Rockefeller University Digital Commons @ RU

Student Theses and Dissertations

2008

Proteomic, Bioinformatic and Functional Characterization of the Nuclear Pore Complex of the African Trypanosome

Jeffrey Allen DeGrasse

Follow this and additional works at: http://digitalcommons.rockefeller.edu/student_theses_and_dissertations

Part of the Life Sciences Commons

Recommended Citation

DeGrasse, Jeffrey Allen, "Proteomic, Bioinformatic and Functional Characterization of the Nuclear Pore Complex of the African Trypanosome" (2008). *Student Theses and Dissertations*. Paper 26.

This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact mcsweej@mail.rockefeller.edu.

PROTEOMIC, BIOINFORMATIC AND FUNCTIONAL CHARACTERIZATION OF THE NUCLEAR PORE COMPLEX OF THE AFRICAN TRYPANOSOME

A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy

> by Jeffrey Allen DeGrasse June 2008

© Copyright by Jeffrey Allen DeGrasse 2008

PROTEOMIC, BIOINFORMATIC AND FUNCTIONAL CHARACTERIZATION OF THE NUCLEAR PORE COMPLEX OF THE AFRICAN TRYPANOSOME

Jeffrey Allen DeGrasse, Ph.D. The Rockefeller University 2008

The eukaryotic genome, and its associated proteins, is intricately packaged and sequestered within the boundary of a double membrane, known as the nuclear envelope (NE). Transport across the NE is mediated by large protein assemblages known as nuclear pore complexes (NPCs). Yeast and vertebrate NPCs are comprised of about 30 proteins, termed nucleoporins (Nups), which are present in multiple copies. The origins and evolution of the nucleus and NPC are not yet clear, although it seems likely that the nucleus arose only once in eukaryotic evolution. To further our understanding of the evolution of the NPC, we characterized the NPC of a distantly related organism, relative to yeast and vertebrates. The parasitic protist *Trypanosoma brucei* is a suitable candidate for such a study due to its sequenced genome and experimental tractability, compared to other protists. In this thesis, we present the comprehensive analysis of the protein components of the trypanosome NPC.

Towards this end, we used several biochemical and proteomic strategies to identify the proteins that associate with a preparation of enriched *T. brucei* NEs. Discerning authentic trypanosome Nups from the 859 proteins identified was challenged by the large sequence divergence between yeast, vertebrates and trypanosomes. To overcome this challenge, we used a suite of rigorous bioinformatic tools, which allowed us to identify 24 putative Nups. We then confirmed fully half of the putative trypanosome Nups by fluorescent localization, and observed that the density of trypanosome NPCs around the nucleus is less than that of yeast or vertebrates. This lower density enabled us to visualize individual NPCs and note differences in the spatial distribution of NPCs between these three species. To further characterize these putative Nups and the NPC, we employed RNAi. The results of these studies suggest that, in addition to its role in nucleocytoplasmic transport, the trypanosome NPC plays a key role in maintaining the stability and morphology of the NE.

Despite significant divergence with respect to primary structure and species-specific innovations, the trypanosome NPC contains many homologs, domains and motifs found in opisthokonts. Given these findings, it is reasonable to infer that the architecture of the NPC is conserved across Eukaryota. This suggests that the NPC of the last common eukaryotic ancestor had many features in common with NPCs of contemporary bikonts (e.g. plants and excavates) and opisthokonts (e.g. animals and fungi).

The modest Rose puts forth a thorn, The humble sheep a threat'ning horn: While the Lily white shall in love delight, Nor a thorn nor a threat stain her beauty bright. - "The Lily," by William Blake

ACKNOWLEDGEMENTS

First and foremost, this work would not be possible without the extraordinary mentorship, encouragement and patience of Professors Brian T. Chait and Michael P. Rout. Their steadfast excitement for my project was an inspiration and deeply appreciated, especially during the more difficult times of experimental research.

It is an honor and a privilege to be a part of the Laboratory for Mass Spectrometry and Gaseous Ion Chemistry. I am fortunate to continue working with such a group of talented and dedicated scientists.

I thank Doctors Markus Kalkum, Andrew Krutchinsky, Júlio Padovan, Beatrix Ueberheide, and Wenzhu Zhang for helping me understand the various aspects of mass spectrometry. I thank Dr. David Fenyö whose informatic programs allowed me to efficiently extract the gold from the copious amount of data that was generated.

I have had numerous enlightening discussions with everyone in the lab, past and present. I acknowledge Dr. Martine Cadene, Dr. Emmanuel Chang, Dr. Ileana Cristea, Mr. Herb Cohen, Dr. Steve Cohen, Ms. Sarah Flowers, Dr. Erica Jacobs, Dr. Tijana Jovanovic, Dr. Mi Jin, Dr. Ji-Eun Kim, Dr. Derek McLachlin, Ms. Kelly Molloy, Dr. Sunnie Myung, Mr. Matt Sekedat, Dr. Alan Tackett, Dr. Michelle Trester-Zedlitz, Dr. Qingjin Wang, and Ms. Eileen Woo. I thank Mrs. Gladys McMilleon for her support, humor and jelly beans.

The members of the M.P. Rout lab exhibited incredible patience helping me, a one-time analytical chemist, learn biology and biochemistry. I am especially indebted to Dr. Mario Niepel who bore the brunt of my ignorance. I also thank Dr. Vincent Archambault, Dr. Ben Timney, and Ms. Rosemary Williams for all their help, support and insightful conversations.

I am indebted to Dr. G.A.M. Cross for allowing me to work in his lab and his very helpful advice. I especially thank Mr. Nicolai Siegel for his continued help, support and friendship. I have had many rewarding discussions with Dr. Luisa Figueiredo, Dr. Christian Janzen, Mrs. Magdelena Kartvelishvili, Dr. Hee-Sook Kim, Dr. Bibo Li, Ms. Jenny Li, Dr. Veena Mandava, and Dr. Eiji Okubo.

I thank Dr. Thomas Seebeck and Dr. Michael Oberholzer for the gift of the GFP tagging vectors and Dr. Bill Wickstead for the gift the TbNup-1 antibody.

This project required extensive bioinformatic work. I thank Dr. Andrej Sali and his lab for allowing me to visit to learn the nitty-gritty of bioinformatics. Dr. Damien Devos was kind enough to work with me to develop a rigorous research strategy to tackle the challenge of identifying the TbNups. I also thank Dr. Frank Alber for his deep insight.

I thank the Field lab at the University of Cambridge for the insightful conversations, support and beer. I especially thank Dr. Mark Field, whose advice and hospitality was invaluable during this work.

At the bioimaging facility, I thank Dr. Alison North and Dr. Patrick Nahirney. Alison's patience with someone who had never attempted bio-imaging is worthy of high praise. Patrick provided the excellent TEM instruction that enabled me to observe several fascinating phenotypes induced by RNAi knockdowns.

I'd like to thank my Faculty Advisory Committee for their advice and support over the years.

I also thank Professor Joe Glavy for his critical read of this thesis, inexhaustible list of possible experiments to try, the α HsNup107 and the many excellent conversations that have shaped many of my arguments in this thesis.

All of the friendships that I have made here at Rockefeller have made this journey an extremely enjoyable and valuable one. To my poker buddies, I'm happy that I could supplement your income over the years.

Bishop Desmond Tutu once said: "You don't choose your family. They are God's gift to you, as you are to them." I dedicate my thesis to my family. The self-sacrifice and love of my parents, Quintin and Bonita DeGrasse, molded me into who I am today. My sister, Wendy, recently went back to school to earn her college degree and is an inspiration to us all. My niece, Casey, is exceptional and we are so very proud of her. There will always be a special place in my heart for Tish, whose love, support, advice and encouragement made the tough days easier and the good days even better.

This work was funded by a fellowship provided by the Training Program in Chemical Biology.

TABLE OF CONTENTS

Chapter 1 — Introduction	1
THE NUCLEUS AND THE NUCLEAR ENVELOPE THE NUCLEAR PORE COMPLEX. Classification and Characterization of Nucleoporins. Primary Function: Nucleocytoplasmic Transport. The NPC is Dynamic and Adaptive. Other Roles for the NPC THE NPC THROUGHOUT EVOLUTION TRYPANOSOMA BRUCEI A World Health Issue. BIOLOGICAL APPLICATIONS OF MASS SPECTROMETRY.	2 7 10 13 13 16 19 22 25
CHAPTER 2 — BIOCHEMISTRY AND PROTEOMICS: THE IDENTIFICATION OF PROTEIN THAT ASSOCIATE WITH THE <i>T. BRUCEI</i> NUCLEAR ENVELOPE PREPARATION	s 27
BIOCHEMISTRY AND MASS SPECTROMETRY — MATERIALS AND METHODS Strategy 1 (Figure 8, Red Arrows) Strategy 2 (Figure 8, Blue Arrows) Strategy 3 (Figure 8, Green Arrows) Strategy 4 (Figure 8, Magenta Arrows) Strategy 5 (Figure 8, Black Arrows) RESULTS AND DISCUSSION	27 29 35 38 40 44 46
CHAPTER 3 — THE BIOINFORMATIC ANALYSIS OF THE TBNEP	52
STRATEGY AND ALGORITHMS SORTING THE <i>T. BRUCEI</i> NUCLEAR ENVELOPE PREPARATION DATASET IDENTIFYING AND CHARACTERIZING THE <i>T. BRUCEI</i> NUCLEAR PORE COMPLEX The Structural Scaffold The Nuclear Basket: MIps/Tpr The FG-Nups The FG-Nups The Karyopherins The Autoproteolytic domain The NPCs of Neighboring Species	52 55 61 70 72 80 82 85
CHAPTER 4 — GFP LOCALIZATION OF PUTATIVE NUCLEOPORINS METHODS RESULTS AND DISCUSSION TbNup Localization NPC Density Determination	87 88 91 91 97
CHAPTER 5 — KNOCKDOWN STUDIES OF PUTATIVE NUCLEOPORINS USING RNA INTERFERENCE	. 101
Methods Results and Discussion	102 105

CHAPTER 6 — DISCUSSION AND FUTURE DIRECTIONS
COMPOSITION AND STRUCTURE OF THE TBNPC
APPENDIX A — TABLE OF CLOSELY RELATED NUCLEOPORIN ORTHOLOGS
APPENDIX B — THE ISOLATION OF THE T. BRUCE NUCLEUS AND SUBNUCLEAR
COMPARTMENTS: THE <i>T. BRUCEI</i> NUCLEAR ENVELOPE PREPARATION (TBNEP) 137
MATERIALS
The Isolation of <i>Trypanosoma brucei</i> Nuclei142
Subnuclear Fractionation145
APPENDIX C — THE TBNEP DATASET
APPENDIX D — S. CEREVISIAE DOUBLE MUTATION MATRIX
APPENDIX E — PRIMER CATALOG FOR IN SITU GFP TAGGING
REFERENCES

FIGURE 1	3
FIGURE 2	4
FIGURE 3	6
FIGURE 4	8
FIGURE 5	12
FIGURE 6	20
FIGURE 7	24
FIGURE 8	
FIGURE 9	31
FIGURE 10	37
FIGURE 11	42
FIGURE 12	51
FIGURE 13	59
FIGURE 14	62
FIGURE 15	64
FIGURE 16	67
FIGURE 17	69
FIGURE 18	71
FIGURE 19	76
FIGURE 20	79
FIGURE 21	81
FIGURE 22	83
FIGURE 23	84
FIGURE 24	89
FIGURE 25	93
FIGURE 26	98
FIGURE 27	100
FIGURE 28	103
FIGURE 29	106
FIGURE 30	107
FIGURE 31	108
FIGURE 32	112
FIGURE 33	137
FIGURE 34	168

LIST OF FIGURES

LIST OF TABLES

TABLE 1	
TABLE 2	
TABLE 3	
TABLE 4	
TABLE 5	
TABLE 6	
TABLE 7	
TABLE 8	
TABLE 9	

ACRONYMS AND ABBREVIATIONS

BLAST	Basic Local Alignment Search Tool
DHB	2,5-Dihydroxy Benzoic acid
EM	Electron Microscopy
ER	Endoplasmic Reticulum
ESI	Electrospray Ionization
GDP	Guanosine diphosphate
GFP	Green Fluorescent Protein
GOI	Gene Of Interest
GTP	Guanosine triphosphate
HA	Hydroxyapatite
HMM	Hidden Markov Model
INM	Inner Nuclear Membrane
Kap(s)	Karyopherin(s)/Transportin(s)
LDS	Lithium Dodecyl Sulfate
LCEA	Last Common Eukaryotic Ancestor
m/z	Mass-to-charge Ratio
MALDI	Matrix Assisted Laser Desorption/Ionization
MOPS	3-(N-morpholino)propanesulfonic acid
MS	Mass Spectrometry
MS/MS	Tandem Mass Spectrometry
NE	Nuclear Envelope
NEP	Nuclear Envelope Preparation
NES	Nuclear Export Sequence
NLS	Nuclear Localization Sequence
NPC	Nuclear Pore Complex
Nup(s)	Nucleoporin(s)
ONM	Outer Nuclear Membrane
ORF	Open Reading Frame
PAGE	Polyacrylamide Gel Electrophoresis
PCLF	Pore Complex Lamina Fraction
PSI-BLAST	Position-Specific Iterative BLAST
PVP	Polyvinylpyrrolidone
qPCR	Quantitative PCR
QqTOF	Quadrupole-quadrupole Time Of Flight
RNAi	RNA Interference
SDS	Sodium Dodecyl Sulfate
siRNA	Short Interfering RNA
SMB	Single Marker Bloodstream
TbNEP	T. brucei Nuclear Envelope Preparation
TEM	Transmission Electron Microscopy
TET	Tetracycline

CHAPTER 1 — INTRODUCTION

Unlike prokaryotes, eukaryotes sequester their genome and associated proteins within a conspicuous, complex and dynamic organelle known as the nucleus — the epicenter for information storage and retrieval (Foster and Bridger, 2005; Vandriel et al., 1991). Serving as a physical boundary between the nuclear interior (nucleoplasm) and the cytosol is a double membrane known as the nuclear envelope (NE). To translocate across the NE, molecules must pass through the nuclear pore complex (NPC), which thus functions as a gatekeeper. The composition and function of the NPC has been characterized for the metazoa (mainly vertebrates) and the fungi (principally *S. cerevisiae*) (Cronshaw et al., 2002; Rout et al., 2000).

The nucleus was the first organelle to be described and its discovery is attributed to Franz Bauer in 1802. It is the presence of a nucleus that differentiates eukaryotes from the bacteria (prokaryotes). Though the prokaryote *Gemmata obscuriglobus* contains a double membrane bounded nucleoid, it remains to be determined how this structure relates to the eukaryotic nucleus (Lindsay et al., 2001). All current evidence points towards divergent evolution of the eukaryotic tree of life, which implies that the nucleus, and the entire endomembrane system, arose only once through natural selection and was present in the Last Common Eukaryotic Ancestor (LCEA) (Martin, 2005).

The NPC may serve as a suitable structure for resolving the evolutionary relationships between eukaryotes. Since only one of the possibly many proto-

forms of the nucleus survived natural selection, it is reasonable to posit that the core mechanism to move materials across the NE was present within the LCEA (Martin, 2005). In such a scenario, the inherited components of the LCEA NPC would have diverged in such a manner that is synapomorphic, and may used to establish phylogenies.

In this thesis, we focus on the NPC in an evolutionary context. Recognizing that the fungi and metazoa are closely related in the group of eukaryotes known as opisthokonts, relative to the entire catalog of eukaryotic species, we describe a third, more distantly related, system. Here, we characterize the NPC of the protist *Trypanosoma brucei* using an integrated approach, which includes proteomics, bioinformatics, *in situ* fluorescent labeling, and RNAi. The excavates are a diverse group of protists that were once thought to represent an early branch of eukaryotes, though recent efforts to root the eukaryotic tree have called this into question (Keeling et al., 2005; Stechmann and Cavalier-Smith, 2002). With this assembled triad of NPCs, we are in a position to discuss the divergent evolution of the NPC and the core requirements of nucleocytoplasmic transport.

THE NUCLEUS AND THE NUCLEAR ENVELOPE

As depicted in <u>Figure 1</u>, the nucleus is bound within a continuous membrane structure known as the nuclear envelope (NE) (Callan and Tomlin, 1950). The NE is comprised of three distinct membrane domains. The outer nuclear membrane (ONM), which is continuous with the endoplasmic reticulum (ER) (Gerace and Burke, 1988; Newport and Forbes, 1987). The inner nuclear

membrane (INM) is populated with the proteins involved with chromatin regulation and nuclear stability (Dreger et al., 2001; Schirmer et al., 2003). Periodically, the INM and the ONM fuse to form annuli, which is the third membrane domain. These pores are plugged with nuclear pore complexes (NPCs) — large protein complexes that arbitrate macromolecular traffic into and out of the nucleus (Feldherr, 1962; Gorlich and Kutay, 1999; Wente, 2000). <u>Figure 2</u> shows the generalized topology of the metazoan nuclear envelope. Within the nuclear face of many metazoan NEs, a dense network of coiled coil proteins known as lamins form a structural lattice (Cohen et al., 2001). Even though all three membrane domains are continuous, they each possess a discreet assemblage of proteins with specialized functions (Prunuske and Ullman, 2006).

Figure 1: Thin section EM of *X. laevis* oocyte NE showing the three domains of the NE. Arrow heads indicate NPCs. Scale bar = 200nm (from Gerace and Burke, 1988).

Figure 2: Topology of the generalized nuclear envelope. Also shown are examples from the major classes of nuclear envelope proteins: (a), nuclear pore proteins; (b), inner nuclear membrane proteins; (c), lamins; and (d), chromatin proteins (from Burke and Ellenberg, 2002).

THE NUCLEAR PORE COMPLEX

Continuous bidirectional trafficking of specific macromolecules across the NE is requisite for cellular function. The regulators and facilitators of nucleocytoplasmic exchange, NPCs, are large protein assemblies of discreet sub-complexes with an 8-fold degree of symmetry (Maul, 1971; Suntharalingam and Wente, 2003). The building blocks of the NPC are generally large proteins termed nucleoporins, or Nups. The majority of Nups have been characterized within the last 15 years, culminating in two large scale proteomic efforts. One study sought to identify and localize all the Nups in the Saccharomyces cerevisiae NPC and began work to determine its molecular architecture (Rout et The molecular architecture of the NPC is defined by the al., 2000). interconnectivity of the Nups into several major sub-complexes (for example, the seven member ScNup84/HsNup107 sub-complex), which then interact to generate the overall structure of the NPC (Fahrenkrog and Aebi, 2003). The yeast NPC, one of the largest protein structures in the cell, is a 44 MDa complex comprised of about 30 different Nups that are present in multiple copies of 8, 16 or 32 for a total of at least 456 Nups per NPC (Rout et al., 2000). The second proteomic study, focusing on the Rattus norvegicus NE, revealed that the mammalian NPCs are ~60 MDa and also contain about 30 distinct Nups (Cronshaw et al., 2002). Even though yeast and mammals descended through different kingdoms, their NPCs share many similarities in composition and architecture (Suntharalingam and Wente, 2003).

Over the last two decades, many electron microscopy (EM) studies have

visualized the overall structure and gross architecture of the NPC. Collectively, these studies have revealed that the morphology of the NPC is generally conserved across species (Akey and Radermacher, 1993; Lim et al., 2006; Lim and Fahrenkrog, 2006). Cryoelectron tomography coupled with three dimensional reconstruction offers the highest resolution (6 nm) structure to date of the *Dictyostelium discoideum* NPC (Beck et al., 2004; Beck et al., 2007). Shown in Figure 3, the diameter of the slime mold NPC is about 125 nm while the central pore itself is 60 nm. The structure resolves cytoplasmic filaments which point inwards toward the pore. The basket extends about 60 nm into the nucleoplasm. Overall, cargo must traverse about 110 nm through the NPC.

Figure 3: The reconstructed 3-dimensional structure of the *D. discoideum* NPC as determined by cryoelectron tomography (from Beck et al., 2004).

CLASSIFICATION AND CHARACTERIZATION OF NUCLEOPORINS

The molecular architecture of the NPC is modular (Devos et al., 2006). Nucleoporins form discreet sub-complexes, which in turn interact to compose three distinct groups within the NPC: transmembrane anchoring Nups, the structural scaffold Nups, and the FG-Nups, which are anchored to the scaffold (<u>Figure 4</u>) (Alber et al., 2007a). The FG-Nups play a functional role in nucleocytoplasmic transport and contain natively disordered phenylalanineglycine-containing sequence repeat domains (Denning et al., 2003; Devos et al., 2006).

Figure 4: The structure and molecular architecture of the NPC. The membrane ring anchors the NPC into the pore within the NE. On top of membrane ring, lays the structural scaffold, which is comprised of the inner and outer rings of Nups and the linker Nups. Finally, the FG-Nups line the central channel to enable selective nucleocytoplasmic transport (from Alber et al., 2007a).

Given the low primary sequence similarity between Nups of yeast and vertebrates (for example, between S. cerevisiae and mammals) (Suntharalingam and Wente, 2003; Vasu and Forbes, 2001), we found that information about the secondary and tertiary structures of Nups is imperative to confidently predict orthologs in other, more distant, species. While several Nup structures have been experimentally determined at atomic resolution (Berke et al., 2004; Hodel et al., 2002; Jeudy and Schwartz, 2007; Melcak et al., 2007; Napetschnig et al., 2007; Vetter et al., 1999; Weirich et al., 2004), representing about 5% of the NPC, a wealth of information was gleaned from a homology modeling study that predicted the structures of all of the nucleoporin domains (Devos et al., 2006). Remarkably, each of the more than forty domains present in the population of Nups is predicted to adopt one of only eight different fold types. Of these, thehelix rich α -solenoid, the FG-repeat domains, and the WD-repeat β -propeller folds account for more than 80% of nucleoporin domains (Andrade et al., 2001a; Andrade et al., 2001b; Denning et al., 2003; Devos et al., 2006; Neer et al., 1994).

<u>Appendix A</u> lists the nucleoporins and the transiently interacting Nup Rae1/Gle2 of the well characterized human (based, in part, on the closely related rat) and budding yeast NPC. We determined the orthologs in other closely related species as well as *Arabidopsis thaliana* through BLAST analysis (and confirmed by reciprocal BLAST search and published data). Although several Nups were not identified by sequence homology, the NPCs of closely related species are generally able to be elucidated using bioinformatics. This is not the

case, however, when we extend such analyses to distantly related species, such as the Excavata.

PRIMARY FUNCTION: NUCLEOCYTOPLASMIC TRANSPORT

The NPC appears to be freely permeable to small molecules under 40 kDa (Keminer and Peters, 1999). However, larger macromolecules require a mechanism built upon transport factors (karyopherins) and a RanGTP/RanGDP gradient to transit through the NPC (Madrid and Weis, 2006; Stewart, 2007a). Karyopherins (Kaps) are highly conserved transport factors that bind their cargo through the recognition of specific nuclear localization sequences (NLS) or nuclear export sequences (NES) (Dingwall and Laskey, 1991; Lange et al., 2007; Mosammaparast and Pemberton, 2004). The structural details of the Kap-cargo-Nup interaction have yielded many clues toward the mechanism of transport (Stewart, 2007a).

As the Kap-cargo complex passes through the center channel and out of the NPC, it interacts with the FG-Nups, through their FG-repeat domains (Stewart, 2006). Phe residues occupy the deep groove between the α -helices of the HEAT domain of the Kap, while the disordered spacer region between repeating Phe residues lays across the surface of the Kap (Bayliss et al., 2000b; Denning et al., 2003). Since the FG-Nups are present in multiple copies, the yeast NPC has more the 160 FG-repeat domains representing several thousand individual FG-motifs (Rout et al., 2000). Although over half of the mass of the FG-repeats in yeast may be deleted without abolishing the selectivity and transport capacity of the NPC (Strawn et al., 2004), some FG-repeat domains are

more essential than others. It has also been shown that specific structural scaffold Nups play a key role in anchoring FG-Nups to the NPC. For example, deletion of the yeast Nup170 or Nup188 (Shulga et al., 2000) and *C. elegans* Nup205 or Nup93 (Galy et al., 2003), which are members of the structural scaffold, increases the permeability of the NPC.

The energy for this process is provided through the hydrolysis of GTP to GDP, which is associated with the small GTPase Ran (Figure 5). Vectorial transport is established in part by the RanGTP/RanGDP gradient across the NE, which is maintained by specific localization of RanGAP (hydrolyzes GTP to GDP) into the cytoplasm and RanGEF (exchanges GTP for GDP), which is bound to chromatin (Mosammaparast and Pemberton, 2004). A protein destined for the nucleus associates with a Kap through its basic NLS domain and is then shuttled through the NPC into the nucleus where the Kap is allosterically displaced by RanGTP.

Figure 5: Generalized structure of the nuclear pore complex showing the domains of the pore complex. Also shown is the bidirectional transport pathway. T, RanGTP. D, RanGDP (from Rout *et. al.* 2001).

An exporting Kap-RanGTP complex can then bind a substrate with an NES and translocate back into the cytoplasm where RanGAP hydrolyzes GTP to GDP, dissociating the complex. Another protein, Ntf2, binds to RanGDP and recycles it to the nucleus where RanGEF converts it to RanGTP to restore the gradient.

THE NPC IS DYNAMIC AND ADAPTIVE

The NPC is not simply a static pore straddled across the NE. By altering its architecture and composition in a cell-cycle specific manner, the NPC can affect the specificity of nucleocytoplasmic transport (Tran and Wente, 2006). Several Nups are dynamic, with short residence times, while others are stable over considerable periods of time (Rabut et al., 2004). EM studies have shown that, under different transport conditions within the cell-cycle, some Nups may alter their distributions within the NPC (Fahrenkrog et al., 2002; Paulillo et al., 2005). Also, in a subset of closed mitotic systems, such as the filamentous fungus *Aspergillis nidulans*, the NPC partially dissociates and thus increases the permeability of the nucleus (De Souza et al., 2004). While remaining largely intact, the NPC of the budding yeast alters nucleocytoplasmic transport through changes to its architecture during mitosis (Makhnevych et al., 2003).

OTHER ROLES FOR THE NPC

Mediating bidirectional transport across the NE is not the sole physiological role of the NPC (Fahrenkrog et al., 2004). The NPC and its constituents have been associated with chromatin boundary activity, nascent mRNA retention, mitosis, and telomere silencing and maintenance.

The yeast NPC has been implicated in secondary roles such as chromatin organization and gene regulation (both silencing and activation). Several yeast transport factors (for example, Cse1 and Mex67, among others) block the spreading of heterochromatin and thus act as a boundary by physically tethering genomic loci to ScNup2, which transiently locates to the nuclear basket (Ishii et al., 2002). The dynamic nature of ScNup2 and associated transport factors suggests that this physical boundary activity is likewise dynamic, possibly affecting the transition between chromatin activity states (Dilworth et al., 2005). In addition, it has been shown that ScNup2 transiently interacts with numerous gene regulatory promoter regions (Schmid et al., 2006; Schmid et al., 2004). This suggests that the nucleoporin-promoter interaction, or Nup-PI, functions as an early step to gene activation (Schmid et al., 2006). Furthermore, the Rap1/Gcr1/Gcr2 transcriptional repressor/activator complex is anchored to the nuclear periphery through the ScNup84 complex (Menon et al., 2005). Taken together, the data indicates that the NPC plays a critical role in gene activation (Casolari et al., 2004). Such dynamic associations localize the boundaries of silent chromatin to the nuclear periphery while specific active transcription regions are drawn proximal to the NPC, perhaps for efficient transcriptional regulation and mRNA export.

The yeast Mlps (ScMlp1 and ScMlp2) and the mammalian ortholog, HsTpr, are large coiled coil proteins that associate with the nucleoplasmic face of the NPC and likely form the nuclear basket (Krull et al., 2004; Strambio-de-Castillia et al., 1999). It has been suggested that the Mlps play a role in telomere

anchoring and the organization of perinuclear silenced chromatin (Feuerbach et al., 2002; Galy et al., 2000). However, other studies indicate that the MIps are not required for telomere anchoring (Andrulis et al., 2002; Hediger et al., 2002b). On the contrary, instead of anchoring telomeric regions, the MIps may interact with the protein networks involved with the maintenance of telomere length (Hediger et al., 2002a).

Consistent with the Nup-PI observation, MIp1, and perhaps MIp2, may bind to and retains nascent intron-containing mRNA (Galy et al., 2004; Vinciguerra et al., 2005). Once spliced and adorned with mRNPs and transport factors (e.g. the Mex67:Mtr2 heterodimer), mRNA is exported from the nucleus in perhaps a ratcheting manner (Erkmann and Kutay, 2004; Stewart, 2007b). Away from the NPC, recent work has shown that MIp2, but not MIp1, co-localizes with the spindle pole body and functions to maintain the integrity of the spindle pole body (Niepel et al., 2005).

Members of the structural scaffold have been shown to have additional roles outside the NPC. The mammalian Nup107-160 scaffold sub-complex is essential for the proper assembly of NPC (Harel et al., 2003; Walther et al., 2003). During mitosis, a small percentage of this complex is localized to the kinetochores (Belgareh et al., 2001; Harel et al., 2003; Loiodice et al., 2004; Zuccolo et al., 2007) and there is evidence that Nup96, a member of the Nup107-160 complex, localizes to the mitotic spindle and spindle poles (Enninga et al., 2003). Recent work has shown that the Nup107-160 sub-complex functions in a

manner consistent with spindle checkpoint proteins, and distinct from its role at the NPC (Orjalo et al., 2006).

The Nup107-160 complex is not the only NPC constituent to function as mitotic regulators. Mammalian Nup358 moves from the cytoplasmic face of the NPC (Lim and Fahrenkrog, 2006) to the kinetochores (Joseph et al., 2002) and its deletion induces mitotic arrest (Joseph et al., 2004; Salina et al., 2003). During mitosis, the mRNA transport factor Rae1 localizes to the spindle and spindle poles (as shown in X. laevis) and its deletion disrupts the early stages of spindle assembly (Blower et al., 2005). Rae1 has been implicated in S. pombe and vertebrates as regulator of mitotic cell cycle progression (Jeganathan et al., 2005; Whalen et al., 1997). There is also evidence of similar dual functions in budding yeast. Mutations in the yeast Nup170, but not its paralog Nup157, causes defects in kinetochore formation and chromosome segregation (Kerscher et al., 2001), possibly through its interaction with the spindle assembly checkpoint proteins Mad1 and Mad2 (Campbell et al., 2001; louk et al., 2002; Kastenmayer et al.. 2005). The functional connection between nucleocytoplasmic transport across the NPC and mitotic spindle assembly continues with the small GTPase Ran, which is heavily involved with both processes (Mosammaparast and Pemberton, 2004; Quimby et al., 2005; Quimby and Dasso, 2003).

THE NPC THROUGHOUT EVOLUTION

The nucleus is a complex structure that likely arose only once about 2 billion years ago (Martin, 2005). Interestingly, prokaryotes have yet to reveal any

obvious analogs of the nucleus (Doolittle, 1980). Even though some prokaryotes can envelope their DNA behind an internal membrane (Lindsay et al., 2001), there are no intermediate non-eukaryotes with a proto-nuclear structure known to exist today (Embley and Martin, 2006). The lack of obvious transitional species challenges efforts to model the emergence of the nucleus, though several have been proposed (Martin, 2005).

Recent studies support the vesicular (Martin, 1999) or invagination (Cavalier-Smith, 2002) models. which predict the formation of the endomembrane system, ER and NE from the plasma membrane. In the postgenomic era, genomic and proteomic data have allowed bioinformatic studies into the origin of the nucleus by investigating the NE (Bapteste et al., 2005; Mans et al., 2004) or nucleolar (a sub-nuclear region) (Staub et al., 2004) proteomes. These studies revealed that the some of the components of both the NE and the nucleolus have archaebacterial affinities, while others have eubacterial affinities (Mans et al., 2004; Staub et al., 2004). The implication of these findings is the most likely scenario that the nucleus arose after the symbiotic event that gave rise to the mitochondrion, due to the presence of both archae- and eubacterial derived genes. Also, additional computational studies showed structural (but not sequence) similarities between certain members of the NPC and coated vesicles (Alber et al., 2007b; Devos et al., 2004; Devos et al., 2006). The structural relationship between some Nups and the vesicle coat proteins suggests that the nucleus arose only after the emergence and evolution of membrane bending proteins.

Though the modern nucleus of the eukaryotes descended from the LCEA, the constituents of the NPC have diverged significantly between distant species. However, despite the large primary structure divergence between yeast and vertebrates, there is evidence that the domains and secondary structures within many Nups are conserved across Eukaryota (Cronshaw et al., 2002; Rout et al., 2000).

Here, we begin to address the extent and nature of species-specific innovations at the NPC. To do so, we first attempted to gather information about the NPCs of representative extant eukaryotes. Our early attempts to map nucleoporin orthologs across Eukaryota by sequence similarity alone were challenged by the aforementioned primary structure divergence. Indeed, such studies have presented grossly incomplete inventories of differently evolved eukaryotes, relative to the fungi and metazoa (Bapteste et al., 2005; Mans et al., 2004). An experimentally characterized representative NPC that is distantly related to the opisthokonts is requisite to begin to resolve the evolution of the NPC from the LCEA.

In this thesis, we examine differences in structure and protein composition between distantly related species in the hope of gaining a greater understanding of the function, mechanism, regulation and evolution of NPCs. Advances in the post-genomic era have given rise to a detailed picture of the NPCs of several model organisms (<u>Appendix A</u>). The model metazoans and yeast, however, are relatively closely related within Eukaryota (Gerhart, 1997). By applying the same rigorous interrogation to distantly related organisms (here the excavate

Trypanosoma brucei), we anticipate to gain a deeper understanding of one of the key organelles that distinguishes a major class of life.

TRYPANOSOMA BRUCEI

In order to discuss the NPC in an evolutionary context, we chose to study the NPC of a differently evolved eukaryote. The protists which comprise the taxon Kinetoplastida diverged from the rest of the eukaryotes near the root of the evolutionary tree some 1-2 billion years ago, giving rise to a large number of species, which collectively parasitize almost all vertebrates, invertebrates and some plant groups (Beverley, 2003). The kinetoplastids, including Trypanosoma brucei, are characterized by a single flagella and a single mitochondrion associated with a DNA containing kinetoplast (Figure 6) (Sogin et al., 1989). Since it is distantly related, the parasitic family Trypanosomatida has evolved very differently from other well studied organisms and relies on many speciesspecific adaptations (Simpson et al., 2006). The trypanosome nuclear envelope contains lamin-like coiled coil proteins (Ogbadoyi et al., 2000; Rout and Field, 2001), the presence of which in other eukaryotes usually signifies an open mitotic However T. brucei undergoes a closed mitosis, during which the system. chromosomes do not condense (Ersfeld et al., 1999).

Figure 6: Cartoon schematic of Trypanosoma brucei.

T. brucei deviates from the eukaryotic model of transcription (Simpson et al., 2002). Polycistronic transcription of unrelated but unidirectionally clustered genes is followed by a trans-splicing event (Campbell et al., 2003; Liang et al., The nascent mRNA molecules mature when 2003; Siegel et al., 2005). functionalized by a 5' 40nt spliced leader (SL) RNA capping and 3' polyadenylation (Clayton, 2002). RNA polymerase II promoters are extremely rare (Das and Bellofatto, 2003; Gilinger and Bellofatto, 2001), and the mechanism of transcriptional regulation and initiation remains unclear although recent studies show progress in this area (Das et al., 2005; Ruan et al., 2004; The brunt of the regulation of protein levels is Schimanski et al., 2005). presumably delegated to post-transcriptional and post-translational mechanisms and higher order chromatin structure at the NE (Navarro et al., 1999). While the basic mechanisms of post-transcriptional regulation are understood, the details of the interaction between the signal cascade and modification machinery is still unclear (Akker et al., 2001). Understanding the role of the NPC with respect to the regulatory mechanisms of *T. brucei* could reveal novel features of eukaryotic protein regulation.

The 35 megabase *T. brucei* genome is divided amongst three classes of chromosomes: 11 large, <5 intermediate, and ~100 mini-chromosomes (Ersfeld et al., 1999). The 26 megabase genome (compare to the 12-14 Mb yeast genome (Goffeau et al., 1996)) within the 11 large chromosomes was recently sequenced (Berriman et al., 2005). The genome is almost devoid of introns and over 50% of the sequence encodes about 8100 open reading frames (ORFs)

(Berriman et al., 2005). The three closely related pathogens, *T. brucei*, *T. cruzi*, and *Leishmania major*, are collectively referred to as the "TriTryps" and contain about 6200 orthologous genes (> 75% of the *T. brucei* ORFs) between them (El-Sayed et al., 2005). Taking advantage of the post-genomic era, several *T. brucei* proteomic projects have been undertaken (Atwood et al., 2005; Broadhead et al., 2006; Colasante et al., 2006; Jones et al., 2006; Paba et al., 2004).

A WORLD HEALTH ISSUE

In the short history of *H. sapiens*, over 70 diverse species of protists have adapted to parasitize modern humans (Ashford and Crewe, 1998). Generally, parasites infect humans via an insect vector or consumption of contaminated food or water (Cox, 2002). *Entamoeba histolytica* (Amoebae) and *Giardia lamblia* (a diplomonad), are ingested through unsanitary conditions and may cause serious symptoms, such as diarrhea. Parasites transmitted by biting insects, such as Leishmania and Plasmodium, cause Leishmaniasis and Malaria, *respectively*. Three species of trypanosomes infect humans: *Leishmania*, *Trypanosoma cruzi*, responsible for Chagas' disease in South America, and *Trypanosoma brucei*, the causative agent of the African sleeping sickness.

With close to 60 million people at risk in 36 sub-Saharan African countries, African trypanosomiasis, or African sleeping sickness, is a serious world health issue (Garcia et al., 2006). The causative agents of the disease are two *Trypanosoma brucei* sub-species (Despommier, 1995). One manifests as a chronic (*T. brucei gambiense*) and the other, an acute (*T. brucei rhodesiense*), form of the disease (Fevre et al., 2006). These parasites are injected into

humans by the stinging bite of the tsetse fly (subgenus, Glossina). Figure 7 diagrams the life cycle of *T. brucei* (Centers for Disease Control and Prevention, (2003), African Trpanosomiasis Fact Sheet). Over a period of weeks to months, the long and slender flagellates continually divide and thrive in the blood stream. To evade the immune system, trypanosomes use an elaborate survival method involving gene shuffling to generate and then switch its antigenic coat proteins (Borst, 2002; Pays et al., 2004). Eventually, the flagellates pass through the blood-brain barrier. Left untreated, the disease is invariably fatal. At the height of a recent epidemic, in some communities of Angola, Democratic Republic of Congo, and Southern Sudan, sleeping sickness was the first or second greatest cause of morbidity (World Health Organization, (2006), African Trypanosomiasis Fact Sheet).

Recent efforts from private organizations and the WHO have been successful in curbing trypanosomiasis. The Programme Against African Trypanosomiasis (PAAT) estimates that a half million people are currently infected (World Health Organization, (2006), African Trypanosomiasis Fact Sheet). Currently, several drugs, such as the arsenical derivative melarsoprol, are readily available free of charge, but are marred with severe and fatal side effects. Also, these drugs require a patient to have access to a health center for regular intravenous injections. Drugs that are simpler to administer (such as oral administration) are being investigated.

Figure 7: Cartoon schematic of the Trypanosoma brucei life cycle.

BIOLOGICAL APPLICATIONS OF MASS SPECTROMETRY

Mass spectrometry is central among the various techniques that we employed to identify and characterize the *T. brucei* NPC. For nearly a century, mass spectrometry (MS) has proven to be a powerful tool for elemental and small molecule analytical chemistry (Thomson, 1913). Since the development and the biological application of soft ionization techniques, such as matrix assisted laser desorption/ionization (MALDI) (Karas and Hillenkamp, 1988; Tanaka, 1988) and electrospray ionization (ESI) (Fenn et al., 1989), biological mass spectrometry has rapidly evolved over the past 25 years. Over the last decade, it has contributed significantly to the current understanding of protein interaction networks, localization, post-translational modifications (Andersen and Mann, 2006; Patterson and Aebersold, 2003), the identification of disease markers (Hanash, 2003) and drug discovery (Jeffery and Bogyo, 2003).

Large scale functional studies have been conducted based on a comprehensive analysis of yeast protein complexes (Gavin et al., 2002; Tong et al., 2002) and similar studies have been conducted with *E. coli* (Yan et al., 2002). While such endeavors produce a large quantity of data, subcellular proteome analyses provide additional insight into localization, function and interaction partners (Dreger, 2003). We have found this is to be especially true for divergent organisms because sequence similarity alone is often not sufficient to infer function. Indeed, over half of the *T. brucei* ORFs have no detectable homolog (EI-Sayed et al., 2005). Direct subcellular interrogation thus aids in functional assignment. Isolating and purifying organelles has the added benefit of reducing

sample complexity by restricting the number of proteins sampled. The sequenced genomes of *S. cerevisiae* and the several vertebrates, coupled with subcellular fractionation, have allowed large-scale detailed studies of the NPC (Cronshaw et al., 2002; Rout et al., 2000), NE (Dreger et al., 2001) and nucleolus (Andersen et al., 2005) using biological mass spectrometry.

In this work, we identified most of the constituents of the NPC of an eukaryote that is distantly related to yeast and vertebrates — *Trypanosoma brucei*. We accomplished this endeavor through a combination of biochemistry, mass spectrometry, bioinformatics and molecular biology. We then made detailed comparisons between the NPCs of the metazoa, fungi and kinetoplastida. These comparisons begin to resolve the conserved aspects and the evolution of the NPC as well as elucidate the species-specific innovations that may be associated with chromatin organization and nucleocytoplasmic transport.

CHAPTER 2 — BIOCHEMISTRY AND PROTEOMICS: THE IDENTIFICATION OF PROTEINS THAT ASSOCIATE WITH THE *T. BRUCEI* NUCLEAR ENVELOPE PREPARATION

BIOCHEMISTRY AND MASS SPECTROMETRY — MATERIALS AND METHODS

We first sought to identify the constituent members of the *Trypanosoma brucei* NPC (TbNPC), and to this end, we used several biochemical and mass spectrometric techniques in order to maximize the yield. In the context of this work, we define a strategy as a specific set of biochemical and mass spectrometric techniques. Due to the complexity and dynamic range of the proteins associated with the *T. brucei* nuclear envelope preparation (TbNEP), we employed five strategies to ensure that we maximized the number of proteins identified. These strategies were initially selected to complement each method's strengths and weaknesses for a robust approach. <u>Figure 8</u> summarizes the five strategies used to identify the constituents of the TbNEP, indicated by corresponding colored arrows. The adapted protocol we used to obtain the TbNEP (which includes the nuclear envelope and lipid-stripped pore complex lamina fraction, PCLF) from *T. brucei* (the black outlined box in <u>Figure 8</u>) is described in <u>Appendix B</u>.

Figure 8: Summary flowchart of biochemical and mass spectrometric methods used to determine the TbNEP dataset. Strategies 1-5 are indicated by the red, blue, green, purple and black colored arrows, respectively. The black box represents the nuclear and subnuclear isolation protocol described in <u>Appendix B</u>. The gold boxes are protein recovery steps. Protein separation steps are colored in light blue. Finally, mass spectrometry techniques are outlined in brown. The ion trap mass spectrometers are in-house modified (LCQ Deca XP) or commercially available (LCQ and LTQ).

We chose several techniques to resolve and identify the proteins in the TbNEP. First, proteins needed to be recovered from the viscous sucrose and PVP solution. This is accomplished by either methanol precipitation or an offline C4 cleaning cartridge (gold boxes in Figure 8). To resolve the proteins, 5 separation techniques were used: SDS-PAGE, HPLC, hydroxyapatite (HA) chromatography (Gorbunoff, 1985), chemical extractions (Schirmer et al., 2003), and a novel C18 "push-off" cartridge, developed by J. C. Padovan (light blue boxes in Figure 8). Finally, the resolved proteins were identified by mass spectrometry (brown boxes in Figure 8).

STRATEGY 1 (FIGURE 8, RED ARROWS)

Methanol Protein Precipitation

To one volume of the TbNEP (1-5 ml), 5 volumes of HPLC-grade methanol were added and left to incubate for 4 hours at 4°C. The exact amount of sample material depends on the individual preparation and is empirically determined by pilot precipitations. Generally, one wants to use the maximum amount of material without saturating the SDS-PAGE gel or chromatography column. The precipitate was recovered by centrifugation (3300 (g) in a Beckman GH-3.8 for 15 minutes at 4°C). The pellet was resuspended with 500 µl of 90% methanol and transferred to a microcentrifuge vial and then left to incubate for 1 hour at 4°C. The suspension is spun one final time in a microcentrifuge (16,000 (g), 15 minutes, 4°C). The supernatant was removed to leave the protein sample pellet.

SDS-PAGE

The protein sample pellet was resuspended in 20 μ I LDS sample buffer (Invitrogen, Carlsbad, CA), 8 μ I 10x sample reducing agent (Invitrogen) and 52 μ I water. After mixing, the solution was heated to 70°C for 10 minutes and allowed to cool to room temperature. To alkylate the reduced cysteines, 1 M iodoacetamide was added to a final concentration of 100 mM and the reaction was allowed to proceed for 30 minutes in the dark.

For strategy 1, NuPAGE[®] 10% and 4-12% bis-Tris gels (with MOPS running buffer) and Novex[®] 8% Tris-glycine gels (Tris-glycine running buffer) were used to increase resolution at specific mass ranges. For example, a Novex[®] 8% Tris-glycine gel offers high mass resolution while NuPAGE[®] 10% bis-Tris gels offer superior low mass resolution.

20 µl of alkylated sample was loaded to each gel. Electrophoresis was set at a constant 125V for 5 minutes followed by a constant 200V for 45 minutes. The gel was fixed in 50% methanol and 7% acetic acid for 15 minutes and then washed extensively. The proteins were visualized with GelCode[®] Blue colloidal Coomassie stain (Pierce, Rockford, IL) and documented by photography or digital flatbed scanning. Representative NE gels are show in <u>Figure 9</u> and PCLF samples were similar.

Figure 9: Representative gels of *T. brucei* NEs resolved on three different gel gradients as describe in Strategy 1.

In-Gel Digestion

On a white shallow plate or glass pane, the entire gel lane was cut into 2 mm bands using a MicroScalpel (Electron Microscopy Sciences, Hatfield, PA). Roughly thirty 2 mm bands were excised from a 10 cm gel after staining. Using the fine point tweezers (Electron Microscopy Sciences) or MicroScapel, the excised gel band was diced into 1 mm cubes and transferred to a microcentrifuge vial. As an alternative to manual slicing, one can use a Mickle[®] gel slicer (Brinkman Instruments, Inc.) which can mechanically slice the gel lane at 1 mm intervals.

The gel pieces were completely destained to remove all traces of stain and detergent. To the gel pieces, 500 µl of destain solution (25 mM ammonium bicarbonate in 50% acetonitrile) was added and the vials were agitated (medium setting) at 4°C with a vertical vortexer (Tomy Mixer, Tomy Seiko Co., Ltd., Tokyo, Japan). After destaining, 100 µl acetonitrile was added and then aspirated after 10 minutes. A trypsin (bovine, modified, sequencing grade, Roche Applied Science, Indianapolis, IN) aliquot was diluted in digestion buffer to a final concentration of 50 ng/µl. To the dehydrated gel pieces, ≥ 100 ng trypsin was added as well as 40 µl of 50 mM ammonium bicarbonate. The digestion mixture was incubated at 37°C for 4 hours.

POROS[®] R2 (Applied Biosystems, Foster City, CA) C18 resin is used to extract and recover the peptides from the gel pieces and digestion buffer. A working POROS R2 bead slurry is made as follows:

- 500 mg of POROS R2 beads are sequentially washed with 10 ml of: (1) methanol, (2) 80% acetonitrile, and then (3) 20% ethanol.
- 2. Resuspend the washed beads in 20% ethanol to a final concentration of 50 mg/ml.

To 1 volume of POROS R2 bead slurry, 9 volumes of 2% trifluoroacetic acid, 5% formic acid in water was added and 40 µl of diluted POROS beads was mixed with the digest. The peptide/bead mixture was agitated (medium setting) in a vertical vortexer at 4°C for 4 hours.

The POROS beads are separated from the gel pieces with the use of ZipTips[®] (C18, Size P10, Millipore, Billerica, MA), which have been washed with elution solution (20% acetonitrile, 50% methanol, and 0.1% trifluoroacetic acid). The 80 μ l peptide/bead mixture was transferred into a washed and conditioned ZipTip from the top and, using a syringe, the supernatant was discarded. 20 μ l of 0.1% trifluoroacetic acid was added to the gel pieces and then transferred to the ZipTip from the top. The wash solution was expelled using a syringe. Wash the POROS beads on the ZipTip twice more using 20 μ l of 0.1% trifluoroacetic acid.

The matrix used for MALDI mass spectrometry is 2,5-dihydroxy benzoic acid (DHB) (Lancaster, Pelham, NH). A saturated solution of DHB is prepared in elution solution at room temperature and diluted to 40% (v/v) saturated just prior to use. The peptides are slowly eluted onto a MALDI plate with 2.5 µl 40% DHB in elution solution to produce the "sample spot" (Archambault et al., 2003; Cristea et al., 2005; Tackett et al., 2005).

MALDI MS & MS/MS

Using the MALDI QqTOF mass spectrometer (Krutchinsky et al., 2000), MS data was acquired for each sample spot. The data reveals the mass-tocharge ratio (m/z) (the parent masses) for most of the peptides present in the sample. The spectra are then filtered with BackgroundFinder (written by Markus Kalkum) to remove background ions (such as trypsin autolysis peptides) and the resulting parent masses are transferred to method files that are compatible with the MALDI ion trap mass spectrometer (modified LCQ series, Thermo Fisher) (Krutchinsky et al., 2001).

Peptides are fragmented in the MALDI ion trap mass analyzer to produce daughter ions that yield mass data corresponding to the sequence, and hence identity, of the peptide. The protein may then be identified from this sequence data and the masses of the precursor peptides. We generated an in-house assembled *T. brucei* proteome database based on the raw data that was released from the *T. brucei* genome sequencing project (Berriman et al., 2005). We identified the proteins by comparing our data against this database with previously established proteomic bioinformatic tools, such as ProFound, Sonar, and X!Tandem (Craig and Beavis, 2004; Field et al., 2002; Zhang and Chait, 2000). The confidence of the identification is related to the quantity and quality of the mass data (Krutchinsky et al., 2001; Zhang et al., 2003).

STRATEGY 2 (FIGURE 8, BLUE ARROWS)

Methanol Protein Precipitation

As described in Strategy 1.

Hydroxyapatite Chromatography

In a 50 ml centrifuge tube, 7.5 ml Macro-Prep ceramic HA type I, 40 μ m (Bio-Rad Laboratories, Hercules, CA), was washed with 20 ml of 200 mM Na₂HPO₄ (do not adjust pH). The HA was allowed to settle and the wash solution and suspended fine particles was aspirated. The wash was repeated 3 times with 20 ml loading buffer (10 mM NaH₂PO₄, pH 6.8, and 0.1 mM CaCl₂ in water), aspirating the loading buffer and suspended fine particles after each wash. To the final volume of HA, 4 volumes of loading buffer, supplemented with 0.1% SDS, was added.

Following methanol precipitation, the protein sample pellet was resuspended in HA sample buffer (10 mM Tris, 10 mM DTT and 2% SDS) and heated at 60°C for ten minutes. 1 volume of sample was diluted with 19 volumes of HA loading buffer. To the diluted sample, conditioned HA beads were added. Roughly 2 ml of bead slurry is required for less than 0.5 ml of sample. The mixture was incubated for 30 minutes. Keep the HA suspended by mechanical rotation or rocking.

The mixture was poured into a Poly-Prep[®] Chromatography Column (Bio-Rad, Hercules, CA) and the flowthrough was collected. The beads were washed

with 4 ml of 0.1% SDS in loading buffer. The wash was collected to monitor protein binding and combined with the flowthrough.

The proteins were then eluted from HA. All elution buffers are prepared from appropriate volumes of mobile phase A (1 mM DTT, 0.1 mM CaCl₂) and mobile phase B (1 M NaH₂PO₄, pH 6.8, 1 mM DTT). SDS is added, just before use, at a final concentration of 0.1%. The mobile phase was added in successive order to the column (300, 325, 350, 375, 400 and 500 mM NaH₂PO₄) and the eluate was collected. Generally, 4 ml of elution buffer is sufficient.

Trichloroacetic acid Precipitation

The final volume of eluate was adjusted to 10 ml with water and precipitated by sodium deoxycholic acid/trichloroacetic acid. The protein suspension was diluted with water to 1 ml (small scale) or 10 ml (large scale). Respectively, 100 µl or 1 ml of 0.3% sodium deoxycholic acid was added along with an equivalent volume of 72% trichloroacetic acid. After mixing, the solution was left to incubate at 4°C for 1 hour and then spun at maximum rotor speed (1 hour, 4°C). The pellet was washed in 1.2 ml acetone and transferred to a fresh microcentrifuge vial and stored overnight at -20°C. The pellet was recovered by centrifugation in a microcentrifuge (16,000 (g), 4°C, 1 hour).

SDS-PAGE

The same as described in **Strategy 1**, except in **Strategy 2**, 4-12% bis-Tris gels were used and the entire pellet from each fraction was loaded onto a lane within the gel. Representative gels from both the NE and PCLF are shown in <u>Figure 10</u>.

Nuclear envelope

Pore complex lamina

Figure 10: Representative hydroxyapatite gels. On the left is the nuclear envelope fraction and on the right is the lipid-stripped pore complex lamina fraction. FW, flowthrough and wash. Concentrations of phosphate in the elution buffer are indicated above the gel lanes.

In-Gel Digestion

As described in **Strategy 1**. All seven lanes of each gel were analyzed in their entirety by in-gel digestion and MALDI mass spectrometry.

MALDI-MS and MS/MS

As described in Strategy 1.

STRATEGY 3 (FIGURE 8, GREEN ARROWS)

Reversed Phase C4 Clean-Up Cartridge

To avoid the potential losses of methanol precipitation, a clean-up cartridge (Michrom Bioresources, Auburn, CA.) packed with C4 resin (Grace-Vydac, Hesperia, CA.) was used to concentrate the protein mixture. The C4 cartridge was prepared by washing 3x with 500 µl methanol, 3x with 500 µl 95% acetonitrile and 0.1% trifluoroacetic acid, and, finally, 3x with 500 µl 0.1% trifluoroacetic acid.

100 μ l of the TbNEP was diluted with 500 μ l of 0.1% trifluoroacetic acid and loaded onto the cartridge. The cartridge was then washed extensively with 0.5% acetic acid and 0.1% trifluoroacetic acid. After washing, the protein was eluted with 500 μ l 95% acetonitrile and 0.1% trifluoroacetic acid. The eluate was then dried in a speedvac.

High Performance Liquid Chromatography

The protein sample pellet was resuspended in 50 μ l of 50 mM ammonium bicarbonate. A total of 500 ng of trypsin was added and the solution was left to incubate at 37°C for 24 hours. The digestion was quenched by acidification with 0.1% acetic acid (final concentration).

10 μl (20%) of the digest was loaded onto a C18 reversed phase column (0.18 mm x 250 mm, 1.8 μl/min) and eluted under the following conditions: 25% solvent B (95% acetonitrile, 0.1% trifluoroacetic acid) for 5 minutes, 25-100% solvent B in 40 minutes. After the analytical run, the column was cleaned and conditioned with 100% solvent B for 5 minutes and then 25% solvent B for 20min. For this strategy, an Ultimate HPLC system (LC Packings-Dionex, Sunnyvale, CA) was used. Solvent A is 5% acetonitrile, 0.1% trifluoroacetic acid in water.

Electrospray ionization (ESI)-MS/MS

To ensure maximum coverage of the TbNEP, LC-MS/MS was employed as a complementary technique to MALDI MS/MS. The HPLC analytical run was online with the Finnigan LCQ series (ThermoElectron Corp., San Jose CA.) mass spectrometer. One data dependent MS/MS scan was acquired after each full (MS) scan.

Dynamic exclusion was used so that any given mass is analyzed and fragmented only once in a 30 second window. In addition to dynamic exclusion,

we used a second type of filter that uses prior knowledge of the contents of a sample. Briefly, since 20% of the sample was used for each run, the data from the previous run were analyzed. Those parent masses that were analyzed in the prior run were added to the "exclude masses" list in subsequent runs. Coupled to dynamic exclusion, this approach significantly reduced the number of redundant scans.

We generated an in-house assembled *T. brucei* proteome database based on the raw data that was released from the *T. brucei* genome sequencing project (Berriman et al., 2005). We identified the proteins by comparing our data against this database with previously established proteomic bioinformatic tools, such as ProFound, Sonar, and X!Tandem (Craig and Beavis, 2004; Field et al., 2002; Zhang and Chait, 2000).

STRATEGY 4 (FIGURE 8, MAGENTA ARROWS)

Chemical Extraction

Three separate separations were conducted on the TbNEP to reduce the complexity of the sample by enriching for transmembrane proteins (base extraction), integral proteins which are closely associated with the lamina (salt and detergent) and proteins that are peripheral to the NE (heparin) (Schirmer et al., 2003).

1. Base extraction

a. To one volume of nuclear envelopes (in sucrose solution) 9 volumes of 100 mM NaOH with solution P (1:100) was

added and mixed completely by vortexing. Note: Solution P is made by dissolving 0.04% (w/v) pepstatin A (Sigma-Aldrich, St. Louis, MO) and 1.8% PMSF (Sigma-Aldrich, St. Louis, MO) in absolute (anhydrous) ethanol.

- 2. Salt and detergent extraction
 - a. To one volume of nuclear envelopes (in sucrose solution) 9 volumes of salt and detergent extraction buffer (400 mM NaCl and 1% (w/v) β-octylglucoside in 25 mM Hepes, pH 7.5) with solution P (1:100) was added and mixed completely by vortexing.
- 3. Heparin extraction
 - a. To one volume of nuclear envelopes (in sucrose solution) 9 volumes of 10 mg/ml heparin in bis-Tris/Mg buffer with solution P (1:100) was added and mixed completely by vortexing.

The extractions were left to incubate on ice for 1 hour. The extractions were then underlaid with 1 M sucrose in bis-Tris/Mg buffer with solution P (1:100) and spun at 103,460 (g) for 35 min. The extracted proteins are retained in the supernatant. The supernatant was carefully transferred to a fresh vial and precipitate the proteins with trichloroacetic acid/deoxycholate precipitation (**Strategy 2**).

Wash the enriched pellet in 1 ml acetone and transfer the suspension to a microcentrifuge vial store overnight at -20°C. Recover the pellet by centrifugation in a microcentrifuge (16,000 (g), 1 hour, 4°C).

The pellets from both the supernatant and the precipitate were checked on a gel (<u>Figure 11</u>). The extraction was repeated and the pellets were prepared for HPLC analysis. For HPLC analysis, the protein sample pellet was resuspended

Figure 11: *T. brucei* NEs that have been subjected to chemical extraction. The three extractions (base, salt and detergent, and heparin) are separated by vertical dashed yellow lines. The pellet (P) and supernatant (S) are indicated.

in 50 μ l of 50 mM ammonium bicarbonate. A total of 500 ng of trypsin was added and the solution was left to incubate at 37°C for 24 hours. The digestion was quenched by acidification with 0.1% acetic acid (final concentration).

Reversed Phase C18 "Push-Off" cartridge

5 µl of the peptide digest mixture was diluted 1 into 3 and passed through a ZipTip packed with POROS C18 resin, in a fashion analogous to **Strategy 1**. The amount of resin present is such that the binding capacity of the column is less than the total amount of peptide present in the digest.

The flowthrough is passed over a second ZipTip/POROS column with less resin than the first. The peptides bound to the first and second columns are eluted with 20 µl 95% acetonitrile, 0.1% trifluoroacetic acid. Both the eluates from columns 1 and 2 (enriched in the abundant peptides) and the flowthrough (enriched in less abundant peptides) are analyzed by HPLC. This protocol is credited to Júlio C. Padovan.

High Performance Liquid Chromatography

10 μ l of the peptide mixture was loaded onto a C18 reversed phase column (0.2 mm x 50 mm, 2.2 μ l/min) and eluted under the following conditions: 30% solvent B (95% acetonitrile, 0.1% trifluoroacetic acid) for 2 minutes, 30-100% B in 14 minutes. After the analytical run, the column is cleaned and conditioned at 100% solvent B for 7min and then 5% solvent B for 20min. For

this work, an Ultimate HPLC system (LC Packings-Dionex, Sunnyvale, CA) was used. Solvent A is 5% acetonitrile, 0.1% trifluoroacetic acid.

ESI-MS/MS

As described in Strategy 3.

STRATEGY 5 (FIGURE 8, BLACK ARROWS)

Methanol Protein Precipitation

As described in Strategy 1.

Hydroxyapatite Chromatography

As described in Strategy 2.

Trichloroacetic acid Precipitation

As described in Strategy 2.

High Performance Liquid Chromatography

From each fraction, the protein sample pellet was resuspended in 50 μ l of 50 mM ammonium bicarbonate. A total of 500 ng of trypsin was added and the solution was left to incubate at 37°C for 24 hours. The digestion was quenched by acidification with 0.1% acetic acid (final concentration).

10 μ I of the peptide solution was loaded onto a C18 column (BioBasic® PicoFrit C18 column 75 μ m ID, (PFC7515-BI-5, New Objective, Woburn, MA)) and, after extensive washing with 0.1% acetic acid (solvent A), eluted with 70%

acetonitrile and 0.1% acetic acid (solvent B) in a linear gradient (0 - 100% solvent B) in 60 minutes at 20 μ l/min. After the analytical run, the column was cleaned and conditioned with a blank run and 20 minutes of 100% solvent A.

ESI-MS/MS

The HPLC analytical run was online with a recently acquired Finnigan LTQ XL (ThermoElectron Corp., San Jose CA.) mass spectrometer, having enhanced performance compared with the Thermo Finnegan LCQ instrument used to acquire data in **Strategies 3** and **4**. The PicoFrit column has a 15 µm emitter tip which enables the eluate to be directly analyzed via ESI-MS/MS.

The method was designed to acquire one MS scan to determine parent masses, and then acquire 10 MS/MS scans which are dependent on the first MS scan. Dynamic exclusion was used so that any given parent mass is analyzed and fragmented only once in a 30 second time window.

We generated an in-house assembled *T. brucei* proteome database based on the raw data that was released from the *T. brucei* genome sequencing project (Berriman et al., 2005). We identified the proteins by comparing our data against this database with previously established proteomic bioinformatic tools, such as ProFound, Sonar, and X!Tandem (Craig and Beavis, 2004; Field et al., 2002; Zhang and Chait, 2000).

RESULTS AND DISCUSSION

By employing five complementary strategies, we were ensured a comprehensive analysis of the nucleoporins within the TbNEP. As described above, we compared our mass spectrometric data to our in-house assembled *T. brucei* proteome database. All identifications with an expect value worse than 10^{-5} were validated by hand if we determined that the protein identified was of interest to this body of work. We used the following criteria to ensure the confident identification of proteins. For those identifications with an expect value worse than 10^{-3} , at least one peptide must have an expect value better than 10^{-2} . In addition, in order for an identification based on just a single peptide to be considered, that expect value must be better than 10^{-3} .

In total, we identified 859 proteins in the *T. brucei* nuclear envelope preparation (TbNEP), the full inventory of which is listed <u>Appendix C</u>. This dataset represents ~10% of the *T. brucei* proteome (Berriman et al., 2005), and likely contains a large number of contaminants. We experimentally identified 5 TbNups and 6 NPC transport-related proteins, which were previously annotated by homology during the genome sequencing project (Berriman et al., 2005). No annotated Nups were missed. Several previously annotated transport-related proteins were missed, most likely due to fact that Kaps only interact transiently with the NPC. The number of proteins identified in this work far exceeds the number that we anticipated to be present in the NE. The first reason is that the TbNEP is an enriched, rather than a pure, preparation. The second is that we

used enhanced MS-based techniques to increase the dynamic range of our analysis to the point that we could detect proteins of low relative abundance.

With respect to the number of proteins identified, the strategies varied in their success. When we employed SDS-PAGE with MALDI-MS readout in **Strategies 1** and **2**, we identified 63 and 71 proteins, respectfully. We did not use SDS-PAGE to separate the proteins in **Strategies 3** and **4**, yet we identified 84 and 164 proteins, respectively. The most successful strategy that we employed was **Strategy 5**, which identified fully 588 proteins. In retrospect, **Strategy 5** may have been sufficient to completely analyze the TbNEP. The success of this strategy is attributed, in part, to the sequential chromatographic separation of the proteins (using hydroxyapatite chromatography) and the peptides that result from trypsin protease digestion (using C18 HPLC). Also, for **Strategy 5**, we used a linear ion trap mass spectrometer, which is more efficient and sensitive than the hyperbolic ion trap mass analyzer used in **Strategies 1-4**.

We identified all of the TbNups in two or more strategies. It is noteworthy that, although **Strategy 5** identified greater than 4X as many proteins as any other strategy, no additional Nups were identified in this most sensitive analysis. We take this finding to imply that our analysis of the NPC components is essentially saturated.

Using these five different strategies allows us to make some observations as to the relative merits and limitations of the techniques used. Complex protein samples with a large number of constituents are ill-suited to SDS-PAGE with

MALDI-MS readout (**Strategies 1** and **2**), as these methods do not have the capacity to handle the large mixtures of proteins. For example, consider that loading 650 proteins on a pre-cast gel lane, roughly 6.5 cm long, results in an average 10 proteins per linear mm. Furthermore, the distribution of proteins within the lane is not linear, with the densest region being in the middle (30-100 kDa) region of the gel. If one analyses a 1 mm gel slice from the center of the lane, then one is working with a pool of perhaps 15 or more proteins. Assuming ~50 peptides per mid-sized protein, then 750 peptides are generated from this mixture of proteins. This level of complexity is beyond the ability of our current MALDI-MS analysis techniques.

The range of protein concentration also presents a challenge if low abundance peptides cannot be detected in the mass spectrometer above the background chemical noise. One method for improving coverage in such samples is to work with more sample material (Eriksson and Fenyo, 2007). However, SDS-PAGE systems have an upper limit to the amount of protein that may be loaded. Overloading a gel leads to loss of resolution, smearing and lane collapse.

To counter the limitations of SDS-PAGE protein separation and MALDI-MS readout, we utilized gel-free methods of protein separation in combination with LC-MS. Although **Strategy 3** offered slightly superior results to SDS-PAGE with MALDI-MS readout, this methodology was not robust in my hands due to frequent clogging of the C4 cartridge. **Strategies 4** and **5** yielded the best results due to increased protein separation prior to digestion and subsequent peptide

separation. Another reason why **Strategy 5** proved superior is that the analyte was analyzed with a linear ion trap mass spectrometer, which has a higher ion capacity, sensitivity and scanning speed (which translates into more MS/MS spectra per unit time). Combined, these factors greatly contribute to the number of co-eluting peptides that can be identified in a complex sample.

In **Strategy 4**, the second best strategy, we employed a methodology developed by Júlio Padovan, known as the "push-off" cartridge. Briefly, a large peptide mixture is passed over a stationary phase (here, C18 resin) with a binding capacity less than the total amount of sample loaded. This sets up a situation in which peptides are forced to compete for the limited number of binding sites. We observed that the population of peptides within the flowthrough is different than that population bound to the resin. Thus, after passing the peptide mixture over the "push off" cartridge, the end result is that an additional separation step is introduced to the sample. One can then load more of the eluate or flowthrough onto the HPLC column, as it has been depleted of a significant population of peptides.

We demonstrate this separation in the base peak (BP) trace of the three analytical runs resulting from the base extracted TbNEP (Figure 12). Here, the sample is first passed through one "push-off" cartridge and then flowthrough is passed over a second "push-off" cartridge for further separation of peptides. The bottom panel shows the BP for the flowthrough. The middle panel shows the material eluted off the second cartridge, while the top represents the sample eluted from the first cartridge. These BP traces are different for each of the three

samples. Strikingly, the peptide at $m/z \sim 1587$ (indicated by the arrow) is an abundant peptide that has been depleted from the flowthrough, thus allowing less abundant peptides with the same retention time to be measured in the ion trap mass analyzer.

With the constituents of the TbNEP identified, we next used a series of bioinformatic screens to identify and characterize the bona fide components of the TbNPC. The next chapter will discuss the bioinformatic strategies and tools used to infer function to the set of 859 proteins associated with the TbNEP, with an emphasis on identifying the putative TbNups.

Figure 12: Separation of peptide populations in a complex mixture by using a series of "push-off" cartridges. The base peak readout (BP) shows different patterns for the material bound to the first cartridge (top), the second cartridge (middle), and peptides which did not bind to either cartridge (bottom).

CHAPTER 3 — THE BIOINFORMATIC ANALYSIS OF THE TBNEP

STRATEGY AND ALGORITHMS

Using several biochemical and proteomic techniques in five different strategies, we have identified ~860 proteins in the TbNEP. The next challenge was to identify the putative TbNups present in our dataset. Inferring protein function by homology between distantly related species is particularly difficult because significant primary structure similarity has been lost over time. To circumvent this formidable challenge, we employed a range of bioinformatic algorithms to characterize and infer function to distant orthologs and identify the putative TbNups.

To simplify the TbNEP dataset, we cross referenced each identified protein to its functional annotation page on GeneDB, the annotation database of the Wellcome Trust Sanger Institute. If a protein has been functionally annotated, and found not to be TbNPC related, we set the protein aside. There is a possibility that these proteins may functionally interact with the nuclear envelope, but further experimental studies would be required to demonstrate such an interaction or localization. In this way, we were able to set aside ~500 proteins.

We characterized the remaining ~350 functionally unannotated proteins using the following strategy:

 We first analyzed, by pair-wise sequence alignments, the ~350 functionally unannotated proteins identified by mass spectrometry.

The sequences were queried using both <u>PSI-BLAST</u> (Altschul et al., 1997) and <u>FASTA</u> (Pearson and Lipman, 1988)) against the National Center for Biotechnology Information (NCBI) non-redundant database. The alignments were seeded with a word size of 2, and scored against the BLOSUM45 matrix. The resulting alignments were individually inspected by hand.

- Querying the domain architectures between distant orthologs is more sensitive than querying the entire primary structure (Bateman et al., 2000). To identify domains, we conducted a Hidden Markov Model (<u>HMMer</u> (Eddy, 1998)) alignment, using standard parameters, to the Pfam HMM-profile database of domain families (Sonnhammer et al., 1998).
- 3. We also scanned both the trypanosome protein database and the TbNEP dataset for the presence of FG-repeat domains by using a simple pattern recognition algorithm written by David Fenyö (PROWL). We did not find any recognizable FG-repeat domain in the trypanosome database that was not also present in the TbNEP dataset.
- 4. Previous work showed that the Nups fall into 8 major fold types with characteristic secondary structure patterns (Devos et al., 2006). To identify the presence of these specific fold types, we predicted the secondary structure of the unannotated proteins (<u>PSI-PRED</u>)

(McGuffin et al., 2000) and <u>PROF</u> (Ouali and King, 2000)) on all the unannotated protein sequences. When interpreting the results, one should bear in mind that these algorithms require primary structure similarity for accurate prediction. For the purposes of this study, the reduced accuracy is acceptable since we are not concerned by the details of element size and boundaries. We are concerned only whether a domain is primarily β -sheet rich or α -helix rich.

- 5. We also predicted the presence of several motifs with various prediction algorithms. We concentrated on the motifs that are indigenous to the NPC and NE, which include transmembrane helices (Phobius (Kall et al., 2004)), natively disordered regions (Disopred (Ward et al., 2004) and PONDR (Romero et al., 2001)), coiled coils (COILS (Lupas et al., 1991)), and putative nuclear localization sequence (NLS, Nucleo (Hawkins et al., 2007)). We accepted results that had better than an 80% predictive confidence score, based on the benchmarks of the individual algorithm.
- 6. For several known domains and conserved sequences, multiple sequence alignments were conducted with <u>ClustalX</u> v1.83 using default settings (Thompson et al., 1997). Conserved residues are indicative of a functional role within the NPC and nucleocytoplasmic transport and, whenever possible, were cross checked with the literature for any mutational analysis.

SORTING THE *T. BRUCEI* NUCLEAR ENVELOPE PREPARATION DATASET

By utilizing a suite of bioinformatic tools, we were able to characterize the proteins that were identified in the TbNEP. We excluded those proteins whose function was reasonably known and are not associated with the TbNPC. By mining the *T. brucei* protein functional annotation database (GeneDB, Wellcome Trust Sanger Institute), as well as PSI-BLAST searches to the NCBI nr database, we could exclude ~500 proteins that fall within these criteria (listed in <u>Table 8</u>).

At this point, sequence homology alone is sufficient to identify only five constituents of the TbNPC (TbSec13, TbNup96, TbNup158, TbNup144, and TbNup62). We concluded that information about the domains, motifs and secondary structure would be useful in identifying the remainder of the TbNups. This is based in part on recent work which has shown that the yeast and vertebrate NPCs are highly modular in nature and the entire catalog of nucleoporins utilizes only 11 domains or motifs (Devos et al., 2006).

By searching for these modules using the algorithms outlined in the previous section, rather than sequence similarity, we identified an additional 19 putative TbNups, for a total of 24 TbNups (listed in <u>Table 5</u>). Based on comparisons with the Nup inventories of NPCs from vertebrates and yeast, we estimate that we have identified at least 80%, by mass, of the TbNPC. We anticipate that the balance is most likely species-specific or highly divergent Nups, which would be difficult to identify within the TbNEP dataset by comparative methods. In the future, we plan to utilize the known TbNups as

"bait" to identify these elusive TbNups through interaction studies, such as immunoprecipitation.

In addition to the 24 TbNups, we identified 8 transport factors (<u>Table 5</u>). These proteins are somewhat easier to identify than the TbNups because of their relatively high sequence homology across Eukaryota. It is not surprising that only a subset of transport factors were identified in this work, since they are soluble proteins and only transiently interact with the NPC.

Aside from the ~500 annotated, but unrelated, proteins and the 32 proteins associated with the TbNPC, we attempted to characterize the remaining 330 unannotated proteins within the TbNEP dataset (<u>Table 7</u>). Using the strategies noted above, we found 23% of these proteins contain at least one coiled coil and 9% of the proteins contain a likely nuclear localization sequence (NLS). We identified at least one Pfam domain in 33% of the unannotated proteins. The details of these domains and motifs are included within <u>Table 7</u>.

Finally, one conspicuous group that remains elusive are membrane bound proteins, including integral membrane Nups. While 30% of the unannotated proteins within the TbNEP dataset are predicted to have at one transmembrane helix (TMH), these proteins have no obvious discernible domain structure characteristic of an NPC (e.g. the cadherin domain within ScPom152 and Hsgp210) or NE constituent protein. For example, we are unable to find, within the TbNEP dataset, a homolog of the "Sad1/Unc" domain, which is found in the SUN/Unc-84 NE proteins found in the opisthokonts, or the "LEM" domain of

LAP2, which is also present in the NE of the opisthokonts. We searched the *T. brucei* functional annotation for any NE related domain which is not present in the TbNEP dataset. Thus far, only one protein was found to contain a "Sad1/Unc" domain (Tb927.6.1740). It is not clear why this protein was missed in our analysis.

The TbNPC lacks any obvious orthologs to the more divergent, speciesspecific Nups, such as HsNup358, ScNup2, HsNup214/ScNup159, and HsNup88/ScNup82. These Nups have domain and motifs structures that should be easily recognized. For example, HsNup358 has a specific domain architecture, including Zn-finger motifs, and HsNup88/ScNup82 contains a β propeller domain. It is possible that the *T. brucei* homologs to these Nups have either been lost or have diverged to such a degree that even domain structure has adopted species-specific innovations. These Nups will need to be identified experimentally. In the future, we can target known TbNups and perform immunoprecipitations, in tandem with mass spectrometry, and identify the interacting partners of the entire TbNPC. These assays should be specific enough to confidently map the interaction network of the TbNPC and fill any gaps in our model of the TbNPC.

IDENTIFYING AND CHARACTERIZING THE *T. BRUCEI* NUCLEAR PORE COMPLEX

Figure 13 lists the putative TbNPC constituents along with their predicted secondary structures. We characterized the TbNups based on their predicted secondary structure patterns. The presence, for example, of an α -solenoid domain in a putative Nup suggests that it is a member of the structural scaffold group and is an ortholog of an α -solenoid-containing Nup found in the opisthokonts. As discussed above, we determined that sequence homology alone is not sufficient to make such characterizations with the majority of TbNups.

Figure 13: (Following page) Secondary structure map of the putative TbNups. Protein names in bold indicate those which have been localized to the TbNPC *in vivo* (Chapter 4). The asterisk indicates those Nups that share significant homology with the opisthokonts. The top ruler indicates residue number. Within a map, the horizontal black line represents the primary structure of the Nup with the N-terminus to the left. The y-axis indicates the confidence score of the secondary structure element prediction. Predicted α -helices are shaded in red, and predicted β -sheets are in blue. The black vertical lines below the primary structure indicate the FG-dipeptides. The TbNups are binned according their predicted function within the TbNPC; green, probable nuclear basket; yellow, structural scaffold; blue, FG-Nups.
Nucleoporin	Mass (kDa)	0 500 1000 1500 2000
TbMIp1	109.7	and the Antonia Carlo a Share and a Share and a Share a
TbMIp2	92.3	a statement a laterative fill and the processing of the second second second second second second second second
TbSec13*	41.6	
TbNup43	42.9	
TbNup48	48.4	na an a
TbSeh1	49.1	<u>Labor dia mandri na m</u>
TbNup82	82.4	<u>le a de la mais de miller e le constante de la de de la de de la de</u>
TbNup89	89.1	. 1 MAA AA DAA DA UUM KANA KANA KANA KANA KANA KANA
TbNup96*	96.5	, balde, kinder i lekkligte, blank et er te her lekkligtet.
TbNup181	181.5	Le - shhàithan Aike, ao an bhaidh ann a dhu Mandalachadh an Aike an 100, ann 100 Aike ann an Airean Airean Aire
TbNup225	225.5	te – ster die der schrieben die der Verster bei die die der die
TbNup109	108.7	, Lette ble late ble de selles des daar de Bellike skelle het ble de selle selle selle selle selle selle selle
TbNup132	132.3	If the state of the state o
TbNup144*	144.3	
TbNup53a	52.7	
TbNup53b	52.8	and the first state of the second
TbNup59	58.8	Alkholdson, and the second sec
TbNup62*	62.4	
TbNup64	64.2	
TbNup75	74.8	
TbNup98	98.1	
TbNup140	<mark>140.3</mark>	للمأهد وروبون وروبون وروبون والماند
TbNup149	149.2	
TbNup158*	<mark>158.3</mark>	an a

THE STRUCTURAL SCAFFOLD

About a dozen Nups play a principally structural role within the NPC (Alber et al., 2007a). These Nups form an eight-fold symmetric ring upon which the FG-Nups are layered (Maul, 1971; Suntharalingam and Wente, 2003). These Nups contain a relatively simple domain architecture, either containing an α -helix rich α -solenoid domain, a β -sheet rich β -propeller domain, or both (Devos et al., 2006). A yeast model of these structural Nups is shown in Figure 14 (Alber et al., 2007a). In our search to identify TbNups from the TbNEP dataset, we identified 12 structural TbNups which are described and characterized below.

<u>β-Propellers</u>

β-propeller proteins are characterized by a propeller-like structure consisting of 6 or 7 blades, each of which is comprised of four anti-parallel βsheets (Neer et al., 1994). Members of this family from human and yeast include HsSec13/ScSec13, HsSeh1/ScSeh1, HsNup37, HsNup43, and HsALADIN. HsNup37, HsNup43 and HsALADIN are found throughout the metazoa and the HsALADIN locus is linked to Allgrove syndrome in humans (Cronshaw and Matunis, 2003). HsALADIN and HsNup43 are also present in plants, a bikont. ScGle2/HsRae1 also falls into this structural category, although it only transiently interacts with the NPC (Bharathi et al., 1997; Murphy et al., 1996).

Figure 14: A model of the yeast structural scaffold. The scaffold is comprised of 3 fold types: WD-repeat rich β -propeller, α -helix rich α -solenoid, and an N-terminal β -propeller followed by a C-terminal α -solenoid (Alber et al., 2007a).

In addition to the Gle2, Sec13 and Seh1 orthologs, *T. brucei* has at least two additional β -propeller Nups. This set is more akin to the vertebrates (which have 6 β -propeller) than to yeast (3 β -propeller). The secondary structure prediction of these putative TbNups show similar patterns of β -sheets to the yeast and vertebrate homologs. To map and visualize the similarities between the β -propeller-containing Nups, we generated an alignment matrix (Figure 15). All β -propellers from *S. cerevisiae*, *H. sapiens*, *A. thaliana*, and *T. brucei* were pair-wise aligned with every other Nup using the FASTA algorithm. The Smith-Waterman scores, a measure of similarity between two aligned sequences, were then normalized to the best score that resulted from a non-paralogous pair-wise alignment. The normalized scores are visualized with a grayscale gradient, with the best score shown in black. Paralogous pairs have a normalized score greater than 1 and are also shown in black. Such a matrix is useful to identify homologs.

Figure 15: Pair-wise alignment matrix of the β -propeller Nups. The Nups are aligned using the pair-wise FASTA alignment algorithm with default settings. Bold names indicate those Nups which localize to the NE. The Smith-Waterman score, a measure of the similarity between two aligned sequences, is recorded at the intersection of each pair of Nups. The scores are normalized to the highest score between two homologous (but not paralogous) Nups. The normalized score is then visualized with a grayscale gradient, which is indicated below the matrix. Paralogous pairs are indicated in black but have a normalized score greater than 1. Sc, *S. cerevisiae*; Hs, *H. sapiens*; At, *A. thaliana*; Tb, *T. brucei*.

The alignment matrix confirms the highly conserved nature of Sec13, Gle2/Rae1, and, to a lesser extent, Seh1 throughout all four species. Seh1 is very similar to Sec13, but contains a characteristic extended N-terminal sequence. Interestingly, while *T.brucei* Sec13 and Gle2 are highly homologous to the yeast, vertebrate and plant orthologs, the other 3 (TbSeh1, TbNup43, and TbNup48) share little homology to plants, yeast and humans. However, the sequences contain a predicted WD-repeat sequence and secondary structure prediction indicates a high probability that those proteins would fold into a β -propeller domain. One such protein, TbNup48, which shares a very weak similarity to HsALADIN, localizes to the nuclear periphery *in vivo* (Chapter 4).

Sec13 plays a dual role within the cell (at the NPC and also as a vesicle coat component), so it is not unexpected that its primary structure has remained highly conserved throughout Eukaryota (Siniossoglou et al., 1996). Gle2/Rae1, an essential trafficker of mature mRNA, is also highly conserved. Using multiple sequence alignments, we found that all residues within Gle2 shown to be essential for proper function are conserved in trypanosomes (Moy and Silver, 2002; Murphy et al., 1996; Yoon et al., 1997). We plan to localize the remaining putative β -propeller Nup, Tb Nup43, in the future.

<u>a-Solenoids</u>

The second family of structural scaffold Nups contain an α -solenoid domain. α -solenoids are characterized by their stacked, anti-parallel, α -helices (Andrade et al., 2001a; Andrade et al., 2001b). The yeast and vertebrate members are ScNup84/HsNup107, ScNup85/HsNup75, ScNIC96/HsNup93, ScNup145c/HsNup96, ScNup192/HsNup205, and Nup188 (Fontoura et al., 1999; Siniossoglou et al., 1996). We identified six putative α -solenoids from within the TbNEP dataset. Figure 16 shows the alignment matrix for the α -solenoids.

The six *T. brucei* α -solenoids are predicted to be Nups based on the their similarity, both in length and domain architecture, to yeast and vertebrates. The primary structures of the trypanosome α -solenoids have diverged significantly from their vertebrate and yeast counterparts. This is especially pronounced when compared to the more conserved β -propellers. The nucleoporin interacting component, or NIC domain found in TbNIC96, is the only conserved Pfam domain found within the α -solenoids. The NIC domain shares modest homology to the bikonts. The Pfam expect values for the alignment between the NIC domain and the trypanosome and plant orthologs is 10^{-5} and 10^{-10} , respectively (compare to humans $[10^{-177}]$, yeast $[10^{-166}]$). The full length alignment of ScNIC96/HsNup93 to TbNup96 is thus far less significant than the alignments between yeast, vertebrates, and plants (Figure 16). Apparently, what little homology is shared between the α -solenoids of the vertebrates, yeast and plants becomes irresolvable with the distant excavates.

Figure 16: Pair-wise alignment matrix of the α -solenoid Nups. See <u>Figure 15</u> for the description.

<u>N-terminal β -Propeller Domain Connected to a α -Solenoid</u>

The third and final structural scaffold family consists of an N-terminal β propeller domain connected to an α -solenoid domain (β - α domain). Nups in this family include ScNup120/HsNup160, Nup133, and ScNup157/ScNup170/HsNup155. The pair-wise alignment matrix is shown in <u>Figure 17</u>. Interestingly, save for HsNup155 orthologs, these Nups share little to no homology between yeast and vertebrates and plants. However, vertebrates and plants share significant homology between orthologous pairs. We determined that *T. brucei* has three Nups of this family, which were determined primarily through their predicted secondary structure, except for TbNup144 which shares moderate but significant sequence similarity to HsNup155.

The high sequence similarity and secondary structure similarity of the Nup155 orthologs extends the While across four species. ScNup157/ScNup170/HsNup155 are homologous along their entire sequence, multiple alignments to Nup155 show high similarity primarily in the WD repeat region of the β -propeller and sporadic islands of single residue conservation within the α -solenoid interface. Also, from multiple alignments, we found that the Gle1 (mRNA export factor) binding site, proximal to the C-terminus of HsNup155, appears to be an opisthokont innovation (Rayala et al., 2004). We predicted, based on their length and domain structure, that two other members of the TbNEP dataset (TbNup132 and TbNup109) are β - α Nups. Indeed, we show that

Figure 17: Pair-wise alignment matrix of the β - α Nups. See <u>Figure</u> <u>15</u> for the description.

THE NUCLEAR BASKET: MLPS/TPR

Large coiled coil proteins likely form the nuclear basket of the NPC and also interact with the NE and, in yeast, with the spindle pole body (Niepel et al., 2005; Strambio-de-Castillia et al., 1999). ScMlp1/2 and HsTpr are well-conserved (Figure 18). In trypanosomes, the coiled coil protein TbNUP-1 has been shown to interact with the NE and exhibit some lamin-like properties, despite the lack of lamin associated Pfam domains (Ogbadoyi et al., 2000; Rout and Field, 2001). We found by sequence similarity two putative paralogs of TbNUP-1, although whether they localize to the NE is unknown at this point.

We predicted that two proteins within the TbNEP are putative Mlp/Tpr orthologs, based on their size and coiled coil nature. Our subsequent localization supports this (<u>Chapter 4</u>). They exhibit very little sequence similarity to Mlp/Tpr and do not contain a Mlp/Tpr Pfam domain. This is interesting considering the high similarity of Mlp to Tpr, and that they are coiled coils, which typically offer very strong alignments (albeit, falsely).

Figure 18: Pair-wise alignment matrix of coiled coil NE and NPC associated proteins. See <u>Figure 15</u> for the description. TbNUP-1 is Tb927.2.4230.

THE FG-NUPS

We identified ten TbNups which contain FG-repeat domains, four of which we localized to the NE (<u>Chapter 4</u>). Due to the repetitive primary structure and the natively disordered secondary structure, the FG-Nups have evolved faster than the other groups of Nups (Denning and Rexach, 2007). The rapid evolution impedes any attempt to resolve homologous relationships through primary structure alone. Given that the structure of the Kaps have remained relatively unchanged throughout evolution, and that the transport mechanism is also probably conserved, there must to be a unifying theme of FG-Nups across Eukaryota (Feldherr et al., 2002; Stewart, 2007a).

There is evidence that not all FG-Nup domains are equally essential to nucleocytoplasmic transport. For example, asymmetric FG-Nups are dispensable, while only specific combinations of symmetric Nups are essential for nucleocytoplasmic transport (Strawn et al., 2004). To date, which karyopherin specifically binds to which Nup has not been experimentally decoded. However, it is probable that this code may be quite complex. For example, Kap95 (nuclear protein import) and Mex67 (mRNA export) each specifically bind to two different and discreet sub-regions within the FG-repeat domain of ScNup116 (Strawn et al., 2001). Interestingly, the only feature that distinguishes between these two chemically similar sub-domains of ScNup116 is spacer length.

Since pair-wise alignments of the FG-Nups reveal little, we compared the FG-repeat motifs of *T. brucei* to those in yeast and vertebrates. <u>Table 1</u> lists FG-Nups from *S. cerevisiae*, *H. sapiens*, and *T. brucei* and their respective FG-repeat motifs. Assuming a similar molecular architecture, *T. brucei* NPCs contain more FG-dipeptide repeats and repetitive sequences than either yeast or humans, although the average spacing of the FG-repeats is smaller in trypanosomes. Both yeast and human FG-Nups have three main FG-repeat motifs, two of which they share (i.e. FXFG and GLFG). By contrast, *T. brucei* contains eight main motifs, only two of which are found in yeast and humans (FXFG and GFG) (<u>Table 1</u>).

Since the mechanism of nucleocytoplasmic transport is conserved, but the primary structure of the FG-motifs and FG-repeat domains are not, we analyzed the chemical nature of the spacer regions between the FG-dipeptides. To that end, we calculated the amino acid composition of each FG-repeat domain, where we define the FG-repeat domain as the region from the first Phe to the last Phe in the domain, excluding those regions with a low density of FG-dipeptides. The vertebrate, fungi and trypanosome FG-repeat domains generally have the same percentage composition of Phe residues, which is 2-3X higher than the average occurrence in proteins. In addition, the domains are generally depleted of Arg, Asp, Cys, Glu, His, Ile, Leu, Lys, Met, Trp, Tyr, and Val, and they are enriched in Ala, Asn, Gly, Pro, Ser, and Thr.

Table 1: Comparing to the FG-dipeptide motifs from *S. cerevisiae*, *H. sapiens*, and *T. brucei*. The motif that is present in the highest number in any given FG-Nup is defined as the plurality motif, the number of which is indicated to the right. An asterisk in the "Rep Seq" column indicates near-perfect sequence repeats in the FG-Repeat domain.

Nucleoporin	# of FGs	Plurality motif	# of motifs	Rep seq
ScNsp1	33	FXFG	19	*
ScNup1	17	FXFG	13	
ScNup2	12	FXFG	11	
ScNup42	29	-	-	
ScNup49	18	GLFG	8	
ScNup53	4	-	-	
ScNup57	16	GLFG	9	
ScNup59	6	_	_	
ScNup60	_	FxF	4	
ScNup100	45	GLFG	11	
ScNup116	47	GLFG	20	
ScNup145	15	GLEG	7	
ScNup159	28	-	-	*
Totals	270		102	2
1 otalo	210		102	-
	F			
HsNup50	5 9	GEG	- 5	
HsNup58	14	-	-	
HsNup62	6	FXFG	5	
HsNup98-96	40	GLFG	9	
HsNup153	29	FXFG	15	
HsNup214	44	FXFG	7	
HsNup358	22	FXFG	13	
HsNLP1	12	-	-	
HsPom121	24	-	-	
Totals	205		54	0
TbNup53a	13	GFG	9	
TbNup53b	11	GFG	8	
TbNup59	10	FGFG	4	
TbNup62	30	GGFGA	25	*
TbNup64	13	[S/T]FG	7	
TbNup75	10	FSFG	3	
TbNup98	21	FSFG	19	*
I DNup140	101	[A/V]⊦GQ	97	*
TENUp149	18	VEGI	18 27	*
	296	GGFGQ	31 227	5
TUIDIS	200		221	5

The one amino acid whose abundance varies considerably (from 36.5% to 3.5%) between FG-repeat domains is glycine. We thus sorted the domains into descending order based on glycine content. The abundance of most other residues varies in an apparently random fashion. However, one group of depleted amino acids, the acidic and basic residues, Asp, Glu, Arg, and Lys (DERK), generally increases in abundance as the Gly abundance decreases. In other words, glycine enriched domains are DERK depleted and, conversely, DERK enriched domains are glycine depleted (below the average occurrence of glycine in proteins). This anti-correlation is visualized in Figure 19.

This trend correlates with the localization of the FG-Nups within the yeast and vertebrate NPC. In general, an FG-repeat domain that is glycine enriched and DERK deficient will be symmetrically distributed about the core of the NPC (Figure 19). Conversely, a glycine deficient and DERK enriched FG-repeat domain is more likely to be asymmetrically distributed on either the nucleoplasmic or cytoplasmic peripheral face of the NPC. Interestingly, FG-Nups that localize to the nuclear face of the NPC tend to have a higher composition of DERK, compared to cytoplasmically localized FG-Nups. FG-Nups that are distributed about the NPC in a biased fashion (localized to the core, but not symmetrically) tend to have an intermediate amount of glycine with a low DERK composition. While the motifs and primary structure are not well-conserved through evolution, this compositional anti-correlation is well-conserved, and may be a key to the specificity that some FG-Nups have for specific sub-sets of Kaps.

Figure 19: (Following page) The anti-correlation between glycine and the charged residues (Asp, Glu, Arg, and Lys, DERK). The percent composition of the glycine and the charged residues are plotted on the x and y axis, respectively. Each data point represents and FG-Nup from either *S. cerevisiae* (blue), *H. sapiens* (red), or *T. brucei* (green). The area of each data points is directly proportional to the phenylalanine concentration within the respective FG-Nup. The FG-Nups tend to cluster into two groups: the core FG-Nups that are symmetrically distributed within the NPC; and the peripheral FG-Nups, which are asymmetrically distributed. The average natural occurrence (in vertebrates) for Phe is ~4%, for Gly is ~7% and the sum natural occurrence for the charged residues is ~23%.

All of the asymmetric FG-Nups, with low glycine content, are dispensable in yeast (Strawn et al., 2004). However, while not essential, a stretch of charged residues within an asymmetric FG-repeat may increase the strength and/or onrate of the transient interaction between the FG-repeat region and the Kap. For example, a Kap-Cargo complex that is destined for the nucleus would transit through the NPC in a Brownian fashion (Rout et al., 2000). A vectorial cue, such as highly charged asymmetrical FG-Nups, would impart directionality to increase the efficiency of nucleocytoplasmic transport by guiding Kap-cargo complexes to the exit or by keeping them at the exit until dissociation occurs via ancillary factors. This correlation also provides an additional prediction for the possible distribution of FG-Nups within the TbNPC, which can be tested by immunogold EM.

In a further attempt to resolve homology relationships between FG-Nups, we compared the non-FG-repeat domains of FG-Nups by pair-wise alignments (Figure 20). However, there is little significant similarity between these domains, which is not surprising given that the anchoring domain of the FG-Nups are generally coiled coils (Melcak et al., 2007). The most similar alignments result from the zinc finger domains of HsNup358 and HsNup153.

					_		6	_	33	~	~		~		4	80	.2880	.2885	.7200	.0270	.3180	.3540	.4310	.5200
	ScNup1	ScNSP1	ScNup2	ScNup42	ScNup49	ScNup57	ScNup15	ScNup60	HsNup15	HsNup62	HsNup50	HsNLP1	HsNup58	HsNup5 ²	HsNup21	HsNup35	Tb11.01	Tb11.01	Tb11.01	Tb11.02	Tb927.3	Tb927.3	Tb927.4	Tb927.4
ScNSP1	-																							
ScNup2																								
ScNup42	1		-147																					
ScNup49		-																						
ScNup57	-			-																				
ScNup159				-	-																			
ScNup60	-				-		-																	
HsNup153	-	-					-																	
HsNup62							-																	
HsNup50																								
HsNLP1	- 100																							
HsNup58	- 1960		-100			- 199		- 199																
HsNup54													-											
HsNup214																								
HsNup358										-		-												
Tb11.01.2880						-148	-			-				~~										
Tb11.01.2885	-	~~	***				-	-							-									
Tb11.01.7200													-		-									
Tb11.02.0270	- 1984															-								
Tb927.3.3180				-			-							-				-						
Tb927.3.3540			- 100							-				-	-		-			**				
Tb927.4.4310								-	- 1864				-											
ТЬ927.4.5200		-						-	-	-			-			-				-				
Tb927.8.8050		~			-	- 49.00	-		(2014)	-		1000						-	- 1990	-				admath.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 20: Pair-wise alignment matrix of the non-FG-Repeat domains from the FG-Nups. See <u>Figure 15</u> for the description.

THE KARYOPHERINS

Kaps comprise the soluble part to the nucleocytoplasmic transport system. With a few exceptions, they are well-conserved across the opisthokonts and excavates (Figure 21). The least conserved transport factor is NTF2, which is responsible for Ran recycling across the NPC. The structures of several Kaps, as well as interactions with stretches of FG-repeat domains and substrates, have been solved (Bayliss et al., 2002; Bayliss et al., 2000b; Bullock et al., 1996; Grant et al., 2002; Grant et al., 2003; Latzer et al., 2007; Lee et al., 2005; Liu and Stewart, 2005; Matsuura et al., 2003; Matsuura and Stewart, 2004a; Matsuura and Stewart, 2004b; Matsuura and Stewart, 2005; Morrison et al., 2003; Saric et al., 2007).

We identified 8 Kaps or transport factors in the TbNEP dataset, including Ran, the energy carrier for nucleocytoplasmic transport. Generally, the trypanosome transport factors are more conserved than the rest of the NPC components. This is most likely due to the large number of substrates with which these molecules must interact and the conservation of the mechanism of nucleocytoplasmic transport.

	ScNTF2	ScGSP1	ScGSP2	ScMex67	ScKap60	ScKap95	ScKap104	ScKap123	HsNTF2	HsRAN	HsNXF2	HsKapA	HsKapB	HsTransportin1	HsTransportin2	Hslmportin 4	Тb927.7.5760	Tb927.3.1120	Tb11.22.0004	Tb927.6.2640	Tb10.70.4720	Tb10.6k15.3020
ScGSP1	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-
ScGSP2	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
ScMex67	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
ScKap60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
ScKap95	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
ScKap104	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
ScKap123	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
HsNTF2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HsRAN	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-		-	-	-	-
HsNXF2	-	-	-	-	-		-	•	-	-	-	-	-	-	-	-	-		-	-	-	-
HsKapA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
HsKapB	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-		-		-	-
HsTransportin1	-	-	-	-	-	-		-		-	-	-		-	-	-	-		-	-	-	-
HsTransportin2	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
HsImportin 4	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		-	-	-	-
Tb927.7.5760	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-
Tb927.3.1120	-	-	-	•	-	-	-		-	-		-	-	-	-	-	-		-	-	-	-
Tb11.22.0004	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-		-	-	-	-
Tb927.6.2640	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-		-	-	-	-
Tb10.70.4720	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-		-		-	-
Tb10.6k15.3020	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-		-	-	-	-
Tb11.01.7010			-	-	-	-	-	•		-		-	-		-	•	-	48	-		-	
						0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0							

Figure 21: Pair-wise alignment matrix of the karyopherins. See <u>Figure 15</u> for the description.

THE AUTOPROTEOLYTIC DOMAIN

One of the more peculiar Nups is the autoproteolytic ScNup145, and its ortholog HsNup98-96. Immediately after translation, the β -sandwich auto proteolytic domain folds and initiates cleavage at a conserved H[F/Y][S/T} tripeptide (Fontoura et al., 1999; Rosenblum and Blobel, 1999). The N-terminal protein contains an FG-repeat domain while the C-terminal molecule contains a α -solenoid structural fold and resides with the scaffold of the NPC. Using both mass spectrometry and western blotting, we find that TbNup158 does not cleave and instead functions as the full length protein. To investigate the conservation of the autoproteolytic domain, we performed a multiple alignment between 11 species (Figures 22 and 23). While the β -sandwich domain is highly conserved in *T. brucei*, as well as *G. lamblia*, both sequences lack the tripeptide catalytic site requisite to initiate cleavage. We further investigated this TbNup using fluorescent localization (Chapter 4) and RNAi (Chapter 5).

Figure 22: Multiple alignment of the autoproteolytic β -sandwich domain. Identities are indicated by black shading and similarities are shaded in gray. A conserved lysine that stabilizes the transition state of the acyl-shift cleavage is indicated with a star. The box has been drawn around the catalytic site. Above the alignment is the secondary structure information from the solved structure of HsNup98 at atomic resolution (Hodel et al., 2002).

Figure 23: Pair-wise alignment matrix of the β -sandwich domain. See <u>Figure 15</u> for the description.

THE NPCs OF NEIGHBORING SPECIES

The TbNPC could not have been characterized by bioinformatics alone (Bapteste et al., 2005; Mans et al., 2004). The primary structure of many of the Nups has drifted too far to retain any detectable similarity. One goal of this project was to use the excavate NPC inventory to resolve the NPCs of neighboring bikonts. However, even once the full set of TbNups was cataloged, we could not effectively characterize the entire structural scaffold of the NPC of other neighboring Eukaryotes, such a *T. gondii* and *N. gruberi* (Table 2). It is not surprising that the β -propellers are the easiest to identify by pair-wise alignment given their conservation throughout the eukaryotic tree of life.

We have identified and characterized 24 putative members of TbNPC through biochemistry, mass spectrometry and bioinformatics. We now present our continued characterization of the TbNPC and its constituent members by fluorescence localization and RNAi functional studies.

Table 2: Using the TbNPC inventory as the query sequence, the genomes of six diverse unikonts/bikonts were searched for homologous sequences. An identification is confirmed when the top pair-wise aligned sequence is properly aligned, in a reciprocal fashion, back to the *T. brucei* genome. Nf, not found. Note, a result of "not found" does not imply that that Nup does not exist in the subject species.

Domains	T. brucei	E. histolytica	N. gruberi	D. discoideum	A. thaliana	C. reinhardtii	T. gondii
β Propeller, α Solenoid	TbNup109	nf	nf	nf	nf	nf	nf
β Propeller, α Solenoid	TbNup132	nf	nf	nf	nf	nf	nf
β Propeller, α Solenoid	TbNup144	nf	61200	DDB0235243	AT1G14850	191024	nf
ß Propeller	ThSec13	264 m00090	35757	DDB0235182	AT2C30050	130713	20 m03668
ß Propeller	TbNup43	204.1100090	60360	DDB0233102	A12030030	101514	52 m01507
	TbNup40	iii nf	61992	DDD0104007	AT2056000	191314	52.1101597
p Propeller		10 00000	01002	DDB0233267	AT3G56900	111	ni ,
ß Propeller	TbSen1/Sec13	18.m00329	81581	DDB0233985	A15G15550	128420	nt
a Solenoid	TbNup82	nf	nf	nf	nf	nf	nf
a Solenoid	TbNup89	nf	nf	nf	nf	nf	nf
a Solenoid	TbNup96	nf	nf	nf	nf	nf	nf
a Solenoid	TbNup181	nf	nf	nf	nf	nf	nf
a Solenoid	TbNup225	nf	nf	nf	nf	nf	nf
FG Repeat, Nup98, α Solenoid	TbNup158	nf	nf	DDB0235244	AT1G59660	164461	55.m04836
· • · · · · · · · · · · · · · · · · · ·							

CHAPTER 4 — GFP LOCALIZATION OF PUTATIVE NUCLEOPORINS

Using several biochemical and mass spectrometric strategies, we identified nearly 860 proteins that associate with the *T. brucei* nuclear envelope preparation (<u>Chapter 2</u>). Employing a rigorous bioinformatic strategy, we then identified and begun to characterize 24 putative TbNups, as well as 8 Kaps (<u>Chapter 3</u>, Figure 13, and Table 5). To further test our functional predictions, we tagged fully half of the putative TbNups with a fluorescent label. We also tagged 8 unannotated proteins because they contained secondary structure fold patterns (e.g. β -propeller, α -solenoid, transmembrane helices, Zinc-finger, and cadherin folds) that are consistent with those contained in Nups. We then observed the localization of these target proteins by fluorescent microscopy, expecting bona fide TbNups to form a punctuate pattern at the nuclear periphery.

Green fluorescent protein (GFP) is widely recognized for its use as a protein epitope tag (Chalfie et al., 1994). In recent years, GFP has been used as a tag to probe protein localizations and interactions in trypanosomes (He et al., 2004). In this work, we use a polymerase chain reaction (PCR) based approach (Shen et al., 2001) to epitope tag genes of interest (GOI) endogenously. The strategy utilizes the PCR amplification of a reporter cassette using two opposing primers which contain flanking sequences specific to 3' end of the GOI. Following transfection, the PCR product is integrated into the GOI by homologous recombination. This technique is advantageous in that it avoids the need to clone lengthy genes into exogenous expression vectors and the inherent possibility of mislocalization due to overexpression.

METHODS

It has been demonstrated that Nups are generally more tolerant of a COOH-terminal tag (Cronshaw et al., 2002; Rout et al., 2000), and so we targeted the 3' end of putative TbNups. The pMOTag series of plasmids are designed for 3' tagging (Oberholzer et al., 2006). The general scheme of these vectors is shown in Figure 24. The full reporter cassette contains the GFP tag, a splice signaling region (the intergenic region of α and β tubulin), and the antibiotic marker cassette. The forward and reverse PCR primers are designed with approximately 80 nucleotides, which are homologous to the sequences which flank the 3' end of the GOI (without the stop codon). This target specific region is followed by 20 nucleotides specific to the pMOTag vector. See Figure 24.

Figure 24: Schema for the pMOTag series of GFP tagging vectors. Upper panel shows the ORF plus additional downstream nucleotides (nt) which comprise the 3' untranslated region (UTR). Blue and yellow lines indicate the location and sequence of the forward and reverse primers, respectively. These primers are approximately 80 nts in length and an additional 20 nts is added onto the primers to complement the plasmid (Bottom, dashed lines). The bottom panel shows the reporter cassette, which is comprised of the GFP epitope tag (green), the splice signaling region (blue) and the antibiotic resistance marker (red). The product is amplified using PCR with the following program: 4 min at 94°C, followed by 30 cycles of 1 min at 94°C, 1 min at 63°C, and 2 min at 72°C. The PCR product is purified by standard ethanol precipitation. 10 μ g of DNA is transfected into procyclic cells. Positive colonies are selected with hygromycin (25 μ g/ml) and are assayed for proper insertion and expression using PCR and/or western blotting.

Following transfection, the stop codon of one allele has been replaced by the reporter cassette with the GFP moiety in frame with the GOI. Following translation the GFP is linked to the target protein by a short peptide linker (the linker sequence is GTGPPLE). A list of primers used in this study is included as Appendix E.

To image the GFP localization of the target protein, 10^7 cells in 1 ml are fixed with formaldehyde (2% final concentration). After five minutes, the cells are spun (3k for 3 min) and washed twice with PBS. The cells are then allowed to settle onto a silanized coverslip. After any nonattached cells are washed away, the coverslip is then mounted in 50% glycerol, 0.4 µg/ml DAPI (4',6-Diamino-2-phenylindole dihydrochloride) in PBS. Fluorescence images were acquired with the DeltaVision Image Restoration microscope (Applied Precision/Olympus).

RESULTS AND DISCUSSION

TBNUP LOCALIZATION

A summary of the results is shown in Table 3. Of the 23 targets analyzed, 12 proteins properly localized to the NE, as well as the previously described TbNUP-1 (Figure 25). The *T.brucei* nuclei are ellipsoid in shape and are about 2.5 µm in diameter along the principle axis. The fluorescence pattern of the labeled Nup is unusually punctate, compared to yeast and vertebrates. One putative Nup and two putative lamins (Tb927.4.2070, Tb10.61.0160, and Tb927.7.3330) were unsuccessfully labeled with GFP, as determined by Western blot. Proteins that do not localize to the NPC are characterized by cytoplasmic and/or nuclear staining with no punctate nuclear rim staining. However, it must be noted that lack of nuclear rim staining is inconclusive at best, and does not necessarily eliminate a candidate from consideration as a TbNup.

GeneDB Accession	Mass (kDa)	Annotation	NE localization?
Tb11.03.0810	109.7	TbMlp1	Yes
Tb09.160.0340	92.3	TbMlp2	Yes
Tb927.2.4230	406.8	TbNUP-1	Yes
Tb11.02.2120	48.4	TbNup48	Yes
Tb11.02.0460	89.1	TbNup89	Yes
Tb10.6k15.3670	96.5	TbNup96	Yes
Tb11.01.7630	108.7	TbNup109	Yes
Tb927.7.2300	132.3	TbNup132	Yes
Tb10.6k15.2350	144.3	TbNup144	Yes
Tb927.8.8050	74.8	TbNup75-FG	Yes
Tb11.01.2885	140.3	TbNup140-FG	Yes
Tb11.01.2880	149.2	TbNup149-FG	Yes
Tb11.03.0140	158.3	TbNup158-FG	Yes
Tb11.03.0140N	158.3	TbNup158-FG N837-GFP	Foci at the NE
Tb927.4.1310	47.4	Unannotated	Inconclusive
Tb927.4.590	88.0	Unannotated	Inconclusive
Tb10.70.1120	109.2	Unannotated	Inconclusive
Tb927.6.1830	49.9	Unannotated	Inconclusive
Tb10.70.1110	59.9	Unannotated	Inconclusive
Tb10.70.1130	48.2	Unannotated	Inconclusive
Tb927.4.2070	511.3	Unannotated	Not Determined
Tb10.61.0160	42.9	TbNup43	Not Determined
Tb927.7.3330	502.6	Unannotated	Not Determined

Table 3: Summary table of results.ND, not determined due toimproper GFP insertion or expression.

Figure 25 (following page): Fluorescent microscopy images of COOH-terminal GFP labeled TbNups and corresponding DAPI fluorescence marker. Two coiled coil TbNups, TbMlp1 and TbMlp2, are visualized in under non-mitotic (panels A and C) and mitotic (panels B and D) conditions to show the differential localization of TbMlp2.

	С Н О	DAPI	GFP	DAPI	_
TbMlp1	(A)	C	(B)		
TbMlp2	(C)	0	(D)		
TbNUP-1	\bigcirc	0	0	ð	TbNup48
TbNup75-FG	0	0	0	Ç	TbNup89
TbNup140-FG	\bigcirc	°*	Ø	Q .	TbNup96
TbNup149-FG	3	¢,	Ó	8	TbNup109
TbNup158-FG	0	ст. С	Ø	^C	TbNup132
TbNUP158-FG N837-GFP	5	0	0	0	TbNup144

Within the TbNEP, two proteins stood out, by their coiled coil structure, as putative Mlp/Tpr proteins. We labeled these two unannotated proteins with GFP, and found that they localize at the nuclear periphery (Figure 25 (A & C)). However, during mitosis, only TbMlp2 localizes to an area proximal to the spindle pole bodies (Figure 25 (D)). This is analogous to the likely yeast nuclear basket Nups, Mlp1/2, which are paralogous, but perform different functions at the NE. This leads us to speculate about the possible roles of the TbMlps at the nuclear periphery, such as maintenance of telomere length and telomere localization at the NE. Given the poor homology between the yeast and trypanosome Mlps, it would be interesting to identify additional interacting partners. Further colocalization studies with telomere maintenance complexes are planned.

We also carried out further investigation of TbNup158 — the non-cleaving ortholog of the autoproteolytic Nup ScNup145. In this investigation, we produce the truncated protein TbNup158(1-837)-GFP, which contains the N-terminal FGrepeat domain and the conserved β -sandwich autocatalytic domain with a GFP tag at its C-terminus. This truncated protein does not contain the C-terminal α solenoid domain. TbNup(1-837)-GFP localized to several punctuate foci at the NE (Figure 25). These results are in contrast to that found in vertebrates. Here, a HsNup98-96(F863S/Y866R) mutant, which cannot cleave, mislocalizes to the nuclear interior, however the HsNup98(1-863) mutant properly localizes to the nuclear periphery (Fontoura et al., 1999). Evidently, the functional difference between TbNup158 and the higher eukaryotes is more complex than simply the lack of a cleavage triad. The full length trypanosome homolog of HsNup98-96,
with an identical domain structure, properly functions at the NPC. However, the abolishment of the cleavage site within the HsNup98-96 causes mislocalization and loss of function. Furthermore, the introduction of an artificial cleavage site into TbNup158, causes aggregation at distinct foci at the NE. In contrast, the introduction of an additional pool of HsNup98 into HeLa cells does not cause any disruption to NE localization (Fontoura et al., 1999).

NPC DENSITY DETERMINATION

S. cerevisiae NPCs are distributed in the NE in a non-uniform, nonrandom fashion with an average density of ~12.0 NPCs/ μ m² (Winey et al., 1997). Depending on the cell cycle stage, HeLa cells have an average NPC density of about 5 – 9 NPCs/ μ m² (Maeshima et al., 2006). The distribution of NPCs around a vertebrate nucleus is non-uniform, non-random, and directly dependent on the INM distribution of Lamin A/C and emerin, the presence of which leads to NPCfree islands, especially in early cell cycle stages (Maeshima et al., 2006).

In contrast to the majority of the opisthokonts, the distribution of *T. brucei* appears to be approximately uniform (<u>Figure 26</u>). Both the approximate uniform distribution of NPCs in *T. brucei* and their lower density, compared with yeast, allow us to readily count them using fluorescence microscopy by integrating a series of Z-axis focal plane images. The average density is 5.1 NPCs/ μ m² (N=10, σ =0.8), with an average of 93 NPCs (σ =16) per nucleus. The low density of NPCs around the nucleus explains the resolution of the punctuate pattern. A typical Z-stack of images, showing the resolution of individual NPCs, is shown in <u>Figure 26</u>. In this dividing nucleus, the ~150 NPCs are distributed on average ~0.5 µm apart from each other.

Figure 26: (Top) The center Z slice of TbNup89-GFP showing the location of DNA by DAPI staining. (Bottom) 21 Z-Stacks shown in sequential order. Each stack is 150nm is thick. There are ~150 NPS around this dividing nucleus. Note the resolution of individual NPCs.

Finally, we screened the TbNEP against a panel of available NPC antibodies with an affinity for a specific epitope within the NPC for any cross reactivity. Most of the antibodies that we screened did not cross react with the However, we found that a polyclonal antibody raised TbNPC components. against HsNup107 does cross-react with the T. brucei NPC (Glavy et al., 2007). Figure 27 shows the localization overlay of α HsNup107 along with both α TbNUP-1 and TbNup89-GFP (Ogbadoyi et al., 2000). α HSNup107 appears to localize in the regions devoid of α TbNUP-1 signal, which is consistent with their respective roles at the NE, since TbNUP-1 is not a nucleoporin. α HsNup107 does indeed colocalize with GFP labeled TbNup89, suggesting the α HsNup107 is crossreacting with an epitope within the TbNPC. Although there are several candidates with similar sequences, the trypanosome antigen to HsNup107 is not obvious. αHsNup107 binds to specific peptide а (MVTNLDDSNWAAAFSSQRSG), which is not homologous with any known sequence within the TbNEP or within the T. brucei genome. The possibility exists that the antibody recognizes another linear epitope or a conformational epitope within the antigen.

Figure 27: (Top) TbNup89-GFP and α HsNup107 colocalize at the nuclear periphery. (Bottom) α TbNUP-1 and α HsNup107 localize to the nuclear periphery, but do not colocalize.

CHAPTER 5 — KNOCKDOWN STUDIES OF PUTATIVE NUCLEOPORINS USING RNA INTERFERENCE

Using several biochemical and mass spectrometric strategies, we identified nearly 860 proteins that associate with the *T. brucei* nuclear envelope preparation (<u>Chapter 2</u>). Employing a rigorous bioinformatic strategy, we then identified and begun to characterize 24 putative TbNups, as well as 8 Kaps (<u>Chapter 3</u>, <u>Figure 13</u>, and <u>Table 5</u>). We then localized 12 TbNups to the nuclear envelope using GFP fluorescence localization. To further characterize several of the putative TbNups as well as possible additional roles of the TbNPC, we turned next to RNA interference (RNAi) for functional analysis.

RNAi employs double stranded RNA (dsRNA) to suppress the expression of a particular gene, allowing for functional analysis (Zamore, 2002). Once within the cell, dsRNAs are cleaved by Dicer, an endonuclease, to produce small interfering RNAs (siRNAs) about 21-23nt in length. siRNAs, in concert with the multiprotein complex RISC, direct the recognition and subsequent degradation of mRNA (Chi et al., 2003; Hannon, 2002; Zamore, 2002). First described in the nematode *C. elegans* (Fire et al., 1998), RNAi quickly became a powerful tool for large scale functional genomics within many organisms, such as *D. melanogaster* and *C. elegans* (Boutros et al., 2004; Chi et al., 2003; Kamath et al., 2003).

In *T. brucei*, it also been shown that dsRNA effectively silences gene expression by specifically degrading mRNA (Ngo et al., 1998). Moreover, placing RNAi constructs under the control of the TET repressor system allows for

a controllable, persistent, and heritable RNAi response (Bastin et al., 2000; LaCount et al., 2000; Shi et al., 2000; Subramaniam et al., 2006; Wang et al., 2000). RNAi has become a tool of choice over the past 5 years for probing trypanosome gene function because of its robustness and efficiency compared to traditional gene knockout studies (Beverley, 2003). Here, we characterized several putative TbNups using RNAi to determine to what extent they are essential to the viability of the cell.

METHODS

To choose appropriate candidates for RNAi studies, we surveyed the literature for the phenotypes of Nup deletions in *S. cerevisiae* (for details, see <u>Appendix C</u>). This survey revealed that less than a third of the Nups are essential in yeast. Based on these results, we targeted, in *T. brucei*, three well-conserved orthologs of the essential Nups: ScNup145, ScNup96, and ScSec13. Two non-essential yeast Nups that exhibit a clustering phenotype when knocked-out in yeast were also targeted: ScGle2, a transiently interacting Nup, and ScNup84, both of which are well-conserved in trypanosomes.

Detailed protocols for our RNAi studies may be found at the TrypanoFAN resource webpage (http://trypanofan.path.cam.ac.uk). The target regions were determined using the program RNAit (Redmond et al., 2003). The program optimizes both the target region and primers to eliminate any potential problems with amplification and cross reactions. The primers and target region are shown in <u>Figure 28</u>.

C)pen Reading Frame	Target	Forward Primer	Reverse Primer	Product Length	Target Region
Т	b09.160.2360	TbGle2	GATACTGGGACATGAAGCAGC	GCCCAATCATAGCTACGTGC	544	422-966
Т	b10.6k15.3670	TbNic96	TTCAGAGGATTGCACACGCTC	TTGGGAAGCATTCATCCGACG	511	1314-1824
-	Tb10.61.2630	TbSec13	TTGACATTCACCAGGGTAGCG	TGAGGTGACTCCACTGTTTGC	450	413-862
-	Tb11.02.0460	TbNup89	TCGCATGACTCTTGGCAAGAC	ACCTACACGCAACAAGGAACG	460	1015-1474
-	Tb11.03.0140	TbNup158	AATGGCAAGTCTGAGTCGGAG	TCCGCAGTTGAGTGAGGTAAC	509	3048-3556
-	Tb10.70.0830	Clathrin Heavy Chain	ATGCCTGTATTGAGGCCAAC	CAGGTTTTGAGGGCACGTAT	484	3821-4305

Figure 28: (Top) The PCR primers and targeted regions of the five trypanosome proteins selected for RNAi knockdown studies. Clathrin serves as a positive control. (Bottom) Schematic of the p2T7^{TABlue} plasmid. HYG, hygromycin selection cassette; R-spacer, rDNA integration region; Amp, ampicillin resistance marker.

The target regions were PCR amplified from genomic DNA. The primers and genomic template were mixed with PCR Supermix, (Invitrogen, Carlsbad, CA) and, after 5 min denaturing at 95°C, cycled 35 times with the following sequence: 30 s at 95°C, 30 s at 65°C, and 85 s at 72°C. The product was purified and inserted into p2T7^{TABlue} (Alibu et al., 2005), which was digested with Eam1105I (Fermentas, Hanover, MD) to liberate the LacZ stuffer cassette (<u>Figure 28</u>). The PCR product vector has adenine overhangs, which complement the thymine overhangs in the digested vector. One part digested vector and five parts PCR product were mixed and ligated with T4 ligase (Rapid DNA Ligation Kit, Roche, Indianapolis, IN).

After cloning within *E. coli*, the vector was isolated and purified using standard protocols. Prior to transfection, the plasmid was linearized with Notl (Invitrogen, Carlsbad, CA). Then 10 µg of linearized DNA was tranfected into the Single Marker Bloodstream (SMB) bloodstream form *T. brucei* cell line (T7RNAP::TETR::NEO) using standard established protocols. The SMB cell line has a T7 RNA polymerase and a TET repressor, which expresses the target cassette in the presence of doxycycline. Positive colonies were selected with hygromycin (2.5 µg/ml). After selection and cell line maturation, mRNA knockdown was induced with the addition of 1 µg/ml doxycycline. Cells were observed and counted at 6 or 12 hour time points the first day and every 24 hours post-induction. Samples of each induced cell line were prepared for thin section transmission electron microscopy analysis after 24 hours, post-induction (FEI Tecnai G2 Spirit BioTwin with Gatan 4K x 4K digital camera).

To monitor the efficiency of the RNAi knockdowns, 15 x 10⁶ cells were removed at each time point. RNA was extracted using RNeasy Mini Kit (QIAGEN, Valencia, CA) and residual genomic DNA was removed by treatment with DNase (QIAGEN). After quantification, the mRNA was reverse transcribed into cDNA using polyT primers and the TaqMan® Reverse Transcription Reagents (Applied Biosystems, Foster City, CA). Quantitative PCR (qPCR) was performed with the SYBR green fluorescent marker with primers designed with the Primer Express software (Applied Biosystems). The target mRNA levels were reported relative to the endogenous control TbGAPDH (GeneDB accession Tb927.6.4300).

RESULTS AND DISCUSSION

In total, we targeted five TbNups for RNAi functional analysis: TbSec13, TbNup96, TbGle2, TbNup89, TbNup158 (see above). We monitored the efficiency of the induction of dsRNA and subsequent knockdown of the target RNA by qPCR. As shown in Figure 29, 80-90% of the target mRNA has been depleted within 24 hours. The primary assay for the RNAi experiment was cell growth. Thus we counted the cells every 6 or 12 hours for the first day, and every 24 hours thereafter, and diluted, if necessary. For each target gene, three independent cell lines were split – one culture was induced and the other was uninduced and monitored as a control. The results are shown in Figures 30 and 31.

Figure 29: Results from the qPCR monitoring mRNA levels at various time points post-induction of RNAi. Percent mRNA is relative to an endogenous control (TbGAPDH) and relative to pre-induction levels, which is set to 100%. The standard error of the mean was determined from 3 RNA samples from 3 independent cell lines for each target.

Figure 30: Growth curves of TbNup96-RNAi and TbSec13-RNAi cells. Since these knock downs were lethal within 48 hours, cell density was first measured at 6 hours post-induction. Relative to the uninduced control, cell division ceased within 6 hours post-induction. The standard error of the mean was calculated from 3 independent cell lines of each target gene.

Figure 31: Growth curves of TbGle2-RNAi, TbNup89-RNAi, and TbNup158-RNAi cells. Growth at 12 hours post-induction was similar to the uninduced control. After 24 hours post-induction, TbNup89-RNAi and TbNup158-RNAi cells began to show signs of growth defects and cellular division is slowed. TbNup158-RNAi cells ceased cell division within 48 hours post-induction. TbGle2-RNAi cells and TBNup89-RNAi cells exhibited slow cell growth and eventually succumbed to pleiotropic phenotypes. The standard error of the mean was calculated from 3 independent cell lines of each target.

Knockdown of two *T. brucei* Nups, TbNup96 and TbSec13, caused immediate cell division arrest (Figure 30). After induction of TbSec13 and TbNup96 RNAi, most cells were dead by 24 and 48 hours, respectively. In the case of TbNup96, this is suggestive of cell cycle arrest due to the inability to form new NPCs during S phase. Knockdown of TbNup158 induces a growth defect for the first 24 hours, after which cell division completely arrests and no further culture growth is detected (Figure 31). Many cells were still viable, but exhibited pleiotropic effects (poly-nucleation and cell enlargement). TbNup89 and TbGle2 knockdowns induce a moderate and slight growth defect, respectively, until the 4th day, when pleiotropic effects dominate and cell cycle arrests (Figure 31).

Cessation of cell growth is not an unexpected phenotype, as several fungi and vertebrate Nups have secondary functions as mitotic regulators — for example, HsNup153 (Mendjan et al., 2006). Also, several metazoan Nups, including HsNup214, cause cell cycle arrest upon knockdown (Boer et al., 1998). Although it is unclear how a knockdown of a specific TbNup will affect the cell cycle, perhaps the depletion of NPCs around the nucleus prevents the release of a check point. Since *T. brucei* undergoes a closed mitosis, the nucleus must expand during S-phase to accommodate the replicated genome and prepare for nuclear division. This would also necessitate the *de novo* formation of additional NPCs (D'Angelo et al., 2006). In this case, if the pool of TbNup96 is depleted, then perhaps nascent NPCs cannot assemble, suggesting a key function of TbNup96 in the NPC architecture. The same analysis may apply to TbSec13, but, presumably, this protein also functions as a vesicle coat protein in

trypanosomes (Siniossoglou et al., 1996). However, since Sec13 is localized to a key architectural complex with the NPC, it is possible that its knockdown directly affects NPC formation and cell cycle arrest.

Evidently, the absence of TbNup158 is tolerated for several divisions. One explanation is that the NPCs are able to form without a pool of newly synthesized TbNup158 and the cells are able to propagate with only the existing pool of TbNup158 bound to NPCs. If NPCs are formed *de novo*, as predicted, then with each division, a reduced number of NPCs will contain TbNup158. At 24 hours, or 3 nuclear divisions, perhaps the number of fully functional NPCs drops below a critical threshold and the cell cycle is arrested.

Interestingly, depletion of TbNup89 does not aggressively trigger any cell cycle checkpoints, even though the NPCs are perturbed sufficiently to cause a growth defect. The lack of an obvious phenotype (beyond slow cell growth) upon knockdown of TbGle2 may indicate that the mRNA export pathway is sufficiently redundant to tolerate the loss of this mRNA export factor.

To investigate morphological changes within the NE or nucleus, we observed the nucleus of each knockdown by transmission electron microscopy 24 hours post-induction (Figure 32). Knockdowns of TbGle2 (Figure 32, Panel B) and TbNup96 (Figure 32, Panel C) did not significantly alter the morphology of the nucleus, although TbNup96-RNAi cells were very likely to be NPC-depleted and poly-nucleated. TbSec13-RNAi had a significant effect on the morphology of the nucleus and the cell in general — there are a large number of small vesicles

and disruption to the internal membrane structures (Figure 32, Panel D). Evidently, knockdown of TbSec13 perturbs the regulation of membrane curvature within the cell. This is consistent with the known function of Sec13 as a member of the COPII vesicle coat complex.

Figure 32: Transmission electron microscopy (TEM) of RNAi cell lines 24 hours post induction. Scale bars: Control (Panel A) and TbNup96-RNAi (Panel C), 1 μ m; TbGle2-RNAi (Panel B), TbSec13-RNAi (Panel D), and TbNup158-RNAi (Panel F), 0.5 μ m; TbNup89-RNAi (Panel E), 0.2 μ m.

The knockdown of TbNup89, while not lethal, causes the deformation of the nuclear envelope (there is localized blebbing and invaginations at the INM and ONM, as seen in Figure 32 Panel E) as well as an exaggerated ER structure in some cases. Like Sec13, this suggests that TbNup89 plays a significant, if not essential, role in membrane maintenance, and its loss causes perturbation of NE curvature leading to excess ER and NE formations. This is analogous to the phenotype when ScNup53 is overexpressed in yeast. Overproduction of ScNup53 produces excess intranuclear tubular and double membrane structures, and led to the speculation that the NPC plays a critical role in NE formation and stabilization (Marelli et al., 2001).

TbNup158 plays an essential role in preserving proper membrane structure (Figure 32 Panel F). Knockdown of TbNup158 cause many nuclei to become denuded of their ONM to varying degrees (Figure 32 Panel F). The TEM field contains nuclei in various stages of ONM separation, suggesting a slow onset of this phenotype. This is perhaps either due to a significant-residual pool of TbNup158, the long half-life of TbNup158, or, most likely, a combination of both. Despite the slow onset of the observed phenotype, the knockdown of TbNup158 apparently prevents nascent NPC formation or destabilizes NPCs once the preexisting pool of TbNup158 is exhausted. The dysfunctional TbNPC no longer structurally supports the annuli across the NE. Without this support, the curvature of the annuli collapses and the pore is sealed, the result of which is the separation of the NE.

This would suggest that trypanosomes lack a protein network across the NE from the cytosol to nucleoplasm. Conceptually, such a network should maintain NE stability in the absence of NPCs, as is the case in yeast or vertebrates. This hypothesis is consistent with the lack of detectable opisthokont NE protein domains within the TbNEP (this study). It is also noteworthy that only one protein with a Sad1/Unc domain has been identified by bioinformatics within the entire trypanosome genome. The apparent lack of a trypanosome protein network would explain why knockdowns of orthologous Nups in the opisthokonts do not exhibit such severe membrane deformation phenotypes.

With the majority of the TbNPC components identified and characterized, we can now draw comparisons between the NPCs of *H. sapiens*, *S. cerevisiae*, and *T. brucei*. In the next chapter, we compare these three examples of well characterized NPCs in the context of eukaryotic evolution.

CHAPTER 6 — DISCUSSION AND FUTURE DIRECTIONS

COMPOSITION AND STRUCTURE OF THE TBNPC

Through various biochemical, proteomic and bioinformatic strategies, we have identified 24 putative TbNups and 8 putative transport factors (Chapter 3). Our analysis of the TbNPC reveals a composition homologous to the well characterized opisthokont NPCs. We estimate that we have identified the majority, if not all, of the structural scaffold TbNups (Figure 13, and Table 5). We base this estimate on the following line of reasoning. Here, we assume the TbNups have a similar stoichiometry in the NPC as do those in opisthokont NPCs. This implies that TbNups are present in a relative abundance that is within a factor of 4 of one another. Because we can recognize scaffold Nups by their characteristic secondary structure fold patterns, and because the dynamic range of our analysis is ~1000 (see Chapter 2), it seems unlikely that we have missed many scaffold Nups. We conducted a screen of all the proteins in the TbNEP dataset for secondary structure fold patterns that are characteristic of the Nups that comprise the structural scaffold. These fold patterns are the β propeller domain, α -solenoid domain and an N-terminal β -propeller connected to an α -solenoid domains (β - α domain) (Devos et al., 2006). Our screen identified 17 proteins with such secondary structure patterns. We were able to eliminate from consideration 5 of these proteins using sequence similarity (Chapter 3) and fluorescent localization (Chapter 4), though it is possible that the introduction of

an epitope tag disrupted proper localization. This process resulted in the identification of 12 putative scaffold TbNups.

Earlier work suggests that the fold patterns discussed above are very likely to pre-date the emergence of the NPC at the LCEA (Devos et al., 2004). If true, then these fold patterns should be present within the contemporary NPC structural scaffold of all eukaryotes. The presence of these fold types within the structural scaffold of *T. brucei* supports this hypothesis.

Within the structural scaffold, the β -propellers are a particularly wellconserved family of Nups (Figure 15). Previously, it has been observed that Sec13 and the transport factor Gle2/Rae1 are well-conserved across the opisthokonts (Murphy et al., 1996; Siniossoglou et al., 1996). Here, we observed that they are conserved in trypanosomes as well. Trypanosomes, plants and animals have additional β -propellers that have apparently been lost in yeast (<u>Appendix A</u>). One example is an HsALADIN homolog, which is a disease locus in humans (Cronshaw and Matunis, 2003), that we observe to be present in trypanosomes. Interestingly, plant β -propellers have less sequence similarity with trypanosome (both are bikonts), than with vertebrates (an opisthokont) (<u>Figure 15</u>).

The number and size of the α -solenoid domains have essentially remained unchanged from yeast, plants, humans, and trypanosomes (<u>Appendix</u> <u>A</u> and <u>Figure 13</u>). We observe that plants share more significant sequence similarity to humans, than humans do with yeast, indicative of the relative

divergence of the fungi from the rest of the opisthokonts (Figure 16). Trypanosomes generally exhibit low sequence similarity to yeast, plants or humans, but we observe that the secondary structure is well-conserved. For example, the nucleoporin interacting component (NIC) domain of ScNIC96/HsNup93 has greatly diverged in the trypanosomes and plants, relative to the opisthokonts (<u>Chapter 3</u> and <u>Figure 16</u>).

With respect to primary structure, HsNup155 and ScNups157/170 are the only β - α domain Nups that are conserved across Eukaryota (Figure 17). The other two yeast Nups of this family, ScNup120 and ScNup133, share little to no significant similarity to the plant, human and trypanosome sequences. Once again, the plant Nups of this family, AtSAR1 and AtNup133, share more significant similarity with HsNup160 and HsNup133, respectively, than with the yeast and trypanosome Nups (Figure 17).

The trypanosome Mlps share very little significant sequence similarity to yeast, human and plants (Figure 18). ScMlp1 and HsTpr share more similarity than ScMlp2 and Tpr, which suggests a duplication of the original ScMlp1 gene and explains the additional functional roles of ScMlp2 (Galy et al., 2004; Niepel et al., 2005). The two trypanosome Mlps that we identified appear to have undergone extensive species-specific innovation and are not paralogous (Figure 18).

In the case of the FG-Nups, we are confident that we have identified and characterized nearly all, if not all, of the FG-Nups of the TbNPC (Figure 13, and

<u>Table 5</u>). Since the FG-dipeptide is a requisite motif of FG-Nups, we scanned the entire *T. brucei* proteome for the presence of this motif (<u>Chapter 3</u>), and experimentally identified (with mass spectrometry) all of the putative FG-Nups found through the *in silico* search (<u>Chapter 2</u>).

Between species, the natively disordered FG-Nups have a higher rate of amino acid substitution, relative to other Nup groups (Denning et al., 2003; Denning and Rexach, 2007). The trypanosome FG-Nups also exhibit the high substitution rates observed in the opisthokonts. However, when we examined the chemical composition of the spacer region, we observed that the chemical composition is conserved (<u>Chapter 3</u>). Furthermore, we identified a wellconserved anti-correlation between glycine and charged residue (Asp, Glu, Arg, and Lys, DERK) composition within the FG-repeat spacer regions, and found that this glycine-DERK relationship correlates to the predicted FG-Nup localizations within the NPC (Figure 19). Amongst the asymmetrically distributed FG-Nups, those that localize to the nuclear face of the NPC tend to have a higher composition of charged residues, compared to cytoplasmically localized FG-Nups. This anti-correlation suggests that the rapid evolution within the natively disordered FG-repeat domains is constrained within a specific chemical composition that is directly related to the localization of the FG-Nups within the NPC.

One model of nucleocytoplasmic transport suggests that the Kap-Cargo complexes appear to transiently interact with FG-Nups and pass through the NPC by Brownian motion (Rout et al., 2000). In addition to the

RanGDP/RanGTP gradient, there has been speculation about the function of asymmetrically distributed FG-Nups in providing a vectorial component to nucleocytoplasmic transport, thus increasing efficiency (Bayliss et al., 2000a; Rout and Aitchison, 2000). The above anti-correlation supports such a hypothesis of a vectorial transport component in the FG-Nups. In this model, a translocating complex passes through the central channel by diffusion, at which point it interacts with the glycine rich, DERK depleted, FG-repeat domains, which are predicted to symmetrically line the channel (with respect to a plane parallel to the NE). Asymmetry could thus contribute a vectorial transport component by localizing the more highly charged, and perhaps more strongly interacting, FG-Nups at the periphery of the NPC. An additional vectorial transport component may also be present, given the higher charged residue composition within the FG-Nups that localize to the nuclear face of the NPC, relative to those at the cytoplasmic face (Figure 19).

We have begun to reveal the nature of the TbNPC through functional and localization studies (<u>Chapters 4 and 5</u>). Thus, through RNAi studies, we revealed that the TbNPC, through specific TbNups such as TbNup158 and TbNup89, functionally secures the ONM and INM together as well as maintains proper membrane folding and structure (<u>Figure 28</u>). Unlike the opisthokonts, the TbNPC distribution around the nucleus approaches uniformity in that we do not observe any evidence of clustering (which would lead to an uneven distribution of NPCs over the surface of the NE). We speculate that the distribution of TbNPC is most likely driven by the network of TbNUP-1 molecules (<u>Figure 31</u>). This is in

contrast to the vertebrates, whose NPC distribution is dictated by a heterogeneous lamin network (with NPC-free patches), and the fungi, whose NPC distribution is non-uniform (Maeshima et al., 2006; Winey et al., 1997). The surface density of NPC around the trypanosome nucleus (~ 5 NPCs/ μ m²) is about half that of yeast (~ 12 NPCs/ μ m²) and slightly less than the vertebrate average density (~ 7 NPCs/ μ m²) (Maeshima et al., 2006; Winey et al., 1997). To a first approximation, the density of the TbNPC is stable as the nuclear dimensions change through the cell-cycle, unlike the vertebrates (Figures 30 & <u>31</u>). With the TbNPC now well characterized, we can now draw comparisons to the opisthokont NPC.

THE EVOLUTION AND ORIGINS OF THE NPC

We find that the kinetoplastid NPC is just as complex, with respect to composition, as the opisthokont NPC. Vertebrates, yeast and trypanosomes contain similar numbers of structural scaffold Nups (14, 12 and 12, respectively) and FG-Nups (9, 12 and 9, respectively) as well as individual domains. What are lacking from our TbNPC inventory are the trypanosome nucleoporin-specific evolutionary innovations at the NPC. These TbNups, if present, are unlikely to be identified by sequence similarities. Rather, they will likely be identified in the future by immunoisolations of known TbNups. The long evolutionary distance of trypanosome from the opisthokonts may explain our inability to identify any trypanosome domains homologous to ScNup82, ScNup159, HsNup358, HsNup214 and the membrane Nups, if these TbNups are present at all. We now

discuss the evolution of the NPC in the context of two contemporary models of eukaryotic evolution.

One model of eukaryotic evolution, the crown eukaryote model, places the root of the eukaryotic tree proximal to the diplomonads, kinetoplastids and alveolates, which are outgroups to the plants, fungi and metazoa, collectively known as the crown eukaryotes (Hedges, 2002; Templeton et al., 2004). In this model, one might predict that the LCEA had a simpler NPC, relative to the contemporary NPC, and was comprised of a small number of foundational components. Then as the eukaryotic lineages diverged, the NPC would then The crown become increasingly complex in a species-specific manner. eukaryotes would have experienced a burst of innovation and complexity relative to more simple lineages, such as the excavates. Alternatively, albeit less probable, each lineage could evolve a complex NPC, but these structures would be less likely to be related to each other. In either scenario, this model would predict significant compositional differences in the NPCs between lineages, such as different constituents within the scaffold, novel architecture, or different inventories of FG-Nups. However, analogous Nups could potentially arise through convergent evolution based on natural selection.

A second model of eukaryotic evolution, based on a systematic study of gene fusion events (Stechmann and Cavalier-Smith, 2002), does not place the excavates as an outgroup to the root of Eukaryota; rather it places the root between the bikonts (excavates and plants) and the opisthokonts (fungi and animals) (Adl et al., 2005). This rooting of the eukaryotic tree of life does not

place an emphasis on increasing complexity through evolution to resolve the systematic relationship between distant eukaryotes. The distinction is that the excavata are different from the crown eukaryotes, and such differences are the result of divergent evolution. Within this model, one would predict the NPC of the LCEA to be nearly as complete and complex (save for species-specific innovations, such as gene duplications or deletions) as the contemporary NPC across the tree of eukaryotic life.

A previous large scale bioinformatic analysis of the NPC and NE supported the crown eukaryotic model, based on the authors' conclusions (Mans et al., 2004). However this study is challenged by the poor sequence similarities discussed in <u>Chapter 3</u>. Thus, relative to the opisthokonts, the diplomonad and kinetoplastid components of the NPC and NE were erroneously observed to be significantly simpler. As an alternative, these workers justified a possibly complex NPC as a product of convergent evolution. Another large scale bioinformatic study adopted the Cavalier-Smith model based on studies of apparent relative evolutionary clock rates of Nups (Bapteste et al., 2005).

The results described in this thesis support the bikont-opisthokont model of the eukaryotic tree of life (Cavalier-Smith, 2002). We have determined that the kinetoplastid NPC is not significantly simpler, nor significantly different, than that of the crown eukaryotes (<u>Chapter 3</u>). It is possible that the similarity of the structural scaffold and the FG-Nups between the excavates and the opisthokonts could have arisen by convergent evolution, if the driving forces of evolution were similar across all eukaryotes. However, we would argue that convergent

evolution is a less probable scenario given the extraordinary number of similarities between the excavate and opisthokont NPC, which include: (1) the similar inventory, protein length and domain structure of the structural scaffold Nups (<u>Chapter 3</u> and <u>Figure 13</u>); (2) the similar number, and conserved chemical composition, of the rapidly evolving FG-Nups (<u>Chapter 3</u> and <u>Figures 13 and 19</u>); and (3) the presence of the highly conserved β -sandwich autoproteolytic domain. It is more probable that the large number of similarities within the NPC across clades point to a common origin of a complex NPC followed by divergent evolution. It follows that the LCEA possessed a fully complex NPC, somewhat analogous to the contemporary NPC. Furthermore, the contemporary eukaryotic NPC is a product of divergent evolution and only a minority of Nups arose, or was lost, due to species-specific innovations.

Although the bikont-opisthokont model places the root between the bikonts and opisthokonts, the alignments between the plants and the vertebrates are often fairly significant. This supports the model of a complex NPC at the LCEA and a more rapid evolutionary clock rate for the excavates, relative to plants, fungi and animals. This would explain the divergence of primary structure of excavates from both the plants and opisthokonts within the structural scaffold (Figures 15-17). The fungi have also been subjected to a rapid evolution clock, relative to animals, with its primary structure divergence and gene duplication events (Figures 15-17).

One evolutionary innovation to the early machine is the β -sandwich domain within the autoproteolytic Nup, HsNup98-96/ScNup145. Although the conserved β -sandwich domain is present, the excavates and many bikonts either do not cleave or do not express full-length products (Chapter 3). At least two scenarios exist — in one, the ancestral Nup98-96 contained a fully functional autoproteolytic domain; in another, it did not. In the former scenario, the kinetoplastids lost the autoproteolytic function while the opisthokonts and some excavates retained the function. The latter scenario would suggest a lack of innovation within the kinetoplastids (and possibly other clades). The data presented in this thesis supports the former scenario. If the LCEA expressed a full-length protein that was successively cleaved and the kinetoplastids subsequently lost this function while retaining the conserved β -sandwich domain, then it may be possible to restore the original function by introducing an artificial cleavage site. To investigate this possibility, we introduced a truncation into TbNup158 that removed the C-terminal domain. We observed that the truncated protein, TbNup158(1-837), localized to abnormal discreet foci in the nuclear periphery (Chaper 6). This suggests the presence of additional trypanosomespecific innovations in addition to the loss of the catalytic triad.

We predict that the early Nup98-96 was expressed, and functioned, as a full length protein in the LCEA NPC. The protein contained a complete autoproteolytic β -sandwich domain, which is now conserved across all of Eukaryota, and included the catalytic triad. In this scenario, several bikonts either lost the ability self cleave and/or truncated the full length protein within the

genome. Aside from the kinetoplastids, which do not possess an active cleavage cite, the diplomonads, amoebozoa (a unikont), and plants all express truncated proteins which are homologous to ScNup145N and HsNup98. These orthologs contain the FG-repeat domain at the N-terminus and the conserved β -sandwich autoproteolytic domain at the C-terminus. Interestingly, while *Giardia* lacks the HFS catalytic triad, the unikont *E. histolytica* and plants contain a HF[S/T] tripeptide close to their C-terminus.

A possible example of convergent evolution is the emergence of the TbMlps. While the two TbMlps have a coiled coiled domain and localize to the TbNPC (Figure 30), they share negligible sequence similarity and length to the ScMlps or HsTpr (Figure 18). Furthermore, the TbMlps are not the product of a gene duplication event as they are not paralogous to each other, unlike the ScMlps. However, they seemed to have evolved an analogous function to the yeast Mlps. While TbMlp1 stably localizes to the NPC, as does ScMlp1, TbMlp2 apparently localizes to the area proximal to the spindle pole body, as does ScMlp2 (Niepel et al., 2005). A detailed analysis of S. pombe reveals a similar situation to trypanosomes — two Mlps that arose independently, and of which only one localizes to the area proximal to the spindle pole body (Ding et al., 2000). Interestingly, TbNUP-1 which localizes to the NE between the NPCs, does share homology to the ScMlps and HsTpr (Figures 18 and 32). Perhaps TbNUP-1 is related to the nuclear basket Nups within the LCEA, but diverged to fill another function at the inner nuclear envelope.

It is of note that the *T. brucei* NPC is more akin to the vertebrate NPC than to yeast in many respects, including the existence of the HsALADIN homolog and the tendency for pair-wise alignments to be more significant between trypanosomes and vertebrates, relative to yeast (<u>Chapter 3</u>). While it may appear convenient to suggest that vertebrates evolved additional β -propellers due to special requirements of open-mitosis, our finding in trypanosomes complicates this simple explanation. The presence of ALADIN, a disease related locus in vertebrates, and other β -propellers within trypanosomes means that it was most likely present in the ancestral NPC and was subsequently lost in the fungi. *S. cerevisiae* and its fungi relatives appear to have simplified its inventory of β -propellers. Furthermore, the yeast primary structures of structural scaffold Nups have undergone a significant amount of species-specific adaptation relative to humans, plants and trypanosomes (<u>Figures 15-17</u>).

It has been postulated that the nucleus likely arose only once; no obvious intermediates are known to persist today (Martin, 2005). Thus, the evolution of the nucleus within the trunk of the eukaryotic tree of life is irresolvable. Since the ancestral NPC (LCEA) was already a complex machine at some point within the trunk, the step-wise evolution of the NPC cannot be resolved by comparative genomics until the root of the eukaryotic tree has been firmly established. However, some clues about the emergence of the nucleus have been deduced using the predicted structures of the structural scaffold Nups leading to the protocoatomer hypothesis (Devos et al., 2004). This hypothesis observes that these structural folds are also found in the eukaryotic vesicle coating complexes.

This suggests a concomitant divergent evolution of the endomembrane system and membrane curving proteins into the diverse set of proteins that are present today. We find that the presence of an extensive repertoire of β -propeller and α solenoid domains within the TbNPC supports the protocoatomer hypothesis (Devos et al., 2004).

During evolution, the endomembrane system, which would eventually include the nucleus, likely evolved in a manner predicted by either the invagination model (Cavalier-Smith, 2002) or the vesicle model (Martin, 1999). As discussed in <u>Chapter 1</u>, a subset of Nups is involved in processes other than nucleocytoplasmic transport (e.g. mitotic checkpoint and chromatin interactions). We posit that their function may be remnants of ancient transitional steps as the primitive endomembrane system began to interact with chromatin and differentiate into different domains. Consistent with our data, the nucleus does not appear to be the product of a symbiotic event.

FUTURE DIRECTIONS

Our characterized inventory of the TbNPC, provides a strong basis for further experimental investigations. We have tagged several key TbNups with GFP, and so immunoisolations are now feasible. These experiments will identify trypanosome-specific Nups, which may only be very weakly, homologous to the opisthokont-specific Nups. Also, we anticipate that such immunoisolations will reveal the identity and nature of the membrane bound TbNups, if present. Also, such work will characterize the interaction network and molecular architecture within the TbNPC. A comparison of the molecular architectures of several

distantly related NPCs would shed light on the evolution of the NPC as well as additional functional features on the NPC.

Our RNAi work has yielded fascinating nuclear envelope morphology phenotypes, which should be studied further. The lack of NE integrity upon knockdown of TbNup158 is quite provocative. A likely scenario is that elimination of TbNup158 causes loss of a large sub-complex of structural Nups, perhaps the *T. brucei* analog to the central ScNup84/HsNup107 complex. The crippled NPCs can no longer secure the NE. This hypothesis should be testable by using a large-scale screen of TbNup knockdowns. A set of lynchpin TbNups can be identified as crucial for NPC and NE form and function.

Combining the RNAi constructs with the GFP tagged Nups would be a powerful assay for functional studies. For example, after induction of RNAi, one could record the fluorescence pattern at the nuclear periphery compared to the wild-type control. This would provide a direct observation into how the NE responds to the stress of the depletion of a specific TbNup.

Furthermore, one could target the GFP moiety directly with RNAi. In this experiment, the C-terminal GFP tagged TbNup would be depleted upon RNAi induction with doxycycline. The second allele would be wild-type, so no phenotype should be observed. After several divisions, the cells should have little to no GFP signal at the NE. At this point, the doxycycline would be washed away, and cells would be observed at various time points for the reemergence of the GFP signal relative to antibody staining against the NPC (using either

 α HsNup107 or an antibody raised against a TbNup peptide). This would reveal information on Nup turnover and incorporation into nascent NPCs.

Finally, the pseudo-autoproteolytic Nup, TbNup158, should be explored in depth. In this work, we tagged the N-terminus of TbNup158 with GFP, and the result was localization into the discreet foci. This observation is contrasted by the opisthokonts, where the N-terminal fragment is localized, in part, to the nucleoplasm as a soluble protein. The C-term fragment should be examined in an analogous fashion to see if the α -solenoid would correctly integrate into the NPC without the N-terminal domain. Also the protein could be mutated, in a site-directed fashion, to insert the tripeptide catalytic site HFS. It would be very interesting to note whether the insertion of the tripeptide is sufficient for autoproteolysis, or if other residues (such as a stabilizing lysine residue) are also requisite.

In this thesis, we identified over ~850 proteins in the TbNEP using five biochemical and proteomic strategies (<u>Chapter 2</u>). We then identified and characterized 24 putative TbNups as well as 8 transport factors using an array of bioinformatic strategies (<u>Chapter 3</u>). We went on to characterize a subset of the TbNups by fluorescent localization (<u>Chapter 4</u>) and functional analysis with RNAi (<u>Chapter 5</u>). The result of these experiments reveals a TbNPC that approaches a uniform distribution around the NE (<u>Figure 31</u>) and plays a large role in stabilizing the morphology of the NE (<u>Figure 28</u>).

Our data supports the bikont-opisthokont model of eukaryotic evolution, which places the root of the tree between the bikonts and the opisthokonts. The TbNPC is just as complex as, and not simpler than, the opisthokont NPC, with respect to composition. This suggests that the LCEA possessed a complex NPC analogous to the contemporary NPC, which then diversified in a largely divergent manner.

APPENDIX A — TABLE OF CLOSELY RELATED NUCLEOPORIN ORTHOLOGS

To build a consensus model of the metazoan and fungi NPC, we constructed a table of Nup orthologs of closely related metazoans, fungi and plant (<u>Table 3</u>). Orthologs were identified by a PSI-BLAST pair-wise alignment search of *H. sapien* and/or *S. cerevisiae* query Nups against the respective protein databases of subject organisms. The top five subject alignments were then queried with PSI-BLAST back against the *H. sapien* and *S. cerevisiae* protein database. If the reciprocal BLAST alignment revealed a top match for the original Nup query sequence, then the pair was considered valid and the ortholog was recorded by its accession number.

Even within closely related species, not all Nups can be accounted for, such as the lack of HsNup37 and HsALADIN orthologs in *C. elegans*, and the absence of ScNup120 in *C. neoformans*. Also, there is evidence of two duplication events in *S. pombe* (ScNIC96 and ScNup133), but only in *S. cerevisiae* are there two paralogous orthologs each of HsNup155 and HsNup98 (ScNup157/ScNup170 and Sc100/116). The additional β -propellers of the metazoan family are absent in the fungi, but are present in the plants. This is suggestive that the fungi lost these additional Nups early in their evolution.
			Metazoa					Fungi			Viridiplantae
Domains	H. sa	piens	D. melanogaster	C. elegans	C. intestinalis	S. cer	evisiae	A. nidulans	S. pombe	C. neoformans	A.thaliana
Membrane	NDC1(37) Gp210(15) Pom121(22)	Q9BTX1 NP_079199 Q9Y2N3 nf nf	74868322 24585893 nf nf	75015300 17509225 nf nf	ոք 286609 ոք ոք	NDC1(5) Pom34(34) Pom152(43)	NP_013681 nf NP_013118 NP_013848	AN4417 nf nf AN3454	63054586 nf nf 19112844	ոք ոք cn11330 cn03050	nf AT5G40480 nf nf
ß Propeller	Sec13(12) Seh1(12) Nup37(6) ALADIN(6) Nup43(6) Rae1(28)	NP_899195 NP_001013455 Q8NFH4 NP_056480 Q8NFH3 NP_003601	21356113 24586465 24649978 18858057 24647938 20130217	17544258 3880929 nf 17510671 3123163	225177 285146 211263 397606 293411 236689	Sec13(35) Seh1(35) Gle2(30)	Q04491 EDNe2018 nf nf NP_011033	AN4317 AN5389 nf nf AN1379 AN1379	19113484 19114663 nf nf 19113576	cn08323 cn02546 nf nf nf cn13077	AT3G01340 AT2G30050 AT1G64350.1 nf AT3G56900 AT4G30840 AT1G80670
α Solenoid	Nup107(33) Nup75(6) Nup93(20) Nup188(29) Nup205(20)	NP_065134 NP_079120 NP_055484 NP_056169 NP_055950	119638193 119638079 18859665 24653170 24643409	17532901 17508241 13491276 nf 3878524	270205 287889 213542 222679 nf	Nup84(3) Nup85(16) NIC96(21) Nup188(31) Nup192(24)	NP_010167 EDN63361 CAA51427 NP_013604 NP_012495	AN1190 AN9109 AN6980 AN10112 AN10002	68009955 19112685 19075969 19075969 19114326 19075899	cn08275 cn02170 cn03290 cn06299 cn05009	AT3G14120 AT4G32910 AT2G41620 AT4G38760 AT5G51200
β Propeller; α Solenoid	Nup160(41) Nup155(32) Nup133(41)	NP_056046 NP_705618 NP_060700	13124656 17316372 119638237	25150095 30025080 68846777	293089 274239 261423	Nup120(1) Nup157 Nup170(2) Nup133(9)	NP_012866 NP_011031 NP_009474 NP_013008	AN1238 AN6738 AN4293	19113466 19115736 19114827 19112173	nf cn04508 cn12020	АТ1G33410 АТ1G14850 АТ2G05120
FG Repeat; Nup98; α Solenoid	Nup98-96(13) Nup98	56549645	116008420 nf	7511089 nf	nf 230079	Nup145(10) Nup100 Nup116(42)	CAA83584 NP_012855 EDN64437	AN5627 nf	19115005 nf	cn02461 nf	AT1G80680 AT1G10390 AT1G59660
FG Repeat	Nup35(6) Nup54(11) Nup58(11) Nup52(7) Nup153(40) Nup134(25) Nup1(38) Nup50(36) Nup50(36)	NP_612142 nf NP_059122 NP_054808 NP_036478 NP_005115 EAW8784 AN07584 NP_009103 BAA07662	18859897 nf 38258270 38258270 17946038 20130049 2464266 51316547 61316547 nf 19921802 45550830	115502433 nf 17541254 17510275 17507541 17509085 17505452 nf 17556290 32565574 325655674	294938 nf 272199 256158 256158 263011 294569 nf 292234 262262 262262 7nf	Nup53(27) Nup59(27) Nup59(18) Nup49(42) Nup1(23) Nup1(23) Nup1(3) Nup159(17) Nup2(26)	NP_013873 AAT92991 NP_011634 NP_011343 NP_012494 NP_012494 NP_01478 NP_01478 NP_013439	nf nf AN1064 AN2431 AN4499 nf AN2086 AN2086 AN2086 AN2086 AN3285 AN3485 AN5485	19114216 19114216 19112773 19113070 19115070 nf 19115455 19075437 nf	nf nf cn10246 cn01387 cn04317 cn01634 cn06623 cn06177 cn01191 nf	
Coiled coil Other	Tpr(4) Nup88(14)	P12270 nf NP_002523	1923274 nf 51316527	71993549 nf nf	293800 nf 272352	Mip1(39) Mip2(39) Nup82(19)	AAA34783 NP_012117 EDN63515	AN5499 nf nf	19075736 19115004 19113207	cn14006 ոք ոք	AT1G79280 nf AT5G0568

Table 4: Table of closely related Nup orthologs.Abbreviations:"nf", not found; "nd", not determined.

References for <u>Table 4</u>

- 1 Aitchison, J.D., G. Blobel, and M.P. Rout. 1995. Nup120p: A yeast nucleoporin required for NPC distribution and mRNA transport. Journal of Cell Biology. 131:1659-1675.
- Aitchison, J.D., M.P. Rout, M. Marelli, G. Blobel, and R.W. Wozniak. 1995.
 Novel Related Yeast Nucleoporins Nup170p and Nup157p -Complementation with the Vertebrate Homolog Nup155p and Functional Interactions with the Yeast Nuclear Pore-Membrane Protein Pom152p. Journal of Cell Biology. 131:1133-1148.
- 3 Bastos, R., L.R. dePouplana, M. Enarson, K. Bodoor, and B. Burke. 1997. Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. Journal Of Cell Biology. 137:989-1000.
- 4 Byrd, D.A., D.J. Sweet, N. Pante, K.N. Konstantinov, T.L. Guan, A.C.S. Saphire, P.J. Mitchell, C.S. Cooper, U. Aebi, and L. Gerace. 1994. Tpr, A Large Coiled-Coil Protein Whose Amino-Terminus Is Involved In Activation Of Oncogenic Kinases, Is Localized To The Cytoplasmic Surface Of The Nuclear-Pore Complex. Journal Of Cell Biology. 127:1515-1526.
- 5 Chial, H.J., M.P. Rout, T.H. Giddings, and M. Winey. 1998. Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. Journal Of Cell Biology. 143:1789-1800.
- 6 Cronshaw, J.A., A.N. Krutchinsky, W.Z. Zhang, B.T. Chait, and M.J. Matunis. 2002. Proteomic analysis of the mammalian nuclear pore complex. Journal of Cell Biology. 158:915-927.
- 7 Davis, L.I., and G. Blobel. 1986. Identification And Characterization Of A Nuclear-Pore Complex Protein. Cell. 45:699-709.
- 8 Davis, L.I., and G.R. Fink. 1990. The Nup1 Gene Encodes An Essential Component Of The Yeast Nuclear-Pore Complex. Cell. 61:965-978.
- 9 Doye, V., R. Wepf, and E.C. Hurt. 1994. A Novel Nuclear-Pore Protein Nup133p With Distinct Roles In Poly(A)(+) Rna Transport And Nuclear-Pore Distribution. Embo Journal. 13:6062-6075.
- 10 Fabre, E., W.C. Boelens, C. Wimmer, I.W. Mattaj, and E.C. Hurt. 1994. Nup145p Is Required For Nuclear Export Of Messenger-Rna And Binds Homopolymeric Rna In-Vitro Via A Novel Conserved Motif. Cell. 78:275-289.
- 11 Finlay, D.R., E. Meier, P. Bradley, J. Horecka, and D.J. Forbes. 1991. A Complex Of Nuclear-Pore Proteins Required For Pore Function. Journal Of Cell Biology. 114:169-183.
- 12 Fontoura, B.M.A., G. Blobel, and M.J. Matunis. 1999. A conserved biogenesis pathway for nucleoporins: Proteolytic processing of a 186kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. Journal of Cell Biology. 144:1097-1112.

- 13 Fontoura, B.M.A., G. Blobel, and M.J. Matunis. 1999. A conserved biogenesis pathway for nucleoporins: Proteolytic processing of a 186kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. Journal of Cell Biology. 144:1097-1112.
- 14 Fornerod, M., J. vanDeursen, S. vanBaal, A. Reynolds, D. Davis, K.G. Murti, J. Fransen, and G. Grosveld. 1997. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. Embo Journal. 16:807-816.
- 15 Gerace, L., Y. Ottaviano, and C. Kondorkoch. 1982. Identification Of A Major Polypeptide Of The Nuclear-Pore Complex. Journal Of Cell Biology. 95:826-837.
- 16 Goldstein, A.L., C.A. Snay, C.V. Heath, and C.N. Cole. 1996. Pleiotropic nuclear defects associated with a conditional allele of the novel nucleoporin Rat9p/Nup85p. Molecular Biology Of The Cell. 7:917-934.
- 17 Gorsch, L.C., T.C. Dockendorff, and C.N. Cole. 1995. A Conditional Allele Of The Novel Repeat-Containing Yeast Nucleoporin Rat7 Nup159 Causes Both Rapid Cessation Of Messenger-Rna Export And Reversible Clustering Of Nuclear-Pore Complexes. Journal Of Cell Biology. 129:939-955.
- 18 Grandi, P., N. Schlaich, H. Tekotte, and E.C. Hurt. 1995. Functional Interaction Of Nic96p With A Core Nucleoporin Complex Consisting Of Nsp1p, Nup49p And A Novel Protein Nup57p. Embo Journal. 14:76-87.
- 19 Grandi, P., S. Emig, C. Weise, F. Hucho, T. Pohl, and E.C. Hurt. 1995. A Novel Nuclear-Pore Protein Nup82p Which Specifically Binds To A Fraction Of Nsp1p. Journal Of Cell Biology. 130:1263-1273.
- 20 Grandi, P., T. Dang, N. Pane, A. Shevchenko, M. Mann, D. Forbes, and E. Hurt. 1997. Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is required for correct nuclear pore assembly. Molecular Biology Of The Cell. 8:2017-2038.
- 21 Grandi, P., V. Doye, and E.C. Hurt. 1993. Purification Of Nsp1 Reveals Complex-Formation With Glfg Nucleoporins And A Novel Nuclear-Pore Protein Nic96. Embo Journal. 12:3061-3071.
- 22 Hallberg, E., R.W. Wozniak, and G. Blobel. 1993. An Integral Membrane-Protein Of The Pore Membrane Domain Of The Nuclear-Envelope Contains A Nucleoporin-Like Region. Journal Of Cell Biology. 122:513-521.
- 23 Hurt, E.C. 1988. A Novel Nucleoskeletal-Like Protein Located At The Nuclear Periphery Is Required For The Life-Cycle Of Saccharomyces-Cerevisiae. Embo Journal. 7:4323-4334.
- 24 Kosova, B., N. Pante, C. Rollenhagen, and E. Hurt. 1999. Nup192p is a conserved nucleoporin with a preferential location at the inner site of the nuclear membrane. Journal Of Biological Chemistry. 274:22646-22651.
- 25 Kraemer, D., R.W. Wozniak, G. Blobel, and A. Radu. 1994. The Human Can Protein, A Putative Oncogene Product Associated With Myeloid Leukemogenesis, Is A Nuclear-Pore Complex Protein That Faces The

Cytoplasm. Proceedings Of The National Academy Of Sciences Of The United States Of America. 91:1519-1523.

- 26 Loeb, J.D.J., L.I. Davis, and G.R. Fink. 1993. Nup2, A Novel Yeast Nucleoporin, Has Functional Overlap With Other Proteins Of The Nuclear-Pore Complex. Molecular Biology Of The Cell. 4:209-222.
- 27 Marelli, M., J.D. Aitchison, and R.W. Wozniak. 1998. Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. Journal Of Cell Biology. 143:1813-1830.
- 28 Matsuoka, Y., M. Takagi, T. Ban, M. Miyazaki, T. Yamamoto, Y. Kondo, and Y. Yoneda. 1999. Identification and characterization of nuclear pore subcomplexes in mitotic extract of human somatic cells. Biochemical And Biophysical Research Communications. 254:417-423.
- 29 Miller, B.R., M. Powers, M. Park, W. Fischer, and D.J. Forbes. 2000. Identification of a new vertebrate nucleoporin, Nup188, with the use of a novel organelle trap assay. Molecular Biology Of The Cell. 11:3381-3396.
- 30 Murphy, R., J.L. Watkins, and S.R. Wente. 1996. GLE2, a Saccharomyces cerevisiae homologue of the Schizosaccharomyces pombe export factor RAE1, is required for nuclear pore complex structure and function. Molecular Biology Of The Cell. 7:1921-1937.
- 31 Nehrbass, U., M.P. Rout, S. Maguire, G. Blobel, and R.W. Wozniak. 1996. The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex. Journal of Cell Biology. 133:1153-1162.
- 32 Radu, A., G. Blobel, and R.W. Wozniak. 1993. Nup155 Is A Novel Nuclear-Pore Complex Protein That Contains Neither Repetitive Sequence Motifs Nor Reacts With Wga. Journal Of Cell Biology. 121:1-9.
- 33 Radu, A., G. Blobel, and R.W. Wozniak. 1994. Nup107 Is A Novel Nuclear-Pore Complex Protein That Contains A Leucine-Zipper. Journal Of Biological Chemistry. 269:17600-17605.
- 34 Rout, M.P., J.D. Aitchison, A. Suprapto, K. Hjertaas, Y.M. Zhao, and B.T. Chait. 2000. The yeast nuclear pore complex: Composition, architecture, and transport mechanism. Journal of Cell Biology. 148:635-651.
- 35 Siniossoglou, S., C. Wimmer, M. Rieger, V. Doye, H. Tekotte, C. Weise, S. Emig, A. Segref, and E.C. Hurt. 1996. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell. 84:265-275.
- 36 Smitherman, M., K. Lee, J. Swanger, R. Kapur, and B.E. Clurman. 2000. Characterization and targeted disruption of murine Nup50, a p27(Kip1)interacting component of the nuclear pore complex. Molecular And Cellular Biology. 20:5631-5642.
- 37 Stavru, F., B.B. Hulsmann, A. Spang, E. Hartmann, V.C. Cordes, and D. Gorlich. 2006. NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes. Journal Of Cell Biology. 173:509-519.
- 38 Strahm, Y., B. Fahrenkrog, D. Zenklusen, E. Rychner, J. Kantor, M. Rosbash, and F. Stutz. 1999. The RNA export factor Gle1p is located on

the cytoplasmic fibrils of the NPC and physically interacts with the FGnucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr255p. Embo Journal. 18:5761-5777.

- 39 Strambio-de-Castillia, C., G. Blobel, and M.P. Rout. 1999. Proteins connecting the nuclear pore complex with the nuclear interior. Journal of Cell Biology. 144:839-855.
- 40 Sukegawa, J., and G. Blobel. 1993. A Nuclear-Pore Complex Protein That Contains Zinc Finger Motifs, Binds Dna, And Faces The Nucleoplasm. Cell. 72:29-38.
- Vasu, S., S. Shah, A. Orjalo, M. Park, W.H. Fischer, and D.J. Forbes.
 2001. Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export. Journal Of Cell Biology. 155:339-353.
- 42 Wente, S.R., M.P. Rout, and G. Blobel. 1992. A New Family of Yeast Nuclear-Pore Complex Proteins. Journal of Cell Biology. 119:705-723.
- 43 Wozniak, R.W., G. Blobel, and M.P. Rout. 1994. Pom152 Is An Integral Protein Of The Pore Membrane Domain Of The Yeast Nuclear-Envelope. Journal Of Cell Biology. 125:31-42.
- Wu, J., M.J. Matunis, D. Kraemer, G. Blobel, and E. Coutavas. 1995.
 Nup358, A Cytoplasmically Exposed Nucleoporin With Peptide Repeats, Ran-Gtp Binding-Sites, Zinc Fingers, A Cyclophilin-A Homologous Domain, And A Leucine-Rich Region. Journal Of Biological Chemistry. 270:14209-14213.

APPENDIX B — THE ISOLATION OF THE *T. BRUCEI* NUCLEUS AND SUBNUCLEAR COMPARTMENTS: THE *T. BRUCEI* NUCLEAR ENVELOPE PREPARATION (TBNEP)

Previous work done by M.P. Rout and M.C. Field established a reproducible method for the isolation and purification of whole nuclei and its subnuclear components (Rout and Field, 2001). The first step to producing subnuclear fractions is the isolation of nuclei away from the remainder of the cellular compartments (Figure 33). Once accomplished, these enriched nuclei may be further subfractionated to yield nucleoli, nuclear envelopes, or lipid-

stripped nuclear envelopes (termed pore complex-lamina fraction, PCLF). The subnuclear components are of high quality and suitable for further biochemistry and mass spectrometry. Nuclei from either the vector (procyclic) or the host (blood stream form) life

stage may be isolated, providing access to life-stage dependent aspects. However, the procyclic stage is somewhat more convenient as these cells can be grown to higher density in in vitro culture. We modified the protocol for use with this work and details are presented below. TbNEP

Figure 33: Flow diagram tracing the isolation and purification of nuclear and subnuclear structures by a discontinuous sucrose step gradient. Cellular material settles at the interface between sucrose densities. Fractions of interest are in red (Rout and Field, 2001). material originating from the original protocol as well as material produce from the protocol below was used for the experiments outlined in this thesis.

MATERIALS

The Isolation of Trypanosoma brucei Nuclei

- PVP solution: 8% polyvinylpyrrolidone (PVP-40, Sigma-Aldrich, St. Louis, MO), 11.5 mM KH₂PO₄, 8.5 mM K₂HPO₄, and 750 μM MgCl₂·6H₂O. Adjust to pH 6.53 with concentrated H₃PO₄ (~15 μl for a 1 L solution). Store at 4°C. To minimize the risk of contamination when preparing reagents, it is imperative to use the highest reagent quality available. With the exception of polymeric, high density, acidic or basic solutions, aqueous buffers should be filtered with a 0.22 μm pore syringe or bottle filter.
- 2. Sucrose solutions (sucrose/PVP): In a large dish of hot water atop a stirring hot plate, the appropriate amount of sucrose is dissolved into PVP solution in a 500 ml beaker by constant stirring. Once the sucrose has completely dissolved, remove from heat, cover and allow to cool to room temperature. While continuously stirring the solution, adjust the refractive index (RI, to within 0.0003) by slowly adding PVP solution. Store in sterile tubes at -20°C.
 - a. 2.01M: To 183.3 g sucrose, add PVP solution to a final weight of 338 g. Refractive Index (RI) = 1.4370.

- b. 2.10M: To 193 g sucrose, add PVP solution to a final weight of 340 g. RI = 1.4420.
- c. 2.30M: To 216 g sucrose, add PVP solution to a final weight of 340 g. RI = 1.4540.
- Phosphate buffered saline (PBS Tablets, Sigma-Aldrich, St. Louis, MO). Chilled to 4°C.
- 1 M dithiothreitol (DTT, Sigma-Aldrich, St. Louis, MO). Store at -20°C in 200 μl aliquots.
- 5. 10% Triton[®] X-100 (Sigma-Aldrich, St. Louis, MO).
- Protease inhibitor cocktail P-8340 (PIC, Sigma-Aldrich, St. Louis, MO). Store at -20°C.
- Solution P: Dissolve 0.04% (w/v) pepstatin A (Sigma-Aldrich, St. Louis, MO) and 1.8% PMSF (Sigma-Aldrich, St. Louis, MO) in absolute (anhydrous) ethanol. Store at -20°C. For best results, slowly dissolve each peptide inhibitor sequentially into room temperature ethanol.
- 8. 0.3 M sucrose/PVP. Dilute stock sucrose/PVP with PVP solution.
- Lysis buffer (prepare fresh): Dissolve 0.05% Triton[®] X-100, 5 mM
 DTT, 1:100 solution P and 1:200 PIC into PVP solution. 20 ml of
 lysis buffer is equivalent to 1 volume. Protease inhibitors become

unstable at room temperature at working concentrations. On the bench, solution P must be kept on ice while the PIC may be left thawed and add the protease inhibitors to the working solutions at the last possible moment.

- 10. Underlay buffer (prepare fresh): Dissolve 5 mM DTT, 1:100 solution P and 1:200 PIC into 0.3 M sucrose/PVP. 10 ml of underlay buffer is equivalent to 1 volume.
- 11. Resuspension buffer (prepare fresh): Dissolve 5 mM DTT, 1:100solution P and 1:200 PIC into 2.1 M sucrose/PVP. 8 ml ofresuspension buffer is equivalent to 1 volume.

Subnuclear Fractionation

The Nuclear Envelope

- 1. 0.1 M bis-Tris-Cl, pH 6.50.
- 2. BT/Mg buffer: 0.01 M bis-Tris-Cl, pH 6.50, 0.1 mM MgCl₂.
- Shearing buffer (prepare fresh): Dissolve 1 mM DTT, 1.0 mg/ml heparin, 20 μg/ml DNase I (Sigma-Aldrich, St. Louis, MO, store stock at -20°C), 2 μg/ml RNase A (Sigma-Aldrich, St. Louis, MO, store stock at -20°C), 1:100 solution P, and 1:200 PIC into BT/Mg buffer.

- 2.10 M sucrose in 20% Accudenz[®] (Accurate Chemical & Scientific Corporation, Westbury, NY) in BT/Mg buffer. Store at -20°C.
- 2.50 M sucrose in BT/Mg buffer. The final refractive index should be 1.4533. All sucrose BT/Mg solutions should be stored at -20°C.
- 6. 2.25 M sucrose BT/Mg, by stock dilution.
- 7. 1.50 M sucrose BT/Mg, by stock dilution.

The Pore Complex-lamina

- Extraction buffer (prepare fresh): Dissolve 1.5% Triton[®] X-100, 1.5% sodium taurodeoxycholate, 1:100 solution P, and 1:200 PIC into BT/Mg buffer.
- 2. 2.50 M sucrose BT/Mg.
- 3. 1.75 M sucrose BT/Mg, by stock dilution.

METHODS

Either blood stream form (BSF) or procyclic life stage may be used with the following protocol, with similar yields. Procyclic cells are generally easier to culture since they do not require infection of animals to achieve the requisite number of cells for the isolation. At least 4×10^{10} cells are needed, which allows for two separate gradients with 2×10^{10} cells in each. One must be careful not to exceed 2×10^{10} cells in each gradient to maximize efficiency. Unless otherwise noted, cells and lysates must be kept on ice and pelleted in a refrigerated centrifuge at 4°C.

The Isolation of Trypanosoma brucei Nuclei

- Gently pellet the cells at 1700 (g) for 10 minutes. Discard the supernatant and resuspend the pellet with roughly 25 ml of prechilled PBS. After a second centrifugation, resuspend the pellet in 25 ml of pre-chilled PBS and transfer the cells to a Sorvall HB-4 tube. Pellet by centrifugation once again (1790 (g), 15min, Sorvall HB-4 rotor) and discard the supernatant.
- 2. To lyse the cells, add 1 volume per 2 x 10¹⁰ cells of lysis buffer to the pellet and immediately disrupt the cells with a Polytron[®] (PTA-10, GlenMills, Clifton, NJ) homogenizer with 1 min bursts. As the appropriate speed setting may vary between homogenizer models, start with setting #4 and increase in increments of 0.5 until cell lysis is achieved. The lysis should be conducted in a cold room to keep

the homogenizer probe and cellular material cooled. Five minutes total homogenization time at the final setting is usually sufficient for an acceptable 70-90% cell lysis, with progress being monitored by phase contrast microscopy.

- 3. Once acceptable cell lysis has been achieved, underlay the equivalent of 2 x 10^{10} cells with 1 volume of underlay buffer and centrifuge for 20 minutes at 10,515 (g) in a Sorvall HB-4 rotor. Decant the supernatant (which contains the crude cytosol) and store at -80 °C.
- 4. The pellet should then be immediately resuspended by homogenization. Add 1 volume of resuspension buffer and homogenize with the Polytron[®] (setting 4.5-5) in 1 minute bursts. Monitor the progress with phase-contrast light microscopy; all cells should now be lysed (a significant proportion of the total cell lysis can actually occur at this stage), and the nuclei will be visible in the field as many small gray spheres and ovoids. Usually, 4 minutes is sufficient to achieve full dispersion.
- 5. Prepare the gradient. Into a Beckman SW-28 centrifuge tube, add the following: 8 ml 2.30 M sucrose/PVP, 8 ml 2.10 M sucrose/PVP, 8 ml 2.01 M sucrose/PVP. To reduce the viscosity of the sucrose solutions, allow the solutions to completely warm to room temperature. Wide-bore pipets and pipette tips (made by cutting off

~3 mm from the point of the tip) also facilitate sucrose solution handling. Before use, all sucrose solutions should be supplemented with solution P (1:100) and PIC (1:200).

- 6. Carefully, add the crude nuclear material on top of the gradient (the portion of the gradient which contains the crude material is designated as "S"). Afterwards, fill to within 5 mm of the brim with PVP solution to prevent collapse. In a Beckman ultracentrifuge and SW-28 rotor, spin the gradient at 141,245 (g) for 3 hours.
- 7. Sub-cellular material may be found at the interfaces. Each interface (PVP/S, S/2.01, 2.01/2.1, 2.1/2.3) should be collected and stored at -80°C for possible future study. Most of the nuclei settle at the 2.10/2.30 interface. The quality of the nuclei can be checked by phase-contrast light microscopy. Unloading the gradient will be easier if the interfaces are marked with a permanent marker before centrifugation. Collect the topmost fill layer and halfway through the first sucrose layer. Then, starting from the top, collect from halfway through the upper sucrose layer, through the interface, and continue to collect until halfway through the lower sucrose layer. The material at the interface may be gently dislodged with a pipette tip, if necessary.
- 8. The concentration of the nuclei is measured by optical density. 1 OD_{260} is equivalent to about 10⁸ nuclei. Add 10 µl of nuclei to 1 ml

of 1% SDS. Measure the absorbance at 260 nm against a blank of 1% SDS. Multiply the value by 100x to obtain the OD.

Subnuclear Fractionation

Nuclear Envelope Isolation

- To a measured volume of 300 ODs of purified nuclei, add the equivalent of 0.2 volumes of PVP solution and vortex for 1-2 minutes until the solution is homogenous.
- In a Beckman Type 50.2Ti rotor, pellet the nuclei by centrifugation at 193,185 (g) for 1 hour. Decant the supernatant.
- Resuspend the pellet in 3 ml of shearing buffer and shear the nuclear envelopes by vigorous vortexing for 1 full minute after the last traces of the pellet disappear.
- 4. After shearing, let the tube stand for 5 minutes at room temperature.
- Add 10 ml of 2.10 M sucrose in 20% Accudenz[®] in BT/Mg buffer and mix well by vortexing.
- Transfer mixture to an SW-28 centrifuge tube and overlay with 12 ml 2.25 M sucrose in BT/Mg and 10 ml of 1.50 M sucrose in BT/Mg. Top with BT/Mg to within 5 mm of the brim.
- 7. Spin the gradient at 141,245 (g) for 4 hours.

 Collect all interfaces. The nuclear envelopes float up to the 1.50 M
 2.25 M interface. The quality of the nuclear envelopes can be checked by microscopy. The envelopes appear as faint "C" structures by phase contrast light microscopy.

Nuclear Pore Complex-lamina

- To 1 volume of nuclear envelopes add the equivalent of 2 volumes of extraction buffer, and vortex for 5 min at room temperature. Allow the mixture to then incubate at room temperature for 25 minutes.
- Prepare the gradient. In a Beckman SW-55 centrifuge tube, add 1 ml of 2.50 M sucrose in BT/Mg and then 1 ml of 1.75 M sucrose in BT/Mg.
- Carefully overlay the extracted nuclear envelope mixture to the top of the gradient. Spin the gradient at 240,000 (g) for 30 minutes in a SW55Ti rotor.
- Collect each interface fraction. The pore complex-lamina settles at the 1.75 M - 2.50 M interface.

APPENDIX C — THE TBNEP DATASET

The quality of the open reading frame identification may be assessed with the "protein expect" (the log of the expect value) and the total number of identified peptides. <u>Table 4</u> lists the putative TbNPC associated proteins the we identified in this study. Proteins included in <u>Table 4</u> with a log expect value worse than 10^{-5} have been validated by hand with the original spectra. The *T.cruzi* and *L. major* orthologs of the TbNPC associated proteins are listed in <u>Table 5</u>. As expected, the three kinetoplastids have remarkably similar NPC components due to their close evolutionary relationship. In <u>Tables 6 and 7</u>, only those identifications that meet the following criteria are included:

- 1. If the expect value is worse than 10^{-3} , then at least one peptide must have an expect value better than 10^{-2} .
- If an identification is based on one peptide, that expect value must be better than 10⁻³.

Notes for Tables:

- a) As determined with <u>Nucleo</u>: * probability ≥ 0.70, ** probability ≥ 0.80, *** probability ≥ 0.90.
- b) TMH and signal peptides were simultaneously predicted with <u>Phobius</u>.

- c) As predicted with <u>PEPCOIL</u>, window=28: * probability \ge 0.70, ** probability \ge 0.80, *** probability \ge 0.90.
- d) <u>HMMer</u> against the Pfam profile databases, expect < 0.1
- e) Present in T. brucei bloodstream plasma membrane fraction (D. Bridges, H. de Koning, P. Voorheis and R. Burchmore)
- f) Present in T. brucei bloodstream cytoskeletal fraction (D. Bridges, H. de Koning, P. Voorheis and R. Burchmore)
- g) Present in *T. brucei* flagellum proteome (Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, Gaskell SJ, McKean PG, Gull K)
- h) Expressed in procyclic form (Jones A, Faldas A, Foucher A, HuntE, Tait A, Wastling JM, Turner CM.)
- i) The residue boundaries of the domains are listed along with the domain identifier: CC, coiled coil; FG, FG-repeat, the plurality motif is listed within parans.

GFP localized?	416- SPB during anaphase	, 638- }74 Yes	Not Tagged	Inconclusive	Yes	Not Tagged	Not Tagged	Yes	Yes	id Yes	id Yes	id Yes	Not Tagged	Not Tagged	Not Tagged	Not Tagged	Not Tagged	486, Not Tagged	-583 Not Tagged	-684 Yes	Not Tagged	Yes	288 Yes	
Domains (i)	CC: 88-200, 206-283, 294-368, 596	CC: 292-336, 383-426, 436-496 671, 689-748, 852-881, 884-6	Beta Propeller	Beta Propeller	Beta Propeller	Beta Propeller	Alpha Solenoid	Alpha Solenoid	Alpha Solenoid	Beta Propeller Alpha Solenc	Beta Propeller Alpha Solenc	Beta Propeller Alpha Solenc	Alpha Solenoid	Alpha Solenoid	FG (GFG): 16-263	FG (GFG): 10-72	FG (FGFG): 194-299	FG (GGFGA): 8-349; CC: 453- 493-521	CC: 149-228; FG (FSFG): 331	CC: 150-237; FG (FSFG): 317	FG (FSFG): 321-986	FG ([A/V]FGQ): 209-1432	FG (VFGT): 267-388, 1007-1;	
Bioinformatic Notes	Homologous to Mlp	(g), homologous to MIp	(f,g,h)	May be moved to unanno. Review and reanalyze	Homologous to Aladin / AAA		(e,f,g)	(e,f,h), homologous to ScNup84, VtNup84/107	(e,f), homologous to ScNIC96, VtNup93	(f,g)	(e,f,g)	(e.f.g.h), homologous to ScNup170, VtNup155	(y)	(e,f)	Homologous to ScNup42, VtNup62	(6)		Homologous to ScNup57, VtNup54			(e)	Û		
Pfam Matches (d)			WD domain, G-beta repeat	WD domain, G-beta repeat		WD domain, G-beta repeat		Nup84_Nup100	Nucleoporin interacting component															
Coiled Coils (c)	***	***																***	***	***				
TMH domains (b)														4										
Signal Peptide (b)																	Yes							
NLS (a)			*												**					•	•			
Category	MIP	dIM	Nup	Nup	Nup	Nup	Nup	Nup	Nup	Nup	Nup	Nup	Nup	Nup	Nup FG	Nup FG	Nup FG	Nup FG	Nup FG	Nup FG	Nup FG	Nup FG	Nup FG	
# of identified peptides	e	13	4	5	5	7	16	19	23	6	14	27	7	20	8	6	9	6	13	N	20	6	5	
Protein Expect	-2.2	-23.8	-14.5	4.1	-15.9	-2.1	-35.0	-52.8	-74.6	-21.9	-30.8	-70.9	-15.7	-35.9	-27.6	-36.0	-24.3	-26.0	-52.6	-3.2	-129.9	-20.2	-2.9	
Mass (kDa)	92.3	109.6	41.6	42.9	48.4	49.1	82.3	89	96.4	108.6	132.2	144.2	181.4	225.4	52.7	52.8	58.7	62.4	64.1	74.7	86	140.2	149.1	
GeneDB Annotation	TbMIp-2	TbMp-1	TbSec13	TbNup43	TbNup48	TbSeh1/Sec13	TbNup82	TbNup89	TbNup96	TbNup109	TbNup132	TbN up144	TbNup181	TbNup225	TbN up53a	TbN up53b	TbNup59	TbNup62	TbNup64	TbNup75	TbNup98	TbNup140	TbNup149	
Accession Number	Tb09.160.0340	Tb11.03.0810	Tb10.61.2630	Tb10.61.0160	Tb11.02.2120	Tb927.4.3850	Tb09.211.4780	Tb11.02.0460	Tb10.6k15.3670	Tb11.01.7630	Тb927.7.2300	Tb10.6k15.2350	Tb10.6k15.1530	Tb927.4.2880	Tb11.01.7200	Tb927.3.3540	Tb11.02.0270	Tb927.4.5200	Tb927.4.4310	Tb927.8.8050	Tb927.3.3180	Tb11.01.2885	Tb11.01.2880	

Table 5: Putative TbNPC Associated proteins.

	FP localized?	Not Tagged	Not Tagged	Not Tagged	Not Tagged	Not Tagged	Not Tagged	Not Tagged	Not Tagged	
	Domains (i) (Beta Propeller				transportin2 - like		
	Bioinformatic Notes	(h), ScNTF2, HsNTF2	(e.f.h), ScGSP1/2, HsRAN(CRA_a)	(e,f,g)	(e), ScMex67, HsNXF2 (does not rBLAST)	ScKap60, HsKapA	ScKap95, HsKapB	(h), ScKap104 (2nd hit on rBLAST), HsRanBP6 aligns better than HsTransportin-1/2	ScKap123, HsIMB3	
	Pfam Matches (d)	Nuclear transport factor 2 (NTF2) domain	Ras family; GTP-binding protein, RTB2 better alignment to GSP1/2	WD domain, G-beta repeat		Armadillo/beta-catenin-like repeat, HEAT repeat (expect = 0.32)	HEAT repeat (expect = 0.15)	HEAT repeat (expect = 0.4)	HEAT repeat	
	Coiled Coils (c)								***	
Amain Amain	(q)						-			
Signal Pentide	(p)									
	NLS (a)									
	Category	Transportin	Transportin	Transportin	Transportin	Transportin	Transportin	Transportin	Transportin	
# of	identified peptides	С	53	4	-	9	4	N	4	
Drotein	Expect	-2.7	-109.9	-8.4	-3.3	-18.6	-8.5	-2.5	-16.6	
Mass	(kDa)	15.8	24.3	38.3	56.1	58	95	103.8	117.8	
	GeneDB Annotation	TbNTF2	ТЪRТВ2	TbGLE2	TbMex67	TbKap60	TbKap95	TbKap104	TbKap123	
Accession	Number	Tb927.7.5760	Tb927.3.1120	Tb09.160.2360	Tb11.22.0004	Tb927.6.2640	Tb10.70.4720	ľb10.6k15.3020	Tb11.01.7010	

Table 6: T. cruzi and L. major orthologs to TbNPC associated proteins.

Domains	T. b	rucei	L. major	T. cruzi
β Propeller	TbSec13	Tb10.61.2630	LmjF32.0050	Tc00.1047053506525.20
	TbSeh1/Sec13	Tb927.4.3850	LmjF31.0200	Tc00.1047053507583.40
	TbNup43	Tb10.61.0160	LmjF19.1550	Tc00.1047053507211.30
	TbNup48	Tb11.02.2120	LmjF13.0250	Tc00.1047053506227.220
α Solenoid	TbNup89	Tb11.02.0460	LmjF33.2040	Tc00.1047053507771.90
	TbNup82	Tb09.211.4780	LmjF35.1600	Tc00.1047053510759.180
	TbNup96	Tb10.6k15.3670	LmjF36.2510	Tc00.1047053510181.50
	TbNup181	Tb10.6k15.1530	LmjF36.5890	Tc00.1047053509791.160
	TbNup225	Tb927.4.2880	LmjF34.1360	Tc00.1047053504253.10
β Propeller - α Solenoid	TbNup132 TbNup144 TbNup109	Tb927.7.2300 Tb10.6k15.2350 Tb11.01.7630	LmjF22.0380 LmjF36.6890 LmjF32.2780	Tc00.1047053511809.60 Tc00.1047053506247.70 Tc00.1047053507037.60
FG Repeat; Nup98; α Solenoid	TbNup158	Tb11.03.0140	LmjF27.0380	Tc00.1047053506925.440
FG Repeat	TbNup53a TbNup53b TbNup59 TbNup62 TbNup64 TbNup75 TbNup98 TbNup140 TbNup149	Tb11.01.7200 Tb927.3.3540 Tb11.02.0270 Tb927.4.5200 Tb927.4.4310 Tb927.8.8050 Tb927.3.3180 Tb11.01.2885 Tb11.01.2880	LmjF32.2350 LmjF29.0800 LmjF33.2370 LmjF31.2900 LmjF28.3010 LmjF28.3030	Tc00.1047053504159.10 Tc00.1047053506591.69 Tc00.1047053504153.330 Tc00.104705350419.60 Tc00.1047053504717.20 Tc00.1047053504411.10 Tc00.1047053508153.410 Tc00.1047053511671.60 Tc00.1047053511671.50
Coiled coil	TbMlp1	Tb11.03.0810	LmjF25.0270	Tc00.1047053504109.20
	TbMlp2	Tb09.160.0340	LmjF26.2660	Tc00.1047053504769.80
Transportins	TbGle2/Rae1	Tb09.160.2360	LmjF01.0320	Tc00.1047053511577.130
	TbNTF2	Tb927.7.5760	LmjF06.1170	Tc00.1047053508173.180
	TbRTB2	Tb927.3.1120	LmjF25.1420	Tc00.1047053503539.30
	TbMex67	Tb11.22.0004	LmjF27.1690	Tc00.1047053508271.4
	TbKap60	Tb927.6.2640	LmjF30.1120	Tc00.1047053509057.20
	TbKap95	Tb10.70.4720	LmjF34.0490	Tc00.1047053504105.150
	TbKap104	Tb10.6k15.3020	LmjF36.2720	Tc00.1047053509717.70
	TbKap123	Tb11.01.7010	LmjF32.2150	Tc00.1047053511707.39

GFP localized?	Inconclusive	Inconclusive	Inconclusive	Inconclusive	Inconclusive	Inconclusive																																
Bioinformatic Notes	(e,h), GFP labeling shows a speckled cvtosolic pattern	(f), paralogous to NUP-1	Zinc finger, RanBP2-type	ZFP family member		Zinc finger, RanBP2-type	(e,f)	(f), large beta sheet presence, however it is very large protein		(e,f,g), possible cysteine protease	(e)	(1)	(e,r,g)	(e,f,g)	(e,f)		(e)	(e,h)	(e), propapie ribosome-pinding factor A	(e,h)	(h). Probable sialidase	(e), nicalin-like	(B(1)a)	Vacuole membrane protein 1 (mouse)-like		(e,f), Nucleolar Confirmed by mAb	(e)	Probable COX4	(e,f), Probable transcription factor	(FACT complex)	(e)	(c) (e,f)			(e)	(e), Tetratricopeptide repeat	protein	(g,h)
Pfam Matches (d)	DUF1620		Zn-finger in Ran binding protein	Zn-finger in Ran binding protein	WD domain, G-beta repeat	Zn-finger in Ran binding protein										Major Facilitator Superfamily								EF hand, SNARE associated Golgi protein		LisH	Eukaryotic translation initiation	UPF0172	SDT16 DH106	SF110, D0100						Tetratricopeptide repeat		DUF699, DUF1726
Coiled Coils (c)		***				* * *		÷				***	***			***													***							***	:	
TMH domains (b)	÷							e	4							14	-	-			. - ·	-		თ	-		-					- 2	-	c	'n			
Signal Peptide (b)	Yes							Yes	Yes				Yes	Yes			Yes				Yes	Yes											Yes					
NLS (a)			*		*	**	***	*			**															*											**	
# of identified peptides	21	7	0	0	0		10	27	14	24	15	t 13		6	13	= :	12	ß	10	ŧ	5	13	- =	7	1	7	7	6	5	2 1	ഗധ	9 0	8	ı م	5	5	u u	, c
Protein Expect	-64.9	-15.2	-1.1	-1.1	-1.1	je je	-71.7	-71.5	-62.7	-55.7	-51.4	-50.1	-46.2	-45.2	-44.3	-43.7	-42.9	-42.9	-42.7	-40.8	-40.5	-39.0	-33.0	-31.0	-29.9	-29.2	-28.9	-28.6	0.70	6.12-	-26.9	-26.6	-26.6	-26.0	-25.6	-25.4	9.20	-23.1
Mass (kDa)	87.9	502.3	109.2	47.3	49.9	59.9 48.2	34.2	332.6	30.8	152.8	72.5	170.2	43.2 29.3	27.5	29.1	67.1	61.1	46.2	38.2	28.8	84.5	64.7 45 2	40.0 59.6	63.5	27.6	53.6	44.3	28.8	110 5		11.5 7 1	31.5	29.5	36.6	16.8 48.1	36.4	26.25	114.8
GeneDB Annotation	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved nypornetical Hypothetical protein	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Hypothetical protein	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conconved hymothetical		Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Concented hypothetical	Conserved hypothetical
Accession Number	Tb927.4.590	Tb927.7.3330	Tb10.70.1120	Tb927.4.1310	Tb927.6.1830	Tb10.70.1110 Tb10.70.1130	Tb927.3.5370	Tb927.7.6670	Tb927.8.2460	Tb10.6k15.0690	Tb927.4.2850	Tb09.160.4710	Tb927.5.4020	Tb11.02.4120	Tb927.2.2510	Tb927.7.5940	Tb11.01.4740	Tb11.02.5660	Tb09.211.1240	Tb10.6k15.2510	Tb927.5.440	Than Plate 1500	Tb927.7.2240	Tb11.01.0480	Tb11.0400	Tb09.211.1800	Tb927.6.4320	Tb927.8.1570	Th007 3 5600	0200.0.12601	Tb927.3.5350 Thno 211 2530	Tb10.70.3750	Tb927.1.860	Tb927.3.3890	Tb927.5.1780 Tb927.5.1780	Tb927.7.6260	Th10 61 0640	Tb927.5.2530

Table 7: TbNEP members which were not annotated with the T. brucei sequencing effort.

GFP localized?																																											
Bioinformatic Notes	(e), SSR Alpha	(e,t) (e f a b)	(e)	(e)			(g), BOP1-like WD-40, Erb1p	homolog (ef)	(e)		(e)			(e)			(h), BAP28			Ribonucleoprotein, SAS10 homolog	2		(L)	(e), possible member of cohesin	Kold in the second se	(e,f,g,h)				(e)	Probable DnaJ	(H)	(h); Possible FG - discounted after	examination of amino acid composition	(+)			(e,h)					
Pfam Matches (d)						ABC1 family	BOP1NT, WD domain, G-beta	repeat			Major Facilitator Superfamily					Methvltransferase domain	HEAT repeat (expect=0.48)			Sas10/Utp3/C1D family	Macro domain (ADP-ribose	pinding module)	Alba, DNA/RNA-binding protein	STAG domain		Leucine Rich Repeat				SPRY domain, HECT domain				DUF1309		cionaciona d	DUF423				Tetratricopeptide repeat	Pyriditie riudreductase	
Coiled Coils (c)								***							***					***			* *		***						**							***		**			
TMH domains (b)		-		-	,	ი -	-				13	ო	N	-	ſ	5	2										-		÷	N	0				c	N	4						
Signal Peptide (b)	Yes	Yes			Yes	Vac	3-		Yes		Yes				Yes	Yes													Yes			Yes							Yes			Yes	
NLS (a)							*			**										*																							
# of identified peptides	9	20 1	- 6	9	5	mα	0 ~	C F	4	5	~ 0	o o	2	41	04	- 10	7	4	4	7	9		NΩ	сı	10	ŝ	9	ი ლ	S.	10	ę	ю 0)	ω	9 0	m.∡	t υ	4	-		5	4	4
Protein Expect	-22.5	-22.2	-20.9	-20.2	-20.0	-19.2	-17.6	-175	-17.4	-17.4	-17.3	-15.9	-15.9	-15.7	-15.6	-15.2	-14.6	-14.6	-14.1	-12.8	-12.8		-12.3 -12.2	-12.0	-12.0	-12.0	-11.6	-11.6	-11.3	-10.9	-10.7	-10.6 -10.5		-10.4	-10.2	-10.1	-10.0	-9.8	-9.8	9.9 8.1	-9.7	-9.7	-9.5
Mass (kDa)	29.2	22.6 41 a	62.1	37.0	25.9	60.5	88.9	107.2	24.1	23.1	63.2	27.1	58.7	13.5	76.1 26.1	414	287.0	39.0	23.7	60.0	30.2		14.0 172.0	127.9	450.0	110.0	46.7	36.7	20.1	733.0	44.1	50.3 16.3		249.9	118.7	20.2	13.5	68.9	55.4	526.0	33.8	67.1	30.8
GeneDB Annotation	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	:	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical		Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical					
Accession Number	Tb927.7.2190	Tb927.6.4500	Tb927.8.1740	Tb10.70.7770	Tb10.70.2320	Tb10.6k15.1800 Tb10_70_3010	Tb11.02.4620	Th10 70 1570	Tb927.5.1930	Tb927.5.3190	Tb927.3.4100 Tb027.9.4000	Tb10.70.2450	Tb927.7.4760	Tb11.02.3310	Th927 7 5840	Th09.160.1070	Tb09.160.1560	Tb11.02.1320	Tb11.01.1090	Tb11.01.0490	Tb11.01.1900	:	Tb11.02.2040 Tb927.5.3250	Tb10.70.0870	Tb11.01.2430	Tb11.01.8770	Tb10.70.7760	Tb927.8.5640 Th09.211.4520	Tb927.6.2320	Tb927.4.310	Tb10.61.2050	Tb11.02.1350 Tb11.01.8225		Tb927.7.7200	Tb11.01.1540	Tb11.47.0022	Tb11.02.5480	Tb11.01.3290	Tb927.2.3800	Tb927.8.5580	Tb10.6k15.0500	Tb11.01.5760	Tb10.6k15.2320

Signal Peptide TMH domains Coiled Coils (c) Pfam Matches (d) Bioinformatic (b) (b)	RNA recognition motif. (a.k.a. RRM, FBD, or RNP domain)	(e), Probable Centros CEP250	(a)	6	2 SPRY domain, HECT domain	** (e) PPAK motif (double check)	WD domain, G-beta repeat (h), Prp19/Psc (spliceosom	C2 domain (e.f.o.h) sional tra		(a)	T Spermidine synth	Yes		Yes SAM domain (Sterile alpha motif) (e)	1 Probable SAP 130	1 Cytochrome b5-like Heme/Steroid binding domain 1 monomoria 1 TM	2 terminus. Large am sheets. Possible car membrane.	Cleft lip and palate transmembrane protein 1 (e), Clptm1 hou (CLPTM1)	1	1 (c.i)	Yes Hsp70 protein (e)	Yes 4 DUF21, CBS cyclin M2	Alba, DNA/HNA-binding protein (h)	2 Ankyrin repeat (e)	Dip2/Utp12 Family, WD domain, (e.f), Probable G-best reneat	*** (E)	1 HEAT reneat	(j-a)	Yes ***	DUF1126 (e,f,g)	
# of ntified NLS (a)	3	ß	,	σ -	- 8	4 8	e	0.0) -	ں م	0 4	5 3	т т	9	5	4	9	÷	01.0	2 01	5	- m			1 0	9	1 ~ ~	. m	90	<u>ں</u> 1	
rotein ide	-9.4	-9.4	-9.1	0.6-	-8.9	-8.9 9.9	-8.8	-8.7 -8.5	-8.4	-8.3 - 4	-8-1	-8.0 -7.9	-7.9 7.7-	-7.7	-7.7	-7.5	-7.5	-7.4	-7.4	-7.4	-7.3 -7.3	-7.2	-7.1 -7.1	-7.0	-6.9	-6.8	-6.7	-6.6	-6.5 -6.5	-6.5	
Mass F (kDa) E	26.5	102.0	12.2	23.2 60.5	486.2	42.3 60.5	54.2	11.7 104.8	11.2	24.0 166.1	59.9	17.1 16.0	14.5 69.0	177.9	194.8	17.6	237.3	64.2	25.8 17 7	33.1	79.8 31.2	61.9	12.7 19.5	53.7 13.7	120.9	325.3	51.1 118.1	17.5	71.8 50.4	86.8	
GeneDB Annotation	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	

GFP localized?																																				
Bioinformatic Notes	(e)	(e,f)			(e)	(e,f)				U5 snRNP-specific 40 kDa protein		Utp13-like (ribonucieoprotein)			(h)				(e) (e.f.h)	U3 snoRNP protein		(e)	(u)		(4)	(e)	Probable Ribonucleoprotein					(e)	(e,f), probable calcium binding	(e,t), Nucleolar Conπrmeα υγ mAb	RNA binding	(ť,h)
Pfam Matches (d)				Longevity-assurance protein (LAG1)	FAD dependent oxidoreductase		K+ channel tetramerisation domain	Major Facilitator Superfamily		WD domain, G-beta repeat		WU domain, Gebeat repeat DUF1295	2	U3 small nucleolar RNA- associated protein 6					EF hand (expect = 0.23)	WD domain, G-beta repeat	Leucine Hich Hepeat (double check)		DUF580		Hydroxymethylglutaryl-coenzyme A synthase N terminal	Tetratricopeptide repeat	Utp14 protein	Aldose 1-epimerase Nucleolar protein.Nop52							Surp module	UDA/ IO-NIN UDIAINA Alba, DNA/RNA-binding protein
Coiled Coils (c)	***	***	***				-		***		***								x x x	***							***	**			***			:	*	
TMH domains (b)		-	-	7				4 -			-	4	• -			Ŧ	-		4				-			4			4	÷		-				
Signal Peptide (b)	Yes				Yes Yes			Vac	2								Yes													Yes						
NLS (a)			*						***																		***	**						***		
# of identified peptides	~ ~	1 ~	4 -	4		0	-	7	- 0 9	-	4 (υ 4	-	-	. -	- 0	c	- 1	ი –	0	4	0 1	იო	0	-	e	4 (- α	5	c	N -	2	2	ю	е (ით
Protein Expect	-6.4 6.4	-6.4 4.0-	ဇ် ဇ် လ လ	-6.3	9 9 9	-6.2	-6.1	9.1 4	-5.9	-5.9	8. r 8. r	ς, ς, 8. 6	-5.8	-5.7	-5.7	-5.7 - 12	-5.7	-5.6	-5.6 -5.6	-5.6	-5.6	1.15 1.15 1	- - - - - - - - - - - - - - - - - - -	-5.5	-5.5	-5.4	с, г с, г	ο υ. ο, υ. ο,	-5.2	-5.2	6. 4.	-4.8	-4.8	-4.8	-4.7	-4.7
Mass (kDa)	45.5 36.3	11.8 467.8	33.1 20.5	45.1	57.4 42.7	39.6	23.5	70.7 26 9	53.2 147.1	34.9	26.4	103.b 28.4	26.0	6.66	52.1	51.8 105.3	14.1	29.5	68.0 11.8	106.8	124.6	11.2	70.3 53.4	11.6	54.6	38.8	115.8	71.6	16.8	25.2	15.7 42.4	45.2	31.6	127.6	43.4	20.7
GeneDB Annotation	Conserved hypothetical Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical
Accession Number	Tb927.7.5700 Tb927.8.1190	Tb927.8.4380 Tb927.8.4780	Tb10.70.6260 Tb11.01.1700	Tb927.8.7730	Tb10.6k15.1040 Tb11.01.0240	Tb927.4.1610	Tb10.61.2900	Tb11.02.3860 Tha27 7 1290	Tb11.02.4190 Tb09.160.1400	Tb11.01.2940	Tb 11.02.4680	Tb927.3.1080	Tb927.7.1260	Tb09.244.2650	Tb10.70.5420	Th11.01.2020	Tb927.5.510	Tb09.211.1900	Tb110.70.1640 Tb11.01.1625	Tb11.01.2250	Tb927.3.2790	Tb10.26.1020	Tb10.389.1900 Tb10.70.0040	Tb927.5.3090	Tb927.8.6110	Tb09.211.1220	Tb10.61.2440	Tb927.8.5490	Tb09.211.1360	Tb927.7.4270	Tb09.160.0370	Tb11.01.2460	Tb927.3.3790	Tb927.8.3870	Tb927.3.1140	Tb927.4.2040

GFP localized?																																				
Bioinformatic Notes			(B'ı'a)				Possible RNA binding motif	probable eukaryotic initiation factor 4G	(l)			(e)	Probable RNA-binding Domain in	r 3000000000000000000000000000000000000		(e)	(h) nrohahle HSP20		(H)			(e,f)	Sarcalumenin		Similar to U3 small nucleolar RNA interacting protein 2	(e,f,g,h)		Mitochondrial import inner membrane translocase subunit	Tim10	Probable Enp2p homolog	-	(e,f,h)	(e,t,g), involved with signal tranduction	(e), CDP-alcohol phosphatidyltransferase	(a)	6
Pfam Matches (d)						Calcium-activated BK potassium channel alpha subunit		MIF4G domain		3-hydroxyacyl-CoA dehydrogenase, C-terminal domain	Thrombospondin type 3 repeat, ATPase family associated with various cellular activities (AAA)				ATPase family associated with	various cellular activities (AAA)		EF hand	DUF1692	Amidase	Protease associated domain	HEAT repeat (expect = 0.22)	MMR_HSR1		WD domain, G-beta repeat			Tim10/DDP family zinc finger					C2 domain	CDP-alcohol phosphatidyltransferase		
Coiled Coils (c)		***							***		* *					:				***		**				***	***			**	**					
TMH domains (b)		_	-		N	8						N		4				-	-	-			N						Ŧ	-		-		6		5
Signal Peptide (b)										Yes	Yes									Yes	Yes						Yes Vec	3								Yes
NLS (a)														9	ŧ		**					**			* * *		χ.						*			
# of identified peptides		<i>с</i> , с	ч г	. 4	-	4	0	4	5	5	ю	2	-	0 0	N ·	-	- 0	1 -	-	ი -	4 01	4	CI (1		4	e	ი ო	5 0	Ŧ	- თ	4	-	N	0		• 01
Protein Expect	-4.7	4.7	4.0 9.4	-4.6	-4.6	-4.6	-4.6	-4.6	-4.5	-4.5	-4.5	4.4	4.4-	4.4	6.4 5. 1	-4.3	4 4 8 6	0 4 0 6	-4.2	4 2	4 4 	4.1	4 4 	-4.0	-4.0	-4.0	0.4 0	4.0	0	6.0 6.0	-3.9	-3.8	-3.8	-3.7	-3.7	-3.7
Mass (kDa)	11.0	84.4	30.0	42.6	10.8	130.8	37.6	84.5	251.2	127.0	513.2	23.9	23.9	22.3	38.2	59.5	29.2 619	64.5	43.6	65.3	17.0	484.6	66.3 69.0	38.6	75.1	50.8	107.8 28.7	8.8	7 11 7	74.2	63.8	109.7	138.0	45.2	18.5 38.3	68.6
GeneDB Annotation	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Concerned hundhedted	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical					
Accession Number	Tb927.5.3340	Tb927.6.2650	Thin 70 5980	Tb11.01.5380	Tb927.1.2985	Tb927.1.4450	Tb927.6.4440	Tb927.8.4500	Tb09.211.0580	Tb10.70.3190	Tb927.1.880	Tb09.160.2370	Tb10.389.1790	Tb927.7.4470	1 00.1 v. 1 30	Tb927.6.2930	Тb927.7.2110 Ть927 в 1270	Tb927.8.560	Tb11.02.5080	Tb927.8.5080	Tb11.02.4900	Tb927.5.2330	Тb927.7.2410 Тh927 8 6660	Tb10.406.0190	Tb10.70.4960	Tb11.02.0210	Тb927.2.2950 Ть927 6 2140	Tb927.7.2200	That 70 4500	Tb927.7.700	Tb927.8.5300	Tb09.211.3140	Tb927.7.3550	Tb10.389.0140	Tb10.70.0860 Tb10.70.2380	Tb 10.70.4000

GFP localized?																																					
Bioinformatic Notes			(e)			Ptbp1-like	(e,h)			acyltransferase like 2	(6)			CDS weak match to TFIIA		(e,t,g), vesicle-associated membrane protein		(e,f,g)		Probable eukaryotic initiation factor 4G			(e)	101	(a)	(e,f,g)	(e), cinnamyl alcohol dehvdrogenase		coated vesicle membrane protein	(e,h)	(µ)	(h), possible Mip1	(f,h) (e f a h)		(H)	(c'1'R'1')	
Pfam Matches (d)									IQ calmodulin-binding motif					Zinc finger C-x8-C-x5-C-x3-H type (and similar)	Methyltransferase domain	MSP (Major sperm protein) domain				MIF4G domain	Sec7 domain			10 oolmoodullin bindina matid	ind calmodulin-binging motil		Epimerase		-			WD domain, G-beta repeat (double check)	FAD binding domain	0		ELMO/CED-12 family	Phosphoglycerate mutase family
Coiled Coils (c)	**						* * *				:		***									***		***		**									***		
TMH domains (b)			c	ν –				ო	2	-					-	-					2						-		-		6					2	
Signal Peptide (b)		Yes				Yes												Yes	Yes										Yes	N	Yes						Yes
NLS (a)						e e	***			:			*	:			*					**		: •	*			**		**		*			**		
# of identified peptides	ε Γ	-	თ ,	- ო	. .	2 0		-	2	. -	4 0.		2	4	-	ю	4 -	-	e	e	ω ∙		- 0	01 -	4 4	ωN	0	£	-	0 0	n 4	0	σ +	. m	ლ ,	- 0	2
Protein Expect	-3.7	-3.7	-3.7	-3.7	-3.6	9.9 9.0 9.0	-3.6	-3.6	-3.6	-3.5	6, 6, 7, 6,	-3.5	-3.5	-3.4	-3.4	-3.4	-3.4 4.6 4.6	-3.4	-3.4	-3.3	-3.3	ώ. υ. ο	5.5 2.2	6, 6 6, 6	5 5 10 10	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-3.2	-3.2	-3.2	-9.1 1.0	ν. 1. 1.	-3.1	လ် လ် 1. ဂ	.9.1 1.0		- ?? - 3.0	-3.0
Mass (kDa)	73.5	51.0	358.9	27.3	21.1	51.6 117.4	168.5	37.3	53.4	84.6	87.3 25.9	32.1	39.2	114.6	44.5	23.8	83.0 53.5	13.0	78.7	79.6	117.0	54.3	20.6	83.3	99.4	43.5 115.7	55.2	63.1	27.4	37.6	74.8	187.8	173.9 58.7	110.4	85.6	40.c 41.1	36.7
GeneDB Annotation	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical				
Accession Number	Tb11.01.5000	Tb11.02.2770	Tb927.6.3670	Tb927.8.6050	Tb11.01.3085	Tb927.2.5820	Tb927.7.2170	Tb927.7.640	Tb927.8.3320	Tb10.70.3450	Th11.01.8370 Th11.02.2890	Tb927.2.2940	Tb927.8.1150	Tb09.211.1070	Tb09.211.4740	Tb11.01.4810	Tb927.1.4410 Tb927.3.4380	Tb927.6.4140	Tb927.6.630	Tb11.01.2330	Tb11.01.7610	Thoo7 0 1600	Tb09.211.1150	Tb 10.26.0360	Tb11.02.0200	Tb927.2.5130 Tb927.3.4970	Tb927.4.1540	Tb927.8.1500	Tb927.8.7280	Tb10.61.1970	Tb11.02.0520	Tb927.1.2190	Tb927.2.5810 Tb927.5.2650	Tb927.7.3850	Tb927.7.7270 Tb007.8.0000	Tb09.160.1330	Tb09.211.1290

GFP localized?																														
Bioinformatic Notes	(4)	(L)		(e,f,g,h) (e,f)		(e,f,g)	(e,h)	and the states		(e,f)	(Y)		(4)	(f) (f): No similarity to Nups Sporatic	interspersed alpha helcies in sec. struc. Prediction.					CDS and PSI-Blast hit to End		(H)		Paf1/RNA polymerase II complex		No cimitority to Numo	No similarity to Nups	(F)	(1)	(e,h)
Pfam Marches (d)				EF hand, WD domain, G-beta		Cyclic nucleotide-binding domain	WD domain, G-beta repeat		WD domain, G-beta repeat			Apopolysialoglycoprotein (PSGP)			WD40 repeat (weak)	CBF/Mak21 family				GTDase of unknown function				Leo1-like	DUF1253	WD domain, G-beta repeat,	RRM_1	MAG domain MIEAG domain	Tetratricopeptide repeat	
Contert Conts (c)		***		***			***				***		_	***		***					***			:	* *			***		
TMH domains	(q) ~ −		4								-		-								c	N	-				u	2		
Signal Peptide	(b) Yes								;	Yes		Yes	Yes					Yes				Yes								
(e) S IN		*				•	*													***	**				*	*		*		
# of identified	peptides 1 2		~ (01 4	N	4	<i>с</i> с	N (N (14	000	50 01	e	0 0	ε	2	ოი	1 01 0	19 19	2 2	0 0	1010	20	20 0	0	0 0	~ ~	N C	1010	101	2
Protein	Expect -3.0 -3.0	0.6- 0.6-	-3.0	-2.9	-2.9	-2.9	-2.9	2, 2, 2, 0 8, 80, 9	9 6 1 9 8 1	-2.7	-2.5 -2.5	-2.5	-2.4 -2.4	-2.3	-2.3	0, 0, 0, 0,	0.0 1.0 1.0	2 7 7 0 7	9.1- 9.1-	6. L- 0	 0 0 0	<u>-</u> 8	-1.8 -1.7	-1.7	-1.7 -1.7	-1.6 8 1	9. 4 - 1			-1.4
Mass	(kDa) 14.6 54.8	8.6 146.7	27.8	14.3 236.9	32.3	122.8	292.3	12.2	267.5	44.0 29.2	21.0 88.1	97.5	13.4 18.7	66.9	41.1	66.6 88.7	65.7	113.9 42.0	14.1 55.3	53.7 65.4	23.2	152.6	136.8 46.7	64.9	98.0 77.4	55.0	69.0	44.4	32.8	21.5
GeneDB Annotation	Conserved hypothetical Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical GTP-hinding protein	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical
Accession	Number Tb09.211.1890 Tb10.70.0640	Tb10.70.2155 Tb927.5.1010	Tb927.6.3680	Tb10.26.0680 Tb10.70.3460	Tb11.02.1290	Tb11.18.0012	Tb927.8.1050	Tb10.70.0625 Tb20.70.0625	Tb927.8.1480	Tb11.02.2450 Tb927.2.2520	Tb11.02.1880 Tb927.7.6090	Tb927.7.6590	Tb11.02.0445 Tb927.8.3210	Tb09.160.2400	Tb10.70.5410	Tb11.02.2870 Tb11.18.0014	Tb927.1.670	1b11.03.0900 Tb927.3.1560	Tb10.6k15.2360 Tb10.70.1350	Тb927.7.1060 Ть927 7 1640	Tb927.8.6300	Tb10.70.1620	Tb927.2.4400 Tb09.211.1850	Tb09.211.3840	Tb927.7.4340 Tb927.7.7210	Tb927.1.1700 Tb027 7 2040	1 B927.7.3040 Thora 8 2570	Tb10.26.0240 Tb11.01.0500	Tb11.01.7740	Tb11.55.0017

GFP localized?														
Bioinformatic Notes					(e)				No similarity to Nups					
Pfam Matches (d)	Double-stranded RNA binding motif, DEAD/DEAH box helicase, Helicase conserved C-terminal	domain, Helicase associated domain (HA2)			Male sterility protein				WD domain, G-beta repeat	FKBP-type peptidyl-prolyl cis-trans isomerase	IQ calmodulin-binding motif		DUF477	
Coiled Coils (c)	*					***		***		* * *		***		
TMH domains (b)													-	
Signal Peptide (b)												Yes		
NLS (a)	*					**						*		
# of identified peptides	N		-	2	0	N	0	0	0	N	0	0	0	2
Protein Expect	-1.4		-1.3	-1.3	-1.3	-1.2	-1.2	-1.1	-1.1	-1.1	1.1	-1.0	-1.0	-1.0
Mass (kDa)	241.6		138.0	95.7	67.4	26.5	55.3	82.7	83.0	91.8	95.5	40.0	49.4	54.3
GeneDB Annotation	Conserved hypothetical		Conserved hypothetical	Tb-291 membrane assoc.	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical	Conserved hypothetical				
Accession Number	Tb927.4.1500		Tb07.11L3.100	Tb927.6.1950	Tb927.8.6640	Tb09.160.3910	Tb09.211.4170	Tb11.01.7130	Tb11.02.0380	Tb11.02.1000	Tb927.8.6870	Tb10.70.4110	Tb927.3.1940	Tb927.3.4540

Table 8: Annotated TbNEP members.

Accession	ConoDB Annotation	Mass	Protein	Total # of
Number	GeneDB Annotation	(kDa)	Expect	peptides
Tb927.1.2380	alpha tubulin	49.7	-250.2	47
Tb927.5.3400	Calcium-transporting ATPase (Calcium pump)	110.2	-244.6	51
Tb927.2.4230	NUP-1 protein	406.6	-222.9	47
Tb927.1.2330	beta tubulin	49.6	-215.6	43
Tb927.3.1380	ATPase beta subunit	55.7	-180.4	33
Tb11.02.5500	glucose-regulated protein 78	71.3	-171.3	35
Tb927.4.4380	vacuolar-type proton translocating pyrophosphatase 1	85.8	-162.3	26
1b10.70.5670	IEF1, elongation factor 1-alpha	49	-161.1	36
Tb927.7.7420	A I P synthase alpha chain, mitochondrial precursor	63.4	-146.7	35
TD11.01.3110	neat shock protein 70	75.3	-143.4	38
The second secon	elongation factor 2	94.2	-132.1	34
TD927.5.1810	lysosomal/endosomal membrane protein p67	100.2	-128.0	21
The second secon	Giycosofiai Fyfuvale Phosphale Dikinase	100.3	-125.4	37
Tb927.0.4200	boot chock 70 kDo protoin, mitochondrial procurace	43.0	-110.6	24
Th00 160 3820	non5 protein	54.0	-97.0	20
The	mitochondrial processing pentidase alpha subunit. Clan ME, Eamily M16	57	-90.0	10
Tb10.70.0430	chaperonin Hen60, mitochondrial precursor	59.4	-94.5	16
Tb927 5 1210	short-chain debydrogenase	33.8	-89.7	21
Th10 61 1820	mitochondrial carrier protein	34	-87.9	21
Tb927 2 4210	dvcosomal phosphoenolpyruvate carboxykinase	58.5	-87.4	18
Tb927.2.1080	RHS5-c	76.5	-86.5	21
Tb927.8.3750	Nucleolar Protein, SIK1	54.3	-83.3	25
H25N7.12	BHS4	97.7	-80.5	25
Tb11.01.4750	elongation factor 1 gamma	60.4	-76.5	20
Tb10.70.5800	HK2. hexokinase	51.1	-76.1	16
Tb10.61.0980	glycosomal malate dehydrogenase	33.6	-75.7	15
Tb927.4.3590	translation elongation factor 1-beta	28.3	-75.2	16
Tb927.8.1870	tGLP1, golgi/lysosome glycoprotein 1	67.5	-75.2	10
Tb11.02.0070	metallo-peptidase, Clan MF, Family M17	60.5	-74.7	17
Tb10.70.1370	fructose-bisphosphate aldolase, glycosomal	41	-73.3	15
Tb09.160.4250	tryparedoxin peroxidase	22.4	-69.8	16
Tb09.211.3560	glk1, glycerol kinase, glycosomal	56.3	-68.7	16
Tb927.8.3530	glycerol-3-phosphate dehydrogenase	37.7	-66.4	18
Tb927.5.1060	mitochondrial processing peptidase, beta subunit	54	-65.6	17
Tb10.389.1180	P-type H+-ATPase	100.1	-65.5	23
Tb09.160.2840	ACS4, fatty acyl CoA synthetase 4	77.8	-62.8	17
Tb11.02.5280	glycerol-3-phosphate dehydrogenase	66.9	-62.4	15
Tb927.7.6850	TbTS, trans-sialidase	84.4	-61.3	15
Tb927.3.3580	LPG3, lipophosphoglycan biosynthetic protein	87.7	-60.2	13
Tb927.3.4300	PFR1, 73 kDa paraflagellar rod protein	68.6	-59.7	15
Tb927.7.2930	histone H2A	14.2	-59.5	10
Tb10.v4.0045	prohibitin	32.1	-57.5	14
Tb10.70.4200	fatty acyl CoA synthetase	78.9	-56.5	17
Tb10.100.0070	ATP synthase F1 subunit gamma protein	34.3	-53.9	13
Tb09.211.1750	mitochondrial carrier protein	34.2	-51.3	12
Tb927.3.3270	TbPFK, ATP-dependent phosphotructokinase	53.4	-50.6	16
16927.4.470	snoRNP protein, GAR1	21.7	-50.0	19
Tb10.389.0690	mitochondrial carrier protein	33.1	-48.3	11
1b11.01.3370	PEX11, glycosomal membrane protein	24	-47.0	11
Thos size 30	A I P-dependent DEAD-box RNA helicase, DHH1	46.4	-46.7	16
1005.5K5.70	nucleolar RNA nelicase II, Gu	68.7	-46.5	12
The second secon	eukaryotic initiation factor 4a	45.3	-45.9	12
TD10.70.5110	miniph, mitochondrial malate denydrogenase	33.1	-45.7	8
TD09.211.4700	RISP, reiske iron-sullur protein, mitochondrial precursor	33.0	-45.5	10
Tb09.160.4310	Giutamate denydrogenase	112	-44.3	19
Th027 5 020	FPDa NADH dependent fumerate reductage	33.0 102.6	-44.2	9
Tb027.3.930	PNDy, NADI Fueperident futiliariate reductase	123.0	-44.0	12
Thog 160 5/80	adenosine transporter	49.9	-43.3	12
The second secon	lanastaral 14 alpha demathylasa	54.2	42.4	14
Thon 211 05/0	ERPase fructose 1.6-bisnbosnbate cutosolic	38.5	-42.0	14
Th10 05 0230	zinc metallonentidase	62.7	-42.0	7
The 27 3 3330	heat shock protein 20	15.8	-30.1	ģ
Tb927.6.4990	ATP synthase ensilon chain	20.1	-39.0	7
Tb927 3 1790	pyruvate dehydrogenase E1 beta subunit	37.5	-38.4	8
Tb927.7.6360	histone H2A	18.6	-37.1	13
Tb09.211 2740	Gim5B nrotein	25.9	-36 1	10
Tb927.5.1710	ribonucleoprotein p18, mitochondrial precursor	21.2	-35.6	6
Tb10.70.1100	translation elongation factor 1-beta	21.2	-35.5	9
Tb927.7.210	proline oxidase	63.8	-35 1	10
Tb927.8.760	Nopp44/46.	35	-35.1	7
Tb927.5.4190	histone H4	11.1	-34.8	9
Tb09.211.4511	kinetoplastid membrane protein KMP-11	11	-34 6	6
Tb10.v4.0052	microtubule-associated protein 2. MAP2	560.8	-34.1	11
Tb10.406.0350	histone H2B	12.5	-33.7	10
Tb927.6.4210	aldehyde dehvdrogenase	64.5	-33.5	11
Tb10.61.2130	ATP-dependent DEAD/H RNA helicase, DBP1	71.3	-33.1	13

Accession	GeneDB Annotation	Mass	Protein	Total # of
Number Tbo27 3 5050	60S ribosomal protein (4 (1 1)	(kDa)	Expect	peptides
Tb927.3.3030	BHS1	94.8	-31.9	16
Tb927.5.900	oligosaccharyl transferase subunit	92.1	-31.2	11
Tb927.2.470	retrotransposon hot spot protein RHS4-c .	98.2	-30.6	21
Tb11.46.0001	60S acidic ribosomal subunit protein	34.6	-30.4	10
Tb027 1 2530	60S ribosomal protein L18 Histore H3	21.8	-30.4	5
Tb10 61 0150	inosine-5'-mononhosphate dehydrogenase	48.4	-30.0	6
Tb11.02.1085	40s ribosomal protein S4	30.6	-29.6	8
Tb927.4.1330	type IB DNA topoisomerase large subunit .	79.2	-29.0	10
Tb11.02.3210	triose-phosphate isomerase	26.8	-28.8	9
Tb927 8 1610	pteriolne transporter major surface protease gn63	62.9	-28.0	9
Tb10.v4.0247	s-adenosyl-L-methionine-c-24-delta-sterol-methyl transferase a	40.1	-28.3	6
Tb927.1.420	RHS5	76.2	-28.0	19
Tb927.2.1210	RHS4	95.1	-27.5	16
Tb10.26.0560	60S ribosomal protein L6	21.1	-27.4	5
Tb927.6.1500 Tb927.8.650	DHAP, alkyl-dinydroxyacetone prosphate synthase	140.3	-27.3	8 10
Tb927.3.1840	3-oxo-5-alpha-steroid 4-dehvdrogenase	33.3	-27.1	8
Tb10.26.1080	heat shock protein 83	80.7	-26.5	8
Tb927.8.5010	PFR2, 69 kDa paraflagellar rod protein	69.5	-26.4	7
Tb927.7.710	heat shock, 70 Kda	70.1	-26.1	13
Tb927.5.3510	SMC3	136.2	-23.0	14
Tb927.5.520	stomatin-like protein	55.9	-24.3	8
Tb09.160.3670	ribosomal protein S6	13.5	-23.8	3
Tb09.244.2630	40S ribosomal protein S6	28.4	-23.5	7
Tb927.5.2080	inosine-5'-monophosphate dehydrogenase	52.2	-23.4	6
Tb927.2.2440 Tb11.01.4940		57.2 141	-23.4	13
Tb927.8.1420	acyl-CoA dehydrogenase, mitochondrial precursor	55.9	-23.2	5
Tb927.4.1790	ribosomal protein L3	54.3	-22.5	5
Tb927.7.2370	40S ribosomal protein S15	20	-22.5	4
Tb11.02.2880	DNAJ	84.6	-22.4	7
Th11 0290	aquapoint 5 BPS14_40s ribosomal protein S14	30 15.5	-22.2	6
Tb09.160.2770	ACS1, fatty acyl CoA syntetase 1	78.9	-21.8	9
Tb09.160.1160	Nop86	85.8	-21.8	8
Tb927.1.4100	cytochrome C oxidase subunit IV	40.5	-21.7	7
10927.8.5460 Th927 4 4620	Tiagellar calcium-binding protein TB-44A	45.6 18.7	-21.7	5
Tb10.26.0790	PSSA-2 procyclic form surface glycoprotein	46	-20.9	4
Tb927.6.2550	RNA-binding protein, possible PAB1	79.7	-20.7	12
Tb09.244.2760	cytosolic coat protein	24.5	-20.7	7
Tb927.8.4810	prohibitin	31.4	-20.6	10
Tb10.369.1500	40S ribosomal protein S3a	29.4	-20.5	7
Tb927.3.960	protein transport protein Sec61 gamma subunit	7.6	-20.4	4
Tb927.4.395	cytoskeleton-associated protein CAP5.5	94.5	-20.3	8
Tb10.6k15.3080	dihydrolipoamide acetyltransferase precursor	48	-20.3	7
1010.70.3510 Thio 6k15 2160	60S ribosomal protein L18a	20.8	-20.1	6
Tb11 02 0250	heat shock protein mitochondrial precursor	84.1	-19.9	9
Tb11.01.3560	vacuolar ATP synthase subunit B	55.5	-19.5	6
Tb927.7.4170	fatty acid elongase	30.4	-19.4	4
Tb10.389.0890	pyruvate dehydrogenase E1 component alpha subunit	42.4	-19.0	6
Tb927.3.3490 Tb927.4.2070	I DP1 nign mobility group protein Antigenic protein, paralogous to NUP-1	30.8	-19.0	3 10
Tb927.8.2000	PPlase cyclophilin type peptidyl-prolyl cis-trans isomerase	32.8	-18.9	7
Tb10.70.6660	hypoxanthine-guanine phosphoribosyltransferase	26.3	-18.7	2
Tb927.2.340	RHS4-a	97.7	-18.3	20
Tb09.211.0560	RNA-binding protein, DRDB3	36.9	-18.1	9
Tb11.50.0007	TCP-1-zeta t-complex protein 1 zeta subunit	59.5	-17.9	3
Tb927.8.2630	kinesin	85.1	-17.7	7
Tb927.7.990	chaperone protein DNAJ	86.5	-17.7	6
Tb10.6k15.3610	delta-6 fatty acid desaturase	47.9	-17.6	6
Tb077.2.5160		16.8	-17.5	5
Tb09.211.1550	chaperone protein DNAJ	56.6	-17.1	9
Tb10.70.0820	universal minicircle sequence binding protein (UMSBP)	21.8	-16.9	4
Tb10.6k15.3350	40S ribosomal protein S24E	15.6	-16.8	2
Tb11.01.3610	membrane-bound acid phosphatase	53.3	-16.7	4
The transformed to the transform	mitochondrial carrier protein	93.0 29 R	-16.5	5
Tb10.61.1920	fibrillarin	31.6	-16.3	10
Tb927.3.1410	COX VII cytochrome c oxidase VII	19.2	-16.2	4
Tb927.1.2230	calpain-like protein fragment	13.5	-16.2	4
10927.4.2000	RuvB-like DNA helicase	52.5	-16.0	8
Tb09.211.0120	nascent polypeptide associated complex subunit	20.3 20.1	-16.0	ა 3
Tb927.4.4210	ATP-dependent zinc metallopeptidase	96.1	-15.7	6

Accession	GeneDB Annotation	Mass	Protein	Total # of
Number		(kDa)	Expect	peptides
Tb11.01.3180	guanine nucleotide-binding protein beta subunit	34.6	-15.4	3
Tb927.4.1080 Tb927.7.3120	V-type A Pase, A subunit Sm-D1 small nuclear ribonucleonrotein SmD1	0/./ 11 7	-15.3	2
Tb11.02.1680	mannose-specific lectin	62.2	-15.0	5
Tb927.8.1890	cytochrome c1, heme protein, mitochondrial precursor	30	-14.8	7
Tb927.3.2230	succinyl-CoA synthetase alpha subunit	31.4	-14.8	3
Tb927.7.2700	B5R NADH-cytochrome b5 reductase	31.8	-14.5	5
Tb10.6k15.2020	THT2A glucose transporter	56.8	-14.5	3
Tb11.42.0003	I CP-I-beta t-complex protein 1, beta subunit	26.0	-14.4	6
Tb10.6k15.2330	TCP-1-theta t-complex protein 1, theta subunit	58	-14.4	4
Tb10.406.0290	protein tyrosine phosphatase	29.6	-14.4	3
Tb09.211.0680	CAAX prenyl protease 1	48.8	-14.3	5
Tb09.244.2570	calcium motive p-type ATPase	113.9	-14.2	6
Tb927.5.3810	orotidine-5-phosphate decarboxylase/orotate phosphoribosyltransferase	49.9	-14.1	7
1b927.3.3310 Th027.1.120	605 ribosomal protein L13	26.6	-14.0	5
Tb927.3.4760	dynamin	73.1	-13.7	23
Tb09.211.3510	ATP-dependent DEAD/H RNA helicase: NPC-associated RNA helicase (Allen et al., 2001)	82.6	-13.7	5
Tb11.12.0011	ATP-dependent DEAD/H RNA helicase	45.4	-13.5	5
Tb09.160.2910	tricarboxylate carrier	35.6	-13.3	6
Tb11.03.0090	ribokinase	35.2	-13.3	3
Tb927.3.2150	protein phosphatase 2C	39.9	-13.2	6
Tb09.160.4200	60S ribosomal protein	34.6	-13.2	4
Th927 4 1920	GPI transamidase component GPI16	75.7	-13.1	4
Tb11.0880	60S ribosomal protein L21E	17.9	-13.0	6
Tb927.8.2160	PGPA MRPA multidrug resistance protein A	174.5	-13.0	5
Tb11.02.0870	Ran-binding protein 1	17.6	-13.0	3
Tb10.61.0110	ATP-dependent zinc metallopeptidase	62.7	-13.0	3
Tb11.01.5100	paraflagellar rod component	68.3	-12.9	4
Tb927.4.3300	mitochondrial ATP-dependent zinc metallopeptidase	/8.8	-12.9	3
Tb09.211.2640	bus ribosomal protein L23	14.9	-12.8	5
Tb10 61 0600	BPN9 proteasome regulatory non-ATP-ase subunit 9	45.9	-12.7	1
Tb927.8.3060	cytosolic leucyl aminopeptidase	71.2	-12.5	5
Tb927.4.3550	60S ribosomal protein L13a	39.1	-12.5	4
Tb10.70.3240	short-chain dehydrogenase	38	-12.4	3
Tb11.02.4100	pretranslocation protein (Sec61)	53.6	-12.2	4
Tb11.02.0780	squalene monooxygenase	63.7	-12.2	4
Tb927.7.3440 Tb927.4.2180	60S ribosomal protein L35A	17	-12.2	3
Tb09.160.1820	cvtochrome c oxidase subunit V	22.2	-12.1	4
Tb11.01.6360	metalloprotease	74.4	-12.1	4
Tb09.160.3090	heat shock protein	90.8	-12.0	7
Tb927.6.3890	replication factor C, subunit 2	38.7	-12.0	6
Tb927.6.3160	splicing factor 3A, SAP61	61.4 22.0	-12.0	5
The	B5B NADH-cytochrome b5 reductase	33.8	-12.0	5
Tb10.70.0120	COP-coated vesicle membrane protein erv25 precursor	28.1	-12.0	4
Tb11.01.4702	cytochrome c oxidase subunit 10	13.6	-12.0	3
Tb927.4.3570	Elongation Factor 1-beta	28.3	-11.9	12
Tb927.3.5090	tryparedoxin	22.1	-11.9	4
Tb927.7.1050	40S ribosomai protein S16	16.9	-11.6	5
Tb927 2 4550	Fts. I cell division protein	102.8	-11.0	5
Tb927.8.3380	electron transfer protein	27.2	-11.5	4
Tb927.8.1510	RNA Helicase, ATP/DEAD, DBP2	62.4	-11.4	6
Tb927.5.1200	exosome component, CSL4	32.5	-11.4	4
Tb927.7.2710	NADH-cytochrome b5 reductase	31.8	-11.3	4
Tb09.160.4560	AK arginine kinase	44.6	-11.3	4
Tb09 244 2600	ankvrin-repeat protein	334.2	-11.3	2
Tb11.01.2530	kinesin-like protein	69.8	-11.2	4
Tb927.2.5980	HSP100 ATP-dependent Clp protease subunit, heat shock protein 100 (HSP100)	96.9	-10.9	3
Tb10.389.1170	P-type H+-ATPase	100.5	-10.8	21
Tb10.6k15.2900	ABC transporter	75	-10.8	7
Tb09.211.2260	protein kinase	118	-10.7	4
The	EBE1 eukarvotic pentide chain release factor subunit 1	50.9	-10.7	3
Tb10.70.1190	VCP valosin-containing protein homolog	85.7	-10.6	5
Tb09.211.2570	TCP-1-eta t-complex protein 1, eta subunit	61.4	-10.6	4
Tb11.02.1230	B5R NADH-cytochrome b5 reductase	34	-10.6	3
Tb10.05.0220	60S ribosomal protein L10a	24.5	-10.5	1
Tb11.01.1465	nascent polypeptide associated complex alpha subunit	11.3	-10.3	2
10927.5.2380 Thooz 2 4100	nyaroiase, aipria/Deta tola tamily endesemal integral membrane protein	34.4 Q1 E	-10.1	4
Tb11.01 2280	ubiquinone biosynthesis methyltransferase	32	-10.1	3
Tb927.8.6580	succinate dehydrogenase flavoprotein	66.8	-10.0	4
Tb10.70.0830	CHC clathrin heavy chain	190.5	-9.9	7
Tb11.01.8510	TCP-1-alpha	54.5	-9.9	4
Tb927.3.2900	elongation initiation factor 2 alpha subunit	46.7	-9.9	2
16927.4.560	dynein heavy chain	479.5	-9.8	8

Accession	GeneDB Annotation	Mass	Protein	Total # of
Number		(kDa)	Expect	peptides
Tb927.7.5170	60S ribosomal protein L23a	18.1	-9.7	3
Tb11.02.4070	60S ribosomal protein L28	16.8	-9.7	2
Tb10.406.0600	SMC2 structural maintenance of chromosome 2	133.9	-9.4	7
Tb11.01.6880	cytosolic coat protein	25.5	-9.3	3
Th027.8 000	aminomethyltransferase	41.1	-9.2	1
TD927.0.900		37.4	-9.0	5
The second secon	ealeain like eveteine poptidage	95.0	-0.9	12
Tho27 7 3040	mitochondrial carrier protein	36.3	-0.9	5
Th927 4 3740	FA71	192.4	-8.7	7
Tb09.211.2150	polv(A)-binding protein 1	62.1	-8.7	6
Tb927.7.270	ribosome biogenesis protein	49.3	-8.7	4
Tb927.2.510	RHS4	95.1	-8.6	8
Tb11.01.6300	phosphatidylinositol 3-related kinase	320.3	-8.6	7
Tb11.55.0014	vesicular transport protein (CDC48 homologue)	78.4	-8.6	4
Tb11.02.4570	pumilio-repeat, RNA-binding protein	75.1	-8.6	4
Tb10.70.5820	hexokinase 1	51.2	-8.4	15
Tb927.1.3180	40S ribosomal protein S11	20	-8.4	3
Tb11.01.1475	40S ribosomal protein S27	9.6	-8.4	1
Tb927.3.3670	RNA-binding protein, Nop4?	66.8	-8.2	5
Tb10.70.0140	HEL64 ATP-dependent DEAD/H RNA helicase HEL64	64	-8.1	4
Tb10.6k15.3250	succinyl-CoA ligase [GDP-forming] beta-chain	54.7	-8.1	4
Th11.02 5250	Heplication factor C, subunit 5, HFC3	38.7	-8.1	3
TD11.02.5250		15.7	-0.1	3
Th927 8 1160		121.1	-8.0	6
Th927 7 1730	60S ribosomal protein L7	27.6	-8.0	5
Tb10 70 1670	40S ribosomal protein S10	19.2	-8.0	3
Tb10.70.6360	RPN5 proteasome regulatory non-ATP-ase subunit 5	54.8	-8.0	2
Tb10.6k15.2180	COX IX cytochrome c oxidase subunit IX	13.7	-7.8	2
Tb927.8.2740	TbRBP38 TbRBP38 mitochondrial RNA binding protein	38.4	-7.8	1
Tb11.01.3550	2-oxoglutarate dehydrogenase, E2 dihydrolipoamide succinyltransferase	41.1	-7.7	5
Tb927.7.3500	glutathione-S-transferase/glutaredoxin	35.4	-7.6	4
Tb11.01.5590	NRBD2 TbP37 RNA-binding protein	30.2	-7.6	3
Tb927.3.4680	RAB GDP dissociation inhibitor alpha	49.3	-7.6	1
Tb927.6.4370	eukaryotic translation initiation factor 3 subunit 7-like protein	61.3	-7.5	6
Tb11.01.1740	2-oxoglutarate dehydrogenase E1 component	112.8	-7.5	4
1610.61.1330	nucleosome assembly protein	41.2	-7.5	3
Theory 4 1000	28G16.480 succinate dehydrogenase	21.2	-7.5	3
10927.4.1030 N10P2 040		82.1	-7.5	2
Th11 01 3020	40S ribosomal protein L14	21.4	-7.3	2
Tb11 18 0013	BPN3 proteasome regulatory non-ATP-ase subunit 3	38.1	-7.2	2
Tb11.01.4870	inner membrane preprotein translocase Tim17	16.2	-7.1	4
Tb09.244.2790	rRNA processing protein	28.4	-7.1	3
Tb10.6k15.0960	54 NDH2 NADH dehydrogenase	54.3	-7.1	3
Tb11.01.7170	C-14 sterol reductase	51.1	-7.0	2
Tb10.70.0170	chaperone protein DNAJ	31.1	-7.0	1
Tb10.6k15.2050	RPS12 40S ribosomal protein S12	16	-6.9	3
Tb927.3.2600	ATP-dependent DEAD/H RNA helicase	244.8	-6.8	6
1609.160.4600	ABC transporter	/2.1	-6.8	5
Tb927.5.2290	A I P-dependent RNA helicase	249.1	-6.8	5
TD11.01.2560	405 ribosomai protein SA	27.5	-0.8	4
The	60S ribosomal protein 1 29	82	-0.0	3
Th11 02 0290	succinvl-coA:3-ketoacid-coenzyme A transferase mitochondrial precursor	53	-6.7	4
Tb10.70.4570	RPN11 proteasome regulatory non-ATPase subunit 11	33.8	-6.7	2
Tb927.1.220	retrotransposon hot spot (RHS) protein	94.5	-6.6	10
Tb10.100.0060	centromere/microtubule binding protein, CBF5	48.2	-6.6	2
Tb11.01.1370	eIF-3 beta; TRIP-1 eukaryotic translation initiation factor 3 subunit	37.7	-6.6	1
Tb927.2.3080	oleate desaturase	47	-6.5	5
Tb09.211.4550	60S ribosomal protein L12	24	-6.5	3
Tb927.8.730	nucleolar RNA-binding protein	28.3	-6.5	2
Tb927.6.2700	Sm-E small nuclear ribonucleoprotein Sm-E	9.6	-6.5	1
Tb11.55.0009	GBP21 mitochondrial RNA binding protein 1	23.2	-6.4	3
Tb10.70.1720	dynein neavy chain	474.4	-6.3	5
Tb927.8.7600	amino acid transporter	58.I 01.9	-0.3	4
Th09 211 3310	replication factor C	21.0	-0.3	3
The	40S ribosomal protein S17	16.2	-6.3	1
Tb927.8.7170	inositol polyphosphate 1-phosphatase	42	-6.2	4
Tb11.02.5210	RNA binding protein	33.5	-6.2	1
Tb11.01.4622	calmodulin	16.8	-6.2	1
Tb09.211.4600	short-chain dehydrogenase	51	-6.2	1
Tb10.6k15.2290	protein disulfide isomerase	55.5	-6.1	3
Tb927.3.4910	signal peptide peptidase	38.6	-6.1	2
Tb927.6.4340	TbLSm5 U6 snRNA-associated Sm-like protein LSm5p	12.7	-6.0	1
Tb927.4.870	dynein heavy chain	509.7	-5.8	6
Tb09.211.0340	QM 60S ribosomal protein L10	24.7	-5.8	4
10927.2.3370	UDP-Gal or UDP-GicNAc-dependent glycosyltransferase	43.6	-5.8	4
Those 9 1040	ous ribosomai protein L34	19.3	-5.8	1
10921.0.1940 Th11 02 5470	enuosomai integral membrane protein	70.4	-5.7 _5.7	1
1011.02.04/0	vacuolal type 11+ AT Fase Subullit	20.3	-5.7	1

Accession	GeneDB Annotation	Mass	Protein	Total # of
Number	dynain light shain	(kDa)	Expect	peptides
Th927 4 450	coatomer alpha subunit	132 7	-5.5	5
Tb10.05.0150	citrate synthase	53.5	-5.5	4
Tb927.5.2570	translation initiation factor	79.7	-5.5	3
Tb11.01.4701	MBAP1 membrane-bound acid phosphatase 1 precursor	59.3	-5.5	3
Tb10.61.2090	60S ribosomal protein L17	19	-5.5	2
Tb11.01.4050	heat shock protein HsIVU, A I Pase subunit HsIU	54.8	-5.4	3
Tb11 01 4620	ubiquitin ligase	203.2	-5.3	2
Tb10.61.3190	60S ribosomal protein L7	34.4	-5.2	3
Tb927.8.6000	fatty acid desaturase	49.3	-5.0	5
Tb10.6k15.0580	RPT6 proteasome regulatory ATPase subunit 6	45.7	-5.0	4
Tb927.2.4700	30M24.230 hypothetical protein, conserved	17	-5.0	2
Tb927.8.2310	(H+)-ATPase G subunit	12.7	-5.0	1
Tho27 3 780	405 ID050IIIdi protein 516 ThPSA7 proteasome alpha 7 subunit	25.4	-4.9	3
Tb927.8.1600	lysyl-tRNA synthetase	66.7	-4.9	2
Tb10.61.2070	RPS2 40S ribosomal protein S2	28.6	-4.8	3
Tb927.8.5120	cytochrome c	12.2	-4.8	2
Tb927.7.1300	protein disulfide isomerase	41.9	-4.8	2
Tb10.70.4800	ribosomal protein S25	12.5	-4.7	3
Tb927.7.230	40S ribosomal protein S33	11.1	-4.7	2
Tb027 2 1180	Intrallagellar transport protein IF180/CHE2	80.0 67.7	-4.7	1
Th927.2.1160	50S ribosomal protein L7Ae	16.3	-4.0	0
Tb927.1.4490	acetyltransferase	19.6	-4.6	1
Tb927.6.3630	sphingosine phosphate lyase-like protein	59.4	-4.5	3
Tb927.4.2450	thioredoxin	44.4	-4.5	2
Tb927.2.5800	SBPase 1F7.270 sedoheptulose-1,7-bisphosphatase	35.4	-4.5	2
Tb11.01.6800	1-acyl-sn-glycerol-3-phosphate acyltransferase protein	30.3	-4.5	2
Th11.01.1020	mitochondrial ATP-dependent zinc metallopeptidase	/1	-4.5	2
Tb10.61.1920	DNA-directed BNA polymerase, alpha subunit	15.2	-4.5	1
Tb927.1.2580	TbEAP1 RNasePH-like protein	42.6	-4.4	3
Tb11.02.5190	pantothenate kinase subunit	162	-4.4	3
Tb11.01.7535	60S ribosomal protein L27	15.5	-4.4	2
Tb927.5.1470	B5R NADH-cytochrome b5 reductase	32.7	-4.4	2
H25N7.20	ESAG4 protein chr intermediate-sized-chromosome	139.1	-4.3	5
1b927.5.800 Theory 0.1000	Casein Kinase	38.3	-4.3	3
Tb0927.2.1920	25N 14.305 expression sile-associated gene (ESAG) protein	23.1	-4.3	1
Tb927.6.3150	Hydin	500.8	-4.2	5
Tb927.3.5520	RPN1 26S proteasome regulatory non-ATPase subunit	99.8	-4.2	3
Tb927.2.3030	10C8.315 ATP-dependent Clp protease subunit, heat shock protein 78 (HSP78)	90.6	-4.2	3
Tb11.02.2070	long-chain-fatty acid-CoA ligase protein	73.3	-4.2	3
Tb927.7.4160	fatty acid elongase	34.3	-4.2	2
Tb11 02 0030	ACS3 1L12.290 latty acyl CoA synthetase 3	11.8	-4.1	16
Tb10.6k15.3220	MTR4 ATP-dependent DEAD/H RNA helicase	107.2	-4.1	4
Tb10.61.1870	aminopeptidase	42.6	-4.1	2
Tb10.389.0160	periodic tryptophan protein 2	102.8	-4.1	2
Tb927.7.5680	deoxyribose-phosphate aldolase	30	-4.1	1
Tb927.2.3440	28H13.70 D-alanyl-glycyl endopeptidase-like protein	29.9	-4.1	1
Tb927.2.1170	25N24.105 retrotransposon not spot (RHS) protein	70.5	-4.0	13
Tb10 6k15 1000	branch point binding protein MSI 5(2)	31.6	-4.0	2
Tb11.01.5860	TCP-1-epsilon t-complex protein 1, epsilon subunit	59.3	-4.0	1
Tb927.7.2070	heat shock protein DnaJ	36.3	-3.9	4
Tb927.8.7530	3,2-trans-enoyl-CoA isomerase, mitochondrial precursor	39.7	-3.9	4
Tb927.2.3780	28H13.240 translation initiation factor IF-2	94.4	-3.9	4
Tb027 7 1240	choline denydrogenase	56.8	-3.9	4
Th927 7 1790	adenine phosphoribosyltransferase	25.6	-3.9	1
Tb10.70.4300	U2 splicing auxiliary factor	29	-3.9	1
Tb927.8.750	nucleolar RNA-binding protein	39.7	-3.8	3
Tb927.8.5090	TRP11 TRP11 DNA-directed RNA polymerase I largest subunit	195.8	-3.8	2
Tb927.3.4020	phosphatidylinositol 4-kinase alpha	255.3	-3.7	4
Tb927.4.3870	receptor-type adenylate cyclase GRESAG 4	134.8	-3.7	4
Tb11.02.4040	ERE2 eukervetie release factor 2	131	-3.7	3
Tb11.02.4030	NT8 1 NBT1 nucleobase/nucleoside transporter 8 1	47.6	-3.7	2
Tb10.6k15.0460	chaperone protein DNAJ	29.8	-3.7	1
Tb927.2.2670	histone H4	11.2	-3.6	4
Tb927.8.4950	kinesin	165	-3.6	4
Tb10.70.4280	delta-1-pyrroline-5-carboxylate dehydrogenase	61.9	-3.6	3
1011.01.6590	zinc tinger protein 2, ZFP2	15.7	-3.6	1
10927.2.5000 Th11 01 1320	ovidoreductase	29.3	-3.6	1 Q
Tb10.70.7020	RPS23 40S ribosomal protein S23	15.9	-3.5	3 1
Tb927.2.240	3B10.75 retrotransposon hot spot (RHS) protein	76.6	-3.4	19
Tb927.7.2550	RPT5 proteasome regulatory ATPase subunit 5	49.1	-3.4	2
Tb10.61.0440	peroxisome assembly protein	43.1	-3.4	2
Tb09.160.2780	fatty acyl CoA synthetase 2	79.5	-3.3	7

Accession	GeneDB Annotation	Mass	Protein	Total # of
Number		(kDa)	Expect	peptides
Tb11.55.0006	TbIF188 intraflagellar transport protein IF188	89.6	-3.3	5
Tb11.02.1280	subuliisin-like serine pepudase	101.4	-3.3	4
Tb11 01 1680	polyubiquitin	76.5	-3.3	2
Tb11.01.7990	myosin	120.4	-3.2	4
Tb927.7.5230	lanosterol synthase	102.9	-3.2	3
Tb10.389.0880	heat shock protein	90.8	-3.2	1
Tb927.6.5050	V-type ATPase, C subunit	23	-3.1	2
Tb10.70.3170	60S ribosomal protein L30	11.5	-3.1	1
Tb927.7.280	cyclopnilin-type peptidyl-prolyl cis-trans isomerase	24.2 72.5	-3.1	1
Tb927.5.1520	heat shock protein HsIVU ATPase subunit HsIU	52.3	-3.0	3
Tb10.26.0140	pumillio RNA binding protein	93	-3.0	1
Tb927.5.3120	translation initiation factor	34.9	-3.0	1
Tb927.8.1990	TRYP2 TRYP2 tryparedoxin peroxidase	25.6	-3.0	1
Tb927.4.4360	monoglyceride lipase	34.9	-3.0	1
Tb09.211.1695	Sm-F small nuclear ribonucleoprotein Sm-F	8.3	-3.0	1
TD10.70.7050	dibudrolipovl debudrogenase	58.3	-2.9	3
Th927 4 3840	nucleolar protein	59	-2.5	2
Tb927.6.3840	reticulon domain protein	21	-2.8	3
Tb10.70.3950	RNA-binding protein	96.5	-2.8	2
Tb927.5.550	vacuolar ATP synthase	42.8	-2.8	2
Tb927.2.450	RHS4	97.9	-2.7	16
Tb927.6.140	RHS5	69.3	-2.7	6
Tb11 02 0000	RivA-binding protein	93	-2.7	3
Th10 61 1090	histone H3 variant	16	-2.7	3
Tb927.4.4490	MRPE: PGPA multidrug resistance protein E	193.6	-2.6	2
Tb11.01.3080	heat shock protein 70	73.5	-2.5	10
Tb11.03.0670	transcription factor	67.5	-2.5	4
Tb927.3.3590	U3 small nucleolar ribonucleoprotein protein MPP10	75.2	-2.5	3
Tb11.01.3390	TOP2 DNA topoisomerase II	162.6	-2.5	3
Tb927.1.2670	ATP dependent PNA belieses	50 100 7	-2.5	2
Tb927.4.3030	retrotransposon hot spot (BHS) protein	76.5	-2.5	16
Tb927.3.930	dynein heavy chain	531	-2.4	3
Tb927.1.1370	rRNA biogenesis protein, RRP5	75	-2.4	2
Tb09.160.4240	28G16.410 nucleosome assembly protein-like protein	47.5	-2.4	2
Tb11.02.2380	retrotransposon hot spot protein (RHS, pseudogene)	0	-2.3	8
1b11.02.0760	dynein heavy chain	530.8	-2.2	4
Tb09.244.2560 Tb11 02 4640	TTL tubulin-tyrsoine ligase-like protein	74.5 108.3	-2.2	2
Tb927.5.890	oligosaccharyl transferase subunit	89.2	-2.1	8
Tb927.7.7450	GTP-binding protein	68.4	-2.1	3
Tb927.4.1270	RuvB-like DNA helicase, RVB1	49.8	-2.0	2
Tb10.100.0160	COXVI cytochrome C oxidase subunit VI	19.1	-2.0	2
Tb927.4.5250	UDP-Gal or UDP-GicNAc-dependent glycosyltransterase	46.5	-2.0	2
Tb09.160.3710	28G16.165 proliferative cell nuclear antigen (PCINA)	32.2 54	-2.0	2
Tb11.01.3690	splicing factor 3B subunit 1	121.9	-1.8	2
Tb11.27.0001	receptor-type adenylate cyclase GRESAG 4	137.5	-1.8	2
Tb927.8.5250	coatomer delta subunit	57.2	-1.8	2
N19B2.135	RHS4 retrotransposon hot spot protein, RHS4 chr intermediate-sized-chromosome	96.3	-1.6	11
Tb11.24.0012	variant surface glycoprotein (VSG, atypical)	51.6	-1.6	2
Tho27 2 5280	30 l2 90 trans-sialidase	25.0 77 1	-1.0	2
Tb927.7.1600	C-1-tetrahydrofolate synthase, cytoplasmic	31.9	-1.6	2
Tb927.7.680	chaperone protein DNAJ	88.6	-1.6	2
Tb09.160.4220	General transcription factor IIB	37.6	-1.6	1
Tb927.4.4250	UDP-Gal or UDP-GlcNAc-dependent glycosyltransferase	44.5	-1.5	2
Th007.0.400	microtubule-associated protein, MAP	237.3	-1.4	10
Tb927.2.400	HNRNRA RNA-binding protain	90.Z 30.3	-1.4	5
Tb11.01.7390	AMP Deaminase	163.1	-1.4	2
Tb11.01.5225	cytochrome B5	12.8	-1.4	2
Tb10.70.5480	ubiquitin-conjugating enzyme variant Kua homologue	33.7	-1.4	2
Tb927.7.320	TbRBP8, RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)	20.2	-1.4	2
Tb09.211.1820	DNA polymerase epsilon catalytic subunit	254.8	-1.4	1
Th927 8 8330	405 hbosoniai protein 56	20.4	-1.3	4
Tb09.160.4570	AK arginine kinase	41.5	-1.3	4
Tb10.70.5950	calpain	177.9	-1.3	2
Tb927.7.7500	iron/ascorbate oxidoreductase family protein	36.9	-1.3	2
Tb927.6.990	CP cysteine peptidase precursor	48.2	-1.2	4
1b09.211.0330	chaperone protein DNAJ	35.5	-1.2	2
Thora 6 4300	NUG I nucleolar G I P-binding protein 1 GAPDH alveeraldebyde 3-phosphate debydrogenase, alveosomel	14.1 12 2	-1.2	2
Tb10,406.0390	histone H2B	12.5	-1.1	10
Tb927.8.1200	TbA2 TbA2 vacuolar-type Ca2+-ATPase 2	118.9	-1.1	5
Tb09.211.2420	p277 PRP8 protein homologue	276.8	-1.1	2
Tb927.4.5030	PP1 serine/threonine protein phosphatase PP1	39.3	-1.1	2
1011.01.5690	DRBD4 RNA-binding protein	54.6	-1.0	2

Accession Number Tb927.8.1330 Tb09.211.0140 Tb927.2.6200 Tb927.2.6320

GeneDB Annotation

60S ribosomal protein L7a chaperone protein DNAJ adenosine transporter 2 adenosine transporter 2

Mass	Protein	Total # of
(kDa)	Expect	peptides
30.8	-1.0	2
47.7	-0.8	2
51.2	-0.3	4
50.8	-0.2	4

APPENDIX D — S. CEREVISIAE DOUBLE MUTATION MATRIX

To plan which nucleoporins to target for RNAi analysis, we conducted a literature survey of the genetic interactions between yeast nucleoporins using the BIOBASE Proteome and SGD internet genomic databases. The results of this survey is summarize in <u>Figure 34</u>. Nups shaded in blue are FG-repeat domain containing Nups. Those shaded in green are the scaffold Nups and those Nups colored pink are the transmembrane anchoring Nups. The first column indicates those Nups which exhibit a lethal phenotype (denoted with an 'X'). If two Nups are synthetically lethal, an 'X' is placed at their intersection within the matrix. White space is the result of insufficient data, but since there have been several large scale studies, it is likely that those double knockouts are viable (Collins et al., 2007; Giaever et al., 2002; Loeillet et al., 2005; Tong et al., 2004).

It is interesting to note that the majority of reported synthetic lethal interactions are between scaffold Nups and themselves or other classes, but only 4 (including Nup145c) scaffold Nups are singularly lethal when deleted. This illustrates the robust and redundant nature of the scaffold. While much of the FG-repeat domains can be deleted (Strawn et al., 2004), over half of the FG-Nups are required for survival. For example, all of the FG-repeats on Nup159 may be removed with little effect (Strawn et al., 2004), but deletion of the entire Nup cannot be tolerated (Giaever et al., 2002). This suggests that their anchoring domains play additional roles within the complex and are vital for proper NPC architecture and formation.

Figure 34: *S. cerevisiae* double mutation matrix. Colored in blue are FG-Nups and in green are the scaffold Nups. In pink are the transmembrane Nups. The first column, labeled "deletion" indicates which Nups causes cell death when knocked out.

APPENDIX E — PRIMER CATALOG FOR IN SITU GFP TAGGING

<u>Table 9</u> lists the primers we used to insert the GFP epitope into various loci within the *T. brucei* genome. Primers are constructed from the 80 nucleotides which are homologous to the 3' terminal end of the gene of interest (capital letters in the following table). Lower case letters represent the primer region that is homologous with the pMOTag series of vectors. Also indicated are the masses of the proteins along with the additional mass from the GFP moiety.

GeneDB Accesion	Mass (kDa)	MW+GFP (kDa)	Annotation	Forward Primer	Reverse Primer
Tb11.02.0460	89.1	116.6	TbNup89	GCATGATCTTTTAGTGGAAGAGGCGAAAAAGGTTGCTGTAACACAACAGCA GCTTTTTGTGACATCACAGCGAAATGGggtaccggggccccccctcgag	TAAGGCCACCATCTTCTGAGCTACATCAAGGGTACGAGCACCTCTT ACCGTCTTATCTCCCACCACGtggcggcggtctagaactagtggat
Tb10.6k15.3670	96.5	124.0	TbNup96	GGGTGCGTCGCTGGAGGGCGTATGAACCGCTCTTCTTAGATGAGCTA ATCGTTCTAGAGGGGTTGTTTGTGCAGggtaccggggcccccctcgag	TCCCCTATTCGGTCATCAACTCACTAGAGAGGGGGGGGGG
Tb10.6k15.2350	144.3	171.8	TbNup144	CGGGCATTGACCGCTGCGGGGGGATTGCTCGAACAGTGCAACCTTGCCCT GAATCGTGCCAGTTCCAGGTTTACTTTCggtaccgggccccccctggg	CAGTTTTAGTCAATTATATATTCGCTGTCGACGCGGGCGG
Tb11.03.0140	158.3	185.8	TbNup158	TGTGAATGCGCCAAGCATTCGCACTCACTCGTCTGCAGGAAGCGCTTCA CCGTTTCAGTCGGGGGTTTACAAAGAGAggtaccggggcccccctcgag	TCCTTTTCATTCACCACCCTGGTCACCTTCGCATCACCCTATATTTCCAA CCTCTGTTTGCCTTCCACTGTTCtggcggccgctctagaactagiggat
Tb09.160.0340	92.3	119.8	TbMIp2	GTAACTTGGGATAAGTTGGTTGAGCTCATTTACCCCGTTAAATCGGTGTC GTGGCAGAGGAAGTAAAGCAGCCACAGggtaccggggcccccctcgag	TCTCATCCTTTAGAGCCTCTCCCCCCTCTTTCCTCTCCCCCCCC
Tb11.03.0810	109.7	137.2	TbMIp1	ATGCGACTACTGCACGTCAACAACAACAACAACCAGT CGAACTGAAGGAGAATCCCAGTGGTGGGggggccccccctggg	TACACGAATTGTCATACCACCTGACTAGCAGACGTAGGCCGCTACGAAC CTTTACTGTGGTTCAAAAAQgggggggggcggtctagaactagtggat
Tb11.02.2120	48.4	75.9	TbNup48	GATGGCTGCACGTATGGGTCGTTGCTGCTGTGTGGAAGCGGGACCAGTC TGTGTCATTTGTTCCTGCGTATCATGCAggtaccggggccccccctggg	TCTGTGCAAAAAGGGGGTGTGGGCATCGTTCAATCTTCCCCCATCCTTC CGCCCGAATATCATCGTGGGCCTCtggggggccgdtctaggagtggggg
Tb927.8.8050	74.8	102.3	Hypothetical	AGCCAGCCGCGATCGGGTTCAGTGCACCGACCGTAAACGCCATTTGGG TGCCCGTAGGAGGAGCAGCGGATCggtaccggggcccccctcgag	AAACAAACAAACACACACACACACACACATATATATATA
Tb927.4.1310	47.4	74.9	Hypothetical	GAGATCCGTGGCACTGAGGCGTCATTAGGATTATCACCAGAGCAGGGG TAATCTCGTGTCTATGACAAAAGAGTTTggtaccggggccccccctggg	AGCAACATATGTCCCCCGACAACCGTAACCCACCACCTTCTTCCCTGGTCA CACGGCACACGGGACGCGTCACtggcggccgctctagaactagggat
Tb927.4.590	88.0	115.5	Hypothetical	CTTACATGCAGCTTTGGTGTCTCTTTCCCTTGTGGCAGGCTACTTTGCCATG CGTAAAGGTGTGAGACAACTGTGGCGAggtaccgggccccccctgag	AAAAGGTACATACACACATCGCAACCAAGGGGGGCGACGATGTTAATCCC GAGAAGTCAATATCTCTCGGGAtggcggccgctctagaactagtgggat
Tb10.70.1120	109.2	136.7	Hypothetical	ATTTGCAGTAACTGTGAAGCAAGAATCTTGACGAAGCCGATGTTTGTGTT GATTGTGGCATTGCCAAATGCGACAAAggtaccggggcccccctgag	AAAACGACCCACCGACTGACAACGCGGTTAGAACTTCGGACGCTGGAC TTAATAGATAGATTAATGAAATtggcggccgctctagaactagtggat
Tb11.01.2885	140.3	167.8	TbNup140 FG	TGTTTTCAGTCTTCTTTTTTCTAGTATTGCCGGCAATTATAAGGCCACA CCTGATTTTAAAAGTGTCTTTTCGCAGggtaccggggcccccctcgag	TTAAGTATAATAACAAAAATATTTAAGCACCTCATTCACATGATTTTTAGT TACCTCCCATAACCATAAACTTtggcggcgccgtctagaactagtggat
Tb11.01.2880	149.2	176.7	TbNup149 FG	GGAGAATTATAGGGGTAGAAATAAGTCCGGGTGATAAAATAATGTGGGGCTCA TTTGGAGAATGCTTTCACTAAACCCTATggtaccggggccccccctggg	AAACCCACTAACATTTATATCACCAGCGCTTGCAACAGAGGTGATTAG CATCAAGTAACACTTCAATAAATtggcggccgctctagaactagtggat
Tb11.03.0140N	158.3	185.8	TbNup158 N83: GFP	-> -> -> -> -> -> -> -> -> -> -> -> ->	CCTTTTCATCACCAACCCTCGTCACCTTCGCATCACCCTATATTTCCAAC CTCTGTTTGCCTTCCACTGTCTtggcggccgctctagaactagtggat
Tb11.01.7630	108.7	136.2	TbNup109	CTGTGAGGCAATTTTGAAACGTAGCAAGAGCCGTGCGGGGGGGG	CITATGGTCAGCTGTTTTTCTATTAACTTCTCCCTCTACCTCCACAAACCC AGTGATGTCGGACCAAACCGGCAtggcggcgcgctctagaactagtggat
Tb927.7.2300	132.3	159.8	TbNup132	GTGTGCCGGTATTTTTGACAATGCTGAGCAACAGTTGTTGATGTCGTGGCT TCGAGCTCGCTGCGGGACTCGTGTCAggtaccggggcccccctcgag	AATGAGTAAATGTCGGTGGCTTGAAAATATACGGAAATTGCAAGTTATTT TAACGGTTTCCGTCACGGCGTGGTtggcggccgcctctagaactagtggat
Tb927.6.1830	49.9	77.4	Hypothetical	GCACCGCAACATCCCCGGCGCCATGGAAGAGGAAGGAACGTGGTGAGAG GATGATTTTTGAGATGAATAGGCAACAAggaccgggcccccctgag	TITTGCCTTTTCCCCTTCGGTGTTACTGTCGTCGTTTCCACCCTTTTCACGACTT ACCTTCCTTCATACGCAGTACTGtggcggccgctctagaactagtggat
Tb10.61.0160	42.9	70.4	TbNup43	CAAAGAGGGGCTATTAGCCTGCGCATCCTTCGATCAAGTATTCGAGTTAT GCTCGTGACCAAGTTGTCGCTCGTACAAggtaccgggcccccctcgag	TCTCATGGCTCCACTCTTGTCATCACTTGCAAATTGTGGTAACCTA CTGTCGTCATACCTGTTTCCACC40goggcgccgtctagaactagtgggt
Tb10.70.1110	59.9	87.4	Hypothetical	GGAGTGCCACAAATGTGGGAGCAACGAAGACGGTAGCGGTTGCCCCGCGG CGTGCTTTTGTGCGGAAGCCGGTCAAAATTggtaccggggccccccctgag	ACAACGTCTATCCAGCGTGATAGTTATTTGCCGCTGTTATAGCAAGCA
Tb10.70.1130	48.2	75.7	Hypothetical	TGTTGGCAGAGTGGAGGGCAGATGACATTGGATCTTGCACAACGTTTGC GCAACGACATTCTTGATGAACAAAGAAAggtaccgggcccccctcgag	CTGCTGGGGGGATCTTGTTTGGTAGTTCGGATTAGAAGCGACATAATACT CCACATTTGTATTTGCAAAAGGAAtggcgcgccdcdagaactagtggat
Тb927.2.4230	406.8	434.3	TbNUP-1	CACAGCGACAGGTACGGCAAGTCATGGACATACGTAGCACAGGAAAAGG TCTCGTTCAGCCAATGCGGTCTCGggtaccgggccccccctcgag	TCTAGGTGCATGTGTGAACTGCACACTTTATGCACTAATAACAGGT TTGAAGTACTTACCTGGGCATCTCCtggsggscgcctctagaactagiggat
Tb927.4.2070	511.3	538.8	Hypothetical	AAAGTGTAATGACTTAGTTATAAGGAGACTAGAGGGATGAGGTTAAAGCTCTT CGTGAAGAACTGCGTGGAAATGAGGCGGggtaccggggccccccctcgag	GTAGCAATAATACGTATTTAAAAATGTCAAAATTGTCAGCAACAAGATGC TTACACGAACAGAAAAAAAAGAtggcggccgctctagaactagtggat
Tb927.7.3330	502.6	530.1	Hypothetical	GGAAGGTGAAGATGAGGAGGGGGGGGGGGGGAGCGGAACCGACA ACGCATTTGGGAGGGCCACCATGGGCGCACCATgglaccggggcccccctcgag	TACATTAGACATCATTCATCGACTGTAACCTAGGTAGTGTGGGATACC GTATCAATTACACACTGAGTGTCAtgggggggcggtctgggagtggggt

REFERENCES

- Adl, S.M., A.G.B. Simpson, M.A. Farmer, R.A. Andersen, O.R. Anderson, J.R. Barta, S.S. Bowser, G. Brugerolle, R.A. Fensome, S. Fredericq, T.Y. James, S. Karpov, P. Kugrens, J. Krug, C.E. Lane, L.A. Lewis, J. Lodge, D.H. Lynn, D.G. Mann, R.M. McCourt, L. Mendoza, O. Moestrup, S.E. Mozley-Standridge, T.A. Nerad, C.A. Shearer, A.V. Smirnov, F.W. Spiegel, and M. Taylor. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. *Journal Of Eukaryotic Microbiology*. 52:399-451.
- Akey, C.W., and M. Radermacher. 1993. Architecture Of The Xenopus Nuclear-Pore Complex Revealed By 3-Dimensional Cryoelectron Microscopy. *Journal Of Cell Biology*. 122:1-19.
- Akker, S.A., P.J. Smith, and S.L. Chew. 2001. Nuclear post-transcriptional control of gene expression. *Journal of Molecular Endocrinology*. 27:123-131.
- Alber, F., S. Dokudovskaya, L.M. Veenhoff, W. Zhang, J. Kipper, D. Devos, A. Suprapto, O. Karni-Schmidt, R. Williams, B.T. Chait, A. Sali, and M.P. Rout. 2007a. The molecular architecture of the nuclear pore complex. *Nature*. 450:695.
- Alber, F., S. Dokudovskaya, L.M. Veenhoff, W.H. Zhang, J. Kipper, D. Devos, A. Suprapto, O. Karni-Schmidt, R. Williams, B.T. Chait, A. Sali, and M.P. Rout. 2007b. The molecular architecture of the nuclear pore complex. *Nature*. 450:695-701.
- Alibu, V.P., L. Storm, S. Haile, C. Clayton, and D. Horn. 2005. A doubly inducible system for RNA interference and rapid RNAi plasmid construction in Trypanosoma brucei. *Molecular and Biochemical Parasitology*. 139:75-82.
- Altschul, S.F., T.L. Madden, A.A. Schaffer, J.H. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research*. 25:3389-3402.
- Andersen, J.S., Y.W. Lam, A.K.L. Leung, S.E. Ong, C.E. Lyon, A.I. Lamond, and M. Mann. 2005. Nucleolar proteome dynamics. *Nature*. 433:77-83.
- Andersen, J.S., and M. Mann. 2006. Organellar proteomics: turning inventories into insights. *Embo Reports*. 7:874-879.
- Andrade, M.A., C. Perez-Iratxeta, and C.P. Ponting. 2001a. Protein repeats: Structures, functions, and evolution. *Journal Of Structural Biology*. 134:117-131.

- Andrade, M.A., C. Petosa, S.I. O'Donoghue, C.W. Muller, and P. Bork. 2001b. Comparison of ARM and HEAT protein repeats. *Journal Of Molecular Biology*. 309:1-18.
- Andrulis, E.D., D.C. Zappulla, A. Ansari, S. Perrod, C.V. Laiosa, M.R. Gartenberg, and R. Sternglanz. 2002. Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning. *Molecular And Cellular Biology*. 22:8292-8301.
- Archambault, V., C.H.X. Li, A.J. Tackett, R. Wasch, B.T. Chait, M.P. Rout, and F.R. Cross. 2003. Genetic and biochemical evaluation of the importance of Cdc6 in regulating mitotic exit. *Molecular Biology Of The Cell*. 14:4592-4604.
- Ashford, R., and W. Crewe. 1998. The Parasites of Homo Sapiens: An Annotated Checklist of the Protozoa, Helminths and Arthropods for Which We Are Home. Liverpool School of Tropical Medicine, Liverpool. 128 pp.
- Atwood, J.A., D.B. Weatherly, T.A. Minning, B. Bundy, C. Cavola, F.R. Opperdoes, R. Orlando, and R.L. Tarleton. 2005. The Trypanosoma cruzi proteome. *Science*. 309:473-476.
- Bapteste, E., R.L. Charlebois, D. Macleod, and C. Brochier. 2005. The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. *Genome Biology*. 6.
- Bastin, P., K. Ellis, L. Kohl, and K. Gull. 2000. Flagellum ontogeny in trypanosomes studied via an inherited and regulated RNA interference system. *Journal of Cell Science*. 113:3321-3328.
- Bateman, A., E. Birney, R. Durbin, S.R. Eddy, K.L. Howe, and E.L.L. Sonnhammer. 2000. The Pfam protein families database. *Nucleic Acids Research*. 28:263-266.
- Bayliss, R., A.H. Corbett, and M. Stewart. 2000a. The molecular mechanism of transport of macromolecules through nuclear pore complexes. *Traffic*. 1:448-456.
- Bayliss, R., S.W. Leung, R.P. Baker, B.B. Quimby, A.H. Corbett, and M. Stewart. 2002. Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. *Embo Journal*. 21:2843-2853.
- Bayliss, R., T. Littlewood, and M. Stewart. 2000b. Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking. *Cell*. 102:99-108.

- Beck, M., F. Forster, M. Ecke, J.M. Plitzko, F. Melchior, G. Gerisch, W. Baumeister, and O. Medalia. 2004. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. *Science*. 306:1387-1390.
- Beck, M., V. Lucic, F. Forster, W. Baumeister, and O. Medalia. 2007. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. *Nature*. 449:611-615.
- Belgareh, N., G. Rabut, S.W. Bai, M. van Overbeek, J. Beaudouin, N. Daigle, O.V. Zatsepina, F. Pasteau, V. Labas, M. Fromont-Racine, J. Ellenberg, and V. Doye. 2001. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. *Journal Of Cell Biology*. 154:1147-1160.
- Berke, I.C., T. Boehmer, G. Blobel, and T.U. Schwartz. 2004. Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex. *Journal of Cell Biology*. 167:591-597.
- Berriman, M., E. Ghedin, C. Hertz-Fowler, G. Blandin, H. Renauld, D.C. Bartholomeu, N.J. Lennard, E. Caler, N.E. Hamlin, B. Haas, W. Bohme, L. Hannick, M.A. Aslett, J. Shallom, L. Marcello, L.H. Hou, B. Wickstead, U.C.M. Alsmark, C. Arrowsmith, R.J. Atkin, A.J. Barron, F. Bringaud, K. Brooks, M. Carrington, I. Cherevach, T.J. Chillingworth, C. Churcher, L.N. Clark, C.H. Corton, A. Cronin, R.M. Davies, J. Doggett, A. Djikeng, T. Feldblyum, M.C. Field, A. Fraser, I. Goodhead, Z. Hance, D. Harper, B.R. Harris, H. Hauser, J. Hostetter, A. Ivens, K. Jagels, D. Johnson, J. Johnson, K. Jones, A.X. Kerhornou, H. Koo, N. Larke, S. Landfear, C. Larkin, V. Leech, A. Line, A. Lord, A. MacLeod, P.J. Mooney, S. Moule, D.M.A. Martin, G.W. Morgan, K. Mungall, H. Norbertczak, D. Ormond, G. Pai, C.S. Peacock, J. Peterson, M.A. Quail, E. Rabbinowitsch, M.A. Rajandream, C. Reitter, S.L. Salzberg, M. Sanders, S. Schobel, S. Sharp, M. Simmonds, A.J. Simpson, L. Talton, C.M.R. Turner, A. Tait, A.R. Tivey, S. Van Aken, D. Walker, D. Wanless, S.L. Wang, B. White, O. White, S. Whitehead, J. Woodward, J. Wortman, M.D. Adams, T.M. Embley, K. Gull, E. Ullu, J.D. Barry, A.H. Fairlamb, F. Opperdoes, B.G. Barret, J.E. Donelson, N. Hall, C.M. Fraser, et al. 2005. The genome of the African trypanosome Trypanosoma brucei. Science. 309:416-422.
- Beverley, S.M. 2003. Protozomics: Trypanosomatid parasite genetics comes of age. *Nature Reviews Genetics*. 4:11-19.
- Bharathi, A., A. Ghosh, W.A. Whalen, J.H. Yoon, R. Pu, M. Dasso, and R. Dhar. 1997. The human RAE1 gene is a functional homologue of Schizosaccharomyces pombe rae1 gene involved in nuclear export of Poly(A)(+) RNA. *Gene*. 198:251-258.

- Blower, M.D., M. Nachury, R. Heald, and K. Weis. 2005. A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. *Cell*. 121:223-234.
- Boer, J., J. Bonten-Surtel, and G. Grosveld. 1998. Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. *Molecular And Cellular Biology*. 18:1236-1247.
- Borst, P. 2002. Antigenic variation and allelic exclusion. Cell. 109:5-8.
- Boutros, M., A.A. Kiger, S. Armknecht, K. Kerr, M. Hild, B. Koch, S.A. Haas, R. Paro, and N. Perrimon. 2004. Genome-wide RNAi analysis of growth and viability in Drosophila cells. *Science*. 303:832-835.
- Broadhead, R., H.R. Dawe, H. Farr, S. Griffiths, S.R. Hart, N. Portman, M.K. Shaw, M.L. Ginger, S.J. Gaskell, P.G. McKean, and K. Gull. 2006. Flagellar motility is required for the viability of the bloodstream trypanosome. *Nature*. 440:224-227.
- Bullock, T.L., W.D. Clarkson, H.M. Kent, and M. Stewart. 1996. The 1.6 angstrom resolution crystal structure of nuclear transport factor 2 (NTF2). *Journal Of Molecular Biology*. 260:422-431.
- Callan, H.G., and S.G. Tomlin. 1950. Experimental Studies on Amphibian Oocyte Nuclei.1. Investigation of the Structure of the Nuclear Membrane by Means of the Electron Microscope. *Proceedings of the Royal Society of London Series B-Biological Sciences*. 137:367.
- Campbell, D.A., S. Thomas, and N.R. Sturm. 2003. Transcription in kinetoplastid protozoa: why be normal? *Microbes And Infection*. 5:1231-1240.
- Campbell, M.S., G.K.T. Chan, and T.J. Yen. 2001. Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. *Journal Of Cell Science*. 114:953-963.
- Casolari, J.M., C.R. Brown, S. Komili, J. West, H. Hieronymus, and P.A. Silver. 2004. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. *Cell*. 117:427-439.
- Cavalier-Smith, T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. *International Journal Of Systematic And Evolutionary Microbiology*. 52:297-354.
- Chalfie, M., Y. Tu, G. Euskirchen, W.W. Ward, and D.C. Prasher. 1994. Green Fluorescent Protein As A Marker For Gene-Expression. *Science*. 263:802-805.

- Chi, J.T., H.Y. Chang, N.N. Wang, D.S. Chang, N. Dunphy, and P.O. Brown. 2003. Genomewide view of gene silencing by small interfering RNAs. Proceedings of the National Academy of Sciences of the United States of America. 100:6343-6346.
- Clayton, C.E. 2002. Life without transcriptional control? From fly to man and back again. *Embo Journal*. 21:1881-1888.
- Cohen, M., K.K. Lee, K.L. Wilson, and Y. Gruenbaum. 2001. Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. *Trends In Biochemical Sciences*. 26:41-47.
- Colasante, C., M. Ellis, T. Ruppert, and F. Voncken. 2006. Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei. *Proteomics*. 6:3275-3293.
- Collins, S.R., K.M. Miller, N.L. Maas, A. Roguev, J. Fillingham, C.S. Chu, M. Schuldiner, M. Gebbia, J. Recht, M. Shales, H.M. Ding, H. Xu, J.H. Han, K. Ingvarsdottir, B. Cheng, B. Andrews, C. Boone, S.L. Berger, P. Hieter, Z.G. Zhang, G.W. Brown, C.J. Ingles, A. Emili, C.D. Allis, D.P. Toczyski, J.S. Weissman, J.F. Greenblatt, and N.J. Krogan. 2007. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. *Nature*. 446:806-810.
- Cox, F.E.G. 2002. History of human parasitology. *Clinical Microbiology Reviews*. 15:595-+.
- Craig, R., and R.C. Beavis. 2004. TANDEM: matching proteins with tandem mass spectra. *Bioinformatics*. 20:1466-1467.
- Cristea, I.M., R. Williams, B.T. Chait, and M.P. Rout. 2005. Fluorescent proteins as proteomic probes. *Molecular & Cellular Proteomics*. 4:1933-1941.
- Cronshaw, J.A., A.N. Krutchinsky, W.Z. Zhang, B.T. Chait, and M.J. Matunis. 2002. Proteomic analysis of the mammalian nuclear pore complex. *Journal of Cell Biology*. 158:915-927.
- Cronshaw, J.M., and M.J. Matunis. 2003. The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome. *Proceedings Of The National Academy Of Sciences Of The United States Of America*. 100:5823-5827.
- D'Angelo, M.A., D.J. Anderson, E. Richard, and M.W. Hetzer. 2006. Nuclear pores form de novo from both sides of the nuclear envelope. *Science*. 312:440-443.
- Das, A., and V. Bellofatto. 2003. RNA polymerase II-dependent transcription in trypanosomes is associated with a SNAP complex-like transcription factor.

Proceedings of the National Academy of Sciences of the United States of America. 100:80-85.

- Das, A., Q. Zhang, J.B. Palenchar, B. Chatterjee, G.A.M. Cross, and V. Bellofatto. 2005. Trypanosomal TBP functions with the multisubunit transcription factor tSNAP to direct spliced-leader RNA gene expression. *Molecular And Cellular Biology*. 25:7314-7322.
- De Souza, C.P.C., A.H. Osmani, S.B. Hashmi, and S. Osmani. 2004. Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. *Current Biology*. 14:1973-1984.
- Denning, D.P., S.S. Patel, V. Uversky, A.L. Fink, and M. Rexach. 2003. Disorder in the nuclear pore complex: The FG repeat regions of nucleoporins are natively unfolded. *Proceedings Of The National Academy Of Sciences Of The United States Of America*. 100:2450-2455.
- Denning, D.P., and M.F. Rexach. 2007. Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins. *Molecular & Cellular Proteomics*. 6:272-282.

Despommier, D.D., et.al. 1995. Parasitic diseases, New York. 196-203.

- Devos, D., S. Dokudovskaya, F. Alber, R. Williams, B.T. Chait, A. Sali, and M.P. Rout. 2004. Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture. *PLoS Biology*. 2:e380.
- Devos, D., S. Dokudovskaya, R. Williams, F. Alber, N. Eswar, B.T. Chait, M.P. Rout, and A. Sali. 2006. Simple fold composition and modular architecture of the nuclear pore complex. *Proceedings Of The National Academy Of Sciences Of The United States Of America*. 103:2172-2177.
- Dilworth, D.J., A.J. Tackett, R.S. Rogers, E.C. Yi, R.H. Christmas, J.J. Smith, A.F. Siegel, B.T. Chait, R.W. Wozniak, and J.D. Aitchison. 2005. The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. *Journal Of Cell Biology*. 171:955-965.
- Ding, D.Q., Y. Tomita, A. Yamamoto, Y. Chikashige, T. Haraguchi, and Y. Hiraoka. 2000. Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library. *Genes To Cells*. 5:169-190.
- Dingwall, C., and R.A. Laskey. 1991. Nuclear Targeting Sequences A Consensus. *Trends In Biochemical Sciences*. 16:478-481.

- Doolittle, W.F. 1980. Revolutionary Concepts In Evolutionary Cell Biology. *Trends In Biochemical Sciences*. 5:146-149.
- Dreger, M. 2003. Subcellular proteomics. Mass Spectrometry Reviews. 22:27-56.
- Dreger, M., L. Bengtsson, T. Schoneberg, H. Otto, and F. Hucho. 2001. Nuclear envelope proteomics: Novel integral membrane proteins of the inner nuclear membrane. *Proceedings of the National Academy of Sciences of the United States of America*. 98:11943-11948.
- Eddy, S.R. 1998. Profile hidden Markov models. *Bioinformatics*. 14:755-763.
- El-Sayed, N.M., P.J. Myler, G. Blandin, M. Berriman, J. Crabtree, G. Aggarwal,
 E. Caler, H. Renauld, E.A. Worthey, C. Hertz-Fowler, E. Ghedin, C.
 Peacock, D.C. Bartholomeu, B.J. Haas, A.N. Tran, J.R. Wortman, U.C.M.
 Alsmark, S. Angiuoli, A. Anupama, J. Badger, F. Bringaud, E. Cadag, J.M.
 Carlton, G.C. Cerqueira, T. Creasy, A.L. Delcher, A. Djikeng, T.M.
 Embley, C. Hauser, A.C. Ivens, S.K. Kummerfeld, J.B. Pereira-Leal, D.
 Nilsson, J. Peterson, S.L. Salzberg, J. Shallom, J.C. Silva, J. Sundaram,
 S. Westenberger, O. White, S.E. Metville, J.E. Donelson, B. Andersson,
 K.D. Stuart, and N. Hall. 2005. Comparative genomics of trypanosomatid parasitic protozoa. *Science*. 309:404-409.
- Embley, T.M., and W. Martin. 2006. Eukaryotic evolution, changes and challenges. *Nature*. 440:623-630.
- Enninga, J., A. Levay, and B.M.A. Fontoura. 2003. Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. *Molecular And Cellular Biology*. 23:7271-7284.
- Eriksson, J., and D. Fenyo. 2007. Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs. *Nature Biotechnology*. 25:651-655.
- Erkmann, J.A., and U. Kutay. 2004. Nuclear export of mRNA: from the site of transcription to the cytoplasm. *Experimental Cell Research*. 296:12-20.
- Ersfeld, K., S.E. Melville, and K. Gull. 1999. Nuclear and genome organization of Trypanosoma brucei. *Parasitology Today*. 15:58-63.
- Fahrenkrog, B., and U. Aebi. 2003. The nuclear pore complex: Nucleocytoplasmic transport and beyond. *Nature Reviews Molecular Cell Biology*. 4:757-766.
- Fahrenkrog, B., J. Koser, and U. Aebi. 2004. The nuclear pore complex: a jack of all trades? *Trends in Biochemical Sciences*. 29:175-182.

- Fahrenkrog, B., B. Maco, A.M. Fager, J. Koser, U. Sauder, K.S. Ullman, and U. Aebi. 2002. Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex. *Journal Of Structural Biology*. 140:254-267.
- Feldherr, C., D. Akin, T. Littlewood, and M. Stewart. 2002. The molecular mechanism of translocation through the nuclear pore complex is highly conserved. *Journal Of Cell Science*. 115:2997-3005.
- Feldherr, C.M. 1962. Nuclear Annuli As Pathways For Nucleocytoplasmic Exchanges. *Journal Of Cell Biology*. 14:65-&.
- Fenn, J.B., M. Mann, C.K. Meng, S.F. Wong, and C.M. Whitehouse. 1989. Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. *Science*. 246:64-71.
- Feuerbach, F., V. Galy, E. Trelles-Sticken, M. Fromont-Racine, A. Jacquier, E. Gilson, J.C. Olivo-Marin, H. Scherthan, and U. Nehrbass. 2002. Nuclear architecture and spatial positioning help establish transcriptional states of telomeres in yeast. *Nature Cell Biology*. 4:214-221.
- Fevre, E.M., K. Picozzi, J. Jannin, S.C. Welburn, and I. Maudlin. 2006. Human African trypanosomiasis: Epidemiology and control. *In* Advances In Parasitology, Vol 61. Vol. 61. 167-+.
- Field, H.I., D. Fenyo, and R.C. Beavis. 2002. RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database. *Proteomics*. 2:36-47.
- Fire, A., S.Q. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, and C.C. Mello. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. *Nature*. 391:806-811.
- Fontoura, B.M.A., G. Blobel, and M.J. Matunis. 1999. A conserved biogenesis pathway for nucleoporins: Proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. *Journal of Cell Biology*. 144:1097-1112.
- Foster, H.A., and J.M. Bridger. 2005. The genome and the nucleus: a marriage made by evolution Genome organisation and nuclear architecture. *Chromosoma*. 114:212-229.
- Galy, V., O. Gadal, M. Fromont-Racine, A. Romano, A. Jacquier, and U. Nehrbass. 2004. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. *Cell*. 116:63-73.

- Galy, V., I.W. Mattaj, and P. Askjaer. 2003. Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo. *Molecular Biology of the Cell*. 14:5104-5115.
- Galy, V., J.C. Olivo-Marin, H. Scherthan, V. Doye, N. Rascalou, and U. Nehrbass. 2000. Nuclear pore complexes in the organization of silent telomeric chromatin. *Nature*. 403:108-112.
- Garcia, A., D. Courtin, P. Solan, M. Koffi, and V. Jamonnea. 2006. Human African trypanosomiasis: connecting parasite and host genetics. *Trends In Parasitology*. 22:405-409.
- Gavin, A.C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.M. Rick, A.M. Michon, C.M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M.A. Heurtier, R.R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. *Nature*. 415:141-147.
- Gerace, L., and B. Burke. 1988. Functional-Organization Of The Nuclear-Envelope. *Annual Review Of Cell Biology*. 4:335-374.
- Gerhart, J., M. Kirschner. 1997. Cells, embryos, and evolution: toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability. Blackwell Science, New York. 642 pp.
- Giaever, G., A.M. Chu, L. Ni, C. Connelly, L. Riles, S. Veronneau, S. Dow, A. Lucau-Danila, K. Anderson, B. Andre, A.P. Arkin, A. Astromoff, M. El Bakkoury, R. Bangham, R. Benito, S. Brachat, S. Campanaro, M. Curtiss, K. Davis, A. Deutschbauer, K.D. Entian, P. Flaherty, F. Foury, D.J. Garfinkel, M. Gerstein, D. Gotte, U. Guldener, J.H. Hegemann, S. Hempel, Z. Herman, D.F. Jaramillo, D.E. Kelly, S.L. Kelly, P. Kotter, D. LaBonte, D.C. Lamb, N. Lan, H. Liang, H. Liao, L. Liu, C.Y. Luo, M. Lussier, R. Mao, P. Menard, S.L. Ooi, J.L. Revuelta, C.J. Roberts, M. Rose, P. Ross-Macdonald, B. Scherens, G. Schimmack, B. Shafer, D.D. Shoemaker, S. Sookhai-Mahadeo, R.K. Storms, J.N. Strathern, G. Valle, M. Voet, G. Volckaert, C.Y. Wang, T.R. Ward, J. Wilhelmy, E.A. Winzeler, Y.H. Yang, G. Yen, E. Youngman, K.X. Yu, H. Bussey, J.D. Boeke, M. Snyder, P. Philippsen, R.W. Davis, and M. Johnston. 2002. Functional profiling of the Saccharomyces cerevisiae genome. *Nature*. 418:387-391.
- Gilinger, G., and V. Bellofatto. 2001. Trypanosome spliced leader RNA genes contain the first identified RNA polymerase II gene promoter in these organisms. *Nucleic Acids Research*. 29:1556-1564.

- Glavy, J.S., A.N. Krutchinsky, I.M. Cristea, I.C. Berke, T. Boehmer, G. Blobel, and B.T. Chait. 2007. Cell-cycle-dependent phosphorylation of the nuclear pore Nup107-160 subcomplex. *Proceedings Of The National Academy Of Sciences Of The United States Of America*. 104:3811-3816.
- Goffeau, A., B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Galibert, J.D. Hoheisel, C. Jacq, M. Johnston, E.J. Louis, H.W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, and S.G. Oliver. 1996. Life with 6000 genes. *Science*. 274:546.
- Gorbunoff, M.J. 1985. Protein Chromatography On Hydroxyapatite Columns. *Methods In Enzymology*. 117:370-380.
- Gorlich, D., and U. Kutay. 1999. Transport between the cell nucleus and the cytoplasm. *Annual Review Of Cell And Developmental Biology*. 15:607-660.
- Grant, R.P., E. Hurt, D. Neuhaus, and M. Stewart. 2002. Structure of the Cterminal FG-nucleoporin binding domain of Tap/NXF1. *Nature Structural Biology*. 9:247-251.
- Grant, R.P., D. Neuhaus, and M. Stewart. 2003. Structural basis for the interaction between the Tap/NXF1 UBA domain and FG nucleoporins at 1 angstrom resolution. *Journal Of Molecular Biology*. 326:849-858.
- Hanash, S. 2003. Disease proteomics. Nature. 422:226-232.
- Hannon, G.J. 2002. RNA interference. Nature. 418:244-251.
- Harel, A., A.V. Orjalo, T. Vincent, A. Lachish-Zalait, S. Vasu, S. Shah, E. Zimmerman, M. Elbaum, and D.J. Forbes. 2003. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. *Molecular Cell*. 11:853-864.
- Hawkins, J., L. Davis, and M. Boden. 2007. Predicting nuclear localization. Journal Of Proteome Research. 6:1402-1409.
- He, C.Y., H.H. Ho, H. Malsam, C. Chalouni, C.M. West, E. Ullu, D. Toomre, and G. Warren. 2004. Golgi duplication in Trypanosoma brucei. *Journal Of Cell Biology*. 165:313-321.
- Hedges, S.B. 2002. The origin and evolution of model organisms. *Nature Reviews Genetics*. 3:838-849.
- Hediger, F., K. Dubrana, and S.M. Gasser. 2002a. Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the Tel1 pathway of telomere length control. *Journal Of Structural Biology*. 140:79-91.

- Hediger, F., F.R. Neumann, G. Van Houwe, K. Dubrana, and S.M. Gasser.
 2002b. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. *Current Biology*. 12:2076-2089.
- Hodel, A.E., M.R. Hodel, E.R. Griffis, K.A. Hennig, G.A. Ratner, S.L. Xu, and M.A. Powers. 2002. The three-dimensional structure of the autoproteolytic, nuclear pore-targeting domain of the human nucleoporin Nup98. *Molecular Cell*. 10:347-358.
- Iouk, T., O. Kerscher, R.J. Scott, M.A. Basrai, and R.W. Wozniak. 2002. The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. *Journal Of Cell Biology*. 159:807-819.
- Ishii, K., G. Arib, C. Lin, G. Van Houwe, and U.K. Laemmli. 2002. Chromatin boundaries in budding yeast: The nuclear pore connection. *Cell*. 109:551-562.
- Jeffery, D.A., and M. Bogyo. 2003. Chemical proteomics and its application to drug discovery. *Current Opinion in Biotechnology*. 14:87-95.
- Jeganathan, K.B., L. Malureanu, and J.M. van Deursen. 2005. The Rae1-Nup98 complex prevents aneuploidy by inhibiting securin degradation. *Nature*. 438:1036-1039.
- Jeudy, S., and T.U. Schwartz. 2007. Crystal structure of nucleoporin Nic96 reveals a novel, intricate helical domain architecture. *J. Biol. Chem.*:M705479200.
- Jones, A., A. Faldas, A. Foucher, E. Hunt, A. Tait, J.M. Wastling, and C.M. Turner. 2006. Visualisation and analysis of proteomic data from the procyclic form of Trypanosoma brucei. *Proteomics*. 6:259-267.
- Joseph, J., S.T. Liu, S.A. Jablonski, T.J. Yen, and M. Dasso. 2004. The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. *Current Biology*. 14:611-617.
- Joseph, J., S.H. Tan, T.S. Karpova, J.G. McNally, and M. Dasso. 2002. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. *Journal Of Cell Biology*. 156:595-602.
- Kall, L., A. Krogh, and E.L.L. Sonnhammer. 2004. A combined transmembrane topology and signal peptide prediction method. *Journal Of Molecular Biology*. 338:1027-1036.
- Kamath, R.S., A.G. Fraser, Y. Dong, G. Poulin, R. Durbin, M. Gotta, A. Kanapin, N. Le Bot, S. Moreno, M. Sohrmann, D.P. Welchman, P. Zipperlen, and J. Ahringer. 2003. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. *Nature*. 421:231-237.

- Karas, M., and F. Hillenkamp. 1988. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons. *Analytical Chemistry*. 60:2299-2301.
- Kastenmayer, J.P., M.S. Lee, A.L. Hong, F.A. Spencer, and M.A. Basrai. 2005. The C-terminal half of Saccharomyces cerevisiae Mad1p mediates spindle checkpoint function, chromosome transmission fidelity and CEN association. *Genetics*. 170:509-517.
- Keeling, P.J., G. Burger, D.G. Durnford, B.F. Lang, R.W. Lee, R.E. Pearlman, A.J. Roger, and M.W. Gray. 2005. The tree of eukaryotes. *Trends In Ecology & Evolution*. 20:670-676.
- Keminer, O., and R. Peters. 1999. Permeability of single nuclear pores. *Biophysical Journal*. 77:217-228.
- Kerscher, O., P. Hieter, M. Winey, and M.A. Basrai. 2001. Novel role for a Saccharomyces cerevisiae nucleoporin, nup170p, in chromosome segregation. *Genetics*. 157:1543-1553.
- Krull, S., J. Thyberg, B. Bjorkroth, H.R. Rackwitz, and V.C. Cordes. 2004. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. *Molecular Biology of the Cell*. 15:4261-4277.
- Krutchinsky, A.N., M. Kalkum, and B.T. Chait. 2001. Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. *Analytical Chemistry*. 73:5066-5077.
- Krutchinsky, A.N., W.Z. Zhang, and B.T. Chait. 2000. Rapidly switchable matrixassisted laser desorption/ionization and electrospray quadrupole-time-offlight mass spectrometry for protein identification. *Journal of the American Society for Mass Spectrometry*. 11:493-504.
- LaCount, D.J., S. Bruse, K.L. Hill, and J.E. Donelson. 2000. Double-stranded RNA interference in Trypanosoma brucei using head-to-head promoters. *Molecular And Biochemical Parasitology*. 111:67-76.
- Lange, A., R.E. Mills, C.J. Lange, M. Stewart, S.E. Devine, and A.H. Corbett. 2007. Classical nuclear localization signals: Definition, function, and interaction with importin alpha. *Journal Of Biological Chemistry*. 282:5101-5105.
- Latzer, J., G.A. Papoian, M.C. Prentiss, E.A. Komives, and P.G. Wolynes. 2007. Induced fit, folding, and recognition of the NF-kappa B-nuclear localization signals by I kappa B alpha and I kappa B beta. *Journal Of Molecular Biology*. 367:262-274.

- Lee, S.J., Y. Matsuura, S.M. Liu, and M. Stewart. 2005. Structural basis for nuclear import complex dissociation by RanGTP. *Nature*. 435:693-696.
- Liang, X.H., A. Haritan, S. Uliel, and S. Michaeli. 2003. trans and cis splicing in trypanosomatids: Mechanism, factors, and regulation. *Eukaryotic Cell*. 2:830-840.
- Lim, R.Y.H., U. Aebi, and D. Stoffler. 2006. From the trap to the basket: getting to the bottom of the nuclear pore complex. *Chromosoma*. 115:15-26.
- Lim, R.Y.H., and B. Fahrenkrog. 2006. The nuclear pore complex up close. *Current Opinion In Cell Biology*. 18:342-347.
- Lindsay, M.R., R.I. Webb, M. Strous, M.S. Jetten, M.K. Butler, R.J. Forde, and J.A. Fuerst. 2001. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. *Archives Of Microbiology*. 175:413-429.
- Liu, S.M., and M. Stewart. 2005. Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-beta homologue, Kap95p. *Journal Of Molecular Biology*. 349:515-525.
- Loeillet, S., B. Palancade, M. Cartron, A. Thierry, G.F. Richard, B. Dujon, V. Doye, and A. Nicolas. 2005. Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast. *Dna Repair*. 4:459-468.
- Loiodice, I., A. Alves, G. Rabut, M. van Overbeek, J. Ellenberg, J.B. Sibarita, and V. Doye. 2004. The entire Nup107-160 complex, including three new members, is targeted as one entity to kinetochores in Mitosis. *Molecular Biology Of The Cell*. 15:3333-3344.
- Lupas, A., M. Vandyke, and J. Stock. 1991. Predicting Coiled Coils From Protein Sequences. *Science*. 252:1162-1164.
- Madrid, A.S., and K. Weis. 2006. Nuclear transport is becoming crystal clear. *Chromosoma*. 115:98-109.
- Maeshima, K., K. Yahata, Y. Sasaki, R. Nakatomi, T. Tachibana, T. Hashikawa, F. Imamoto, and N. Imamoto. 2006. Cell-cycle-dependent dynamics of nuclear pores: pore-free islands and lamins. *Journal Of Cell Science*. 119:4442-4451.
- Makhnevych, T., C.P. Lusk, A.M. Anderson, J.D. Aitchison, and R.W. Wozniak. 2003. Cell cycle regulated transport controlled by alterations in the nuclear pore complex. *Cell*. 115:813-823.

- Mans, B.J., V. Anantharaman, L. Aravind, and E.V. Koonin. 2004. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. *Cell Cycle*. 3:1612-1637.
- Marelli, M., C.P. Lusk, H. Chan, J.D. Aitchison, and R.W. Wozniak. 2001. A link between the synthesis of nucleoporins and the biogenesis of the nuclear envelope. *Journal Of Cell Biology*. 153:709-723.
- Martin, W. 1999. A briefly argued case that mitochondria and plastids are descendants of endosymbionts, but that the nuclear compartment is not. *Proceedings Of The Royal Society Of London Series B-Biological Sciences*. 266:1387-1395.
- Martin, W. 2005. Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. *Current Opinion In Microbiology*. 8:630-637.
- Matsuura, Y., A. Lange, M.T. Harreman, A.H. Corbett, and M. Stewart. 2003. Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. *Embo Journal*. 22:5358-5369.
- Matsuura, Y., and M. Stewart. 2004a. Structural basis for the assembly of a nuclear export complex. *Nature*. 432:872-877.
- Matsuura, Y., and M. Stewart. 2004b. Structural basis for the nuclear export of Kap60p by Cse1p: RanGTP. *Molecular Biology of the Cell*. 15:205A-205A.
- Matsuura, Y., and M. Stewart. 2005. Structural basis for the nuclear export of Kap60p by Cse1p and RanGTP. *Biophysical Journal*. 88:185A-185A.
- Maul, G.G. 1971. Octagonality Of Nuclear Pore Complex. *Journal Of Cell Biology*. 51:558.
- McGuffin, L.J., K. Bryson, and D.T. Jones. 2000. The PSIPRED protein structure prediction server. *Bioinformatics*. 16:404-405.
- Melcak, I., A. Hoelz, and G. Blobel. 2007. Structure of Nup58/45 suggests flexible nuclear pore diameter by intermolecular sliding. *Science*. 315:1729-1732.
- Mendjan, S., M. Taipale, J. Kind, H. Holz, P. Gebhardt, M. Schelder, M. Vermeulen, A. Buscaino, K. Duncan, J. Mueller, M. Wilm, H.G. Stunnenberg, H. Saumweber, and A. Akhtar. 2006. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. *Molecular Cell*. 21:811-823.
- Menon, B.B., N.J. Sarma, S. Pasula, S.J. Deminoff, K.A. Willis, K.E. Barbara, B. Andrews, and G.M. Santangelo. 2005. Reverse recruitment: The Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional

activation. *Proceedings Of The National Academy Of Sciences Of The United States Of America*. 102:5749-5754.

- Morrison, J., J.C. Yang, M. Stewart, and D. Neuhaus. 2003. Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats. *Journal Of Molecular Biology*. 333:587-603.
- Mosammaparast, N., and L.F. Pemberton. 2004. Karyopherins: from nucleartransport mediators to nuclear-function regulators. *Trends In Cell Biology*. 14:547-556.
- Moy, T.I., and P.A. Silver. 2002. Requirements for the nuclear export of the small ribosomal subunit. *Journal Of Cell Science*. 115:2985-2995.
- Murphy, R., J.L. Watkins, and S.R. Wente. 1996. GLE2, a Saccharomyces cerevisiae homologue of the Schizosaccharomyces pombe export factor RAE1, is required for nuclear pore complex structure and function. *Molecular Biology Of The Cell*. 7:1921-1937.
- Napetschnig, J., G. Blobel, and A. Hoelz. 2007. Crystal structure of the Nterminal domain of the human protooncogene Nup214/CAN. *Proceedings Of The National Academy Of Sciences Of The United States Of America*. 104:1783-1788.
- Navarro, M., G.A.M. Cross, and E. Wirtz. 1999. Trypanosoma brucei variant surface glycoprotein regulation involves coupled activation/inactivation and chromatin remodeling of expression sites. *Embo Journal*. 18:2265-2272.
- Neer, E.J., C.J. Schmidt, R. Nambudripad, and T.F. Smith. 1994. The Ancient Regulatory-Protein Family Of Wd-Repeat Proteins (Vol 371, Pg 297, 1994). *Nature*. 371:812-812.
- Newport, J.W., and D.J. Forbes. 1987. The Nucleus Structure, Function, And Dynamics. *Annual Review Of Biochemistry*. 56:535-565.
- Ngo, H., C. Tschudi, K. Gull, and E. Ullu. 1998. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. *Proceedings of the National Academy of Sciences of the United States of America*. 95:14687-14692.
- Niepel, M., C. Strambio-de-Castillia, J. Fasolo, B.T. Chait, and M.P. Rout. 2005. The nuclear pore complex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. *Journal Of Cell Biology*. 170:225-235.
- Oberholzer, M., S. Morand, S. Kunz, and T. Seebeck. 2006. A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. *Molecular And Biochemical Parasitology*. 145:117-120.

- Ogbadoyi, E., K. Ersfeld, D. Robinson, T. Sherwin, and K. Gull. 2000. Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. *Chromosoma*. 108:501-513.
- Orjalo, A.V., A. Arnaoutov, Z.X. Shen, Y. Boyarchuk, S.G. Zeitlin, B. Fontoura, S. Briggs, M. Dasso, and D.J. Forbes. 2006. The Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly. *Molecular Biology Of The Cell*. 17:3806-3818.
- Ouali, M., and R.D. King. 2000. Cascaded multiple classifiers for secondary structure prediction. *Protein Science*. 9:1162-1176.
- Paba, J., C.A.O. Ricart, W. Fontes, J.M. Santana, A.R.L. Teixeira, J. Marchese, B. Williamson, T. Hunt, B.L. Karger, and M.V. Sousa. 2004. Proteomic analysis of Trypanosoma cruzi developmental stages using isotope-coded affinity tag reagents. *Journal Of Proteome Research*. 3:517-524.
- Patterson, S.D., and R.H. Aebersold. 2003. Proteomics: the first decade and beyond. *Nature Genetics*. 33:311-323.
- Paulillo, S.M., E.M. Phillips, J. Koser, U. Sauder, K.S. Ullman, M.A. Powers, and B. Fahrenkrog. 2005. Nucleoporin domain topology is linked to the transport status of the nuclear pore complex. *Journal Of Molecular Biology*. 351:784-798.
- Pays, E., L. Vanhamme, and D. Perez-Morga. 2004. Antigenic variation in Trypanosoma brucei: facts, challenges and mysteries. *Current Opinion In Microbiology*. 7:369-374.
- Pearson, W.R., and D.J. Lipman. 1988. Improved Tools For Biological Sequence Comparison. *Proceedings Of The National Academy Of Sciences Of The United States Of America*. 85:2444-2448.
- Prunuske, A.J., and K.S. Ullman. 2006. The nuclear envelope: form and reformation. *Current Opinion In Cell Biology*. 18:108-116.
- Quimby, B.B., A. Arnaoutov, and M. Dasso. 2005. Ran GTPase regulates Mad2 localization to the nuclear pore complex. *Eukaryotic Cell*. 4:274-280.
- Quimby, B.B., and M. Dasso. 2003. The small GTPase Ran: interpreting the signs. *Current Opinion in Cell Biology*. 15:338-344.
- Rabut, G., V. Doye, and J. Ellenberg. 2004. Mapping the dynamic organization of the nuclear pore complex inside single living cells. *Nature Cell Biology*. 6:1114-U27.

- Rayala, H.J., F. Kendirgi, D.M. Barry, P.W. Majerus, and S.R. Wente. 2004. The mRNA export factor human Gle1 interacts with the nuclear pore complex protein Nup155. *Molecular & Cellular Proteomics*. 3:145-155.
- Redmond, S., J. Vadivelu, and M.C. Field. 2003. RNAit: an automated webbased tool for the selection of RNAi targets in Trypanosoma brucei. *Molecular and Biochemical Parasitology*. 128:115-118.
- Romero, P., Z. Obradovic, X.H. Li, E.C. Garner, C.J. Brown, and A.K. Dunker. 2001. Sequence complexity of disordered protein. *Proteins-Structure Function And Genetics*. 42:38-48.
- Rosenblum, J.S., and G. Blobel. 1999. Autoproteolysis in nucleoporin biogenesis. *Proceedings of the National Academy of Sciences of the United States of America*. 96:11370-11375.
- Rout, M.P., and J.D. Aitchison. 2000. Pore relations: nuclear pore complexes and nucleocytoplasmic exchange. *In* Molecular Trafficking. Vol. 36. 75-88.
- Rout, M.P., J.D. Aitchison, A. Suprapto, K. Hjertaas, Y.M. Zhao, and B.T. Chait. 2000. The yeast nuclear pore complex: Composition, architecture, and transport mechanism. *Journal of Cell Biology*. 148:635-651.
- Rout, M.P., and M.C. Field. 2001. Isolation and characterization of subnuclear compartments from Trypanosoma brucei - Identification of a major repetitive nuclear lamina component. *Journal of Biological Chemistry*. 276:38261-38271.
- Ruan, J.P., G.K. Arhin, E. Ullu, and C. Tschudi. 2004. Functional characterization of a Trypanosoma brucei TATA-binding protein-related factor points to a universal regulator of transcription in trypanosomes. *Molecular and Cellular Biology*. 24:9610-9618.
- Salina, D., P. Enarson, J.B. Rattner, and B. Burke. 2003. Nup358 integrates nuclear envelope breakdown with kinetochore assembly. *Journal Of Cell Biology*. 162:991-1001.
- Saric, M., X.D. Zhao, C. Korner, C. Nowak, J. Kuhlmann, and I.R. Vetter. 2007. Structural and biochemical characterization of the Importin-beta center dot Ran center dot GTP center dot RanBD1 complex. *Febs Letters*. 581:1369-1376.
- Schimanski, B., T.N. Nguyen, and A. Gunzl. 2005. Characterization of a multisubunit transcription factor complex essential for spliced-leader RNA gene transcription in Trypanosoma brucei. *Molecular And Cellular Biology*. 25:7303-7313.

- Schirmer, E.C., L. Florens, T.L. Guan, J.R. Yates, and L. Gerace. 2003. Nuclear membrane proteins with potential disease links found by subtractive proteomics. *Science*. 301:1380-1382.
- Schmid, M., G. Arib, C. Laemmli, J. Nishikawa, T. Durussel, and U.K. Laemmli. 2006. Nup-PI: The nucleopore-promoter interaction of genes in yeast. *Molecular Cell*. 21:379-391.
- Schmid, M., T. Durussel, and U.K. Laemmli. 2004. ChIC and ChEC: Genomic mapping of chromatin proteins. *Molecular Cell*. 16:147-157.
- Shen, S.Y., G.K. Arhin, E. Ullu, and C. Tschudi. 2001. In vivo epitope tagging of Trypanosoma brucei genes using a one step PCR-based strategy. *Molecular And Biochemical Parasitology*. 113:171-173.
- Shi, H.F., A. Djikeng, T. Mark, E. Wirtz, C. Tschudi, and E. Ullu. 2000. Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA. *Rna-a Publication of the Rna Society*. 6:1069-1076.
- Shulga, N., N. Mosammaparast, R. Wozniak, and D.S. Goldfarb. 2000. Yeast nucleoporins involved in passive nuclear envelope permeability. *Journal Of Cell Biology*. 149:1027-1038.
- Siegel, T.N., K.S.W. Tan, and G.A.M. Cross. 2005. Systematic study of sequence motifs for RNA trans splicing in Trypanosoma brucei. *Molecular And Cellular Biology*. 25:9586-9594.
- Simpson, A.G.B., J. Lukes, and A.J. Roger. 2002. The evolutionary history of kinetoplastids and their kinetoplasts. *Molecular Biology and Evolution*. 19:2071-2083.
- Simpson, A.G.B., J.R. Stevens, and J. Lukes. 2006. The evolution and diversity of kinetoplastid flagellates. *Trends In Parasitology*. 22:168-174.
- Siniossoglou, S., C. Wimmer, M. Rieger, V. Doye, H. Tekotte, C. Weise, S. Emig, A. Segref, and E.C. Hurt. 1996. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. *Cell*. 84:265-275.
- Sogin, M.L., J.H. Gunderson, H.J. Elwood, R.A. Alonso, and D.A. Peattie. 1989. Phylogenetic Meaning Of The Kingdom Concept - An Unusual Ribosomal-Rna From Giardia-Lamblia. *Science*. 243:75-77.
- Sonnhammer, E.L.L., S.R. Eddy, E. Birney, A. Bateman, and R. Durbin. 1998. Pfam: multiple sequence alignments and HMM-profiles of protein domains. *Nucleic Acids Research*. 26:320-322.

- Staub, E., P. Fiziev, A. Rosenthal, and B. Hinzmann. 2004. Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire. *Bioessays*. 26:567-581.
- Stechmann, A., and T. Cavalier-Smith. 2002. Rooting the eukaryote tree by using a derived gene fusion. *Science*. 297:89-91.
- Stewart, M. 2006. Structural basis for the nuclear protein import cycle. *Biochemical Society Transactions*. 34:701-704.
- Stewart, M. 2007a. Molecular mechanism of the nuclear protein import cycle. Nature Reviews Molecular Cell Biology. 8:195-208.
- Stewart, M. 2007b. Ratcheting mRNA out of the nucleus. *Molecular Cell*. 25:327-330.
- Strambio-de-Castillia, C., G. Blobel, and M.P. Rout. 1999. Proteins connecting the nuclear pore complex with the nuclear interior. *Journal of Cell Biology*. 144:839-855.
- Strawn, L.A., T.X. Shen, N. Shulga, D.S. Goldfarb, and S.R. Wente. 2004. Minimal nuclear pore complexes define FG repeat domains essential for transport. *Nature Cell Biology*. 6:197-206.
- Strawn, L.A., T.X. Shen, and S.R. Wente. 2001. The GLFG regions of Nup116p and Nup100p serve as binding sites for both Kap95p and Mex67p at the nuclear pore complex. *Journal Of Biological Chemistry*. 276:6445-6452.
- Subramaniam, C., P. Veazey, R. Seth, J. Hayes-Sinclair, E. Chambers, M. Carrington, K. Gull, K. Matthews, D. Horn, and M.C. Field. 2006. Chromosome-wide analysis of gene function by RNA interference in the African trypanosome. *Eukaryotic Cell*. 5:1539-1549.
- Suntharalingam, M., and S.R. Wente. 2003. Peering through the pore: Nuclear pore complex structure, assembly, and function. *Developmental Cell*. 4:775-789.
- Tackett, A.J., D.J. Dilworth, M.J. Davey, M. O'Donnell, J.D. Aitchison, M.P. Rout, and B.T. Chait. 2005. Proteomic and genomic characterization of chromatin complexes at a boundary. *Journal Of Cell Biology*. 169:35-47.
- Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T. 1988. Protein and polymer analyses up to m/z 100000 by laser ionization time-of flight mass spectrometry. *Rapid Commun.Mass Spectrom.* 2:151-153.
- Templeton, T.J., L.M. Iyer, V. Anantharaman, S. Enomoto, J.E. Abrahante, G.M. Subramanian, S.L. Hoffman, M.S. Abrahamsen, and L. Aravind. 2004.

Comparative analysis of apicomplexa and genomic diversity in eukaryotes. *Genome Research*. 14:1686-1695.

- Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research*. 25:4876-4882.
- Thomson, J.J. 1913. Bakerian Lecture: Rays of Positive Electricity. *Proceeding of the Royal Society of London. Series A.* 89:1-20.
- Tong, A.H.Y., B. Drees, G. Nardelli, G.D. Bader, B. Brannetti, L. Castagnoli, M. Evangelista, S. Ferracuti, B. Nelson, S. Paoluzi, M. Quondam, A. Zucconi, C.W.V. Hogue, S. Fields, C. Boone, and G. Cesareni. 2002. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. *Science*. 295:321-324.
- Tong, A.H.Y., G. Lesage, G.D. Bader, H.M. Ding, H. Xu, X.F. Xin, J. Young, G.F. Berriz, R.L. Brost, M. Chang, Y.Q. Chen, X. Cheng, G. Chua, H. Friesen, D.S. Goldberg, J. Haynes, C. Humphries, G. He, S. Hussein, L.Z. Ke, N. Krogan, Z.J. Li, J.N. Levinson, H. Lu, P. Menard, C. Munyana, A.B. Parsons, O. Ryan, R. Tonikian, T. Roberts, A.M. Sdicu, J. Shapiro, B. Sheikh, B. Suter, S.L. Wong, L.V. Zhang, H.W. Zhu, C.G. Burd, S. Munro, C. Sander, J. Rine, J. Greenblatt, M. Peter, A. Bretscher, G. Bell, F.P. Roth, G.W. Brown, B. Andrews, H. Bussey, and C. Boone. 2004. Global mapping of the yeast genetic interaction network. *Science*. 303:808-813.
- Tran, E.J., and S.R. Wente. 2006. Dynamic nuclear pore complexes: Life on the edge. *Cell*. 125:1041-1053.
- Vandriel, R., B. Humbel, and L. Dejong. 1991. The Nucleus A Black-Box Being Opened. *Journal Of Cellular Biochemistry*. 47:311-316.
- Vasu, S.K., and D.J. Forbes. 2001. Nuclear pores and nuclear assembly. *Current Opinion in Cell Biology*. 13:363-375.
- Vetter, I.R., C. Nowak, T. Nishimoto, J. Kuhlmann, and A. Wittinghofer. 1999. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. *Nature*. 398:39-46.
- Vinciguerra, P., N. Iglesias, J. Camblong, D. Zenklusen, and F. Stutz. 2005. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. *Embo Journal*. 24:813-823.
- Walther, T.C., A. Alves, H. Pickersgill, I. Loiodice, M. Hetzer, V. Galy, B.B. Hulsmann, T. Kocher, M. Wilm, T. Allen, L.W. Mattaj, and V. Doye. 2003. The conserved Nup107-160 complex is critical for nuclear pore complex assembly. *Cell*. 113:195-206.

- Wang, Z.F., J.C. Morris, M.E. Drew, and P.T. Englund. 2000. Inhibition of Trypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters. *Journal of Biological Chemistry*. 275:40174-40179.
- Ward, J.J., J.S. Sodhi, L.J. McGuffin, B.F. Buxton, and D.T. Jones. 2004. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. *Journal Of Molecular Biology*. 337:635-645.
- Weirich, C.S., J.P. Erzberger, J.M. Berger, and K. Weis. 2004. The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. *Molecular Cell*. 16:749-760.
- Wente, S.R. 2000. Gatekeepers of the nucleus. Science. 288:1374-1377.
- Whalen, W.A., A. Bharathi, D. Danielewicz, and R. Dhar. 1997. Advancement through mitosis requires rae1 gene function in fission yeast. *Yeast*. 13:1167-1179.
- Winey, M., D. Yarar, T.H. Giddings, and D.N. Mastronarde. 1997. Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes. *Molecular Biology Of The Cell*. 8:2119-2132.
- Yan, J.X., A.T. Devenish, R. Wait, T. Stone, S. Lewis, and S. Fowler. 2002. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. *Proteomics*. 2:1682-1698.
- Yoon, J.H., W.A. Whalen, A. Bharathi, R.L. Shen, and R. Dhar. 1997. Npp106p, a Schizosaccharomyces pombe nucleoporin similar to Saccharomyces cerevisiae Nic96p, functionally interacts with Rae1p in mRNA export. *Molecular And Cellular Biology*. 17:7047-7060.
- Zamore, P.D. 2002. Ancient pathways programmed by small RNAs. *Science*. 296:1265-1269.
- Zhang, W.Z., and B.T. Chait. 2000. Profound: An expert system for protein identification using mass spectrometric peptide mapping information. *Analytical Chemistry*. 72:2482-2489.
- Zhang, W.Z., A.N. Krutchinsky, and B.T. Chait. 2003. "De novo" peptide sequencing by MALDI-quadrupole-ion trap mass spectrometry: A preliminary study. *Journal Of The American Society For Mass Spectrometry*. 14:1012-1021.

Zuccolo, M., A. Alves, V. Galy, S. Bolhy, E. Formstecher, V. Racine, J.B. Sibarita, T. Fukagawa, R. Shiekhattar, T. Yen, and V. Doye. 2007. The human Nup107-160 nuclear pore subcomplex contributes to proper kinetochore functions. *Embo Journal*. 26:1853-1864.