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THE ROLE OF DROSOPHILA ODORANT RECEPTORS IN 

ODOR CODING 

Elane Fishilevich, Ph.D. 

The Rockefeller University 2006 

Drosophila melanogaster is a powerful genetic model organism, and a 

promising model system in olfaction. At the onset of my thesis research, the 

expression patterns of fly’s 62 odorant receptors (ORs) were largely unknown. I 

set out to understand the rules of connectivity of olfactory sensory neurons and 

the resulting properties of olfactory circuit. Consequently, we assembled maps of 

the olfactory neuron projections in the fly brain and characterized the contribution 

of several ORs to olfactory-guided behavior. 

We compiled near-complete maps of OR-specific neuronal projections to 

the antennal lobe glomeruli of adult and larval fly brains. We analyzed expression 

profiles of 42 ORs, 31 of which are expressed in the adult and 21 in the larva, 

with an overlap of 10 ORs between the two developmental stages. Our results 

show surprising complexity in organization of the fly’s olfactory circuit. Four adult 

olfactory neuron populations co-express two ORs each and another olfactory 

neuron population expresses one odorant and one gustatory receptor. One 

glomerulus receives co-convergent input from two separate populations of 

olfactory neurons. Three ORs label sexually dimorphic glomeruli implicated in 

sexual courtship, and are thus candidate Drosophila pheromone receptors. The 

organization of larval antennal lobe is remarkably similar to that of adult flies and 



mammals; each glomerulus occupies a unique stereotyped position in the 

antennal lobe. Unlike in adults, each OR is expressed in only one neuron, 

forming glomeruli with single afferents. The olfactory sensory maps provide 

experimental framework for relating ORs to olfactory neuroanatomy, and 

ultimately, to output of the olfactory system. 

The Drosophila larval olfactory system shows great promise as a behavioral 

model. Larvae exhibit robust chemotaxis to odors and have a simple olfactory 

system. We utilized larvae to study response properties of three olfactory 

neurons to a large panel of odors. Behavioral assays of larvae with single 

olfactory neurons ablated, showed minimal effects on chemotaxis response, and 

thus great redundancy in function of olfactory neuron populations. Larvae with 

only Or42a olfactory neurons functional are able to chemotax robustly, 

demonstrating that chemotaxis is possible in the absence of the remaining 

elements of the olfactory circuit.  

 



Dedication 
 

 

 

 

 

 

 

 

Dedicated to my family, friends, and colleagues who  

supported me throughout my studies 

 iii 
 



Acknowledgments 
Many people have contributed to my thesis work both directly and indirectly. 

I would like to thank my family and friends for their constant support. I want to 

thank my parents for their love and encouragement throughout my life. I want to 

thank my husband for helping me to get through tough times.  

I want to thank my mentor Dr. Leslie Vosshall for her generosity with 

resources and with her time. From techniques, to concepts, to ideas, she has 

guided me and helped me develop and succeed as a scientist.  

I am truly fortunate to have worked beside great people during my Ph.D. 

training. I want to acknowledge my lab-mates for helping me grow as a scientist. 

Those who worked on larval chemotaxis study, which comprises Chapter 4 of 

this work, have played a particularly important role in my training. Dr. Ana 

Domingos who pioneered the larval chemotaxis study, has been a true friend and 

in inspiring colleague. Dr. Matthieu Louis who led the efforts to analyze and 

interpret the data, was also a great mentor to me. Silvia Vasquez and Lylyan 

Salas were a great technical support team; I wish them success.  

I would like to express my gratitude to Dr. Ulrike Gaul and Dr. Shai Shaham 

for their advice and guidance in my research. My stay at The Rockefeller 

University was a pleasant and rewarding experience, and members of the Dean’s 

Office deserve special credit for that. 

My research was supported by the NIH Ruth L. Kirschstein National 

Research Service Award Individual Fellowship. 

 iv 
 



Table of Contents

Title Page .............................................................................................................. i 
Copyright Page......................................................................................................ii 
Dedication ............................................................................................................iii 
Acknowledgments ................................................................................................iv 
Table of Contents ................................................................................................. v 
List of Figures ..................................................................................................... viii 
List of Tables ........................................................................................................ix 
List of Equations ...................................................................................................ix 
Abbreviations........................................................................................................ x 
1 Introduction to Olfaction in Flies ........................................................................ 1 

1.1 Introduction ................................................................................................. 1 
1.1.1 Sensory Systems.................................................................................. 1 
1.1.2 Olfactory Systems in Mammals ............................................................ 1 
1.1.3 Olfaction in Nematodes ........................................................................ 3 
1.1.4 Olfaction in Insects ............................................................................... 4 

1.2 Olfactory Circuit of Drosophila melanogaster.............................................. 5 
1.2.1 Olfactory “Epithelium” in Drosophila ..................................................... 6 
1.2.2 Odorant Receptors – Expression ......................................................... 9 
1.2.3 Formation of Olfactory Glomeruli........................................................ 10 
1.2.4 Olfactory System of Drosophila Larva ................................................ 12 

1.3 Olfactory Signal Transduction ................................................................... 13 
1.3.1 Odorant Receptors – Identity.............................................................. 13 
1.3.2 GPCR Signaling ................................................................................. 14 
1.3.3 Heterodimerization of ORs and GPCRs ............................................. 15 

1.4 Receptive Fields of Odorant Receptors .................................................... 15 
1.4.1 Function of Homologously and Hetorologously Expressed ORs ........ 16 
1.4.2 Lessons from Rodents........................................................................ 17 
1.4.3 Optical Calcium-Sensitive Imaging of Honeybee Brain ...................... 18 
1.4.4 Optical Calcium-Sensitive Imaging of Drosophila Brain...................... 19 
1.4.5 Electrophysiological Recordings from Olfactory Neurons in Flies ...... 19 

1.5 Olfactory Information Processing .............................................................. 21 
1.5.1 Optical Imaging in Insect Antennal Lobe ............................................ 21 
1.5.2 Recordings from Projection Neurons in Moths ................................... 22 
1.5.3 Temporal Component of Odor Coding in Locusts .............................. 22 
1.5.4 Recordings from Projection Neurons in Flies ..................................... 23 
1.5.5 Olfactory Representations and Processing in Higher Brain................ 24 

1.6 Olfactory-Guided Behavior........................................................................ 24 
1.6.1 Odor Plumes ...................................................................................... 25 
1.6.2 Responses to Pheromones: Olfactory-Guided Behavior in Moths...... 25 
1.6.3 Olfactory-Guided Behavior in Rodents ............................................... 26 
1.6.4 Olfactory-Guided Behavior in Drosophila ........................................... 27 

1.6.4.1 Pheromone-Guided Behavior in Adult Flies ................................. 27 
1.6.4.2 Olfactory-Guided Behavior in Larvae ........................................... 29 

1.6.5 Fruit Volatiles and Drosophila............................................................. 30 

 v 
 



1.7 Significance of Studying Olfaction in Flies ................................................ 31 
2 Odorant Receptor Map in the Fly Antennal Lobe............................................. 32 

2.1 Introduction ............................................................................................... 32 
2.2 Materials and Methods.............................................................................. 34 

2.2.1 Drosophila Stocks .............................................................................. 34 
2.2.2 Odorant Receptor Promoter Element Transgene Construction .......... 35 
2.2.3 Labeling Olfactory Sensory Neurons .................................................. 36 

2.2.3.1 β-galactosidase Activity Staining ................................................. 36 
2.2.3.2 Immunohistochemistry ................................................................. 37 

2.2.4 Verification of Transgene Expression ................................................. 38 
2.3 Results ...................................................................................................... 38 

2.3.1 Peripheral Organization of the Drosophila Olfactory System.............. 38 
2.3.2 Odorant Receptor-Map in the Adult Antennal Lobe............................ 41 

2.3.2.1 Glomerular Map of the Antenna................................................... 41 
2.3.2.2 Glomerular Map of the Maxillary Palp .......................................... 43 

2.3.3 Complexity of Olfactory Circuit: Co-expression and Co-convergence 44 
2.3.4 Topological Organization of the Drosophila Antennal Lobe................ 46 
2.3.5 Functional Organization of the Drosophila Antennal Lobe.................. 47 
2.3.6 Implications of Co-expression for Odor Coding .................................. 49 
2.3.7 Candidate Drosophila Pheromone Receptors .................................... 51 
2.3.8 Independent Validation of Receptotopic Map of the Antennal Lobe ... 52 

2.4 Conclusions .............................................................................................. 54 
3 Expression of Odorant Receptors in Drosophila Larvae.................................. 55 

3.1 Introduction ............................................................................................... 55 
3.2 Materials and Methods.............................................................................. 56 

3.2.1 Drosophila Stocks .............................................................................. 56 
3.2.2 Generation of Odorant Receptor Promoter Element Transgenes....... 56 
3.2.3 Verification of OR Gal4 Transgene Expression................................ 57 

3.2.3.1 Immunocytochemistry .................................................................. 58 
3.2.3.2 RNA In Situ Hybridization ............................................................ 58 

3.3 Results ...................................................................................................... 59 
3.3.1 Larval Odorant Receptor Gene Expression........................................ 59 
3.3.2 Organizational Logic of the Larval Dorsal Organ................................ 62 
3.3.3 The Glomerular Map of Larval Olfactory Projections in the Brain....... 64 

3.4 Discussion and Conclusions ..................................................................... 67 
3.4.1 Larval Odorant Receptor Repertoire................................................... 67 
3.4.2 Distinct, yet Overlapping Olfactory Systems....................................... 68 
3.4.3 A Simple Mammal-Like Olfactory Circuit ............................................ 69 

4 Chemotaxis Behavior Mediated by Larval Olfactory Neurons.......................... 70 
4.1 Introduction ............................................................................................... 70 
4.2 Materials and Methods.............................................................................. 72 

4.2.1 Drosophila Stocks .............................................................................. 72 
4.2.2 Measurement of Larval Glomerular Volumes ..................................... 72 
4.2.3 Larval Chemotaxis Assay ................................................................... 73 
4.2.4 Statistical Analyses............................................................................. 73 

4.3 Results ...................................................................................................... 76 

 vi 
 



4.3.1 Wild-type Larvae Chemotax Strongly Toward Many Odorants........... 77 
4.3.2 Larval Odor-Response Thresholds Vary Greatly................................ 80 

4.3.2.1 Increased Doses of Some but not All Odors Attract Larvae......... 81 
4.3.2.2 Larvae are Attracted by Complex Natural Stimuli ........................ 82 

4.3.3 Genetic Ablation of Single Larval Olfactory Neurons.......................... 83 
4.3.4 Larvae with One Functional Olfactory Neuron Can Smell .................. 86 
4.3.5 A Second Functional Olfactory Neuron Enhances Chemotaxis.......... 89 

4.4 Discussion................................................................................................. 93 
4.5 Contributions............................................................................................. 96 

5 Implications of Current Study and Future Prospects ....................................... 97 
Publications ...................................................................................................... 101 
References ....................................................................................................... 102 

 vii 
 



List of Figures 
Figure  1.1: Olfactory sensilla of Drosophila melanogaster. .................................. 7 
Figure  1.2: Olfactory organ of Drosophila larva. ................................................. 12 
Figure  2.1: Odorant receptor expression in Drosophila chemosensory organs. . 39 
Figure  2.2: Two-color RNA in situ hybridization supports faithful expression of 

OR Gal4 transgenes...................................................................... 41 
Figure  2.3: Axonal projections of fly’s olfactory sensory neurons converge upon 

precise glomerular targets. .............................................................. 42 
Figure  2.4: Three-dimensional reconstructions of close-lying maxillary palp 

glomeruli. ......................................................................................... 44 
Figure  2.5: The glomerular identities of ORs reveal unexpected complexity of OR 

co-expression and OSN co-convergence. ....................................... 45 
Figure  2.6: Odotopic map of olfactory projections reveals functional subdomains 

in the Drosophila antennal lobe. ...................................................... 49 
Figure  2.7: Known glomeruli of the Drosophila antennal lobe. ........................... 53 
Figure  3.1: Twenty-one OR Gal4 transgenes are expressed in Drosophila larva.

......................................................................................................... 61 
Figure  3.2: Most larval ORs are expressed in distinct olfactory sensory neurons.

......................................................................................................... 63 
Figure  3.3: RNA in situ hybridization reveals two cases of OR co-expression. .. 64 
Figure  3.4: Larval olfactory sensory neurons project to single glomeruli in the 

antennal lobe. .................................................................................. 65 
Figure  3.5: Larval olfactory sensory neurons target discrete glomeruli............... 66 
Figure  3.6: Map of the glomerular targets in larval antennal lobe. ...................... 67 
Figure  4.1: Larvae respond to odors with chemotaxis. ....................................... 78 
Figure  4.2: Sector plots illustrate spatial distribution of larvae in response to odor.

......................................................................................................... 79 
Figure  4.3: Concentration dependence of larval odor responses. ...................... 80 
Figure  4.4: Summary of concentration-dependent changes in larval behavior. .. 81 
Figure  4.5: Larval responses to complex natural stimuli. .................................... 82 
Figure  4.6: Diphtheria toxin atrophies olfactory sensory neurons. ...................... 84 
Figure  4.7: Genetic ablation reveals redundancy in the larval odor code. .......... 85 
Figure  4.8: Chemotaxis produced by single functional olfactory neurons........... 87 
Figure  4.9: Linear model highlights potential cases of olfactory neuron 

interaction. ....................................................................................... 90 
Figure  4.10: Larvae with two functional olfactory neurons (as compared to one) 

exhibit enhanced chemotaxis at a range of odor concentrations. .... 92 
Figure  4.11: Behavioral contributions Or1a and Or42a olfactory neurons are not 

different from additive. ..................................................................... 93 
Figure  4.12: Larval chemotaxis behavior is integrated across multiple olfactory 

neurons............................................................................................ 94 
 

 viii 
 



List of Tables 
Table  2.1: Summary of odorant receptor ligand specificity. ................................ 48 
Table  3.1: Summary of Drosophila ORs expressed in larvae and/or adults. ...... 62 
 
List of Equations 
Equation 1: Linear model for dominant function of olfactory neuron................... 75 
Equation 2: Linear model for additive function of olfactory neurons ................... 76 
 
 

 ix 
 



Abbreviations 
AL - antennal lobe, site of first olfactory synapse in insects 

AOB - accessory olfactory bulb, site of first synapse for vomeronasal neurons 

ARM - anesthesia resistant memory 

DO - dorsal organ, larval olfactory organ 

Dscam - Drosophila homolog of human Down syndrome cell adhesion molecule 

EM – electron microscopy 

fru - fruitless, transcription factor gene that determines courtship behavior 

G protein – guanine-nucleotide binding protein 

GPCR - G protein-coupled receptor 

GR - gustatory receptor 

IP3 - inositol 1,4,5 triphosphate, signaling molecule, downstream of G protein 

LAL - larval antennal lobe, site of first olfactory synapse in insect larva 

LH - lateral horn of protocerebrum, olfactory processing center in insects 

LTM - long-term memory 

MB - mushroom body, learning, memory and olfactory processing center in insects 

MGC - macroglomerular complex, sexually dimorphic glomeruli  

MOE - main olfactory epithelium 

OB - olfactory bulb, site of first olfactory synapse in mammals 

OBP- odorant-binding protein 

OR - odorant receptor 

OSN - olfactory sensory neuron 

PN - projection neuron, second-order olfactory neurons in insects 

STM - short-term memory 

TO - terminal organ, larval taste organ 

tra - transformer, sex-determination transcription factor gene in Drosophila 

VNO - vomeronasal organ, pheromone-sensing organ in mammals 

UAS - upstream activating sequence 

yw - yellow body, white eyes 

 x 
 



1 Introduction to Olfaction in Flies 

1.1 Introduction 

Sensory systems open a window onto how our brains receive and interpret 

external stimuli. Olfaction is one of key sensory systems that enable animals to 

respond to their environment. The olfactory system of insects is similar to, yet 

consists of far fewer neurons than ours. Powerful genetic and molecular 

techniques in fruit fly, Drosophila melanogaster, will enable us to decipher how 

the olfactory information is encoded in the brain. Despite its perceived simplicity, 

much is to be learnt about the Drosophila olfactory system. This chapter focuses 

on some of the findings and challenges in olfaction in Drosophila and other 

organisms. 

1.1.1 Sensory Systems 

We sense our environment through five modalities: touch, vision, hearing, 

taste, and smell. The sensory modalities differ in the range of signals that they 

perceive, in organization of the afferent input, and processing of sensory 

information. The inputs into sensory systems can have single or multiple 

attributes. The sensory systems may distinguish not only the presence but also 

the position, duration and other properties of the stimulus.  

1.1.2 Olfactory Systems in Mammals 

We recognize familiar odors, even if they represent very complex blends, 

such as coffee or bread. Every time we inhale, compounds from our rich 

chemical environment interact with odorant receptors (ORs) in our olfactory 

sensory neurons (OSNs), triggering olfactory circuits to generate a sensation of 
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smell. The OSNs that receive olfactory inputs protrude their ciliated dendrites into 

a layer of mucus on the main olfactory epithelium (MOE) that is located on the 

roof of the nasal cavity. The MOE of humans contains an astounding 10 million 

OSNs (Dennis, 2004). Other sensory neurons that are present in the nasal 

cavities of mammals other than humans are vomeronasal sensory neurons; 

these reside in vomeronasal organ (VNO), a structure separate from the MOE. 

While the MOE is thought to mediate olfactory information of food and other 

conventional volatiles, the VNO is thought to respond to odors that mediate 

conspecific communication (detect pheromones). The neurons within VNO can 

also respond to conventional odors, hence the functions of these two systems 

may overlap (Sam et al., 2001). 

OSNs direct their axons to the olfactory bulb (OB), which relays the 

information via mitral and tufted neurons to the olfactory cortex. The processing 

that leads to conscious perception of odors is thought to take place in 

orbitofrontal and frontal cortices of the brain. Some odors may lead to strong 

emotional responses. Olfactory-induced emotions are thought to result from 

olfactory information targeting the amygdala and the hypothalamus, structures 

that regulate non-voluntary activities that include emotions (Winston et al., 2005; 

Zald et al., 2002; Zald and Pardo, 1997). While the OB neurons project mostly to 

the olfactory cortex, the vomeronasal information is relayed primarily to the 

amygdala (Scalia and Winans, 1975).  

With about 1000 ORs in mammals (Buck and Axel, 1991; Zhang and 

Firestein, 2002), the olfactory system is designed to respond to small and large 

 2 
 



molecules, single compounds and complex mixtures. Size, shape, and functional 

groups of odor molecules are thought to determine their interactions with the 

ORs. It is believed that the ORs recognize only certain features of the odorants, 

leading to a combinatorial code, where a single odorant may activate many ORs 

and a single OR may be activated by many odorants (Malnic et al., 1999). The 

combinatorial codes in the olfactory system allow us to perceive far more odors 

than the number of ORs.  

Mammals are believed to express single OR in each OSN. In the OB, the 

axons of OSNs organize into glomeruli according to the ORs that they express. 

The positions of glomeruli are conserved from animal to animal and are mirror-

symmetric within the OB. The targeting of millions of OSNs to thousands of 

glomeruli is a remarkable feat and hallmark of the mammalian olfactory system. 

1.1.3 Olfaction in Nematodes 

The logic of olfactory connectivity in nematode C. elegans is different from 

that of mammals. C. elegans have only four bilaterally symmetric neurons that 

are responsible for sensing volatile chemicals (AWA, AWB, AWC, and ADL) 

(Bargmann et al., 1993). These cells harbor as many as 1000 different ORs 

(Troemel et al., 1995). Some of the C. elegans OSNs mediate attraction while 

others mediate repulsion, the expression of the ORs in C. elegans (Bargmann et 

al., 1993; Troemel et al., 1997). Interestingly, chemical preferences of C. elegans 

can be reversed by misexpressing an OR that normally senses attractive odors in 

an OSN that mediates repulsion (Troemel et al., 1997). These studies are 
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important models for “simple” olfactory systems, where activation of a single OR 

or a single OSN can lead to reliable behavioral consequences. 

1.1.4 Olfaction in Insects 

The connectivity of the olfactory system in most insects is similar to that of 

mammals; each insect OSN expresses one or few ORs and the axons of insect 

OSNs organize into glomeruli in the brain. However, insects have only about 100 

ORs. 

The insect olfactory organs are antennae and in some cases maxillary palpi. 

Honeybee (Apis mellifera) maxillary palp is not olfactory, mosquito (Anopheles 

gambiae) maxillary palp is key to sensing CO2 (Grant et al., 1995), an important 

food attractant, while fruit fly (Drosophila melanogaster) maxillary palp seems to 

functionally overlap with the antenna (Ayer and Carlson, 1992; Charro and 

Alcorta, 1994). The olfactory organs of insects are covered with porous hair-like 

olfactory sensilla. The sensilla house the dendrites of one or several OSNs. 

Electorophysiological responses of OSNs can be measured by single sensillum 

electrophysiological recordings, or on a more global level by 

electroantennograms.  

In insects, the OSNs synapse in a structure analogous to the OB, called the 

antennal lobe (AL). The logic of organization of the antennal lobe in most insects 

is the same as in mammals, OSNs expressing the same OR converge upon one 

or two glomeruli in the AL (Vosshall et al., 2000). The axons of OSNs synapse 

with projection neurons (PNs) that relay olfactory information to mushroom 

bodies (MB) and the lateral horn of protocerebrum (LH), the main olfactory 
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processing centers (Stocker et al., 1990; Strausfeld et al., 1998). The glomeruli of 

the AL are also innervated by local interneurons that non-uniformly innervate 

most of the glomeruli of the AL (Stocker et al., 1990; Wilson and Laurent, 2005) 

and are thought to sharpen the input into AL via inhibitory interactions.  

In most insects, the AL glomeruli can be identified by their position, size, 

and shape. The ease with which the glomeruli are recognized facilitates studies 

that use calcium-sensitive dyes to measure neural activity in the antennal lobe to 

reveal specific responses of glomeruli to odors. 

Based on their size, brain structure, and genetic tools available, specific 

insects are preferred for studies of different olfactory problems. Locusts are 

valuable in electrophysiological recordings from various cell types in the olfactory 

circuit, however their AL structure does not follow “one OR – one glomerulus” 

logic. Honeybees were used to pioneer the activity-sensitive calcium imaging 

techniques in olfaction (Galizia et al., 1997). Honeybees are also excellent model 

systems for associative olfactory learning. Moths have large sexually dimorphic 

glomeruli that are tuned to known pheromones. In bees and flies sexual 

dimorphism is not readily noticeable (Laissue et al., 1999; Stocker et al., 1990). 

The following sections describe the structure and function of the Drosophila 

olfactory circuit and integrate information learnt from other insects and mammals. 

1.2 Olfactory Circuit of Drosophila melanogaster 

Over 100 years of genetics research in Drosophila melanogaster have 

yielded tools that allow us to mark and follow alleles and introduce or delete 

genes from the Drosophila genome. With only 62 ORs in its genome (Clyne et al., 

 5 
 



1999; Vosshall et al., 1999) and approximately 45 glomeruli in the AL (Laissue et 

al., 1999), the logic of connectivity of the olfactory system in fruit fly presents a 

tangible problem. Fly larval olfactory system is an even simpler olfactory circuit 

that expresses a subset of the total ORs. 

1.2.1 Olfactory “Epithelium” in Drosophila 

In adult fruit flies, an equivalent of mammalian olfactory epithelium consists 

of about 1200 sensilla on the third segment of the antenna, plus 120 sensilla on 

the maxillary palp (Figure  1.1A). Based on shape and electron microscopic 

ultrastructure, fly sensilla can be classified into three major categories: trichoid, 

basiconic, and coeloconic (Figure  1.1C). One to four OSNs insert their sensory 

dendrites into each sensillum. The dendrites of OSNs are bathed in the sensillum 

lymph that is secreted by the support cells (Figure  1.1B). The sensillum lymph 

contains high quantities of odorant binding proteins (OBPs) that are thought to 

function as chaperones in bringing odorant to the OR or in clearance of the 

odorants (Tsuchihara et al., 2005; Vogt and Riddiford, 1981). Positions of the 

sensilla seem to be relatively invariant; the pairing of OSNs in the sensilla is also 

invariant (de Bruyne et al., 1999; de Bruyne et al., 2001). The findings above 

have prompted studies that identified ORs that confer specific odor responses 

upon numerous OSNs (Goldman et al., 2005; Hallem et al., 2004a).  
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B

C

 

Figure  1.1: Olfactory sensilla of Drosophila melanogaster. A. Olfactory organs 

of the fly are antenna (arrow) and maxillary palp (arrowhead). B. Schematic 

representation of trichoid (left), large basiconic (middle), and coeloconic (right) sensilla 

with two OSNs each. OSNs are in blue, sensillum lymph is yellow, support cells are 

vertical black lines. C. Cross-sections through the shafts of antennal sensilla visualized 

by transmission electron microscopy. Trichoid sensillum (left), large basiconic sensillum 

(middle), and coeloconic sensillum (right). L, sensillum lymph; P, wall pore; S, spoke 

channel (equivalent to wall pore). Scale bars 0.5 mm (left, middle), 0.1 mm (right). 

Reproduced from (Stocker, 2001) and (Shanbhag et al., 1999). 

Trichoid sensilla. The 150 trichoid sensilla are distributed in a distal lateral 

region of the third antennal segment on both anterior and posterior surfaces. 

There are three subtypes of trichoid sensilla that are innervated by one to three 

OSNs. The trichoid sensilla and their associated glomeruli that were studied thus 

far are sensitive to very few odors (Hallem et al., 2004a; Wang et al., 2003a) and 

may participate in pheromone reception (Xu et al., 2005). 
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Basiconic sensilla. The basiconic sensilla are present throughout the 

surface of the third antennal segment, but are concentrated in the medial 

proximal surfaces of the antenna. While the dendrites of trichoid sensilla are 

unbranched the dendrites of basiconic sensilla are branched extensively (Figure 

 1.1B and C). All of the maxillary palp sensilla are basiconic. The basiconic 

sensilla (n = 200) are further subdivided into at least six morphological subtypes 

that include large, thin, and small. Eighteen types of OSNs have been identified 

in basiconic sensilla, one sensillum type containing four OSNs and seven 

sensillum types containing two OSNs each (de Bruyne et al., 1999; de Bruyne et 

al., 2001; Elmore et al., 2003; Hallem et al., 2004a). The aforementioned studies 

show that basiconic sensilla respond to various aliphatic and aromatic odors. 

Coeloconic sensilla. The trichoid and basiconic sensilla have single walls, 

while coeloconic sensilla are double walled. The outer wall has deep longitudinal 

grooves, whereas the inner wall envelopes the dendrites (Figure  1.1B and C). 

The coeloconic sensilla are innervated by two or three OSNs. They are 

distributed throughout the antenna and the sacculus, an organ thought to 

mediate hygroreception (water), thermoreception (heat/cold), and olfaction 

(Shanbhag et al., 1995). Although morphologically homogenous, four types of 

coeloconic sensilla have been identified electrophysiologically (Yao et al., 2005). 

Only one OR has been identified in coeloconic sensilla (Couto et al., 2005; Yao 

et al., 2005). Thus, it is possible that the majority of coeloconic sensilla are not 

olfactory. 
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Proper formation of sensilla and their positions on the antennal surface are 

determined by expression of transcription factors that include Lozenge, Atonal, 

and Amos. Atonal specifies the fate for coeloconic sensilla (Gupta and Rodrigues, 

1997), while Amos specifies the basiconic and trichoid sensilla (Goulding et al., 

2000). The choice between basiconic and trichoid identities is determined by 

Lozzenge, which regulates Amos (Gupta et al., 1998). 

1.2.2 Odorant Receptors – Expression 

It is well established that each mammalian OSN expresses only one OR 

(Chess et al., 1994; Malnic et al., 1999; Serizawa et al., 2003). Furthermore, the 

OR gene product is necessary for successful inhibition of expression of other 

ORs (Serizawa et al., 2003). The “one OR - one OSN” system is prudent since 

the ORs play a role in axon guidance and precise coalescence of a glomerulus 

(Feinstein et al., 2004; Feinstein and Mombaerts, 2004). It is understood that 

Drosophila ORs are not necessary for the proper targeting of the OSNs to 

glomeruli (Larsson et al., 2004). There are also several examples of two 

Drosophila ORs being expressed within same OSN (Dobritsa et al., 2003; 

Goldman et al., 2005). In addition to 62 ORs in Drosophila, several of about 70 

gustatory receptors (GRs) are expressed in the antenna and may function in 

olfaction (Dunipace et al., 2001; Robertson et al., 2003; Scott et al., 2001).  

The ORs in Drosophila are expressed non-homogeneously in overlapping 

domains throughout the third antennal segment and in the maxillary palp 

(Vosshall et al., 2000). The basiconic Or22a is expressed in a proximal medial 

region in about 20 OSNs (Dobritsa et al., 2003; Vosshall et al., 2000), while a 

 9 
 



trichoid Or47b is expressed in about 60 OSNs in a distal lateral region (Vosshall 

et al., 2000). As mentioned earlier, the OSNs that express specific ORs are 

restricted to their corresponding sensillum types and observe invariant pairings 

within the sensillum. Although, the expression of ORs on the antennal surface is 

invariable, it is not predictable and has to be determined experimentally. The 

determinants of antennal versus maxillary OR expression are partially identified. 

A regulatory promoter motif named MP dyad, CTA(N)9TAA, is deemed necessary 

for the OR expression in the maxillary palp, and MP oligo motif, CTTATAA, 

seems to be necessary for restriction of the OR expression to the antenna (Ray 

et al., 2003). The factors that determine which OR will be expressed within a 

particular sensillum are largely unknown.  

1.2.3 Formation of Olfactory Glomeruli 

Since OSNs that express a particular OR are spread throughout olfactory 

epithelium and intermingle with other OSNs and other sensillum types, the 

guidance of OSN axons to correct glomeruli in the AL is a challenging problem. 

Multiple factors seem to be involved in OSN axon path-finding and glomerular 

coalescence. The cues that ensure proper targeting of OSN populations in the 

AL include Down syndrome cell adhesion molecule (Dscam) which is 

differentially required by OSN populations and is necessary for the maxillary palp 

OSNs to enter the antennal lobe (Hummel et al., 2003). N-cadherin seems to be 

ubiquitously required by OSNs to form protoglomeruli and ensure proper 

synapses with the PN targets (Hummel and Zipursky, 2004). Null mutants for 

POU domain transcription factor Acj6 exhibit lack of expression for some of the 
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ORs, mistargeting of some OSNs, or have no defect (Komiyama et al., 2004). 

Further, the requirement for Acj6 can be either cell autonomous or cell non-

autonomous. Although all studied populations of OSNs that require Acj6 cell 

autonomously express antennal ORs, no clear patterns for Acj6 requirement are 

known. Dreadlocks (Dock) an SH2/SH3 adapter and serine/threonine kinase Pak 

have also been found to influence OSN targeting in the brain (Ang et al., 2003). 

Perturbation of Roundabout (Robo) family members also causes mistargeting 

effects of OSNs (Jhaveri et al., 2004).  

The PNs reach their targets within the AL, independently of OSNs (Jefferis 

et al., 2004; Jefferis et al., 2001; Marin et al., 2002; Wong et al., 2002). This 

observation leads to a conclusion that the neuroconnectivity of OSNs and PNs is 

independently programmed. Differentially expressed in the PNs, POU domain 

transcription factors Acj6 and Drifter are required for proper dendritic targeting 

(Komiyama et al., 2003). 

Larval olfactory structures may also be important for axon guidance within 

the adult olfactory system. Interestingly, the activity of larval OSNs in not 

necessary for proper formation of adult olfactory glomeruli (Larsson et al., 2004). 

Larval OSNs degenerate during metamorphosis, but the larval antennal nerve 

may serve as a guiding track for the adult antennal nerve during development 

(Tissot et al., 1997). On the other hand, some larval PNs survive metamorphosis 

(Marin et al., 2005). 
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1.2.4 Olfactory System of Drosophila Larva 

Larval chemosensory organs are the dorsal organ (DO) and terminal organ 

(TO) at the anterior tip of the animal (Figure  1.2). The functions of the DO and 

the TO were initially subdivided into olfactory and gustatory, respectively, based 

on the structure of pores through which chemical stimuli can access the dendrite 

(Singh and Singh, 1984; Stocker, 1994). The dome of the DO is perforated at the 

base and could be accessed only by volatiles, while the single-walled pores of 

the TO and additional pores at the base of the DO can allow for the direct contact 

with the chemicals. Twenty one neurons insert their dendrites into the dome of 

the DO, their cell bodies are part of the DO ganglion (Python and Stocker, 2002). 

These neurons are arranged into seven bundles of three neurons each (Figure 

 1.2B). Ablation of the 21 OSNs renders larvae anosmic, further proving their 

necessity for larval olfaction (Larsson et al., 2004). The axons of larval OSNs 

project to the larval antennal lobe (LAL) in the brain (Tissot et al., 1997) (Figure 

 1.2A). Each of larval OSNs terminates in a restricted area similar to an adult 

glomerulus (Ramaekers et al., 2005).  

CA B

 

Figure  1.2: Olfactory organ of Drosophila larva. A. Whole-mount anterior tip of 

the larva visualized with light microscopy. The OR83b-positive olfactory neurons are 

stained with GFP, fluorescent and light images are superimposed. Arrow points to the 
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ganglion of the dorsal organ in A, B, and C. Arrowhead points to the axon termini in the 

brain. B. An immunofluorescence image of Or83b Or83b::Myc stained with anti-Myc 

antibody. Seven bundles of dendrites are apparent. C. Schematic representation of the 

larval dorsal (dark grey) and terminal (light grey) organ positions. Dome of the dorsal 

organ is at the top; mouth hook is in lower right. 

1.3 Olfactory Signal Transduction 

The ORs in most organisms are thought to be seven-transmembrane G 

protein-coupled receptors (GPCRs). GPCRs represent the largest receptor gene 

family in mammals; they are also important pharmacological targets. Further, the 

OR family is the largest family of GPCRs. Thus, understanding the events 

associated with the function of ORs may prove useful beyond the scope of 

olfaction. 

1.3.1 Odorant Receptors – Identity  

The ORs in mammals, nematodes, and fish are GPCRs. Mammalian ORs 

are believed to be structurally similar rhodopsin, a well-studied light-sensitive 

GPCR in the retina. Sequence similarity to rhodopsin has allowed for 

computational modeling of the ORs and predictions for ligand binding (Katada et 

al., 2005). Although Drosophila ORs are predicted to have seven transmembrane 

topology, these ORs bear no sequence similarity to mammalian ORs (Clyne et al., 

1999; Vosshall et al., 1999). Furthermore, they bear no sequence similarity to 

any of GPCRs. Hence, no predictions about ligand binding can be made.  

Although, insect ORs are predicted to have seven transmembrane domains, 

in many cases the definition of the domains is vague (Benton et al., 2006). 

Furthermore, computational and experimental evidence suggests that in contrast 
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to mammalian ORs, at least some of Drosophila ORs have an intracellular N-

terminus (Benton et al., 2006; Nakagawa et al., 2005).  

1.3.2 GPCR Signaling 

GPCRs interact with guanine nucleotide-binding proteins (G proteins). G 

proteins play a central role in signal transduction and are subdivided into several 

categories based on the pathways they tend to stimulate. Upon activation, G 

proteins disassociate into α and βγ subunits; with some debate (Robishaw and 

Berlot, 2004), the α subunit is thought to confer receptor and effector specificities 

of the G proteins. There are at least five β, twelve γ, and sixteen α mammalian 

subunit genes that are divided into four functional classes (Hurowitz et al., 2000). 

Gαs is likely to activate adenylate cyclase, Gαi inhibits it, Gαq stimulates the 

inositol triphosphate (IP3) pathway through its interaction with phospholipase C, 

and Gα12 directly regulates Na+/K+ channels (Neer, 1995).  

In mammals, ORs couple to Gαolf (Belluscio et al., 1998; Jones and Reed, 

1987). The Golf is of the Gs family, and although IP3 levels rise in OSNs when 

they are stimulated with odor (Ronnett et al., 1993; Schandar et al., 1998), cAMP 

is thought to be the predominant olfactory signal transduction pathway in 

mammals. Activation of the insect olfactory epithelium with an odor leads to an 

increase in IP3 concentrations (Breer et al., 1990). Furthermore, Gαq and Gαs 

proteins were isolated from insect olfactory epithelium (Jacquin-Joly et al., 2002; 

Laue et al., 1997; Miura et al., 2005; Talluri et al., 1995). Thus, G protein-

mediated signal transduction cascade is postulated for insect olfaction.  
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1.3.3 Heterodimerization of ORs and GPCRs  

While rhodopsin and the mammalian ORs are thought to function as 

monomers, dimerization of GABA subunits is required for proper transport to the 

cell surface (Margeta-Mitrovic et al., 2000; White et al., 1998). It is now evident 

that heterodimerization of insect ORs is necessary for their activity (Larsson et al., 

2004; Nakagawa et al., 2005; Neuhaus et al., 2005). OR83b of Drosophila and its 

homologs in other insects interact with conventional ORs and are required for 

localization of the ORs to the dendrite (Benton et al., ; Larsson et al., 2004). 

Presence of OR83b is also sufficient for OR function in the cell; it is possible to 

reconstitute OR activity by expressing both a conventional OR and OR83b in 

Xenopus oocytes (Nakagawa et al., 2005). Although in presence of G proteins 

the ORs initiate low-level potentials (Nakagawa et al., 2005), it is not clear 

whether G proteins are the natural components of the insect olfactory signal 

transduction cascade. 

1.4 Receptive Fields of Odorant Receptors 

The olfactory circuit functions in combinatorial manner; such that many 

receptors are activated by a single odorant and each receptor is activated by 

many ligands. The first cues that the olfactory system abides by a combinatorial 

code came from mammals, but the studies in insects have yielded 

comprehensive information about the receptive ranges of ORs in the olfactory 

circuit. Information in ligand specificity of the ORs and olfactory activity maps in 

the brain improve our understanding of how the olfactory information is coded in 
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the brain. Yet, much needs to be discovered, since many ORs still remain 

“orphan”. 

1.4.1  Function of Homologously and Hetorologously Expressed ORs 

 First insights into OR odor binding properties came from successful 

transvection of the olfactory epithelium with I7, a rat OR, coupled to 

electrophysiological recordings (Zhao et al., 1998). Similarly, to identify ligands 

for the Drosophila OR43a, it was genetically overexpressed in the antenna 

(Störtkuhl and Kettler, 2001). Electrophysiological studies of the ORs expressed 

in an otherwise empty OSN are also homologous expression studies (Section 

 1.4.5).  

Expressing ORs in a heterologous expression system potentially allows for 

a large scale ligand identification screen. A heterologous expression system in 

human embryonic kidney cells (HEK293) has deorphanized several mouse and 

human receptors (Fukuda et al., 2004; Krautwurst et al., 1998; Spehr et al., 2003; 

Wetzel et al., 1999). Recently identified receptor-transporting transmembrane 

proteins RTP1 and RTP2 that promote functional cell surface expression of the 

mammalian ORs greatly increase the potential of the HEK293 system (Saito et 

al., 2004).  

Expression of insect ORs in heterologous systems has proved difficult. This 

situation is largely due to lack of knowledge about the insect olfactory signal 

transduction mechanism. Successful attempts to express a Drosophila OR along 

with G-proteins Gα15 (Wetzel et al., 2001) or Gαq (Nakagawa et al., 2005) in 

Xenopus oocytes have yielded weak but consistent responses to odors. Recent 
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studies indicate that a member of OR family OR83b or its homologs are 

necessary for successful trafficking of the conventional ORs and their function 

(Larsson et al., 2004; Nakagawa et al., 2005; Neuhaus et al., 2005). In Xenopus 

oocytes, in presence of the OR83b homolog, insect ORs exhibit significant 

changes in membrane potential (Nakagawa et al., 2005). An observation that 

Gαq, when expressed in Xenopus oocytes in addition to OR83b homolog and an 

OR does not induce higher currents further questions the relevance of G proteins 

for insect olfactory signal transduction. 

1.4.2 Lessons from Rodents 

Metabolic activities in mouse olfactory bulbs have been monitored with 

radioactively labeled 2-deoxyglucose (Imamura et al., 1992). Many glomeruli are 

tuned to particular functional group within one or two chain lengths, further, 

similarly tuned glomeruli are located next to each other, in domains or clusters 

(odotopic organization) (Meister and Bonhoeffer, 2001; Takahashi et al., 2004; 

Uchida et al., 2000). ORs do participate guiding OSNs to specific glomeruli in the 

olfactory bulb (Feinstein et al., 2004; Feinstein and Mombaerts, 2004). If we 

assume that similar ORs respond to similar odors, is not surprising to find co-

activated neighboring glomeruli. An OR with a single mutation in a trans-

membrane domain presumably retains a very similar, if not identical odor tuning, 

but leads to segregation of axons in the OB (Feinstein and Mombaerts, 2004). 

Whether the odotopy observed in mammalian OBs holds true in ALs of insects 

such as Drosophila awaits further proof. 
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1.4.3 Optical Calcium-Sensitive Imaging of Honeybee Brain 

Changes in intracellular calcium levels in neurons are related to activities 

such as neurotransmitter-release and ion channel gating. Changing calcium 

levels in the AL can reveal the patterns of glomerular activation (odor maps) that 

are due to a particular chemical or a mixture.  

Measurements of intracellular calcium changes in the AL were pioneered in 

honey bees (Galizia et al., 1997). Honeybee has about 160 glomeruli (Gascuel 

and Masson, 1991) and a window of 40 glomeruli can be imaged (Sachse et al., 

1999). The types of fluorescent dyes that have been used in these studies are 

single excitation dyes, such as calcium-green (Galizia et al., 1997), or dual 

excitation ratiometric dyes, such as Fura (Sachse and Galizia, 2002). When the 

dye is bath-applied, the readout consists of responses by OSNs, PNs and 

interneurons in the AL, although the majority of the signal is thought to stem from 

OSNs. 

Calcium imaging is a reliable and reproducible technique to monitor odor-

invoked activity in glomeruli. The activation patterns are conserved between the 

brain hemispheres and from animal to animal (Galizia et al., 1998). There is a 

range in the time of signal onset and the level of activation and inhibition of 

different glomeruli in response to odors (Sachse and Galizia, 2002). Detailed 

studies in moths and honeybees reveal that a glomerulus may respond to 

compounds with different functional groups but with similar carbon chain-lengths 

(Meijerink et al., 2003; Sachse et al., 1999). There also seems to be a directional 

progression of the glomerular activation pattern within functional groups with 
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change in the carbon chain length (Sachse et al., 1999). These studies suggest 

that there is some chain length/functional group subdivision within insect AL. 

1.4.4 Optical Calcium-Sensitive Imaging of Drosophila Brain 

The smaller size of fruit flies in comparison to honey bees, greatly restricts 

the resolution between glomeruli in calcium imaging studies. However, the 

advantage of Drosophila studies is that instead of dyes one can genetically 

express calcium-sensitive fluorescent proteins within neurons of interest. 

Additionally, the glomerular identities of many fly ORs are already known, 

allowing for direct link between the sequences of the ORs, their 

electrophysiological responses within OSNs, and the resulting activities in 

various neurons in the AL. 

Studies that measured odor-evoked calcium activities in the Drosophila 

OSNs and PNs revealed specific glomerular responses but no logical odotopy 

(Fiala et al., 2002; Ng et al., 2002; Wang et al., 2003a). Misexpression of Or43a 

in Or47a OSNs revealed that an OR defines the calcium response profile of a 

glomerulus (Wang et al., 2003a). Future studies that will genetically express 

calcium-sensitive proteins in OSNs or PNs that are associated with single OR, 

promise to yield high-throughput comprehensive descriptions of odor 

representations in the AL. 

1.4.5 Electrophysiological Recordings from Olfactory Neurons in Flies 

Physiological responses of Drosophila OSNs to odors have been studied 

extensively in basiconic sensilla. The OSNs in basiconic sensilla were initially 

classified electrophysiologically by their response profiles to a small panel of 
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odors (de Bruyne et al., 1999; de Bruyne et al., 2001). Subsequent studies have 

unveiled the OR identities of many of the OSNs (Goldman et al., 2005; Hallem et 

al., 2004a). Responses of individual OR that vary from none (OR49a) to nine 

(OR42a) out of 27 odors tested, reveal a broad range of OR tuning (Kreher et al., 

2005). The ORs that correspond to basiconic sensillum type respond from one to 

six of twelve tested odors (Hallem et al., 2004a). Since flies may not encounter 

many of the odors at such high concentrations as presented under experimental 

conditions, not all electrophysiological responses can be deemed natural stimuli. 

When the concentration of the stimulant odor is decreased, some ORs decrease 

their responses more abruptly than others (Hallem et al., 2004a). Although low 

odorant concentrations are thought to be more physiologically relevant, these 

studies reveal the capabilities and possible adaptability of the olfactory system. 

We need not forget that many other factors such as synergy of odor mixtures 

may influence responses of OSNs and their postsynaptic neurons.  

The ORs of trichoid sensilla are not characterized well electrophysiologically. 

The only trichoid OR, OR47b, either has no response or is inhibited by common 

odors that were tested (Hallem et al., 2004a). The only coeloconic OR, OR35a 

responds to as many as 13 of 31 test-odors (Yao et al., 2005). The response 

ranges of other coeloconic OSNs are very limited. Two of the eight (or nine) 

coeloconic OSNs respond to nitrogen containing compounds, one specifically to 

ammonia and another to 1,4-diaminobutane (Yao et al., 2005). Two coeloconic 

sensillum types respond to changes in humidity (Yao et al., 2005). Thus, it is 
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possible that the majority of coeloconic sensilla are occupied by receptors other 

than ORs.  

It is plausible that the ORs and the GRs of antenna can respond to 

nonconventional odorants or other stimuli. For example, while most of the 

basiconic sensilla respond to conventional odorants, the antennal basiconic 1 

(ab1) sensillum type contains a neuron expressing Gr21a; this neuron is specific 

in its responses to changes in CO2 concentration (Couto et al., 2005; Scott et al., 

2001; Suh et al., 2004) .  

1.5 Olfactory Information Processing 

Relatively little is known about processing of the olfactory information once 

it passes the first synapse. In mammals, large numbers of OSNs and mitral and 

tufted cells make it difficult to correlate their activities. In insects, 

electrophysiological and calcium-imaging studies that evaluated the processing 

of olfactory signal in the AL lead to inconsistent results. The conflicting 

hypotheses of olfactory signals being sharpened, being diffused, or being passed 

on faithfully from OSNs to PNs are all supported by evidence.  

1.5.1 Optical Imaging in Insect Antennal Lobe  

Comparisons of calcium-related activity of the honeybee PNs and overall 

activity conclude that there is refinement of signal at the PN level (Sachse and 

Galizia, 2002). Sharpening of the signal as information is passed from OSNs to 

PNs could be due to local GABAergic local interneurons; blocking GABA 

receptors with picrotoxin causes a decrease in signal sharpening (Sachse and 

Galizia, 2002). Residual modulation that is unaffected by picrotoxin, suggests an 
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additional interaction network within the AL. Contrast-enhancement of odor 

representations in the AL, implicates interneural network in preserving the odor 

identity at various odor concentrations (Sachse and Galizia, 2003).  

In contrast to honeybees, studies that used calcium-sensitive proteins in 

Drosophila to image odor-evoked activities of OSNs and PNs observed that 

these readouts were nearly identical (Ng et al., 2002; Wang et al., 2003a). 

1.5.2 Recordings from Projection Neurons in Moths  

Moths are large insects, they are also extremely sensitive to species-

specific pheromone blends. Moth’s pheromone sensitive OSNs terminate in large 

sexually dimorphic glomeruli, termed the macroglomerular complex (MGC). Most 

PNs that project to MGC glomeruli are selectively activated by major and minor 

pheromone blend components that are particular to the species (Vickers and 

Christensen, 1998; Vickers and Christensen, 2003). Electrophysiological 

recordings from the PNs that terminate in an isomorphic glomerulus, concluded 

that isomorphic glomeruli can also be narrowly tuned to plant volatiles, 

reproducibly across individuals (Reisenman et al., 2005). 

1.5.3 Temporal Component of Odor Coding in Locusts 

It has been proposed that the temporal firing patterns of assemblies of PNs 

are just as important for the odor code as the spatial representation of an odor in 

the AL. It is known that PNs synchronize their activities upon odorant stimulation 

(Wehr and Laurent, 1996). The debate on whether this synchronization provides 

olfactory information was addressed by electrophysiological recordings from 

locust PNs. 
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Locust, Schistocerca Americana, is yet another insect model system in 

olfaction. The locust olfactory circuit is amenable to electrophysiological 

recordings from OSNs, PNs, local interneurons, and Kenyon cells that receive 

their input from PNs. Alas, the recognition of each glomerulus from animal to 

animal impractical, since locust AL contains a large number (~1000) of glomeruli. 

Also unlike in flies, locust PNs terminate in multiple glomeruli. 

 Synchronized activation of PNs is deemed necessary to activate Kenyon 

cells in the mushroom body that require strong coincident input for their activity 

(Perez-Orive et al., 2004). For example, application of picrotoxin desynchronizes 

PN activity leading to lower activation of Kenyon cells and impairs fine odor 

discrimination by higher level neurons (Stopfer et al., 1997). Additional studies 

argue that the temporal firing patterns of the PN assemblies carry critical 

information as to odor identity and intensity (Stopfer et al., 2003). 

1.5.4 Recordings from Projection Neurons in Flies 

True comparisons between the receptor and projection neurons activities 

from the same glomerulus have been accomplished. It is observed that the PNs 

that terminate in Or22a glomerulus respond to more odors than the OSNs. The 

broader response of the PNs could be attributed to the activities of interneural 

network in the AL. A recent study of GABAergic local interneurons in AL has 

confirmed a GABA-mediated, non-uniform, and odor dependant inhibition of the 

PNs in Drosophila (Wilson and Laurent, 2005). The unexpected observations in 

Or22a glomerulus may also be due to another population of OSNs converging 

upon the same glomerulus.  
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1.5.5 Olfactory Representations and Processing in Higher Brain  

From the AL the olfactory information is sent to the MB and the LH (Stocker 

et al., 1990; Strausfeld et al., 1998). The olfactory information in the MB and the 

LH is not as well spatially segregated as in AL. Although the axons of PNs have 

very stereotypic branching patterns in the LH, they greatly overlap with axons of 

other PNs (Marin et al., 2002; Wong et al., 2002). A later study that considered 

groups of PNs revealed spatial segregation of several PN subgroups both in the 

LH and in the MB (Tanaka et al., 2004). Thus, while the information at the 

second olfactory synapse is not represented in the same spatial arrangement as 

in AL, some of its features persist. 

The functions of MB and LH can be separated behaviorally. Reportedly, the 

MB is involved in associative aspects of olfaction, while the LH is thought to 

mediate more reflexive behaviors. To this end, if the activity of the MB is blocked, 

only the attractive but not the avoidance olfactory behavior is abolished (Wang et 

al., 2003b). It is also known that the function of MB neurons is important for 

olfactory and other types of associative learning and memory (Besson and Martin, 

2005; Liu et al., 1999). The olfactory memory can be separated into long term 

memory (LTM), anesthesia resistant memory (ARM), and short term memory 

(STM) (Isabel et al., 2004; Tully et al., 1994; Zars et al., 2000). Unlike the other 

types of memory, the LTM requires spaced learning and protein synthesis. 

1.6 Olfactory-Guided Behavior 

If the sensation of smell is the chief output of the olfactory system, behavior 

is the ultimate output and the definitive readout that we can observe. The logic by 
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which the activation of an ensemble of neurons translates into animal’s ability to 

detect and appropriately interpret large numbers of odors is the ultimate task of 

olfactologists.  

1.6.1 Odor Plumes 

Contrary to what one may first imagine, odors are not homogenous nor are 

gradients, but travel in plumes. Since molecular diffusion of volatiles is usually 

slower than the air turbulence, odor molecules are carried in packets by the 

“wind” (Murlis and Jones, 1981). Plumes can be continuous or discontinues, wide 

or thin, with varying odor concentrations based on the air turbulence and the 

distance they traveled. Variable plume structures inevitably add variables that 

influence odor perception and subsequently behavior. Although we cannot 

identify the source of the odor in a room, insects can track sources of odors by 

traveling upwind in zigzag patterns. The ability to travel upwind in response to a 

plume of odor is particularly important for successful mate location in moths. 

1.6.2 Responses to Pheromones: Olfactory-Guided Behavior in Moths 

Pheromones are means of conspecific communication. Pheromone 

perception can be defined as chemical spying by members of the same species. 

In fact, many pheromones have evolved from products or byproducts of normal 

metabolism (Wyatt, 2003).  

The simplicity of the female-produced sex pheromone blends and the 

robustness of male behavioral responses make moths classic model systems for 

conspecific communication. The first identified pheromone compound was a 

double unsaturated 16-carbon alcohol, bombykol, which is released by female 
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silkmoth Bombyx mori (Butenandt, 1959). Female moths of various species 

produce straight unsaturated hydrocarbon chains of 5 to 22 carbons long. Most 

blends of two or more chemicals are emitted at exact proportions. In most moths, 

the pheromone blend is produced and emitted by the female. Males typically 

have large highly branched antennae; most of the OSNs in male antenna are 

sensitive to pheromone compounds. The pheromone induces males to fly upwind 

(Vickers and Baker, 1994) from miles away.  

1.6.3 Olfactory-Guided Behavior in Rodents 

Rodent urine volatiles are important cues for mice to determine the age, sex, 

reproductive, and social status of the scent donor. Some of these volatiles are 

pheromones and are detected by the VNO (Keverne, 1999) and some by main 

olfactory bulb (Lin da et al., 2005). The removal of VNO leads to defects in inter-

male aggression, male sexual behaviors, and maternal aggression (Wysocki and 

Lepri, 1991), while deletion of a large subgroup of pheromone receptors leads to 

a subset of these defects (Del Punta et al., 2002).  

Even monomolecular compounds can prompt robust behavioral responses 

in mammals. Rabbit mammary pheromone 2-methylbut-2-enal, allows pups to 

rapidly locate mother’s nipples and obtain milk (Schaal et al., 2003). A mouse 

urine compound (methylthio)methanethiol specifically activates a set of mitral 

cells and increases the attraction by female mice (Lin da et al., 2005). 

Rodents readily use their sense of smell to find food. They can also 

distinguish chemicals that are very similar in structure and have almost identical 

representations in the brain (Linster et al., 2001; Rubin and Katz, 2001). Rats, for 
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example need less than 200 ms to distinguish odors that invoke similar 

glomerular activities in the brain (Uchida and Mainen, 2003). 

1.6.4 Olfactory-Guided Behavior in Drosophila  

Fly aversive olfactory-guided behavior has been studied in the “T-maze” in 

learning and memory paradigms (Tully et al., 1994). Experiments that used high 

and low concentration of fruit volatiles in the T-maze observed that flies tend to 

be repelled at high concentrations and attracted at low concentrations by these 

chemicals (Stensmyr et al., 2003). 

Attractive behaviors are associated with important tasks such as finding 

food, mates, and sites for laying eggs. Traps that capture flies from a relatively 

large area (1 liter – greenhouse) simulate these search behaviors more closely 

than the T-maze. However, attractive behaviors may be harder to observe and 

quantify because they are subject to fly’s motivation. To obtain meaningful 

information about levels of adult fly attraction to various chemicals in 2 liter traps, 

each experiment spans 20 hours (Park et al., 2002). Furthermore, the results 

obtained in laboratory conditions may not be readily translated into the field (Zhu 

et al., 2003). 

1.6.4.1 Pheromone-Guided Behavior in Adult Flies 

It was commonly believed that sexual dimorphism in Drosophila AL does 

not exist (Laissue et al., 1999; Stocker, 1994). A study that challenged this belief 

identified several species of Hawaiian Drosophila that exhibit sexual dimorphism 

in select glomeruli (Kondoh et al., 2003). Closer measurements of glomerular 

volumes in D. melanogaster revealed that glomeruli VA1lm and DA1 are 
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significantly larger in males than females (Kondoh et al., 2003). These 

observations leave room for sex pheromone-induced responses in fly’s olfactory 

system. 

Although volatile Drosophila pheromones have not been identified, it is 

believed that fly courtship has an olfactory component (Ferveur et al., 1995; 

Heimbeck et al., 2001). Hydrocarbons C20 to C30 in length are present on fly’s 

cuticle to prevent the fly from desiccation (Gibbs et al., 2003). These cuticular 

hydrocarbons also function as pheromones that may signal fly’s species, age, 

sex, and possibly other characteristics. The shorter hydrocarbons could be short-

range volatiles, while the longer ones may be sensed through direct contact. 

Changing the male cuticular hydrocarbon profile to female by selectively 

misexpressing a feminine form of the transformer (tra) gene, does not change 

their behavior but induces courtship by other males (Ferveur et al., 1997). The 

receptors for cuticular hydrocarbons could be GRs. For example, silencing male-

specific neurons in the foreleg that express Gr68a significantly decreases male 

courtship (Bray and Amrein, 2003; Thorne et al., 2005). 

Fruitless (fru) gene encodes a sex-specifically spliced putative transcription 

factor that acts as a genetic switch for male courtship behavior (Demir and 

Dickson, 2005; Manoli et al., 2005; Stockinger et al., 2005) and controls the 

development of a single muscle in male’s abdomen (Usui-Aoki et al., 2000). 

Expressing a masculine fru product in females transforms their courtship 

behavior to that of males (Demir and Dickson, 2005; Manoli et al., 2005). Fru is 

widely expressed in the central nervous system. Fru is also expressed in several 
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sexually dimorphic glomeruli in the AL, further implying an olfactory component to 

male courtship behavior (Stockinger et al., 2005). 

 Male-produced pheromone 11-cis vaccenyl acetate can act as an aggregation 

pheromone or inhibit courtship behavior (Ferveur, 2005). A subtype of trichoid 

olfactory sensilla on the antenna is sensitive to 11-cis vaccenyl acetate (Clyne et 

al., 1997). OBP LUSH seems to be expressed in all trichoid sensilla; a mutation 

in OBP LUSH abolishes both electrophysiological and behavioral response of 

flies to this pheromone (Xu et al., 2005). This study strongly implies trichoid 

sensilla, if not trichoid ORs in pheromone sensing. 

1.6.4.2 Olfactory-Guided Behavior in Larvae 

While in laboratory conditions, adult flies can survive for up to a month, the 

generation time of fruit flies at 25oC is only 12 days. The life stages proceed from 

embryo to larva to pupa and then to the adult fly. Flies lay their eggs directly on 

the food source. The first 24 hours of its life, Drosophila is an embryo. Embryo 

hatches to become first instar larva, whereupon it undergoes two molts. The 

larval stage lasts about four days, but may be longer depending on food 

availability and other factors that influence the release of a molting hormone, 

ecdysone (Caldwell et al., 2005; Mirth et al., 2005). The metamorphosis of the fly 

takes another 100 hours, it starts at the end of the third instar stage, when larvae 

crawl out of the food and pupate.  

The short developmental period that leads to the larval stage, presents 

larvae as convenient experimental animals. Furthermore, larvae are not 

distracted by complex visual cues or activities such as mating. The “job” of larva 
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is to gain weight to ensure proper development of the imaginal discs that later 

become adult organs. Since larvae spend most of their time in or on food, they 

need an olfactory system that differs in tuning and sensitivity from that of adults. 

Auspiciously, larvae exhibit robust chemotactic attraction to many odors (Boyle 

and Cobb, 2005; Cobb and Dannet, 1994; Cobb and Domain, 2000).  

1.6.5 Fruit Volatiles and Drosophila 

Fruit volatiles play central role in Drosophila melanogaster’s life cycle. Flies 

are likely to meet at the fruit to mate and to lay their eggs. Thus, adult flies need 

to sense fruit from long distances. On the other hand, larvae live directly in the 

fruit and experience much higher concentrations of chemical stimuli. Drosophilae 

accomplish this formidable task of short and long range chemo-attraction with 

only 62 ORs in their arsenal. 

The volatiles produced by various fruits are incredibly complex. With 

detailed analysis, one can extract more than 300 volatile components from a 

given type of fruit (Pino et al., 2005). The ratios of volatiles emitted tend to 

change as the fruit ripens and can span several orders of magnitude (Beaulieu 

and Grimm, 2001). When considering fruit volatiles, we cannot assume that ones 

at the highest concentrations are the ones that are most attractive. Neither can 

we assume that the volatiles that best represent this fruit to us are relevant to 

flies. Most abundant fruit volatiles, many of which smell fruity to us are esters. 

Esters and alcohols are also commonly used as odorants in Drosophila 

behavioral essays. In addition to those used in behavioral essays, fruit produce 

more complex volatiles that warrant testing. Several studies have coupled 
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extraction of fruit volatiles to direct behavioral (Oppliger et al., 2000; Zhu et al., 

2003) or electrophysiological (Stensmyr et al., 2003) testing in adult flies or in 

larvae. These approaches uncover reliable and strong natural attractants for flies, 

but since the methods of volatile extraction differ, they may miss less abundant 

or less attractive volatiles.  

1.7 Significance of Studying Olfaction in Flies 

Why do we care about fly olfactory system? As discussed in this chapter, 

fly’s olfactory system is much simpler, yet operates under principles that are 

similar to mammal’s. Any differences that we observe between these systems 

will also be valuable to our understanding of how sensory systems work. 

Although Drosophila melanogaster is not an agricultural pest, many other 

flies, moths, and beetles are. Setting pheromone traps as a method for mating 

disruption effectively controls populations of several moth species and provides a 

safer alternative to pesticides (Kovanci et al., 2005).  

Mosquito, Anopheles gambiae is the prime vector for malaria, a deadly 

disease that affects 300 to 500 million people every year and kills over one 

million. There is a dire need for more effective and safe malaria prevention and 

treatment. Mosquitoes and other insects are harder to rear in laboratory than 

Drosophila. Additionally, genetic and transgenic techniques are not well 

developed in mosquitoes. Encouragingly, Anopheles gambiae ORs that respond 

to 2-ethylphenol and 4-ethylphenol, key components of sweat, were identified by 

functional expression in Drosophila olfactory sensilla (Hallem et al., 2004b). 

Hence, Drosophila is also an attractive model system for malaria research.  
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2 Odorant Receptor Map in the Fly Antennal Lobe 

2.1 Introduction 

Drosophila melanogaster is a powerful genetic model, and a promising 

model system in olfaction. The neuronal connectivity of the Drosophila olfactory 

system is similar to that of mammals; a set of OSNs that express the same OR 

project to one or two glomeruli, and a homogenous population of OSNs is 

thought to occupy each glomerulus. Easy recognition of fly’s glomeruli allows for 

precise olfactory-related activity imaging studies in the AL in both presynaptic 

and postsynaptic neurons. Electrophysiological responses of OSNs to odors are 

also reliably recorded from the surface of antenna and maxillary palp. Recently, 

most of the ORs expressed in basiconic sensilla were identified in a homologous 

gene expression model (Hallem et al., 2004a). Alas, it is not possible to correlate 

electrophysiological recordings at cell body and the calcium-associated activity in 

the brain.  

The factors that determine OR expression within each OSN are not known. 

It is currently not possible to predict the positions of glomeruli from either the 

OSN positions on the antenna or the OR sequence. Thus, the OR–OSN–

glomerulus correlations need to be determined experimentally. Lack of 

knowledge of the OR identities of glomeruli in the fly impedes our understanding 

of information processing in the insect AL. Filling in the OR identities of all the 

glomeruli within the antennal lobe may also uncover additional unexpected 

characteristics of the olfactory system in insects. 
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Genetic marking of several OSN populations using the OR promoters 

tethered to Gal4 (Brand and Perrimon, 1993) have allowed for direct visualization 

of OSNs and glomeruli that express specific ORs (Vosshall et al., 2000). Some 

features of the OSN connectivity to the AL are known. It is known that OSNs 

expressing a single OR can project to two glomeruli as is the case of Or23a 

(Vosshall et al., 2000). Two ORs can also be co-expressed in the same cells in 

Or22a/Or22b OSNs in the antenna (Dobritsa et al., 2003) and in the 

Or33c/Or85e OSNs in the maxillary palp (Goldman et al., 2005). The Gal4/UAS 

system also allows for genetic manipulation such as neuron inactivation, 

misexpression of other ORs, or expression of markers such as calcium sensitive 

dyes. The availability of this toolkit for all of the 43 glomeruli (Laissue et al., 1999) 

within the AL will greatly increase the power of Drosophila as a model system for 

olfaction.  

Among the 62 known ORs in the Drosophila genome, 39 are expressed in 

antenna or maxillary palpi, as determined by RNA in situ hybridization (Vosshall 

et al., 2000). These ORs are the prime candidates for OR Gal4 construction. 

The remaining ORs are undetectable in the antenna and their expression 

patterns are not known. It is possible that some of the ORs are expressed at low 

levels in fly olfactory tissues and their RNA is not detectable in situ. The 

Gal4/UAS amplification process may reveal the expression of such low-abundant 

transcripts. It is also possible that the undetected 13 ORs are expressed in other 

tissues. Since the Drosophila larvae robustly chemotax to odors, it is likely that 

the remaining ORs are larval. 
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To contextualize the data from the imaging studies and to compare it with 

electrophysiological findings, we set out to determine the OR identities of fly’s 

glomeruli. We were also interested in the rules for expression of the ORs and 

connectivity of OSNs. To understand the rules of connectivity in the antennal 

lobe, we compiled a near-complete map of OR-specific OSNs projections to the 

AL. In total, we analyzed the expression profile of 25 antennal and five maxillary 

palp ORs. The results show surprising complexity in organization of the fly’s 

olfactory circuit. Four populations of OSNs co-express two ORs, and a fifth 

expresses one OR and one GR. One glomerulus receives co-convergent input 

from two separate populations of OSNs, leading to mixed sensory input. Three 

ORs label sexually dimorphic glomeruli implicated in sexual courtship, and are 

thus candidate Drosophila pheromone receptors. This olfactory sensory map 

provides an experimental framework for relating ORs to glomeruli and ultimately 

to output of the olfactory system. 

2.2 Materials and Methods 

2.2.1 Drosophila Stocks 

All fly stocks were maintained on conventional cornmeal-agar-molasses 

medium under a 12 hour light:12 hour dark cycle at 18oC or 25oC. Transgenic 

constructs were injected into yw embryos using standard procedures and single 

transformants outcrossed to autosomal balancers for chromosomal mapping. Fly 

stocks were kindly provided by: UAS GFP and UAS IMPTNT (Bloomington 

Stock Center); UAS CD8::GFP (Liqun Luo, HHMI); UAS n-Syb::GFP (Mani 
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Ramaswami, The University of Arizona); Or46a n-Syb::GFP (Lawrence 

Zipursky, HHMI). 

2.2.2 Odorant Receptor Promoter Element Transgene Construction 

To mark the OSNs that express each of the ORs, we employed Gal4/UAS 

system (Brand and Perrimon, 1993). We used putative OR promoters to express 

Gal4 and genetically label the OSNs. We assumed that bulk of the promoter lies 

within 10 Kb upstream of the transcription start. Since no information is available 

about 5’ untranslated regions (UTRs) of the ORs, we used 5’ sequence up to the 

predicted translation start. The sequences were selected to exclude verified or 

predicted genes on the same strand, and where possible on the opposite strand 

of DNA. Following sequence lengths directly upstream of the first Methionine 

were used: Or10a, 6.868 Kb; Or13a, 8.199 Kb; Or19a, 9.934 Kb; Or22a, 7.717 

Kb (Vosshall et al., 2000); Or23a, 7.818 Kb (Vosshall et al., 2000); Or33a, 5.155; 

Or33b, 8.086 Kb; Or33c, 7.156 Kb; Or35a, 3.880 Kb; Or42a, 4.184 Kb; Or42b, 

8.039 Kb; Or43a, 3.424 Kb (Wang et al., 2003a); Or46a, 1.875 Kb (Vosshall et al., 

2000), Or47a, 8.239 Kb (Vosshall et al., 2000); Or47b, 7.467 Kb (Vosshall et al., 

2000); Or49b, 8.834 Kb; Or56a, 5.385 Kb; Or65a, 7.764 Kb; Or67b, 2.740 Kb; 

Or67d, 7.272 Kb; Or69a, 1.923 Kb; Or71a, 2.282 Kb (Hummel et al., 2003); 

Or82a, 1.865 Kb; Or83c, 7.843 Kb; Or85a, 2.791 Kb; Or85e, 7.5 Kb (Vosshall et 

al., 1999); Or85f, 8.961 Kb; Or88a, 1.656 Kb; Or92a, 9.247 Kb; Or98a, 9.538 Kb.  

The above regions were amplified using Expand High Fidelity PCR system 

(Roche) from Drosophila melanogaster Oregon R genomic DNA. The PCR 
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products were cloned into pGEM-T easy (Promega), and then subcloned into 

pCaSpeR-AUG-Gal4 (Vosshall et al., 2000), upstream of Gal4.  

The following OR Gal4 lines did not express or were expressed too weakly 

to be analyzed: Or2a, 0.900 Kb; Or7a, 4.203 Kb; Or22b, 0.900 Kb; Or65b, 3.405 

Kb, and Or98b, 5.120 Kb. Or59c (5.280 kb) and Or85c (7.588 Kb) showed 

ectopic expression that did not faithfully reproduce the expression of the 

endogenous OR. No PCR product could be obtained from the regions upstream 

of the following ORs, due to either annotation or technical issues: Or9a, Or19b, 

Or43b, Or67a, Or67c, Or69b, and Or94a. The following ORs were too closely 

linked to other genes to attempt an OR Gal4 fusion construct: Or46b, Or59b, 

Or65c, Or85b, Or85d, and Or94b. Eleven additional OR Gal4 transgenes Or1a, 

Or22c, Or24a, Or30a, Or45a, Or45b, Or49a, Or59a, Or63a, Or74a, and Or83a 

are expressed only in larval OSNs. 

2.2.3 Labeling Olfactory Sensory Neurons  

2.2.3.1 β-galactosidase Activity Staining 

To visualize the expression of ORs in the antenna, flies homozygous for 

OR Gal4 were crossed to flies carrying cytoplasmic LacZ under control of 

upstream activating sequence (UAS LacZ). Heads of the heterozygous progeny 

were stained for β-galactosidase activity (Wang et al., 1998). Antennae were 

removed from the flies’ heads and photographed under light microscope with 40X 

lens. 
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2.2.3.2 Immunohistochemistry 

For immunohistochemical analysis, a synaptic marker n-Synaptobrevin was 

expressed under control of UAS regulatory element. Flies homozygous for 

OR Gal4 were crossed to flies that carry UAS n-Synaptobrevin::Green 

Fluorescent Protein (UAS n-Syb::GFP). Brains were dissected and 

immunostained using a previously described protocol (Laissue et al., 1999) with 

nc82 antibody (Reinhard Stocker, University of Fribourg, Switzerland) to reveal 

features of neuropil at 1:10 dilution, which was visualized with goat Cy3-coupled 

antibody at 1:200 dilution (Jackson ImmunoResearch). Expression of n-

Syb::GFP was detected with rabbit anti-GFP antibody (Molecular Probes) at 

1:1000 dilution and visualized with goat AlexaFlour488-coupled antibody at 1:100 

dilution (Molecular Probes).  

To differentially label Or46a versus other maxillary palp glomeruli, we used 

a synaptic epitope Or46a n-Syb::GFP coupled to OR Gal4 and 

UAS IMPTNT (Sweeney et al., 1995), another synaptically targeted marker. 

Brains of Or46a n-Syb::GFP/OR Gal4;UAS IMPTNT animals were visualized 

with anti-GFP, as described above, and anti-tetanus toxin at 1:10000 dilution 

(Thomas Binz, Medizinische Hochschule Hannover, Germany) antibodies. 

Brains were mounted in Vectashield® (Vector Laboratories) with 11 x 22 mm 

No.1 cover slips as spacers. Z-sections 0.45 µm thick that spanned all of 

AlexaFlour488 signal were recorded under LSM510 Zeiss confocal microscope 

with 40X lens. Images of ALs represent collapsed Z-series that provide relative 

spatial context the stained glomerulus. The segmentation software AmiraTM 
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(Mercury Computer Systems, Berlin) was used to examine and rotate confocal Z-

stacks of Or46a n-Syb::GFP/OR Gal4;UAS IMPTNT brains. 

2.2.4 Verification of Transgene Expression 

Fluorescent two-color RNA in situ hybridization was used to verify 

expression of OR Gal4 transgenes. RNA in situ hybridization was performed as 

previously described (Vosshall et al., 1999). We used digoxigenin- and 

fluorescein-labeled riboprobes. Fluorescein riboprobes were detected with TSA-

Plus Fluorescein System (PerkinElmer). After one-hour quenching period with 

3% hydrogen peroxide, digoxigenin riboprobes were detected with TSA-Plus 

Cyanine5 System (PerkinElmer). Anti-digoxigenin-POD and anti-fluorescein-POD 

antibodies were diluted to a ratio of 1:500, by volume (Roche). At least two 

OR Gal4 lines were examined for each OR. 

2.3 Results 

2.3.1 Peripheral Organization of the Drosophila Olfactory System 

 This work represents a genetic effort to label OSNs that express most of 

the Drosophila OR genes and map their projections to morphologically defined 

glomeruli in the adult AL. Putative regulatory regions upstream of 49 ORs were 

cloned in front of the Gal4 transcription factor. Expression of the OR Gal4 

transgenes was visualized in the antenna and the maxillary palp with UAS LacZ.  

Thirty of the 49 OR Gal4 transgenes, 25 antennal and five maxillary palp 

ORs, exhibit restricted gene expression in subpopulations of adult OSNs (Figure 

 2.1). Although cytoplasmic LacZ, which primarily stains OSN cell body, seems to 

be a less sensitive than GFP in axons, LacZ is expressed in stereotyped 
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overlapping patterns in the antenna. LacZ expression ranges from few cells 

(Or22a) to many (Or47b, Or67d, and Or88a) that broadly correspond to sensillum 

zones of large basiconics and trichoids, respectively (de Bruyne et al., 2001; 

Shanbhag et al., 1999). Of the remaining 19 OR Gal4 constructs, 11 are 

selectively expressed in the larval olfactory system, Or83b is broadly expressed 

in most OSNs where it plays an essential role in olfaction (Larsson et al., 2004), 

and seven other ORs either show no expression or are ectopically expressed 

(Section  2.2.2).  

 

Figure  2.1: Odorant receptor expression in Drosophila chemosensory 
organs. Expression of OR Gal4 transgenes, visualized with LacZ activity staining 
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(blue) reveals stereotyped yet overlapping patterns of gene expression in antenna (top) 

and maxillary palp (bottom). Or85f Gal4 is weak and Or65a Gal4 staining is not 

detectable under these conditions. Orientation as specified at lower right: P=proximal; 

D=distal; L=lateral; M=medial. 

Patterns of OR Gal4:UAS lacZ gene expression of 30 transgenes in the 

antenna and maxillary palp (Figure  2.1) are similar to those obtained by RNA in 

situ hybridization (Vosshall et al., 2000) and follow the same strict segregation of 

ORs expressed in the antenna and maxillary palp, with no OR Gal4 lines 

expressed in both organs. No β-galactosidase was detected in other sensory 

organs of the head (data not shown). For about half of the OR Gal4 constructs, 

β-galactosidase staining was performed in the whole fly and no labeling was 

seen in body parts other than antenna of maxillary palp (data not shown), leading 

us to believe that expression of ORs is restricted to fly’s olfactory organs. 

 To verify that OR Gal4 lines reflect faithful expression of OR mRNA, we 

performed RNA in situ hybridization against Gal4 and the endogenous OR. 

Transgene expression reflects that of an endogenous OR, except in few cases 

where the levels of fluorescence differed or had incomplete overlap (data not 

shown). For presented subset of ORs, though the levels of staining vary, all cells 

appear to have both endogenous OR and Gal4 transcripts.  
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Or10a Gal4 Or23a Gal4 Or33b Gal4 Or47a Gal4

Or56a Gal4 Or67d Gal4 Or82a Gal4 Or85f Gal4

 

Figure  2.2: Two-color RNA in situ hybridization supports faithful 
expression of OR Gal4 transgenes. Frozen sections of OR Gal4 fly heads were 

hybridized with anti-OR digoxigenin (magenta) probes and anti-Gal4 fluorescein (green) 

riboprobes. 

2.3.2 Odorant Receptor-Map in the Adult Antennal Lobe 

2.3.2.1 Glomerular Map of the Antenna 

To determine how OSNs expressing different ORs connect to the brain, we 

labeled the termini of their axons. Analysis of glomerular projections of the 25 

antennal OR Gal4;UAS n-Syb::GFP constructs reveals that 23 populations of 

OSNs that express different ORs target single glomeruli, while two (Or33b and 

Or67d) project to two glomeruli (Figure  2.3A). Both Or33b Gal4 and 

Or67d Gal4 seem to be co-expressed with their respective endogenous ORs 

(Figure  2.2). 
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Figure  2.3: Axonal projections of fly’s olfactory sensory neurons converge 
upon precise glomerular targets. (A) Whole mount immunofluorescence of adult 

ALs from antennal OR Gal4;UAS n-Syb::GFP animals stained with anti-GFP (green) 

and nc82 (magenta). Each data panel is labeled with a given OR Gal4 line and the 

corresponding glomerulus. (B) Analysis of maxillary palp OR Gal4 lines performed as 

in (A) above, except that Or46a Gal4 was crossed to UAS CD8::GFP. Multiple 

independent samples were examined to make glomerular assignments. Orientation as 

specified at lower right, D = dorsal, V = ventral. All images are projections of confocal Z-

series, available as raw confocal stacks at http://www.rockefeller.edu/labheads/vosshall/ 

reprints/fishilevich_vosshall_fig2.php. 

In some cases, there is weak or variable labeling in secondary glomeruli. As 

noted by others (Bhalerao et al., 2003), Gal4 expression in secondary glomeruli 

reveals either real variability in the expression levels of ORs in different 

subpopulations of OSNs, or reflects transgene variability. Distinguishing between 
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these possibilities is constrained by detection thresholds of in situ hybridization 

technique, which may not detect OR transcripts in cells weakly positive for the 

OR Gal4 transgene. As previously reported, some Or23a Gal4 lines mark a 

second, weaker glomerulus at a more ventral location, possibly DP1m (Gao et al., 

2000; Vosshall et al., 2000). Other cases of weak or variable secondary 

innervations include Or65a Gal4, in vicinity of D; Or85a Gal4, DM3; 

Or56a Gal4, possibly DL4; Or10a Gal4, in vicinity of VA7m; Or33b Gal4, 

variable ectopic expression in multiple glomeruli. We base our general 

conclusions below on those glomeruli that show strong and reproducible labeling, 

while recognizing that the weakly labeled glomeruli may also contribute to the 

odor code.  

2.3.2.2 Glomerular Map of the Maxillary Palp 

Axonal projections of the five maxillary palp OR Gal4 lines were examined 

in brain whole mounts (Figure  2.3B). All palp neurons target a tight cluster of 

glomeruli in the ventomedial region in the AL that does not receive projections 

from antennal OSNs (Figure  2.3B). The segregation of antennal and maxillary 

palp projections in Drosophila was previously noted in anatomical tracing studies 

that preceded the advent of OR markers (Stocker, 1994). The functional 

significance of antennal/maxillary palp segregation remains obscure because no 

exclusive function was found for the maxillary palp. 

In contrast to previous reports which mapped Or46a to VA5 (Komiyama et 

al., 2004), we could not assign Or46a-expressing OSNs to a known glomerulus, 

due to diffuse boundaries and somewhat variable position of this glomerulus. To 
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clarify the position of Or46a relative to other maxillary palp glomeruli, we 

simultaneously examined the axonal projections of Or46a-expressing and other 

palp OSNs. The Or71a glomerulus is located in the same anterior-posterior plane 

but medial to Or46a, while the Or33c/Or85e glomerulus is located posterior and 

medial to Or46a (Figure  2.4).  

Or71a Or46a Or85e Or46aOr33c Or46a
D

V

P

P

A

V

 

Figure  2.4: Three-dimensional reconstructions of close-lying maxillary palp 
glomeruli. To clarify the positions of known palp glomeruli relative to Or46a, brains of 

Or46a n-Syb::GFP/OR Gal4;UAS IMPTNT animals are visualized with anti-GFP 

(cyan) and anti-tetanus toxin (magenta) antibodies. Z-series of glomeruli are 

reconstructed and rotated using segmentation software AmiraTM. Orientation as specified 

at lower right: A=anterior; P=posterior; D=dorsal; V=ventral. 

2.3.3 Complexity of Olfactory Circuit: Co-expression and Co-convergence 

From the glomerular assignments, it is apparent that several OSN types 

map to the same glomeruli (Figure  2.3). A complete list of ORs examined here 

and the glomeruli they target is presented in Figure  2.5, sorted by the name of 

glomerulus. There are five cases in which two OR Gal4 lines label the same 

glomerulus and one case where a single glomerulus is marked by an OR Gal4 

and a GR Gal4 transgene. The above observations can be explained by co-

expression of two ORs in the same ONS or co-convergence of two OSN 

populations onto the same glomerular target.  
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To test these hypotheses, we performed RNA in situ hybridization against 

pairs of candidate ORs (Figure  2.5). Maxillary Or33c and Or85e are co-

expressed (Goldman et al., 2005) and these OSNs target the VC1 glomerulus 

(Figure  2.5). Or33a and Or56a are also expressed in the same OSNs that target 

DA2; same is true for the Or10a/Gr10a pair that project to DL1. Additionally, the 

expression of Or33b partly overlaps with both Or47a and Or85a. However, there 

seems to be no overlap between Or47a and Or85a expression (data not shown). 

Or67d and Or82a are not co-expressed, suggesting that these OSN populations 

co-converge.  

Or67d Or82a

Or33b
Or47a

Or33b
Or85a

Or56a
Or33a

Or10a
Gr10a

D
DA1
DA2
DA3
DL4
DA4
DC1
DC2
DC3
DL1
DL3
DM1
DM2
DM3
DM5
VA1d
VA1lm
VA2
VA3
VA5
VA6
VC1
VC2
VC3l
VM5
VM7

Or69a

Or23a
Or85f
Or43a
Or19a
Or13a
Or83c

Or65a
Or42b
Or22a

Or88a
Or47b
Or92a
Or67b
Or49b

Or71a
Or35a
Or98a
Or42a

Or85e
Or33c

 

Figure  2.5: The glomerular identities of ORs reveal unexpected complexity 
of OR co-expression and OSN co-convergence. Summary of OR/glomerulus 

assignments, sorted by glomerulus, with cases of co-expression at the left and co-

convergence at the right. RNA in situ results are shown for cases of possible co-

expression and co-convergence, with digoxigenin- (magenta) and fluorescein-labeled 

(green) anti-OR riboprobes. 
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2.3.4 Topological Organization of the Drosophila Antennal Lobe 

 The availability of a near-complete map of AL projections allowed us to 

examine the organizational logic at the first olfactory synapse. There seems to be 

a relation between OSN location on the surface of sensory organs and their 

targets in the brain. Medial region of the antennal lobe is occupied by maxillary 

palp glomeruli. The ORs that are expressed at the distal/lateral periphery of the 

antenna correspond to glomeruli in lateral region of the antennal lobe. The OSNs 

in the proximal/medial region of the antenna map primarily to the medial region of 

AL.  

Although we did not identify sensillum types in which each of the ORs are 

expressed, the segregation is most likely related to the topographic segregation 

of trichoid and basiconic classes of sensilla on the surface of the antenna (de 

Bruyne et al., 2001; Shanbhag et al., 1999; Stocker, 1994). Or47b, Or88a, and 

Or67d are all likely trichoid and Or42b, Or33b, and Or22a are basiconic (Hallem 

et al., 2004a). There are exceptions, notably Or19a targets a dorsal/medial 

glomerulus although Or19a OSNs are located in the lateral/distal domain in the 

antenna.  

Of the 43 glomeruli and 47 distinct glomerular compartments (Laissue et al., 

1999), this study assigns a genetic OR identity to 26. We were unable to assign a 

name to Or46a, which may be a previously unnamed glomerulus. Other studies 

mapped Gr21a OSNs to V (Scott et al., 2001) and Or59c OSNs to 1 (Komiyama 

et al., 2004), bringing the total known number of OR assignments to AL glomeruli 

to 29. Only few glomeruli mapped to the most posterior and ventral regions of the 
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antennal lobe. The missing assignments may correspond to unassigned ORs, 

GRs, or other receptors. 

2.3.5 Functional Organization of the Drosophila Antennal Lobe 

With receptotopic map of the AL at hand, we sought to determine the logic 

of organization in the Drosophila AL. It is unknown whether the organization of 

glomeruli within AL follows sequence of the ORs, is guided by the chemistry of 

ligands, or is determined by other factors. We integrated known ligands from 

previous studies for the ORs (Goldman et al., 2005; Hallem et al., 2004a; Kreher 

et al., 2005; Störtkuhl and Kettler, 2001; Wetzel et al., 2001) or glomeruli (Wang 

et al., 2003a) onto receptotopic map to generate an odortopic map (Figure  2.6). 

The limited and non-overlapping collections of odorants used by different groups 

as well as differences in experimental techniques made it difficult to compare 

across studies. In summation, each OR/glomerulus was screened with a small 

subset of the 76 odors used across these six studies and thus no comprehensive 

survey of the ligand specificity of a given OR/glomerulus exists. Several glomeruli 

respond selectively to aromatic odors. We also find a greater tendency for OSNs 

expressing broadly responsive ORs to project to dorsal/medial glomeruli while 

the more selective glomeruli are located at ventral/lateral positions (Table  2.1 

and Figure  2.6). However, there are many exceptions to this rule and the 

ordered chemotopy described in the mouse olfactory bulb (Uchida et al., 2000) is 

not obvious in the fly AL. 
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OR glomerulus strong ligands 
Or10a DL1 3/28: isoamyl acetate [1, 2], acetophenone [2], methyl salicylate [2] 
Or13a DC2 2/16: 1-octen-3-ol [1], 3-octanol [1] 

Or19a DC1 11/30: cineole [1], hexane [1], isoamyl acetate [1, 2], pentyl acetate [2], ethyl butyrate [2], 1-hexanol [2], 
1-octen-3-ol [2], 2-heptanone [2], 2-octanone [2], 1-octanol [2], butyl acetate [2] 

Or22a DM2 11/29: r-carvone [1], octanal [1], 3-octanone [1], caproic acid [1], hexane [1], isoamyl acetate [1, 2], 
pentyl acetate [2], 1-octen-3-ol [2], ethyl butyrate [2], ethyl proprionate [2], butyl acetate [2] 

Or23a DA3 0/16 [2] 
Or33a DA2 0/16 [1] 
Or33b DM3+DM5 0/28 [1, 2] 
Or33c VC1 1/11: E2-hexenal [3] 

Or35a VC3l 
11/17: pentyl acetate [2], ethyl butyrate [2], 1-hexanol [2], 1-octen-3-ol [2], E2-hexenal [2], 
cyclohexanone [2], 2-heptanone [2], 1-butanol [2], 1-octanal [2], ethyl 3-hydroxy butyrate [2], 1-nonanal 
[2], 2-pentanone [2] 

Or42a VM7 9/30: ethyl acetate [3, 4], isoamyl acetate [3, 4], E2-hexenal [3, 4], 2-heptanone [3, 4], ethyl butyrate [4], 
1-hexanol [4], 2,3-butanedione [4], propyl acetate [4], 1-butanol [4] 

Or42b DM1 11/16: cyclohexanone [1], r-carvone [1], s-carvone [1], linalool [1], 3-octanone [1], 3-octanol [1], 1-octen-
3-ol [1], benzaldehyde [1], caproic acid [1], hexane [1], isoamyl acetate [1] 

Or43a DA4 9/39: cineole [1], hexane [1], isoamyl acetate [1], hexanol [2], 1-octen-3-ol [2], cyclohexanol [2, 5, 6], 
cyclohexanone [2, 5, 6], benzaldehyde [5, 6], benzyl alcohol [5, 6] 

Or46a ? 1/11: 4-methylphenol [3] 

Or47a DM3 6/28: hexane [1], isoamyl acetate [1], ethyl acetate [2], pentyl acetate [2],  
2-heptanone [2], 3-(methylthio)-1-propanol [2] 

Or47b VA1l/m 0/15: [2] 
Or49b VA5 2/17: 3-methyl phenol [2], 2-methyl phenol [2] 
Or56a DA2 0/16 [1] 
Or65a DL3 0/17: [2] 

Or67b VA3 
13/39: cyclohexanone [1], 3-octanone [1], 1-octen-3-ol [1], hexane [1], pyridine [1], pentyl acetate [4], 1-
hexanol [4], E2-hexenal [34], 2-heptanone [4], 1-butanol [4], 1-heptanol [4], benzaldehyde [4], 
acetophenone [4] 

Or67d DA1+VA6 N.D. 
Or69a D 1/16: isoamyl acetate [1] 
Or71a VC2 1/23: 4-methylphenol [3] 
Or82a VA6 1/17: geranyl acetate [2] 
Or83c DC3 N.D. 

Or85a DM5 4/30: ethyl butyrate [2], 1-hexanol [2], ethyl 3-hydroxybutyrate [2],  
E2-hexen-1-ol [2] 

Or85e VC1 3/11: ethyl acetate [3], cyclohexanone [3], (-) fenchone [3] 
Or85f DL4 0/16 [2] 
Or88a VA1d 2/29: hexane [1], isoamyl acetate [1] 
Or92a VA2 3/16: r-carvone [1], s-carvone [1], octanal [1] 

Or98a VM5 7/15: pentyl acetate [2], ethyl butyrate [2], 1-hexanol [2], 1-octen-3-ol [2], 
2-heptanone [2], E2-hexen-1-ol [2], linalool [2] 

Table  2.1: Summary of odorant receptor ligand specificity. Maxillary palp 

genes are highlighted in light gray. Assignments for Or46a and Or83c differ from a 

previous study (Komiyama et al., 2004). Odors that activate each OR or its 

corresponding glomerulus are listed in the right column and are drawn from previous 

studies. Listed are the number of strong ligands/total ligands tested in all studies that 

examined the OR/glomerulus, the references, and a list of strong ligands. “Strong 

ligands” include odorants that: yielded activity at 20% saturated vapor in imaging 

experiments [1] (Wang et al., 2003a), produced more than >100 spikes/sec in 

electrophysiological experiments [2] (Hallem et al., 2004a), [3] (Goldman et al., 2005), 

and [4] (Kreher et al., 2005), or stimulated activity in heterologous expression systems [5] 

(Störtkuhl and Kettler, 2001) and [6] (Wetzel et al., 2001). N.D. = not done. 
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Figure  2.6: Odotopic map of olfactory projections reveals functional 
subdomains in the Drosophila antennal lobe. Schematic map coded for 

functional properties, the glomeruli are colored according to the functional groups of 

odorants that activate ORs/glomeruli. The odorants are classified by the functional group 

with the highest priority (IUPAC nomenclature), aromatic ring compounds and terpene 

derivatives are placed in separate categories (see Table  2.1); fru target glomeruli 

outlined in pink (Manoli et al., 2005; Stockinger et al., 2005); Estimated position of Or46a 

is mapped posterior of VA7l (dashed line). Antennal lobe model adapted from Figure 2 of 

Laissue et al. with permission; antennal lobe sections appear from anterior to posterior, 

clockwise from top left, using grey-scale depth-coding. Map represents 47 individual 

glomerulus compartments (Laissue et al., 1999), along with Or46a. 

2.3.6 Implications of Co-expression for Odor Coding 

Five subpopulations of OSNs that express multiple receptors along with the 

universal co-receptor OR83b (Larsson et al., 2004). What might be the function 

of such OR co-expression? In case of OR22a/OR22b co-expression, only OR22a 

is thought to contribute to the OSN response profile (Dobritsa et al., 2003). 

OR33c that is co-expressed with OR85e, exhibits relatively weak responses to 

 49 
 



odors (Goldman et al., 2005). Even if it produces weak responses on its own, the 

second OR potentially modulates responses of the OSN. For example, OR33b 

does not respond to any known odors (Hallem et al., 2004a). However, when 

present together with OR47a or OR85a, OR33b could change the response 

profiles of these OSNs. In support, both OR47a and OR85a respond to more 

odors when ectopically expressed without OR33b in the ab3A “empty” neuron 

than the native neuron (Hallem et al., 2004a). Confirmation of modulatory role of 

co-expressed ORs awaits further genetic analysis in vivo.  

Another possible function of co-expressed ORs is to act as mixture-specific 

detectors. It is believed that adding an additional OR to an OSN produces a 

linear increase in the activity of that OSN (Hallem et al., 2004a). However, it is 

not known how a linear change in the firing rate of the OSN affects the activity of 

PNs or Kenyon cells. It is possible that activation of two ORs within OSN sets the 

OSN activity over certain threshold that is meaningful to a fly. Co-expression may 

be a particularly useful strategy that minimizes the number of OSNs necessary to 

respond to an ecologically relevant mixture. Since the responses of OSNs 

saturate at about 250 spikes/second (de Bruyne et al., 2001), having two ORs 

within OSN also puts a cap on the maximal output of this OSN when a relevant 

mixture is presented.  

Another intriguing population of OSNs co-expresses members of the OR 

and GR families, along with Or83b. The open reading frames of Or10a and 

Gr10a are only 350 nucleotides, suggesting that they are co-expressed 

(Robertson et al., 2003). Or10a and Gr10a do not have the sequence identity to 
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be considered recent gene duplication (Robertson et al., 2003), however, it is 

possible that one have jumped and is a “hitchhiker” on the promoter of another. 

In larvae the Or10a/Gr10a promoter is expressed in the gustatory organ (data not 

shown), thus it is unclear which gene is the hitchhiker. The role of GRs in the 

antenna is poorly understood, although Gr21a is expressed in neurons that 

respond to carbon dioxide (Scott et al., 2001; Suh et al., 2004). It will be 

interesting to determine whether GR10a contributes to the detection of odors in 

the antenna along with OR10a and serves an olfactory instead of gustatory 

function.  

2.3.7 Candidate Drosophila Pheromone Receptors 

Recent work examining the expression of the male-specific isoform of the 

fruitless (fru) transcription factor implicates two large, sexually dimorphic 

glomeruli (VA1lm and DA1) in male courtship behavior (Demir and Dickson, 

2005; Manoli et al., 2005; Stockinger et al., 2005). This study has revealed the 

molecular identity of OSNs projecting to VA1lm and DA1 as Or47b and Or67d 

expressing OSNs, respectively. Other glomeruli that receive input from fru-

expressing OSNs are VL2a (Manoli et al., 2005; Stockinger et al., 2005) and 

occasionally VA6 (Stockinger et al., 2005), which we identify as receiving input 

from both Or82a- and Or67d-expressing OSNs. The identity of the VL2a-

projecting OSNs remains obscure.  

The fru-expressing OSNs and the glomeruli to which they project show little 

or no activation in response to general odors (Table  2.1 and Figure  2.6) and 

(Hallem et al., 2004a; Wang et al., 2003a). The exception is OR82a, which 
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responds very selectively to geranyl acetate, a green leaf volatile that is also a 

major component of medfly male sex pheromone (Hallem et al., 2004a; Light et 

al., 1999). Based on genetic anatomical marking, Or82a- and Or67d-expressing 

OSNs target the VA6 glomerulus. Whether they synapse uniformly upon the 

same population of postsynaptic PNs or whether the glomerulus has sub-

compartments is not known. In either scenario, the glomerulus might act as a 

coincidence detector that would require both the OR82a ligand and the unknown 

OR67d ligand for activation.  

Courtship behavior in Drosophila involves multi-modal input of visual, 

gustatory, auditory, and olfactory cues (Yamamoto et al., 1997). The involvement 

of volatile pheromones in Drosophila sexual behavior has long been inferred, but 

neither the volatile sex pheromones nor the receptors that detect them are known. 

Our observations suggest that the ORs in fru-expressing OSNs respond to 

volatile pheromones. In support of this, silencing or reprogramming these OSNs 

leads to selective disruption in male sexual behavior (Manoli et al., 2005; 

Stockinger et al., 2005).  

2.3.8 Independent Validation of Receptotopic Map of the Antennal Lobe  

A paper that was published concurrently with our report of this work has 

mapped the OR identities of 44 OSN populations that project to 37 glomeruli 

(Couto et al., 2005). The glomerulus assignments agree for all assigned 

glomeruli that overlap between the reports. The conclusions from the glomerular 

map generally agree, with some differences in interpretations. Couto et. al. 

mapped electrophysiological responses of the ORs (de Bruyne et al., 1999; de 
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Bruyne et al., 2001; Hallem et al., 2004a) onto the AL and observed a 

segregated cluster of glomeruli that respond to aromatic compounds. When we 

add results from a study that imaged odor-evoked activity in the AL (Wang et al., 

2003a), this trend is not as strong (Figure  2.6). They also report a progression of 

responses for short- to long-chained esters from medial to lateral regions of the 

AL. Another analysis by Couto et. al. revealed a moderate correlation of 

sequence similarity and separation of glomeruli in basiconic sensilla. Our 

analysis using phylogenetic trees of the OR family sequences did not discover a 

trend that could be used as a predictor of glomerulus positions. Despite efforts of 

multiple research groups, there are more than a dozen glomeruli with their 

receptor identities unknown (Figure  2.7). Future work will reveal the receptors 

and possible novel functions for these unassigned glomeruli.  
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Figure  2.7: Known glomeruli of the Drosophila antennal lobe. Receptor 

assignments in black are same as in Figure  2.6. Receptors in red are Gr21a (Scott et al., 
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2001) and Or59c (Komiyama et al., 2004), rest (Couto et al., 2005). Or59c glomerulus 1 

is shown by dashed line. Or2a and Or67c OSNs map to previously unidentified glomeruli 

shown by dashed line (Couto et al., 2005). The receptor identities of blank glomeruli are 

unknown. 

2.4 Conclusions 

Here we present a nearly complete map of olfactory projections to the fly 

AL. From this map, we identify five populations of OSNs that express multiple 

receptors and two populations of OSNs expressing different ORs that co-

converge upon a common glomerulus. An analysis of published odor response 

profiles for these ORs and their glomeruli suggests that OSNs that are tuned to a 

broad range of odors map to the dorsal/medial domain of the AL, while more 

restricted OSNs map to ventral/lateral glomeruli. We also identify candidate 

Drosophila pheromone receptors by virtue of their innervations of sexually 

dimorphic fru-positive glomeruli. A number of intriguing questions follow from our 

study. First, what is the genetic identity of the projections that target the posterior 

face of the antennal lobe? These glomeruli may receive input from OSNs 

expressing OR or GR genes that we did not examine in this study. Second, it will 

be of interest to understand in greater detail what effects receptor co-expression 

and OSN co-convergence have on the capacity of the fly to detect and 

discriminate odors. Finally, the availability of candidate pheromone receptors in 

Drosophila will make it possible to study sex pheromones in a genetically 

tractable organism from the circuits they activate to the stereotyped behaviors 

they elicit. 
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3 Expression of Odorant Receptors in Drosophila Larvae 

3.1 Introduction 

A fly passes through three developmental stages: embryo, larva, and pupa 

before emerging as an adult. Drosophila larvae can smell and chemotax to both 

synthetic and natural olfactory stimuli (Cobb and Dannet, 1994; Larsson et al., 

2004; Monte et al., 1989; Oppliger et al., 2000). Larvae have only 21 OSNs in 

two bilaterally symmetric dorsal organs (Figure  1.2) and (Python and Stocker, 

2002; Singh and Singh, 1984; Tissot et al., 1997). All of larval OSNs express 

Or83b (Figure  1.2B), an OR essential for olfaction (Larsson et al., 2004; 

Neuhaus et al., 2005).  

For almost 250 years, the dorsal organ (DO) and the terminal organ (TO) 

have been presumed to modulate chemoreception in larva (Cobb, 1999). Only 

recently, the 21 Or83b-expressing OSNs of the DO were established to solely 

mediate olfaction (Larsson et al., 2004). However, the contributions of each of 

the 21 larval OSNs toward olfactory perception are unknown. 

Like in adults, the first olfactory synapse in larval brain is organized into 

glomeruli (Python and Stocker, 2002), with structure analogous to that of 

vertebrate olfactory bulb. Studies that were published while the manuscript 

associated with this work was under review examined the glomerular structure of 

larval antennal lobe (Ramaekers et al., 2005) and inferred expression of about 23 

members of the OR gene family in larvae (Couto et al., 2005; Kreher et al., 2005). 

The parsimonious design of the olfactory system of Drosophila larva makes it an 

 55 
 



excellent genetic model to test the contribution of single ORs toward neural 

processing and olfactory perception. 

We provide a comprehensive molecular and neuroanatomical survey of the 

olfactory system of the Drosophila melanogaster larva. Genetic markers that we 

generate for most of larval OSNs are key for future physiological and behavioral 

studies of larval olfaction.  

3.2 Materials and Methods 

3.2.1 Drosophila Stocks 

The fly stocks were generated and maintained as noted in Section 2.2.1. 

Fly stocks were kindly provided: UAS GFP (Bloomington Stock Center); 

UAS CD8::GFP (Liqun Luo, HHMI); UAS DTI14 (L. Stevens, Albert Einstein 

College of Medicine); Gr Gal4 lines (Kristen Scott, UCSF and Hubert Amrein, 

Duke University); Or83b Or83b::Myc (Leslie Vosshall, The Rockefeller 

University). 

3.2.2 Generation of Odorant Receptor Promoter Element Transgenes 

Putative promoter sequences for the ORs obtained by PCR were cloned 

into pCaSpeR-AUG-Gal4 as described in Section 2.2.2. Reverse primers were 

placed immediately upstream of the predicted ATG initiation codon and forward 

primers were at the following distances upstream: Or1a, 6.285 Kb; Or22c, 7.156 

Kb; Or24a, 8.72 Kb; Or30a, 9.148 Kb, Or45a, 9.556 Kb; Or45b, 4.764 Kb; Or49a, 

3.799; Or59a, 7.8 Kb; Or63a, 4.205 Kb; Or74a, 7.226 Kb; Or83a, 1.628 Kb; 

Gr63a, 2.635Kb.  
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3.2.3 Verification of OR Gal4 Transgene Expression 

Multiple independent transgenic lines were generated for each construct, all 

were analyzed for expression in the larva. To detect Gal4 expression in dorsal 

organs, OR Gal4 flies were crossed to Or83b Or83b::Myc;UAS GFP flies. To 

detect Gal4 expression in larval brains, OR Gal4 flies were crossed to 

UAS GFP or UAS CD8::GFP flies (these reporters produced indistinguishable 

results). There was some inter-line variability in the number of cells labeled in the 

DO and the occasional labeling of TO or other non-sensory cells in the larva. 

Where the ectopic expression was not supported by in situ results, such lines 

were not used for behavioral analysis, with the exception of Or49a Gal4, whose 

expression was not detected by RNA in situ hybridization. Or98b Gal4 (5.12 Kb) 

did not express and Or85c Gal4 (7.588 Kb) showed ectopic expression. For 

Or30a Gal4, there were reliably two additional cells of unknown function at the 

midline, posterior to the mouth hooks. Or24a Gal4 is expressed in the adult 

maxillary palp, although Or24a mRNA is not detected in this tissue (data not 

shown). The following 21 adult OR Gal4 lines do not express in larval OSNs: 

Or19a, Or22a, Or23a, Or33c, Or43a, Or46a, Or47b, Or49b, Or56a, Or59c, 

Or65a, Or67d, Or69a, Or71a, Or83c, Or85a, Or85e, Or85f, Or88a, Or92a, or 

Or98a. 

Or83b Or83b::Myc contained 7.76kb of genomic DNA upstream of the 

Or83b initiation codon and full-length Or83b cDNA (Genbank accession 

AY567998), fused to five Myc epitopes (MEQKLISEEDLNE), and followed by the 

endogenous 3’ UTR of Or83b and the SV40 polyadenylation sequence in 
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pCasper4PLX. The OR83b::Myc protein does not localize to dendrites of OSNs, 

but rather serves as a pan-OSN marker. 

3.2.3.1 Immunocytochemistry 

 Antibody staining of late third instar larvae was performed similarly to 

methods described previously (Python and Stocker, 2002). Larval brains and 

cuticle that contained DOs was carefully dissected. Larvae were fixed for one 

hour in 4% paraformaldehyde/1X PBS/0.2% Triton-X100. The incubation periods 

were overnight at 4oC and for four hours at room temperature, for primary and 

secondary antibodies, respectively. Primary rabbit anti-GFP at 1:1000 dilution 

(Molecular Probes), mouse anti-Myc 9E10 at 1:10 dilution (Thomas Jessell, 

HHMI), mouse anti-Elav 9F8A9 at 1:10 (DSHB, University of Iowa), and mouse 

nc82 at 1:10 dilution (Reinhard Stocker, University Fribourg, Switzerland) 

antibodies were used. Secondary goat anti-rabbit Alexa488-coupled (Molecular 

Probes) and goat anti-mouse Cyanine3-coupled antibodies were used at 1:100 

and 1:200 dilutions, respectively. In some cases, nuclei were counterstained with 

a 1:1000 dilution of TOTO-3 (Molecular Probes). Larval brains were mounted 

with 11 x 22 mm No.1 cover slips as spacers. Confocal Z-series using 0.45 µm 

thick sections that spanned the GFP signal were collected with a Zeiss LSM510 

confocal microscope. 

3.2.3.2 RNA In Situ Hybridization 

Wild type (Oregon-R) third instar larvae were decapitated in 1x PBS, and 

carefully dissected to remove the digestive tube posterior to the esophagus, the 

salivary glands, and fat body. The larval heads were then transferred to plastic 
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embedding molds containing Tissue-Tek O.C.T., and were aligned so that the 

dorsal side faced the bottom surface. The samples were frozen and 12 µm frozen 

sections processed for in situ hybridization and visualized with alkaline 

phosphatase reaction, as previously described (Vosshall et al., 1999). Anti-sense 

digoxigenin-labeled riboprobes were transcribed from OR templates derived from 

genomic DNA (Vosshall et al., 1999). Alkaline phosphatase RNA in situ 

hybridization was performed by Kenta Asahina (RU). 

Two-color in situ hybridization was performed as above, using digoxigenin- 

and fluorescein-labeled riboprobes. The riboprobes corresponding to two OR 

genes were mixed in the same hybridization buffer and detected first with TSA-

Plus Fluorescein System (PerkinElmer) and then after quenching the fluorescein 

reaction for a one hour with 3% hydrogen peroxide, with TSA-Plus Cyanine5 

System (PerkinElmer). Anti-digoxigenin-POD and anti-fluorescein-POD were 

diluted 1:500 (Roche). Sections were examined under confocal microscope and 

with Nomarski optics that permitted identification of the dorsal organ ganglion by 

its characteristic position and morphology.  

3.3 Results 

3.3.1 Larval Odorant Receptor Gene Expression 

To identify larval ORs, we examined 42 of 62 possible transgenes that drive 

the expression of Gal4 protein (Brand and Perrimon, 1993) under the control of 

OR promoter elements (Vosshall et al., 2000). To visualize transgene expression 

in the dorsal organ, individual OR Gal4 lines were crossed to UAS GFP and 

the OSN marker Or83b::Myc. Transgene Or83b Gal4 is broadly expressed 
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throughout the DO ganglion (Larsson et al., 2004) and (Figure  3.1A, green); 

twenty other OR Gal4 transgenes label single larval OSNs in DO (Figure  3.1A, 

green) that also express Or83b::Myc (Figure  3.1). Or49a Gal4 labels one DO 

OSN along with a single TO gustatory neuron (Figure  3.1A, Figure  1.2C). The 

positions of OSN cell bodies seem to be relatively static from animal to animal; 

however, the nature of immunocytochemical preparation makes it difficult to 

generate a map. 

Gustatory receptor (GR) genes are expressed in both olfactory and 

gustatory organs of the adult fly (Dunipace et al., 2001; Scott et al., 2001). In 

larva, GR Gal4 transgenes are expressed only in the gustatory TO or in non-

olfactory DO neurons that do not express Or83b::Myc (Figure  3.1B). The 

Or10a/Gr10a transgene is expressed in a single TO neuron (Figure  3.1B). Lack 

of TO markers makes it unfeasible to confirm expression of the endogenous 

receptor in these neurons. 
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Figure  3.1: Twenty-one OR Gal4 transgenes are expressed in Drosophila 
larva. (A) Whole mount immunofluorescence staining of left larval dorsal organ with 

OR Gal4;UAS GFP transgenes in green and Or83b::Myc in magenta. 

Or49a Gal4;UAS GFP labels a single TO gustatory neuron in addition to a single DO 

OSN. (B) GR Gal4;UAS GFP positive neurons (green) are distinct from OSNs labeled 

for Or83b::Myc (magenta). (A) and (B) scale bar=10 µm. 

Expression of all (except Or49a Gal4) transgenes was verified by RNA in 

situ hybridization (data not shown). RNA in situ analysis identified expression of 

five additional ORs in the DO. Thus, we identify a total of 25 Drosophila ORs 

expressed in the larval DO. Of these, 14 are only expressed at the larval stage, 

while 11 are utilized by both larval and adult olfactory systems (Table  3.1). 
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OR validation     
Or1a      
Or2a      
Or7a      
Or13a      
Or22c      
Or24a      
Or30a      
Or33a      
Or33b      
Or35a      
Or42a      
Or42b      
Or45a      
Or45b      
Or47a      
Or49a      
Or59a      
Or63a      
Or67b      
Or74a      
Or82a      
Or83a      
Or83b   KEY larva Larva/adult
Or85c   In situ   
Or94a   Gal4   
Or94b   In situ/Gal4   
      

Table  3.1: Summary of Drosophila ORs expressed in larvae and/or adults. 
Twenty-five ORs that are expressed in larva are color coded according to KEY for 

larval/adult expression. The symbols indicate OR expression validation in larva by RNA 

in situ hybridization and/or transgene expression. 

3.3.2 Organizational Logic of the Larval Dorsal Organ 

We postulated that the 25 ORs we identified in larva are distributed among 

the 21 Or83b-positive OSNs of the DO. Since the number of ORs exceeds the 

number of OSNs, there may be up to four OSNs that express two ORs; at the 

other extreme, 20 OSNs express one OR each, and the 21st OSN expresses five 

ORs. To ask how OR genes are distributed among the DO neurons, animals with 

two independently labeled OSNs were examined (Figure  3.2). In total, we 
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examined 21 different strains of transgenic larvae carrying two different 

OR Gal4 transgenes along with the UAS GFP (cytoplasmic) or 

UAS CD8::GFP (membrane-associated) reporters. There are always two GFP-

labeled neurons in such animals, demonstrating that in all cases examined OR 

genes are not co-expressed (Figure  3.2). In some cases, the neurons are 

directly adjacent, but the presence of two distinct dendrites innervating the dorsal 

organ dome confirms that these neurons are distinct (e.g. Or22c/Or49a and 

Or45a/Or74a). 

   

Figure  3.2: Most larval ORs are expressed in distinct olfactory sensory 
neurons. Whole mount immunofluorescence preparations of OrX Gal4/OrY Gal4; 

UAS GFP or UAS CD8::GFP animals, where OrX and OrY are two different ORs, 

show that each OR Gal4 is expressed in a different OSN (green). Neuronal cell bodies 

in the DO ganglion (white dashed circle) and the TO are counterstained with the neuron-

specific Elav-9F8A9 antibody (magenta). Images are collapsed confocal Z-stacks that 

encompass the entire larval dorsal organ. Scale bar = 10 µm. 
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We used results from immunocytochemical analysis of one and two ORs to 

deduce candidates for OR co-expression. Henceforth, we performed RNA in situ 

hybridization to differentially label the ORs. While some OSN cell bodies are 

adjacent, two OSNs co-express pairs of ORs: Or33b/Or47a and Or94a/Or94b 

(Figure  3.3). Note that Or33b and Or47a are also co-expressed in the adult 

OSNs (Figure  2.5) Other instances of OR co-expression are also documented 

for the adult olfactory system (Dobritsa et al., 2003; Goldman et al., 2005).  

    

Figure  3.3: RNA in situ hybridization reveals two cases of OR co-
expression. RNA of two ORs detected with digoxigenin- (magenta) and fluorescein-

labeled (green) riboprobes. The border of the dorsal organ cell body ganglion is 

indicated by the yellow dotted line in each sample. Orientation of samples is indicated at 

the right: A = anterior, P = posterior, L = lateral, M = medial. 

3.3.3 The Glomerular Map of Larval Olfactory Projections in the Brain 

Larval OSNs project long axons to the larval antennal lobe (LAL) of the 

brain (Figure  3.4A) and (Python and Stocker, 2002; Ramaekers et al., 2005). 

Patterns of axonal projections to the larval antennal lobe were examined in 

larvae carrying Or83b Gal4 and 20 other larval OR Gal4 transgenes, 

visualized with UAS GFP or UAS CD8::GFP reporters (Figure  3.4B and C). 

Or83b Gal4 fills the entire LAL, while other OR Gal4 transgenes label single 
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axonal arbors (larval glomeruli) whose characteristic position is conserved across 

animals.  

 

Figure  3.4: Larval olfactory sensory neurons project to single glomeruli in 
the antennal lobe. (A) Dorsal view of the anterior tip of an Or83b Gal4;UAS GFP 

larva reveals the OSNs (green) of the DO (yellow arrow) and the olfactory nerve 

extending axons to the LAL (yellow arrowhead). Sample orientation: A = anterior, P = 

posterior. Larval brain is counterstained with the neuropil-specific antibody nc82, 

magenta (A)-(C). Animal is oriented anterior left, posterior right. (B) Whole mount 

immunofluorescence staining of an Or83b Gal4;UAS GFP (green) reveals boundaries 

of the AL [yellow dashed square is magnified in (C)]. Nuclei are stained with TOTO-3, 

blue. Sample orientation: D = dorsal, V = ventral. (C) Left antennal lobes of 

OR Gal4;UAS GFP or UAS CD8::GFP animals stained with anti-GFP (green) and 

nc82 (magenta). The left larval AL is centered in the box and the subesophageal 

ganglion is located at the lower right. Sample orientation: D = dorsal, V = ventral, L = 

lateral, M = medial. Scale bar = 10 µm.  

Although the glomeruli in the LAL have poor morphological definition 

(Python and Stocker, 2002; Ramaekers et al., 2005), our analysis of 20 

uniglomerular larval OR Gal4 transgenes reveals discrete axonal targets for 

each OSN. In some cases, neurons expressing different ORs converge upon the 

same sub-region of the antennal lobe (Figure  3.4C). Convergence of multiple 

OSNs onto the same rather than merely adjacent glomeruli, may lead to 
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convergent input to second-order olfactory neurons (larval PNs). OR Gal4 tools 

make it possible to for us to characterize the glomerular organization in more 

detail. 

We generated 21 fly strains, each with two different OR Gal4 transgenes 

and a UAS GFP or UAS CD8::GFP reporters (Figure  3.5). In some cases, the 

glomeruli are adjacent (Or22c/Or24a, Or45a/Or47a, Or45a/Or63a, Or24a/Or49a, 

and Or33b/Or49a). Nonetheless, each strain clearly contains two labeled 

glomeruli, suggesting that for the cases examined each larval OSN targets a 

discrete sub-region of the antennal lobe. 

 

Figure  3.5: Larval olfactory sensory neurons target discrete glomeruli. 
Whole mount immunofluorescence preparations of OrX Gal4/OrY Gal4;UAS GFP or 

UAS CD8::GFP larval brains, where X and Y are two different ORs. Images are 

collapsed confocal Z-stacks that encompass the entire larval antennal lobe. TO 

projections of Or49a Gal4-positive gustatory neurons are marked with a red arrowhead. 

Scale bar = 10 µm. 
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Analysis the LAL glomeruli using one or two OR Gal4 transgenes reveal a 

stereotyped glomerular pattern. The shapes of the glomeruli vary from globular to 

oblong, from animal to animal for the same OR Gal4. The distances between 

two labeled OSNs also vary slightly (up to one glomerulus diameter). The 

relatively large numbers of OSNs that we can label, make it impractical to 

examine all two-OR combinations, thus restricting our resolution of the LAL 

glomeruli positions. Nonetheless, we observe reproducible characteristic 

positions of glomeruli within LAL. Approximate positions of larval olfactory 

glomeruli are schematized in Figure  3.6.  
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Figure  3.6: Map of the glomerular targets in larval antennal lobe. Flattened 

representation shows approximate positions of glomeruli receiving input from OR-

expressing OSNs. Partially overlapping circles represent glomeruli whose relative 

position cannot be unambiguously resolved. Orientation: D = dorsal, V = ventral, L = 

lateral, and M = medial. 

3.4 Discussion and Conclusions 

3.4.1 Larval Odorant Receptor Repertoire 

The olfactory circuit of the Drosophila larva remains a relatively simple 

system. Each of the 21 larval OSNs expresses one or two of the 25 ORs that we 
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identified in larva, along with Or83b (Larsson et al., 2004; Neuhaus et al., 2004). 

We do not expect the number of ORs in larva to exceed greatly the 25 that we 

identified. Independent studies stipulated 23 by RT-PCR (Kreher et al., 2005) 

and 18 by OR Gal4 transgene expression (Couto et al., 2005), mostly 

overlapping ORs to be expressed in larva. In contrast to RT-PCR results for 

Or19a and Or88a (Kreher et al., 2005) and transgene expression of Or22a, we 

did not detect expression for these OR Gal4 transgenes in larva. We also lack 

Or43b Gal4 (Kreher et al., 2005) and Or85d Gal4 (Couto et al., 2005) to 

confirm larval expression. Overall, the three studies support expression of 30 or 

less ORs in Drosophila larva. 

3.4.2 Distinct, yet Overlapping Olfactory Systems 

We hypothesized correctly that the ORs that are not detected by RNA in situ 

hybridization in the adult olfactory organs are larval. Unexpectedly, we find that 

among the 25 larval ORs, 11 ORs are shared between the adult and larval 

Drosophila. The high overlap in the OR expression in the two life stages may be 

due to a shared niche. 

Rotting fruit is a key odor for both adults and larva. Adults seek it from long 

distances to mate and lay eggs and larva live in the fruit as they mature. The 

absolute concentrations of volatiles that the two life stages experience are 

different due to different proximities to the odor, hence the need for different ORs. 

Yet, adults and larvae are able to share many ORs. Further studies of OR 

response dynamics and olfactory information processing promise to uncover how 

animals recognize odors at various concentrations. 
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3.4.3 A Simple Mammal-Like Olfactory Circuit 

Each of the Drosophila 21 larval OSNs extends a single axon that arborizes 

in a unique olfactory glomerulus in the LAL. In our effort to understand the 

organization of the Drosophila larva olfactory circuit, we developed markers for 

most larval glomeruli. Since larval glomeruli are not readily apparent (Ramaekers 

et al., 2005), the genetic markers will serve as useful identifiers of the synaptic 

olfactory targets in larvae.  

The olfactory system in larva is almost as simple as in nematode, C. 

elegans. C. elegans have only four bilaterally symmetric neurons that are 

responsible for sensing volatile chemicals (Bargmann, 1993). Unlike Drosophila, 

the OSNs of C. elegans’ OSNs harbor as many as 1000 different ORs 

(Bargmann, 1993; Troemel et al., 1995). The first olfactory synapse of C. elegans 

also does not exhibit glomerular structure. Although the systems are differently 

organized, experiments that identified behavioral functions of single olfactory 

neurons in C. elegans (Troemel et al., 1997) are commended in larvae.  

The glomerular organization of the LAL is reminiscent of the mammalian OB. 

However, instead of a thousand glomeruli with two plains of symmetry that are 

present in mice, Drosophila larvae have one glomerulus for each of its 21 OSNs. 

Thus, input into each larval OSN or each glomerulus represents a large fraction 

of the total input into the olfactory system. 
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4 Chemotaxis Behavior Mediated by Larval Olfactory 

Neurons 

4.1 Introduction 

The olfactory system permits animals to detect, discriminate, and produce 

appropriate behavioral responses to a vast number of different odors. The first 

step in odor coding occurs at the periphery, where odor molecules interact with 

the OR proteins on the surface of OSNs. Each OR is thought to interact with a 

number of odor ligands and each ligand interacts with multiple ORs, leading to a 

combinatorial model in which odor identity is encoded by the activation of distinct 

ORs (Araneda et al., 2000; Hallem et al., 2004a; Malnic et al., 1999; Touhara et 

al., 1999). OSNs are known to express only one OR in mammals, or up to two 

ORs in insects (Dobritsa et al., 2003; Goldman et al., 2005). Receptive properties 

of the ORs are critical for OSN activation. Once an OSN is activated, neuron 

connectivity determines the output of the olfactory circuit. Hence, activation of an 

OSN will not confer olfactory sensation, if its information is not processed to be 

relevant or salient. Little is known about fate of olfactory signals once they leave 

OSNs. The parsimonious Drosophila larval olfactory circuit is an excellent model 

system to parse out the contributions of single ORs/OSNs to olfactory perception. 

Manipulations to the olfactory sensory input would affect the output of the 

olfactory circuit and ultimately larval behavior. Genetic markers for larval OSNs 

allow us to manipulate the functionality of the peripheral system of the larva by 

either ablating single OSNs or constructing larvae with one or two functional 

OSNs. This approach allows us to deconvolute the sensory input to the olfactory 
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system and to examine the individual contribution of OSNs to chemotaxis 

behavior. 

An observation that larvae chemotax robustly toward single compounds 

allows for well-controlled experiments, where the quantity and the quality of the 

stimulus are known. While the natural stimuli for larvae contain numerous 

volatiles at low concentrations, a single compound may require higher 

concentrations to elicit larval behavior. Therefore, to study the function of 

individual OSNs, we chose higher concentrations of odorants that produce robust 

chemotaxis in wild-type larvae. 

Ablation of single OSNs reveals extensive functional redundancy in the 

larval olfactory system: a given OR/OSN is only necessary for chemotaxis to a 

small subset of odors tested. Animals with only a single functional OSN can 

chemotax robustly toward a number of odor stimuli. Combinatorial coding 

afforded by the entire ensemble of ORs is not strictly necessary for an animal to 

perceive and chemotax toward an odor. However, adding to a single-functional-

OSN animal a second functional OSN, which by itself is not sufficient to mediate 

chemotaxis, produces enhanced behavioral responses to a subset of odors. 

These results demonstrate at a behavioral level that a single OSN is sufficient to 

detect the presence of an olfactory stimulus and that the combinatorial activation 

of different ORs participates in the formation of olfactory percepts. 
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4.2 Materials and Methods 

4.2.1 Drosophila Stocks 

The fly stocks were maintained as described in Section 2.2.1. Flies used as 

wild-type controls for behavioral experiments were of same genotype as for 

generation of transgenic flies, yw;+/+;+/+ (yellow body, white eyes). A cell-

autonomous version of Diphtheria toxin (DTI) was used to silence larval OSNs; 

UAS DTI14 stock was generously provided by LM Stevens, Albert Einstein 

College of Medicine. Flies mutant for Or83b, (Or83b-/-, strain Or83b1/Or83b1 or 

Or83b2/Or83b2) were previously described (Larsson et al., 2004). 

4.2.2 Measurement of Larval Glomerular Volumes 

Immunostaining of larval brains and dorsal organs was performed as in 

Section 3.2.3.1. For volume measurements, three-dimensional Z-series of the 

GFP-labeled Or1a glomeruli in wild-type (Or1a Gal4/UAS CD8::GFP;TM2/+), 

Or1a-functional (Or1a Gal4, UAS Or83b/UAS CD8::GFP;Or83b1/Or83b2), 

and Or83b mutant animals (Or1a Gal4/UAS CD8 GFP;Or83b1/Or83b2) were 

obtained by confocal microscopy. Images for all three genotypes were acquired 

under identical confocal settings. The volumes of Or1a glomeruli were measured 

with segmentation software, AmiraTM (TGS), with manual trimming of afferent 

axons. Left and right glomeruli were averaged for each animal before the mean 

was calculated.  
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4.2.3 Larval Chemotaxis Assay 

Larval behavioral assays were carried out as described (Larsson et al., 

2004). Odor stimuli (2 µl, 4 µl, or 20 µl neat or smaller quantities diluted in 

paraffin oil) were pipetted onto a filter placed inside a plastic cap located at one 

side of the 85 mm Petri dish. Most experiments used stimulus strength of 2 µl of 

neat odor because this elicits strong chemotaxis responses across a broad range 

of structurally different odors (Cobb et al., 1992; Cobb and Dannet, 1994; Monte 

et al., 1989). All odorants were supplied by Sigma-Aldrich and were of the 

highest purity available. Natural odors were commercial balsamic vinegar used at 

full strength or diluted in water, a liquid paste of 50% w/v ripe banana mashed in 

water, and 20% w/v paste of activated baker's yeast in water. Single third-instar 

larvae were transferred to the plate, and their locomotor activity was recorded for 

five minutes as X-Y coordinates at a sampling rate of 6 Hz with EthoVision® 

(Noldus Information Technology) tracking software. The assay was multiplexed, 

with up to 12 individual larvae assayed simultaneously in separate 85 mm 

circular arenas. Each animal was assayed only once. We minimized the 

presence of airflow in these experiments by conducting the assay in Petri dishes 

with closed lids. Animals were tested within a few seconds of odor application.  

4.2.4 Statistical Analyses 

Data were exported from EthoVision® and analyzed by Matthiew Louis 

using MATLAB® (The MathWorks). To filter out experiments with technical noise 

due to light scattering or tracking failures, any tracks shorter than 270 s or with a 

mean velocity = 0 cm/s or > 0.2 cm/s were discarded; all tracks that passed 
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these criteria were included in the analysis. Larval chemotaxis behavior was 

quantified as the distance of the animal from the odor. For each larva, distances  

to odor, calculated at each time-point, were averaged over the 5 minute trial 

(mean distance to odor).  

Unless indicated otherwise, all statistical analyses were performed with one-

tailed nonparametric Wilcoxon rank-sum tests that evaluate differences between 

control and experimental data sets. All ablated OSN or one- or two-functional 

OSN(s) genotypes were compared to appropriate parental genotypes. We 

denote the ablated genotypes as follows: (α1) Or83b Gal4/+;UAS DTI/+; (α2) 

Or1a Gal4/+;UAS DTI/+; (α3) Or42a Gal4/+;UAS DTI/+; and (α4) 

Or49a Gal4/+:UAS DTI/+. The one-functional OSN genotypes are denoted as 

(ρ1) Or1a Gal4/UAS Or83b;Or83b1/Or83b1, (ρ2) Or42a Gal4/UAS Or83b; 

Or83b1/Or83b1, (ρ3) Or49a Gal4/UAS Or83b;Or83b1/Or83b1 and two-

functional OSNs as (ρ4) Or42a Gal4,Or1a Gal4/UAS Or83b;Or83b1/Or83b1, 

and (ρ5) Or49a Gal4,Or1a Gal4/UAS Or83b;Or83b1/Or83b1. The genotypes 

used for controls are as follows: (η1) UAS DTI, (η2) Or83b Gal4, (η3) 

Or1a Gal4, (η4) Or42a Gal4, (η5) Or49a Gal4, (η6) Or83b1/Or83b1, (η7) 

UAS Or83b/UAS Or83b;Or83b1/Or83b1, (η8) Or1a Gal4/Or1a Gal4; 

Or83b1/Or83b1, (η9) Or42a Gal4/Or42a Gal4;Or83b1/Or83b1, and (η10) 

Or49a Gal4/Or49a Gal4;Or83b1/Or83b1. For OSN ablation experiments, the 

following comparisons were performed according to pairs of genotypes↔controls: 

α1↔{η1,η2}, α2↔{η1,η3}, α3↔{η1,η4}, and α4↔{η1,η5}. In one- and two-functional 
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OSN(s) experiments, comparisons were made as follows: yw↔{η6}, (ρ1)↔{η7,η8}, 

(ρ2)↔{η7,η9}, (ρ3)↔{η7,η10}, (ρ4)↔{η7,η8,η9}, and (ρ5)↔ {η7,η8,η10}.  

To address the problem of multiple testing, we used a permutation-

resampling-based technique to adjust the nominal p values and to keep the 

family-wise error rate to 0.05 everywhere (Korn et al., 2004). The approach we 

implemented accounts for possible non-independence of the tests and allows us 

to control the False-Discovery Rate (FDR) among the set of null hypotheses 

rejected by the Wilcoxon tests. When the FDR is chosen as zero, our analysis 

approximates the stringent Bonferroni correction, given the low level of 

dependency between tests for different odors (Korn et al., 2004; Shaffer, 1995). 

To study the influence of individual OSNs on the olfactory responses of 

larvae, we proposed a linear model for dominant function of OSNs. We 

considered whether animals with two functional OSNs chemotax significantly 

better than those with one OSN, in the following model (Equation 1). 

Equation 1: Linear model for dominant function of olfactory neuron  

d =β +β .Γ +β .Γ +i 0 1 one OR 2 two ORs εi

where di denotes the distance of the ith larva to a given odor, εi is the ith 

residual, and Γone OR and Γtwo ORs are binary indicators (0 or 1), 1 indicates the 

presence of functional neuron(s). “One OR” refers to the OR/OSN that mediates 

the stronger chemotaxis, “two ORs” refers to genotype with two functional OSNs. 

We estimated coefficients β0, β1, and β2 by multiple linear regression 

(MATLAB®) method. Potential cases of synergism are related to significant 

increases in attraction, and are associated with values of β2 < 0. Conversely, 

 75 
 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6VRT-4HR7KRJ-R&_mathId=mml1&_user=276325&_cdi=6243&_rdoc=2&_handle=V-WA-A-W-BZ-MsSAYVW-UUA-U-AABZCWBYBW-AABVAUVZBW-CWVAAAZDY-BZ-U&_acct=C000015918&_version=1&_userid=276325&md5=a480fe430ea2098e2dded225e0b4cfa9


potential cases of OSN inhibition are related to significant decreases in attraction, 

and are associated with values of β2 > 0. To test whether the estimated β2 values 

are significantly different from zero, we used student two-tailed t tests with a 

significance level of 0.05. 

To analyze the nature of OSN interaction identified by Equation 1, we 

considered an additive model (Equation 2).  

Equation 2: Linear model for additive function of olfactory neurons 

d =β +β .Γ +β .Γ +i 0 Or1a Or1a Or42a Or42a  εβ .Γ .Γ +Or1a/Or42a Or1a Or42a i

where the binary indicator ΓOR is equal to 1 when the corresponding OSN is 

functional, and 0 otherwise. The regression coefficients β are estimated by the 

multiple linear regression (MATLAB®) method. Cases where two functional 

neurons lead to chemotaxis that is greater than the sum of the chemotaxis 

characterizing single functional neurons could be considered true synergy, these 

cases are associated with values of βOr1a/Or42a significantly smaller than 0. 

Conversely, cases where the relationship between the behavioral enhancement 

is less than additive will be reflected by values of βOr1a/Or42a significantly larger 

than zero. Values of βOr1a/Or42a that fall between the aforementioned extremes 

cannot be distinguished from additive enhancement of chemotaxis. 

4.3 Results 

The genetic tools that uniquely label larval OSNs allow us to manipulate the 

odor code by deconstructing the peripheral olfactory input and examining effects 

on behavioral output. Toward this end, we established a chemotaxis assay of 

sufficient sensitivity to quantify differences in odor-evoked behavior. The assay 
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involves single-animal analysis in which the coordinates of individual larvae are 

tracked on Petri dishes over the course of a 5 minute experiment (Larsson et al., 

2004). We tested larval chemotaxis for a large panel of synthetic monomolecular 

odorants, most of which are also emitted by ripening fruit.  

For each larva, we obtained mean distance to the odor source. For each 

experimental condition (genotype/odor), more than 20 usable recordings were 

obtained. Since some of the data were not normally distributed, we chose to use 

medians rather than the means when compiling data for multiple larvae; thus, we 

plot population medians of individual mean distances represented by 

pseudocolor scale from zero (maximal attraction) to 8.5 cm (maximal repulsion) 

(Figure  4.1A). Distance to odor is used as an indicator of chemotaxis intensity 

with an assumption that the degree of attraction correlates inversely with 

distance to the odor. 

4.3.1 Wild-type Larvae Chemotax Strongly Toward Many Odorants 

Chemotaxis of wild-type (Or83b+/+) and Or83b mutant (Or83b-/-) larvae were 

measured in response to 53 synthetic odorants, median distances to odor are 

plotted in pseudo-color scale (Figure  4.1B). Forty of these 53 odors are naturally 

present in fruit (Argenta et al., 2004; Idstein et al., 1984; Jordan et al., 2001; Pino 

et al., 2005) (Figure  4.1B); and of these, 13 are known to elicit behavioral 

(Oppliger et al., 2000; Zhu et al., 2003) and electrophysiological (Stensmyr et al., 

2003) responses in Drosophila (Figure  4.1B). Or83b−/− larvae are not attracted 

by any of the odors tested (Figure  4.1B) and (Larsson et al., 2004), but wild-type 

(yw) larvae respond to many odors with strong chemotaxis (Figure  4.1B). 
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Figure  4.1: Larvae respond to odors with chemotaxis. (A) Schematic of larval 

plate assay, pseudo-color coded for distance to odor, with the scale at bottom. Odor 

stimulus is placed on round filter, at the right edge of the plate. (B) Responses of Or83b 

mutant (red) and wild-type (cyan) larvae to a panel of 53 synthetic odors presented at a 

dose of 2 µl. Median distance to odor is expressed with the pseudo-color scale in (A). 

Dots under the apple graphic indicate odors that are found in apple (Argenta et al., 2004), 

cherimoya fruit (Idstein et al., 1984), banana (Jordan et al., 2001), or in at least three of 

20 assayed varieties of mango (Pino et al., 2005). Green dots indicate odors that were 

found to be relevant for flies via single-sensillum electrophysiological recordings in adult 

flies (Stensmyr et al., 2003) or behavioral assays in adult flies (Zhu et al., 2003) or larvae 

(Oppliger et al., 2000). In total, 4780 larvae were tested; mean n = 45 (range 20–85) per 

odor and genotype. Chemical Abstracts Service (CAS) numbers are to the left of each 

odor. 
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Or83b−/− larvae in presence of odor behave similarly to Or83b+/+ larvae in 

absence of odor; they do not stay at the center of dish where they start but 

explore the plate. The distribution of anosmic Or83b−/− (red) and wild-type 

Or83b+/+ (cyan) larvae in space over the course of a five minute experiment is 

represented by sector plots and box plots in Figure  4.2. The 8.5 cm plate is 

divided into 21 sectors, and the average percent time an animal spends in each 

sector is plotted in grayscale (Figure  4.2, left). Note that only Or83b+/+ larvae are 

strongly attracted to the sector containing the odor. Box-plot distributions 

accompany sector plots (Figure  4.2, bottom). The distribution of Or83b+/+ larvae 

in response to no odor is used as an empirical reference throughout this study.  
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Figure  4.2: Sector plots illustrate spatial distribution of larvae in response 
to odor. Odor source (2 µl of isoamyl acetate) is represented by circle (right side of 

plate). Sectors are shaded according to the percentage time in sector (scale at left). Box 

plot representations of each experiment are under sector plots. The median is indicated 

by colored vertical line inside box plot, box boundaries represent first and third quartiles, 

whiskers are 1.5 interquartile range, and outliers are indicated by hatch marks. 

Genotypes, left to right: Or83b1/Or83b1, n = 111; yw, n = 111; Or83b1/Or83b1, n = 91; yw, 

n = 112. Median (black dashed line at 4.45 cm) and first to third quartiles (grey shaded 

area from 3.30 cm to 5.50 cm) of yw response distribution to “no odor” are present in all 

box-plots. 
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4.3.2 Larval Odor-Response Thresholds Vary Greatly 

At 2 µl doses of different odors, larvae exhibit a range from strong to no 

observable chemotaxis. Next, we examined how larval sensitivity changes when 

we decrease the dose for three potent odors (Figure  4.3). The responses to 1-

hexanol drop sharply with decrease in concentration, while dilutions of isoamyl 

acetate induce sustained chemotaxis (Figure  4.3A) In fact, wild-type larvae 

exhibit chemotaxis that is different from anosmic controls at all tested 

concentrations of isoamyl acetate (Figure  4.3B). At low concentration(s) of 1-

hexanol and heptanal chemotaxes are weak and not statistically different from 

anosmic controls (Figure  4.3B). In conclusion, response thresholds to heptanal 

and isoamyl acetate are one and two log orders, respectively, below that of 1-

hexanol (Figure  4.3).  

 

Figure  4.3: Concentration dependence of larval odor responses. (A) Median 

distances to 10X dilutions of odor are coded in pseudo-color scale (bottom), for anosmic 

Or83b−/− (red; left) and wild-type Or83b+/+ (cyan; right) larvae. (B) Box plots of results in 

(A). Significance was established by Wilcoxon rank-sum tests comparing data from 
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Or83b+/+ (cyan) to Or83b−/− controls (red) with Bonferroni correction for multiple 

comparisons. Box plots shaded dark gray indicate significant chemotaxis (p < 0.05/4 = 

0.0125). In total, 1183 larvae were tested; mean n = 49 (range 30–64) per odor and 

genotype. 

4.3.2.1 Increased Doses of Some but not All Odors Attract Larvae 

At 2 µl dose, some odors elicit weak or no chemotaxis. To test whether 

some odors have high detection thresholds, we tested seven odors at 20 µl dose 

(Figure  4.4). Under these conditions, only 1-butanol and 2,3-butanediol elicit 

significant chemotaxis, and the remaining five odors do not. Thus increasing odor 

dose from 2 µl to 20 µl will not render all stimuli attractive. 

   

Figure  4.4: Summary of concentration-dependent changes in larval 
behavior. Median distances to odor are indicated in pseudo-color scale (bottom), for 

anosmic Or83b−/− (red; left) and wild-type Or83b+/+ larvae (cyan; right) at 2 µl and 20 µl 

concentrations for seven odors that induce no chemo-taxes at 2 µl. 

For all conditions tested, odor responses seem to plateau for higher 

concentrations; we find no evidence that higher concentrations elicit repulsion 

(Figure  4.1B, Figure  4.4, and data not shown). The 2 µl stimulus dose elicits 

robust chemotaxis across a large group of different odors (Figure  4.1B), in 

accordance with previous behavioral studies (Cobb et al., 1992; Cobb and 

Dannet, 1994). Detection thresholds and concentration curves for each odor 
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need to be empirically determined; without this information, the 2 µl stimulus is a 

reasonable global standard. 

4.3.2.2 Larvae are Attracted by Complex Natural Stimuli 

We examined whether chemotaxis elicited by single odors is comparable to 

that obtained with natural stimuli. Chemotaxis was measured in the same assay 

to mashed banana, balsamic vinegar, and yeast paste at different concentrations. 

We find that attraction elicited by single synthetic odors is qualitatively similar to 

that obtained with natural odor blends and that the same steep threshold and 

stable plateau properties are seen for both stimulus types (Figure  4.5). 
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Figure  4.5: Larval responses to complex natural stimuli. (A) Summary of 

responses of anosmic Or83b−/− (red, top) and wild-type Or83b+/+ (cyan, bottom) larvae to 

natural stimuli. Median distances are plotted in pseudo-color scale. (B) Box plots data for 

Or83b−/− (red) and Or83b+/+ (cyan) larvae in (A). Box plots shaded dark gray indicate 

significant chemotaxis with Bonferroni correction (p < 0.05/6 = 0.0083). The highest dose 

of balsamic vinegar acidifies the agarose in the plate, attracting Or83b−/− larvae via their 
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intact gustatory system (data not shown). In total, 2177 larvae were tested, mean n = 60 

(range 36–67) per odor and genotype. 

The quantities of natural stimuli that induce chemotaxis are 2 µl or greater. 

Although the total output of volatiles from the natural stimuli is not known, it is 

likely to be less than from 2 µl of the synthetic odors that we used. Use of natural 

stimuli may permit us to use lower concentrations of volatiles, however, these 

stimuli are not well defined and are difficult to control. 

Another factor to consider when choosing odor quantities for assay is vapor 

pressure. Upon loading 2 µl of an odorant stimulus in the closed-dish assay, the 

spatial distribution and average airborne concentration of odor in the dish will be 

greatly determined by the odor's vapor pressure. An alternate way to standardize 

odor concentration, would be to adjust quantities for vapor pressure. 

Observations that odorants with higher vapor pressures are likely to have higher 

detection thresholds (Keller and Vosshall, unpublished), discourages us from 

standardizing to vapor pressure, as the olfactory systems already compensate 

for the differences in volatility of odors. In the initial phases of this study, we 

found no clear correlation between the vapor pressure of a given odor and its 

corresponding behavioral efficacy (data not shown). We therefore decided to 

avoid any normalization of stimulus concentration and used the same quantity of 

odor (2 µl) for all 53 stimuli tested.  

4.3.3 Genetic Ablation of Single Larval Olfactory Neurons 

We next asked, what is the relative contribution of any given OSN to the 

formation of an odor percept? Diphtheria toxin (DTI), an attenuated version of 

protein-translation inhibitor diphtheria toxin (Bellen et al., 1992; Han et al., 2000), 
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was used to selectively ablate identified OSNs. When both DTI and GFP are 

expressed in all larval OSNs under control of Or83b Gal4, these OSNs are 

atrophied to the degree that they do not express GFP (Figure  4.6A, left). When 

the dendrites of DTI-expressing larval OSNs are visualized with electron 

microscopy (EM), the few remaining sensory dendrites are severely atrophied 

(Figure  4.6A, right). In Or49a-ablated animals, the GFP marker is not visible and 

the overall structures of the DO and TO ganglia are not perturbed, suggesting 

cell autonomy (Figure  4.6B). 

 
Figure  4.6: Diphtheria toxin atrophies olfactory sensory neurons. (A) Whole-

mount GFP fluorescence (left; green) and thin-section electron micrographs (right) of 

Or83b Gal4;UAS GFP/TM6B larvae (top) and Or83b Gal4;UAS GFP/UAS DTI 

larvae (bottom). Horizontal EM sections (right) were obtained from the region indicated 

by the bracket in the left panels. Scale bar = 1 µm. (B) Whole-mount GFP fluorescence 

(right, green) of Or49a Gal4;UAS GFP/TM6B larvae (top) and Or49a Gal4; 

UAS GFP/UAS-DTI larvae (bottom) is shown. Neuronal nuclei (DO and TO) are 

labeled with ELAV (magenta). 

Chemo-taxes of animals with single OSNs ablated (Or1a, Or42a, or Or49a) 

or all OSNs ablated (Or83b) were measured with a panel of 20 odors. To control 

for effects of genetic background, we compared the behavior obtained with each 

ablated animal to the corresponding parental controls. Nonparametric Wilcoxon 

rank-sum tests were performed to establish significantly impaired chemotaxis in 
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ablated animals, correcting for multiple tests with the False Discovery Rate (FDR) 

method (Section  4.2.4). The summary plot in Figure  4.7 is masked to show only 

those values with impaired chemo-taxes that are statistically significant. With the 

conservative statistical approach of zero false discoveries, Or83b-ablated larvae 

fail to respond to 17/20 odors (Figure  4.7). If we allow for a single false discovery 

(FD ≤ 1), Or83b-ablated animals fail to respond to 19/20 odors. At FD = 0, Or1a-

ablated and Or49a-ablated animals each show reduced chemotaxis to a single 

odors, (E)-2-hexenal and 1-hexanol, respectively, but show normal chemotaxis to 

the other 19 odors (Figure  4.7). In contrast, ablation of the Or42a OSN causes 

decrease in chemotaxis to four of 20 odors (Figure  4.7). 

 

Figure  4.7: Genetic ablation reveals redundancy in the larval odor code. 
Summary of behavioral data to 20 odor stimuli presented at a dose of 2 µl. The 

difference in chemotaxis observed between the ablated genotypes and their parental 

controls was assessed upon adjustment of the nominal significance levels of Wilcoxon 

tests to maintain the family-wise type I error rate smaller than 0.05, while allowing zero 

or one False Discoveries (FD). Where chemo-taxes are significantly impaired relative to 
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controls, median distance-to-odor values are filled in pseudo-color scale. All cases that 

do not meet these statistical thresholds are masked in white, labeled N.S. (not significant, 

level 0.05 at FD ≤ 1). Corrected nominal significance levels at FD = 0 and FD ≤ 1 for all 

genotypes are listed below the table. 

4.3.4 Larvae with One Functional Olfactory Neuron Can Smell 

We next asked which OSNs are sufficient to produce chemotaxis to a given 

odor by constructing animals with only one or combinations of two functional 

OSNs. This was achieved by exploiting the Or83b mutation, which prevents OR 

trafficking to the sensory dendrite (Benton et al., 2006; Larsson et al., 2004; 

Neuhaus et al., 2005). Or83b function is restored in individual OSNs by crossing 

animals with specific OR Gal4 drivers to UAS Or83b animals, allowing us to 

assess the contribution of single neurons to odor-evoked behavior in the OR-

functional progeny.  

We find no evidence that the glomerular map is distorted by the activation of 

a single OSN in a background of nonfunctional neurons as evidenced by the 

normal position and volume of the Or1a glomerulus (Figure  4.8A). When all 

larval OSNs are nonfunctional, the Or1a glomerulus appears normal in 

approximately two-thirds of animals (data not shown) but shows stray fibers 

leaving the glomerulus in about one-third of animals (Figure  4.8A, right panel). 

Only a single OR83b-positive neuron is seen in Or1a-, Or42a-, and Or49a-

functional OSN animals, whereas two OR83b-positive neurons are visible in 

Or1a-/Or42a- and Or1a-/Or49a-functional OSNs animals (Figure  4.8B, top). The 

remaining OSNs are present but unlabeled in these animals because the Or83b 

mutation eliminates OR83b protein expression.  
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Figure  4.8: Chemotaxis produced by single functional olfactory neurons. (A) 

Surface view of the Or1a glomerulus in wild-type, Or1a-functional, and Or83b mutant 

backgrounds (green), along with a direct volume rendering of the larval antennal lobe 

stained with nc82 (dark red). Scale bar = 10 mm. Mean volume +/- standard error of the 

mean (SEM), n = 9 animals, n = 18 glomeruli. Glomerular volume differences are not 

significant among these genotypes (p > 0.2; two-tailed t test). (B, top) schematic of 

larvae having single or pairs of functional OSNs. Immunofluorescence of OSNs stained 
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with anti-OR83b antibody (green) of yw, (ρ1), (ρ2), (ρ3), (ρ5), and (ρ6) larvae (left to 

right), see Section  4.2.4 for genotypes. White dotted line indicates boundary of dorsal-

organ cell-body ganglion, as visible in the yw genotype. The terminal-organ neuron 

expressing Or49a-Gal4 is visible outside of the boundary of the dorsal organ. (Bottom) 

Summary of behavioral data to 53 different odor stimuli, presented at a dose of 2 µl. 

Cases with significant chemotaxis (level 0.05; FD = 0) relative to anosmic controls show 

the distance to odor with the scale at bottom. All cases that do not meet this statistical 

threshold are masked with a black box labeled N.S. (not significant at level 0.05 and FD 

= 0). In total, 29,235 larvae were tested, mean n = 50 (range 20–146) per odor and 

genotype. Corrected nominal significance levels for each genotype are p < 0.0012 for 

Or83b and p < 0.0011 for the remaining five genotypes. 

Larvae with one or two functional OSNs, along with genetically matched 

control larvae were screened for chemotaxis to 53 odors by using the same 

behavioral assay and nonparametric statistical analysis as for the ablation 

experiments. The resulting median distances to odors are summarized in Figure 

 4.8B (bottom). The summary plot is masked to show only those values with 

statistically significant chemotaxis allowing FD = 0. At FD = 0, Or42a-functional 

animals respond to 22 odors compared to 36 odors in Or83b+/+ controls that have 

21 functional OSNs. Consistent with the Or42a-ablated phenotypes (Figure  4.7), 

Or42a-functional animals respond to three of four odors to which Or42a-ablated 

animals are anosmic (Figure  4.8B). The broad behavioral response profile we 

observe for Or42a-functional larvae is in agreement with the broad ligand 

specificity of this OR as defined by electrophysiological experiments (de Bruyne 

et al., 1999; Goldman et al., 2005; Kreher et al., 2005).  

In contrast to the broad odor response profile of Or42a-functional larvae, 

Or1a- and Or49a-functional OSN animals do not show significant chemotaxis to 
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any of the 53 odors tested, consistent with the weak phenotype of ablating either 

the Or49a-expressing or Or1a-expressing neuron (Figure  4.7). These behavioral 

results are also in accord with the ligand profiling of Or49a, which does not show 

strong electrophysiological responses to any of 27 odors tested (Kreher et al., 

2005). 

4.3.5 A Second Functional Olfactory Neuron Enhances Chemotaxis 

Although Or1a- and Or49-functional larvae do not chemotax to any odors 

tested, we analyzed whether these neurons contribute to chemotaxis in concert 

with the Or42a neuron. Chemotaxis performance of larvae with two functional 

neurons was compared to data from animals with only a single functional neuron. 

Larvae with two functional neurons respond to a somewhat different subset of 

odors than animals having either single functional neuron (Figure  4.8B).  

To examine the existence of interactions between these neurons and 

identify cases of combinatorial enhancement, we developed an exploratory linear 

model to compare chemotaxis data across genetically matched controls for 

larvae with one or two functional OSNs (Equation 1). The model was designed 

to identify potential cases where single-neuron chemotaxis behavior differs from 

two-neuron behavior. In six cases, larvae with Or1a- and Or42a-functional OSNs 

chemotax significantly differently from larvae with single functional OSNs (Figure 

 4.9 left, highlighted in red). In each case, the value of β2 is smaller than zero, 

reflecting an enhancement in chemotaxis. For the Or1a/Or49a OSNs, three 

cases of significant difference are also highlighted in red (Figure  4.9 right); all 
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three odors are associated with values of β2 larger than zero, which reflect 

decreases in chemotaxis.  

 

Figure  4.9: Linear model highlights potential cases of olfactory neuron 
interaction. Exploratory linear model applied to 53 odors to identify cases of 

chemotaxis enhancement (or inhibition) between the double and the single functional 

genotypes (Figure  4.8). Estimated coefficients β0, β1, and β2 are represented by circles. 

The confidence interval of each estimate is represented by a horizontal bar calculated at 

a significance level 0.05.  

We sought to investigate experimentally the potential cases of positive 

cooperativity between Or1a and Or42a OSNs. Additional chemotaxis 

experiments were carried out with four odors (1-pentanol, 2-pentanol, 2-hexanol, 
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and 3-octanone) at three concentrations. 1-pentanol shows significantly stronger 

chemotaxis in Or1a/Or42a-functional animals than Or42a-functional or Or1a-

functional animals at all three concentrations (Figure  4.10A). A qualitative view 

of this behavioral enhancement is presented as sector-plot distributions; a 

progressive increase in chemotaxis to 1-pentanolincrease from Or83b-/- anosmic 

condition is seen for Or1a-functional, Or42a-functional, and Or1a/Or42-functional 

OSNs (Figure  4.10B). The Or1a/Or42-functional animals spend comparatively 

more time in the sector containing the odor than animals having either single 

functional neuron alone. For the other three odors, most odor concentrations 

show a trend towards cooperativity of Or1a and Or42a OSNs, however the 

cooperative effect is significant only at a single odor concentration (Figure 

 4.10A). 

The cooperative function of Or1a- and Or42a-expressing OSNs for the four 

odors tested in Figure  4.10 could be additive, sub-additive, or super-additive 

(true synergy). To test for synergy, we applied a second model, which assumes 

that addition of a functional neuron leads to an additive change in distance to 

odor (Equation 2), to data for 1-pentanol, 2-pentanol, 2-hexanol, and 3-octanone 

from Figure  4.8B and Figure  4.9. Because no estimates of βOr1a/Or42a are 

significantly different from zero (p < 0.0125), the combined effects of the Or1a 

and Or42a OSNs are not significantly greater than the sum of the individual 

contributions (Figure  4.11). Thus, we can only conclude that cooperative 

interactions between Or1a- and Or42a-expressing OSNs for 1-pentanol, 2-

pentanol, 2-hexanol, and 3-octanone are neither synergistic nor sub-additive. 
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Figure  4.10: Larvae with two functional olfactory neurons (as compared to 
one) exhibit enhanced chemotaxis at a range of odor concentrations. (A) 

Box plots of responses of larvae with Or1a-, Or42a-, and Or1a/Or42a-functional OSNs to 

1-pentanol, 2-pentanol, 2-hexanol, and 3-octanone at 1 µl, 2 µl, and 4 µl doses. Box 

plots shaded dark gray indicate significantly different chemotaxis of Or1a/Or42a-

functional from Or1a- and Or42a-functional genotypes, determined with Wilcoxon rank-

sum tests and Bonferroni correction (p < 0.05/3 = 0.017). In total, 3088 larvae were 

tested, mean n = 87 (range 47–165) per odor and genotype. (B) Sector plots showing 

the averaged spatial distribution of animals from (A) for a single concentration of each 

odor. 
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Figure  4.11: Behavioral contributions Or1a and Or42a olfactory neurons are 
not different from additive. Linear model applied to test for synergistic interactions 

of the single OSNs. Coefficients (β) were approximated by multiple linear regression 

(MATLAB®) method, represented by circles, at a significance level adjusted with the 

Bonferroni correction (p = 0.05/4 = 0.0125) represented by horizontal bar.  

4.4 Discussion 

In this study, we use behavioral analysis to measure the contribution of 

individual neurons to the odor code and provide a missing link between our 

understanding of the molecular biology of ORs, the neurophysiological properties 

of the olfactory network, and complex odor-evoked behaviors. We investigated 

how the combinatorial activation of ORs encodes odor stimuli and elicits olfactory 

behavior.  

Our results suggest that there is a high level of redundancy in the larval 

olfactory system, such that ablating a single OSN has minimal effects on odor 

detection. The Or42a OSN plays a more important role in odor detection than the 

Or1a or Or49a OSNs. Or42a OSN is both necessary and sufficient for 

chemotaxis to several odors, as schematized in Figure  4.12. Or1a and Or49a 

OSNs are necessary for wild-type chemotaxis to a single odor each, and are 

sufficient only in concert with another functional OSN (Figure  4.12). At various 

concentrations, chemotaxis of larvae with Or1a- and Or42a-functional OSNs are 
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enhanced to four odors, relative to Or42a-functional larvae. Thus, while olfactory 

input contributed by some OSNs is not sufficient alone to elicit robust chemotaxis, 

it enhances the perception of odors in conjunction with the information 

transmitted by other OSNs.  

 

Figure  4.12: Larval chemotaxis behavior is integrated across multiple 
olfactory neurons. This schematic diagram outlines the general conclusions from our 

behavioral observations. At left, ablated OSNs are necessary for chemotaxis to a subset 

of odors (lines ending in vertical bars). At right, single OSNs (solid lines) or combinations 

of two functional OSNs (dashed lines) are sufficient to mediate chemotaxis (lines ending 

in arrows). This schematic includes results from Figure  4.7 and a subset of Figure  4.8B. 

Although an OSN may be necessary for wild-type chemotaxis to an odor, other OSNs 
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may be sufficient for chemotaxis to the same odor that is significantly stronger than 

anosmic condition.  

A number of conclusions about odor coding in the Drosophila larva can be 

drawn from our work. Larvae can chemotax robustly to many odors even when 

they have only one functional OSN. There appears to be no clear structural 

relationship between the odors that elicit chemotaxis mediated by a given OSN, 

as previously observed in studies of ligand response properties of ORs in the 

adult fly (Hallem et al., 2004a; Kreher et al., 2005). Some OSNs may play a more 

dominant role in the olfactory circuit than others in both their odor receptive 

ranges and the behavioral consequences of their activation.  

It remains to be seen what percentage of larval OSNs fall within the high 

influence on chemotaxis (Or42a) category or the less influential (Or1a/Or49a) 

category. Interestingly, the behavioral response profile of the Or42a-functional 

genotype indicates that an OR may not need to be strongly activated by a given 

odor to allow for chemotaxis toward the odor source. This point is best illustrated 

by 3-octanol and anisole, which both elicit strong chemotaxis in Or42a-functional 

animals whereas they seem to induce relatively weak electrophysiological activity 

(Kreher et al., 2005).  

The behavioral receptive field of animals having combinations of functional 

OSNs cannot be explained by the simple linear models explored in this study. 

Although the examples of cooperative interactions between OSNs that we 

explored do not differ from additivity, the additive model may not hold true for all 

neurons since activation of single neuron can already lead to wild-type-like 

chemotaxis. We explored behavioral properties that stem from activities of only 
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three of the 21 larval OSNs. There may exist combinations of OSNs that produce 

strong synergistic or inhibitory effects; these OSNs are yet to be studied. 

The chemotaxis results we report highlight the existence of strong 

nonlinearities in the processing of olfactory information; consequentially, in the 

arithmetic of sensory coding, the whole is greater than what the parts can 

produce independently. Such a scheme would be consistent with the 

extraordinary needs of the olfactory system to detect numbers of odors that 

greatly exceed the number of OR genes in any given animal. The functional 

redundancy we observe here would allow larvae to chemotax to single odors and 

complex stimuli; it could also buffer the olfactory system against mutations and 

allow animals to adapt to changing or new odor environments. 

Behavior is the ultimate output of a sensory system that integrates all 

aspects of external-information processing. Our experiments demonstrate the 

feasibility and value of integrating behavioral analysis into the study of odor 

coding. We propose that the simple olfactory system of Drosophila larvae will be 

an invaluable model in any attempt to correlate the cellular basis of the odor code 

with its behaviorally relevant output. 

4.5 Contributions 

I was fortunate to be a part of the team that carried out the larval 

chemotaxis study. I established expression of OR Gal4 transgenes that led to 

DTI ablation and single functional neuron experiments. I also participated in 

experimental design and analysis of the data. Several members of the Vosshall 

laboratory and The Rockefeller University contributed to this work. Kenta Asahina 
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(graduate fellow, RU) carried out RNA in situ hybridization to confirm OR 

expression in larvae. A chemotaxis assay that uses Ethovision® was developed 

by Andreas Keller (postdoctoral fellow, Vosshall lab, RU) for tracking adult flies; 

this assay was adapted for larvae by Ana Domingos (graduate student, Vosshall 

lab and Instituto Gulbenkian de Ciencia, Portugal). Laboratory helpers Silvia 

Vasquez and Lylyan Salas collected most of the larval tracks under the 

supervision of Ana Domingos and Matthiew Louis (postdoctoral fellow, Vosshall 

lab, RU). Félix Naef (RU and ISREC, Switzerland) and Joel Cohen (professor, 

RU) advised on data analysis. Matthiew Louis performed statistical analysis of 

data and evaluated exploratory linear models. Leslie Vosshall advised in the 

design and interpretation of the experiments. 

5 Implications of Current Study and Future Prospects 

Since discovery of the Drosophila ORs (Vosshall et al., 1999), significant 

progress was made in our understanding of insect olfaction. At the onset of my 

thesis research, the ORs in Drosophila larvae were not known. Larvae exhibit 

robust chemo-attractive behaviors and have only 21 OSNs (Larsson et al., 2004). 

Therefore, we hypothesized that a subset of Drosophila ORs are expressed in 

larval OSNs. We identified 25 and genetically marked 20 ORs that are expressed 

in single OSNs in larvae. With the OR Gal4 drivers, we ablated individual larval 

OSNs and generated larvae with only one or two functional OSNs. Subsequently, 

we analyzed whether particular larval OSNs were necessary or sufficient to 

confer chemotaxis to odors. In total, we genetically marked two thirds of 

Drosophila ORs. With OR Gal4 markers, we visualized patterns of OR 
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expression in the adult and larval fly olfactory organs and traced projections of 

their respective OSNs to the AL of the brain. We assigned OR identities to 

olfactory glomeruli and thus generated a “receptortopic” map of the AL.  

In the passages below, I discuss how my thesis work may impact future 

work in the general field of sensory neuroscience. Our receptortopic map has 

highlighted the OR identities of glomeruli that express fruitless, gene that acts as 

a genetic switch for male courtship behavior (Demir and Dickson, 2005; Manoli et 

al., 2005; Stockinger et al., 2005). If the implicated ORs contribute to Drosophila 

courtship, targeted mutation of these ORs (Rong and Golic, 2000; Rong and 

Golic, 2001), will lead to defects in courtship behavior and mating. 

To understand how odors are converted to olfactory perceptions, we need 

to know how chemical stimuli are encoded at the level of input to olfactory 

system. Further, we need to understand how the olfactory information is 

transformed in the AL and at higher levels. Our neuroanatomical description of 

olfactory sensory input into the adult and larval ALs promotes further studies of 

global properties of OSN activation in response to odors. Receptortopic maps 

provide tools to relate odor maps collected with calcium-sensitive imaging 

techniques to the ORs. Calcium imaging of the entire AL has an advantage of 

capturing global and temporal properties of activation of the AL glomeruli. 

Expression of calcium-sensitive proteins under control of the OR promoters will 

yield precise maps of OSN activation within AL. These experiments are already 

underway in the laboratories of Dr. C Giovanni Galizia (University of Konstanz, 

Germany) and Dr. Richard Axel (Columbia University). The resulting odor maps 
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of the AL will set the foundation to decode the olfactory code. These maps will 

provide information as to which ORs are most strongly activated by a given odor. 

Odor maps could be compared to electrophysiological response properties of the 

ORs to evaluate possible presynaptic modulation of olfactory input. OSN 

responses could also be compared to PN responses to reveal the transformation 

of olfactory information in the AL. Comparisons of the OSN and PN responses 

were already possible for one OR population in Drosophila (Ng et al., 2002; 

Wilson et al., 2004). These experiments revealed that the PNs responded to a 

broader range of odors than the OSNs. Our genetic tools will allow to extend 

these analyses and to determine whether broader responses by PNs are general 

properties of this neuron type.  

While the glomeruli of the larval AL are not distinguishable morphologically, 

we can mark them genetically. Calcium-based activity imaging in LAL will be 

invaluable in studies of olfactory information processing in glomeruli. Activation of 

one OR may lead to activities of several glomeruli via the interneural network 

within AL. In Drosophila larvae, it is now possible to monitor global activities of 

the AL with calcium-sensitive proteins, while only one OSN is functional. These 

experiments in progress in the laboratory of Leslie Vosshall will unveil the 

excitatory and inhibitory neuronal interactions within larval olfactory circuit.  

Our behavioral studies of larval olfactory system are initial steps in 

understanding how activations of individual OSNs lead to olfactory percepts. 

While we studied behavioral contributions of only three of the 21 OSNs in larvae, 

we generated tools to study most. It is not clear yet whether individual OSNs 
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mediate different behaviors in larvae, as they do in C. elegans (Bargmann et al., 

1993; Troemel et al., 1997). Genetic experiments that will express heterologous 

receptors in Drosophila larval OSNs will uncouple the properties of OSN 

activation from the properties of ORs. For example, in Drosophila, behavioral 

experiments were possible with photo-activation of neurons (Lima and 

Miesenbock, 2005). In C. elegans, expression of mammalian TRP receptor (VR1) 

that responds to capsaicin, the active ingredient of chili peppers, induces worm 

repulsion to this molecule (Tobin et al., 2002). In a recent study, Marella et al. 

successfully expressed VR1E600K, a variant of VR1, in Drosophila taste neurons; 

they observed capsaicin-induced neuron activation and attractive and avoidance 

behaviors (Marella et al., 2006). Insect pheromone receptors, such as silk moth 

Bombyx mori BMOr1 (Nakagawa et al., 2005), are other candidate heterologous 

receptors to be expressed in Drosophila. These or similar “remote control” 

experiments in Drosophila larval olfactory neurons will reveal the behaviors 

mediated by each OSN. 

The imminent studies of how the olfactory information is represented and 

processed in the AL of Drosophila and then translated into chemotaxis behavior 

may help us understand human olfactory systems. We expect that some of the 

odor coding mechanisms of Drosophila will hold true in mammals because of the 

underlying neuroanatomical similarities between these animals. 
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The findings from my Ph.D. training are included in the following publications: 

Fishilevich, E., Domingos, A. I., Asahina, K., Naef, F., Vosshall, L. B., and Louis, 
M. (2005). Chemotaxis behavior mediated by single larval olfactory neurons in 
Drosophila. Curr Biol 15, 2086-2096. 
 
Fishilevich, E., and Vosshall, L. B. (2005). Genetic and functional subdivision of 
the Drosophila antennal lobe. Curr Biol 15, 1548-1553. 
 
Hummel, T., Vasconcelos, M. L., Clemens, J. C., Fishilevich, Y., Vosshall, L. B., 
and Zipursky, S. L. (2003). Axonal targeting of olfactory receptor neurons in 
Drosophila is controlled by Dscam. Neuron 37, 221-231. 
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