-1 expression.

Here, we establish the C. elegans tail-spike cell as an attractive model for studying

the initiation of programmed cell death. We show that, while death of the tail-spike

cell is dependent upon the ced-3 and ced-4 genes, egl-1 and ced-9 play only a minor

role in the death of this cell, demonstrating that temporal control of cell death can be

achieved in the absence of egl-1. We go on to show that the timing of tail-spike cell

death onset is controlled by transcriptional induction of the ced-3 caspase. In the tail-

spike cell, ced-3 expression is induced minutes before the cell dies, and this induction



is sufficient to promote the cell’s demise. Both ced-3 expression and cell death are

dependent upon the transcription factor-encoding gene pal-1, the C. elegans homolog

of the mammalian tumor suppressor gene Cdx2. PAL-1 can bind to ced-3 promoter

sites critical for tail-spike cell death, suggesting that it promotes cell death by directly

activating ced-3 transcription. Our results highlight a previously undescribed role for

transcriptional regulation of caspases in controlling the timing of cell death onset

during animal development.
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Chapter 1

Transcriptional mechanisms governing the specification of pro-

grammed cell death

Programmed cell death (PCD) has long been recognized as playing a critical role

during organismal development. In the middle of the 19th century, the German

pathologist Rudolph Virchow described a type of cell death that he pronounced to be

“natural as opposed to violent”; he termed this process necrobiosis, acknowledging the

ying-yang relationship between cellular destruction and organismal survival (Virchow,

1860). The significance of programmed cell death was further elaborated upon in

the middle of the 20th century, when Glucksmann articulated its role in embryonic

development, metamorphosis and the destruction of vestigial tissues (Glucksmann,

1951; Glucksmann, 1965). Around this time, the embryologist Saunders observed

that cell death in chick embryos took place in a reproducible pattern (Saunders,

1966), suggesting that cell death was in fact carefully regulated. In their seminal and

often cited paper, Kerr, Wyllie and Currie put forth the idea that these naturally

occuring programmed cell deaths follow a distinct pattern of morphological changes.

They suggested that programmed cell death was a distinct cellular fate, just like cell

division, migration or differentiation, and coined this fate “apoptosis”, deriving the

word from the Greek for “falling off” (1972).

This fate is adopted by a vast number of cells, in nearly all metazoans. Pro-

grammed cell death is used to destroy cells that have been produced in excess and
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to ablate cells that have become superfluous, ultimately serving to shape an intricate

body plan. The importance of PCD to the developing organism is highlighted by the

phenotypes of animals with cell death defects. Mice with targeted gene disruption

of either caspase-9 or caspase-3/CPP-32 – critical cell death effectors – die perina-

tally with severe brain abnormalities resulting from reduced apoptosis (Kuida et al.,

1998; Kuida et al., 1996). Non-lethal defects in components of the cell death ma-

chinery have been implicated in a variety of diseases, including cancer, autoimmune

syndromes and neurodegenerative disorders. Soengas and colleagues have reported

that a significant fraction of cell lines derived from metastatic melanomas express low

or undetectable levels of the cell death activator Apaf-1. In addition to contribut-

ing to cancer progression, decreased Apaf-1 expression also resulted in resistance to

chemotherapy-induced cell death (Soengas et al., 2001). Mutations in the cell death

executioner caspase-8 have been correlated to an increase in neuroblastoma metas-

tasis (Stupack et al., 2006), as well as to the progression of colorectal tumors from

non-malignant adenomas to invasive carcimonas (Kim et al., 2003). Abnormalities

in caspase-10 have been implicated in both gastric cancer (Park et al., 2002) as well

as the debilitating autoimmune lymphoproliferative syndrome type II (Wang et al.,

1999). In some instances, activation of the cell death machinery can also contribute

to disease. In mouse stroke models, caspase-3 is activated in neurons undergoing

ischemic cell death (Namura et al., 1998); caspase-3-mediated apoptosis also takes

place in lymphocytes as a counterintuitive response to bacterial sepsis (Hotchkiss et

al., 2000). In both of these cases, caspase inhibitors have been demonstrated to have

a therapeutic effect, resulting in neuronal protection (Hara et al., 1997) as well as

enhanced immunity (Hotchkiss et al., 2000).
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C. elegans as a model for studying the initiation of programmed cell death

With its sequenced genome, large brood size, short lifespan and self-fertilizing mode

of reproduction, C. elegans is a powerful system for forward genetics; the nematode’s

fixed lineage also makes it an ideal model organism for studying the determination

of developmental cell fate. In particular, work in Caenorhabditis elegans has been

instrumental in deciphering the molecular basis of programmed cell death. In every

wild-type C. elegans hermaphrodite, 1090 cells are born, 131 of which die (Sulston

and Horvitz, 1977; Sulston et al., 1983). The exact location and time of these deaths

is known, thanks to the heroic efforts of researchers who followed every cell in the

worm throughout its development, noting the time of every cell birth, every cell

division and every cell death (Sulston and Horvitz, 1977; Sulston et al., 1983). The

fixed pattern of cell death in C. elegans allows the unambiguous identification of

dying cells, which can be visualized using differential interference contrast (DIC)

optics by their distinct “button-like” morphology. Importantly, “undead” cells, those

destined to die but whose death has been inappropriately blocked, can also be readily

visualized and identified. A genetic pathway governing the execution of cell death

was first identified in C. elegans, and the machinery responsible for executing cell

death in this animal is conserved in many metazoans (reviewed in Metzstein et al.,

1998).

The downstream-most player in the C. elegans execution pathway is ced-3, a

member of the caspase family of proteases. Three genes act upstream of ced-3 in

this pathway: ced-4/Apaf-1, ced-9/Bcl-2 and egl-1/BH3-only. Loss-of-function mu-

tations in ced-3, ced-4 and egl-1 block programmed cell death (Ellis and Horvitz,

1986; Conradt and Horvitz, 1998), indicating that these genes possess pro-apoptotic

activity. Conversely, ced-9 loss-of-function mutations result in lethality as a result of

extensive ectopic cell death (Hengartner et al., 1992), indicating that ced-9 possesses

anti-apoptotic activity. Consistent with this conclusion, a ced-9 gain-of-function (gf)
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mutation blocks cell death (Hengartner and Horvitz, 1994). Epistasis experiments

have placed these genes into a linear pathway, with egl-1, ced-9, ced-4 and ced-3

acting in that order to direct cellular demise (reviewed in Metzstein et al., 1998).

Genetic, biochemical and structural studies have shed light on the complex inter-

play between these four genes. CED-3 activation is dependent upon its autocatalytic

cleavage and assembly into a heterodimer composed of two “small” and two “large”

CED-3 subunits (reviewed in Yan and Shi, 2005). Proteolytic activation of CED-3

is facilitated by its interaction with the tetrameric CED-4 adaptor protein (Yang et

al., 1998; Yan et al., 2005). In most C. elegans cells, CED-4 is sequestered at the

mitochondria as a result of its interaction with CED-9 (Chen et al., 2000). This

interaction maintains CED-4 in a dimeric, inactive state (Yan et al., 2005), blocking

CED-4 mediated activation of CED-3 and preventing cell death (Chen et al., 2000;

Chinnaiyan et al., 1997). EGL-1 binding to CED-9 disrupts the interaction between

CED-4 and CED-9 (del Peso et al., 1998; Yan et al., 2004), resulting in the release of

CED-4 from the mitochondria, and thereby promoting CED-3 activation and cellular

demise (Chen et al., 2000).

Mutations in ced-3, ced-4, ced-9 and egl-1 affect most somatic cells in C. elegans,

indicating that these genes function as part of a general cell death pathway. Genes

involved in the engulfment and nuclear degradation of dying cells in C. elegans have

also been identified and characterized, and, similarly, these genes exert their influence

on most dying cells (Ellis and Horvitz, 1991; Stanfield and Horvitz, 2000; Hedgecock

et al., 1983; Wu et al., 2001; Parrish et al., 2001; Wang et al., 2002; Wu et al., 2000).

Despite extensive characterization of broad-acting cell death genes, the molecular

events triggering cell-specific activation of the cell death machinery remain, for the

most part, unknown. Work in C. elegans suggests that members of the “core” cell

death execution machinery – ced-3, ced-4 and ced-9 – are constitutively expressed in

most cells at levels sufficient to execute a cell’s death program (Shaham and Horvitz,
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1996b). However, only 11% of C. elegans cells are fated to die (Sulston and Horvitz,

1977; Sulston et al., 1983). What triggers death in these cells? Progress towards

answering this question has been hindered by the difficulty of designing genetic screens

geared to detect cell-specific cell death defects. Some of the initial cell death screens

identified animals defective in cell death execution by their absence of cell corpses

(Ellis and Horvitz, 1986); animals with mutations in the engulfment machinery were

identified by their excess of these corpses (Ellis et al., 1991). Similar approaches

would be very difficult in large-scale screens aimed at isolating mutations affecting

only a few cell deaths. Instead, screens designed to isolate cell-specific regulators of

cell death have relied upon cell-specific markers. The scarcity of these markers has

hampered progress, and the mechanisms underlying cell death specification have been

identified in only 7 of the 131 dying cells in C. elegans.

How does a given cell know that it is fated to die? In a developing organism,

timing is also critical – how does a cell know when it is supposed to die? How does

it initiate cell death? This chapter will discuss the mechanisms currently proposed

to regulate cell death specification and cell death initiation in C. elegans. Intrigu-

ingly, cell death specification in C. elegans appears to be, for the most part, regulated

transcriptionally. Studies in Drosophila and various mammalian systems have also ad-

vanced our understanding of cell death specification. This chapter will describe some

of the contributions from these systems, focusing upon transcriptional mechanisms of

cell death specification.

Inappropriate activation of egl-1 expression can promote ectopic cell death

In a subset of somatic cells in C. elegans, the egl-1 gene is believed to be a critical

mediator of a cell’s decision between life and death. Transcription of egl-1 is induced

in some cells destined to die, leading to the hypothesis that such transcription may

determine the timing of cell death initiation. Several regulators of egl-1 transcription
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have been identified, and mutation of these regulators or alteration of their binding

sites in the egl-1 promoter can inhibit or promote cell-specific cell death.

egl-1 was originally isolated in a screen for animals with an egg-laying defective

(egl) phenotype (Trent et al., 1983). In animals carrying an egl-1 gain-of-function mu-

tation, the two hermaphrodite-specific neurons (HSNs), which are normally required

for egg-laying, die inappropriately. As a result, eggs are not laid, and instead accu-

mulate within the hermaphrodite gonad. Several egl-1 (gf) alleles have been isolated.

Each of these alleles contains a single base pair (bp) mutation 5.6 kb downstream

of the start of the egl-1 transcription unit, within a region containing a putative

TRA-1A binding site (Conradt and Horvitz, 1999). TRA-1A is a transcriptional reg-

ulator of sexual dimorphism in C. elegans ; strong loss-of-function mutations in the

tra-1 gene result in almost complete transformation of hermaphrodites into males

(Hodgkin, 1987; Zarkower and Hodgkin, 1992). Conradt and Horvitz (1999) have

shown that TRA-1A is able to bind to the putative TRA-1A binding site within the

egl-1 regulatory region, and that mutations similar to those found in egl-1 (gf) mutant

animals disrupt this interaction. They suggest that tra-1 normally represses egl-1 ex-

pression in the HSNs, thereby blocking cell death. Mutation of the TRA-1A binding

site results in ectopic egl-1 expression, and subsequent death of the HSNs. Consis-

tently, tra-1 (gf) mutations, in which tra-1 is overexpressed in males, block the death

of the male HSNs; egl-1 (gf) mutations suppress this inappropriate survival (Conradt

and Horvitz, 1999).

ces-1 and ces-2 act in a transcriptional cascade upstream of egl-1

Two additional regulators of cell death, ces-1 and ces-2, were originally isolated in

a screen for mutants with abnormal patterns of serotonin expression (Trent, 1982).

While the C. elegans pharynx usually contains two serotonergic cells, the bilaterally

symmetrical NSMs (neurosecretory motor neurons), Trent found that ces-1 (gf) and
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ces-2 (lf) mutant animals contained four cells staining with an anti-serotonin anti-

serum. The extra two serotonergic cells were identified as the sister cells of the NSMs

(Ellis and Horvitz, 1991), cells that normally die during early embryogenesis (Sulston

et al., 1983). In addition to blocking the death of the NSM sister cells, the ces-1 (gf)

mutation also blocked the death of the I2 sister cells. Other cell deaths in the worm

appeared to be unaffected by ces-1 and ces-2 mutations (Ellis and Horvitz, 1991),

suggesting that ces-1 and ces-2 might regulate cell-specific cell death.

Subsequent genetic and biochemical studies have placed ces-1 and ces-2 into a

transcriptional cascade believed to regulate the expression of egl-1. Both genes encode

transcription factors: CES-1 is a member of the Snail family of zinc finger proteins

(Metzstein and Horvitz, 1999), and CES-2 belongs to the bZIP subfamily of tran-

scription factors (Metzstein et al., 1996). The cell death defect of ces-2 (lf) mutant

animals is suppressed by ces-1 (lf) mutations (Ellis and Horvitz, 1991), indicating that

pro-apoptotic ces-2 may act upstream of anti-apoptotic ces-1. Indeed, CES-2 is able

to bind a region of the ces-1 promoter containing a ces-2 consensus DNA binding site

(Metzstein and Horvitz, 1999), suggesting that ces-2 may directly inhibit the expres-

sion of ces-1. It has been speculated that ces-1 may act in turn by directly inhibiting

egl-1 expression. Notably, recent studies have shown that a ces-1 (gf) mutation blocks

expression of an egl-1 transcriptional reporter (Thellmann et al., 2003). In addition,

CES-1 is capable of binding a conserved region of the egl-1 promoter demonstrated

to be required for egl-1 expression in the NSM sister cells (Thellmann et al., 2003).

The ces-1 (gf) mutation is suppressed by ced-9 (lf) mutations (Metzstein and Horvitz,

1999), consistent with ces-1 acting upstream of ced-9.

Thellmann and colleagues propose that a cell’s life-or-death decision is deter-

mined by a delicate balance between activators and repressors of egl-1 expression.

The results described above indicate that ces-1 may function as a repressor of egl-

1 expression in the NSM sister cells; the authors propose that the bHLH-encoding
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genes hlh-2 and hlh-3 may function as the activators. They show that hlh-2 and hlh-

3 are partially required for the death of the NSM sister cells. Additionally, HLH-2

and HLH-3 are capable of binding a region of the egl-1 promoter that is required for

its expression (Thellmann et al., 2003), consistent with roles as activators of egl-1

transcription. Interestingly, the presumed ces-1 and hlh-2/hlh-3 DNA binding sites

overlap within the egl-1 promoter. It is intriguing to speculate that ces-1 and hlh-

2/hlh-3 compete for sites on the egl-1 promoter, and that the fates of the NSM sister

cells are dependent on the results of this competition. This model remains oversim-

plified, however. hlh-2 (lf) and hlh-3 (lf) mutations only partially block death of the

NSM sister cells, suggesting that other genes might act redundantly with hlh-2 and

hlh-3 to promote egl-1 expression. Additionally, hlh-2 is expressed in many cells in

the worm (Thellmann et al., 2003), indicating that other players must confine the

death-promoting activity of this gene to cells fated to die. Moreover, despite the

fact that ces-1 is broadly expressed (http://www.wormbase.org), ces-1 (lf) mutations

do not promote inappropriate cell death (Ellis and Horvitz, 1991), suggesting that

other mechanisms must keep egl-1 expression in check in cells destined for survival.

Alternatively, levels of egl-1 expression in ces-1 (lf) animals may not be sufficient to

promote the death of these cells.

Hox genes can control cell death by direct regulation of egl-1 expression

Hox genes are required for patterning an organism along its anterior-posterior body

axis, and, as such, are critical determinants of cell fate, including cell death. C. elegans

has six characterized Hox genes, and, indeed, several of these genes are required for

the appropriate specification of programmed cell death. Loss-of-function mutations

in lin-39, the C. elegans homolog of sex combs reduced, result in the inappropriate cell

death of six neurons in the midregion of the ventral nerve cord (Clark et al., 1993).

Mutations in the C. elegans antennapedia homolog, mab-5, result in the inappropriate
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survival of P(11/12).aaap, two cells of the posterior ventral nerve cord (Kenyon, 1986).

It remains unclear whether these genes directly regulate cell death, or whether their

effects on cell death are the indirect consequence of major changes in cell fate. Recent

studies have demonstrated that mab-5 may act in a complex with the homeodomain-

containing protein ceh-20 to promote P11.aaap cell death by directly activating egl-1

transcription. Both mab-5 and ceh-20 are required for death of the P11.aaap cell, and

for expression of an egl-1 transcriptional reporter (Liu et al., 2006). In an approach

similar to that taken by Thellmann and colleagues (2003), the authors identified a

site within the egl-1 promoter that is required for both P11.aaap cell death as well as

expression of an egl-1 transcriptional reporter, and they subsequently demonstrated

that a CEH-20/MAB-5 complex is able to bind this site in vitro (Liu et al., 2006).

Therefore, they propose that cell death in P11.aaap is specified by mab-5/ceh-20 -

mediated upregulation of egl-1.

However, several observations suggest that, while necessary for the death of P11.aaap,

the upregulation of egl-1 transcription by mab-5 and ceh-20 may not act as the trig-

ger for the cell’s demise. Both mab-5 and ceh-20 are expressed in many cells in the

worm, suggesting that additional mechanisms must regulate their activity in a cell-

specific manner. Moreover, while required for death of the P(11/12).aaap cells, mab-5

expression is not sufficient for death in the lineal homologs of these cells (Salser et

al., 1993). It is possible that the co-factors required for mab-5 and ceh-20–induced

egl-1 expression are not expressed in other cells. Alternatively, upregulation of egl-1

expression may not be sufficient to promote ectopic cell death in these cells.

eor-1 and eor-2 are required for the male-specific death of the HSNs

A screen for suppressors of the ectopic cell death observed in egl-1 (gf) mutant animals

should isolate genes involved in both the execution and specification of cell death.

Loss-of-function mutations in egl-1 were isolated in this way. In addition to blocking
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the death of the HSNs, egl-1 (lf) mutations also blocked all somatic cell death (Conradt

and Horvitz, 1998), thereby establishing egl-1 as a general activator of programmed

cell death. An egl-1 (gf) suppressor screen performed by Hoeppner and colleagues

isolated mutations in two more genes, eor-1 and eor-2. In addition to blocking ectopic

HSN cell death in egl-1 (gf) hermaphrodites, mutations in eor-1 and eor-2 also blocked

the death of these cells in otherwise wild-type males. Unlike the egl-1 (lf) mutation,

mutations in eor-1 and eor-2 do not affect programmed cell death in the pharynx,

germline, or any of the other cells examined, and are therefore proposed to act in

a cell-specific manner. A loss-of-function mutation in ced-9 blocks the cell death

defects observed in eor-1 and eor-2 mutant animals, indicating that eor-1 and eor-2

act upstream or in parallel to ced-9. The authors propose that eor-1 and eor-2 may

normally promote the death of the male HSNs by supporting egl-1 activity in these

cells; in egl-1 (gf) hermaphrodites, mutations in eor-1 and eor-2 may block HSN cell

death by antagonizing ectopic egl-1 activity.

However, how these genes interact with the cell death execution machinery, and

whether they exert a direct effect on egl-1 activity, remains unknown. eor-1 encodes

a zinc finger-containing protein with similarity to the PLZF oncogene; eor-2 encodes

a protein without any known homologues. Mutations in eor-1 and eor-2 result in

pleiotropic defects; in addition to blocking HSN death, the mutations can also result

in lethality, defects in migration of the CAN neurons, defects in male tail morphology

and an inability to take up the lipophilic dye, diO (Hoeppner et al., 2004). Thus, in

addition to their role in promoting HSN cell death, these two genes are likely also

involved in many other neuronal cell fate decisions. These genes positively regulate

expression of Ras- and Wnt-responsive genes (Howard and Sundaram, 2002; Roche-

leau et al., 2002); eor-1 and eor-2 may act through these pathways to promote the

death of the male HSNs.
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Transcriptional regulation of irradiation-induced germline cell death

In addition to its prevalence in the embryo, programmed cell death is also a common

cell fate in the C. elegans germline. Roughly half of all germ cells die via programmed

cell death (Gumienny et al., 1999); animals subjected to DNA damage-inducing agents

exhibit even more extensive germline cell death (Gartner et al., 2000). Unlike somatic

cells, germ cells in C. elegans do not die in a lineage-dependent manner. As a re-

sult, work in this system has not proven useful for identifying cell-specific regulators

of cell death. However, many of the players required for somatic cell death play a

role in both physiological as well as DNA damage-induced germ cell death (Gumi-

enny et al., 1999; Gartner et al., 2000), and efforts to better understand germline

cell death have yielded insight into some of the mechanisms regulating the core cell

death machinery. As in somatic cells, careful regulation of egl-1 expression is crit-

ical for maintaining the balance between life and death in the C. elegans germline.

Though not required for physiological germ cell death (Gumienny et al., 1999), egl-1

is critical for the germ cell death that occurs in response to various DNA damaging

agents (Gartner et al., 2000). In fact, levels of egl-1 transcript in the germline, as

assessed by quantitative RT-PCR, increase dramatically when animals are subjected

to X-ray irradiation (Hofmann et al., 2002; Schumacher et al., 2005). This temporal

correlation suggests that onset of egl-1 expression may play a critical role in initi-

ating germline cell death. Transcriptional upregulation of egl-1 is dependent upon

both hus-1, a conserved checkpoint gene required for DNA damage-induced cell cycle

arrest and cell death (Hofmann et al., 2002), as well as cep-1 (Hofmann et al., 2002;

Schumacher et al., 2005), the C. elegans homolog of the p53 tumor suppressor (Derry

et al., 2001; Schumacher et al., 2001). ced-13, the only other characterized BH3-only

gene in C. elegans, is also required for DNA damage-induced germ cell death, and

its expression is similarly upregulated in a cep-1 -dependent manner upon exposure

to X-ray irradiation (Schumacher et al., 2005). Intriguingly, the ced-13 promoter
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contains several cep-1/p53 consensus DNA binding sites (Schumacher et al., 2005).

It is proposed that cep-1 may promote germline cell death at least in part by directly

activating expression of BH3-only genes.

egl-1 -independent specification of cell death

The work described above demonstrates that regulation of egl-1 expression is criti-

cal for confining activation of the cell death machinery to a specific subset of cells.

However, several pieces of evidence suggest that other mechanisms of cell death spec-

ification must exist. Notably, physiological cell death in the C. elegans germline

occurs independently of both egl-1 (Gumienny et al., 1999) as well as the related

BH3-only gene ced-13 (Schumacher et al., 2005), suggesting that cell death specifica-

tion must be regulated by other factors in this tissue. In fact, recent work by Park

and colleagues (2006) suggests that the Pax transcription factors egl-38 and pax-2

may influence the cell death decision in both germline and somatic cells by directly

regulating transcription of the ced-9 gene. Although egl-1 expression is necessary for

cell death to occur in these cells, previous studies do not adequately address whether

this expression actually triggers cell death onset. Transcription of the egl-1 gene

has not been examined at high temporal resolution, leaving open the possibility that

egl-1 expression may not provide the temporal cue regulating the initiation of cell

death. Furthermore, in double mutant animals containing a strong loss-of-function

mutation in ced-9 and a very weak loss of function mutation in ced-3, cell death still

occurs appropriately in cells destined to die and does not occur in cells destined to

live (Hengartner and Horvitz, 1994). Given that egl-1 requires ced-9 to promote cell

death, egl-1 cannot be the determinant of cell death onset in these animals, which

lack ced-9 activity. Thus, other mechanisms controlling the timing of cell death onset

must exist. The work described in this thesis demonstrates that induction of ced-3

caspase transcription may play a critical role in controlling the onset of programmed
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cell death.

Controlling the expression of cell death regulators in Drosophila melanogaster

Unlike death in C. elegans somatic cells, developmental cell death in Drosophila

melanogaster is not predetermined by lineage, but is specified by a variety of cell-

intrinsic and cell-extrinsic cues, including steroid hormone signaling, access to limiting

growth factor and interaction/competition with neighboring cells. ced-3 and ced-4 ho-

mologs been identified in Drosophila (reviewed in Kornbluth and White, 2005), and

studies in the fly have been critical for identifying some of the upstream signaling

factors impinging upon the core cell death execution machinery. Cell death in the

developing Drosophila embryo is activated by three genes: reaper (rpr) (White et

al., 1994), head involution defective (hid) (Grether et al., 1995) and grim (Chen et

al., 1996), which contain a shared terminal peptide RHG motif. These cell death

regulators integrate various cell-death inducing stimuli, and exert their pro-apoptotic

activity at least in part by promoting the auto-ubiquitination and degradation of

the caspase inhibitor DIAP1 (Drosophila Inhibitor of Apoptosis) (Holley et al., 2002;

Ryoo et al., 2002; Yoo et al., 2002; Wilson et al., 2002).

Like egl-1, rpr, hid, and grim can be regulated transcriptionally. In fact, rpr

and grim are expressed uniquely in dying cells, and the onset of their expression

presages cellular demise (reviewed in Tittel and Steller, 2000). in situ hybridization

in whole mount embryos revealed that rpr expression precedes the onset of cell death

by 1-2 hours (White et al., 1994); similar findings were observed with grim (Chen

et al., 1996). Upregulation of rpr and grim transcript also occurs in the adult fly.

Several hours post-eclosion, type II neurons, believed to play a role in wing-expansion

behavior and eclosion, die via programmed cell death; rpr and grim transcript begin

to be detected in these cells several hours post-eclosion, anticipating overt signs of

cell death by 2-3 hours (Robinow et al., 1997). hid expression, on the other hand,
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is not limited to cells destined to die (Grether et al., 1995), and post-translational

modification must therefore be critical for regulating its death-promoting activity.

Indeed, the Ras/MAPK survival pathway has been proposed to block cell death via

transcriptional as well as post-translational inhibition of hid activity (Kurada and

White, 1998; Bergmann et al., 1998). MAPK-mediated hid phosphorylation is critical

for survival of Drosophila midline glia (Bergmann et al., 2002), where hid is highly

expressed (Kurada and White, 1998).

Diverse cellular cues regulate the expression of rpr, hid and grim, thereby exerting

their influence upon the cell death decision process. rpr expression can be induced

upon exposure to various injurious insults, including X-ray irradiation (White et al.,

1994; Nordstrom et al., 1996) and aberrant development (Nordstrom et al., 1996).

Upregulation of rpr expression is also required for formation of segmental bound-

aries during early Drosophila development. The Hox gene Dfd activates cell death

in some cells by directly upregulating rpr expression, thus ensuring formation of a

proper segmental boundary between the maxillary and mandibular lobes (Lohmann

et al., 2002). During Drosophila metamorphosis, the specific destruction of the larval

midgut and salivary glands is dependent on programmed cell death mediated by the

steroid hormone ecdysone (reviewed in Truman et al., 1992). Temporal control of

cell death is achieved by ecdysone-induced transcriptional upregulation of rpr and

hid shortly before salivary gland and midgut cell death; levels of diap1 expression are

also downregulated at this time (Jiang et al., 1997).

Conservation between worm and man

With a cell count many orders of magnitude higher than that of the worm, deciphering

the cell-specific regulation of programmed cell death in humans is a daunting task.

In fact, cell death in mammals is thought to be at least in part a stochastic process,

with the cell death decision being made based on cell-extrinsic factors, such as access
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to limiting amounts of growth factor. However, as in C. elegans and Drosophila,

cell-intrinsic factors also play an important role in cell death specification. In fact,

many of the mechanisms described above have parallels in mammalian development.

Specifically, transcriptional upregulation of vertebrate BH3-only genes is critical for

promoting cell death in some cells. In mammals, there are at least ten BH3-only genes,

each of which regulates cell death in different cells and in response to different triggers.

At least three of these BH3-only genes, notably Noxa, Puma and Bim, are regulated

transcriptionally (reviewed in Puthalakath and Strasser, 2002). Like egl-1 and ced-

13, Noxa and Puma are both targets of p53, and are transcriptionally upregulated

in response to genotoxic stress (Oda et al., 2000; Nakano and Vousden, 2001). Bim

is expressed in response to growth factor withdrawal in both neurons (Putcha et al.,

2001) and leukocytes (Dijkers et al., 2000), and subsequently promotes the death of

these “starving” cells. Some of the mammalian homologs of other egl-1 regulators

are also implicated in the control of programmed cell death. The mammalian ces-1

homolog, SLUG, is expressed in hematopoietic progenitor cells, where it acts upstream

of the PUMA to block death in cells exposed to radiation (Wu et al., 2005), therefore

acting in a pathway identical to that described in worms. Pbx1, the human homolog

of ceh-20, acts as an oncogene, and is commonly mutated in patients with acute

lymphoblastic anemia (Kamps et al., 1991), the most common form of pediatric

cancer. It is possible that Pbx1 acts in a similar manner as ceh-20, affecting cell

death via upstream regulation of BH3-only genes.

Induction of ced-3 transcription may regulate the timing of PCD

We have chosen to study the initiation of programmed cell death in the C. elegans

tail-spike cell. The tail-spike cell exhibits a unique biology, and we hypothesized that

it might therefore provide novel insight into the regulation of cell death onset. We

report that death of this cell depends only partially on the egl-1 gene, suggesting
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that other means of exerting temporal control on the death of this cell must exist.

We demonstrate that induction of ced-3 caspase transcription, minutes before mor-

phological features of death are evident, plays a critical role in controlling the onset

of programmed cell death in the tail-spike cell. Cell-specific regulation of caspase

transcription has been previously described in both vertebrate and invertebrate sys-

tems. For example, during Drosophila larval metamorphosis, expression of the apical

caspase Dronc and the effector caspase Drice is upregulated in response to the steroid

hormone ecdysone (Cakouros et al., 2002; Daish et al., 2003; Cakouros et al., 2004;

Kilpatrick et al., 2005), a well known trigger of cell death. Caspase-3 is also transcrip-

tionally upregulated in peripheral T lymphocytes and T cell hybridomas following T

cell receptor signaling (Sabbagh et al., 2004; Sabbagh et al., 2005), sensitizing the

cells to respond to future death-inducing insults. However, in these systems, caspase

expression, while critical for the execution of cell death, occurs hours to days before

cells begin to die, and cannot, therefore, be the temporal trigger for the onset of cell

death. Unlike the upregulation of the Drosophila caspases Dronc and Drice, or the

mammalian caspase-3, ced-3 transcription is induced minutes before the tail-spike

cell dies, suggesting that ced-3 transcription may provide the temporal cue for PCD

initiation.

In a genetic screen for regulators of ced-3 expression, we identified the homeodomain-

containing transcription factor pal-1. pal-1 is required for both expression of ced-3

in the tail-spike cell and tail-spike cell death, and in vitro studies demonstrate that

PAL-1 is able to bind the ced-3 promoter at sites that are critical for both processes,

suggesting that pal-1 directly promotes ced-3 expression. PAL-1 protein is similar

to the mammalian protein Cdx2, which promotes intestinal development, and that

when mutated can result in intestinal tumors (Chawengsaksophak et al., 1997; Aoki

et al., 2003; Bonhomme et al., 2003). It is possible that Cdx2 promotes vertebrate

caspase expression to effect programmed cell death in the intestinal epithelium in
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a manner similar to pal-1 regulation of ced-3 expression in C. elegans. Our results

unveil a novel mechanism for controlling the timing of programmed cell death in C.

elegans by transcriptional regulation of caspases. Given the conservation between C.

elegans and mammals, we suspect that this work may shed light upon regulation of

programmed cell death in mammalian systems as well.
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Chapter 2

The C. elegans tail-spike cell as a model for studying ced-9

and egl-1 -independent programmed cell death

2.1 Background

Programmed cell death (PCD) can be thought of as consisting of several steps: ini-

tiation of the death program, execution of cell death, engulfment of the dying cell,

and cellular degradation. While the cell death execution machinery has been well

characterized in C. elegans, the upstream factors that activate this machinery are,

for the most part, unknown. In particular, the upstream signals responsible for tar-

geting specific cells for death, and the molecular events that determine the timing of

cell death onset, remain poorly understood. Screens designed to isolate cell-specific

regulators of cell death have relied upon cell-specific markers or phenotypes (Trent,

1992; Trent et al., 1983; Hoeppner et al., 2004; Liu et al., 2006). The scarcity of these

markers has hampered progress, and, currently, the molecular triggers responsible for

activating the cell death machinery have been characterized in only seven of the 131

somatic cells that undergo programmed cell death in C. elegans.

Of the 113 somatic cells in C. elegans that die during embryogenesis, only two per-

sist for longer than thirty minutes before dying: the tail-spike cell (AB.p(l/r)ppppppa),

and MS.pppaaa, the sister of the germline precursor cell, Z1 (Sulston and Horvitz,
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Born
Differentiates:

fuses & extends
posterior process

Dies

340 min

Figure 2.1: Schematic of tail-spike cell at different stages of development. Filled green
ovals, tail-spike cell nuclei; gray oval, dying tail-spike cell corpse. Ball-stage embryo
(left); 3-fold stage embryo (center and right).

1977; Sulston et al., 1983). To better understand how cell death is temporally regu-

lated, we chose to investigate the mechanisms underlying the death of the tail-spike

cell. Unlike most dying cells in C. elegans, the tail-spike cell meets its demise more

than five hours after it is born (Sulston and Horvitz, 1977; Sulston et al., 1983).

Whereas most dying cells in C. elegans are undifferentiated, the binucleate tail-spike

cell exhibits extensive differentiated features before dying, including a posterior fil-

amentous process that may function as a scaffold for modeling the C. elegans tail

(Sulston et al., 1983) (Figure 2.1). Precise control of the timing of tail-spike cell

death onset may be important for C. elegans tail development, and its relatively long

lifespan greatly facilitates analysis of the kinetics of cell death onset. In Drosophila

and vertebrates, many cells that die during development also exhibit obvious differen-

tiated features, and can live long after they are born (Meier et al., 2000). Therefore,

the tail-spike cell might be a useful model for understanding developmental cell death

during Drosophila and vertebrate development. Here, we describe reagents we have

developed to study tail-spike cell death, and we examine the dependence of the tail-

spike cell on the previously characterized cell death machinery.
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Figure 2.2: Merged Nomarski and epifluorescence image of a 3-fold stage embryo
carrying a 1.5 kb C. elegans ced-3 promoter::GFP reporter transgene (nsEx723 ).
Note expression in the tail-spike cell (arrow and inset). Scale bar: 10µM .

2.2 Results

Identification of a tail-spike cell reporter

Efforts to characterize the factors responsible for initiation of cell death in C. elegans

have been hindered by the lack of cell-specific markers. The tail-spike cell provides an

attractive system in part because we have developed reagents enabling us to identify

the cell. We noted that a 1.5 kilobase (kb) region of the C. elegans ced-3 promoter

could promote expression of ced-3 cDNA in the tail-spike cell (see Chapter 3). We

speculated that this promoter fragment could also be used to drive reporter gene

expression in the tail-spike cell, and indeed, observed that it was sufficient to drive

expression of lacZ (Shaham, 1995; Shaham et al., 1999) or GFP (Green Fluores-

cent Protein) reporter transgenes in this cell (Figure 2.2). When expressed from an

extrachromosomal array, however, the C. elegans ced-3promoter::GFP transgene oc-

casionally blocked tail-spike cell death (Table 2.1), limiting its utility as a marker.
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We reasoned that the high levels of transgene expression typical of extrachromoso-

mal arrays might be interfering with expression from the endogenous ced-3 promoter,

thereby blocking cell death. If expressed at lower levels, the transgene might mark the

tail-spike cell without affecting its death. We therefore performed low-copy integra-

tion of the C. elegans ced-3promoter::GFP reporter. Unfortunately, we were unable

to detect GFP expression in worms from any of the ten independent transgenic lines

we isolated (data not shown).
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Table 2.1: C. elegans ced-3promoter::GFP reporter transgene blocks tail-spike cell
death.

Genotype
% surviving

tail-spike cellsa

Average no. extra cells
in anterior pharynxa

C. elegans ced-3promoter::GFP
(nsEx723 )

17± 7b 0.07± 0.26c

C. elegans ced-3promoter::GFP

(nsEx724 )d 0 0.14± 0.44

C. briggsae ced-3promoter::GFP
(nsIs23 )

0 0.05± 0.22

C. briggsae ced-3promoter::GFP
(nsIs25 )

0 0.5± 0.22

aFor each genotype, between 20 and 30 L2 or L4 stage animals were scored for in-
appropriate survival of tail-spike or pharyngeal cells, respectively. bStandard error of
the mean. cStandard deviation. dGFP expression from this transgene was very weak.
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Figure 2.3: Merged Nomarski and epifluorescence image of the tail of an L2 larva
carrying an integrated 0.7 kb C. briggsae ced-3 promoter::GFP reporter construct
(nsIs25 ). Note expression in the tail-spike cell (arrow; inset: GFP only). Scale bar:
10µM .

As an alternate approach, we tested whether a fragment from the ced-3 promoter

of the related nematode C. briggsae could promote reporter expression in the tail-spike

cell. Indeed, a transgene containing a 0.7 kb C. briggsae ced-3 promoter fragment

fused to the GFP-encoding gene marked the tail-spike cell (Figure 2.3), but did not

promote inappropriate cell survival (Table 2.1). In animals in which tail-spike cell

death was blocked, expression from both the C. briggsae and C. elegans reporters

persisted in the tail-spike cell from late embryogenesis (Figure 2.2) through the larval

stages (Figure 2.3) and into adulthood, allowing us to easily score larval stage animals

for inappropriate tail-spike cell survival.
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Table 2.2: Tail-spike cell death is dependent on ced-3 and ced-4, but only partially
dependent on functional egl-1.

Genotypea % surviving
tail-spike cellsb

Average no. extra cells
in anterior pharynxb

Wild-type 0 0.5± 0.2d

ced-3 (n717 ) 100 10.6± 1.5
ced-4 (n1162 ) 100 11.1± 1.1
egl-1 (n1084n3082 ) 30± 6c 11.1± 1.5
ced-13 (tm536 ) 0 0.1± 0.4
ced-13 (sv32 ) 0 0.2± 0.4
egl-1 (n1084n3082 ); ced-13 (tm536 ) 41± 4 11.6± 1.4

ced-3 (n2427 ) 0 2.1± 1.2
ced-9 (n2812 ); ced-3 (n2427 ) 0 6.5± 1.1
ced-3 (n2427 ); egl-1 (n1084n3082 ) 100 11.2± 1.8
ced-9 (n2812 ); ced-3 (n2427 );
egl-1 (n1084n3082 )

0 5.2± 1.8

aAll strains contained either the nsIs23 or the nsIs25 C. briggsae ced-3 pro-
moter::GFP integrated transgene for scoring tail-spike cell survival. n2427 is a weak
lf allele; all other alleles are nulls. bBetween 20 and 40 L2 or L4 stage animals
were scored for inappropriate survival of tail-spike or pharyngeal cells, respectively.
cStandard error of the mean. dMean ± standard deviation.
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Tail-spike cell death is ced-3 and ced-4 dependent, but only partially de-

pendent upon functional egl-1

We examined whether tail-spike cell death is dependent upon the known cell death

execution machinery. Somatic cell death in C. elegans is governed by four genes:

egl-1/BH3-only, ced-9/bcl-2, ced-4/Apaf-1 and ced-3/caspase, that function in that

order in a linear pathway. Cell death is blocked by loss-of-function (lf) mutations in

ced-3, ced-4 and egl-1, and by a gain-of-function (gf) mutation in ced-9 (Metzstein et

al., 1998). As expected, we found that tail-spike cell death was completely blocked

in animals homozygous for the ced-3 (n717 ) or ced-4 (n1162 ) null alleles (Table 2.2).

Surprisingly, however, tail-spike cell death was only partially blocked in animals ho-

mozygous for the egl-1 (n1084n3082 ) null allele, which completely blocks cell death

in other somatic cells, including those of the anterior pharynx (Table 2.2). Tail-spike

cell death was unaffected by null mutations in the ced-13 gene (Table 2.2), the only

other characterized C. elegans BH3 domain-only gene (Schumacher et al., 2005), in-

dicating that the partial block of tail-spike cell death in egl-1 mutants was not due

to redundancy with ced-13.

To confirm the partial requirement for egl-1, we examined egl-1 (n1084n3082 ) mu-

tants also homozygous for the ced-5 (n1812 ) allele. Mutations in ced-5 block the

engulfment of dying cells, resulting in persistent cell corpses (Ellis et al., 1991; Figure

2.4) which do not form if cell death is prevented (Ellis and Horvitz, 1986). We were

therefore able to score tail-spike cell death without relying upon our tail-spike cell

reporter. In an otherwise wild-type background, 94% of ced-5 (n1812 ) animals exhib-

ited a persistent tail-spike cell corpse in the first larval stage (L1). Consistent with

the notion that egl-1 only has a partial role in promoting tail-spike cell death, a ma-

jority (24 of 43, 56%) of ced-5 (n1812 ); egl-1 (n1084n3082 ) L1 animals still exhibited

a persistent tail-spike cell corpse.
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Figure 2.4: Merged GFP and Nomarski image of a distinctive tail-spike cell corpse
(green) persisting in a ced-5 (n1812 ); nsIs25 L1 larva. Inset: tail-spike cell corpse.
Scale bar: 10µM .

egl-1 acts upstream of ced-9 to promote tail-spike cell death

In most cells in C. elegans, egl-1 acts upstream of ced-9 to promote cell death (Con-

radt and Horvitz, 1998) by antagonizing CED-9-mediated sequestration of CED-4

(Chen et al., 2000). To determine whether, in the tail-spike cell, the pro-apoptotic

activity of egl-1 is mediated by the ced-9 gene, we tested whether the ced-9 (n2812 )

loss-of-function mutation could suppress the cell death defect of egl-1 (n1084n3082 lf)

mutants. To suppress the lethality of the ced-9 (n2812 lf) mutation (Hengartner

et al., 1992), we included the weak loss-of-function ced-3 mutation, n2427, in our

strains. While ced-3 (n2427weak lf); egl-1 (n1084n3082 lf) double mutants exhibited

a fully penetrant tail-spike cell death defect, ced-9 (n2812 lf) ced-3 (n2427weak lf);

egl-1 (n1084n3082 lf) triple mutants showed no defect in tail-spike cell death, exhibit-

ing an identical phenotype to that observed in ced-9 (n2812 lf) ced-3 (n2427weak lf)

mutant animals (Table 2.2). Therefore, as in other cells destined to die, egl-1 ex-

erts its pro-apoptotic function in the tail-spike cell by inhibiting ced-9 anti-apoptotic
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functions.

Mutations in upstream regulators of egl-1 do not affect tail-spike cell death

Several genes acting upstream of egl-1 have been identified, among them ces-1 and

ces-2, which encode a Snail family member zinc finger protein (Metzstein and Horvitz,

1999; Thellmann et al., 2003) and a bZIP transcription factor (Metzstein et al., 1996),

respectively. Previous studies have placed these genes in a transcriptional cascade that

acts to regulate egl-1 expression in the sister cells of the serotonergic NSM neurons

of the pharynx (Ellis and Horvitz, 1991; Metzstein and Horvitz, 1999; Thellmann et

al., 2003). Accordingly, ces-2 (n732 lf) and ces-1 (n703gf) mutations block the death

of these cells (Ellis and Horvitz, 1991). Neither mutation, however, affected death of

the tail-spike cell (n=30).
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Table 2.3: ced-9 lacks death-promoting activity in the tail-spike cell.

Genotypea % surviving
tail-spike cellsb

Average no. extra cells
in anterior pharynxb

Wild-type 0 0.5± 0.2d

ced-3 (n2427 ) 0 2.1± 1.2
ced-9 (n2812 ); ced-3 (n2427 ) 0 6.5± 1.1
ced-3 (n2436 ) 59± 8c 6.3± 1.7
ced-9 (n2812 ); ced-3 (n2436 ) 63± 9 10.5± 1.8

aAll strains contained either the nsIs23 or the nsIs25 C. briggsae ced-3 pro-
moter::GFP integrated transgene for scoring tail-spike cell survival. n2812 is a null
allele; n2427 and n2436 are both weak lf alleles. bBetween 20 and 40 L2 or L4
stage animals were scored for inappropriate survival of tail-spike or pharyngeal cells,
respectively. cStandard error of the mean. dMean ± standard deviation.
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Table 2.4: ced-9 (gf) only weakly blocks tail-spike cell death.

Genotypea % surviving
tail-spike cellsb

Average no. extra cells
in anterior pharynxb

Wild-type 0 0.5± 0.2d

ced-9 (n1950gf) 3± 3c 10.3± 1.3
ced-3 (n2427 ) 0 2.1± 1.2
ced-9 (n1950gf); ced-3 (n2427 ) 50± 9 11.5± 1.1
ced-3 (n2436 ) 59± 8 6.3± 1.7
ced-9 (n1950gf); ced-3 (n2436 ) 93± 5 11.0± 1.8
ced-5 (n1812 ) 3± 3 0.2± 0.5
ced-9 (n1950gf); ced-5 (n1812 ) 27± 8 10.3± 1.6
ced-5 (n1812 ) ced-3 (n2427 )e 17± 7 5.1± 1.8
ced-9 (n1950gf); ced-5 (n1812 ) ced-3 (n2427 )e 73± 8 11.1± 1.5
egl-1 (n1084n3082 ) 30± 6 11.1± 1.5
ced-9 (n1950gf); egl-1 (n1084n3082 ) 33± 8 10.3± 1.7

aAll strains contained either the nsIs23 or the nsIs25 C. briggsae ced-3 pro-
moter::GFP integrated transgene for scoring tail-spike cell survival. bBetween 20
and 40 L2 or L4 stage animals were scored for inappropriate survival of tail-spike
or pharyngeal cells, respectively. cStandard error of the mean. dMean ± standard
deviation. eStrain also contained the unc-30 (e191 ) allele.
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ced-9 mutations have unusual effects in the tail-spike cell

Previous studies have shown that ced-9 (lf) mutations enhance cell survival in the

pharynges of ced-3 (weak lf) mutants (Hengartner and Horvitz, 1994), indicating that

ced-9 possesses death-promoting activity in addition to its well-characterized death-

preventing activity. Surprisingly, we found that ced-9 lacks this death-promoting ac-

tivity in the tail-spike cell. Tail-spike cell death proceeded normally in ced-9 (n2812 lf);

ced-3 (n2427weak lf) double mutants (Table 2.3), and the tail-spike cell death de-

fect in ced-9 (n2812 lf); ced-3 (n2436weak lf) double mutants was identical to that of

ced-3 (n2436weak lf) single mutants (Table 2.3). We also found that, unlike other

somatic cells, tail-spike cell death was only weakly affected by the ced-9 (n1950 ) gain-

of-function mutation, a glycine to glutamic acid substitution at a highly conserved

ced-9 residue (Hengartner and Horvitz, 1994). The ced-9 (n1950gf) mutation alone

had no effect on tail-spike cell death (Table 2.4), and it only partially enhanced the

cell death defects observed in ced-3 (weak lf) and ced-5 (lf) backgrounds (Table 2.4).

Previous studies have argued that the ced-9 (n1950gf) mutation prevents cell death

by disrupting a physical interaction between ced-9 and egl-1 (Parrish et al., 2000;

Yan et al., 2004). However, such a mechanism predicts that ced-9 (n1950gf) and egl-

1 (n1084n3082 lf) mutants should exhibit identical tail-spike cell death defects. The

weaker death defect observed in ced-9 (n1950gf) mutant animals suggests that the

n1950gf allele may only partially disrupt the interaction between ced-9 and egl-1 in

the tail-spike cell, a hypothesis supported by previous biochemical studies (del Peso

et al., 2000). Alternatively, the n1950gf allele may disrupt another aspect of ced-9

activity.
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Table 2.5: Engulfment of the tail-spike corpse is dependent on the previously charac-
terized engulfment machinery.

Genotypea % animals with persistent
tail-spike corpseb,c

% animals with surviving
tail-spike cellc

Wild-type 0 0
ced-1 (e1755 ) 23± 8d 0
ced-6 (n2095 )e 17± 7 0
ced-7 (n1892 ) 7± 4 0
ced-2 (e1752 )e 43± 9 3± 3d

ced-5 (n1812 ) 93± 5 3± 3
ced-10 (n1993 ) 27± 8 0
ced-12 (k149 ) 60± 9 0
ced-8 (n1891 ) 0 0

aAll strains contained either the nsIs23 or the nsIs25 C. briggsae ced-3promoter::GFP
integrated transgene. bTail-spike corpses were identified by position, shape, and GFP
expression. c30 L1 stage animals per genotype were scored for defects in tail-spike
cell engulfment and tail-spike cell death. dStandard error of the mean. eStrain also
contained the him-5 (e1467 ) allele.
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Tail-spike cell engulfment is dependent upon the previously characterized

engulfment machinery

In C. elegans, the recognition and engulfment of dying cells is dependent upon at

least seven genes acting in two partially redundant signaling pathways: ced-1, ced-

2, ced-5, ced-6, ced-7, ced-10 and ced-12 (Ellis et al., 1991; Hedgecock et al., 1983;

Wu et al., 2001). As expected, we found that these genes are also required for

engulfment of the tail-spike cell corpse (Table 2.5, Figure 2.4). Additionally, tail-spike

cell death was weakly blocked by ced-2 and ced-5 loss-of-function mutations (Table

2.5), indicating that, as previously demonstrated (Reddien et al., 2001; Hoeppner et

al., 2001), engulfment signals from neighboring cells can play a role in a cell’s decision

to die. Tail-spike cell death was not blocked by a loss-of-function mutation in ced-8

(Table 2.5), which encodes a transmembrane protein involved in the kinetics of cell

death (Stanfield and Horvitz, 2000). ced-8 loss-of-function mutations result in the

delayed appearance of cell corpses (Stanfield and Horvitz, 2000); however, we did not

observe a persistent tail-spike corpse in ced-8 mutant animals (Table 2.5).

2.3 Conclusions

We have established the tail-spike cell as a model for exploring the cell-specific reg-

ulation of programmed cell death. We have described the markers established to

facilitate our study of tail-spike cell death, and have characterized the dependence

of tail-spike cell death upon the previously characterized cell death genes. We have

shown that, while tail-spike cell death is dependent upon the cell death executioner

ced-3 and its adapter gene ced-4, the tail-spike cell can die in an egl-1 and ced-9 -

independent manner. Previous studies have proposed that the transcription of egl-1

may determine the timing of cell death onset. Our results, however, suggest that

other means of exerting temporal control of cell death must exist. How is cell death
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initiated in the absence of egl-1? How is temporal control of cell death maintained in

the absence of the cell death inhibitor ced-9? The tail-spike cell provides a tractable

system to address these questions.
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Chapter 3

Transcriptional induction of the ced-3 gene plays a critical

role in initiating tail-spike cell death

3.1 Background

Caspases are considered the main executioners of cell death. These proteases are

synthesized as pro-proteins with weak intrinsic protease activity. Activation of their

enzymatic activity is dependent upon caspase cleavage and assembly of the resulting

subunits into heterodimers (reviewed in Yan and Shi, 2005). Caspase-mediated pro-

teolytic cleavage of target substrates then triggers a cell’s demise (Enari et al., 1998;

Sakahira et al., 1998; Rao et al., 1996; Buendia et al., 1999). Previous studies have

suggested that cell death initiation is regulated by direct or indirect control of the

post-translational activation of caspases. In C. elegans, reports have suggested that

the ced-3 caspase is expressed in most cells, including cells fated to live (Shaham and

Horvitz, 1996a). Activation of CED-3 is indirectly regulated by egl-1 (Chen et al.,

2000), consistent with the hypothesis that egl-1 is an important trigger of cell death.

We have shown, however, that egl-1 is only partially required for death of the

tail-spike cell (see Chapter 2), suggesting that an alternate mechanism must control

the initiation of programmed cell death. Such a mechanism must function upstream

of or in parallel to the ced-3 caspase, since a ced-3 (strong lf) allele completely blocked
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Figure 3.1: Schematic of CED-3 pro-protein. Cleavage sites are indicated (D220 and
D374). Asterisks mark the region targeted by the anti-CED-3 antibody.

tail-spike cell death (see Chapter 2). Here, we provide evidence that induction of ced-

3 transcription plays a critical role in the initiation of tail-spike cell death. We show

that ced-3 transcription is induced in the tail-spike cell shortly before it dies, and we

identify regulatory sites within the ced-3 promoter that are specifically required for

both ced-3 expression in the tail-spike cell as well as tail-spike cell death.

3.2 Results

Hints that ced-3 expression is regulated differently in the tail-spike cell

Unexpectedly, several lines of evidence implicated transcription of ced-3 as a potential

step in regulating the timing of tail-spike cell death. Initially, we noticed that ced-3

expression was modulated differently in the tail-spike cell as compared to other dying

cells. As described in Chapter 2, a 1.5 kb C. elegans ced-3 promoter::GFP reporter

occasionally blocked tail-spike cell death, possibly by titering a limiting transcription

factor. This reporter had no effect on other cell deaths we scored. Furthermore,

while expression from ced-3 promoter::GFP transgenes persisted through adulthood

in tail-spike cells of ced-3 mutants (see Chapter 2), expression was not observed in

other inappropriately surviving cells (data not shown).
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Attempts to directly follow ced-3 expression have been unsuccessful

To examine whether ced-3 expression could be important in regulating the timing

of tail-spike cell death onset, we sought to follow the kinetics of ced-3 expression in

the tail-spike cell in greater detail. Unfortunately, RNA in situ hybridization cannot

be used reliably to detect ced-3 expression (S. Shaham, unpublished). Our attempts

to generate an antibody to recognize CED-3 were also unsuccessful. Specifically,

we generated antibodies in rats against a 15-amino acid peptide corresponding to

the C-terminal region of the CED-3 large subunit (Figure 3.1). We operated under

the assumption that the N and C termini of CED-3 peptides may become exposed

upon CED-3 activation and cleavage; structural studies have suggested that this is

indeed the case with the CED-3 mammalian homolog, caspase-3 (Shi, 2002). A

similar approach had previously been used to generate antibodies to human/mouse

caspase-3 (Srinivasan et al., 1998). We tested the specificity of our antibodies on

embryos carrying a transgene expressing CED-13/BH3-only under the control of a

heat-shock inducible promoter. Expression from this transgene results in extensive

cell death that is dependent upon ced-3 (Schumacher et al., 2005). We failed to

detect immunostaining with our anti-CED-3 antibodies in embryos expressing this

transgene. Antisera generated against human/mouse caspase-3 (CM1; Srinivasan et

al., 1998), Drosophila full-length Drice, or Drosophila activated Drice also failed to

immunostain these embryos.

ced-3 transcription is induced shortly before tail-spike cell death onset

Given that we could not directly follow production of either ced-3 mRNA or CED-3

protein, we decided to follow ced-3 expression kinetics indirectly in embryos carrying

either the C. elegans or C. brigssae ced-3 promoter::GFP reporters (lines nsEx723 and

nsIs25, respectively). Intriguingly, while expression of either reporter was detected

in many cells, and throughout embryogenesis (data not shown), expression in the
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Figure 3.2: Expression of ced-3 promoter::GFP transgenes is induced shortly be-
fore tail-spike cell death. Merged Nomarski and epifluorescence images of 3-fold
stage embryos carrying a 1.5 kb C. elegans ced-3 promoter::GFP reporter transgene
(nsEx723 ); (A) embryo before onset of tail-spike cell GFP expression (arrow and in-
set: binucleate tail-spike cell), (B) embryo at onset of tail-spike cell GFP expression
(arrow and inset: binucleate tail-spike cell), and (C) embryo approximately 31 min-
utes after onset of tail-spike cell GFP expression (arrow and inset: dying tail-spike
cell corpse). Scale bar: 10µm.
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Figure 3.3: Population study quantifying duration of tail-spike cell GFP expression
in animals carrying a 0.7 kb C. briggsae promoter::GFP reporter transgene (nsIs25 ).
See Chapter 8 for experimental details. Error bars: standard error of the mean.
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tail-spike cell was only observed during the three-fold stage of embryogenesis (Figure

3.2), hours after the tail-spike cell is born. We followed individual embryos through

this stage, and found, surprisingly, that GFP fluorescence in the tail-spike cell first

appeared 32.1 ± 4.9 minutes (mean ± SD; n=6; C. elegans reporter), or 24.8 ± 2.5

minutes (n=5; C. briggsae reporter), prior to visible signs of cell death (Figure 3.2).

Similar findings were obtained by scoring ced-3 expression at specific time points in

populations of synchronized embryos (Figure 3.3). That multiple lines carrying C.

elegans and C. brigssae reporter transgenes, as well as multiple derivatives of the

C. elegans transgenes (see below), exhibited identical kinetics of ced-3 expression

in the tail-spike cell suggests that these reporters are likely to faithfully represent

endogenous expression of ced-3.

To further support this notion, we examined whether the same C. elegans ced-

3 promoter used in our GFP reporter construct could promote tail-spike cell death

in ced-3 (n717 ) mutants when used to drive expression of a ced-3 cDNA. Indeed,

we found that this construct was sufficient to promote tail-spike cell death in six

independent transgenic lines (Figure 3.4), indicating that ced-3 expression at this

late stage in the development of the tail-spike cell is sufficient to promote the cell’s

demise, and supporting the hypothesis that ced-3 transcription may be the temporal

trigger for cell death initiation in the tail-spike cell. Such a mechanism for cell death

initiation has not been previously described. Interestingly, the expression construct

did not promote cell death in cells of the anterior pharynx (Figure 3.4), suggesting

that ced-3 expression may be regulated differently in these cells.

Regulatory regions within the ced-3 promoter

To further investigate whether ced-3 transcription plays a role in tail-spike cell death,

we examined ced-3 promoter function in greater detail. The C. elegans ced-3 pro-

moter contains a 349 bp sequence that is conserved in C. briggsae (Figure 3.5), and
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Figure 3.4: 1.5 kb C. elegans ced-3 promoter is sufficient to promote tail-spike but
not pharyngeal cell death when upstream of ced-3 cDNA. For each transgenic line,
between 20 and 30 L3 stage nsIs25 ; ced-3 (n717 ) animals carrying a transgene con-
taining a ced-3promoter::cDNA construct were scored for inappropriate survival of
tail-spike (A) or pharyngeal cells (B). White columns: animals expressing transgene;
hatched columns: animals not expressing transgene. Error bars: standard error of the
mean (tail-spike cell), standard deviation (pharyngeal cells). Note: To rule out any
effects of the rescue construct on reporter expression, ten 3-fold stage embryos from
line 6 were examined using a fluorescence-equipped compound microscope. Tail-spike
cell reporter expression was wild-type in animals carrying the rescue construct.
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C. elegans -1377 TCAGGGTAAACGCCCGGTTCATTTTGTACCACATTTCATC
C. briggsae -445 TTGTCATGAAACACCGGTTAATTTCGTACTTC.TTTCACC

C. elegans -1337 ATTTTCCTGTCGTCCTTGGTATCCTCAACTTGTCCCGGTT
C. briggsae -406 ATAGT......GACCTTGG.GTTCTCAACTTATCCGG..T

C. elegans -1297 TTGTTTTCGGTACACTCTTCCGTGAT.GCCACCTGCTCCG
C. briggsae -375 TTGTTTTCGGTACACTCCGCCTTGCTTACCACCTGCTCC.

C. elegans -1258 TCTCAATTATCGTTTAGAAATGTGAACTGTC...CAGATG
C. briggsae -336 TCCCAATTATCCTTAGGAAATGTGAACTGTCTGCCAGATG

C. elegans -1221 GGTGACTCATATT..GCTGCTGCTACAATCCACTTTCTTT
C. briggsae -296 TGTGACTCATTTTCCGTTTTTATTCACGGCGTCGTTTTGT

C. elegans -1183 TCTCATCGGCATGCTTACGAGCCCATCATAAACTTTTTTT
C. briggsae -256 GTTGAAGTGCGAGAAGAAGAAGCGAGAGCTCATCGTAAAC

C. elegans -1143 TCCGCGAAATTTGCAATAAACCGGCCAAAAACTTTCTCCA
C. briggsae -216 GTTTTTCAATCGGTCATAAACTGGC..AAAACTTTCTCCG

C. elegans -1103 AATTGTTACGCAATATATACA..ATCCATAAGAATATCTT
C. briggsae -178 ATTTGTTACGCAATATAGAAAGAATTCATCTAAATATTTT

C. elegans -1065 ..CTCAATGTTTATGATTTCTTCGCAGCACTTTCTCTTC
C. briggsae -138 TGCTTTGTGTTTATGATTTCTTCGCTTTTCTT.CTCTTC

Figure 3.5: Alignment of the conserved region of the ced-3 promoter of C. elegans
and C. briggsae; identical residues are shaded. Numbering is relative to the ced-3
start codon.
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Figure 3.6: Truncated regions of the C. elegans ced-3 promoter were tested for their
ability to drive GFP reporter expression in the tail-spike cell. Numbering is relative
to the ced-3 start codon. At least 15 animals were examined per transgenic line.

Figure 3.7: Regions A, B, and C are required for GFP reporter expression and for
rescue of the ced-3 (n717 ) cell death defect in the tail-spike cell. Regions A (-1198 to
-1183), B (-1157 to -1142), or C (-1226 to -1113) were deleted in the context of the 1.5
kb C. elegans ced-3 promoter (Column 1), or pJ40, a plasmid containing C. elegans
ced-3 genomic DNA (Columns 2 and 3). Constructs were introduced into ced-3 (n717 )
worms, and animals were assessed for tail-spike cell reporter expression (Column 1)
and tail-spike and pharyngeal cell death defects (Columns 2 and 3, respectively). x,
deleted region; % Tail-spike cells expressing GFP: average ± standard error (No.
transgenic lines examined); % Tail-spike cells surviving: average ± standard error (2-
3 transgenic lines); No. extra cells in anterior pharynx: average ± SD (2-3 transgenic
lines). N.A.: not applicable.
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Deleted region of ced-3 promoter a No. transgenic lines expressing GFP

/ total no. linesb

-1332 to -1318 3/3
-1317 to -1303 2/2
-1287 to -1273 1/2
-1272 to -1258 6/6
-1257 to -1243 6/6
-1242 to -1228 2/2
-1227 to -1213 1/1
-1212 to -1199 2/3

-1198 to -1183 0/9
-1186 to -1171 5/5
-1170 to -1158 5/5

-1157 to -1142 0/6
-1151 to -1127 5/6

-1226 to -1113 0/6
-1117 to -1100 4/4
-1104 to -1085 2/2
-1092 to -1069 3/3
-1071 to -1054 7/7
-1053 to -1039 5/5
-1038 to -1028 2/2

Table 3.1: Three regions of the C. elegans ced-3 promoter are required for tail-spike
cell expression of a 349 bp C. elegans ced-3 ::GFP reporter. aNumbering is relative to
the ced-3 start codon. bAt least 15 animals were examined per transgenic line.

that is sufficient to drive GFP reporter expression in the tail-spike cell (see Chap-

ter 2). In fact, we found that promoter stretches containing as few as 150 bp from

this well-conserved region were sufficient to promote tail-spike cell reporter expres-

sion (Figure 3.6). To identify specific regions within the conserved promoter required

for ced-3 expression in the tail-spike cell, we deleted consecutive 14-16 bp sequences

within this promoter, and assessed the effects of these deletions on reporter transgene

expression. As shown in Table 3.1 and Figure 3.7, three regions, A (-1199 to -1183),

B (-1157 to -1142), and C (-1226 to -1113), were required for ced-3 promoter::GFP

expression in the tail-spike cell. The sequences of regions B and C are highly con-

served in C. briggsae (Figure 3.8). Although deleting regions A, B, or C individually
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Figure 3.8: Alignment of the three ced-3 promoter regions (A, B, and C) from the
nematodes C. elegans and C. briggsae. Conserved nucleotides are shaded; boxed
nucleotides are deleted in Table 3.1 and Figure 3.7; consensus nucleotides of cau-
dal/Cdx2 binding sites (see Chapter 4) are indicated by asterisks above the relevant
nucleotides; numbers indicate positions relative to the ced-3 start codon.

in the larger 1.5 kb ced-3 promoter::GFP transgene did not fully block GFP expres-

sion (a significant partial effect was seen upon deletion of region B), double deletions

abolished GFP expression in the tail-spike cell (Figure 3.7), suggesting that these

sequences function redundantly to control ced-3 expression in this cell. On their own,

tandem copies of sites A, B or C were insufficient to drive GFP reporter expression

in the tail-spike cell (data not shown), suggesting that these sites, while necessary,

are not sufficient to promote ced-3 expression in the tail-spike cell.

To assess the functional relevance of these redundant promoter sequences, we

deleted them singly or in combination in the context of a 7.6 kb rescuing C. elegans

ced-3 genomic clone containing the same 1.5 kb of 5’ promoter sequences (Yuan et al.,

1993). These clones were individually introduced into ced-3 mutants, and their ability

to rescue the cell death defect was assessed. We found that transgenes lacking two or

more of these sites did not restore tail-spike cell death, but rescued inappropriate cell

survival in the anterior pharynx (Figure 3.7), indicating that the sites are required

specifically for tail-spike cell death. Taken together, the expression and rescue results
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strongly suggest that induction of ced-3 transcription is a key step in promoting the

initiation of tail-spike cell death.
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Table 3.2: In vivo RNAi directed against ced-3 has a weak effect on tail-spike cell
death, and no effect on cell death in the anterior pharynx.

Tail spike cell survival
Transgenic Line 0 hoursa 2 hoursa 4 hoursa 6 hoursa

Line 1
+ ced-3 IR 7± 5b 17± 7 13± 6 3± 3
− ced-3 IR 5± 5 0 0 4± 4

Line 2
+ ced-3 IR 0 7± 5 0 0
− ced-3 IR 0 0 0 0

Line 3
+ ced-3 IR 4± 4 60± 9 13± 6 0
− ced-3 IR 0 0 0 0

Survival of cells in anterior pharynx
Transgenic Line 0 hoursa 2 hoursa 4 hoursa 6 hoursa

Line 1
+ ced-3 IR 0.07± 0.3c 0.2± 0.4 0.2± 0.4 0.03± 0.2
− ced-3 IR 0 0.05± 0.2 0.04± 0.2 0.05± 0.2

Line 2
+ ced-3 IR 0.1± 0.3 0.3± 0.5 0.06± 0.3 0
− ced-3 IR 0 0.05± 0.2 0.05± 0.2 0.1± 0.3

Line 3
+ ced-3 IR 0.1± 0.3 0.5± 0.5 0.3± 0.5 0.1± 0.3
− ced-3 IR 0 0.3± 0.5 0.3± 0.5 0.2± 0.4

Inappropriate tail-spike and pharyngeal cell survival was assessed in L4 stage ani-
mals that had been subjected to heat shock at the indicated times. Animals with
(+) or without (−) the ced-3 IR gene were scored. aApproximate age (number of
hours post-fertilization) of embryos at onset of heat shock. Age is a rough approxi-
mation, and assumes that embryos were laid 2 hours post-fertilization. bPercentage of
progeny with inappropriately surviving tail-spike cell ± standard error of the mean.
cAverage number of extra cells in the anterior pharynx per animal ± standard de-
viation. Note: in the absence of heat-shock, the ced-3 IR transgene did not block
tail-spike or pharyngeal cell death (assessed in at least 15 animals per line).
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Attempts to block ced-3 expression via in vivo RNAi were unsuccessful

To test whether tail-spike cell death is dependent upon induction of ced-3 transcrip-

tion, we performed in vivo RNAi. Previous studies have demonstrated that in vivo

expression of double stranded (ds) RNA can mediate specific, inducible gene silencing

in C. elegans. RNA containing an inverted repeat (IR) can be processed into a hair-

pin structure, which may activate a cell’s endogenous RNAi machinery and selectively

downregulate gene expression (Tavernarakis et al., 2000). We used this approach to

knockdown ced-3 expression at specific times during embryogenesis. Specifically, we

expressed an inverted repeat “gene” containing 2 inverted copies of the ced-3 coding

sequence under the control of the heat shock-inducible promoters hsp16-2 and hsp16-

41. Expression of the ced-3 IR was induced in embryos ranging in age from zero

to six hours post-fertilization. (For reference, the tail-spike cell dies approximately

ten hours post-fertilization, and cells of the pharynx die between six to seven hours

post-fertilization.) For the most part, expression of the ced-3 IR had little or no

effect on tail-spike or pharyngeal cell death (Table 3.2). Intriguingly, however, the

ced-3 IR blocked tail-spike cell death most effectively when expressed several hours

before the tail-spike cell dies (Table 3.2). This may suggest that tail-spike cell death

is dependent on ced-3 expression during early embryogenesis. However, the results

from this experiment are difficult to interpret for several reasons. First, we do not

know the interval between induction of the ced-3 IR and effective knockdown of gene

expression. Expression of ced-3 IR did not block pharyngeal cell death (Table 3.2),

suggesting that, after its expression, several hours may be required to properly fold

the ced-3 IR into a ced-3 hairpin structure. Additionally, induction of the ced-3

IR in L4 stage animals had no effect on tail-spike or pharyngeal cell death of their

progeny in any of three independent transgenic lines examined, the opposite result

from that described by Tavernarakis et al. (2000). This discrepancy suggests that

the ced-3 hairpin structure may be unstable, and also demands that our results and
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experimental protocol be examined with greater scrutiny.

Sequencing previously isolated alleles of ced-3

The similarity between the C. elegans and C. briggsae promoters (Figure 3.5) is

highly suggestive of functional relevance. Indeed, we have demonstrated that three

short stretches of this promoter are required for ced-3 expression in the tail-spike cell.

We took an indirect approach to test whether sites within this promoter also play

a role in other cell deaths in C. elegans. In particular, we asked whether previously

isolated ced-3 alleles contain mutations within this conserved region of the ced-3

promoter. Alleles n2428, n2448, n2875, n2869, n2920, n2855, and n2455 have been

previously classified as ced-3 alleles by their failure to complement ced-3 (n717 ) (S.

Shaham, unpublished results); however, their mutations have not yet been identified.

We reasoned that these mutations might reside within regulatory regions of the ced-

3 promoter; in fact, n2869 mutants, which possess a significant cell death defect

(8.8± 1.4 extra cells in the pharynx, S. Shaham, unpublished results), do not contain

mutations within the ced-3 open reading frame (S. Shaham, unpublished results). We

did not, however, detect mutations within the conserved region of the ced-3 promoter

(-1356 to -1029) in any of the alleles. Other approaches will need to be taken to

further assess the role of the conserved ced-3 promoter in regulating cell death outside

the tail-spike cell. For example, some of the same approaches aimed at identifying

regulatory sites for the tail-spike cell may be useful for identifying sites required for

ced-3 expression elsewhere in the worm.

3.3 Conclusions

We have previously shown that the egl-1 and ced-9 genes, which are required for the

majority of somatic cell deaths in C. elegans, only play a minor role in the death of

the tail-spike cell (see Chapter 2), suggesting that another pathway must exist that
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specifically regulates the death of this cell. Here, we have provided evidence suggesting

that regulation of tail-spike cell death may be achieved through transcriptional control

of the ced-3 gene. We have demonstrated that, in the tail-spike cell, ced-3 caspase

is expressed minutes before the cell displays obvious signs of death, and that this

induction is sufficient for the cell’s demise. We have also identified specific sites

within the ced-3 promoter that are required both for ced-3 expression in the tail-

spike cell and for tail-spike cell death. These findings imply that induction of ced-3

transcription is required for initiation of tail-spike cell death.

Our observations thus far suggest the following model: in the tail-spike cell, egl-

1 and ced-9 may have attenuated function, thus allowing CED-4 protein to remain

unchecked. In the absence of CED-3 caspase, CED-4 is unable to promote cell death,

thus allowing the tail-spike cell to live. Upon transcription of ced-3, accumulating

CED-3 protein may become immediately processed through interactions with CED-

4, leading to rapid killing of the cell. The subsequent chapter will address how the

transcription of ced-3 is regulated.
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Chapter 4

The homeodomain-containing transcription factor pal-1 pro-

motes tail-spike cell death by upregulating ced-3 transcrip-

tion.

4.1 Background

Previous studies, both in C. elegans as well as in vertebrates, have suggested that the

components of the cell death execution machinery, including caspases, are constitu-

tively expressed in most, if not all, cells, and are present at levels that are sufficient

to execute a cell’s death program (Shaham and Horvitz, 1996a; Weil et al., 1996).

We have demonstrated, however, that ced-3 transcription is induced very late in the

life of the C. elegans tail-spike cell; expression is observed only minutes before mor-

phological features of death are evident in this cell (Chapter 3). The tight temporal

correlation between ced-3 expression and cell death in the tail-spike cell suggests

that ced-3 transcription may provide the temporal cue for initiating the cell’s death

program. To further explore this model, we performed a forward genetic screen de-

signed to identify regulators of ced-3 expression in the tail-spike cell. The results

of this screen are described below. Most notably, we isolated two mutations in the

homeodomain-containing transcription factor pal-1. We describe the characterization

of these mutants, and report the results of experiments establishing pal-1 as a direct

regulator of ced-3 expression.
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4.2 Results

Isolating mutants defective in ced-3 transcription

To identify regulators of ced-3 expression in the tail-spike cell, F2 progeny of muta-

genized ced-3 (n717 ) carrying the C. briggsae ced-3promoter::GFP reporter (nsIs25 )

were screened for loss of tail-spike cell GFP expression. From 64,000 haploid genomes

examined, we recovered three independent mutants (ns90, ns114, and ns115 ) defec-

tive in tail-spike cell GFP reporter expression. All three mutants exhibited a wild-type

reporter expression pattern in other cells examined (data not shown). Both ns114

and ns115 mutant animals possessed partially penetrant defects in reporter expres-

sion. ns114 and ns115 heterozygous mutant animals exhibited wild-type tail-spike

cell GFP expression (ns114 : 47/47; ns115 : 25/25), indicating that these mutations

act recessively to block reporter expression in the tail-spike cell. Characterization of

these mutants is described below. The ns90 mutation resulted in a complete block of

ced-3promoter::GFP expression in the tail-spike cell (39/39 L2 stage animals). ns90

heterozygous mutant animals were also defective in tail-spike cell reporter expression

(24/25, 96%). The ns90 mutation could therefore be acting semi-dominantly, or a

maternal contribution of the gene product mutated by ns90 could be required. 42

of 62 (68%) of the progeny of ns90 heterozygotes lacked reporter expression in the

tail-spike cell, indicating that ns90 may be acting semi-dominantly to block C. brig-

gsae ced-3promoter::GFP expression. We mapped ns90 to a region of chromosome II

between cosmids T10D4 (-8.3441) and C50E10 (8.2062) (data not shown). Cloning

of the gene mutated in ns90 mutant animals, and more extensive characterization of

the ns90 mutant phenotype, remain to be performed.

To introduce mutations, we used the mutagen ethyl methanesulfonate (EMS). In

C. elegans, mutagenesis with EMS at a concentration of 50 mM typically generates

a loss of function mutation affecting the average sized gene at a rate of 1 × 10−4
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to 5 × 10−4 per mutagenized gamete. To ensure saturation, we performed three

rounds of screening, examining a total of 32,000 F2s, or 64,000 haploid genomes. As

described below, we isolated two independent mutations in the same gene, suggesting

that the screen was performed to saturation. However, it is possible that some of

the genes required for tail-spike cell ced-3 expression are also required for general

development; mutations in such genes might result in embryonic lethality, sterility, or

larval arrest, and would therefore not be isolated in a non-clonal screen. Of the 621

candidate mutants we isolated, only 130 (21%) generated progeny, suggesting that

some of the factors governing ced-3 expression may also be required for organismal

survival. Alternatively, it is also possible that the high lethality we observed was

non-specific. In fact, a comparable fraction of mutagenized animals with wild-type

reporter expression (24/30) failed to generate progeny.

Mutations reducing ced-3 transcription also block cell death

ns114 ; ced-3 (n717 ) animals exhibited weak (42%, n=88, 3 lines scored) or absent

(58%) C. elegans ced-3promoter::GFP expression in the tail-spike cell. Similar results

were obtained using the C. briggsae reporter transgene nsIs25 (Figure 4.1). We

hypothesized that ns114 might also block tail-spike cell death. Two observations

suggested that this was indeed the case. First, in an otherwise wild-type genetic

background, 16 of 75 (21%) ns114 ; nsIs25 animals had an inappropriately surviving

tail-spike cell, as scored by weak GFP expression in this cell. By contrast, cell death

in the anterior pharynx was unaffected (0.06±0.08 extra cells in the anterior pharynx,

average ± standard deviation, n = 29). Identifying inappropriately surviving tail-

spike cells by reporter expression alone underestimates the cell death defect in ns114

mutant animals, since about 50% of tail-spike cells do not express GFP at all. As an

alternate approach, we assayed the ns114 cell death defect in a ced-5 background.

Whereas 94% of ced-5 (n1812 ) animals exhibited a persistent tail-spike cell corpse
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Figure 4.1: The ns114 mutation blocks ced-3 promoter::GFP reporter expression.
Merged Nomarski and epifluorescence images of the tails of ced-3 (n717 ) and pal-
1 (ns114 ); ced-3 (n717 ) L2 larvae (left and right, respectively) carrying a 0.7 kb C.
briggsae ced-3promoter::GFP reporter transgene (nsIs25 ). Images were shot using
the same exposure time; note that reporter expression is significantly diminished
in the tail-spike cell (arrow and inset) of the pal-1 (ns114 ); ced-3 (n717 ) animal as
compared to that of the ced-3 (n717 ) animal. Scale bar: 10µm.

(see Chapter 2), a persistent cell corpse was only seen in 20 of 46 (43%) ns114 ; ced-

5 (n1812 ) animals (Figure 4.2), further indicating that the ns114 mutation partially

blocked tail-spike cell death. Interestingly, the tail-spike cell death defect was greatly

enhanced in ns114 ; egl-1 (n1084n3082 ) double mutants compared to either single

mutant alone (Figure 4.2), suggesting that ns114 may affect a gene acting in parallel

to egl-1 to promote tail-spike cell death. Consistent with this result, 10/32 (31%)

ns114 ; ced-9 (n2812 lf); ced-3 (n2427 ) animals had inappropriately surviving tail-spike

cells, as scored in cells weakly expressing GFP. Tail-spike cell death proceeds normally

in ced-9 (n2812 lf); ced-3 (n2427 ) animals (n=20), indicating that ns114 may affect a

gene that functions in parallel to ced-9.

In addition to defects in ced-3 expression and tail-spike cell death, 27 of 30 (85%)

53



0

25

50

75

100

0

25

50

75

100

%
 a

ni
m

al
s 

w
it

h 
pe

rs
is

te
nt

ta
il-

sp
ik

e 
ce

ll 
co

rp
se

W
ild

 ty
pe

ce
d-

5;
eg

l-1

pa
l-1

(n
s1

14
);

ce
d-

5;
eg

l-1

 pa
l-1

(n
s1

14
);

ce
d-

5
ce

d-
5

pa
l-1

(n
s1

15
); 

ce
d-

5

Figure 4.2: pal-1 is required for tail-spike cell death and acts in parallel to egl-1. For
each genotype, between 20 and 52 L1 animals were scored for persistent tail-spike
cell corpses, as identified by position, shape, and expression of the nsIs25 C. briggsae
ced-3promoter::GFP transgene. Error: standard error of the mean. Alleles used:
ced-5 (n1812 ); pal-1 (ns114, ns115 ); egl-1 (n1084n3082 ).
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Figure 4.3: pal-1 (ns114 ) animals possess defects in tail-spike cell fusion and tail
morphology. (A) Epifluorescence and Nomarki (inset) images of the tail of a pal-
1 (ns114 ) animal carrying a 0.7 kb C. briggsae ced-3 promoter::GFP reporter trans-
gene (nsIs25 ). Note the presence of two mononucleate tail-spike cells (arrows) in
this L2 animal. (B) Epifluorescence image of the tail of a pal-1 (ns114 ) L1 animal.
Note abnormal bulge (arrow). This defect was much less prevalent in older animals,
suggesting that it may be corrected during larval growth.
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Figure 4.4: Mapping and rescue of ns114. Top: Schematic illustrating the approach
taken to map ns114. ns114/CB4856 heterozygotes were allowed to self-fertilize, and
homozogous ns114 progeny were tested for the presence of CB4856 single nucleotide
polymorphisms (SNPs). SNP locations are indicated by cosmid names above the
rectangle depicting chromosome III, as is the location of the cosmid containing pal-1
(W05E6). The number of chromosomes containing CB4856-specific SNPs out of the
total examined is indicated under each SNP. Bottom: Results of rescue experiments.
pal-1 (ns114 or ns115 ); ced-3 (n717 ); nsIs25 mutants were injected with the indicated
rescue constructs, and animals were assessed for rescue of the defect in ced-3 reporter
expression. The number of rescued lines out of the total number of transgenic lines
examined is indicated. Details of the rescue experiment are described in the text and
in Chapter 8.

ns114 animals exhibited defects in tail-spike cell fusion (Figure 4.3A) and some pos-

sessed a mild tail deformity (Figure 4.3B). Tail-spike cell death defects could consis-

tently be seen in animals displaying neither cell fusion nor tail morphology abnor-

malities, suggesting that the defects are independent of one another. To avoid errors

in cell identification, inappropriate tail-spike cell survival was only scored in animals

with an otherwise wild-type tail morphology.
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Figure 4.5: Schematic illustrating gene structure of pal-1 and location of the ns114
and ns115 lesions. Boxes indicate exons, lines indicate introns, darkened boxed region
is the homeodomain-encoding region.

Figure 4.6: ns114 results in the creation of a splice donor site within exon 5 of the
pal-1 coding sequence. Comparison of the wild-type and ns114 mutant sites to the
consensus C. elegans splice donor sequence; boxed region highlights the mutation.
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Figure 4.7: Alignment between PAL-1 and its Drosophila and human homologs, Cau-
dal and Cdx1/2. Conserved residues are shaded; asterisks indicate residues comprising
the homeodomain; residue mutated by the ns115 mutation is boxed.

PAL-1 controls expression of ced-3 in the tail-spike cell

We used single nucleotide polymorphism differences between the ns114 and CB4856

C. elegans strains (Wicks et al., 2001) to map ns114 to a 4.5 map unit interval

on chromosome III containing the homeodomain transcription factor pal-1 (Figure

4.4). Previously isolated pal-1 mutants display tail morphogenesis defects (Edgar et

al., 2001), suggesting that ns114 might be an allele of this gene. Indeed, we found

that both a 6 kb pal-1 genomic DNA fragment and W05E6, the cosmid containing

pal-1 (Edgar et al., 2001), fully rescued the ns114 tail-spike cell GFP expression

defect (Figure 4.4). Consistent with these results, we identified a C to T alteration

at position 1944 of the pal-1 genomic sequence in ns114 animals (Figure 4.5). This

mutation creates an ectopic consensus splice-donor site (Figure 4.6) that, if used,

would result in a frame shift after codon 234, altering the C-terminal region of the

homeodomain, including the residues proposed to make up the DNA-binding domain

(Mlodzik et al., 1985).

Like ns114 mutant animals, ns115 mutants exhibited weak (74%, n=51) or ab-

sent (24%, n=51) expression of the C. elegans ced-3promoter::GFP reporter, and a

partially penetrant defect in tail-spike cell death (Figure 4.2). We mapped ns115, and

identified a G to A missense mutation at position 1655 of the pal-1 genomic sequence
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(Figure 4.5) in this mutant. This mutation results in a glycine to glutamic acid sub-

stitution, altering a conserved residue located just outside the PAL-1 homeodomain

(Figure 4.7). pal-1 null alleles result in fully penetrant lethality accompanied by

severe defects in posterior patterning (Edgar et al., 2001). Additionally, we never

detected ced-3 expression in the posterior regions of pal-1 (ok690 ) null mutants (0%,

n=30). The comparably mild defects observed in ns114 and ns115 mutants suggest

that these are weak, or cell-specific alleles of pal-1, and that the ectopic splice donor

site in ns114 animals may be used only occasionally.

To learn more about pal-1 expression in the tail-spike cell, we examined the ef-

fects of the pal-1 (e2091 ) mutation. pal-1 (e2091 ) mutant animals contain a mutation

within the fifth intron of pal-1 (Zhang and Emmons, 2000); this mutation results in

patterning abnormalities in the male tail (Waring and Kenyon, 1990). Consistent

with the requirement for this site, the pal-1 rescue construct pSC16, which contains

most of the pal-1 genomic sequence but lacks the fifth intron, is unable to rescue

the patterning defects observed in e2091 mutant animals (Edgar et al., 2001). We

found that the e2091 mutation did not affect tail-spike cell GFP expression or sur-

vival (n=40). The pSC16 rescue construct, however, was unable to rescue the defects

in ced-3promoter::GFP expression and tail-spike cell morphology observed in ns114

mutant animals (2 transgenic lines examined). Therefore, while the site mutated in

e2091 is not required for proper pal-1 expression in the tail-spike cell, other regu-

latory sites situated within the fifth intron may play a key role in regulating pal-1

expression in this cell. A construct containing pal-1 cDNA under the control of the

pal-1 promoter was also unable to rescue the defects in ns114 mutant animals (2

transgenic lines examined), consistent with the notion that regulatory regions within

pal-1 introns may be required for appropriate expression of pal-1.
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Figure 4.8: GST-PAL-1 fusion proteins, as visualized on a 10% SDS-polyacrylamide
gel. Proteins ran at their expected sizes (GST: 27.8 kD, GST-PAL-1 HD (home-
odomain): 34.8 kD, GST-PAL-1 FL (full-length): 56.7 kD). Broad range ladder
(NEB) was used as a size marker; mass (in kD) of protein bands is indicated on
the left. Arrows point to position of fusion proteins.

PAL-1 can bind ced-3 promoter sequences

pal-1 is expressed in a number of posterior cells, including the tail-spike cell (Edgar

et al., 2001), and functions cell-autonomously in the V6 cell (Waring et al., 1992)

and in cells of the C and D lineages (Edgar et al., 2001). These results suggested

to us that PAL-1 protein may directly bind to the ced-3 promoter to allow ced-3

expression in the tail-spike cell. While the consensus DNA binding site of pal-1 has

not been defined, the similarities between the homeodomains of PAL-1 and its closest

Drosophila and vertebrate homologs, caudal and Cdx1/2, respectively, suggested to

us that the proteins might share similar DNA binding affinities. Intriguingly, the

caudal consensus DNA binding site, TTTAT(G) (Dearolf et al., 1989), appears in

two of the three ced-3 promoter sites we established as critical for tail-spike cell ced-3

expression and death (sites B and C; see Chapter 3). We therefore tested the ability

of PAL-1 to bind these promoter sites in an electrophoretic mobility shift assay. We
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Figure 4.9: Electrophoretic mobility shift assay showing binding of PAL-1 HD to
labeled DNA derived from sites A (top), B (middle) and C (bottom) of the conserved
C. elegans ced-3 promoter. Note that PAL-1 binds to sites B and C, but only exhibits
non-specific binding to DNA derived from site A. Cold competitor DNA was added at
concentrations of 10X (lanes 2, 7), 100X (lanes 3, 8), 200X (lanes 4, 9), 500X (lanes 5,
10) and 1000X (lanes 6, 11), as indicated by triangles above the autoradiogram. Lane
12 shows no binding of GST to labeled A, B or C DNA; lane 13 shows binding of PAL-1
HD to labeled mutant oligonucleotide. Positions of shifted PAL-1 homeodomain-DNA
complex and unbound DNA are indicated with arrows. Details of the assay can be
found in Chapter 8.
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expressed fusion proteins between glutathione S-transferase (GST) and the PAL-

1 homeodomain (residues 203-270), or the PAL-1 full-length protein (Figure 4.8).

As shown in Figure 4.9, the GST-PAL-1 homeodomain fusion protein bound 32P-

labelled 22 bp oligonucleotides from the ced-3 promoter containing either sites B or

C. Binding with the PAL-1 full-length protein was not tested. Binding was competed

by cold wild-type oligonucleotides, but was less efficiently competed by mutant B

or C oligonucleotides in which the consensus binding site was mutated to TGGAT.

Similar results were obtained using oligonucleotides in which all five consensus binding

residues were altered to ACGCC (data not shown). These results demonstrate that

PAL-1 is able to bind sites within regions B and C in a sequence-specific manner.

Consistent with this conclusion, the PAL-1 fusion protein did not bind 32P-labelled

mutant B or C oligonucleotides (Figure 4.9). Additionally, when identical mutations

were made in the C. elegans ced-3 promoter::GFP reporter, expression in the tail-

spike cell was greatly compromised. For example, in 4 lines containing the B site

mutation, 4/100 animals examined had weak GFP expression and 96/100 had no GFP

expression in the tail-spike cell. Similarly, in 4 lines containing the C site mutation,

74/120 animals examined had weak GFP expression and 28/120 had no expression

in the tail-spike cell. Mutating both the B and C sites completely abrogated reporter

expression in the tail-spike cell (6/6 lines).

Taken together, these results support the idea that PAL-1 protein binds ced-3

promoter sequences in the tail-spike cell to promote cell death. We were unable to

detect sequence-specific binding of PAL-1 to the third ced-3 promoter site required

for tail-spike ced-3 expression and cell death (site A; Figure 4.9), suggesting that this

site may bind yet another factor required for induction of ced-3 expression in the

tail-spike cell.

Based on our model, we predict that pal-1 acts cell-autonomously in the tail-spike

cell to directly promote ced-3 expression. This is a reasonable assumption given that
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pal-1 is a transcription factor, and we have shown that pal-1 can directly bind to

critical sites within the ced-3 promoter required for the gene’s expression in the tail-

spike cell. In addition, previous reports have established that pal-1 is expressed in

the tail-spike cell (Edgar et al., 2001). In C. elegans, mosaic experiments are often

performed to establish in which cells a given gene is required. Animals genotypically

mutant for a given gene are transformed with a rescue transgene carrying a wild-type

copy of this gene. During mitosis, spontaneous loss of this rescue transgene occurs at

low frequency in some cells, resulting in animals that are genotypically wild-type in

some cells and genotypically mutant in others. In our case, however, this was not a

feasible means for determining whether pa1-1 acts cell-autonomously in the tail-spike

cell. The tail-spike cell is born as two cells that are “mirror images” of one another

in the C. elegans lineage. Both cells are derived from the first posterior daughter

cell in the AB lineage; after this point, the two cells diverge in the lineage, ending

up as left and right equivalents after a long line of cell divisions (AB.p(l/r)ppppppa).

Each of these cells is born as the sister of a hyp10 cell. In addition to being closely

related to the tail-spike cells, the hyp10 cells are also located adjacent to the tail-

spike cells in the developing embryo (Sulston et al., 1983). To determine whether

pal-1 activity in the tail-spike cell is sufficient to promote ced-3 expression in this cell

by mosaic analysis, the pa1-1 rescue transgene would need to be lost in both hyp10

cells. The low probability of this event precludes this as a viable approach. As an

alternate approach, we attempted to drive pal-1 cDNA in the tail-spike cell using

a promoter specific to the tail-spike cell. While our C. elegans ced-3promoter::GFP

reporter is expressed broadly in the anterior embryo (data not shown), expression in

the tail appears to be, for the most part, specific to the tail-spike cell (see Figure 3.2).

We therefore expressed pal-1 cDNA under the control of this promoter, and asked

whether the construct was able to rescue the defects in tail-spike cell morphology and

ced-3 expression observed in ns114 mutants. We did not observe rescue in any of the
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five transgenic lines we examined. This result may be consistent with the notion that

pal-1 does not act cell-autonomously to promote ced-3 expression in the tail-spike

cell. However, our results are difficult to interpret given that expression from the

ced-3 promoter is induced only shortly before the tail-spike cell dies (see Chapter 3).

It is possible, and indeed quite likely, that pal-1 expression may be required earlier

in order to promote tail-spike cell fusion and ced-3 expression.

Pax-2 homologs are not required for tail-spike cell death

In addition to the non-biased screen described above, we also took a bioinformatics

approach to identify regulators of ced-3 expression. Using the MatInspector software,

we searched for transcription factors whose binding sites were found within the re-

gion of the ced-3 promoter containing sites A, B and C (-1210 to -1125). The paired

domain-containing transcription factor Pax-2 emerged from this search. Two Pax-2

homologs have been identified in C. elegans, pax-2 and egl-38. Interestingly, egl-38

is expressed in the male and hermaphrodite tail, where it is required for posterior

patterning (Chamberlin et al., 1997). pax-2 and egl-1 have also recently been demon-

strated to play a role in cell survival by directly regulating ced-9 transcription (Park

et al., 2006). We tested the role of these genes in tail-spike cell ced-3 expression and

tail-spike cell death, and found that ced-3 promoter::GFP expression was unaltered

by the loss-of-function mutations pax-2 (ok935 ) and egl-38 (sy294 ) (data not shown).

Tail-spike cell death was also unaffected (number of animals with inappropriately

surviving tail-spike cells: pax-2 (ok935 ): 0/13; egl-38 (sy294 ): 0/14). We did not test

whether the tail-spike cell dies prematurely in these mutant backgrounds.

4.3 Conclusions

We have demonstrated that ced-3 expression is induced in the tail-spike cell shortly

before the cell meets its demise, suggesting that ced-3 transcriptional upregulation
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may play a critical role in initiating death of the tail-spike cell. Here, we discuss

the results of a genetic screen designed to isolate regulators of this expression. Most

notably, we identified the homeodomain-containing transcription factor pal-1 as a

critical mediator of ced-3 expression in the tail-spike cell. We show that pal-1 is

also required for tail-spike cell death, thereby implying that death of this cell is

dependent upon upregulation of ced-3 transcription. Using in vitro studies, we have

demonstrated that PAL-1 is able to bind the ced-3 promoter at sites that are critical

for both of these processes, suggesting that pal-1 directly promotes ced-3 expression.

Our results unveil a novel mechanism for controlling the timing of programmed cell

death by transcriptional regulation of caspases.
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Chapter 5

Is tail-spike cell death dependent on the completion of up-

stream cellular events?

5.1 Background

The tail-spike cell exhibits a unique and elaborate developmental program. Born

embryonically roughly 280 minutes post-cleavage, the pair of tail-spike cells fuses and

extends a posterior filamentous process before meeting its demise at 600 minutes,

over five hours after being born (Sulston et al., 1983). Both cell fusion and process

extension can occur independently of an intact cell death machinery, as tail-spike

cell morphology is unaffected by defects in the general cell death machinery (see

Chapter 2). We wished to test the converse: is tail-spike cell death dependent upon

these temporally upstream events? We hypothesize that programmed cell death may

function as a read-out for proper execution of tail-spike cell development, and that

mutants in upstream developmental processes may exhibit inappropriate tail-spike cell

survival. For example, fusion of the tail-spike cells or extension of the cell’s posterior

process might affect temporally downstream PCD by subsequent reprogramming of

cell fate or by altering cellular contacts. While the factors governing tail-spike cell

fusion and process extension are as of yet unknown, several factors involved in these

processes in other cells have been characterized. We tested whether these factors play

a role in tail-spike cell morphogenesis and tail-spike cell death.
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5.2 Results

Tail-spike cell fusion and tail-spike cell death

To test whether tail-spike cell fusion is a necessary precursor for tail-spike cell death,

we examined the effects of eff-1 loss-of-function mutations. eff-1 encodes a type I

transmembrane protein that is expressed in fusing cells shortly before their fusion

and is required for all epidermal cell fusion in C. elegans (Mohler et al., 2002). Sur-

prisingly, neither of the eff-1 (lf) alleles we examined blocked tail-spike cell fusion.

Tail-spike cell ced-3promoter::GFP expression and tail-spike cell death were also un-

affected by eff-1 mutations (Table 5.1). Previous reports have indicated that eff-1 (lf)

mutations do block the fusion of tail hypodermal cells adjacent to the tail-spike cell

(Mohler et al., 2002), suggesting that tail-spike cell fusion and death can occur inde-

pendently of the fusion of the cell’s neighbors.

We found that a loss of function mutation in lin-44, one of five C. elegans Wnt

ligands, weakly blocked tail-spike cell fusion (11%, n=38). Despite this fusion de-

fect, ced-3promoter::GFP expression was unaltered in lin-44 (n1792 ) mutant animals

(Table 5.2), suggesting that fusion and ced-3 expression may be independent pro-

cesses in the tail-spike cell. pal-1 (ns114 ) and pal-1 (ns115 ) mutant animals are also

partially defective in tail-spike cell fusion (see Chapter 4). We observed that, in

pal-1 (ns114 ) mutant animals, a uni-nucleate tail-spike cell can die independently of

fusion with its partner cell. Specifically, we found that 11% (n=46) of pal-1 (ns114 );

ced-5 (n2812 ) L1 stage double mutant animals possessed both an inappropriately sur-

viving tail-spike cell and a tail-spike cell corpse. However, though the tail-spike cell

can clearly die without fusing, our findings do not preclude the possibility that fusion

may nonetheless play a weak role in promoting tail-spike cell death.
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Table 5.1: eff-1 is not required for tail-spike cell fusion or for tail-spike cell death.

Genotypea % fused tail-
spike cellsb

% tail-spike cells
expressing ced-3 ::GFPb

% surviving
tail-spike cellsb

eff-1 (hy40 ) 97± 3c 94± 4c 3± 3c

eff-1 (hy21ts)d 90± 6 100 3± 3

aAll strains contained the nsIs25 C. briggsae ced-3 promoter::GFP integrated trans-
gene for scoring tail-spike cell survival and tail-spike cell fusion. bBetween 30 and
40 L3 stage ced-3 (n717 ) animals were scored for fusion defects and abnormalities in
ced-3promoter::GFP expression. Survival was scored in at least 30 L1 stage animals
in an otherwise wild-type background. cStandard error of the mean. dWorms were
propagated at 25 ◦C.
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Table 5.2: Tail-spike cell process extension and tail-spike cell death are unaffected by
loss-of-function mutations in many of the genes involved in process outgrowth and
directional pathfinding in other cells.

Genotypea

% tail-spike cells
with wild-type

posterior processb (n)

% tail-spike cells
expressing

ced-3 ::GFPb (n)

% surviving
tail-spike cellsb (n)

Wild-type 100 100 0
lin-17 (n671 ) 100 100 3± 3c

lin-44 (n1792 ) 100 97± 3c NA
vab-8 (e1017 ) 100 100 0
unc-53 (e404 ) 94± 6c 94± 6 0
unc-73 (e936 ) 100 100 0
unc-76 (e911 ) 98± 2 100 0
unc-5 (e53 ) 95± 5 96± 4 0
unc-40 (e271 )d NA NA 0

aAll strains contained either the nsIs23 or the nsIs25 C. briggsae ced-3 pro-
moter::GFP integrated transgene for scoring tail-spike cell survival and tail-spike
cell process extension. bProcess extension and ced-3promoter::GFP expression were
scored in at least 20 L1-L2 stage ced-3 (n717 ) or ced-4 (n1162 ) animals. Survival
was scored in at least 20 L1-L2 stage animals in an otherwise wild-type background.
cStandard error of the mean. dStrain also contained dpy-5 (e61 ). NA, not assessed.
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Factors required for extension of the tail-spike cell’s posterior process re-

main unknown

To ascertain the role of process extension in tail-spike cell death, we first needed to

identify genes required for formation of the tail-spike cell’s posterior process. We

examined the role of several genes that are required for process extension in other

cells, and that are expressed in the posterior region of the worm. Specifically, we

tested the requirement for each of the following genes: vab-8, which encodes a protein

containing an atypical kinesin-like motor domain and is involved in axon outgrowth

and posteriorly directed cell migration (Wolf et al., 1998); unc-53, a gene involved in

anteroposterior outgrowth (Stringham et al., 2002); unc-73, which encodes a guanine

nucleotide exchange factor and is required for cell migration and axonal outgrowth

(Steven et al., 1998); unc-76, which is required for axonal outgrowth (Bloom and

Horvitz, 1997); and unc-5, a netrin receptor encoding-gene that provides instructive

cues to guide cellular migration (Hamelin et al., 1993). Using our tail-spike cell re-

porter, we examined tail-spike cell morphology in vab-8, unc-53, unc-73, unc-76 and

unc-5 loss-of-function mutant backgrounds. Tail-spike cell morphology was not al-

tered by loss-of-function mutations in any of these genes; tail-spike cell ced-3 reporter

expression and tail-spike cell death were also unaffected (Table 5.2). Additionally,

tail-spike cell death was not affected by a loss-of-function mutation in unc-40/netrin

receptor/DCC (Table 5.2).

lin-17 and lin-44, C. elegans homologs of the frizzed receptor and Wnt ligand,

respectively, are expressed in tail hypodermal cells and have been shown to play a role

in neuronal polarity (Hilliard and Bargmann, 2006, Pan et al., 2006). Loss-of-function

mutations in these genes, however, had no effect on polarity or extension of the tail-

spike cell process, nor did they affect tail-spike cell death (Table 5.2). Intriguingly,

polarity of the tail-spike cell process was altered in eff-1 (hy21ts) mutant animals.

Specifically, the tail-spike cell process extended anteriorly rather than posteriorly in
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27% of eff-1 (hy21ts); ced-3 (n717 ) L1 stage animals (n=30). As reported above,

tail-spike cell fusion and tail-spike cell death are unaffected by eff-1 loss-of-function

mutations. The defect in process extension may instead result from the failure of

neighboring cells to fuse, and the absence of non-cell-autonomous cues required for

positional information.

At this point, the role of process extension in tail-spike cell death remains un-

clear. The candidate genes we examined are by no means an exhaustive collection of

guidance factors; it is also possible that some or all of these genes act in a redundant

manner to direct tail-spike cell process formation. Hopefully, future studies will shed

light on the role of tail-spike cell process extension, and, more generally, on the role

of upstream morphological events, on the initiation of tail-spike cell death.

Loss-of-function mutations in ced-2, ced-5 and ced-10 do not affect posi-

tion of the tail-spike cell

Engulfment of a dying corpse is dependent upon cytoskeletal rearrangements within

the engulfing cell. Accordingly, several of the genes required for engulfment also

mediate various other cellular processes. Specifically, ced-2/CrkII, ced-5/DOCK 180,

ced-10/Rac and ced-12/ELMO1 are required during larval development for proper

migration of the gonadal distal tip cells (Wu and Horvitz, 1998; Reddien and Horvitz,

2000; Gumienny et al., 2001; Wu et al., 2001). We did not observe defects in tail-spike

cell morphology or position in animals carrying loss-of-function mutations in these

genes (data not shown).

Screen for mutants defective in tail-spike cell death

In addition to the candidate approach described above, we also took a non-biased ap-

proach intended to identify signaling factors that when mutant result in inappropriate
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tail-spike cell survival. We performed a pilot screen in which F2 progeny of muta-

genized nsIs23 and nsIs25 animals (rounds one and two of screening, respectively)

were assayed as early larvae for inappropriate tail-spike cell survival as determined

by GFP reporter expression. We expected to pick up worms with defects in the al-

ready characterized general cell death machinery as well as those with defects in novel

factors, including putative upstream signaling factors mediating the tail-spike cell’s

decision to die. We screened through 3,000 haploid genomes and identified eight in-

dependent mutants with an inappropriately surviving tail-spike cell (Table 5.3). The

tail-spike cell persisted until adulthood in all eight of these mutants, suggesting that

cell death is being prevented and not merely delayed in these animals. Preliminary

characterization of these mutants is described below.
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Table 5.3: Mutants isolated in a screen designed to detect genes involved in tail-spike
cell death.

Genotypea % surviving tail-spike cellsb

Wild-type 0
ns16 60± 8c

ns17 35± 8
ns18 52± 8
ns19 25± 8
ns38 100± 0
ns39 95± 5
ns40 11± 11
ns41 17± 7

aAll strains contained either the nsIs23 or the nsIs25 C. briggsae ced-3 pro-
moter::GFP integrated transgene. bBetween 10 and 40 L1 stage animals were scored
for inappropriate survival of the tail-spike cell as determined by GFP reporter ex-
pression. Defects in pharyngeal cell death were not quantified. cStandard error of the
mean.
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We hypothesized that the upstream signaling factors regulating tail-spike cell

death might also specify tail-spike cell fate in a broader sense, and examined our mu-

tants for defects in tail or tail-spike cell morphology. Notably, we observed variable

positioning of the tail-spike cell in ns17 mutant animals (data not shown), suggestive

of a defect in a factor involved in short-range migration. Inappropriate survival of the

tail-spike cell in this mutant may point to a role for cell-cell interaction in induction

of tail spike cell death. In addition, defects in tail-spike cell fusion were observed in

ns18 and ns19 mutant animals (data not shown), possibly suggesting that tail-spike

cell death may be partially dependent upon tail-spike cell fusion. Alternatively, it is

possible that ns18 and ns19 worms lack an inductive signal required for both fusion-

competence and cell death. The tails of ns18 and ns40 mutant animals were also

grossly abnormal (data not shown), suggestive of defects in patterning of the tail.

Backcrosses should be performed in order to determine whether these defects result

from the same mutation that is contributing to inappropriate tail spike cell survival.

The design of the screen did not restrict our findings to genes mediating tail-spike

specific cell death. Indeed, animals from five of the mutants we isolated, ns16, ns18,

ns38, ns40 and ns41, also possessed inappropriately surviving cells in the anterior

pharynx, suggestive of a more general cell death defect. The presence of extra cells was

not carefully quantified, and we therefore cannot rule out that ns17, ns19 and ns39

may also possess weak defects in the general cell death machinery. The pharyngeal

cell death defect should be quantified in all mutants, and complementation analysis

using loss of function alleles of ced-3, ced-4, and egl-1 should be performed.

5.3 Conclusions

We hypothesized that the tail-spike cell’s decision to die may be dependent upon

factors signaling completion of temporally upstream cellular events. We took a can-

didate gene approach to identify genes required for cellular events that would be
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easily identifiable using our tail-spike cell reporter, namely tail-spike cell fusion and

process extension. Unfortunately, loss-of-function mutations in the candidate genes

we examined affected neither tail-spike cell morphology nor tail-spike cell death. We

did note that the pal-1 gene, which we had isolated in a screen for regulators of ced-3

expression in the tail-spike cell, is required for tail-spike cell fusion. In pal-1 mutant

animals, tail-spike cell death can occur in the absence of cell fusion, indicating that

these may be independent processes. However, our results are inconclusive, as we

cannot rule out that fusion plays a partial role in promoting cell death. At this point,

the upstream events signaling tail-spike cell death should be further pursued. In par-

ticular, the mutants isolated in the screen described above should be characterized,

and further rounds of screening should be undertaken. While we have focused our

energy on better understanding tail-spike cell fusion and process extension, additional

upstream events, both cell-intrinsic and cell-extrinsic, may play a role in tail-spike

cell death, and should also be considered.
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Chapter 6

Discussion

A model for the control of tail-spike cell death in C. elegans

Tail-spike cell death exhibits two salient features. First, we have shown here that the

egl-1 and ced-9 genes, which are required for the majority of somatic cell deaths in

C. elegans, only play a minor role in the demise of the tail-spike cell, suggesting that

another pathway must exist that specifically regulates the death of this cell. Second,

we have shown that, in the tail-spike cell, ced-3 caspase is expressed minutes before

the cell displays obvious signs of death, suggesting that regulation of tail-spike cell

death may be achieved through transcriptional control of ced-3. Indeed, mutations

in the pal-1 homeodomain gene, which promotes ced-3 transcription, specifically pre-

vent tail-spike cell death. Taken together, these observations suggest the following

model: in the tail-spike cell, egl-1 and ced-9 may have attenuated function, thus

allowing CED-4 protein to remain unchecked. In the absence of any CED-3 caspase,

CED-4 is unable to promote cell death, thus allowing the tail-spike cell to live. Upon

transcription of ced-3, accumulating CED-3 protein may become immediately pro-

cessed, through interactions with CED-4, leading to rapid killing of the cell (Figure

6.1). An important feature of this model is that killing of the tail-spike cell by CED-3

does not occur by mere overexpression of this caspase, since ced-4 is still required

for tail-spike cell death. Thus, although overexpression of CED-3 can kill cells in a

CED-4-independent manner (Shaham and Horvitz, 1996a), this is not the case in the
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Figure 6.1: Model for regulation of tail-spike cell death. EGL-1 and CED-9 (gray) play
a minor role in regulating tail-spike cell death, whereas PAL-1-mediated transcription
of ced-3 is a key regulatory module.

tail-spike cell.

A number of observations support the model described here. For example, the

model predicts that mutations in pal-1 should affect tail-spike cell death indepen-

dently of mutations in ced-9. Indeed pal-1 (lf); ced-9 (lf); ced-3 (lf) mutants have

significantly more tail-spike cell survival than ced-9 (lf); ced-3 (lf) animals. Simi-

larly, pal-1 functions independently of egl-1. In addition, we have examined an egl-

1promoter::GFP reporter transgene in the tail-spike cell, and have only been able

to detect very low levels of expression as compared with other cells expressing the

reporter (data not shown), consistent with the idea that egl-1 plays a minor role in

tail-spike cell death.

Although our data clearly demonstrate transcriptional control of ced-3 during

tail-spike cell death, ced-4 transcription may either be constitutive or induced in

this cell. We have been unable to examine ced-4 expression in the tail-spike cell

using currently available reagents, and thus cannot distinguish between these two

possibilities. Regardless of whether ced-4 is also transcriptionally upregulated in the

tail-spike cell, it is evident that regulation of death of this cell must still utilize an egl-

1/ced-9 -independent pathway, making the tail-spike cell an exciting venue in which
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to study egl-1/ced-9 -independent cell death.

Our studies describe a role for PAL-1 protein in controlling ced-3 expression in the

tail-spike cell. However, PAL-1 is unlikely to be acting alone in this cell to promote

ced-3 transcription. PAL-1 is expressed in many cells in the animal that do not

die (Edgar et al., 2001). Furthermore, within the tail spike cell, PAL-1 is expressed

several hours before tail-spike cell death occurs. Thus, PAL-1 must either associate

with other factors that promote ced-3 transcription, or must be post-translationally

activated to induce ced-3 transcription. It is interesting to note that we could not

detect specific binding of PAL-1 to the A site of the ced-3 promoter, suggesting that

this site may indeed be occupied by another protein that functions together with

PAL-1 to induce ced-3 transcription.

Our studies suggest that control of caspase transcription may be an important

mechanism for exercising temporal control of cell death initiation in other animals as

well. In this context, it is worth noting that caspase expression during development

of any organism has not been extensively studied.

Control of cell death timing in other C. elegans cells

Although the egl-1 gene is required for the death of most somatic cells destined to die

in C. elegans, it is clear that additional mechanisms must exist that control the onset

of these deaths. Specifically, some ced-9 (lf); ced-3 (weak lf) double mutants contain

the same complement of cells as wild-type animals (Hengartner and Horvitz, 1994),

suggesting that cells that normally die during C. elegans somatic development can

die in the absence of ced-9, and by extension, in the absence of egl-1. How might

cell death timing be controlled in these cells? Our examination of the pattern of

expression of ced-3 in C. elegans suggests that transcriptional control of ced-3 is

unlikely to be the main mechanism in these cells. Although ced-3 expression can be

seen in some dying cells during embryogenesis, most expression is confined to cells
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that live (data not shown), suggesting that ced-3 may be expressed in precursors of

cells destined to die. Thus, asymmetric segregation, or activation of CED-3 protein

(or mRNA) during cell division may be important for other cell deaths in C. elegans.

Intriguingly, most cells that die in the C. elegans soma do so within 30-60 minutes

after being born. This time interval is of the same order as the gap between the

onset of ced-3 transcription and the first signs of death in the tail-spike cell. This

observation suggests that in other C. elegans cells, asymmetric segregation of CED-3

protein (or mRNA) may function in a similar manner to transcriptional upregulation

of ced-3 in the tail-spike cell.

The ced-9 (n1950 ) gain of function allele may not only block CED-9/EGL-

1 association

Our studies have demonstrated that egl-1 and ced-9 behave differently in the tail-

spike cell as compared to other cells destined to die in two ways. First, we found that

egl-1 (lf) mutations block tail-spike cell death in 30% of animals examined, whereas

the ced-9 (n1950gf) mutation does not block tail-spike cell death. In all other so-

matic or germ cell deaths that have been examined, ced-9 (n1950gf) and egl-1 (lf)

mutants have exhibited identical phenotypes (Conradt and Horvitz, 1998; Gumienny

et al., 1999; Gartner et al., 2000). Second, in the tail-spike cell ced-9 lacks its death-

promoting function. Specifically, ced-9 has been shown to have both death-preventing

as well as death-promoting functions in many somatic cells (Hengartner and Horvitz,

1994). The nature of the death-promoting function of ced-9 is not understood; how-

ever, genetic interaction studies suggest that ced-9 has the capacity to inhibit two

alternatively spliced ced-4 transcripts: ced-4S, which promotes cell death, and ced-

4L, which inhibits cell death (Shaham and Horvitz, 1996b). Inhibition of the former

by ced-9 could explain the death-preventing function of ced-9, and inhibition of the

latter by ced-9 could explain the death-promoting function of ced-9 (Shaham and
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Horvitz, 1996b).

How might the disparities between egl-1 and ced-9 functions in the tail-spike

cell be resolved? Genetic and structural studies suggest that the ced-9 (n1950gf)

mutation may block the association of CED-9 with EGL-1 (Parrish et al., 2000; Yan

et al., 2004). However, if this were the sole mechanism of n1950 function, then egl-

1 (lf) and ced-9 (n1950gf) mutants should exhibit identical phenotypes, which is not

the case in the tail-spike cell. One resolution of this apparent contradiction is to

suggest that the ced-9 (n1950gf) mutation has two effects. First, this mutation may

only partially block association of CED-9 with EGL-1. Second, n1950 may fully block

the death-promoting function of CED-9; for example, n1950 may block the ability of

CED-9 to inhibit CED-4L function. Thus, according to this hypothesis, n1950 should

behave like a weak egl-1 mutation in the tail-spike cell, only very mildly preventing

cell death, since the death-promoting function of ced-9 is not present in this cell. In

other somatic cells, ced-9 does possess a death-promoting function (perhaps because

CED-4L is expressed in these cells and not in the tail-spike cell), and thus n1950

interferes both with that function and with binding to EGL-1, resulting in extensive

cell survival. Testing this hypothesis will require a clearer understanding of the nature

of the ced-9 death-promoting function.

Caspase transcription and the control of tumorigenesis

Caspases have been demonstrated to play a role in tumorigenesis (Stupack et al.,

2006), though the mechanism by which these proteases suppress tumor progression,

and the factors regulating their expression, remain poorly understood. Our results

suggest that mutations in transcriptional regulators of caspases may promote tumori-

genesis by blocking cell death. Intriguingly, mutations in the vertebrate homolog

of pal-1, Cdx2, promote digestive tract tumor formation (Chawengsaksophak et al.,

1997; Aoki et al., 2003; Bonhomme et al., 2003), and tumor aggressiveness is inversely
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correlated with levels of Cdx2 expression (Hinoi et al., 2001). Furthermore, in the

intestinal epithelium, Cdx2 is expressed only at low levels in less-differentiated cells

near the intestinal crypt, and at high levels in fully differentiated cells of the ep-

ithelium, which continually undergo apoptosis (Silberg et al., 2000). Taken together,

these observations raise the possibility that Cdx2 promotes vertebrate caspase tran-

scription to effect programmed cell death in the intestinal epithelium in a manner

similar to pal-1 regulation of ced-3 expression in C. elegans.

Discarding an unnecessary cell

We have demonstrated that the onset of tail-spike cell death is controlled by pal-1 -

mediated upregulation of ced-3 expression, and speculate that pal-1 acts with other

factors to specify tail-spike cell death with incredible temporal precision. However,

we still have not answered several critical questions regarding the cell’s death. The

tail-spike cell survives for over five hours, during which time it is transformed from

two single cells into a single binucleate cell with an elegant posterior process. Why

does the tail-spike cell subsequently commit itself to death? How do upstream cellu-

lar events contribute to the cell’s terminal differentiation step? We speculated that

the tail spike cell might die as a result of upstream signaling informing the cell that

it has finished what it had set out to accomplish: differentiated, and completed its

as of yet unknown function. EM studies (Sulston et al., 1983) point to a role for

the tail-spike cell process in formation of the streamlined C. elegans tail spike. Com-

pletion of this process may provide cell-intrinsic or extrinsic cues signaling the cell

to die. Parallels to this model can be found throughout invertebrate and vertebrate

development (reviewed in Jacobson et al., 1997 and Meier et al., 2000). During insect

metamorphosis, muscles and neurons needed for larval but not for adult locomotion

are lost by ecdysone-mediated transcriptional regulation of a number of apoptotic
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genes (Dorstyn et al., 1999). The destruction of evolutionary remnants is also de-

pendent upon PCD-mediated killing; interdigital cells are removed via BMP (bone

morphogenic protein)-mediated induction of PCD (Zou and Niswander, 1996). We

have been unsuccessful in our attempts to define the upstream cellular events required

for the tail-spike cell’s demise, or to better understand the cell’s function; both areas

should be further pursued. Defining pal-1 co-factors in the tail-spike cell might also

provide insight into how upstream cellular events trigger cellular suicide.

Why control caspases transcriptionally?

Transcriptional regulation of cell death onset has been documented in several systems.

During Drosophila development, expression of the cell death activators rpr and grim

precedes and may in fact trigger cellular demise (reviewed in Tittel and Steller, 2000;

see also Chapter 1). In C. elegans, transcription of egl-1 has been proposed to play a

critical role in specifying the onset of cell death in several cells (Conradt and Horvitz,

1999; Thellmann et al., 2003; Liu et al., 2006; Hoeppner et al., 2004). However, as

of yet, transcriptional regulation of a caspase has not been examined in great detail.

In fact, quite the opposite model has been put forward: the cell death execution

machinery is thought to be ubiquitously expressed, and caspase activity believed to

be regulated post-translationally. In contrast, we have shown that controlling the

expression of ced-3 caspase is an important means of regulating cell death in the C.

elegans tail-spike cell. Why regulate cell death in this manner?

Most cells fated to die in C. elegans meet their demise within thirty minutes after

being born. Cells destined for such a short life might require that an intact cell death

execution machinery be present from the moment of their birth; cells requiring rapid

induction of cell death might have similar requirements. The tail-spike cell lives ten

times longer than most cells destined to die in C. elegans. Though its function is

as of yet undefined, the tail-spike cell’s elaborate morphology is highly suggestive of
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functional relevance. These two attributes may necessitate an alternate mechanism

for activating tail-spike cell death. The small number of cells in C. elegans limits the

level of redundancy, and it is likely that the tail-spike cell does not have a “substitute”

available in the event of its absence. The cell may limit levels of ced-3 as a means

of safeguarding against premature death. The CED-3 pro-protein has weak intrinsic

protease activity, and the presence of low levels of activated CED-3 might compromise

the cell’s ability to maintain exquisite control over the time of its death. The tail-

spike cell might also be frugal, and proteolysis of CED-3 substrates over time may

be undesirable from an energetic point of view. In addition, given that the time of

the cell’s death has been predetermined, it may not want to invest the energy to

transcribe and translate a gene that will only be needed much later in life, given that

translated protein degrades over time. Other irreplaceable cells whose function is

critical to the organism may regulate their death via a similar mechanism.
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Chapter 7

Future Directions

The tail-spike cell is thought to be involved in formation of the C. elegans tail, a role

that has been inferred from electron micrograph studies of the embryo (Sulston et al.,

1983). However, there is no direct evidence supporting this claim, and the function

of the cell remains unknown. We hypothesize that the tail-spike cell’s decision to

die is linked to completion of its function, and therefore propose that understanding

the cell’s function may yield insight into its death. Tail-spike cell function may

be ascertained by laser ablating the cell shortly after its birth, taking advantage of

a commonly utilized method to determine cell function in C. elegans. Currently,

there are no markers to assist in identifying the tail-spike cell in its early stages of

development, and cell identification will need to be done by following the cell from its

birth using Nomarski optics. While we predict the ablated worms will exhibit a defect

in gross tail morphology, other defects should also be considered. The tail-spike cell

may play a role in modeling not only the hermaphrodite tail but the male tail as well.

Ablations should thus also be performed in a genetic background containing a him

(high incidence of males) mutation. The tail-spike cell may also act as a guidepost

for other cells extending processes into the tail, including neurons. For example,

PLM(L/R), two of the six touch receptor neurons, extend processes into the tail. If

these processes are disrupted, we might expect a defective response to touch in the

rear of the animal; this possibility should be considered and ablated animals should
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be assayed for touch responsiveness.

Depending on the ease with which the “ablation” phenotype can be visualized, it

may be possible to screen for factors required for tail-spike cell fate and function by

screening for worms with a phenotype similar to that of ablated worms. We would

expect to isolate mutants in which tail-spike cell function was mis-specified, or in

which the tail-spike cell died prematurely. Alternatively, if the “ablation” phenotype

is specific enough, it may also be feasible to take a candidate gene approach to test

whether mutations resulting in a similar gross phenotype also affect specification of

tail-spike cell fate. Such experiments may also yield insight into factors responsible

for repressing tail-spike cell death.

We hypothesize that tail-spike cell death may also be dependent upon completion

of the cell’s elaborate morphogenesis, and have unsuccessfully attempted by candidate

gene approach to identify genes involved in tail-spike cell process extension and tail-

spike cell fusion. We performed a forward genetic screen to isolate factors involved in

tail-spike cell death, hoping that, based on our hypothesis, we would pick up mutants

in other cell fate decisions in the tail-spike cell. We isolated several mutants, as

described in Chapter 5. Several of these mutants exhibited weak defects in tail-spike

cell fusion and process extension/retraction. The phenotypes of these mutants should

be further characterized, and defects in tail-spike cell morphology should be carefully

assessed in all isolated mutants. The screen was performed in large part to better

understand cell death initiation in the tail-spike cell; however, it was designed to

isolate mutants blocking tail-spike cell death, and therefore many of the mutants we

isolated may be defective not in the initiation of cell death initiation but rather in

its execution. Non-complementation tests with ced-3 and ced-4 should be performed

with all mutants. In addition, the screen should be extended, as it was not performed

to saturation.

We have established that ced-3 expression is upregulated in the tail-spike cell
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shortly before it dies, and propose that this upregulation provides a temporal trigger

for tail-spike cell death. To better understand this mechanism, we performed a screen

for regulators of ced-3 expression in the tail-spike cell, and isolated three mutants,

ns90, ns114 and ns115. We have cloned and characterized alleles ns114 and ns115,

which both contain mutations in the pal-1 gene. The gene altered by the ns90 muta-

tion has not yet been identified, nor has the cell death defect in ns90 mutant animals

been characterized. The ns90 mutation is dominant; the nature of this dominance

should be further defined by testing whether the ns90/+ phenotype is the result of

haploinsufficiency, or is the result of a gain-of-function mutation in the gene mutated

by ns90. Given the high lethality observed in mutants isolated from the screen (see

Chapter 4), it may be advisable to perform further rounds of screening.

Our screen for regulators of ced-3 expression was aimed at isolating loss-of-function

mutations in activators of ced-3 expression, or gain-of-function mutations in repres-

sors. As an alternate approach to identifying repressors of ced-3 expression, one

could first identify the sites to which these repressors bind. We have already created

twenty-one transgenic strains each of which contains a ced-3promoter::GFP reporter

transgene with a 14 to 16 bp deletion within the conserved region of the ced-3 pro-

moter. We assayed tail-spike cell GFP expression in L2 worms from each of these

strains, which were also homozygous for the ced-3 (n717 ) mutation. We found that

expression was blocked by three of these deletions, two of which contain binding sites

for the transcriptional activator, pal-1. One could also take advantage of these strains

to identify binding sites for repressors of ced-3 expression. Embryos carrying the re-

porter transgenes could be assayed for premature ced-3 expression in the tail-spike

cell; normally, the tail-spike cell reporter only begins to be expressed in the three-fold

stage embryo, several hours after the tail-spike cell is born. After putative repres-

sor binding sites have been identified, their functional relevance may be assessed by

introducing comparable deletions into a ced-3promoter::ced-3 cDNA construct and
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evaluating the effect of the deletions upon tail-spike cell death. If deleting these sites

blocks the repression of ced-3 transcription (ie. results in premature expression), and

if ced-3 expression is sufficient to kill the cell, we might expect premature tail-spike

cell death. Transcription factors binding to these sites may be identified by a one

hybrid screen, or by a candidate gene approach.

We identified the pal-1 gene as a direct activator of ced-3 expression. pal-1 is a

homeodomain-containing transcription factor that is expressed in several cells in the

posterior region of the worm (Edgar et al., 2001). Given its broad expression, other

factors must limit pal-1 activation of ced-3 expression to the tail-spike cell. A pal-1

suppressor screen may identify some of these factors. Using a fluorescence-equipped

dissecting microscope, in which the low levels of ced-3 reporter expression observed

in pal-1 (ns114 ) and pal-1 (ns115 ) mutant animals are undetectable, one could screen

for animals in which ced-3 reporter expression is restored. We expect this screen

to isolate loss-of-function mutations in factors repressing pal-1 expression or activity

in the tail-spike cell, or gain-of-function mutations in pal-1 activators; alternatively,

mutations in regulators of ced-3 expression that act independently of pal-1 may also

be isolated.
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Chapter 8

Materials and Methods

Strains and general methods

All strains were grown at 20 ◦C on NGM agar with E. coli OP50 bacteria, as de-

scribed by Brenner (1974). The wild-type strain was C. elegans variety Bristol

strain N2. The following alleles were used: LGI: ces-1 (n703 ), ces-2 (n732 ), ced-

1 (e1755 ), ced-12 (k149 ), unc-73 (e936 ), unc-40 (e271 ), lin-17 (n671 ), lin-44 (n1792 );

LGII: ns90, unc-53 (e404 ), eff-1 (hy21ts, hy40 ); LGIII: ced-4 (n1162 ), ced-9 (n1950,

n2812 ), ced-6 (n2095 ), ced-7 (n1892 ), pal-1 (ns114, ns115, ok690, e2091 ); LGIV: ced-

2 (e1752 ), ced-3 (n717, n2427, n2428, n2436, n2448, n2875, n2869, n2920, n2855,

n2455 ), ced-5 (n1812 ), unc-30 (e191 ), ced-10 (n1993 ), ced-2 (e1752 ), pax-2 (ok935 ),

egl-38 (sy294 ), unc-5 (e53 ); LGV: egl-1 (n1084n3082 ), vab-8 (e1017 ), unc-76 (e911 );

LGX: ced-13 (tm536, sv32 ), ced-8 (n1891 ).

Plasmid constructions

GFP reporters were constructed by amplifying indicated regions of the C. elegans or

C. briggsae ced-3 promoters using the polymerase chain reaction (PCR), and cloning

them into the GFP expression vector pPD95 69 (Fire et al., 1990). For construction

of C. briggsae ced-3 promoter::GFP, we amplified a 0.7kb DNA fragment from cos-

mid G45E19 and ligated the resulting amplicon to pPD95 69 digested with XbaI and

XmaI. For C. elegans ced-3promoter::GFP reporter constructs, we amplified DNA
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from the C. elegans ced-3 genomic DNA construct pJ40 (Yuan et al., 1993) and lig-

ated the resulting amplicons to pPD95 69 digested with HindIII and BamHI. For the

unc-119 C. elegans ced-3 promoter (0.35 kb)::GFP construct we subsequently used

to create low-copy integrated transgenic lines, we digested C. elegans ced-3 promoter

(0.35 kb)::GFP with HindIII and ApaI, and ligated the resulting fragment to the

cloning vector Bluescript pBS KS(-). This vector also contained the sequence encod-

ing the unc-119 gene. For construction ced-3promoter::ced-3 cDNA, we amplified

a 1.5 kb DNA fragment containing sequences just upstream of the ced-3 ATG from

the ced-3 genomic DNA construct pJ40 (Yuan et al., 1993), and ligated the result-

ing amplicon to pPD95 69 digested with HindIII and XbaI. We then amplified a 1.5

kb DNA fragment from the C. elegans ced-3 cDNA plasmid pS126 (Shaham and

Horvitz, 1996a) and ligated the resulting amplicon to this ced-3 promoter construct

digested with XbaI and NheI. For reporter constructs containing tandem copies of

sites A, B or C, we ligated oligos containing 5 tandem copies of sites A, B or C into

pPD95 69 digested with SalI and BamHI. For ced-3 inverted repeat constructs, we

amplified a 0.7 kb fragment of ced-3 cDNA (+782 to +1508) from pS126, introduc-

ing either NheI and XhoI, or KpnI and EcoRV sites at the fragment ends. A spacer

DNA fragment of roughly 0.3 kb which contained part of the lac operon was amplified

from the cloning vector Bluescript pBS KS(-), introducing XhoI and KpnI sites at

the fragment ends. The resulting amplicons were ligated into the heat shock vectors

pPD49 78 and pPD49 83. For construction of the pal-1 genomic DNA rescue con-

struct, we amplified a 6kb DNA fragment from the pal-1 -containing cosmid W05E6

and ligated the resulting amplicon to the pCR 2.1-TOPO vector (Invitrogen). For

construction of the pal-1 cDNA rescue constructs, we amplified the pal-1 cDNA from

a C. elegans mixed stage cDNA library (S. Shaham), and ligated the resulting am-

plicon into pPD95 69pU digested with XhoI and SpeI. pPD95 69pU is a modified

89



pPD95 69 vector with SpeI, EagI and ApaI sites inserted at the 3’ end of the GFP-

encoding region (M. Heiman). Either the pal-1 or the ced-3 promoter was ligated

into this pal-1 cDNA vector. The pal-1 promoter (-1124 to -2) was amplified from the

pal-1 -containing cosmid, W05E6, and ligated via BamHI and XhoI sites; the ced-3

promoter (-1512 to -1) was amplified from pJ40 and ligated via BamHI and XhoI.

For constructs encoding GST-fusion proteins, DNA encoding the PAL-1 full-length

protein, or a C-terminal fragment including the PAL-1 homeodomain (residues 203-

270) were cloned into plasmid pGEX-4T-3 (Pharmacia) using the BamHI and XhoI

sites. The deletion/mutation constructs described in the text were generated using

QuikChange XL Site-Directed Mutagenesis Kit (Stratagene).

Transgenic strain constructions

Transformations were performed as previously described (Mello and Fire, 1995). GFP

reporter constructs were injected into ced-3 (n717 ) animals at concentrations of 30-

40 ng/µl; the plasmid pRF4, which contains the dominant marker rol-6 (su1006 ),

was used as the transformation marker (40 ng/µl). The 0.7 kb C. briggsae ced-3

promoter::GFP extrachromosomal transgene was stably integrated by treatment with

4,5’,8-trimethylpsoralen (TMP). Integrant lines stably transmitting the transgene to

all progeny were isolated and further characterized. The nsIs25 integrant, mapping to

LGX, and the nsIs23 integrant, not on LGX, were used for the experiments described

here. Rescue constructs containing ced-3 genomic DNA (pJ40) were injected into ced-

3 (n717 ); nsIs25 animals at a concentration of 50ng/µl, using daf-6 ::RFP as the co-

injection marker. The ced-3promoter::ced-3 cDNA rescue construct was injected into

nsIs25 ;ced-3 (n717 ) animals at concentrations of 40 or 60 ng/µl, using daf-6 ::RFP or

daf-19 ::RFP as coinjection markers (lines 1-3 and 4-6, respectively). Both ced-3 IR

heat-shock constructs (pPD49 78 and pPD49 83) were injected into nsIs25 animals

at concentrations of 50ng/µl, using the daf-6 ::RFP coinjection marker. pal-1 rescue
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constructs were injected at 10-25ng/µl using either daf-6 ::RFP or daf-19 ::NLS-RFP

as co-injection markers (50ng/µl).

Generating anti-CED-3 antibodies

DNA encoding a 15-amino acid peptide corresponding to the C-terminal region of

the CED-3 large subunit p17 (residues 360-374) was cloned into the pGEX-4T-3

vector (Pharmacia) using the BamHI and EcoRI sites. Rats were immunized with the

resulting 15-amino acid peptide conjugated to Keyhole limpet hemocyanin (Covance),

and antiserum from the termination bleed (after 3 boosts) was used in subsequent

experiments.

Immunostaining using anti-caspase antibodies

Two-day old adults carrying nsIs6, an integrated transgene containing the ced-13

cDNA fused to a heat-shock inducible promoter (S. Shaham, unpublished), were sub-

jected to a one hour heat-shock, and their embryos subsequently fixed for whole-mount

immunofluorescence as previously described (Finney and Ruvkun, 1990), using 1%

formaldehyde. Antiserum was diluted 1:500, and tested using a FITC-labeled mouse

anti-rat IgG secondary antibody. Antiserum against human/mouse caspase-3 (CM1;

Srinivasan et al, 1998), Drosophila full-length Drice, or Drosophila activated Drice

were incubated with embryos at a 1:250 dilution, and activity tested using FITC-

labeled anti-mouse IgG secondary antibody. An antibody raised against CFI-1 (Sha-

ham and Bargmann, 2002) was used as the positive control for the immunostaining

(1:200 dilution; FITC-labeled mouse anti-rat IgG secondary antibody).

Establishing timing of reporter expression in the tail-spike cell

For individual embryos: Embryos were collected at the comma stage of embryogenesis,

and allowed to develop for three hours at 20 ◦C. Individual embryos were subsequently
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mounted in M9 buffer onto microscope slides containing 0.4 mm agar pads. Tail-spike

cell morphology and ced-3 ::GFP expression were assessed at 2-4 minute intervals

using a fluorescence-equipped compound microscope. Embryos were followed until

visualization of the tail-spike cell corpse. For population studies: 200 embryos were

synchronized at the comma stage of embryogenesis, and allowed to develop at 20 ◦C.

Beginning 3 hours post-comma stage, groups of embryos (n=9-19) were mounted

in M9 buffer onto a microscope slide and examined using a fluorescence-equipped

compound microscope; 10 groups of embryos were examined at 10 equally spaced

time points; embryos were assessed for expression of the C. briggsae ced-3 ::GFP

reporter in tail-spike cells and corpses.

Assay for ced-3 reporter expression

Reporter expression in the tail-spike cell was assessed in L2 animals of lines carrying

the reporter constructs established as described above. At least 15 transgenic animals

were examined per line.

Assay for cell death rescue in ced-3 (n717 ) mutants

To assess rescue of the ced-3 cell death defect, at least two transgenic lines per rescue

construct were examined; 30 transgenic and five non-transgenic animals were scored

per line. L3 animals were assessed for rescue of both tail-spike and pharyngeal cell

death. Cell death in the pharynx was assessed as previously described (Hengartner

et al., 1992).

RNAi-mediated disruption of ced-3 expression

Adult worms carrying the ced-3 IR constructs described above were heat-shocked for

45 minutes at 34 ◦C, or raised continuously at 20 ◦C, and their progeny separated

into four groups: embryos laid 0-2 or 2-4 hours before heat shock, or 0-2 or 2-4 hours
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afterwards. Inappropriate tail-spike and pharyngeal cell survival was assessed in L4

stage animals. Animals heat-shocked at the L4 stage were subjected to a 4 hour

heat-shock at 34 ◦C.

Isolation of ns114, ns115 and ns90

ced-3 (n717 ); nsIs25 animals were mutagenized with 30 mM ethyl methanesulfonate

(EMS) as described by Sulston and Hodgkin. Animals were propagated in 500 ml

liquid culture for 5 days. Gravid F1 adults were harvested, bleached, and their

progeny incubated overnight in M9 buffer. F2s were plated onto 9 cm plates, and

screened as early larvae for the absence of tail-spike cell GFP expression. 32,000 F2s

were screened, and 621 candidate mutants were isolated. Mutant alleles ns90, ns114,

and ns115 bred true, and were further characterized.

Expression of GST fusion proteins

Expression of the GST-PAL-1 FL and GST-PAL-1 HD proteins was induced in E.

coli BL21. Fusion proteins were isolated by passing supernatant of bacterial soni-

cate over a Glutathione Sepharose 4B column (Amersham) and elution with soluble

glutathione.

Electrophoretic Mobility Shift Assay

30 ng of fusion protein were incubated for 15 minutes at room temperature with 0.25

ng of double stranded 32P-labelled oligonucleotides (B WT: 5’CATCATAAACTT-

TTTTTTCCGC) and unlabelled competitor oligonucleotides (B MUT: CATACG-

CCCCTTTTTTTTCCGC, C WT: GCAATAAACCGGCCAAAAACTT, C MUT:

GCACGCCCCCGGCCAAAAACTT, A WT: CTACAATCCACTTTCTTTTCTC or

A MUT: CTATTTTCTTTCACCTAACCTC) in 20µl of a solution containing 2 mM

MgCl2, 50 µg/mL bovine serum albumin, 10 mM Tris (pH 7.5), 1 mM EDTA, 40
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mM KCl, 1 mM DTT and 5% glycerol. Oligonucleotides were end-labeled with 32Pγ-

dATP by incubation with T4 polynucleotide kinase. Unbound 32Pγ-dATP nucleotide

was removed using the Stratagene NucTrap Probe Purification Column. Binding

reactions were run on a 4% polyacrylamide gel in 0.5X TBE buffer.

Isolation of ns16, ns17, ns18, ns19, ns38, ns39, ns40, and ns41

nsIs23 or nsIs25 animals were mutagenized with 30 mM ethyl methanesulfonate

(EMS) as described by Sulston and Hodgkin (1988). F1 progeny were transferred

to 5 cm NGM agar plates; 2 animals were placed on each plate. F2s were screened

as early larvae for inappropriate tail spike survival as determined by GFP reporter

expression. 1,500 F2s were screened, and 89 candidate mutants were isolated. Mutant

alleles ns16, ns17, ns18, ns19, ns38, ns39, ns40, and ns41 bred true and were further

characterized.
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