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SUMMARY 

This thesis is concerned with the source and characteristics 

of variability in the discharge of impulses by neurons. The neuron 

in which variability was studied is the eccentric cell in the compound 

eye of the horseshoe crab, Limulus polyphemus. 

In Part I a theory is presented which accounts for the varia­

bility in the response of an eccentric cell to light. The main idea 

of this theory is that the source of randomness in the impulse rate 

is "noise" in the generator potential. Another essential aspect of 

the theory is the view that the process which codes the generator 

potential into the impulse rate may be treated as a linear filter. 

These ideas lead directly to Fourier analysis of the fluctua­

tions of the generator potential and fluctuations of the impulse 

rate. Experimental verification of theoretical predictions was ob­

tained by measurement of the fluctuations and calculation of their 

variance spectrum. The variance spectrum (or power spectrum) of the 

impulse rate is shown to be the filtered variance spectrum of the 

generator potential. Another verification of the theory is the finding 

that in many cells the signal-to-noise ratio is constant for responses 

to sinusoidally modulated light, at all modulation frequencies. 

Inhibition from neighboring eccentric cells will have an effect 

on the variability of firing of a given eccentric cell. The effects 

of inhibition are discussed in Part II. 

The reduction in the average impulse rate which is caused by 

inhibition decreases the variance of the impulse rate. However, this 

reduction of the average impulse rate increases the coefficient of 

variation of the impulse rate. 

Inhibitory synaptic noise adds to the low frequency portion of 

the variance spectrum of the impulse rate. This occurs because of the 
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slow time course of the inhibitory synaptic potentials. As a conse­

quence, inhibition decreases the signal-to-noise ratio for low fre­

quency modulated stimuli. 

The net effect of inhibition is to increase the coefficient 

of variation of the impulse rate. This effect is predicted by the 

linear model of the eccentric cell. The same qualitative effect 

is predicted by other theories of neuronal variability, although 

its importance is stressed here for the first time. 
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Chapter 1 

INTRODUCTORY REVIEW 

Variability of neuronal firing has been a subject of interest for 

neurophysiologists. Some degree of randomness in the maintained response 

of a neuron to steady stimulation is characteristic of all sensory neurons 

and neurons of vertebrate and invertebrate central nervous systems. There­

fore, neural variability must affect the accuracy of signal transmission 

between neurons (Burns, 1968). Intermittent and irregular discharge of 

neurons when they are not being stimulated, so-called "spontaneous" acti­

vity, is also a common trait of many neuron types. The ubiquity of a 

random component in neuronal activity has led many investigators to pro­

pose models for neurons and neural networks based on the statistical 

characteristics of the variability in neural discharge. Thus, the study 

of neuronal fluctuations is significant because these fluctuations are 

widespread, may provide clues to the performance of an entire nervous 

system, and may also provide detailed understanding of the function of 

single neurons. 

My dissertation is concerned with the random component of the 

maintained response of a type of sensory neuron, the eccentric cell in 

the eye of the horseshoe crab. An eccentric cell is a good neuron in 

which to study the source and characteristics of variability because 

there already exists a model for the activity of these cells based not 

on the fluctuations in the steady state but rather on the response of 

the neuron to time-varying stimulation. Instead of developing an ad hoc 

model for variability, I am attempting to extend a theory which accounts 

for the dynamic response of the neuron. While in some systems this may 

not be a fruitful approach, it is useful in studying these Limulus visual 

neurons. It focusses attention on the fact that the random component of 

the response is determined by the same mechanisms which affect neuronal 

response to time-varying stimuli. 

The existence of several component mechanisms, and the possibility 

of measurement and control of their effects, is another feature of the 



Limulus eye preparation which enhances its usefulness. For instance, it 

is possible to study how variability arises in a single sensory neuron, 

with the use of appropriate stimuli. By altering stimulus conditions, one 

can also investigate the effects of neural interaction, specifically lateral 

inhibition, on the variability of neural response. Thus, in a single neuron 

type, I have been able to probe two separate causes of neural variability and 

study their characteristics. 

The details of the anatomy and physiology of the compound eye of the 

horseshoe crab have been extensively reviewed recently (Ratliff, 1965; 

Wolbarsht and Yeandle, 1967; Dodge, 1968). Rather than restate these re­

views in summary form, I will refer them to the reader's attention and 

proceed to a more pertinent topic, namely a review of theories for neuronal 

randomness which have been proposed by other investigators. The latter 

topic has also been the subject of recent review (see Moore et al., 1966; 

Harmon and Lewis, 1966). However, consideration of these ideas about 

neuronal function may help to clarify what is different about my approach 

to the subject. 

Models for Neuronal Variability: General Features 

Whatever the specific details of a model for neuronal variability, 

it must possess a minimum number of features just to begin to account for 

the observed phenomena: a mechanism for the repetitive discharge of nerve 

impulses and a mechanism for the introduction of randomness into the dis­

charge. The usual test of adequacy for these stochastic neural models is 

the degree of fit of model predictions with statistical measures of neural 

activity, e.g. the interval histogram. Rarely considered is the fact that 

the detailed characteristics of two models may be different yet they may 

both fit the same neural data. This would not be the case if there were 

sufficient experimental evidence to decide between theories, or if we 

understood the mechanism for repetitive neuronal discharge. In my work 

on Limulus eccentric cells I seek to overcome this difficulty by making 

measurements on the response of the cell to dynamic electrical stimulation. 

This measurement provides a fairly rigorous test of the theory for the 



variability in the response of this cell, a subject discussed extensively 

in Part I. 

Most models for neural variability propose that neurons possess a 

threshold for firing. According to such theories, a neuron discharges when­

ever the membrane potential of the neuron (or some function derived from the 

membrane potential) exceeds the level of the threshold. In these models the 

threshold need not be constant; for example, in the model of Geisler and 

Goldberg (1966) the threshold is a decaying function of time with an infinite 

initial value immediately after discharge of an impulse, and with a steady 

state value. Such a model is designed to account for the effect of refrac­

toriness on the discharge of nerve impulses. Another feature which is 

present in many models is some assumption about a source of random fluc­

tuation in the membrane potential. A common assumption about the source 

of noise is that it is caused by the summation of unit postsynaptic po­

tentials which occur in a random, or quasi-random, manner. An example is 

Stein's so-called "exponential decay" model (Stein, 1967; the term 

"exponential decay" refers to the shape of postsynaptic potentials in 

Stein's theory). Opposed to this view are theories of neural variability 

which propose that variability results, not from random fluctuations of 

membrane potential, but from some degree of randomness within the mecha­

nism which fires impulses (cf. table I in the review of Moore et al. 

(1966)). 

The situation in the field of stochastic neural models is similar, 

in many ways, to the state of theories about neural excitability before 

the work of Hodgkin and Huxley. The "two factor" models of Rashevsky, 

Monnier and Hill were proposed to explain temporal summation of sub­

threshold stimuli, strength-duration curves, and accommodation in the 

axons of peripheral nerve (these theories are discussed and criticized 

in the monograph by Katz, 1939). These models involve a few simple variables 

like threshold, "local potential", and time constants for threshold and 

"local potential". While such theories are more primitive and less widely 

applicable than the later, well known formulation of Hodgkin and Huxley, 

they relate a wide range of observations on excitability to a small set 

of physiologically meaningful, theoretical parameters. 



There is a striking formal similarity between these models for 

excitability in peripheral nerve axons and models for neuronal variability. 

Nevertheless, there are large differences in time scale, and also in the 

introduction of noise sources, in the latter class of models. The simi­

larity exists because the present state of ignorance about details of the 

mechanisms which underlie repetitive neural activity is analogous to the 

ignorance in 1939 concerning the ionic mechanisms underlying neural exci­

tability. The differences in time scale are introduced to account for 

phenomena in the repetitive discharge of impulses which last ten to a 

hundred times longer than the characteristic times of mechanisms under­

lying excitability in peripheral nerve. 

Before concluding this overview of neuronal models, I will mention 

one idea about neuronal randomness which may be particularly significant. 

As mentioned before, several theorists propose that the ultimate source 

of fluctuations in neuronal activity is the random occurrence of synaptic 

potentials. These certainly cause the membrane potential of a neuron to 

vary in a more or less random manner. The random component of the membrane 

potential causes most of the variability of neuronal discharge, according 

to this view. My observations on Limulus eccentric cells support this 

idea. In eccentric cells, discrete potentials sum together to produce 

a fluctuating membrane potential. The discrete potentials are probably 

not synaptic in origin, but their random occurrence and temporal summation 

strongly resemble the process which causes "synaptic noise". As shown in 

Part I, there is good evidence that the fluctuations in membrane potential, 

caused by the summation of these randomly occurring discrete events, does 

cause the variability in the discharge of the eccentric cell. 

The view of neuronal randomness as resulting from "synaptic noise" 

is significant for several reasons. First, it places the theory of neu­

ronal variability within the larger framework of the theory of shot noise 

(shot noise is any stochastic process caused by superposition of randomly 

occurring discrete events, e.g. the voltage fluctuation in vacuum tubes; 



cf. Rice, 1944). Second, it assigns an important role to the character­

istics of unit synaptic potentials -- the statistics of their arrival, 

their magnitude and time course. The importance of "synaptic noise" also 

implies that variability is designed into a nervous system, because pulse 

frequency coding, convergence, and synaptic transmission have as a con­

sequence the production of some amount of "synaptic noise". 

Models for Neuronal Variability: Examples 

This section is a discussion of specific neuronal models which 

illustrate the general points mentioned in the previous section. The 

reader may want to skip this material and proceed directly to the pre­

sentation of my own research in Part I. 

Gerstein-Mandelbrot Model. The Gerstein-Mandelbrot model is one 

representative of that class of models which propose that "synaptic noise" 

causes neuronal variability (Gerstein and Mandelbrot, 1964). Actually, 

in their paper Gerstein and Mandelbrot present a few different models, 

but the one which they stress is their one-dimensional random walk model 

for a neuron. The other formulations they present are either too simple, 

being purely descriptive, or are unproductively complex considering the 

data they are seeking to explain. 

The one dimensional random walk model includes the following 

assumptions. The electrical state of a neuron can be specified by a 

number, the state point. The state point moves from one value, the 

resting potential, to another value, the threshold. When the state point 

reaches the threshold an impulse is discharged. An excitatory or inhi­

bitory synaptic potential moves the state point one step toward or away 

from threshold, respectively. After it reaches threshold the state point 

returns to the resting potential. In addition, the Gerstein-Mandelbrot 

model includes the assumption that each of the steps produced by a synaptic 

potential is small compared to the difference between threshold and resting 

potential; this allows treatment of the random walk as a diffusion process. 

Gerstein and Mandelbrot devote some effort to the case in which the 



rates of excitatory and inhibitory steps are equal. This is because, in 

this case, the impulse intervals possess a stable density function, i.e. 

a probability density function which does not change shape when convolved 

with itself. This may be a point of mathematical significance, but one 

with marginal physiological significance, since the particular stable dis­

tribution derived in this manner has infinite moments of all orders. The 

more realistic case is the one in which there is net excitation, so that the 

state point drifts towards threshold, on the average. This random walk 

with drift does not generate a stable interval density function (as defined 

above), but does provide a density function with finite moments which can 

be fit to physiological data. As in the random walk without drift, the 

interval density function is calculated in the diffusion limit in which 

the synaptic potentials are small compared to the difference between 

resting potential and threshold. 

The Gerstein-Mandelbrot model yields an interval density function 

which does fit interval histograms obtained from neurons in the cat auditory 

pathway. The density function is characterized by two parameters: one 

corresponds to the difference- between resting potential and threshold, the 

other is a measure of the net rate of drift of the state point, i.e. the 

difference between the rates of arrival of excitatory unit potentials and 

inhibitory unit potentials. 

Some aspects of the Gerstein-Mandelbrot model have aroused criticism. 

For instance, Stevens (1964) criticized the allegedly unphysiological 

assumption in the model that the effect of a synaptic potential could persist 

indefinitely long while the state point returned instantaneously to the 

resting potential after reaching threshold. This objection is not so 

serious. It can be answered with the argument that the state point is not 

a measure of the membrane potential but rather corresponds to a quantity 

like the electric charge transported through the membrane. In other words 

the state point might be the integral of electric current flowing through 

the membrane. The latter idea corresponds to the model of impulse initiation 



I employ to explain eccentric cell firing; it is discussed in the Theoretical 

Background chapters of Parts I and II. 

A limitation of the Gerstein-Mandelbrot model is its restriction 

to the case of small synaptic potentials relative to threshold. In the 

case of larger synaptic potential/threshold ratios, the random walk model 

for purely excitatory input becomes simply a scaler for Poisson pulses 

(Barlow and Levick, 1969). The interval density function for a Poisson 

scaler is the gamma density function, a two parameter distribution of 

the formi/-je with a time constant X set by the rate of arrival of exci­

tatory potentials, and a numerical parameter S equal to the ratio of the 

number of input synaptic potentials to the number of impulses fired. The 

extension of the Gerstein-Mandelbrot model to relatively larger synaptic 

potentials can also include the pooling models of ten Hoopen (1968) and 

Bishop et al. (1964), although in these latter models the statistics of 

synaptic potential arrivals are not Poisson statistics as they are for the 

Gerstein-Mandelbrot model or the Poisson scaler. Instead, the arrival 

rates are rather complex superpositions of many periodic processes or 

periodic processes superposed with Poisson processes. Nevertheless, 

although rather different in detail, they share with the Gerstein-

Mandelbrot model a common attitude to the sources of neuronal variability. 

All these models assign a major role to "synaptic noise" as a deter­

minant of neuronal variability. 

The Geisler-Goldberg Model. This model is a modern version of 

models previously proposed by others, one with a noisy membrane potential 

and a time dependent threshold. The membrane potential is assumed to 

be a Gaussian process (of undetermined origin) with a bandwidth of 500 

hz, a fixed variance, and a non-zero (but adjustable) average value. The 

threshold is a complicated function of time, being infinite after an im­

pulse is discharged, and decaying to zero. At long times the decay of 

the threshold to zero is approximately exponential. Other very similar 

models propose that the threshold has the noise in it, and the membrane 

potential is constant (for instance, cf. Verveen and Derksen, 1961). The 



8 

predictions of Verveen and Derksen resemble those of Geisler and Goldberg, 

but would have different physiological implications since Verveen's model 

puts the noise in the impulse mechanism while Geisler places it in the 

membrane potential. Both are adequate models for the statistical cha­

racteristics they seek to explain. 

A very significant finding from this type of model is that a 

single parameter is sufficient to describe the variance and shape of 

the interval density function over all states of excitatory drive, for 

some sensory neurons. Geisler and Goldberg show this by fitting the para­

meters of the model to the statistics of the response to one stimulus, and 

then merely varying the constant value of the membrane potential to fit 

the statistics of responses to all other stimuli. They perform this for 

neurons of the superior olivary complex (third or fourth order auditory 

neurons). They can also match the relation between standard deviation 

of impulse intervals and mean interval, for data from chemoreceptor 

neurons and muscle spindle afferents, with adjustment of the same para­

meter, the average level of the membrane potential. While a very important 

finding, such a model would not be adequate to explain the behavior of 

variability in all sensory neurons. For instance, in the Limulus eccentric 

cell, among other features which differ from the predictions of this 

model, the standard deviation of its membrane potential depends on the 

intensity of the light stimulus (Dodge, Knight and Toyoda, 1968b). 

Therefore, in these cells, not just the mean level of the membrane 

potential changes with intensity of stimulus. Also, as shown exten­

sively in Part I, the spectral character of the noise in the model of 

Geisler and Goldberg is not correct for eccentric cells and the effect 

of the difference in the spectrum is not negligible. Nevertheless, the 

model of Geisler and Goldberg is widely applicable to other sensory neurons. 

Geisler and Goldberg also extend their model to explain negative 

serial correlation of intervals. They do this by introducing into their 

model a prolonged hyperpolarization of the membrane following each impulse 

discharge. The resemblance of this feature in their extended model to 

self-inhibition in the Limulus eccentric cell model is very striking; I 

will return to this topic in the Discussion of Part I. 



Calvin-Stevens Model. Although it is not very different from the 

previously mentioned theories of neuronal variability, the model of Calvin 

and Stevens (1968) is important because of its correlation with detailed 

intracellular measurements of neuronal properties. Calvin and Stevens 

recorded the membrane potential of motoneurons in the spinal cord of the 

cat. They observed and measured the statistics of spontaneous or elec­

trically driven discharge. Then they attempted to explain the observed 

impulse interval variability in terms of the properties of the recorded 

"synaptic noise" and observed properties of the impulse firing mechanism. 

The Calvin-Stevens model is basically the same as a model Stevens 

suggested as a more physiological replacement for the Gerstein-Mandelbrot 

model (Stevens, 1964). In Stevens' formulation one part of the membrane 

potential is the integral of the constant component of the excitatory 

current. This accounts for the ramp-like climb of the membrane potential 

to the firing threshold. Added to the ramp component of the membrane 

potential is the "synaptic noise" component of the excitatory current. 

Calvin and Stevens do not explicitly attempt to justify the completely 

different treatment of the constant and noisy components of input to the 

neuron, although it is not clear why they should be different. 

In the experiments of Calvin and Stevens, the cats were spinal or 

anesthetized. With these conditions, the "synaptic noise" in motoneurons 

was a Gaussian process with a bandwidth of approximately 40 hz. Different 

experimental conditions might easily change the statistics of the "synaptic 

noise". 

The Calvin-Stevens model adequately predicts the shape (Gaussian) 

and parameters (mean, variance) of the interval distribution functions 

in most cases. This is a rigorous fit of prediction to data, to an ex­

tent that the previously mentioned models could not reach. The reason 

is the greater detail of experimental measurement rather than any novelty 

in the theoretical method. 

Junge-Moore Model. Junge and Moore (1966) also have tried to 

augment theories of neuronal variability with the greater detail of intra­

cellular measurement. They recorded the fluctuations of impulse firing in 
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Aplysia giant neurons and correlated the observations with a new model of 

variability. Although this model includes the standard features of a 

membrane potential climbing to an asymptotic level, and causing an impulse 

to fire when it reaches a threshold level, it includes a novel source of 

randomness which sets it apart from the other theories of neuronal varia­

bility. Junge and Moore propose that the important feature in variability 

is the discrete resetting of the asymptotic level towards which the mem­

brane climbs after each action potential. They propose that the reset 

value is a random variable, and that it is reset independently of the 

previous history of the neuron. They base this model on observations from 

some Aplysia neurons. By adjustment of the statistics of the reset value 

they can fit the interval histograms measured in several Aplysia giant 

neurons. 

The Junge-Moore model places the source of neuronal variability 

in the resetting of the membrane potential; this emphasizes the role of 

the impulse firing mechanism rather than membrane potential fluctuations. 

The emphasis on the impulse firing mechanism may be appropriate for the 

Aplysia neurons they studied, since their published records reveal negli­

gible fluctuations of the membrane potential. However, such a theory 

probably is not appropriate for all Aplysia neurons (cf. records of 

Aplysia neurons in Bullock and Horridge, 1965) or for many other neuron 

types. To take just one example, it certainly is not pertinent to 

mammalian motoneurons, as Calvin and Stevens (1968) have shown. 

The introduction of variability at each impulse in the Junge-

Moore model suggests another model for neuronal variability as an ex­

tension of the theory of Junge and Moore. This would be a discrete Markov 

process, where the length of each interval influenced the probable length 

of the next interval, independent of the previous history of the neuron. 

Such a model, also known as a discrete first-order autoregressive process 

(Jenkins and Watts, 1968, p. 162) would predict a set of monotonically 

decreasing positive correlation-coefficients if intervals were positively 

correlated, and a set of alternately negative and positive correlation 

coefficients, decreasing in magnitude, if adjacent intervals were nega­

tively correlated. This would be the case because, for such a process, 

the nth correlation coefficient would be the first correlation coefficient 
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raised to the nth power. The interval histogram could be fit as in the model 

of Junge and Moore, by choice of a distribution for the asymptotic value of 

the membrane potential. 

The autoregressive process has been proposed, but not shown to be 

adequate to explain neural variability in any neuron type (Wall«£e, 1968); 

it is mentioned again in the Discussion of Part I. Another weakness of 

this model is that it is purely phenomenological -- no mechanism has been 

suggested to account for the correlation of adjacent intervals independent 

of all others. The same weakness applies to the Junge-Moore model and, to 

some extent, to models of the Geisler-Goldberg type, since these models 

propose sources of variability which are not explained by any mechanism 

intrinsic to the model. 



PART I 

VARIABILITY IN A SINGLE SENSORY NEURON, 

THE ECCENTRIC CELL 
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PART I 

INTRODUCTION 

Randomness is an outstanding aspect of the activity of many neurons. 

Neurons in central nervous systems of vertebrates and invertebrates often 

fire impulses spontaneously and, to some extent, randomly. When they are 

driven by sensory nerves or other cells of the central nervous system, 

their activity remains variable, although it reflects net average exci­

tation or inhibition. Fluctuations in activity or responsiveness are not 

confined to cells in the central nervous system. Numerous investigators 

have studied fluctuations in the maintained response of primary sensory 

neurons -- cells which do not receive convergent input from other neurons 

(frog muscle spindle, Buller et al., 1953; Limulus visual cells, Ratliff 

et al., 1968; cat auditory nerve, Kiang, 1965; mammalian cutaneous 

mechanoreceptors, Werner and Mountcastle, 1965; cat muscle spindle, 

Stein and Matthews, 1965; cat chemoreceptors, Biscoe and Taylor, 1963). 

The sources of variability in primary sensory nerve cells may not be the 

same, in detail, as those causing variability in the firing of neurons 

in the central nervous system. However, because such neurons are more 

susceptible to experimental control, they are more suitable for quanti­

tative study than the richly interconnected central neurons. It is 

widely believed that fluctuations of a neuron's membrane potential 

causes variability in its impulse firing. In sensory neurons the source 

of fluctuation in the membrane potential is probably not the same as it 

is in central neurons. However, the coding of stochastic voltage into 

fluctuating impulse firing can be studied in peripheral neurons and the 

results generalized to nerve cells of the central nervous system where 

the sources of voltage fluctuations are different but the coding itself 

is likely to be similar. 

I have studied the way randomness arises in the maintained res­

ponse to light of eccentric cells in the compound eye of the horseshoe 

crab. The axons of the eccentric cells gather to form the Limulus optic 

nerve. As far as we know, these are the only cells in the compound eye 
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which respond to light by firing nerve impulses (Waterman and Wiersma, 

1954; Purple, 1964; Behrens and Wulff, 1965). Hartline and his colleagues 

have attempted to understand the physiology of these cells in quantitative 

terms: the intensity-response function, dark adaptation as a function of 

time, the steady state interaction of excitation and lateral inhibition, 

the generator potential underlying nerve impulse firing, and the transient 

responses to increments of excitation or inhibition (Hartline and Graham, 

1932; Hartline and McDonald, 1947; Hartline and Ratliff, 1957; Hartline, 

Wagner and MacNichol, 1952; Lange, Hartline and Ratliff, 1965). Intrinsic 

to this approach is a desire to understand cellular mechanisms which are 

the basis for visual sensitivity and the shaping effects of inhibition. 

Recently, study of the frequency response to modulated stimuli 

has provided a more detailed picture of cellular mechanisms in the Limulus 

eye (Dodge, Knight and Toyoda, 1968b). Particularly relevant to the 

present study is the use of linear systems analysis by Dodge et al. to 

study the impulse firing mechanism of the eccentric cell. 

Because the impulse firing mechanism can be treated as a linear 

filter for modulated stimuli, I have used the theory for the linear 

filtering of stochastic processes to explain steady state fluctuations 

in the impulse rate. I wanted to show that the randomness in the generator 

potential, ultimately the result of randomness in photon arrival and 

absorption, was responsible for the impulse rate fluctuations. This 

hypothesis was based on the experiments of Ratliff, Hartline and Lange 

(1968). Their work implied that the impulse firing mechanism itself 

does not add much randomness to the firing rate. They found that the 

variance in the steady state firing rate in response to electrical sti­

mulation is about an order of magnitude smaller than the variance of the 

response to stimulation by light. 

Part I of this thesis deals with maintained responses to illumi­

nation of single ommatidia. This enables the study of effects due to 

excitation alone. In Part II I will report what happens to variability 

in nerve firing when light stimuli excite many interacting nerve cells in 
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the Limulus eye. Under the latter, more complicated conditions, lateral 

inhibition produces changes in the pattern of firing rate fluctuations. 

However, in order to understand the effects of interaction, you must 

consider first the simpler problem of purely excitatory stimuli. 
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Chapter 2 

EXPERIMENTAL METHODS: MEASUREMENTS 

The experiments required diverse electrophysiological techniques 

and a significant amount of data processing. I used methods of nerve 

fiber recording and intracellular recording from cells in the horseshoe 

crab compound eye, techniques of measurement used by others who were 

interested in different questions (for example, Ratliff, Hartline and 

Miller, 1963; Fuortes, 1959; Lange, 1965; Dodge, Knight and Toyoda, 

1968a; Ratliff, Hartline and Lange, 1968). 

The study of fluctuations in firing rate required innovations in 

analysis of the data -- specifically, relating the voltage input noise 

to the variations in neuronal firing rate. There were also the usual 

problems of statistical analysis: departures from stationarity, and 

slow trends in the data (discussed in Appendix I). In this chapter I 

will discuss the experimental methods, and then data processing. In 

the next chapter I will present the methods of analysis with some 

reference to the technique of spectral analysis applied to random 

processes. 

The Biological Preparation 

This work was done on excised lateral eyes of the horseshoe crab 

Limulus polyphemus. For intracellular recording, the eye was sliced in 

half with a razor blade. The slice was parallel to the long axis of the 

eye and perpendicular to the surface of the eye. The sliced eye formed 

the fourth wall of a three sided plexiglass chamber; it was sealed into 

place with beeswax. The chamber was filled with artificial sea water. 

For experiments on generator potentials, the impulse firing mechanism 

was poisoned by adding 10 M tetrodotoxin to the sea water. 

The fundamental experiment of this dissertation was performed 

with a micropipette as intracellular recording probe and current stimu­

lator. The methods of this experiment were pioneered by Hartline, Wagner 
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and MacNichol (1952) and MacNichol (1956). Micropipettes were made from 

glass capillary tubing which had been heated to melting and then pulled 

strongly to produce a fine point of diameter 500 nm. more or less. 

Micropipettes were filled with a conducting solution, 3 molar potassium 

chloride in most of these experiments. Such micropipettes were high 

impedance devices; they had a resistance of 10-20 Megohms measured in 

sea water. 

Signals were passed from the micropipette probe to a unity gain 
negative capacitance bridge amplifier designed by Mr. John Hervey and 
built by the Rockefeller University Electronics Shop. This amplifier 
has been described by Purple (1964). Some of its features were parti­
cularly useful in these experiments. First, the intrinsic noise of 
the amplifier is low, about forty microvolts r.m.s. noise with short-
circuited input and 5 KC bandwidth. Second, the bridge circuit allows 
resistance measurement and current stimulation with imposed external 
waveforms. Third, the amplifier itself can act as a constant current 
source. Finally, calibration and bucking voltage controls make it 
convenient for accurate resting membrane potential and generator po­
tential measurements. 

Nerve fiber recording was done using standard techniques. 

Bundles of nerve fibers were teased from the Limulus optic nerve with 

glass needles and dissected until a single active fiber was present on 

the recording electrode. A preamplifier (Tektronix 122) provided a gain 

of one thousand. In the experiments on nerve fiber responses, the eye 

was removed from the animal with one to five centimeters of optic nerve, 

and mounted as above. 

Action potentials and/or slow potentials were fed to a Tektronix 

502A oscilloscope. The vertical signal output from the oscilloscope was 

monitored on a loudspeaker. The output of the oscilloscope was fed into 

a CDC 160-A digital computer in a manner described below. When on-line 

acquisition was impractical, impulses and slow potentials were recorded 

on a 7-channel FM tape recorder (Sanborn Division, Hewlett Packard, 

Model 2000). At a later time tape recorded data were played back into 

the oscilloscope and passed to the computer. 
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Stimulus and Stimulus Control 

Two sets of stimulus conditions were established. First, different 

time-varying waveforms were used to modulate the light intensity illumina­

ting an eccentric cell or the current that was directly driving the cell. 

Second, under conditions of steady stimulation the interval between stimuli 

had to be the same throughout the experiment. The second stimulus regime 

was required because statistical measures were obtained by averaging 

several responses to identical stimuli. The responses would be statis­

tically the same only if the cell were in the same adaptation state at 

the onset of each stimulus presentation. In addition, the computer re­

quired signals to mark the start of an experimental run and its termina­

tion, and the computer also needed a clock so that it could count clock 

cycles between nerve impulses. 

In order to do these things I used an experimental set-up 
developed by and for Dr. Frederick Dodge for previous experiments. The 
stimulus waveform was generated by adding together constant voltages with 
time-varying voltages generated by a waveform generator (Hewlett-Packard 
3300A or, Wavetek). The various stimulus options are shown in Figure 2-1. 
For current stimulation the summed voltage was led directly to the bridge 
stimulus input of the bridge amplifier. For light stimulation, the 
summed voltage was first fed to a voltage-to-frequency converter with 
center frequency adjusted to 400 hz. 

The output of the voltage-to-frequency converter triggered a 
pulse generator (Tektronix 161) which then triggered a glow modulator 
driver, designed by Mr. Michael Rosetto of the Rockefeller University 
Electronics Shop. The glow modulator driver provided pulses of constant 
current, adjustable from 8 to 30 ma., to drive a glow modulator tube 
(Sylvania R1131C). Since the color of the glow tube is set by the 
current, driving it with pulse frequency modulation of constant current 
pulses enables you to obtain large modulation depths without color 
changes in the tube output. 

The light stimulus was brought to single ommatidia of the com­

pound eye via light guides. The light guides (American Optical Co.) 

were made from glass fibers with a diameter of 30 , strengthened and 

protected by hypodermic tubing. The use of light guides for isolated 

optical stimulation of single photoreceptors was developed by Robert 

Barlow (1966, 1969). The single light guide was mounted on a mechanical 
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Control Box 

Constant 
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Electronic 
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Stimulus options 

I. Modulated light 

2. Steady light, 
modulated current 

3. Modulated current 
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Figure 2-1. Control Box. This device controls the type of stimulus 
applied to the neuron. Two electronic switches, numbered 1~and 2, 
apply a constant voltage and a sine (or some other modulated input) 
to other points in the circuit. An external switch allows selections 
of three stimulus options, numbered 1, 2, 3 in the figure. In position 
1, the control box will cause the glow modulator tube to produce modu­
lated light. In switch position 2, the glow tube will produce steady 
light, while a sinusoidal current is passed to the bridge amplifier and 
thence to the neuron through an intracellular micropipette. In switch 
position 3, the current led to the pipette is the sum of the constant 
voltage and the sinusoidal voltage, and no light stimulus is produced. 
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pantagraph manipulator (R. Barlow, 1969) which enabled accurate location 

of the optimal stimulus direction and position. 

In some experiments a steady light and a sinusoidal current were 

applied simultaneously to the same cell in order to modulate the activity 

of the cell around a level of excitation produced by the natural stimulus. 

For such experiments a constant voltage was passed through the voltage-

to-frequency converter and via the pathway described above to the glow 

modulator light source. A time-varying voltage, typically a sine-wave, 

was led to the bridge amplifier stimulus input (cf. Figure 2-1), and 

thence to the microelectrode. 

In order to control the timing of experimental runs and provide 

electronic gating and clock signals for on-line computer data acquisition, 

I used a programmed timer built by Mr. Willard Friedman and Mr. Norman 

Milkman in the Rockefeller University Electronics Laboratory. This 

device is a modified version of the programmed timer which was constructed 

by Milkman and the Rockefeller University Electronics Laboratory for 

Hartline's laboratory (Lange, 1965; Schoenfeld and Milkman, 1964). The 

programmed timer provided an input/output (I/O) gate signal which is used 

to alert the computer. The I/O gate was programmable, i.e. its time of 

onset and duration could be determined by the experimenter. The timer 

also provided the 5 KC clock rate the computer used in the data acqui­

sition program. 

Seven additional programmable gates were available in the 
programmed timer to turn stimuli on and off in a prescribed sequence. 
The I/O gate and stimulus gates were each controlled by two three-
decade switches which determined the beginning and end of each parti­
cular gate. Each gate was assigned a set of output lines by means of 
a matrix plugboard (like the one discussed in Schoenfeld and Milkman, 
1964). 

An example of gate length control and output line assignments 
is illustrated in Figure 2-2. Here Gate 1 is eighteen seconds long, 
begins two seconds after the I/O Gate and terminates at the same time 
as the I/O Gate. Gates 2 through 7 are unused. Gate 1 is connected 
to output lines 3 and 5 through the plugboard so both these output lines 
are on for ten seconds starting two seconds after the I/O Gate. 
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Figure 2-2. Programmed Timer. (a) The three decade switches control 
onset and ending of the gate signals connected to those switches. The 
numbers are in terms of the unit clock cycle, which is set by the 
"clock rate" switch. The programmable gates control output lines by 
means of linkage through the matrix plugboard. As indicated in the 
figure, output lines 3 and 5 go on and off at the times indicated for 
GATE 1, because they are connected to it through the matrix plugboard. 
The I/O Gate goes directly out on a special line and is not controlled 
by the matrix plugboard. (b) The sequence of control signals determined 
by the timer configuration in (a). Deflection up denotes "on". 
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The programmed timer also controlled the repetition rate of stimulus 

presentations. This was done by setting the experimental episode length 

to some value and running the timer in Continuous mode. In this mode 

of action, the timer repeated the experimental episode again and again. 

A fraction of the experimental episode was occupied by the stimulus and 

during the remaining portion of the episode the preparation recovered 

from the effects of stimulation. The eye was thus kept at a constant 

adaptation level. In this way I sought to preserve stationarity of 

response from one stimulus presentation to the next. 

Data Processing 

Having described the experimental probes and stimuli, I will 

now discuss data acquisition and analysis which are essential to the 

investigation of impulse firing statistics. The general data acquisition 

program, written for the CDC 160A computer by H.K. Hartline, Norman 

Milkman and David Lange, performed four functionswhich were particularly 

important for my experiments. First, the program measured time between 

pulse events on three separate data channels. Second, it sampled one 

voltage channel by means of an analogue to digital converter and stored 

the values of the voltage in memory. These two functions performed on 

line took, on the average, a little less than 0.2 milliseconds. Third, 

at the end of each experimental run the program stored time interval 

data and voltage data on magnetic tape in a format compatible with 

FORTRAN magnetic tape subroutines (so that they would be accessible 

to analysis programs written in FORTRAN). Fourth, the program typed 

an experimental protocol and plotted one channel of pulse rate data and 

the single voltage channel data on a digital plotter (CalComp). The 

experimental plots were graphs of the data stored on tape and were 

valuable for monitoring an experiment in progress. 

Because the storage capacity of the computer is not infinite, 
some compromises had to be adopted in the data acquisition program. 
It was decided that the experimental run should be twenty seconds long 
and the sampling rate for the voltage channel was 50 hz. These values 
were chosen because a twenty second stimulus is sufficiently long for 
a Limulus visual cell to reach steady state, and the voltage fluctuation 
spectrum is contained within a 25 hz bandwidth. 
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Measurement of time intervals on three parallel channels was 

accomplished by means of external electronic logic which is interfaced 

to the computer. Nerve impulses triggered discriminators which produced 

standard shaped pulses of controllable width. The electronic logic pro­

duced a twelve digit binary number synchronized with each clock cycle of 

the programmed timer. The appearance of a 1 in each bit position of this 

number was contingent on whether a discriminator pulse had occurred during 

that clock cycle on the channel assigned to that bit position. The com­

puter sensed whether the number produced by the above device was non-zero, 

i.e. whether a pulse had occurred on any channel; if it was non-zero the 

number was stored in the computer memory. During every clock cycle the 

program incremented a running counter by one and each time an event; i.e. 

a non-zero word, occurred, the accumulated count was stored in memory. 

This procedure produced two lists in the computer memory, one of event 

types and another of event times. From these two lists it was possible 

to unravel the list of time intervals between events on each of many 

channels. The data acquisition program and hardware used in these ex­

periments could handle three channels simultaneously. In my experiments 

one channel was the nerve impulse channel. The second channel carried 

phasing pulses to monitor phase of modulated stimuli. The third channel 

was used to measure relative modulation of the stimulus. 

The resolution of this measurement of time intervals was 0.2 

msec, the length of the clock cycle. This was one per cent accuracy 

for a firing rate of fifty impulses/sec, one half per cent accuracy 

for a firing rate of twenty five impulses/sec. ~~~ 
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Chapter 3 

ANALYTICAL METHODS 

Impulse Rate 

The primary data for the experiments on impulse firing are inter­

vals between impulses. These time intervals were measured on-line with 

a digital computer, as previously described. Since the neurons under 

study fire fairly regularly, nerve impulses were separated by approximately 

evenly spaced intervals of time. All the information about fluctuations 

is contained in the departure from strictly regular firing. 

One way to study the characteristics of these fluctuations is 

tio convert the list of pulse intervals into a list of instantaneous impulse 

rate samples. As shown below, in the case of regularly firing neurons, 

important statistical parameters for the impulse rate variable are the 

same as for the impulse intervals. The reason for using the pulse rate, 

rather than interpulse interval, as a measure of neural activity is that 

the rate is a more direct measure of the level of excitation of the 

neuron than the interval. Subsequent analysis and results will reveal 

that the choice of pulse rate allows us to connect membrane potential 

with neural activity in a straightforward way. 

The first method that requires explanation is the construction 

of "instantaneous" pulse rate from pulse intervals. The algorithm is 

illustrated in Figure 3-1. For any particular interval between pulses, 

the reciprocal of the time interval, the impulse rate, is assigned to 

all the time between the beginning and end of the interval. In effect, 

in constructing the impulse rate, one is transforming a frequency modu­

lation into an amplitude modulation. The reciprocal of the time interval, 

the instantaneous pulse rate, is larger when the firing is faster and 

smaller when firing is slower. In fact, as MacNichol (1956) showed, 

impulse rate is proportional to cell membrane depolarization in Limulus 

eccentric cells. 

If the instantaneous impulse rate is sampled at equi-spaced inter-
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Figure 3-1. Instantaneous Firing Rate and the Impulse Train. The com­
putation of impulse rate is demonstrated in this picture. During the 
interval between two pulses the impulse rate equals the reciprocal of 
that interval. The pulse train and the firing rate are plotted on the 
same time scale. The pulse train in this picture is from an eccentric 
cell. 
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vals of time, one obtains a list of pulse rate samples which can be mathe­

matically manipulated in the same way as periodically sampled continuous 

functions (one might expect discontinuities in the firing rate at instants 

when impulses are fired; discontinuities are eliminated by averaging the 

instantaneous rate before and after an impulse discharge, to obtain a 

value of the impulse rate for those sampling intervals in which an impulse 

has occurred). If the "sampling" intervals are a fine enough time mesh, 

a negligible amount of information about the statistics of the pulse 

train will be lost. To be fine enough the sampling time increment ought 

to be less than half the length of the average interspike interval, a 

limit consistent with the sampling theorem (see Shannon and Weaver, 1949, 

p. 53 for a discussion of the sampling theorem). 

The method for instantaneous pulse rate calculation was developed 

by Hartline and Ratliff, originally for averaging responses to similar 

stimuli over identical time periods. In cases where fluctuation in the 

maintained impulse rate is not relevant to the problem, the rate of 

sampling can be slower; averaging experimental runs with the choice of 

a sampling rate slow compared to the average impulse rate corresponds to 

the construction of a post-stimulus time histogram (cf. Moore et al., 

1966) but with greater accuracy in that fractions of a pulse interval 

are included in the bin count. The usefulness of this method is discussed 

by Lange (1965) and Bicking (1965). 

I wish to propose the introduction of a new unit to replace 

"impulses per second". This should be done in order to clarify the 

conception of modulation frequency of the impulse rate, which arises 

in the Fourier analysis of neuronal firing. The unit is named after 

E.D. Adrian, who discovered neural pulse frequency coding. One adrian 

equals one impulse/second. I shall use this unit in some of my figures, 

principally those illustrating spectral analysis of the impulse rate. 
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Spectral Analysis 

Spectral analysis is an analytical tool developed to help under­

standing of the filtering of signals by linear, time invariant devices. 

It has been applied in communication theory to the problem of filtering 

of stochastic processes (Parzen, 1962). 

A linear filter is a device which obeys the law of superposition. 
This means that if the filter produces an output /, (±) for an input X, (t) , 
and an output ŷ C-t) for an input of ^-^(t), then it will produce the output 
^/i(-) + t> ya L~t) when the input is XX,(~) + b xz(£). A linear 

filter is time invariant if translating the input signal in time merely 
results in a translation of the output signal by the same amount in time, 
i.e. if input x(t) elicits an output y/r) » then the input x^t + "E) will 
elicit the output y (~t -Mr)* 

Sines and cosines are merely changed in amplitude and phase when 
passed through a linear time invariant filter. This scaling property 
can be shown most easily using the complex exponential g 4W£" which is 
the linear combination Cos cot; + L Sinn tot ; after it is shown that the 
complex exponential has this property you can prove it for sine and co­
sine functions by taking the difference and sum of positive and negative 
complex exponentials. 

Suppose an input to a linear filter is X(vJ=- C . Then the 
time translated input is xCt'+x)=- e. 4'M/^*+^ « e.iu,Vy<(t) 1 this can be 
written q^x^hereq.if'^is independent of ~t . The output y ("t *-~c) must 
obey the equation y d +tj s A y(t) because the filter is linear. To 
show that the functional form of the output yC~t) is a complex exponential, 
the same as the input, you then set ~t~ O , implying y i v ) ~ y(o)e,LU*. 
Thus, the output function is merely the input function multiplied by a 
constant (a complex number). If an input function has this property, it 
is called a characteristic function of the filter. Sine functions, complex 
exponentials and real exponentials are the characteristic functions of 
time invariant linear filters. 

Given any time-invariant linear filter, you can characterize it 

by specifying the response to a unit amplitude sinusoidal signal at each 

frequency. The function which relates the amplitude and phase of the 

output to the modulation frequency is called the frequency response. As 

an example, one can measure the amplitude filter characteristics of an 

optical filter by measuring its frequency response with many different 

monochromatic lights. 
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It is possible to express any continuous, deterministic function 

of time as a weighted sum of sinusoidal functions of time. This is shown 

in Figure 3-2. The decomposition of a function into its sinusoidal com­

ponents is called Fourier analysis or spectral analysis of the function. 

The operation of a filter on an input function can be expressed as the 

separate multiplication of each of the weighted sines in the sum, which 

represents the input function, by the appropriate value of the frequency 

response. 

For random processes a similar theory can be developed (cf. 

Bartlett, 1955; Parzen, L962). A stochastic process is an ensemble of 

time functions which have some average properties in common but which 

cannot be determined exactly as a function of time. In an experimental 

context, this ensemble is composed of the group of noisy records which 

are measurements of the stochastic process. 

One average property of a stochastic process is its autocovariance. 

The autocovariance is defined as the average product of the deviation of 

a random variable from its mean, multiplied by the value of the deviation 

later in time. For the stochastic process h£t7with mean value TT , 

the autocovariance is defined as ,n(-t) - PT) (y\ [t+v)- ») • ^ne autoco­

variance is a continuous, deterministic function of time; it depends on 

the time lag ~c , the lag between the two random variables in the product. 

The autocovariance is a measure of how rapidly the stochastic process 

fluctuates around its average value. The value of the autocovariance____^— 

at zero time lag is the variance of the stochastic process, i.e. /rttir)-JiJ. 

The autocovariance of a stochastic process can be represented as 

a weighted sum of sinusoidal functions, since it is a deterministic 

function of time. The value of the weighting factors in the sum repre­

senting the autocovariance is what I call the variance spectrum. This 

name is appropriate because the value of the variance spectrum at a 

particular frequency represents the contribution of that frequency to the 

total variance of the stochastic process. Spectral analysis of stochastic 

processes was applied first to electrical signals for which variance means 

power, and so what I call the variance spectrum is more commonly referred 
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Figure 3-2. Spectral Analysis of Continuous Signals. An arbitrary 
deterministic signal is shown with the sine waves which sum to form it. 
The relative strength of each sine wave in the sum is shown in the variance 
spectrum. The variance spectrum is the squared amplitude of each sinusoidal 
component, as a function of frequency. 
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to as the power spectrum. 

The variance spectrum of a stochastic process can also be calculated 

from direct Fourier analysis of the individual time functions which are 

members of the ensemble of functions which constitute the stochastic pro­

cess. The squared amplitudes of the sinusoidal components must be averaged 

from many members of the ensemble to obtain the variance spectrum. It 

is a theorem that the variance spectrum computed in this manner is equal 

to the variance spectrum calculated from Fourier analysis of the autoco­

variance (Bartlett, 1955, pp. 159-166). 

The function which relates the variance (power) spectrum of a 

stochastic process put into a linear filter to the spectrum of the output 

stochastic process is usually called the power transfer function of the 

filter (using my terminology it ought to be called the variance transfer 

function). It is the squared absolute value of the frequency response of 

the filter. 

Spectral analysis is often performed on continuous functions of 

time which have been sampled at equally spaced points in time (Cooley, 

Lewis and Welch, 1967). This procedure generates a list of numbers which 

are the values of the continuous function at the sample times. You com­

pute the variance spectrum of this list of numbers in the following way. 

First you perform a Fourier analysis of the list; this is done by digital 

computer with subroutines incorporating the Fast Fourier Transform 

algorithm (Cooley, Lewis and Welch, 1967). The Eourier transform is a 

list of complex numbers, each number associated with a particular fre­

quency. One calculates the amplitude, or absolute value, of each of 

these numbers and squares it. The resulting list, of squared amplitudes 

at a number of evenly spaced points in the frequency domain, is the 

variance (power) spectrum, of the original list representing the time 

function. The bandwidth of the variance spectrum is set by the frequency 

of sampling of the continuous signal. The bandwidth is one half the 

sampling frequency. In my experiments the sampling frequency was 50 hz, 
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so the bandwidth of the spectrum was 25 hz. The lowest frequency in the 

spectrum, and the frequency resolution, are the reciprocal of the record 

length. The record length was 5.12 seconds so that the lowest frequency 

and frequency resolution were about 0.2 hz. 

If the original list is from evenly spaced time samples of a 

stochastic process, the sample spectrum from one record is not adequate 

to allow accurate estimation of the spectrum of the stochastic process. 

You must average several independent spectral estimates from a group of 

realizations of the stochastic process (cf. Jenkins and Watts, 1968, for 

details). What this means in a neurophysiological application is that 

one averages spectral estimates from several experimental runs which have 

identical stimulus conditions. In order to obtain smooth spectral esti­

mates for stochastic processes I used Welch's method of averaging over­

lapping sample spectra (Welch, 1967), the method shown in Figure 3-3. 

Autocorrelation 

The variance (power) spectrum of any stochastic process is re­

lated to the autocorrelation of the process. The autocorrelation is 

defined as the autocovariance divided by the variance. Thus the auto­

correlation is unity at zero time lag and varies with time lag, typically 

becoming zero as the time lag becomes large. 

The autocorrelation of the impulse rate has a very definite 

relationship with the serial correlation coefficients of the impulse 

intervals. The autocorrelation of the impulse rate, ^ it) is 

— \2-
(v\ it) - FT) (n 1+ -r-rp^T / (*U) - * ) 

The impulse rate n and pulse interval 5 a^e related by the 

equation 1 =- T" . In fairly regularly firing nerve cells, where devia­

tions from the mean are not large, for deviations from the mean in pulse 

rate &.h ' Avt(-t)- n (r~) - n and deviations in pulse intervals /J5 , 

we can write ^ ~ ~ -z- . In particular, for the coefficient of varia­
nt •s 

tion, (T ff\ . Using the same argument you can show that 
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Figure 3-3. Welch's Method of Spectral Estimation Applied to Limulus 
Generator Potential. A record of light-evoked generator potential is 
shown. Overlapping segments of data are used for single estimation 
of spectra. Several of these single estimates will be averaged to ob­
tain a smoothed spectral estimate. Welch's method of using overlapping 
data segments allows a more economical use of data. Fewer data are 
required for the same smoothness of estimate. 
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i« ^f-)3- ^ j- -'~ when T~ M S" ^ where 5 is the 

mean pulse interval and m = 1,2,3 . . . In words, the autocorrelation 

of the impulse rate equals the interval serial correlation coefficients 

at time lags which equal an appropriate integral multiple of the mean 

interval. For example, the autocorrelation of the firing rate at time 

lag ~C — ?- S equals the second interval serial correlation coefficient. 

This is shown for some electronically generated pulse interval 

data in Figure 3-4. 

As is clear from the graph in Figure 3-4, the autocorrelation 

of the impulse rate is a smooth interpolation between the serial corre­

lation coefficients of the intervals. The entire analysis procedure 

produces a smooth function which interpolates between those autocorre­

lation points fixed by the data. It is important for the relation 

between autocorrelation of spike rate and correlation coefficients of 

interspike intervals that the firing be fairly regular, i.e. coefficient 

of variation less than 0.25, say. It is the regularity of the firing 

which enables us to make an identification of a time function, the im­

pulse rate autocorrelation, with a discrete function which measures 

serial dependence, the serial correlation coefficient of all orders. 

I would like to refer to the nomenclatural fog surrounding the 
subject of autocorrelation in neurophysiology. (The renewal density or 
renewal intensity is defined as the average rate of pulse occurrence 
between time f and ~t~ -f AtT after a given pulse; it is discussed in 
Cox and Lewis, 1966). Moore ej: aj_. (1966) call the renewal density 
of a nerve impulse train the autocorrelation of the impulse train. I 
agree with the nomenclature of Moore et al. if it is made clear what 
variable is being correlated with itself. In their case it is a 
(stochastic) function of time which is a delta function at each time 
a nerve impulse occurs and zero elsewhere, i.e. the pulse train. In 
my case the function is impulse rate as defined before. As shown 
above the autocorrelation of the impulse rate is an interpolated es­
timate of serial correlation of the pulse intervals; the autocorrelation 
of the pulse train is a measure of the periodicity (regularity) in a 
pulse train. One final point -- while the autocorrelation of the impulse 
rate as I have defined it is normalized and goes to zero as time lags 
approach infinity, the renewal density (which is what Moore et al. call 
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° Serial correlation coefficients 

* Spike rote autocorrelation 

f(hz) 
Meon interval = 58.5 msec 

Coefficient of variation = 0.104 

Figure 3-4. Autocorrelation of the Impulse Rate and the Serial Corre­
lation Coefficients of Pulse Intervals. The autocorrelation is plotted 
as a continuous curve and as X's. The serial correlation coefficients 
are plotted as open circles at times equal to integral multiples of the 
mean pulse interval. At the lower left is shown the spectrum of the 
impulse rate, from which the autocorrelation of the impulse rate was 
calculated by Fourier transformation. 
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the autocorrelation of the pulse train) is not normalized at time zero, 
and converges to a constant (the mean pulse rate) at long time lags, con­
trary to the conventional definition of autocorrelation. 

Probability Distributions 

Interspike interval distributions are the routine measures 

applied to impulse trains by previous workers. Such distributions are 

usually displayed as an interval histogram in which the ordinate is 

number of intervals and the abscissa is the magnitude of an interval. 

I constructed interval histograms and also firing-rate histograms for 

Limulus nerve fiber and eccentric cell data. Cursory inspection indi­

cates that the firing rate distribution is a normal distribution for 

Limulus cells. Statistical tests were applied to the impulse interval 

data to ascertain how much the interval density function departed from 

a Gaussian function. These statistical tests involved the moments of 

the distribution. 

The moments around the mean are average values of power of a 

random variable around its mean, e.g. the second moment around the mean, 

otherwise known as the variance, of the spike intervals 5" is p - <T ) 

For a Gaussian density function, which is symmetric around the mean, all 

odd moments around the mean are zero. The third moment, the lowest 

order odd moment around the mean which might be non-zero, is used to 

measure skewness; the parameter that is tabulated in statistical tables 

is the third moment squared divided by the variance cubed (in order to 

get a dimensionless measure of skewness). Another more stringent test 

for a normal density function is the size of the fourth moment; this is 

a measure of the peakedness of the density function. I used statistical 

tests on the third and fourth moments around the mean to test departures 

from a Gaussian density function. 

I measured the variance spectrum and probability density function 

of the impulse rate, in order to characterize the randomness in nerve 

impulse firing. Because I sought to link voltage fluctuations and spike 

firing variability, I performed the same spectral and probability distri-
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bution calculations on the stochastic generator potential in those experi­

ments where generator potential measurements were made. 
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Chapter 4 

THEORETICAL BACKGROUND 

The Eccentric Cell: Components of its Response 

The Generator Potential. An eccentric cell responds to light by 

firing nerve impulses steadily while the light is on. The events leading 

up to this response consist of three stages. The first stage is the 

generator potential. This probably results from light-dependent ionic 

permeability changes in the photoreceptor membrane (for recent evidence 

on this point, see Millecchia and Mauro, 1969a, b). Such permeability 

changes cause depolarization of the membrane. The depolarization induced 

by light appears to be quantized, as if each effectively absorbed photon 

triggered a unit slow potential fluctuation. The discrete slow potentials 

have a half width of approximately one hundred milliseconds, a slow rise 

time and decay. They are not uniform in size, but have a mean amplitude 

with a distribution of amplitudes around this average value. At very low 

light intensities the discrete potentials can be easily resolved, but at 

higher light intensities they occur more frequently and superimpose on one 

another. Over the range of light intensity that they can be resolved, their 

rate of occurrence is proportional to the intensity. The size of the dis­

crete slow potentials depends on the past history and present level of 

illumination (Yeandle, 1957; Adolph, 1964; Dodge, Knight and Toyoda, 1968a). 

Dodge et al. (1968a) showed that the characteristics of the generator 

potential could be accounted for by the summation of the discrete potentials. 

The occurrence of the discrete potentials is a random process, pre­

sumably reflecting the randomness in the arrival and absorption of photons. 

The generator potential is therefore the summation of randomly occurring, 

similarly shaped discrete events. This phenomenon is analogous to the 

shot noise observed in vacuum tubes and photomultipliers (the analogy is 

quite important and will be referred to later in this chapter). At all 

light intensities, the generator potential has an inherent noisy component, 

provided by the summation of the discrete potentials. 
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The variance of the generator potential is determined by the effective 

duration, size and arrival rate of the discrete potentials. Dodge, Knight 

and Toyoda (1968a) showed that the effective duration of the discrete slow 

potentials is reciprocal to the logarithm of light intensity, while their 

average size is proportional to the inverse square root of light intensity. 

This means that the eye of the horseshoe crab adapts to brighter light 

by reducing the size, and reducing the duration of its discrete responses 

to single photons. 

Voltage-To-Frequency Converter. The second component of the 

neuronal response is the encoding of depolarizations into the impulse 

discharge. The average rate of impulse firing is proportional to the 

amount of depolarization. In addition, the impulse rate in these cells 

will follow time-varying depolarizations in a linear manner as long as 

the depth of modulation is not too great. 

An integrate-and-fire device is a model for such an impulse 

firing mechanism. In this model, membrane potential (or perhaps current 

through the membrane) is integrated until the integral reaches a threshold 

and then an impulse is fired and the integral is reset to zero (this 

model is discussed further in Lange, 1965; Knight, 1969). This device 

functions as a voltage-to-frequency converter. 

Self Inhibition. There is also a stage of neuronal adaptation, 

or self-inhibition, in the Limulus eccentric cell. Stevens (1963) and 

Purple (1964) first studied this phenomenon and showed it had the cha­

racteristics of synaptic inhibition. Purple showed that each nerve im­

pulse triggers a long lasting hyperpolarization of the eccentric cell, 

a hyperpolarization which is associated with an increase in the conduct­

ance of the membrane. The time course of the hyperpolarization is a 

decaying exponential with a time constant of about half a second. Self 

inhibition will therefore prevent the cell from making large, slow ex­

cursions in impulse rate, but will not prevent abrupt transients in the 

impulse rate due to rapid changes in excitation or inhibition. 
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The Linear Model for Dynamic Responses 

Of The Eccentric Cell 

The components of stimulus-response coding -- sensory transduction, 

temporal summation and neuronal adaptation -- are present in other sensory 

neurons, but can be isolated and studied in detail in the eccentric cell. 

A model for an eccentric cell is shown in Figure 4-1. The stages in sen­

sory coding are labeled GENERATOR POTENTIAL, FM for the integrate-and-

fire device, and SELF INHIBITION. The analytic model, which is diagrammed 

in Figure 4-1, includes the following ideas. The firing of nerve impulses 

by the FM mechanism depends on the level of the summing point, labeled ^ 

in Figure 4-1. External influences which can change the value of the 

summing point are light, acting through the GENERATOR POTENTIAL mechanism, 

and electric current injected into a cell through a microelectrode. Each 

nerve impulse acts to reduce the level of the summing point through the 

SELF INHIBITION mechanism. The summing point corresponds to the membrane 

potential (or current through the membrane) at the critical site in the 

cell which drives the impulse firing mechanism. 

The model also includes the assumption that the overall dynamics 

of the response of the cell to time-varying illumination can be broken 

up into the dynamic response of each of the stages in sensory coding. If 

we consider that the input to the neuron is light, and the output is the 

impulse rate, the stages in sensory coding can be dissected into two 

sequential mechanisms. The first is the mechanism transducing light 

into generator potential. The second is the mechanism which produces 

the impulse rate from depolarization of the cell membrane. The properties 

of the latter mechanism can be measured by injecting modulated current 

into the cell and observing the modulation of the firing rate thus pro­

duced. There is evidence (MacNichol, 1956) that injected current acts 

like the current produced by the photoreceptor in causing impulses to be 

fired. 

Dodge, Knight and Toyoda (1968b) studied the response of these pro-
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CURRENT 

LIGHT GENERATOR 
POTENTIAL 

+ I 
FM SPIKES 

—• m-

SELF 
INHIBITION 

Figure 4-1. Model for the Eccentric Cell. This is a schematic diagram 
of the linear model of an eccentric cell. The summing point ^T, can 
receive signals from three sources: from external CURRENT injection, 
from the GENERATOR POTENTIAL produced by light, and from SELF INHIBITION. 
The net value of the sum is coded by a voltage-to-frequency converter, 
FM, into the "spikes" or nerve impulses which propagate down the optic 
nerve. GENERATOR POTENTIAL, FM and SELF INHIBITION each have their own 
specific dynamic responses which determine the overall dynamic response, 
and fluctuations, of the eccentric cell. This figure is from Dodge, 
Knight and Toyoda (1968b). 
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cesses to time-varying stimuli. From the response of the neuron to small 

stimuli modulated around a steady stimulus level, they demonstrated that 

the neuron could be approximated by a time-invariant, linear filter. This 

conclusion followed from the findings that superposition of responses occurs 

for stimuli which are added to one another, and that sinusoidally modulated 

stimuli evoke sinusoidally modulated responses. They also showed that the 

light-to-generator potential process and the current-to-firing rate pro­

cess are like filters connected in series. The generator potential varies 

sinusoidally in response to sinusoidally modulated light intensity. A 

sinusoidally modulated membrane depolarization causes the impulse rate to 

vary sinusoidally also. The frequency response of the complete process, 

from modulated light to modulated firing rate, is the product of the 

separate frequency responses for the two component mechanisms: the light-

to-generator potential, and current-to-firing rate. Let us call the 

frequency response of the light-to-generator potential process w (-f) , 

the frequency response of the current-to-firing rate process 5(-f), a^d 

the frequency response of the light-to-impulse rate process N(-fj. Then 

the conclusion of Dodge et al. (1968b) can be written N(•£) = S ( f ) °£?(-f) 

Frequency Response of the Current-to-Firing 

Rate Process 

The essential theoretical problem of this thesis is the relation 

between noise in the membrane potential and variability of the impulse 

rate. The important mechanism to understand, in connection with this pro­

blem, is the process which produces the impulse rate from depolarization. 

It can be characterized by the way it affects the response of the cell to 

time-varying stimuli, as indicated by its frequency response, Sff). 

As Knight (1969) has shown, the frequency response of an integrate-

and-fire device is 

I ^ " ^ ^ 
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where f-0 is the average impulse rate and T is the modulation frequency. 

This expression was first used in a neurophysiological application by 

Borsellino (Borsellino et al., 1965). 

The integrate-and-fire device can exhibit sidebands. Sidebands 
become especially apparent at modulation frequencies which are greater 
than half the mean impulse rate. For such modulation frequencies, the 
difference frequency ( -fa— -f ) component is larger than the modulation 
frequency component, and so the firing rate appears to be modulated at 
a frequency f0 — -f . Nevertheless, E(-f) gives the amplitude and 
phase of the impulse rate modulation at the stimulus modulation fre­
quency. The linear model for the integrate-and-fire device works 
adequately as long as modulation frequencies are kept low enough. This 
is the expected behavior for a frequency modulation system. 

The integrate-and-fire mechanism with self-inhibitory feedback 

has a more complicated transfer function. The self-inhibitory hyper­

polarization has the time course of a simple exponential. As a con­

sequence, a system with self-inhibitory negative feedback, but without 

the discreteness imposed by pulse rate coding, would have the frequency 

response, 

l+ Ks 

1 ( f ) - -
i +• £< 

I -f 2 w t £ Tc 

where N5 is the self-inhibitory coefficient and T$ is the self-inhibitory 

time constant. H C y / i s the often encountered frequency response of a linear 

negative feedback network in which the feedback loop has an exponential 

impulse response. The frequency response J-Cr/has an amplitude of / 

at very low frequencies of modulation, and an amplitude approaching l-f K< 

at high frequencies. This can be seen by computing Xc<0and X(=^) • 

However, self-inhibitory potentials are triggered by, and there­

fore phased to, the occurrence of nerve impulses. Therefore, the exact 

expression for the frequency response of the current-to-firing rate mecha­

nism is more complicated than X (i / or Jl(-r). Knight (1969) has shown 
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that the frequency response for the coupled system is 

UI/C^L l ) ( l - ^ 0 / T % ^ r r U ) / ^ ) 

The current-to-firing rate frequency response S (-f- possesses 

a low frequency cutoff with a shape roughly the same as T.(-f\ the fre" 

quency response of a continuous negative feedback network discussed 

above. The high frequency behavior of S(f-f)is like that of B(-f) > the 

frequency response of an integrate-and-fire device. The latter has nulls 

at multiples of the average impulse rate and attenuation of frequencies 

approaching the average impulse rate and all frequencies above it. These 

features result in a peak amplitude of 5(-ryin the region of the spectrum 

between zero frequency and the frequency equal to the average impulse 

rate. This peak is a consistent characteristic of the current-to-firing 

rate mechanism of eccentric cells. Dodge (1968) shows several examples 

of how well the analytic expression for i(-f) fits experimental measure­

ments; in chapter 5 of this thesis, Figure 5-5 illustrates the character­

istic features of 5(T / (Pea^ frequency, low and high frequency cutoffs) 

and the degree of agreement between theory and experimental measurement. 

Neuronal Variability as Filtered Fluctuations 

Of the Generator Potential 

Since the current-to-firing rate process acts like a linear filter, 

the theory of spectral analysis outlined in chapter 3 can be applied use­

fully to the problem of relating generator potential fluctuations to varia­

bility in the impulse rate. The spectral characteristics of the impulse 

rate fluctuations can be predicted from the variance spectrum of the input, 

the generator potential "noise", filtered by the current-to-firing rate 

process. 
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I have called the generator potential variance spectrum (21- (j), 

the impulse rate spectrum W (f J . The variance spectra are real-

valued functions of frequency. A frequency response is a complex-valued 

function of frequency. Thus, i(f) , the frequency response of the 

current-to-firing rate process, has an amplitude Sf-f) and a phase. 

According to the theory for filtering of stochastic processes, the va­

riance spectrum of the output process is the product of the variance 

spectrum of the input multiplied by the squared amplitude of the fre­

quency response of the filter (Parzen, 1962; see also chapter 3). In 

this case, this leads to the equation 

, This equation is correct if ypJ and r^ are in the same units. 
•̂'g, is expressed in the units of millivolts^/hertz (mv /hz). Pfj is 

expressed in the units adrian^/hz; an adrian has been previously defined 
as 1 impulse/second. A scale factor with units (adrian/mv)^ must be 
used to convert (p^ from the units of a voltage spectrum to the units 
of an impulse rate spectrum. This factor is in the range 1 - 2 5 
(adrian/mv)2 (cf. Fuortes, 1959). 

As mentioned previously in chapter 3, a correct prediction for the 

variance spectrum of the impulse rate according to equation (1) implies 

a correct prediction for the serial correlation coefficients of impulse 

intervals. Equation (1) also enables you to derive the variance of the 

impulse rate from the variance spectrum of the generator potential. 

This is because the integral of the variance (power) spectrum with respect 

to frequency is the variance, i.e. ___ 

.1 ~, ,,, _ \ A 

f y » ( ( ) M = <jr -- ( r ^ - - * ) ' 

Steady State Fluctuations And The 

Frequency Response, N(f) 

There is another way to predict the shape of the variance spectrum 

of the impulse rate. It is based on the finding (Dodge et al., 1968a) that 
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for steady state fluctuation of the generator potential, 

k ( 0 " 

As stated before, t,(f/ is the frequency response for the transduction 

from light to generator potential. If we multiply both sides of equation 

(2) by I $(£)\ we get the equation 

As discussed before, Dodge et al. (1968b) have shown that ^(-"r / - J (f / ' b (-T > 

where A/Ct/ is the frequency response of the overall process, light-to-

impulse rate. Substituting in the previous equation, and also using 

equation (1), we obtain 

<M)» f lN(^ (3) 

In words, what equation (3) says is that the variance 

spectrum of steady state fluctuations is proportional to the squared 

amplitude of the frequency response, for the total process which trans­

duces light intensity into the impulse rate. This is an important theo­

retical prediction. It emphasizes that, according to the model of the 

eccentric cell presented here, dynamics and fluctuations of the impulse 

rate are very closely related. 

Equation (2), the proportionality of the generator potential 

spectrum to its frequency response, is a general equation which describes 

the relation between the frequency response of a filter and the variance 

spectrum of the output noise produced from white noise input; a particu­

larly pertinent example is the case of shot noise (see Rice, 1944; Parzen, 

1962). The equation applies to the generator potential of Limulus ec­

centric cells even though the discrete potentials which constitute the 

generator potential are not simply uniformly shaped shots, but adapt in 
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size to changes in light intensity (Dodge et al., 1968a). The extra stage 

of linear filtering by the current-to-firing rate mechanism carries over 

to the impulse rate the relation between frequency response and variance 

spectrum. Thus, equation (2) becomes equation (3). 

Impulse Rate Distribution And 

The Interval Distribution 

While I have concentrated on spectral analysis of the impulse rate 

and generator potential, there are also interesting theoretical and expe­

rimental findings to report concerning the probability distributions of 

the impulse rate and generator potential. The theoretical arguments are 

based on the idea that if a Gaussian stochastic process is passed through 

a linear filter, the output is a Gaussian process. A Gaussian process is 

rigorously defined as a stochastic process whose density function, and 

all of whose higher order joint probability density functions, are 

Gaussian in form. I have not attempted to show that, rigorously speaking, 

the generator potential is a Gaussian process. However, it is a shot 

noise process whose probability density function is Gaussian; unless it 

is unusual, such a process ought to have joint distributions which are 

Gaussian in form. With this plausible assumption, we can conclude that 

the generator potential is a Gaussian process. 

If one accepts the plausibility of this argument, it follows that 

the probability density function for the impulse rate is derivable from 

that for the generator potential. Since my experiments were performed 

with light stimuli bright enough that deviations around the, mean of the 

generator potential had a Gaussian probability density, the impulse rate 

fluctuations should also have a Gaussian distribution (the variance of the 

distribution can be calculated, as previously described, using the tech­

niques of spectral analysis). Departures from a Gaussian distribution for 

fluctuations of the impulse rate might imply inadequacy of the working 

hypothesis that fluctuations of the impulse rate can be treated as generator 

potential "noise" filtered through the impulse firing mechanism. 
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The interval probability density function will not be a Gaussian 

function if the probability density of the rate is Gaussian. The inter­

val is the reciprocal of the impulse rate. From the functional relation 

between the two variables, you can derive an expression for the interval 

distribution based on the assumption that the distribution of the firing 

rate is Gaussian. This expression is, 

Z 

where j is the length of a pulse interval. 
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Chapter 5 

RESULTS 

Variability in the Responses to Light 

and Electric Current 

The starting point for this work was the finding that the impulse 

rate in an eccentric cell was more variable when the cell was stimulated 

by light than when it was stimulated by electric current (Ratliff, 

Hartline and Lange, 1968). This result is illustrated in Figures 5-1 

and 5-2, where two sample records from the same eccentric cell are ex­

hibited. Figure 5-1 is the graph of a response to steady light; 

Figure 5-2 is the response to steady current in a light adapted cell. 

The variance of the response to light is about seven times that for the 

response to current stimulation. 

The variance (power) spectra of the impulse rate strikingly 

illustrate the difference in variance under these two conditions. This 

is shown in Figure 5-3 for spectra computed from the data shown in 

Figures 5-1 and 5-2. Not only are the variances obviously different, 

but the variance spectra are also different in shape. The variance 

spectrum for the response to electric current is flatter, with less of 

a low frequency cutoff and no peak at four hz where the spectrum of the 

light response peaks. Of course, all the spectral components are smaller 

for the response to electric current reflecting the overall difference in 

variance. 

The variance spectra show that both the amount and the temporal 

pattern of variability differ in the two cases. The source of fluctuations 

in the activity stimulated by electric current is as yet unexplained, al­

though it may reflect low frequency fluctuations of membrane potential, 

or membrane permeability, in the dark. If this should prove to be correct, 

it would reinforce even more the working hypothesis of chapter 4 that the 

impulse firing mechanism itself is not very random and contributes little 

to the observed variability. 
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Figure 5-1. Impulse Rate in Response to Stimulation by Light. This 
is a typical response to a light one thousand times more intense than 
the threshold for maintained firing. The variance of the maintained 
firing is approximately 1 adrian2. 
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Figure 5-2. Response to Electrical Stimulation. Response of same 
cell as in Figure 5-1 to a maintained electric current stimulus which 
is injected through an intracellular micropipette. The variance of 
the maintained firing is approximately 0.15 adrian2. 
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Variance spectra of firing rate 
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Figure 5-3. Variance Spectra of the Response to Stimulation by Light, 
and the Response to Electrical Stimulation. This figure shows the 
variance spectra plotted on the same vertical scale. Not only is the 
variance spectrum of the response to light larger, it also shows 
greater peaking at approximately four hz. The spectrum for the res­
ponse to electric current is flat down to low frequency. 
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Observations on Filtering of 

Generator Potential "Noise" 

In order to prove that the impulse rate fluctuations are filtered 

generator potential fluctuations, I had to confirm equation (1) of chapter 

4. That equation predicts that the variance spectrum of the impulse rate 

is the variance spectrum of the generator potential, multiplied by the 

squared amplitude of the frequency response for the current-to-firing rate 

process. To verify this prediction required measurement of the variance 

spectrum of the generator potential, (pc(r) } the frequency response 

of the current-to-firing rate process, S (r ) , and the variance spectrum 

of the impulse rate, (b^(-j)- The calculation of the variance spectra 

from data has been described in chapter 3. 

The measurement of 3 \Jf/is illustrated in Figure 5-4. This figure 

shows three sample records of the impulse rate from one cell, whose im­

pulse rate was modulated by injected current at three different frequencies: 

0.4 hz, 1 hz and 4 hz. The entire frequency response was measured by 

repeating these measurements at several more frequency points. The ampli­

tude and phase of the response were determined by a least squares fit of 

a sine and cosine, at the stimulus modulation frequency, to the response. 

It is clear from the data in Figure 5-4 that low frequencies produce less 

modulation than higher frequencies; this is a consequence of self-

inhibition. 

This low frequency cutoff is more clearly illustrated by the graph 

in Figure 5-5 of the frequency response for the current-to-firing rate 

mechanism. The logarithms of amplitude and phase are the ordinates and 

the logarithm of frequency is the abscissa in this graph. The first lobe 

of the phase shift is a phase lead; at frequencies above 1.5 hz the phase 

shift changes into a phase lag. The smooth curve drawn through the ex­

perimental points is the analytic expression for 5 IT/ which was pre­

sented in chapter 4. The features of the predicted and measured fre­

quency response are the same, namely a low frequency cutoff, peak in am-
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Steody Light: Modulated Current 
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Figure 5-4. Measurement of the Frequency Response for the Current-To-
Impulse Rate Mechanism. The response of an eccentric cell to modulated 
current stimuli is shown. The steady level of firing was set with main­
tained stimulation by light. The amplitude of the current is the same 
for the three records, but the modulation frequencies were varied, as 
shown in the figure. 
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Figure 5-5. The Frequency Response for the Current-To-Firing Rate 
Mechanism. The amplitude and phase of the response to a whole range 
of modulated current stimuli are plotted against modulation frequency. 
The points are experimental; the smooth curve is an analytical fit to 
the points using the theoretical expression for SCf) which is dis­
cussed in the text. The mean firing rate of this cell was 20 adrians. 
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plitude (gain) at five hertz, and a high frequency cutoff. The theory con­

tains two parameters, the time constant "Tj and the self-inhibitory coeffi­

cient i'y. . These data were fit with time constants T"$ equal to 0.5 

seconds, and a coefficient K^ equal to 3. These are typical values. 

Generator Potential'frloise" Causes Neuronal Variability. Spectra 

for both the generator potential, fyCf) , and for the impulse rate, ̂ j(-f), 

were measured in the same cell. Data from such an experiment are shown in 

Figure 5-6. At the upper left is a graph of (pr , the variance spectrum 

of the generator potential. Note that, in this cell, the generator po­

tential spectrum shows little peaking. Below ffi- is the predicted im­

pulse rate variance spectrum © ** . The predicted spectrum is obtained 

by multiplying each value of the variance spectrum of the generator poten­

tial by its appropriate weighting factor -- the squared amplitude of S (r) , 

the frequency response for the current-to-firing rate mechanism. This is 

the prediction contained in equation (1) of chapter 4. The features 

introduced by filtering are apparent in the figure. The variance spectrum 

Wtf is peaked, with a low frequency and high frequency cutoff on 

either side of the peak. 

The measured variance spectrum of the impulse rate, (ĥ , , is 

shown on the bottom left of Figure 5-6. It appears to have almost 

exactly the same shape, and magnitude, as the predicted spectrum $ / 

We can estimate the degree of agreement of these two spectra, 

(tij and d),/' , by comparing the differences between them with the a-

mount of error inherent in the calculation of spectral estimates from data. 

As shown in texts on spectral analysis, if the stochastic process has a 

Gaussian distribution function, each spectral component is a random variable 

with a chi-squared distribution. The number of degrees of freedom for this 

chi-square distribution is set by the total amount of data and the degree 

of frequency resolution in the spectrum (see Jenkins and Watts, 1968; and 

Welch, 1967). Using this distribution of the spectral components one can 

calculate a standard error for the variance spectrum. The result is an 
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Comparison between predictions of filter model and experimental measurements 

of firing rate variance spectrum and autocorrelation 
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Figure 5-6. Prediction and Measurement of the Variance Spectrum of the 
Impulse Rate. The test of the hypothesis that generator potential 
fluctuations cause variability in the impulse rate. Shown in the left 
hand column are S q and <f>N , the measured generator potential, and 
impulse rate, variance spectra, respectively. Between them is div** , 
the predicted spectrum, obtained by multiplying m, by |5W/* , the 
variance transfer function of the current-to-firing rate mechanism. 
The autocorrelations, predicted and measured are shown at the right. 
The average firing rate of this cell was 23 adrians. 
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approximate standard error of twenty per cent of the magnitude of the 

spectral component (the standard error depends on the size of the spectral 

component -- the larger the component, the larger the absolute magnitude 

of the standard error). The predicted and measured variance spectra, <fî  

and fy , agree well, within the standard error over most of the fre­

quency range. There is some discrepancy in the high frequency tail, but 

this is an insignificant amount of the total neuronal variability. 

The agreement of the measured variance spectrum of the impulse 

rate with the predicted spectrum confirms the working hypothesis with 

which we began. The temporal pattern of variability in the impulse rate 

originates in the generator potential, and is filtered and therefore 

shaped by the impulse firing mechanism and self-inhibition. 

Predicted and Measured Autocorrelation. The autocorrelation of 

the impulse rate, for measured data, agrees well with the predicted 

autocorrelation which is calculated from (p̂ / . The two autocorrelation 

functions, measured and predicted, are shown on the right side of Figure 

5-6. As discussed previously, the autocorrelation of the impulse rate 

can be calculated from the spectrum measures in the frequency domain --

the temporal texture of a random process. Since the variance spectra, (£>m 

and (pfl ' , agree within the inherent error of spectral estimation, it 

is no accident that the predicted and measured autocorrelation functions 

also correspond very closely to one another. 

The Effect of Self-Inhibition on the Magnitude of Variability. It 

is clear from Figure 5-6 that the current-to-firing rate mechanism strongly 

affects the shape of the variance spectrum. The impulse rate spectrum is 

far more peaked than the variance spectrum of the generator potential. The 

filtering of the generator potential also changes the relative amount of 

variability in the impulse rate. 

Self-inhibition is the main reason why the coefficient of variation 

of the impulse rate is greater than the coefficient of variation of the 

generator potential. Self-inhibition determines the shape of S(f-J t the 
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frequency response of the current-to-firing rate process. SCf) is the 

quotient, the relative modulation (or percentage modulation) of the im­

pulse rate divided by the relative modulation of the driving current. Since 

middle range frequencies are amplified relative to constant or very low 

frequency stimuli, on account of self-inhibition, I $f-0|°* is larger 

than 1 over most of the frequency range where the variance spectrum of 

the generator potential has large values (cf. Figures 5-5 and 5-6). 

This results in enhancement of these fluctuations relative to the mean --

in other words, a higher coefficient of variation for the impulse rate 

than for the generator potential. 

Variance Spectrum and the Frequency Response, N(f) 

Testing equation (3) from chapter 4, the proportionality between 

the variance spectrum of the impulse rate, S^j , and the squared am­

plitude of the frequency response for the light-to-firing rate process, 

N'C-ry . is a straightforward matter. You measure t/>̂ (-{) , and the 

frequency response A/£f) > and tnen compare d ^ with Ifv(f)l • An 

experiment in which this was done is shown in Figure 5-7. As before, 

the autocorrelation of the impulse rate is shown as well as the variance 

spectrum. The standard error of the spectral components is about twenty 

five per cent of their magnitude. The predicted (from \/̂ (-f)l ) and 

measured variance spectra agree fairly well within this limit, although 

there may be a systematic departure in the region, zero to three hertz. 

This is hardly a significant departure, however. The conclusion from 

such an experiment is that the variance spectrum is proportional to the 

squared amplitude of frequency response, /A/(-f)/ > f°r many eccentric 

cells. This is another experimental indication that the linear model for 

variability in the impulse firing is basically sound. It emphasizes one 

major implication of that model: that the dynamic response of the neuron, 

and its steady state fluctuations, are shaped by the same mechanisms and 

therefore share similar spectral characteristics. 
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Figure 5-7. Comparison of Variance Spectrum with the Frequency Response 
of the Light-to-Firing Rate Process. Plotted on the same scale are the 
squared amplitude of the frequency response, lA/(f)l̂ m > and the 
variance spectrum 0fj(r) • The jagged curve is the variance spectrum 
(the jaggedness reflecting inherent error in estimating spectral compo­
nents from data). The smooth curve is the squared amplitude of the 
frequency response. The squared amplitude of frequency response is 
plotted on a vertical scale such that the area under the curve will 
equal the area under the variance spectrum. 
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Distributions of Impulse Rate and Intervals 

To further test the idea that neuronal variability results from 

fluctuations in the generator potential, I measured the distributions of 

these quantities and compared their statistical properties. As explained 

in chapter 4, this statistical measure can provide evidence which is supple­

mentary to the findings from spectral analysis. 

Probability density functions for the impulse rate under con-

of steady stimulation by light are well fit by Gaussian funct 

of the form r ^ - tfif\-iHlSlJ^-^ ( . This finding is important bee 

ditions of steady stimulation by light are well fit by Gaussian functions, 
- \ P-

" " " " „ " ;cause 
the distribution of membrane potential deviations is also Gaussian under 

the same stimulus conditions. 

Figure 5-8 shows an impulse rate histogram (estimate of probability 

density function) and a generator potential histogram for a typical res­

ponse to a light whose intensity was one thousand times brighter than 

threshold intensity for maintained impulse firing. Both these histograms 

approximate Gaussian functions, according to statistical tests on the 

third and fourth moments. The interval distribution is positively skewed 

when the impulse rate has a Gaussian distribution, as is expected from 

the theoretical argument presented in chapter 4. 

A marked effect occurred in the statistics of a cell stimulated 

by electric current, which was allowed to dark adapt for over ten minutes. 

The statistics of the impulse rate histogram changed very greatly during 

dark adaptation, an effect which very convincingly reinforces the view that 

fluctuations in membrane potential cause the observed variability in 

impulse firing. 

When the cell was light adapted the membrane potential fluctuations 

in the dark were very small and symmetrical about the resting potential; 

under the same conditions the impulse rate histogram was symmetric and 

approximately Gaussian in shape. As stated near the beginning of this 

chapter, the source of the small variability in the firing of a light 

adapted, current driven eccentric cell has not been investigated. I mention 
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Figure 5-8. Generator Potential Histogram and Firing Rate Histogram for 
the Response to Steady Light. These two histograms are indistinguishable 
from Gaussian functions according to tests made on the third and fourth 
moments. The generator potential histogram appears smoother because more 
data were used. Both responses were recorded from cells stimulated by a' 
light intensity one hundred to one thousand times brighter than the 
threshold for steady impulse discharge. 
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the statistical characteristics of the small variability under these ex­

perimental conditions to contrast them with the marked changes which occur 

during dark adaptation. 

During dark adaptation, the striking effect which occurs is an 

increase in the variance of the impulse rate (previously observed by 

Ratliff, Hartline and Lange, 1968), and a marked increase in the skewness 

of the impulse rate distribution. Under the same conditions of dark 

adaptation, it is well known that the membrane potential distribution 

changes its character, because of the low rate of appearance of the large, 

discrete slow potentials mentioned previously (Yeandle, 1957; Adolph, 1964). 

These discrete events were occurring at the rate of 2/second in the eccen­

tric cell whose impulse rate distribution is graphed in Figure 5-9. The 

distribution of the membrane potential in an eccentric cell under the same 

conditions of dark adaptation is shown in the upper graph of Figure 5-9. 

The skewness of the membrane potential distribution is very obvious. The 

values of the parameter of skewness, the ratio third moment squared divided 

by variance cubed, for the histograms of membrane potential and impulse 

rate, are both about 2. This is very significantly different from the 

value of zero expected for a symmetrical distribution. Both the membrane 

potential distribution and the impulse rate distribution are positively 

skewed; the impulse interval distribution is markedly negatively skewed 

when the eccentric cell is stimulated by current while dark adapted. The 

interval distribution is shown in the lowest graph of Figure 5-9. 

This marked increase in skewness during dark adaptation, in the 

probability density functions of both the membrane potential and impulse 

rate, reinforces even more the idea that random fluctuations in membrane 

potential underly the major portion of variability in the impulse rate. 

Coefficient of Variation During Dark Adaptation 

The amount of variability during the course of dark adaptation 

reveals the importance of generator potential fluctuations on neuronal 

variability. Further experimental measurements of this effect were made 
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Figure 5-9. Membrane Potential Histogram, Impulse Rate Histogram and 
Interval Histogram for a Dark Adapted Cell Driven by Injected Current. 
This figure demonstrates the increase in skewness of the membrane po­
tential, impulse rate and impulse interval in a thoroughly dark 
adapted cell. The skewness results from the low rate of occurrence 
of discrete slow potentials, which always tend to depolarize the cell. 
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in the following way. A light stimulus of a given intensity and twenty 

seconds duration established a control level of impulse rate, and variance 

of the impulse rate. An adapting light of an intensity one hundred times 

brighter than the intensity of the control light stimulus was shone on the 

photoreceptor for 2 minutes. At intervals of one hundred seconds a test 

stimulus, identical to the control light stimulus, was applied to the eye. 

The response changed with time until the cell had adapted back to its 

former control level. 

This experiment is not a perfect measure of the effects of dark 

adaptation, because of light adaptation by the test stimulus. Neverthe­

less, it is a useful experiment because it shows that the variability 

of the firing is reduced when the mean level is reduced by light adaptation. 

The results are shown in Figure 5-10 as a graph of coefficient of variation 

vs.time after the adapting flash. During the time the coefficient of 

variation is recovering to its control value, the mean impulse rate is 

recovering too. The control value of average firing rate was twelve 

impulses/second. Immediately after the adapting flash the cell was in-

excitable by the test stimulus, and the average impulse rate recovered 

to its control level with a time course somewhat different from the re­

covery curve of coefficient of variation. 

Reduction in mean level by inhibition will decrease the standard 

deviation of the impulse rate, by changing the filtering characteristics 

of the integrate-and-fire mechanism, an effect to be discussed in chapters 

8 and 9. However, the magnitude of this kind of reduction of the standard 

deviation is less than the direct effect of inhibition on the mean rate. 

As a result the coefficient of variation (standard deviation/mean) will be 

increased by inhibition, even though the standard deviation is reduced. 

On the contrary, when the response is reduced because of light adaptation, 

the standard deviation is reduced even more than the mean, indicating a 

reduction in the coefficient of variation of the process underlying the 

neuronal impulse rate, the generator potential. The growth of the average 

value and standard deviation of the generator potential during the course 
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Figure 5-10. The Coefficient of Variation During the Course of Dark 
Adaptation. Coefficient of variation of the response to a twenty 
second light stimulus every hundred seconds after a bright adapting 
flash. Coefficient of variation of the dark adapted cell indicated 
by the dotted line; this is also the value reached one hour after the 
adapting flash. Two standard errors around the measurements of the 
coefficient of variation are indicated by the bars above and below each 
point. 
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of dark adaptation, indicated in this experiment on neuronal firing, is 

consistent with the experiment on dark adaptation by Ratliff, Hartline 

and Lange (1968), and with experiments on dark adaptation in the Limulus 

ventral eye (Millecchia and Mauro, 1969a). The dual effect of light adapt­

ation on both the mean level and standard deviation of the generator potential 

(and therefore indirectly on the impulse rate) is most easily understood in 

terms of adaptation of the discrete responses of the cell to single photons, 

a subject investigated by Dodge, Knight and Toyoda (1968a). 

"Galloping" and Oscillatory Discharges 

Not all Limulus eccentric cells behave in the same manner as the 

ones discussed above. Most noticeable are cells which "gallop", i.e. cells 

whose firing rates oscillate in response to a steady stimulus, either light 

or electric current. Usually the variability of such cells during a steady 

light stimulus is markedly non-stationary. The impulse rate, in these cells 

becomes much more variable during prolonged stimulation, finally becoming 

oscillatory. Deterioration often will make a normal cell become more 

ragged in its firing until it gallops in response to steady light. And 

poorly impaled cells will sometimes exhibit galloping in response to 

steady stimuli. 

This is not the only deviation from what is the normal behavior 

of an eccentric cell. There also seems to be oscillatory activity of some 

cells in response to very bright lights. These cells do not have the same 

properties as the galloping cells, for the impulse rate oscillates at a 

higher rate and with a lower peak to peak oscillation in the impulse rate. 

While you can pick out a galloping cell by ear, you cannot easily hear 

these latter high frequency oscillations. The latter type of cell is 

characterized by alternately large negative and positive serial correlation 

coefficients between pulse intervals, while the galloping cells have large 

positive and negative correlation coefficients which are arranged in a 

more complex sequence: for instance, two large positive correlation coeffi­

cients, then two large negative coefficients, and so on. 
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I think these two particular syndromes are caused by unknown patho­

logies of the impulse firing mechanism. No aspect of the generator poten­

tial of Limulus eccentric cells has been found to account for this kind of 

oscillatory activity in response to steady light. Since the theory of the 

impulse firing mechanism which I have used does not take these sorts of 

complexities into account, the predictions of chapter 4 of this thesis are 

not applicable to such cells. The oscillatory, markedly non-stationary, 

cells are a small fraction of Limulus eccentric cells. 
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Chapter 6 

DISCUSSION 

Theory of Neuronal Variability 

The preceding results confirm the hypothesis that fluctuations of 

the membrane potential cause the variability of the impulse rate. The 

amount of variability, and its temporal pattern, result from the filtering 

of the generator potential by the current-to-firing rate mechanism. This 

involves two operations on the membrane potential -- temporal integration 

and self inhibition. These shape the variance spectrum of the impulse 

rate. 

The filtering of generator potential "noise" by the impulse firing 

system is predictable from a linear model of the eccentric cell. This 

model has no free parameters; the coefficients and time constants in the 

model are measurable, and have been measured in these experiments. There­

fore, the agreement of predictions and measured data implies the essential 

soundness of the model in accounting for the source of randomness in the 

impulse rate. Besides strictly quantitative inferences, there are several 

qualitative consequences of this neuron model which are observable in the 

activity of eccentric cells. Examples of this include the effects of 

dark adaptation on impulse firing elicited by electric current or light. 

The reason that modulations of the impulse rate can be analyzed 

with a linear model in these neurons is that fluctuations in impulse rate 

are not large compared to the average impulse rate. They are relatively 

small perturbations around the maintained level of activity. Another 

factor which influences the degree of agreement between theory and expe­

riment is the relative time course of the underlying voltage fluctuations 

compared with the firing rate of the cell. In the range of firing rates 

I studied, the firing rate is rapid compared to the rate of decay of self-

inhibitory potentials and compared to the correlation time of the generator 

potential "noise". The persistence of correlation over several impulse 

intervals is evidence for the relative speed of impulse firing compared with 
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underlying correlation times of the membrane potential. 

I know of only one other study of neuronal variability in the 

literature in which predictions from a non-parametric model are compared 

with data. This is the work of Calvin and Stevens (1968) on spinal moto­

neurons of the cat. Their neuronal model is similar to the one discussed 

here, with the exception that instead of integrating the membrane depola­

rization up to a threshold, their model integrates only the constant 

level of the depolarization. The fluctuations are not integrated, but 

instead are added to a linear ramp which is the integral of the constant 

depolarization. Also they do not include any self-inhibition, or any 

other neuronal adaptation, in their motoneuron model. A striking differ­

ence between motoneurons and eccentric cells is the presence of high 

frequency components in the membrane potential "noise" of motoneurons. 

The bandwidth of the motoneuron noise is roughly 40 hz compared to 10 hz 

or lower in eccentric cells. 

The experiments of Calvin and Stevens were performed on spinal 

cats with no somatosensory stimulation; presumably, the bandwidth of the 

variance spectrum (or equivalently, the shape of the autocorrelation) 

of synaptic "noise" could be changed under different experimental condi­

tions. (For instance, descending periodic inputs from the brain might 

introduce changes in the synaptic "noise"). In any case, under the con­

ditions they used there was zero serial correlation between intervals and 

their theoretical predictions concerned the shape of the interval distri­

bution. The fact that fluctuations of the membrane potential are slower 

in Limulus eccentric cells than in cat motoneurons enables you to make 

predictions about Limulus cells which provide a tighter check on the 

neuron model, predictions concerning correlation as well as distribution 

of impulse intervals. 

The predominantly negative correlation between intervals in the 

impulse discharge of eccentric cells resembles the correlation between 

intervals found by Goldberg et al. (1964) in neurons of the superior 
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olivary complex (third order auditory neurons). In fact, Geisler and 

Goldberg (1966) postulate a process similar to self-inhibition in order 

to explain the negative serial correlation observed by Goldberg et al. 

(1964). 

The negative correlation in the impulse firing of eccentric cell 

extends over two to four impulse intervals. This indicates that there 

is some persistent underlying process causing the correlation. This 

result alone is sufficient to rule out a first order Markov process as 

the cause of variability. If the impulse firing were a Markov process 

(see Feller, 1957; Jenkins and Watts, 1968) it would "forget" everything 

which occurred before the previous pulse interval; this loss of memory 

would lead to an oscillatory set of serial correlation coefficients, if 

the first serial correlation coefficient were negative. A Markov model 

which predicts zero correlation between pulse intervals, has been proposed 

by Junge and Moore (1966) for Aplysia neurons. Such a model could not 

explain the major portion of variability in Limulus eccentric cells. 

The quantitative model for neuronal firing, which I have used 

to account for variability in eccentric cell activity, can be extended 

to yield general conclusions about neuronal variability. The theory 

presented here for Limulus cells can be expressed in analytic form and 

the qualitative effects of varying the properties of the generator 

potential, temporal summation, and self-inhibition can be understood 

without computer simulations. Many neuron models require Monte Carlo 

methods to investigate the effect of varying parameters on fluctuations 

in impulse firing (Stein, 1967; Moore et al., 1966). 

Conclusions 

Periodicities. One generally applicable conclusion from the model 

is that periodicities in the underlying generator potential will be reflected 

in the variance spectrum (or, equivalently, in the autocorrelation) of the 

impulse rate. This kind of result is also indicated for cells of the cat 
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dorsal spino-cerebellar tract by Walloe's work (Walloe, 1968). 

Inhibition. A second general prediction from this model is that 

any negative feedback like self-inhibition will tend to increase the re­

lative variability, measured by the coefficient of variation (standard 

deviation/mean). This is because a negative feedback must reduce the 

effect of the maintained level of excitation compared to the effects of 

rapid fluctuations of excitation. This is strikingly illustrated by 

Limulus eccentric cells in which the coefficient of variation of the 

impulse rate is several times larger than the coefficient of variation 

of the generator potential. 

This conclusion can be extended to include all kinds of inhi­

bition, not merely self-inhibition, but the problem is subtle. I have 

investigated the effects of inhibition on variability and will present 

those results in Part II. 

Adaptation. On the other hand, adaptation in size of the quantal 

responses of the Limulus eccentric cell, or adaptation of individual 

excitatory synaptic potentials, will reduce the coefficient of variation 

of the firing rate. This has already been shown by Stein (1967) for a 

computer model and inferred by H.B. Barlow and Levick (1969) from a 

neuron model very similar to ours. The Poisson scaler model of Barlow 

and Levick can be viewed as an integrate-and-fire device with a Poisson 

process as input. This means that synaptic potentials (or quantal res­

ponses) are assumed to be brief compared to impulse intervals, and are 

assumed to occur purely randomly in time. The interval distribution for 

such a model will depend on the ratio of the threshold for firing to the 

integral of a single synaptic potential (the number of quanta per spike). 

In fact, if we call this ratio 5 , the interval probability density 

function will be a gamma probability density of order 5-/ of the form 

-—n//^j"c7 with coefficient of variation 5 ''^. Barlow and Levick call S 

the quantum/spike ratio in their study of variability in retinal ganglion 

cells of the cat. 
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Diminution of unit synaptic potential size will increase 5 , 

other things being equal. This will tend to make firing more regular; 

in fact as the parameter 5 of a gamma density becomes larger the den­

sity function approaches a Gaussian probability density and its coeffi­

cient of variation decreases. In my experiment on light and dark 

adaptation in the Limulus eye, the same qualitative effect was present, 

namely, a shift to greater regularity of firing when quantal responses 

were diminished in size by light adaptation. 

Such a simple version of the integrate-and-fire model will not 

explain all the complexities of variability and correlation in the re­

tinal ganglion cells which Barlow and Levick studied, or in Limulus 

eccentric cells, or most other neurons. Self-inhibitory negative feed­

backs at earlier stages in the nervous system will tend to increase the 

coefficient of variation in the firing rate of a neuron at a later stage 

in the nervous system. This will decrease the value of the apparent 

"quantum to spike ratio" in such a neuron. Barlow and Levick observed 

just this sort of effect in their experiments, when inhibition from the 

periphery of a receptive field increased the coefficient of variation of 

the firing in a retinal ganglion cell. With such a simple neuronal model 

they could not deal with problems like the correlation of impulse inter­

vals, nor the magnitude of the effects of adaptation and inhibition on 

neuronal variability. These are the sort of more detailed, quantitative 

problems I have attempted to solve in this study of variability in eccen­

tric cells. 

Using the methods described here, one can understand the fluc­

tuations in neuronal firing as resulting from temporal integration of 

excitatory and inhibitory synaptic potentials which are occurring randomly 

in time. From this vantage point the variability in neuronal activity is 

one example of the general case of filtered shot noise, a fundamental 

subject of the theory of stochastic processes. 



. PART II 

THE EFFECTS OF NEURONAL INTERACTION 

ON VARIABILITY 
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PART II 

INTRODUCTION 

I have shown in Part I that, for Limulus eccentric cells, stimu­

lated by spots of light which act as purely excitatory stimuli, the varia­

bility of neuronal discharge is caused by fluctuations of the generator 

potential in the eccentric cell. These generator potential fluctuations 

result from the inherent randomness of the arrival and absorption of 

photons. 

As is the case in many other neurons, an eccentric cell can also 

be influenced by neuronal interaction; illumination of neighboring omma-

tidia in the Limulus eye causes inhibition of the impulse discharge of 

an eccentric cell (Hartline, Ratliff and Miller, 1963). This lateral 

inhibition is similar to postsynaptic inhibition in other nervous sys­

tems (Purple, 1964; Eccles, 1964; Kandel and Wachtel, 1968). The effects 

of inhibitory interaction on randomness in the impulse firing of the 

Limulus cells should be similar to the effects of inhibition on other 

neurons. 

In Part II of the thesis, I will present results concerning the 

effects of lateral inhibition on randomness in impulse firing of eccen­

tric cells. Because the interaction of excitatory and inhibitory in­

fluences within Limulus eccentric cells resembles integrative inter­

action in neurons of more complex nervous systems, the results presented 

here should be, to some extent, applicable to those neurons too. The 

time course, size, and rate of occurrence of excitatory and inhibitory 

postsynaptic potentials are very important in determining the properties 

of variability in impulse firing. These factors which influence varia­

bility will differ from animal to animal, and from cell to cell within 

the same animal. For this reason, it is obvious that details of the 

statistical properties of the activity of Limulus visual sensory neurons 

need not be identical to the characteristics of nerve cells performing 
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different functions in other animals. Nevertheless, there should be 

general usefulness to the methods of analysis, and the qualitative and 

quantitative conclusions, of this research on the stochastic component 

of neuronal response resulting from neuronal interaction. 
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Chapter 7 

EXPERIMENTAL METHODS 

Recording 

These experiments were done mainly on single nerve fiber prepa­

rations from the horseshoe crab optic nerve. Techniques for Limulus 

optic nerve fiber recording have been described previously in this 

thesis (Chapter 2). In addition, one type of experiment was done with 

intracellular recording from an eccentric cell body. For this experiment 

I used the same technique and equipment for intracellular recording des­

cribed in Chapter 2. 

Experiments were also done on multiple fiber responses to light. 

For these experiments, dissection of the optic nerve stopped before the 

isolation of a single fiber. The activity of several nerve fibers was 

thereby recorded. A standard narrow pulse was produced for each nerve 

impulse recorded, with the use of pulse generator (Tektronix 161 unit). 

Coincidences were rare under the conditions used: total dead time of the 

pulse generator of 0.5 millisecond and pulse rates less than 200 adrians 

on the average. The pulses were fed to a four stage, single time constant 

(6 msec.) filter. This was done to restrict the bandwidth of the multiple 

fiber signal, so that it was less than the sampling rate of subsequent 

equi-spaced time samples. This procedure prevented distortion due to 

beating between the sampling rate and high frequency components in the 

multiple fiber signal. The smoothed multiple fiber voltage was sampled 

and stored in the CDC 160-A computer in the same way as, for instance, 

measurements of the generator potential (described in chapter 2); via 

the use of periodic samples by an a/d converter and a computer program 

which acquired and stored the samples for subsequent analysis. 
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Stimulus 

For one part of this investigation, antidromic electrical stimulation 

of the optic nerve was used to produce lateral inhibition on a single fiber 

whose activity was monitored. This is a technique pioneered by Tomita (1958). 

The experimental method was very similar to that used by Lange (1965) in 

his study on the step response of lateral inhibition. The optic nerve was 

stimulated in air with a bipolar electrode made out of platinum wire. 

Brief pulses from a pulse generator (Tektronix 161) were passed through 

an isolation transformer and thence to the stimulating electrodes. The 

electric shocks produce volleys of antidromically conducted nerve impulses 

in most of the optic nerve fibers. Standard supramaximal shock values 

were 5 volts for 0.5 msec. The rate of supramaximal shocks was varied to 

produce larger or smaller amounts of inhibition. 

A typical experiment proceeded as follows. A response of a single 

unit to a twenty second light stimulus was recorded. Then after two 

minutes the response of the same unit to an identical light stimulus was 

recorded while the steady antidromic electrical shocks were being produced. 

The alternating sequence, first control, then inhibited firing, was re­

peated five to ten times in order to obtain sufficient data. 

In other experiments I measure the effect of naturally evoked 

lateral inhibition, i.e. lateral inhibition produced by neighboring 

spots of light. For these experiments the light stimulus on the test 

receptor was provided by a small single optical wave guide as described 

in chapter 2. At a nearby region of the horseshoe crab eye a bundle of 

light guides was aligned to stimulate a group of receptors. I attempted 

to place this larger inhibitory spot in order to get the maximum inhibitory 

effect. The inhibitory light was turned on at the same moment as the test 

light. On alternate runs the inhibitory light was left off, so that again 

there was a sequence, first control, then inhibited activity. This stimulus 

procedure was useful in case there was any long term drift in the preparation, 

since alternate runs as well as averages over all the runs could be compared. 
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Timing of stimuli was controlled by the programmed timer discussed 

in Chapter 2. Measurement of nerve impulse intervals, computation of 

impulse rate from pulse intervals, calculation of variance spectra — 

all were performed as previously described (chapter 2). 
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Chapter 8 

THEORETICAL BACKGROUND 

As mentioned before, there is a fairly comprehensive mathematical 

model for the operation of Limulus eccentric cells. This model is based 

on the response of the cell to time-varying modulations of stimuli around 

their steady state level. A schematic diagram of the model is shown in 

Figure 8-1. The different component processes which determine the cell's 

response are labeled in the block diagram. These are: GENERATOR POTENTIAL, 

Frequency Modulation (FM) , SELF INHIBITION, and, in addition, LATERAL 

INHIBITION. The first three components and their effects on firing rate 

variability have been discussed before (Chapter 4). In this section I 

will present the expected effects of lateral inhibition on the stochastic 

component of neural response. Then we can compare the observed results 

of experiment with these theoretical predictions. 

Eccentric Cell Model 

First, I will recapitulate the idea of the neuronal model which 

was discussed in Chapter 4. This is a review of how the eccentric cell 

functions, with reference to the block diagram of the model. The eccen­

tric cell fires nerve impulses when the membrane of the cell is suffi­

ciently depolarized. The membrane potential which influences the im­

pulse firing site is labeled < ^ in the block diagram; this represents 

the idea that it is a summing point for excitatory and inhibitory in­

fluences which are acting upon the cell. Depolarization of the membrane 

causes an impulse firing mechanism, labeled FM, to fire impulses at a 

rate proportional to the level of the depolarization. The behavior of 

the impulse firing mechanism to time-varying depolarization suggests that 

this process behaves as if it were integrating the membrane potential (or 

current through the membrane) until the integral exceeds a threshold at 

which time an impulse is fired. 
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Figure 8-1. Model of Eccentric Cell with Lateral Inhibition. This is 
the same model as in Figure 4-1, with the addition of LATERAL INHIBITION 
which acts as another negative signal at the summing point. This figure 
taken from Dodge, Knight and Toyoda (1968b). 
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After each nerve impulse a single inhibitory synaptic potential 

is summed with the membrane potential, which reduces the level of depo­

larization. This is the phenomenon called self-inhibition, and is so 

labeled in the schematic diagram of Figure 8-1. The integrate-and-fire 

mechanism, and self-inhibition, shape the impulse firing response of the 

cell to any stimulation which affects the membrane potential, be it ex­

citation by light or electric current, or inhibition from neighboring 

eccentric cells. 

There are two external natural stimuli which can affect the mem­

brane potential of the eccentric cell. The first is stimulation of the 

ommatidial photoreceptor by light. The many microscopic steps which lead 

to production of the membrane depolarization from photon absorption are 

included under the heading, GENERATOR POTENTIAL. The effect of fluctuations 

of the generator potential on neuronal variability has been extensively 

discussed in Part I. The second naturally occurring influence on the 

membrane potential is lateral inhibition. 

Lateral inhibition of a given cell's activity is produced by the 

firing of nerve impulses by neighboring eccentric cells in the Limulus 

compound eye. Dodge, Knight and Toyoda (1968b) showed that the inhibi­

tory synaptic potential resulting from a single nerve impulse in an in­

hibitory nerve fiber is biphasic, with a brief depolarizing phase and 

a prolonged inhibitory hyperpolarization. The time constant for decay of 

the lateral inhibitory synaptic potential is about one third of a second, 

as opposed to about one half a second for decay of a self-inhibitory 

synaptic potential. The unit lateral inhibitory postsynaptic potential 

can be considered to be the impulse response of the lateral inhibitory 

synapse. Toyoda measured both the impulse response and frequency res­

ponse of the lateral inhibitory synapse (which are related to each other 

by the Fourier transform). The two functions are shown in Figure 8-2. 

The temporal characteristics of lateral inhibition play an important part 

in determining its effect on neuronal variability, as will be shown in the 

ensuing discussion. 
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Figure 8-2. Lateral Inhibition - Frequency Response and Impulse Response. 
This shows the amplitude and phase of the frequency response of the 
lateral inhibitory synapse. The points were measured by imposing sinu­
soidal variations in the firing rate of fibers in the optic nerve and 
measuring ,the amplitude and phase of the lateral inhibitory potential. 
The smooth curve is a similar frequency response measured indirectly by 
observing modulations of the firing rate in response to modulated firing 
of inhibitory fibers in the optic nerve. The insert is the impulse response, 
the Fourier transform of the measured frequency response. This figure is 
adapted from Dodge, Knight and Toyoda (1968b). 
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Analogue Simulation 

The effects of mixed excitation and inhibition are complex. To 

simulate these effects analogue eccentric cells have been designed by 

F.A. Dodge and constructed by the Rockefeller University Electronics 

Shop. The neuronal analogues can be used for imitating the behavior of 

Limulus eccentric cells in response to a variety of stimuli. They have 

been extremely useful in the study of variability in the firing rate. 

These electronic devices conform to the block diagram model of 

the eccentric cell shown in Figure 8-1. There is a section of bandpass 

filters corresponding to the generator potential mechanism at the input 

of the analogue. The analogue possesses a summing point ( ^ ) which 

is the output of an operational amplifier. This summing amplifier has 

as inputs the "Generator Potential" section, the "Current" input, "Self 

Inhibition" and "Lateral Inhibition". The "Current" input receives con­

tinuous external voltages. The "Self Inhibition" input to the summing 

point is a negative, decaying, exponential for each pulse the analogue 

fires as a result of stimulation. The "Lateral Inhibition" input to the 

summing amplifier is a filtered pulse train from external pulse sources, 

for instance from other analogue eccentric cells. 

The output of the summing operational amplifier is fed into a 

voltage-to-frequency converter which is an integrator circuit in series 

with a monostable, fast recovery, multivibrator. The output of the multi­

vibrator is the impulse output of the analogue; these are the pulses which 

are also fed back through the "Self Inhibition" network to the summing 

amplifier, or to the "Lateral Inhibition" network of other analogue eccen­

tric cells. 

The strength of self inhibition and lateral inhibition is set by 

potentiometers which determine how much inhibition each impulse exerts. 
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Variance-Firing Rate Relation 

The primary effect of inhibition is to lower the mean firing rate 

by reducing the average level of membrane depolarization. Such a change 

in the average rate of firing will affect the variance of the impulse 

rate. This can be viewed in two ways, in the time domain and the frequency 

domain. You can consider that the length of an interval between nerve 

impulses is an averaging interval; fluctuations of the membrane potential 

which are rapid enough to be averaged out during the pulse interval will 

have only a small effect on pulse firing variability -- the longer the 

interval, the more high frequency components will be averaged out. An 

alternative way of considering the same effect is to view the impulse 

firing mechanism as a filter which has a high frequency cutoff set by the 

mean firing rate. For instance, as the impulse rate decreases, the band­

pass of the filter is narrowed, and, consequently, higher frequency com­

ponents are filtered out from the impulse rate. Although the latter 

approach has some limitations, it has proved to be useful for obtaining 

analytical predictions of the effect of mean firing rate on firing 

variability. 

The view of an integrate-and-fire mechanism as a linear filter 
must be applied with caution because of the phenomenon of side-bands or 
aliasing. These terms refer to the appearance of difference frequency 
components in the firing rate spectrum when the firing rate is modulated 
at frequencies which exceed half the mean firing rate (cf. Lange, 1965). 
As will be shown, aliasing does not affect the filter theory of the im­
pulse firing mechanism, because it is an empirical fact that the side 
band components do not contribute much variance to impulse rate fluctua­
tions in eccentric cells. ___ 

In order to compute the effect of changing the average impulse 

rate, we must consider the filtering action of the current-to-firing 

rate mechanism. This involves the contributions of the integrate-and-

fire mechanism and self-inhibition. As previously mentioned in chapter 4, 

the frequency response for the overall process is 
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In fact, j ( t y can be further approximated to yield 

s r o ^ c / i + k s 

s c - f ) 

m where the dependence on the mean firing rate is entirely contained in 

That (2) is a good approximation for J (-f/is shown in Figure 8-3. 5C-f/ 

is computed for nominal values of K< and TV j ant* two values for -f : 

10 adrians (impulses/second) and 20 adrians. The amplitude and phase of 

the complex valued frequency response 5 (~f J are shown. The approximation 

for S(-f) based on equation (2) is plotted as points (+) on the solid 

curve. The latter is computed from the exact expression (1). The 

approximation is plotted as points rather than as a continuous curve 

because the approximation is good enough that if the curves were plotted 

for both the approximation and the full expression they would almost 

entirely coincide. What this approximation ignores is the discrete 

nature of self-inhibition, the fact that self-inhibitory potentials are 

phased to the firing of nerve impulses. That it is a good approximation 

for typical eccentric cell parameter values tells us that the self-

inhibitory potentials are long enough that we can safely ignore the 

discreteness of self-inhibition at moderate firing rates. 

The approximate expression for the frequency response is a pro­

duct of two parts: Q t T V which depends on the mean firing rate, and 

a function (which I have called J^(-fJ in chapter 4) which does not depend 

on the average impulse rate. Therefore, the approximation allows us to 

predict the effect of changes in the mean rate on the stochastic compo­

nent of impulse firing, in terms of the single function o (t/-

We can do this by considering the variance spectrum of the 

impulse rate, U>*, (-f J . As shown previously, the impulse rate 
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Current to firing rate frequency response S(f), and an approximation 

S(f) 
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r .0 10.0 

Frequency (hz) 

Amplitude 

1.0 10.0 

Frequency (hz) 

Figure 8-3. $Ci ) an(* a Continuous Approximation. The theoretical 
current-to-firing rate frequency response is plotted as a continuous 
curve on log-log coordinates against frequency. A continuous appro­
ximation to S(-f) , ignoring the discrete nature of the self-inhibitory 
hyperpolarizations, is plotted as crosses at several points on the 
curve. Values of the parameters are shown in the figure; K $ is the 
self-inhibitory coefficient, T j is the self-inhibitory time constant, 
f i s the mean firing rate. 
o 
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variance spectrum, (DfJ (-j) , is produced by filtering the variance 

spectrum of the generator potential (p q (-fj through the current-

to-firing rate mechanism. This is expressed in the following equation. 

remains Suppose the generator potential variance spectrum, <fr (4 J > 

the same but the mean firing rate is changed. Call the original variance 

spectrum of the firing rate %/, I T / > and the variance spectrum after 

the rate has been changed (p i-y (\C) • Using the approximation of equation 

(2) and the same notation as for the spectra, 15 (y / for the original 

firing rate and JP (-j / f°r the changed firing rate, we obtain the 

following expression. 9 

or ^ 

3 , a ) 

The variance can be calculated by integrating the variance spectrum with 

respect to frequency, -r~ . 

There is some difficulty with the application of equation (3). 
The denominator of the right hand side of that equation, 1$ ( J ) \°-
equals zero at //A . This can make the variance, as calculated 
from (3), appear infinite if <fiui(-£) does not equal zero atffj, 
It is perfectly legitimate to omit these spurious infinities in the 
calculation of the change in variance with firing rate. 

Using equation (3), we can calculate the change in variance with 

average impulse rate. Given rA, (̂ -f)at a Particular average firing 
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rate we can predict, from this linear model with a continuous approximation 

for self-inhibition, the variance, and shape of the variance spectrum, for 

any other mean firing rate. In practice, it is best to choose (to)i to 

be high, and calculate variance for lower mean impulse rates. The curve 

relating variance with the average impulse rate is shown in Figure 8-4. 

The variance increases monotonically but non-linearly with mean firing 

rate. 

To check whether this method of calculating the variance-firing 

rate relation is theoretically correct, I simulated the problem with 

one of the neuronal analogues which have been discussed before. The 

generator potential variance spectrum &Q. ("T J for the neuronal analogue 

was held the same while the firing rate was varied by varying a constant 

voltage which was added to the noisy voltage at the summing point of 

the analogue. The variance and variance spectrum were computed from the 

impulse rate produced by the analogue. The points marked with an x in 

Figure 8-4 are the values of the variance of the impulse rate at different 

average impulse rates. The analytically calculated curve for the variance-

firing rate relation fits the simulation rather well; this indicates that 

the assumptions used for the calculation (linear filtering, continuous 

self-inhibition) are sufficiently applicable to enable us to calculate 

the effects of mean impulse rate on the variance of the impulse rate. 

It is also interesting to consider the effect on the coefficient 

of variation of changes in average impulse rate. This relation is shown 

also in the graph of Figure 8-4. The curve is derived from the variance-

firing rate curve and the points, marked with open circles, are computed 

for the same data from the neuronal analogue. While the variance decreases 

with decreasing impulse rate, it decreases more slowly than the mean rate: 

this results in a net increase in the fraction, standard deviation divided 

by the mean, which is the coefficient of variation of the impulse rate. 

This implies the conclusion that noise-free inhibition will decrease the 

variance of neural firing, while increasing the coefficient of variation. 
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Dependence of variance and coefficient of variation 

on average firing rate 

8 12 16 20 

Average rate (adrians) 

Figure 8-4. Variance ( C ) and Coefficient of Variation ( O/?*) ) as 
Functions of Mean Firing Rate. Variances at different firing rates of 
eccentric cell analogue are denoted X. The smooth curve for variance 
is calculated by filtering the firing rate spectrum at the average firing 
rate 16.1 adrians, according to the theory presented in the text. Trie 
coefficient of variation points, marked o, are calculated from the 
variance points, and the coefficient of variation curve from the variance 
curve. It is important to note the slope of these curves: positive for 
the variance, negative for the coefficient of variation. 
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While this conclusion is derived from theoretical calculation for a particu­

lar neural model, it may be generally applicable. 

Lateral Inhibition As A Noise Source 

Besides its effect on the average impulse rate, lateral inhibition 

must add some extra randomness to the membrane potential of the eccentric 

cell. This is because, during natural stimulation by light, a group of 

inhibitory cells fire nerve impulses asynchronously and to some extent 

randomly in time. The summed inhibitory synaptic potential fluctuates 

because of this effect. This inhibitory synaptic noise should be inde­

pendent of the generator potential, so the variances of the two fluctua­

ting components should add. 

The characteristics of the summed inhibitory synaptic potential 

should depend on two factors: statistical properties of the occurrences 

of nerve impulses in inhibitory neurons, and the time course of the 

lateral inhibitory synaptic potentials. 

The Point Process Underlying Lateral Inhibition. The point pro­

cess which underlies the summed synaptic potential is a superposition of 

the impulse trains from each of the nerve fibers which have a synaptic 

effect. You can construct the superposed pulse train in the following 

manner. Whenever a pulse occurs on any of the converging presynaptic 

nerve fibers, assign a pulse to the superposed pulse train. Another way 

of looking at it is to consider the superimposed pulse train as the 

electrical record obtained by recording from all the presynaptic nerve 

fibers with the same electrode (with pulses recorded monophasically). 

The variance spectrum of a pulse train (not the firing rate) is 

an important statistical measure for understanding the relation between 

the pulse train, a stochastic point process, and the noisy voltage pro­

duced by filtering the point process. The variance spectra for the pulse 

train of a single eccentric cell and for the superposition of many such 

pulse trains are shown in Figure 8-5. Because the firing of the cell is 
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Figure 8-5. Variance Spectrum of Single Fiber's Pulse Train and for 
Multiple Fiber Pulse Train. This figure shows how peaking in the multiple 
fiber pulse train arises from regularity in the firing of individual nerve 
fibers. The single fiber, the spectrum of whose pulse train is shown in 
the lower graph, contributes to the firing of the fiber bundle. Therefore, 
the peak at 14.5 hz observed in the fiber bundle spectrum is contributed 
by the single fiber from the lower figure. Peaks at 7, 15.5, 17 and 18 
hz presumably come from several other, regularly firing, single fibers. 
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fairly regular, with a coefficient of variation of only 0.15, the spectrum 

for the pulse train of the single fiber is peaked around a frequency equal 

to the mean firing rate. For the superposed point process, the spectrum 

is the sum of the spectra of the pulse trains from the individual fibers. 

There are peaks at frequencies equal to the mean rates of the fibers, and 

their harmonics, and wide band noise on account of the small variability 

in neuronal firing. 

The response of the single fiber was recorded on one electrode 

and the multiple fiber firing was recorded on another electrode. The 

activity of the single fiber was also recorded on the electrode which 

recorded multiple fiber firing. So, in this case, you can see the spectrum 

of the pulse train of a single nerve fiber by itself and after superposition 

with several other pulse trains. The presence of the same peak in the 

variance spectrum of the superposed pulse trains as in the single fiber 

spectrum conforms to the theoretical expectation that superposition of 

pulse trains results in superposition of their variance spectra. 

We can predict that.the variance spectrum of the superimposed 

pulse train for Limulus nerve fibers will have peaks at the average 

firing rates of the individual fibers, and at higher harmonics of these 

average rates. It will therefore differ from a Poisson point process whose 

variance spectrum is a constant with frequency, i.e. white noise. This 

spectral peaking occurs in other nervous systems, e.g. the cat spinal cord 

(WallfSe, 1968). It is a consequence of the regularity of presynaptic 

nerve impulse firing. 

The Lateral Inhibitory Synapse as a Filter. The departure from 

purely random arrival of presynaptic nerve impulses has a major effect 

on the summed postsynaptic potential. The inhibitory potential, like all 

summed synaptic potentials, can be viewed as a filtered shot noise. The 

shots are the presynaptic nerve impulses and the filter is the synapse; 

the unit inhibitory postsynaptic potential is the impulse response of the 

synaptic filter. The shape of a typical lateral inhibitory postsynaptic 
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potential is shown in Figure 8-2; also shown in this figure is the fre­

quency response of the lateral inhibitory synapse. The low pass charac­

teristic of this filter tends to reduce high frequency periodic components 

in the summed inhibitory potential. As a result the summed inhibitory 

potential exhibits smaller fluctuations than it would if it were produced 

by filtering a Poisson point process through the same low pass filter. 

This reduction in noise as a result of filtering out high fre­

quency periodicities is illustrated in Figure 8-6. At the top of the 

figure two variance spectra are shown, one for a pulse train which is 

the superposition of several regularly firing nerve cells, the other for 

a Poisson pulse train of the same intensity (mean arrival rate of pulses) 

produced by a photomultiplier tube. Both have been passed through a 

filter with a high frequency cutoff around 12 hz. The variances of the 

two filtered shot noises produced in this manner are equal. The filter 

was wide enough not to significantly attenuate the periodic component 

of the multiple fiber point process. In the second row of this figure 

are spectra of the same two point processes filtered through a low pass 

filter with the same frequency response as a typical lateral inhibitory 

synapse (i.e. it had a frequency response like that shown in Figure 8-2). 

Samples from the simulated synaptic potentials produced in this way are 

illustrated in the bottom row of the figure. A striking difference is 

apparent between the amount of noise in the filtered multiple fiber 

spectrum and the filtered Poisson spectrum. Because there is much less 

variance at low frequencies in the multiple fiber pulse train compared 

to the amount at the peak, filtering the pulse train through a synapse 

which passes only low frequencies results in a large reduction in size 

of fluctuations. For the purely random pulse train, the variance is as 

great at low as at high frequencies and so the low frequency filtering does 

not reduce the variance as much. 

Another consequence of the low pass character of the lateral inhi­

bitory synapse is that whatever inhibitory fluctuations there are must be 

very low frequency fluctuations. So we expect to see additional low fre-
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Figure 8-6. Filtered Multiple Fiber and Poisson Pulse Trains. Top 
two variance spectra are from pulse trains filtered through a wide band 
filter (time constant 6 msec). Below these are, respectively, the spectra 
and sample time function for the same two pulse trains filtered through 
a simulated inhibitory synapse. The vertical scale marks for the upper 
and lower spectra are the same. 
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quency components in the impulse rate variance spectrum in an eccentric 

cell which is influenced by lateral inhibition. If the lateral inhibi­

tory synaptic potential should happen to be fast enough, and the average 

firing rates of the presynaptic, inhibitory nerve fibers were low enough, 

the periodic components in the inhibitory potential would significantly 

increase the variance of the impulse rate in the inhibited cell. But 

in the circumstances illustrated in Figure 8-6 the stochastic component 

added by lateral inhibition would be quite small and the major effect 

of inhibition would be exerted by its effect on the average impulse rate 

of the inhibited eccentric cell. 

We can get definite predictions for this complicated phenomenon, 

the effect of inhibitory interaction on neuronal variability, by using 

the neuronal analogue of the eccentric cell. Typical neuronal firing 

in response to purely excitatory stimuli can be simulated (as described 

above). Then a good imitation of naturally occurring lateral inhibition 

can be produced by feeding into the inhibitory synapse a multiple fiber 

pulse train actually recorded from a Limulus eye. 

The results of this analogue experiment are summarized in the 

impulse rate variance spectra of Figure 8-7. The control spectrum, 

characteristic of the firing which results from purely excitatory stimuli, 

shows the low frequency cutoff imposed by self-inhibition and the high 

frequency cutoff resulting from the inegrate-and-fire mechanism. The 

inhibited impulse rate spectrum shows an increase in the size of low-

frequency components and a lower high frequency cutoff as_ a result of 

the reduction of average firing rate. If our model is correct, the same 

kind of change in the pattern of neuronal randomness should be observed 

in Limulus eccentric cells which are inhibited by light-evoked lateral 

inhibition. The observations of these effects are presented in the next 

chapter. 
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Simulation of the effect of lateral inhibition on variability variance spectra 

of the firing rate from an eccentric cell analogue 

Spectrum of the firing rate 
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Figure 8-7. Control and Inhibited Variance Spectra - Prediction from 
Analogue Model. The variance spectrum of the inhibited cell has larger 
low frequency components in the variance, and a more abrupt high frequency 
cutoff because of the reduction in average firing rate. These spectra 
were calculated from data produced by the eccentric cell analogue. 
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Chapter 9 

RESULTS 

Effect of Reduction in Average Firing Rate 

Inhibition produced by antidromic electrical stimulation reduces the 

variance of the impulse firing rate. When the antidromic electric shock 

rate is high enough, i.e. greater than 10/sec., the steady state summed 

inhibitory potential ought to be practically constant, with very small 

ripple at the shock rate. Therefore, the change in variance with "anti­

dromic inhibition" should occur because of the effect on variance of 

changing the average impulse firing rate. 

The data from such an experiment are displayed in Figure 9-1. Two 

sample records of impulse rate are shown: the lower record is control firing 

in response to a purely excitatory light stimulus, the upper record is 

firing in response to the same light stimulus while the cell is also under­

going steady inhibition elicited by antidromic electric shock of the optic 

nerve. 

The variance of the antidromically inhibited firing rate is 607o 

of the variance of the control firing rate. This drop in variance is 

associated with a reduction in average impulse rate of 5.2 adrians. The 

magnitude of the variance reduction predicted by the filter model for the 

impulse firing mechanism is 59% of control. The agreement, both qualita­

tively and quantitatively, of the mathematical model with this experimental 

result is strong support for the theory. 

What seems at first a simpler and more straightforward method for 

controlling the firing rate, namely d.c. current injection into the cell 

through a microelectrode, has proved to have more complicated effects than 

antidromic inhibition. This seems to occur because current injected at the 

cell soma level affects the nearby photoreceptor membrane while the inhibi 

tory synaptic potential, which occurs at a point far from the photoreceptor, 

does not. The inhibitory potential occurs at the point of synaptic contact 
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Figure 9-1. Data from the Experiment with Steady Inhibition Produced by 
Antidromic Electric Stimulation of the Optic Nerve. The lower record is 
a sample record from the response of the cell to excitation by light. 
The upper record is obtained by using the same excitatory stimulus while 
stimulating the optic nerve at a fixed rate of twenty per second to 
produce steady inhibition. The samples of data shown are the maintained 
component of the responses, the first four seconds of each responses 
having been omitted from the figure. 
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between eccentric cells, which point is close to the impulse firing mecha­

nism and far from the cell soma and photoreceptor membrane (Purple, 1964). 

It is a consistent finding that injected current has an effect 

on the variance of the firing rate which is the inverse of its effect 

on the average firing rate. For instance, a step of hyperpolarizing 

current will reduce the average firing rate in the response to a steady 

light. However, the variance of the firing increases under these condi­

tions. This is just the opposite of what we would predict if the mean 

firing rate were the only factor affecting the variability of the firing 

rate. 

However, it is possible to measure an effect of injected current 

on the generator potential. In one of the experiments which dealt with 

the effect of injected current on the firing rate, this measurement was 

accomplished. The experiment shows that the injected current influences 

the variance of the firing rate through its action on generator potential 

fluctuations. Depolarizing current reduces the variance, while hyperpo­

larization increases the variance of generator potential fluctuations. 

Quantitative aspects of this phenomenon are graphed in Figure 9-2. Plotted 

against current strength are firing rate variance and generator potential 

variance. 

Such an effect of steady polarization on the generator potential 

should be expected since the generator potential seems to be caused by 

a light-triggered conductance increase. Nevertheless, these results 

underscore the importance of regarding the mathematical model of the 

eccentric cell only as a first approximation to the complexity of the 

living neuron. Under conditions of modulation around a steady state it 

is a perfectly adequate model. This experiment shows that steady state 

change in one of the parameters which determine the state of the cell can 

affect fluctuations of the firing rate in a nonlinear fashion. It also 

reveals another limitation of the simplified neural model -- the simple 

model is a lumped parameter model which does not take into account the 
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The effect of injected current on variance of the generator 

potential and variance of the firing rate 
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Figure 9-2. Variance of Firing Rate and Generator Potential as a 
Function of Injected Electric Current. The increase of variance with 
hyperpolarization and the decrease of variance with depolarization is 
clear, for both the generator potential, o, and the firing rate, x. 
The two vertical scales have been chosen to emphasize the similarity 
of the effect on generator potential and firing rate. 
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cable properties of the eccentric cell (a subject investigated by Purple, 

1964; and Purple and Dodge, 1965). Since injected d.c. current exerts 

a complex influence on firing rate variability, I think the best experi­

mental method for control of the firing rate alone is the use of antidro­

mic electric shock applied to the optic nerve. The results of such ex­

periments, described above, indicate that firing rate variance will 

change in the same direction as average firing rate, other things being 

equal. 

Lateral Inhibition Produced By Light 

Lateral inhibition produced by stimulating a neighboring group of 

receptors with light has a more complex effect than a mere reduction in 

average firing rate. A data record from an experiment which demonstrates 

this is shown in Figure 9-3. The firing rate of a Limulus optic nerve 

fiber is shown. At time zero a small light illuminates the test receptor. 

At four seconds a large spot of light stimulates a neighboring group of 

receptors and the test cell is inhibited by their activity. Both the 

pattern and magnitude of the cell firing rate variability is changed by 

the light-evoked inhibition. In this cell the variance of the firing 

actually increased while the cell was being inhibited. 

The nature of the effects produced by lateral inhibition can be 

seen by examination of firing rate variance spectra. As discussed before, 

the shape of such a spectrum informs you about the pattern of firing rate 

randomness, and the area under the spectrum measures the total variance 

of the firing rate. Firing rate spectra for control and inhibited firing 

are shown in Figure 9-4 for two cells. The experiment was the standard 

paradigm for demonstration of naturally evoked lateral inhibition: a test 

light spot stimulated a single ommatidium and an inhibitory spot stimulated 

a neighboring group of ommatidia. The change in the shape of the variance 

spectra because of the presence of lateral inhibition is very much in 

agreement with the theoretical predictions advanced in chapter 8; to see 

this, compare Figure 9-4 with Figure 8-7. 
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Instontoneous 

firing rate 40 

(impulses/sec) 

Increose in Variance Caused by Light Evoked Inhibition 

Time after test stimulus onset (sec) 

Figure 9-3. Lateral Inhibition Produced by Illumination of Neighboring 
Receptors. Shown is the response of an eccentric cell to excitatory 
stimulation by light, of nineteen second duration, and a superimposed 
inhibitory flash, of six second duration and starting four seconds after 
the onset of the excitatory stimulus. The variance of the maintained 
response is increased by the presence of inhibition (0.8 adrian2 without 
inhibition, 1.2 adrian2 with inhibition). 
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Firing rate variance spectra: The effects of lateral inhibition 

adrian 
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Figure 9-4. Firing Rate Spectra for Control and Inhibited Firing. 
Variance spectra are shown for two different cells. The Control spectra 
are from response of each cell to a purely excitatory stimulus (small 
steady light). The spectra labeled Control plus Inhibition are the response 
of the cell to the excitatory stimulus presented simultaneously with stimulus 
which evoked lateral inhibition (large neighboring spot of light). The 
inhibition leads to the presence of larger low frequency components in the 

spectrum and a more abrupt high frequency cutoff. 
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There is an apparent contradiction in the data from these two ex­

periments, since in one case the variance increased during inhibition, and 

in the other it decreased during inhibition. This occurs because the 

naturally evoked inhibition produces two opposing influences on the variance. 

As discussed in Theoretical Background (Chapter 8), lateral inhibition tends 

to decrease variance by its reduction in the mean firing rate, and increase 

variance by adding an additional noise source to the membrane potential. 

These two opposing influences can sometimes result in a net increase in 

variance though more often the balance is on the side of a reduction in 

firing rate variance. Since these effects take place at opposite ends 

of the firing rate variance spectrum, they are clear to see in the spectra 

of Figure 9-4. 

In both of these experiments, reduction of the average firing rate 

by inhibition (lengthening the average interval) tends to reduce the total 

variance by causing a filtering out of higher frequency components. In 

opposition to this effect, the added noise from inhibition should augment 

low frequency components in the membrane potential and these should be 

transmitted to the firing rate fluctuations. The presence of larger low 

frequency components in the inhibited firing rate variance spectra, com­

pared to control firing rate spectra, is evident on inspection of Figure 

9-4. The larger amount of variance added at the low frequency end of the 

impulse rate spectrum for the cell on the right hand side of the figure, 

and the wider bandwidth of the additional variance, are not completely 

explained by the experimental measurements I have been able to make. A 

conjecture which might explain the facts is that the average firing rates 

of the inhibitory nerve fibers was lower and the lateral inhibitory synaptic 

potentials decayed more rapidly than in the experiment on the left side of 

the figure. Most of my experiments on this particular topic were done with 

small spots, approximately 4 ommatidial diameters, and the intensities of 

the inhibitory spots were as bright as, or brighter than, the test spot. 

Under these conditions, the results most often resembled those depicted on 

the left hand side of Figure 9-4. With larger, dimmer inhibitory spots the 
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results should be significantly different from results obtained from small, 

bright spots, since the average firing rates of the inhibitory nerve fibers 

ought to be an important variable in determining how much "noise" lateral 

inhibition adds to the membrane potential (cf. Theoretical Background, 

Chapter 8). I have not yet done conclusive experiments to test this 

expectation. 

The Relation Between Variance Spectrum 

And The Frequency Response N(f) 

In chapter 5, proportionality was demonstrated between the variance 

spectrum of the impulse rate G ) ^ (-f J and the squared amplitude of the 

light-to-firing rate frequency response N \ T / • As explained in chapter 

4, the frequency response /V(t/ is determined from experiments on the 

neuronal response to sinusoidally modulated light. It is interesting to 

see how lateral inhibition affects the relation between sinusoidal flicker 

response and the variance spectrum of steady state fluctuations. 

Figure 9-5 shows the results of an experiment designed to measure 

this effect. Lateral inhibition has clearly reduced the similarity be­

tween frequency response and variance spectrum. The variance spectrum 

of the firing of a single cell in response to a large spot of steady 

light intensity is shown. On the same scale is the squared amplitude 

of the response to sinusoidal modulation of the large spot of light. 

(A large spot was used to provide a substantial amount of lateral inhi­

bition) . The squared amplitude of the frequency response showed very 

marked peaking under these conditions of large spot illumination; this is 

the amplification phenomenon reported and explained by Ratliff, Knight 

et al. (1968, 1969). The frequency response with large spot illumination 

shows a steeper low frequency cutoff and greater peaking than with small 

spot illumination because lateral inhibition subtracts from the low fre­

quency modulated response. However, because of a delay in the onset of 

the inhibition, it tends to enhance the modulated response at the peak 

frequency of the frequency response. 
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Variance spectrum of firing rate 
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squared amplitude of frequency response 

Frequency (hz) 
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Figure 9-5. The relation between frequency response of the light-to-
firing rate process and the variance spectrum: the effect of lateral 
inhibition. The frequency response of the impulse rate to large spot 
of light, sinusoidally modulated in intensity, is compared with the 
variance spectrum of the maintained firing to the same large spot of 
light at a constant intensity. The deviation between prediction and 
measurement is obviously large and significant at low frequencies, 
and at the peak frequency of the frequency response. Compare this with 
Figure 5-7. 
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The variance spectrum of the firing rate exhibits its character­

istic features under the influence of lateral inhibition. In contrast to 

the spectral pattern of variability with small spot illumination, the 

spectrum is almost flat down to very low frequencies. The large spot 

produced a large inhibitory effect on the firing rate. This added subs­

tantial components to the low frequency end of the impulse rate spectrum, 

since lateral inhibition is a source of low frequency "noise" in the mem­

brane potential. The variance spectrum of the impulse rate and /* (7 ) 

did not agree at all under stimulus conditions which produced a large 

inhibitory effect. What this means is that, in terms of the impulse rate, 

lateral inhibition reduces the signal-to-noise ratio"" for low frequency 

modulated stimuli while maintaining, or even increasing, the signal-to-

noise ratio for stimuli at the "tuning" frequency, the peak frequency of 

the frequency response. In the frequency response, lateral inhibition 

subtracts at low frequencies while, in the variance spectrum, it adds 

at low frequencies. A somewhat different situation occurs in the effect 

of lateral inhibition on the signal-to-noise ratio at the peak frequency 

of the frequency response. Lateral inhibition increases the magnitude 

of both (pfj('j) and \^Ct)\ — but produces a proportionally 

greater increase in i/VYX") I ̂ * 

I am using the term signal-to-noise ratio in an unconventional way. 
By signal-to-noise ratio at a given modulation frequency -/- , I mean the 

ratio j/V(-f)//C 0 N tt) ) '/z • This is the signal-to-noise ratio of 
the signal plus noise passed through a filter optimally tuned to the fre­
quency -f ; it is a measure of the optimal performance of which a system 
is capable. The usual definition of signal-to-noise ratio is, of course 
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Chapter 10 

DISCUSSION 

The Summed Lateral Inhibitory Synaptic Potential 

The results of the experiments reported here show that fluctuations 

in the impulse rate of Limulus eccentric cells can be understood in terms 

of a linear neuron model. This mathematical model is a generalization of 

the Hartline-Ratliff equations to the case of time-varying excitation and 

inhibition. Using the method of spectral analysis, and applying it to the 

filtering of noise, you can calculate with reasonable accuracy the observed 

effects of excitatory and inhibitory stimuli on randomness in the firing 

rate. In Part I I have shown how this approach accounts for variability 

caused by purely excitatory stimuli. In this part of the thesis, I have 

extended the same theory to the case of mixed excitation and inhibition. 

Inhibition, as theoretically predicted, tends to lower variance 

of the impulse rate by reduction of average impulse rate; at the same 

time, lateral inhibition tends to increase the variance by adding addi­

tional low frequency fluctuations to the membrane potential of the neuron. 

These competing effects more often result in a net decrease of firing 

rate variance. The coefficient of variation of the impulse rate, the 

standard deviation/mean of the impulse rate, is invariably increased by 

the introduction of lateral inhibition. 

Given the shape of the firing rate variance spectrum for a purely 

excitatory stimulus, I can predict how much variance will be lost because 

of the reduction in firing rate resulting from lateral inhibition. Then 

the difference between the change in observed variance produced by natu­

rally evoked inhibition and the variance calculated for "noise free" inhi­

bition will yield an estimate of the added noise from the lateral inhibitory 

input. Since this noise will usually be confined to the very low end of 

the spectrum, you can assume that it will be filtered by the impulse coding 

mechanism to the same degree as the constant component of inhibition. The 
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square root of the difference between the two variances will be an estimate 

of the lateral inhibitory standard deviation. In this way I have calculated 

estimates of the coefficient of variation of the lateral inhibitory poten­

tial and compared its value with predictions based on simulations performed 

on the eccentric cell analogue. These calculations and the value from 

the simulation for the coefficient of variation of the summed inhibitory 

potential are given in Table 1. As is clear, lateral inhibition has a 

fairly small coefficient of variation. This is a result of the long dura­

tion of the lateral inhibitory synaptic potential and small size of that 

potential. 

Comparison With Other Models 
i 

The qualitative findings of this entire investigation on eccentric 

cell firing should be useful in studying variability of other neurons. I 

think it is particularly important that even "noise-free" inhibition, whose 

only direct action is to lower the average impulse rate, will increase the 

coefficient of variation of the impulse rate. Noise from the random 

arrival of inhibitory potentials will add even more to the increase of 

relative variability. 

There are several neuronal models in the literature which contain 

similar notions about the sources of neuronal variability as the eccentric 

cell model presented here (Stein, 1967; Gerstein and Mandelbrot, 1964; 

Geisler and Goldberg, 1966; Calvin and Stevens, 1968). Such models in­

clude the assumption that noise in the membrane potential, probably due 

to randomly arriving synaptic potentials, causes the randomness in neural 

firing. They differ somewhat in degree, not in kind, from models which 

involve triggering single impulses off presynaptic pulses arriving on 

several convergent channels -- the pooling models of Bishop et al. (1964), 

and ten Hoopen (1965). All of these models possess the same property that 

I mentioned above, namely that inhibition will tend to make the firing 

relatively more variable, other things being equal. 
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Table 1 

Coefficient of Variation of the Lateral 

Inhibitory Potential 

Analogue Experiments 

0.12 0.0 

0.14 

0.22 

0.28 

These values for the coefficient of variation of the 
lateral inhibitory potential were calculated as follows. The 
variance, predicted from a variance-firing rate curve like 
Figure 8-4, was subtracted from the variance observed in the 
inhibited firing. This should be the variance added by the 
summed lateral inhibitory synaptic potential. Dividing the 
square root of this variance by the average reduction in the 
impulse rate produced by inhibition yields the coefficient of 
variation of the lateral inhibitory potential. 

The "Analogue" value was calculated from the summed 
lateral inhibitory potential obtained by putting a multiple 
fiber pulse train into the neuronal analogue described in 
Chapter 8. 
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Gerstein-Mandelbrot Model. Let me support this assertion with 

reference to one particular neuron model, the one dimensional Gerstein-

Mandelbrot model. As discussed in Chapter 1, Gerstein and Mandelbrot 

proposed that variability in neural impulse firing reflects the random 

bombardment of excitatory and inhibitory synaptic potentials on the neuron. 

In their model, Gerstein and Mandelbrot assume that synaptic potentials 

are very brief, that they are integrated up to a threshold, and that each 

individual synaptic potential is small so that many are required to sum 

up to the firing threshold. From the Gerstein-Mandelbrot model, the 

authors derived a probability density function for nerve impulse intervals, 

which is, 

fCT is a normalization constant. The parameter CL measures the 

height of the threshold relative to the single synaptic potential, and 

the parameter (j measures the difference between the rate of occurrence 

of excitatory synaptic potentials and the rate of occurrence of inhibitory 

synaptic potentials, i.e. the net rate of drift towards threshold. In 

order to understand the effects of introduction of additional inhibition 

into a neuron, one needs to be able to calculate the coefficient of 

variation of the Gerstein-Mandelbrot model. This reduces to the problem 

of calculating the first and second moments for the probability density 

function derived from the model. This problem, solved with the help of 

Bruce Knight, is treated in Appendix II. ~-

The results of the calculations of Appendix II show that the 

coefficient of variation of the Gerstein-Mandelbrot model is rj K p ) 

If CL is kept constant, and b is decreased by introduction of more 

inhibition, the coefficient of variation will be increased. The quanti­

tative dependence of coefficient of variation on inhibition is not the 

same for the Gerstein-Mandelbrot model as for the Limulus eccentric cell; 
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for instance, the Gerstein-Mandelbrot model assumes identical time constants 

for excitation and inhibition and the departure from this condition in the 

Limulus cells has significant effects on variability. Nevertheless, it is 

instructive to note that postsynaptic inhibition should have the same 

qualitative effect, an increase of the coefficient of variation, for two 

such different neural models as the Gerstein-Mandelbrot model and the 

Limulus eccentric cell linear model. 

Since these models were devised to account for impulse firing data, 

the same conclusion can be generalized with caution to nerve cells. Inhi­

bition will tend to make maintained neuronal discharge relatively more 

random than it would be without inhibition. 

Although this conclusion is implicit in many of the theories of 

neuronal mechanisms, it has not been emphasized in previous discussions 

of this subject. The increased randomness due to postsynaptic inhibition 

may be a price the nervous system has to pay for the increased discrimi-

nability and tuning, both spatial and temporal, provided by inhibition 

(Ratliff, 1965; Ratliff et al., 1969). 

However, randomness introduced by inhibition also may serve to 

mask signals which are not important physiologically. For instance, 

lateral inhibition in Limulus eccentric cells decreases the signal-to-

noise ratio (as defined in the last chapter) for low frequency flicker. 

On the other hand it tends to maintain or increase the signal-to-noise 

ratio at the peak frequency of the frequency response. The Limulus eye 

is sharply tuned to a modulation frequency of approximately three hertz 

while the fluctuations introduced by inhibition are mainly concentrated in 

the frequency range from zero to one hertz. So, while variability may be 

designed into the Limulus nervous system, it still may not degrade the 

transmission of signals which are physiologically important. This may be 

a design principle in other nervous systems. 
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APPENDIX I 

Removal of Slow Trends 

In the statistical analysis of experimental data, there is often 

the problem of separating rapid fluctuations from very slow variations. 

This problem may arise in two ways. There may be a simple non-stationarity 

of the mean, due to linear drifts or slow oscillation of the mean value 

which can be described by deterministic functions. Alternatively, there 

may be stochastic linear drifts or slow oscillations. In either case, 

estimation of the variance and other such statistical measures may be 

distorted by the presence of these slow trends. 

In my experiments this problem has been solved by editing the 

low frequency components of the variance spectrum from 0.2 to 0.3 hz, 

when it appeared that these components made the spectrum abnormally large 

at low frequency (see also, Shapley, 1969). Lanczos (1956) called this 

technique "smoothing in the large". (In his case, the slow component 

was desired and the higher frequency "noise" was removed; in the statis­

tical case the situation is reversed and it is the "smooth" component 

which is removed so that the "noise" may be analyzed). The editing of 

the low frequency portion of the variance spectrum was done by extra­

polating the spectrum from the region of one hertz down to two tenths 

of a hertz. For pulse rate spectra from eccentric cells, the extrapola­

tion was sometimes easy, since there was theoretical support for the idea 

that the very low frequency components were small (Chapter 4). If the 

spectrum had low frequency components which were not expected to be very 

small, extrapolation of the spectrum to very low frequency involved some 

judgment about the relative size of the very slow components in the random 

process under study. This may sound somewhat inexact, but there is no 

completely exact method for dealing with very slow stochastic components. 

Piecewise smoothing has been used by others to remove very low 

frequency components from random neural data (Firth, 1966; Ratliff, Hartline 
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and Lange, 1968). This involves calculation of a smoothed value by means 

of a moving average and subtraction of the fluctuation data from the 

smoothed value. This procedure acts as a filter on the data, removing low 

frequency components. The extent of filtering depends on the number of 

data points used in computing the moving average. For neuronal pulse 

rate data, it also depends on the mean pulse rate. Piecewise smoothing 

may remove low frequency components whether or not they are components 

of the process under study. In the study of Ratliff et al. (1968) 

moving average smoothing probably did not distort the low frequency com­

ponents significantly, because typically the low frequency components in 

the variance spectrum of eccentric cells are small. 

However, in Firth's study of crayfish stretch receptor neurons, 

he concluded there was a significant negative correlation between adja­

cent intervals in the steady firing of these cells. The observed negative 

correlation was an artifact of his smoothing procedure, which filtered 

out low frequency components and thereby introduced an artifactual nega­

tive correlation. I have investigated the maintained firing of crayfish 

stretch receptor using the technique of "smoothing in the large" and 

found no negative correlation in the firing of these cells. The variance 

spectrum of the impulse rate is flat down to very low frequency. 

While piecewise smoothing will remove trend, it may also remove 

low frequency components of the process under study. Therefore, it should 

be used with prudence and a proper appreciation of the pitfalls involved. 

The use of spectral analysis for the problem of "detrending" is much 

safer, since it gives a relatively clear indication if there are noti­

ceably large very low frequency components, and a relatively conservative 

method for estimating the proper contribution of very low frequency com­

ponents to the variance spectrum. 

Finally, I should add that most often in this investigation there 

was no need to remove low frequency trend. By inspection of the spectrum 

one could see no abnormally large low frequency components in the variance 
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spectrum. Under such circumstances, piecewise smoothing would have altered 

the low frequency portion of the spectrum; this procedure would have been 

an unnecessary distortion of the data. The avoidance of this error was 

made possible through the use of spectral analysis. 
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APPENDIX II 

Moments of the Distribution Calculated 

From the Gerstein-Mandelbrot Model 

(With the assistance of Bruce Knight) 

The interval density function derived from the Gerstein-Mandelbrot 

one dimensional neural model, a random walk with drift in the diffusion 

limit, is, 

This is equation (10) in the paper of Gerstein and Mandelbrot (1964). In 

order to calculate the moments of this density function e.g. •£ ^"*"| ~£ > • 

we have to evaluate integrals of the form 

where h =• 0 for the calculation of 7_" , f) ~ I for calculation of 

-tX , etc. 

The problem is made more tractable by introduction of a parameter q 

such that - t - % t and T ^ ^ / b • Then> *-/£ -f £ *" = <<./yr + ^YZ~ 

- MIL (-jz +• r ) . aiso, let J: = \fZT 

The integrals for calculation of the moments then become of the 

form 

In particular we want to calculate this integral for /? •= V , and /j - / , 

in order to obtain the first and second moments of the interval density 

function. 
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It is possible to show, using the substitution "7 -z -^ that 

or, if we say /^ = j04V t"~ ^ <U[ f- |YT+ r ) / 

then P ~ C" 
' n ~ ' — vn - I 

and in particular, for ft — o 

,7 

This implies that •jf- - Q - /—- ) '2- . This result is derived from 

the fact that the calculation of the first moment differs from the 

normalization integral ( K) - - / ) only by an extra factor of $ 

before the integral. 

In order to calculate the second moment, Z , we must obtain 

a little deeper understanding of these integrals. By differentiating 

with respect to "2T it is possible to establish the identity 

"here fn '- far r- '/x ^ f- | (1 +T 

It is also possible to show that , ""^V 

and to calculate from the above identity l/TH- 9-/, I \ 

This leads finally to the conclusion that 

where ?= <<l/4fc> or 



119 

The variance of the intervals is then 

and the coefficient of variation (yt is 

r 

As Gerstein and Mandelbrot pointed out in their paper, when /j sr. 0 > 

i.e. when there is no net drift to threshold because inhibition on the 

average balances out excitation, the moments become infinite. A con­

sequence they did not explore is the divergence of the coefficient of 

variation as net drift approaches zero. 

( H - * i y ? 
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