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ROLE OF LAMININS IN THE DEVELOPMENT OF THE PERIPHERAL 

NERVOUS SYSTEM 

 

Wei-Ming Yu, Ph. D. 

The Rockefeller University 2007 

 

To investigate the function of laminins in peripheral nerve development, the 

laminin γ1 gene was specifically disrupted in Schwann cells.  Disruption of 

laminin γ1 gene expression resulted in depletion of all other laminin chains 

known to be expressed in Schwann cells.  Schwann cells lacking laminins fail to 

differentiate to myelinating and non-myelinating Schwann cells and do not extend 

processes required for initiating axonal sorting and mediating axon-Schwann cell 

interactions.  These cells also fail to down-regulate Oct-6 and they arrest at the 

premyelinating stage.  Impaired axon-Schwann cell interactions prevent 

phosphorylation of β-neuregulin-1 receptors, which results in decreased cell 

proliferation.  Postnatally, laminin-null Schwann cells exhibit reduced 

phosphatidylinositol 3-kinase activity and activation of caspase cascades, leading 

to apoptosis.  Injection of a laminin peptide into mutant sciatic nerves partially 

restores PI 3-kinase activity and reduces apoptotic signals.  In a Schwann 

cell/dorsal root ganglion co-culture system, disruption of laminins impairs podia 

formation as well as the elongation of Schwann cells.  These results demonstrate 

that: 1) laminins initiate axonal sorting and mediate axon-Schwann cell 

interactions required for Schwann cell proliferation and differentiation; 2) laminins 

provide a PI 3-kinase/Akt-mediated Schwann cell survival signal. 
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CHAPTER 1: INTRODUCTION 

 

1.1. Development of Schwann cells 

Myelination of axons is essential for proper function of the nervous system, 

predominantly by allowing for the fast conduction of action potentials.   

Myelination of the peripheral nervous system (PNS) is accomplished by Schwann 

cells (SCs), the major glial cells of the vertebrate PNS.  During embryonic 

development, SC precursors are derived from the neural crest, which occurs at 

embryonic day (E) 14-15 in the rat and E12-13 in the mouse.  The survival of SC 

precursors is dependent on axon-derived signals, comprised of the neuregulin 

family of growth factors.  When immature SCs are generated from SC precursors 

(E15-17 for rat and E13-15 for mouse), they lose this axon dependence and 

support their own survival by establishing autocrine loops (Jessen and Mirsky, 

2005).  At this time, some SCs destined to myelinate will proliferate vigorously 

and differentiate into promyelinating SCs, from which individual cells extend their 

cytoplasmic processes into bundles of axons, progressively separate them into 

even smaller bundles, and finally establish a 1:1 relationship with each larger 

diameter axon, a process known as radial sorting (Webster, 1993).  These cells 

will further differentiate and wrap axons concentrically with the extension of their 

membrane and produce myelin sheaths (myelinating SCs).  In contrast, 

nonmyelinating SCs ensheath multiple small caliber axons (C fibers, <1 µm 

diameter) to form a Remak bundle and keep individual axons separated by 
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membrane extensions, but they do not form myelin sheaths (Jessen and Mirsky, 

2005) (Fig. 1). 

 

 

radial sorting of 
axons

Remak bundle

 

 

Figure 1. The mouse Schwann-cell lineage (modified from Jessen 
and Mirsky, 1999b; Basic Neurochemistry, 6th Ed, 1999, Fig 27-16).
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1.2 Proliferation and survival of SCs 

SC proliferation and survival are essential processes during PNS development 

and are crucially dependent on the regulation of at least two distinct signaling 

pathways, the neuregulin/ErbB and transforming growth factor-β (TGF-β) (Jessen 

and Mirsky, 2005).  Neuregulin-1 (NRG1) consists of a family of proteins of more 

than 15 transmembrane and secreted isoforms that result from alternative 

splicing.  They can be divided to three major types: I, II, and III. The NRG1 type 

III protein expressed in axons is the major isoform responsible for most of its 

effects on the SC development, mediated by the receptor tyrosine kinases, 

ErbB2 and ErbB3 (Nave and Salzer, 2006).  During PNS development, NRG1 

proteins are key regulators at multiple stages of the SC lineage.  For example, 

they can act as a survival factor for SC precursors, as a major axon-derived 

mitogen for SC precursors and SCs, and as a regulator of myelin sheath 

thickness and ensheathment fate of SCs (Jessen and Mirsky, 2005; Michailov et 

al., 2004; Taveggia et al., 2005).  The severe deficiency in SCs in neuregulin-

1/ErbB deficient mice indicates that this growth factor plays an essential role in 

SC development (Meyer and Birchmeier, 1995; Riethmacher et al., 1997).  SC 

precursors depend on axon-derived NRG-1 for survival through activation of both 

the mitogen-activated protein kinase and the phosphoinositide-3-kinase (PI 3-K) 

signaling pathways (Dong et al., 1999).  When SCs generate from precursors, 

they acquire the ability to survive without axons by establishing autocrine survival 

loops that involve insulin-like growth factor (IGF-2), neurotrophin-3 (NT3), and 

platelet-derived growth factor-BB (PDGF-BB) (Meier et al., 1999).  Laminins also 
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act synergistically with these autocrine survival signals to promote SC survival 

from short-term to long-term (Meier et al., 1999).  In rat SC culture, NRG1 

proteins induce cAMP response element binding protein (CREB) phosphorylation 

(Tabernero et al., 1998) and heregulin (a human homologue of NRG1) combined 

with forskolin (a compound which elevates cAMP levels and CREB 

phosphorylation) to synergistically promote SC proliferation (Rahmatullah et al., 

1998).  CREB is found in SC precursors and in mature SCs (Stewart, 1995), and 

its phosphorylation is significantly induced after axon-induced SC proliferation 

(Lee et al., 1999).  NRG-1 mediated activation of the PI 3-kinase pathway are 

also crucial for the proliferative responses of SCs to axons (Maurel and Salzer, 

2000). 

TGF-β is required for the maintenance of the nonmyelinating, proliferating 

state of SCs by promoting proliferation and inhibiting myelination during 

development (Awatramani et al., 2002; D'Antonio et al., 2006; Einheber et al., 

1995; Guenard et al., 1995; Ridley et al., 1989).  The effects of the TGF-β 

signaling pathway on SC development and function are modulated by the proto-

oncogene, Ski (Atanasoski et al., 2004).  TGF-β blocks myelination by preventing 

Ski expression.  Overexpression of Ski inhibits TGF-β-mediated SC proliferation 

and upregulates myelin genes.  TGF-β has also been shown to induce SC 

embryonic apoptosis during development by activating c-Jun (Parkinson et al., 

2001).  In differentiating SCs, expression of Krox-20 (a myelin-associated 

transcription factor) turns off TGF-β signaling and renders the SCs resistant to 

apoptosis (Parkinson et al., 2004).  
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1.3 Differentiation and myelination of SCs 

Several transcription factors participate in the onset of myelination, including 

Krox20 (also known as Egr-2), octamer-binding transcription factor 6 (Oct-

6/Scip/Tst-1), brain 2 class  III POU-domain protein (Brn2), Ski, and NGFI-A-

binding proteins 1 and 2 (NAB1/2) (Atanasoski et al., 2004; Jaegle et al., 2003; 

Jaegle et al., 1996; Le et al., 2005; Topilko et al., 1994).  Among these, Krox20 

and Oct-6 are the two best characterized factors involved in a genetic hierarchy 

essential for the differentiation of myelinating SCs.  Oct-6 expression in SCs is 

transient and peaks in the promyelinating stage but progressively down-regulates 

during postnatal development.  Oct-6 function is required at promyelinating SCs 

for their timely differentiation into myelinating SCs (Bermingham et al., 1996; 

Jaegle et al., 1996; Jaegle and Meijer, 1998).  In contrast, Krox-20 is expressed 

only in the myelin-producing SCs, and these cells continue to express detectable 

levels of Krox-20 protein throughout life (Topilko et al., 1994).  Genetic and cell 

biological studies suggest that these transcription factors can interact with each 

other (Nagarajan et al., 2001; Zorick et al., 1996; Zorick et al., 1999).  In 

promyelinating SCs, Oct-6 is strongly induced by an axonal contact-related signal 

and subsequently activates a set of genes, including Krox-20.  High level 

expression of Krox-20 is required for the down-regulation of Oct-6 after the peak 

of myelination and for the activation of enzymes required for the synthesis of 

myelin lipids as well as for the activation of the major myelin genes, P0 and 

myelin basic protein (MBP).  Brn2 is expressed in a similar developmental profile 

as Oct-6, and its function largely overlaps with Oct-6 in regulating the transition 
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from promyelinating to myelinating SCs (Jaegle et al., 2003).  Nab1/2 proteins 

form a complex with Krox-20 and are critical transcription modulators of Krox-20 

in myelinating SCs (Le et al., 2005). 

A series of studies revealed that neurotrophins play a critical role in 

regulating SC myelination (Chan et al., 2001; Cosgaya et al., 2002).  The 

neurotrophin family includes NGF, BDNF, NT-3, and NT4/5 (Notterpek, 2003).  

Their signals are mediated through two types of receptors: the high affinity Trk 

receptor tyrosine kinases and the low affinity p75NTR (Chao, 2003).  The p75NTR 

binds all four neurotrophins with similar affinity and acts as a co-receptor for Trk 

receptors.  Three different types of Trk receptors are specific for a particular 

neurotrophin.  Specifically,  1) TrkA binds NGF; 2) TrkB binds BDNF and NT4/5; 

and 3) TrkC interacts preferentially with NT3 (Chao, 2003).  Neurotrophins play 

both positive and negative roles in the modulation of myelination.  Using in vitro 

and in vivo model systems, BDNF was identified as a positive modulator while 

NT3 was found to be a negative modulator of peripheral nerve myelination (Chan 

et al., 2001).  The p75NTR and TrkC receptors were identified as the major 

mediators of neurotrophin activity during the myelination process (Cosgaya et al., 

2002).  The myelin-promoting effect of BDNF is mediated by p75NTR.  On the 

other hand, NT3 mediates its myelin-inhibitory effect via TrkC.  Recently, p75NTR 

has been demonstrated to associate with the polarity protein, Par-3, which 

recruits p75NTR asymmetrically to the axon-glial junction to establish radial SC 

polarity for myelination (Chan et al., 2006). 
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NRG1 proteins also act as key instructive signals for myelination through 

the activation of PI 3-K activity (Taveggia et al., 2005).  The amount of NRG1 

determines both the myelin thickness and the ensheathment fate of axons 

(Michailov et al., 2004; Taveggia et al., 2005).  Low expression of NRG1 type III 

is required for nonmyelinating SCs to ensheath several small axons, whereas 

high levels of NRG1 type III is essential for myelinating SCs to myelinate large 

axons.  Above the threshold to trigger myelination, the amount of myelin formed 

is proportional to the amount of NRG1 type III presented by the axon to the SC.  

 

1.4 Laminins in SC development 

Laminins are heterotrimeric glycoproteins composed of an α-, β-, and γ-chain.  

Five α-, four β- and three γ-chains have been identified, and 15 isoforms have 

been observed (Yin et al., 2003).  Laminins play at least three overlapping roles 

in mammals (Miner and Yurchenco, 2004): 1) they compose a major structural 

element of the basement membrane (Tabernero et al., 1998; Timpl, 1996; 

Yurchenco et al., 2004); 2) they provide attachment sites for cells via cell surface 

proteins (e.g., dystroglycan) (Henry and Campbell, 1996); and 3) they act as 

ligands for receptors on cells (e.g., integrins), thereby initiating signals that 

influence cell behavior and survival (Schwartz, 2001).  Laminins are present in 

many tissues including the central nervous system (Grimpe et al., 2002; Hagg et 

al., 1989; Indyk et al., 2003), the neuromuscular junction (Noakes et al., 1995; 

Patton et al., 1998; Patton et al., 2001; Sanes and Lichtman, 2001) and 

peripheral nerves (Doyu et al., 1993; Patton et al., 1997) (Fig. 2).  The function of 
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laminins in the nervous systems is varied; they play a role in neurite outgrowth, 

axon pathfinding (Luckenbill-Edds, 1997), brain development (Colognato and 

Yurchenco, 2000; Liesi et al., 2001; Miner et al., 1998), pathology (Murtomaki et 

al., 1992), and PNS development (Chen and Strickland, 2003; Podratz et al., 

2001; Yang et al., 2005; Yu et al., 2005). 

There is substantial evidence that SCs require the formation of an organized 

basal lamina to properly ensheath and myelinate axons (Bunge, 1993).  Laminins 

are major components of the basal laminae that appear to be especially 

important.  In vitro studies using SC/neuronal co-culture have shown that laminin 

deposition is required for myelination (Fernandez-Valle et al., 1993; Fernandez-

Valle et al., 1994; Podratz et al., 2001).  The essential function of laminins in 

PNS development was discovered when a mutation in the α2 laminin gene was 

found to cause a peripheral neuropathy in both humans [Helbling-Leclerc, 1995 

#455] and mice (Shorer et al., 1995; Sunada et al., 1995; Xu et al., 1994).  

Mutant mice have hypomelinated axons, where the naked axon bundles lack 

ensheathment and myelination, most obvious at the proximal region of the 

peripheral nerve (Bradley and Jenkison, 1973; Stirling, 1975).  Also, the 

endoneurium basal lamina is disrupted, and nerve conduction velocity is reduced 

in these mutant mice (Rasminsky et al., 1978).  Furthermore, there are changes 

in the nodes of Ranvier (for review see Feltri and Wrabetz, 2005).  All these 

results suggest that laminin is critical for SC development, but the mechanistic 

details are not clear. 
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NF/laminin γ1/MBP 

Figure 2. Triple immunofluorescent staining of mouse 
sciatic nerves. 
Staining shows the normal relationship amongst laminins 
(green), myelin sheaths (red), and axons (blue) in the 
mouse peripheral nerve. The expression of laminin γ1 is 
abundant in the endoneurium outside Schwann cells 
(arrows). 
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1.5  Laminin receptors and cytoskeletal signaling in SC differentiation 

The signaling effects of laminins are thought to be mediated primarily through 

integrins.  Cell culture and in vivo studies have shown that interfering with β1 

integrin function, a component of many laminin receptors, leads to inhibition of 

myelination (Feltri et al., 2002; Podratz et al., 2001; Relvas et al., 2001).  In vitro 

work demonstrated that β1 integrin forms a multi-molecular complex with focal 

adhesion kinase (FAK), paxillin (an adaptor protein), and merlin/schwannomin 

when SCs begin to form the basal lamina and differentiate (Chen et al., 2000; 

Fernandez-Valle et al., 2002; Obremski et al., 1998).  SCs lacking FAK are 

severely hypomyelinated with impaired axonal sorting (Grove et al., 2007).  

Phosphorylation of Schwannomin also leads to local reorganization of the SC 

cytoskeleton and the formation of a bioplor morphology characterized for 

differentiating SCs (Thaxton et al., 2007).  Additionally, actin has been implicated 

in changes found in cell shape and in gene expression that is associated with SC 

differentiation (Fernandez-Valle et al., 1997).  These studies suggest that 

laminins may influence SC differentiation by regulating these cytoskeletal signals.   

Dystroglycan also functions as a laminin receptor (Previtali et al., 2001; 

Previtali et al., 2003).  Mice lacking dystroglycan in SCs form myelin sheaths but 

the folding of myelin sheaths is  abnormal  (Saito et al., 2003).  Mice deficient in a 

functional periaxin gene assemble compact myelin but the myelin sheath is 

unstable, which leads to a demyelinating phenotype (Gillespie et al., 2000).  

Dystroglycan forms a complex with dystrophin-related protein-2 and L-periaxin at 

the surface of myelin-forming SCs (Sherman et al., 2001).  Specific disruption of 
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this complex in SCs results in a demyelinating neuropathy, suggesting that 

laminins may be linked to the SC cytoskeleton through this complex to stabilize 

the myelin sheath. 

 

1.6 Disruption of laminin γ1 gene in SCs 

Laminin γ1 is one of the most abundant chains as it is present in 10 of the  15 

known isoforms (Grimpe et al., 2002), including all known laminin isoforms 

expressed in the PNS (laminin 2, 8, and 10) (Patton et al., 1997; Previtali et al., 

2003).  Given its widespread expression, global disruption of the laminin γ1 gene 

causes lethality in mice at E5.5 (Smyth et al., 1999).  Since SCs are first present 

at E12 in mice, this early lethality makes it impossible to analyze the effects of 

laminin on SC development and function in these mice (Jessen and Mirsky, 

2005). 

Therefore, in order to study the mechanism of laminin function in PNS 

development, mice were created that contain a laminin γ1 gene with loxP 

recombination sites flanking the essential exon 2.  The laminin γ1 gene in these 

mice can be disrupted conditionally in various tissues by tissue-specific 

expression of Cre recombinase.  Laminin γ1 was deleted from the nervous 

system using the calcium/calmodulin-dependent protein kinase II α promoter to 

drive Cre expression (referred to as CaMKII/Cre:fLAMγ1 mice) (Chen and 

Strickland, 2003).  The laminin γ1 gene is disrupted in these mice during late 

embryonic stages in a subpopulation of SCs, causing a dysmyelinating 

phenotype.  To specially disrupt laminins in SCs at their early development 
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stages, a SC-specific promoter (myelin protein zero, Mpz) is used to drive Cre 

expression.  In transgenic mice, this promoter activates Cre expression 

specifically in SCs around E13.5-14.5 (Feltri et al., 1999) (Fig. 6).  Since the 

laminin γ1 chain is a common component in all laminin isoforms expressed in 

SCs (Fig. 2), deleting laminin γ1 disrupts most if not all of the laminin isoforms in 

these cells.  This particular study revealed novel functions of laminins in the PNS. 

SCs that lack laminins do not extend processes that are required for the radial 

sorting of axons.  They have impaired interactions with axons, which leads to 

decreased proliferation and aberrant differentiation.  These cells also have 

reduced PI 3-K signaling, which is needed to maintain viability, therefore leading 

to apoptosis. 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Mouse lines, genotyping and analysis of Cre-mediated laminin γ1 gene 

recombination 

Mice in which exon 2 of the laminin γ1 gene was flanked by two loxP sites 

(fLAMγ1) were generated as described (Chen and Strickland, 2003).  

mP0TOT(Cre) (P0Cre) transgenic mice were described previously (Feltri et al., 

1999).  To obtain P0/Cre:fLAMγ1 mice, mice homozygous for the fLAMγ1 allele 

were crossed with mice heterozygous for the fLAMγ1 allele and hemizygous for 

the P0Cre transgene.  Genotypes of the resulting offspring were identified by 

PCR analyses of tail genomic DNA using the forward primer 5’-CTC AGA GCT 

GGC TTC TCA CAT-3’ and reverse primer 5’-GAT TTT CAA AGA AGC AGA 

GTG TG-3’. The PCR conditions were as follows: 2 minutes at 94oC; 35 

consecutive cycles (94 oC for 45 seconds, 56 oC for 45 seconds, 72 oC for 3 

minutes and 30 seconds), and 10 minutes at 72 oC.  For detection of Cre-

mediated laminin γ1 gene recombination, genomic DNA was prepared from 

various tissues of fLAMγ1/ fLAMγ1 (control) mice and P0/Cre:fLAMγ1 (mutant) 

mice and were analyzed by using the same primer pair and PCR conditions as 

described above.  In some experiments, Cre recombinase activity was monitored 

using the LacZ/EGFP dual reporter mouse line (Novak et al., 2000). 
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2.2 Mouse Schwann cell/dorsal root ganglia (SC/DRG) neuronal co-cultures 

DRG from E14 mice were isolated and dissociated as described (Kleitman et al., 

1999).  The dissociated explants (mostly neurons, with a few satellite SCs and 

fibroblasts) were dispersed and plated onto 25 mm collagen-coated coverslips 

and maintained in DMEM/F-12 (Invitrogen, Carlsbad, California) containing 5% 

FBS supplemented with 50 ng/ml NGF, 5 µg/ml insulin, 10 µg/ml mouse 

transferrin, 100 µM putrescine, 20 nM progesterone, and 30 nM sodium selenite 

(maintenance media) at a density of 25,000 cells/coverslip.  The endogenous 

SCs were allowed to proliferate and populate axons for 10 days.  SC/DRG 

neuronal co-cultures were infected with adenovirus expressing Cre recombinase 

(Microbix Biosystems, Toronto, Canada) or adenovirus expressing ß-

galactosidase (Vector Biolabs, Philadelphia, PA) at a multiplicity of infection 

(MOI) of 20 for 2 days.  Myelination was induced by the addition of fresh 

maintenance media containing 50 µg/ml ascorbic acid (myelinating promoting 

feed) with or without 25 µM exogenous mouse laminin (Invitrogen). 

 

2.3 Immunohistochemistry and immunocytochemistry 

Mice were euthanized at different ages by CO2 asphyxiation.  Sciatic nerves were 

removed from mice and embedded in Tissue-Tek OCT (Sakura, Torrance, CA), 

immediately frozen on dry-ice/methanol, and stored at −70°C.  SC/DRG neuronal 

co-cultures were washed once with cold PBS and fixed in 4% paraformaldehyde.  

For immunostaining, 8 µm cryosections were prepared, fixed with 4% 

paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB) for 30 minutes, rinsed in 
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PBS, and then blocked in PBS containing 0.3% Triton X-100 and 5% normal goat 

serum.  The primary antibodies used were diluted in PBS containing 0.3% Triton 

X-100, and 3% normal goat serum.  Primary antibodies used were as follows: rat 

anti-laminin γ1 (Chemicon, Temecula, CA) (1:500), rat anti-laminin α1 

(Chemicon) (1/500), rat anti-laminin β1 (Chemicon) (1/500), chicken anti-

neurofilament H (Chemicon) (1/2000), rat anti-laminin α2 (Sigma, St. Louis, MO) 

(1/500), rabbit anti-laminin α4 (Santa Cruz Biotech, Santa Cruz, CA) (1/100), 

rabbit anti-laminin 1 (Sigma), rabbit anti-human MBP (Dako, Carpinteria, CA) 

(1/2000), rabbit anti-Oct6 (a gift from Dr. Meijer, Erasmus University, Rotterdam, 

The Netherlands) (1/200), rabbit anti-Krox-20 (Covance Research Products, 

Berkeley, CA) (1/50), rat anti-BrdU (Abcam, Cambridge, UK) (1/400), rabbit anti-

S-100 (Sigma) (1/1000), rabbit  anti-S100 (Swant, Bellinzona, Switzerland) 

(1/5000), rabbit anti-activated caspase-3 and -7 (Cell Signaling, Beverly, MA) 

(1/100).  The samples were incubated with primary antibodies at 4o C overnight.  

After rinsing with PBS, the samples were incubated with the appropriate 

Fluorescein-, Rhodamine Red-X-, Coumarin AMCA-, or Cy5- conjugated 

secondary antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA) 

(1/1000) for 1h at room temperature.  After washing, the sections were mounted 

in Vectashield® mounting medium with or without DAPI (Vector Laboratories, 

Burlingame, CA), examined under an Axioskop 2 fluorescent microscope (Carl 

Zeiss USA, Thornwood, NY) equipped with appropriate filters and photographed 

with the AxioVision System (Carl Zeiss).  For laser scanning confocal 

microscopy, cells were imaged with a Zeiss LSM 510 system (Carl Zeiss 
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Microscopy).  The Argon 458 nm, 488 nm, and 514 nm and HeNe 543 nm, and 

633 nm were switched on and set at 75% output intensity.  The multitrack 

standard DAPI/FITC/rhodamine/Cy5 was selected.  Pinhole diameter was 

maintained as 1 Airy Unit. A Plan-Apochromat 63X or 100X objective was used 

to collect 35 Z-stacks (0.2 µm per stack) for each sample. Images with maximum 

projection were obtained using LSM Image Examiner (Carl Zeiss). 

 

2.4 Semithin and electron microscopic analyses 

Mice at different ages were anesthesized, and the sciatic nerve was exposed.  

The nerve was immersed in 3% glutaraldehyde in 0.1 M phosphate buffer (PB), 

pH 7.2.  The nerve was then dissected, immersed in 3% glutaraldehyde in 0.1 M 

PB for 24 h, and postfixed in 2% osmium tetroxide solution.  SC/DRG neuronal 

co-cultures were washed with cold PBS, fixed in 2.5% 

paraformaldehyde/glutaraldehyde, and postfixed in 2% osmium tetroxide solution. 

The nerves or cell layers were embedded in resin.  Semi-thin sections were cut 

and stained with Richardson's staining to stain proteins.  For electron microscopy 

(EM) analysis, ultra-thin sections were cut on a Reichert-Jung Ultracut E 

microtome and poststained with uranyl acetate and lead.  Sections were 

examined and photographed on a JEOL100CXII at 80 kV. 
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2.5 BrdU incorporation assay 

Female mice heterozygous for the fLAMγ1 allele and hemizygous for the 

mP0TOT(Cre) transgene were mated with male mice homozygous for the fLAMγ1 

allele.  The time of detection of a vaginal plug was counted as 0.5 day post-

coitum (dpc).  Pregnant mice at 13, 15.5, 17.5, 19.5 dpc and P5 mice were 

injected intraperitoneally with 100 µg BrdU/g body weight.  One hour later, the 

embryos of pregnant mice or the sciatic nerves of P5 mice were dissected and 

frozen in dry ice, and the upper bodies or tails were used for genotyping.  Whole 

embryos (E13, E15.5, or E17.5) or sciatic nerve tangential cryosections (E17.5, 

E19.5, or P5) were prepared, fixed in cold methanol, denatured with 2N HCl for 

20 min at 37 o C, and neutralized in 0.1M sodium borate, pH 8.5, for 10 min.  

Sections were co-incubated with rat anti-BrdU (Abcam) and rabbit anti-

neurofilament H (Chemicon) antibodies.  After staining with the appropriate 

secondary antibodies, the nuclei were counterstained with DAPI.  Only cigar-

shape nuclei inside the nerve tissues were counted, and double-labeled nuclei 

(both BrdU and DAPI) were determined.  At each time point, six control and six 

mutant mice were analyzed.  The differences in percentage of BrdU incorporated 

nuclei between control and mutant nerves were analyzed by two-tailed Student’s 

t-Test. 

 

2.6 TUNEL assay 

TUNEL was performed using the In Situ Cell Death Detection Kit (Roche Applied 

Science, Indianapolis, Indiana) according to the manufacturer’s instruction.  
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Whole embryo (E15.5) or sciatic nerve tangential cryosections (P0 to adult) were 

prepared, fixed in 4% PFA in PBS, pH 7.4, for 20 min, and permeabilized in 0.1% 

Triton X-100/0.1% sodium citrate on ice for 2 min.  E15.5 embryo sections were 

stained with anti-neurofilament antibodies to identify nerves.  P15 sciatic nerve 

sections were stained with anti-S100, anti-laminin γ1 or, anti-phosphoAkt 

antibodies, and nuclei were counterstained with DAPI.  Double-labeled nuclei 

were determined.  At each time point, six control and six mutant animals were 

analyzed.  The differences in percentage of TUNEL positive nuclei in control and 

mutant sciatic nerves were analyzed by two-tailed Student’s t-Test. 

 

2.7 Western blot analysis 

Control and mutant mice at different ages were anesthetized.  The sciatic nerves 

were exposed, immersed in PBS containing the phosphatase inhibitor Cocktail I 

and II (Sigma), and dissected.  The nerves (including perineurium) were 

homogenized in 50 mM Tris, pH 7.4, containing 150 mM NaCl, 1% NP-40, 0.1% 

SDS, 0.5% deoxycholate, 1 mM EDTA, 1 mM EGTA, 10% glycerol, phosphatase 

inhibitor Cocktail I and II and protease inhibitor Cocktail (Sigma).  Extracts from 

co-cultures were obtained using the same lysis buffer.  Protein concentrations 

were determined by the Lowry method (Bio-Rad, Hercules, CA).  For 

immunoblotting of caspase-9, total proteins of sciatic nerves were extracted in 

CHAPS cell extract buffer (Cell Signaling) containing protease inhibitors.   

Proteins (15-20 µg) were fractionated on 4-15% SDS-PAGE, blotted onto PVDF 

membrane (Millipore, Billerica, MA), and probed with primary antibodies.  
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Antibodies against p-ErbB2, ErbB2, p-ErbB3, p-Akt, Akt, p-GSK-3β, GSK, and 

mouse caspase-9 were purchased from Cell Signaling and used at 1:1000 

dilution.  Other antibodies used were anti-Oct6 (Dr. Meijer), anti-ErbB3 (Abcam) 

(1:200), anti-MPZ (Dr. Archelos, Graz, Austria) and anti-β-actin (Sigma) (1:8000).  

After incubation with appropriate secondary antibodies (Amersham Biosciences, 

Piscataway, NJ), proteins were visualized by chemiluminescence according to 

the manufacturer’s instructions (Pierce, Rockford, IL). 

 

2.8 Injections of laminin peptides 

Injections were performed as previously described (Cosgaya et al., 2002).  The 

laminin peptide EIKLLIS derived from the laminin α1 chain (conserved in laminin 

α2 chain) and a control peptide with a scrambled amino acid sequence ILEKSLI 

(Tashiro et al., 1999) were purchased from American Peptide Co. (Sunnyvale, 

CA).  Laminin peptides (5 µg) were injected subcutaneously, starting from the 

caudal portion of the greater trochanter region and running parallel along the 

mutant sciatic nerves.  The contralateral sciatic nerve served as the control and 

was injected with control peptides.  Injections were performed on postnatal day 1 

and reinjected two days later for control and mutant mouse pups (20 of each 

genotype). Nerves were extracted at postnatal day 5 (four days of total 

treatment), and 20 µg proteins were used for Western blot analysis. 
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2.9 Generation of recombinant adenoviruses 

cDNAs encoding eGFP-tagged β-actin (Clontech, Mountain View, California) 

were subcloned using polymerase chain reaction (PCR)-mediated cloning into 

the SalI and NotI sites of pShuttle-CMV (Stratagene, La Jolla, California).  

mCherry and mouse neurofilament light chain cDNAs (Invitrogen) were inserted 

into the BglII, SalI, and NotI sites of pShuttle-CMV using PCR-mediated cloning, 

resulting in cDNAs encoding mCherry-tagged neurofilament light chain.  All 

constructs were verified by automatic sequencing.  Recombinant adenoviruses 

were produced using the AdEasy XL Adenoviral Vector System (Stratagene) 

according to the manufacturer’s protocol. 

 

2.10 Time-lapsed live cell imaging 

SC/DRG neuronal co-cultures were plated in glass bottom dishes (Mattek, 

Ashland, Massachusetts) coated with collagens and infected with adenovirus 

expressing mCherry-tagged neurofilament light chain at the time of plating.  After 

incubated for 10 days, co-cultures were infected with adenovirus expressing 

eGFP-tagged β-actin for 2 days and then switched to myelinating promoting feed.  

Only infected SCs expressing low levels of eGFP were chosen for imaging.  Cells 

were imaged with a Carl Zeiss Axiovert 200M equipped with a 63 , 1.4-NA, Plan 

Apochromat objective.  Imaging chamber was maintained at 37°C and 5% CO2 

with the aid of a microscope incubator system (Solent Scientific Limited, 

Segensworth, UK).  A PerkinElmer Wallac UltraView confocal head with 488- and 

568- nm excitation filter and Orca ER cooled CCD camera (Hamamatsu, 

Bridgewater, NJ) were used for high-resolution imaging. Z-stacks were collected 
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(1µm per z-stack, 7−8 z-stacks) every five mins during imaging.  Images were 

processed and analyzed using MetaMorph (Molecular Devices, Downingtown 

Pennsylvania). Cells were usually imaged for 24 hours. 

 

2.11 Statistical and imaging analysis 

Images of immunostained sections were acquired by using an AxioVision System 

(Carl Zeiss) and processed with Photoshop (Adobe, San Jose, California).  The 

electron micrographs and Western blot films were digitized using a scanner 

(Microtek, Carson, California). The signal intensity of the Western blot film was 

quantified by NIH Image.  All statistical analyses were performed by Excel 

software (Microsoft, Redmond, Washington). 
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CHAPTER 3: RESULTS 

 

3.1 Generation of mice lacking laminin γ1 specifically in SCs 

To specifically disrupt the laminin γ1 gene in SCs, mice were created to be 

homozygous for a floxed laminin γ1 allele (fLAMγ1) (Chen and Strickland, 2003) 

and carry a P0Cre transgene, mP0TOT(Cre) (Fig. 3), which activates Cre-

mediated recombination specifically in SCs between E13.5 and 14.5 (Feltri et al., 

1999; Feltri et al., 2002).  P0/Cre:fLAMγ1 mice (referred to as “mutant” mice 

hereafter) were born normally in accordance with the predicted Mendelian ratio.  

However, they showed tremor and progressive hind limb paralysis during early 

postnatal stages.  By the end of the fourth week, they had complete hind limb 

paralysis (Fig. 4) and most did not live past two months due to emaciation. 

To determine the specificity of Cre-mediated laminin γ1 gene recombination, 

genomic DNA from various tissues was analyzed by PCR (Fig. 5A).  

Recombination only occurred in the mutant peripheral nerves (e.g., the sciatic 

nerve) and not in other tissues of mutant mice or in mice homozygous for a 

fLAMγ1 allele but without the cre transgene (f/f, referred to as “control” mice 

hereafter).  To confirm the elimination of laminin γ1 expression in mutant 

peripheral nerves, transverse sciatic nerve sections at postnatal day 0 (P0) were 

stained for laminin γ1.  Laminin γ1 was present in control nerves, but was absent 

in mutant nerves in the endoneurium surrounding SCs; in mutant nerves, laminin 

γ1 was still present in blood vessels and the perineurium (outer region), where it 

is presumably produced by fibroblasts (Fig. 5B).  Further analyses showed that 
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laminin γ1 gene was disrupted around E13.5 to 14.5 (Fig. 6), and the protein 

expression of most laminin chains known to be expressed in SCs was not 

detectable (α1, α2, α4, β1, γ1; Fig. 7).  These results demonstrate that the 

laminin γ1 gene was specifically disrupted in SCs around E13.5 to 14.5, resulting 

in the depletion of all laminins. 
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Figure 3. Generation of mice with Schwann cell-specific disruption of 
laminin γ1. 
(A) Laminin γ1 targeting construct.  A fragment containing exon 2 was used.  The 
two loxP sites were inserted into exon 2 of the laminin γ1 gene and is used to 
excise exon 2.  P1 and P2 denote the primer sites used to genotype and monitor 
recombination.  (B) P0-Cre transgene, mP0TOT(Cre), was created by inserting 
the cre gene into exon 1 of the mpz gene. 
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mutant control 

Figure 4. Mutant mice  show motor defects. 
The control mouse on the right side is homozygous for a floxed laminin γ1 
allele (fLAM γ1). The mutant mouse on the left is homozygous for a floxed 
laminin γ1 allele and carries a P0Cre transgene (P0/Cre:fLAM γ1, mutant). The 
mutant mouse is smaller than control mice and has complete hind limb 
paralysis. 
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Figure 5. Schwann cells lacking laminin γ1 expression exhibit severe 
hypomyelination. 
(A) PCR analysis of genomic DNA from various tissues of wild type, 
homozygous fLAM γ1 mice (f/f; control), and P0/Cre:fLAM γ1 mice (f/f, P0-
Cre; mutant).  The primers used amplified the wild type (1.3 kb), 
unrecombined (3.2 kb), and recombined (2.3 kb) fLAM γ1 alleles.  (B) 
Transverse sections of control and mutant sciatic nerves at postnatal day 
(P)0 were double stained for laminin γ1 (red) and MBP (green).  In the 
mutant nerve, laminin γ1 expression was absent in the endoneurium 
(asterisks) and only remained in the perineurium (arrowheads).  MBP 
expression was not detected. 
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Figure 6.  mP0TOT(Cre) activates Cre-mediated laminin γ1 gene disruption 
specifically in the PNS between embryonic day (E) 13.5 and 14.5. 
Co-immunostaining of laminin γ1 (A, B, E, and F; red) and neurofilament (C, D, 
G, and H; green) of whole embryo sections from control (A , C, E, and G) and 
mutant (B, D, F, and H) mice at E13 (A-D) and E15 (E-H) revealed that the 
expression of laminin γ1 was similar in control and mutant nerves at E13 but 
greatly reduced in mutant peripheral nerves at E15. 
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Figure 7. Disruption of laminin γ1 gene expression resulted in depletion of 
all other laminin chains known to be expressed in Schwann cells. 
Adjacent transverse sections of control and mutant sciatic nerves at P0 were 
stained for different laminin subunits, including α1, α2, α4, β1 and γ1.  In the 
mutant nerves, disruption of laminin γ1 gene expression resulted in concurrent 
depletion of other laminin chains.  Note that the laminin α1 chain, which is 
expressed in the perineurium in mature nerves, and the laminin α4 chain, which is 
expressed at low level in adult nerves, are both nearly undetectable at the P0 
stage. Bar=25 µm. 
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3.2 Mutant SCs are severely hypomyelinated and fail to extend processes 

to initiate radial sorting of axons 

The onset of myelination was compared between mutant and control sciatic 

nerves at P0 by staining transverse sections for myelin basic protein (MBP), a 

myelin marker.  In control nerves, MBP was expressed normally, whereas no 

MBP expression could be detected in mutant nerves (Fig. 5B).  At late postnatal 

stages (P28), myelination was complete in control nerves (Fig. 8A).  In contrast, 

mutant sciatic nerves showed large unsorted axonal bundles and only a few SCs 

with normal myelin sheaths (arrows in Fig. 8A).  In mice lacking β1 integrin in 

SCs, perineurial cells are abnormally located along microfasciculations in the 

center of the nerve (Feltri et al., 2002).  In agreement with this observation, 

laminin γ1 expression was not detectable in the endoneurium surrounding mutant 

SCs before P5 (Fig. 5B and Fig. 7) but appeared at later stages in the 

endoneurium of some centrally located SCs in mutant sciatic nerves (P28, Fig. 

8A ).  Therefore, these centrally located SCs with normal myelin sheaths in 

mutant nerves might obtain laminin from nearby perineurial cells or escape 

recombination of the laminin γ1 gene and thus undergo normal differentiation.  

To address this question, mutant mice were crossed with an EGFP reporter 

mouse line Z/EG (lacZ/EGFP) (Novak et al., 2000).  Mice that were obtained 

were homozygous for the floxed laminin γ1 allele and were also hemizygous for 

both P0-Cre transgene and the Z/EG reporter transgene (Fig. 9).  In mice carrying 

the reporter gene, upon Cre mediated recombination, EGFP was expressed.  

The sciatic nerves from these mice were analyzed at P28; the few SCs that had 
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laminin γ1 surrounding them expressed the reporter gene EGFP.  This result 

indicated that these SCs have undergone Cre-mediated laminin γ1 gene 

recombination since the reporter gene was expressed, but they have obtained 

laminin γ1 from other cells (see Fig. 9).  However, it is also possible that some 

SCs might escape Cre-mediated laminin γ1 gene recombination or undergo 

incomplete (monoallelic) recombination. 

The morphology of control and mutant SCs was compared at P1 and P28 by 

EM.  In control sciatic nerves at P1, most SCs had extended processes to 

segregate axons and some axons had formed a 1:1 relationship with individual 

SCs (Fig. 8B).  In contrast, mutant SCs at P1 did not extend processes (arrows in 

Fig. 8B) and left axons unsorted.  Ultrastructural analysis of mutant sciatic nerves 

at late postnatal stages showed that SCs closely associated with unsorted axonal 

bundles (SC in Fig. 8C) lacked a continuous basal lamina (compare fuzzy 

materials indicated by arrows and denuded areas indicated by arrowheads in Fig. 

8D), and did not extend their cytoplasmic processes between axons, thus failing 

to segregate, interact, and myelinate axons. 
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Figure 8. Mutant sciatic nerves show severe hypomyelination and impaired 
axonal sorting. 
(A) Transverse semi-thin sections from P28 control (ct) and mutant (mt) sciatic 
nerves show that mutant nerves have large unsorted axonal bundles and few 
Schwann cells with myelin sheaths near the perineurium (arrows).  (B) Electron 
micrographs of P1 control (ct) and mutant (mt) sciatic nerves show that mutant 
Schwann cells (arrows) do not extend cytoplasmic processes and leave axons 
unsorted.  (C) Electron micrographs of P28 control (ct) and mutant (mt) sciatic 
nerves show that mutant nerves have large bundles of unsorted axons with some 
Schwann cells located outside.  (D) Higher magnification of the boxed region in (C) 
shows that the mutant Schwann cell closely associated with unsorted axonal 
bundles lacks a continuous basal lamina (compare fuzzy materials indicated by 
arrows and denuded areas indicated by arrowheads) and does not extend 
processes between axons.  Bar= (A) 18.5 µm; (B) 5.6 µm; (C) 1.7 µm; (D) 0.3 µm. 
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Figure 9.  Schwann cells with laminin γ1 surrounding them in mutant sciatic 
nerves express Cre.  
Mice heterozygous for the fLAMγ1 allele and hemizygous for the P0Cre transgene 
were crossed with mice homozygous for the fLAMγ1 allele and hemizygous for a Cre 
reporter transgene, Z/EG (lacZ/EGFP), to obtain P0/Cre:fLAM γ1//Z/EG mice (f/f, P0-
Cre, Z/EG) mice, P0/Cre:fLAM γ1/+//Z/EG mice (f/+, P0-Cre, Z/EG, positive control), 
and fLAM γ1//Z/EG mice (f/f, Z/EG, negative control).  This Z/EG Cre reporter 
transgene activates expression of EGFP upon Cre-mediated gene recombination.  
(A) Transverse sciatic nerve sections from P0/Cre:fLAM γ1/+//Z/EG mice and fLAM 
γ1//Z/EG mice at P28 served as positive (f/+, P0-Cre, Z/EG) and negative controls 
(f/f, Z/EG) for Cre-mediated EGFP expression.  (B) Transverse sections of sciatic 
nerves from P0/Cre:fLAM γ1//Z/EG mice at P28 were stained for laminin γ1 (red) and 
counterstained with DAPI (blue).  EGFP expression was directly visualized under 
fluorescent microscopy.  Some Schwann cells in the sciatic nerve of the mutant mice 
that also carry the reporter gene have laminin γ1 surrounding them and express 
EGFP by Cre-mediated recombination (arrows).  This result indicates that these 
Schwann cells expressed Cre but may have obtained laminin γ1 from other cellular 
sources.  Bar= 2 µm. 

EGFP/Ln γ1 
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3.3 Mutant SCs show aberrant differentiation and arrest in premyelinating 

stages 

Upon the deposition of the basal lamina, the essential step for SC differentiation 

is the up-regulation of the transcription factor, Oct-6 (Bermingham et al., 1996; 

Jaegle et al., 1996).  Oct-6 function is required in promyelinating SCs for timely 

differentiation into myelinating SCs (Jaegle et al., 1996; Jaegle and Meijer, 1998). 

Krox-20 is another transcription factor essential for SC myelination, which is 

expressed continuously and specifically in myelin-producing SCs (Topilko et al., 

1994).  Oct-6 and Krox-20 cross-regulate each other and act in the same genetic 

cascade (Nagarajan et al., 2001; Zorick et al., 1999).  Oct-6 is required for timely 

expression of Krox-20.  High level expression of Krox-20, in turn, is required for 

the down-regulation of Oct-6 after the peak of myelination and for the activation 

of the major myelin genes.  Oct-6 and Krox-20 expression were examined in 

mutant peripheral nerves at different developmental stages to detect whether 

their expression was altered by laminin deficiency.  In both control and mutant 

peripheral nerves, Oct-6 was observed at a low level around E15 (Fig. 10A), 

became readily detectable at E17.5, and peaked around P3, even in the absence 

of laminin γ1 (Fig. 11A).  During postnatal development, most control SCs 

gradually down-regulated Oct-6 (Fig. 11B, control panel and Fig. 11D); however, 

mutant SCs were unable to down-regulate Oct-6, indicating that these SCs were 

arrested at the premyelinating stage (Fig. 11, B,D).  Krox-20 was detected at very 

low levels around E17.5 in both control and mutant nerves (Fig. 10B).  At E19.5, 

normal Krox-20 expression was observed in the absence of laminin γ1 (Fig. 11C).  
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In contrast, during postnatal development, when control SCs progressively up-

regulated Krox-20, only a few SCs in mutant nerves expressed high levels of 

Krox-20 (Fig. 11C), indicating that up-regulation of Krox-20 is impeded in mutant 

SCs. 

Taken together, these results suggest that laminins are not required for the 

induction of Oct-6 and Krox-20, but are critical for the maintenance of Krox-20 

expression and ensuing down-regulation of Oct-6, and are therefore necessary 

for differentiation of myelinating SCs.  The maintenance of Krox-20 expression 

requires continuous axonal signals (Jessen and Mirsky, 2002).  Therefore, the 

failure of mutant SCs to maintain Krox-20 expression also suggests that these 

cells have impaired axon-SC interactions. 
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Figure 10. Expression of Oct-6 and Krox-20 in embryonic mouse 
peripheral nerves. 
 (A) Whole embryo sections at E15.5 were stained for Oct-6 (green), laminin 
γ1 (red), and neurofilament (blue).  Oct-6 expresses at low levels in both 
control and mutant nerves at this time point (arrows).  (B) Whole embryo 
sections at E17.5 were stained for Krox-20 (green), laminin γ1 (red), and 
neurofilament (blue). Low levels of Krox-20 expression can be detected in 
both control and mutant nerves at this stage (arrows). Bar= 50 µm. 
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Figure 11. Mutant Schwann cells fail to up-regulate Krox-20 and down-
regulate Oct-6. 
(A) Whole embryo sections at E17.5 and longitudinal sciatic nerve sections at 
P3 were stained for Oct-6 (green) and laminin γ1 (Ln γ1; red), and these 
images were merged.  E17.5 embryo sections were stained for neurofilament 
(blue) to identify nerves.  These images indicate that initiation of Oct-6 does 
not require laminin γ1.  (B) Transverse control and mutant sciatic nerve 
sections at P15 and P28 were stained for Oct-6 (green) and neurofilament 
(red), and the images from mutant nerves were merged.  During postnatal 
development, Oct-6 fails to down-regulate in mutant Schwann cells.  (C) 
Whole embryo sections at E19.5 and transverse sciatic nerve sections at P5 
were stained for Krox-20 (green) and laminin γ1 (red), and the images of Krox-
20/ laminin γ1 were merged.  E19.5 embryo sections were stained for 
neurofilament (blue) to identify nerves.  Although initiation of Krox-20 does not 
require laminin γ1, high level expression of Krox-20 in Schwann cells is 
impaired during the postnatal development.  Bar= 50 µm.  (D) Oct-6 
expression in control and mutant sciatic nerves at P3, P15, and P28 (n=15 per 
genotype per age) was assessed by Western blotting with antibodies against 
Oct-6.  β-Actin was the loading control. Mutant Schwann cells were unable to 
down-regulate Oct-6 and showed aberrant consistent expression of Oct-6.  (c: 
control; m: mutant). 
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3.4 Mutant sciatic nerves contain fewer SCs 

By gross observation, mutant sciatic nerves were smaller and thinner than 

controls (Figs. 12A and B), and this could be due to reduced total cell number 

inside mutant nerves.  Transverse sections from similar distal parts of mutant and 

control nerves were stained with DAPI at various ages to measure the total 

number of nuclei (Figs. 12C, D, and E).  The cell number in mutant sciatic nerves 

compared to control was diminished to 43% at P0, 28% at P5, and 33% at P28 

(Fig. 12E). 
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 Figure 12. The mutant sciatic nerves are smaller and show decreased cell 
number. 
Transverse sections of nerves at P5 (A, C and D) and P28 (B) were stained with 
DAPI (C and D, blue) to visualize individual cells and laminin γ1 (A and B, red) to 
show the size of nerves.  At P5, the mutant nerve was smaller than control nerve 
(A), and the difference of size was greater at P28 (B).  (E) Transverse sections of 
the distal part of control and mutant sciatic nerves at P0, P5, and P28 were 
stained for DAPI, and the total cell number was measured in four nerves in each 
group (mean±SEM).  Bar: (A and B)= 100 µm; (C and D)= 50 µm. 
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3.5 SC proliferation is severely reduced in mutant peripheral nerves 

During late embryonic and perinatal stages, SCs proliferate vigorously to 

rearrange, sort, and ensheath axons (Stewart et al., 1993).  Reduced SC 

proliferation could cause the decreased total cell number observed in mutant 

nerves.  To determine whether SCs proliferate normally, BrdU-incorporating 

nuclei were compared between control and mutant nerves at various ages.  

During the peak of SC proliferation (E17.5 to 19.5) (Stewart et al., 1993), control 

nerves showed extensive cell proliferation, whereas mutant nerves had few 

proliferating cells (Fig. 13A).  Statistical analyses showed that the percentage of 

BrdU-incorporating nuclei was similar before laminin γ1 gene disruption (E13) but 

was significantly decreased in mutant nerves as compared to controls at E15.5 

(20.8% vs. 30.6%), E17.5 (12.7% vs. 29.2%), E19.5/P0 (11.8% vs. 29.6%), and 

P5 (3.8% vs. 5.6%) (Fig. 13B), indicating that mutant SC proliferation is reduced. 

 

3.6 Laminin mediated axon-SC interactions are critical for SC proliferation 

Since axons are a major source of SC mitogens (Morrissey et al., 1995; Wood 

and Bunge, 1975), impaired axon-SC interaction could result in reduced SC 

proliferation.  β-neuregulin-1 (NRG-1) is a major axon-derived SC mitogen that 

can interact with and stimulate the phosphorylation of receptor tyrosine kinases 

ErbB2 and ErbB3 on SCs (Morrissey et al., 1995).  The phosphorylation levels of 

ErbB2 and ErbB3 were measured in sciatic nerve extracts during early postnatal 

stages (Fig. 14).  Although ErbB2 and ErbB3 receptor levels were not 

significantly changed, the phosphorylation of both proteins was greatly reduced, 
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suggesting that the inability of mutant SCs to be exposed to axonal mitogens is a 

major cause of decreased proliferation.  This result indicates that laminin-

mediated axon-SC interactions are essential for proliferation.  
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Figure 13. Laminin γ1-null Schwann cells show reduced Schwann cell 
proliferation. 
(A) Longitudinal sections of control and mutant sciatic nerves at E19.5 were 
triple-stained for BrdU (green), neurofilament (red), and DAPI (blue) after a 
1-h pulse of BrdU.  The images of BrdU/neurofilament and BrdU/DAPI were 
merged.  Mutant Schwann cells show reduced nuclei BrdU incorporation as 
compared with control Schwann cells.  Bar= 60 µm.  (B) Plot of the 
percentage (mean ± SEM) of BrdU-positive nuclei at various ages.  The 
percentages of BrdU-incorporated nuclei are significantly reduced in mutant 
nerves (open bar) at E15.5, E17.5, E19.5/P0, and P5 as compared to control 
nerves (closed bar) (n=6 per genotype per age; * P<0.01, ** P<0.001).  
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Figure 14. The response of mutant Schwann cells to the 
mitogenic effect of NRG-1 is impaired. 
The response of Schwann cells to NRG-1 at P0 and P2 was 
assessed on immunoblots with antibodies recognizing 
phosphorylated ErbB2 (p-ErbB2) and ErbB3 (p-ErbB3).  β-Actin was 
used as the loading control.  Mutant Schwann cells show severe 
reduction in response to axonal mitogens.  (c: control; m: mutant). 

β-actin 
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3.7 SCs lacking laminin expression undergo apoptosis at postnatal stages 

ECM molecules, such as laminins, are often essential for maintenance of cell 

viability (Chen and Strickland, 1997; Meredith et al., 1993).  Disruption of laminin 

γ1 may affect SC survival. Terminal deoxynucleotidyl transferase-mediated 

dUTP-X nick end labeling (TUNEL) was performed to determine the extent of SC 

apoptosis at various ages (Fig. 15).  There was little apoptosis at E15.5 and 

E17.5 (Fig. 15B), and the percentages of apoptotic cells were similar in control 

and mutant nerves.  However, in early postnatal stages, the percentage of dying 

cells in mutant nerves progressively increased, peaked at P15 (Fig. 15A), and 

gradually declined as the nerves matured (Fig. 15B).  In contrast, apoptotic cells 

were seldom found inside control nerves during these stages.  TUNEL-positive 

cells in mutant nerves were significantly higher than in controls at P0 (1.8% vs. 

0.5%), P5 (3.3% vs. 0.1%), P15 (7.1% vs. 0.04%), and P28 (3.0% vs. 0.2%), but 

not at E15.5 (1.1% vs. 0.6%) and adult (0.5% vs. 0.2%) (Fig. 15B). 

Mesenchymal cells are recruited to peripheral nerves to generate the 

perineurium at E15-17 (Parmantier et al., 1999).  To determine whether the 

apoptotic cells in the sciatic nerve were SCs and lack laminin expression, mutant 

nerve sections were stained at P15 for laminin γ1, TUNEL, and a SC marker.  

Cytoplasmic S100 staining showed that the apoptotic cells in mutant nerves were 

SCs (Fig. 16A) which had lost laminin expression (Fig. 16B).  

Since axonal survival signals are only important in early (before P6) but not 

in later postnatal developmental stages (Grinspan et al., 1996), it is unlikely that 

late postnatal apoptosis (P15 to P28, Fig. 15 B) is due to a lack of proper 
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SC/axon relationship.  This delayed apoptosis may indicate that laminin is 

required for long term survival of SCs, which has been previously suggested 

(Meier et al., 1999).  Consistent with this observation, the CaMKII/Cre:fLAMγ1 

mice, in which laminin disruption in SCs occurs later and is incomplete (around 

E17.5 to E19.5, Chen and Strickland, 2003) as compared to that in P0/Cre: 

fLAMγ1 mice (cre expression around E13.5 -14.5; Fig. 6) showed a later onset of 

SC apoptosis (Fig. 17).  SC apoptosis continued through adulthood in 

CaMKII/Cre:fLAMγ1 mice (Fig. 17), but not in P0/Cre: fLAMγ1 mice (Fig. 15B); 

possibly because most SCs die before P0/Cre: fLAMγ1 mice reach adulthood, 

and fewer SCs remain within the sciatic nerve.  Therefore, significant increases 

in apoptosis cannot be detected in these mouse lines. 

Taken together, the results coupled with previous studies indicate that loss 

of laminin could be a direct cause of apoptosis.  However, one cannot rule out 

the possibility that impaired erbB signaling in early postnatal development (Fig. 

14) may contribute to part of increased apoptosis, since the axon-derived 

neuregulin signal still regulates SC survival to some extent in early postnatal 

stages (Grinspan et al., 1996). 
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Figure 15.  Mutant peripheral nerves show an increased percentage of cell 
death at postnatal stages. 
(A) Representative transverse sciatic nerve sections of control and mutant mice 
at P15 were stained with TUNEL (red) and counterstained with DAPI (blue), and 
the images were merged.  Apoptotic cells can be detected in mutant but not 
control nerves.  (B) Plot of the percentage of TUNEL-positive nuclei 
(mean±SEM) at various ages.  The percentages of TUNEL-positive nuclei are 
higher in mutant (open bar) than in control nerves (close bar) at P0, P5, P15, 
and P28 (n=6 per genotype per age; * P<0.01, ** P<0.001).  Bar= 20 µm. 
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Figure 16.  Apoptotic cells in mutant peripheral nerves are Schwann 
cells that lack laminins. 
(A) P15 mutant sciatic nerve sections were stained with DAPI (blue), S-100 
(red), and TUNEL (green), and the images were merged.  The staining 
indicates that cells with TUNEL-positive nuclei are Schwann cells.  (B) P15 
mutant sciatic nerve sections were stained with DAPI (blue), laminin γ1 
(red), and TUNEL (green), and the images were merged.  The staining 
shows TUNEL-positive cells do not express laminins (arrows), whereas the 
TUNEL-negative cells express laminins (arrowheads).  Bar= 8 µm. 
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Figure 17.  Increased Schwann cells apoptosis in later developmental 
and adult stages in CaMKII/Cre:fLAM γ1 mutant mice.  
(A) Representative longitudinal sciatic nerve sections of control and mutant 
mice at P5, and transverse sections of control and mutant mice at P10 and 
adult were stained with TUNEL (green) and counterstained with laminin γ1 
(red).  The images were merged.  Apoptotic cells can be detected in mutant 
sciatic nerves at all stages (arrows) and in control nerves at P5.  Apoptotic 
cells were barely detectable in control nerves at P10 and adult.  (B) Plot of 
the percentage of TUNEL-positive nuclei (mean±SEM) at various ages.  The 
percentages of TUNEL-positive nuclei were higher in mutant (open bar) than 
in control nerves (closed bars) at P10 and adult (n=6 per genotype per age; 
** P<0.001), but there was no significant difference at P5.   
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3.8 Mutant SCs show reduced PI 3-kinase activities 

The PI 3-kinase/Akt pathway plays a critical role in controlling the balance 

between cell survival and apoptosis (Burgering and Coffer, 1995).  Several in 

vitro studies have shown that this pathway is important for SC viability (Cheng et 

al., 2000; Maurel and Salzer, 2000).  The decreased SC survival (Fig. 15) led us 

to examine whether PI 3-kinase/Akt signaling is reduced in mutant SCs.  PI 3-

kinase activity was assessed by measuring the phosphorylation level of Akt/PKB 

(p-Akt) protein in sciatic nerve extracts at various ages (Fig. 18A).  Akt 

phosphorylation progressively increased in control nerves during postnatal 

development.  However, in mutant sciatic nerves, Akt phosphorylation decreased 

from P0 to P28 as compared to control, with a maximum decrease around P15. 

We stained nerve sections for both S100 and p-Akt and confirmed that the 

majority of PI 3-kinase activity was from SCs (Fig. 18B). 
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Figure 18.  Mutant Schwann cells show impaired PI 3-kinase activity. 
(A) PI 3-kinase activity of control and mutant sciatic nerves at P0, P5, P15, 
P28, and adult (n=15 per genotype per age) were assessed on 
immunoblots with antibodies against phosphorylated Akt (p-Akt), the 
downstream effector of PI 3-kinase.  Mutant sciatic nerves compared to 
control nerves show reduced PI 3-kinase activity at P0, P5, P15, and P28 
(c: control; m: mutant).  (B) Transverse mouse sciatic nerve sections at 
P15 were triple-stained with S100 (green), phospho-Akt (red), and 
counterstained with DAPI (blue). The images of S100 and p-Akt were 
merged.  These images show that the majority of PI 3-kinase activity was 
from Schwann cells. 



 

 49

3.9 Mutant SCs show elevated apoptosis/caspase signaling 

The reduced PI 3-kinase activity in mutant SCs could indicates that the loss of 

laminins impaired SCs’ ability to receive the axon-derived myelinating signal 

since the myelin-promoting effect of axon-derived NRG1 type III is mediated by 

PI 3-kinase/Akt activities (Taveggia et al., 2005).  Additionally, the reduced PI 3-

kinase/Akt activity may also reflect that mutant SCs have reduced survival 

signaling.  To investigate whether the reduced PI 3-kinase activity activates the 

downstream cell death signals in SCs, the anti-apoptotic effect of Akt was 

examined.  

 Upon activation, Akt phosphorylates and inactivates several downstream 

targets, including glycogen synthase kinase 3 (GSK-3) and caspase-9, to 

execute its anti-apoptotic effect.  GSK-3 promotes apoptosis and, its activity can 

be inhibited by Akt-mediated phosphorylation at Ser21 of GSK-3α and Ser9 of 

GSK-3β (Cross et al., 1995).  To determine the Akt-mediated anti-apoptotic effect, 

the endogenous levels of phospho-GSK-3β were examined in sciatic nerve 

extracts at P5 and P15, the peak of apoptosis in mutant nerves.  In mutant sciatic 

nerves, GSK-3β protein was comparable to controls but its phosphorylation level 

was reduced at both ages (Fig. 19A). 

 Caspase-9 is inhibited by Akt-mediated phosphorylation (Cardone et al., 

1998) and is the key initiator of the intrinsic apoptotic pathway (Budihardjo et al., 

1999).  Upon apoptotic stimulation, procaspase-9 (49 kDa in mice) is processed 

into a large active subunit (37 or 39 kDa) by self-cleavage.  Cleaved caspase-9 

activates other effector caspases, including caspase-3 and -7 and initiates a 
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caspase cascade, leading to programmed cell death.  P5 and P15 sciatic nerves 

were examined for the large active fragment of caspase-9 by Western blotting 

(Fig. 19B) and the activation of downstream effector, caspase-3 and -7 (Fig. 19C) 

by immunostaining.  At these ages, activated caspase-9, -3, and -7 could be 

detected in mutant nerves but not in controls (Fig. 19, B and C).  These results 

further suggest that PI 3-kinase/Akt-mediated anti-apoptotic effects are impaired 

in mutant SCs, resulting in elevated GSK-3 activity and the initiation of a caspase 

cascade to promote apoptosis. 
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Figure 19.  Mutant Schwann cells exhibit elevated apoptosis/caspase 
signaling. 
(A) Akt kinase activity of control and mutant sciatic nerves at P5 and P15 were 
assessed on immunoblots with antibodies recognizing phospho-GSK-3β (p- 
GSK-3β).  Mutant Schwann cells have reduced Akt kinase activities at P5 and 
P15 as judged by decreased phosphorylation of GSK-3β (c: control; m: mutant).  
(B) Endogenous level of activated (cleaved) caspase-9 in control and mutant 
sciatic nerves at P5 and P15 was assessed by immunoblots with antibodies 
recognizing both full length (49kDa) and the large fragment of mouse caspase-9 
following cleavage at Asp353 (37 kDa) and Asp368 (39 kDa).  The mutant 
sciatic nerves show activation of caspase-9 at both time points (c: control; m: 
mutant).  (C) Longitudinal sciatic nerve sections of control and mutant mice at 
P15 were stained with activated capase-3 and -7 antibodies (red) and 
counterstained with DAPI (blue), and the images were merged.  Mutant sciatic 
nerves show increased activated caspase-3 and -7.  Bar= 20 µm. 
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3.10 Laminin-induced PI 3-kinase/Akt activation is required for SC survival 

The increased apoptosis and decreased PI 3-kinase activities in mutant sciatic 

nerves are temporally correlated (Fig. 20A).  This suggests that the disruption of 

laminins in SCs may cause impaired PI 3-kinase/Akt signaling, thus leading to 

apoptosis.  To further confirm that laminins activate PI3-kinase/Akt signals to 

promote SC survival, a rescue experiment was performed by injecting a laminin 

peptide into mouse sciatic nerves.  It has been shown that a short peptide 

derived from laminins containing the sequence EIKLLIS, which may represent 

the integrin-activating site of laminins, can activate PI 3-kinase/Akt-mediated 

survival signaling in neuronal cell culture (Gary and Mattson, 2001; Tashiro et al., 

1999). 

Laminin peptide was injected into one sciatic nerve of mutant mice, while the 

contralateral nerve was injected with a scrambled control peptide ILEKSLI 

(Tashiro et al., 1999).  Injection of laminin peptide but not the control peptide 

along the mutant sciatic nerves partially restored Akt phosphorylation (increase 

75%; normalized with total Akt) and also partially suppressed the activation of 

caspase-9 (decrease 50%) (Figs. 20 B and C).  The control peptide was not toxic 

since injection into control nerves did not induce apoptosis.  Together, these 

experiments indicate that the disruption of laminins in SCs results in impaired PI 

3-kinase/Akt signaling, leading to SC apoptosis. 
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Figure 20.  Restoration of PI 3-kinase activity in mutant sciatic 
nerves suppresses caspase-mediated death signaling. 
(A) The levels of phospho-Akt in mutant sciatic nerves from Fig. 18(A) 
were quantified (normalized to total Akt level) and compared with 
control nerves to obtain the percentage of decreased p-Akt level.  The 
percentage of increased TUNEL-positive nuclei in mutant sciatic nerves 
were obtained by subtracting the average percentages of TUNEL-
positive nuclei in control from mutant nerves in Fig. 15(B).  A plot of the 
percent increase in TUNEL-positive nuclei (bar) and decreased p-Akt 
level (circle) in mutant sciatic nerve against the ages of mice shows that 
reduced PI 3-kinase activities correlated temporally with increased 
Schwann cell death.  (B) Control sciatic nerve or laminin peptide- (lp) 
and control peptide- (cp) injected mutant sciatic nerve extracts were 
immunoblotted with antibodies recognizing Akt or phosphorylated Akt.  
Caspase signaling was evaluated on the same blot using antibodies 
against caspase-9.  β-actin served as a loading control .  As compared 
to control nerves, the PI 3-kinase activities were partially restored in 
mutant sciatic nerves injected with the laminin peptide, resulting in the 
reduction of activated caspase-9 level.  (C) Plot of the signal intensity 
(mean±SEM) of phospho-Akt (p-Akt) and cleaved caspase-9 from 
quantitative analysis of Western blots from (B).  The signal intensity of 
p-Akt and cleaved caspase-9 in laminin peptide-injected mutant sciatic 
nerves increased 75% and decreased 50 %, respectively, as compared 
to contralateral control nerves (n=20 mice per genotype per lysate, 
three independent experiments; * P<0.05, ** P<0.01).  
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3.11 Exogenous laminins rescue the defects of ensheathment and 

myelination of mutant SCs in SCs/dorsal root ganglion (SC/DRG) neuronal 

co-cultures  

SC proliferation plays a vital role in establishment of solitary relationships 

between myelinating SCs and axons during the onset of radial sorting (Martin and 

Webster, 1973; Stewart et al., 1993), and laminins promote this perinatal SC 

proliferation (Fig. 13B) (Yang et al., 2005).  The severe impairment of radial 

sorting in laminin-deficient nerves could largely result from the decrease in 

perinatal SC proliferation, leaving the question whether laminins have direct roles 

in regulating SC cytoskeleton to initiate ensheathment and myelination of axons.  

Moreover, the severe reduction of SC number in P0/Cre: fLAMγ1 mice also 

preclude us from using these mice to further study the direct effect of laminins on 

SCs.  To investigate whether laminins regulate SC process formation during 

ensheathment and myelination, SC/DRG neuronal co-cultures were used.  The 

ensheathment and myelination of this co-culture system is induced by addition of 

ascorbic acid to stimulate deposition of basal lamina.  SC/DRG neuronal co-

cultures from mutant mice show incomplete recombination of laminin γ1 gene 

(Fig. 21A), presumably due to the unrecombined laminin γ1 gene present in 

neurons and fibroblasts.  These non-SC autonomous laminins partially rescue 

the mutant phenotype (Fig. 21B).  To circumvent this problem, SC/DRG neuronal 

co-cultures from floxed laminin γ1 mice were infected with an adenovirus 

expressing Cre recombinase (Ad-Cre) to completely disrupt the laminin γ1 gene 

(Fig. 21A). 
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In co-cultures infected with a control adenovirus (Ad-LacZ), laminins were 

present (Fig. 22A) and myelination was first detectable two days after ascorbic 

acid addition.  After eight days in myelinating promoting feed (maintenance 

media with ascorbic acid), extensive myelinated fibers were observed (Fig. 22A).  

Ultrastructural analysis of these control cultures showed normal ensheathment of 

axons (EM in Fig. 22A).  In contrast, laminins were completely absent from Ad-

Cre-infected co-cultures (Fig. 22A), and these mutant co-cultures did not 

myelinate (Fig. 22A), even after two weeks of ascorbic acid exposure (Fig. 22B).  

Ultrastructural analysis of these control cultures revealed that most SCs did not 

form processes to properly ensheath axons (EM in Fig. 22A).  

To investigate if exogenous laminins could rescue the defects in mutant 

cultures lacking endogenous laminins, soluble laminins were added to the media 

(Fig. 22A).  Addition of exogenous laminin restored myelination (Fig. 22A) as well 

as the defect of ensheathment of SCs (EM in Fig. 22A). 
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Figure 21. SC/DRG neuronal co-cultures from P0/Cre:fLAM γ1 mice show 
incomplete recombination of laminin γ1 and are partially myelinated. 
(A) PCR analysis of genomic DNA of co-cultures from homozygous fLAM γ1 mice 
(F/F) and P0/Cre:fLAM γ1 mice (F/F, P0-Cre) infected with adenoviruses expressing 
LacZ or Cre.  The primers used amplified the unrecombined (3.2 kb) and recombined 
(2.3 kb) fLAM γ1 alleles.  (B) Myelination of mouse SC/DRG neuronal co-cultures eight 
days after addition of ascorbic acid were detected by immunostaining for MBP (green) 
and laminin γ1 (red) .  Control co-cultures show extensive myelination. Mutant co-
cultures have incomplete disruption of laminin γ1 and show some myelination. 



 

 58

 

 

 

 

 

Figure 22. Schwann cells lacking laminins show defects in 
ensheathment and myelination. 
(A) Myelination of mouse SC/DRG neuronal co-cultures infected 
with Ad-LacZ or Ad-Cre eight days after addition of ascorbic acid 
or exogenous laminins was detected by immunostaining for MBP 
(red) and laminins (green) or analyzed by electron microscopy 
(EM).  Co-cultures infected with a control virus show extensive 
myelination.  In contrast, co-cultures infected with Ad-Cre (mutant) 
show complete disruption of laminins and have no myelination.  
Extensive myelination was restored in mutant co-cultures treated 
with exogenous laminin.  Electron micrographs of SC/DRG 
neuronal co-cultures eight days in myelinating promoting feed 
show that mutant Schwann cells have no processes to enwrap 
axons and fail to myelinate axons.  Bar= 1 µm.  (B) The 
expression of myelin protein zero in control and mutant co-cultures 
eight days or 14 days after addition of ascorbic acid was assessed 
by Western bloting with antibodies against P0.  β-Actin served as 
the loading control.  No myelination was dectected in mutant  co-
cultures after two weeks in myelinating promoting feed.  (con: 
control; mut: mutant). 
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3.12 Mutant SCs can not form bipolar morphology and elongate 

A hallmark of SC differentiation and myelination is to form a bipolar morphology 

and to elongate in order to precisely match the extension of nerve growth (Court 

et al., 2004).  To determine if SC morphology was altered upon disruption of 

laminins, SCs were identified by staining co-cultures with S100, and morphology 

was visualized using confocal microscopy.  Upon eight days in myelinating 

promoting feed, most SCs in control co-cultures form an internodal myelin 

segment along axons with the canonical bipolar extension morphology (Fig 23A).   

In contrast, SCs lacking laminins did not differentiate properly and fail to establish 

cell polarity (Fig. 23B).  These cells showed either no filapodia extension (mutant 

2 in Fig. 23B) or extended membrane in multiple directions (mutant 3 in Fig. 

23B).   A few mutant SCs differentiated asymmetrically and form a unipolar 

morphology with a short myelin segment (mutant 1 in Fig. 23B).  These SCs may 

have their laminins disrupted after the initiation of myelination.  Addition of 

exogenous laminin restored the normal morphology of differentiated SCs (Fig. 

23C).  Statistical analysis revealed that the length of mutant SCs is significantly 

decreased as compared to control (Fig. 23D).  Thus, laminins are required for 

SCs to form a bipolar morphology and the subsequent elongation during 

myelination. 
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Figure 23. Schwann cells lacking laminins show defects in formation of bipolar 
morphology and elongation. 
Control (A), mutant (B), and mutant co-cultures with exogenous laminins (C) eight days 
after addition of ascorbic acid were stained for the MBP (blue), s100 (green), and 
neurofilment (red) and were imaged by confocal microscopy.  The images were then 
merged.  Mutant Schwann cells show defects in formation of bipolar morpholgy. Bar= 
20 µm.  (D) Comparison of Schwann cell length in co-cultures after eight days in 
myelinating promoting feeds (3 fields per co-culture, 6 co-cultures in control and 
mutant+Ln and 8 co-cultures in mutant, ** P<0.001 compared with control, student’s t 
test).  Broken lines represent the average.  
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3.13 Mutant SCs show less formation of lamellipodia and filopodia upon the 

onset of myelination 

Mutant SCs lack processes necessary to form a close relationship with axons 

(EM in Fig. 22A).  Therefore, the regulation of SC process formation during 

myelination was examined by performing time-lapsed live cell imaging in 

SC/DRG neuronal co-cultures.  To specifically label neurites with red 

fluorescence and SCs with green fluorescence, co-cultures were infected with 

two different recombinant adenoviruses at different time points.  At the time of 

plating, the dissociated explants contain mostly neurons with only a few satellite 

SCs and were infected with adenovirus expressing mCherry-tagged 

neurofilament light chain.  Red fluorescence appeared in the soma and proximal 

neurites within one day after infection, and by eight days it had extended into the 

distal neurites (Fig. 24A).  Two days before imaging (10 days after plating), the 

co-cultures were completely packed by endogenous SCs and were infected with 

another adenovirus expressing eGFP-tagged β-actin.  This resulted in co-

cultures with axons of red fluorescence and SCs of green fluorescence, 

respectively (Fig. 24A). Infecting co-cultures with these adenoviruses did not 

impede SC differentiation or myelination (Fig. 24B). 

Labeled control and mutant co-cultures were imaged for 16 hours with a 

spinning disk confocal microscope to acquire high-resolution 3D images.  

Imaging of control co-cultures showed SCs form extensive dynamic cytoplasmic 

processes to attach neurites (Fig. 25A, see video 1 for details).  In contrast, 

mutant SCs show less process formation with some SCs undergo cell death (Fig. 



 

 63

25A, see video 2 for details), consistent with our previous observations that 

laminins are also required for SC survival (Fig. 15).  We measured the number of 

processes formed per hour and the length of formed processes and found both 

parameters were significantly decreased in mutant SCs (Figs. 25 B and C). 

 

Ad-mCherry-NFL Ad-eGFP-actin Merge 

Ad-mCherry-NFL Ad-eGFP-actin MBP 

B 

A 

Figure 24. Mouse SC/DRG neuronal co-cultures were infected with Ad-
eGFP-actin and Ad-mCherry-NFL and used for time-lapsed imaging. 
(A) SC/DRG neuronal co-cultures were infected sequentially with Ad-mCherry-
NFL at day 0 and Ad-eGFP-actin at day 10 in maintenance media and images 
were taken and merged two days after last infection.  (B) Co-cultures were 
infected with Ad-mCherry-NFL and Ad-eGFP-actin, incubated for eight days in 
myelinating promoting feed and stained for MBP (blue).  Infection of co-
cultures with Ad-mCherry-NFL and Ad-eGFP-actin does not inhibit 
myelination. 
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Figure 25. Formation of lamellipodia and filopodia is decreased in mutant 
Schwann cells.  
(A) SC/DRG neuronal co-cultures were labeled with Ad-mCherry-NFL and Ad-
eGFP-actin and then imaged for 16 hours using a spinning disk confocal 
microscope.  Z-stack were taken every five mins.  Each panel is a maximum 
projection of a z-stack. Control Schwann cells form extensive podia (arrows), 
while mutant Schwann cells form fewer and shorter podia.  (B) Quantification of 
podia formation per hour over a 12-hour period reveals mutant Schwann cells 
have less podia formation (**: p<0.001, student’s t-test).  (C) Quantification of the 
length of formed podia over a 12-hour period reveals mutant Schwann cells form 
shorter podia (**: p<0.001, student’s t-test).  Broken lines represent the average.  
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3.14 Disruption of laminins impedes non-myelinating SC differentiation 

At P28, the differentiation of both myelinating and non-myelinating SCs was 

completed in control nerves.  The non-myelinating SCs form several processes 

to enwrap multiple small caliber axons (Remak bundles in Figs. 26 A and C).  

However, at the same age, the mutant nerves contain only large unsorted axonal 

bundles and few myelinating SCs without Remak bundles (Figs. 26 B and D).  To 

determine whether nonmyelinating SCs differentiate properly in peripheral nerves 

lacking laminins, sciatic nerve sections were stained with L1 and N-CAM, two cell 

adhesion molecules that serve as markers of differentiated nonmyelinating SCs 

(Martini and Schachner, 1986; Martini and Schachner, 1988).  L1 and N-CAM are 

normally expressed by immature and all promyelinating SCs, but are down-

regulated in myelinating SCs when myelination starts and restricted to 

nonmyelinated axons and nonmyelinating SCs (Martini and Schachner, 1986).  In 

both control and mutant embryonic nerves, L1 and N-CAM staining appeared 

normal in growing axons and immature SCs (Figs. 27 A, D, I, and L).  During 

postnatal stages, L1 and N-CAM were gradually confined to nonmyelinating SCs 

and nonmyelinated axons in control nerves (Figs. 27 A-C, G, H, and I-K); 

however, their expression progressively diminished in all areas of mutant sciatic 

nerves in early postnatal stages (Figs. 27 B and E), then completely disappeared 

around P15 (Figs. 27 C, F, J, and M) and could not be detected thereafter (Figs. 

27 G, H, K, and N). 

At this developmental stage, evidence of apoptosis of L1 and N-CAM 

positive cells could not be found in mutant sciatic nerves.  These results suggest 
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that the disappearance of L1 and N-CAM positive cells results from a lack of 

differentiation of non-myelinating SCs and not apoptosis. 

 

 

* *
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Figure 26. P28 mutant sciatic nerves do not have non-myelinating 
Schwann cells. 
(A-D) Transverse semi-thin (A and B) and ultrathin (C and D) sections from 
P28 sciatic nerves show that control nerves (A and C) have non-myelinating 
Schwann cells and form several Remak bundles (asterisks) while mutant 
nerves only contain unsorted axonal bundles and few Schwann cells with 
myelin sheaths (B and D). 



 

 67

  

Figure 27. Non-myelinating Schwann cells in mutant peripheral nerves 
do not differentiate. 
Whole embryo sections at E15.5 (A, D, I, and L) and transverse sciatic nerve 
sections at P5 (B and E), P15 (C, F, J, and M), P28 (G), and adult (H, K and 
N) were stained for neurofilament (red) and N-CAM (green, A-H) or L1 
(green, I-N) to detect the differentiation of non-myelinating Schwann cells.  In 
mutant sciatic nerves, the non-myelinating Schwann cells did not 
differentiate and failed to express N-CAM (E-H)and L1 (M and N) at 
postnatal stages.  Bar: (A, B, D, E, I, and L)= 39.5 µm; (C, F, J, K, M and, 
N)= 79 µm; (G and H)= 50 µm. 
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CHAPTER 4: DISCUSSION 

 

Using the Cre/LoxP system, laminin γ1 gene was specifically disrupted in SCs 

during their early developmental stages.  Disruption of laminin γ1 gene resulted 

in complete depletion of all laminin isoforms in SCs.  These mice have revealed 

novel mechanistic insights into laminin function in SC development.  First, laminin 

is essential for differentiation of SCs; mutant SCs fail to down-regulate Oct-6 and 

myelinate, and are arrested in the premyelinating stage.  Second, laminins 

regulate the bipolar extension and the formation of lamellipodia and filopodia of 

SCs, which are two essential steps for axon-SC interaction, axonal sorting, 

ensheatment, and myelination.  Impaired axon-SC interaction prevents exposure 

of the cells to axon-derived signals and causes severe reduction of proliferation 

and aberrant differentiation.  Third, laminins maintain SC long-term survival 

through regulation of a survival signal.  Fourth, laminins are required for 

differentiation of non-myelinating SCs as well. 

 

4.1 The primary function of laminins in PNS development is to initiate radial 

sorting of axons and mediate axon-SC interaction. 

Using time-lapsed live cell imaging, it was demonstrated that laminins regulate 

the formation of podia in SCs (Fig. 25).   This laminin-mediated podium formation 

is essential for axon defasciculation as well as interaction between SCs and 

axons, as the disruption of laminins in SCs results in severe impairment of axonal 

sorting (Fig. 8) and inappropriate relationship of SCs and axons (Figs. 22A and 



 

 70

23B).   In mutant nerves, SCs show less proliferation, and fail to down-regulate 

Oct-6 and up-regulate Krox-20 at later developmental stages.  All these steps 

critically depend on axon-derived signals (Jessen and Mirsky, 2005; Murphy et 

al., 1996; Scherer et al., 1994).  Thus, many defects in P0/Cre:fLAMγ1 mice, 

including the aberrant differentiation and decreased proliferation, appear to be a 

secondary consequence of impaired axon-SC interaction.  In support of this view, 

mutant SCs have reduced response to NRG-1 at early postnatal stages (Fig. 14) 

and decreased PI 3-Kinase activities during the course of myelination (Fig. 18A).  

Since the activation of PI 3-kinase pathway by axon-derived NRG-1 type III is a 

hallmark of SC myelination (Maurel and Salzer, 2000; Ogata et al., 2004; 

Taveggia et al., 2005), part of the decreased PI 3-kinase activities may simply 

reflect the failure of mutant SCs to expose to axonal membrane-bound NRG-1 

type III. 

 

4.2 The role of laminins in SC proliferation 

Many phenotypes of mice lacking laminin γ1 in SCs (Fig. 8) are similar to those 

observed in mice lacking β1 integrin in SCs (Feltri et al., 2002), indicating that β1 

integrin plays a major role in mediating laminin signaling.  However, proliferation 

is reduced in SCs lacking laminins (Fig. 13) but is not significantly affected in β1 

integrin-null SCs.  There are three likely possibilities for why laminin γ1 affects 

proliferation: 1, laminin may act as a direct SC mitogen since this effect has been 

observed in vitro (Baron-Van Evercooren et al., 1986; Macica et al., 2006; 

McGarvey et al., 1984; Yang et al., 2005); in this case, laminin γ1 would employ 
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receptors other than β1 integrin; 2, the laminin basal lamina could act as a 

scaffold to attract and bind growth factors and influence SC proliferation; 3, the 

proliferation effect might be secondary to axonal sorting and provision of axon-

derived growth factors (Fig. 14).  These three possibilities are not mutually 

exclusive and can coexist.  The third possibility is favored based on our results 

(Fig. 14) and the following observations.  In early postnatal stages (P1), SCs 

lacking β1 integrin send abnormally shaped, thick cytoplasmic processes to 

ensheath groups of axons.  The formation of unsorted axonal bundles in later 

stages partly results from the retraction of processes (Feltri et al., 2002), at which 

time SCs may have the opportunity to encounter to axon-derived mitogens.  

However, SCs lacking laminin γ1 are unable to extend cytoplasmic processes 

(Figs. 8C, 22A and 25) and fail to interact with axonal mitogens. 

In the presence of basal lamina, β1 integrin forms a complex with focal 

adhesion kinase (FAK) and paxillin (Chen et al., 2000).  Schwannomin (merlin) is 

then recruited to the plasma membrane through its interaction with paxllin and 

forms a complex with β1 integrin and the erbB2 receptor (Fernandez-Valle et al., 

2002; Obremski et al., 1998).  NRG-1 also induces the association of FAK with 

the erbB2/erbB3 receptor (Vartanian et al., 2000).  If any process of formation of 

this multimolecular complex is disrupted, many deleterious events may occur. 

For example, inactivation of schwannomin causes abnormal SC proliferation in 

Schwannomas found in Neurofibromatosis type 2 patients (Rouleau et al., 1993).  

In addition, disruption of FAK results in similar phenotypes to our mutant mice, 

characterized as impaired radial sorting of axons and decreased SC proliferation 
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(Grove et al., 2007).  All these studies, coupled with our finding that laminins 

regulate the response of SCs to NRG-1, indicate that laminins cooperate with 

NRG-1 to coordinate SC proliferation through the formation of a multimolecular 

complex. 

 

4.3 The role of laminins in SC survival 

At E12-E13 in mice, the survival of SC precursors depends on axon-derived β-

neuregulin 1/Erb B pathway (Dong et al., 1995; Riethmacher et al., 1997).  After 

this stage, SCs establish an autocrine loop but also require laminins for long-term 

survival (Meier et al., 1999).  Since P0/Cre-mediated laminin γ1 disruption occurs 

between E13.5 to E14.5 (Fig. 6) and since there was no significant cell death 

around this stage (Fig. 15), it is unlikely that the neuregulin 1/Erb B signaling 

pathway is affected in mutant nerves at this time point.  

The PI 3-kinase activity in mutant SCs was severely reduced (Fig. 18A). 

This reduced PI 3-kinase activity may be a consequence of the impaired 

differentiation of mutant SCs (see above discussion).  However, disruption of 

laminins may also contribute to the reduction of this survival signaling pathway 

and results in apoptosis based on the following observations: At P0/P1, both 

control and mutant SCs are at similar differentiating stages (premyelinating 

stage), but the mutant SCs had reduced PI 3-kinase activity and increased 

apoptosis (Figs. 15B and 18A).  Additionally, mutant SCs infused with laminin 

peptides showed partial restoration of PI 3-kinase activity and reduced apoptosis 

(Fig. 20). 
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We observed reduced Krox-20 expression and increased SC death in 

mutant sciatic nerves (Figs. 11 and 15).  Since Krox-20 can suppress c-Jun-

mediated TGFβ-induced SC apoptosis (Parkinson et al., 2004), increased SC 

apoptosis could result from the failure of Krox-20 to inhibit c-Jun activation. 

However, the phosphorylation of c-Jun at postnatal stages between control and 

mutant sciatic nerves was similar (data not shown), suggesting that the TGFβ 

pathway did not play a major role in the increased apoptosis of mutant SCs. 

 

4.4 Other mouse models with similar defects 

The defects in the PNS observed in mice lacking laminins (Fig. 8) are more 

severe than those found in dystrophic mice (dy2J/dy2J or dy3K/dy3K), which 

have a mutation or complete deficiency in their laminin α2 gene, resulting in a 

lack of laminin-2 (α2 β1 γ1) expression (Nakagawa et al., 2001; Xu et al., 1994).  

However, in the laminin α2 mutant mice, laminin-1 and laminin-8 are up-

regulated, which can partially compensate for the loss of laminin-2 (Pagenstecher 

et al., 1998; Patton et al., 1997; Previtali et al., 2003; Yang et al., 2005).  Since 

laminin-8, laminin-1, and laminin-2 all contain the γ1 chain, compensation in the 

laminin γ1-depleted mice is not possible and results in a more severe phenotype.  

Consistent with this observation, combined deficiency of laminin 2/8 (dy2J/α4null 

mice) caused more severe defects than those in dystrophic mice (Yang et al., 

2005), and the severity is similar to the mutant mice presented here.  Yang et al. 

also provided evidence that laminins are important for SC proliferation.  As with 
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dy2J/α4null and Lnα2/α4-DKO mice, the mutant mice discussed herein also show 

severe defects in SC proliferation (Fig. 13). 

 

4.5 Laminin receptors in SC development 

SCs express several potential laminin receptors, including α6β1, α6β4 integrins, 

and dystroglycan (Previtali et al., 2003). α6β1 integrins is thought to be the major 

laminin receptor in SCs.  The β1 integrin-null SCs can ensheath axons prenatally 

and myelinate axons after birth with some delay (Feltri et al., 2002), which is in 

contrast to laminin γ1-null SCs that do not exhibit these processes.  The 

postnatal myelination difference may be due to compensation of β1 integrin by 

another laminin receptor, for example α6β4 or dystroglycan, both of which are 

expressed in postnatal SCs (Previtali et al., 2003).  The prenatal ensheathment 

difference is more difficult to explain, since only α6β1 integrin is observed before 

birth (Previtali et al., 2003).  This observation suggests that an unidentified 

laminin receptor expressed in embryonic SCs is involved during the 

ensheathment of axons. 

In contrast to β1 integrin-deficient SCs, SC-specific ablation of 

dystroglycan results in abnormal folding of myelin sheaths and a reduction of 

sodium channels at the nodes of Ranvier, but it does not severely affect radial 

sorting of axons (Saito et al., 2003).  During PNS development, L-periaxin-null 

mice show abnormal folding of myelin sheaths and late-onset of demyelination 

similar to dystroglycan-null mice (Gillespie et al., 2000).  L-periaxin is required for 

the formation of the dystroglycan-dystrophin-related protein-2 (DG-DRP2) 
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complex and is involved in the linkage between the ECM and the SC 

cytoskeleton (Sherman et al., 2001).  Additionally, periaxin-null mice exhibit 

disruption of the Cajal bands, a cellular structure of SCs with a nutritive function, 

resulting in impaired SC elongation during nerve growth (Court et al., 2004).  Our 

findings that disruption of laminins in SCs causes impairment of axonal sorting 

(Fig. 8) as well as elongation of SCs (Fig. 23) suggest that laminins may employ 

distinct sets of receptors in different stages of myelination (Fig. 28).  During the 

initiation of myelination, the action of laminins in SCs is mediated by β1 integrin.  

The multimolecular complex formation of β1 integrin/FAK/paxllin/schwannomin 

upon the deposition of laminins then regulates Rac1/Cdc42 activities, which are 

required for the formation of lamellipodia and filopodia.  This multimolecular 

complex also coordinates with the NRG-1/ErbB signaling pathway to regulate SC 

proliferation.  Both podia formation and SC proliferation are required for radial 

sorting and ensheathment of axons during the initial stages of myelination.  At 

later stages of myelination, laminins may exert their functions by switching to 

another set of receptors, namely dystroglycan.  The formation of DG-DRP2-

periaxin complex coordinates the length of myelinating SCs with growing axons 

and maintains the stability of myelin sheaths.  A definitive assessment of this 

“dual-receptor” model requires further analyses which as follows: 1) The integrity 

of β1 integrin-containing or dytroglycan-containing multi-molecular complexes in 

SCs lacking laminins will be examined by co-immunoprecipitation and 

immunoblotting;   2) The activities of Rac1/Cdc42 will be assessed in SCs lacking 

laminins using Rac1/Cdc42 activation assay (Taylor and Shalloway, 1996);  3) 
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Two channel time-lapsed imaging will be performed in co-cultures that lack β1 

integrin or that are exposed to β1 integrin functional blocking antibodies.  The 

podia formation of SCs in these co-cultures will be analyzed;  4) Two channel 

time-lapsed imaging will be performed in co-cultures that lack dystroglycan or 

contain dystroglycan functional blocking antibodies (Ervasti and Campbell, 1993).  

The elongation rate of myelinating SCs in these co-cultures will be measured. 
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Figure 28.  Proposed mechanism for the function of laminins in PNS 
development.  
Laminin deposition enables Schwann cells to form processes that initiate axonal 
sorting and mediate axon-Schwann cell interaction.  Axon-Schwann cell 
interactions allow Schwann cells to be exposed to axon-derived signals for 
proliferation and further differentiation.  Schwann cell proliferation enables 
Schwann cells to establish a 1:1 relationship with an individual axon.  Both the 
process formation and proliferation of Schwann cells could be regulated through 
the formation of a multiple molecular complex between β1 integrins and erbB 
receptors.  β1 integrins expressed on Schwann cells interact with laminins to 
stabilize the cytoplasmic processes and facilitate the completion of the radial 
sorting of axons.  After completion of axonal sorting and the initial stage of 
ensheathment, laminins may regulate Schwann cell elongation and stabilize 
myelin sheaths through the formation of a dystroglycan/Drp2/periaxin complex.  
Laminins in Schwann cell basal lamina also provide a long-term survival signal 
mediated by PI 3-kinase/Akt activities to maintain Schwann cell viability.  
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4.6 Differentiation of non-myelinating SCs in P0/Cre:fLAMγ1 mice 

Differentiation of non-myelinating SCs in mutant peripheral nerves was impaired 

(Fig. 26 and 27).  There are several possibilities as to how the disruption of 

laminins may influence the differentiation of nonmyelinating SCs.  First, the 

impaired radial sorting of axons impedes further differentiation of non-myelinating 

SCs.  Non-myelinating SCs appear late in the PNS, at approximately P15-20 

(Arroyo et al., 1998; Berti et al., 2006), and they can only ensheath a definite 

number of small caliber axons (5~30 axons) (Friede and Samorajski, 1968).  

Development of myelinating SCs precedes nonmyelinating SCs, and 

nonmyelinating SCs enwrap multiple small caliber axons only after the 

myelinating SCs reach a 1:1 ratio with individual large axons (Eccleston et al., 

1987).  The impaired radial sorting of axons may inhibit the “sorting out” of small 

caliber axons or the “presorting” of larger bundles to smaller bundles, and may 

therefore prevent the differentiation of nonmyelinating SCs.  This possibility can 

be addressed by using an inducible P0 promoter driving Cre expression (P0Cx-

CreERT2) (Leone et al., 2003) to specifically disrupt laminins in the PNS after 

radial sorting of axons is complete.  Second, the failure of SCs to be exposed to 

axon-derived signals inhibits non-myelinating SC differentiation.  The amount of 

NRG1 type III in axons determines the ensheathment fate of axons (Taveggia et 

al., 2005).  Low levels of NRG1 type III are required for nonmyelinating SCs to 

ensheath several small axons, whereas high levels of NRG1 type III are required 

for myelinating SCs to myelinate large axons.  Lack of provision of axon-derived 

NRG1 in laminin-deficient SCs (Fig. 14) may result in inappropriate differentiation 
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of both myelinating and nonmyelinating SCs (Figs. 8, 11, and 27).  This issue can 

be addressed by over-expressing NRG1 in mutant peripheral nerves using a 

transgenic mouse line, Tg(Thy1-Nrg1) (Michailov et al., 2004).  Third, laminins 

may mediate the clustering of L1 and N-CAM in the cell membrane during 

postnatal PNS development, which is an essential step for nonmyelinating SC 

differentiation.  The homophilic and heterophilic interactions of L1 and N-CAM 

between unmyelinated axons and nonmyelinating SCs are important for non-

myelinating SC differentiation (Haney et al., 1999; Martini and Schachner, 1986; 

Martini and Schachner, 1988).  L1 interacts with integrins through the sixth Ig 

domain (L1-6D), and mice lacking the L1-6D lose L1-integrin interactions and L1-

L1 homophilic adhesion (Itoh et al., 2005).  Disruption of laminins in SCs may 

destabilize the homophilic and heterophilic interaction of L1 and N-CAM and 

sequester these adhesion molecules from the cell membrane (Fig. 27).  To 

address this possibility, the integrity of the L1-integrin interaction can be 

assessed in SCs lacking laminins using co-immunoprecipitaion.  The clustering 

of L1 and N-CAM in the SC membrane can be determined by comparing the 

fraction of membrane-bound L1/N-CAM with the intracellular fraction of L1/N-

CAM using extracts from mutant nerves after in vivo biotinylation of L1/N-CAM 

(Roesli et al., 2006). 
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4.7 Laminins and their signaling components in human hereditary 

peripheral neuropathies 

Mutations in laminin α2 cause Merosin Deficient Congenital Muscular Dystrophy 

in humans (Helbling-Leclerc et al., 1995) (CMD1A), which is the most common 

type of congenital muscular dystrophy.  These mutations result in deficient or 

non-functional laminin 2.  In CMD1A patients, both muscle and peripheral nerves 

are affected, and the phenotypes are a combination of nerve and muscular 

pathology.  Muscle-specific expression of a human α2 laminin transgene in 

laminin α2-deficient (dystrophic) mice greatly improves muscle pathology.  

However, these animals still exhibit progressive hind limb paralysis, which may 

be due to the uncured peripheral nerve hypomyelination (Kuang et al., 1998). 

This suggests that deficiency of laminins contribute an important role to the 

pathogenesis of the PNS in this disease.  In addition to CMD1A, mutations of 

laminin signaling components also contribute to the pathogenesis of other 

heritable peripheral neuropathies such as Charcot-Marie-Tooth 4F (mutations in 

periaxin gene) and neurofibromatosis (mutation in NF2/schwannomin gene) 

(Feltri and Wrabetz, 2005).  Studies from mice and co-cultures lacking laminins in 

SCs provide extensive evidence that laminins play multiple essential roles during 

the various aspects of PNS development, including proliferation, survival, and 

differentiation of SCs.  A better understanding of the mechanisms of how 

laminins affect PNS development and myelination could provide insight into 

these peripheral neuropathies and suggest new approaches to their therapies. 
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