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Tuberculosis is characterized by dynamic interactions between M. tuberculosis 

(Mtb) and the human immune response. The cytokine IFN-γ triggers macrophage 

production of bactericidal nitric oxide by inducible nitric oxide synthase (NOS2) 

and is essential for mammalian control of Mtb infection.  Mice lacking NOS2 are 

unable to control replication of Mtb and rapidly succumb to infection.  The 

persistent nature of TB infection suggests that Mtb has evolved counter-immune 

mechanisms to survive in the face of NOS2 and other pathways downstream of 

IFN-γ. 

A differential signature-tagged transposon mutagenesis screen was 

conducted to identify mutants attenuated in NOS2-/- mice, but retaining 

virulence in IFN-γ-/- mice.  Such mutants may be deficient in counter-immune 

responses to IFN-γ -dependent, NOS2-independent immune pathways.  

Four mutants with the phenotype of interest were pulled from a screen of 

96: pks6/Rv0405 - a polyketide synthase, Rv0072 - a membrane spanning domain 

of a putative glutamine transporter, Rv2958c - a glycosyl-transferase, and 

pstA1/Rv0930 - a membrane spanning domain of an inorganic phosphate 

transporter.    



  Monotypic IV infections confirmed that these mutants replicate freely in 

the tissues of IFN-γ-/- mice and kill these mice with similar kinetics to wild-type 

Mtb.  In contrast, the mutants have little or no growth advantage in NOS2-/- mice 

and are highly attenuated in these mice.   

It was discovered that none of the four mutants were producing a key 

mycobacterial surface lipid: phthiocerol dimycocerate (PDIM).  In vivo 

phenotypes of the mutants were reproduced in a PDIM deficient strain cloned 

from a subpopulation pre-existing in the parent stock. Hence it was discovered 

that PDIM deficiency causes IFN-γ dependent, NOS2 independent attenuation of 

H37Rv.  Moreover, the PDIM deficient strains demonstrated NOS2 dependent 

attenuation as well as early IFN-γ independent attenuation. 

Autonomously from PDIM, the pstA1 mutant is impaired for survival 

during WT and NOS2-/- macrophage infection and during in vitro Pi starvation.  It 

is also deficient for uptake of orthophosphate and is hyper-sensitive to H202, SDS, 

and acidified nitrite exposure.  Phosphate starvation of H37Rv induces 

hypersensitivity to H202 and SDS suggesting that disruption of pstA1 may disrupt 

metabolism and/or gene regulation in a manner consistent with the effects of 

phosphate starvation. 
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History of Tuberculosis 

Evidence from ancient Egyptian mummified remains demonstrates that 

humans have been afflicted with tuberculosis (TB) for at least 5,400 years [1]. 

However, it wasn’t until 1882 that Robert Koch established that TB was a 

communicable disease caused by infection with the tubercle bacillus 

(Mycobacterium tuberculosis).  Genetic analysis of M. tuberculosis (Mtb) and its 

close relatives suggests that the common progenitor of these pathogens may 

have infected our early hominid ancestors as long as 3 million years ago [2]. 

A complex and dynamic series of interactions between Mtb and the 

human immune response have allowed this pathogen to successfully parasitize 

the human host over the millennia with no sign of abatement.  Today, in spite of 

widespread vaccination and use of chemotherapeutic agents, nearly 2 billion 

individuals worldwide are thought to be infected with Mtb, and each year 2-3 

million deaths are attributed to TB [3]. 

Approximately 6.5 million of the world’s 8 million annual new cases of TB 

occur in Southeast Asia, the Western Pacific, and Africa [3].  95 % of all cases are 

in the developing world; however, poverty is a strong correlate of TB even in 

Western Europe and North America where the overall incidence is low [4].  

Globally, TB is rivaled only by HIV-AIDS as an infectious killer, and TB is the 

leading cause of death among those infected with HIV.  In addition, HIV is the 

most important risk factor for progression from Mtb infection to active clinical 

disease.  This synergy is in large part responsible for the recent global resurgence 

of TB [5, 6].  In the United States, data suggests that HIV co-infection is present in 

more than 20 % of TB cases in patients age 25-44 [7].  Other immuno-

compromised states that impact on the severity of mycobacterial infections 
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include anti-tumor necrosis factor-  (anti TNF- ) treatment and generation of 

interferon-  (IFN- ) autoantibodies [8-10]. 

 

Vaccines 

The only vaccine that is currently used to prevent TB, the live-attenuated 

bacille Calmette Guérin (BCG) vaccine, is problematic.  In large-scale, placebo-

controlled, double-blinded clinical trials, the apparent protective efficacy of BCG 

against TB ranged from 80 % to nil [11].  The design, development, and 

evaluation of new vaccine candidates to replace BCG will require a more 

thorough understanding of the interaction of Mtb and the human immune 

system. 

Evidence for the existence of protective immunity is indicated by the fact 

that 90 % of individuals who are infected by Mtb never develop active TB, 

despite the lifelong persistence of viable tubercle bacilli in their tissues [12-15].  

The risk of disease progression rises precipitously in individuals who are 

immuno-compromised (e.g., due to HIV-AIDS), underscoring the critical role of 

the immune response in determining the outcome of infection.  Novel vaccines 

cannot just imitate natural infection with Mtb; they must generate more 

substantial and enduring immune responses than are seen in the course of 

natural infection in order to be truly protective. 

 

Chemotherapy 

Between 1941 and 1952, in one of the most remarkable medical advances 

in history, the work of three independent groups led to the development of a trio 
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of drugs that could cure TB.  Then, as now, TB had the dubious distinction of 

being one of the most devastating of human diseases.  Approximately one billion 

people had died from tuberculosis in the two hundred years preceding these first 

chemotherapeutic discoveries.  Without antibiotic treatment, the 5 year mortality 

rate of uncomplicated pulmonary TB was more than 50% [16].  In contrast, the 

combination of para-aminosalicylate (PAS), streptomycin, and isoniazid could, if 

administered properly, cure TB completely and nearly universally.  In the decade 

following the discovery of these three drugs, several other effective drugs were 

identified and treatment times were shortened.  While these drugs represent a 

critical advance in our ability to treat TB, inadequate healthcare infrastructure, 

financial limitations, individual patient non-compliance, the spread of HIV, and 

the surge in circulation of multi-drug resistant strains of Mtb have prevented 

universal control of the disease [17]. 

The current standard of care for treatment of TB in developed countries is 

6-9 month “short-course” therapy using a combination of four of the first-line 

medications: isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and either 

ethambutol (EMB) or streptomycin (SM) [18].  With such a long treatment period, 

problems with patient compliance are inevitable and this has resulted in the 

emergence and spread of a significant number of drug-resistant strains of Mtb.    

Directly Observed Therapy (DOT) regimens, where administration of each dose 

is supervised by a health care or social worker, have been efficacious where 

implemented.  However, only one fifth of patients worldwide are treated under 

DOT programs and some consider these programs to be ethically questionable 

[19].  Meanwhile, according to various studies, rates of multidrug resistant 

(MDR) TB reach percentiles in the teens in many countries and as high as 34 % in 
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Gujarat, India and 48 % in Nepal [20, 21].  The newest of our first-line anti-TB 

drugs, rifampicin, is over 40 years old and the emergence and spread of MDR-TB 

reminds us of the risks of relying on these old-line drugs for future control of this 

ancient disease. 

Further complicating treatment options are issues of toxicity.  Among the 

most common severe side-effect of TB treatment is isoniazid hepatotoxicity 

which occurs in approximately 1-5 % of patients and has a case-fatality rate 

approaching 5 % [22].  This and other adverse effects, including neurological and 

gastrointestinal effects, lead to drug discontinuation in nearly 10 % of patients 

[22].  It is essential for the global health community to discover and develop 

novel high-potency, low-toxicity drugs to treat TB, including MDR strains.  

Furthermore, the course of TB therapy must be shortened to help improve 

patient adherence to therapy, and thereby prevent emergence of further drug 

resistance. 

The not-for-profit consortium, the Global Alliance for TB Drug 

Development (http://www.tballiance.org/), is working with government, 

industry and academia to pursue the essential if potentially “unprofitable” goal 

of anti-Mtb drug discovery, development, distribution, and equitable access.  The 

recent publication of the genome of Mtb and modern developments in 

microbiological methodology afford us unique opportunities for identification of 

novel bacterial drug targets and rational drug design.  A better understanding of 

the interactions between Mtb and the mammalian host will allow us to identify 

targets in the bacterial repertoire that are essential for in vivo survival and 

virulence. 
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The Tubercle Bacillus 

Mycobacteria are rod shaped bacteria composing a genus of fast growing 

soil microbes and slow growing pathogens including Mtb, Mycobacterium leprae, 

Mycobacterium bovis, and Mycobacterium marinum.  The Mtb complex consists of 

several closely related species with minimal genetic variation and includes 

Mycobacterium tuberculosis (Mtb), Mycobacterium canettii, Mycobacterium africanum, 

Mycobacterium microti, Mycobacterium bovis, and the live-attenuated vaccine strain 

M. bovis bacille Calmette-Guerin (BCG) [23].  While Mtb is overwhelmingly the 

most important mycobacterial pathogen of Homo sapiens, all of these strains can 

cause disease in immuno-competent humans, with the exceptions of M. microti 

and BCG. 

In the pre-genomic era, much research was conducted in an effort to 

characterize the Mycobacterium tuberculosis cell envelope.  The complex Mtb cell 

envelope consists of a plasma membrane, a cell wall, and a capsule-like outer 

layer (Figure 1.1).  The cell wall consists of, from innermost to outermost, 

peptidoglycan (PG), arabinogalactan (AG), mycolic acids (MA), and peripheral 

lipids.  Lipoarabinomannan (LAM) is thought to be anchored in the plasma 

membrane and is also found in the capsule-like layer anchored in the MAs [24]. 

The distinctive thickness and complexity of the Mtb cell wall is likely to 

impact on the host’s ability to mount an effective anti-bacterial attack on the 

intra-phagosomal bacteria.  Consistent with this hypothesis, the cell envelope 

components phthiocerol dimycocerate (PDIM), phenolic glycolipid (PGL), and 

LAM have been implicated in virulence and/or immunomodulatory effects of 

Mtb [25-27].  PDIM deficient mutants are attenuated in the mouse model of 

infection [26].  LAM has been shown to directly scavenge reactive oxygen species 
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(ROS), inhibit protein kinase C activity, and block transcription of IFN-  

dependent genes in macrophages [25].  Macrophages infected with Mtb lacking 

PGL secrete increased levels of tumor necrosis factor-  (TNF- ), interleukin-6 

(IL-6), and IL-12; purified PGL suppresses these pro-inflammatory cytokines [27]. 

 

Figure 1.1: Schematic of Mycobacterial Cell Envelope [28].  (A) plasma 

membrane, (B) peptidoglycan, (C) arabinogalactan, (D) mannose-capped 

lipoarabinomannan, (E) plasma membrane- and cell envelope-associated 

proteins, (F) mycolic acids and (G) glycolipid surface molecules associated with 

the mycolic acids. 

 

The thick Mtb cell wall has low permeability that may contribute to the 

organism’s relative insensitivity to -lactams and resistance to many other 

antibiotics that have low minimal inhibitory concentrations (MICs) for other 

bacteria.  The unique cell wall characteristics of Mtb also allow it to retain the 

carbol fuchsin stain even after an acid alcohol wash, thus enabling identification 
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of mycobacteria based upon their unusual “acid fast” staining. 

In addition to structural, biochemical, and genetic analysis of the cell wall, 

much research has been done to characterize clinically relevant secreted and 

immunodominant antigens of Mtb.  Such antigens have potential as elements of 

improved vaccines and as novel diagnostic markers of infection and disease.  

Among the best characterized antigens are Esat-6, MPT-64, the 19 kDa antigen, 

the 38 kDa antigen, and the Antigen 85 (Ag85) complex [29, 30].  In one recent 

vaccine study, a subunit vaccine containing Ag85B and Esat-6 in combination 

was shown to have substantial protective efficacy in macaques [31]. 

In the quest for new diagnostics, a study of 196 culture positive TB 

patients found that approximately 77% produced antibodies to the 38kDa 

antigen and confirmed that the antigen successfully induced skin reactions in 

Mtb sensitized outbred guinea pigs [32].  However, BCG sensitized animals also 

responded to the 38kDa antigen, recapitulating the false-negative potential of the 

PPD skin test (see pp.14-15).  In contrast, Esat-6 is a protein that is encoded in a 

region of the Mtb chromosome that is deleted in the BCG vaccine (region RD1); 

hence, Esat-6 and other proteins encoded by RD1 are being developed as 

potential diagnostic reagents that can be used in previously vaccinated 

individuals [33, 34]. 

The genome of the commonly utilized laboratory strain of Mtb, H37Rv, 

was sequenced and published in 1998 [35].  The sequence revealed, among other 

things, that the bacteria dedicate 8 % of their genome to lipid metabolism alone.  

The genes encompassed by this grouping include an extensive collection of genes 

for lipid catabolism as well as many used for synthesis of the complex 

mycobacterial cell wall.  The genome sequence also described 167 PE and PPE 
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genes that encoded products of unknown function grouped based on N-terminal 

ProGlu or ProProGlu motifs and repetitive C-terminal extensions [35, 36].  

Subsequent sequence analysis of the highly transmissible clinical strain CDC1551 

revealed that it was nearly identical to H37Rv, confirming the utility of H37Rv as 

a model of clinically relevant strains of Mtb [37].  Moreover, despite over 10,000 

years of evolution, when 16 genetically diverse clinical strains were examined for 

conservation of 24 genes known to encode antigenic proteins, minimal variation 

was observed [38].  In fact, 19 genes were identical across all strains examined, 

suggesting a recent common ancestor of the majority of modern clinical strains as 

well as the laboratory strain H37Rv. 

Since the publication of the Mtb genome and the development of 

molecular biology techniques for use in Mtb research, the focus of much research 

has shifted to the genetics of Mtb virulence and pathogenesis.  While 

development of diagnostics and vaccines remains a challenge, renewed emphasis 

has been placed on the identification of putative targets for novel drug design.  

Genetics promises to be a key for unlocking pathways essential to Mtb survival 

and replication and identification of those gene products that can be targeted by 

chemotherapeutics.  Impressively, an exhaustive mutagenesis was conducted to 

identify a potential list of essential Mtb genes for which no mutants could be 

isolated [39].  While it should be noted that several of these putatively essential 

genes have since been successfully deleted, this study remains a useful broad 

screen for genes likely to be important for bacterial survival. 

It should be noted that in recent years the only new anti-TB drugs to enter 

clinical trials have been identified by industry through non-specific high-

throughput screening of chemicals for bacteriostatic or bactericidal activity.  
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There exists immense practical potential for brute force pharmaco-chemical 

screening in combination with rational target identification.  Much promise lies 

in public-private partnerships enabling such collaboration. 

 

Pathogenesis of Disease 

Infection by Mtb occurs via inhalation of 1-5 µm droplets containing one 

or several bacteria.  These small droplets deposit into alveolar airspace, while 

larger particles are efficiently cleared by the pulmonary mucociliary system [40].  

Infecting bacteria are phagocytosed by resident alveolar macrophages and can 

begin to replicate within the membrane-bound phagocytic vesicles.  Eventually 

the bacterial burden overwhelms the macrophages leading to the rupture of the 

cells and the release of numerous bacilli.  These bacteria are then taken up by 

other alveolar macrophages and by monocyte-derived macrophages (MDMs) 

emigrating from the bloodstream [40].  After approximately 2 weeks bacteria 

begin to spill over from the primary lesion into surrounding tissue and are 

carried to regional lymph nodes from which they spread to other organs.  By 

three weeks post-infection, a specific T-cell response emerges.  Release of the 

lymphokines interferon-  (IFN- ) and tumor necrosis factor-  (TNF- ) activates 

macrophages and thereby checks bacterial replication.  A mature granuloma 

forms consisting of a ring of CD4+ and CD8+ T cells surrounding a ring of 

macrophages containing intracellular bacteria.  A caseating granuloma may 

develop with a central core of necrotic tissue and extracellular bacteria (Figure 

1.2) [40]. 
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Figure 1.2: Histology of a Caseating Granuloma.  [41]  

 

In a healthy individual, tuberculous granulomas can be contained 

indefinitely and may even be completely sterilized over time.  However, in 

approximately 5 % of cases, primary progressive TB develops within several 

years of infection.  Moreover, in another 5 % of cases, reactivation of latent 

infection occurs years or decades after primary exposure [40].  Progression to a 

disease state is most often seen in infants, the elderly, the malnourished, or those 

who are immuno-compromised by steroids, genetic predisposition, or HIV.  In 

severe post-primary disease, gross cavitation can occur in the lung and necrotic 

tissue can spill over into airways.  The associated cough provides the perfect 

vehicle for spread of bacteria within the lung of an individual and between an 

individual and his or her contacts. 

Active TB disease can be diagnosed based on symptomology, microscopic 

analysis of sputum stained to reveal acid-fast bacilli, sputum culture, DNA or 

RNA amplification assays, and/or chest radiograph.  Signs and symptoms of TB 

include: night sweats, productive cough, bloody sputum, weight loss, and 

consolidated opacities (esp. apical) and/or upper lobe cavitation on lung X-ray.  

However, it should be noted that with severe immunodeficiencies such as HIV, 
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patients with disseminated Mtb lung infection can display non-typical signs and 

symptoms mimicking other lung pathologies. 

 

Model Systems 

Our understanding of Mtb pathogenesis and the mammalian immune 

response to Mtb infection has been enhanced by the use of several key model 

systems.  Tissue culture models utilizing murine bone marrow derived 

macrophages (BMMOs) or human peripheral blood monocytes (PBMCs) have 

provided insights into the interactions between Mtb and the phagocytic host cell.  

However, the macrophage cannot reproduce the complexity of the immune 

response in an intact animal.  Therefore, several small animal models have been 

commonly employed in the study of Mtb virulence and host immunity, 

especially mice, guinea pigs, and rabbits. 

Mice are often the model of choice for Mtb infection because of the 

widespread availability of species-specific reagents, inbred strains, and 

transgenic and gene knockout technology, as well as their small size and 

relatively low cost.  Mice also demonstrate reduced susceptibility to Mtb 

infection compared to other models, allowing for study of a persistent phase of 

infection that models latency in humans [42].  Mice do not, however, 

demonstrate the stages of well organized granuloma development seen in 

advanced human disease. 

For the study of granuloma formation and development, guinea pigs and 

rabbits provide valuable models.  Guinea pigs are highly susceptible to Mtb 

infection and form early stage granulomas before succumbing to disease [43].  

Rabbits progress through all of the stages of granuloma formation seen in 
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humans including caseation, liquefaction, and cavitation [44].  However, 

maintenance costs and the lack of inbred strains and biological reagents prohibit 

the use of rabbits and guinea pigs for the majority of Mtb studies.    

A few groups have recently pursued studies of Mtb infection using non-

human primate models [45] .  These models are valuable in that they 

demonstrate the broad spectrum of progression seen in humans, from true 

latency to fulminant disease. Moreover, an array of immunologic reagents are 

available for non-human primates.  Unfortunately, primates are contagious to 

both humans and other animals and biocontainment following Mtb infection is a 

major challenge.  In addition, the cost of acquisition and maintenance of primates 

is exorbitant.  These challenges limit the utility of non-human primate models. 

 

Immune Response 

Infection with Mtb elicits primarily a cell-mediated immune (CMI) 

response dominated by macrophages and T lymphocytes (Figure 1.3).  Early 

recognition of Mtb is mediated by the macrophage mannose receptor, CD14, and 

Toll-like receptors (TLR2, 4, and 9) [46-48].  Surfactant receptors, complement 

receptors, and Fc receptors recognize host molecules bound to Mtb [49].  The 

receptor mediating bacterial entry can affect the subsequent host response; IgG 

opsonized Mtb entering via the Fc receptor trigger antibacterial macrophage 

activation, however, complement opsonized Mtb entering via complement 

receptors fail to trigger macrophage effector mechanisms [50, 51].  Triggering of 

the appropriate activating receptors by Mtb can result in early production of pro-

inflammatory cytokines such as interleukin-12 (IL-12) and TNF-  [52]. 

The development of an acquired immune response to Mtb, and 
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subsequent control of infection, is dependent on both CD4+ and CD8+ T cells; 

neither cell type can fully compensate for lack of the other [53], [54].  CD4+ 

depletion causes reactivation of previously stable persistent Mtb infection in the 

mouse model and MHC class II deficient mice are highly susceptible to Mtb 

infection [53],[55].  Mice deficient in MHC class Ia, CD1, and TAP1 are also more 

susceptible to Mtb, implicating CD8+ T cells in resistance [56]-[57].  Moreover, 

CD8 deficient mice demonstrate enhanced susceptibility to  infection by Mtb [58]. 

CD1 proteins are similar in structure to MHC molecules, but present lipid 

antigens instead of peptide antigens.  CD4+ and CD8+ T cells as well as CD4- CD8-
 

T cells have been shown to respond to mycobacterial lipid antigen presentation 

via CD1 [59-61].  CD4+ and CD8+ CD1 restricted T cells are capable of Th1 

cytokine production, lysis of infected cells, and reduction of bacterial loads [61-

63].   There are five isoforms of CD1 in humans: CD1A-E.  However, it is worth 

noting that the group 1 molecules (A-C) are not present in rodents and CD1D 

deficient mice are no more susceptible to Mtb infection than wildtype mice [57]. 

Dendritic cells (DCs) are specialized antigen presenting cells that serve in 

the innate immune response as sentinals of infections and as adjuvants in 

stimulating the adaptive immune response.  DCs carry antigens to the lymphoid 

organs and present them to T cells via MHC and CD1 molecules.  Dendritic cells 

are also involved in directing differentiation of T cells via either the T helper 1 

(Th1) or Th2 pathway.  Upon interaction with Mtb, DCs upregulate antigen 

presenting and T cell co-stimulatory molecules [64].  DCs are capable of 

presenting Mtb antigens via CD1 as well as cross-presenting antigens from 

apoptotic Mtb infected cells and presenting antigens via MHC class I [56, 65].  

Thus, DCs might play a key role in mediating CD8+ T cell response to Mtb.  DCs 
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also increase expression of IL-12, IL-1, and TNF-  when exposed to Mtb and 

likely stimulate CD4+ responses as well. 

When an Mtb infected person is injected subcutaneously with a 

preparation of partially purified protein derivative (PPD) from Mtb, antigen 

presenting cells display the antigens to T cells.  Antigen specific T cells then 

recruit macrophages to the area and activate them, generating a local delayed 

type hypersensitivity (DTH) reaction.  It was recognized early in the study of TB 

that this DTH would be a valuable tool for detecting Mtb infection, even in those 

people who were sputum negative for bacteria.  Today, the tuberculin skin test 

for DTH remains the gold standard for detection of Mtb infection.  It should be 

noted, however, that a false negative rate as high as 20 % has been reported for 

patients with HIV and other forms of immunosuppression [4].  Moreover, false 

positive results can be elicited in patients with a history of exposure to 

environmental mycobacteria and/or the BCG vaccine.  In the USA, where there 

is little endemic tuberculosis and limited exposure to confounding 

environmental mycobacteria, vaccination has been avoided in favor of enhanced 

detection of infection by skin test. 

It is clear that there are elements of the innate and the adaptive immune 

response that are essential for control of TB, and attempts have been made to 

dissect the elements of this response during the course of human infection.  

Many important experiments have been conducted with macrophage-like cell 

lines and ex vivo human PBMCs.  In addition, studies have been performed using 

cells and fluid obtained by bronchoalveolar lavage.  In cell culture experiments, 

infection of human monocyte-derived macrophages (MDMs) with Mtb has been 

shown to stimulate secretion of the pro-inflammatory cytokines  TNF- , IL-1, IL-
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6, and IL-18 [66].  However, infected MDMs were also shown to secrete the 

immuno-suppressive cytokine IL-10, which is a potent inhibitor of IL-12 

synthesis. Conversely, IL-10 was not produced by infected human monocyte-

derived dendritic cells (MDDCs) and these MDDCs released copious amounts of 

IL-12.  Using a combined transcriptomic and proteomic approach, it has been 

demonstrated that there is induction of osteopontin, IL-8, MCP-1, and RANTES, 

as well as the proinflammatory cytokines IL-1, IL-2, and  TNF-  in the human 

THP1 macrophage-like cell line after infection with M. tuberculosis [67]. 

 IFN-  and TNF-  are crucial for macrophage activation and are thought 

to be key elements of the mammalian immune response that controls Mtb 

infection.  In the late 1980s, it was demonstrated that application of exogenous 

IFN-  was able to activate murine bone-marrow derived macrophages and cause 

inhibition of mycobacterial growth [68].  When IFN-  knockout mice became 

available, it was shown that this cytokine is essential for control of Mtb infection 

[69, 70].  Similarly, it was shown that both TNF-  55 kDa receptor knockout mice 

and TNF-  depleted mice quickly succumb to Mtb infection [71].  It is 

noteworthy that humans with naturally occurring IFN-  receptor mutations are 

more susceptible to mycobacterial infections and rheumatoid arthritis patients 

treated with anti- TNF-  antibody are at high risk of Mtb reactivation [72, 73]. 

One of the primary roles of  IFN-  is to trigger macrophage production of 

inducible nitric oxide synthase (NOS2), thereby providing bactericidal nitric 

oxide and other reactive nitrogen intermediates (Figure 1.3).  Microarray analysis 

of murine bone marrow-derived macrophages (BMM s) revealed strong 

induction of NOS2 and various chemokines, including MIG and RANTES, in 



 17

response to  IFN- , Mtb, or IFN-  plus Mtb [74].  In 1999, it was demonstrated 

that NOS2 knockout mice are highly susceptible to infection with Mtb [75].  

However, the phenotype of NOS2 knockout mice is not as severe as that of  IFN-  

deficient mice, indicating that NOS2 independent,  IFN-  dependent pathways 

play a role in control of Mtb infection [76, 77].  Recently it was shown that LRG-

47, an IFN-  inducible GTPase, accounts for a significant part, but not all, of the 

NOS2 independent control of Mtb infection [78]. 

  

 

Figure 1.3: Schematic of Immune Mechanisms Involved in Defense 

Against Mtb [79].  Cells: M , macrophage; CD4, CD4+ T cell; CD8, CD8+ T cell; 

NKT, natural killer T cell; E, epithelial cell; ,  T cell.  Cytokines: TNF- , tumor 

necrosis factor- ; IFN- , interferon- ; TGF- , transforming growth factor- ; LT 3, 

leukotriene 3.  Reactive species: ROI, reactive oxygen intermediates; RNI, 

reactive nitrogen intermediates. 
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Bacterial Survival 

A complex set of requirements must be met in order for bacteria to ensure 

their survival and replication, even in the most hospitable of environments.  

Rationally based targeted gene disruption of Mtb followed by animal or 

macrophage infection with mutant bacteria has been a valuable tool for testing 

the importance of many genes suspected to be involved in in vivo pathogenesis.  

For example, in the 1950’s, Segal observed that Mtb grown in vitro culture 

preferred carbohydrate nutritional substrates, while those grown in vivo seemed 

to prefer fatty acids, suggesting that there is a difference between the in vivo and 

in vitro metabolic requirements of Mtb [80].  These observations suggested that 

enzymes necessary for metabolism of non-carbohydrate substrates, such as those 

involved in the glyoxylate shunt of the Krebs cycle, might be required for 

virulence.  Using targeted gene disruption, it has been demonstrated that 

isocitrate lyase (ICL), a key enzyme involved in metabolism of fatty acids via the 

glyoxylate shunt, is required for replication and persistence of M tuberculosis in 

mice [81, 82].  ICL, which is not required for growth in vitro in carbohydrate-rich 

media, was thus identified as an enzyme essential for in vivo survival and as a 

potential drug target. 

  In another example of successful rational identification of a virulence 

gene, the extracellular repeat protein (Erp) of Mtb was known to be a secreted 

protein produced only by pathogenic mycobacteria.  A suspected virulence 

factor, it was targeted for gene disruption and was thus identified to be required 

for growth during the acute phase of mouse infection, though not essential in 

vitro [83].  Other examples include: a Mg++ transporter, a heat-shock protein 

transcription factor, and a mycolic acid cyclopropanase (encoded by mgtC, hspR, 
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and pcaA respectively) which were shown to be required for growth of Mtb in 

mice, but not in nutrient rich media in vitro [84-86]. 

It is important to note that extensive time and resources have been 

invested in rational targeted disruption and characterization of genes that were 

subsequently found to be dispensable for virulence.  Hence, a number of 

screening approaches have been employed to directly identify genes important 

for virulence of Mtb.  In one study, McAdam generated a transposon library of 

over 10,000 H37Rv mutants representing disruptions in 351 genes [87].  Severe 

combined immunodeficient (SCID) mice, which are unable to control Mtb 

replication, were used to facilitate screening of these mutants for virulence 

defects.  While several slightly attenuated and several mildly hypervirulent 

mutants were identified, the use of severely immunocompromised mice in these 

experiments limited their utility as a screening tool for genes involved in growth 

and survival in an immunocompetent host. 

Mtb faces substantial challenges as it colonizes a mammalian host and 

must survive the onslaught of both innate and adaptive immune responses.  The 

complexities of the dynamic host-pathogen interaction require a unique set of 

genes, proteins, and pathways for the in vivo survival and virulence of Mtb.  A 

better understanding of the essential pathways required for bacterial growth and 

survival in vivo may allow us to identify drug targets that would facilitate 

shortening of disease therapy and prophylaxis against reactivation of latent 

infections. 

Several approaches have been used to identify genes required for survival 

in an immunocompetent host.  Gene expression studies have been conducted in 

an attempt to identify genes that are specifically upregulated in vivo and 
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potentially essential for virulence of mycobacteria.  Tools employed for such 

expression studies include: subtractive hybridization [88], selective capture of 

transcribed sequences (SCOTS) [89], promoter-fusion libraries [90, 91], and most 

recently DNA microarrays [92, 93].  Using a fluorescence-activated cell sorter 

(FACS) based screen for differential fluorescence induction, one group 

demonstrated that two genes encoding PE/PE-PGRS family proteins were highly 

expressed by M. marinum in frog granulomas, but not in vitro or in cultured 

macrophages.  These proteins were then shown to be essential for virulence of 

the bacteria in frogs, but not for their survival in vitro [94].  While expression 

based screens for virulence factors have potential, activity of specific promoters 

in vitro depends on the specific in vitro culture conditions used. For a professional 

pathogen like Mtb, in vitro growth conditions are highly artificial.  It is difficult, 

therefore, to distinguish between genes artifactually downregulated in vitro from 

those of significance to virulence that are upregulated in vivo.  Genes that are less 

active in vitro are not necessarily required for virulence in vivo and vice versa. 

To avoid investing resources into studying pathways that are not essential 

for pathogenesis, it can be useful to screen directly for genes of interest based on 

their in vivo virulence profiles.  Signature-tagged transposon mutagenesis (STM) 

was developed as a tool for directly screening large numbers of transposon 

mutants for attenuation in vivo by negative selection (Figure 1.4) [95].  In STM, a 

library of transposons is constructed so that each transposon carries a unique, 

short variable DNA region that acts like a barcode, allowing for PCR based 

detection of individual transposons within a pool of many.  Bacteria are 

mutagenized using the tagged transposons and pools of uniquely tagged 

mutants are injected into animals.  At predetermined timepoints, surviving 
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bacteria are collected from the animals and genomic DNA is prepared from the 

recovered bacteria.  The DNA tags are PCR amplified from the genomic DNA 

and the PCR products are hybridized to a membrane array of the individual tags 

(Figure 1.4).  The membrane is compared to one that has been probed with PCR 

products amplified from the inoculum, revealing tags that are absent or under-

represented in the pools after infection. Mutants that were present in the 

inoculum but were selected against during passage through the mouse are 

potentially attenuated.  The insertion point of the transposon can be sequenced 

and the disrupted virulence gene or operon identified. 

 

 

Figure 1.4: Schematic of STM Screen [76]. 

 

STM was first described in Salmonella typhimurium in 1995 and has since 

proven to be an invaluable tool in the study of other pathogens, including Mtb 

[95].  Using STM, Camacho et al. (1999) identified 16 Mtb mutants that were 

attenuated in Balb/c mice and Cox et al. (1999) identified 14 in C57BL/6 mice 
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[26, 96].  Both of these groups examined bacteria from lungs of mice infected by 

tail-vein and harvested three weeks post infection.  The potential uses of STM to 

identify virulence genes in different mouse backgrounds, by different routes of 

infection, at different times post-infection, in different organs, and under 

different stress conditions are numerous. 

 

Differential Signature Tagged Mutagenesis (dSTM) Screen 

Three genes are known to potentially be involved in IFN-  dependent 

control of bacterial infections in mice: phagocyte oxidase (phox), NOS2, and 

LRG-47 [75, 78].  Phox knockout mice are not more susceptible to Mtb than 

wildtype mice and phox-/- NOS2-/- double knockout mice phenocopy NOS2-/- 

mice when infected with wildtype Mtb [76, 97].  Thus, it appears that phox plays 

a minimal role in control of Mtb in the mouse model of infection.  NOS2-/- mice 

and LRG-47-/- mice are highly susceptible to Mtb infection, permitting rapid 

bacterial expansion and exhibiting accelerated mortality [75, 78].  However, 

neither of these knockout strains is as susceptible as IFN- -/- mice.  Moreover, 

LRG-47-/- mice treated with aminoguanidine, an inhibitor of NOS2 function, are 

not as susceptible to infection as IFN- -/- mice [78].  These observations indicate 

the existence of at least one as yet unknown effector pathway of IFN-  that 

contributes to host defense against Mtb. 

Mtb has evolved mechanisms to counter the immune pressures it faces in 

vivo.  It may do this by interfering directly with IFN-  signaling and/or by 

blocking its downstream effectors (Figure 1.5).  For example, the mycobacterial 

catalase (KatG) plays a role in detoxification of reactive oxygen species (ROS).  
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katG deficient bacteria are attenuated in WT mice, but fully virulent in phox-/- 

mice, thus demonstrating that catalase is able to effectively neutralize the impact 

of phox on bacterial control; katG mutants exhibit phox dependent attenuation 

[97].  Similarly, the Mtb proteasome has been shown to play a role in countering 

the toxic effects of reactive nitrogen species (RNS) produced by NOS2 and 

proteasome mutants exhibit NOS2 dependent attenuation [98]. 

 

Figure 1.5: Schematic of Immune and Counter-immune Pathways. 

In an effort to identify other Mtb genes involved in counter-immune (cim) 

defense, our lab conducted a differential STM (dSTM) screen to identify mutants 

that are attenuated in NOS2 knockout mice, but remain highly virulent in IFN-  

knockout mice.  The cim genes identified in this screen are candidates for 

bacterial defense mechanisms that provide specific protection against IFN- -

dependent, NOS2-independent host immune pressures. 

 

Results of dSTM Screen 

Four mutants of interest were isolated from a screen of 96 transposon 

mutants: (1) pks6/Rv0405, encoding a polyketide synthase; (2) Rv0072, encoding 

a membrane spanning domain (MSD) protein of a putative glutamine ATP 
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Binding Cassette (ABC) transporter; (3) Rv2958c, encoding a glycosyltransferase; 

(4) pstA1/Rv0930, encoding an MSD protein of an inorganic phosphate ABC 

transporter.  The phenotypes of all four mutants were confirmed by monotypic 

intravenous (IV) infection (Figure 1.6).  As expected, the mutants were more 

severely attenuated in NOS2-/- mice than in IFN- -/- mice as evidenced by both 

colony forming units (cfu)/lung and mouse survival. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: IV Retest of Virulence Phenotype of cim Mutants. Mice were 

infected by tail vein injection of H37Rv (A, F), Rv0072 (B, G), Rv0930/pstA1 (C, 

H), Rv2958c (D, I), and Rv0405/pks6 (E, J) strains of M. tuberculosis.  Lung cfu 

from WT (black triangles), NOS2-/- (white circles), and IFN- -/- (black squares) 

mice were quantified at 28 and 42 days post infection (A-E).  Mouse survival 

curves were generated (F-J) for NOS2-/- (white circles), and IFN- -/- (black 

squares) mice. 
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 Unexpectedly, the phenotypes of our mutants were found to be due 

predominantly to spontaneously arising pthiocerol dimycocerosate (PDIM) 

deficiency.  However, the most well characterized mutant, pstA1, also displays 

significant PDIM-independent phenotypes. 
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Introduction to the Pst System 

 The bacterial high affinity inorganic phosphate transport (Pst) system has 

been explored in numerous species and is best characterized in E. coli.  In spite of 

the confounding effects of PDIM deficiency, a pstA1 mutant isolated from the 

Mtb dSTM screen was found to have significant PDIM independent phenotypes 

of interest.  This mutant was therefore studied in further detail. 

 

E. coli Pst and the Pho Regulon 

E. coli has two inorganic phosphate transport systems: Pst, a derepressible 

high affinity ATP binding cassette (ABC) importer, and Pit, a constitutive low 

affinity importer.  Pst has a Kt of approximately 0.2 µM, while Pit has a Kt of 

about 25 µM [99].  The Pit system consists of two independent single-protein 

transporters, PitA and PitB.  The Pst system is encoded in an operon 

encompassing four genes in the following order:  pstS, pstC, pstA, and pstB.  pstS 

encodes the substrate binding domain (SBD) subunit, pstB encodes the 

nucleotide binding domain (NBD) subunit, and the membrane spanning domain 

(MSD) subunits are encoded by pstC and pstA [100].  It is hypothesized that 

inorganic phosphate dianions are imported across a discontinuous charged 

amino acid relay system via the PstA and PstC MSD subunits [101].  The E. coli 

pst operon also encodes a gene that is not involved in phosphate uptake but is 

postulated to be involved in regulation: phoU [100, 102, 103].  Transcriptional 

analysis reveals that the operon is transcribed in its entirety and cleaved into 

distinct mRNAs post-transcriptionally.  The dominant transcript is that of the 

first gene, pstS, encoding the SBD protein [104].  This is consistent with previous 
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reports that the SBD subunit genes of ABC transporters are often expressed at 

higher levels than downstream genes in the operon [104]. 

The Pho regulon, which is normally repressed in high phosphate 

environments, is composed of phosphate scavenging genes including the pst 

genes and the gene for alkaline phosphatase.  Alkaline phosphatase activity is a 

commonly utilized indicator of  Pho regulon activity.  In addition to its role in 

inorganic phosphate uptake, the E. coli Pst system has been shown to be required 

for repression of the  Pho regulon.  Most E. coli pst mutants exhibit derepression 

of the  Pho regulon and constitutive alkaline phosphatase activity even under 

high phosphate conditions [105].  Two amino acid residues of the NBD, PstB, 

have been shown to be required for both phosphate uptake and Pho regulon 

repression [106].  However, although Arg-237 and Glu-241 of PstC and Arg-220 

of PstA are required for phosphate transport, they are not required for repression 

of alkaline phosphatase [106, 107].  This observation suggests that the regulatory 

function of the Pst system may be independent of its role in Pi transport. 

It is worth noting that overexpression of pitA or pitB can restore phosphate 

responsiveness of the Pho regulon to a pstS mutant in the presence of pstCAB and 

the putative regulator phoU [108].  Taken together, these results demonstrate that 

active transport through the Pst system is not required for Pst dependent Pho 

regulon repression and phosphate mediated repression can be partially mediated 

by Pit transporters.  However, regulation of the Pho regulon is not restored by 

Pit in the complete absence of pstSCAB and phoU. 

In Bacillus subtilis, pst has been shown to be specifically upregulated by 

alkali stress even in the presence of normal phosphate concentrations [109].  The 

Pit system does not function under alkaline conditions; however, increased levels 
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of extracellular phosphate were able to overcome the alkali induced pst 

expression.  It has been postulated that a third phosphate transporter is 

functioning under these conditions, enabling repression of the Pst system [109].  

However, the dysfunction of the Pit system might cause functional Pi limitation 

and might therefore induce pst gene upregulation.  Thus, residual phosphate 

uptake under alkaline conditions could be mediated by the Pst system itself. 

The E. coli Pho regulon is controlled via the PhoB/PhoR two-component 

signal transduction system.  PhoR is a histidine kinase that phosphorylates the 

response regulator PhoB, which in turn stimulates transcription of downstream 

genes when phosphate concentrations drop below 4 µM [103, 110].  PhoR is also 

capable of dephosphorylating PhoB in order to repress the genes of the Pho 

regulon.  It has been suggested that PhoU plays a role in mediating signaling 

between the Pst transporter and the PhoB/PhoR signal transduction system.  

Hoffer and Tommassen (2001) postulated that by interacting directly with the Pst 

transporter, PhoU immediately detects local changes in intracellular phosphate 

and signals downstream to PhoB/PhoR.  In the absence of PstS, they suggested 

that high intracellular phosphate concentrations accumulated by overexpression 

of Pit may allow for signaling via PhoU [108].  This interpretation is consistent 

with the observation that some Pst mutants that do not transport phosphate are 

still able to mediate repression of the Pho regulon under high extracellular 

phosphate concentrations.  However, this interpretation does not explain why 

most pst mutants are unable to repress the Pho regulon under high phosphate 

concentrations when even normal levels of Pit allow for accumulation of high 

intracellular phosphate concentrations (30 mM) [111].  The molecular details of 

the putative Pst/PhoU/PhoR interactions remain unclear, as does the direct link 
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between phosphate transport and the Pho regulon. 

While Muda et al. (1992) reported that phoU mutants were deficient in 

phosphate uptake [101], it was later reported by Steed et al. (1993) that phoU 

mutants have no inherent defect in phosphate acquisition [102, 112].  Instead, 

phoU mutants have a severe growth defect in rich medium that is largely 

eliminated by compensatory mutations in the PstSCAB transporter or the 

PhoB/PhoR two-component system [102].  In another study, an E. coli phoU 

mutant was identified that accumulated excess inorganic phosphate in both high 

and low phosphate environments [113].  This mutant demonstrated a slow 

growth phenotype consistent with the observations of Steed et al. (1993) [102, 

113].  This phoU mutant also accumulated high levels of intracellular 

polyphosphate (polyP) in a Pst dependent manner.  PolyP is a long chain 

polymer of inorganic phosphate that is produced from ATP by polyphosphate 

kinase as a response to stress.  Inorganic phosphate (Pi) can be liberated from 

polyP via hydrolysis by exopolyphosphatases or endopolyphosphatases.  Excess 

accumulation of polyP in the phoU mutant was enhanced more than two-fold by 

overexpression of polyphosphate kinase (ppk) [113].  The aforementioned 

evidence suggests that PhoU plays an important role in preventing growth 

restriction caused by Pst mediated Pi and/or polyP hyper-accumulation.  

Furthermore, a Streptomyces lividans ppk mutant overexpresses the PstS protein, 

indicating another link between the Pst and polyP systems [114]. 

Defects in polyP production have been linked to decreased stationary 

phase survival, morphological variation, and sensitivity to oxidative, osmotic, 

and heat stress [115].  PolyP has also been shown to directly bind the Lon 

protease of E. coli and participate in ribosomal protein degradation, indicating a 
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role for polyP in amino acid scavenging during nutrient restriction [116]. 

In yet another link between the Pst/Pho system and polyP accumulation, 

Ault-riche et al. (1998) have shown that phoB mutants and rpoS mutants fail to 

demonstrate nitrogen limitation dependent and osmotic stress dependent polyP 

accumulation [117].  SigmaS, an alternative sigma factor encoded by rpoS, 

regulates the stationary phase response of E. coli.  When pst genes are mutated 

leading to constitutive activity of the Pho regulon, Hfq dependent upregulation 

of rpoS translation occurs even during exponential growth [118].  Hfq is an RNA 

binding protein that is required for the activity of a number of small RNAs 

(sRNAs).  Several sRNAs have been shown to affect rpoS expression in an Hfq 

dependent manner, suggesting a role for sRNAs in pst mediated regulation of 

rpoS [119, 120].  Interestingly, sigmaS negatively regulates expression of several 

members of the Pho regulon including phoB, but positively regulates the pst 

operon [121].  These studies suggest a feedback between the 

Pst/PhoU/PhoB/PhoR system and sigmaS dependent gene regulation. 

SigmaS accumulates as cells enter stationary phase and stimulates 

transcription of a number of genes involved in stationary phase survival and 

stress responses.  Among the more than 70 sigmaS dependent genes identified in 

E. coli are several which are involved in resistance to oxidative stress including 

genes encoding catalases (katE and katG), xanthine oxidase (xthA), and the 

ferritin-like DNA binding protein Dps (dps) [122, 123].  Consistent with this 

observation, cells in stationary phase are more resistant to hydrogen peroxide 

(H2O2) than cells in exponential phase [122].  Cells undergoing continuous 

aerobic respiration during stationary phase produce endogenous reactive oxygen 

species (ROS) via leakage of electrons from the respiratory chain [124]. 
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Endogenously generated ROS may account for the stationary phase stress 

necessitating sigmaS mediated antioxidant gene expression. 

Moreau et al. (2001) hypothesized that if endogenous production of ROS is 

a source of stationary phase stress, bacteria enduring Pi limited growth yet 

maintaining glycolysis would be subject to a significant oxidative stress 

challenge [125].  In order to test this hypothesis, the group examined the survival 

of catalase (katG) and alkylhydroperoxide reductase (ahpCF) mutants under 

phosphate starvation versus glucose starvation conditions.  It was found that 

ahpCF was specifically necessary for protection of aerobic phosphate starved 

cultures in a manner that was enhanced by the presence of katG.  oxyR and rpoS 

are known to increase antioxidant gene expression in response to glucose 

starvation [126].  However, while oxyR and rpoS mutations are severely 

detrimental to glucose starved cultures, they have little effect on survival of 

cultures starved for phosphate [125].  Moreau et al. (2001) suggested that basal 

levels of AhpCF production may be sufficient to mediate defense against 

oxidative stress during phosphate starvation [125].  However, their results leave 

open the possibility that there could be another mediator of a phosphate 

dependent ahpCF response in addition to OxyR and sigmaS.  The Pst/PhoU-

regulated PhoB/PhoR system is an obvious candidate. 

Pst gene expression changes have been detected in response to phosphate 

levels and are potentially linked to oxidative and stationary phase stress 

response pathways in E. coli.  While E. coli does not upregulate its catalase genes 

in response to phosphate starvation, Yuan et al. (2005) recently demonstrated 

that Sinorhizobium meliloti, Pseudomonas aeroginosa, and Agrobacterium tumefaciens 

all do [127, 128].  S. meliloti, which was examined in detail, exhibited PhoB 
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dependent katA regulation that was distinct from the OxyR dependent response 

to H2O2
 
and was mediated via binding to a distinct promoter.  Moreover, the 

group found that acclimation of wildtype S. meliloti to Pi limitation conferred 

significant protection against subsequent H2O2
 

challenge.  In contrast, a 

phosphate starved phoB mutant was hypersensitive to H2O2.  In fact, phoB 

mutants were even more sensitive to H2O2 than katA mutants, implying a role for 

other mediators of ROI defense downstream of phoB [128]. 

The Pst system clearly plays a central role in response to a number of in 

vitro stresses.  The Pst system is also upregulated by several pathogens in vivo.  

pstS was induced nearly two-fold in a screen for Streptococcus pneumoniae genes 

upregulated during growth in the murine peritoneal cavity [129].  In addition, 

pstS and phoA (the gene encoding alkaline phosphatase) were upregulated in 

Shigella flexneri growing intracellularly in a Henle cell monolayer [130].  In vivo 

and in vitro regulatory changes reveal a potential role for the Pst system and 

phosphate responsive two-component systems in complex environmental stress 

responses and virulence pathways. 

 

Downstream Effects of pst Gene Disruption 

  The effects of pst gene disruption in different bacterial species are 

multitudinous.  The pleiotropic phenotypes of pst mutants have implicated the 

Pst system in a number of pathways that are not directly related to phosphate 

acquisition. The Pst system, like several other nutrient scavenging systems, 

seems to play a role in environmental sensing; it provides a hub capable of 

linking environmental phosphate changes to diverse downstream pathways 

including production of secondary metabolites, biofilm formation, and 
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expression of stress response factors and virulence factors. 

 

Secondary Metabolites and Morphogenesis 

It has long been known that inorganic phosphate is a repressor of 

secondary metabolite production in various bacteria.  It has been suggested that 

the environmental stress of phosphate limitation has come to serve a signal for 

the production of secondary metabolites useful under stressful conditions.  This 

phosphate dependent regulation is not metabolite specific and is not limited by 

biosynthetic group.  Among the regulated secondary metabolites are macrolides, 

tetracyclines, anthracyclines, polyether compounds, aminoglycosides, and amino 

acid derived metabolites [131].   These molecules can aid in bacterial crosstalk, 

antagonize competing bacteria, and aid in stress survival.  It has been 

demonstrated that much of the phosphate dependent control of this wide range 

of secondary metabolites is exerted at the transcriptional level.  However, until 

recently, little was understood about the genetic mediators of this regulation. 

  Pseudomonas aureofaciens normally forms a zone of fungal inhibition 

mediated by antibiotic production.  However, P. aureofaciens pst mutants fail to 

inhibit fungal growth [132].  In contrast, Slater et al. (2003) described pstS and 

pstA mutations in Serratia that led to hyperproduction of the antibiotics 

prodogiosin and carbapenem.  These mutations mimicked the effects of 

phosphate starvation and exerted their effect in part through an overlap with the 

quorum sensing SmaI pathway [133].  As described previously, pst mutations 

often lead to constitutive activation of genes normally repressed under high 

phosphate conditions.  The observation that pst mutations in Serratia lead to 

constitutive production of antibiotics normally only produced during phosphate 
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limitation is consistent with this pattern.  Similarly, mutants in the Streptomyces 

lividans phosphate responsive two-component system, PhoP/PhoR, 

overexpressed the antibiotics actinorhodin and undecylprodigiosin [134].  

Suprisingly, however, these mutants failed to express phoA demonstrating that in 

S. lividans, PhoP exerts positive regulation of phoA and negative regulation of 

secondary metabolites. 

  In addition to their role in antibiotic production, pst genes can affect 

morphogenesis.  Streptomyces coelicolor and S. lividans pstS mutants demonstrate 

accelerated differentiation and sporulation on solid media [114].  They also 

ultimately produce more spores than wildtype bacteria.  P. aureofaciens normally 

forms biofilms under phosphate replete conditions, but not in phosphate limited 

environments.  P. aureofaciens pstA and pstC mutants fail to repress the Pho 

regulon and fail to form biofilms under high phosphate conditions.  In contrast, 

the phoR mutants form biofilms even during phosphate starvation [132].  

Caulobacter crescentus normally undergoes stalk elongation under low phosphate 

conditions. C. crescentus pstB mutants undergo stalk elongation regardless of 

phosphate concentration, whereas phoB mutants fail to elongate even during 

phosphate starvation [135]. 

  Secondary metabolite production, sporulation, biofilm formation, and 

other morphogenic changes are tightly regulated by environmental bacteria.  

This regulation is necessary to reduce waste during growth under benign 

conditions and to cope efficiently in stressful environments.  It seems that many 

bacteria have come to utilize the phosphate responsive Pst and Pho systems as 

environmental sensors that can turn on or turn off such systems as needed.  

Thus, disruption of pst and pho genes can lead to a range of pronounced 
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secondary phenotypes unrelated to phosphate acquisition per se.  The central role 

of the phosphate sensing system seems to be shared by numerous bacteria, yet 

one must take care in extrapolating specific downstream pathways as they seem 

to have diverged in accordance with species-specific needs. 

 

Stress Responses 

The bacterium Lactococcus lactis is commonly utilized in the dairy 

industry.  L. lactis recA mutants are hypersensitive to DNA damage, thermal 

stress, and H2O2, indicating that this gene mediates multiple stress responses 

[136].  In an effort to characterize interrelated genes, Duwat et al. (1999) 

positively selected from a pool of approximately 10 million insertion mutants for 

those that acquired thermal resistance in a recA mutant background [137].  

Among the 18 insertions examined, seven different genes were disrupted; one 

was pstS and another was pstB.  The primary source of phosphate in the M17 

medium used in these experiments was sodium glycerophosphate; it is unclear 

how much free inorganic phosphate was available in the medium.  However, it is 

worth noting that the thermoresistant phenotype of the pstS mutant was shown 

to be overcome by addition of 100 mM inorganic phosphate to the medium [137].  

This observation indicates that the phenotype may have been reversed by 

phosphate acquisition through the Pit transporter, but does not rule out a 

Pst/Pho mediated regulatory defect.  Emphasizing a role in multi-stress 

sensitivity, the L. lactis recA/pstS mutant was also shown to be resistant to carbon 

starvation and H2O2 [137]. 

A separate screen for acid resistant insertional mutants of wildtype L. 

lactis also recovered pstS and pstB mutants [138].  In this study, a modified M17 
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medium was used that lacked sodium glycerophosphate and was most likely 

phosphate limiting.  Consistent with the previous study, the acid resistance 

could be overcome by administration of high levels of inorganic phosphate.  

Interestingly, in the wildtype background the pstS and pstB mutants were also 

resistant to oxidative stress, but not to heat [138].  The reason for this discrepancy 

between the two strain backgrounds is currently unclear.  In contrast to the L. 

lactis mutants described above, an E. coli 078 pst mutant was shown to be 

hypersensitive to acid stress [139].  Despite these strain- and species-specific 

differences, it is notable that all of the aforementioned pst and pho mutants have 

pronounced, if disparate, stress response dysregulation. 

 

Virulence 

Lamarche et al. (2005) constructed a deletion mutant of the avian 

pathogen E. coli O78:K80 (APEC) lacking the pstCAB segment of the pst operon 

[139].  In addition to its sensitivity to acid, this mutant was sensitive to killing by 

rabbit serum.  Although it was not killed by chicken serum, the pstCAB mutant 

formed fewer extraintestinal lesions and achieved lower bacterial loads during 

chicken infection [139].  This virulence defect is similar to the attenuation 

observed in the pig septicemia model after infection with a pstC mutant of E. coli 

O115:K”V165”:F165 [140].  Furthermore, pstC and pstS transposon mutants of the 

urinary tract pathogen Proteus mirabilis were attenuated in the murine model of 

ascending urinary tract infection (Jacobson 2004 ASM abstract).    

  Edwarsiella tarda is a freshwater and marine fish pathogen that is killed by 

fish serum and phagocytes.  Srinivasa Rao et al. (2001) have demonstrated that 

cultured fish phagocytes achieve reduced superoxide levels when infected by 
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virulent E. tarda strains as compared to avirulent strains [141].  As reactive 

oxygen species (ROS) are known to be key phagocytic killing mechanisms, the 

group conducted a screen of 200 transposon mutants to identify genes in virulent 

E. tarda that might be involved in countering ROS production by fish phagocytes.  

Five of the mutants were permissive for ROS production as compared to WT and 

one of these mutants had a transposon insertion in the E. tarda pstS gene.  This 

pstS mutant was also attenuated for growth within phagocytes and was 

hypersensitive to low pH [141].  In a subsequent screen of 490 E. tarda transposon 

mutants for genes required for disseminated infection in fish, 15 attenuated 

mutants were identified [142].  Three of these mutants were highly attenuated 

with a 50 % lethal dose (LD50) over 3 logs higher than the parent strain: pstC, pstB, 

and pstS.  These mutants grew normally in phosphate replete medium (tryptic 

soy broth), but grew poorly compared to wildtype in phosphate limited medium.  

It is interesting to note that unlike the previous paper, these pst mutants were 

described as low pH resistant [141, 142]. 

Srinivasa Rao et al. (2003) claimed that phosphate levels are reduced 

intracellularly in phagocytes and epithelial cells and postulated that the pst genes 

are required for environmental sensing and regulation of virulence genes [142].  

However, it is unclear upon what data the group based its assertion of low 

intracellular phosphate.  To our knowledge, a comparison of intracellular and 

intraphagosomal phosphate concentrations to concentrations required for pst 

gene regulation (as established in vitro) has yet to be published.   It has been 

shown, however, that 24 hours post uptake, intraphagosomal Mtb has similar 

phosphate levels to extracellular bacteria (the absolute concentrations were not 

measured) [143].  Moreover, Mtb does not upregulate pst genes during 
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macrophage infection, suggesting that the low affinity Pit system is sufficient to 

achieve these normal intraphagosomal phosphate levels [144].  This would be 

unlikely to be the case under conditions of phosphate starvation. Furthermore, 

the lack of Mtb pst gene upregulation in the phagosome supports the hypothesis 

that phosphate is not limiting. 

Corynebacterium glutamicum encodes a two-component system that shares 

59% similarity (42% identity) with PhoR (Rv0758) and 81% similarity (66% 

identity) with PhoP (Rv0757) of Mtb. Rhodococcus equi, an equine pathogen, 

encodes a two component system, PhoPR, that is highly homologous to those 

encoded by Mtb and C. glutamicum.  These phoPR genes have been named based 

on homology to the Bacillus subtilis phosphate responsive two-component system 

PhoPR and should not be confused with the Salmonella Mg++ responsive system 

PhoPQ.  The actual functions of PhoP and PhoR in R. equi and Mtb have yet to be 

determined. However, Kocan et al. (2006) recently demonstrated that the C. 

glutamicum phoPR homologues control the phosphate starvation response, 

suggesting that the R. equi and Mtb PhoPR proteins may play a similar role [145].  

It is therefore worth noting that an R. equi phoPR mutant overexpresses the genes 

of its virulence plasmid and is hypervirulent [146].  In contrast, an Mtb phoP 

mutant produces an altered manLAM profile and fails to replicate in the mouse 

model of infection [146, 147].  However, it should again be emphasized that even 

in closely related organisms, downstream pathways of homologous proteins can 

differ greatly.  A recent paper describing transcriptional regulation in an Mtb 

phoP mutant revealed no obvious link between phoP and phosphate transport or 

regulation [148]. 
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Introduction to Phthiocerol Dimycocerosates (PDIMs) 

Pathogenic mycobacteria are unique in their array of outer wall free lipids.  

The most abundant of these lipids, the phthiocerol dimycocerosates (PDIMs), are 

also among the best characterized.  PDIMs contain long chain diols esterified by 

methyl-branched fatty acid chains [149].  The closely related phenolic glycolipids 

(PGLs) consist of a similar lipid core that is terminated by a glycosylated 

aromatic nucleus [150]. 

M. gastri and the pathogenic mycobacteria (M. bovis, M. haemophilum, M. 

kansasii, M. leprae, M. marinum, M. tuberculosis, M. ulcerans) all produce 

pthiocerols and PDIMs.  Recent work has elucidated most of the genetic and 

biochemical steps involved in PDIM synthesis as summarized in Figure 3.1.  

Briefly, pks15-1, a fusion of two of 24 annotated pks genes in Mtb, is responsible 

for synthesis of a p-hydroxy-phenyl alkanoic acid phenolpthioceol precursor 

from p-hydroxy benzoic acid (pHBA).  PpsA-E, members of a type 1 polyketide 

synthase (pks) system, are responsible for synthesis of a pthiocerol or 

phenolphthiocerol core from C22-C24 fatty acyl (phthiocerols) or 17-(p-hydroxy-

phenyl)-heptadecanoyl derivative (phenolphthiocerols).  The enzyme-bound 

phthiocerol and phenopthiocerol precursors are decarboxylatively released, 

reduced by the product of Rv1951c, methylated by the Rv2952 gene product, and 

acylated by PapA5 [151]. 

 As early as 1974 it was known that a PDIM-free strain of H37Rv was 

attenuated in the guinea pig model of infection [152].  Shortly thereafter it was 

shown that in vivo survival of an avirulent Mtb strain was enhanced by coating 

the bacteria with cholesterol oleate and purified PDIM [153].  However, it wasn’t 

until the first use of STM in Mtb, a quarter century later, that the genetics of
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Figure 3.1: Biochemical and Genetic Schematic of the PDIM Biosynthetic 

Pathway.  [151] (A) Addition of phenol and transformations by the polyketide 

synthase Pps family.  (B) Post-Pps modifications generating PDIM. 
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PDIM synthesis were linked directly to virulence (Figure 3.2).  In an STM screen 

of 1,927 H37Rv mutants, Camacho et al (1999) identified attenuated strains with 

insertions within mmpL7, drrC, and within and upstream of fadD26 [96].  fadD26, 

encoding an acyl-CoA synthase, is upstream of and shares an operon with the 

PDIM pps biosynthesis gene cluster and Camacho et al. (2001) later demonstrated 

that fadD26 mutants fail to synthesize PDIM [154].  They were also able to show 

that while the mmpL7 and drrC mutants produce large amounts of PDIM, they 

accumulate it intracellularly, implicating these genes in transmembrane PDIM 

transport.  Similarly,  Cox et al. (1999) identified transposon insertion mutants in 

mmpL7 and in the promoter region of fadD26 in an STM screen of 576 mutants in 

the Erdman laboratory strain [26].  In addition, their screen identified an 

attenuated mutant with a transposon insertion in fadD28, encoding acyl-CoA 

synthase, which is also found in the PDIM synthesis locus [26].  Neither the 

promoter mutant nor the fadD28 mutant strain synthesized PDIM, while the 

mmpL7 mutant accumulated it due to a transport defect [26].  Interestingly, in the 

first report of a direct interaction between a synthase and the transporter of its 

product, PpsE has been shown to interact biochemically with MmpL7; these 

observations suggest that synthesis and transport of PDIM are coupled [155].  

Recently the lipoprotein LppX, also  encoded in the PDIM synthesis locus, was 

shown to be required for transport of PDIM [156]. 

Mutants lacking exported PDIM have altered colony morphology [26], 

and have enhanced membrane permeability as demonstrated by enhanced 

sodium dodecyl sulfate (SDS) sensitivity and chenodeoxycholate uptake [154].  In 

contrast, sensitivity to reactive nitrogen species (RNS) and drug minimal 

inhibitory concentrations (MICs) were unaffected in these mutants, suggesting 
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Figure 3.2: PDIM Synthesis Genetic Locus. [151] 

that these stresses are relatively independent of PDIM mediated cell wall 

permeability.  This interpretation is consistent with the observation that Mtb 

Ag85 mutants, which have increased cell wall permeability due to mycolic acid 

changes, maintain wildtype MIC levels [157].  It should be noted, however, that 

attenuation of a PDIM mutant in murine bone-marrow-derived macrophages 

was abolished by treatment with the NOS2 inhibitor L-NAME.  This observation 

suggests that PDIM deficient strains might be hypersensitive to RNIs generated 

in vivo [158]. 

Mycobacterium leprae produces a phenolic glycolipid (PGL-1) that mediates 

bacterial binding to Schwann cells and macrophages [159].  Phagocytosis of M. 

leprae is promoted by binding of PGL-1 to laminin-2 of Schwann cells [159] and 

complement component 3 of macrophages [160].  Moreover, PGL-1 is associated 

with enhanced survival of M. leprae within macrophages [160].  However, while 

all Mtb strains produce PDIM and pHBA derivatives (pHBADs), very few 

produce PGL-tb [27, 161].  It has recently been demonstrated that a 7 bp deletion 

in pks15-1, resulting in a frameshift, is responsible for the lack of PGL-tb 
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production by H37Rv and most clinical strains of Mtb [162].  Nonetheless, Reed 

et al. (2004) recently demonstrated that the hyperlethality of clinical strain 

HN878 was attributable to its expression of an intact pks15-1 and production of 

PGL-tb [27].  Furthermore, the virulence of H37Rv was enhanced by 

complemention with a plasmid encoding the intact pks15-1 gene.  Most 

intriguingly, the PGL producing strains repressed macrophage pro-inflammatory 

cytokine production in a way that was mimicked in a dose dependent manner by 

administration of purified PGL-tb.  Notably, however, PDIM had no effect on 

cytokine production [27]. 

  The potential importance of glycosylation to the bioactivities of PGLs was 

revealed by the discovery that the binding of M. leprae to Schwann cells is 

mediated by the saccharidyl moiety of PGL-1 [159].  It is also noteworthy that the 

PGL of BCG contains two fewer sugars than H37Rv and has differential effects 

on macrophage TNF-  and IL-6 production [27].  Based on bioinformatic analysis 

of genes in the Mtb complex, Onwueme et al. (2005) hypothesized that the 

glycosyltransferases encoded in the PDIM/PGL locus were involved in 

glycosylation of pHBADs and PGL-tb as depicted in Figure 3.3, suggesting that 

our Rv2958c mutant might be defective in the second glycosylation step [151].  

In a paper published concurrently with our dSTM screen, Perez et al. 

(2004) demonstrated by analysis of targeted gene disruptions that the 

aforementioned hypothesis was essentially correct [161].  Wildtype H37Rv 

accumulates the tri-glycosylated pHBAD (pHBAD II) depicted in Figure 3.4.  As 

expected the Rv2958c mutant accumulated a singly glycosylated pHBAD  

(pHBAD I), and the Rv2962c mutant failed to produce pHBAD entirely. 

Surprisingly, however, the Rv2957 mutant accumulated pHBAD I, but did not
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Figure 3.3: Biochemistry and Genetics of pHBAD and PGLtb Glycosylation. 

[163] 

 

produce a diglycosylated product (Figure 3.4).  Rv2957 and Rv2958c may 

therefore function co-dependently in Mtb to add the final two sugars [161].  

However, when BCG, which lacks a functional Rv2958c, was complemented with 

Rv2958c under the constitutively expressed hsp60 promoter, a diglycosylated 

product (product E) was detected even in the absence of Rv2957 (Figure 3.4).  

This result demonstrates that Rv2958c is capable of independently adding the 

second sugar, suggesting that this intermediate is eliminated from H37Rv 

Rv2957 mutants, perhaps due to toxicity.  As expected, when the H37Rv mutants 

were complemented with pks15-1, the bacteria accumulated PGL-tb with the 

same glycosylation patterns as the pHBAD molecules found in the strains lacking 

PGL [161]. 
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 Figure 3.4: Biochemistry of pHBAD I, pHBAD II, and PGLtb [161] 

 

PDIM Results and Discussion 

A role for PGL-tb in virulence has been well established.  However, it was 

thought that the pHBAD molecules were physiologically unimportant 

precursors, present in all strains of Mtb, that hyperaccumulated in the absence of 

pks15-1.  It was surprising, therefore, that we found an Rv2958c mutant to be 

significantly attenuated in our dSTM screen and by intravenous monotypic retest 

(Figure 1.6) [76]. 

We proceeded to examine the detailed replication kinetics of the Rv2958c 



 48

mutant in wildtype and immunodeficient mice by monotypic aerosol infection.  

Consistent with the relative NOS2 independence of the attenuation that we 

sought in the dSTM screen, the Rv2958c mutant was profoundly attenuated in 

NOS2-/- mice, but replicated fairly well in  IFN- -/- mice (Figure 3.5).  The growth 

kinetics of the bacteria were reflected in the divergent survival curves of the two 

immunodeficient strains of mice (Figure 3.6).  Consistent with our findings 

during IV versus aerosol monotypic infections with Rv2958c, an Erd2958c 

mutant was identified in our lab during an STM screen for Erdman mutants that 

were attenuated in wildtype mice by aerosol infection but not by IV infection.  

However, the phenotype of this Erdman mutant could not be reproduced in a 

monotypic infection experiment (N. Dhar, personal communication). 

We sought to elucidate the role of glycosylation and methylation of the 

pHBADs in virulence of H37Rv by examining the knockout strains Guilhot and 

colleagues had used to characterize the biochemical role of the pHBAD 

glycosyltransferase and methyltransferase genes [161].  To our surprise, we 

found that none of the pHBAD mutants described in their paper demonstrated a 

significant virulence phenotype, including their Rv2958c mutant (Figure 3.7). 

There has been some speculation in the scientific literature that a number 

of Mtb transposon mutants have secondary PDIM mutations that could be 

responsible for cryptic virulence phenotypes that are not due to the transposon 

insertions per se.  Therefore, we had our Rv2958c and Erd2958c mutant strains 

examined for PDIM and pHBAD production.  Consistent with the phenotype 

reported by Perez et al. (2004), our Rv2958c mutant failed to produce pHBAD II 

[161] (C. Guilhot, personal communication).  Surprisingly, however, our mutant 

also failed to produce PDIM. 
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Figure 3.5: Aerosol Infection of Mice with McKinney Lab H37Rv and Rv2958c 

mutant.  (A) WT (C57BL/6), (B) NOS2-/-, and (C) IFN- -/- mice were aerosol-

infected with H37Rv (black squares) or the Rv2958c mutant (grey squares). 

A. 

C. 

B. 
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Figure 3.6: Survival of Mice after Aerosol Infection with McKinney Lab H37Rv 

and Rv2958c mutant.  (A) IFN- -/- and (B) NOS2-/- mice infected with H37Rv 

(black diamonds) and the Rv2958c mutant (grey circles). 

 

We are uncertain about the etiology of the loss of PDIM synthesis in our 

Rv2958c mutant.  However, we observed that Guilhot’s H37Rv strain (CGRv) 

was slightly more virulent in NOS2-/- mice than our H37Rv strain, suggesting 

possible PDIM deficiency in our parent strain (Figure 3.9).  TLCs conducted on 

lipid extracts of our bacterial strains revealed that while our parent strain 

produced PDIM, all four of the mutants recovered from our dSTM screen were 

PDIM deficient.  Moreover, a stock of H37Rv that had become attenuated after 

being subcultured from the parent stock no longer produced PDIM (Figure 3.8). 

 

A. 

B. 
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Figure 3.7: Aerosol Infection of Mice with Guilhot Lab H37Rv and Rv2957, 

Rv2958c, Rv2959c, and Rv2962 Mutants.  (A-D) WT (C57BL/6) and (E-H) NOS2-

/- mice were aerosol-infected with H37Rv (black squares) or the Rv2957, Rv2958c, 

Rv2959c, and Rv2962 mutants (grey triangles), as indicated. 

WT NOS2
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Figure 3.8: PDIM Synthesis in Mutant Strains Derived from H37Rv.  Thin-layer 

chromatogram (TLC) of 14C-propionate labeled lipids extracted from (A) Guilhot 

lab H37Rv, (B) McKinney lab H37Rv parent stock, (C) subcultured McKinney lab 

H37Rv, (D) Rv2958c mutant, (E) Rv0072 mutant, (F) Rv0405 (pks6) mutant, and 

(G) Rv0930 (pstA1) mutant. 
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Figure 3.9: Aerosol Infection of Mice with Guilhot Lab H37Rv versus 

McKinney Lab H37Rv.  (A) Bacterial cfu in the lungs and (B) mouse survival 

after aerosol infection of WT (C57BL/6) mice (diamonds) and NOS2-/- mice 

(squares) with Guilhot lab H37Rv (black) and McKinney lab H37Rv (grey). 

A. 

B. 
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Upon examination of subcultures cloned from the parent strain, it was 

found that approximately 50% of the bacteria in the original parent stock were 

PDIM deficient (PDIM-).  This heterogeneity could explain the virulence 

difference observed between our H37Rv stock and the PDIM proficient (PDIM+) 

H37Rv of Guilhot and colleagues (Figure 3.9). 

Direct comparisons of PDIM+ and PDIM- H37Rv replication and survival 

kinetics were conducted in mice.  The PDIM deficient strain exhibited substantial 

early attenuation consistent with published work on PDIM mutants in wildtype 

mice [26, 158].  Consistent with the phenotype for which we had screened, 

PDIM- bacteria are well controlled by NOS2-/- mice, but are able to replicate 

rapidly in and kill IFN- -/- mice.  Notably, PDIM deficiency also accounts for the 

unexpected IFN-  independent early attenuation of the mutants (Figure 3.10). 

Consistent with the results from the Guilhot lab’s Rv2958c mutant, 

comparison of our Rv2958c mutant with its PDIM deficient parent strain 

revealed no significant attenuation of the mutant (Figure 3.11).  Strikingly, none 

of the other mutants isolated from the dSTM screen appear to be significantly 

attenuated compared to the PDIM- parent (Figure 3.12). 

Comparison of PDIM+ and PDIM- H37Rv in vitro revealed that PDIM- 

bacteria have a substantial in vitro growth advantage (Figure 3.13).  This growth 

advantage is most distinct when cultures are started from a frozen stock and may 

reflect differential recovery from freezing.  This in vitro advantage is sufficient to 

explain how a serially passaged culture can be overtaken by spontaneously 

arising mutants with defects in the 50kb genomic region required for PDIM 

synthesis. 
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Figure 3.10: Aerosol Infection of Mice with McKinney Lab PDIM+ versus 

PDIM- H37Rv. (A) WT (C57BL/6), (B) NOS2-/-, and (C) IFN- -/- mice were 

aerosol-infected with PDIM+ (black squares) and PDIM- (grey triangles) H37Rv. 
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Figure 3.11: Aerosol Infection of Mice with McKinney Lab PDIM- H37Rv 

versus Rv2958c Mutant. (A) WT (C57BL/6), (B) NOS2-/-, and (C) IFN- -/- mice 

were aerosol-infected with PDIM- H37Rv (black squares) and Rv2958c mutant 

(grey triangles).  
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Figure 3.12: Aerosol Infection of Mice with McKinney Lab PDIM- H37Rv, 

Rv0405/pks6 Mutant, and Rv0072 Mutant. (A) WT (C57BL/6), (B) NOS2-/-, and 

(C) IFN- -/- mice were aerosol-infected with PDIM- H37Rv (black squares), 

Rv0405/pks6 mutant (dark grey triangles), and Rv0072 mutant (light grey 

circles). 

 

A. 
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Figure 3.13: Differential in vitro Growth of McKinney Lab PDIM+ and PDIM- 

H37Rv.  PDIM+ (black lines) and PDIM- (grey lines) H37Rv subclones were 

cultured in 7H9 broth and growth was monitored by measuring OD600 of the 

cultures. 

 

Spontaneously arising PDIM deficient strains have been previously 

described in the literature and are probably far more common than reported or 

realized [27, 152].  It is likely that many uncomplemented attenuated mutants 

described in the scientific literature are defective due to cryptic spontaneous loss 

of PDIM production.  Similarly, a number of mutants known to have lost PDIM 

production have had this loss attributed to loci with no confirmed role in PDIM 

synthesis; many of these mutants have not been complemented and may have 

lost PDIM due to occult spontaneous mutations (Table 1).  

It has been suggested that loss of PDIM may result from locus instability 

during genetic manipulation [27].  However, the substantial presence of PDIM 

deficient bacteria in our otherwise PDIM+ parent strain suggests that we are 
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selecting for PDIM deficiency in our mutant screens (and during passaging) as 

opposed to generating PDIM deficiency when creating mutants.   

 

Table 1: Genes with Unproven Roles in PDIM Synthesis. 

Adapted from [151] 

Gene  Parent Strain Complementation  

pks7  H37Rv  No  

pks12  H37Rv  No  

pks10  H37Rv  No  

pks11  H37Rv  No  

fadD28  M. bovis BCG No  

  Mtb103  Partial (15%)  

  Erdman  No  

fadD26  Mtb203  Partial (5%)  

Mb0100/Rv0097* M. bovis  No  
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The Mycobacterial Pst Systems 

BCG vaccinated C57BL/6 mice have long been known to react strongly to 

a protein known as 38-kDa protein, Ag78, Ag5, and pAb.  This protein, identified 

as a homologue of the E. coli pstS gene product, was later shown to be encoded 

by one of three pstS genes in the Mtb genome; this gene was called pstS1 [164]. 

PstS1 was shown to be produced at a higher level in Mtb following phosphate 

starvation [165]. Lefevre et al. (1997) demonstrated that all three PstS proteins 

(PstS1-3) were present on the cell surface and in the culture filtrate of BCG and 

the proteins were upregulated in BCG after phosphate starvation [164].  It has 

also been shown by operon-lacZ fusion that M. smegmatis is capable of regulating 

Mtb pst operon expression in a phosphate dependent manner [166].  It is 

noteworthy that Lefevre et al. (1997) predict by molecular modeling that the 3 

PstS proteins differ in their isoelectric points and in their electrostatic potential at 

the PstA/PstC (MSD) binding interface [164].  This prediction supports the 

hypothesis that the subunits may interact differentially in order to function 

optimally under various environmental conditions. 

The pst gene cluster described by Lefevre et al. (1997) and later confirmed 

in the publication of the Mtb genome is as depicted in Figure 4.1 [164, 167, 168].  

The three operons in the locus each encode an SBD protein (PstS), the first and 

last each encode a pair of MSD proteins (PstA and PstC), and the last operon is 

the only one to encode an NBD protein (PstB).  Elsewhere in the genome is a 

second gene encoding an NBD protein (PhoT).  Interestingly, PhoT is more 

closely related to the Pst NBD proteins of other bacteria than to PstB of Mtb.  The 

multi-copy pst genes suggest redundancy or complexity of function. 

  The M. bovis genome encodes homologues of all of the pst genes present in 
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H37Rv with 100% amino acid similarity and 99% amino acid identity.  M. leprae 

has one intact pst locus with a pstS gene 86% similar to H37Rv pstS3.  The two 

loci with genes homologous to pstS2 and pstS1 consist only of psuedogenes.  M. 

avium and M. smegmatis each encode one pst locus.  M. avium pstS has 88% 

similarity to H37Rv pstS3, and M. smegmatis pstS is 61% similar to pstS3.  Thus it 

seems that the first Mtb pst operon, encoding pstS3, is common to the 

mycobacteria. 

There has been little analysis of regulation of the Pst system and 

phosphate dependent gene regulation in mycobacteria compared to the extensive 

work that has been published on E. coli and Bacillus subtilis.  As described above, 

Mtb PstS proteins seem to be upregulated under phosphate starvation 

conditions.  Phosphate dependent alkaline phosphatase activity has been 

demonstrated in Mycobacterium smegmatis, but not in other mycobacterial species.  

The M. smegmatis alkaline phosphatase has no genetic homologues in Mtb, M. 

avium, M. bovis, or M. leprae [169].  It remains to be determined what phosphate 

responsive and/or Pst regulated genes exists in the slow growing mycobacteria. 

 

Figure 4.1: Mtb pst Locus.  Substrate Binding Domain (SBD) genes (white 

arrows); Membrane Spanning Domain (MSD) genes (black arrows); Nucleotide 

Binding Domain (NBD) genes (grey arrows) A second NBD gene (phoT) is 

located elsewhere in the genome.   
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It should be noted that Mtb pst gene regulation has been detected in 

several microarray experiments that are not directly related to phosphate.  pstB 

and pstS1 were found to be downregulated after in vitro exposure to H2O2
 
[92].  In 

an in vitro nutrient starvation model where bacteria were cultured in phosphate 

buffered saline (PBS), pstA1, pstB, and pstS1 were downregulated 5.32, 2.15, and 

3.21 fold respectively.  It is likely that this gene repression was due to the high 

phosphate concentrations in PBS relative to 7H9 medium; however, it is possible 

that nutrient starvation also contributed to the pst gene repression [170]. 

In E. coli, under nutrient starvation conditions, hyperphosphorylated 

guanine nucleotides, (p)ppGpps, accumulate and bind to RNA polymerase and 

alter expression of over 80 genes mediating what is called the stringent response.  

Mtb encodes a protein called RelMtb, which is responsible for synthesis and 

hydrolysis of (p)ppGpp.  RelMtb mutants express lower levels of pstS1 than 

wildtype bacteria in a 6 hr Tris-buffered saline (TBS) nutrient starvation model 

[171].  An interesting possibility is that RelMtb plays a role in maintaining pst gene 

expression under nutrient starvation conditions, but that this role is overcome 

under conditions of high phosphate as seen in the PBS model discussed above. 

Gene-specific gene expression assays are required to elucidate the 

response of pst genes to various in vitro stress conditions and in vivo 

environments.  One such experiment found that pstS1 is upregulated during 

growth in macrophages [172].  However, it is unclear what intraphagosomal 

environmental condition is responsible for inducing expression of this gene.  It 

should also be noted that in our experiments, we did not observe any pst gene 

upregulation during macrophage infection.  Consistent with our observations, 

microarray studies have not detected pst gene upregulation during Mtb 
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macrophage infection [92].  It is noteworthy that 1 hour and 24 hours after 

macrophage infection phagosomes containing Mtb Mramp mutant bacteria 

actually hyperaccumulate Pi and several divalent cations [173].  These 

observations suggest that Mtb is not phosphate starved ex vivo, but actively 

reduces intraphagosomal Pi concentrations via the Mramp transporter. 

The aforementioned in vitro experiments remind us that it should not be 

assumed that regulation of pst genes is mediated solely by phosphate 

concentrations.  Similarly, it cannot be assumed that the only role of the Pst 

system is in phosphate acquisition.  In an interesting example of an unexpected 

role for the Pst system, Banerjee et al. (1998) found that a ciprofloxacin resistant 

(CIPr) M. smegmatis mutant had a pstB gene duplication, overexpressed the gene, 

and exhibited an increased rate of phosphate uptake [174, 175].  A CIPr mutant 

with the original copy of the pstB gene disrupted by insertion of a Kn cassette 

(CIPrd) had a ciprofloxacin sensitivity and efflux profile intermediate between 

WT and CIPr bacteria [176].  However, a pstB knockout created in the wildtype 

background (WTd) was more sensitive to killing by ciprofloxacin, ofloxacin, and 

sparfloxacin than wildtype [175].  Both the WTd and the CIPrd mutants have 

reduced phosphate uptake capacity compared to wildtype even though the CIPrd 

strain has a second functional pstB [176]. 

Banerjee et al. (1998) interpreted the aforementioned results to mean that 

the Pst transporter is involved in efflux mediated resistance to fluoroquinolones 

[176]. The WTd mutant has no intact pstB gene, explaining its severe drug 

sensitivity and efflux deficiency phenotypes.  However, insertion of a Kn cassette 

into the original pstB gene was likely polar on the downstream genes in the Pst 

transporter locus, explaining the severe disruption of phosphate uptake in both 
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the WTd and CIPrd mutants.  Yet the CIPrd mutant was able to maintain 

considerable ciprofloxacin efflux, suggesting that the remaining PstB nucleotide 

binding domain  might mediate drug efflux via a different ABC transporter.  

While there is no direct evidence of drug efflux through a Pst transporter, it is 

noteworthy that at least one subunit of the transporter seems to contribute to 

drug efflux capacity of M. smegmatis. 

  Consistent with the aforementioned hypothesis, Collins et al. (2003) 

observed a two-fold increased sensitivity of a Mycobacterium bovis phoT mutant to 

ciprofloxacin.  This mutant also had a defect in growth on limiting phosphate 

compared to its parent strain.  This evidence suggests that phoT does encode a 

functional Pst related nucleotide binding domain protein and that, similar to pstB 

in M. smegmatis, it plays a role in ciprofloxacin resistance.  The M. bovis phoT 

mutant is attenuated in the guinea pig and possum models of M. bovis infection, 

but not in the mouse model [177]. 

  Several other recent papers have also examined the role of the Mtb Pst 

system in bacterial virulence.  A pstA1 mutant was one of 13 H37Rv transposon 

mutants to be tested for attenuation in the severe combined immune deficiency 

(SCID) mouse model and was found to be fully virulent in this mouse 

background [87].  In contrast, a TraSH (transposon site hybridization) screen for 

H37Rv mutants that were attenuated in wildtype macrophages uncovered a phoT 

mutant and a pstA1 mutant [178].  More recently, insertion mutants were 

generated in pstS1 and pstS2 and each of these mutants was found to be 

attenuated in mouse lungs [179].  The insertion mutants in pstS1 and pstS2 were 

likely polar on the downstream genes in their respective operons. 

These recent experiments suggest that pstA1, phoT, and each of the second 
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two pstS operons, are important for virulence of Mtb in immunocompetent mice 

and/or macrophages.  It should be noted, however, that none of the Mtb pst 

mutants has been complemented and the in vivo phenotypes of the pstS1 and 

pstS2 mutants are consistent with those seen with spontaneous loss or deliberate 

elimination of PDIM production [178, 179]. 

 

pstA1 Results and Discussion 

Recently we described a differential STM (dSTM) screen through which 

we identified three mutants that were deficient in counter-immune defense 

against an  IFN-  dependent pathway other than NOS2 [76].  This screen 

revealed a fourth mutant that was well controlled by a NOS2-independent, IFN-  

dependent response, but was also attenuated in  IFN- -/- mice.  This mutant had a 

transposon insertion approximately one third of the way into the gene encoding 

pstA1 (Rv0930), membrane spanning domain protein of a putative inorganic 

phosphate ABC transporter (Figure 4.2B). 

ABC transporters are large multi-subunit permeases that function in 

eukaryotic cells as exporters and in prokaryotes as both importers and exporters 

[180]. ABC transporters consist of two membrane spanning domain (MSD) 

proteins and two nucleotide binding domain (NBD) proteins. Prokaryotic ABC 

importers often include an additional high affinity substrate binding domain 

(SBD) subunit that specifies the cargo of the ABC transporter (Figure 4.2B). 

pstA1/Rv0930 is highly homologous to an E. coli gene, pstA, encoding a 

high-affinity inorganic phosphate ABC transporter MSD protein.  pstA1 is the
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Figure 4.2. Identification of pstA1 Mutant: a Component of the Pst Inorganic 

Phosphate Uptake System.  A pstA1 mutant was identified by inverse PCR in 

the counterimmune (cim) mutant dSTM screen.  (A) Organization of the pst locus 

containing the pstA1 gene.  (B) Schematic of the organization of a prokaryotic 

ABC importer.  SBD, substrate binding domain; MSD, membrane spanning 

domain; NBD, nucleotide binding domain. 

 

last open reading frame in what appears to be an operon encoding another MSD 

subunit (Rv0929/pstC2) and an SBD subunit (Rv0928/pstS3) of a putative 

inorganic phosphate transporter. A homologous locus located ~4.2 kb 

downstream of the pstA1 locus encodes another operon homologous to the Pst 

high-affinity phosphate transporter; the order of the genes in the two putative 

operons is conserved (Figure 4.2A) although the homology between the 

corresponding genes is limited (25-64%). The significant, complementable, in 

vitro phenotypes of the pstA1 mutant suggest that the two pstA genes and the two 

operons are not functionally redundant. 

A. 

B. 
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Confirmation of the pstA1 Mutant’s In Vivo Phenotype 

As with the other PDIM deficient mutants isolated from the dSTM screen, 

the in vivo phenotype of the pstA1 mutant was confirmed by tail-vein infection of 

wild-type (C57BL/6), IFN- -/-, and NOS2-/- mice with the individual strain.  The 

pstA1 mutant displayed a significant growth advantage in IFN- -/- mice as 

compared to C57BL/6 mice and was rapidly lethal, as were the other PDIM 

deficient strains.  However, time-to-death for NOS2-/- animals was markedly 

delayed when animals were infected with the pstA1 mutant as compared to the 

other PDIM deficient strains (Figure 4.3H).  These results suggest that pstA1 is 

required for progressive bacterial growth in the presence of an IFN- -dependent 

immune mechanism other than NOS2.  It must be noted, however, that the 

attenuation caused by pstA1 deficiency might be more or less pronounced or 

even completely absent in a PDIM proficient background. 

 

IFN- -Dependent and Independent Attenuation in Aerosol-Infected Mice 

Differential replication of PDIM proficient H37Rv in NOS2-/-
 
and IFN- -/- 

mice is absent by 4 weeks post aerosol infection, eliminating much of the cfu 

difference seen after tail-vein infection (Figures 4.3A, 4.4A). The host-pathogen 

dynamic is influenced by the route of infection; in aerosol-infected mice, NOS2 

appears to account almost entirely for the early IFN-  dependent control of 

PDIM+ H37Rv (Figure 4.4A). In contrast, PDIM- H37Rv demonstrates 

differential growth in WT (C57BL/6), NOS2-/-, and IFN- -/- mice between one 

and four weeks post infection, indicating early action of an IFN-  dependent 

pathway other than NOS2 on PDIM deficient bacteria (Figure 4.4B).  Thus, by 

utilizing a counter-immune (cim) mutant, we have uncovered an otherwise 
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minimal differential phenotype of two immunodeficient mouse strains.  In the 

absence of NOS2, an early IFN-  dependent pathway is able to contain PDIM- 

bacterial infection but not PDIM+ H37Rv. 

 

 

 

Figure 4.3: pstA1 Mutant Phenotype by Monotypic Intravenous Infection. WT 

(C57BL/6), NOS2-/-, and IFN- -/- mice were infected by tail vein injection with 

H37Rv-mixed DIM+/DIM- (A, F), DIM- Rv0072 mutant (B, G), DIM- 

Rv0930/pstA1 mutant (C, H), DIM- Rv2958c mutant (D, I), and DIM- 

Rv0405/pks6 mutant (E, J).  (A-E) Colony forming units (cfu) in the lungs of WT 

(black triangles), NOS2-/- (white circles) and IFN- -/- (black squares) mice over 

time.  (F-J) Percent survival of infected NOS2-/- (white circles) and IFN- -/- (black 

squares) mice over time.  
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Figure 4.4: Aerosol Infection of Mice with PDIM+ versus PDIM- H37Rv. WT 

C57BL/6 (black squares), NOS2-/- (grey diamonds), and IFN- -/- (light grey 

triangles) mice were aerosol-infected with (A) PDIM+ H37Rv and (B) PDIM- 

H37Rv. 
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We examined in detail the in vivo growth of the pstA1 mutant after aerosol 

infection of WT (C57BL/6), NOS2-/-, and IFN- -/- mice.  Consistent with our IV 

infection results, the pstA1 mutant demonstrated a substantial growth advantage 

in and rapidly killed IFN- -/- mice as compared to WT mice (Figure 4.5). Also 

consistent with the IV infection data, the pstA1 mutant displayed no significant 

growth advantage in aerosol-infected NOS2-/- mice compared to WT mice during 

the first 6 weeks of infection and NOS2-/- mice exhibited prolonged ability to 

control replication of pstA1 bacteria (Figure 4.5).  When adjusted for starting cfu, 

it appears that the pstA1 mutant gains less of a growth advantage in IFN- -/- and 

NOS2-/- mice than its parent PDIM deficient H37Rv (Figure 4.6).  However, due 

to differences in starting inoculum, statistical significance is difficult to  establish 

without further experimentation.  Moreover, it remains to be determined how a 

pstA1 mutant would behave in a PDIM proficient background. 

 

Infection of Murine Bone Marrow Derived Macrophages (BMM ) 

To determine whether the phenotype of the pstA1 mutant could be 

replicated ex vivo, we infected murine BMM  with pstA1 deficient bacteria.  

Resting WT (C57BL/6) BMM  permit replication of H37Rv and the pstA1 

mutant with similar kinetics, while the pstA1 mutant fared less well in IFN-  

activated WT BMM  (Figure 4.7).  In contrast, the pstA1 mutant is attenuated in 

both resting and activated NOS2-/- macrophages (Figure 4.8).  This suggests the 

possibility that the IFN-  independent pathway(s) that is responsible for 

restricting growth of pstA1 deficient bacteria at the level of the macrophage is 

upregulated in the absence of NOS2 [74]. 
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Figure 4.5: Aerosol Infection of Mice with the pstA1 Mutant.  WT C57BL/6 

(black squares), NOS2-/- (grey diamonds), and IFN- -/- (light grey triangles) mice 

were aerosol-infected with the pstA1 mutant.  

 

days post infection 
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Figure 4.6: Aerosol Infection of Mice with PDIM- H37Rv versus the PDIM- 

pstA1 Mutant.  (A) WT (C57BL/6), (B) NOS2-/-, and (C) IFN- -/- mice were 

aerosol-infected with PDIM- H37Rv (black squares) or the PDIM- pstA1 mutant 

(grey triangles). 

C. 

B. 

A. 
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Figure 4.7: Replication and Survival of the pstA1 Mutant in Murine BMM  

from WT (C57BL/6) Mice. Intracellular cfu of H37Rv (black squares), pstA1 

mutant (grey diamonds), and complemented pstA1 mutant (light grey triangles) 

per well of (A) resting, or (B) IFN-  activated WT BMM . 
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Figure 4.8: Replication and Survival of the pstA1 Mutant in Murine BMM  

from NOS2-/- Mice. Intracellular cfu of H37Rv (black squares), pstA1 mutant 

(grey diamonds), and complemented pstA1 mutant (light grey triangles) per well 

of (A) resting, or (B) IFN-  activated NOS2-/- BMM . 
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Figure 4.9:  In vitro Growth, Survival, and Pi Uptake of the pstA1 Mutant.  (A) 

Growth of H37Rv (squares) and pstA1 mutant (triangles) in Pi replete 7H9 

medium (filled symbols) and in 7H9 medium prepared without Pi (open 

symbols) assayed by optical density (OD600).  (B) Survival of H37Rv (black 

squares) and pstA1 mutant (grey triangles) over time in 7H9 medium prepared 

without Pi as assayed by plating for colony forming units (cfu). (C) Uptake of 32P-

orthophosphate by H37Rv (black squares) and pstA1 mutant (grey triangles) after 

24 hours of incubation in 7H9 medium prepared without Pi.   

 

The Role of PstA1 in High Affinity Phosphate Uptake 

The pstA1 mutant replicates as well as wildtype H37Rv in vitro in both 

phosphate replete 7H9 medium and in 7H9 prepared without phosphate (Figure 

4.9A).  However, the pstA1 mutant survives less well in 7H9 without phosphate 

than H37Rv (Figure 4.9B).  In addition, after 24 hours of phosphate starvation, 

pstA1 is deficient in its ability to take up  radiolabeled orthophosphate (Figure 

4.9C).  This evidence suggests that PstA1 is an important component of the Mtb 

high affinity Pi uptake system in vitro.  

 

In vitro Stress Sensitivity of the pstA1 Mutant 

Because both phox and NOS2 are known downstream effectors of IFN- , 

the in vitro sensitivity of pstA1 to acidified nitrite and H2O2 were tested.  The 

slight, but significant enhanced sensitivity of pstA1 to acidified nitrite (Figure 

4.10A) was consistent with the slight growth advantage observed in NOS2-/- mice 

82 days post aerosol infection and the shortened time to death of NOS2-/- mice 

compared to wildtype C57BL/6 mice (data not shown). 

The pstA1 mutant is markedly more sensitive to H2O2 stress than wildtype 

H37Rv (Figure 4.10B).  Catalase is a primary mediator of Mtb defense against 



 78

reactive oxygen species (ROS).  Exposure to H2O2 leads to comparable activation 

of catalase activity in both H37Rv and the pstA1 mutant. It does not appear that 

the sensitivity of pstA1 deficient bacteria to H2O2 is due to a defect in catalase 

production or induction (Figure 4.12A).  In fact, preliminary results indicate that 

the pstA1 mutant exhibits accelerated H2O2 consumption in vitro compared to 

H37Rv (Figure 4.12B).   It is possible that this is due to increased permeability, 

consistent with the hypersensitivity of the pstA1 mutant to SDS exposure (Figure 

4.10C). However, pstA1 is not required for global stress resistance, as pstA1 

deficient bacteria do not appear to be hypersensitive to heat or osmotic stress and 

are hyper-resistant to low pH (data not shown, Figure 4.14). Surprisingly, in spite 

of its sensitivity to H2O2 in vitro, the pstA1 mutant fares no better in phox-/- mice 

than in wildtype mice (Figure 4.13). 

H37Rv is sensitized to both H2O2 and SDS by 24 hours of phosphate 

starvation (Figure 4.11). Taken together, these observations suggest that PstA1 

plays a role in phosphate uptake or signaling that is required for an effective 

stress response in vitro and that the in vitro phenotype can be mimicked by 

subjecting H37Rv to phosphate starvation.  

 

Expression of pst Genes In Vitro  

Evidence from various organisms indicates that Pst systems are generally 

upregulated during phosphate starvation as part of the Pho regulon.   The Pst 

system is, in turn, often required for  repression of the Pho regulon under 

conditions of high phosphate.  We used Sybr Green real time quantitative RT-

PCR to examine the regulation of the pstS and pstA genes of Mtb grown under 

phosphate replete and phosphate starved conditions. 
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The first and second operons, encoding PstS3/PstA1 and PstS2, are 

upregulated under phosphate starvation conditions, while expression of the 

genes in the third operon (pstS1 and pstA2) remain unchanged (Figure 4.15).  

Constitutively high expression of pstS3 in the pstA1 mutant suggests that PstA1 

is required for  repression of the first operon under high phosphate conditions.  

Notably phosphate dependent upregulation of pstS2 and pstS3 is partially 

maintained in the pstA1 mutant and is therefore not fully dependent on PstA1.  

In addition pstS2 is highly expressed in both H37Rv and the pstA1 mutant in 

phosphate replete conditions (Figure 4.15).  These data suggest the existence of 

both PstA1 dependent and PstA1 independent modes of pst gene regulation.  
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Figure 4.10: Sensitivity of H37Rv and the pstA1 Mutant to NaNO2, H2O2, and 

SDS.  Percent survival of H37Rv (black bars), the pstA1 mutant (grey bars) and 

the complemented pstA1 mutant (hatched bars) after incubation in 7H9 in the 

presence of (A) acidified 3 mM NaNO2, (B) 1 mM H2O2, (C) 5 % SDS. 
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Figure 4.11:  Sensitivity of Phosphate-Starved H37Rv and pstA1 Mutant to 

H2O2 and SDS.  Percent survival of H37Rv (black bars) and pstA1 mutant (grey 

bars) after incubation for 24 hours in phosphate limited 7H9 followed by 24 

incubation in the presence of (A) 1 mM H2O2 and (B) 0.5 % SDS.   
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Figure 4.12: Catalase Activity and H2O2 Consumption.  (A) Catalase activity of 

cell-free extracts of H37Rv (black bars) and pstA1 mutant (grey bars) incubated 

for 3 hours in 7H9 alone (solid bars) or 7H9 + 0.01 mM H2O2 (hatched bars). (B) 

H2O2 consumption over time of H37Rv (black line) and pstA1 mutant (grey line). 
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Figure 4.13: Aerosol Infection of Wildtype (C57BL/6) and phox-/- Mice with the 

pstA1 Mutant. WT (black squares) and phox-/- (grey triangles) mice were aerosol-

infected with pstA1 mutant bacteria. 

 

Figure 4.14: Sensitivity of H37Rv and pstA1 Mutant to pH 4.5.  Survival (cfu) of 

H37Rv (black bars) and pstA1 mutant (grey bars) during incubation in 7H9 at pH 

4.5. 
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Figure 4.15: Expression of pst Genes in H37Rv and the pstA1 Mutant.  

Quantitative real-time RT-PCR of pstS and pstA mRNAs relative to the sigA 

mRNA (encoding the housekeeping RNA polymerase sigma factor) using Sybr 

Green.  RNA was isolated from H37Rv (black bars) or pstA1 mutant (grey bars) 

after incubation in phosphate replete 7H9 (solid bars) or 7H9 prepared without 

phosphate (hatched bars). 
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pstS Results and Discussion  

An in-frame unmarked deletion of pstS3, the SBD gene that is upstream of 

pstA1, was generated in an effort to further characterize the locus (Figure 4.2).  

Notably, this mutant shares all of the in vitro phenotypes of pstA1 deficient 

bacteria described thus far (except NaNO2 sensitivity), albeit with lesser severity 

(Figures 5.1, 5.2). 

 

Figure 5.1:  Sensitivity of the pstS3 Mutant to in vitro Stresses.  Percent survival 

of H37Rv (black bars) and pstS3 mutant (grey bars) after incubation in 7H9 in the 

presence of (A) 1 mM H2O2, (B) acidified 3 mM NaNO2, (C) 0.5 % SDS, and (D) 0.5 

% SDS after 24 hours of phosphate starvation. 
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Figure 5.2: Resistance of the pstS3 Mutant to pH 4.5.  Bacterial cfu (normalized 

to match starting cfu) of H37Rv (black squares) and pstS3 mutant (grey triangles) 

after incubation in 7H9 at pH 4.5.  

 

Due to the sensitivity of the pstS3 mutant and phosphate starved H37Rv 

to H2O2, expression of oxidative stress genes was examined in each strain in vitro 

in the presence and absence of phosphate.  Both strains exhibited five-fold 

upregulation of ahpC and ahpD in response to growth in the absence of 

phosphate.  However, under both growth conditions, expression of the ahp genes 

was significantly lower in the pstS3 mutant than in H37Rv.  Consistent with the 

catalase activity seen in pstA1 and pstS3 deficient bacteria, there was no 

difference in expression of katG between the mutants and H37Rv (Figure 5.3).  

Taken together, these data suggest that phosphate restriction induces oxidative 

stress, triggering upregulation of ahpC and ahpD, but not katG.  Significantly, 
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preliminary experiments indicate that Mtb accumulates H2O2 during growth on 

limiting phosphate (Figure 5.4). 

 
Figure 5.3: Expression of Oxidative Stress Response Genes in H37Rv and the 

psts3 Mutant Cultured with and without Phosphate.  Quantitative real-time RT-

PCR of the indicated target mRNAs relative to the sigA mRNA using Sybr Green.  

RNA was isolated from H37Rv (black bars) or the pstS3 mutant (grey bars) after 

incubation in phosphate replete 7H9 (solid bars) or 7H9 prepared without 

phosphate (hatched bars). 
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Figure 5.4: H2O2 Generation by H37Rv.  Spectrophotometric assay of H2O2 

production using Amplex Red.  H37Rv incubated for 24 hours in phosphate 

replete 7H9 (solid bars) or 7H9 prepared without phosphate (hatched bars).   
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Multi-gene in-frame unmarked deletion mutants were constructed to 

examine the role of the pstS genes in virulence of Mtb. Surprisingly, none of the 

mutants were attenuated in aerosol-infected mice (Figure 5.5). in contrast to a 

previous report claiming that loss of pstS1 or pstS2 causes attenuation in vivo 

[167].  However, it should be noted that all of our pstS mutants were generated in 

a PDIM deficient background and it is possible that PDIM deficiency masks the 

effects of loss of pstS genes. 

 

 

Figure 5.5: Aerosol Infection of WT (C57BL/6) Mice with PDIM- H37Rv versus 

pstS Mutants. Lung cfu (normalized to match starting inoculum) from WT mice 

infected by aerosol with PDIM- H37Rv (black squares), the pstS3 mutant (red 

diamonds), the pstS3S1 mutant (green triangles), the pstS3S2 mutant (orange 

squares), and the pstS3S1S2 mutant (purple circles). 

WT (C57BL/6) mice 
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dSTM and PDIM 

Mtb encounters a multitude of stresses during infection of a mammalian 

host.  The purpose of this work was to identify pathways utilized by Mtb to 

counter immune-specific stresses and allow for bacterial replication and 

persistence in the mouse model of infection.  A differential signature-tagged 

transposon mutagenesis (dSTM) screen was designed to reveal Mtb mutants that 

were underrepresented after passage through NOS2-/- mice but which were well 

represented after passage through IFN- -/- mice.  It was hypothesized that such 

mutants would be deficient in counter-immune (cim) defenses required for 

survival in the face of IFN-  dependent pathways other than NOS2.  Considering 

the disputed role of NOS2 in control of Mtb infections in humans, such genes 

might be of particular interest as potential drug targets. 

Our preliminary dSTM experiment identified four mutants of interest 

from 96 that were screened, all of which were confirmed by monotypic 

intravenous retest.  Two mutants were not immediately chosen for follow-up.  

One mutation was in the gene for polyketide synthase 6 (pks6), a gene of 

unknown function that is being studied by a number of other laboratories.  A 

second mutant had a transposon insertion in one membrane spanning domain 

(MSD) protein of a putative glutamine ABC transporter.  Considering the fact 

that Mtb has a well characterized and highly active glutamine synthase, it was 

unclear to us why a glutamine transporter would be required for virulence [181]. 

Two mutants were examined in detail for their growth kinetics in and 

lethality to mice after aerosol infection: a glycosyltransferase mutant (Rv2958c) 

and an inorganic phosphate ABC transporter MSD protein mutant (pstA1).  Both 
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mutants were similarly attenuated early in infection of C57BL/6 (wildtype), 

NOS2-/-
 
, and IFN- -/- mice.  Consistent with the phenotype for which they were 

screened, both mutants were capable of rapid growth kinetics in IFN- -/- mice 

and these mice quickly succumbed to infection with the mutant bacteria.  In 

contrast, NOS2-/-
 
mice were able to suppress replication of these mutants for a 

minimum of several months before succumbing. 

  Concurrent with publication of our dSTM screen, C. Guilhot and 

colleagues published biochemical characterization of several glycosyltransferase 

mutants that were deficient in glycosylation of the pHBAD precursor of the 

phenolic glycolipid of Mtb (PGLtb) [161].  One of the mutants contained an 

insertion in Rv2958c, a gene that was shown to be defective for addition of the 

second sugar to the phenol group of the triglycosylated pHBADII and/or the 

intact PGLtb.  As H37Rv is lacking the intact pks15-1 gene, it is unable to form the 

intact PGLtb and this molecule was therefore ruled out as the source of 

attenuation in our Rv2958c mutant.  Our interest focused, therefore, on 

characterization of the pathogenic importance of the three pHBAD 

gycosyltransferases (Rv2958c, Rv2959, and Rv2962c) using the strains generated 

by Guilhot and colleagues, which they generously provided for our experiments.  

Surprisingly, none of these mutants, including their Rv2958c mutant, exhibited a 

significant virulence defect compared to their H37Rv parent strain.  Our H37Rv 

strain produces triglycosylated pHBADII and our Rv2958c mutant has the same 

glycosylation defect as the Guilhot Rv2958c mutant by TLC analysis [182]. 

Preliminary MALDI-TOF analysis done by Guilhot and colleagues 

suggested that our Rv2958c mutant might be deficient in PDIM synthesis [182].  
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We were able to confirm by TLC of 14C-propionate-labeled lipid extracts that our 

Rv2958c mutant was PDIM deficient.  Surprisingly, we found that all four of the 

mutants isolated from the dSTM screen lacked PDIM production, as did an 

attenuated H37Rv strain that was subcultured from the same parent stock.  Upon 

further examination, it was found that approximately 50% of our parent H37Rv 

stock consisted of PDIM deficient bacteria. 

Aerosol infection experiments in mice with clonal PDIM+ and PDIM- 

H37Rv confirmed that PDIM deficiency accounted for the bulk of attenuation we 

observed in the dSTM mutants.  Apparently, PDIM deficiency arises as an occult 

secondary defect in a number of Mtb strains, presumably due to spontaneous 

mutations.  It has been hypothesized that genetic manipulation, especially phage 

mediated transposon mutagenesis, might select for PDIM mutations [27].  

However, the pre-existence of PDIM mutants in high numbers in our parent 

H37Rv stock argues against this hypothesis.  Moreover, we were able to establish 

that PDIM- bacterial cultures have a significant in vitro growth advantage that 

could enable spontaneous mutants to take over a culture with serial passaging.  

It is likely that spontaneously arising PDIM deficient mutants were preferentially 

selected in the dSTM screen due to their severe attenuation in NOS2-/- mice and 

retention of virulence in IFN- -/- mice, the phenotype for which we screened. 

In light of our experience, which is unlikely to be unique, it is important to 

note that a large number of attenuated mutants described in the literature have 

not been complemented and may suffer from the same PDIM synthesis defect as 

ours.  Moreover, there are a number of genes that have been ascribed a role in 

PDIM synthesis based on their lack of PDIM synthesis.  Several of these mutants 

have not been complemented and have no obvious biochemical link to the PDIM 
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biosynthetic pathway.  It is possible that these mutants also have an undetected 

secondary mutation(s) leading to PDIM deficiency. These observations 

underscore the importance of bringing genetic analysis to completion via 

complementation.  The possibility that other virulence-attenuating mutations 

could be selected during in vitro passage of bacteria must also be ruled out by 

complementation analysis. 

 

pstA1 and the pstS Genes 

The pstS mutants generated in this study do not appear to have virulence 

defects in mice when compared to their PDIM deficient parent.  However, in 

spite of the confounding influence of PDIM, the pstA1 mutant appears to be 

attenuated in a PDIM-independent manner.  NOS2 mice survived 50-100% 

longer when infected intravenously with the PDIM-deficient pstA1 mutant 

compared to the other PDIM-deficient strains isolated from the screen.  Results of 

direct competition of the pstA1 mutant and the PDIM- parental strain of H37Rv 

in aerosol-infected mice are pending. 

Notably, the pstA1 mutant exhibits significant ex vivo phenotypes in 

murine bone marrow derived macrophages.  While previous reports suggest that 

PDIM deficiency does not influence virulence in macrophages [26], the pstA1 

mutant is attenuated in IFN-  activated WT macrophages and in both resting and 

activated NOS2-/- macrophages.  Both of these phenotypes are complemented 

with an episomal copy of the pstA1 gene, confirming the role of pstA1 in 

generating the phenotype.  The enhanced attenuation of pstA1 in NOS2-/- 

macrophages compared to WT (C57BL/6) macrophages suggests two 

possibilities: (1) the pstA1 mutant might be sensitive to a non-NOS2 immune 



 95

pathway that is constitutively upregulated in the absence of NOS2, or (2) the 

pstA1 mutant might depend on NOS2 for induction of bacterial responses 

required for intraphagosomal survival.  Each of these hypotheses is consistent 

with published evidence that (1) absence of NOS2 influences macrophage gene 

expression [74, 92], and (2) macrophage immune status influences Mtb gene 

expression [74, 92]. 

Even more striking are the complementable in vitro phenotypes of the 

pstA1 mutant, which is markedly sensitive to H2O2, SDS, and acidified NaNO2 in 

a manner that is mimicked by phosphate starved H37Rv.  The pstS3 deletion 

mutant also exhibits H2O2 and SDS hypersensitivity. Evidence from other 

bacteria indicates that the Pst system has evolved as a phosphate responsive 

environmental sensor that is involved in regulation of the Pho regulon as well as 

other stress response and virulence genes.  Consistent with a role for the Pst 

systems in gene regulation in Mtb, the pstA1 mutant exhibits constitutive 

overexpression of pstS3 while phosphate starvation leads to induction of this 

gene in H37Rv.  Gene expression in the pstA1 mutant appears to mimic gene 

expression in response to phosphate starvation, potentially explaining the similar 

stress sensitivity of the pstA1 mutant and phosphate starved H37Rv. 

It is unclear why phosphate starvation and pst gene disruption lead to 

sensitivity to H2O2, SDS, and acidified NaNO2.  The pstA1 mutant is hyper-

resistant to low pH and normo-sensitive to osmotic stress, arguing against a 

generalized stress response defect.  An in-frame, unmarked, deletion mutant of 

pstS3 exhibits the same stress sensitivity profile as the pstA1 transposon mutant, 

indicating that the complete transporter is required for an appropriate stress 

response in phosphate replete conditions. 
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Notably, H37Rv exhibits five-fold induction of the alkylhydroperoxide 

reductase genes ahpC and ahpD (but not catalase) during growth on limiting 

phosphate as compared to phosphate replete media.  However, the pstS3 mutant 

under-expresses these genes under both phosphate replete and phosphate 

starved growth conditions.  Intriguingly, it has been shown that in E. coli the Ahp 

system is necessary and sufficient for detoxification of endogenously generated 

reactive oxygen species (ROS) during growth on limiting phosphate.  Failure to 

detoxify endogenous ROS generated during aerobic growth due to 

underexpression of ahpC and ahpD may be the cause of the enhanced sensitivity 

of the Mtb pst mutants to exogenous ROS and reactive nitrogen species (RNS). 

Preliminary results indicate that H37Rv accumulates H2O2 during growth on 

limiting phosphate.  Therefore, toxic endogenous ROS production may be the 

reason for upregulation of ahpC and ahpD by H37Rv and decreased survival of 

the pstA1 mutant during phosphate starvation. 

It is interesting to note that an M. smegmatis pstB mutant and an M. bovis 

phoT mutant are hypersensitive to fluoroquinolones [176, 177].  As described 

previously, a role for these Pst NBD proteins in active drug efflux is possible.  

However, fluoroquinolones are known to induce oxidative stress, providing 

another intriguing candidate for the cause of enhanced fluoroquinolone toxicity 

to pst mutants [183, 184].  It remains to be seen whether mutations in the other pst 

subunits of Mtb exhibit this drug sensitivity. 

Suprisingly, preliminary results indicate that the pstA1 mutant exhibits 

accelerated degradation of exogenous H2O2 compared to H37Rv.  This 

observation is confounding, considering that the pstA1 mutant does not 

overexpress katG or catalase activity and the mutant is hypersensitive to the toxic 
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effects of H2O2.  It is possible that the pstA1 mutant has a membrane defect that 

makes it more permeable to H2O2 allowing both enhanced sensitivity and 

accelerated uptake from the medium.  The exquisite sensitivity of the mutant to 

SDS is consistent with this hypothesis. 

The phenotypes of pst mutants generate more questions than answers.  It 

is possible that the complexities of the defects generated by disruption of the Pst 

system are more dynamic and intricate than we currently realize.  It cannot be 

ruled out that the in vitro phenotypes of the pst mutants are linked to their in vivo 

phenotypes in ways that are not obvious.  For example, katA and katB mutants of 

Legionella pneumophila fail to prevent LAMP-1 association with their phagosomes, 

suggesting a role for antioxidant genes in vesicular trafficking [7].  It is also 

possible that the in vitro and in vivo phenotypes of the Mtb pst mutants are 

unrelated.  For example, in spite of its sensitivity to H2O2 in vitro, pstA1 deficient 

bacteria fare no better in phox-/- mice than in WT mice. 

Much work remains to be done in order to elucidate the role of the Mtb 

Pst system in virulence and stress response.  It is clear that PstA1 and PstS3 play 

a role in gene regulation.  It remains to be seen if and how the other Pst subunits 

may contribute to regulatory control.  Microarray comparison of these mutants 

with their wildtype parents will enhance our understanding of their regulatory 

functions.  It is likely that regulatory defects in these mutants are linked to 

virulence defects.  Therefore, expression of genes of interest should be examined 

in macrophages and lung tissues of mice during infection with the mutants and 

with wildtype bacteria. 

Finally, PDIM deficiency causes profound virulence defects during mouse 

infection.  Therefore, it will be essential to generate an in-frame unmarked 
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deletion of pstA1 in a PDIM+ background in order to clarify the role of this gene 

in Mtb virulence.  PDIM proficient mutants of the pstS genes will also provide 

valuable information on the role of the Pst system in phosphate acquisition, 

stress response, and virulence.  
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Bacterial Growth Conditions  

Wildtype Mtb H37Rv and derivative strains were cultured at 37°C in 

Middlebrook 7H9 broth containing 10% OADC (Difco), 0.5% glycerol, and 0.05% 

Tween-80, or on Middlebook 7H10 agar containing 10% ADS (DifCo) and 0.5% 

glycerol unless otherwise noted.  Cycloheximide was used at 10 µg/mL to 

prevent culture contamination as needed.  Kanamycin (25 µg/mL), hygromycin 

(50 µg/mL), sucrose (2.5 %), and X-gal (40 µg/mL) were used for selection on 

agar plates as needed.  Frozen stocks were prepared by growing liquid cultures 

to mid-log phase (~ OD600 0.5) and freezing in aliquots at -80°C. 

 

Mouse Strains  

C57BL/6 wildtype, IFN- -/-, NOS2-/-, and phoxgp91-/- mice were bought 

from Jackson Laboratories.  LRG-47-/- mice were kindly provided by Gregory A. 

Taylor’s laboratory at Duke University and bred at the Rockefeller University’s 

Specific Pathogen Free (SPF) animal facility.  phoxgp91-/- NOS2-/- double knockout 

mice were generously provided by Carl Nathan’s laboratory at Weill Medical 

College and Graduate School of Medical Sciences.  All mice were maintained on 

sterile food and water ad libitum on cob/alpha-dri bedding with the exception of 

the phoxgp91-/- NOS2-/- mice which required maintenance on alpha-dri bedding 

and prophylactic Baytril (4mL/L of 100mg/mL stock) and Sporonox (3 mL/L of 

10 mg/mL stock) in their water supply. 

 

Construction of Bacterial Mutants  

The STM mutant library was generated as described [76, 77].  In-frame 
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unmarked gene deletions were generated by allelic recombination.  Briefly, 500-

1000 bp PCR fragments were generated of the upstream and downstream regions 

of the gene to be deleted.  PCR products were cloned by Topo TA (Invitrogen) 

and confirmed by sequencing.  Upstream fragments were designed with 3’ PacI 

and 5’ AvrII restriction sites and downstream fragments with 3’ AvrII and 5’ AscI 

sites such that they could be stitched together in vector pJG1111b (provided by 

James Gomez, The Rockefeller University).  The resulting vector contained a 

small number of 3’ and 5’ nucleotides from the gene of interest that were fused in 

frame to encode a short peptide.  The backbone of the pJG1111b vector contained 

hygromycin and kanamycin resistance genes as well as lacZ and sacB.  Bacteria 

were transformed with the vector plus insert and single cross-over mutants were 

picked from blue colonies formed on Hyg/Kn agar plates prepared with X-gal.  

Individual colonies were inoculated into 7H9 broth, incubated for several days 

for outgrowth, and plated on X-gal plates with sucrose for counter-selection.  

White colonies were picked for double cross-overs and deletion mutants were 

confirmed by PCR and/or Southern Blot. 

 

Differential Signature Tagged Mutagenesis Screen (dSTM) 

dSTM was performed by Katherine Hisert as described [76, 77].  Briefly, 

C57BL/6 wildtype, IFN- -/-, and NOS2-/- mice were infected by tail-vein infection 

with STM pools.  Mice were sacrificed at specified timepoints and lung 

homogenates were plated for cfu enumeration, tag amplification, and tag 

hybridization. 
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STM Mutant Identification and IV Retest 

Transposon insertion sites of mutants were determined by inverse PCR as 

described [26].  Individual clones were grown up and phenotypically confirmed 

by monotypic IV infection in mice.  Mice were infected by injection of 0.1 mL 

(1x105 to 1x106 cfu) of diluted bacterial stocks and were sacrificed at specified 

timepoints for cfu enumeration.  Bacterial cfu were determined by plating serial 

dilutions of drill or hand homogenized organs on 7H10 agar plates and counting 

colonies after 2-4 weeks incubation at 37°C. 

 

pHBAD Glycosylation and PDIM Production 

pHBAD production in our H37Rv and Rv2958c mutant was analyzed by 

Christophe Guilhot and colleagues at the Institut de Pharmacologie et Biologie 

Structurale, Toulouse using thin layer chromatography (TLC) of extracted and 

purified glycolipids [161]. 

PDIMs were labeled by 24 hour incubation of mid-log 10 mL inkwell 

bottle cultures of Mtb with 10 µCi 14C-propionate, a PDIM precursor.  Bacteria 

were pelleted at 3800 rpm in a Sorvall tabletop centrifuge for 10-15 minutes and 

resuspended in 5 mL 10:1 methanol : 0.3 % NaCl plus 5 mL petroleum ether.  

Suspensions were vortexed vigourously for 3-5 minutes and spun at 1800 rpm in 

a Sorvall tabletop centrifuge for 10 min.  The upper layer, containing the apolar 

lipids, was stored during a re-extraction of lipids from the remaining methanol 

with 5 mL of fresh petroleum ether.  Remaining bacteria in the pooled apolar 

lipid extracts were killed by one hour incubation in an equal volume of added 

chloroform.  Extracts were removed from BSL3 and evaporated down in the 

BSL2 chemical hood overnight.  20-30 µl of extract were spotted on TLC plates 
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and run in 9:1 petroleum ether:diethyl ether solvent.  Labeled PDIM was imaged 

from phosphoimager plates exposed to dried TLC plates overnight. 

 

Aerosol Infections 

Bacterial cultures were grown to mid-log phase before being spun down 

for 15 min at 3800 rpm in a Sorvall tabletop centrifuge.  Bacterial pellets were 

resuspended in PBS with 0.05 % Tween-80 and spun for 5 min at 800 rpm to 

eliminate clumps of bacteria.  The declumped culture suspension was diluted to 

an OD600 of 0.01-0.015 to allow for pulmonary seeding of approximately 50-150 

cfu/mouse.  Mice were infected by exposure to 15 min aerosolization of the 

diluted cultures in a custom-made aerosol exposure chamber from the University 

of Wisconsin, Dept. of Mechanical Engineering. 

Mice were sacrificed at indicated timepoints and organs were isolated for 

enumeration of cfu.  For survival experiments, mice were observed post infection 

and time to death was recorded.  As needed, lungs were isolated from post-

mortem mice for cfu enumeration. 

 

Macrophage Infections 

Mice were sacrificed and bone marrow was flushed from femurs and tibia 

using cold RPMI.  Marrow was passaged through a 5 mL pipette to generate a 

single cell suspension before being filtered through a 2361 cellstrainer (BD 

Falcon) into a 50 mL Falcon tube to remove debris.  The cell suspension was 

brought up to 40 mL in RPMI and spun at 1300 rpm for 8 min in a Sorvall 

tabletop centrifuge.  Cell pellets were resuspended in 2 mL RPMI + 2 mL 3 mM 

NaOAc for 2 min to lyse red blood cells, and brought up to 40 mL in RPMI before 



 104

spinning again.  Cells were then resuspended in 10 mL of BMM  medium 

containing RPMI with 20 % L-cell supernatant, 10 % FBS, and Pen/Strep, 

counted, and seeded into Fisher Petri dishes (catalogue #0875712) at 4x105 

cells/mL in 10 mL/plate.  At day 4 post seeding, 5 mL of medium per plate were 

replaced with fresh pre-warmed BMM  medium. 

At day 6 post seeding, plates were placed at 4°C for 15 minutes before 

macrophages were flushed from the bottom of the plate with a 5 mL serological 

pipette.  Suspended macrophages were collected in 50 mL falcon tubes, spun at 

1300 rpm for 8 min in a Sorvall tabletop centrifuge, resuspended in 10 mL 

BMM  medium with 5 % L-cell supernatant, 5 % FBS, and 5 % Horse Serum, and 

counted.  Macrophages were then seeded into 12 well tissue culture plates at a 

density of 1x105 cells/mL in a volume of 2 mL/well.  As needed, wells were pre-

activated with 100 units of recombinant IFN-  (Beohringer Manheim) 12-16 hours 

prior to bacterial infection. 

On day 7, media was removed from macrophage wells and replaced with 

600 µL of media containing 4x105 cfu/mL bacteria.  After 4 hours incubation, 

wells were washed thrice with PBS to remove free bacteria and fresh media was 

placed on wells.  At timepoints for bacterial harvest, wells were washed once 

with PBS before incubation for several minutes in 0.5 mL of 0.5 % Triton-X for 

macrophage lysis.  Serial dilutions of the lysates were plated on 7H10 agar plates 

and incubated at 37˚C for 3-4 weeks for CFU enumeration. 
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In vitro Stresses 

Survival of bacteria was determined after incubation of bacterial cultures 

at OD600 0.05 for 24 hours in the presence of the following stresses: 1 mM H2O2, 

0.5 % SDS, 3 mM NaNO2 (at pH 5.5), 0.625 mM NaCl.  Acidic 7H9 was titrated to 

a pH of 4.5 or 5.5 as indicated and bacterial survival was measured after 4 and 7 

days incubation.  500 mL of a 100X liquid stock of phosphate free reconstituted 

7H9 base was made with the following ingredients: dH2O, 25 g ammonium 

sulfate, 25 g L-glutamic acid, 5 g sodium citrate, 50 mg pyridoxine, 25 mg biotin, 

2 g ferric ammonium sulfate, 2.5 g magnesium sulfate, 25 mg calcium chloride, 

50 mg zinc sulfate, 50 mg copper sulfate, 61.5 g sodium chloride, 27.5 g 

potassium chloride.  1X phosphate free 7H9 was made with 0.5 % glycerol, 10 % 

ADS, 0.05 % Tween-80, and 50 mM MOPS buffer.  Phosphate was added back to 

phosphate replete control cultures from a 100X Pi stock (0.25 % disodium 

phosphate, 0.1 % monopotassium phosphate in dH2O).  Survival in phosphate 

free media was determined in the presence of various stresses and at various 

timepoints as indicated. 

  

RNA Isolation and Gene Expression  

In vitro grown bacteria were spun down for 10 min at 3800 rpm in a 

Sorvall tabletop centrifuge.  Bacterial pellets were resuspended in 2 mL 

TriReagent (Invitrogen) and transferred to 2 mL O-ring screw cap tubes 

containing ~250 µL silicone beads.  Infected mouse lungs were homogenized 

directly in TriReagent.  TriReagent immersed samples were homogenized with 

silicone beads in a bead-beater for two 45 sec pulses separated by a 1 min period 

of cooling.  RNA isolation from TriReagent was conducted in the BSL2 lab 
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according to the manufacturer’s instructions.  Residual DNA was removed by 

treatment with DNA-free or TurboDNA-free (Invitrogen) as specified by the 

manufacturer. 

In vitro gene expression was quantified by reverse transcription and Sybr 

Green quantitative RT-PCR (qRT-PCR).  In vivo gene expression was determined 

by reverse transcription and Taqman qRT-PCR.  qRT-PCR reactions were done in 

an ABI Prism 7900. 

 

Catalase Activity, H2O2
 
Consumption, and H2O2 Accumulation 

To measure catalase activity, cultures were grown to mid-log phase and 

spun down for 10 min at 3800 rpm in a Sorvall tabletop centrifuge.  Bacterial 

pellets were resuspended in potassium phosphate buffer and bead-beaten (as 

described above for RNA isolation). Protein concentrations in clarified cell-free 

bacterial lysates were quantified using Bradford reagent and diluted to equal 

concentrations.  H2O2 was added to lysates and H2O2 quantities were measured 

over time by spectrophotometrical measurement at OD570 and comparison to an 

H2O2 standard curve. 

To measure H2O2 consumption, mid-log phase cultures were exposed to 

1.5 µM H2O2 and H2O2 levels were measured spectrophotometrically at OD570 

using Amplex Red (Invitrogen) as specified by the manufacturer.  H2O2 

accumulation was measured directly in aliquots of growing cultures using 

Amplex Red.  Quantification was accomplished by comparison to an H2O2 

standard curve.  
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Table A.1: Plasmids 

Name  Use  Features  Source  

pMV261  Complementation constructs  episomal   This study 

pMV361  Complementation constructs  integrating   This study 

pMV306  Complementation constructs  integrating   This study 

TopoTA  cloning PCR products    Invitrogen  

pJG1100 knockout constructs lacZ, KnR HygR, sacB James Gomez (Rockefeller University) 
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Table A.2: Primers for Knockout Constructs 

Name  Forward sequence 1  Reverse sequence 1  Forward sequence 2  Reverse sequence 2  

 pstA1 

k/o 

TTAATTAACAAGC

TCGAGCCGATCGC

GA 

CCTAGGGGGACTC

ACCCGTTGACCTT

CC 

CCTAGGGGCGGCG

ACTCCCGTTATGA 

GGCGCGCCCAGAC

CGTGCTACCGTTC 

 pstS1 

k/o 

TTAATTAAGCTGTT

CCAGCGCCCGAAT

CCG 

CCTAGGAATTTTC

ACGCCATACCTTT

CT 

CCTAGGTCCAGCT

AGCCTCGTTGACC

AC 

GGCGCGCCAGCGA

TGTGATGAGCGATG

AAC 

 pstS1 

*not 

used 

TTAATTAATGGTG

GTCAGCAGCAGTT

GTTGT 

CGACGACGCGGG

GGTAGTCCTAGG 

CCTAGGCGCCCGC

GGTGGTGAAGTTG

TCT 

CGGAGCGATGTGA

TGAGCGATGAACC

GCGCGG 

pstS2 

k/o 

TTAATTAATCGGA

GGCGGCACGGGC

AA 

CCTAGGATTTCTTG

ACCTAGTGAAGGG

A 

CCTAGGGAACTTC

ACGCAACTCCTCT

CG 

GGCGCGCCTCGCG

GTAGTTGAAGATG

CT 

 pstS3 

k/o 

TTAATTAAAAGCT

CCGACGGCCTGAC

CAG 

CCTAGGGAGTTTC

AATTCAGTTCCTA

AC 

CCTAGGATCGCCT

GATCTGAGGTTGA

CG 

GGCGCGCCCCCAA

GTTGCGATTGAGA

AA 

ManT2 

k/o 

TTAATTAATTGCTG

GAAATCCGTCAGC

GA 

CCTAGGGCTTGTTT

CCTCCATACTCGC

C 

CCTAGGCGGCTCG

TCTGCTAAAGGGT

GC 

GGCGCGCCACGAT

CGTCGACAAGGAG

TTTT 
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Table A.3: Primers for Knockout Confirmations 

(-) no product in deletion; (+) different size products in wildtype and deletion 

Name Use Forward Sequence Reverse Sequence 

PstS3 k/o 

probe 

southern probe CGACGAAATGGGAGGTAGTGC AACGCCGCCACGATAGAGG 

pstA1-SP southern probe TGCGAGAAGCCAGCTACG GCGACCACGATGATCAGG 

Rv2958cdel deletion  (-) ACCCTTTAGCAGACGAGC ATTTCTGATCCGCAACTAGC 

pstS1 del deletion  (-)  CCTTTCACGAGAGGTATCC AACAAGAAATTGCCAGAGC 

pstS2 del deletion  (-)  CAGTTTCTCAACAACGAAACC  TTGCATAAACGCCCTTACC 

pstS3 del deletion  (-)  GCCAAACCCTGAACTACACG  ACTTTCCAGCGCCCTTACC 

pstA1 del  deletion  (-)  AACGTTTTTCTTCACCTCG  TTGATGGAGTGGCTGTACC 

PstA1-PP transposon  (-) TCCGCTTACGCTGCGACG ATAACGCCGCCACGATAGAG

G 

Tn o84L-F2 

& R2 

transposon 

primer for k/o  

ATCCGGCTCATCACCAGGTAGG ATCTCTCCGGCTTCACCGATC

C 

pstS3del2 deletion  (+) GCCGAAACGGTAACAAGC ATCATCACCGACAGCACG 

pstS2del2 deletion  (+) CATAAACCTCGCCCATCC ACAACAACTGCTGCTGACC 

pstS1del2 deletion  (+) GACGCAGCATCTTCAACTACC CTATCCCACCCAACCACC 

pstA1 deletion  (+) CTGCCTATCGTCACATCG GGAACCGTCTACGTCACC 
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Table A.4: Primers for Gene Expression Analysis by qRT-PCR 

Name Use Forward Sequence Reverse Sequence RT Sequence 

PhoY2 beacon ATGCGGACCGCCTACC

ATGA 

TGCCTGCAACGCCAGA

AGAA 

TGGCGCTCACAATGGC

TCTG 

PhoY1 beacon TGGCCGGGATAGCGAT

GAAA 

GGATGTTGCAACGCCA

GCAG 

TCGGTGTCGGCGATGA

TCTG 

PhoT beacon ATGCGGTCGCTGATGT

GTCG 

GGTCGATACCGGGGGC

GTAG 

TTCGGCCGCTGAAACA

ACCAT 

 

 

    

PstS1 beacon GGGGCCTCCGACGCCT

ATCT 

GCGGGTCGTCCCAGGT

TTTG 

GGGTTGAGCGCAGCGA

TCTG 

PstS2 beacon ATACCTCGACGGCGCA

TCCA 

ATCGACCCGTCGGTCG

GTCTG 

CCCACCGCAAACGACC

ACTC 

PstS3 beacon CAACGGTGCGTGGGGT

AAGG 

TTGGCCATGGTCAGGT

GCTG 

GTCCCCACCAGCCGAA

GTGA 

PstA1 beacon GCACCGGTTCTGGTGC

TGGT 

GCGTGCTCGGGATTGG

TGAG 

TGGCGACCACGATGAT

CAGG 

UgpA beacon CGGGGTGCCCGACTTT

TACC 

ATTTCGGCCGCCTCCA

ACAG 

CAGCTGCGGCAACAGC

ACTC 

pstC2 Sybr GCCAATTTCTTCACCA

GTACC 

AACACCAGAGCCGTTA

TCG 

  

pknD Sybr TATGAGGCCGAGGACA

CC 

ATCCGTGCTCGAAACA

CC 

  

phoT  Sybr TCTACTACGGGTCATTT

CATGC 

ATCGAGCAGTACGGCA

CC 

  

phoR  Sybr CCCCTACCCTGGTCAT

AACCC 

GGCAGTGTTGTCGTTG

AGTGC 

AATGGCGACGGTGGTC

AAG 

katG Sybr CGTCGGCGGTCACACT

TTC 

CAGCAGGGCTCTTCGT

CAGC 

GGCTGGCAATCTCGGC

TTC 

sodA Sybr AAGCACCACGCCACCT GAGTGTGTCCCAGCCC CTTGTTGCCGAGTGTGT
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ACG AGTG CCC 

sodC Sybr TTCGGGTCACGACGAG

GAG 

GCGGAATGTTGGCAAA

GTTGTC 

GCGTTCTGGCGGAATG

TTG 

oxyS Sybr GGTGAGCGGTTGGTGG

TATG 

CACTGTCTTGGGTCTC

GGGG 

GGTGTGCGGAACGATG

GAC 

ahpC Sybr CAAGTGGCGGGTGGTG

TTC 

CGTTTTGAGGTCGTTGT

GCTGTG 

GAGCATCGGGAAGGG

TAACG 

ahpD Sybr CGACCAGGAACAACTA

TGGGG 

GACACTGCGAAGGAC

CAGAGC 

ACGAGGCAATGCGAG

CACC 

phoP Sybr CAAGTTCCAGGGCTTT

GAAGTCTAC 

CTTTGTCACATAGTCGT

CACCACC 

ATTCGGTGGGCGACAG

CGACAC 

pstA1 Sybr GGGGTGTATCACGCCC

TGTA 

GAAGGTAGTCACCCGC

GACA 

AATAACGCCGCCACG

ATAGA 

pstA2 Sybr GTGGCACGGTGAGTGT

GTTG 

GGCCAAATAGCCGAC

GTAGC 

CGAAAACCCCCAATCG

AAGT 

pstS1 Sybr CTCAACCCCGGCGTGA

AC 

CGGGAAGTCGACGGTG

GT 

CCGATATAGGCCACGC

AGC 

pstS2 Sybr  GCGTGAGCACGCTGAA

TCTT 

TGAGGGGCTTGGATCT

GTGGA 

TGTCGCTGCGGAAGAT

AACG 

pstS3 Sybr ATTTGGTGCCGCCGTA

GGT 

CGACCCACTGGCTTTG

AGTG 

GTTGACAAAGCGGGTC

ATCG 

pstS3-

Taq 

Taqman  CGCTTTGTCAACGTGTT

CGA 

CTGAACTACACGGCCA

ATGGT 

  

pstA1-

Taq 

Taqman  GGGTGTATCACGCCCT

GTAC 

CTTGATGACCGCGGTT

TACCT 

  

pstS1-

Taq  

Taqman  TCAGGGCACCGGTTCT

G 

TCAACATTGGGGCCTC

CG 

  

pstS2-

Taq 

Taqman  GCAGTTCGTCTATGCCT

ACGT 

GACTACAACGCCAAC

GGGT 

  

sigA-

Taq  

Taqman   GGCCCGGTCCGTCAAG ACCATCCCGAAAAGG

AAGACC 
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