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Yersinia spp. cause gastroenteritis and the plague, representing historically

devastating pathogens that are currently an important biodefense and antibiotic resistance

concern.  Although several antibiotic therapies exist, the emergence of strains that have

garnered multiple drug resistances in combination with the weaponization of Yersinia,

make understanding the biology of this pathogen a high priority.  Yersinia, along with

other pathogenic bacteria such as Salmonella, utilize a macromolecular complex, called a

type III secretion apparatus, to deliver virulence proteins directly into cells.  These factors

commandeer several signaling pathways, often targeting the Rho family of small

GTPases which regulate actin cytoskeletal dynamics.  A critical virulence determinant in

Yersinia species is the Yersinia protein kinase A, or YpkA, a multi-domain protein that

disrupts the eukaryotic actin cytoskeleton.    YpkA contains a Ser/Thr kinase domain

whose activity modulates pathogenicity and a domain that binds to both Rac1 and RhoA

of the Rho family of small GTPases.  The crystal structure of a YpkA-Rac1 complex

reveals that YpkA possesses a novel Rac1-binding domain that mimics the interactions of

host guanine nucleotide dissociation inhibitors (GDIs) of the Rho GTPases.  YpkA



inhibits the exchange of nucleotide in Rac1 and RhoA, and mutations that disrupt the

YpkA-GTPase interface abolish this activity in vitro and significantly impair in vivo

YpkA-induced cytoskeletal disruption.  A Yersinia pseudotuberculosis mutant lacking the

GDI activity of YpkA was significantly attenuated for virulence in a mouse infection

assay as compared to wild type bacteria.  We conclude that virulence in Yersinia depends

strongly upon a novel mimicry of host GDI proteins by YpkA.  Finally, the YpkA kinase

domain has homology to known eukaryotic Ser/Thr kinases and thus could be targeted

for small molecule inhibitor design.  An efficient approach integrating a machine learning

method, homology modeling, and multiple conformational high throughput docking was

used for the discovery of YpkA inhibitors. The resultant small molecule compounds,

which are the first reported inhibitors for YpkA, not only provide a useful means in

probing the function and mechanism of YpkA in bacterial pathogenesis, but also are

potential candidates for further development of novel anti-plague drugs.
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CHAPTER ONE:

INTRODUCTION

1.1 Host-Bacteria Relationships

Prokaryotic life on earth is estimated to have appeared more than 3.5 billion years

ago, and not only is the progenitor of all other organisms, but created the environmental

conditions that made eukaryotic life possible (Salyers 2002).  Even today, no section of

the earth is free of prokaryotic life, and in fact, more than 50% of the entire biomass of

the planet is attributed to bacteria.  These organisms occupy varying and diverse niches

and have evolved an astonishing array of metabolic processes that allow them to flourish

in every conceivable environmental condition.  Bacterial species have been found to

culture in arctic ice (cryophiles), in the heat vents on the ocean floor (thermophiles), and

to persist in otherwise toxic conditions, such as extreme pH levels, that would

undoubtedly kill eukaryotic life forms.  Although bacteria have adapted to life in exotic

environmental conditions, as demonstrated by the omnipresence of these organisms, they

have also evolved to take advantage of the environments provided by eukaryotic life.  In

particular, bacteria species have co-evolved with animal species to create a complex and

delicate interplay of symbiotic and disease relationships within the bodies and on the

surface of their hosts.

 Eukaryotic symbiosis with prokaryotic life can be first traced back to the

absorption of prokaryotes by eukaryotes to form endosymbiotes, such as the

mitochondria and the chloroplast (Salyers 2002).  In contrast, on the scale of a
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multicellular organism we find that entire bacterial colonies persist on all surfaces of the

body, such as the skin and eyes, occupy orifices, and the endothelium of the intestinal

tract.  In the case of humans, most bacterial species are commensals, whose populations

vary depending upon physiological factors, and are not essential for life nor very often

cause disease, though they can play a role in maintaining good health (Brooks 2001).

The most prominent example of such flora, are the 300-500 bacterial species that inhabit

the human gut, which can serve metabolic, trophic, and immunological functions

(Guarner and Malagelada 2003).  The metabolic role of the bacterial flora is to ferment

normally non-digestible carbohydrates such as cellulose, to salvage energy in the

production of short-chain fatty acids (SCFAs), to synthesize vitamin K, and to aid in the

absorption of ions such as calcium, magnesium, and iron (Brooks 2001; Guarner and

Malagelada 2003; Dale and Moran 2006).  The resulting SCFAs have a trophic effect on

the endothelial lining which serves to regulate cell proliferation in the colon.  These

bacterial colonies in the gut serve to condition the mucosal immune architecture of the

intestine and also create a "barrier effect" protecting the host from infection (Guarner and

Malagelada 2003).  Simply put, the already established symbiotic colonies within the gut

act to out-compete the ability of many potential pathogenic bacteria to proliferate.

Finally, although mostly benign, if not helpful, some disease conditions can arise with

bacterial symbiotes.  This often results in an inflammatory bowel disease, such as Crohn's

disease, where the immune system has become hypersensitive to the antigens within the

intestinal lumen.  Additionally, the over use of some antibiotics can drastically change

the make-up of the flora weakening the "barrier effect", allowing opportunistic infections

to occur (Brooks 2001; Guarner and Malagelada 2003).
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While such the bacterial species have evolved in symbiosis with the host, others

have evolved disease relationships with animal species.  Such pathogenic bacteria have

played an "arms race" with their host, evolving counter-strategies against immunological

defenses to establish an infection.  These bacteria often have evolved pathogenicity

islands consisting of a collection of genes that encode virulence factors that interfere with

specific host cell functions and act to help evade the immune system.  These genes can be

part of the normal bacterial genome, or can be encoded plasmids that can be transmitted

between bacterial species.  Disease causing bacteria can be found in the normal flora,

such as Streptococcus pneumoniae and Salmonella typhi, ingested from contaminated

food or water, such as Yersinia entercolitica and Salmonella typhimurium, and

transmitted from animal to animal, even if not the same species, such as Bacillus

anthracis and Yersinia pestis (Brooks 2001; Salyers 2002; Dale and Moran 2006).  B.

anthracis can be contracted due to contact with spores associated with farm animal waste,

and is thus prevalent in agriculture, whereas in the case of Y. pestis, infection is

introduced from the bite of a flea infected from the indigenous rodent population.  These

pathogenic bacteria have evolved a number of intricate molecular mechanisms of

infection to both persist in the host and to effectively deliver their virulence factors.  For

the research presented here, the pathogenic mechanisms of Yersinia spp. will be explored

in detail.
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1.2 Yersinia Pathogenesis and Antibiotic Resistance

The Yersinia genus, named for its characterization by Alexandre Yersin, is a

gram-negative bacteria that consists of 11 species that are found on every continent, apart

from Australia (Perry and Fetherston 1997).  Out of these eleven species, three cause

disease in animal species, namely Y. entercolitica, Y. pseudotuberculosis, and Y. pestis

(Perry and Fetherston 1997; Wren 2003).  The former two species are the agents of

gastroenteritis, whereas the later, Y. pestis is the causative agent of the plague.  The

enteropathogenic species of Yersinia can be found in soil samples, and infect several

mammalian and animal species, including humans.  Specifically, gastroenteritis is caused

after exposure to contaminated food or water.  The pathogenic bacteria migrate across

Peyer's patches in the small intestine, then subsequently to lymph nodes, the liver, and the

spleen (Wren 2003).  Normally such an infection is localized, cleared within a few days,

and is non-lethal in humans.  In contrast, Y. pestis, is likely the most devastating bacterial

pathogen in human history.

Nearly 200 million people are estimated to have died in the plague epidemics that

devastated the ancient world (Perry and Fetherston 1997).  This was witnessed through

two pandemics: the first pandemic, or the Justinian plague from 541AD to 544AD, and

the second pandemic, consisting of both the "Black Death" and subsequent epidemics

during the 8th to 14th centuries, with an overall death toll representing as much as 60%

of the population of the ancient world (Perry and Fetherston 1997).  Finally, the third

pandemic, starting from 1855 to the modern day, has witnessed additional deaths totaling

in the millions.  Y. pestis, unlike its enteropathogenic counterparts, has evolved a life
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cycle between a mammalian and insect host, which is necessary for the propagation of

the plague.  To transmit the bacterium, a flea first feeds on an infected host, which is in

most cases a rodent, where it contracts Y. pestis from the blood.  The bacteria persist in

the flea mid-gut where they form a biofilm within a few days that prevents proper

digestion.  The starving flea then transmits the bacteria to additional mammalian hosts by

attempting to feed as often as possible, effectively injecting Y. pestis with each bite.

From the sites of feeding, the bacteria migrate to lymph nodes, where they target and are

initially taken up by polymorphonuclear leukocytes (PMNs) and monocytes (Marketon,

DePaolo et al. 2005).  This localized infection gives rise to the "Bubonic Plague" which

is characterized by oversized, swollen, and black lymph nodes, or "bubos."  From these

sites, or from initial injection by the fleabite, Y. pestis can migrate to the blood stream

and localizes in the various tissues of the body causing septicemic plague.  This event is

highly lethal, ranging in 30% to 50% death rates.  Finally, Y. pestis can become

pneumonic if it localizes to the lungs, which occurs in approximately 2% of cases.  This

form of the plague is not only close to 100% lethal, but results in a highly infectious

airborne transmission of the bacterium through respiratory droplets (Perry and Fetherston

1997; Wren 2003).

  Genetically, the three pathogenic species of Yersinia are quite diverse, with Y.

pseudotuberculosis and Y. pestis being closely related, and Y. entercolitica distantly

related.  Although dissimilar at many levels, Y. enterocolitica, Y. pseudotuberculosis, and

Y. pestis all share the highly conserved Yersinia virulence plasmid, or pYV, which is

necessary to cause disease (Cornelis, Boland et al. 1998).  This 70kb plasmid harbors

numerous genes, a large number of which are associated with a type III protein secretion
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system (T3SS) that confers the ability of diverse pathogens to deliver virulence factors

into host cells (Galan and Collmer 1999).  This plasmid not only includes the structural

and functional genes for the T3SS, but additional virulence factors known as Yersinia

Outer Proteins (Yops), their chaperones (Syc) and other members that are characteristics

of the low calcium response (LCRS) (see Section 1.3 and Section 1.4).

Y. pestis is evolutionarily the newest version of Yersinia, having branched from y.

pseudotuberculosis 1,500 to 20,000 years ago(Wren 2003).  As discussed above, Y. pestis

is far more virulent than its counterparts, which in part can be attributed to the addition of

two plasmids to its genome.  Y. pestis also contains the 96.3kb plasmid pMT1 and the

9.6kB plasmid pPla (Perry and Fetherston 1997; Wren 2003; Chromy, Choi et al. 2005).

The pMT1 plasmid contains proteins that make up and regulate the expression of the F1

capsule, which helps to block adhesion by macrophages, and the gene Yet (murine toxin),

which is a member of the phospholipase D family and is essential for the colonization of

the flea mid-gut and thus the mammal and insect plague life cycle (Perry and Fetherston

1997; Wren 2003; Chromy, Choi et al. 2005).  pPla encodes the plasminogen activator

protein, Pla, which is a multifunctional protease.  It shares high homology to known

plasminogen activators, is known to cleave plasminogen and other matrix proteins, and in

addition cleaves the complement component C3 (Chromy, Choi et al. 2005).  This

activity is thought to be necessary for the dissemination of Y. pestis after initial infection,

as the removal of pla causes bacteria that are introduced at the subcutaneous level to be

rendered non-virulent, but still be able to cause disease if introduced directly into the

blood stream (Wren 2003; Chromy, Choi et al. 2005).  In addition to its three virulence

plasmids, Y. pestis also harbors genes on its 4.65mb chromosome that are essential for



7

virulence.  Many of these genes are putative and are suspected to be involved in the

insect life cycle.  One such example is the hmn locus (haemin storage), which is

necessary for altering the feeding habits of infected fleas and blockage of their digestion

(Perry and Fetherston 1997).  Finally, in addition to the acquisition of various genes, the

virulence of Y. pestis relative to Y. pseudotuberculosis can be attributed to the loss of

gene function.  Specifically, Y. pseudotuberculosis contains active genes that express

insecticidal toxin, baculovirus enhancin, and other putative insect toxins for the

parasitism of insects, whereas many such genes are only present as pseudogenes in Y.

pestis (Wren 2003).  This would allow Y. pestis to adapt to an insect host as part of its life

style as infection would not be as lethal initially.

Although plague is extremely virulent, modern antiseptic and hygienic practices

in combination with antibiotics make it treatable and controllable.  According to the

World Health Organization, most plague cases occur in areas with a high endemic rodent

population, such as the American southwest and Africa.  On average, a couple of

thousand cases are reported each year with an approximate death rate of 10%.  Despite

the lack of an effective vaccine, a number of antibiotics exist that can treat the plague.

Upon diagnosis of such cases, the common practice is to administer streptomycin for the

first couple days followed by tetracycline (Perry and Fetherston 1997).  Even with such

efforts, the overuse of antibiotics has given rise to medical concerns over the evolution of

multi-drug resistant strains of the plague bacterium that have been reported in several

locations from patient isolates (Galimand, Guiyoule et al. 1997; McCormick 1998). Of

even more concern, are reports of these strains gaining their resistances from horizontal

transfer interactions with other known resistant pathogens such as E. coli (Galimand,
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Guiyoule et al. 1997; Galimand, Carniel et al. 2006).  One reported Y. pestis strain

became resistant to ampicillin, chloramphenicol, kanamycin, sulfonamide, streptomycin,

and tetracycline through the addition of a 150kb plasmid designated pIP1202 (Galimand,

Carniel et al. 2006).  Additionally, with the advent of drug resistant Y. pestis stains and

the successful weaponization of plague in the former Soviet Union bioweapons program,

this pathogen has become a primary biodefense concern (Henderson 1999; Inglesby,

Dennis et al. 2000).  The emergence of antibiotic resistance strains and the threat of such

bacteria as biological weapons, suggests the need for the immediate design of new plague

antibiotics.  The most attractive and effective approach for these new drugs would most

likely be to target the various specific Yersinia virulence proteins (see section 1.3 and

section 1.4). By targeting the critical components of the Yersinia pathogen new plague

specific antibiotics are unlikely to evolve resistances to existing therapies, gain

resistances to the target-specific designed drugs, or induce cross-resistance with other

species (Frean, Arntzen et al. 1996; Henderson 1999; Frean, Klugman et al. 2003; Marra

2006).

1.3 The Type III Secretion System

As mentioned previously, pathogenic Yersinia contain an indispensable and

highly conserved virulence plasmid, or pYV, which is necessary to cause disease

(Cornelis, Boland et al. 1998).  This plasmid harbors numerous genes, a large number of

which are associated with a type III protein secretion system (T3SS) which confers the
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Figure 1.1: The Type III Secretion System

A cartoon representation of the various components of the T3SS in Yersinia is shown.  See

text for details on the various components.
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ability of diverse pathogens to deliver virulence factors into host cells (Galan and

Collmer 1999).  These genes, termed Yersinia Secretion proteins (Ysc), consist of

approximately 27 different members which assemble into a macromolecular complex that

is literally a syringe-like structure that injects the virulence factors, Yersinia Outer

Proteins (Yops) into a host cell (Cornelis 2002; Cornelis 2002; Yip and Strynadka 2006)

(Figure 1.1).  This structure is highly homologous and evolutionarily related to the

flagellar system.  During an infection with T3SS containing organisms, the bacteria

construct syringe-like structures that are readily visible by electron microscopy (Galan

and Collmer 1999; Yip, Kimbrough et al. 2005). As shown in Figure 1.1, the structure

consists of a base that sits in the inner membrane, another circular section crossing the

outer membrane, a needle complex, and finally the secretion of a pore-like structure to

penetrate the host cell membrane.  Overall, the needle length is estimated to be close to

600Å long, with an inner channel of 20 to 30Å in diameter.  As such, this narrow width

implies the caveat that any globular protein passing through the system would require at

least some degree of unfolding, for which there is indirect evidence (Cornelis 2002;

Stebbins and Galan 2003; Yip and Strynadka 2006).  The base structure consists of the

proteins YscJ, which in analogy to EscJ crystal structure from E. coli, oligomerizes into a

ring consisting of 24 subunits at the inner membrane (Yip, Kimbrough et al. 2005), YscQ

which also by analogy forms antiparallel β-sheets in a channel like manner (Fadouloglou,

Tampakaki et al. 2004): and YscN, which has homology to F0F1 ATPases, and has

measured ATPase activity (Cornelis 2002).  It is this last protein that recognizes effectors

bound to their chaperones (Syc proteins) and provides the energy for Yop secretion in an

ATP dependent manner (Akeda and Galan 2005).  Additionally, the platform of the type
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III secretion apparatus contains the membrane anchoring proteins, YscR, YscS, YscT,

YscU, and YscV, although their exact architecture is currently unknown (Yip and

Strynadka 2006).  The outermembrane ring of the complex is formed by YscC, which

oligomerizes into 12-14 subunits with a diameter of 14 to 20nm, as judged by electron

microscopy, which serves to anchor and stabilize the outgoing needle complex

(Burghout, van Boxtel et al. 2004).  The needle itself is formed by the protein YscF that

extends from the base of the T3SS to the host cell.  The inner diameter measures ~25Å

and the overall length of the needle is regulated by the protein YscP (Cornelis 1998;

Agrain, Sorg et al. 2005; Yip and Strynadka 2006).  Finally, the needle is capped by

LcrV, which serves as a bell-shaped extension to the needle which is necessary for pore

formation in the host membrane along with the formation of the translocation pore, YopB

and YopD (Cornelis 2002; Derewenda, Mateja et al. 2004).

Due to the size restrictions associated by the needle complex as referenced above,

another critical component of the T3SS, are the molecular chaperones, or Syc proteins.

These proteins recognize motifs on the various Yops, and prime them for unfolding and

delivery by the T3SS (Cornelis 2002; Stebbins and Galan 2003; Ghosh 2004).  Each Yop

is associated with a chaperone, which binds to a recognition region in the N-terminus of

the protein (Cornelis 2002; Lilic, Vujanac et al. 2006).  Interestingly, some Yops have

their own chaperone, for example SycE which recognizes YopE, whereas other

chaperones can bind multiple Yops individually or at the same time, such as SycD for

both YopB and YopD (Cornelis 2000; Cornelis 2002).  At the structural level, the binding

of virulence factors to their chaperones in any T3SS, maintains a portion of the virulence

factor in a non-globular conformation, and wraps around the Syc proteins (Stebbins and
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Galan 2001) (Birtalan, Phillips et al. 2002).  Additionally, it is this region of the Yop that

encodes a recognition motif, or β-motif, that in part directs the virulence factor to the

chaperone (Lilic, Vujanac et al. 2006).  Once delivered to the T3SS, YscN then releases

the virulence protein from its chaperone, again in an ATP dependent manner, (Akeda and

Galan 2005) and provides the additional energy for the unfolding and secretion of the

virulence protein so that it may pass through the narrow needle structure into the host

cell.

1.4 The Yersinia Outer Proteins

The Yersinia Outer Proteins, or Yops, are named for their initial characterization

as outermembrane proteins (Cornelis, Boland et al. 1998).  It was later shown that they

are in fact secreted, which can be induced in growth conditions of low calcium (the low

calcium response).  In a normal infection, these virulence determinants are directly

injected into a host cell by the T3SS where they interfere with normal cell signaling with

the overall effect of paralyzing macrophages, dendritic cells, and neutrophils, thus

preventing a primary immune response (Marketon, DePaolo et al. 2005).  This mode of

infection allows Y. pestis to persist in the extracellular medium, largely unchallenged by

host defenses.  Not only are the bacteria resistant to phagocytosis by immune cells due to

the action of its Yops, but they also suppress interleukin secretion and can eventually

induce apoptosis (Aepfelbacher, Zumbihl et al. 1999; Cornelis 2002; Viboud and Bliska

2005)
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There are nine well characterized Yops: YopB, YopD, and LcrV, which are a

critical part of the T3SS, forming a pore in the host cell membrane to allow the passage

of the Yops, and six others, YopH, YopM, YopJ/P, YopT, YopE, and YopO/YpkA which

specifically interfere with normal host cell processes (Cornelis 2002; Viboud and Bliska

2005).  Although the structures of YopB and YopD are unknown, they have been known

to form ion-conduction channels and thus are predicted to oligomerize at the tip of the

T3SS during a Y.pestis infection (Tardy, Homble et al. 1999).  LcrV has also been shown

to be able to form channels in lipid bilayers, but is a soluble dimer in solution as

demonstrated by the work on its crystal structure (Tardy, Homble et al. 1999; Derewenda,

Mateja et al. 2004).  YopH is currently the most well characterized Yop, as its mode of

action is known in addition to thirteen crystal structures.  YopH is a 51kD protein that is

an active protein tyrosine phosphatase (PTP) whose catalytic domain is highly related to

known eukaryotic PTPs of its kind, sharing the conserved C(X)5R(S/T) active site motif

(Viboud and Bliska 2005).  YopH acts by dephosphorylating a variety of proteins in the

host cell.  This interferes with the attachment of Yersinia to β 1 integrins of the

macrophage in addition to the suppression of the oxidative burst in phagocytes (Persson,

Sjoblom et al. 2004).  Specifically, YopH localizes to focal adhesions and

dephosphorlyates p130Cas and Fak (focal addition kinase) which acts to inhibit

phagocytosis (Weidow, Black et al. 2000).  Additionally, the interference of YopH is

thought to prevent the recruitment of GEFs (guanine nucleotide exchange factors) to the

membrane (Viboud and Bliska 2005).

In contrast to YopH, YopM is probably the least understood of the Yops.

Although the crystal structure is known, which reveals a LRR motif (Evdokimov,
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Anderson et al. 2001), the exact function of YopM in Yersinia virulence is unknown.

YopM contains 15 leucine-rich repeats and potentially binds as an adaptor protein for the

kinases RSK1 and PRK2, and can traffic to the nucleus, though the purpose of which is

not established (Viboud and Bliska 2005).  What is known, is that without YopM

Yersinia strains cannot establish a systemic infection, as YopM prevents clearing of the

bacteria by the immune system (Trulzsch, Sporleder et al. 2004).  Additionally, in Y.

pestis, YopM acts by an unknown mechanism to deplete the Natural Killer T-cells at the

sites of infection (Kerschen, Cohen et al. 2004).

The virulence factor YopJ, also known as YopP in Y. entercolitica, is a 288 amino

acid protein that has been shown to induce apoptosis in macrophages (Cornelis 2002;

Viboud and Bliska 2005).  YopJ acts to inhibit both the MAPK and the NF-κβ signaling

pathways resulting in the loss of cytokine production and eventual apoptosis (Zhang,

Ting et al. 2005).  At the biochemical level this is accomplished by the cysteine protease

activity of YopJ that is proposed to act to deubiquinate signaling molecules upstream of

NF-κβ, that bind to, and keep NF-κβ inactive in the cytosol.  Thus, NF-κβ is prevented

from entering the nucleus where it can stimulate the transcription of proinflammatory

factors (Viboud and Bliska 2005).  The inhibition of NF-κβ is also the preliminary step in

the apoptotic response of the macrophage; thus it is thought that this inactivation triggers

the macrophage apoptosis.  Additionally, YopJ acts upon the MAPK signaling pathway

by inactivating the MAPK kinases through the acetylation of its normally phosphorylated

serine residues.  This additional activity is also thought to contribute to the loss of

cytokine production and the induction of apoptosis (Bliska 2006).
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YopT is a 322 amino acid protein that acts as a cysteine protease that removes the

Rho family of small GTPases from the cell membrane (Viboud and Bliska 2005).  YopT

has a core catalytic triad of residues required for activity which are conserved among a

variety of pathogens and eukaryotic proteases (Shao, Merritt et al. 2002).  Within the host

cell, YopT cleaves RhoA, Rac1, and Cdc42 at the C-terminus removing the isoprenyl

modification that anchors the small GTPase in the cell membrane, removing it from

efficient signaling (Shao, Vacratsis et al. 2003).  Although its overall role in pathogenesis

is not fully elucidated, in cultured cells the enzymatic activity of YopT contributes to the

loss of actin stress fiber formation and it has been shown to have antiphagocytic activity

(Viboud and Bliska 2005).

YopE and YpkA (YopO in Y. entercolitica) both target the Rho family of small

GTPases (Aepfelbacher and Heesemann 2001).  YopE is a critical virulence factor in

Yersinia spp, that acts as a potent GTPase Activating Protein (GAP) on the Rho family of

small GTPases.  Necessary for virulence, YopE is a 219 amino acid protein that contains

a GAP domain that associates with RhoA, Rac1, and Cdc42 to stimulate the intrinsic

GTP hydrolysis of the molecule, and thus inactivates the signaling properties of the small

GTPases (Viboud and Bliska 2005). The crystal structure of YopE is known, which

reveals that is shares the ability of known GAPs to introduce an "arginine finger" into the

active site of the small GTPase enhancing the catalytic site of the molecule (Evdokimov,

Tropea et al. 2002).  In cultured cells YopE isolates to the cell membrane and causes the

loss of actin stress fiber formation, cell rounding, and inhibition of phagocytosis

(Aepfelbacher and Heesemann 2001).  YpkA also binds to RhoA and Rac1, but not

Cdc42, although the function of which was unknown.  Additionally, YpkA contains a
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Ser/Thr kinase domain with high homology to eukaryotic kinases whose exact function

remains unclear (Viboud and Bliska 2005).  YpkA is discussed in further detail in section

1.5.

From an examination of the Yops, and other virulence factors, it is apparent that

they have evolved such a close relationship with their host that they have employed

strategies of functional and molecular mimicry.  Specifically, the various virulence

factors associated with the T3SS interfere with host pathways by replacing the functions

of the host regulators of those systems to drive the pathway toward the needs of the

pathogen (Stebbins and Galan 2001).  This is not only true of animal pathogens, but plant

pathogens as well (Janjusevic, Abramovitch et al. 2006).  These observations represent

the elegant and close evolutionary relationships between microbial organisms and their

hosts.

1.5 Yersinia Protein Kinase A

An important virulence factor of Yersinia spp. is the Yersinia protein kinase A, or

YpkA (also called YopO in Y. enterocolitica), a substrate of the T3SS which was first

identified through its important contribution to disease progression and a region of

sequence homology to eukaryotic serine/threonine kinases (Galyov, Hakansson et al.

1993).  Y. pseudotuberculosis mutants with disruptions in YpkA have shown severely

attenuated virulence in mouse infection models (Galyov, Hakansson et al. 1993). YpkA is

an 82kD multi-domain protein, which, in addition to the protein kinase, possesses a
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domain that binds to the small GTPases RhoA and Rac1, a domain required for activation

by actin, and an N-terminal domain that targets YpkA to the cell membrane in addition to

binding its chaperone, SycO (Galyov, Hakansson et al. 1993; Galyov, Hakansson et al.

1994; Roggenkamp, Schubert et al. 1995; Hakansson, Galyov et al. 1996; Barz, Abahji et

al. 2000; Dukuzumuremyi, Rosqvist et al. 2000; Juris, Rudolph et al. 2000; Letzelter,

Sorg et al. 2006).  A domain map of YpkA is shown in Figure 1.2.

In cultured cells, YpkA appears to function primarily in disrupting the host actin

cytoskeleton (Hakansson, Galyov et al. 1996; Dukuzumuremyi, Rosqvist et al. 2000;

Juris, Rudolph et al. 2000).   Cells transfected with YpkA, or exposed to strains of

Yersinia preferentially translocating YpkA over other virulence factors, lose their actin

stress fibers and tend to round-up and detach upon prolonged exposure (Hakansson,

Galyov et al. 1996; Juris, Rudolph et al. 2000; Nejedlik, Pierfelice et al. 2004).

Interestingly, this effect appears to be only partially associated with the kinase activity, as

mutations in the active site attenuate, but do not abolish, cytoskeletal alterations, and

large internal deletions in the protein that are C-terminal to the kinase domain are unable

to cause cytoskeletal disruptions (Dukuzumuremyi, Rosqvist et al. 2000; Juris, Rudolph

et al. 2000).  Additionally, experiments with yeast strains harboring inducible expression

Figure 1.2:  Domain Map of YpkA

The boundaries demarcating the various domains of YpkA from work prior to this

thesis.  The amino acid cut offs are based on the cited literature.  Residues 710 to 732

represent a segment necessary for actin binding and kinase activation.
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of YpkA constructs, show that kinase-dead point mutants rapidly kill yeast just as well as

wild type YpkA, whereas C-terminal deletions leave the yeast intact (Nejedlik, Pierfelice

et al. 2004).  These results suggesting that the C-terminal domain may play a large role in

pathogenesis, which is supported by the fact that in infected Hela cells the amount of

RhoA-GTP, or activated RhoA, is reduced (Dukuzumuremyi, Rosqvist et al. 2000).

YpkA localizes to the plasma membrane in cultured cells (Hakansson, Galyov et al.

1996; Dukuzumuremyi, Rosqvist et al. 2000; Nejedlik, Pierfelice et al. 2004), and

mutations in the protein that abolish binding to the Rho GTPases do not affect membrane

localization (Dukuzumuremyi, Rosqvist et al. 2000).  More specifically, the N-terminal

domain region of YpkA (residues 20-90) contains all elements necessary for membrane

localization (Letzelter, Sorg et al. 2006).

Biochemically, the kinase activity of YpkA is regulated in a host dependent

fashion(Barz, Abahji et al. 2000; Dukuzumuremyi, Rosqvist et al. 2000; Juris, Rudolph et

al. 2000; Trasak, Zenner et al. 2007).  Recombinant and Yersinia secreted YpkA is

inactive, but is activated in the presence of heat-sensitive host cell extract(Barz, Abahji et

al. 2000; Dukuzumuremyi, Rosqvist et al. 2000; Juris, Rudolph et al. 2000), and in

particular in the presence of actin alone (Juris, Rudolph et al. 2000).  A twenty amino

acid peptide at the COOH-terminus of YpkA was shown by deletion mutagenesis to be

critical for YpkA binding to actin and for kinase auto-phosphorylation in vitro(Juris,

Rudolph et al. 2000).  Additionally, N-terminal elements are necessary for achieving the

full activity of the YpkA kinase domain(Trasak, Zenner et al. 2007).  Therefore, like

many eukaryotic protein kinases, the Yersinia kinase appears to interact with and be

dependent on several regulatory elements in order to achieve full activity (Huse and
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Kuriyan 2002).  Finally, although the exact role in cell signaling of the kinase domain is

unknown, a potential substrate has been identified for YpkA, otubain 1 (Juris, Shah et al.

2006).  Otubain 1 is phosporylated in Hela cells by an uncharacterized kinase and is

shown to associated with E3-ligases that are involved in the regulation of the T-cell life

cycle.  As such it is speculated that the kinase domain of YpkA may regulate Otubain by

phosphorylation and interfere in T-cell regulation (Juris, Shah et al. 2006).

1.6 The Rho-Family of Small GTPases

When examining the biological function of the Yops, a very apparent pattern

emerges.  Out of the six Yops that interfere with normal cell processes, four of the Yops

directly or indirectly affect the Rho-family of small GTPases, namely YopH, YopE,

YopT, and YpkA.  In fact, this is a common theme seen throughout bacterial

pathogenesis, especially when involving the T3SS (Aktories and Barbieri 2005).  Many

pathogens, including Yersinia spp. target this family of signaling molecules as the small

GTPases are central to the regulation of the actin cytoskeleton, and thus phagocytosis and

innate immunity (Gruenheid and Finlay 2003).  As such, to properly understand and

examine the biochemistry of the Yops, a comprehensive understanding of the biology of

the Rho-family of GTPases is necessary.

The Rho-family of small GTPases consist of a group of well-characterized

signaling molecules that regulate a variety of cellular functions.  This family of genes is a

subset of the ubiquitously expressed Ras-related small GTPases, and act as the signal

regulators of actin cytoskeletal rearrangement, microtubule dynamics, vesicle trafficking,
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Figure 1.3: Biochemistry of the Rho-Family of small GTPases

(A) A schematic of the small GTPase signalling cycle.  The small GTPases cycle between

"off" and "on" signaling states based on interactions with GEFs (which turn the system on),

GAPs (which turn the system off) and RhoGDIs which prevent the small GTPase from

associating with the other regulators.

(B) The conformational changes induced by nucleotided binding are shown.  Rac1-

GMPPNP (1MH1 pdb identifier) and Rho-GDP (1FTN pdb identifier) are shown.  The

switch regions are colored in red for the GTP bound conformation (Rac1-GMPPNP) and in

blue for the GDP conformation (RhoA-GDP).
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cell cycle control, and cell motility, among other functions (Symons and Settleman 2000;

Jaffe and Hall 2005).  These membrane localized molecules regulate the aforementioned

cellular processes by acting as molecular switches, cycling between an "off" and "on"

state in response to extracelluar stimuli such as cytokines, cell adhesion molecules, and

bacterial invasion (Symons and Settleman 2000; Aktories and Barbieri 2005).

Rho-GTPases localize to the cell membrane due to an isoprenyl modification at a

C-terminal cysteine residue and achieve an "off" and "on" biological state by cycling

between GDP (guanosine-5'-diphosphate) and GTP (guanosine-5'-triphsophate) bound

forms, respectively (Figure 1.3A).  The Rho-GTPase GDP/GTP cycle is controlled in the

cell by three known families of regulatory molecules: GEFs, GAPs, and GDIs.  GEFs

(guanine nucleotide exchange factors) promote the exchange of GTP for GDP thus

catalyzing activation and turning the system "on," whereas GAPs (GTPase activating

proteins), stimulate the intrinsic rate of GTP hydrolysis in the Rho-GTPases, turning the

system "off."  Finally RhoGDIs act as a master-control switch for the system, removing

the small GTPase from the membrane and inhibiting nucleotide dissociation (Van Aelst

and D'Souza-Schorey 1997; Jaffe and Hall 2005).

At the molecular level, these signaling events are achieved through

conformational changes in the Rho-GTPases at the so-called "switch" regions.  Switch I

(residues 29-40 Rac1 numbering) and Switch II (residues 55-74 Rac1 numbering) adopt

discrete canonical conformations based on the presence of GDP or GTP as shown in

Figure 1.3B (Hirshberg, Stockley et al. 1997; Wei, Zhang et al. 1997).  In the GTP bound

form, the Rho-GTPases are recognized by downstream effectors, many of which are

kinases, that are activated due to a conformational change upon Rho-GTPase binding,
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releasing a functional domain from an inactivation domain (Maesaki, Ihara et al. 1999;

Bishop and Hall 2000).  The cellular regulators of the small GTPase signaling cycle

(GEFs, GAPs, and GDIs), modulate the Rho-GTPases by also interacting with the switch

regions, adjusting the conformations of the switch regions to promote the relevant

biochemistry of nucleotide exchange, GTP hydrolysis, and inhibition of nucleotide

dissociation, respectively (Vetter and Wittinghofer 2001; Hakoshima, Shimizu et al.

2003; Dvorsky and Ahmadian 2004).

As the Rho-GTPases are the control switches for many important cellular

processes (Jaffe and Hall 2005) and are the targets of several bacterial pathogens

(Aktories and Barbieri 2005), these signaling molecules have been extensively studied.

In fact, much work has been devoted to revealing their molecular structures alone and in

complex with their regulators and effectors to gain a better understanding of their normal

cellular function and how their function is subverted by bacterial virulence factors.  To

date, the crystal structures of the most extensively characterized Rho-GTPases (RhoA,

Rac1, and Cdc42), have been solved in both the GDP and GTP bound state, and in

complex with a variety of eukaryotic effectors and bacterial virulence factors, save for a

Rac1-GDP complex without a bound effector (Hakoshima, Shimizu et al. 2003; Dvorsky

and Ahmadian 2004).
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CHAPTER TWO:

MATERIALS AND METHODS

2.1 Cloning and Mutagenesis

The Y. pseudotuburculosis YpkA gene was cloned from the Yersinia virulence

plasmid (generously provided by J. Bliska, State University of New York at Stony

Brook) as an N-terminal fusion with glutathione-S-transferase (GST).  This or the

original virulence plasmid was then used as the template for the creation of additional

YpkA clones.  All N-terminal GST fusion constructs were created using the restriction

sites SalI/NotI and placed into the in-lab modified pGEX4T3 vector (GE Healthcare).

This laboratory stock was modified to have an additional thrombin site and the cleavage

site for rhinovirus 3C protease.  Clones (115-465) and (115-532) were also cloned using

the restriction sites NdeI/NotI into a lab-modified version of pET28b (Novagen) that

contained a 3C protease cleavage site.  Clone (115-428) was cloned using the restriction

sites SalI/NotI into a lab-modified version of the DUET (Novagen) vector, which has a

3C protease cleavage site.  GST-Rac1 (1-184) was obtained in the standard commercial

vector pGEX4T3 from C. Erec Stebbins.  The Cdc42 (1-184) was also obtained from C.

Erec Stebbins in pET3d but was subcloned into the in lab modified pGEX4T3 vector

using the restriction sties, Sa1I/NotI.  Both the genes for RhoA and SopE were obtained

from RZPD (German Resource Center for Genomic Research) and then cloned into the in

lab modified pGEX4T3 using restriction sites Sal1/Not1.  RhoA was cloned as 1-181

(F25N) and SopE as (78-240).  The mutations and constructs created were used to

optimize solubility and expression.  To create the YpkA and RhoA mutants, the amino
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acid substitutions were introduced by PCR using primers containing the appropriate base

changes and subsequent removal of the template plasmid by digestion with Dpn I prior to

transformation, and verified by DNA sequencing. YpkA clones were transformed into

DH5α cells or BL21(DE3) cells the latter for expression.  Primers were ordered from

IDT DNA technologies, molecular biology enzymes and reagents were obtained from

New England Biolabs, and additional materials used for DNA purification were

purchased from Quiagen.

2.2 Protein Expression and Solubility

Optimal expression of protein constructs was found to be at 20° C with induction

using 1mM IPTG in an overnight culture.  The solubility of each YpkA construct was

determined by growing a 5mL prep and taking 1mL samples for time points before

induction and after induction.  Each sample was resuspended in lysis buffer (20mM Tris

pH7.5 200mM NaCl) and lyzed via sonication.  After centrifugation for 10 minutes the

supernanent was removed and the pellet resuspended in denaturating buffer (50mM Tris

pH7.5 5.7M urea).  Each sample was normalized for protein concentration by Bradford

assay and run on a 12% or 15% SDS-page gel to visualize.  To further delineate smaller

constructs, limited proteolysis was performed on soluble YpkA constructs after protein

purification (see Protein Purification).  This was achieved with subtilisin on ice for 20

minutes.  Subtilisin was added at concentrations under 1% (wt:wt) of YpkA and the

reaction initiated with the addition of 5mM CaCl2.  The digestions were visualized by
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SDS-PAGE, transferred to a nitrocellulose membrane and sequenced by Edman

degradation at the Rockefeller University Proteomics Resource Center.

2.3 Protein Purification

Proteins were expressed in BL21(DE3) cells by overnight induction with 1mM

IPTG at 20°C using LB media (EMD Chemicals Inc).  Cells were resuspended in lysis

buffer (20mM Tris pH7.5, 200mM NaCl, and 1mM DTT) plus 1mM PMSF at a volume

of 100mL per 9L of media and frozen at -80°C before use.  Pellets were thawed then the

cells were then lysed with an Emusiflux-C5 (Avestin) and the debris removed by

centrifugation.  DNA was digested by the addition of 1mM MgCl2 and 1mg/mL DNase I.

The lysate was cleared by centrifugation at 16000rpm for 30minutes before subsequent

purification steps.  After final purification all samples were aliquoted and flash frozen in

liquid nitrogen.

2.3a Purification of YpkA (1-732) and (55-732)

Each of these N-terminal GST fusion constructs was purified "in batch."  A 1.5L

culture was grown and lysed as described previously.  The resulting supernanent was

mixed with 2 to 4mL of pre-prepared glutathione sepharose beads (GE Healthcare) pre-

washed in lysis buffer plus 1mM DTT.  YpkA was then bound to the beads by rotation at

4°C for 2hrs.  The supernanent was decanted from the beads after centrifugation at

3400rpm for 5 minutes and the beads washed 3 times in wash buffer (20mM Tris pH7.5



26

500mM NaCl 1mM DTT) by rotation for 30minutes at 4°C.  The beads were re-washed

in lysis buffer plus 1mM DTT before digestion.  To remove YpkA from GST and the

affinity resin, YpkA was cleaved using an N-terminally tagged GST-3C site specific

protease construct, liberating YpkA into the supernanent buffer (20mM Tris pH7.5

200mM NaCl 1mM DTT 1mM EDTA).  The resulting material was decanted from the

affinity resin, concentrated, and flash frozen for storage.

2.3b Purification of YpkA (434-732)

YpkA (434-732) was expressed as an N-terminal GST fusion construct in 6 1.5L

cultures and was grown and lysed as described previously.  The resulting lysate was then

passed once over a 30mL Q-sepharose gravity column preincubated in lysis buffer

(20mM Tris pH7.5 200mM NaCl) plus 1mM DTT.  The resulting material was then

passed over a 50mL gluthione-sepharose column to bind YpkA and then washed in 5

column volumes of wash buffer (20mM Tris pH7.5 500mM NaCl 1mM DTT).  GST-

YpkA was eluted from the resin by passing three column volumes of lysis buffer plus

10mM glutathione and 1mM DTT.  This was then repeated with the initial flow through

and the two elutions pooled together.  YpkA was liberated from GST by an overnight

digestion with GST-3C in a 1 to 50 ratio.  During digestion the material as dialyzed

overnight into lysis buffer plus 1mM DTT and 1mM EDTA to remove glutathione.  After

digestion, GST was removed by two passes over a 50mL glutathione-sepharose column.

This was followed by dilution of the material in 20mM Tris pH7.5 to lower NaCl

concentration to 50mM or less for ion exchange chromatography.  YpkA was further
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purified by anion exchange chromatography with a 25mL Q15 Source column (GE

Healthcare) by FPLC (Åkta) removing GST as YpkA did not bind appreciably to the

column.  The flow throw was then reconcentrated to 40mg/mL and passed over an SD200

(120mL volumes) gel filtration column for final purification and buffer exchange into

crystallization buffer (20mM Tris pH7.5 50mM NaCl 1mM DTT).

2.3c Purification of YpkA (115-465) and (115-732)

YpkA was expressed as an N-terminal GST fusion construct in six 1.5L cultures

and was grown and lysed as described previously.  The resulting lysate was then based

once over a 30mL Q-sepharose gravity column preincubated in lysis buffer (20mM Tris

pH7.5 200mM NaCl) plus 1mM DTT.  The resulting material was then passed over a

50mL gluthione-sepharose column to bind YpkA and then washed in 5 column volumes

of wash buffer (20mM Tris pH7.5 500mM NaCl 1mM DTT).  GST-YpkA was eluted

from the resin by passing three column volumes of lysis buffer plus 10mM glutathione

and 1mM DTT.  This was then repeated with the initial flow through and the two elutions

pooled together.  YpkA was liberated from GST by an overnight digestion with GST-3C

in a 1 to 50 ratio.  During digestion the material as dialyzed overnight into lysis buffer

plus 1mM DTT and 1mM EDTA to remove glutathione.  After digestion, GST was

removed by two passes over a 50mL glutathione sepharose column.  This was followed

by dilution of the material in 20mM Tris pH7.5 to lower NaCl concentration to 50mM or

less for ion exchange chromatography.  YpkA was then further purified by anion

exchange chromatography by a 25mL Q15 Source column (GE Healthcare) by FPLC
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(Åkta).  YpkA was eluted from the column by washing in a salt gradient of 20 column

volumes to final concentration of 400mM NaCl.  The eluted material was separated from

the residual GST peak and concentrated to 25mg/mL and passed over an SD200 (120mL

volume) gel filtration column for additional purification and buffer exchange into

crystallization buffer (20mM Tris pH7.5 50mM NaCl 1mM DTT).  The final material

was reconcentrated and passed over an SD200 gel filtration column of 25mL to removed

any aggregation.

2.3d Purification of YpkA (115-532)

YpkA was expressed as an N-terminal his-tag fusion construct in six 1.5L cultures

and was grown and lysed as described previously, except that DTT was omitted from the

buffer in all steps before and during the use of a nickel sepharose column.  The lysate was

first passed over a 30mL nickel-sepharose column by FPLC (Åkta).  The column was

washed with five column volumes of lysis buffer plus 30mM Imidazole then eluted by a

20 column volume imidazole gradient for a final concentration of 500mM.  After elution

the material was digested overnight with GST-3C while being dialyzed into 20mM Tris

pH7.5 100mM NaCl.  The digested material was repassed over a nickel-sepharose

column to removed non-digested material.  The flow through was then supplemented

with 1mM DTT and 1mM EDTA, diluted 5x and passed over a Q15 source column for

further purification by anion exchange chromatography.  YpkA was eluted from the

column by a 20 column volume salt gradient, reconcentrated to 23mg/mL and purified by
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gel filtration using a 25mL SD200 column.  The final buffer conditions were 20mM Tris

pH7.5 100mM NaCl 1mM DTT.

2.3e Purification of YpkA (115-428) and (115-465) Refolding

YpkA was expressed as an N-terminal his-tag fusion construct in six 1.5L cultures

and was grown as described previously.  YpkA (115-428) was refolded for optimal

purification.  The initial cell pellet was resuspended in denaturation buffer (10mM Tris

pH8.0 100mM NaPhosphate 8M Urea).  The chemically lysed material was then

sonicated three times for 10minutes to shear DNA.  The lysate was cleared by

centrifugation as with non-denatured preps as described previously, and passed over

15mL nickel-sepharose columns pre-equilibrated in denaturation buffer plus 30mM

imidizole.  The columns were washed in five column volumes of denaturation buffer plus

30mM imidizole followed by elution from the resin with denaturation buffer plus 500mM

imidazole.  Purified YpkA was first diluted to 0.5mg/mL and then was refolded by

dialysis by four buffer exchange steps.  Each step was done at 4°C and lasted at least 4

hours.  The first three buffer exchange steps were into lysis buffer (20mM Tris pH7.5

200mM NaCl) plus 5% glycerol 2mM EDTA and 2mM DTT.  The fourth step omitted

glycerol and DTT.  After refolding, YpkA was digested overnight with GST-3C during

another dialysis step repeating the fourth buffer exchange.  The digested material was

passed over a 15mL passed over a glutathione-sepharose column to removed GST-3C

then over a 15mL nickel sepharose column to remove undigested material. YpkA was

then further purified by anion exchange chromatography by a 25mL Q15 Source column
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(GE Healthcare) by FPLC (Åkta).  YpkA was eluted from the column by washing in a

salt gradient of 20 column volumes to final concentration of 400mM NaCl.  The eluted

material concentrated to 30mg/mL and passed over an SD200 (120mL volume) gel

filtration column for additional purification and buffer exchange into crystallization

buffer (20mM HEPES pH7.5 50mM NaCl 1mM DTT).  The final material was re-

concentrated and passed over an SD200 gel filtration column of 25mL to remove any

aggregation.

2.3f Purification of Rac1 (1-184) GDP

Rac1 (1-184) (F78S) was cloned as an N-terminal GST fusion in the vector

pGEXT4T3 (Stebbins and Galan 2000).  The GST-Rac1 fusion protein was expressed

and lysed as described previously using a total of six 1.5L cultures.  The supernatant was

passed over a Q-sepharose gravity column followed by a glutathione-sepharose gravity

column.  The glutathione-sepharose column was washed with 5x volume wash buffer

(20mM Tris pH7.5, 500mM NaCl, and 2mM DTT) followed by elution of GST-Rac1 in

lysis buffer plus 10mM glutathione.  GST was removed by overnight cleavage with

thrombin during dialysis into lysis buffer plus 2.5mM CaCl2.  The digest was then passed

by gravity flow over a heparin sepharose column to remove thrombin followed by

dilution in 20mM Tris pH7.5 1mM DTT to lower salt concentration for ion exchange

chromatography.  GST was separated from Rac1 by passing the digest over a Q

sepharose column followed by an SP FF Sepharose column by FPLC for crystallization

(GE Healthcare).  Purified Rac1 not used in crystallization was purified instead with a
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Q15 source column (GE Healthcare).  Finally Rac1 (1-184) GDP was concentrated to

60mg/mL and run over an SD200 gel filtration column (GE Healthcare) to isolate non-

aggregated material and to exchange the buffer into 20mM Tris pH7.5, 50mM NaCl, and

1mM DTT.  All purification steps were performed at 4°C.

2.3g Purification of RhoA GDP, Cdc42 GDP, and SopE

RhoA (1-181 F25N) GDP, Cdc42 (1-184) GDP, and SopE (78-240) were

expressed as N-terminal GST fusion construcst in 6 1.5L cultures and was grown and

lysed as described previously.  The resulting lysate was then based once over a 30mL Q-

sepharose gravity column preincubated in lysis buffer (20mM Tris pH7.5 200mM NaCl)

plus 1mM DTT.  The resulting material was then passed over a 50mL gluthione-

sepharose column to bind the protein and then washed in 5 column volumes of wash

buffer (20mM Tris pH7.5 500mM NaCl 1mM DTT).  The construct was eluted from the

resin by passing three column volumes of lysis buffer plus 10mM glutathione and 1mM

DTT.  Each protein was liberated from GST by an overnight digestion with GST-3C in a

1 to 50 ratio.  During digestion the material as dialyzed overnight into lysis buffer plus

1mM DTT to remove glutathione.  The dialysis buffer for both RhoA and Cdc42 was

supplemented with 1mM MgCl2 and 0.2mM EDTA, whereas the buffer for SopE was

supplemented with 1mM EDTA.  After digestion, GST was removed by two passes over

a 15mL glutathione-sepharose column.  The flow through was concentrated to 40 to

60mg/mL then further purified by gel filtration using an SD200 (120mL volume) column.

The final buffer conditions were 20mM Tris pH7.5 50mM NaCl 1mM DTT.
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2.3h Expression and Purification of Selenomethionine YpkA (434-732)

To incorporate selenomethionine into YpkA for single anomalous dispersion

experiments (see below), YpkA GST-(434-732) was first transformed into B834 (DE3)

which is a methionine auxotroph.  Minimal media was made containing 32mg/L thymine,

2mM MgSO4, 1% glucose, 20mg/L thiamine, 20mg/L pyridoxine, and 20mg/L biotin.

This was supplemented with all amino acids, except methionine, for a total amount of

50µg each.  Selenomethionine was added at 10mg/L.  A 200mL YpkA culture in LB was

first grown overnight at 37°C, the cells harvested by centrifugation, then resuspended in

added to 1.5L of the selenomethionine media.  This was and grown to OD 0.6 at 37°C

and 100mL of each was used to inoculate one of six 1.5L cultures.  The new culture was

regrown to OD0.6 and then induced as described for GST-YpkA (434-732).  The same

purification procedure for native GST-YpkA (434-732) was followed to purify the

selenomethionine substituted material.

2.4.  Protein Crystallization, Data Collection, and Structure Refinement

2.4a YpkA (434-732)

YpkA (434-732) was reductively methylated following published protocols

(Rypniewski, Holden et al. 1993) Diffracting crystals were grown at 4°C by hanging drop

vapor diffusion using a 1:1 mixture of protein and well solution, which consisted of

100mM CAPs pH10.5, 140mM to 180mM NaCl, and 16% to 18% PEG1500. Crystals
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formed in the hexagonal space group P6522 with unit cell dimensions of a=b=60.0Å, and

c=402.0Å.  For phasing, selenomethionine substituted YpkA (434-732) was reductively

methylated, purified, and crystallized in the same manner as native YpkA (434-732).

Data were collected at beamline X29 at the National Synchrotron Light Source at

Brookhaven National Laboratories.    For data collection, YpkA (434-732) crystals were

frozen by a step-wise exposure to cryobuffer (crystallization mother liquor plus 25%,

30%, or 35% PEG1500) and then flash frozen in liquid nitrogen.  The frozen crystals

were then transferred directly into the cold stream at -180°C.  Data for a single native

crystal were collected to 2.0Å.  Data for the selenomethionine substituted protein were

collected at the selenium absorption edge, at a wavelength maximizing the anomalous

signal.  The derivative data was collected to 2.9Å.  Data were processed using the HKL

software package (Otwinowski and Minor 1997).  Phases for the monomer structure were

determined using the anomalous signal using the SOLVE/RESOLVE(Terwilliger 2004)

package.  The partial model built by RESOLVE was then rebuilt and initially refined

using ARP/wARP(Perrakis, Morris et al. 1999) with the native data set.  The model

generated by ARP/wARP was then refined using REFMAC5 (Murshudov, Vagin et al.

1997) from the CCP4 suite of programs (1994; Potterton, Briggs et al. 2003).  The final

model has an R/Rfree of 20.9 / 23.8, with 96.4% of the residues in the most favored

regions of the Ramchandran plot with no outliers. The solution was then refined using

REFMAC5 (Murshudov, Vagin et al. 1997) from the CCP4 suite of programs (1994;

Potterton, Briggs et al. 2003).
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2.4b YpkA (434-732) Rac1 (1-184) GDP Complex

The complex between methylated YpkA (434-732) and Rac1 (1-184) bound to

GDP was formed by first combining purified YpkA with an excess of Rac1 and then by

isolation by gel filtration chromatography on a 120mL SD200 column.  The two proteins

were incubated at 4°C for 30minutes with the addition of 4mM MgCl2.   The final buffer

conditions were 20mM Tris pH7.5 50mM NaCl 1mM DTT 0.2mM MgCl2.  Diffracting

crystals were grown at 22°C by hanging drop vapor diffusion using a 1:1 or 3:2 mixture

of complex and well solution, which consisted of 100mM HEPES pH6.5-7.5, 5% to 8%

PEGMME2000, and 0.2µL of a 1/10 dilution of seed stock created using Seed Bead

(Hampton Research). Crystals formed in the space group P1 with unit cell dimensions of

a=66.4Å b=75.5Å, c=99.7Å, α=92.1°, β=103.4°, and γ=115.8°.   Data were collected at

beamline X29 at the National Synchrotron Light Source at Brookhaven National

Laboratories.    For data collection, complex crystals were frozen by a step-wise exposure

to cryobuffer (crystallization mother liquor plus 25%, 30%, or 35% PEGMME2000) and

then flash frozen in liquid nitrogen.  The frozen crystals were then transferred directly

into the cold stream at -180°C.  Data for a two native crystals were collected to 2.6Å.

The data for two crystals were merged and processed using the HKL software package

(Otwinowski and Minor 1997).  The YpkA (434-732) and Rac1 (1-184) GDP complex

phases were determined by molecular replacement (search model 1MH1).  The solution

was then refined using REFMAC5 (Murshudov, Vagin et al. 1997) from the CCP4 suite

of programs (1994; Potterton, Briggs et al. 2003).  The final model has an R/Rfree of 22.4

/ 25.9.
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2.4c Rac1 (1-184) GDP Zinc

Rac1 was combined with reductively methylated YpkA (434-732) as previously

reported and screened for crystallization (Prehna, Ivanov et al. 2006).  The complex was

concentrated to 39mg/mL and Rac1 crystals were found to grow after initial YpkA

precipitation at 4°C by hanging drop vapor diffusion using a 1:1 mixture of protein to

well solution which consisted of 100mM MES pH6.0, 15mM ZnSO4, and 10%

PEGMME 550.  Rac1 crystals were further optimized by micro-seeding using the "seed-

bead" from Hampton Research.  Diffraction quality crystals could be grown in pH

conditions ranging from 5.5 to 7.5, 5% to 20% PEGMME550, and 1mM to 40mM

ZnSO4.  ZnSO4 was necessary for crystallization and could not be replaced with MgSO4.

Crystals formed in the trigonal space group P3221 with unit cell dimensions a=b=89.7Å

c=191.6Å.  Data were collected on a Marccd detector at beamline X3A at Brookhaven

national laboratories.  For data collection Rac1 crystals were frozen by a step-wise

exposure to cryo-buffer (15%, 25%, 28% PEGMME550 plus mother liquor) and then

flash frozen in liquid nitrogen.  The frozen crystals were transferred directly to the cold

stream at -180°C.  The data on one crystal was obtained to 1.9Å resolution at a

wavelength of 1.284Å.  The data was processed using the HKL software package

(Otwinowski 1997). Phases for the Rac1 GDP structure were determined by molecular

replacement using the program Phaser as part of the CCP4 suite of programs (Potterton,

Briggs et al. 2003) using the search model Rac1 search model (1MH1 pdb accession

code) and YpkA (1H7O pdb accession code).  The molecular replacement solution

revealed that only Rac1 was present.  The model was initial refined with REFMAC5
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(Murshudov, Vagin et al. 1997) from the CCP4 suite of programs (Winn, Isupov et al.

2001; Potterton, Briggs et al. 2003; Winn 2003; Winn, Murshudov et al. 2003) then

rebuilt using ARP/wARP (Perrakis, Morris et al. 1999).  The rebuilt model was further

refined with REFMAC5 for a final Rwork/Rfree of 17.4/20.8% with 92.0% of the

residues in the most favored regions of the Ramachandran plot with no outliers.  Zinc

sites were found using the program SOLVE(Terwilliger 2004) then placed into the

molecular replacement solution.

2.5 Structure Analysis and Molecular Graphics

To analyze the molecular contacts of the crystal structures, the programs Areamol

and Contact were employed from the CCP4 suite of programs (Winn, Isupov et al. 2001;

Potterton, Briggs et al. 2003; Winn 2003; Winn, Murshudov et al. 2003) in addition

calculation tools within CNS (Brunger, Adams et al. 1998).  The computer identified

contacts were then verified by visual inspection.  All molecular graphics were made using

the program Pymol (DeLano 2002) and Figures constructed with Adobe Photoshop 7.0

and Canvas 8.

2.6 YpkA Binding and Nucleotide Exchange Assays

The complex between YpkA (434-732), and Rac1((1-184)) was formed by first

combining purified YpkA with an excess of Rac1, examined by gel filtration

chromatography, and finally visualized by SDS-PAGE as described previously.  YpkA



37

Contact A mutant (N595A, Y591A, E599A) and YpkA Contact B mutant (N627A,

R628A, S631A) were purified as described for YpkA (434-732) and the complex with

Rac1 formed and analyzed as described for YpkA (434-732).  Binding experiments with

RhoA(F25N 1-181) and Cdc42 ((1-184)) were carried out in the same manner as Rac1.

For nucleotide exchange assays, purified Rac1 or RhoA was incubated alone with

buffer (20mM Tris pH7.5 50mM NaCl 5mM MgCl2) or with purified YpkA (434-732),

YpkA (434-732) Contact A mutant, for 10 minutes on ice.  Both YpkA (434-732) and

YpkA (434-732) contact A mutant were added in either a 1.5 fold or in a 3 fold molar

ratio access of Rac1.  Purified Cdc42 was incubated alone with buffer or with purified

YpkA (434-732) in a 3 fold molar ratio access.  To initiate the intrinsic exchange reaction

the stock incubations were then added to reaction buffer (20mM Tris pH7.5 50mM NaCl

5mM MgCl2  and mant-GTP obtained from Invitrogen) resulting in a final concentration

of Rac1 at 40µM and mant-GTP at 100µM.  Reactions were then transferred to a 96 well

plate and left for 5 minutes to bring to room temperature. The fluorescence of each

reaction was measured every 5 minutes for a total of one hour using a SpectraMax

GeminiXS fluorimeter from Molecular devices.  An excitation wavelength of 355nm and

an emission wavelength of 448nm with a cutoff of 435nm was used to detect the presence

of bound mant-GTP.  Competition assays with SopE were performed as described for the

intrinsic nucleotide exchange.  SopE was added to each reaction after the five minute

incubation to room temperature at a final concentration of 0.22µM for Rac1 or RhoA,

and 0.04µM for Cdc42.
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2.7 YpkA Transfection Assays    

2.7a Henle Cell Transfection and Visualization

YpkA constructs 1-732, (434-732), and (434-732) Contact A mutant (Tyr 591A,

Asn 595A, Glu 599A), were cloned into the pFLAG-CMV-4 mammalian expression

vector using the restriction sites NotI and XbaI resulting in N-terminally tagged

constructs.   Henle407 cells were grown to confluence in DMEM media containing 10%

Fetal Bovine Serum (FBS) and penicillin/streptomycin.  The cells were then transferred

to six-well tissue culture dishes containing a glass coverslip.  Approximately 200,000

cells were added to each well with a total volume of 2ml and grown overnight.  The

transfections were carried out using the Geneporter2 reagent and protocol (Genlantis).  A

total of 6µg of DNA was added to each reaction and reactions were performed in

triplicate.  Reactions were allowed to proceed for 24hrs before being fixed and stained.

Cells were fixed with 3% Formaldyde, permeablized with 0.5% Triton, and blocked with

3% BSA PBS before exposure to antibodies.  The YpkA constructs were visualized by

primary antibody staining with mouse α-FLAG antibody (Sigma) and then by the

secondary Alexa-Fluor goat α-mouse antibody (Molecular Probes).  The actin

cytoskeleton was visualized by staining with Rhodamine Phalloidin (Molecular Probes).

To quantify the effect of each construct on the host cytoskelon each reaction was counted

blind and in triplicate.  For each reaction, between 75 and 200 transfected cells were

counted for each of the triplicate reactions (a total of 225 to 450 cells for each construct)

and the state of their cytoskeleton scored as “wild type” or “intermediate” effect. The



39

cells were visualized by the use of an Axioplan2 upright microscope with Attoattic

fluorescent filters and a Hammatsu Digital Camera or by the use of a Zeiss LSM510

confocal microscope.

2.7b Relative Stability of YpkA Transfection Constructs

Transfected and untransfected Henle407 cells expressing N-terminal FLAG-

tagged YpkA full length constructs were lysed in buffer (50mM Tris pH 7.4 150mM

NaCl 1% SDS 1% Sodium Deoxycholate) and run on a 7.5% Poly-acrylamide gel (total

protein normalized using by Bradford assay).  The gel material was transferred to a

nitrocellulose membrane and blotted with α-FLAG M2 peroxidase conjugated antibody

(Sigma).  The blot was visualized using Western Detection Agents 1 and 2 (Amersham)

followed by a 15 minute exposure to Hyper film ECL (Amersham).  Transfected and

untransfected Henle407 cells expressing either N-terminally FLAG-tagged YpkA (434-

732) or YpkA (434-732) Contact A mutant were lysed as above and run on a 15% Poly-

acrylamide gel.  The gel material was transferred to a nitrocellulose membrane and

blotted with α-FLAG M2 peroxidase conjugated antibody (Sigma).  The blot was

visualized usingWestern Detection Agents 1 and 2 (Amersham) followed by a 2 minute

exposure to Hyper film ECL (Amersham).
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2.8 Yersinia Strains and Mouse Infection Assays

This section was performed in collaboration by Maya I Ivanov and James B.

Bliska at SUNY Stonybrook.  IP2777 is a virulent serogroup O1 strain of Y.

pseudotuberculosis obtained from Michel Simonet (Simonet et al., 1992).  The LD50 of

IP2777 in C57BL/6 mice challenged intragastrically is 5x108 CFU.  YpkA null and

contact A mutants were constructed as described in Supplementary Experimental

Procedures. Two independent mouse infection experiments were carried out and the

results presented are compiled from the two experiments.  Eight week-old female

C57BL/6 mice (Taconic) were challenged by the intragastric route using a 20 gauge

feeding needle. Bacterial inocula were prepared from cultures grown in Luria Broth (LB)

with shaking at 26°C. Bacteria were inoculated into LB, grown overnight, and

subcultured in LB to an OD600 of 0.1.  After a second overnight growth, the cultures

were centrifuged, the bacterial pellets were washed once in Hank’s balanced salt solution

(HBSS), and suspended HBSS to yield 5x109 CFU per 0.2 ml. C57BL/6 mice were fasted

for 18 h prior to infection. Groups of 4 animals were infected with 0.2 ml of suspended

bacteria (a dose equivalent to 10 LD50s). Infected mice were provided food and water

and carefully observed three times a day over a 14 day period.  Mice exhibiting severe

signs of disease (ruffled fur, hunched posture, and immobility) were humanely

euthanized by CO2 inhalation.  Survival curves were plotted using Prism (GraphPad) and

analyzed for significant differences using the Mantel-Haenszel logrank test. These

experiments were carried out in compliance with protocols approved by the IACUC at

Stony Brook University.
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2.9 Yersinia Strain Constructions and HeLa Cell Infection Assays

This section was performed in collaboration with Maya I. Ivanov and James B.

Bliska at SUNY Stonybrook.  A ypkA null mutant of IP2777 in which nucleotides 1 to

2199 of the ypkA open reading frame were deleted was constructed by allelic replacement

using the plasmid pYopOΔ1-2199 as described (Viboud et al., 2003). A ypkA mutant of

IP2777 deficient in GDI activity was constructed using allelic replacement to introduce

three codon changes (Tyr 591Ala, Asn595Ala, and Glu599Ala) into the ypkA open

reading frame on the virulence plasmid.  For this purpose, a fragment of ypkA containing

the three codon substitutions was removed from pFLAG-CMV-4 (434-732) using XmaI

and NotI restriction sites, and inserted into the corresponding sites in pSB890 (Viboud et

al., 2003).  The resulting plasmid was conjugated into IP2777, and following selection

steps for allelic replacement carried out as described (Viboud et al., 2003), colonies of

recombinants were screened for the presence of the codon changes.  Following PCR

amplification of ypkA sequences corresponding to codons 434 to 732, PCR products were

subjected to digestion with NaeI, which only cuts within PCR products containing the

Tyr 591Ala codon change.  A recombinant with the Tyr 591Ala codon change based on

NaeI digestion was isolated, confirmed by sequencing to contain all three codon changes,

and designated the ypkA contact A mutant. A Yop secretion assay (Galyov et al. 1993)

was used to confirm that the null mutant did not express YpkA protein, while the contact

A mutant expressed full length YpkA protein.  Immunoblotting of secreted Yops with

antibodies specific for YopE and YopT was carried out as described [Viboud et al. 2006].

A HeLa cell rounding assay was performed as described [Hakansson et al. 1996] except
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that the bacteria were grown in LB for 2 h at 37°C prior to infection, and the multiplicity

of infection was 50.  A Y. pseudotuberuclosis IP2777 yopEHTJ mutant that expresses

catalytically inactive forms of YopE, YopH, YopT and YopJ was provided by Yue Zhang

at Stony Brook University.

2.10 Radiological Assays

2.10a Rac1 GAP Activity

Purified Rac1 (1-184) was preloaded with γ-32P GTP by incubation in preload

buffer (20mMTris pH7.5 25mM NaCl 4mM EDTA 0.1mM DTT) at a ratio of 40µg Rac1

to 2µCi γ-32P GTP at room temperature.  The exchange was stopped after the addition of

20mM MgCl2.  Rac1 was either incubated alone or with YpkA (434-732) on ice for 20

minutes in stock buffer (20mM Tris pH7.5 0.1mM DTT 1mM GTP 5mM MgCl2).  YopE

obtained purified from postdoctoral fellow Milos Vujanac was added to a separate Rac1

reaction as a control.  The final reaction conditions were 3.6µM Rac1, 48.5µM YpkA,

and 43.5µM YopE.  The reaction was initiated by incubation at room temperature and

5µL aliquots were taken every 5minutes for a total of 20 minutes and placed on ice in

500µL assay buffer (20mM Tris pH7.5 50mM NaCl 5mM MgCl2).  The entire reaction

was then visualized using the Bio-blot apparatus (Biorad) and exposure on a Storage

Phosphor Screen / Typhoon Scanner (Molecular Dynamics).
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2.10b YpkA Kinase Activity Assay

Purified YpkA constructs were tested for autophosphorylation and

phosphorylation of MBP (Mylein basic protein) in the presence of G or F rabbit muscle

actin (Cytoskeleton, Inc.).  The differing actin forms were prepared as per the company

protocol. Reactions were prepared with an excess of MBP relative to YpkA and

preincubated in either G reaction buffer (20mM HEPES pH7.5 10mM MgCl2 1mM DTT

and 0.1mM ATP 1µCi γ-32P ATP) or F reaction buffer (20mM HEPES pH7.5 50mM KCl

10mM MgCl2 1mM DTT and 0.1mM ATP 1µCi γ-32P ATP).  Each assay was initiated

with an access of either G or F actin relative to YpkA and then incubated at room

temperature for 30 minutes.  The reactions were then visualized by SDS-PAGE and

exposure on a Storage Phosphor Screen / Typhoon Scanner (Molecular Dynamics, Inc.).

2.10c YpkA Inhibitor Screening and IC50 Determination

The 45 top hits from virtual screening were tested for inhibitory activity against

full length YpkA initially at 450 µM in the presence of G actin (2.10b).  The results of

each trial were visualized using the Bio-blot apparatus (Biorad) and exposure on a

Storage Phosphor Screen / Typhoon Scanner (Molecular Dynamics).  The IC50 of the best

inhibitors was determined by creating serial dilutions of inhibitor from 0 µM to 181 µM

(final reaction concentration) spread over 5 to 6 independent points measured in

triplicate.  A total of 200ng of YpkA 1-732 was used per 16 µL reaction volume.  After

visualization (2.10b) the intensity of each band was intergraded by the program
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ImageQuant (Molecular Dynamics).  This data with the program, LSW Data Analysis

Tool Box version 1.1.1 in MicroSoft Excel, was used to generate curves for IC50

calculation.  MAPK kinase and Protein kinase C (PKC) were obtained from Calbiochem

and the same protocol followed as YpkA to determine inhibitor IC50 values.  Each was

added in the same molar ratio as YpkA in the final reaction conditions.

2.11 Sequence Alignment and Homology Modeling of the YpkA Kinase Domain

The following section was performed in collaboration with postdoctoral fellow

Xin Hu.  The minimum kinase domain of YpkA (sequence (115-428)) was used. The

sequence alignment was performed using FUGUE, 3D-PSSM, and SUPERFAMILY,

with alignment adjustments during optimization.  Five homology models of YpkA were

constructed using MODELLER version 7.0, the representative model selected had lowest

value of MODELLER target function.  All the structural models were validated by

checking their quality with the programs PROCHECK and PROSA II. The 3D structures

of YpkA built by MODELLER were further modeled in the presence of ATP. The ATP

molecule was extracted from the CDK2 crystal structure (1HCK) and superimposed into

the putative ATP-binding pocket of YpkA structures. The protein/ATP complexes were

subjected to a full energy minimization through a series of independent steps.  Energy

minimizations were carried out employing Sybyl 7.0. In each step, MMFF94s force field

was applied with 0.05 kcal/Å convergence and 5000 steps using Powell method.



45

2.12 Database and Virtual Screening of YpkA Inhibitors

The following section was performed in collaboration by postdoctoral fellow Xin

Hu.  A diversity of chemical databases was collected from academic commercial

providers and compounds were pre-processed to convert to an appropriate format with

3D atomic coordination that is suitable for virtual screening. In addition, the databases

were also filtered using “Lipinsky's rule of 5”: (MW: 200-500; H-bond donor <= 5; H-

bond acceptor <= 10; ClogP <= 5; Rotatable bonds <= 10). Sybyl modules SELECTOR,

UNITY, and CONCORD were used in the database processing.  A total of more than

200,000 unique and drug-like compounds were generated and used in the virtual

screening.  Database virtual screening was carried out using FlexX running on a 36-

processor LINUX cluster in parallel.  We sampled the different conformations of YpkA

based on model A and model B, which were generated from comparative modeling and

possess a distinctive ATP binding site. The key residues in the ATP binding pocket,

including residues Arg211, Lys163, His148, Lys272, Asp215, were adjusted using the

rotamer library in FlexE.  Finally, a total of 10 YpkA conformations were applied for the

multiple conformation screening. The active site of YpkA was defined within a 6.5 Å

radius sphere centered on the ATP molecule. FlexX was then used for the subsequent

docking using the default parameters.  The original FlexX scoring function and the

CScore was used and the top 30 solutions were retrieved. The top scoring poses and the

conformations of the protein active site associated with the selected pose as generated by

FlexX were visually examined.
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CHAPTER THREE:

BIOCHEMICAL CHARACTERIZATION AND CRYSTAL

STRUCTURE OF THE YPKA GTPASE BINDING DOMAIN

3.1 Domain Characterization of YpkA

Despite the discovery of YpkA over a decade ago, little has been established

regarding its structure and function.  In order to better understand this essential virulence

factor of the plague bacterium, we have taken a biochemical and structural approach in

characterizing the different domains of YpkA.  To delineate the functional and structural

domain boundaries in YpkA, we created a series of constructs based on secondary

structure predictions, threading results, and limited proteolysis experiments (Figure 3.1)

(Rost 1996; Fischer, Elofsson et al. 2001; Fiser and Sali 2003).  The vast majority of

constructs were not soluble as recombinant polypeptides expressed in E coli. The results

of limited proteolysis on the soluble constructs allowed us to further demarcate domain

boundaries, and to identify likely surface accessible loops linking separate structural

domains in the YpkA polypeptide.  These experiments resulted in our division of YpkA

into a C-terminal, Rho GTPase and actin-activation domain spanning residues (434-732),

a kinase homology domain spanning residues 115-431, and an N-terminal region.  These

results combined with the crystal structure discussed below, finalized our working model.
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Figure 3.1: Domain Delineation of the Yerisnia Virulence Factor YpkA

The domain model of YpkA shows four distinct regions that are demarcated by the

dividing residue, and regions of interest are marked by residue number.  The region

used for the creation of the homology model and sequence of the crystallized construct

are outlined, in addition to all locations identified by limited proteolysis experiments

are marked with an asterisk. The full domain model was created considering all the

known biochemical and structural data.
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To analyze the mechanisms behind the activity of YpkA, the soluble domain

fragments identified above were purified and assayed for the appropriate biochemical

activity.  The C-terminal region of YpkA, residues (434-732), was highly soluble and was

seen to be active in vitro to bind to Rac1 (Figure 3.2).  An N-terminal region of this

fragment (residues 543-640) has been shown previously in a yeast two-hybrid assay to be

required for binding to small GTPases like Rac1, and by sequence similarity was

expected to emulate the ACC finger domains of some of their downstream effector

kinases(Hakansson, Galyov et al. 1996).   Additionally, this C-terminal domain also

Figure 3.2: YpkA (434-732) Forms a Stable Complex with Human Rac1

(A) Purified YpkA (434-732) and Rac1 bound to GDP form a stable complex as assayed

by gel filtration chromatography.  The chromatograph of the complex and individual

protein peaks are shown in addition to their elution volumes.

(B) The profile of the peak complex fractions re-run on the gel filtration column under

the same conditions, overlaid with the fractions visualized by coomassie stained SDS-

PAGE.
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contains a potential actin-binding segment, residues 710 to 732, identified again through

deletion studies to be required for actin-dependent activation of the YpkA kinase (Juris,

Rudolph et al. 2000).  The biochemically active construct, YpkA (434-732), was screened

for crystallization, yielding diffracting crystals, as discussed below.

3.2 Overall Structure of the C-terminal GTPase Binding Domain

YpkA (434-732) was crystallized in a variety of conditions, but did not yield

diffracting crystals until the protein was reductively methylated  (Methods) (Figure 3.3)

(Rypniewski, Holden et al. 1993).  This modification did not affect Rac1 binding (section

3.3), yielded diffraction quality crystals, and the structure was solved by single

wavelength anomalous diffraction using methylated, selenomethionine substituted protein

(Methods; Table 1).

The overall structure reveals an elongated, all-helical molecule consisting of two

distinct sub-domains connected by a 65Å long “backbone” or “linker helix” (Figure 3.4).

The N-terminal sub-domain contains most of the sequence-identified, ACC finger-like

repeats that resemble elements required in host factors for small GTPase binding,

whereas the C-terminal sub-domain contains the sequence implicated in actin activation.

The overall surface of the molecule is highly charged, containing a large basic patch in

the GTPase binding domain and a large acidic patch in the actin-activation domain.  The

basic patch stretches around the surface of the GTPase binding domain, and includes the

surfaces of helices α1, α2, and α3, in addition to the N-terminus.  The acidic patch is

comprised of residues from helices α9, α10, and includes the C-terminus (Fig. 3.4).  The
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structure of YpkA consists of several disordered regions on the N-terminal face of the

molecule.  No density or very poor density is seen at the N and C termini, for loops

connecting helices α2 and α3 (residues 487 to 488), helices α3 and α4 (residues 515 to

532), and helices α5 and α6 (residues 582 to 584).

YpkA consists of six helices organized into two three-helix bundles packed

against each other.  Each of the bundles is stabilized by hydrophobic zippering in the

core, and extensive hydrophobic packing is observed between the bundles.  Although the

helices do not form ACC finger domains per-se, this domain possesses a molecular

surface that mimics several aspects the RhoA binding surfaces of host ACC finger-like

proteins.  Previous sequence analysis had identified eight short segments in the GTPase

binding domain of YpkA as having similarity to RhoA binding motifs in protein kinase N

(PKN)(Juris, Rudolph et al. 2000).  The structure suggests that many of these segments

possess properties that make them unlikely to serve as GTPase binding elements in a

manner similar to ACC finger surfaces. Some of these previously predicted sequences

show very little solvent accessibility while others are not located in helical regions but in

connecting loops.  Other ACC finger-like regions show good accessibility, but are located

in regions of the protein which would likely render them unable to bind the GTPase.

Figure 3.3: YpkA (434-732) Crystals
YpkA crystals as imaged under plane-polarized light.
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Figure 3.4: Crystal Structure of YpkA (434-732)

(A) A ribbon diagram of YpkA (434-732) is shown.  The domain break between the

ACC finger like domain and the actin binding domain is indicated by the divide

between the two domain labels.  Both the N and C termini are indicated, in addition

to backbone helix and the two charged patches.

(B) The molecular surface of the YpkA (434-732) crystal structure.  Areas of red

indicate positive charge, or acidic regions, whereas blue indicates negative charges

or basic regions.

(C) Sequence-structural analysis of YpkA (434-732).  Secondary structure for given

residues is indicated above the sequence.  The relative solubility of each residue in

the structure is denoted by a colored box beneath it spanning dark blue (solvent

exposed) to white (buried from solvent). The residues involved in each charged

patch of YpkA are labeled in violet and red for basic and acidic, respectively.

Disordered regions are shown in yellow, and putative contacts to Rac1 (see text) are

indicated with an orange circle above the residue.
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Table I YpkA (434-732) Data collection, phasing and refinement statistics

Native (single crystal) SeMet (single crystal)
Data collection
Space group P6522 P6522
Cell dimensions
    a, b, c (Å) 60.0, 60.0, 402.02 59.9, 59.9, 402.00
    α, β, γ  (°) 90, 90, 120 90, 90, 120

Wavelength 0.979 0.979
Resolution (Å) 33.88-2.0 48.45-2.9
Rsym 4.5 (36.0) 7.0 (32.0)
I / σI 33.1 (3.2) 7.2 (2.3)
Completeness (%) 98.5 (91.7) 99.4 (99.0)

Refinement
Resolution (Å) 33.88-2.0 48.45-2.9
No. reflections 270529 204549
No. unique
reflections

28539 10450

Rwork / Rfree 20.9 / 23.8 Mean Figure of Merit
for Phasing

SAD
No. atoms SOLVE 0.39 (0.35)
    Protein 2169 RESOLVE 0.77 (0.56)
    Water 276
B-factors
    Protein 44.9
    Water 57.3
R.m.s deviations
    Bond lengths (Å) 0.022
    Bond angles (°) 1.744

These include the N-terminus of the construct which may be partially buried or sterically

blocked by the kinase domain in the full length protein, as well as a sequence within the

actin-activation sub-domain.  Conformational changes or unexpected binding modes may

of course invalidate this analysis, but our structural and sequence alignments suggest that

residues 489-514 and 533-581 appear to be the best candidates to form an ACC finger-

like surface.  As shown in Figure 3.5, residues 489-514 align both structurally and by

sequence to the known ACC finger structure of PKN.  These residues are predicted to
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Figure 3.5: Alignment of YpkA with ACC fingers

The residues that align well between YpkA (grey) and PKN (pink) that form part of

the PKN/RhoA binding surface are highlighted.  The residue numbers of YpkA are

indicated.  The alignment between the two proteins in this region is shown underneath.

Yellow indicates homologous residues and orange shows identical residues.  The

arrows mark which residues are shown in the structural alignment.  Additionally, other

ACC finger domains are presented in the sequence alignment.  YpkA is Yersinia

Protein kinase A, PKN is Protein Kinase N, p160Rock is human p160ROCK and

ACC-1 is mouse kinectin.
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Figure 3.6 ACC finger-like surface mutants do not significantly effect the YpkA-

Rac1 Complex

YpkA (434-732) wild type, quadruple mutant (Leu502Gly. Lys503Ala, Glu509Ala,

Asp510Ala), and sextuple mutant (Leu502Gly. Lys503Ala, Glu509Ala, Asp510Ala,

His566Ala, Glu570Ala) were incubated with Rac1 and analyzed for complex formation.

Samples were run on a gel filtration column equilibrated in buffer at 500mM NaCl.  The

elution profile of the samples from the gel filtration column is shown overlaid with the

fractions visualized by coomassie stained SDS-PAGE.
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form the α2 helix of the ACC finger, and several of the key residues of PKN that form

the interaction with RhoA map to a solvent accessible area of YpkA (Figure 3.4 and

Figure 3.5).  Associating residues 489-514 with the α2 helix of PKN, residues 533-581

could then comprise a similar surface to the α3 helix of PKN.  In this model residues

H566 and E570 of YpkA align well with the residues S81 and D85 of PKN, respectively.

To test the importance of the predicted surfaces we performed site directed

mutagenesis on a few of the most promising possible GTPase contacting residues of

YpkA.  We created multiple point mutations, which were used to test binding to Rac1 as

compared to wild-type YpkA by a pull-down assay and gel filtration (Methods).  All

single point mutants were able to form complex with Rac1 at conditions similar to those

normally used to assay for binding by pull down assay (data not shown).  This is not

surprising as in the PKN/RhoA structure the interface consists of 25 hydrogen bonding

contacts involving 15 residues (Maesaki, Ihara et al. 1999).  As such, limited mutagenesis

may not remove enough contacts to prevent complex formation.  To address this

possibility, we created quadruple and sextuple mutants and assayed their binding by pull

down assay and gel filtration in increasing salt concentrations (Figure 3.6).  The

quadruple mutant consisted of Leu502Gly, Lys503Ala, Glu509Ala, and Asp510Ala

(Figure. 3.5) and the sextuple mutant added His566Ala and Glu570Ala.  As shown in Fig.

3.6, only at 500mM NaCl, the sextuple mutant complex is destabilized relative to the

wild type and quadruple mutant complex, showing that these mutants do not significantly

effect the stability of the YpkA-Rac1 complex.
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3.3 The Actin Activation Domain

The far C-terminal subdomain of YpkA, containing the polypeptide implicated in

actin activation (residues 705-732, corresponding to helix α10), is a novel and elongated

fold consisting of four helices clustered into two pairs which only moderately interact

with each other.  The final two helices of YpkA (α9 and α10), are proximal to the N-

terminal subdomain and interact with the backbone helix (α6), creating a small bundle.

Toward one end of this bundle, the other helix pair in the C-terminal subdomain (α7 and

α8) protrudes out into solution.   These two helices (α7 and α8) are separated by an

extended loop (residues 640-660) that represents one of the most solvent exposed regions

of the protein (Figure 3.4).  A loop spanning residues 690-710 (connecting the last two

helices) extends toward the N-terminal sub-domain making minor interactions with it.

The backbone helix and helix α9 form a surface groove in which the α10 helix rests.  The

α10 helix (residues 705-730) has been predicted play a role in the interaction of YpkA

with actin, as it shows high homology to the actin binding protein coronin (Figure 3.7).

Past work has shown that the deletion of the region eliminates both the ability of YpkA to

bind to actin, and kinase activity (Juris, Rudolph et al. 2000).  As shown in Figure 3.7,

the alignment between coronin and YpkA is very high, with several of the conserved

residues mapping to solvent accessible areas of the structure (Figure 3.4).

Due to the solvent accessibility of this region of sequence similarity with coronin,

we attempted to show an interaction between our C-terminal construct YpkA (434-732)

and actin.  Both small scale pull-down assays (using GST-YpkA), as well as incubation

of purified proteins for the isolation of a complex by gel filtration, similar to the
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interaction of YpkA (434-732) and Rac1, were performed (Methods, Fig. 2).  These

attempts to form a stable complex between YpkA (434-732) and actin were performed in

the buffer used in radiological assays, in which it has been shown that actin does interact

with and activate full length YpkA (Figure 3.8) (Dukuzumuremyi, Rosqvist et al. 2000;

Juris, Rudolph et al. 2000).  In contrast to our binding assays with Rac1, these

experiments show that no stable complex was formed between YpkA (434-732) and actin

(data not shown).  This either indicates that the interaction between YpkA and actin is

weak or transient, or that residues (434-732) are not sufficient for a stable interaction

with actin.

Figure 3.7:  Coronin Homology Region

Surface exposed residues in YpkA (434-732) that may form an interaction with actin

based on the alignment with coronin are shown.  The residue numbers of YpkA are also

shown. The arrows mark which residue side chains are shown. Yellow indicates

homologous residues and orange shows identical residues.
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Previous work to isolate the residues that are responsible for an interaction with

actin utilized deletion mutagenesis in the context of the full-length protein, in which the

removal of the last 20 amino acids of YpkA rendered it unable to bind or to be activated

by actin (Juris, Rudolph et al. 2000).  As discussed above, we have found that all of the

C-terminal deletion constructs are poorly soluble and are thus most likely poorly folded

(Figure 3.1).  Specifically, we created several C-terminal deletions removing the last

helix, all of which were significantly destabilized.  The structure reveals that a removal of

this helical region would extensively expose the hydrophobic core and remove a large

segment stabilizing the fold of this sub-domain.  The α10 helix buries hydrophobic

residues in all three of the other helices in the C-terminal subdomain.  This data strongly

Figure 3.8:  YpkA (434-732) forms a weak complex with G Actin

GST-YpkA constructs were bound to affinity resin and incubated in kinase activity

buffer (see methods) in the presence of G actin.  Beads were precipitated, washed, and

the remaining material run on an SDS-page gel followed by coomassie stain.
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suggests that the removal this segment destabilizes the fold, and/or induces aggregation,

preventing association with actin and thereby explaining the loss of kinase activity. In

agreement with these results, recent results have show that the last 20 residues of YpkA

in fact only forms part of the actin-interaction surface, and therefore would be necessary

but not sufficient for actin binding (Trasak, Zenner et al. 2007).
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CHAPTER FOUR:

ANALYSIS OF A YPKA-RAC1 COMPLEX CRYSTAL

STRUCTURE

4.1 Overall Structure of a YpkA-Rac1 Complex

As the crystal structure of the YpkA GTPase binding domain alone was

insufficient to determine the Rac1 binding surface, and thus the biochemical function of

YpkA, crystals of a YpkA-Rac1 complex were grown (Figure 4.1; Table II).  Although

YpkA (434-732) and Rac1 form a dimer in solution (Figure 3.2), the complex crystallized

as a 2:2 packing (YpkA:Rac1) in the asymmetric unit with a non-crystallographic two-

fold axis of symmetry (Figure 4.2).  Each molecule of YpkA (434-732) therefore makes

contacts to two different Rac1 molecules (Figure 4.2).  The sites of these contacts we

have labeled “A” and “B.”  Contact A interacts nearly exclusively with the regulatory

Switch I and Switch II regions of the GTPase, whereas Contact B interacts with two C-

terminal helices adjacent to the RhoGTPase “insertion” (relative to the Ras-family small

Figure 4.1: YpkA-Rac1 Complex Crystals
YpkA Rac1 crystals as imaged under plane polarized light.
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GTPases), distal to the nucleotide and Switch regions.  Four facts argue for contact A

being the biologically relevant interaction: (1) it has nearly twice the buried surface area

as contact B, (2) it contacts the critical Switch I and Switch II regions of Rac1, whereas

contact B does not (Figure 4.4), (3) mutations of contact A disrupt YpkA-Rac1

interactions, whereas mutations in contact B (N627A, R628A, S631A) do not (see

below), and (4) a heterodimer appears to be the biological unit as judged by biochemical

Figure 4.2: Overall Structure of the YpkA-Rac1 Complex

2:2 YpkA:Rac1 contents of the asymmetric unit shown as ribbon diagrams.  The two

separate contacts of YpkA to Rac1 are shown, as is the nucleotide present, GDP.
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experiments (Figure 4.5).  Additionally, a comparison between YpkA (434-732)

crystallized alone and YpkA (434-732) in complex with Rac1 shows that there are very

few conformational changes in the GTPase binding domain structure (Figure 4.3).  Most

differences are located in the C-terminal subdomain of YpkA, and involve a slight overall

displacement in the positioning of the α7 and α8 helices, as well as alterations in the

conformation and relative disorder of solvent exposed loops.  Rac1 is little altered by the

binding of YpkA, except for the Switch regions as discussed below.

Table II YpkA (434-732) Rac1 complex data collection and refinement statistics

Data collection
Space group P1
Cell dimensions
    a, b, c (Å) 66.4, 75.5, 99.8
    α, β, γ  (°) 92.1, 103.4, 115.8
Resolution (Å) 99.5-2.60
Rsym or Rmerge 9.0 (41.8)
I / σI 11.8 (3.0)
Completeness (%) 99.4 (99.4)
Redundancy 3.7

Refinement
Resolution (Å) 34.86-2.60
No. reflections 48710
Rwork / Rfree 22.2 / 25.7
No. atoms
    All atoms 7191
    Water 75
B-factors
    All atoms 62.65
    Water 62.59
R.m.s deviations
    Bond lengths (Å) 0.017
    Bond angles (°) 1.666
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Figure 4.3: Crystal Structures of the C-terminal Domain of YpkA

(A) The molecular surface of YpkA (434-732) with charges is shown colored by

electrostatic potential, where blue indicates negatively charged regions and red indicates

positive charged regions.

(B) The structural alignment of the YpkA monomer structure (blue) and both YpkA

molecules in the asymmetric unit of the crystal structure (one chain in red and the other

in orange).
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4.2 The YpkA-Rac1 Interface

YpkA and Rac1 form an interface burying roughly 1,600 Å2 and limited to

residues 573-601 of YpkA (spanning the helices α5 and α6) contacting the key

regulatory Switch I and Switch II regions of Rac1 (Figure 4.4, A-E).   Switch I and

Switch II together create a concave pocket into which the α6 (backbone) helix of YpkA

inserts (Figure 4.4B), which along with the clustering of the Switch II helix with the α5

and α6 helices, cement the interaction tightly.

The Switch I contacts involve a large number of hydrophobic/van der Waals

interactions with YpkA, as well as several hydrogen bonds at this surface (e.g., residues

Asp 38 (Rac1) and Arg 596 (YpkA), Glu 599 (YpkA) and Tyr 32 and The 35 of Rac1;

Figure 4.4, C and E).  A striking aspect of this interaction with Switch I is that YpkA

contacts the conserved Thr 35 residue, which is normally involved in magnesium ion

coordination (Dvorsky and Ahmadian 2004), resulting in a stable coordination network

between the side chain of YpkA Glu 599, Rac1 Tyr 32, the hydroxyl group of Thr 35, its

main chain carbonyl oxygen, the magnesium ion, and the hydroxyl group of Thr 17

(Figure 4.4C).

At Switch II, the molecular interface between YpkA and Rac1 is quite extensive,

forming the largest portion of the protein-protein interactions (Figure 4.4, A, B, D and E).

Most of the contacting residues between YpkA and Rac1 are involved in hydrophobic,

van der Waals interactions forming a hydrophobic interface between the α5 and α6

helices of YpkA and the alpha helix and surrounding loops of Switch II.  Residues Leu

573, Val 577, and Val 586 of YpkA along with Leu 67 and Leu 70 of Rac1 contribute

significantly to this hydrophobic interface, making what resembles a hydrophobic
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zippering motif between the α5 and α6 helices of YpkA and the helical element of

Switch II (Figure 4.4, A, B, and D).  This interface between the molecules also includes

YpkA Pro 585 contacting Rac1 Pro 73 at one end, “pinching” off the zipper, along with

Tyr 591, Asn 595, and Ala 598 (YpkA) and Trp 56 and Asp 63 (Rac1), making several

van der Waals contacts between each other and the hydrophobic zippering motif.

Figure 4.4: The YpkA-Rac1 Interface

(A) Ribbon diagram view of the contact A interaction between YpkA and Rac1.  Switch I

(yellow) and Switch II (red) are highlighted, and GDP is noted.

(B) The image in panel (A) rotated by 90 degrees about a horizontal axis.

(C) Close up of the Switch I interactions with the α6 helix of YpkA.  Hydrogen bonds are

denoted by dashed red lines.

(D) Close up of the Switch II interactions with the α5 and α6 helices of YpkA.  Hydrogen

bonds are denoted by dashed red lines.

(E) Schematic of the interactions of the α5 and α6 helices of YpkA with Switch I and

Switch II of Rac1.  Hydrogen bonds are indicated by red lines between the interacting

residues, and hydrophobic interactions are shown with a yellow background.
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Additionally, Rac1 Tyr 64 makes van der Waals contacts with YpkA Glu 599, possibly

helping to position it for the hydrogen bonding interactions to Tyr 32 and Thr 35 in the

Switch I region of Rac1 described above.  Although the binding surface is primarily

hydrophobic in nature, it is also stabilized by three polar interactions.  The main chain

carbonyl oxygen of Rac1 Asp 57 forms a hydrogen bond with the phenol group hydroxyl

of YpkA Tyr 591, the acidic group of Rac1 Asp 63 with the amino group of YpkA Lys

601, and a salt bridge is formed between Rac1 Arg 66 and YpkA Asp 574 (Figure 4.4D).

To examine the importance of these contacts to complex stability, we mutated

three residues of YpkA at the contact A interaction surface and tested the purified protein

for binding to Rac1 and RhoA.  The triple mutant consisted of loss-of-contact mutations

to alanine (Tyr 591Ala, Asn595Ala, and Glu599Ala).  Although these mutations do not

destabilize YpkA itself, they completely abolish complex formation with both Rac1 and

RhoA (Figure 4.5), strongly supporting the crystallographic analysis.  In contrast,

mutations in the second binding site in the crystals (contact B, Figure 4.2) had no effect

on complex formation (Figure 4.5).  The mutated residues at contact B selected (N627A,

R628A, S631A) comprise almost the entire interaction surface.
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Figure 4.5: Gel Filtration and Mutagenesis

(A) The gel filtration profile of YpkA (434-732).  The molecular weight standards used

in the column calibration are labeled above the graph with the arrows indicating their

approximate elution volume.  YpkA (434-732) is shown in blue, Rac1 in red, and the

YpkA (434-732) and Rac1 complex in orange.

(B) The gel filtration profile of the YpkA (434-732) Contact A mutant.

(C) The gel filtration profile of the YpkA (434-732) Contact B mutant.

(D) The gel filtration profile of the YpkA (434-732) interaction with RhoA.

(E) The gel filtration profile of the YpkA (434-732) interaction with Cdc42.

In panels (B) and (C), YpkA (434-732) contact A or contact B mutant incubated with

Rac1 is shown in red, the YpkA (434-732) and Rac1 complex is shown in orange.  In

panel (D), YpkA (434-732) incubated in the presence of RhoA is shown in orange and

the YpkA (434-732) Contact A mutant and RhoA complex is shown in red.  In panel (E)

YpkA (434-732) in the presence of Cdc42 is shown in orange.  All panels contain the

elution peak of YpkA (434-732) shown in blue and the SDS-PAGE analysis (stained

with Coomassie blue) of fractions containing the eluted material superimposed on the

corresponding chromatograms.
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4.3 YpkA Mimics Host GDI Proteins

As described previously, the manner in which YpkA binds to Rac1 is by the use

of a region in its long "linker-helix" to interdigitate between the two switch regions

(Figure 4.4D).  This preliminary observation was interesting, as YpkA seems to be at

least structurally mimicking a common mode of binding to the small GTPases.  A large

number of eukaryotic host factors bind the small GTPases in this manner, by the

interdigitation of a helix between Switch I and Switch II (Cherfils 2001).  Examples

include, Arfaptin (which binds to Rac1 GDP or GTP or Arf GTP to mediate cross-talk

between those small GTPase pathways) (Tarricone, Xiao et al. 2001), Tiam1 (which is a

host GEF) (Worthylake, Rossman et al. 2000), Rabphillin (which binds to the Rab small

GTPases and is involved in vesicle trafficking and neurotransmitter release) (Ostermeier

and Brunger 1999), and the kinases PKN and ROCKI, which are downstream effectors of

the Rho family of GTPases that are activated upon the binding of the GTP form of the

GTPase (Maesaki, Ihara et al. 1999; Dvorsky, Blumenstein et al. 2004).  The proteins

listed above are only a few of the possible examples, and despite their common binding

motifs, they all have different biochemical and biological roles within the cell.

Structurally, Arfaptin and Tiam1 both hold Switch I in an open state, the difference being

that through additional elements Tiam1 can catalyze nucleotide exchange, whereas

arfaptin simply primes Rac1 (binding either the GDP or GTP form) for exchange by a

GEF in response to the binding of an activated (GTP bound) small GTPase from the Arf

family (Tarricone, Xiao et al. 2001) (Cherfils and Chardin 1999; Cherfils 2001).

Rabphillin is recruited to the cell membrane by binding to activated (GTP bound) Rab3A,
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Figure 4.6: YpkA Mimics the Binding of Host Cell GDIs

(A) Structural alignment between YpkA-Rac1 with the RhoGDI-1(α)-Rac1 and the

RhoGDI-2 (LyGDI)-Rac2 complexes at Switch I.  YpkA is indicated in orange, Rac1

bound to YpkA is indicated in blue, the RhoGDI-1(α) Rac1 structure in red and the

RhoGDI-2(LyGDI) Rac2 structure in tan.  The GDP molecule from the YpkA-Rac1

complex structure is shown in blue.

(B) Structural alignment between the YpkA-Rac1, RhoAGDP, SptP-Rac1, and RhoGDI-

2 (LyGDI)-Rac2 complexes at Switch II.  The YpkA complex is indicated in green, the

RhoA-GDP structure in blue, the SptP-Rac1-GDP-AlF3 complex in red, and the

RhoGDI-2 (LyGDI)-Rac2 complex in tan.  The residues at the N and C terminus of the

region in Rac1 shown are labeled.

(C) The conserved interactions of YpkA and GDI proteins with Rho family GTPases is

shown.  Both Switch I and Switch II are indicated with the secondary structural

elements of the YpkA-Rac1 structure drawn above.  Residues involved in hydrogen

bonding are drawn in red and those residues making hydrophobic or Van der Waals

contacts are highlighted in yellow.  Similar interactions between YpkA and the RhoGDI

proteins are boxed.
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to assist in the merging of vesicles for neurotransmitter release (Ostermeier and Brunger

1999), and both PKN and ROCKI are kinases activated by binding to the GTP bound

form of RhoA, although PKN appears to have two binding motifs, one of which binds

across a region near Switch I and another which is the interdigitated helix (Maesaki, Ihara

et al. 1999).  Since the interdigitation of a helix between Switch I and Switch II is such a

common and biologically diverse binding motif, to examine the effect of YpkA on Rac1

from a structural perspective, Rac1 was instead used as the search model, as described

below.

A comparison of the Yersinia YpkA interaction with Rac1 reveals intriguing

similarities to the interactions between host cell guanine nucleotide dissociation inhibitors

(GDIs) and their interactions with the Rho family GTPases.  An alignment of the

complexes of RhoGDI-1(α)-Rac1 (Grizot, Faure et al. 2001) and RhoGDI-2(LyGDI)-

Rac2 (Scheffzek, Stephan et al. 2000) with YpkA-Rac1 reveals that the Switch I

polypeptide adopts a very similar conformation in all of these structures (Figure 4.6A).

In addition, the residues of Switch I that make contacts with the host cell GDIs possess

nearly identical conformations in the Rac1 complex with YpkA (Figure 4.6, A and C).

YpkA even appears to mimic a hallmark of the RhoGDI-small GTPase interaction by

using an acidic residue to contact Thr 35 of the small GTPase to form a highly stable

coordination network involving YpkA Glu 599, the hydroxyl group of Thr 35, the

carbonyl oxygen of Thr 35 with the magnesium ion, and the hydroxyl oxygen of Thr 17

(Scheffzek, Stephan et al. 2000; Grizot, Faure et al. 2001).  This structural stabilization of

Switch I in the GDP bound conformation results in an inhibition of nucleotide exchange.



73

YpkA, therefore, possesses the key contacts seen between host RhoGDIs and their target

GTPases at Switch I (Figure 4.6, A and C).

YpkA contacts many of the same residues in Switch II as RhoGDI, although the

details of the molecular interactions differ (Figure 4.6C).  For example, the conformation

of Switch II in the YpkA Rac1 structure is different from that seen in RhoGDI complexes

with small GTPases, where Switch II is found in a conformation nearly identical to the

GTP bound forms of the small G proteins.   YpkA instead contacts these residues in

Switch II in such as manner as to stabilize the region in a conformation similar to the

structures of the GTPases bound to GDP.   Indeed, both Switch I and Switch II of Rac1 in

the YpkA structure are almost identical to the crystal structure of RhoA bound to GDP

(Wei, Zhang et al. 1997), indicating that YpkA acts to lock the small GTPase in the GDP

bound, or physiologically “off” conformation.  RhoGDIs are so named for their ability to

maintain small GTPases in an “inactive” physiological state, specifically through the

inhibition of nucleotide exchange in the small GTPases.  This inhibition is achieved by

stabilizing the coordination of the magnesium ion and preventing both the ion and the

bound GDP/GTP from dissociating (Scheffzek, Stephan et al. 2000).  This prevents both

intrinsic exchange of the GDP/GTP nucleotide and that catalyzed by guanine nucleotide

exchange factors, or GEFs.

Given the similarities at the structural level with host RhoGDIs, we therefore

examined whether YpkA could inhibit the intrinsic and catalyzed exchange of

nucleotides for Rac1, RhoA, and Cdc42.  As shown in Figure 4.7A, when Rac1, RhoA or

Cdc42 are incubated in the presence of mant-GTP, a fluorescent nucleotide analog, there

is an increase of fluorescence signal over time, indicating that increasing amounts of the
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Figure 4.7:  YpkA Inhibits Nucleotide Exchange in Rac1 and RhoA

The intrinsic and GEF catalyzed rate of mant-GTP exchange into the small GTPases

Rac1, RhoA, and Cdc42 was monitored as described in Experimental Procedures.  The

left column shows the intrinsic rate inhibition data, and the right column the rate

inhibition data when challenged with the Salmonella GEF SopE.  Panel (A) is Rac1,

panel (B) is RhoA, and panel (C) is Cdc42.  The experiments are shown with the

increase of relative fluorescence units (RFU) over time in seconds.  The labels are

described in a legend below the Figure, where 1.5x and 3x are relative molar

concentrations of YpkA or YpkA Contact A mutant above the small GTPase.
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labeled nucleotide have been bound (Experimental Procedures).  The addition of YpkA

(434-732) results in a marked decrease in nucleotide exchange for Rac1 and RhoA,

but only a modest decrease for Cdc42 (Figure 4.7A).  In contrast, the triple mutant

(contact A mutant) of YpkA that is impaired in Rac1 and RhoA binding was unable to

inhibit the exchange of GTP (Figure 4.7A).  Similar results are observed if we challenge

the system with a potent GEF, Salmonella SopE (Hardt, Chen et al. 1998; Rudolph,

Weise et al. 1999; Friebel and Hardt 2000; Buchwald, Friebel et al. 2002).  SopE, one of

the most active exchange factors studied to date (Rudolph, Weise et al. 1999; Friebel and

Hardt 2000), quickly catalyzed the exchange of the bound GDP of Rac1, RhoA and

Cdc42 with the mant-GTP assay (Figure 4.7B).  Incubation of Rac1 or RhoA with

increasing amounts of YpkA leads to a dose-dependent decrease in exchange when

challenged by SopE (Figure 4.7B).  In contrast, YpkA was unable to inhibit exchange in

Cdc42 catalyzed by SopE (Figure 4.7C).  As was observed with the intrinsic nucleotide

exchange of Rac1 and RhoA, the triple mutant of YpkA was completely inactive against

SopE.  We therefore conclude that the YpkA C-terminal domain is a potent inhibitor of

nucleotide exchange for Rac1 and RhoA in vitro.

4.4 The YpkA GTPase Binding Domain Disrupts the Actin Cytoskeleton

We then sought to establish the in vivo significance of binding to RhoA and Rac1,

and thereby, presumably, the biological significance of the GDI-like activity of YpkA.

To address this, we transfected cultured human intestinal epithelial cells (Henle407) with

six YpkA constructs: 1-732 (wild type), 1-732 (K272A, kinase active site mutant), 1-732
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(contact A mutant), 1-732 (K272A + contact A mutant), (434-732), and (434-732)

contact A mutant (Experimental Procedures).  After 24 hours the cells were immuno-

stained for the YpkA constructs with antibodies against an N-terminal FLAG epitope

(Experimental Procedures), and the cytoskeleton visualized by staining with Rhodamine

Phalloidin.  Additionally, each construct was tested for its stability in mammalian cells

showing that transfected YpkA is expressed and present within the experiment at similar

levels (Figure 4.8).  As has been reported (Hakansson, Galyov et al. 1996; Juris, Rudolph

et al. 2000; Nejedlik, Pierfelice et al. 2004), transfection with wild type YpkA induces

extensive cytoskeletal disruption, leading to a loss of actin stress fibers and a distortion in

the cellular morphology.  In fact, transfection of YpkA into mammalian cells induces two

Figure 4.8: Relative in vivo stability of transfected YpkA constructs

(A) Transfected and untransfected Henle407 cells expressing N-terminal FLAG-tagged

YpkA full length constructs as analyzed by western blot (methods).

(B) Transfected and untransfected Henle407 cells expressing either N-terminally FLAG-

tagged YpkA (434-732) or YpkA (434-732) Contact A mutant as analyzed by western

blot (methods)
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observable effects, the first causing the disappearance of actin stress fibers, and the

second resulting in severe cellular deformation in addition to the loss of stress fiber

formation (Figure 4.9).  This cellular deformation has been described as a “rounding up”

of the cells, but maintaining focal adhesions (Juris, Rudolph et al. 2000).  Full length

YpkA shows the ability to both prevent stress fiber formation and causes a large number

of the Henle cells to lose their shape, resulting in the described cellular deformation or

“wild type” effect (Figure 4.9B).  Transfection with the N-terminal deletion construct

YpkA (434-732), which lacks the serine-threonine kinase domain, results in an attenuated

or “intermediate” phenotype. YpkA (434-732) is able to cause the disappearance of actin

stress fibers in most cells, although its ability to cause cellular deformation is reduced as

compared to the wild type construct (Figure 4.9A). The YpkA (434-732) contact A

mutant, which is deficient for both Rac1 and RhoA binding in addition to GDP

dissociation inhibition in vitro, leads to a complete loss of cytoskeletal disruption (Figure

4.9B).

In the context of the full length protein, these same mutations are intriguing.  To

begin, YpkA with the kinase active site mutation K272A is only slightly attenuated in

cytoskeletal disruption, losing most of the “wild type effect” but maintaining a significant

amount of the intermediate effect (Figure 4.9A).  In fact, this mutant is nearly identical in

its effect on cells to the deletion of the entire kinase domain.  In contrast, the YpkA

contact A mutant, defective for binding to Rac1 and RhoA (and defective for GDI-like

activity) causes a very low level of cytoskeletal alterations, and adding to this mutant the

K272A kinase mutation does not appreciably change the phenotype.  Although the full

length YpkA Contact A mutant and the K272A Contact A mutant do not cause significant
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Figure 4.9: GDI Activity is Critical for YpkA to Promote Cytoskeletal Alterations

(A) The bar graph represents the percentage of transfected cells with cytoskeletal

alterations and the contribution of the observed wild type phenotype and the observed

intermediate phenotype to the total percentage.  The wild type phenotype is indicated in

grey and the intermediate phenotype in white. Bacterial Alkaline Phosphatase, BAP, is

the negative control; 1-732 is wild type YpkA; 1-732 K272A is a kinase inactive mutant

of YpkA; 1-732 Contact A is YpkA with the Contact A mutant; 1-732 K272A Contact

A is the kinase inactive mutant plus the Contact A mutant; (434-732) is the crystallized

construct; (434-732) Contact A is the Contact A mutant (RhoA/Rac1 binding deficient

structure-based mutant).

(B) Examples of the visualization of YpkA by the immuno-staining of transfected

Henle407 cells.  Each of the three observed phenotypes is shown with staining for both

the epitope, FLAG-tagged YpkA and for the actin cytoskeleton (Experimental

Procedures).  Each row is labeled by the construct transfected.  The first column shows

the presence of expression of the FLAG-tagged YpkA constructs and is colored in

green.  The second column shows the immunostaining of the actin cytoskeleton by

rhodamine phalloidin in red, and the last column is the overlay of the fluorescent

signals.
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cytoskeletal alterations, they are observed to isolate to the membrane (Figure 4.9B, data

not shown).  As both the (434-732) and the (434-732) Contact A mutant are seen

uniformly distributed throughout the cell, this supports other reported results that

membrane localization is not dependent upon small GTPase binding and may be

dependent upon a signal in the N-terminus of YpkA (Dukuzumuremyi, et al 2000)

(Letzelter, Sorg et al. 2006).

Altogether, these results strongly suggest that the C-terminal, GDI-like activity of

YpkA is the more significant contributor to cytoskeletal effects.  The kinase domain does

appear to work synergistically with the GDI-like domain, however, as evinced in both the

reduced wild type effect of the kinase active site mutant, as well as the complete loss of

activity in the YpkA (434-732) GDI (contact A) mutant.  Interestingly, the double mutant

of kinase and GDI does not completely abolish cytoskeletal effects, perhaps due to

residual kinase activity present in the K272A mutation (Dukuzumuremyi et al., 2000,

Juris et al., 2000).

Our data presented suggests an explanation of previous results obtained in the

work by Juris et al (Juris, Rudolph et al. 2000).  In their research, HeLa cells were

transfected with vectors expressing wild type YpkA, a YpkA kinase inactivated mutant

(K269A of Yersinia entercolitica YopO, equivalent to K272A of Y e r s i n i a

pseudotuberculosis YpkA), and a C-terminal deletion construct that prevented kinase

activity, reporting that, compared to the wild type phenotype, the kinase inactive mutant

exhibited an intermediate phenotype where actin stress fiber formation was disrupted, but

the actin microfilament system partially remained.  This observation is consistent with

our observations that YpkA (434-732) alone, as well as YpkA K272A full length, are
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sufficient to disrupt stress fiber formation as well as to cause a low level of cellular

deformation.  Results with the C-terminal deletion constructs show that no cytoskeletal

disruption activity is observed, although they contain the elements necessary for

Rac1/RhoA binding.  Our biochemical and structural results suggest that this may be

explained by the aggregated and misfolded nature of these constructs (Figure 3.1), and

not simply a lack of binding to actin.  Taking into account our observations and the work

by Juris et al, it is apparent that the full effect of YpkA function is achieved by both the

kinase activity and the GDI activity of the C-terminal domain, although our point mutants

in cell culture argue that the GDI-like activity is the greater contributor.

4.5 The YpkA GTPase Binding Domain is Essential for Virulence

In order to establish the relevance of these biochemical and cell biological data to

infection, we examined the virulence phenotypes of Y. pseudotuberculosis ypkA mutants

in a mouse infection assay. Two such mutants were tested, a ypkA null mutant, in which

the entire ypkA reading frame was deleted, and a ypkA contact A mutant, in which the Tyr

591Ala, Asn595Ala, and Glu599Ala codon substitutions were introduced onto the

virulence plasmid.  Analysis by SDS-PAGE of the Yops secreted by these strains showed

that the null mutant did not secrete YpkA protein, while the contact A mutant secreted a

full-length polypeptide (Figure 4.10A). Immunoblot analysis of secreted Yops showed

that YopT and YopE were secreted at native levels by the null mutant and contact A



82

Figure 4.10: Analysis of Yops secreted by Y. pseudotuberculosis strains

Y. pseudotuberculosis wild-type, ypkA null mutant, and ypkA contact A mutant strains

were grown in LB under conditions that stimulate Yop secretion (37°C and low Ca2+).

Aggregates (filaments) of Yops were collected from the cultures, washed once in LB,

and solubilized by boiling in Laemmli sample buffer (100 mM Tris pH 6.8, 200 mM

DTT, 4% SDS, 0.2% bromophenol blue, and 20% glycerol).  Samples of the

solubilized proteins were resolved on a 12% SDS-polyacrylamide gel, and detected by

staining with GelCode Blue Stain Reagent (Pierce) (panel A), or by immunoblotting

with antibodies specific for YopT (panel B) or YopE (panel C).  The position of bands

corresponding to the YpkA proteins secreted by the wild-type and contact A mutant

strains is indicated by arrow on right of panel A. Panel A is a composite of lanes taken

from a single gel that had similar levels of secreted YopT and YopE proteins, as

shown by the similar signal intensities of the YopT and YopE bands in panels B and

C.  Sizes in kDa of molecular weight standards are indicated on the left.  These

experiments were performed by Maya I Ivanov and James B. Bliska.
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Figure 4.11: Analysis of HeLa cell rounding induced by infection with Y.

pseudotuberculosis strains  HeLa cells adherent to the bottom of 24-well tissue culture

dishes were left uninfected or were infected at a multiplicity of 50 with the Y .

pseudotuberculosis wild-type, ypkA null mutant, or ypkA contact A mutant strains.  HeLa

cells were also infected in parallel with an isogenic yopEHTJ mutant for comparative

purposes.  At the indicated times post infection (in minutes) the live cells were examined

by phase contrast microscopy using a Zeiss Axiovert S100 equipped with a 32X objective.

Representative images were captured using a digital microscope and a composite image

was created using Adobe Photoshop.  These experiments were performed by Maya I.

Ivanov and James B. Bliska.
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mutant (Figure 4.10B and C). In addition, the results of a HeLa cell rounding assay

indicated that the null mutant and contact A mutant translocated YopT and YopE into

host cells at normal levels (Figure 4.11).  Mice were infected intragastrically with one of

the mutants, or the isogenic parental strain, and the animals were monitored for survival

over a 14-day period.  As shown in Figure 4.12, all 8 mice infected with the wild-type

 strain succumbed to the infection by day 9, while only two mice infected with the

contact A mutant died, one on day 7 and one on day 12. The survival curves for the mice

infected with the wild-type or contact A mutant strains were significantly different

(P=0.0003) as determined by a logrank test. Interestingly, all mice infected with the ypkA

null mutant died by day eight (Figure 4.12), a survival rate not significantly different

from the wild-type control (P=0.7333).  Other groups studying pathogenesis of Yersinia

ypkA null mutants in mouse infection assays have recently reported similar findings, in

that strains lacking the ypkA gene appear to be as virulent as parental strains (Logsdon

and Mecsas, 2003; Trulzsch et al., 2004). In contrast, Y. pseudotuberculosis strains that

express the altered YpkA protein lacking the GDI activity are clearly attenuated for

virulence (Figure 4.12). Taken together, these findings indicate that the GDI activity of

YpkA is critical for Yersinia virulence.

In the initial work that reported the identification of YpkA, Galyov et al (Galyov

et al. 1993) demonstrated that two different Y. pseudotuberculosis ypkA mutants were

attenuated for virulence in a mouse infection model.  One attenuated mutant resulted

from an in-frame deletion of ypkA codons 207 to 388, which removed a major portion of

the kinase domain and produced a protein that was secreted by the T3SS but lacked

kinase activity (Galyov et al. 1993).  The other mutant resulted from the integration of a
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“suicide” plasmid into the ypkA gene, and produced a protein truncated after residue 548

that was also competent for secretion by the T3SS (Galyov et al. 1993).   Taken at face

value, these results suggested that both the kinase activity and a C-terminal region of

YpkA were important for Yersinia virulence. However, it remained unclear how the C-

terminal region of YpkA contributed to Yersinia virulence.  Moreover, in recent studies,

little or no role for YpkA in virulence could be found when Yersinia mutants containing a

larger in frame deletion of ypkA (codons 21 to 712) (Logsdon and Mecsas, 2003), or a

complete deletion of the yopO reading frame (Trulzsch et al., 2004), were utilized in

Figure 4.12: The GDI activity of YpkA is critical for Yersinia virulence

Groups of mice were infected intragastrically with 5x109 CFU of wild-type Y.

pseudotuberculosis, a ypkA null mutant, or a ypkA contact A mutant.  Survival of the

mice was recorded over a 14 day period.  Results shown are compiled from two

independent experiments that were performed with groups of 4 mice. The survival

curves for the mice infected with the wild-type or contact A mutant strains were

significantly different (P=0.0003) as determined by a logrank test.
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mouse infection assays. By constructing a Y. pseudotuberculosis point mutant specifically

defective for GDI function, we now demonstrate that this activity within the C-terminal

domain of YpkA is critical for Yersinia virulence.  We further confirmed the findings that

mutations that remove most, or all, of the ypkA reading frame do not lead to attenuation

of virulence in a mouse infection model (Logsdon and Mecsas, 2003; Trulzsch et al.,

2004).  One possible explanation for these results is that null mutations in ypkA result in

increased translocation of other Yop virulence factors in vivo, which compensates for the

loss of YpkA function.  If true, this type of phenomenon further underscores the power

and importance of employing mutations that ablate the activity, and not the expression, of

a suspected bacterial virulence determinant.

4.6 Collaborative Inactivation of Small GTPases by Yersinia Outer Proteins

Interestingly, despite the fact that YpkA mimics key aspects of GDI function, it

does not possess all the activities of its host cell counterparts. Host cell RhoGDIs are also

able to slow the intrinsic rate of GTP hydrolysis by small GTPases, and, more

importantly, have a specialized domain which the protein uses to bind the isoprenylated

tail of small GTPases to remove them from the cell membrane.  Although YpkA can bind

to both the GDP and GTP conformations of RhoA and Rac1 (Dukuzumuremyi, Rosqvist

et al. 2000) and inhibit nucleotide release, it only has a moderate effect on the intrinsic

rate of GTP hydrolysis (Figure 4.13) Moreover, YpkA does not possess any clear analog

of the β-sheet motif necessary to bind an isoprenyl group.  While it is possible that

another region of the protein may indeed harbor such a motif, it seems more likely that
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YpkA has no such function.  This may in fact be reasonable, as another Yersinia

virulence factor that is translocated into host cells along with YpkA, YopT, removes any

selective pressure for such a membrane removing GDI-like activity.  This is because

YopT, a cysteine protease that specifically cleaves off the C-terminal tail residues of the

RhoGTPases Cdc42, Rac1, and RhoA, removes the small GTPases from the membrane in

a highly efficient manner (Shao, Merritt et al. 2002). Moreover, Yersinia also translocates

into host cells YopE, a GAP or GTPase activating protein essential for virulence, that

quickly catalyzes the hydrolysis of GTP bound to small GTPases of the Rho-family

(Black and Bliska 2000). Therefore, between YpkA and YopT, two of the physiological

effects of a RhoGDI can be recapitulated.  The final activity seen in many host RhoGDIs,

Figure 4.13: GTPase Activity Assay

The ability of YpkA to inhibit the intrinsic and YopE catalyzed GTPase activity of

γ-32P GTP Rac1 was measured as described in materials and methods.
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Figure 4.14: Yersinia Outer Proteins work to inhibit Rho-family GTPase Signaling

The proposed model of Yop action is described taking into account our results and the

results summarized in the literature.  YopH, YopE, and YpkA work in concert to shunt

the entire small GTPase signaling pathway to the GDP bound, or "off" signaling state.

YopT cleaves the C-terminal isoprenyl modification of the small GTPases so they can

no longer associate with the cell membrane and bind to other regulators or effectors.
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the inhibition of GAP activity on the RhoGTPases, would be counterproductive and

interfere with the function of YopE.  Thus, YpkA appears to be perfectly engineered to

work in concert with YopE and YopT.  A mechanism of the proposed Yop modulation of

the small GTPases is shown in Figure 4.14.

It is becoming increasingly clear that a common strategy used by bacterial

pathogens to modulate host cell biology is the mimicry of eukaryotic biochemical

processes(Stebbins and Galan 2001).  This has been especially true of virulence factors

that target the Rho-GTPases in order to manipulate host cytoskeletal structure.  We have

presented data here that the Yersinia virulence factor YpkA, in addition to its host-like

serine/threonine kinase activity, possesses an additional host mimicry by harboring key

functions of the RhoGDI proteins, preventing nucleotide exchange in RhoA and Rac1

and thereby disrupting the host cytoskeleton.   This fascinating interaction we show to

exert a virulence effect, revealing another example of host mimicry in the virulence

strategies of bacterial pathogens.
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CHAPTER FIVE:

YERSINIA PROTEIN KINASE AND INHIBITOR DESIGN

5.1 Biochemical Characterization of the Yersinia Protein Kinase

YpkA is a serine/threonine kinase, capable of autophosphorylation as well as

phosphorylating common serine/threonine kinase substrates in vitro, and kinase

activation is dependent upon the presence of actin (Galyov, Hakansson et al. 1993; Juris,

Rudolph et al. 2000). As illustrated in Figure 3.1, soluble constructs containing the

putative ser/thr kinase domain could be isolated and purified.  Minimal constructs were

highly soluble and well purified, as well as a construct containing the kinase domain plus

the GTPase binding and actin activation domains YpkA (115-732).  Interestingly, the

minimal kinase constructs were highly susceptible to specific degradation by an unknown

protease in E. coli (Figure 3.1).  Purified protein preps with GST-(115-465) yielded two

smaller fragments of approximately 13kD and 30kD.  N-terminal sequencing revealed

that YpkA was cleaved at residue F353 which maps to a predicted loop region connecting

the N and C lobes of the kinase model (Figure 5.2).  To remove this degradation product,

the minimal kinase constructs (115-465) and (115-428) were refolded removing the

cleaved products as described in materials and methods.  After purification the soluble

constructs were tested for kinase activity as described in materials and methods (Figure

5.1).

As expected and in agreement with previous work, the minimal constructs were

inactive and a mutation in the predicted kinase active site (K272A) was also inactive
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relative to the wild type protein (Figure 5.1).  What is interesting is both (55-732) and

(115-732) are just as active as the wild-type YpkA, although the work by Trasak and

colleagues shows that this should not be the case (Trasak, Zenner et al. 2007).  In their

work, they show that YpkA is only activated upon interaction with G-actin, but not F-

actin, and that full kinase activity requires elements in the N-terminus of the protein,

specifically the auto-phosphorylation of residues S90 and S95.  In contrast, our results

show that YpkA (115-732) is just as active as YpkA 1-732 and seems to also

autophosphorylate.  This implies that S90 and S95 are not needed for full activity, and

that these are not the only sites of phosphorylation on YpkA.  Additionally, our results

Figure 5.1: Activity assay of purified YpkA constructs

YpkA was incubated in G reaction or F reaction buffer with MBP and G or F actin and

YpkA was assayed for autophosphorylation and phosphorylation of MBP with radio-labeled

γ-32P ATP (materials and methods).  The upper gel shows the coomassie stain of the

experiment whereas the bottom gel shows the autoradiograph of the assay.  Positions of the

various proteins are labeled on the left of the gel images.  The presence or absence of G or F

actin form is indicated with a + or – respectively.
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show that YpkA can also be activated by F-actin.  The observed activity with F-actin can

be reconciled with the results of Trasak et al, due to the fact that F and G actin are in a

state of equilibrium.  Most likely in our case, F actin was in equilibrium with a pool of G

actin which was enough to activate YpkA.  Although further studies are needed to

explore the biochemical properties of YpkA, it is clear that the activity of YpkA seems to

be regulated in some fashion by association with G actin and that the kinase domain by

itself is not sufficient for kinase activity.

5.2 Yersinia Protein Kinase A Homology Model

Due to the importance of this virulence factor in disease caused by Yersinia spp.,

and the lack of any structural knowledge regarding the kinase domain of YpkA, a

collaboration was set up with a post-doctoral associate, Xin Hu, where we constructed a

homology model for this region. As the kinase activity of YpkA, has been shown to

directly correlate to overall virulence, inhibition of YpkA could yield new anti-plague

therapeutics (Wiley, Nordfeldth et al. 2006).  A large number of eukaryotic homolog

structures are known, which provided a means for evaluating the proposed model.  The

construction of this model by Xin Hu and its subsequent structural analysis (Section 5.2

and 5.3) was used for the development of potential YpkA inhibitors.

As the structure of YpkA is unavailable, we constructed the 3D model based on

the template MAPK.  YpkA shares about 20% homology to mammalian Ser/Thr kinases

(Figure 5.2).  If only considering the residues near the ATP binding site, the sequence
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Figure 5.2: Homology Model of the YpkA Kinase Domain

(A) Sequence alignment of YpkA (115-431) with protein kinases P38 and ERK. Strict

sequence conservation is shown in red background, and strong sequence conservation in

yellow. The solvent-accessibility of each residues in the P38 structure is indicated in the

bar at the base of the sequences, with white representing buried residues, dark blue

representing solvent-accessible residues, and light blue representing an intermediate value.

The secondary structural elements are also indicated according to the structure of P38.

(B) Structural alignment of the two homology models of YpkA kinase domain. Model A

(red) represents a conformation of YpkA with an open ATP-binding pocket, while model

B (cyan) has a closed ATP-binding pocket.  The key residues to the ligand binding are

shown in magenta.
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identity to MAPK is 60%. Therefore, there is enough sequence similarity to build a

reliable model of YpkA focusing on the catalytic site. We decided to construct two

structural models based on different templates of MAPK. Model A used the apo

structures of p38 (PDB id 1p38 and 1erk), while model B adopted ligand-bound

complexes with induced fit at the ATP binding site (PDB id 1a9u and 3erk). An overall

comparison of the ATP binding site between YpkA and MAPK reveals that most of the

interactions that stabilize the ATP in YpkA are very similar to those observed in

mammalian serine/threonine kinases.  In the YpkA model, for example, the phosphate

group of ATP is stabilized by at least two potential hydrogen bonds interacting with the

conserved residues Lys163, and the backbone residues of glycine-rich loop.  As shown in

Figure 5.2, structural differences can be seen within these two models. Model A

possesses a more open ATP binding pocket at the Glycine loop, while the catalytic site in

model B is closed with the G-loop flipping down. YpkA possesses a DLG motif, rather

than the conserved DFG in mammalian kinases at the beginning of activation loop,

which is critical for function and inhibitor binding.  Specifically, recent studies shown

that the conformational change of “Phe-in” and “Phe-out” in the DFG motif plays an

important role in substrate interaction (Mol, Fabbro et al. 2004). The substitution of

leucine for phenylalanine at this site in YpkA would likely create important differences in

inhibitor specificity.  As the conformational changes of the G-loop are very sensitive to

ligand perturbation, both are valid conformations for our structural analysis and inhibitor

design.

To further examine the structural features of YpkA, we performed molecular

dynamic simulations of the two YpkA structures in the apo and ATP bound forms. The
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simulations were carried out in vacuo permitting more extended conformational changes

of modeled systems. Analysis of the dynamics of the protein at different states revealed

that a number of active site residues that exhibited high flexibility  (Figure 5.2). In order

to sample a good representation of protein conformations for the subsequent ensemble

docking, 500 conformers were extracted from 2.0 ns MD simulations and clustered

according to a defined residue center at the active site. Five major clusters were obtained

with model A and three clusters were found with model B. From the MD simulations and

the docking studies we believe that the conformational changes of these key active site

residues represent to some extent the plasticity of the ATP binding site upon ligand

binding, and are thus crucial for consideration in inhibitor design.

Figure 5.3: Virtual Screening Strategy and SVM Model

(A) Machine-leaning SVM model derived from kinase inhibitors using ADMET/Predictor

(SimulationsPlus Lancaster, CA).

(B) Machine-leaning SVM model derived from kinase inhibitors using ADMET/Predictor

(SimulationsPlus Lancaster, CA). This data was generated by Xin Hu.
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5.3 Database Screening for Yersinia Protein Kinase A Inhibitors

Protein kinase inhibitor design remains a challenging problem because of the high

similarity and plasticity of the catalytic site of the ATP (Cavasotto and Abagyan 2004;

Muegge and Enyedy 2004; Noble, Endicott et al. 2004; Scapin 2006). In this study, we

applied an approach combining machine learning method and multiple conformational

high throughput docking for the discovery of YpkA inhibitors. The screening strategy

employed was illustrated in Figure 5.3A. First, we developed a machine learning SVM

model using a data set of known kinase inhibitors from a diverse kinase collection. The

ligand-based SVM model was used as a kinase filter to prioritize the large size of

chemical databases and a target-focused library was obtained. Second, we constructed

homology models of YpkA based on the MAPK templates, and further performed MD

simulations to sample different protein conformations characterized in the catalytic site to

account for protein flexibility. Finally, with an ensemble of protein structures and the

kinase inhibitor-enriched library, multiple conformational high throughput docking was

performed and a number of potent and selective inhibitors of YpkA have been

successfully identified.

In order to develop a general kinase model for large-scale database filtering, 364

kinase inhibitors were selected from a diverse kinase collection. These active compounds

were seeded into a data set of a non-kinase chemical library comprising 4220 inactive

compounds serving as the training set. Molecular descriptors were calculated with

ADMET/Predictor consisting of 276 descriptors from the 3D structure. The use of

ADMET molecular descriptors was anticipated to improve the drug-likeness property of
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identified compounds, which is a crucial aspect in the late stage of drug development.

The SVM model was derived from the molecular descriptors of the training set in

distinguishing the active and non-active compounds. As shown in Figure 5.3B, 319 out of

364 inhibitors were classified in the “positive” region, while only 15% active compounds

were mis-classified as false negative. To validate the model, a testing data set comprising

175 known kinase inhibitors and 669 inactive compounds was applied using the SVM

model. 127 out of 175 active compounds were predicted correctly, yielding an

enrichment of 70%. This result (Ford, Pitt et al. 2004; Briem and Gunther 2005)is quite

promising, comparable to many other machine-learning models published recently .

Given the high efficiency of the SVM model, we then screened our in-house database

collections consisting of more than 2 million compounds, and a kinase-focused library of

~200,000 compounds was obtained.

With the structural model of YpkA and the SVM-enriched kinase inhibitor

library, we then performed a multiple conformational high throughput docking for the

search of potent and selective inhibitors for YpkA. The program FlexE was used, which

is designed to accommodate multiple conformations of protein in docking by forming

new structural representatives (Claussen, Buning et al. 2001). A total of eight conformers

of YpkA sampled from MD simulations were used in FlexE docking. The focused library

consisting of ~200,000 compounds were subsequently docked to the ensemble of protein

structures and ranked according to the FlexX score. The top-ranked 1000 compounds

bound in the active site were visually inspected. To improve the hit selection, we also

applied consensus scoring on the FlexX-docked complexes. The top 5% compounds were

extracted and re-ranked using X-Score, which proved to be a reliable consensus scoring
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Figure 5.4: Comparison of ATP and Inhibitor Binding

(A) The fit of ATP in the active site of the YpkA homology model.

(B) The fit of compound four in the active site of the YpkA homology model.

ATP was placed by MODELLER and each compound was placed in the active site by

virtual screening experiments (see materials and methods).  The active site conformation

in each case is the homology model B, or closed ATP pocket.  The surface of the YpkA

kinase domain was calculated and the charges on the surface and in the active site

pocket are colored by charge.  Red indicates areas of positive charge, or acidic areas,

whereas blue represents areas of negative charge or basic areas.
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function and has been successfully used in many applications for drug discovery (Wang,

Lai et al. 2002). The top 1000 compounds were also visually inspected in terms of overall

fit, key interactions in the binding site, as well as the structural complexity and diversity

of compounds.  An example of the final fit of one of the inhibitors is shown in Figure 5.4.

5.4 Yersinia Protein Kinase A Inhibitors

A total of 45 compounds were finally selected to experimentally test the

inhibitory activity against YpkA.  Initial screening was done in duplicate and assayed by

blotting onto a nitrocellulose filter at high inhibitor concentrations.  Seven of the 45

initial compounds showed complete inhibition at the high screening concentrations of

225µM to 450µM, yielding a hit rate of 15%. The IC50 values of these compounds were

determined by radiological assay with three compounds exhibiting inhibitory activities

below 10µM at 1.81µM, 5.87µM, and 9.72µM, and the remaining four having IC50

values below 50 µM (Figure 5.5).  Those compounds shown represent distinct families of

compounds, three of which were redundant and thus omitted.  Examination of these

active compounds revealed a diversity of chemical structure, as represented in Figure 5.6.

Compound 1 possesses a scaffold of indolin-2, which is commonly found in the

derivatives of CDK2 inhibitors. Compound 2 belongs to the class of anthiraquinone, the

potent inhibitor of casein kinase-2.  The structures of compounds 3 and 4 are quite

interesting, as they possess a novel functional group of pyrimidine-2,4,6-trione. Analysis

of these compounds bound in the catalytic site of the ATP suggested that the pyrimidine
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derivative resemble the adenosine moiety of the cofactor, involving in H-bonding

interactions with hinge residue Asp218.

We further evaluated the selectivity of these identified YpkA inhibitors by testing

against other two kinases, MAPK and protein kinase C (PKC).  It is not surprising that

some compounds showed comparable inhibitory activities to MAPK, from which the

homology models of YpkA were derived. For example, compound 1 showed the best

inhibition to YpkA with IC50 of 1.81 µM, and also exhibited similar activity to MAPK

with IC50 of 2.45 µM. However, compounds 2, 3, 4 are highly selective to YpkA over

Figure 5.5: Inhibitor data of YpkA and the four top inhibitors

The activity of each compound was assayed as percent total phosphorylation remaining

versus inhibitor concentration.  The data was generated and the curve fit was performed as

described in experimental methods.  Each curve is labeled with its respective compound

from Figure 5.6.
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MAPK and PKC with 5 to 10 fold better inhibition (Figure 5.6).  The discovery of

Yersinia protein kinase A inhibitors by the use of a combination of both ligand-based and

structure-based knowledge of protein kinases has demonstrated high screening efficiency

and reasonable speed. This integrated approach therefore provides a practical method to

account for protein flexibility in a large-scale database for virtual screening of effective

inhibitors of therapeutic targets.  Although further studies are required to validate and

characterize the inhibition of YpkA by these compounds, the discovery of these potential

YpkA inhibitors provides a staring point for the design of more potent and selective

inhibitors as anti-plague drugs.

Figure 5.6: YpkA Inhibitor IC50 Values

The chemical structure of each compound is listed along with its IC50 value (at YpkA

concentrations of 0.15µM).
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CHAPTER SIX:

A RAC1-GDP-ZINC COMPLEX

6.1 Overall Structure of a Rac1 GDP Zn Complex

The initial crystal screening was performed with the YpkA-Rac1 complex and

produced a condition containing a high concentration of zinc (15mM Zn SO4), which

caused intense precipitation followed by subsequent crystal formation (Figure 6.1).  Due

to the inability to completely separate the aggregated material from the crystalline

material the exact protein species within the crystal could not be determined.  A data set

was taken on a spinning copper anode source with a Rigaku IV++ detector, and processed

to a final resolution of 2.2Å (data not shown).  To generate initial phases and to reveal

with protein species were present, molecular replacement using the program Phaser was

employed.  Molecular replacement searches used both a Rac1 search model (1MH1 pdb

accession code) and the YpkA structure.  The final solution structure contained three

Rac1 molecules arranged as a trimer with an R/Rfree of 19.2/23.6.  Based on the

crystallization conditions and visual inspection, four sites of zinc coordination were

initially found and magnesium was modeled into its predicted site at Switch I.  To verify

the presence of zinc within the crystal, another and primary data set was taken at the zinc

K-absorption edge (see materials and methods) and the zinc sites found by single

anomalous dispersion using the program SOLVE to analyze the anomalous differences.

The initial molecular replacement solution was refined against the new data set with the

experimental zinc sites placed (Table III).
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Table III Rac1 data collection and refinement statistics

Data collection
Space group P3221
Cell dimensions
    a, b, c (Å) 89.7, 89.7, 191.6
    α, β, γ  (°) 90.0, 90.0, 120.0
Resolution (Å) 77.62-1.90
No. reflections 548625
No. Unique reflections 70803
Rsym or Rmerge 10.0 (51.2)
I / σI 18.2 (3.7)
Completeness (%) 99.9 (100.0)
Redundancy 7.7

Refinement
Resolution (Å) 77.62-1.90
No. reflections 67009
Rwork / Rfree 17.4 / 20.8
No. atoms
    All atoms 5129
    Protein 4141
    Water 896
    GDP 84
    Zinc 8
B-factors
    All atoms 27.6
    Protein 33.1
    Water 42.6
    GDP 20.7
    Zinc 31.3
R.m.s deviations
    Bond lengths (Å) 0.014
    Bond angles (°) 1.638

Figure 6.1: Rac1 GDP Zinc Complex Crystals

Crystals grow by hanging drop were imaged under plane polarized light at 100x

magnification.
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The Rac1 GDP complex consists of three Rac1 molecules in the asymmetric unit

related to each other by a three-fold non-crystallographic axis of symmetry.  Each

monomer not only contains the expected GDP, but also contains two zinc ions (Figure

6.2).  At the center of the non-crystallographic three-fold axis there is an additional zinc

that is coordinated by residues from Switch I (Figure 6.3A), and a final zinc that links

Chain A and Chain C from symmetry related molecules (Figure 6.2 and Figure 6.3D).

The Rac1 molecules in the asymmetric unit are almost identical, having low root mean

square deviations as calculated from the Cα trace.  The highest RMSD calculated using

the Cα trace was between chain A and chain B, having a value of 0.42Å.  Although

Figure 6.2: The Overall Crystal Structure of the Rac1 GDP Zinc Complex

(A) The trimeric Rac1 complex is shown with chain A in violet, Chain B in yellow,

and Chain C in green.  Switch I is indicated in red, Switch II in blue and zinc in dark

orange.  The three GDP molecules are labeled.

(B) The trimeric Rac1 complex after a 180° rotation from panel A.
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highly identical, there are small differences between the Rac1 monomers in areas of high

disorder.  None of the Rac1 monomers contain density for the N-terminal cloning artifact

present in the protein sequence from the GST affinity tag linker (see materials and

methods) and all three chains have poor density from residues 45 to 50.  In this loop

region connecting β-sheets two and three, Chain A is missing density for residues 45, 46

and 47, and Chain B is missing density for residues 49.  Additionally, both Chain B and

Chain C have poor side chain density in an α-helical region from residues 121-130

(Chain B) and residues 121-124 (Chain C).  Finally, no density is seen in any of the

monomers C-terminal to residue 179.

6.2 Zinc Coordination by Rac1

In the original molecular replacement structure to 2.2Å, four zinc sites were

placed due to the crystallization conditions and by homology to known zinc coordinating

protein structures.  To verify these assignments experimentally another data set at the

zinc absorption edge was taken to find the heavy atom sites using the anomalous

differences.  As shown in Figure 6.2 and Table III, the anomalous signal in the data set

revealed that the crystal in fact contained eight zinc sites.  Four of the zinc sites were

those previously assigned (Figure 6.3A, and 6.3C), but the data also revealed four

additional anomalous scatterers (Figure 6.3B and 6.3D). Although Rac1 has not

previously been shown to bind zinc, it is clear that there are zinc atoms present in the

crystal structure based on the crystallization conditions, the anomalous data, calculated

electron density maps, and comparison to known crystal structures containing zinc.  As
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Figure 6.3: Rac1 zinc Coordination Sites

(A) The coordination of zinc by Switch I.  Chain A is shown in magenta, chain B

in yellow, and chain D in green.  Zinc is shown in dark orange and the

coordinated water molecule in light blue.  The dashed red lines indicate the zinc

coordination interactions.  The Fo-Fc map is show in grey at 20σ and calculated

without zinc.

(B) Zinc replaces magnesium.  The octahedral coordination of zinc at the normal

magnesium binding site in Chain C shown. Zinc is shown in dark orange and the

coordinated water molecules in light blue.  The dashed red lines indicate the zinc

coordination interactions.  The Fo-Fc map is show in grey at 20σ and calculated

without zinc.

(C) Coordination of Zinc by Switch II.  Each residue participating in the

coordination of zinc (dark orange) is drawn from both Chain A (magenta) and a

symmetry related Chain A (green).  The coordination of Zinc is indicated by

dashed red lines.  The Fo-Fc map is drawn in grey at a contour level of 20σ and

calculated without the zinc atom.  The asterisk indicates a residue donated from a

Rac1 in a crystallographically related asymmetric unit.

(D) Crystal Packing interaction involving Zinc.  Residues from Chain A are

shown in magenta and residues from a symmetry related Chain C are shown in

green. The coordination of Zinc is indicated by dashed red lines.  The Fo-Fc map

is drawn in grey at a contour level of 9σ and calculated without the zinc atom.

The asterisk indicates a residue donated from a Rac1 in a crystallographically

related asymmetric unit.
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stated in materials and methods, high concentrations of ZnSO4 was used in the

crystallization conditions, and could not be removed or replaced with other salts such as

MgSO4.  Additionally, the Fo-Fc density is drawn as grey wire in Figure 6.3 for each

assigned site, showing the clear presence of large difference density.  The Fo-Fc map was

generated without the zinc atom and is drawn in blue at a contour level of twenty sigma

for panels 6.3A-3C, and at nine sigma for panel 6.3D.  The modeling of zinc in the Rac1

structure caused an overall drop in both the Rwork and Rfree by 3.1% and 3.5%

respectively. Similar effects on the refined R-values have been observed previously for

macromolecular structures containing zinc (Papageorgiou, Acharya et al. 1995)

As expected and demonstrated by our data, most of the zinc sites are tetrahedrally

coordinated, the most common mode of zinc coordination in proteins (Alberts, Nadassy

et al. 1998; Dudev and Lim 2003).  The central zinc (Figure 6.2 and Figure 6.3A) is

coordinated by the carboxyl group of an aspartic acid residue from each monomer

(asp38), which is completed by a water molecule to generate a tetrahedral geometry.  In

Figure 6.3C and 6.3D, a similar configuration is observed, with all donating atoms

belonging to side chain residues.  In contrast, Figure 3B shows that zinc is coordinated in

an octahedral geometry by T35, T17, GDP and three water molecules. This was in

contrast to the original model as magnesium was assigned to this site.  Normally Rac1

uses magnesium to coordinate and bind GDP, and that this coordination contributes

significantly to the binding energy of the nucleotide and overall stability(Vetter and

Wittinghofer 2001; Hakoshima, Shimizu et al. 2003).  Based on these considerations it

was at first surprising to see magnesium displaced, but the GDP molecule still binding

tightly.  Although initially unexpected, zinc is known to adopt octahedral coordination
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and, more importantly, zinc has been shown to displace magnesium in both protein and

RNA structures, as these atoms have similar coordination properties and ionic radii

(Dudev 2001; Ennifar, Walter et al. 2001; Dudev and Lim 2003).  Additionally, the work

of Dudev and colleagues clearly demonstrates that zinc has a higher affinity than

magnesium for the octahedral coordination sites that magnesium adopts in protein

structures (Dudev 2001). Due to the high concentration of zinc in the crystallization

buffer (methods) and the contribution of the Rac1 P-loop to nucleotide binding

(Hutchinson and Eccleston 2000), zinc which is hexahydrated normally in solution most

likely replaced magnesium before the GDP could be released. Moreover, these zinc sites

represented the largest peaks in the anomalous signal.  This in conjunction with our data

demonstrates that zinc can fill the role of magnesium in GDP coordination of Rac1

molecules.

6.3 Intermolecular Interactions at Switch I stabilize the Rac1 Trimer

Rac1 bound to GDP behaves as a monomer in solution as assayed by gel filtration

(Stebbins and Galan 2000; Prehna, Ivanov et al. 2006), making the Rac1-GDP-Zn

complex crystal structure unexpected.  Although, there are several packing interactions

that stabilize the crystal, the asymmetric unit has extensive intermolecular interactions

that promote the trimer structure.  Most of the intersubunit contacts within the

asymmetric unit are isolated to Switch I and occur at residues 31 to 35, 39 to 42, and

residue 37 (Figure 6.4).  As described in Figure 6.4, at each apex of the triangle like

structure formed by Switch I due to the tetrahedral coordinaton of zinc (Figure 6.2), the
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Figure 6.4: Intermolecular Interactions at Switch I

The intermolecular interactions at Switch I as viewed between chain A (violet) and

chain C (green).  All residues from chain A are labeled in violet and all residues from

chain C are labeled in green.  Water molecules are labeled in dark green and zinc in

orange.  All non-carbon atoms in the protein chains are colored as red indicating oxygen

and blue indicating nitrogen.  Hydrogen bonding interactions are indicated by dotted red

lines.
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switch region from each Rac1 monomer forms an intermolecular β-sheet with the

subsequent monomer in the trimer.  This is a continuation of the β-sheet formed between

β-sheets 1, 2, and 3 in each Rac1 monomer.  Overall, the intersubunit interactions provide

a contact area of approximately 900Å2 between each monomer for a total of 2699Å2.  An

example of this interaction is shown in Figure 6.4 using chain A in violet and chain C in

green.  Main chain hydrogen bonds are formed between the nitrogen of I33 of chain A

and the carbonyl oxygen of S41 in chain C, the carbonyl oxygen of I33 in chain A and

the nitrogen of S41 in chain C, the nitrogen of T35 in chain A and the carbonyl oxygen of

N39 in chain C.  One side chain polar interaction stabilizes this interface and consists of a

water mediated hydrogen bond that is formed between the hydroxyl of T35 in chain A, a

water molecule, and the nitrogen atom of the carbonyl group of N39 in chain C.

Additionally, other residues near Switch I complete the binding surface.  Y32 from chain

A makes several main-chain and side chain van der waal interactions with the chain A

residues Y23, A42, and L55.  Residue F37 of chain C makes intramolecular van der waal

contacts with Y40 to position it to make a hydrophobic contact with the main chain atoms

of I33 and the side chain of P34, both from chain A.

 In addition to the protein-protein interactions that stabilize the Rac1 trimer, the

trimer itself seems to be formed and stabilized by the coordination of a zinc atom by the

Switch I regions of each of the Rac1 monomers (Figure 6.3A).  Specifically, as illustrated

in Figure 6.3A, and described previously. D38 is involved in the tetrahedral coordination

of a zinc atom.  It seems apparent from this configuration that the resulting Rac1 trimer is

a result of the tetrahedral coordination of the zinc atom by the Switch I regions of each

monomer.
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6.4 The Coordination of Zinc Stabilizes the Rac1-GDP-Zn Crystal Structure

The Rac1-GDP-Zn complex crystal is stabilized by symmetry related packing

interactions at three surfaces, two of which involve zinc coordination.  One

crystallographic contact does not contain zinc but involves interactions at the C-terminal

helix and consists of residues 117, 121, 127, 131, 138 to 140, 156, 163, 167, and 170 of

each Rac1 molecule.  These surfaces mainly constitute a hydrophobic van der waal

packing surface with the same residues in a symmetry related molecule of Rac1.  In

contrast, the other two intermolecular interactions are primarily mediated through zinc

coordination.  The first is shown in Figure 6.3D and involves the tetrahedral coordination

of zinc.  Two glutamic acid residues (E127 and E131) from each symmetry related chain

A and C, form a tight interaction stabilizing crystal formation by zinc binding.  The

second site is more extensive, involving zinc coordination at Switch II and several van

der waal and polar interactions (Figure 6.5).  At the surface, each Rac1 monomer forms

the same bonding interactions with a related Rac1 molecule across a 2-fold

crystallographic symmetry axis.  For simplicity, the interaction between chain A and

another chain A from a symmetry related asymmetric unit is used as an example (Figure

6.5).

The contact surface including Switch II is at a crystallographic 2-fold axis of

symmetry and is primarily polar in nature (Figure 6.5).  Each tyrosine residue 64 forms a

water mediated hydrogen bond with the main chain of residue H104 from a symmetry

related Rac1 molecule.  Specifically, the hydroxyl group of Y64 in one chain contacts a

water molecule which is hydrogen bonded to the main chain carbonyl oxygen of H104
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from the related chain.  R68 of each monomer makes a hydrogen bond from its side chain

to the main chain carbonyl oxygen of the symmetry related D63, and E62 of chain A is

part of a hydrogen bond network with the imidazole ring of H104, a water molecule, and

the hydroxyl group of S71 (not shown).  This network is completely within the same

protein chain, aside for the solvent interactions, and seems to help position H104 for its

role in zinc coordination (Figure 6.3C and Figure 6.5).

The core interactions of this surface are residues D63, E100, H104, and H103

from the symmetry related Rac1 molecule, which coordinate a zinc atom (Figure 6.3C

and Figure 6.5A).  This intermolecular interaction has two coordinated zinc atoms where

Figure 6.5: Zinc Coordination site at a 2-fold Crystallographic Axis of Symmetry

(A) Chain A (magenta) and a symmetry related Chain A (green) are shown and the

intermolecular contacts drawn.  Zinc is colored in dark orange and all amino acids are

labeled in black.

(B) A view of the residues at the interface that are involved in zinc coordination after a

180° and 45° rotation as described in the figure.  Chain A is colored in magenta and a

symmetry related Chain A is colored in green.
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each monomer donates residue H103 as a zinc coordinated residue in a “swapping”

interaction to its symmetry related element.  Each H103 residue is further stabilized by

van der waal stacking with the symmetry related H103 residue.  This coordination is also

tetrahedral and is reminiscent of the zinc coordination seen in the SEC2 crystal structure

(Papageorgiou, Acharya et al. 1995).  In this structure, zinc was coordinated by two

acidic residues and two histidines, with one residue being donated from a

crystallographically related molecule. In their studies, zinc was also reported to be needed

for efficient crystallization of SEC2.

6.5 Zinc Induced Conformations of Switch I and Switch II

 The conformation of Switch I when compared to known structures, shows that it

adopts the conical GDP bound conformation as expected (Figure 6.6).  Switch I is almost

identical in conformation to the YpkA-Rac1 GDP complex, and thus identical to the

conformation seen in RhoGDI-Rac1GDP complexes and RhoA GDP (Wei, Zhang et al.

1997; Prehna, Ivanov et al. 2006).  What is even more striking is that the zinc coordinated

Rac1 trimer, allows T35 to be stabilized by a hydrogen bonding interaction with a water

molecule and N39 of Switch I in a subsequent Rac1 monomer (Figure 6.4).  Thr35 of

Rac1 is important in magnesium binding, and thus GDP binding, and molecules such as

GDIs specifically stabilize this residue with a hydrogen bonding interaction to prevent

nucleotide dissociation (Scheffzek, Stephan et al. 2000; Grizot, Faure et al. 2001).  It

seems possible from this analysis that the oligomerization induced by zinc stabilizes

Switch I region in the GDP bound state and would prevent GDP dissociation.
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As previously described in Figure 6.5, Switch II is also involved in zinc

coordination, and undergoes a drastic conformational change upon binding zinc.

Normally, Switch II adopts one of two discrete canonical conformations based on its

bound nucleotide (Figure 6.6).  In contrast, Switch II in the Rac1-GDP-Zn complex

structure seems to adopt a completely novel fold based on zinc coordination.  The

coordination of zinc alters the fold of Switch II, rearranging hydrophobic packing

interactions and significantly displacing key elements of Switch I.  Normally, Y72

participates in the hydrophobic core at Switch II, but as shown in Figure 6.5, it rotates out

Figure 6.6: The Conformations of Switch I and Switch II

(A) The conformation of Switch I is the conical GDP bound form.  The Switch I from

the Rac1 GDP Zinc complex is shown in blue and aligned to a YpkA (434-732) Rac1

GDP complex shown in orange.  The zinc ion and the GDP are shown from the Rac1

GDP Zinc complex.

(B) Switch II adopts a novel conformation.  Switch II (blue) was aligned with a YpkA

(434-732) Rac1 GDP complex (orange) and the RhoGDI-2 Rac2 complex (red).  The

approximate locations of residues in the Switch II structure of the Rac1 GDP Zinc

complex are labeled in black.
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to face a symmetry related Rac1 molecule to make packing interactions.  Its role in

stabilizing the hydrophobic core is filled by L70, which moves into almost the same

position that Y72 fills in other Rac1 structures.  Residue Q61, which is involved in the

intrinsic GTPase activity of Rac1 is moved ~7.4Å, and residues E62 and D63, which is

involved directly in zinc coordination, are both moved ~10Å from their position as

compared to the GDP bound conformation of Rac1.

6.6 Biological Considerations of Zinc Coordination

The structure of a Rac1-GDP-Zn complex at 1.9Å resolution reveals the

surprising ability of Rac1 molecules to form a trimer due to the coordination of zinc.

Moreover, zinc coordination sites at packing surfaces stabilize the crystal structure, and

zinc coordination influences the conformation of the biologically important Switch

regions.  Additionally, although magnesium is known to form an octahedral coordination

site at Switch I to facilitate the binding of GDP, our data suggests that zinc can replace

the role of magnesium in GDP binding.  As the switch regions are involved in the

coordination of zinc, it is tempting to speculate that in some conditions zinc may be a

regulator of Rac1 signaling.

Zinc is found in a large number of crystal structures, and can serve a myriad of

biological purposes (Alberts, Nadassy et al. 1998).  The coordination of zinc by

biological structures has been shown to be important in catalysis, such as the protease

thermolysin and the alcohol dehydrogenase htADH (Holden and Matthews 1988;

Ceccarelli, Liang et al. 2004), structural stabilization, also in alcohol dehydrogenases and
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in the tumor suppressor p53 (Meplan, Richard et al. 2000; Ceccarelli, Liang et al. 2004),

and for macromolecular binding, such as zinc fingers (Brown 2005). However, other

crystal structures are known where zinc is simply present in the crystal and has no

biological function. An example is the zinc containing structure of the protease tonin,

which has a zinc coordination site similar to that of SEC2 (Papageorgiou, Acharya et al.

1995).  In this structure, the protein was crystallized in zinc containing buffer and it was

concluded that zinc had no biological role within the context of the protease (Fujinaga

and James 1987).

Despite the observation that zinc is present in our crystal structure and that zinc

can replace the role of magnesium in GDP binding, one must consider that the cytosolic

concentration of zinc relative to magnesium is extremely low - femtomolar ranges for

zinc compared to millimolar ranges for magnesium (Outten and O'Halloran 2001; Dudev

and Lim 2003).  In the cell, the concentration of zinc is kept far below that of magnesium

due to the sequestering of zinc into specialized compartments (Dudev 2001; Eide 2006).

Eukaryotic cells have devoted several genes to the regulation of zinc concentration within

various cellular compartments, store free zinc in "zincosomes." and zinc concentration

has been keyed to apoptosis (Truong-Tran, Ho et al. 2000; Eide 2006). Such

considerations argue that it is unlikely that zinc binding would play a role in the

regulation of RhoGTPase function in vivo, and that the novel conformations induced by

zinc binding will not likely be present in the normal physiological state of the cell.

Therefore, despite the intriguing possibilities raised for the regulation of RhoGTPase

function by zinc, without further biological mandate, our results remain at present tied

tightly to the artificial environment of the crystallization conditions.
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CHAPTER SEVEN:

CONCLUSIONS

7.1 The Yersinia Protein Kinase A GTPase Binding Domain

Virulence in Yersinia pseudotuburculosis depends upon the translocated virulence

factor YpkA(Galyov, Hakansson et al. 1993), a protein that is very highly conserved in

the plague pathogen, Yersinia pestis. Despite the known importance to virulence, little

has been forthcoming in understanding the mechanism of activity of YpkA.  This has

been particularly true of the C-terminal domain of the protein, which while known to

bind Rho GTPases, has remained enigmatic in terms of function.

The co-crystal structure of a C-terminal domain of YpkA and Rac1 reveals that

this bacterial virulence factor mimics host Rho-family GDI proteins in its binding to the

GTPase, and also in its ability to inhibit nucleotide exchange.  Loss-of-contact mutations

in YpkA that impair Rac1 and RhoA binding abolish this GDI-like activity, and severely

diminish the cytoskeletal disruption induced by this domain.  Furthermore, these

mutations severely decrease virulence in a mouse model of infection.  Altogether, these

data strongly suggest that YpkA mimics host GDI proteins by acting as an “off switch” to

modulate the Rac1-associated signaling pathways that regulate host cytoskeletal

structure.  When considering the role of YpkA with the function of the other Yops, we

find that the GDI-like activity of YpkA complements the activities of YopT and YopE.

In other words, YpkA, YopT, and YopE drive the Rho-family GTPase signaling pathway

to the "off" state which results in the deregulation of the host actin cytoskeleton and

therefore an inhibition of phagocytosis and a host immune response.
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As described in Chapter 1 and Chapter 3, previous work with YpkA predicted that

the small GTPase binding surface might consist of multiple ACC finger-like elements,

similar to those found in downstream effector kinases such as PKN (Maesaki, Ihara et al.

1999; Maesaki, Shimizu et al. 1999; Dukuzumuremyi, Rosqvist et al. 2000).  The crystal

structure of YpkA (434-732) shows that many of the previously predicted ACC finger

segments either map to loop regions or are in inaccessible regions (see Chapter 3.2).

Additionally, structural alignments with ACC finger elements and subsequent

mutagenesis experiments showed that these structural predictions were not sufficient to

locate the elements necessary for GTPase binding (see Chapter 3.2).  This comparative

analysis taken with the crystal structure of a YpkA Rac1 complex shows that YpkA does

not contain an ACC coiled-coil finger, and YpkA does not bind across the β-sheet region

of the small GTPase (β2 and β3 of RhoA/Rac1).  Instead, YpkA contributes to the

formation of an inter-molecular helical cluster with Switch II and directly contacts Switch

I, influencing their conformations. The YpkA binding to Rac1 is more similar in location

to the secondary contact in the asymmetric unit of the crystal structure of PKN/RhoA,

although the details of the structures are quite different (Maesaki, Ihara et al. 1999;

Maesaki, Shimizu et al. 1999; Dukuzumuremyi, Rosqvist et al. 2000).

In Chapter 4.5 we show that the GDI-like activity is essential for virulence in

Yersinia, although we find a curious experimental result where YpkA null mutants seem

to have no effect on virulence in Yersinia.  We are not alone in these observations as

similar phenotypes have been reported by other groups (Logsdon and Mecsas 2003;

Trulzsch, Sporleder et al. 2004).  As we have already postulated, one possible

explanation for these results is that null mutations in ypkA result in increased
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translocation of other Yop virulence factors in vivo, which compensates for the loss of

YpkA function.  More precisely, considering that the T3SS is a highly regulated system

requiring multiple signals for proper secretion, some of which are encoded within the

protein sequence of the Yop (one for secretion by the T3SS and another for interaction

with a chaperone) that deletion of an entire gene may unbalance this system.  The loss of

an entire gene may simply allow greater quantities of the other Yops to be secreted at a

higher rate, thus compensating for the loss of YpkA.  Another possibility is that there is

an unknown Yop that is redundant with the GTPase binding of YpkA.  In the case where

YpkA is completely deleted the T3SS may compensate by the secretion of higher levels

of this redundant Yop, which then shows a phenotype that YpkA is not essential for

virulence.  On the other hand, point mutants which still allow a full length but inactive

protein to be secreted would not be compensated by another Yop, thus showing a loss of

virulence.  A final possibility is that the deletion of an entire gene on the pYV plasmid

itself causes deregulation or other unforeseeable changes in the expression of the Yops.

Although other possibilities exist and it is presently difficult to experimentally probe

these possibilities, what is certain is that ideally virulence should be judged based on

those alterations, such as point mutations in contrast to entire gene deletion, that disturb

the system as minimally as possible.

7.2 The Yersinia Protein Kinase and Drug Design

In agreement with past results, our experimental results with the kinase domain of

YpkA show that activity is dependent upon an interaction with actin (see Section 5.1).
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Although, in contrast to past results, we show that the simple deletion of a C-terminal

element does not necessary correlate to actin binding.  Previous results showed that the

removal the C-terminal 20 amino acids abolished kinase activity and actin binding (Juris,

Rudolph et al. 2000).  Our results show that all of the C-terminal deletion constructs are

poorly soluble and are thus most likely poorly folded (Figure 3.1).  Specifically, we

created several constructs with C-terminal deletions that removed the last helix, all of

which were significantly destabilized (Compare Figure 3.1, 115-701 to 115-732 and 434-

701/705/718 to 434-732).  As described in Chapter 3, the structure reveals that a removal

of this helical region would extensively expose the hydrophobic core and remove a large

segment stabilizing the fold of this sub-domain.  Thus, although we also show in

agreement with past analysis that some similarity with the actin binding protein coronin

does exists at the sequence level, both our biochemical and structural observations

indicate that it is unclear if this C-terminal segment is responsible for actin binding or

kinase activation.  These arguments show that further studies are required to examine the

actin-associated aspects of kinase activation.

Recently it has been described that YpkA is auto-phosphorylated in a region in

the N-terminus of YpkA, and that interaction with this N-terminal segment in addition to

the C-terminal coronin homology region is necessary for full kinase activity (Trasak,

Zenner et al. 2007).  Considering our biochemical and structural observations as

described above, again, it is unclear if the C-terminal region is in fact interacting with

actin.  Additionally, although Trasak and colleagues found phosphorylation sites by

mass-spectrometry, our results show that these sites of modification are not necessary for

activity, nor are at the very least the only sites of phosphorylation (see Chapter 5.1).
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Specifically, Trasak et al. found that residues S90 and S95 in YopO (S93 and S98 in

YpkA) are sites of auto-phosphorylation and that this modification was necessary for the

full activity.  In contrast, our construct YpkA (115-732) seems to be just as active as

YpkA (1-732) and shows similar levels of auto-phosphorylation as the wild type (Figure

5.1).  Not only does our construct display full activity, but does not contain the N-

terminal region that was shown to be the sites of auto-phosphorylation.  Our data

demonstrate that it is still unclear how YpkA interacts with and is activated by actin.

What is promising is that the work by Trasak and colleagues has revealed the necessary

steps to form a complex between YpkA and G-actin that can be isolated by gel filtration.

The solution of an X-ray crystal structure of such a complex seems to be necessary to

reveal the mechanism of actin binding and kinase activation.

Although no X-ray crystal structure currently exists for the YpkA kinase domain,

we have constructed a model for use in virtual screening for inhibitors.  This has allowed

us to characterize some potential drug scaffolds for future development into anti-plague

therapeutics.  Despite the use of a YpkA model based largely on similarities to MAPK,

we have managed find two inhibitors (compounds 3 and 4, Figure 5.6) that are specific

for YpkA as compared to MAPK.  Additionally, as mentioned in Chapter 5, these

compounds seem to be novel kinase inhibitors and are thus especially promising.

Although these compounds are the first characterized small molecule inhibitors of YpkA,

representing a large first step in antibiotic design, there is still much work to be done to

create a viable drug.  Subsequent rounds of modification and rescreening of the

compounds could yield better drugs, in addition to the need of the X-ray crystal structure

of the YpkA kinase domain.  The solution of this structure would allow a more accurate
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picture of the active site for screening, not only producing better inhibitors and more

specific inhibitors, but would also open the possibility for the solution of co-crystal

structures of YpkA with inhibitors.  Such co-crystals would reveal the exact mode of

binding and thus allow for structure driven drug design.  Finally, an exploration of

compounds that can cross the host cell membrane and are viable within a host cell

without high toxicity is also necessary for the creation of a final antibiotic product.

7.3 A Rac1-GDP-Zinc Complex

The solution of a Rac1-GDP-Zinc complex suggests a hypothetical biological role

for zinc in small GTPase biology.  The conformation and binding interactions involving

Switch I, Switch II, and zinc, imply that under certain conditions zinc may be able to

serve as a signaling regulator.  The structure of Switch I is stabilized not only by zinc

coordination, but also by significant interactions with other Rac1 monomers within the

asymmetric unit.  This binding mode would not only shield Switch I from its binding

regulators and effectors, but in effect locks down the Switch I conformation in the GDP

bound, or signaling inert state.  Even more striking is that zinc coordination at Switch II

induces a completely novel fold of this region, which would most likely prevent the

ability of known GAPs, GEFs, GDIs, or other downstream effectors from binding the

small GTPase. The novel conformation of Switch II induced by zinc binding underscores

the switch regions propensity for modulation and possibility to conform to other roles as

not yet previously characterized.  This overall effect could serve for a novel regulation of

Rac1, particularly with sensitivity to zinc concentration within the cell, resulting in zinc
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based signaling events.  This is not completely hypothetical, as mammalian cells have

devoted several genes to the regulation of zinc concentration within various cellular

compartments(Eide 2006).  Any deregulation or stimuli to alter the zinc concentration

within the cytosol could result in a novel pathway to alter the conformation of Rac1, and

thus serve as a signaling event.  This may reflect a new zinc-dependent signaling mode of

the GTPase, perhaps binding to unknown Rac1 effectors.

Although zinc coordination by Rac1 offers a potential new facet to small GTPase

biology, especially considering that zinc can replace the role of magnesium in GDP

binding, one must consider that the cytosolic concentration of zinc relative to magnesium

is low (Outten and O'Halloran 2001).  Based on this and other data, it is postulated that

due to the higher affinity of zinc over magnesium for typical metal coordination sites in

proteins, biological molecules that coordinate magnesium only do so due to the evolution

of the cellular machinery that governs metal ion concentrations in cellular compartments

(Dudev 2001; Eide 2006).  Such a postulate would explain why Rac1 normally

coordinates magnesium instead of zinc, and fits with our observations that high zinc

concentrations cause the replacement of zinc for magnesium, and induce the switch

regions of Rac1 to adopt specific, and in the case of Switch II, novel conformations that

could potentially interfere with its normal signaling role.  Although the possibilities for

GTPase zinc regulation are intriguing, as described above and in greater detail in Chapter

6, without further biochemical characterization and considering the low zinc content of

the cytosol relative to magnesium, it is unclear if this trimer complex is an artifact of

crystallization or if zinc is somehow involved in a biological context.
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