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The eukaryotic genome, and its associated proteins, is intricately 

packaged and sequestered within the boundary of a double membrane, known 

as the nuclear envelope (NE).  Transport across the NE is mediated by large 

protein assemblages known as nuclear pore complexes (NPCs).  Yeast and 

vertebrate NPCs are comprised of about 30 proteins, termed nucleoporins 

(Nups), which are present in multiple copies.  The origins and evolution of the 

nucleus and NPC are not yet clear, although it seems likely that the nucleus 

arose only once in eukaryotic evolution.  To further our understanding of the 

evolution of the NPC, we characterized the NPC of a distantly related organism, 

relative to yeast and vertebrates.  The parasitic protist Trypanosoma brucei is a 

suitable candidate for such a study due to its sequenced genome and 

experimental tractability, compared to other protists.  In this thesis, we present 

the comprehensive analysis of the protein components of the trypanosome NPC. 

Towards this end, we used several biochemical and proteomic strategies 

to identify the proteins that associate with a preparation of enriched T. brucei 

NEs.  Discerning authentic trypanosome Nups from the 859 proteins identified 

was challenged by the large sequence divergence between yeast, vertebrates 

and trypanosomes.  To overcome this challenge, we used a suite of rigorous 

bioinformatic tools, which allowed us to identify 24 putative Nups.  We then 

confirmed fully half of the putative trypanosome Nups by fluorescent localization, 



 

and observed that the density of trypanosome NPCs around the nucleus is less 

than that of yeast or vertebrates.  This lower density enabled us to visualize 

individual NPCs and note differences in the spatial distribution of NPCs between 

these three species.  To further characterize these putative Nups and the NPC, 

we employed RNAi.  The results of these studies suggest that, in addition to its 

role in nucleocytoplasmic transport, the trypanosome NPC plays a key role in 

maintaining the stability and morphology of the NE. 

Despite significant divergence with respect to primary structure and 

species-specific innovations, the trypanosome NPC contains many homologs, 

domains and motifs found in opisthokonts.  Given these findings, it is reasonable 

to infer that the architecture of the NPC is conserved across Eukaryota.  This 

suggests that the NPC of the last common eukaryotic ancestor had many 

features in common with NPCs of contemporary bikonts (e.g. plants and 

excavates) and opisthokonts (e.g. animals and fungi). 
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The modest Rose puts forth a thorn, 
     The humble sheep a threat’ning horn: 
While the Lily white shall in love delight, 
    Nor a thorn nor a threat stain her beauty bright. 

- “The Lily,” by William Blake 
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CHAPTER 1 — INTRODUCTION 

Unlike prokaryotes, eukaryotes sequester their genome and associated 

proteins within a conspicuous, complex and dynamic organelle known as the 

nucleus — the epicenter for information storage and retrieval (Foster and 

Bridger, 2005; Vandriel et al., 1991).  Serving as a physical boundary between 

the nuclear interior (nucleoplasm) and the cytosol is a double membrane known 

as the nuclear envelope (NE).  To translocate across the NE, molecules must 

pass through the nuclear pore complex (NPC), which thus functions as a 

gatekeeper.  The composition and function of the NPC has been characterized 

for the metazoa (mainly vertebrates) and the fungi (principally S. cerevisiae) 

(Cronshaw et al., 2002; Rout et al., 2000).  

The nucleus was the first organelle to be described and its discovery is 

attributed to Franz Bauer in 1802.  It is the presence of a nucleus that 

differentiates eukaryotes from the bacteria (prokaryotes).  Though the prokaryote 

Gemmata obscuriglobus contains a double membrane bounded nucleoid, it 

remains to be determined how this structure relates to the eukaryotic nucleus 

(Lindsay et al., 2001).  All current evidence points towards divergent evolution of 

the eukaryotic tree of life, which implies that the nucleus, and the entire 

endomembrane system, arose only once through natural selection and was 

present in the Last Common Eukaryotic Ancestor (LCEA) (Martin, 2005).   

The NPC may serve as a suitable structure for resolving the evolutionary 

relationships between eukaryotes.  Since only one of the possibly many proto-
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forms of the nucleus survived natural selection, it is reasonable to posit that the 

core mechanism to move materials across the NE was present within the LCEA 

(Martin, 2005).  In such a scenario, the inherited components of the LCEA NPC 

would have diverged in such a manner that is synapomorphic, and may used to 

establish phylogenies.  

In this thesis, we focus on the NPC in an evolutionary context.  

Recognizing that the fungi and metazoa are closely related in the group of 

eukaryotes known as opisthokonts, relative to the entire catalog of eukaryotic 

species, we describe a third, more distantly related, system.  Here, we 

characterize the NPC of the protist Trypanosoma brucei using an integrated 

approach, which includes proteomics, bioinformatics, in situ fluorescent labeling, 

and RNAi.  The excavates are a diverse group of protists that were once thought 

to represent an early branch of eukaryotes, though recent efforts to root the 

eukaryotic tree have called this into question (Keeling et al., 2005; Stechmann 

and Cavalier-Smith, 2002).  With this assembled triad of NPCs, we are in a 

position to discuss the divergent evolution of the NPC and the core requirements 

of nucleocytoplasmic transport.  

THE NUCLEUS AND THE NUCLEAR ENVELOPE 

As depicted in Figure 1, the nucleus is bound within a continuous 

membrane structure known as the nuclear envelope (NE) (Callan and Tomlin, 

1950).  The NE is comprised of three distinct membrane domains.  The outer 

nuclear membrane (ONM), which is continuous with the endoplasmic reticulum 

(ER) (Gerace and Burke, 1988; Newport and Forbes, 1987).  The inner nuclear 
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membrane (INM) is populated with the proteins involved with chromatin 

regulation and nuclear stability (Dreger et al., 2001; Schirmer et al., 2003).  

Periodically, the INM and the ONM fuse to form annuli, which is the third 

membrane domain.  These pores are plugged with nuclear pore complexes 

(NPCs) — large protein complexes that arbitrate macromolecular traffic into and 

out of the nucleus (Feldherr, 1962; Gorlich and Kutay, 1999; Wente, 2000).  

Figure 2 shows the generalized topology of the metazoan nuclear envelope.  

Within the nuclear face of many metazoan NEs, a dense network of coiled coil 

proteins known as lamins form a structural lattice (Cohen et al., 2001).  Even 

though all three membrane domains are continuous, they each possess a 

discreet assemblage of proteins with specialized functions (Prunuske and 

Ullman, 2006).   

  

Figure 1:  Thin section EM of X. laevis oocyte NE showing the three 

domains of the NE.  Arrow heads indicate NPCs.  Scale bar = 

200nm (from Gerace and Burke, 1988). 
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Figure 2:  Topology of the generalized nuclear envelope.  Also 

shown are examples from the major classes of nuclear envelope 

proteins:  (a), nuclear pore proteins; (b), inner nuclear membrane 

proteins; (c), lamins; and (d), chromatin proteins (from Burke and 

Ellenberg, 2002). 
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THE NUCLEAR PORE COMPLEX 

Continuous bidirectional trafficking of specific macromolecules across the 

NE is requisite for cellular function.  The regulators and facilitators of 

nucleocytoplasmic exchange, NPCs, are large protein assemblies of discreet 

sub-complexes with an 8-fold degree of symmetry (Maul, 1971; Suntharalingam 

and Wente, 2003).  The building blocks of the NPC are generally large proteins 

termed nucleoporins, or Nups.  The majority of Nups have been characterized 

within the last 15 years, culminating in two large scale proteomic efforts.  One 

study sought to identify and localize all the Nups in the Saccharomyces 

cerevisiae NPC and began work to determine its molecular architecture (Rout et 

al., 2000).  The molecular architecture of the NPC is defined by the 

interconnectivity of the Nups into several major sub-complexes (for example, the 

seven member ScNup84/HsNup107 sub-complex), which then interact to 

generate the overall structure of the NPC (Fahrenkrog and Aebi, 2003).  The 

yeast NPC, one of the largest protein structures in the cell, is a 44 MDa complex 

comprised of about 30 different Nups that are present in multiple copies of 8, 16 

or 32 for a total of at least 456 Nups per NPC (Rout et al., 2000).  The second 

proteomic study, focusing on the Rattus norvegicus NE, revealed that the 

mammalian NPCs are ~60 MDa and also contain about 30 distinct Nups 

(Cronshaw et al., 2002).  Even though yeast and mammals descended through 

different kingdoms, their NPCs share many similarities in composition and 

architecture (Suntharalingam and Wente, 2003). 

Over the last two decades, many electron microscopy (EM) studies have 
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visualized the overall structure and gross architecture of the NPC.  Collectively, 

these studies have revealed that the morphology of the NPC is generally 

conserved across species (Akey and Radermacher, 1993; Lim et al., 2006; Lim 

and Fahrenkrog, 2006).  Cryoelectron tomography coupled with three 

dimensional reconstruction offers the highest resolution (6 nm) structure to date 

of the Dictyostelium discoideum NPC (Beck et al., 2004; Beck et al., 2007).  

Shown in Figure 3, the diameter of the slime mold NPC is about 125 nm while 

the central pore itself is 60 nm.  The structure resolves cytoplasmic filaments 

which point inwards toward the pore.  The basket extends about 60 nm into the 

nucleoplasm.  Overall, cargo must traverse about 110 nm through the NPC.  

Figure 3:  The reconstructed 3-dimensional structure of the D. 

discoideum NPC as determined by cryoelectron tomography (from 

Beck et al., 2004). 
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CLASSIFICATION AND CHARACTERIZATION OF NUCLEOPORINS 

The molecular architecture of the NPC is modular (Devos et al., 2006).  

Nucleoporins form discreet sub-complexes, which in turn interact to compose 

three distinct groups within the NPC:  transmembrane anchoring Nups, the 

structural scaffold Nups, and the FG-Nups, which are anchored to the scaffold 

(Figure 4) (Alber et al., 2007a).  The FG-Nups play a functional role in 

nucleocytoplasmic transport and contain natively disordered phenylalanine-

glycine-containing sequence repeat domains (Denning et al., 2003; Devos et al., 

2006).   
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Figure 4:  The structure and molecular architecture of the NPC.  

The membrane ring anchors the NPC into the pore within the NE.  

On top of membrane ring, lays the structural scaffold, which is 

comprised of the inner and outer rings of Nups and the linker Nups.  

Finally, the FG-Nups line the central channel to enable selective 

nucleocytoplasmic transport (from Alber et al., 2007a). 
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Given the low primary sequence similarity between Nups of yeast and 

vertebrates (for example, between S. cerevisiae and mammals) (Suntharalingam 

and Wente, 2003; Vasu and Forbes, 2001), we found that information about the 

secondary and tertiary structures of Nups is imperative to confidently predict 

orthologs in other, more distant, species.  While several Nup structures have 

been experimentally determined at atomic resolution (Berke et al., 2004; Hodel et 

al., 2002; Jeudy and Schwartz, 2007; Melcak et al., 2007; Napetschnig et al., 

2007; Vetter et al., 1999; Weirich et al., 2004), representing about 5% of the 

NPC, a wealth of information was gleaned from a homology modeling study that 

predicted the structures of all of the nucleoporin domains (Devos et al., 2006).  

Remarkably, each of the more than forty domains present in the population of 

Nups is predicted to adopt one of only eight different fold types.  Of these, the-

helix rich α-solenoid, the FG-repeat domains, and the WD-repeat β-propeller 

folds account for more than 80% of nucleoporin domains (Andrade et al., 2001a; 

Andrade et al., 2001b; Denning et al., 2003; Devos et al., 2006; Neer et al., 

1994).   

Appendix A lists the nucleoporins and the transiently interacting Nup 

Rae1/Gle2 of the well characterized human (based, in part, on the closely related 

rat) and budding yeast NPC.  We determined the orthologs in other closely 

related species as well as Arabidopsis thaliana through BLAST analysis (and 

confirmed by reciprocal BLAST search and published data).  Although several 

Nups were not identified by sequence homology, the NPCs of closely related 

species are generally able to be elucidated using bioinformatics.  This is not the 
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case, however, when we extend such analyses to distantly related species, such 

as the Excavata. 

PRIMARY FUNCTION: NUCLEOCYTOPLASMIC TRANSPORT 

The NPC appears to be freely permeable to small molecules under 40 

kDa (Keminer and Peters, 1999).  However, larger macromolecules require a 

mechanism built upon transport factors (karyopherins) and a RanGTP/RanGDP 

gradient to transit through the NPC (Madrid and Weis, 2006; Stewart, 2007a).  

Karyopherins (Kaps) are highly conserved transport factors that bind their cargo 

through the recognition of specific nuclear localization sequences (NLS) or 

nuclear export sequences (NES) (Dingwall and Laskey, 1991; Lange et al., 2007; 

Mosammaparast and Pemberton, 2004).  The structural details of the Kap-cargo-

Nup interaction have yielded many clues toward the mechanism of transport 

(Stewart, 2007a).   

As the Kap-cargo complex passes through the center channel and out of 

the NPC, it interacts with the FG-Nups, through their FG-repeat domains 

(Stewart, 2006).  Phe residues occupy the deep groove between the α-helices of 

the HEAT domain of the Kap, while the disordered spacer region between 

repeating Phe residues lays across the surface of the Kap (Bayliss et al., 2000b; 

Denning et al., 2003).  Since the FG-Nups are present in multiple copies, the 

yeast NPC has more the 160 FG-repeat domains representing several thousand 

individual FG-motifs (Rout et al., 2000).  Although over half of the mass of the 

FG-repeats in yeast may be deleted without abolishing the selectivity and 

transport capacity of the NPC (Strawn et al., 2004), some FG-repeat domains are 
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more essential than others.  It has also been shown that specific structural 

scaffold Nups play a key role in anchoring FG-Nups to the NPC.  For example, 

deletion of the yeast Nup170 or Nup188 (Shulga et al., 2000) and C. elegans 

Nup205 or Nup93 (Galy et al., 2003), which are members of the structural 

scaffold, increases the permeability of the NPC. 

The energy for this process is provided through the hydrolysis of GTP to 

GDP, which is associated with the small GTPase Ran (Figure 5).  Vectorial 

transport is established in part by the RanGTP/RanGDP gradient across the NE, 

which is maintained by specific localization of RanGAP (hydrolyzes GTP to GDP) 

into the cytoplasm and RanGEF (exchanges GTP for GDP), which is bound to 

chromatin (Mosammaparast and Pemberton, 2004).  A protein destined for the 

nucleus associates with a Kap through its basic NLS domain and is then shuttled 

through the NPC into the nucleus where the Kap is allosterically displaced by 

RanGTP. 
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Figure 5:  Generalized structure of the nuclear pore complex 

showing the domains of the pore complex.  Also shown is the bi-

directional transport pathway.  T, RanGTP.  D, RanGDP (from Rout 

et. al. 2001). 
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An exporting Kap-RanGTP complex can then bind a substrate with an 

NES and translocate back into the cytoplasm where RanGAP hydrolyzes GTP to 

GDP, dissociating the complex.  Another protein, Ntf2, binds to RanGDP and 

recycles it to the nucleus where RanGEF converts it to RanGTP to restore the 

gradient.   

THE NPC IS DYNAMIC AND ADAPTIVE 

The NPC is not simply a static pore straddled across the NE.  By altering 

its architecture and composition in a cell-cycle specific manner, the NPC can 

affect the specificity of nucleocytoplasmic transport (Tran and Wente, 2006).  

Several Nups are dynamic, with short residence times, while others are stable 

over considerable periods of time (Rabut et al., 2004).  EM studies have shown 

that, under different transport conditions within the cell-cycle, some Nups may 

alter their distributions within the NPC (Fahrenkrog et al., 2002; Paulillo et al., 

2005).  Also, in a subset of closed mitotic systems, such as the filamentous 

fungus Aspergillis nidulans, the NPC partially dissociates and thus increases the 

permeability of the nucleus (De Souza et al., 2004).  While remaining largely 

intact, the NPC of the budding yeast alters nucleocytoplasmic transport through 

changes to its architecture during mitosis (Makhnevych et al., 2003).   

OTHER ROLES FOR THE NPC 

Mediating bidirectional transport across the NE is not the sole 

physiological role of the NPC  (Fahrenkrog et al., 2004).  The NPC and its 

constituents have been associated with chromatin boundary activity, nascent 

mRNA retention, mitosis, and telomere silencing and maintenance. 
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The yeast NPC has been implicated in secondary roles such as chromatin 

organization and gene regulation (both silencing and activation).  Several yeast 

transport factors (for example, Cse1 and Mex67, among others) block the 

spreading of heterochromatin and thus act as a boundary by physically tethering 

genomic loci to ScNup2, which transiently locates to the nuclear basket (Ishii et 

al., 2002).  The dynamic nature of ScNup2 and associated transport factors 

suggests that this physical boundary activity is likewise dynamic, possibly 

affecting the transition between chromatin activity states (Dilworth et al., 2005).  

In addition, it has been shown that ScNup2 transiently interacts with numerous 

gene regulatory promoter regions (Schmid et al., 2006; Schmid et al., 2004).  

This suggests that the nucleoporin-promoter interaction, or Nup-PI, functions as 

an early step to gene activation (Schmid et al., 2006).  Furthermore, the 

Rap1/Gcr1/Gcr2 transcriptional repressor/activator complex is anchored to the 

nuclear periphery through the ScNup84 complex (Menon et al., 2005).  Taken 

together, the data indicates that the NPC plays a critical role in gene activation 

(Casolari et al., 2004).  Such dynamic associations localize the boundaries of 

silent chromatin to the nuclear periphery while specific active transcription 

regions are drawn proximal to the NPC, perhaps for efficient transcriptional 

regulation and mRNA export.  

The yeast Mlps (ScMlp1 and ScMlp2) and the mammalian ortholog, 

HsTpr, are large coiled coil proteins that associate with the nucleoplasmic face of 

the NPC and likely form the nuclear basket (Krull et al., 2004; Strambio-de-

Castillia et al., 1999).  It has been suggested that the Mlps play a role in telomere 
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anchoring and the organization of perinuclear silenced chromatin (Feuerbach et 

al., 2002; Galy et al., 2000).  However, other studies indicate that the Mlps are 

not required for telomere anchoring  (Andrulis et al., 2002; Hediger et al., 2002b).  

On the contrary, instead of anchoring telomeric regions, the Mlps may interact 

with the protein networks involved with the maintenance of telomere length 

(Hediger et al., 2002a).  

Consistent with the Nup-PI observation, Mlp1, and perhaps Mlp2, may 

bind to and retains nascent intron-containing mRNA (Galy et al., 2004; 

Vinciguerra et al., 2005).  Once spliced and adorned with mRNPs and transport 

factors (e.g. the Mex67:Mtr2 heterodimer), mRNA is exported from the nucleus in 

perhaps a ratcheting manner (Erkmann and Kutay, 2004; Stewart, 2007b).  Away 

from the NPC, recent work has shown that Mlp2, but not Mlp1, co-localizes with 

the spindle pole body and functions to maintain the integrity of the spindle pole 

body (Niepel et al., 2005). 

Members of the structural scaffold have been shown to have additional 

roles outside the NPC.  The mammalian Nup107-160 scaffold sub-complex is 

essential for the proper assembly of NPC (Harel et al., 2003; Walther et al., 

2003).  During mitosis, a small percentage of this complex is localized to the 

kinetochores (Belgareh et al., 2001; Harel et al., 2003; Loiodice et al., 2004; 

Zuccolo et al., 2007) and there is evidence that Nup96, a member of the Nup107-

160 complex, localizes to the mitotic spindle and spindle poles (Enninga et al., 

2003).  Recent work has shown that the Nup107-160 sub-complex functions in a 
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manner consistent with spindle checkpoint proteins, and distinct from its role at 

the NPC (Orjalo et al., 2006). 

The Nup107-160 complex is not the only NPC constituent to function as 

mitotic regulators.  Mammalian Nup358 moves from the cytoplasmic face of the 

NPC (Lim and Fahrenkrog, 2006) to the kinetochores (Joseph et al., 2002) and 

its deletion induces mitotic arrest (Joseph et al., 2004; Salina et al., 2003).  

During mitosis, the mRNA transport factor Rae1 localizes to the spindle and 

spindle poles (as shown in X. laevis) and its deletion disrupts the early stages of 

spindle assembly (Blower et al., 2005).  Rae1 has been implicated in S. pombe 

and vertebrates as regulator of mitotic cell cycle progression (Jeganathan et al., 

2005; Whalen et al., 1997).  There is also evidence of similar dual functions in 

budding yeast.  Mutations in the yeast Nup170, but not its paralog Nup157, 

causes defects in kinetochore formation and chromosome segregation (Kerscher 

et al., 2001), possibly through its interaction with the spindle assembly 

checkpoint proteins Mad1 and Mad2 (Campbell et al., 2001; Iouk et al., 2002; 

Kastenmayer et al., 2005).  The functional connection between 

nucleocytoplasmic transport across the NPC and mitotic spindle assembly 

continues with the small GTPase Ran, which is heavily involved with both 

processes (Mosammaparast and Pemberton, 2004; Quimby et al., 2005; Quimby 

and Dasso, 2003). 

THE NPC THROUGHOUT EVOLUTION 

The nucleus is a complex structure that likely arose only once about 2 

billion years ago (Martin, 2005).  Interestingly, prokaryotes have yet to reveal any 
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obvious analogs of the nucleus (Doolittle, 1980).  Even though some prokaryotes 

can envelope their DNA behind an internal membrane (Lindsay et al., 2001), 

there are no intermediate non-eukaryotes with a proto-nuclear structure known to 

exist today (Embley and Martin, 2006).  The lack of obvious transitional species 

challenges efforts to model the emergence of the nucleus, though several have 

been proposed (Martin, 2005).   

Recent studies support the vesicular (Martin, 1999) or invagination 

(Cavalier-Smith, 2002) models, which predict the formation of the 

endomembrane system, ER and NE from the plasma membrane.  In the post-

genomic era, genomic and proteomic data have allowed bioinformatic studies 

into the origin of the nucleus by investigating the NE (Bapteste et al., 2005; Mans 

et al., 2004) or nucleolar (a sub-nuclear region) (Staub et al., 2004) proteomes.  

These studies revealed that the some of the components of both the NE and the 

nucleolus have archaebacterial affinities, while others have eubacterial affinities 

(Mans et al., 2004; Staub et al., 2004).  The implication of these findings is the 

most likely scenario that the nucleus arose after the symbiotic event that gave 

rise to the mitochondrion, due to the presence of both archae- and eubacterial 

derived genes.  Also, additional computational studies showed structural (but not 

sequence) similarities between certain members of the NPC and coated vesicles 

(Alber et al., 2007b; Devos et al., 2004; Devos et al., 2006).  The structural 

relationship between some Nups and the vesicle coat proteins suggests that the 

nucleus arose only after the emergence and evolution of membrane bending 

proteins. 
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Though the modern nucleus of the eukaryotes descended from the LCEA, 

the constituents of the NPC have diverged significantly between distant species.  

However, despite the large primary structure divergence between yeast and 

vertebrates, there is evidence that the domains and secondary structures within 

many Nups are conserved across Eukaryota (Cronshaw et al., 2002; Rout et al., 

2000). 

Here, we begin to address the extent and nature of species-specific 

innovations at the NPC.  To do so, we first attempted to gather information about 

the NPCs of representative extant eukaryotes.  Our early attempts to map 

nucleoporin orthologs across Eukaryota by sequence similarity alone were 

challenged by the aforementioned primary structure divergence.  Indeed, such 

studies have presented grossly incomplete inventories of differently evolved 

eukaryotes, relative to the fungi and metazoa (Bapteste et al., 2005; Mans et al., 

2004).  An experimentally characterized representative NPC that is distantly 

related to the opisthokonts is requisite to begin to resolve the evolution of the 

NPC from the LCEA.   

In this thesis, we examine differences in structure and protein composition 

between distantly related species in the hope of gaining a greater understanding 

of the function, mechanism, regulation and evolution of NPCs.  Advances in the 

post-genomic era have given rise to a detailed picture of the NPCs of several 

model organisms (Appendix A).  The model metazoans and yeast, however, are 

relatively closely related within Eukaryota (Gerhart, 1997).  By applying the same 

rigorous interrogation to distantly related organisms (here the excavate 
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Trypanosoma brucei), we anticipate to gain a deeper understanding of one of the 

key organelles that distinguishes a major class of life. 

TRYPANOSOMA BRUCEI 

In order to discuss the NPC in an evolutionary context, we chose to study 

the NPC of a differently evolved eukaryote.  The protists which comprise the 

taxon Kinetoplastida diverged from the rest of the eukaryotes near the root of the 

evolutionary tree some 1-2 billion years ago, giving rise to a large number of 

species, which collectively parasitize almost all vertebrates, invertebrates and 

some plant groups (Beverley, 2003).  The kinetoplastids, including Trypanosoma 

brucei, are characterized by a single flagella and a single mitochondrion 

associated with a DNA containing kinetoplast (Figure 6) (Sogin et al., 1989).  

Since it is distantly related, the parasitic family Trypanosomatida has evolved 

very differently from other well studied organisms and relies on many species-

specific adaptations (Simpson et al., 2006).  The trypanosome nuclear envelope 

contains lamin-like coiled coil proteins (Ogbadoyi et al., 2000; Rout and Field, 

2001), the presence of which in other eukaryotes usually signifies an open mitotic 

system.  However T. brucei undergoes a closed mitosis, during which the 

chromosomes do not condense (Ersfeld et al., 1999).   
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Figure 6:  Cartoon schematic of Trypanosoma brucei. 
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T. brucei deviates from the eukaryotic model of transcription (Simpson et 

al., 2002).  Polycistronic transcription of unrelated but unidirectionally clustered 

genes is followed by a trans-splicing event (Campbell et al., 2003; Liang et al., 

2003; Siegel et al., 2005).  The nascent mRNA molecules mature when 

functionalized by a 5’ 40nt spliced leader (SL) RNA capping and 3’ 

polyadenylation (Clayton, 2002).  RNA polymerase II promoters are extremely 

rare (Das and Bellofatto, 2003; Gilinger and Bellofatto, 2001), and the 

mechanism of transcriptional regulation and initiation remains unclear although 

recent studies show progress in this area (Das et al., 2005; Ruan et al., 2004; 

Schimanski et al., 2005).  The brunt of the regulation of protein levels is 

presumably delegated to post-transcriptional and post-translational mechanisms 

and higher order chromatin structure at the NE (Navarro et al., 1999).  While the 

basic mechanisms of post-transcriptional regulation are understood, the details of 

the interaction between the signal cascade and modification machinery is still 

unclear (Akker et al., 2001).  Understanding the role of the NPC with respect to 

the regulatory mechanisms of T. brucei could reveal novel features of eukaryotic 

protein regulation. 

The 35 megabase T. brucei genome is divided amongst three classes of 

chromosomes: 11 large, <5 intermediate, and ~100 mini-chromosomes (Ersfeld 

et al., 1999).  The 26 megabase genome (compare to the 12-14 Mb yeast 

genome (Goffeau et al., 1996)) within the 11 large chromosomes was recently 

sequenced (Berriman et al., 2005).  The genome is almost devoid of introns and 

over 50% of the sequence encodes about 8100 open reading frames (ORFs) 
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(Berriman et al., 2005).  The three closely related pathogens, T. brucei, T. cruzi, 

and Leishmania major, are collectively referred to as the “TriTryps” and contain 

about 6200 orthologous genes (> 75% of the T. brucei ORFs) between them (El-

Sayed et al., 2005).  Taking advantage of the post-genomic era, several T. brucei 

proteomic projects have been undertaken (Atwood et al., 2005; Broadhead et al., 

2006; Colasante et al., 2006; Jones et al., 2006; Paba et al., 2004).  

A WORLD HEALTH ISSUE 

In the short history of H. sapiens, over 70 diverse species of protists have 

adapted to parasitize modern humans (Ashford and Crewe, 1998).  Generally, 

parasites infect humans via an insect vector or consumption of contaminated 

food or water (Cox, 2002).  Entamoeba histolytica (Amoebae) and Giardia 

lamblia (a diplomonad), are ingested through unsanitary conditions and may 

cause serious symptoms, such as diarrhea.  Parasites transmitted by biting 

insects, such as Leishmania and Plasmodium, cause Leishmaniasis and Malaria, 

respectively.  Three species of trypanosomes infect humans: Leishmania, 

Trypanosoma cruzi, responsible for Chagas’ disease in South America, and 

Trypanosoma brucei, the causative agent of the African sleeping sickness.   

With close to 60 million people at risk in 36 sub-Saharan African countries, 

African trypanosomiasis, or African sleeping sickness, is a serious world health 

issue (Garcia et al., 2006).  The causative agents of the disease are two 

Trypanosoma brucei sub-species (Despommier, 1995).  One manifests as a 

chronic (T. brucei gambiense) and the other, an acute (T. brucei rhodesiense), 

form of the disease (Fevre et al., 2006).  These parasites are injected into 
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humans by the stinging bite of the tsetse fly (subgenus, Glossina).  Figure 7 

diagrams the life cycle of T. brucei (Centers for Disease Control and Prevention, 

(2003), African Trpanosomiasis Fact Sheet).  Over a period of weeks to months, 

the long and slender flagellates continually divide and thrive in the blood stream.  

To evade the immune system, trypanosomes use an elaborate survival method 

involving gene shuffling to generate and then switch its antigenic coat proteins 

(Borst, 2002; Pays et al., 2004).  Eventually, the flagellates pass through the 

blood-brain barrier.  Left untreated, the disease is invariably fatal.  At the height 

of a recent epidemic, in some communities of Angola, Democratic Republic of 

Congo, and Southern Sudan, sleeping sickness was the first or second greatest 

cause of morbidity (World Health Organization, (2006), African Trypanosomiasis 

Fact Sheet).  

Recent efforts from private organizations and the WHO have been 

successful in curbing trypanosomiasis.  The Programme Against African 

Trypanosomiasis (PAAT) estimates that a half million people are currently 

infected (World Health Organization, (2006), African Trypanosomiasis Fact 

Sheet).  Currently, several drugs, such as the arsenical derivative melarsoprol, 

are readily available free of charge, but are marred with severe and fatal side 

effects.  Also, these drugs require a patient to have access to a health center for 

regular intravenous injections.  Drugs that are simpler to administer (such as oral 

administration) are being investigated.   
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Figure 7:  Cartoon schematic of the Trypanosoma brucei life cycle. 
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BIOLOGICAL APPLICATIONS OF MASS SPECTROMETRY  

Mass spectrometry is central among the various techniques that we 

employed to identify and characterize the T. brucei NPC.  For nearly a century, 

mass spectrometry (MS) has proven to be a powerful tool for elemental and 

small molecule analytical chemistry (Thomson, 1913).  Since the development 

and the biological application of soft ionization techniques, such as matrix 

assisted laser desorption/ionization (MALDI) (Karas and Hillenkamp, 1988; 

Tanaka, 1988) and electrospray ionization (ESI) (Fenn et al., 1989), biological 

mass spectrometry has rapidly evolved over the past 25 years.  Over the last 

decade, it has contributed significantly to the current understanding of protein 

interaction networks, localization, post-translational modifications (Andersen and 

Mann, 2006; Patterson and Aebersold, 2003), the identification of disease 

markers (Hanash, 2003) and drug discovery (Jeffery and Bogyo, 2003). 

Large scale functional studies have been conducted based on a 

comprehensive analysis of yeast protein complexes (Gavin et al., 2002; Tong et 

al., 2002) and similar studies have been conducted with E. coli (Yan et al., 2002).  

While such endeavors produce a large quantity of data, subcellular proteome 

analyses provide additional insight into localization, function and interaction 

partners (Dreger, 2003).  We have found this is to be especially true for divergent 

organisms because sequence similarity alone is often not sufficient to infer 

function.  Indeed, over half of the T. brucei ORFs have no detectable homolog 

(El-Sayed et al., 2005).  Direct subcellular interrogation thus aids in functional 

assignment.  Isolating and purifying organelles has the added benefit of reducing 



26 
 

sample complexity by restricting the number of proteins sampled.  The 

sequenced genomes of S. cerevisiae and the several vertebrates, coupled with 

subcellular fractionation, have allowed large-scale detailed studies of the NPC 

(Cronshaw et al., 2002; Rout et al., 2000), NE (Dreger et al., 2001) and nucleolus 

(Andersen et al., 2005) using biological mass spectrometry.   

In this work, we identified most of the constituents of the NPC of an 

eukaryote that is distantly related to yeast and vertebrates — Trypanosoma 

brucei.  We accomplished this endeavor through a combination of biochemistry, 

mass spectrometry, bioinformatics and molecular biology.  We then made 

detailed comparisons between the NPCs of the metazoa, fungi and 

kinetoplastida.  These comparisons begin to resolve the conserved aspects and 

the evolution of the NPC as well as elucidate the species-specific innovations 

that may be associated with chromatin organization and nucleocytoplasmic 

transport. 
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CHAPTER 2 — BIOCHEMISTRY AND PROTEOMICS: THE IDENTIFICATION OF PROTEINS 
THAT ASSOCIATE WITH THE T. BRUCEI NUCLEAR ENVELOPE PREPARATION 

BIOCHEMISTRY AND MASS SPECTROMETRY — MATERIALS AND METHODS 

We first sought to identify the constituent members of the Trypanosoma 

brucei NPC (TbNPC), and to this end, we used several biochemical and mass 

spectrometric techniques in order to maximize the yield.  In the context of this 

work, we define a strategy as a specific set of biochemical and mass 

spectrometric techniques.  Due to the complexity and dynamic range of the 

proteins associated with the T. brucei nuclear envelope preparation (TbNEP), we 

employed five strategies to ensure that we maximized the number of proteins 

identified.  These strategies were initially selected to complement each method’s 

strengths and weaknesses for a robust approach.  Figure 8 summarizes the five 

strategies used to identify the constituents of the TbNEP, indicated by 

corresponding colored arrows.  The adapted protocol we used to obtain the 

TbNEP (which includes the nuclear envelope and lipid-stripped pore complex 

lamina fraction, PCLF) from T. brucei (the black outlined box in Figure 8) is 

described in Appendix B.  
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Figure 8:  Summary flowchart of biochemical and mass 

spectrometric methods used to determine the TbNEP dataset.  

Strategies 1-5 are indicated by the red, blue, green, purple and 

black colored arrows, respectively.  The black box represents the 

nuclear and subnuclear isolation protocol described in Appendix B.  

The gold boxes are protein recovery steps.  Protein separation 

steps are colored in light blue.  Finally, mass spectrometry 

techniques are outlined in brown.  The ion trap mass spectrometers 

are in-house modified (LCQ Deca XP) or commercially available 

(LCQ and LTQ). 
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We chose several techniques to resolve and identify the proteins in the 

TbNEP.  First, proteins needed to be recovered from the viscous sucrose and 

PVP solution.  This is accomplished by either methanol precipitation or an offline 

C4 cleaning cartridge (gold boxes in Figure 8).  To resolve the proteins, 5 

separation techniques were used:  SDS-PAGE, HPLC, hydroxyapatite (HA) 

chromatography (Gorbunoff, 1985), chemical extractions (Schirmer et al., 2003), 

and a novel C18 “push-off” cartridge, developed by J. C. Padovan (light blue 

boxes in Figure 8).  Finally, the resolved proteins were identified by mass 

spectrometry (brown boxes in Figure 8). 

STRATEGY 1 (FIGURE 8, RED ARROWS) 

Methanol Protein Precipitation  

To one volume of the TbNEP (1-5 ml), 5 volumes of HPLC-grade 

methanol were added and left to incubate for 4 hours at 4°C.  The exact amount 

of sample material depends on the individual preparation and is empirically 

determined by pilot precipitations.  Generally, one wants to use the maximum 

amount of material without saturating the SDS-PAGE gel or chromatography 

column.  The precipitate was recovered by centrifugation (3300 (g) in a Beckman 

GH-3.8 for 15 minutes at 4°C).  The pellet was resuspended with 500 µl of 90% 

methanol and transferred to a microcentrifuge vial and then left to incubate for 1 

hour at 4°C.  The suspension is spun one final time in a microcentrifuge (16,000 

(g), 15 minutes, 4°C).  The supernatant was removed to leave the protein sample 

pellet. 

  



30 
 

SDS-PAGE 

The protein sample pellet was resuspended in 20 µl LDS sample buffer 

(Invitrogen, Carlsbad, CA), 8 µl 10x sample reducing agent (Invitrogen) and 52 µl 

water.  After mixing, the solution was heated to 70°C for 10 minutes and allowed 

to cool to room temperature.  To alkylate the reduced cysteines, 1 M 

iodoacetamide was added to a final concentration of 100 mM and the reaction 

was allowed to proceed for 30 minutes in the dark.   

For strategy 1, NuPAGE® 10% and 4-12% bis-Tris gels (with MOPS 

running buffer) and Novex® 8% Tris-glycine gels (Tris-glycine running buffer) 

were used to increase resolution at specific mass ranges.  For example, a 

Novex® 8% Tris-glycine gel offers high mass resolution while NuPAGE® 10% bis-

Tris gels offer superior low mass resolution.   

20 µl of alkylated sample was loaded to each gel.  Electrophoresis was set 

at a constant 125V for 5 minutes followed by a constant 200V for 45 minutes.  

The gel was fixed in 50% methanol and 7% acetic acid for 15 minutes and then 

washed extensively.  The proteins were visualized with GelCode® Blue colloidal 

Coomassie stain (Pierce, Rockford, IL) and documented by photography or 

digital flatbed scanning.  Representative NE gels are show in Figure 9 and PCLF 

samples were similar. 
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Figure 9:  Representative gels of T. brucei NEs resolved on three 

different gel gradients as describe in Strategy 1. 
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In-Gel Digestion 

On a white shallow plate or glass pane, the entire gel lane was cut into 2 

mm bands using a MicroScalpel (Electron Microscopy Sciences, Hatfield, PA).  

Roughly thirty 2 mm bands were excised from a 10 cm gel after staining.  Using 

the fine point tweezers (Electron Microscopy Sciences) or MicroScapel, the 

excised gel band was diced into 1 mm cubes and transferred to a microcentrifuge 

vial.  As an alternative to manual slicing, one can use a Mickle® gel slicer 

(Brinkman Instruments, Inc.) which can mechanically slice the gel lane at 1 mm 

intervals.   

The gel pieces were completely destained to remove all traces of stain 

and detergent.  To the gel pieces, 500 µl of destain solution (25 mM ammonium 

bicarbonate in 50% acetonitrile) was added and the vials were agitated (medium 

setting) at 4°C with a vertical vortexer (Tomy Mixer, Tomy Seiko Co., Ltd., Tokyo, 

Japan).  After destaining, 100 µl acetonitrile was added and then aspirated after 

10 minutes.  A trypsin (bovine, modified, sequencing grade, Roche Applied 

Science, Indianapolis, IN) aliquot was diluted in digestion buffer to a final 

concentration of 50 ng/µl.  To the dehydrated gel pieces, ≥ 100 ng trypsin was 

added as well as 40 µl of 50 mM ammonium bicarbonate.  The digestion mixture 

was incubated at 37°C for 4 hours.   

POROS® R2 (Applied Biosystems, Foster City, CA) C18 resin is used to 

extract and recover the peptides from the gel pieces and digestion buffer.  A 

working POROS R2 bead slurry is made as follows: 
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1. 500 mg of POROS R2 beads are sequentially washed with 10 ml 

of:  (1) methanol, (2) 80% acetonitrile, and then (3) 20% ethanol.  

2. Resuspend the washed beads in 20% ethanol to a final 

concentration of 50 mg/ml. 

To 1 volume of POROS R2 bead slurry, 9 volumes of 2% trifluoroacetic 

acid, 5% formic acid in water was added and 40 µl of diluted POROS beads was 

mixed with the digest.  The peptide/bead mixture was agitated (medium setting) 

in a vertical vortexer at 4°C for 4 hours.   

The POROS beads are separated from the gel pieces with the use of 

ZipTips® (C18, Size P10, Millipore, Billerica, MA), which have been washed with 

elution solution (20% acetonitrile, 50% methanol, and 0.1% trifluoroacetic acid).  

The 80 µl peptide/bead mixture was transferred into a washed and conditioned 

ZipTip from the top and, using a syringe, the supernatant was discarded.  20 µl of 

0.1% trifluoroacetic acid was added to the gel pieces and then transferred to the 

ZipTip from the top.  The wash solution was expelled using a syringe.  Wash the 

POROS beads on the ZipTip twice more using 20 µl of 0.1% trifluoroacetic acid.   

The matrix used for MALDI mass spectrometry is 2,5-dihydroxy benzoic 

acid (DHB) (Lancaster, Pelham, NH).  A saturated solution of DHB is prepared in 

elution solution at room temperature and diluted to 40% (v/v) saturated just prior 

to use.  The peptides are slowly eluted onto a MALDI plate with 2.5 µl 40% DHB 

in elution solution to produce the “sample spot” (Archambault et al., 2003; Cristea 

et al., 2005; Tackett et al., 2005). 
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MALDI MS & MS/MS  

Using the MALDI QqTOF mass spectrometer (Krutchinsky et al., 2000), 

MS data was acquired for each sample spot.  The data reveals the mass-to-

charge ratio (m/z) (the parent masses) for most of the peptides present in the 

sample.  The spectra are then filtered with BackgroundFinder (written by Markus 

Kalkum) to remove background ions (such as trypsin autolysis peptides) and the 

resulting parent masses are transferred to method files that are compatible with 

the MALDI ion trap mass spectrometer (modified LCQ series, Thermo Fisher) 

(Krutchinsky et al., 2001). 

Peptides are fragmented in the MALDI ion trap mass analyzer to produce 

daughter ions that yield mass data corresponding to the sequence, and hence 

identity, of the peptide.  The protein may then be identified from this sequence 

data and the masses of the precursor peptides.  We generated an in-house 

assembled T. brucei proteome database based on the raw data that was 

released from the T. brucei genome sequencing project (Berriman et al., 2005).  

We identified the proteins by comparing our data against this database with 

previously established proteomic bioinformatic tools, such as ProFound, Sonar, 

and X!Tandem (Craig and Beavis, 2004; Field et al., 2002; Zhang and Chait, 

2000).  The confidence of the identification is related to the quantity and quality of 

the mass data (Krutchinsky et al., 2001; Zhang et al., 2003). 
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STRATEGY 2 (FIGURE 8, BLUE ARROWS) 

Methanol Protein Precipitation 

As described in Strategy 1. 

Hydroxyapatite Chromatography 

In a 50 ml centrifuge tube, 7.5 ml Macro-Prep ceramic HA type I, 40 µm 

(Bio-Rad Laboratories, Hercules, CA), was washed with 20 ml of 200 mM 

Na2HPO4 (do not adjust pH).  The HA was allowed to settle and the wash 

solution and suspended fine particles was aspirated.  The wash was repeated 3 

times with 20 ml loading buffer (10 mM NaH2PO4, pH 6.8, and 0.1 mM CaCl2 in 

water), aspirating the loading buffer and suspended fine particles after each 

wash.  To the final volume of HA, 4 volumes of loading buffer, supplemented with 

0.1% SDS, was added. 

Following methanol precipitation, the protein sample pellet was 

resuspended in HA sample buffer (10 mM Tris, 10 mM DTT and 2% SDS) and 

heated at 60°C for ten minutes.  1 volume of sample was diluted with 19 volumes 

of HA loading buffer.  To the diluted sample, conditioned HA beads were added.  

Roughly 2 ml of bead slurry is required for less than 0.5 ml of sample.  The 

mixture was incubated for 30 minutes.  Keep the HA suspended by mechanical 

rotation or rocking.   

The mixture was poured into a Poly-Prep® Chromatography Column (Bio-

Rad, Hercules, CA) and the flowthrough was collected.  The beads were washed 
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with 4 ml of 0.1% SDS in loading buffer.  The wash was collected to monitor 

protein binding and combined with the flowthrough. 

The proteins were then eluted from HA.  All elution buffers are prepared 

from appropriate volumes of mobile phase A (1 mM DTT, 0.1 mM CaCl2) and 

mobile phase B (1 M NaH2PO4, pH 6.8, 1 mM DTT).  SDS is added, just before 

use, at a final concentration of 0.1%.  The mobile phase was added in 

successive order to the column (300, 325, 350, 375, 400 and 500 mM NaH2PO4) 

and the eluate was collected.  Generally, 4 ml of elution buffer is sufficient. 

Trichloroacetic acid Precipitation 

The final volume of eluate was adjusted to 10 ml with water and 

precipitated by sodium deoxycholic acid/trichloroacetic acid.  The protein 

suspension was diluted with water to 1 ml (small scale) or 10 ml (large scale).  

Respectively, 100 µl or 1 ml of 0.3% sodium deoxycholic acid was added along 

with an equivalent volume of 72% trichloroacetic acid.  After mixing, the solution 

was left to incubate at 4°C for 1 hour and then spun at maximum rotor speed (1 

hour, 4°C).  The pellet was washed in 1.2 ml acetone and transferred to a fresh 

microcentrifuge vial and stored overnight at -20°C.  The pellet was recovered by 

centrifugation in a microcentrifuge (16,000 (g), 4°C, 1 hour). 
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SDS-PAGE 

The same as described in Strategy 1, except in Strategy 2, 4-12% bis-

Tris gels were used and the entire pellet from each fraction was loaded onto a 

lane within the gel.  Representative gels from both the NE and PCLF are shown 

in Figure 10. 

  

Nuclear envelope

FW   300   325   350    375  400   500 FW   300    325   350   375   400  500

200

66

45

31

22

14

116

97

Pore complex lamina

mM PO4
2- mM PO4

2-

Figure 10:  Representative hydroxyapatite gels.  On the left is the 

nuclear envelope fraction and on the right is the lipid-stripped pore 

complex lamina fraction.  FW, flowthrough and wash.  

Concentrations of phosphate in the elution buffer are indicated 

above the gel lanes. 
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In-Gel Digestion 

As described in Strategy 1.  All seven lanes of each gel were analyzed in 

their entirety by in-gel digestion and MALDI mass spectrometry. 

MALDI-MS and MS/MS 

As described in Strategy 1. 

STRATEGY 3 (FIGURE 8, GREEN ARROWS) 

Reversed Phase C4 Clean-Up Cartridge 

To avoid the potential losses of methanol precipitation, a clean-up 

cartridge (Michrom Bioresources, Auburn, CA.) packed with C4 resin (Grace-

Vydac, Hesperia, CA.) was used to concentrate the protein mixture.  The C4 

cartridge was prepared by washing 3x with 500 µl methanol, 3x with 500 µl 95% 

acetonitrile and 0.1% trifluoroacetic acid, and, finally, 3x with 500 µl 0.1% 

trifluoroacetic acid.   

100 µl of the TbNEP was diluted with 500 µl of 0.1% trifluoroacetic acid 

and loaded onto the cartridge.  The cartridge was then washed extensively with 

0.5% acetic acid and 0.1% trifluoroacetic acid.  After washing, the protein was 

eluted with 500 µl 95% acetonitrile and 0.1% trifluoroacetic acid.  The eluate was 

then dried in a speedvac. 
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High Performance Liquid Chromatography  

The protein sample pellet was resuspended in 50 µl of 50 mM ammonium 

bicarbonate.  A total of 500 ng of trypsin was added and the solution was left to 

incubate at 37°C for 24 hours.  The digestion was quenched by acidification with 

0.1% acetic acid (final concentration). 

10 µl (20%) of the digest was loaded onto a C18 reversed phase column 

(0.18 mm x 250 mm, 1.8 µl/min) and eluted under the following conditions:  25% 

solvent B (95% acetonitrile, 0.1% trifluoroacetic acid) for 5 minutes, 25-100% 

solvent B in 40 minutes.  After the analytical run, the column was cleaned and 

conditioned with 100% solvent B for 5 minutes and then 25% solvent B for 

20min.  For this strategy, an Ultimate HPLC system (LC Packings-Dionex, 

Sunnyvale, CA) was used.  Solvent A is 5% acetonitrile, 0.1% trifluoroacetic acid 

in water. 

Electrospray ionization (ESI)-MS/MS  

To ensure maximum coverage of the TbNEP, LC-MS/MS was employed 

as a complementary technique to MALDI MS/MS.  The HPLC analytical run was 

online with the Finnigan LCQ series (ThermoElectron Corp., San Jose CA.) mass 

spectrometer.  One data dependent MS/MS scan was acquired after each full 

(MS) scan. 

Dynamic exclusion was used so that any given mass is analyzed and 

fragmented only once in a 30 second window.  In addition to dynamic exclusion, 
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we used a second type of filter that uses prior knowledge of the contents of a 

sample.  Briefly, since 20% of the sample was used for each run, the data from 

the previous run were analyzed.  Those parent masses that were analyzed in the 

prior run were added to the “exclude masses” list in subsequent runs.  Coupled 

to dynamic exclusion, this approach significantly reduced the number of 

redundant scans.  

We generated an in-house assembled T. brucei proteome database based 

on the raw data that was released from the T. brucei genome sequencing project 

(Berriman et al., 2005).  We identified the proteins by comparing our data against 

this database with previously established proteomic bioinformatic tools, such as 

ProFound, Sonar, and X!Tandem (Craig and Beavis, 2004; Field et al., 2002; 

Zhang and Chait, 2000). 

STRATEGY 4 (FIGURE 8, MAGENTA ARROWS) 

Chemical Extraction  

Three separate separations were conducted on the TbNEP to reduce the 

complexity of the sample by enriching for transmembrane proteins (base 

extraction), integral proteins which are closely associated with the lamina (salt 

and detergent) and proteins that are peripheral to the NE (heparin) (Schirmer et 

al., 2003).   

1. Base extraction 

a. To one volume of nuclear envelopes (in sucrose solution) 9 

volumes of 100 mM NaOH with solution P (1:100) was 
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added and mixed completely by vortexing.  Note:  Solution P 

is made by dissolving 0.04% (w/v) pepstatin A (Sigma-

Aldrich, St. Louis, MO) and 1.8% PMSF (Sigma-Aldrich, St. 

Louis, MO) in absolute (anhydrous) ethanol.  

2. Salt and detergent extraction 

a. To one volume of nuclear envelopes (in sucrose solution) 9 

volumes of salt and detergent extraction buffer (400 mM 

NaCl and 1% (w/v) β-octylglucoside in 25 mM Hepes, pH 

7.5) with solution P (1:100) was added and mixed completely 

by vortexing.   

3. Heparin extraction 

a. To one volume of nuclear envelopes (in sucrose solution) 9 

volumes of 10 mg/ml heparin in bis-Tris/Mg buffer with 

solution P (1:100) was added and mixed completely by 

vortexing. 

The extractions were left to incubate on ice for 1 hour.  The extractions 

were then underlaid with 1 M sucrose in bis-Tris/Mg buffer with solution P (1:100) 

and spun at 103,460 (g) for 35 min.  The extracted proteins are retained in the 

supernatant.  The supernatant was carefully transferred to a fresh vial and 

precipitate the proteins with trichloroacetic acid/deoxycholate precipitation 

(Strategy 2).   
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Wash the enriched pellet in 1 ml acetone and transfer the suspension to a 

microcentrifuge vial store overnight at -20°C.  Recover the pellet by centrifugation 

in a microcentrifuge (16,000 (g), 1 hour, 4°C).   

The pellets from both the supernatant and the precipitate were checked on 

a gel (Figure 11).  The extraction was repeated and the pellets were prepared for 

HPLC analysis.  For HPLC analysis, the protein sample pellet was resuspended 

200
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Figure 11:  T. brucei NEs that have been subjected to chemical 

extraction.  The three extractions (base, salt and detergent, and 

heparin) are separated by vertical dashed yellow lines.  The pellet 

(P) and supernatant (S) are indicated. 
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in 50 µl of 50 mM ammonium bicarbonate.  A total of 500 ng of trypsin was added 

and the solution was left to incubate at 37°C for 24 hours.  The digestion was 

quenched by acidification with 0.1% acetic acid (final concentration). 

Reversed Phase C18 “Push-Off” cartridge 

5 µl of the peptide digest mixture was diluted 1 into 3 and passed through 

a ZipTip packed with POROS C18 resin, in a fashion analogous to Strategy 1.  

The amount of resin present is such that the binding capacity of the column is 

less than the total amount of peptide present in the digest.   

The flowthrough is passed over a second ZipTip/POROS column with less 

resin than the first.  The peptides bound to the first and second columns are 

eluted with 20 µl 95% acetonitrile, 0.1% trifluoroacetic acid.  Both the eluates 

from columns 1 and 2 (enriched in the abundant peptides) and the flowthrough 

(enriched in less abundant peptides) are analyzed by HPLC.  This protocol is 

credited to Júlio C. Padovan. 

High Performance Liquid Chromatography  

10 µl of the peptide mixture was loaded onto a C18 reversed phase 

column (0.2 mm x 50 mm, 2.2 µl/min) and eluted under the following conditions:  

30% solvent B (95% acetonitrile, 0.1% trifluoroacetic acid) for 2 minutes, 30-

100% B in 14 minutes.  After the analytical run, the column is cleaned and 

conditioned at 100% solvent B for 7min and then 5% solvent B for 20min.  For 
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this work, an Ultimate HPLC system (LC Packings-Dionex, Sunnyvale, CA) was 

used.  Solvent A is 5% acetonitrile, 0.1% trifluoroacetic acid. 

ESI-MS/MS  

As described in Strategy 3. 

STRATEGY 5 (FIGURE 8, BLACK ARROWS) 

Methanol Protein Precipitation 

As described in Strategy 1. 

Hydroxyapatite Chromatography 

As described in Strategy 2.  

Trichloroacetic acid Precipitation 

As described in Strategy 2. 

High Performance Liquid Chromatography  

From each fraction, the protein sample pellet was resuspended in 50 µl of 

50 mM ammonium bicarbonate.  A total of 500 ng of trypsin was added and the 

solution was left to incubate at 37°C for 24 hours.  The digestion was quenched 

by acidification with 0.1% acetic acid (final concentration). 

10 µl of the peptide solution was loaded onto a C18 column (BioBasic® 

PicoFrit C18 column 75 µm ID, (PFC7515-BI-5, New Objective, Woburn, MA)) 

and, after extensive washing with 0.1% acetic acid (solvent A), eluted with 70% 
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acetonitrile and 0.1% acetic acid (solvent B) in a linear gradient (0 - 100% solvent 

B) in 60 minutes at 20 µl/min.  After the analytical run, the column was cleaned 

and conditioned with a blank run and 20 minutes of 100% solvent A. 

ESI-MS/MS 

The HPLC analytical run was online with a recently acquired Finnigan LTQ 

XL (ThermoElectron Corp., San Jose CA.) mass spectrometer, having enhanced 

performance compared with the Thermo Finnegan LCQ instrument used to 

acquire data in Strategies 3 and 4.  The PicoFrit column has a 15 µm emitter tip 

which enables the eluate to be directly analyzed via ESI-MS/MS. 

The method was designed to acquire one MS scan to determine parent 

masses, and then acquire 10 MS/MS scans which are dependent on the first MS 

scan.  Dynamic exclusion was used so that any given parent mass is analyzed 

and fragmented only once in a 30 second time window.   

We generated an in-house assembled T. brucei proteome database based 

on the raw data that was released from the T. brucei genome sequencing project 

(Berriman et al., 2005).  We identified the proteins by comparing our data against 

this database with previously established proteomic bioinformatic tools, such as 

ProFound, Sonar, and X!Tandem (Craig and Beavis, 2004; Field et al., 2002; 

Zhang and Chait, 2000). 
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RESULTS AND DISCUSSION 

By employing five complementary strategies, we were ensured a 

comprehensive analysis of the nucleoporins within the TbNEP.  As described 

above, we compared our mass spectrometric data to our in-house assembled T. 

brucei proteome database.  All identifications with an expect value worse than 

10-5 were validated by hand if we determined that the protein identified was of 

interest to this body of work.  We used the following criteria to ensure the 

confident identification of proteins.  For those identifications with an expect value 

worse than 10-3, at least one peptide must have an expect value better than 10-2.  

In addition, in order for an identification based on just a single peptide to be 

considered, that expect value must be better than 10-3. 

In total, we identified 859 proteins in the T. brucei nuclear envelope 

preparation (TbNEP), the full inventory of which is listed Appendix C.  This 

dataset represents ~10% of the T. brucei proteome (Berriman et al., 2005), and 

likely contains a large number of contaminants.  We experimentally identified 5 

TbNups and 6 NPC transport-related proteins, which were previously annotated 

by homology during the genome sequencing project (Berriman et al., 2005).  No 

annotated Nups were missed.  Several previously annotated transport-related 

proteins were missed, most likely due to fact that Kaps only interact transiently 

with the NPC.  The number of proteins identified in this work far exceeds the 

number that we anticipated to be present in the NE.  The first reason is that the 

TbNEP is an enriched, rather than a pure, preparation.  The second is that we 
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used enhanced MS-based techniques to increase the dynamic range of our 

analysis to the point that we could detect proteins of low relative abundance. 

With respect to the number of proteins identified, the strategies varied in 

their success.  When we employed SDS-PAGE with MALDI-MS readout in 

Strategies 1 and 2, we identified 63 and 71 proteins, respectfully.  We did not 

use SDS-PAGE to separate the proteins in Strategies 3 and 4, yet we identified 

84 and 164 proteins, respectively.  The most successful strategy that we 

employed was Strategy 5, which identified fully 588 proteins.  In retrospect, 

Strategy 5 may have been sufficient to completely analyze the TbNEP.  The 

success of this strategy is attributed, in part, to the sequential chromatographic 

separation of the proteins (using hydroxyapatite chromatography) and the 

peptides that result from trypsin protease digestion (using C18 HPLC).  Also, for 

Strategy 5, we used a linear ion trap mass spectrometer, which is more efficient 

and sensitive than the hyperbolic ion trap mass analyzer used in Strategies 1-4.  

We identified all of the TbNups in two or more strategies.  It is noteworthy 

that, although Strategy 5 identified greater than 4X as many proteins as any 

other strategy, no additional Nups were identified in this most sensitive analysis.  

We take this finding to imply that our analysis of the NPC components is 

essentially saturated.   

Using these five different strategies allows us to make some observations 

as to the relative merits and limitations of the techniques used.  Complex protein 

samples with a large number of constituents are ill-suited to SDS-PAGE with 
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MALDI-MS readout (Strategies 1 and 2), as these methods do not have the 

capacity to handle the large mixtures of proteins.  For example, consider that 

loading 650 proteins on a pre-cast gel lane, roughly 6.5 cm long, results in an 

average 10 proteins per linear mm.  Furthermore, the distribution of proteins 

within the lane is not linear, with the densest region being in the middle (30-100 

kDa) region of the gel.  If one analyses a 1 mm gel slice from the center of the 

lane, then one is working with a pool of perhaps 15 or more proteins.  Assuming 

~50 peptides per mid-sized protein, then 750 peptides are generated from this 

mixture of proteins.  This level of complexity is beyond the ability of our current 

MALDI-MS analysis techniques.   

The range of protein concentration also presents a challenge if low 

abundance peptides cannot be detected in the mass spectrometer above the 

background chemical noise.  One method for improving coverage in such 

samples is to work with more sample material (Eriksson and Fenyo, 2007).  

However, SDS-PAGE systems have an upper limit to the amount of protein that 

may be loaded.  Overloading a gel leads to loss of resolution, smearing and lane 

collapse.   

To counter the limitations of SDS-PAGE protein separation and MALDI-

MS readout, we utilized gel-free methods of protein separation in combination 

with LC-MS.  Although Strategy 3 offered slightly superior results to SDS-PAGE 

with MALDI-MS readout, this methodology was not robust in my hands due to 

frequent clogging of the C4 cartridge.  Strategies 4 and 5 yielded the best results 

due to increased protein separation prior to digestion and subsequent peptide 
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separation.  Another reason why Strategy 5 proved superior is that the analyte 

was analyzed with a linear ion trap mass spectrometer, which has a higher ion 

capacity, sensitivity and scanning speed (which translates into more MS/MS 

spectra per unit time).  Combined, these factors greatly contribute to the number 

of co-eluting peptides that can be identified in a complex sample. 

In Strategy 4, the second best strategy, we employed a methodology 

developed by Júlio Padovan, known as the “push-off” cartridge.  Briefly, a large 

peptide mixture is passed over a stationary phase (here, C18 resin) with a 

binding capacity less than the total amount of sample loaded.  This sets up a 

situation in which peptides are forced to compete for the limited number of 

binding sites.  We observed that the population of peptides within the flowthrough 

is different than that population bound to the resin.  Thus, after passing the 

peptide mixture over the “push off” cartridge, the end result is that an additional 

separation step is introduced to the sample.  One can then load more of the 

eluate or flowthrough onto the HPLC column, as it has been depleted of a 

significant population of peptides.  

We demonstrate this separation in the base peak (BP) trace of the three 

analytical runs resulting from the base extracted TbNEP (Figure 12).  Here, the 

sample is first passed through one “push-off” cartridge and then flowthrough is 

passed over a second “push-off” cartridge for further separation of peptides.  The 

bottom panel shows the BP for the flowthrough.  The middle panel shows the 

material eluted off the second cartridge, while the top represents the sample 

eluted from the first cartridge.  These BP traces are different for each of the three 
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samples.  Strikingly, the peptide at m/z ~1587 (indicated by the arrow) is an 

abundant peptide that has been depleted from the flowthrough, thus allowing less 

abundant peptides with the same retention time to be measured in the ion trap 

mass analyzer. 

With the constituents of the TbNEP identified, we next used a series of 

bioinformatic screens to identify and characterize the bona fide components of 

the TbNPC.  The next chapter will discuss the bioinformatic strategies and tools 

used to infer function to the set of 859 proteins associated with the TbNEP, with 

an emphasis on identifying the putative TbNups.  
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Figure 12:  Separation of peptide populations in a complex mixture 

by using a series of “push-off” cartridges.  The base peak readout 

(BP) shows different patterns for the material bound to the first 

cartridge (top), the second cartridge (middle), and peptides which 

did not bind to either cartridge (bottom). 
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CHAPTER 3 — THE BIOINFORMATIC ANALYSIS OF THE TBNEP 

STRATEGY AND ALGORITHMS 

Using several biochemical and proteomic techniques in five different 

strategies, we have identified ~860 proteins in the TbNEP.  The next challenge 

was to identify the putative TbNups present in our dataset.  Inferring protein 

function by homology between distantly related species is particularly difficult 

because significant primary structure similarity has been lost over time.  To 

circumvent this formidable challenge, we employed a range of bioinformatic 

algorithms to characterize and infer function to distant orthologs and identify the 

putative TbNups. 

To simplify the TbNEP dataset, we cross referenced each identified 

protein to its functional annotation page on GeneDB, the annotation database of 

the Wellcome Trust Sanger Institute.  If a protein has been functionally 

annotated, and found not to be TbNPC related, we set the protein aside.  There 

is a possibility that these proteins may functionally interact with the nuclear 

envelope, but further experimental studies would be required to demonstrate 

such an interaction or localization.  In this way, we were able to set aside ~500 

proteins. 

We characterized the remaining ~350 functionally unannotated proteins 

using the following strategy: 

1. We first analyzed, by pair-wise sequence alignments, the ~350 

functionally unannotated proteins identified by mass spectrometry.  
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The sequences were queried using both PSI-BLAST (Altschul et 

al., 1997) and FASTA (Pearson and Lipman, 1988)) against the 

National Center for Biotechnology Information (NCBI) non-

redundant database.  The alignments were seeded with a word size 

of 2, and scored against the BLOSUM45 matrix.  The resulting 

alignments were individually inspected by hand. 

2. Querying the domain architectures between distant orthologs is 

more sensitive than querying the entire primary structure (Bateman 

et al., 2000).  To identify domains, we conducted a Hidden Markov 

Model (HMMer (Eddy, 1998)) alignment, using standard 

parameters, to the Pfam HMM-profile database of domain families 

(Sonnhammer et al., 1998). 

3. We also scanned both the trypanosome protein database and the 

TbNEP dataset for the presence of FG-repeat domains by using a 

simple pattern recognition algorithm written by David Fenyö 

(PROWL).  We did not find any recognizable FG-repeat domain in 

the trypanosome database that was not also present in the TbNEP 

dataset. 

4. Previous work showed that the Nups fall into 8 major fold types with 

characteristic secondary structure patterns (Devos et al., 2006).  To 

identify the presence of these specific fold types, we predicted the 

secondary structure of the unannotated proteins (PSI-PRED 
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(McGuffin et al., 2000) and PROF (Ouali and King, 2000)) on all the 

unannotated protein sequences.  When interpreting the results, one 

should bear in mind that these algorithms require primary structure 

similarity for accurate prediction.  For the purposes of this study, 

the reduced accuracy is acceptable since we are not concerned by 

the details of element size and boundaries.   We are concerned 

only whether a domain is primarily β-sheet rich or α-helix rich. 

5. We also predicted the presence of several motifs with various 

prediction algorithms.  We concentrated on the motifs that are 

indigenous to the NPC and NE, which include transmembrane 

helices (Phobius (Kall et al., 2004)), natively disordered regions 

(Disopred (Ward et al., 2004) and PONDR (Romero et al., 2001)), 

coiled coils (COILS (Lupas et al., 1991)), and putative nuclear 

localization sequence (NLS, Nucleo (Hawkins et al., 2007)).  We 

accepted results that had better than an 80% predictive confidence 

score, based on the benchmarks of the individual algorithm. 

6. For several known domains and conserved sequences, multiple 

sequence alignments were conducted with ClustalX v1.83 using 

default settings (Thompson et al., 1997).  Conserved residues are 

indicative of a functional role within the NPC and nucleocytoplasmic 

transport and, whenever possible, were cross checked with the 

literature for any mutational analysis. 
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SORTING THE T. BRUCEI NUCLEAR ENVELOPE PREPARATION DATASET 

By utilizing a suite of bioinformatic tools, we were able to characterize the 

proteins that were identified in the TbNEP.  We excluded those proteins whose 

function was reasonably known and are not associated with the TbNPC.  By 

mining the T. brucei protein functional annotation database (GeneDB, Wellcome 

Trust Sanger Institute), as well as PSI-BLAST searches to the NCBI nr database, 

we could exclude ~500 proteins that fall within these criteria (listed in Table 8).   

At this point, sequence homology alone is sufficient to identify only five 

constituents of the TbNPC (TbSec13, TbNup96, TbNup158, TbNup144, and 

TbNup62).  We concluded that information about the domains, motifs and 

secondary structure would be useful in identifying the remainder of the TbNups.  

This is based in part on recent work which has shown that the yeast and 

vertebrate NPCs are highly modular in nature and the entire catalog of 

nucleoporins utilizes only 11 domains or motifs (Devos et al., 2006). 

By searching for these modules using the algorithms outlined in the 

previous section, rather than sequence similarity, we identified an additional 19 

putative TbNups, for a total of 24 TbNups (listed in Table 5).  Based on 

comparisons with the Nup inventories of NPCs from vertebrates and yeast, we 

estimate that we have identified at least 80%, by mass, of the TbNPC.  We 

anticipate that the balance is most likely species-specific or highly divergent 

Nups, which would be difficult to identify within the TbNEP dataset by 

comparative methods.  In the future, we plan to utilize the known TbNups as 
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“bait” to identify these elusive TbNups through interaction studies, such as 

immunoprecipitation. 

In addition to the 24 TbNups, we identified 8 transport factors (Table 5).  

These proteins are somewhat easier to identify than the TbNups because of their 

relatively high sequence homology across Eukaryota.  It is not surprising that 

only a subset of transport factors were identified in this work, since they are 

soluble proteins and only transiently interact with the NPC. 

Aside from the ~500 annotated, but unrelated, proteins and the 32 

proteins associated with the TbNPC, we attempted to characterize the remaining 

330 unannotated proteins within the TbNEP dataset (Table 7).  Using the 

strategies noted above, we found 23% of these proteins contain at least one 

coiled coil and 9% of the proteins contain a likely nuclear localization sequence 

(NLS).  We identified at least one Pfam domain in 33% of the unannotated 

proteins.  The details of these domains and motifs are included within Table 7. 

Finally, one conspicuous group that remains elusive are membrane bound 

proteins, including integral membrane Nups.  While 30% of the unannotated 

proteins within the TbNEP dataset are predicted to have at one transmembrane 

helix (TMH), these proteins have no obvious discernible domain structure 

characteristic of an NPC (e.g. the cadherin domain within ScPom152 and 

Hsgp210) or NE constituent protein.  For example, we are unable to find, within 

the TbNEP dataset, a homolog of the “Sad1/Unc” domain, which is found in the 

SUN/Unc-84 NE proteins found in the opisthokonts, or the “LEM” domain of 



57 
 

LAP2, which is also present in the NE of the opisthokonts.  We searched the T. 

brucei functional annotation for any NE related domain which is not present in the 

TbNEP dataset.  Thus far, only one protein was found to contain a “Sad1/Unc” 

domain (Tb927.6.1740).  It is not clear why this protein was missed in our 

analysis. 

The TbNPC lacks any obvious orthologs to the more divergent, species-

specific Nups, such as HsNup358, ScNup2, HsNup214/ScNup159, and 

HsNup88/ScNup82.  These Nups have domain and motifs structures that should 

be easily recognized.  For example, HsNup358 has a specific domain 

architecture, including Zn-finger motifs, and HsNup88/ScNup82 contains a β-

propeller domain.  It is possible that the T. brucei homologs to these Nups have 

either been lost or have diverged to such a degree that even domain structure 

has adopted species-specific innovations.  These Nups will need to be identified 

experimentally.  In the future, we can target known TbNups and perform 

immunoprecipitations, in tandem with mass spectrometry, and identify the 

interacting partners of the entire TbNPC.  These assays should be specific 

enough to confidently map the interaction network of the TbNPC and fill any gaps 

in our model of the TbNPC. 
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IDENTIFYING AND CHARACTERIZING THE T. BRUCEI NUCLEAR PORE COMPLEX 

Figure 13 lists the putative TbNPC constituents along with their predicted 

secondary structures.  We characterized the TbNups based on their predicted 

secondary structure patterns.  The presence, for example, of an α-solenoid 

domain in a putative Nup suggests that it is a member of the structural scaffold 

group and is an ortholog of an α-solenoid-containing Nup found in the 

opisthokonts.  As discussed above, we determined that sequence homology 

alone is not sufficient to make such characterizations with the majority of 

TbNups. 
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Figure 13:  (Following page) Secondary structure map of the 

putative TbNups.  Protein names in bold indicate those which have 

been localized to the TbNPC in vivo (Chapter 4).  The asterisk 

indicates those Nups that share significant homology with the 

opisthokonts.  The top ruler indicates residue number.  Within a 

map, the horizontal black line represents the primary structure of 

the Nup with the N-terminus to the left.  The y-axis indicates the 

confidence score of the secondary structure element prediction.  

Predicted α-helices are shaded in red, and predicted β-sheets are 

in blue.  The black vertical lines below the primary structure indicate 

the FG-dipeptides.  The TbNups are binned according their 

predicted function within the TbNPC; green, probable nuclear 

basket; yellow, structural scaffold; blue, FG-Nups.   
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THE STRUCTURAL SCAFFOLD 

About a dozen Nups play a principally structural role within the NPC (Alber 

et al., 2007a).  These Nups form an eight-fold symmetric ring upon which the FG-

Nups are layered (Maul, 1971; Suntharalingam and Wente, 2003).  These Nups 

contain a relatively simple domain architecture, either containing an α-helix rich 

α-solenoid domain, a β-sheet rich β-propeller domain, or both (Devos et al., 

2006).  A yeast model of these structural Nups is shown in Figure 14 (Alber et al., 

2007a).  In our search to identify TbNups from the TbNEP dataset, we identified 

12 structural TbNups which are described and characterized below. 

β-Propellers 

β-propeller proteins are characterized by a propeller-like structure 

consisting of 6 or 7 blades, each of which is comprised of four anti-parallel β-

sheets (Neer et al., 1994).  Members of this family from human and yeast include 

HsSec13/ScSec13, HsSeh1/ScSeh1, HsNup37, HsNup43, and HsALADIN.  

HsNup37, HsNup43 and HsALADIN are found throughout the metazoa and the 

HsALADIN locus is linked to Allgrove syndrome in humans (Cronshaw and 

Matunis, 2003).  HsALADIN and HsNup43 are also present in plants, a bikont.  

ScGle2/HsRae1 also falls into this structural category, although it only transiently 

interacts with the NPC (Bharathi et al., 1997; Murphy et al., 1996).  
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Figure 14:  A model of the yeast structural scaffold.  The scaffold is 

comprised of 3 fold types:  WD-repeat rich β-propeller, α-helix rich 

α-solenoid, and an N-terminal β-propeller followed by a C-terminal 

α-solenoid (Alber et al., 2007a). 
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In addition to the Gle2, Sec13 and Seh1 orthologs, T. brucei has at least 

two additional β-propeller Nups.  This set is more akin to the vertebrates (which 

have 6 β-propeller) than to yeast (3 β-propeller).  The secondary structure 

prediction of these putative TbNups show similar patterns of β-sheets to the 

yeast and vertebrate homologs.  To map and visualize the similarities between 

the β-propeller-containing Nups, we generated an alignment matrix (Figure 15).  

All β-propellers from S. cerevisiae, H. sapiens, A. thaliana, and T. brucei were 

pair-wise aligned with every other Nup using the FASTA algorithm.  The Smith-

Waterman scores, a measure of similarity between two aligned sequences, were 

then normalized to the best score that resulted from a non-paralogous pair-wise 

alignment.  The normalized scores are visualized with a grayscale gradient, with 

the best score shown in black.  Paralogous pairs have a normalized score 

greater than 1 and are also shown in black.  Such a matrix is useful to identify 

homologs. 
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Figure 15:  Pair-wise alignment matrix of the β-propeller Nups.  The 

Nups are aligned using the pair-wise FASTA alignment algorithm 

with default settings.  Bold names indicate those Nups which 

localize to the NE.  The Smith-Waterman score, a measure of the 

similarity between two aligned sequences, is recorded at the 

intersection of each pair of Nups.  The scores are normalized to the 

highest score between two homologous (but not paralogous) Nups.  

The normalized score is then visualized with a grayscale gradient, 

which is indicated below the matrix.  Paralogous pairs are indicated 

in black but have a normalized score greater than 1.  Sc, S. 

cerevisiae; Hs, H. sapiens; At, A. thaliana; Tb, T. brucei. 
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The alignment matrix confirms the highly conserved nature of Sec13, 

Gle2/Rae1, and, to a lesser extent, Seh1 throughout all four species.  Seh1 is 

very similar to Sec13, but contains a characteristic extended N-terminal 

sequence.  Interestingly, while T.brucei Sec13 and Gle2 are highly homologous 

to the yeast, vertebrate and plant orthologs, the other 3 (TbSeh1, TbNup43, and 

TbNup48) share little homology to plants, yeast and humans.  However, the 

sequences contain a predicted WD-repeat sequence and secondary structure 

prediction indicates a high probability that those proteins would fold into a β-

propeller domain.  One such protein, TbNup48, which shares a very weak 

similarity to HsALADIN, localizes to the nuclear periphery in vivo (Chapter 4).   

Sec13 plays a dual role within the cell (at the NPC and also as a vesicle 

coat component), so it is not unexpected that its primary structure has remained 

highly conserved throughout Eukaryota (Siniossoglou et al., 1996).  Gle2/Rae1, 

an essential trafficker of mature mRNA, is also highly conserved.  Using multiple 

sequence alignments, we found that all residues within Gle2 shown to be 

essential for proper function are conserved in trypanosomes (Moy and Silver, 

2002; Murphy et al., 1996; Yoon et al., 1997).  We plan to localize the remaining 

putative β-propeller Nup, Tb Nup43, in the future. 
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α-Solenoids 

The second family of structural scaffold Nups contain an α-solenoid 

domain.  α-solenoids are characterized by their stacked, anti-parallel, α-helices 

(Andrade et al., 2001a; Andrade et al., 2001b).  The yeast and vertebrate 

members are ScNup84/HsNup107, ScNup85/HsNup75, ScNIC96/HsNup93, 

ScNup145c/HsNup96, ScNup192/HsNup205, and Nup188 (Fontoura et al., 1999; 

Siniossoglou et al., 1996).  We identified six putative α-solenoids from within the 

TbNEP dataset.  Figure 16 shows the alignment matrix for the α-solenoids.   

The six T. brucei α-solenoids are predicted to be Nups based on the their 

similarity, both in length and domain architecture, to yeast and vertebrates.  The 

primary structures of the trypanosome α-solenoids have diverged significantly 

from their vertebrate and yeast counterparts.  This is especially pronounced 

when compared to the more conserved β-propellers.  The nucleoporin interacting 

component, or NIC domain found in TbNIC96, is the only conserved Pfam 

domain found within the α-solenoids.  The NIC domain shares modest homology 

to the bikonts.  The Pfam expect values for the alignment between the NIC 

domain and the trypanosome and plant orthologs is 10-5 and 10-10, respectively 

(compare to humans [10-177], yeast [10-166]).  The full length alignment of 

ScNIC96/HsNup93 to TbNup96 is thus far less significant than the alignments 

between yeast, vertebrates, and plants (Figure 16).  Apparently, what little 

homology is shared between the α-solenoids of the vertebrates, yeast and plants 

becomes irresolvable with the distant excavates.   
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Figure 16:  Pair-wise alignment matrix of the α-solenoid Nups.  See 

Figure 15 for the description. 
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N-terminal β-Propeller Domain Connected to a α-Solenoid 

The third and final structural scaffold family consists of an N-terminal β-

propeller domain connected to an α-solenoid domain (β-α domain).  Nups in this 

family include ScNup120/HsNup160, Nup133, and 

ScNup157/ScNup170/HsNup155.  The pair-wise alignment matrix is shown in 

Figure 17.  Interestingly, save for HsNup155 orthologs, these Nups share little to 

no homology between yeast and vertebrates and plants.  However, vertebrates 

and plants share significant homology between orthologous pairs.  We 

determined that T. brucei has three Nups of this family, which were determined 

primarily through their predicted secondary structure, except for TbNup144 which 

shares moderate but significant sequence similarity to HsNup155. 

The high sequence similarity and secondary structure similarity of the 

Nup155 orthologs extends across the four species.  While 

ScNup157/ScNup170/HsNup155 are homologous along their entire sequence, 

multiple alignments to Nup155 show high similarity primarily in the WD repeat 

region of the β-propeller and sporadic islands of single residue conservation 

within the α-solenoid interface.  Also, from multiple alignments, we found that the 

Gle1 (mRNA export factor) binding site, proximal to the C-terminus of HsNup155, 

appears to be an opisthokont innovation (Rayala et al., 2004).  We predicted, 

based on their length and domain structure, that two other members of the 

TbNEP dataset (TbNup132 and TbNup109) are β-α Nups.  Indeed, we show that 
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TbNup144, TbNup132, and TbNup109 all localize to the nuclear periphery in vivo 

(Chapter 4). 
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Figure 17:  Pair-wise alignment matrix of the β-α Nups.  See Figure 

15 for the description. 
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THE NUCLEAR BASKET: MLPS/TPR 

Large coiled coil proteins likely form the nuclear basket of the NPC and 

also interact with the NE and, in yeast, with the spindle pole body (Niepel et al., 

2005; Strambio-de-Castillia et al., 1999).  ScMlp1/2 and HsTpr are well-

conserved (Figure 18).  In trypanosomes, the coiled coil protein TbNUP-1 has 

been shown to interact with the NE and exhibit some lamin-like properties, 

despite the lack of lamin associated Pfam domains (Ogbadoyi et al., 2000; Rout 

and Field, 2001).  We found by sequence similarity two putative paralogs of 

TbNUP-1, although whether they localize to the NE is unknown at this point.   

We predicted that two proteins within the TbNEP are putative Mlp/Tpr 

orthologs, based on their size and coiled coil nature.  Our subsequent localization 

supports this (Chapter 4).  They exhibit very little sequence similarity to Mlp/Tpr 

and do not contain a Mlp/Tpr Pfam domain.  This is interesting considering the 

high similarity of Mlp to Tpr, and that they are coiled coils, which typically offer 

very strong alignments (albeit, falsely). 
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Figure 18:  Pair-wise alignment matrix of coiled coil NE and NPC 

associated proteins.  See Figure 15 for the description.  TbNUP-1 is 

Tb927.2.4230. 
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THE FG-NUPS 

We identified ten TbNups which contain FG-repeat domains, four of which 

we localized to the NE (Chapter 4).  Due to the repetitive primary structure and 

the natively disordered secondary structure, the FG-Nups have evolved faster 

than the other groups of Nups (Denning and Rexach, 2007).  The rapid evolution 

impedes any attempt to resolve homologous relationships through primary 

structure alone.  Given that the structure of the Kaps have remained relatively 

unchanged throughout evolution, and that the transport mechanism is also 

probably conserved, there must to be a unifying theme of FG-Nups across 

Eukaryota (Feldherr et al., 2002; Stewart, 2007a).   

There is evidence that not all FG-Nup domains are equally essential to 

nucleocytoplasmic transport.  For example, asymmetric FG-Nups are 

dispensable, while only specific combinations of symmetric Nups are essential 

for nucleocytoplasmic transport (Strawn et al., 2004).  To date, which karyopherin 

specifically binds to which Nup has not been experimentally decoded.  However, 

it is probable that this code may be quite complex.  For example, Kap95 (nuclear 

protein import) and Mex67 (mRNA export) each specifically bind to two different 

and discreet sub-regions within the FG-repeat domain of ScNup116 (Strawn et 

al., 2001).  Interestingly, the only feature that distinguishes between these two 

chemically similar sub-domains of ScNup116 is spacer length.  
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Since pair-wise alignments of the FG-Nups reveal little, we compared the 

FG-repeat motifs of T. brucei to those in yeast and vertebrates.  Table 1 lists FG-

Nups from S. cerevisiae, H. sapiens, and T. brucei and their respective FG-

repeat motifs.  Assuming a similar molecular architecture, T. brucei NPCs contain 

more FG-dipeptide repeats and repetitive sequences than either yeast or 

humans, although the average spacing of the FG-repeats is smaller in 

trypanosomes.  Both yeast and human FG-Nups have three main FG-repeat 

motifs, two of which they share (i.e. FXFG and GLFG).  By contrast, T. brucei 

contains eight main motifs, only two of which are found in yeast and humans 

(FXFG and GFG) (Table 1). 

Since the mechanism of nucleocytoplasmic transport is conserved, but the 

primary structure of the FG-motifs and FG-repeat domains are not, we analyzed 

the chemical nature of the spacer regions between the FG-dipeptides.  To that 

end, we calculated the amino acid composition of each FG-repeat domain, where 

we define the FG-repeat domain as the region from the first Phe to the last Phe 

in the domain, excluding those regions with a low density of FG-dipeptides.  The 

vertebrate, fungi and trypanosome FG-repeat domains generally have the same 

percentage composition of Phe residues, which is 2-3X higher than the average 

occurrence in proteins.  In addition, the domains are generally depleted of Arg, 

Asp, Cys, Glu, His, Ile, Leu, Lys, Met, Trp, Tyr, and Val, and they are enriched in 

Ala, Asn, Gly, Pro, Ser, and Thr. 
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Nucleoporin # of 
FGs

Plurality 
motif

# of 
motifs Rep seq

ScNsp1 33 FXFG 19 *
ScNup1 17 FXFG 13
ScNup2 12 FXFG 11

ScNup42 29 - -
ScNup49 18 GLFG 8
ScNup53 4 - -
ScNup57 16 GLFG 9
ScNup59 6 - -
ScNup60 - FxF 4

ScNup100 45 GLFG 11
ScNup116 47 GLFG 20
ScNup145 15 GLFG 7
ScNup159 28 - - *

Totals 270 102 2

HsNup50 5 - -
HsNup54 9 GFG 5
HsNup58 14 - -
HsNup62 6 FXFG 5

HsNup98-96 40 GLFG 9
HsNup153 29 FXFG 15
HsNup214 44 FXFG 7
HsNup358 22 FXFG 13
HsNLP1 12 - -

HsPom121 24 - -
Totals 205 54 0

TbNup53a 13 GFG 9
TbNup53b 11 GFG 8
TbNup59 10 FGFG 4
TbNup62 30 GGFGA 25 *
TbNup64 13 [S/T]FG 7
TbNup75 10 FSFG 3
TbNup98 21 FSFG 19 *

TbNup140 101 [A/V]FGQ 97 *
TbNup149 18 VFGT 18 *
TbNup158 59 GGFGQ 37 *

Totals 286 227 5

Table 1:  Comparing to the FG-dipeptide motifs from S. cerevisiae, 

H. sapiens, and T. brucei.  The motif that is present in the highest 

number in any given FG-Nup is defined as the plurality motif, the 

number of which is indicated to the right.  An asterisk in the “Rep 

Seq” column indicates near-perfect sequence repeats in the FG-

Repeat domain.  
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The one amino acid whose abundance varies considerably (from 36.5% to 

3.5%) between FG-repeat domains is glycine.  We thus sorted the domains into 

descending order based on glycine content.  The abundance of most other 

residues varies in an apparently random fashion.  However, one group of 

depleted amino acids, the acidic and basic residues, Asp, Glu, Arg, and Lys 

(DERK), generally increases in abundance as the Gly abundance decreases.  In 

other words, glycine enriched domains are DERK depleted and, conversely, 

DERK enriched domains are glycine depleted (below the average occurrence of 

glycine in proteins).  This anti-correlation is visualized in Figure 19. 

This trend correlates with the localization of the FG-Nups within the yeast 

and vertebrate NPC.  In general, an FG-repeat domain that is glycine enriched 

and DERK deficient will be symmetrically distributed about the core of the NPC 

(Figure 19).  Conversely, a glycine deficient and DERK enriched FG-repeat 

domain is more likely to be asymmetrically distributed on either the 

nucleoplasmic or cytoplasmic peripheral face of the NPC.  Interestingly, FG-Nups 

that localize to the nuclear face of the NPC tend to have a higher composition of 

DERK, compared to cytoplasmically localized FG-Nups.  FG-Nups that are 

distributed about the NPC in a biased fashion (localized to the core, but not 

symmetrically) tend to have an intermediate amount of glycine with a low DERK 

composition.  While the motifs and primary structure are not well-conserved 

through evolution, this compositional anti-correlation is well-conserved, and may 

be a key to the specificity that some FG-Nups have for specific sub-sets of Kaps.   
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Figure 19:  (Following page) The anti-correlation between glycine 

and the charged residues (Asp, Glu, Arg, and Lys, DERK).  The 

percent composition of the glycine and the charged residues are 

plotted on the x and y axis, respectively.  Each data point 

represents and FG-Nup from either S. cerevisiae (blue), H. sapiens 

(red), or T. brucei (green).  The area of each data points is directly 

proportional to the phenylalanine concentration within the 

respective FG-Nup.  The FG-Nups tend to cluster into two groups:  

the core FG-Nups that are symmetrically distributed within the 

NPC; and the peripheral FG-Nups, which are asymmetrically 

distributed.  The average natural occurrence (in vertebrates) for 

Phe is ~4%, for Gly is ~7% and the sum natural occurrence for the 

charged residues is ~23%. 
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All of the asymmetric FG-Nups, with low glycine content, are dispensable 

in yeast (Strawn et al., 2004).  However, while not essential, a stretch of charged 

residues within an asymmetric FG-repeat may increase the strength and/or on–

rate of the transient interaction between the FG-repeat region and the Kap.  For 

example, a Kap-Cargo complex that is destined for the nucleus would transit 

through the NPC in a Brownian fashion (Rout et al., 2000).  A vectorial cue, such 

as highly charged asymmetrical FG-Nups, would impart directionality to increase 

the efficiency of nucleocytoplasmic transport by guiding Kap-cargo complexes to 

the exit or by keeping them at the exit until dissociation occurs via ancillary 

factors.  This correlation also provides an additional prediction for the possible 

distribution of FG-Nups within the TbNPC, which can be tested by immunogold 

EM. 

In a further attempt to resolve homology relationships between FG-Nups, 

we compared the non-FG-repeat domains of FG-Nups by pair-wise alignments 

(Figure 20).  However, there is little significant similarity between these domains, 

which is not surprising given that the anchoring domain of the FG-Nups are 

generally coiled coils (Melcak et al., 2007).  The most similar alignments result 

from the zinc finger domains of HsNup358 and HsNup153. 
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ScNSP1 0.10877193 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ScNup2 0.163157895 0.170175439 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ScNup42 0.075438596 0.09122807 0.052631579 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ScNup49 0.114035088 0.145614035 0.071929825 0.059649123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ScNup57 0.096491228 0.115789474 0.129824561 0.08245614 0.154385965 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ScNup159 0.221052632 0.149122807 0.168421053 0.073684211 0.098245614 0.129824561 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ScNup60 0.203508772 0.096491228 0.126315789 0.066666667 0.084210526 0.092982456 0.147368421 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HsNup153 0.210526316 0.080701754 0.143859649 0.063157895 0.080701754 0.096491228 0.156140351 0.214035088 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HsNup62 0.198245614 0.603508772 0.156140351 0.077192982 0.135087719 0.129824561 0.122807018 0.136842105 0.180701754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HsNup50 0.09122807 0.070175439 0.263157895 0.063157895 0.087719298 0.105263158 0.126315789 0.152631579 0.092982456 0.094736842 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HsNLP1 0.143859649 0.119298246 0.107017544 0.142105263 0.107017544 0.10877193 0.101754386 0.11754386 0.133333333 0.09122807 0.089473684 0 0 0 0 0 0 0 0 0 0 0 0 0

HsNup58 0.157894737 0.115789474 0.105263158 0.064912281 0.2 0.112280702 0.140350877 0.112280702 0.149122807 0.364912281 0.085964912 0.09122807 0 0 0 0 0 0 0 0 0 0 0 0

HsNup54 0.115789474 0.147368421 0.105263158 0.063157895 0.18245614 0.314035088 0.152631579 0.094736842 0.103508772 0.121052632 0.09122807 0.1 0.147368421 0 0 0 0 0 0 0 0 0 0 0

HsNup214 0.329824561 0.131578947 0.236842105 0.077192982 0.121052632 0.166666667 0.357894737 0.229824561 0.414035088 0.359649123 0.121052632 0.133333333 0.224561404 0.129824561 0 0 0 0 0 0 0 0 0 0

HsNup358 0.214035088 0.126315789 0.470175439 0.078947368 0.094736842 0.135087719 0.20877193 0.164912281 1 0.185964912 0.271929825 0.128070175 0.142105263 0.124561404 0.364912281 0 0 0 0 0 0 0 0 0

Tb11.01.2880 0.110526316 0.078947368 0.203508772 0.059649123 0.08245614 0.077192982 0.166666667 0.135087719 0.196491228 0.166666667 0.121052632 0.112280702 0.131578947 0.078947368 0.245614035 0.29122807 0 0 0 0 0 0 0 0

Tb11.01.2885 0.08245614 0.070175439 0.087719298 0.061403509 0.077192982 0.080701754 0.092982456 0.107017544 0.08245614 0.085964912 0.084210526 0.070175439 0.092982456 0.071929825 0.110526316 0.084210526 0.103508772 0 0 0 0 0 0 0

Tb11.01.7200 0.138596491 0.203508772 0.1 0.056140351 0.087719298 0.092982456 0.11754386 0.092982456 0.124561404 0.375438596 0.075438596 0.1 0.247368421 0.11754386 0.159649123 0.10877193 0.138596491 0.10877193 0 0 0 0 0 0

Tb11.02.0270 0.129824561 0.115789474 0.119298246 0.078947368 0.08245614 0.119298246 0.107017544 0.121052632 0.105263158 0.101754386 0.070175439 0.10877193 0.10877193 0.098245614 0.11754386 0.119298246 0.105263158 0.1 0.08245614 0 0 0 0 0

Tb927.3.3180 0.126315789 0.073684211 0.107017544 0.054385965 0.080701754 0.064912281 0.092982456 0.147368421 0.110526316 0.133333333 0.105263158 0.136842105 0.110526316 0.085964912 0.187719298 0.168421053 0.107017544 0.080701754 0.121052632 0.078947368 0 0 0 0

Tb927.3.3540 0.154385965 0.110526316 0.114035088 0.092982456 0.078947368 0.087719298 0.087719298 0.103508772 0.119298246 0.145614035 0.087719298 0.092982456 0.159649123 0.092982456 0.175438596 0.11754386 0.143859649 0.08245614 0.145614035 0.087719298 0.122807018 0 0 0

Tb927.4.4310 0.136842105 0.110526316 0.105263158 0.063157895 0.085964912 0.078947368 0.11754386 0.098245614 0.135087719 0.171929825 0.078947368 0.163157895 0.129824561 0.101754386 0.154385965 0.105263158 0.121052632 0.070175439 0.128070175 0.10877193 0.101754386 0.156140351 0 0

Tb927.4.5200 0.09122807 0.114035088 0.084210526 0.057894737 0.1 0.347368421 0.101754386 0.08245614 0.128070175 0.129824561 0.077192982 0.073684211 0.129824561 0.236842105 0.092982456 0.098245614 0.11754386 0.068421053 0.096491228 0.085964912 0.101754386 0.103508772 0.09122807 0

Tb927.8.8050 0.08245614 0.085964912 0.092982456 0.089473684 0.084210526 0.105263158 0.107017544 0.114035088 0.122807018 0.107017544 0.084210526 0.08245614 0.107017544 0.115789474 0.159649123 0.154385965 0.080701754 0.078947368 0.115789474 0.075438596 0.09122807 0.09122807 1.664912281 0.157894737

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 20:  Pair-wise alignment matrix of the non-FG-Repeat 

domains from the FG-Nups.  See Figure 15 for the description. 
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THE KARYOPHERINS 

Kaps comprise the soluble part to the nucleocytoplasmic transport system.  

With a few exceptions, they are well-conserved across the opisthokonts and 

excavates (Figure 21).  The least conserved transport factor is NTF2, which is 

responsible for Ran recycling across the NPC.  The structures of several Kaps, 

as well as interactions with stretches of FG-repeat domains and substrates, have 

been solved (Bayliss et al., 2002; Bayliss et al., 2000b; Bullock et al., 1996; Grant 

et al., 2002; Grant et al., 2003; Latzer et al., 2007; Lee et al., 2005; Liu and 

Stewart, 2005; Matsuura et al., 2003; Matsuura and Stewart, 2004a; Matsuura 

and Stewart, 2004b; Matsuura and Stewart, 2005; Morrison et al., 2003; Saric et 

al., 2007).   

We identified 8 Kaps or transport factors in the TbNEP dataset, including 

Ran, the energy carrier for nucleocytoplasmic transport.  Generally, the 

trypanosome transport factors are more conserved than the rest of the NPC 

components.  This is most likely due to the large number of substrates with which 

these molecules must interact and the conservation of the mechanism of 

nucleocytoplasmic transport.  
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ScGSP1 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ScGSP2 0.02 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ScMex67 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ScKap60 0.03 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ScKap95 0.03 0.03 0.03 0.04 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ScKap104 0.03 0.03 0.03 0.04 0.06 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ScKap123 0.03 0.03 0.03 0.04 0.07 0.16 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HsNTF2 0.08 0.02 0.02 0.04 0.04 0.03 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HsRAN 0.02 0.72 0.72 0.04 0.02 0.02 0.03 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HsNXF2 0.04 0.04 0.04 0.15 0.04 0.05 0.06 0.04 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HsKapA 0.02 0.03 0.03 0.05 0.87 0.07 0.06 0.08 0.02 0.03 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HsKapB 0.03 0.03 0.03 0.04 0.08 1.00 0.12 0.15 0.02 0.03 0.03 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HsTransportin1 0.03 0.03 0.03 0.05 0.08 0.16 0.98 0.13 0.03 0.03 0.04 0.08 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HsTransportin2 0.03 0.03 0.03 0.03 0.07 0.17 0.93 0.12 0.03 0.03 0.04 0.08 0.28 3.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HsImportin 4 0.02 0.03 0.03 0.04 0.05 0.14 0.10 0.57 0.03 0.03 0.03 0.06 0.12 0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tb927.7.5760 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.09 0.02 0.04 0.02 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00

Tb927.3.1120 0.02 0.62 0.61 0.03 0.03 0.03 0.03 0.03 0.03 0.61 0.03 0.04 0.03 0.03 0.03 0.04 0.02 0.00 0.00 0.00 0.00 0.00

Tb11.22.0004   0.02 0.03 0.03 0.07 0.03 0.03 0.03 0.04 0.03 0.03 0.10 0.03 0.03 0.03 0.03 0.04 0.04 0.03 0.00 0.00 0.00 0.00

Tb927.6.2640 0.03 0.03 0.03 0.03 0.73 0.09 0.07 0.05 0.03 0.03 0.03 0.70 0.09 0.07 0.07 0.07 0.03 0.03 0.04 0.00 0.00 0.00

Tb10.70.4720 0.03 0.03 0.03 0.03 0.07 0.58 0.10 0.15 0.03 0.03 0.03 0.07 0.64 0.20 0.19 0.13 0.03 0.03 0.04 0.05 0.00 0.00

Tb10.6k15.3020 0.03 0.03 0.03 0.03 0.04 0.10 0.13 0.06 0.03 0.03 0.03 0.04 0.08 0.17 0.18 0.06 0.03 0.04 0.03 0.05 0.06 0.00

Tb11.01.7010 0.03 0.03 0.03 0.03 0.06 0.18 0.09 0.24 0.03 0.03 0.04 0.07 0.14 0.11 0.10 0.26 0.03 0.03 0.03 0.05 0.09 0.07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 21:  Pair-wise alignment matrix of the karyopherins.  See 

Figure 15 for the description. 
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THE AUTOPROTEOLYTIC DOMAIN 

One of the more peculiar Nups is the autoproteolytic ScNup145, and its 

ortholog HsNup98-96.  Immediately after translation, the β-sandwich auto 

proteolytic domain folds and initiates cleavage at a conserved H[F/Y][S/T} 

tripeptide (Fontoura et al., 1999; Rosenblum and Blobel, 1999).  The N-terminal 

protein contains an FG-repeat domain while the C-terminal molecule contains a 

α-solenoid structural fold and resides with the scaffold of the NPC.  Using both 

mass spectrometry and western blotting, we find that TbNup158 does not cleave 

and instead functions as the full length protein.  To investigate the conservation 

of the autoproteolytic domain, we performed a multiple alignment between 11 

species (Figures 22 and 23).  While the β-sandwich domain is highly conserved 

in T. brucei, as well as G. lamblia, both sequences lack the tripeptide catalytic 

site requisite to initiate cleavage.  We further investigated this TbNup using 

fluorescent localization (Chapter 4) and RNAi (Chapter 5).   
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Figure 23:  Pair-wise alignment matrix of the β-sandwich domain.  

See Figure 15 for the description. 
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C.elegans 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ScNup100 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ScNup116 0.5 0.4 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ScNup145 0.7 0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A.nidulans 0.7 0.6 0.6 0.6 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A. thaliana 0.8 0.6 0.4 0.4 0.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0

C. reinhardtii 0.8 0.7 0.4 0.5 0.7 0.5 0.7 0.0 0.0 0.0 0.0 0.0

D. discoideum 0.9 0.6 0.4 0.4 0.7 0.7 0.6 0.7 0.0 0.0 0.0 0.0

E. histolytica 0.5 0.4 0.3 0.3 0.5 0.4 0.4 0.5 0.5 0.0 0.0 0.0

G. lamblia 0.5 0.5 0.3 0.4 0.4 0.4 0.4 0.4 0.6 0.4 0.0 0.0

T. thermophila 0.4 0.3 0.4 0.5 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.0

T. brucei 0.4 0.2 0.3 0.4 0.3 0.4 0.2 0.3 0.4 0.3 0.2 0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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THE NPCS OF NEIGHBORING SPECIES 

The TbNPC could not have been characterized by bioinformatics alone 

(Bapteste et al., 2005; Mans et al., 2004).  The primary structure of many of the 

Nups has drifted too far to retain any detectable similarity.  One goal of this 

project was to use the excavate NPC inventory to resolve the NPCs of 

neighboring bikonts.  However, even once the full set of TbNups was cataloged, 

we could not effectively characterize the entire structural scaffold of the NPC of 

other neighboring Eukaryotes, such a T. gondii and N. gruberi (Table 2).  It is not 

surprising that the β-propellers are the easiest to identify by pair-wise alignment 

given their conservation throughout the eukaryotic tree of life. 

We have identified and characterized 24 putative members of TbNPC 

through biochemistry, mass spectrometry and bioinformatics.  We now present 

our continued characterization of the TbNPC and its constituent members by 

fluorescence localization and RNAi functional studies. 
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Domains T. brucei E. histolytica N. gruberi D. discoideum A. thaliana C. reinhardtii T. gondii

β Propeller, α Solenoid TbNup109 nf nf nf nf nf nf
β Propeller, α Solenoid TbNup132 nf nf nf nf nf nf
β Propeller, α Solenoid TbNup144 nf 61200 DDB0235243 AT1G14850 191024 nf

β Propeller TbSec13 264.m00090 35757 DDB0235182 AT2G30050 139713 20.m03668
β Propeller TbNup43 nf 60369 DDB0184087 nf 191514 52.m01597
β Propeller TbNup48 nf 61882 DDB0233287 AT3G56900 nf nf
β Propeller TbSeh1/Sec13 18.m00329 81581 DDB0233985 AT5G15550 128420 nf

α Solenoid TbNup82 nf nf nf nf nf nf
α Solenoid TbNup89 nf nf nf nf nf nf
α Solenoid TbNup96 nf nf nf nf nf nf
α Solenoid TbNup181 nf nf nf nf nf nf
α Solenoid TbNup225 nf nf nf nf nf nf

FG Repeat, Nup98, α Solenoid TbNup158 nf nf DDB0235244 AT1G59660 164461 55.m04836

Table 2:  Using the TbNPC inventory as the query sequence, the 

genomes of six diverse unikonts/bikonts were searched for 

homologous sequences.  An identification is confirmed when the 

top pair-wise aligned sequence is properly aligned, in a reciprocal 

fashion, back to the T. brucei genome.  Nf, not found.  Note, a 

result of “not found” does not imply that that Nup does not exist in 

the subject species.   
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CHAPTER 4 — GFP LOCALIZATION OF PUTATIVE NUCLEOPORINS 

Using several biochemical and mass spectrometric strategies, we 

identified nearly 860 proteins that associate with the T. brucei nuclear envelope 

preparation (Chapter 2).  Employing a rigorous bioinformatic strategy, we then 

identified and begun to characterize 24 putative TbNups, as well as 8 Kaps 

(Chapter 3, Figure 13, and Table 5).  To further test our functional predictions, we 

tagged fully half of the putative TbNups with a fluorescent label.  We also tagged 

8 unannotated proteins because they contained secondary structure fold patterns 

(e.g. β-propeller, α-solenoid, transmembrane helices, Zinc-finger, and cadherin 

folds) that are consistent with those contained in Nups.  We then observed the 

localization of these target proteins by fluorescent microscopy, expecting bona 

fide TbNups to form a punctuate pattern at the nuclear periphery.   

Green fluorescent protein (GFP) is widely recognized for its use as a 

protein epitope tag (Chalfie et al., 1994).  In recent years, GFP has been used as 

a tag to probe protein localizations and interactions in trypanosomes (He et al., 

2004).  In this work, we use a polymerase chain reaction (PCR) based approach 

(Shen et al., 2001) to epitope tag genes of interest (GOI) endogenously.  The 

strategy utilizes the PCR amplification of a reporter cassette using two opposing 

primers which contain flanking sequences specific to 3’ end of the GOI.  

Following transfection, the PCR product is integrated into the GOI by 

homologous recombination.  This technique is advantageous in that it avoids the 

need to clone lengthy genes into exogenous expression vectors and the inherent 

possibility of mislocalization due to overexpression. 
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METHODS 

It has been demonstrated that Nups are generally more tolerant of a 

COOH-terminal tag (Cronshaw et al., 2002; Rout et al., 2000), and so we 

targeted the 3’ end of putative TbNups.  The pMOTag series of plasmids are 

designed for 3’ tagging (Oberholzer et al., 2006).  The general scheme of these 

vectors is shown in Figure 24.  The full reporter cassette contains the GFP tag, a 

splice signaling region (the intergenic region of α and β tubulin), and the antibiotic 

marker cassette.  The forward and reverse PCR primers are designed with 

approximately 80 nucleotides, which are homologous to the sequences which 

flank the 3’ end of the GOI (without the stop codon).  This target specific region is 

followed by 20 nucleotides specific to the pMOTag vector.  See Figure 24.   
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GFP IGR a-ß Marker

Stop
Codon

ORF UTR
5’ 3’

5’3’

Figure 24:  Schema for the pMOTag series of GFP tagging vectors.  

Upper panel shows the ORF plus additional downstream 

nucleotides (nt) which comprise the 3’ untranslated region (UTR).  

Blue and yellow lines indicate the location and sequence of the 

forward and reverse primers, respectively.  These primers are 

approximately 80 nts in length and an additional 20 nts is added 

onto the primers to complement the plasmid (Bottom, dashed 

lines).  The bottom panel shows the reporter cassette, which is 

comprised of the GFP epitope tag (green), the splice signaling 

region (blue) and the antibiotic resistance marker (red). 
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The product is amplified using PCR with the following program:  4 min at 

94°C, followed by 30 cycles of 1 min at 94°C, 1 min at 63°C, and 2 min at 72°C.  

The PCR product is purified by standard ethanol precipitation.  10 µg of DNA is 

transfected into procyclic cells.  Positive colonies are selected with hygromycin 

(25 µg/ml) and are assayed for proper insertion and expression using PCR 

and/or western blotting.  

Following transfection, the stop codon of one allele has been replaced by 

the reporter cassette with the GFP moiety in frame with the GOI.  Following 

translation the GFP is linked to the target protein by a short peptide linker (the 

linker sequence is GTGPPLE).  A list of primers used in this study is included as 

Appendix E. 

To image the GFP localization of the target protein, 107 cells in 1 ml are 

fixed with formaldehyde (2% final concentration).  After five minutes, the cells are 

spun (3k for 3 min) and washed twice with PBS.  The cells are then allowed to 

settle onto a silanized coverslip.  After any nonattached cells are washed away, 

the coverslip is then mounted in 50% glycerol, 0.4 µg/ml DAPI (4’,6-Diamino-2-

phenylindole dihydrochloride) in PBS.  Fluorescence images were acquired with 

the DeltaVision Image Restoration microscope (Applied Precision/Olympus). 
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RESULTS AND DISCUSSION 

TBNUP LOCALIZATION 

A summary of the results is shown in Table 3.  Of the 23 targets analyzed, 

12 proteins properly localized to the NE, as well as the previously described 

TbNUP-1 (Figure 25).  The T.brucei nuclei are ellipsoid in shape and are about 

2.5 µm in diameter along the principle axis.  The fluorescence pattern of the 

labeled Nup is unusually punctate, compared to yeast and vertebrates.  One 

putative Nup and two putative lamins (Tb927.4.2070, Tb10.61.0160, and 

Tb927.7.3330) were unsuccessfully labeled with GFP, as determined by Western 

blot.  Proteins that do not localize to the NPC are characterized by cytoplasmic 

and/or nuclear staining with no punctate nuclear rim staining.  However, it must 

be noted that lack of nuclear rim staining is inconclusive at best, and does not 

necessarily eliminate a candidate from consideration as a TbNup. 
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Table 3:  Summary table of results.  ND, not determined due to 

improper GFP insertion or expression. 

GeneDB Accession Mass (kDa) Annotation NE localization?

Tb11.03.0810 109.7 TbMlp1 Yes

Tb09.160.0340 92.3 TbMlp2 Yes

Tb927.2.4230 406.8 TbNUP-1 Yes

Tb11.02.2120 48.4 TbNup48 Yes

Tb11.02.0460 89.1 TbNup89 Yes

Tb10.6k15.3670 96.5 TbNup96 Yes

Tb11.01.7630 108.7 TbNup109 Yes

Tb927.7.2300 132.3 TbNup132 Yes

Tb10.6k15.2350 144.3 TbNup144 Yes

Tb927.8.8050 74.8 TbNup75-FG Yes

Tb11.01.2885 140.3 TbNup140-FG Yes

Tb11.01.2880 149.2 TbNup149-FG Yes

Tb11.03.0140 158.3 TbNup158-FG Yes

Tb11.03.0140N 158.3 TbNup158-FG 
N837-GFP Foci at the NE

Tb927.4.1310 47.4 Unannotated Inconclusive

Tb927.4.590 88.0 Unannotated Inconclusive

Tb10.70.1120 109.2 Unannotated Inconclusive

Tb927.6.1830 49.9 Unannotated Inconclusive

Tb10.70.1110 59.9 Unannotated Inconclusive

Tb10.70.1130 48.2 Unannotated Inconclusive

Tb927.4.2070 511.3 Unannotated Not Determined

Tb10.61.0160 42.9 TbNup43 Not Determined

Tb927.7.3330 502.6 Unannotated Not Determined
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Figure 25 (following page):  Fluorescent microscopy images of 

COOH-terminal GFP labeled TbNups and corresponding DAPI 

fluorescence marker.  Two coiled coil TbNups, TbMlp1 and TbMlp2, 

are visualized in under non-mitotic (panels A and C) and mitotic 

(panels B and D) conditions to show the differential localization of 

TbMlp2.  



 

(A) 

(C) 
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Within the TbNEP, two proteins stood out, by their coiled coil structure, as 

putative Mlp/Tpr proteins.  We labeled these two unannotated proteins with GFP, 

and found that they localize at the nuclear periphery (Figure 25 (A & C)).  

However, during mitosis, only TbMlp2 localizes to an area proximal to the spindle 

pole bodies (Figure 25 (D)).  This is analogous to the likely yeast nuclear basket 

Nups, Mlp1/2, which are paralogous, but perform different functions at the NE.  

This leads us to speculate about the possible roles of the TbMlps at the nuclear 

periphery, such as maintenance of telomere length and telomere localization at 

the NE.  Given the poor homology between the yeast and trypanosome Mlps, it 

would be interesting to identify additional interacting partners.  Further 

colocalization studies with telomere maintenance complexes are planned. 

We also carried out further investigation of TbNup158 — the non-cleaving 

ortholog of the autoproteolytic Nup ScNup145.  In this investigation, we produce 

the truncated protein TbNup158(1-837)-GFP, which contains the N-terminal FG-

repeat domain and the conserved β-sandwich autocatalytic domain with a GFP 

tag at its C-terminus.  This truncated protein does not contain the C-terminal α-

solenoid domain.  TbNup(1-837)-GFP localized to several punctuate foci at the 

NE (Figure 25).  These results are in contrast to that found in vertebrates.  Here, 

a HsNup98-96(F863S/Y866R) mutant, which cannot cleave, mislocalizes to the 

nuclear interior, however the HsNup98(1-863) mutant properly localizes to the 

nuclear periphery (Fontoura et al., 1999).  Evidently, the functional difference 

between TbNup158 and the higher eukaryotes is more complex than simply the 

lack of a cleavage triad.  The full length trypanosome homolog of HsNup98-96, 
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with an identical domain structure, properly functions at the NPC.  However, the 

abolishment of the cleavage site within the HsNup98-96 causes mislocalization 

and loss of function.  Furthermore, the introduction of an artificial cleavage site 

into TbNup158, causes aggregation at distinct foci at the NE.  In contrast, the 

introduction of an additional pool of HsNup98 into HeLa cells does not cause any 

disruption to NE localization (Fontoura et al., 1999).  
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NPC DENSITY DETERMINATION 

S. cerevisiae NPCs are distributed in the NE in a non-uniform, non-

random fashion with an average density of ~12.0 NPCs/µm2 (Winey et al., 1997).  

Depending on the cell cycle stage, HeLa cells have an average NPC density of 

about 5 – 9 NPCs/µm2 (Maeshima et al., 2006).  The distribution of NPCs around 

a vertebrate nucleus is non-uniform, non-random, and directly dependent on the 

INM distribution of Lamin A/C and emerin, the presence of which leads to NPC-

free islands, especially in early cell cycle stages (Maeshima et al., 2006). 

In contrast to the majority of the opisthokonts, the distribution of T. brucei 

appears to be approximately uniform (Figure 26).  Both the approximate uniform 

distribution of NPCs in T. brucei and their lower density, compared with yeast, 

allow us to readily count them using fluorescence microscopy by integrating a 

series of Z-axis focal plane images.  The average density is 5.1 NPCs/µm2 

(N=10, σ=0.8), with an average of 93 NPCs (σ=16) per nucleus.  The low density 

of NPCs around the nucleus explains the resolution of the punctuate pattern.  A 

typical Z-stack of images, showing the resolution of individual NPCs, is shown in 

Figure 26.  In this dividing nucleus, the ~150 NPCs are distributed on average 

~0.5 µm apart from each other. 
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Finally, we screened the TbNEP against a panel of available NPC 

antibodies with an affinity for a specific epitope within the NPC for any cross 

reactivity.  Most of the antibodies that we screened did not cross react with the 

TbNPC components.  However, we found that a polyclonal antibody raised 

against HsNup107 does cross-react with the T. brucei NPC (Glavy et al., 2007).  

Figure 27 shows the localization overlay of αHsNup107 along with both αTbNUP-

1 and TbNup89-GFP (Ogbadoyi et al., 2000).  αHSNup107 appears to localize in 

the regions devoid of αTbNUP-1 signal, which is consistent with their respective 

roles at the NE, since TbNUP-1 is not a nucleoporin.  αHsNup107 does indeed 

colocalize with GFP labeled TbNup89, suggesting the αHsNup107 is cross-

reacting with an epitope within the TbNPC.  Although there are several 

candidates with similar sequences, the trypanosome antigen to HsNup107 is not 

obvious.  αHsNup107 binds to a specific peptide 

(MVTNLDDSNWAAAFSSQRSG), which is not homologous with any known 

sequence within the TbNEP or within the T. brucei genome.  The possibility 

exists that the antibody recognizes another linear epitope or a conformational 

epitope within the antigen. 
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CHAPTER 5 — KNOCKDOWN STUDIES OF PUTATIVE NUCLEOPORINS USING RNA 
INTERFERENCE 

Using several biochemical and mass spectrometric strategies, we 

identified nearly 860 proteins that associate with the T. brucei nuclear envelope 

preparation (Chapter 2).  Employing a rigorous bioinformatic strategy, we then 

identified and begun to characterize 24 putative TbNups, as well as 8 Kaps 

(Chapter 3, Figure 13, and Table 5).  We then localized 12 TbNups to the nuclear 

envelope using GFP fluorescence localization.  To further characterize several of 

the putative TbNups as well as possible additional roles of the TbNPC, we turned 

next to RNA interference (RNAi) for functional analysis. 

RNAi employs double stranded RNA (dsRNA) to suppress the expression 

of a particular gene, allowing for functional analysis (Zamore, 2002).  Once within 

the cell, dsRNAs are cleaved by Dicer, an endonuclease, to produce small 

interfering RNAs (siRNAs) about 21-23nt in length.  siRNAs, in concert with the 

multiprotein complex RISC, direct the recognition and subsequent degradation of 

mRNA (Chi et al., 2003; Hannon, 2002; Zamore, 2002).  First described in the 

nematode C. elegans (Fire et al., 1998), RNAi quickly became a powerful tool for 

large scale functional genomics within many organisms, such as D. 

melanogaster and C. elegans (Boutros et al., 2004; Chi et al., 2003; Kamath et 

al., 2003).   

In T. brucei, it also been shown that dsRNA effectively silences gene 

expression by specifically degrading mRNA (Ngo et al., 1998).  Moreover, 

placing RNAi constructs under the control of the TET repressor system allows for 
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a controllable, persistent, and heritable RNAi response (Bastin et al., 2000; 

LaCount et al., 2000; Shi et al., 2000; Subramaniam et al., 2006; Wang et al., 

2000).  RNAi has become a tool of choice over the past 5 years for probing 

trypanosome gene function because of its robustness and efficiency compared to 

traditional gene knockout studies (Beverley, 2003).  Here, we characterized 

several putative TbNups using RNAi to determine to what extent they are 

essential to the viability of the cell.  

METHODS 

To choose appropriate candidates for RNAi studies, we surveyed the 

literature for the phenotypes of Nup deletions in S. cerevisiae (for details, see 

Appendix C).  This survey revealed that less than a third of the Nups are 

essential in yeast.  Based on these results, we targeted, in T. brucei, three well-

conserved orthologs of the essential Nups: ScNup145, ScNup96, and ScSec13.  

Two non-essential yeast Nups that exhibit a clustering phenotype when knocked-

out in yeast were also targeted:  ScGle2, a transiently interacting Nup, and 

ScNup84, both of which are well-conserved in trypanosomes. 

Detailed protocols for our RNAi studies may be found at the TrypanoFAN 

resource webpage (http://trypanofan.path.cam.ac.uk).  The target regions were 

determined using the program RNAit (Redmond et al., 2003).  The program 

optimizes both the target region and primers to eliminate any potential problems 

with amplification and cross reactions. The primers and target region are shown 

in Figure 28.   

  



 

O

T

Open Reading 
Frame

Tb09.160.2360

Tb10.6k15.3670

Tb10.61.2630

Tb11.02.0460

Tb11.03.0140

Tb10.70.0830

Figur

trypa

Clath

p2T7

space

Target

TbGle2 G

TbNic96 T

TbSec13 T

TbNup89 T

TbNup158 A

Clathrin Heavy 
Chain A

re 28:  (Top

nosome p

hrin serves 
TABlue plas

er, rDNA in

 

Forward

GATACTGGGACA

TTCAGAGGATTG

TTGACATTCACC

TCGCATGACTCT

AATGGCAAGTCT

ATGCCTGTATTG

p) The PCR

proteins se

as a posit

mid.  HY

tegration re

103 
 

d Primer

ATGAAGCAGC

GCACACGCTC

CAGGGTAGCG

TTGGCAAGAC

TGAGTCGGAG

GAGGCCAAC

R primers a

elected for

ive control.

G, hygrom

egion; Amp

Revers

GCCCAATCATA

TTGGGAAGCA

TGAGGTGACT

ACCTACACGCA

TCCGCAGTTG

CAGGTTTTGAG

nd targeted

r RNAi kn

.  (Bottom)

mycin selec

p, ampicillin 

se Primer

AGCTACGTGC

ATTCATCCGACG

CCACTGTTTGC

AACAAGGAACG

AGTGAGGTAAC

GGGCACGTAT

d regions of

nockdown 

)  Schemat

ction cass

resistance

Product 
Length

Ta
Re

544 422

511 1314

450 41

460 101

509 304

484 382

f the five 

studies.  

tic of the 

sette; R-

e marker. 

arget 
egion
2-966

4-1824

3-862

5-1474

8-3556

1-4305



104 
 

The target regions were PCR amplified from genomic DNA.  The primers 

and genomic template were mixed with PCR Supermix, (Invitrogen, Carlsbad, 

CA) and, after 5 min denaturing at 95°C, cycled 35 times with the following 

sequence:  30 s at 95°C, 30 s at 65°C, and 85 s at 72°C.  The product was 

purified and inserted into p2T7TABlue (Alibu et al., 2005), which was digested with 

Eam1105I (Fermentas, Hanover, MD) to liberate the LacZ stuffer cassette 

(Figure 28).  The PCR product vector has adenine overhangs, which complement 

the thymine overhangs in the digested vector.  One part digested vector and five 

parts PCR product were mixed and ligated with T4 ligase (Rapid DNA Ligation 

Kit, Roche, Indianapolis, IN).   

After cloning within E. coli, the vector was isolated and purified using 

standard protocols.  Prior to transfection, the plasmid was linearized with NotI 

(Invitrogen, Carlsbad, CA).  Then 10 µg of linearized DNA was tranfected into the 

Single Marker Bloodstream (SMB) bloodstream form T. brucei cell line 

(T7RNAP::TETR::NEO) using standard established protocols.  The SMB cell line 

has a T7 RNA polymerase and a TET repressor, which expresses the target 

cassette in the presence of doxycycline.  Positive colonies were selected with 

hygromycin (2.5 µg/ml).  After selection and cell line maturation, mRNA 

knockdown was induced with the addition of 1 µg/ml doxycycline.  Cells were 

observed and counted at 6 or 12 hour time points the first day and every 24 

hours post-induction.  Samples of each induced cell line were prepared for thin 

section transmission electron microscopy analysis after 24 hours, post-induction 

(FEI Tecnai G2 Spirit BioTwin with Gatan 4K x 4K digital camera). 
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To monitor the efficiency of the RNAi knockdowns, 15 x 106 cells were 

removed at each time point.  RNA was extracted using RNeasy Mini Kit 

(QIAGEN, Valencia, CA) and residual genomic DNA was removed by treatment 

with DNase (QIAGEN).  After quantification, the mRNA was reverse transcribed 

into cDNA using polyT primers and the TaqMan® Reverse Transcription 

Reagents (Applied Biosystems, Foster City, CA).  Quantitative PCR (qPCR) was 

performed with the SYBR green fluorescent marker with primers designed with 

the Primer Express software (Applied Biosystems).  The target mRNA levels 

were reported relative to the endogenous control TbGAPDH (GeneDB accession 

Tb927.6.4300).   

RESULTS AND DISCUSSION 

In total, we targeted five TbNups for RNAi functional analysis: TbSec13, 

TbNup96, TbGle2, TbNup89, TbNup158 (see above).  We monitored the 

efficiency of the induction of dsRNA and subsequent knockdown of the target 

RNA by qPCR.  As shown in Figure 29, 80-90% of the target mRNA has been 

depleted within 24 hours.  The primary assay for the RNAi experiment was cell 

growth.  Thus we counted the cells every 6 or 12 hours for the first day, and 

every 24 hours thereafter, and diluted, if necessary.  For each target gene, three 

independent cell lines were split – one culture was induced and the other was 

uninduced and monitored as a control.  The results are shown in Figures 30 and 

31.   
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Figure 29:  Results from the qPCR monitoring mRNA levels at 

various time points post-induction of RNAi.  Percent mRNA is 

relative to an endogenous control (TbGAPDH) and relative to pre-

induction levels, which is set to 100%.  The standard error of the 

mean was determined from 3 RNA samples from 3 independent 

cell lines for each target. 
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Knockdown of two T. brucei Nups, TbNup96 and TbSec13, caused 

immediate cell division arrest (Figure 30).  After induction of TbSec13 and 

TbNup96 RNAi, most cells were dead by 24 and 48 hours, respectively.  In the 

case of TbNup96, this is suggestive of cell cycle arrest due to the inability to form 

new NPCs during S phase.  Knockdown of TbNup158 induces a growth defect 

for the first 24 hours, after which cell division completely arrests and no further 

culture growth is detected (Figure 31).  Many cells were still viable, but exhibited 

pleiotropic effects (poly-nucleation and cell enlargement).  TbNup89 and TbGle2 

knockdowns induce a moderate and slight growth defect, respectively, until the 

4th day, when pleiotropic effects dominate and cell cycle arrests (Figure 31).   

Cessation of cell growth is not an unexpected phenotype, as several fungi 

and vertebrate Nups have secondary functions as mitotic regulators — for 

example, HsNup153 (Mendjan et al., 2006).  Also, several metazoan Nups, 

including HsNup214, cause cell cycle arrest upon knockdown (Boer et al., 1998).  

Although it is unclear how a knockdown of a specific TbNup will affect the cell 

cycle, perhaps the depletion of NPCs around the nucleus prevents the release of 

a check point.  Since T. brucei undergoes a closed mitosis, the nucleus must 

expand during S-phase to accommodate the replicated genome and prepare for 

nuclear division.  This would also necessitate the de novo formation of additional 

NPCs (D'Angelo et al., 2006).  In this case, if the pool of TbNup96 is depleted, 

then perhaps nascent NPCs cannot assemble, suggesting a key function of 

TbNup96 in the NPC architecture.  The same analysis may apply to TbSec13, 

but, presumably, this protein also functions as a vesicle coat protein in 
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trypanosomes (Siniossoglou et al., 1996).  However, since Sec13 is localized to 

a key architectural complex with the NPC, it is possible that its knockdown 

directly affects NPC formation and cell cycle arrest. 

Evidently, the absence of TbNup158 is tolerated for several divisions.  

One explanation is that the NPCs are able to form without a pool of newly 

synthesized TbNup158 and the cells are able to propagate with only the existing 

pool of TbNup158 bound to NPCs.  If NPCs are formed de novo, as predicted, 

then with each division, a reduced number of NPCs will contain TbNup158.  At 

24 hours, or 3 nuclear divisions, perhaps the number of fully functional NPCs 

drops below a critical threshold and the cell cycle is arrested. 

Interestingly, depletion of TbNup89 does not aggressively trigger any cell 

cycle checkpoints, even though the NPCs are perturbed sufficiently to cause a 

growth defect.  The lack of an obvious phenotype (beyond slow cell growth) upon 

knockdown of TbGle2 may indicate that the mRNA export pathway is sufficiently 

redundant to tolerate the loss of this mRNA export factor.  

To investigate morphological changes within the NE or nucleus, we 

observed the nucleus of each knockdown by transmission electron microscopy 

24 hours post-induction (Figure 32).  Knockdowns of TbGle2 (Figure 32, Panel B) 

and TbNup96 (Figure 32, Panel C) did not significantly alter the morphology of 

the nucleus, although TbNup96-RNAi cells were very likely to be NPC-depleted 

and poly-nucleated.  TbSec13-RNAi had a significant effect on the morphology of 

the nucleus and the cell in general — there are a large number of small vesicles 
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and disruption to the internal membrane structures (Figure 32, Panel D).  

Evidently, knockdown of TbSec13 perturbs the regulation of membrane curvature 

within the cell.  This is consistent with the known function of Sec13 as a member 

of the COPII vesicle coat complex.   
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The knockdown of TbNup89, while not lethal, causes the deformation of 

the nuclear envelope (there is localized blebbing and invaginations at the INM 

and ONM, as seen in Figure 32 Panel E) as well as an exaggerated ER structure 

in some cases.  Like Sec13, this suggests that TbNup89 plays a significant, if not 

essential, role in membrane maintenance, and its loss causes perturbation of NE 

curvature leading to excess ER and NE formations.  This is analogous to the 

phenotype when ScNup53 is overexpressed in yeast.  Overproduction of 

ScNup53 produces excess intranuclear tubular and double membrane structures, 

and led to the speculation that the NPC plays a critical role in NE formation and 

stabilization (Marelli et al., 2001). 

TbNup158 plays an essential role in preserving proper membrane 

structure (Figure 32 Panel F).  Knockdown of TbNup158 cause many nuclei to 

become denuded of their ONM to varying degrees (Figure 32 Panel F).  The 

TEM field contains nuclei in various stages of ONM separation, suggesting a 

slow onset of this phenotype.  This is perhaps either due to a significant-residual 

pool of TbNup158, the long half-life of TbNup158, or, most likely, a combination 

of both.  Despite the slow onset of the observed phenotype, the knockdown of 

TbNup158 apparently prevents nascent NPC formation or destabilizes NPCs 

once the preexisting pool of TbNup158 is exhausted.  The dysfunctional TbNPC 

no longer structurally supports the annuli across the NE.  Without this support, 

the curvature of the annuli collapses and the pore is sealed, the result of which is 

the separation of the NE.   
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This would suggest that trypanosomes lack a protein network across the 

NE from the cytosol to nucleoplasm.  Conceptually, such a network should 

maintain NE stability in the absence of NPCs, as is the case in yeast or 

vertebrates.  This hypothesis is consistent with the lack of detectable opisthokont 

NE protein domains within the TbNEP (this study).  It is also noteworthy that only 

one protein with a Sad1/Unc domain has been identified by bioinformatics within 

the entire trypanosome genome.  The apparent lack of a trypanosome protein 

network would explain why knockdowns of orthologous Nups in the opisthokonts 

do not exhibit such severe membrane deformation phenotypes.  

With the majority of the TbNPC components identified and characterized, 

we can now draw comparisons between the NPCs of H. sapiens, S. cerevisiae, 

and T. brucei.  In the next chapter, we compare these three examples of well 

characterized NPCs in the context of eukaryotic evolution. 
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CHAPTER 6 — DISCUSSION AND FUTURE DIRECTIONS 

COMPOSITION AND STRUCTURE OF THE TBNPC 

Through various biochemical, proteomic and bioinformatic strategies, we 

have identified 24 putative TbNups and 8 putative transport factors (Chapter 3).  

Our analysis of the TbNPC reveals a composition homologous to the well 

characterized opisthokont NPCs.  We estimate that we have identified the 

majority, if not all, of the structural scaffold TbNups (Figure 13, and Table 5).  We 

base this estimate on the following line of reasoning.  Here, we assume the 

TbNups have a similar stoichiometry in the NPC as do those in opisthokont 

NPCs.  This implies that TbNups are present in a relative abundance that is 

within a factor of 4 of one another.  Because we can recognize scaffold Nups by 

their characteristic secondary structure fold patterns, and because the dynamic 

range of our analysis is ~1000 (see Chapter 2), it seems unlikely that we have 

missed many scaffold Nups.  We conducted a screen of all the proteins in the 

TbNEP dataset for secondary structure fold patterns that are characteristic of the 

Nups that comprise the structural scaffold.  These fold patterns are the β-

propeller domain, α-solenoid domain and an N-terminal β-propeller connected to 

an α-solenoid domains (β-α domain) (Devos et al., 2006).  Our screen identified 

17 proteins with such secondary structure patterns.  We were able to eliminate 

from consideration 5 of these proteins using sequence similarity (Chapter 3) and 

fluorescent localization (Chapter 4), though it is possible that the introduction of 
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an epitope tag disrupted proper localization.  This process resulted in the 

identification of 12 putative scaffold TbNups. 

Earlier work suggests that the fold patterns discussed above are very 

likely to pre-date the emergence of the NPC at the LCEA (Devos et al., 2004).  If 

true, then these fold patterns should be present within the contemporary NPC 

structural scaffold of all eukaryotes.  The presence of these fold types within the 

structural scaffold of T. brucei supports this hypothesis. 

Within the structural scaffold, the β-propellers are a particularly well-

conserved family of Nups (Figure 15).  Previously, it has been observed that 

Sec13 and the transport factor Gle2/Rae1 are well-conserved across the 

opisthokonts (Murphy et al., 1996; Siniossoglou et al., 1996).  Here, we observed 

that they are conserved in trypanosomes as well.  Trypanosomes, plants and 

animals have additional β-propellers that have apparently been lost in yeast 

(Appendix A).  One example is an HsALADIN homolog, which is a disease locus 

in humans (Cronshaw and Matunis, 2003), that we observe to be present in 

trypanosomes.  Interestingly, plant β-propellers have less sequence similarity 

with trypanosome (both are bikonts), than with vertebrates (an opisthokont) 

(Figure 15). 

The number and size of the α-solenoid domains have essentially 

remained unchanged from yeast, plants, humans, and trypanosomes (Appendix 

A and Figure 13).  We observe that plants share more significant sequence 

similarity to humans, than humans do with yeast, indicative of the relative 
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divergence of the fungi from the rest of the opisthokonts (Figure 16).  

Trypanosomes generally exhibit low sequence similarity to yeast, plants or 

humans, but we observe that the secondary structure is well-conserved.  For 

example, the nucleoporin interacting component (NIC) domain of 

ScNIC96/HsNup93 has greatly diverged in the trypanosomes and plants, relative 

to the opisthokonts (Chapter 3 and Figure 16). 

With respect to primary structure, HsNup155 and ScNups157/170 are the 

only β-α domain Nups that are conserved across Eukaryota (Figure 17).  The 

other two yeast Nups of this family, ScNup120 and ScNup133, share little to no 

significant similarity to the plant, human and trypanosome sequences.  Once 

again, the plant Nups of this family, AtSAR1 and AtNup133, share more 

significant similarity with HsNup160 and HsNup133, respectively, than with the 

yeast and trypanosome Nups (Figure 17). 

The trypanosome Mlps share very little significant sequence similarity to 

yeast, human and plants (Figure 18).  ScMlp1 and HsTpr share more similarity 

than ScMlp2 and Tpr, which suggests a duplication of the original ScMlp1 gene 

and explains the additional functional roles of ScMlp2 (Galy et al., 2004; Niepel et 

al., 2005).  The two trypanosome Mlps that we identified appear to have 

undergone extensive species-specific innovation and are not paralogous (Figure 

18). 

In the case of the FG-Nups, we are confident that we have identified and 

characterized nearly all, if not all, of the FG-Nups of the TbNPC (Figure 13, and 
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Table 5).  Since the FG-dipeptide is a requisite motif of FG-Nups, we scanned 

the entire T. brucei proteome for the presence of this motif (Chapter 3), and 

experimentally identified (with mass spectrometry) all of the putative FG-Nups 

found through the in silico search (Chapter 2).   

Between species, the natively disordered FG-Nups have a higher rate of 

amino acid substitution, relative to other Nup groups (Denning et al., 2003; 

Denning and Rexach, 2007).  The trypanosome FG-Nups also exhibit the high 

substitution rates observed in the opisthokonts.  However, when we examined 

the chemical composition of the spacer region, we observed that the chemical 

composition is conserved (Chapter 3).  Furthermore, we identified a well-

conserved anti-correlation between glycine and charged residue (Asp, Glu, Arg, 

and Lys, DERK) composition within the FG-repeat spacer regions, and found that 

this glycine-DERK relationship correlates to the predicted FG-Nup localizations 

within the NPC (Figure 19).  Amongst the asymmetrically distributed FG-Nups, 

those that localize to the nuclear face of the NPC tend to have a higher 

composition of charged residues, compared to cytoplasmically localized FG-

Nups.  This anti-correlation suggests that the rapid evolution within the natively 

disordered FG-repeat domains is constrained within a specific chemical 

composition that is directly related to the localization of the FG-Nups within the 

NPC.   

One model of nucleocytoplasmic transport suggests that the Kap-Cargo 

complexes appear to transiently interact with FG-Nups and pass through the 

NPC by Brownian motion (Rout et al., 2000).  In addition to the 
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RanGDP/RanGTP gradient, there has been speculation about the function of 

asymmetrically distributed FG-Nups in providing a vectorial component to 

nucleocytoplasmic transport, thus increasing efficiency (Bayliss et al., 2000a; 

Rout and Aitchison, 2000).  The above anti-correlation supports such a 

hypothesis of a vectorial transport component in the FG-Nups.  In this model, a 

translocating complex passes through the central channel by diffusion, at which 

point it interacts with the glycine rich, DERK depleted, FG-repeat domains, which 

are predicted to symmetrically line the channel (with respect to a plane parallel to 

the NE).  Asymmetry could thus contribute a vectorial transport component by 

localizing the more highly charged, and perhaps more strongly interacting, FG-

Nups at the periphery of the NPC.  An additional vectorial transport component 

may also be present, given the higher charged residue composition within the 

FG-Nups that localize to the nuclear face of the NPC, relative to those at the 

cytoplasmic face (Figure 19). 

We have begun to reveal the nature of the TbNPC through functional and 

localization studies (Chapters 4 and 5).  Thus, through RNAi studies, we 

revealed that the TbNPC, through specific TbNups such as TbNup158 and 

TbNup89, functionally secures the ONM and INM together as well as maintains 

proper membrane folding and structure (Figure 28).  Unlike the opisthokonts, the 

TbNPC distribution around the nucleus approaches uniformity in that we do not 

observe any evidence of clustering (which would lead to an uneven distribution of 

NPCs over the surface of the NE).  We speculate that the distribution of TbNPC 

is most likely driven by the network of TbNUP-1 molecules (Figure 31).  This is in 
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contrast to the vertebrates, whose NPC distribution is dictated by a 

heterogeneous lamin network (with NPC-free patches), and the fungi, whose 

NPC distribution is non-uniform (Maeshima et al., 2006; Winey et al., 1997).  The 

surface density of NPC around the trypanosome nucleus (~ 5 NPCs/µm2) is 

about half that of yeast (~ 12 NPCs/µm2) and slightly less than the vertebrate 

average density (~ 7 NPCs/µm2) (Maeshima et al., 2006; Winey et al., 1997).  To 

a first approximation, the density of the TbNPC is stable as the nuclear 

dimensions change through the cell-cycle, unlike the vertebrates (Figures 30 & 

31).  With the TbNPC now well characterized, we can now draw comparisons to 

the opisthokont NPC. 

THE EVOLUTION AND ORIGINS OF THE NPC 

We find that the kinetoplastid NPC is just as complex, with respect to 

composition, as the opisthokont NPC.  Vertebrates, yeast and trypanosomes 

contain similar numbers of structural scaffold Nups (14, 12 and 12, respectively) 

and FG-Nups (9, 12 and 9, respectively) as well as individual domains.  What are 

lacking from our TbNPC inventory are the trypanosome nucleoporin-specific 

evolutionary innovations at the NPC.  These TbNups, if present, are unlikely to 

be identified by sequence similarities.  Rather, they will likely be identified in the 

future by immunoisolations of known TbNups.  The long evolutionary distance of 

trypanosomes from the opisthokonts may explain our inability to identify any 

trypanosome domains homologous to ScNup82, ScNup159, HsNup358, 

HsNup214 and the membrane Nups, if these TbNups are present at all.  We now 
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discuss the evolution of the NPC in the context of two contemporary models of 

eukaryotic evolution. 

One model of eukaryotic evolution, the crown eukaryote model, places the 

root of the eukaryotic tree proximal to the diplomonads, kinetoplastids and 

alveolates, which are outgroups to the plants, fungi and metazoa, collectively 

known as the crown eukaryotes (Hedges, 2002; Templeton et al., 2004).  In this 

model, one might predict that the LCEA had a simpler NPC, relative to the 

contemporary NPC, and was comprised of a small number of foundational 

components.  Then as the eukaryotic lineages diverged, the NPC would then 

become increasingly complex in a species-specific manner.  The crown 

eukaryotes would have experienced a burst of innovation and complexity relative 

to more simple lineages, such as the excavates.  Alternatively, albeit less 

probable, each lineage could evolve a complex NPC, but these structures would 

be less likely to be related to each other.  In either scenario, this model would 

predict significant compositional differences in the NPCs between lineages, such 

as different constituents within the scaffold, novel architecture, or different 

inventories of FG-Nups.  However, analogous Nups could potentially arise 

through convergent evolution based on natural selection. 

A second model of eukaryotic evolution, based on a systematic study of 

gene fusion events (Stechmann and Cavalier-Smith, 2002), does not place the 

excavates as an outgroup to the root of Eukaryota; rather it places the root 

between the bikonts (excavates and plants) and the opisthokonts (fungi and 

animals) (Adl et al., 2005).  This rooting of the eukaryotic tree of life does not 
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place an emphasis on increasing complexity through evolution to resolve the 

systematic relationship between distant eukaryotes.  The distinction is that the 

excavata are different from the crown eukaryotes, and such differences are the 

result of divergent evolution.  Within this model, one would predict the NPC of the 

LCEA to be nearly as complete and complex (save for species-specific 

innovations, such as gene duplications or deletions) as the contemporary NPC 

across the tree of eukaryotic life. 

A previous large scale bioinformatic analysis of the NPC and NE 

supported the crown eukaryotic model, based on the authors’ conclusions (Mans 

et al., 2004).  However this study is challenged by the poor sequence similarities 

discussed in Chapter 3.  Thus, relative to the opisthokonts, the diplomonad and 

kinetoplastid components of the NPC and NE were erroneously observed to be 

significantly simpler.  As an alternative, these workers justified a possibly 

complex NPC as a product of convergent evolution.  Another large scale 

bioinformatic study adopted the Cavalier-Smith model based on studies of 

apparent relative evolutionary clock rates of Nups (Bapteste et al., 2005).   

The results described in this thesis support the bikont-opisthokont model 

of the eukaryotic tree of life (Cavalier-Smith, 2002).  We have determined that the 

kinetoplastid NPC is not significantly simpler, nor significantly different, than that 

of the crown eukaryotes (Chapter 3).  It is possible that the similarity of the 

structural scaffold and the FG-Nups between the excavates and the opisthokonts 

could have arisen by convergent evolution, if the driving forces of evolution were 

similar across all eukaryotes.  However, we would argue that convergent 
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evolution is a less probable scenario given the extraordinary number of 

similarities between the excavate and opisthokont NPC, which include:  (1) the 

similar inventory, protein length and domain structure of the structural scaffold 

Nups (Chapter 3 and Figure 13);  (2) the similar number, and conserved 

chemical composition, of the rapidly evolving FG-Nups (Chapter 3 and Figures 

13 and 19);  and (3) the presence of the highly conserved β-sandwich 

autoproteolytic domain.  It is more probable that the large number of similarities 

within the NPC across clades point to a common origin of a complex NPC 

followed by divergent evolution. It follows that the LCEA possessed a fully 

complex NPC, somewhat analogous to the contemporary NPC.  Furthermore, the 

contemporary eukaryotic NPC is a product of divergent evolution and only a 

minority of Nups arose, or was lost, due to species-specific innovations. 

Although the bikont-opisthokont model places the root between the 

bikonts and opisthokonts, the alignments between the plants and the vertebrates 

are often fairly significant.  This supports the model of a complex NPC at the 

LCEA and a more rapid evolutionary clock rate for the excavates, relative to 

plants, fungi and animals.  This would explain the divergence of primary structure 

of excavates from both the plants and opisthokonts within the structural scaffold 

(Figures 15-17).  The fungi have also been subjected to a rapid evolution clock, 

relative to animals, with its primary structure divergence and gene duplication 

events (Figures 15-17). 
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One evolutionary innovation to the early machine is the β-sandwich 

domain within the autoproteolytic Nup, HsNup98-96/ScNup145.  Although the 

conserved β-sandwich domain is present, the excavates and many bikonts either 

do not cleave or do not express full-length products (Chapter 3).  At least two 

scenarios exist — in one, the ancestral Nup98-96 contained a fully functional 

autoproteolytic domain; in another, it did not.  In the former scenario, the 

kinetoplastids lost the autoproteolytic function while the opisthokonts and some 

excavates retained the function.  The latter scenario would suggest a lack of 

innovation within the kinetoplastids (and possibly other clades).  The data 

presented in this thesis supports the former scenario.  If the LCEA expressed a 

full-length protein that was successively cleaved and the kinetoplastids 

subsequently lost this function while retaining the conserved β-sandwich domain, 

then it may be possible to restore the original function by introducing an artificial 

cleavage site.  To investigate this possibility, we introduced a truncation into 

TbNup158 that removed the C-terminal domain.  We observed that the truncated 

protein, TbNup158(1-837), localized to abnormal discreet foci in the nuclear 

periphery (Chaper 6).  This suggests the presence of additional trypanosome-

specific innovations in addition to the loss of the catalytic triad. 

We predict that the early Nup98-96 was expressed, and functioned, as a 

full length protein in the LCEA NPC.  The protein contained a complete 

autoproteolytic β-sandwich domain, which is now conserved across all of 

Eukaryota, and included the catalytic triad.  In this scenario, several bikonts 

either lost the ability self cleave and/or truncated the full length protein within the 
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genome.  Aside from the kinetoplastids, which do not possess an active cleavage 

cite, the diplomonads, amoebozoa (a unikont), and plants all express truncated 

proteins which are homologous to ScNup145N and HsNup98.  These orthologs 

contain the FG-repeat domain at the N-terminus and the conserved β-sandwich 

autoproteolytic domain at the C-terminus.  Interestingly, while Giardia lacks the 

HFS catalytic triad, the unikont E. histolytica and plants contain a HF[S/T] 

tripeptide close to their C-terminus.  

A possible example of convergent evolution is the emergence of the 

TbMlps.  While the two TbMlps have a coiled coiled domain and localize to the 

TbNPC (Figure 30), they share negligible sequence similarity and length to the 

ScMlps or HsTpr (Figure 18).  Furthermore, the TbMlps are not the product of a 

gene duplication event as they are not paralogous to each other, unlike the 

ScMlps.  However, they seemed to have evolved an analogous function to the 

yeast Mlps.  While TbMlp1 stably localizes to the NPC, as does ScMlp1, TbMlp2 

apparently localizes to the area proximal to the spindle pole body, as does 

ScMlp2 (Niepel et al., 2005).  A detailed analysis of S. pombe reveals a similar 

situation to trypanosomes — two Mlps that arose independently, and of which 

only one localizes to the area proximal to the spindle pole body (Ding et al., 

2000).  Interestingly, TbNUP-1 which localizes to the NE between the NPCs, 

does share homology to the ScMlps and HsTpr (Figures 18 and 32).  Perhaps 

TbNUP-1 is related to the nuclear basket Nups within the LCEA, but diverged to 

fill another function at the inner nuclear envelope.  
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It is of note that the T. brucei NPC is more akin to the vertebrate NPC than 

to yeast in many respects, including the existence of the HsALADIN homolog and 

the tendency for pair-wise alignments to be more significant between 

trypanosomes and vertebrates, relative to yeast (Chapter 3).  While it may 

appear convenient to suggest that vertebrates evolved additional β-propellers 

due to special requirements of open-mitosis, our finding in trypanosomes 

complicates this simple explanation.  The presence of ALADIN, a disease related 

locus in vertebrates, and other β-propellers within trypanosomes means that it 

was most likely present in the ancestral NPC and was subsequently lost in the 

fungi.  S. cerevisiae and its fungi relatives appear to have simplified its inventory 

of β-propellers.  Furthermore, the yeast primary structures of structural scaffold 

Nups have undergone a significant amount of species-specific adaptation relative 

to humans, plants and trypanosomes (Figures 15-17).  

It has been postulated that the nucleus likely arose only once; no obvious 

intermediates are known to persist today (Martin, 2005).  Thus, the evolution of 

the nucleus within the trunk of the eukaryotic tree of life is irresolvable.  Since the 

ancestral NPC (LCEA) was already a complex machine at some point within the 

trunk, the step-wise evolution of the NPC cannot be resolved by comparative 

genomics until the root of the eukaryotic tree has been firmly established.  

However, some clues about the emergence of the nucleus have been deduced 

using the predicted structures of the structural scaffold Nups leading to the 

protocoatomer hypothesis (Devos et al., 2004).  This hypothesis observes that 

these structural folds are also found in the eukaryotic vesicle coating complexes.  
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This suggests a concomitant divergent evolution of the endomembrane system 

and membrane curving proteins into the diverse set of proteins that are present 

today.  We find that the presence of an extensive repertoire of β-propeller and α-

solenoid domains within the TbNPC supports the protocoatomer hypothesis 

(Devos et al., 2004).   

During evolution, the endomembrane system, which would eventually 

include the nucleus, likely evolved in a manner predicted by either the 

invagination model (Cavalier-Smith, 2002) or the vesicle model (Martin, 1999).  

As discussed in Chapter 1, a subset of Nups is involved in processes other than 

nucleocytoplasmic transport (e.g. mitotic checkpoint and chromatin interactions).  

We posit that their function may be remnants of ancient transitional steps as the 

primitive endomembrane system began to interact with chromatin and 

differentiate into different domains.  Consistent with our data, the nucleus does 

not appear to be the product of a symbiotic event. 

FUTURE DIRECTIONS 

Our characterized inventory of the TbNPC, provides a strong basis for 

further experimental investigations.  We have tagged several key TbNups with 

GFP, and so immunoisolations are now feasible.  These experiments will identify 

trypanosome-specific Nups, which may only be very weakly, homologous to the 

opisthokont-specific Nups.  Also, we anticipate that such immunoisolations will 

reveal the identity and nature of the membrane bound TbNups, if present.  Also, 

such work will characterize the interaction network and molecular architecture 

within the TbNPC.  A comparison of the molecular architectures of several 
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distantly related NPCs would shed light on the evolution of the NPC as well as 

additional functional features on the NPC. 

Our RNAi work has yielded fascinating nuclear envelope morphology 

phenotypes, which should be studied further.  The lack of NE integrity upon 

knockdown of TbNup158 is quite provocative.  A likely scenario is that elimination 

of TbNup158 causes loss of a large sub-complex of structural Nups, perhaps the 

T. brucei analog to the central ScNup84/HsNup107 complex.  The crippled NPCs 

can no longer secure the NE.  This hypothesis should be testable by using a 

large-scale screen of TbNup knockdowns.  A set of lynchpin TbNups can be 

identified as crucial for NPC and NE form and function.   

Combining the RNAi constructs with the GFP tagged Nups would be a 

powerful assay for functional studies.  For example, after induction of RNAi, one 

could record the fluorescence pattern at the nuclear periphery compared to the 

wild-type control.  This would provide a direct observation into how the NE 

responds to the stress of the depletion of a specific TbNup.   

Furthermore, one could target the GFP moiety directly with RNAi.  In this 

experiment, the C-terminal GFP tagged TbNup would be depleted upon RNAi 

induction with doxycycline.  The second allele would be wild-type, so no 

phenotype should be observed.  After several divisions, the cells should have 

little to no GFP signal at the NE.  At this point, the doxycycline would be washed 

away, and cells would be observed at various time points for the reemergence of 

the GFP signal relative to antibody staining against the NPC (using either 
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αHsNup107 or an antibody raised against a TbNup peptide).  This would reveal 

information on Nup turnover and incorporation into nascent NPCs. 

Finally, the pseudo-autoproteolytic Nup, TbNup158, should be explored in 

depth.  In this work, we tagged the N-terminus of TbNup158 with GFP, and the 

result was localization into the discreet foci.  This observation is contrasted by 

the opisthokonts, where the N-terminal fragment is localized, in part, to the 

nucleoplasm as a soluble protein.  The C-term fragment should be examined in 

an analogous fashion to see if the α-solenoid would correctly integrate into the 

NPC without the N-terminal domain.  Also the protein could be mutated, in a site-

directed fashion, to insert the tripeptide catalytic site HFS.  It would be very 

interesting to note whether the insertion of the tripeptide is sufficient for 

autoproteolysis, or if other residues (such as a stabilizing lysine residue) are also 

requisite. 

In this thesis, we identified over ~850 proteins in the TbNEP using five 

biochemical and proteomic strategies (Chapter 2).  We then identified and 

characterized 24 putative TbNups as well as 8 transport factors using an array of 

bioinformatic strategies (Chapter 3).  We went on to characterize a subset of the 

TbNups by fluorescent localization (Chapter 4) and functional analysis with RNAi 

(Chapter 5).  The result of these experiments reveals a TbNPC that approaches 

a uniform distribution around the NE (Figure 31) and plays a large role in 

stabilizing the morphology of the NE (Figure 28). 
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Our data supports the bikont-opisthokont model of eukaryotic evolution, 

which places the root of the tree between the bikonts and the opisthokonts.  The 

TbNPC is just as complex as, and not simpler than, the opisthokont NPC, with 

respect to composition.  This suggests that the LCEA possessed a complex NPC 

analogous to the contemporary NPC, which then diversified in a largely divergent 

manner. 
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APPENDIX A — TABLE OF CLOSELY RELATED NUCLEOPORIN ORTHOLOGS  

To build a consensus model of the metazoan and fungi NPC, we 

constructed a table of Nup orthologs of closely related metazoans, fungi and 

plant (Table 3).  Orthologs were identified by a PSI-BLAST pair-wise alignment 

search of H. sapien and/or S. cerevisiae query Nups against the respective 

protein databases of subject organisms.  The top five subject alignments were 

then queried with PSI-BLAST back against the H. sapien and S. cerevisiae 

protein database.  If the reciprocal BLAST alignment revealed a top match for the 

original Nup query sequence, then the pair was considered valid and the ortholog 

was recorded by its accession number.   

Even within closely related species, not all Nups can be accounted for, 

such as the lack of HsNup37 and HsALADIN orthologs in C. elegans, and the 

absence of ScNup120 in C. neoformans.  Also, there is evidence of two 

duplication events in S. pombe (ScNIC96 and ScNup133), but only in S. 

cerevisiae are there two paralogous orthologs each of HsNup155 and HsNup98 

(ScNup157/ScNup170 and Sc100/116).  The additional β-propellers of the 

metazoan family are absent in the fungi, but are present in the plants.  This is 

suggestive that the fungi lost these additional Nups early in their evolution.   
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Table 4:  Table of closely related Nup orthologs.  Abbreviations: 

“nf”, not found; “nd”, not determined.
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APPENDIX B — THE ISOLATION OF THE T. BRUCEI NUCLEUS AND SUBNUCLEAR 
COMPARTMENTS:  THE T. BRUCEI NUCLEAR ENVELOPE PREPARATION (TBNEP) 

Previous work done by M.P. Rout and M.C. Field established a 

reproducible method for the isolation and purification of whole nuclei and its 

subnuclear components (Rout and Field, 2001).  The first step to producing 

subnuclear fractions is the isolation of nuclei away from the remainder of the 

cellular compartments (Figure 33).  Once accomplished, these enriched nuclei 

may be further subfractionated to yield nucleoli, nuclear envelopes, or lipid-

stripped nuclear envelopes (termed 

pore complex-lamina fraction, PCLF).  

The subnuclear components are of 

high quality and suitable for further 

biochemistry and mass spectrometry.  

Nuclei from either the vector (procyclic) 

or the host (blood stream form) life 

stage may be isolated, providing 

access to life-stage dependent 

aspects.  However, the procyclic stage 

is somewhat more convenient as 

these cells can be grown to higher 

density in in vitro culture.  We modified 

the protocol for use with this work and 

details are presented below.  TbNEP 

Figure 33:  Flow diagram tracing

the isolation and purification of

nuclear and subnuclear

structures by a discontinuous

sucrose step gradient.  Cellular

material settles at the interface

between sucrose densities.

Fractions of interest are in red

(Rout and Field, 2001). 
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material originating from the original protocol as well as material produce from 

the protocol below was used for the experiments outlined in this thesis. 

MATERIALS 

The Isolation of Trypanosoma brucei Nuclei 

1. PVP solution:  8% polyvinylpyrrolidone (PVP-40, Sigma-Aldrich, St. 

Louis, MO), 11.5 mM KH2PO4, 8.5 mM K2HPO4, and 750 µM 

MgCl2·6H2O.  Adjust to pH 6.53 with concentrated H3PO4 (~15 µl 

for a 1 L solution).  Store at 4°C.  To minimize the risk of 

contamination when preparing reagents, it is imperative to use the 

highest reagent quality available.  With the exception of polymeric, 

high density, acidic or basic solutions, aqueous buffers should be 

filtered with a 0.22 µm pore syringe or bottle filter. 

2. Sucrose solutions (sucrose/PVP):  In a large dish of hot water atop 

a stirring hot plate, the appropriate amount of sucrose is dissolved 

into PVP solution in a 500 ml beaker by constant stirring.  Once the 

sucrose has completely dissolved, remove from heat, cover and 

allow to cool to room temperature.  While continuously stirring the 

solution, adjust the refractive index (RI, to within 0.0003) by slowly 

adding PVP solution.  Store in sterile tubes at -20°C.   

a. 2.01M:  To 183.3 g sucrose, add PVP solution to a final 

weight of 338 g.  Refractive Index (RI) = 1.4370. 
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b. 2.10M:  To 193 g sucrose, add PVP solution to a final weight 

of 340 g.  RI = 1.4420. 

c. 2.30M:  To 216 g sucrose, add PVP solution to a final weight 

of 340 g.  RI = 1.4540. 

3. Phosphate buffered saline (PBS Tablets, Sigma-Aldrich, St. Louis, 

MO).  Chilled to 4°C. 

4. 1 M dithiothreitol (DTT, Sigma-Aldrich, St. Louis, MO).  Store at -

20°C in 200 µl aliquots. 

5. 10% Triton® X-100 (Sigma-Aldrich, St. Louis, MO). 

6. Protease inhibitor cocktail P-8340 (PIC, Sigma-Aldrich, St. Louis, 

MO).  Store at -20°C. 

7. Solution P:  Dissolve 0.04% (w/v) pepstatin A (Sigma-Aldrich, St. 

Louis, MO) and 1.8% PMSF (Sigma-Aldrich, St. Louis, MO) in 

absolute (anhydrous) ethanol.  Store at -20°C.  For best results, 

slowly dissolve each peptide inhibitor sequentially into room 

temperature ethanol. 

8. 0.3 M sucrose/PVP.  Dilute stock sucrose/PVP with PVP solution. 

9. Lysis buffer (prepare fresh):  Dissolve 0.05% Triton® X-100, 5 mM 

DTT, 1:100 solution P and 1:200 PIC into PVP solution.  20 ml of 

lysis buffer is equivalent to 1 volume.  Protease inhibitors become 
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unstable at room temperature at working concentrations.  On the 

bench, solution P must be kept on ice while the PIC may be left 

thawed and add the protease inhibitors to the working solutions at 

the last possible moment. 

10. Underlay buffer (prepare fresh):  Dissolve 5 mM DTT, 1:100 

solution P and 1:200 PIC into 0.3 M sucrose/PVP.  10 ml of 

underlay buffer is equivalent to 1 volume. 

11. Resuspension buffer (prepare fresh):  Dissolve 5 mM DTT, 1:100 

solution P and 1:200 PIC into 2.1 M sucrose/PVP.  8 ml of 

resuspension buffer is equivalent to 1 volume. 

Subnuclear Fractionation 

The Nuclear Envelope 

1. 0.1 M bis-Tris-Cl, pH 6.50. 

2. BT/Mg buffer:  0.01 M bis-Tris-Cl, pH 6.50, 0.1 mM MgCl2. 

3. Shearing buffer (prepare fresh):  Dissolve 1 mM DTT, 1.0 mg/ml 

heparin, 20 µg/ml DNase I (Sigma-Aldrich, St. Louis, MO, store 

stock at -20°C), 2 µg/ml RNase A (Sigma-Aldrich, St. Louis, MO, 

store stock at -20°C), 1:100 solution P, and 1:200 PIC into BT/Mg 

buffer. 



141 
 

4. 2.10 M sucrose in 20% Accudenz® (Accurate Chemical & Scientific 

Corporation, Westbury, NY) in BT/Mg buffer.  Store at -20°C. 

5. 2.50 M sucrose in BT/Mg buffer.  The final refractive index should 

be 1.4533.  All sucrose BT/Mg solutions should be stored at -20°C. 

6. 2.25 M sucrose BT/Mg, by stock dilution. 

7. 1.50 M sucrose BT/Mg, by stock dilution. 

The Pore Complex-lamina 

1. Extraction buffer (prepare fresh):  Dissolve 1.5% Triton® X-100, 

1.5% sodium taurodeoxycholate, 1:100 solution P, and 1:200 PIC 

into BT/Mg buffer.   

2. 2.50 M sucrose BT/Mg. 

3. 1.75 M sucrose BT/Mg, by stock dilution. 
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METHODS 

Either blood stream form (BSF) or procyclic life stage may be used with 

the following protocol, with similar yields.  Procyclic cells are generally easier to 

culture since they do not require infection of animals to achieve the requisite 

number of cells for the isolation.  At least 4 x 1010 cells are needed, which allows 

for two separate gradients with 2 x 1010 cells in each.  One must be careful not to 

exceed 2 x 1010 cells in each gradient to maximize efficiency.  Unless otherwise 

noted, cells and lysates must be kept on ice and pelleted in a refrigerated 

centrifuge at 4°C.   

The Isolation of Trypanosoma brucei Nuclei 

1. Gently pellet the cells at 1700 (g) for 10 minutes.  Discard the 

supernatant and resuspend the pellet with roughly 25 ml of pre-

chilled PBS.  After a second centrifugation, resuspend the pellet in 

25 ml of pre-chilled PBS and transfer the cells to a Sorvall HB-4 

tube.  Pellet by centrifugation once again (1790 (g), 15min, Sorvall 

HB-4 rotor) and discard the supernatant.  

2. To lyse the cells, add 1 volume per 2 x 1010 cells of lysis buffer to 

the pellet and immediately disrupt the cells with a Polytron® (PTA-

10, GlenMills, Clifton, NJ) homogenizer with 1 min bursts.  As the 

appropriate speed setting may vary between homogenizer models, 

start with setting #4 and increase in increments of 0.5 until cell lysis 

is achieved.  The lysis should be conducted in a cold room to keep 
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the homogenizer probe and cellular material cooled.  Five minutes 

total homogenization time at the final setting is usually sufficient for 

an acceptable 70-90% cell lysis, with progress being monitored by 

phase contrast microscopy.   

3. Once acceptable cell lysis has been achieved, underlay the 

equivalent of 2 x 1010 cells with 1 volume of underlay buffer and 

centrifuge for 20 minutes at 10,515 (g) in a Sorvall HB-4 rotor.  

Decant the supernatant (which contains the crude cytosol) and 

store at -80 °C.   

4. The pellet should then be immediately resuspended by 

homogenization.  Add 1 volume of resuspension buffer and 

homogenize with the Polytron® (setting 4.5-5) in 1 minute bursts.  

Monitor the progress with phase-contrast light microscopy; all cells 

should now be lysed (a significant proportion of the total cell lysis 

can actually occur at this stage), and the nuclei will be visible in the 

field as many small gray spheres and ovoids.  Usually, 4 minutes is 

sufficient to achieve full dispersion.  

5. Prepare the gradient.  Into a Beckman SW-28 centrifuge tube, add 

the following:  8 ml 2.30 M sucrose/PVP, 8 ml 2.10 M sucrose/PVP, 

8 ml 2.01 M sucrose/PVP.  To reduce the viscosity of the sucrose 

solutions, allow the solutions to completely warm to room 

temperature.  Wide-bore pipets and pipette tips (made by cutting off 
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~3 mm from the point of the tip) also facilitate sucrose solution 

handling.  Before use, all sucrose solutions should be 

supplemented with solution P (1:100) and PIC (1:200). 

6. Carefully, add the crude nuclear material on top of the gradient (the 

portion of the gradient which contains the crude material is 

designated as “S”).  Afterwards, fill to within 5 mm of the brim with 

PVP solution to prevent collapse.  In a Beckman ultracentrifuge and 

SW-28 rotor, spin the gradient at 141,245 (g) for 3 hours. 

7. Sub-cellular material may be found at the interfaces.  Each 

interface (PVP/S, S/2.01, 2.01/2.1, 2.1/2.3) should be collected and 

stored at -80°C for possible future study.  Most of the nuclei settle 

at the 2.10/2.30 interface.  The quality of the nuclei can be checked 

by phase-contrast light microscopy.  Unloading the gradient will be 

easier if the interfaces are marked with a permanent marker before 

centrifugation.  Collect the topmost fill layer and halfway through 

the first sucrose layer.  Then, starting from the top, collect from 

halfway through the upper sucrose layer, through the interface, and 

continue to collect until halfway through the lower sucrose layer.  

The material at the interface may be gently dislodged with a pipette 

tip, if necessary.   

8. The concentration of the nuclei is measured by optical density.  1 

OD260 is equivalent to about 108 nuclei.  Add 10 µl of nuclei to 1 ml 
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of 1% SDS.  Measure the absorbance at 260 nm against a blank of 

1% SDS.  Multiply the value by 100x to obtain the OD. 

Subnuclear Fractionation 

Nuclear Envelope Isolation 

1. To a measured volume of 300 ODs of purified nuclei, add the 

equivalent of 0.2 volumes of PVP solution and vortex for 1-2 

minutes until the solution is homogenous. 

2. In a Beckman Type 50.2Ti rotor, pellet the nuclei by centrifugation 

at 193,185 (g) for 1 hour.  Decant the supernatant. 

3. Resuspend the pellet in 3 ml of shearing buffer and shear the 

nuclear envelopes by vigorous vortexing for 1 full minute after the 

last traces of the pellet disappear. 

4. After shearing, let the tube stand for 5 minutes at room 

temperature.   

5. Add 10 ml of 2.10 M sucrose in 20% Accudenz® in BT/Mg buffer 

and mix well by vortexing. 

6. Transfer mixture to an SW-28 centrifuge tube and overlay with 12 

ml 2.25 M sucrose in BT/Mg and 10 ml of 1.50 M sucrose in BT/Mg.  

Top with BT/Mg to within 5 mm of the brim.   

7. Spin the gradient at 141,245 (g) for 4 hours. 
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8. Collect all interfaces.  The nuclear envelopes float up to the 1.50 M 

- 2.25 M interface.  The quality of the nuclear envelopes can be 

checked by microscopy.  The envelopes appear as faint “C” 

structures by phase contrast light microscopy. 

Nuclear Pore Complex-lamina  

1. To 1 volume of nuclear envelopes add the equivalent of 2 volumes 

of extraction buffer, and vortex for 5 min at room temperature.  

Allow the mixture to then incubate at room temperature for 25 

minutes. 

2. Prepare the gradient.  In a Beckman SW-55 centrifuge tube, add 1 

ml of 2.50 M sucrose in BT/Mg and then 1 ml of 1.75 M sucrose in 

BT/Mg.   

3. Carefully overlay the extracted nuclear envelope mixture to the top 

of the gradient.  Spin the gradient at 240,000 (g) for 30 minutes in a 

SW55Ti rotor. 

4. Collect each interface fraction.  The pore complex-lamina settles at 

the 1.75 M - 2.50 M interface. 
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APPENDIX C — THE TBNEP DATASET 

The quality of the open reading frame identification may be assessed with 

the “protein expect” (the log of the expect value) and the total number of 

identified peptides.  Table 4 lists the putative TbNPC associated proteins the we 

identified in this study.  Proteins included in Table 4 with a log expect value 

worse than 10-5 have been validated by hand with the original spectra.  The 

T.cruzi and L. major orthologs of the TbNPC associated proteins are listed in 

Table 5.  As expected, the three kinetoplastids have remarkably similar NPC 

components due to their close evolutionary relationship.  In Tables 6 and 7, only 

those identifications that meet the following criteria are included: 

1. If the expect value is worse than 10-3, then at least one peptide 

must have an expect value better than 10-2. 

2. If an identification is based on one peptide, that expect value must 

be better than 10-3. 

Notes for Tables: 

a) As determined with Nucleo:  * probability ≥ 0.70, ** probability ≥ 

0.80, *** probability ≥ 0.90. 

b) TMH and signal peptides were simultaneously predicted with 

Phobius. 
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c) As predicted with PEPCOIL, window=28:  * probability ≥ 0.70, ** 

probability ≥ 0.80, *** probability ≥ 0.90. 

d) HMMer against the Pfam profile databases, expect < 0.1 

e) Present in T. brucei bloodstream plasma membrane fraction (D. 

Bridges, H. de Koning, P. Voorheis and R. Burchmore) 

f) Present in T. brucei bloodstream cytoskeletal fraction (D. Bridges, 

H. de Koning, P. Voorheis and R. Burchmore) 

g) Present in T. brucei flagellum proteome (Broadhead R, Dawe HR, 

Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, 

Gaskell SJ, McKean PG, Gull K) 

h) Expressed in procyclic form (Jones A, Faldas A, Foucher A, Hunt 

E, Tait A, Wastling JM, Turner CM.) 

i) The residue boundaries of the domains are listed along with the 

domain identifier:  CC, coiled coil; FG, FG-repeat, the plurality motif 

is listed within parans. 
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Table 6:

Domains L. major T. cruzi

TbSec13 Tb10.61.2630 LmjF32.0050 Tc00.1047053506525.20

TbSeh1/Sec13 Tb927.4.3850 LmjF31.0200 Tc00.1047053507583.40

TbNup43 Tb10.61.0160 LmjF19.1550 Tc00.1047053507211.30

TbNup48 Tb11.02.2120 LmjF13.0250 Tc00.1047053506227.220

TbNup89 Tb11.02.0460 LmjF33.2040 Tc00.1047053507771.90

TbNup82 Tb09.211.4780 LmjF35.1600 Tc00.1047053510759.180

TbNup96 Tb10.6k15.3670 LmjF36.2510 Tc00.1047053510181.50

TbNup181 Tb10.6k15.1530 LmjF36.5890 Tc00.1047053509791.160

TbNup225 Tb927.4.2880 LmjF34.1360 Tc00.1047053504253.10

TbNup132 Tb927.7.2300 LmjF22.0380 Tc00.1047053511809.60

TbNup144 Tb10.6k15.2350 LmjF36.6890 Tc00.1047053506247.70

TbNup109 Tb11.01.7630 LmjF32.2780 Tc00.1047053507037.60

FG Repeat; Nup98; 
α Solenoid

TbNup158 Tb11.03.0140 LmjF27.0380 Tc00.1047053506925.440

TbNup53a Tb11.01.7200 LmjF32.2350 Tc00.1047053504159.10

TbNup53b Tb927.3.3540 LmjF29.0800 Tc00.1047053506591.69

TbNup59 Tb11.02.0270 LmjF33.2370 Tc00.1047053504153.330

TbNup62 Tb927.4.5200 LmjF31.2900 Tc00.1047053506419.60

TbNup64 Tb927.4.4310 Tc00.1047053504717.20

TbNup75 Tb927.8.8050 Tc00.1047053504411.10

TbNup98 Tb927.3.3180 Tc00.1047053508153.410

TbNup140 Tb11.01.2885 LmjF28.3010 Tc00.1047053511671.60

TbNup149 Tb11.01.2880 LmjF28.3030 Tc00.1047053511671.50

TbMlp1 Tb11.03.0810 LmjF25.0270 Tc00.1047053504109.20 

TbMlp2 Tb09.160.0340 LmjF26.2660 Tc00.1047053504769.80

TbGle2/Rae1 Tb09.160.2360 LmjF01.0320 Tc00.1047053511577.130
TbNTF2 Tb927.7.5760 LmjF06.1170 Tc00.1047053508173.180

TbRTB2 Tb927.3.1120 LmjF25.1420 Tc00.1047053503539.30

TbMex67 Tb11.22.0004   LmjF27.1690 Tc00.1047053508271.4

TbKap60 Tb927.6.2640 LmjF30.1120 Tc00.1047053509057.20

TbKap95 Tb10.70.4720 LmjF34.0490 Tc00.1047053504105.150

TbKap104 Tb10.6k15.3020 LmjF36.2720 Tc00.1047053509717.70

TbKap123 Tb11.01.7010 LmjF32.2150 Tc00.1047053511707.39

Transportins

T. cruzi  and L. major  orthologs to TbNPC associated proteins.

T. brucei

β Propeller

α Solenoid

β Propeller - α 
Solenoid

FG Repeat

Coiled coil
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Table 8:

Accession 
Number

GeneDB Annotation Mass 
(kDa)

Protein 
Expect

Total # of 
peptides

Tb927.1.2380 alpha tubulin 49.7 -250.2 47
Tb927.5.3400 Calcium-transporting ATPase (Calcium pump) 110.2 -244.6 51
Tb927.2.4230 NUP-1 protein 406.6 -222.9 47
Tb927.1.2330 beta tubulin 49.6 -215.6 43
Tb927.3.1380 ATPase beta subunit 55.7 -180.4 33
Tb11.02.5500 glucose-regulated protein 78 71.3 -171.3 35
Tb927.4.4380 vacuolar-type proton translocating pyrophosphatase 1 85.8 -162.3 26
Tb10.70.5670 TEF1, elongation factor 1-alpha 49 -161.1 36
Tb927.7.7420 ATP synthase alpha chain, mitochondrial precursor 63.4 -146.7 35
Tb11.01.3110 heat shock protein 70 75.3 -143.4 38
Tb10.70.2650 elongation factor 2 94.2 -132.1 34
Tb927.5.1810 lysosomal/endosomal membrane protein p67 72.6 -128.0 21
Tb11.02.4150 Glycosomal Pyruvate Phosphate Dikinase 100.3 -125.4 37
Tb927.6.4280 Glyceraldehyde-3-phosphate dehydrogenase 43.8 -110.6 24
Tb927.6.3740 heat shock 70 kDa protein, mitochondrial precursor 71.4 -97.8 20
Tb09.160.3820 nop5 protein 54.9 -96.8 21
Tb11.02.1480 mitochondrial processing peptidase alpha subunit, Clan ME, Family M16 57 -94.3 19
Tb10.70.0430 chaperonin Hsp60, mitochondrial precursor 59.4 -91.6 16
Tb927.5.1210 short-chain dehydrogenase 33.8 -89.7 21
Tb10.61.1820 mitochondrial carrier protein 34 -87.9 21
Tb927.2.4210 glycosomal phosphoenolpyruvate carboxykinase 58.5 -87.4 18
Tb927.2.1080 RHS5-c 76.5 -86.5 21
Tb927.8.3750 Nucleolar Protein, SIK1 54.3 -83.3 25

H25N7.12 RHS4 97.7 -80.5 25
Tb11.01.4750 elongation factor 1 gamma 60.4 -76.5 20
Tb10.70.5800 HK2, hexokinase 51.1 -76.1 16
Tb10.61.0980 glycosomal malate dehydrogenase 33.6 -75.7 15
Tb927.4.3590 translation elongation factor 1-beta 28.3 -75.2 16
Tb927.8.1870 tGLP1, golgi/lysosome glycoprotein 1 67.5 -75.2 10
Tb11.02.0070 metallo-peptidase, Clan MF, Family M17 60.5 -74.7 17
Tb10.70.1370 fructose-bisphosphate aldolase, glycosomal  41 -73.3 15
Tb09.160.4250 tryparedoxin peroxidase 22.4 -69.8 16
Tb09.211.3560 glk1, glycerol kinase, glycosomal 56.3 -68.7 16
Tb927.8.3530 glycerol-3-phosphate dehydrogenase 37.7 -66.4 18
Tb927.5.1060 mitochondrial processing peptidase, beta subunit 54 -65.6 17
Tb10.389.1180 P-type H+-ATPase 100.1 -65.5 23
Tb09.160.2840 ACS4, fatty acyl CoA synthetase 4 77.8 -62.8 17
Tb11.02.5280 glycerol-3-phosphate dehydrogenase 66.9 -62.4 15
Tb927.7.6850 TbTS, trans-sialidase 84.4 -61.3 15
Tb927.3.3580 LPG3, lipophosphoglycan biosynthetic protein 87.7 -60.2 13
Tb927.3.4300 PFR1, 73 kDa paraflagellar rod protein 68.6 -59.7 15
Tb927.7.2930 histone H2A 14.2 -59.5 10
Tb10.v4.0045 prohibitin 32.1 -57.5 14
Tb10.70.4200 fatty acyl CoA synthetase 78.9 -56.5 17
Tb10.100.0070 ATP synthase F1 subunit gamma protein 34.3 -53.9 13
Tb09.211.1750 mitochondrial carrier protein 34.2 -51.3 12
Tb927.3.3270 TbPFK, ATP-dependent phosphofructokinase 53.4 -50.6 16
Tb927.4.470 snoRNP protein, GAR1 21.7 -50.0 19

Tb10.389.0690 mitochondrial carrier protein 33.1 -48.3 11
Tb11.01.3370 PEX11, glycosomal membrane protein 24 -47.0 11
Tb10.70.3290 ATP-dependent DEAD-box RNA helicase, DHH1 46.4 -46.7 16
Tb05.5K5.70 nucleolar RNA helicase II, Gu 68.7 -46.5 12

Tb09.160.3270 eukaryotic initiation factor 4a 45.3 -45.9 12
Tb10.70.5110 mMDH, mitochondrial malate dehydrogenase 33.1 -45.7 8
Tb09.211.4700 RISP, reiske iron-sulfur protein, mitochondrial precursor 33.6 -45.5 10
Tb09.160.4310 Glutamate dehydrogenase 112 -44.3 19
Tb927.7.4180 long chain fatty acyl elongase 33.8 -44.2 9
Tb927.5.930 FRDg, NADH-dependent fumarate reductase 123.6 -44.0 12
Tb927.2.4710 RNA-binding protein, RRM1 49.9 -43.3 8
Tb09.160.5480 adenosine transporter 50.6 -42.4 12
Tb11.02.4080 lanosterol 14-alpha-demethylase 54.3 -42.0 14
Tb09.211.0540 FBPase, fructose-1,6-bisphosphate, cytosolic 38.5 -42.0 8
Tb10.05.0230 zinc metallopeptidase 62.7 -41.0 7
Tb927.3.3330 heat shock protein 20 15.8 -39.1 9
Tb927.6.4990 ATP synthase, epsilon chain 20.1 -39.0 7
Tb927.3.1790 pyruvate dehydrogenase E1 beta subunit 37.5 -38.4 8
Tb927.7.6360 histone H2A 18.6 -37.1 13
Tb09.211.2740 Gim5B protein 25.9 -36.1 10
Tb927.5.1710 ribonucleoprotein p18, mitochondrial precursor 21.2 -35.6 6
Tb10.70.1100 translation elongation factor 1-beta 21.9 -35.5 9
Tb927.7.210 proline oxidase 63.8 -35.1 10
Tb927.8.760  Nopp44/46. 35 -35.1 7
Tb927.5.4190 histone H4 11.1 -34.8 9
Tb09.211.4511 kinetoplastid membrane protein KMP-11 11 -34.6 6
Tb10.v4.0052 microtubule-associated protein 2, MAP2 560.8 -34.1 11

Tb10.406.0350 histone H2B 12.5 -33.7 10
Tb927.6.4210 aldehyde dehydrogenase 64.5 -33.5 11
Tb10.61.2130 ATP-dependent DEAD/H RNA helicase, DBP1 71.3 -33.1 13

Annotated TbNEP members. 



Accession 
Number

GeneDB Annotation Mass 
(kDa)

Protein 
Expect

Total # of 
peptides

Tb927.3.5050 60S ribosomal protein L4 (L1). 41.8 -31.9 11
Tb927.2.100 RHS1 94.8 -31.2 16
Tb927.5.900 oligosaccharyl transferase subunit 92.1 -31.2 11
Tb927.2.470 retrotransposon hot spot protein RHS4-c . 98.2 -30.6 21
Tb11.46.0001 60S acidic ribosomal subunit protein 34.6 -30.4 10

Tb10.6k15.0410 60S ribosomal protein L18 21.8 -30.4 5
Tb927.1.2530 Histone H3 14.7 -30.0 7
Tb10.61.0150 inosine-5'-monophosphate dehydrogenase 48.4 -30.0 6
Tb11.02.1085 40s ribosomal protein S4 30.6 -29.6 8
Tb927.4.1330 type IB DNA topoisomerase large subunit . 79.2 -29.0 10
Tb11.02.3210 triose-phosphate isomerase 26.8 -28.8 9

Tb10.6k15.1350 pteridine transporter 69.9 -28.6 9
Tb927.8.1610 major surface protease gp63 62.9 -28.5 8
Tb10.v4.0247 s-adenosyl-L-methionine-c-24-delta-sterol-methyl transferase a 40.1 -28.3 6
Tb927.1.420 RHS5 76.2 -28.0 19
Tb927.2.1210 RHS4 95.1 -27.5 16
Tb10.26.0560 60S ribosomal protein L6 21.1 -27.4 5
Tb927.6.1500 DHAP, alkyl-dihydroxyacetone phosphate synthase 69 -27.3 8
Tb927.8.650 cation-transporting ATPase 140.3 -27.1 10
Tb927.3.1840 3-oxo-5-alpha-steroid 4-dehydrogenase 33.3 -27.1 8
Tb10.26.1080 heat shock protein 83 80.7 -26.5 8
Tb927.8.5010 PFR2, 69 kDa paraflagellar rod protein 69.5 -26.4 7
Tb927.7.710 heat shock, 70 Kda 70.1 -26.1 13
Tb927.8.7410 calreticulin 44.9 -25.6 8
Tb927.5.3510 SMC3 136.2 -24.3 14
Tb927.5.520 stomatin-like protein 55.9 -24.3 8

Tb09.160.3670 ribosomal protein S6 13.5 -23.8 3
Tb09.244.2630 40S ribosomal protein S6 28.4 -23.5 7
Tb927.5.2080 inosine-5'-monophosphate dehydrogenase 52.2 -23.4 6
Tb927.2.2440 RPN6, proteasome regulatory non-ATPase subunit 6 57.2 -23.4 6
Tb11.01.4940 AAA ATPase 141 -23.2 13
Tb927.8.1420 acyl-CoA dehydrogenase, mitochondrial precursor 55.9 -23.2 5
Tb927.4.1790 ribosomal protein L3 54.3 -22.5 5
Tb927.7.2370 40S ribosomal protein S15 20 -22.5 4
Tb11.02.2880   DNAJ 84.6 -22.4 7
Tb927.6.1520 aquaporin 3     35 -22.2 6

Tb11.0290 RPS14, 40s ribosomal protein S14 15.5 -21.9 6
Tb09.160.2770 ACS1, fatty acyl CoA syntetase 1 78.9 -21.8 9
Tb09.160.1160 Nop86 85.8 -21.8 8
Tb927.1.4100 cytochrome C oxidase subunit IV 40.5 -21.7 7
Tb927.8.5460 flagellar calcium-binding protein TB-44A 45.6 -21.7 5
Tb927.4.4620 cytochrome c oxidase VIII (COX VIII) 18.7 -21.0 6
Tb10.26.0790 PSSA-2 procyclic form surface glycoprotein 46 -20.9 4
Tb927.6.2550 RNA-binding protein, possible PAB1 79.7 -20.7 12
Tb09.244.2760 cytosolic coat protein 24.5 -20.7 7
Tb927.8.4810 prohibitin 31.4 -20.6 10
Tb10.389.1500 short-chain dehydrogenase 36 -20.5 10
Tb10.70.3360 40S ribosomal protein S3a 29.4 -20.5 7
Tb927.3.960 protein transport protein Sec61 gamma subunit 7.6 -20.4 4
Tb927.4.395 cytoskeleton-associated protein CAP5.5 94.5 -20.3 8

Tb10.6k15.3080 dihydrolipoamide acetyltransferase precursor 48 -20.3 7
Tb10.70.3510 60S ribosomal protein L18a 20.8 -20.1 6

Tb10.6k15.3160 mammalian Fibrillarin, yNOP1 31.6 -19.9 9
Tb11.02.0250 heat shock protein, mitochondrial precursor 84.1 -19.6 6
Tb11.01.3560 vacuolar ATP synthase subunit B 55.5 -19.5 6
Tb927.7.4170 fatty acid elongase 30.4 -19.4 4
Tb10.389.0890 pyruvate dehydrogenase E1 component alpha subunit 42.4 -19.0 6
Tb927.3.3490 TDP1 high mobility group protein 30.8 -19.0 3
Tb927.4.2070 Antigenic protein, paralogous to NUP-1 511 -18.9 10
Tb927.8.2000 PPIase cyclophilin type peptidyl-prolyl cis-trans isomerase 32.8 -18.9 7
Tb10.70.6660 hypoxanthine-guanine phosphoribosyltransferase 26.3 -18.7 2
Tb927.2.340 RHS4-a 97.7 -18.3 20

Tb09.211.0560 RNA-binding protein, DRDB3 36.9 -18.1 9
Tb11.50.0007   dynein light chain 10.4 -17.9 3
Tb11.02.0750 TCP-1-zeta t-complex protein 1, zeta subunit 59.5 -17.9 3
Tb927.8.2630 kinesin 85.1 -17.7 7
Tb927.7.990 chaperone protein DNAJ 86.5 -17.7 6

Tb10.6k15.3610 delta-6 fatty acid desaturase 47.9 -17.6 6
Tb11.01.7800 nucleoside diphosphate kinase . 16.8 -17.5 5
Tb927.2.5160 DNAJ 44.7 -17.5 3
Tb09.211.1550 chaperone protein DNAJ 56.6 -17.1 9
Tb10.70.0820 universal minicircle sequence binding protein (UMSBP) 21.8 -16.9 4

Tb10.6k15.3350 40S ribosomal protein S24E 15.6 -16.8 2
Tb11.01.3610 membrane-bound acid phosphatase 53.3 -16.7 4

H25N7.01 RHS2 93.6 -16.6 11
Tb11.02.2960 mitochondrial carrier protein 29.8 -16.5 5
Tb10.61.1920 fibrillarin 31.6 -16.3 10
Tb927.3.1410 COX VII cytochrome c oxidase VII 19.2 -16.2 4
Tb927.1.2230 calpain-like protein fragment 13.5 -16.2 4
Tb927.4.2000 RuvB-like DNA helicase 52.5 -16.0 8
Tb09.160.4450 RPS3 40S ribosomal protein S3 30.3 -16.0 3
Tb09.211.0120 nascent polypeptide associated complex subunit 20.1 -16.0 3
Tb927.4.4210 ATP-dependent zinc metallopeptidase 96.1 -15.7 6



Accession 
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Tb11.01.3180 guanine nucleotide-binding protein beta subunit 34.6 -15.4 3
Tb927.4.1080 V-type ATPase, A subunit 67.7 -15.3 5
Tb927.7.3120 Sm-D1 small nuclear ribonucleoprotein SmD1 11.7 -15.1 3
Tb11.02.1680 mannose-specific lectin 62.2 -15.0 5
Tb927.8.1890 cytochrome c1, heme protein, mitochondrial precursor 30 -14.8 7
Tb927.3.2230 succinyl-CoA synthetase alpha subunit 31.4 -14.8 3
Tb927.7.2700 B5R NADH-cytochrome b5 reductase 31.8 -14.5 5

Tb10.6k15.2020 THT2A glucose transporter 56.8 -14.5 3
Tb11.42.0003 TCP-1-beta t-complex protein 1, beta subunit 58 -14.4 6
Tb10.70.1770 Eukaryotic translation initiation factor 6 (eIF- 6) 26.9 -14.4 4

Tb10.6k15.2330 TCP-1-theta t-complex protein 1, theta subunit 58 -14.4 4
Tb10.406.0290 protein tyrosine phosphatase 29.6 -14.4 3
Tb09.211.0680 CAAX prenyl protease 1 48.8 -14.3 5
Tb09.244.2570 calcium motive p-type ATPase 113.9 -14.2 6
Tb927.5.3810 orotidine-5-phosphate decarboxylase/orotate phosphoribosyltransferase 49.9 -14.1 7
Tb927.3.3310 60S ribosomal protein L13 26.6 -14.0 5
Tb927.1.120 RHS4 97.9 -13.7 23
Tb927.3.4760 dynamin 73.1 -13.7 6
Tb09.211.3510 ATP-dependent DEAD/H RNA helicase; NPC-associated RNA helicase (Allen et al., 2001) 82.6 -13.7 5
Tb11.12.0011 ATP-dependent DEAD/H RNA helicase 45.4 -13.5 5
Tb09.160.2910 tricarboxylate carrier 35.6 -13.3 6
Tb11.03.0090 ribokinase 35.2 -13.3 3
Tb927.3.2150 protein phosphatase 2C 39.9 -13.2 6
Tb09.160.4200 60S acidic ribosomal protein 11 -13.2 4
Tb09.244.2730 60S ribosomal protein L5 34.6 -13.1 6
Tb927.4.1920  GPI transamidase component GPI16 . 75.7 -13.1 4

Tb11.0880 60S ribosomal protein L21E 17.9 -13.0 6
Tb927.8.2160 PGPA MRPA multidrug resistance protein A 174.5 -13.0 5
Tb11.02.0870 Ran-binding protein 1 17.6 -13.0 3
Tb10.61.0110 ATP-dependent zinc metallopeptidase 62.7 -13.0 3
Tb11.01.5100 paraflagellar rod component 68.3 -12.9 4
Tb927.4.3300 mitochondrial ATP-dependent zinc metallopeptidase 78.8 -12.9 3
Tb09.211.2640 60S ribosomal protein L23 14.9 -12.8 5
Tb927.5.1300 vacuolar proton translocating ATPase subunit A 89.5 -12.7 6
Tb10.61.0600 RPN9 proteasome regulatory non-ATP-ase subunit 9 45.9 -12.7 1
Tb927.8.3060 cytosolic leucyl aminopeptidase 71.2 -12.5 5
Tb927.4.3550 60S ribosomal protein L13a 39.1 -12.5 4
Tb10.70.3240 short-chain dehydrogenase 38 -12.4 3
Tb11.02.4100   pretranslocation protein (Sec61) 53.6 -12.2 4
Tb11.02.0780 squalene monooxygenase 63.7 -12.2 4
Tb927.7.3440 I/6 autoantigen 27 -12.2 4
Tb927.4.2180 60S ribosomal protein L35A 17 -12.2 3
Tb09.160.1820 cytochrome c oxidase subunit V 22.2 -12.1 4
Tb11.01.6360 metalloprotease 74.4 -12.1 4
Tb09.160.3090 heat shock protein 90.8 -12.0 7
Tb927.6.3890 replication factor C, subunit 2 38.7 -12.0 6
Tb927.6.3160 splicing factor 3A, SAP61 61.4 -12.0 5
Tb927.2.2970 mitochondrial carrier protein 33.9 -12.0 5
Tb11.01.7190 B5R NADH-cytochrome b5 reductase 33.8 -12.0 5
Tb10.70.0120 COP-coated vesicle membrane protein erv25 precursor 28.1 -12.0 4
Tb11.01.4702 cytochrome c oxidase subunit 10 13.6 -12.0 3
Tb927.4.3570 Elongation Factor 1-beta 28.3 -11.9 12
Tb927.3.5090 tryparedoxin 22.1 -11.9 4
Tb927.7.1050 40S ribosomal protein S16 16.9 -11.6 5
Tb10.70.4380 cytochrome C oxidase assembly protein 26.9 -11.6 1
Tb927.2.4550 FtsJ cell division protein 102.8 -11.5 5
Tb927.8.3380 electron transfer protein 27.2 -11.5 4
Tb927.8.1510 RNA Helicase, ATP/DEAD, DBP2 62.4 -11.4 6
Tb927.5.1200 exosome component, CSL4 32.5 -11.4 4
Tb927.7.2710 NADH-cytochrome b5 reductase 31.8 -11.3 4
Tb09.160.4560 AK arginine kinase 44.6 -11.3 4
Tb927.4.1930 RNA-binding protein 31.2 -11.3 2
Tb09.244.2600 ankyrin-repeat protein 334.2 -11.2 9
Tb11.01.2530 kinesin-like protein 69.8 -11.2 4
Tb927.2.5980 HSP100 ATP-dependent Clp protease subunit, heat shock protein 100 (HSP100) 96.9 -10.9 3
Tb10.389.1170 P-type H+-ATPase 100.5 -10.8 21
Tb10.6k15.2900 ABC transporter 75 -10.8 7
Tb09.211.2260 protein kinase 118 -10.7 4
Tb927.6.970 CP cysteine peptidase precursor 48.4 -10.7 4
Tb11.22.0012 ERF1 eukaryotic peptide chain release factor subunit 1 50.9 -10.7 3
Tb10.70.1190 VCP valosin-containing protein homolog 85.7 -10.6 5
Tb09.211.2570 TCP-1-eta t-complex protein 1, eta subunit 61.4 -10.6 4
Tb11.02.1230 B5R NADH-cytochrome b5 reductase 34 -10.6 3
Tb10.05.0220 60S ribosomal protein L10a 24.5 -10.5 1
Tb11.01.1465 nascent polypeptide associated complex alpha subunit 11.3 -10.3 2
Tb927.5.2380 hydrolase, alpha/beta fold family 34.4 -10.1 4
Tb927.3.4190 endosomal integral membrane protein 81.5 -10.1 3
Tb11.01.2280 ubiquinone biosynthesis methyltransferase 32 -10.1 3
Tb927.8.6580 succinate dehydrogenase flavoprotein 66.8 -10.0 4
Tb10.70.0830 CHC clathrin heavy chain 190.5 -9.9 7
Tb11.01.8510 TCP-1-alpha 54.5 -9.9 4
Tb927.3.2900 elongation initiation factor 2 alpha subunit 46.7 -9.9 2
Tb927.4.560 dynein heavy chain 479.5 -9.8 8
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Tb927.7.5170 60S ribosomal protein L23a 18.1 -9.7 3
Tb11.02.4070 60S ribosomal protein L28 16.8 -9.7 2
Tb10.406.0600 SMC2 structural maintenance of chromosome 2 133.9 -9.4 7
Tb11.01.6880 cytosolic coat protein 25.5 -9.3 3
Tb11.01.1440 aminomethyltransferase 41.1 -9.2 1
Tb927.8.900 splicing factor pTSR1 37.4 -9.0 5
Tb927.2.560 RHS4-f 95.8 -8.9 12
Tb11.47.0035 calpain-like cysteine peptidase 660.2 -8.9 7
Tb927.7.3940 mitochondrial carrier protein 36.3 -8.9 5
Tb927.4.3740 FAZ1 192.4 -8.7 7
Tb09.211.2150 poly(A)-binding protein 1  62.1 -8.7 6
Tb927.7.270 ribosome biogenesis protein 49.3 -8.7 4
Tb927.2.510 RHS4 95.1 -8.6 8
Tb11.01.6300 phosphatidylinositol 3-related kinase 320.3 -8.6 7
Tb11.55.0014 vesicular transport protein (CDC48 homologue) 78.4 -8.6 4
Tb11.02.4570 pumilio-repeat, RNA-binding protein 75.1 -8.6 4
Tb10.70.5820 hexokinase 1 51.2 -8.4 15
Tb927.1.3180 40S ribosomal protein S11 20 -8.4 3
Tb11.01.1475 40S ribosomal protein S27 9.6 -8.4 1
Tb927.3.3670 RNA-binding protein, Nop4? 66.8 -8.2 5
Tb10.70.0140 HEL64 ATP-dependent DEAD/H RNA helicase HEL64 64 -8.1 4

Tb10.6k15.3250 succinyl-CoA ligase [GDP-forming] beta-chain 54.7 -8.1 4
Tb10.6k15.2550 Replication factor C, subunit 5, RFC3 38.7 -8.1 3
Tb11.02.5250 histone H2B variant 15.7 -8.1 3
Tb11.01.7400 GPI transamidase component Tta1 41.8 -8.1 3
Tb927.8.1160 vacuolar-type Ca2+-ATPase 121.1 -8.0 6
Tb927.7.1730 60S ribosomal protein L7 27.6 -8.0 5
Tb10.70.1670 40S ribosomal protein S10 19.2 -8.0 3
Tb10.70.6360 RPN5 proteasome regulatory non-ATP-ase subunit 5 54.8 -8.0 2

Tb10.6k15.2180 COX IX cytochrome c oxidase subunit IX 13.7 -7.8 2
Tb927.8.2740 TbRBP38 TbRBP38 mitochondrial RNA binding protein 38.4 -7.8 1
Tb11.01.3550 2-oxoglutarate dehydrogenase, E2 dihydrolipoamide succinyltransferase 41.1 -7.7 5
Tb927.7.3500 glutathione-S-transferase/glutaredoxin   35.4 -7.6 4
Tb11.01.5590  NRBD2 TbP37 RNA-binding protein  30.2 -7.6 3
Tb927.3.4680 RAB GDP dissociation inhibitor alpha   49.3 -7.6 1
Tb927.6.4370 eukaryotic translation initiation factor 3 subunit 7-like protein 61.3 -7.5 6
Tb11.01.1740 2-oxoglutarate dehydrogenase E1 component  112.8 -7.5 4
Tb10.61.1330 nucleosome assembly protein  41.2 -7.5 3
Tb09.160.4380  28G16.480 succinate dehydrogenase  21.2 -7.5 3
Tb927.4.1630  RRP6 ribosomal RNA processing protein 6   82.1 -7.5 2

N19B2.040 RHS3 66.6 -7.3 7
Tb11.01.3020 40S ribosomal protein L14 21.4 -7.3 2
Tb11.18.0013  RPN3 proteasome regulatory non-ATP-ase subunit 3  38.1 -7.2 2
Tb11.01.4870 inner membrane preprotein translocase Tim17  16.2 -7.1 4
Tb09.244.2790 rRNA processing protein  28.4 -7.1 3
Tb10.6k15.0960  54 NDH2 NADH dehydrogenase  54.3 -7.1 3
Tb11.01.7170 C-14 sterol reductase  51.1 -7.0 2
Tb10.70.0170 chaperone protein DNAJ  31.1 -7.0 1

Tb10.6k15.2050  RPS12 40S ribosomal protein S12  16 -6.9 3
Tb927.3.2600 ATP-dependent DEAD/H RNA helicase   244.8 -6.8 6
Tb09.160.4600 ABC transporter  72.1 -6.8 5
Tb927.5.2290 ATP-dependent RNA helicase   249.1 -6.8 5
Tb11.01.2560 40S ribosomal protein SA  27.5 -6.8 4
Tb927.8.3150  TCP-1-gamma TCP-1-gamma t-complex protein 1 gamma subunit   60.7 -6.8 4
Tb11.01.1790 60S ribosomal protein L29  8.2 -6.8 3
Tb11.02.0290 succinyl-coA:3-ketoacid-coenzyme A transferase, mitochondrial precursor  53 -6.7 4
Tb10.70.4570  RPN11 proteasome regulatory non-ATPase subunit 11  33.8 -6.7 2
Tb927.1.220 retrotransposon hot spot (RHS) protein  94.5 -6.6 10

Tb10.100.0060 centromere/microtubule binding protein, CBF5 48.2 -6.6 2
Tb11.01.1370  eIF-3 beta; TRIP-1 eukaryotic translation initiation factor 3 subunit  37.7 -6.6 1
Tb927.2.3080 oleate desaturase 47 -6.5 5
Tb09.211.4550 60S ribosomal protein L12  24 -6.5 3
Tb927.8.730 nucleolar RNA-binding protein   28.3 -6.5 2
Tb927.6.2700  Sm-E small nuclear ribonucleoprotein Sm-E   9.6 -6.5 1
Tb11.55.0009  GBP21 mitochondrial RNA binding protein 1  23.2 -6.4 3
Tb10.70.1720 dynein heavy chain  474.4 -6.3 5
Tb927.8.7600 amino acid transporter   58.1 -6.3 4
Tb10.70.7010 60S ribosomal protein L9  21.8 -6.3 4
Tb09.211.3310 replication factor C 39.5 -6.3 3
Tb11.01.3675   40S ribosomal protein S17 16.2 -6.3 1
Tb927.8.7170 inositol polyphosphate 1-phosphatase   42 -6.2 4
Tb11.02.5210 RNA binding protein  33.5 -6.2 1
Tb11.01.4622 calmodulin  16.8 -6.2 1
Tb09.211.4600 short-chain dehydrogenase  51 -6.2 1
Tb10.6k15.2290 protein disulfide isomerase  55.5 -6.1 3
Tb927.3.4910 signal peptide peptidase   38.6 -6.1 2
Tb927.6.4340  TbLSm5 U6 snRNA-associated Sm-like protein LSm5p   12.7 -6.0 1
Tb927.4.870 dynein heavy chain   509.7 -5.8 6

Tb09.211.0340  QM 60S ribosomal protein L10  24.7 -5.8 4
Tb927.2.3370 UDP-Gal or UDP-GlcNAc-dependent glycosyltransferase 43.6 -5.8 4
Tb10.389.0910 60S ribosomal protein L34 19.3 -5.8 1
Tb927.8.1940 endosomal integral membrane protein   70.4 -5.7 1
Tb11.02.5470 vacuolar type H+ ATPase subunit  26.3 -5.7 1
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Tb10.70.0090 dynein light chain  14 -5.6 1
Tb927.4.450 coatomer alpha subunit   132.7 -5.5 5
Tb10.05.0150 citrate synthase  53.5 -5.5 4
Tb927.5.2570 translation initiation factor   79.7 -5.5 3
Tb11.01.4701  MBAP1 membrane-bound acid phosphatase 1 precursor  59.3 -5.5 3
Tb10.61.2090 60S ribosomal protein L17  19 -5.5 2
Tb11.01.4050 heat shock protein HslVU, ATPase subunit HslU  54.8 -5.4 3
Tb927.6.3050 aldehyde dehydrogenase family   59.6 -5.3 2
Tb11.01.4620 ubiquitin ligase  203.2 -5.2 4
Tb10.61.3190 60S ribosomal protein L7 34.4 -5.2 3
Tb927.8.6000 fatty acid desaturase   49.3 -5.0 5

Tb10.6k15.0580  RPT6 proteasome regulatory ATPase subunit 6  45.7 -5.0 4
Tb927.2.4700  30M24.230 hypothetical protein, conserved   17 -5.0 2
Tb927.8.2310 (H+)-ATPase G subunit   12.7 -5.0 1
Tb10.70.1740 40S ribosomal protein S18  17.4 -4.9 3
Tb927.3.780  TbPSA7 proteasome alpha 7 subunit   25.4 -4.9 3
Tb927.8.1600 lysyl-tRNA synthetase 66.7 -4.9 2
Tb10.61.2070  RPS2 40S ribosomal protein S2  28.6 -4.8 3
Tb927.8.5120 cytochrome c   12.2 -4.8 2
Tb927.7.1300 protein disulfide isomerase   41.9 -4.8 2
Tb10.70.4800 ribosomal protein S25 12.5 -4.7 3
Tb927.7.230 40S ribosomal protein S33   11.1 -4.7 2
Tb10.61.1560 intraflagellar transport protein IFT80/CHE2 86.6 -4.7 1
Tb927.2.1180  25N24.100 retrotransposon hot spot (RHS) protein   67.7 -4.6 8
Tb927.4.750 50S ribosomal protein L7Ae   16.3 -4.6 1
Tb927.1.4490 acetyltransferase  19.6 -4.6 1
Tb927.6.3630 sphingosine phosphate lyase-like protein   59.4 -4.5 3
Tb927.4.2450 thioredoxin   44.4 -4.5 2
Tb927.2.5800  SBPase 1F7.270 sedoheptulose-1,7-bisphosphatase   35.4 -4.5 2
Tb11.01.6800 1-acyl-sn-glycerol-3-phosphate acyltransferase protein  30.3 -4.5 2

Tb10.6k15.3030 mitochondrial ATP-dependent zinc metallopeptidase  71 -4.5 2
Tb11.01.1920 60S ribosomal protein L22  15.2 -4.5 1
Tb10.61.1040 DNA-directed RNA polymerase, alpha subunit  37.3 -4.5 1
Tb927.1.2580  TbEAP1 RNasePH-like protein  42.6 -4.4 3
Tb11.02.5190 pantothenate kinase subunit  162 -4.4 3
Tb11.01.7535 60S ribosomal protein L27  15.5 -4.4 2
Tb927.5.1470  B5R NADH-cytochrome b5 reductase   32.7 -4.4 2

H25N7.20  ESAG4  protein  chr intermediate-sized-chromosome 139.1 -4.3 5
Tb927.5.800 Casein Kinase 38.3 -4.3 3
Tb927.2.1920  25N14.305 expression site-associated gene (ESAG) protein   53 -4.3 1
Tb09.211.4610 vesicle-associated membrane protein  23.1 -4.3 1
Tb927.6.3150 Hydin  500.8 -4.2 5
Tb927.3.5520  RPN1 26S proteasome regulatory non-ATPase subunit   99.8 -4.2 3
Tb927.2.3030  10C8.315 ATP-dependent Clp protease subunit, heat shock protein 78 (HSP78)   90.6 -4.2 3
Tb11.02.2070 long-chain-fatty acid-CoA ligase protein  73.3 -4.2 3
Tb927.7.4160 fatty acid elongase   34.3 -4.2 2
Tb09.160.2810  ACS3 1L12.290 fatty acyl CoA synthetase 3  77.8 -4.1 16
Tb11.02.0030 dynein heavy chain  484.6 -4.1 5

Tb10.6k15.3220  MTR4 ATP-dependent DEAD/H RNA helicase  107.2 -4.1 4
Tb10.61.1870 aminopeptidase  42.6 -4.1 2
Tb10.389.0160 periodic tryptophan protein 2  102.8 -4.1 2
Tb927.7.5680 deoxyribose-phosphate aldolase   30 -4.1 1
Tb927.2.3440  28H13.70 D-alanyl-glycyl endopeptidase-like protein   29.9 -4.1 1
Tb927.2.1170  25N24.105 retrotransposon hot spot (RHS) protein   76.5 -4.0 13
Tb927.1.3230 cell division cycle protein  77.2 -4.0 3

Tb10.6k15.1000 branch point binding protein, MSL5(?) 31.6 -4.0 2
Tb11.01.5860  TCP-1-epsilon t-complex protein 1, epsilon subunit  59.3 -4.0 1
Tb927.7.2070 heat shock protein DnaJ   36.3 -3.9 4
Tb927.8.7530 3,2-trans-enoyl-CoA isomerase, mitochondrial precursor   39.7 -3.9 4
Tb927.2.3780  28H13.240 translation initiation factor IF-2   94.4 -3.9 4
Tb10.70.7840 choline dehydrogenase  56.8 -3.9 4
Tb927.7.1340  HSP10 10 kDa heat shock protein   10.6 -3.9 3
Tb927.7.1790 adenine phosphoribosyltransferase   25.6 -3.9 1
Tb10.70.4300 U2 splicing auxiliary factor  29 -3.9 1
Tb927.8.750 nucleolar RNA-binding protein   39.7 -3.8 3
Tb927.8.5090  TRP11 TRP11 DNA-directed RNA polymerase I largest subunit   195.8 -3.8 2
Tb927.3.4020 phosphatidylinositol 4-kinase alpha 255.3 -3.7 4
Tb927.4.3870 receptor-type adenylate cyclase GRESAG 4   134.8 -3.7 4
Tb11.02.4040 protein transport protein Sec31  131 -3.7 3
Tb11.02.4030  ERF3 eukaryotic release factor 3  76.8 -3.7 2
Tb11.02.1105  NT8.1 NBT1 nucleobase/nucleoside transporter 8.1  47.6 -3.7 1

Tb10.6k15.0460 chaperone protein DNAJ  29.8 -3.7 1
Tb927.2.2670 histone H4   11.2 -3.6 4
Tb927.8.4950 kinesin   165 -3.6 4
Tb10.70.4280 delta-1-pyrroline-5-carboxylate dehydrogenase  61.9 -3.6 3
Tb11.01.6590   zinc finger protein 2, ZFP2 15.7 -3.6 1
Tb927.2.5660  1F7.200 adenylate kinase   29.3 -3.6 1
Tb11.01.1320 oxidoreductase  58.5 -3.5 3
Tb10.70.7020  RPS23 40S ribosomal protein S23  15.9 -3.5 1
Tb927.2.240  3B10.75 retrotransposon hot spot (RHS) protein   76.6 -3.4 19
Tb927.7.2550  RPT5 proteasome regulatory ATPase subunit 5   49.1 -3.4 2
Tb10.61.0440 peroxisome assembly protein  43.1 -3.4 2
Tb09.160.2780 fatty acyl CoA synthetase 2 79.5 -3.3 7
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Tb11.55.0006  TbIFT88 intraflagellar transport protein IFT88  89.6 -3.3 5
Tb11.02.1280 subtilisin-like serine peptidase  161.4 -3.3 4
Tb10.61.0990 kinesin  187.4 -3.3 4
Tb11.01.1680 polyubiquitin  76.5 -3.3 2
Tb11.01.7990 myosin  120.4 -3.2 4
Tb927.7.5230 lanosterol synthase   102.9 -3.2 3
Tb10.389.0880 heat shock protein  90.8 -3.2 1
Tb927.6.5050 V-type ATPase, C subunit   23 -3.1 2
Tb10.70.3170 60S ribosomal protein L30 11.5 -3.1 1
Tb927.7.280 cyclophilin-type peptidyl-prolyl cis-trans isomerase 24.2 -3.1 1
Tb927.8.6170  TK TK transketolase   72.5 -3.1 1
Tb927.5.1520 heat shock protein HslVU, ATPase subunit HslU   52.4 -3.0 3
Tb10.26.0140 pumillio RNA binding protein  93 -3.0 1
Tb927.5.3120 translation initiation factor   34.9 -3.0 1
Tb927.8.1990  TRYP2 TRYP2 tryparedoxin peroxidase   25.6 -3.0 1
Tb927.4.4360 monoglyceride lipase   34.9 -3.0 1
Tb09.211.1695  Sm-F small nuclear ribonucleoprotein Sm-F  8.3 -3.0 1
Tb10.70.7050  TCP-1-delta t-complex protein 1, delta subunit  58.3 -2.9 3
Tb11.01.8470 dihydrolipoyl dehydrogenase  50.4 -2.9 2
Tb927.4.3840 nucleolar protein   59 -2.9 2
Tb927.6.3840 reticulon domain protein   21 -2.8 3
Tb10.70.3950 RNA-binding protein  96.5 -2.8 2
Tb927.5.550 vacuolar ATP synthase   42.8 -2.8 2
Tb927.2.450 RHS4 97.9 -2.7 16
Tb927.6.140 RHS5 69.3 -2.7 6
Tb927.8.4170 RNA-binding protein   93 -2.7 3
Tb11.02.0090 kinesin  172.2 -2.7 3
Tb10.61.1090 histone H3 variant  16 -2.6 3
Tb927.4.4490  MRPE; PGPA multidrug resistance protein E   193.6 -2.6 2
Tb11.01.3080 heat shock protein 70  73.5 -2.5 10
Tb11.03.0670 transcription factor  67.5 -2.5 4
Tb927.3.3590 U3 small nucleolar ribonucleoprotein protein MPP10   75.2 -2.5 3
Tb11.01.3390  TOP2 DNA topoisomerase II  162.6 -2.5 3
Tb927.1.2670 axoneme central apparatus protein  56 -2.5 2
Tb927.4.3890 ATP-dependent RNA helicase   122.7 -2.5 2
Tb927.4.250 retrotransposon hot spot (RHS) protein   76.5 -2.4 16
Tb927.3.930 dynein heavy chain   531 -2.4 3
Tb927.1.1370 rRNA biogenesis protein, RRP5 75 -2.4 2
Tb09.160.4240  28G16.410 nucleosome assembly protein-like protein  47.5 -2.4 2
Tb11.02.2380 retrotransposon hot spot protein (RHS, pseudogene)  0 -2.3 8
Tb11.02.0760 dynein heavy chain  530.8 -2.2 4
Tb09.244.2560 kinesin  74.5 -2.2 2
Tb11.02.4640  TTL tubulin-tyrsoine ligase-like protein  108.3 -2.2 2
Tb927.5.890 oligosaccharyl transferase subunit   89.2 -2.1 8
Tb927.7.7450 GTP-binding protein   68.4 -2.1 3
Tb927.4.1270 RuvB-like DNA helicase, RVB1 49.8 -2.0 2
Tb10.100.0160  COXVI cytochrome C oxidase subunit VI  19.1 -2.0 2
Tb927.4.5250 UDP-Gal or UDP-GlcNAc-dependent glycosyltransferase   46.5 -2.0 2
Tb09.160.3710  28G16.165 proliferative cell nuclear antigen (PCNA)  32.2 -2.0 1
Tb927.4.1020 serine-palmitoyl-CoA transferase 54 -1.9 2
Tb11.01.3690 splicing factor 3B subunit 1  121.9 -1.8 2
Tb11.27.0001 receptor-type adenylate cyclase GRESAG 4  137.5 -1.8 2
Tb927.8.5250 coatomer delta subunit   57.2 -1.8 2

N19B2.135  RHS4 retrotransposon hot spot protein, RHS4  chr intermediate-sized-chromosome 96.3 -1.6 11
Tb11.24.0012 variant surface glycoprotein (VSG, atypical) 51.6 -1.6 2

Tb10.6k15.0270 60S acidic ribosomal protein  25.6 -1.6 2
Tb927.2.5280  30J2.90 trans-sialidase   77.1 -1.6 2
Tb927.7.1600 C-1-tetrahydrofolate synthase, cytoplasmic   31.9 -1.6 2
Tb927.7.680 chaperone protein DNAJ   88.6 -1.6 2

Tb09.160.4220 General transcription factor IIB 37.6 -1.6 1
Tb927.4.4250 UDP-Gal or UDP-GlcNAc-dependent glycosyltransferase   44.5 -1.5 2
Tb10.406.0560  microtubule-associated protein, MAP 237.3 -1.4 10
Tb927.2.400  3B10.155 retrotransposon hot spot (RHS) protein   90.2 -1.4 5

Tb10.406.0050 HNRNPA, RNA-binding protein 32.3 -1.4 2
Tb11.01.7390   AMP Deaminase 163.1 -1.4 2
Tb11.01.5225 cytochrome B5 12.8 -1.4 2
Tb10.70.5480 ubiquitin-conjugating enzyme variant Kua homologue  33.7 -1.4 2
Tb927.7.320 TbRBP8, RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain) 20.2 -1.4 2

Tb09.211.1820 DNA polymerase epsilon catalytic subunit  254.8 -1.4 1
Tb10.100.0080 40S ribosomal protein S6 28.4 -1.3 6
Tb927.8.8330 calpain   98.3 -1.3 4
Tb09.160.4570  AK arginine kinase  41.5 -1.3 4
Tb10.70.5950 calpain  177.9 -1.3 2
Tb927.7.7500 iron/ascorbate oxidoreductase family protein   36.9 -1.3 2
Tb927.6.990  CP cysteine peptidase precursor   48.2 -1.2 4

Tb09.211.0330 chaperone protein DNAJ  35.5 -1.2 2
Tb11.02.0620  NOG1 nucleolar GTP-binding protein 1  74.7 -1.2 2
Tb927.6.4300  GAPDH glyceraldehyde 3-phosphate dehydrogenase, glycosomal   43.8 -1.1 24
Tb10.406.0390 histone H2B  12.5 -1.1 10
Tb927.8.1200  TbA2 TbA2 vacuolar-type Ca2+-ATPase 2   118.9 -1.1 5
Tb09.211.2420  p277 PRP8 protein homologue  276.8 -1.1 2
Tb927.4.5030  PP1 serine/threonine protein phosphatase PP1   39.3 -1.1 2
Tb11.01.5690  DRBD4 RNA-binding protein  54.6 -1.0 2



Accession 
Number

GeneDB Annotation Mass 
(kDa)

Protein 
Expect

Total # of 
peptides

Tb927.8.1330 60S ribosomal protein L7a   30.8 -1.0 2
Tb09.211.0140 chaperone protein DNAJ  47.7 -0.8 2
Tb927.2.6200 adenosine transporter 2 51.2 -0.3 4
Tb927.2.6320 adenosine transporter 2 50.8 -0.2 4
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APPENDIX D — S. CEREVISIAE DOUBLE MUTATION MATRIX  

To plan which nucleoporins to target for RNAi analysis, we conducted a 

literature survey of the genetic interactions between yeast nucleoporins using the 

BIOBASE Proteome and SGD internet genomic databases.  The results of this 

survey is summarize in Figure 34.  Nups shaded in blue are FG-repeat domain 

containing Nups.  Those shaded in green are the scaffold Nups and those Nups 

colored pink are the transmembrane anchoring Nups.  The first column indicates 

those Nups which exhibit a lethal phenotype (denoted with an ‘X’).  If two Nups 

are synthetically lethal, an ‘X’ is placed at their intersection within the matrix.  

White space is the result of insufficient data, but since there have been several 

large scale studies, it is likely that those double knockouts are viable (Collins et 

al., 2007; Giaever et al., 2002; Loeillet et al., 2005; Tong et al., 2004). 

It is interesting to note that the majority of reported synthetic lethal 

interactions are between scaffold Nups and themselves or other classes, but only 

4 (including Nup145c) scaffold Nups are singularly lethal when deleted.  This 

illustrates the robust and redundant nature of the scaffold.  While much of the 

FG-repeat domains can be deleted (Strawn et al., 2004), over half of the FG-

Nups are required for survival.  For example, all of the FG-repeats on Nup159 

may be removed with little effect (Strawn et al., 2004), but deletion of the entire 

Nup cannot be tolerated (Giaever et al., 2002).  This suggests that their 

anchoring domains play additional roles within the complex and are vital for 

proper NPC architecture and formation. 
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Figure 34:  S. cerevisiae double mutation matrix.  Colored in blue 

are FG-Nups and in green are the scaffold Nups.  In pink are the 

transmembrane Nups.  The first column, labeled “deletion” 

indicates which Nups causes cell death when knocked out. 

 

D
el

et
io

n
N

SP
1

N
U

P1
N

U
P4

2
N

U
P4

9
N

U
P5

3
N

U
P5

7
N

U
P5

9
N

U
P6

0
N

U
P8

2
N

U
P1

59
N

U
P1

00
N

U
P1

16
N

U
P1

45
N

IC
96

N
U

P8
4

N
U

P8
5

N
U

P1
20

N
U

P1
33

N
U

P1
57

N
U

P1
70

N
U

P1
88

N
U

P1
92

SE
C

13
SE

H
1

N
D

C
1

PO
M

15
2

PO
M

34
G

LE
1

G
LE

2
M

LP
1

M
LP

2
N

U
P2

NSP1
NUP1

NUP42
NUP49
NUP53
NUP57
NUP59
NUP60
NUP82

NUP159
NUP100
NUP116
NUP145

NIC96
NUP84
NUP85

NUP120
NUP133
NUP157
NUP170
NUP188
NUP192

SEC13
SEH1
NDC1

POM152
POM34

GLE1
GLE2
MLP1
MLP2
NUP2



169 
 

APPENDIX E — PRIMER CATALOG FOR IN SITU GFP TAGGING 

Table 9 lists the primers we used to insert the GFP epitope into various 

loci within the T. brucei genome.  Primers are constructed from the 80 

nucleotides which are homologous to the 3’ terminal end of the gene of interest 

(capital letters in the following table).  Lower case letters represent the primer 

region that is homologous with the pMOTag series of vectors.  Also indicated are 

the masses of the proteins along with the additional mass from the GFP moiety. 
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Table 9:  List of primers used for GFP epitope tagging in this study. 
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