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HAPLOTYPE-BASED ASSOCIATION STUDIES: 
APPROACHES TO CURRENT CHALLENGES 

 
Mark Levenstien, Ph.D. 

The Rockefeller University 2007 

 

 Haplotype-based association studies have greatly aided researchers in their 

attempts to map genes.  However, current designs of haplotype-based association studies 

lead to several challenges from a statistical perspective.  To reduce the number of 

variants, some researchers have employed hierarchical clustering.  This thesis starts by 

addressing the multiple testing problem that results from applying a hierarchical 

clustering procedure to haplotypes and then performing a statistical test for association at 

each of the steps in the resulting hierarchy.  Applying our method to a haplotype case-

control dataset, we find a global p-value.  Relative to the minimum p-value over all steps 

in the hierarchy, the global p-value is markedly inflated.  The second challenge involves 

the inherent errors present when prediction programs are employed to assign haplotype 

pairs for each individual in a haplotype-based association study.  We examined the effect 

of these misclassification errors on the false positive rate and power for two association 

tests—the standard likelihood ratio test (LRTstd) and a likelihood ratio test that allows for 

the misclassification inherent in the haplotype inference procedure (LRTae).  Our 

simulations indicate that 1) for each statistic permutation methods maintain the correct 

type I error; 2) specific multilocus genotypes that are misclassified as the incorrect 

haplotype pair are consistently misclassified throughout each entire dataset; and 3) a 

significant power gain exists for the LRTae over the LRTstd for a subset of the parameter 

settings.  The LRTae showed the greatest benefit over the LRTstd when the cost of 

 



phenotyping was very high relative to the cost of genotyping.  This situation is likely to 

occur in a replication study as opposed to a whole genome association study.  The third 

challenge addressed by this thesis involves the uncertainty regarding the exact 

distribution of the likelihood ratio test (LRT) statistic for haplotype-based association 

tests in which many of the haplotype frequency estimates are zero or very small.  By 

simulating datasets with known haplotype frequencies and comparing the empirical 

distribution with various theoretical distributions, we characterized the distribution of the 

LRT statistic as a χ2 distribution where the degrees of freedom are related to the number 

of the haplotypes with nonzero frequency estimates.  Awareness of the potential pitfalls 

and the strategies to address them will increase the effectiveness of haplotype-based  

association as a gene-mapping tool. 
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CHAPTER 1:  BACKGROUND 

 

1.1 A historical perspective of genetic mapping 

Over the past the twenty-five years, human gene mapping has developed into a 

highly effective tool for localizing mutations which lead to disease.  The startling rate of 

advancement in molecular biology has provided the field with genetic and physical maps 

of excellent quality while more efficient computational algorithms and more powerful 

computing systems have permitted researchers to analyze larger datasets containing a 

greater number of marker loci.   

A wide variety of statistical approaches and study designs has been employed in 

the effort to map human disease genes.  Although the statistical methodology had been 

developed (Morton 1955) and the algorithm refined (Elston and Stewart 1971) as well as 

incorporated into software (Ott 1974) much earlier, linkage studies experienced new 

levels of popularity and successfully mapped many disease genes starting in the 1980s 

(Gusella et al. 1983; Monaco and Kunkel 1988; Kerem et al. 1989).  Such studies proved 

to be successful for mapping Mendelian disorders—disorders whose genetic basis 

involves a single major gene.  These diseases show high penetrance (individuals 

possessing one or two copies of the mutant allele at the disease locus have a high 

probability of showing the disease phenotype) and tend to follow classical modes of 

inheritance.  Specifically, linkage analysis has been instrumental in localizing genes 

responsible for cystic fibrosis (Eiberg et al. 1985; Knowlton et al. 1985; Wainwright et al. 

1985; Schmiegelow et al. 1986; Kerem et al. 1989; Riordan et al. 1989), Duchenne 

muscular dystrophy (Monaco and Kunkel 1988), Huntington disease (Gusella et al. 
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1983), Charcot-Marie-Tooth disease (Ouvrier 1996), retinitis pigmentosa (Sullivan and 

Daiger 1996), certain forms of early-onset breast cancer (Hall et al. 1990), and certain 

forms of Alzheimer disease (Levy-Lahad and Bird 1996; Rademakers et al. 2005), among 

other Mendelian disorders.  Although linkage analysis has been shown to be an effective 

tool for Mendelian disorders, the linkage results provide wide candidate regions which 

require additional fine-mapping typically performed using linkage analysis (or 

association studies) with a denser marker map in the region where linkage was initially 

detected.  As part of a fine-mapping analysis to narrow a candidate region, researchers 

may reconstruct the haplotypes for the family and identify the largest section of the 

haplotype shared by the affected study individuals (Seri et al. 1999; Bolino et al. 2000; 

Lo Nigro et al. 2000; Paluru et al. 2003).  In this context, haplotype phasing is determined 

using the familial relationships and minimizing the number of recombination events. 

In addition to linkage analysis, other statistical methods have greatly aided in the 

mapping of human traits.  Association studies (case-control studies) aim to find a genetic 

variant that appears with the disease state more often than it should by chance alone.  

When a new mutation arises in a population, the alleles at nearby polymorphic sites on 

the mutated chromosome will be initially coupled with the mutant allele.  As the mutation 

is inherited by new generations, recombination events will eventually cause this coupling 

effect to decay.  However, a state of coupling or linkage disequilibrium (LD) may remain 

detectable if the disease and marker loci are in sufficient proximity to one another so that 

recombination events between the two loci are rare, and, consequently, the decay of the 

coupling effect is very slow (Ott 1999).  That is, a certain genetic variant may be 
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associated with the disease state such that the frequency of the genetic variant is higher in 

cases than in controls. 

Linkage and association differ fundamentally.  For linkage analysis, the specific 

genetic variants (alleles) serve as a means to examine the linkage properties of the region 

or estimate the amount of recombination between the marker and the disease.  In contrast, 

for association studies the genetic variants (alleles, genotypes, or haplotypes) themselves 

are the center of the test and may be directly responsible for the disease phenotype.  That 

is, the reason an association is detected between a genetic variant and a disease is that the 

variant itself causes the disease state (direct association) or is in high LD with a mutation 

that causes the disease state (indirect association) (Ott 1999; Cordell and Clayton 2005).   

The first major finding from genetic association studies occurred in the late 1960s 

and early 1970s when a number of researchers detected an association between a number 

of different diseases and the HLA (human leukocyte antigen) loci.  Perhaps the best 

known of these associations is that between ankylosing spondylitis and HLA-B27 

because of the large number of studies able to replicate the finding (Brewerton et al. 

1973; Schlosstein et al. 1973; Levitin et al. 1976; Brautbar et al. 1977; Contu et al. 1977).  

These discoveries generated increased interest in association studies.  However, because 

the LD required to detect association exists over a short distance from the marker locus, 

such association findings were rare until genetic maps with a higher density of markers 

were developed.  Since the regions over which LD can be detected do not extend as far as 

linkage peaks, association studies traditionally have been utilized in human genetics in 

order to fine map after an initial linkage analysis has implicated candidate genes for 

follow up studies.  A major disadvantage of association studies is that they are 

 3



susceptible to inflated false positive rates in the presence of population stratification or 

admixture (Simpson 1951; Li 1955; Gorroochurn et al. 2004; Heiman et al. 2004) since 

differences in allele (genetic variant) frequencies between cases and controls may only be 

the result of differences in ethnicity between the case and control populations rather than 

differences related to the disease state itself. 

As a way to protect against this situation, other methods such as the haplotype 

relative risk (HHR) test (Rubinstein et al. 1981; Falk and Rubinstein 1987; Thomson et 

al. 1989), the haplotype-based haplotype relative risk (HHRR) test (Terwilliger and Ott 

1992), and the Transmission Disequilibrium Test (TDT) (Spielman et al. 1993; Spielman 

and Ewens 1996; Ewens and Spielman 2005) applied family-based controls rather than 

population-based controls.  In particular, because of its ability to use the genetic 

information from multiple affected siblings, the TDT and other family-based association 

methods gained popularity and successfully aided in mapping genes for many diseases 

including psoriasis (Helms et al. 2003; Helms et al. 2005) and sitosterolemia (Lee et al. 

2001; Gordon et al. 2004).  Although the TDT solved the problem caused by working 

with admixed populations (excluding the situation involving extreme admixture 

(Lazzeroni and Lange 1998)), the test requires additional sample collection and increased 

costs to maintain the same power as association studies (Morton and Collins 1998).  In 

addition, the TDT has the undesirable property of an increased false positive rate in the 

presence of genotyping error (Mitchell et al. 2003) or absence of parental genotype data 

(Curtis and Sham 1995).  Simulation studies have shown that genotyping errors and 

missing parental genotypes interact to increase the false positive rate of the TDT (Barral 

et al. 2005). 
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Several factors have contributed to a rise in popularity of the case-control 

association studies despite the issues related to population stratification.  New methods 

have been developed which can account for population structure in case-control studies 

and, therefore, avoid the spurious associations between genes and disease that result from 

admixed populations.  These methods utilize additional genetic markers to correct for the 

stratification using one of two approaches—genomic control (GC) (Devlin and Roeder 

1999; Bacanu et al. 2000; Devlin et al. 2000; Devlin et al. 2001) and structured 

association (SA) (Pritchard et al. 2000a; Pritchard et al. 2000b; Pritchard and Donnelly 

2001; Kohler and Bickeboller 2006).  The GC approach assumes that the effects of 

population stratification should be equal across the entire genome.  From the test results 

of many polymorphisms at genomic regions unlikely to harbor a disease gene, the GC 

approach estimates the amount of “overdispersion” or inflatedness present in the statistic 

used to detect association.  This estimate is then used to correct the test statistic in regions 

under consideration for association.  Simulation studies have shown that under some 

circumstances GC methods may not completely eliminate the inflation in false positive 

rate due to population stratification and under other circumstances may significantly 

reduce power (Shmulewitz et al. 2004).  In contrast to GC, the SA approach uses many 

polymorphisms to classify individuals into subpopulations with high degrees of genetic 

similarity.  (The method proposed by Pritchard et al. allows for admixture in the sense 

that individuals may be classified as possessing the genetic ancestry of several different 

subpopulations.)  With subpopulations established, the next second step in the SA 

approach performs a test for association that conditions on the inferred subpopulation 

membership.   
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Besides the development of these defenses against the dangers of population 

stratification and the relative ease and cost-efficiency offered by case-control study 

designs, in the late 1990s new technological resources, including sequence data from the 

Human Genome Project, facilitated single nucleotide polymorphism (SNP) discovery 

efforts and high-throughput SNP genotyping (Collins et al. 1998).  Theoretical studies 

show genome-wide association mapping to be a very powerful strategy for localizing 

genes related to complex traits (Risch and Merikangas 1996; Risch 2000).  This potential 

for genome-wide association using SNP markers has prompted companies, such as 

Affymetrix Inc. and Illumina, Inc., to develop as well as manufacture gene arrays and 

platforms with the ability to provide genotypes for thousands of SNPs.  In addition, the 

work of the International HAPMAP Project, an organization dedicated to describing the 

patterns of human genetic variation by developing a map of the linkage disequilibrium in 

the human genome, provides a valuable resource for efficient SNP selection for custom 

chip studies (International HapMap Consortium 2003; International HapMap Consortium 

2005).  Furthermore, large-scale genome-wide association studies have already proven 

successful for identifying genes related to age-related macular degeneration and obesity 

(Klein et al. 2005; Herbert et al. 2006).  A final reason researchers are attracted to the 

case-control design is the plausibility that in the future large databases containing 

genome-wide information for controls will facilitate highly efficient case-control studies. 

As described briefly above, genetic association tests aim to detect an association 

between a genetic variant and the disease state.  Although traditionally the genetic variant 

under investigation has been an allele (Botstein and Risch 2003), a genotype, a single 

haplotype, or even a diplotype (haplotype pair) can be the focus of a case-control genetic 
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association test.  The alleles present at multiple genetic markers inherited from the same 

parent form a haplotype (Ott 1999).  Often haplotypes are comprised of alleles on the 

same chromosome (Brumfield et al. 2003).  Each of the forms (allelic, genotypic, 

haplotypic, and diplotypic) of association testing may have advantages under specific 

circumstances.  For instance, test statistics that utilize single allele frequencies (or single 

haplotype frequencies) may not be valid when the genotype frequencies (or diplotype 

frequencies) deviate from Hardy Weinberg Equilibrium (HWE) (Sasieni 1997).  

However, allelic (or haplotypic) tests of association generally are more powerful than 

their genotypic (or diplotypic) counterparts because these tests have fewer degrees of 

freedom (Agresti 1996). 

With the advent of the HAPMAP project (International HapMap Consortium 

2003; International HapMap Consortium 2005), the popularity of a relatively recently 

developed form of genetic association analysis, haplotype-based case-control genetic 

association studies, has grown markedly.  It has been suggested that association studies 

utilizing haplotypes formed from SNPs may be more powerful than single locus 

association (Martin et al. 2000; Akey et al. 2001; Fallin et al. 2001; Morris and Kaplan 

2002; Zaykin et al. 2002; Botstein and Risch 2003; Clark 2004; Clayton et al. 2004; De 

La Vega et al. 2005; Ellis et al. 2005) .  One reason haplotypes may provide a power 

advantage over single SNPs in association studies is that the combined effects of multiple 

sequence variants on promoter activity or protein structure (and/or function) may 

precipitate the disease phenotype (Devlin and Roeder 1999; Drysdale et al. 2000; Joosten 

et al. 2001).  A second reason stems from a mathematical finding.  It has been shown that 

case-control genetic association studies are most powerful when the genetic variant under 
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consideration possesses a frequency in the population identical to that of the disease 

mutation (Abel and Muller-Myhsok 1998; Tu and Whittemore 1999; Pfeiffer and Gail 

2003; Zondervan and Cardon 2004).  Therefore, if the frequency of a single haplotypic 

variant more closely matches the frequency of the disease mutation than the frequency of 

any allele at any of the marker loci comprising the haplotype, a haplotype-based 

association test should be more powerful than an allelic association test (Martin et al. 

2000; De La Vega et al. 2005).  However, haplotype-based association tests also present 

some disadvantages.  Techniques for directly observing haplotypes are expensive so more 

often haplotypes are inferred from multilocus genotypes using statistical methods.  Also, 

since haplotypes generally have a large number of genetic variants compared to 

genotypes or single alleles, haplotype-based association tests either possess more degrees 

of freedom or face a larger multiple testing problem than tests involving a single locus. 

 

1.2 Background for statistical tests 

Regardless of the genetic variant under investigation, several approaches can be 

taken to test for association.  One option relies on a 2 × s contingency table, where s is 

the total number of genetic variants, to record counts of the genetic information for cases 

and controls.  From the counts in the contingency table, a Pearson χ2 statistic, which 

compares the observed counts with those expected under the assumption of independence 

between case status and the genetic variant, can be computed (Pearson 1900; Agresti 

1996).   An alternative approach is to calculate the likelihood ratio test (LRT) statistic, 

which is twice the difference between the log-likelihood of the data under the assumption 

that an association exists (between case status and genetic variant) and the log-likelihood 
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of the data under the assumption that no association exists (Fisher 1922b; Fisher 1925; 

Edwards 1992).  When formulating the likelihood in terms of direct observations, such as 

genotypes, the multinomial distribution is used.  However, when formulating the 

likelihood in terms of a quantity with missing data, such as haplotypes, frequencies may 

be estimated from the Expectation-Maximization (EM) algorithm (Dempster et al. 1977) 

or other efficient methods and incorporated in the likelihood expression. 

Both the Pearson χ2 and the likelihood ratio approaches are examples of 

hypothesis testing involving two mutually exclusive hypotheses—the null hypothesis 

(H0) and the alternative hypothesis (H1).  The test evaluates the data available to 

determine whether sufficient evidence exists to reject the null hypothesis in favor of the 

alternative hypothesis.  For genetic association tests, the null hypothesis is that no 

association exists between the genetic variant and the disease state whereas the 

alternative hypothesis is that such an association does exist.  The general goal of a 

statistical test is to maximize power while controlling for type I error.  Power is the 

probability of a test yielding a positive result (i.e. rejecting the null hypothesis) when in 

fact the null hypothesis is false.  In other words, power represents a test’s ability to find 

true positives.  On the other hand, type I error (or the false positive rate) represents the 

probability that a test which rejects the null hypothesis will do so incorrectly.  Closely 

related to type I error, the statistical significance or p-value related to a test result 

represents the cumulative probability of achieving an equivalent or more extreme test 

result when H0 is true.  Prior to a single statistical test, type I error is set to a commonly 

accepted threshold (significance level) such as 0.05.  A test statistic with an associated p-

value less than this threshold results in rejecting H0 in favor of H1.  For example, if one 
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performs 100 tests on a population for which H0 is true using the 0.05 threshold for type I 

error, on average the results from five of the tests would lead to incorrectly rejecting H0. 

The statistical significance, or p-value, of a test result can be evaluated in several 

ways in the context of case-control association studies.  However, all approaches aim to 

determine the distribution of the test statistic under the null hypothesis and then use this 

distribution to compute the probability of achieving a test result (when the H0 is true) 

equivalent to or more extreme than the test result calculated from the data.  One approach 

relies on using a null distribution determined by classical statistics.  For instance, 

according to statistical theory under the null hypothesis of no association both the 

Pearson χ2 statistic and the LRT statistic follow a central χ2 distribution asymptotically 

for large sample sizes (Agresti 1996).  The number of degrees of freedom associated with 

the central χ2 distribution equals one less than the number of genetic variants present in 

the sample for the Pearson χ2 test and equals the difference between the number of free 

parameters estimated under H1 and H0 for the likelihood ratio test.  It has been shown that 

when Cochran’s rule is followed (more than five observations in each cell of the 

contingency table), this approach is reliable (Cochran 1952).  A second approach 

employs permutation testing to generate the distribution of the test statistic under the null 

hypothesis and to determine its statistical significance (Fisher 1935; Pitman 1937; Pitman 

1938).  In permutation testing, many null replicates of the original dataset are created by 

randomly reassigning case-control labels to the individuals in the study.  Then the test 

statistic is computed for each replicate dataset, and the distribution of these test statistics 

represents the distribution of the test statistic under the null hypothesis.  While this 

empirical approach provides extremely accurate p-values when a very large number of 
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permutations is used (regardless of the sample size), it is computationally intensive.  A 

third approach is Fisher’s exact test (Fisher 1922a) which employs the hypergeometric 

distribution to express the probability of contingency tables equivalent to and more 

extreme than the contingency table for the dataset.  Like the permutation approach, 

Fisher’s exact test produces accurate p-values even with extremely small sample sizes.  

However, large sample sizes or datasets associated with well-balanced tables can lead to 

difficulty in executing the test. 

Like computing statistical significance, there are multiple ways to determine the 

power of a test for genetic association.  In order to compute the power of a statistical test, 

one must know the distribution of the test statistic when the alternative hypothesis is true.  

In addition, the alternative hypothesis must be formulated in terms of parameters such 

that the power associated with given parameter values can be established.  Once the 

distribution is determined, one can compute the probability that a test statistic computed 

under H1 will be equivalent to or exceed the value of the test statistic associated with the 

type I error threshold.  One approach to finding this distribution relies on classical 

statistics.  For instance, according to statistical theory under the alternative hypothesis of 

association, both the Pearson χ2 statistic and the LRT statistic follow a noncentral χ2 

distribution asymptotically for large sample sizes (Mitra 1958; Hogg and Craig 1995; 

Agresti 1996).  This distribution is defined by two parameters—the degrees of freedom 

(df) and the noncentrality parameter (ncp).  While the degrees of freedom can be 

computed as described above in the discussion regarding statistical significance, the 

noncentrality parameter can be computed as a function of frequencies belonging to the 

genetic variants under investigation (in cases and controls separately), the number of 
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cases, and the number of controls (see http://linkage.rockefeller.edu/derek/pawe2.html) 

(Mitra 1958; Sham 1998; Gordon et al. 2002).  Once parameters defining the noncentral 

χ2 distribution are known explicitly, the power for a given significance level can be 

determined analytically.  Another approach for finding the distribution of the test statistic 

under the alternative hypothesis requires data simulation.  In this empirical approach, 

power is computed by generating thousands of datasets under a model where there is an 

association and finding the proportion of simulated datasets that produce a test statistic 

equivalent to or more extreme than the value of the test statistic associated with the type I 

error threshold.  For a very large number of generated datasets, simulation methods 

provide accurate power estimates; however, the cost of this accuracy is increased 

computational time. 

 

1.3 Multiple Testing 

Recall the example describing type I error in which 100 tests were performed on a 

population for which the null hypothesis is true using the 0.05 threshold for type I error.  

On average, the results from five of the tests would lead to incorrectly rejecting the null 

hypothesis.  A somewhat analogous situation arises when it is desirable to perform a 

family of tests on the same dataset.  This analogous situation complicates the 

interpretation of type I error.  When many tests are performed on the same dataset, each 

additional test provides another opportunity for a spurious positive result.  Consequently, 

the probability of at least one of the tests yielding a false positive result is higher than the 

type I error threshold employed for each individual test.  To protect against this 

phenomenon, classical comparison procedures strive to control the family-wise error rate 
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(FWER) or the probability of incorrectly rejecting any null hypothesis in a group of tests 

under simultaneous consideration. 

Several statistical methods have been developed to control the FWER.  These 

methods can be classified as single-step methods and stepwise methods (Westfall and 

Young 1993).  For single-step methods, such as the Bonferroni correction and the Šidák 

method (Šidák 1967), equivalent multiplicity adjustments are applied to the p-values for 

all tests, regardless of the ordering of the observed p-values.  Since the Bonferroni and 

Šidák methods assume that the tests are independent of one another, they can be 

conservative when this assumption is false.  In contrast, stepwise methods, such as step-

up and step-down procedures, permit different adjustments for different tests depending 

on the ordering of the observed p-values (Westfall and Young 1993).  In recent years, 

improved computing technology has facilitated the use of resampling methods, such as 

bootstrapping, Monte Carlo simulations, and permutation resampling.  Specifically, 

Westfall and Young have contributed several resampling methods for multiple testing 

(Westfall and Young 1993).  While these methods are attractive in that they often can 

effectively capture the correlation structure of the tests and allow for increased power, 

they may be computationally expensive. 

More recently, procedures have been developed which control the false discovery 

rate (FDR) rather than the FWER (Benjamini and Hochberg 1995).  Such procedures aim 

to ensure that on average the proportion of false positives among all positive results is 

within an acceptable limit.  Only for cases where the number of true null hypotheses 

equals the total number of hypotheses examined are the FDR and the FWER criteria 

equivalent.  Otherwise, as more null hypotheses are false, the FDR becomes smaller.  
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Thus, procedures that control the FDR often have greater power than classical multiple 

comparison procedures aimed at controlling the FWER (Benjamini and Hochberg 1995).  

These procedures seem promising and may prove to offer an advantage over the current 

practices. 

In the search for susceptibility genes for human disease, multiple testing has 

posed a formidable obstacle.  Over the last two decades, the discovery of new varieties of 

polymorphic genetic markers has aided the effort to localize disease genes.  With 

Restriction Fragment Polymorphisms (RFLPs), Variable Number of Tandem Repeat 

(VNTR) markers, microsatellite markers, and SNPs, researchers have millions of markers 

at their disposal and continue to discover more (Sachidanandam et al. 2001; Venter et al. 

2001).  As a result, researchers perform tests of linkage and association for large numbers 

of haplotypes, alleles, or genotypes at regular intervals across entire chromosomes or 

genomes (Risch and Merikangas 1996).  Although this comprehensive approach 

improves the likelihood of testing in an area of the genome where true linkage or linkage 

disequilibrium (LD) exists, it requires a multiplicity of testing—one test (or more) at each 

marker.  To control the false positive rate, appropriate genome-wide LOD score 

thresholds have been created for tests of linkage under both homogeneity and 

heterogeneity (Morton 1955; Terwilliger and Ott 1994; Lander and Kruglyak 1995; 

Huang and Vieland 2001).  In addition, to adjust for multiple testing for other tests, such 

as association tests, the Affected Sib Pair Test (ASP), and the Transmission 

Disequilibrium Test (TDT), researchers apply other forms of correction to p-values 

(Lander and Kruglyak 1995; Miller 1997).  Over the past few years, procedures which 

control the FDR have been applied to genetic mapping (Weller et al. 1998; Devlin et al. 

 14



2003; Sabatti et al. 2003) and the analysis of differential gene expression (Storey and 

Tibshirani 2001; Reiner et al. 2003; Yang et al. 2003).   In spite of the difficulties 

imposed by multiple comparisons, genome-wide testing has successfully localized many 

Mendelian disorders (Gusella et al. 1983; Kerem et al. 1989; Saunders et al. 1993).  

However, prominent medical conditions, such as diabetes, heart disease, schizophrenia, 

and bipolar disorder, appear not to follow Mendelian patterns of inheritance but rather 

involve interactions with the environment and/or other genes.  In these situations, 

adjusting for multiple testing severely compromises the power of the test since testing for 

main effects and interactions across the genome results in an unwieldy number of 

comparisons (Dupuis et al. 1995). 

 

1.4 Hierarchical Clustering 

In addition to the multiple testing issues mentioned above, other methods 

employed to organize genetic marker data also introduce a multiplicity of testing.  

Hierarchical (agglomerative) clustering is an information theoretical method that 

sequentially merges samples based on the pair-wise similarity of a given measurement to 

form common groups until all samples are contained in a single group (Hastie et al. 

2001).  The method has many applications and is widely used in the analysis of biological 

data.  For example, researchers testing for association between haplotypes and disease 

have employed hierarchical clustering as a means to reduce a large number of haplotypes 

to a manageable number of haplotype classes with the aim to increase statistical power 

(Hoehe et al. 2000).  With an increasing number of marker loci, the number of possible 

haplotypes grows exponentially so that many of these haplotypes tend to have low 
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frequency.  This situation is relatively common when examining haplotypes within 

candidate genes because of the availability of dense SNP marker maps, in which the 

spacing between markers often is less than one kilobase (Sachidanandam et al. 2001).  In 

comparisons of haplotype frequencies between case and control individuals, the 

corresponding contingency tables are therefore often sparse and difficult to interpret.  

Hierarchical clustering then allows researchers to merge haplotypes into classes that are 

easier to handle.  At each step within the hierarchy, either implicitly or explicitly, 

researchers tend to interpret results and eventually focus on that set of classes providing 

the most significant result.  Testing at each of the different clustering steps within a 

hierarchical structure also represents a form of multiple comparisons; therefore, the 

minimum p-value evaluated over many steps is too small to represent the experiment-

wise significance level. 

Many methods, including hierarchical clustering, can be applied to partition a 

dataset into subgroups whose elements share common characteristics.  Several methods 

of non-hierarchical clustering or partitional clustering exist.  Some common partitional 

methods include k-means clustering (MacQueen 1967), quality threshold (QT) clustering 

(Heyer et al. 1999), and fuzzy clustering (Dunn 1973).  In addition, hierarchical 

clustering has two varieties—1) agglomerative (bottom-up) clustering in which the 

groups are built up at each progressive stage of clustering so that each item starts in its 

own group and 2) divisive (top-down) clustering in which a single group exists initially 

and items are removed as clustering progresses.  Once a hierarchical clustering procedure 

constructs a dendrogram or tree diagram representing the grouping structure, the dataset 

can be divided into any number of groups by selecting the appropriate clustering stage or 
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level.  In order to construct the grouping structure, the procedures must define the 

distance between groups.  One option, single linkage, defines the distance between two 

groups as the minimum pair-wise distance between any item in the first group and any 

item in the second group whereas another option, complete linkage, finds distance as the 

maximum pair-wise distance between any item in the first group and any item in the 

second group.  A third option, average linkage, uses the average of all pair-wise distances 

between items in the two groups (Johnson 1967).  In addition, there are several metrics 

for determining pair-wise distance between individual items.  Common distance metrics 

include Euclidean distance, squared Euclidean distance, Manhattan distance, and the 

correlation coefficient. 

 

1.5 Estimation, inference, and haplotype-based association 

Methods which apply techniques, such as allele-specific long-range PCR and 

somatic cell hybrid construction, from molecular biology for explicit determination of 

phased haplotypes are available (Papadopoulos et al. 1995; Michalatos-Beloin et al. 

1996; Clark et al. 1998; Yan et al. 2000; Douglas et al. 2001; Patil et al. 2001; Burgtorf et 

al. 2003; Ding and Cantor 2003; Horan et al. 2003; Hoppe et al. 2004; Proudnikov et al. 

2004; Yu et al. 2004; Hoppe et al. 2006; Proudnikov et al. 2006).  However, because 

current molecular haplotyping methods are expensive and not amenable to automation, in 

practice phased haplotypes are rarely determined explicitly.  Instead, statistical methods 

for gene mapping estimate haplotype frequencies from multilocus genotype data and 

often provide haplotype assignments or calls for individuals (Clark 1990; Xie and Ott 

1993; Terwilliger and Ott 1994; Excoffier and Slatkin 1995; Hawley and Kidd 1995; 
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Long et al. 1995; Zhao et al. 2000; Stephens et al. 2001b; Zhao and Sham 2002; Stephens 

and Donnelly 2003).   Since the parental origins of the two alleles comprising any single 

genotype are not directly observed, constructing phased haplotypes from multilocus 

genotypes can be complicated.  Consider two SNP marker loci where A and a represent 

the alleles at the first locus while B and b represent the alleles at the second locus.  One 

can assign haplotype pairs unequivocally for all possible multilocus genotypes except for 

the double heterozygote AaBb.  For instance, the multilocus genotype AaBB, must derive 

from the haplotype pair AB and aB.  In contrast, the multilocus genotype AaBb either 

derives from the haplotype pair AB and ab or the haplotype pair Ab and aB.  Such 

ambiguous cases occur for any multilocus genotype possessing two or more loci with a 

heterozygote.  As with fine mapping in linkage studies, knowledge of the parental 

genotypes can greatly simplify the problem of phasing.  However, for case-control 

association studies, the sampling design involves unrelated individuals, and, 

consequently, parental genotypes are rarely collected.  Therefore, the procedure utilized 

to estimate haplotype frequencies treats each individual as an independent observation.   

Several methods have been developed to estimate haplotype frequencies for non-

familial study designs.  While the first method developed for haplotype estimation is 

based on the principle of maximum parsimony (Clark 1990; Wang and Xu 2003), 

methods that rely on the Expectation-Maximization (EM) algorithm (Dempster et al. 

1977) for a likelihood approach (Xie and Ott 1993; Excoffier and Slatkin 1995; Hawley 

and Kidd 1995; Long et al. 1995) or use a Bayesian approach applying a prior based on 

coalescence theory (Stephens et al. 2001b; Stephens and Donnelly 2003) or a Dirichlet 

prior (Niu et al. 2002) are more commonly used.  Although it is a relatively 
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straightforward method, Clark’s method has several disadvantages among which are its 

inability to provide unique solutions and its sensitivity to deviations from HWE (Niu et 

al. 2002; Niu 2004).  In contrast, the EM algorithm-based and Bayesian approaches have 

been shown to be relatively robust to such deviations (in spite of the fact that the EM 

algorithm-based approaches assume HWE) (Niu et al. 2002; Niu 2004).   Each of these 

approaches has been implemented in statistical software.  Specifically, the parsimony-

based methods are implemented in HAPINFERX and HAPAR (Wang and Xu 2003); the 

EM algorithm-based methods are implemented in SNPHAP (see Electronic Resource 

Information), HAPLO (Hawley and Kidd 1995), and PL-EM (Qin et al. 2002); and the 

Bayesian approaches are implemented in PHASE (Stephens et al. 2001b) (see Electronic 

Resource Information) and HAPLOTYPER (Niu et al. 2002). 

As with other procedures for statistical estimation, the accuracy of haplotype 

frequency estimates depends on several factors including “sample size, number of loci 

studied, allele frequencies, and locus-specific allelic departures from Hardy-Weinberg 

and linkage equilibrium” (Fallin and Schork 2000).  Furthermore, these factors also affect 

the accuracy of phased haplotype inference or phased haplotype calls (Niu 2004).  

Several researchers have investigated the accuracy of haplotype inference procedures by 

applying them to real and simulated data sets (Tishkoff et al. 2000; Clark et al. 2001; Xu 

et al. 2002; Stephens and Donnelly 2003; Adkins 2004; Kang et al. 2004; Niu 2004; Xu 

et al. 2004; Heid et al. 2005; Sabbagh and Darlu 2005; Zhang et al. 2005; Marchini et al. 

2006; Proudnikov et al. 2006).  In addition, Douglas et al. found molecular haplotyping 

provided large efficiency advantages over haplotype inference from multilocus genotypes 

under the condition of linkage equilibrium between marker loci (Douglas et al. 2001).   
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Using simulation studies, Schaid extended the work of Douglas et al. to conditions with 

linkage disequibrium between the markers.  The studies found that the advantage of 

molecular haplotyping over haplotype inference decreased with increasing LD (Schaid 

2002).   Similar studies have investigated the power advantage of molecular haplotyping 

over haplotype estimation techniques for genetic association studies (O'Hely and Slatkin 

2003; Thomas et al. 2004). 

As described earlier, multiple statistical methods, such as the Pearson χ2 test and 

the likelihood ratio test, are available to perform tests of case-control association.  

However, since the original observations (multilocus genotypes) lack phase information, 

the testing situation is a bit more complex.  This additional complexity results in issues 

unique to tests of haplotype-based association as compared with other genetic association 

tests.  In accord with the earlier description, the likelihood ratio test for haplotype-based 

association involves calculating the likelihood of the data in terms of the estimated 

haplotype frequencies (Xie and Ott 1993; Fallin et al. 2001).  However, some haplotypic 

variants may be estimated to have a small frequency despite the fact that none of the 

study participants comprising the sample possess them.  The effect of this situation on the 

distribution of the resulting test statistic under both null and alternative hypotheses 

remains unclear.  One still expects that the test statistic will follow a central χ2 

distribution under H0 and a noncentral χ2 distribution under H1.  However, the degrees of 

freedom associated with either χ2 distribution are no longer well defined.   

Also analogous to the earlier discussion, an alternative method for haplotype-

based association relies on the use of a contingency table containing the case-control 

counts for each inferred haplotype.  The counts in the contingency table can be 
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determined either by inferring phased haplotypes for each individual or by multiplying 

each haplotype frequency estimate by the total number of haplotypes in the study.  With 

data in the completed contingency table, either a Pearson χ2 test or a likelihood ratio test 

can be performed.  Many researchers find this second method with the contingency table 

appealing since it applies the same format as classic genotypic and allelic case-control 

studies and explicitly accounts for each phased haplotype.  As a result, many researchers 

employ this method in practice (Hoehe et al. 2000; Maksymowych et al. 2003; Xu et al. 

2004; Hindorff et al. 2006; Proudnikov et al. 2006).  In the event that all phased 

haplotypes have been called correctly, this method can provide additional power (Cox 

and Hinkley 1974; Little and Rubin 1987).   This situation is analogous to tests of 

association using allele estimates from individual genotypes as compared with allele 

frequency estimates from DNA-pooling data (Johnson et al. 2001). 

However, misclassifications can lower a study’s power and/or affect the false 

positive rate.  The act of calling haplotype pairs from multilocus genotypes in the phase 

ambiguous situation is similar to the act of dichotomizing continuous measures.  Royston 

et al. document a loss in power when dichotomizing continuous predictor variables in a 

regression analysis (Royston et al. 2006).  In the context of a haplotype-based association 

study utilizing the contingency table design, a misclassification results when the 

haplotype pair called for an individual is not the true underlying haplotype pair.  Non-

differential misclassification occurs when the misclassification rates are the same in cases 

and controls.  When non-differential misclassification exists, the test suffers a loss in 

power but the false positive rate remains unchanged (Mote and Anderson 1965; Gordon 

et al. 2002).  In contrast, differential misclassification inflates the test’s false positive rate 
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and may diminish its power (Clayton et al. 2005).  In addition to errors due to the 

statistical procedure, misclassification of the multilocus genotypes will lead to miscalling 

haplotype pairs.  In the absence of differential genotype misclassification, all haplotype 

misclassification should be non-differential when haplotype frequency distributions are 

the same in cases and controls, i.e. under the null hypothesis. 

This thesis addresses several of the challenges currently confronting investigators 

conducting haplotype-based association studies.  Chapter 2 examines the multiple testing 

problem that results from applying a hierarchical clustering procedure to haplotypes and 

then performing a statistical test for association at each of the steps in the resulting 

hierarchy.  The proposed approach to overcome this challenge is creating an experiment-

wise statistic of interest and finding its significance.  Chapter 3 explores the 

consequences of the errors present when haplotype prediction programs are employed to 

assign haplotype pairs for each individual in commonly used tests of haplotype-based 

association.  While there have been several studies aimed at evaluating the accuracy of 

haplotype inference and haplotype frequency estimation procedures (Fallin and Schork 

2000; Tishkoff et al. 2000; Clark et al. 2001; Xu et al. 2002; Stephens and Donnelly 

2003; Niu 2004; Xu et al. 2004; Sabbagh and Darlu 2005; Marchini et al. 2006), no 

systematic study has documented the effects of haplotype misclassification on the false 

positive rate and power.  In this chapter, we compare the performance of a test statistic 

that utilizes a double-sampling procedure to account for haplotype misclassification with 

the standard likelihood ratio test statistic.  Chapter 4 investigates the uncertainty 

regarding the exact distribution of the likelihood ratio statistic under the null hypothesis 

of no association for haplotype-based association tests in which many of the haplotype 
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frequency estimates are zero or very small.  In this chapter, we characterize the 

distribution of the LRT statistic by simulating null datasets with known haplotype 

frequencies and comparing the empirical distribution with various theoretical 

distributions.  Finally, chapter 5 draws some conclusions from these studies and discusses 

future directions for research related to haplotype-based association. 
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CHAPTER 2:  HIERARCHICAL CLUSTERING AND GLOBAL 

SIGNIFICANCE 

 

2.1 Introduction 

New techniques in the biological sciences, like high throughput genotyping, 

microarray chip assays, and an explosion of online databases, have created a wealth of 

information regarding biological systems.  The burgeoning discipline of bioinformatics 

illustrates the need for data organization and the development of statistically sound 

methods for analysis.  An increasingly common issue for a variety of applications in 

biology is the artificial inflation of statistical significance associated with multiple 

testing. 

With the increasing amount of data generated in molecular genetics laboratories, 

it is often difficult to make sense of results because of the vast number of different 

outcomes or variables studied.  Examples include haplotypes comprised of large numbers 

of loci and expression levels for large numbers of genes.  It is then natural to group 

observations into smaller numbers of classes that allow for an easier overview and 

interpretation of the data.  This grouping is often carried out in multiple steps with the aid 

of hierarchical cluster analysis, each step leading to a smaller number of classes by 

combining similar observations or classes.   

For example, researchers testing for association between haplotypes and disease 

have employed hierarchical clustering to reduce a large number of haplotypes to a 

manageable number of haplotype classes with the aim to increase statistical power 

(Hoehe et al. 2000).  With an increasing number of marker loci, the number of possible 
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haplotypes grows exponentially so that many of these haplotypes tend to have low 

frequency.  In comparisons of haplotype frequencies between case and control 

individuals, the corresponding contingency tables are often sparse and difficult to 

interpret.  Several strategies, such as pooling the rarest categories to form a single 

haplotype class (Sham and Curtis 1995; Schaid et al. 2002; Zhao et al. 2003) and using 

haplotype diversity criteria for SNP selection (Johnson et al. 2001; Jannot et al. 2004) 

(http://www-gene.cimr.cam.ac.uk/clayton/software/stata/htSNP/htsnp.pdf), have been 

suggested to reduce the number of classes. Unlike these alternatives, hierarchical 

clustering allows researchers to merge haplotypes, based on sequence similarities, into 

classes that are easier to handle.  Initially, each haplotype is considered to be its own 

class.  With each step in the clustering process, haplotype classes are merged based on 

the pair-wise similarity of the allele sequences comprising the haplotypes contained 

within each class until all samples are contained in a single haplotype class.  At each step 

in the resulting hierarchy, either implicitly or explicitly, researchers tend to interpret 

results and eventually focus on the set of classes providing the “best” (most significant) 

result.  While this approach makes sense, the overall statistical significance of the 

experiment must include the clustering process, which modifies the grouping structure of 

the data. 

Another example of hierarchical clustering is its application in microarray 

analyses (Eisen et al. 1998; Alon et al. 1999; Gasch et al. 2000).  Often clustering of 

arrays based on microarray expression data is utilized to distinguish tumor subclasses, 

which have clinical implications (Golub et al. 1999; Chung et al. 2002).  In many of these 

studies involving microarray expression data from tumor specimens, researchers are 
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interested in examining survival information for the subjects who contributed the samples 

and comparing the survival curves between groups formed by the hierarchical clustering 

procedure (Alizadeh et al. 2000; Bhattacharjee et al. 2001; Garber et al. 2001; Sorlie et al. 

2001; Guo et al. 2006; Perreard et al. 2006).  After performing cluster analysis on the 

expression data, researchers tend to concentrate their attention on the step in the resulting 

hierarchy with the most striking difference in survival between patient groups and 

evaluate this result without taking into account the grouping structure at the other steps.   

Here we propose an analysis method that properly takes the process of clustering 

into account.  We achieve this by defining the strongest result or, equivalently, the 

smallest p-value, occurring in the course of clustering as the statistic of interest and 

computing its associated (experiment-wise) empirical significance level.  The methods 

developed in this chapter will be applied to three previously published datasets in which 

hierarchical clustering has been employed.  One of these datasets involves a haplotype-

based association analysis while the other two datasets refer to survival analyses of 

groups of individuals determined by microarray expression measurements. 

The problem of testing group differences sequentially is in the framework of 

multiple testing.  Historically, both genetic association studies and microarray studies 

have been plagued with multiple testing problems.  In the case of association studies, 

multiple testing occurs because researchers perform tests of association for large numbers 

of haplotypes, alleles, or genotypes across entire chromosomes or genomes (Risch and 

Merikangas 1996).  In the case of microarray data analysis, researchers sequentially test 

thousands of genes for differential expression.  Testing at each of the different clustering 

steps within a hierarchical structure also represents a form of multiple comparisons; 
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therefore, the experiment-wise type I error is inflated.  Various correction methods such 

as Bonferroni, step-up, and step-down have been employed to adjust for the multiplicity 

of testing (Reiner et al. 2003).  These procedures appear to work well only when the tests 

in the sequence are independent or weakly correlated.  Since the tests within the 

hierarchy possess a nested structure, these procedures are inappropriate for our situation.  

As mentioned above, here we propose an alternative solution by defining a single test 

statistic, for which we evaluate the experiment-wise statistical significance. 

 

2.2 Methods 

Local p-values.  Consider multiple steps in hierarchical clustering.  For each of n 

steps of the hierarchy, we calculate our statistic of interest depending on the application.  

In the case of haplotype-based association tests, we compute the Pearson χ2 (Agresti 

1996) for a 2 × s contingency table (case/control individuals versus s haplotypes or 

haplotype classes) while, in the case of survival analyses, we compute the log-rank 

statistic (Kalbfleisch and Prentice 1980).  We represent these statistics as a 

vector,  where X),,...,,( 21 nXXXX =
r

i represents the statistic obtained at the ith step in the 

clustering process.  To make statistics from different applications comparable, we 

compute the empirical significance level, pi, associated with Xi and call this a local p-

value.   

We approximate these local empirical significance levels via permutation 

analysis.  These permutation methods involve randomly permuting labels for each 

individual as follows.  For haplotype-based association tests, we permute the case/control 

labels (Zhao et al. 2000; Zhao and Sham 2002) while for survival analyses, we permute 

 27



failure times and censorship statuses jointly.  For each permutation of the dataset, we 

cluster the permuted samples as illustrated by the dendrogram and calculate a null 

statistic based on the permuted samples at each step in order to generate the null 

distribution for the statistic.  We can represent the collection of null statistics calculated 

from each of m permutations of the data at each of n steps within the hierarchy as the 

matrix, 
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where the entry appearing in the ith row and the jth column, Xij, is the statistic of interest 

computed from the ith permutation of the data at the jth step in the hierarchy.  At each step 

of the hierarchy, by comparing the statistic we computed from the data with the null 

statistics we computed from the m permutations, we calculate a local p-value, pj, as the 

proportion of permutation samples with a null statistic at least as large as the observed 

statistic.  That is, the local p-value, pj, is the proportion of null statistics in the jth column 

of Xnull that are greater than or equal to the statistic, Xi, calculated from the data at the jth 

step in the hierarchy.  We represent the local p-values as the vector,  ).,...,,( 21 npppp =r

Permutation (randomization) samples allow one to conveniently approximate the 

sampling distribution of test statistics under the null hypothesis (the “null distribution”).  

Ideally, permutation tests are based on the total of all permutations but in practice we 

usually can only collect a random sample from these permutations.  The number m of 

permutation samples should be large enough to adequately represent the sample space of 

permutations.  For the haplotype data (example 1), at each step we compared 

approximated p-values obtained with different values of m to exact p-values calculated 
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using the statistical software package StatXact 5 (see Electronic Resource Information).  

For the first few steps in the hierarchy, values of m on the order of 10,000 were sufficient 

to provide p-values very close to the correct ones.  However, at later steps, agreement 

was only obtained with m = 100,000, presumably because at early steps the total number 

of permutations is much smaller than at later steps.  Table 2.1 displays the local p-values 

for example 1 computed both with our method using 100,000 permutation samples and 

with Pearson’s exact test as implemented in StatXact 5.  The calculations for the two 

survival analyses (examples 2 and 3) were also performed with m = 100,000. 
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Table 2.1  Comparison of local p-values computed using our method with p-values 

computed using exact tests 

Step  Local p-Value 95% C.I. Exact Test p-Value
0 0.5275 (0.5244, 0.5306) 0.5270 
1 0.4736 (0.4705, 0.4767) 0.4739 
2 0.4710 (0.4679, 0.4741) 0.4718 
3 0.3533 (0.3503, 0.3563) 0.3532 
4 0.3930 (0.3900, 0.3960) 0.3928 
5 0.2844 (0.2816, 0.2872) 0.2825 
6 0.2726 (0.2700, 0.2754) 0.2706 
7 0.2229 (0.2203, 0.2255) 0.2205 
8 0.1502 (0.1480, 0.1524) 0.1501 
9 0.1282 (0.1261, 0.1303) 0.1289 
10 0.1166 (0.1146, 0.1186) 0.1165 
11 0.0929 (0.0911, 0.0947) 0.0929 
12 0.0668 (0.0653, 0.0684) 0.0674 
13 0.0425 (0.0413, 0.0438) 0.0433 
14 0.0292 (0.0282, 0.0303) 0.0298 
15 0.1659 (0.1636, 0.1682) 0.1659 
16 0.2362 (0.2336, 0.2388) 0.2379 
17 0.1486 (0.1464, 0.1508) 0.1500 
18 0.1089 (0.1070, 0.1108) 0.1099 
19 0.0477 (0.0464, 0.0490) 0.0482 
20 0.0424 (0.0412, 0.0437) 0.0423 

 

Legend for Table 2.1: This table displays the local p-values computed for example 1 using both 

our method with 100,000 permutation samples and Pearson’s exact test as implemented in 

StatXact 5.  In addition, the table provides the 95% confidence interval for the p-value estimates 

computed by our method.  The zeroth step refers to the data before any clustering is performed.  

For the test at the zeroth step, the Monte Carlo method (500,000 tables sampled) in StatXact 5 

was employed to find the p-value since the problem was too large for the exact test. 

 

Global p-value.  In order to gain an empirical significance assessment for the 

entire experiment, we define a single statistic, that is, the smallest of the local p-

values,  (Hoh et al. 2001).  To assess the empirical significance level (global p-)(min ii p
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value), pmin, associated with this statistic we generate the null distribution 

of from the matrix of null statistics, X)(min ii p null.  In this matrix, we consider each row 

(replicate dataset) in turn as observed data and evaluate these data based on the remaining 

m – 1 null data as described above for m null data.  That is, for each of these “null 

observed” permutation samples a minimum p-value is obtained at whatever step it occurs.  

This leads to a set of m null values for .  The proportion of these values at least 

as small as the observed represents the global significance level, p

)(min ii p

)(min ii p min, associated 

with our single experiment-wise statistic.  Since this approach requires that the p-values 

be ordered, starting with the most significant, it could be considered a step-down p-value 

adjustment procedure similar to the procedure developed by Westfall and Young 

(Westfall and Young 1993).  If pmin ≤ 0.05 then we say that the experiment (at least one 

of the steps in the clustering process) is significant at the 5% level.   

It is also of interest to compare the global p-value with the significance level, p0, 

of the association or log-rank statistic before clustering since clustering is only beneficial 

when pmin < p0.  It may well happen that the smallest p-value, , at one of the 

steps in the course of clustering is smaller than p

)(min ii p

0 but the clustering process is such that 

this smallest p-value has a high probability of occurring by chance.  In that case, one will 

find that pmin > p0.  For example, observing a minimum p-value smaller than 0.05 and 

interpreting it as significant is fallacious when this small p-value is easily obtained with 

probability pmin > 0.05. 

 

Statistics of interest. As mentioned above, in the case of association studies 

between haplotypes and disease we employ the Pearson χ2 to test each step of the 
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hierarchy for association (Agresti 1996).  However, in the case of survival analyses, our 

statistic of interest is the log-rank statistic (Kalbfleisch and Prentice 1980).  It provides an 

overall comparison of the Kaplan-Meier survival curves for two or more groups of 

subjects.  For r groups, the log-rank statistic asymptotically follows a central χ2 

distribution with r – 1 degrees of freedom under the null hypothesis of equality of 

survival curves. 

 

Validation of the algorithm.  In order to validate this method, we analyzed 

several datasets with a strategy nearly identical to the one described above.  The only 

difference was that this second strategy relies on the theoretical χ2 distribution to 

determine the local p-values.  Since the use of the theoretical χ2 distribution for finding 

statistical significance is valid only for non-sparse datasets, we analyzed several non-

sparse datasets with both procedures and compared the results. 

In addition, we validated our method using an analytical approach.  Suppose we 

have n steps in the hierarchy formed by clustering, and a test is performed at each step.  

Then under the null hypothesis, local p-values at all steps of clustering are standard 

uniform random variables.  We can express the global p-value as  

( ) ( ){ }obs
ii

null
ii pp minminPr ≤     (2.1) 

or the probability that value for the minimum of the local p-values from data under the 

null hypothesis, , is less than or equal to the value of the minimum of the 

local p-values from the observed data, min .  Applying a basic axiom of 

probability involving complementary events (Ross 2002), we can alter expression (2.1) to 

become the expression, 

null
ii p )(min

obs
ii p )(
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{ }obs
iin

obs
ii

obs
ii pppppp )(min,,)(min,)(minPr1 21 >>>− K .  (2.2) 

Under the assumption of independence, this expression simplifies to the Bonferroni 

correction.  However, since the tests are correlated due to the nested structure of the 

hierarchy, we must pursue an alternate approach.  We would like to use the correlation 

structure between steps to determine this joint probability.  Although the multivariate 

uniform distribution from which the null local p-values are derived does not have a one to 

one correspondence between the correlation structure and the probability density function 

(pdf), the multivariate normal distribution does have this property.  We apply the inverse 

normal cumulative density function (cdf) to transform the null local p-values from 

standard uniform random variables to a multivariate normal distribution with variance-

covariance matrix, V, and mean vector, u .  We uniquely define the multivariate normal 

distribution by setting u  to be a vector composed entirely of 0 values and using the 

transformed local p-values to estimate V.  Thus, after the transformation of variables, we 

can rewrite expression (2.2) as 

( ) ( ) ( ){ }obs
iin

obs
ii

obs
ii pYpYpY )(min,,)(min,)(minPr1 11

2
1

1
−−− Φ>Φ>Φ>− K ,       (2.3) 

where each Yi is the transformed null local p-value at the ith step and Φ  is the inverse 

standard normal cdf.  Because of symmetry, the expression becomes  

1−

( ) ( ) ( ){ }obs
iin

obs
ii

obs
ii pYpYpY )(min,,)(min,)(minPr1 11

2
1

1
−−− Φ−<−Φ−<−Φ−<−− K .(2.4)

Since -Yi also follows a multivariate normal distribution with V and u , the quantity can 

be expressed as a function of the cdf of this multivariate normal distribution as in 

expression (2.5). 

( ) ( ) ( )[ ]obs
ii

obs
ii

obs
ii ppp )(min,,)(min,)(mincdf1 111 −−− Φ−Φ−Φ−− K            (2.5) 
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With this analytical approach, we examined two datasets—one consisting of two 

steps as a result of clustering (calibration) and another consisting of nine steps as a result 

of clustering (analysis).  Table 2.2 and Table 2.3 display the contingency tables at each 

step of clustering for the two-step and nine-step datasets, respectively.  For both datasets, 

we used Mathematica v.4.2 to compute the cdf in expression (2.5).  In our estimate of V, 

the diagonal elements were rounded to the value 1.  For the two-step dataset, we found an 

explicit value for the global p-value using the analytical method.  For the nine-step 

dataset, we were unable to analytically determine an explicit value for the global p-value 

due to limitations of software.  Instead, we established an upper and a lower bound by 

applying the analytical approach twice—once using the minimum pair-wise covariance 

estimate for all off-diagonal elements of V and a second time using the maximum pair-

wise estimate for all off-diagonal elements of V.  Thus, the first calculation, assuming the 

minimum correlation structure, provides a lower bound while the second calculation, 

assuming the maximum correlation structure, provides an upper bound.  We compared 

the results applying the analytical approach with those from our original algorithm for 

determining pmin.  For the validation, we used 10,000 permutation datasets. 
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Table 2.2  Contingency tables for two-step dataset used for method validation 

Step Group Number of 
Cases 

Number of 
Controls 

Group 1 32 18 
Group 2 24 16 0 
Group 3 20 30 
Group 1 56 34 1 
Group 2 20 30 

 

Legend for Table 2.2: This collection of contingency tables displays the case-control counts for 

the haplotype classes present at each of the two steps of clustering for a dataset used to validate 

the method employed to find the global p-value.  The zeroth step refers to the data before any 

clustering is performed. 
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Table 2.3  Contingency tables for nine-step dataset used for method validation 

Step Group Number 
of Cases 

Number of 
Controls  Step Group Number of 

Cases 
Number of 
Controls 

Group 1 10 10 Group 1 10 10 
Group 2 7 8 Group 2 7 8 
Group 3 11 14 Group 3 11 14 
Group 4 6 9 Group 4 6 9 
Group 5 12 13 Group 5 18 22 
Group 6 6 9 Group 6 25 20 
Group 7 17 13 

3 

Group 7 23 17 
Group 8 8 7 Group 1 10 10 
Group 9 11 9 Group 2 7 8 

0 

Group 10 12 8 Group 3 17 23 
Group 1 10 10 Group 4 18 22 
Group 2 7 8 Group 5 25 20 
Group 3 11 14 

4 

Group 6 23 17 
Group 4 6 9 Group 1 17 18 
Group 5 12 13 Group 2 17 23 
Group 6 6 9 Group 3 18 22 
Group 7 17 13 Group 4 25 20 
Group 8 8 7 

5 

Group 5 23 17 

1 

Group 9 23 17 Group 1 17 18 
Group 1 10 10 Group 2 17 23 
Group 2 7 8 Group 3 18 22 
Group 3 11 14 

6 

Group 4 48 37 
Group 4 6 9 Group 1 17 18 
Group 5 12 13 Group 2 35 45 
Group 6 6 9 

7 
Group 3 48 37 

Group 7 25 20 Group 1 52 63 

2 

Group 8 23 17  
8 

Group 2 48 37 
 

Legend for Table 2.3: This collection of contingency tables displays case-control counts for the 

haplotype classes present at each of the nine steps of clustering for a dataset used to validate the 

method employed to find the global p-value.  The zeroth step refers to the data before any 

clustering is performed. 

 

2.3 Results 

To demonstrate our approach on real data, we reanalyze the following three 

previously published datasets. 
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Example 1 (haplotype data).  The first dataset consists of 52 statistically 

predicted haplotypes in 172 African-American study participants (137 case and 35 

control individuals) (Hoehe et al. 2000).  The aim of that case-control study was to test 

for association between haplotypes at 25 single-nucleotide polymorphism (SNP) loci in 

the human µ opioid receptor gene (OPRM1) and substance dependence.  The large 

number of haplotypes was difficult to interpret and appeared to create a situation with 

insufficient power to detect association.  Thus, hierarchical clustering was applied to the 

52 haplotypes.  These were sequentially grouped according to the procedure CLUSTER 

(method = BAVERAGE, measure = SEUCLID) from the SPSS software package for 

Windows (Hoehe et al. 2000).  For each step of the resulting dendrogram shown by 

Figure 2.1, the hierarchical clustering procedure designates which haplotypes are 

clustered to form haplotype classes.  At each step of the hierarchy an association test was 

performed between haplotype classes and disease status.  As the clustering progressed, 

the number of classes became smaller and smaller. 

Using the same clustering methods and resulting hierarchical structure, we apply 

our algorithm for assessing local and global p-values in this dataset.  Our p-values differ 

somewhat from the ones previously published (Hoehe et al. 2000) but the patterns of the 

local p-values across the clustering steps shown in Figure 2.2 and in the publication by 

Hoehe et al. (Hoehe et al. 2000), respectively, are highly comparable.  Based on 

m = 100,000 permutation samples (see section 2.2), we calculate local p-values for 

hierarchical clustering steps zero through 20, where zero represents the step with un-

clustered haplotypes and 20 represents the step where only two haplotype groups remain.  

We find the smallest p-value, = 0.0292, at step 14 (Figure 2.2).  Thus, one is )(min ii p
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tempted to declare this result borderline significant at the 5% level.  However, the 

(global) significance level associated with this smallest p-value turns out to be 

pmin = 0.1328, that is, there is more than a 13% random chance (unrelated to association 

between haplotypes and disease) to find at any step in the hierarchy a minimum p-value 

at least as small as the value of 0.0292 found for the observed data.  This result leaves the 

experiment statistically non-significant.  Since clustering produced an experiment-wise 

significance level of pmin less than the initial pre-clustering significance level of 

p0 = 0.5275, the clustering process did provide a benefit for this dataset (even though the 

results from clustering were not statistically significant). 

 

Figure 2.1  Dendrogram created by clustering data from Hoehe et al. (Hoehe et al. 2000) 

 

Legend for Figure 2.1:  This schematized dendrogram reflects the process of clustering case-

control observations based on the similarity of haplotype data as measured by the squared 

Euclidean distance.  Distances between haplotype classes are approximated (not to scale) by the 

vertical axis.  Along the bottom of the dendrogram are the identification numbers for the inferred 

haplotypes as described by Hoehe et al. (Hoehe et al. 2000). 
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Figure 2.2  Results from haplotype-based association tests applied to all steps of the 

hierarchical structure formed by clustering data from Hoehe et al. (Hoehe et al. 2000) 
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Legend for Figure 2.2:  This bar graph presents the local p-values we computed at all steps with 

hierarchical structure. 

 

Example 2 (lung cancer data).  This dataset contains expression levels for 835 

unique genes represented by 918 cDNA clones in tissues harvested from lung cancer 

patients and normal individuals (Garber et al. 2001).  Specifically, expression levels are 

measured in 41 adenocarcinomas (ACs), 16 squamous cell carcinomas (SCCs), five large 

cell lung cancers (LCLCs), five small cell lung cancers (SCLCs), five normal lung 
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samples, and one normal fetal lung sample.  Based on the Complete Linkage method and 

Pearson’s correlation coefficient as a measure of similarity in the CLUSTER software, 

hierarchical cluster analysis was performed to group the samples according to the degree 

of similarity present in the gene expression data.  In the resulting dendrogram, the AC 

samples appeared in three distinct clusters.  The aim of the study was to examine whether 

the groups of AC samples created by the hierarchical clustering procedure correlated with 

clinical outcomes of the AC patients, that is, whether the Kaplan-Meier survival curves 

differed for these groups (Garber et al. 2001). 

Again, using the same clustering methodology as in the publication (Garber et al. 

2001), we apply this technique to their AC data  and work with the resulting hierarchical 

structure for assessing the local and global p-values.  The dendrogram in Figure 2.3 

details the hierarchical clustering of the data (for the 24 AC samples from patients with 

reported survival information) for steps zero through 22.  For each step in the hierarchy 

we calculate a log-rank statistic and the corresponding local p-value (m = 100,000 

permutation samples).  Figure 2.4 graphically presents these local p-values.  We exclude 

the first two clustering steps (0 and 1) from the figure and further assessments because 

insufficient variability in the log-rank statistic at these steps does not permit meaningful 

calculation of local p-values.  (At the zeroth step of clustering, each patient from the 

survival analysis is in his/her own group.)  At step 22, we observe the minimum local 

p-value of 0.0002, and we calculate the global p-value for this dataset to be 0.0027.  

Thus, the experiment shows a statistically significant result, and clustering was effective.  

It reduced the initial p-value of 0.0306 at step 2 to the global significance level of 

pmin = 0.0027. 
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Figure 2.3  Dendrogram created by clustering data from Garber et al. (Garber et al. 2001) 

 
Legend for Figure 2.3:  This schematized dendrogram reflects the process of clustering 

microarray samples according to the similarity of their gene expression profiles as measured by 

the Pearson correlation coefficient.  Distances between array sample clusters are approximated 

(not to scale) by the vertical axis.  Along the bottom of the dendrogram are the microarray tissue 

samples from individuals for which survival data was available (Garber et al. 2001).  
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Figure 2.4  Results from log-rank tests applied to steps of the hierarchical structure 

formed by clustering data from Garber et al. (Garber et al. 2001) 
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Legend for Figure 2.4:  This bar graph displays the local p-values we computed at each step 

within the structure created by hierarchical clustering. 

 

Example 3 (lymphoma data).  The third dataset contains expression levels of 

cDNA clones from genes expressed in germinal center B-cells for 47 samples of diffuse 

large B-cell lymphoma (DLBCL) (Alizadeh et al. 2000).  Hierarchical clustering was 

performed with the CLUSTER program and the Pearson correlation coefficient as its 

similarity measure to group the samples by similarity of gene expression levels for all 

genes expressed in germinal center B-cells.  The resulting dendrogram shows two main 
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branches, one containing samples with expression patterns similar to those of germinal 

center B-cells and one containing samples with expression patterns similar to those of 

activated B-cells.  To examine the clinical relevance of this subdivision of DLBCL, a 

Kaplan-Meier survival analysis for the two groups of patients was performed based on 

the dendrogram’s penultimate clustering step (Alizadeh et al. 2000). 

As with the other datasets, we cluster the data with the same method as published 

(Alizadeh et al. 2000) and use the resulting hierarchical structure for calculations of log-

rank statistics and associated local p-values (m = 100,000 permutation samples) at 

different steps in the hierarchy.  The dendrogram in Figure 2.5 provides the order of 

clustering (for the 40 DLBCL samples from patients with reported survival information) 

for steps zero through 39 while Figure 2.6 graphically presents local p-values at the 

different clustering steps.  As in Example 2, we observe a very small variance in the log-

rank statistic at the first two clustering steps and, therefore, exclude these steps from 

further analysis.  At step 6, we observe the minimum local p-value of 0.0011, with an 

associated global p-value of pmin = 0.0167.  This result is statistically significant at the 5% 

level, and clustering has contributed to an increase in significance because un-clustered 

or only minimally clustered data show much lower significance (higher p-value). 
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Figure 2.5  Dendrogram created by clustering data from Alizadeh et al. (Alizadeh et al. 

2000) 

 

Legend for Figure 2.5:  This schematized dendrogram reflects the process of clustering 

microarray samples according to the similarity of their gene expression profiles as measured by 

the Pearson correlation coefficient.  Distances between array sample clusters are approximated 

(not to scale) by the vertical axis.  Along the bottom of the dendrogram are the microarray tissue 

samples from individuals for which survival data was available (Alizadeh et al. 2000). 
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Figure 2.6  Results from log-rank tests applied to steps of the hierarchical structure 

formed by clustering data from Alizadeh et al. (Alizadeh et al. 2000) 
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Legend for Figure 2.6:  This bar graph displays the local p-values we computed at each step 

within the structure created by hierarchical clustering. 

 

Validation of the algorithm.  We found agreement between our original 

algorithm for determining pmin and the global p-value determined with the analytical 

approach (see section 2.2).  Applying the analytical approach for the two-step dataset (see 

Table 2.2) resulted in a global p-value of 0.026 while our original algorithm computed 

pmin to be 0.023.  The 95% confidence interval for this estimate is [0.020, 0.026].  For the 

nine-step dataset (see Table 2.3), the analytical approach produced lower and upper 

 45



bounds for pmin of 0.248 and 0.657, respectively.  Our original algorithm computed pmin to 

be 0.371.  A set of naïve bounds can also be created.  By assuming perfect pair-wise 

correlation between tests, one finds the lower bound to be the minimum p-value, which 

for the nine-step dataset was 0.149.  In contrast, by assuming the tests at each step to be 

independent of one another, one finds the upper bound to be the Bonferroni corrected p-

value, which for the nine-step dataset was 1.0.  Thus, the bounds established by using the 

multivariate normal distribution were a substantial improvement over the naïve bounds. 

 

2.4 Discussion 

In hierarchical clustering, evaluating the minimum local p-value in isolation, 

outside of the context of the larger hierarchical structure used to create the data, can 

drastically affect the interpretation of test results.  For example, even though the 

haplotype data show an apparently significant result with a minimum p-value of 0.0292, 

our analysis demonstrates that clustering the same data, but without association between 

haplotypes and disease, has a high chance of obtaining such a “significant” result.  In 

fact, that chance is pmin = 0.1328, which represents the actual significance level of the 

experiment.  On the other hand, as examples 2 and 3 show, clustering can improve the 

significance of a result and provide a result that is statistically significant. 

How can we explain that in some cases clustering is beneficial while in other 

cases it is not?  Presumably, some datasets possess an underlying heterogeneity; that is, 

such datasets are composed of samples from multiple distinct populations.  If the 

information used for clustering (haplotypes for example 1 and gene expression patterns 

for examples 2 and 3) is related to the information used to perform the statistical test (in 
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our examples, proportions of cases to controls and survival times), hierarchical clustering 

will detect the heterogeneity.  Otherwise, the clustering process is random and any 

heterogeneity detected is artificial.  Our approach allows one to distinguish between these 

two situations.  If the clustering process is random because the information used for 

clustering and test statistic are unrelated (or because the dataset is homogeneous), a large 

pmin will result indicating that any small local p-values probably occurred only by chance.  

In contrast, if the clustering process is directed by a measurement strongly related to the 

test statistic, a small pmin will result indicating that any heterogeneity found within the 

hierarchy is most likely real. 

Often when hierarchical clustering is applied to a dataset, it is of interest to 

determine the true number of classes present.  This situation commonly arises in the 

analysis of microarray data.  For instance, as in examples 2 and 3, in the study of human 

cancers, researchers often utilize microarray expression data to cluster samples.  From the 

hierarchical structure created by clustering, it may be of interest to distinguish the 

optimum number of tumor subclasses that are most clinically relevant.  Several statistics-

based methods have been utilized to estimate the true number of groups from such 

microarray expression datasets (Horimoto and Toh 2001; Dudoit and Fridlyand 2002).  

However, such methods rely solely on the expression data itself.  Alternatively, it may 

prove practical in such microarray expression studies to consider additional information 

available, such as survival data, for each sample to distinguish clinically relevant 

subclasses.  Employing our procedure of calculating the local p-values for a test statistic 

at multiple steps within the hierarchy and then selecting the step where the minimum of 

these p-values occurs as the basis for determining the true number of classes which exist 
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for a given dataset may provide an advantage over existing methods.  Of course, if such a 

method for determining the true number of classes is applied, the global p-value will 

provide an assessment of its significance.  However, applying our procedure to some 

datasets, such as the data in Example 3, results in determining a large number of true 

classes.  In fact, the number of classes determined may be so large that the use of these 

expression-based tumor subclasses in clinical diagnosis may not provide a benefit.  

Therefore, in order to increase the practicality of our method, it may prove necessary to 

eliminate some of the lower steps in the hierarchy from eligibility for selecting the 

minimum local p-value and the calculation of its significance. 

Besides determining subclasses for biological samples, hierarchical clustering is 

often employed in the context of microarray expression studies in order to identify groups 

of genes that are regulated in a similar manner.  In these cases, clustering is performed on 

the genes rather than on the samples.  Our method relies on two sets of data – one for 

clustering and a second for the statistical test.  Since the samples possess both expression 

data across genes and survival data, our method is applicable to hierarchies created by 

clustering on samples.  However, genes only possess expression data across samples, and, 

consequently, our method is inappropriate for analyzing the significance of hierarchies 

created by clustering on genes.  

Our approach may be viewed as a contribution to the problem of multiple testing.  

We address this problem by defining a single experiment-wise statistic whose associated 

empirical significance level represents the overall significance of the experiment.  For the 

cases we have examined, the experiment refers to performing a test at each step in a 

hierarchy created by clustering.  However, the meaning of experiment can be expanded to 
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reflect other practices adopted by researchers.  For example, researchers may apply 

several clustering algorithms involving various combinations of clustering methods and 

distance measures before finalizing their choice of clustering algorithm.  Since this 

practice introduces an additional test at each step within each of the trial hierarchies, it 

compounds the effect of multiple testing.  Additionally, in some situations researchers 

may be interested in testing for heterogeneity among groups with multiple measurements.  

For instance, when searching for clinically relevant subclasses of cancer, researchers may 

examine groups for differences in survival times as well as differences in physical 

characteristics of the tumor cells.  Both sets of information may be clinically relevant; 

however, to correct for the additional testing, the meaning of the experiment in 

calculating pmin must be expanded to reflect the entire process employed by the 

researcher.  Of course, it is possible that the process of hierarchical clustering forms 

medically relevant groups that do not display heterogeneity for any of the measurements 

collected.  In this case, our strategy will not find these groups as the true grouping 

structure for the samples. 

Several other methods addressing multiple comparison problems have been 

proposed and are in current use.  In particular, as an alternative to the classical 

significance level, p, the false discovery rate (FDR) has become rather popular (Reiner et 

al. 2003).  However, it is important to keep in mind that p and FDR are not really 

comparable.  The classical significance level, p, is the conditional probability of a 

significant test result given the null hypothesis is true (the expected proportion of false 

positive results among all “false” results, i.e., results obtained under the null hypothesis) 

while FDR is the conditional probability of the null hypothesis being true given a 
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significant test result (the expected proportion of false positive results among all 

“positive” results, i.e., significant test results).  Future research will have to determine 

which of these various approaches to eliminate the effects of multiple testing is most 

effective. 
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CHAPTER 3:  ARE MOLECULAR HAPLOTYPES WORTH IT?  A 

COST EFFECTIVE METHOD FOR TREATING 

MISCLASSIFICATION IN HAPLOTYPE-BASED ASSOCIATION 

 

3.1 Introduction 

While clustering haplotype data may create a situation that requires correction for 

the multiplicity of testing, other haplotype-based association studies in which no 

clustering is employed face complications as well.  One such complication is the issue of 

haplotype misclassification. 

Although recent advances in molecular biology have produced techniques to 

unequivocally ascertain phased haplotypes (Michalatos-Beloin et al. 1996; Clark et al. 

1998; Yan et al. 2000; Douglas et al. 2001; Patil et al. 2001; Burgtorf et al. 2003; Ding 

and Cantor 2003; Horan et al. 2003; Hoppe et al. 2004; Proudnikov et al. 2004; Hoppe et 

al. 2006), such molecular haplotyping techniques are seldom employed due to their 

expense and incongruity to automation.  A more pragmatic alternative is to estimate 

haplotype frequencies or infer haplotype pairs by applying statistical methods to 

multilocus genotypes (Clark 1990; Xie and Ott 1993; Terwilliger and Ott 1994; Excoffier 

and Slatkin 1995; Hawley and Kidd 1995; Long et al. 1995; Zhao et al. 2000; Stephens et 

al. 2001b; Zhao and Sham 2002; Stephens and Donnelly 2003).  Although knowledge of 

parental genotypes can simplify the problem, for haplotype-based association studies the 

sample design generally calls for collecting DNA on unrelated individuals, and, in this 

case, the statistical methods for haplotype estimation must consider each individual as an 

independent observation.   

 51



For these non-familial study designs, several methods are available to estimate 

haplotype frequencies and/or infer haplotype pairs.  The main methods follow one of two 

approaches—1) relying on the EM algorithm (Dempster et al. 1977) for a likelihood 

approach (Xie and Ott 1993; Excoffier and Slatkin 1995; Hawley and Kidd 1995; Long et 

al. 1995) and 2) using a Bayesian approach to apply a prior based on coalescence theory 

(Stephens et al. 2001b; Stephens and Donnelly 2003) or a Dirichlet prior (Niu et al. 

2002).   The EM algorithm-based methods are implemented in SNPHAP (see Electronic 

Resource Information), HAPLO (Hawley and Kidd 1995), and PL-EM (Qin et al. 2002) 

while the Bayesian approaches are implemented in PHASE (Stephens et al. 2001b) (see 

Electronic Resource Information) and HAPLOTYPER (Niu et al. 2002).  Several 

investigators have examined the accuracy of these approaches for both haplotype 

frequency estimation and haplotype inference (Fallin and Schork 2000; Tishkoff et al. 

2000; Clark et al. 2001; Xu et al. 2002; Stephens and Donnelly 2003; Adkins 2004; Kang 

et al. 2004; Niu 2004; Xu et al. 2004; Heid et al. 2005; Sabbagh and Darlu 2005; Zhang 

et al. 2005; Marchini et al. 2006; Proudnikov et al. 2006). 

Many statistical methods are available to perform tests of haplotype-based case-

control association.  One method calculates the likelihood of the data in terms of the 

estimated haplotype frequencies.  An alternative method relies on the use of a 

contingency table containing the case-control counts for each inferred haplotype.  Since it 

applies the same format as the classic genotypic and allele case-control studies and 

accounts for each phased haplotype explicitly, many researchers prefer the latter 

approach.  One can determine the counts in the contingency table by inferring phased 

haplotypes for each individual (or by multiplying each haplotype frequency estimate by 
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the total number of haplotypes in the study).  Once the contingency table contains the 

haplotype (or diplotype) counts, a Pearson χ2 test or a likelihood ratio test can be 

performed.  However, the counts entered in the contingency table may misrepresent the 

true situation since inferred haplotypes (and haplotype estimates) are prone to errors.  

These haplotype misclassification errors may affect the behavior of the statistical test 

performed. 

Thus, the purpose of this work is to address the effects of haplotype 

misclassification on the false positive rate and power of commonly used tests of 

haplotype-based association.  Specifically, this research aims to 1) classify the nature of 

the misclassification present in calling phased haplotypes; 2) determine the 

appropriateness of using the asymptotic χ2 distribution and permutation methods to 

evaluate the significance of the test statistics we employ; and 3) compare the power of 

our test statistic which accounts for haplotype misclassification with the power of the 

standard likelihood ratio test statistic when the costs are fixed. 

 

3.2 Methods 

Test statistics.  In order to detect an association between a haplotype pair and 

disease status, we employed two statistical tests on 2 × k contingency tables where k is 

the number of haplotype pair categories found by inference.  These tests include the 

standard likelihood ratio test (LRTstd) and a likelihood ratio test that employs a double-

sampling approach to allow for the misclassification inherent in the haplotype inference 

procedure (LRTae).  The LRTstd is a likelihood ratio statistic that treats the called 

haplotype pairs as observations, and as a result the likelihood is the multinomial 
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distribution where the called haplotype pairs are the categories (Agresti 1996).    The 

LRTae statistic is a likelihood ratio statistic that employs a double-sampling procedure to 

account for the misclassification present in a haplotype inference.  On all the individuals 

in the study, there is a fallible measure (Tenenbein 1970; Tenenbein 1972), the haplotype 

pairs inferred from the multilocus genotypes, and on a subset of these individuals, there is 

a second measure which is considered to be infallible (Tenenbein 1970; Tenenbein 1972), 

molecular haplotypes.  By comparing the fallible data with infallible data, the LRTae 

procedure estimates the misclassification rates present in the fallible data and 

incorporates this information into the likelihood calculation (Gordon et al. 2004). 

 

Computation of the LRTstd and LRTae statistics.  For completeness, details 

regarding the LRTstd and LRTae statistics including notation and computation as 

described by Gordon et al. are provided in this section.  We present the mathematical 

basis for computation of the LRTstd and LRTae statistics.  This work largely follows from 

the original publication on the LRTae statistic (Gordon et al. 2004).  The primary 

difference is that, in this work, we assume only misclassification in haplotype pairs 

(called “genotypes” in the original publication) and assume no misclassification of 

phenotype.  Because we do not collect a second phenotype measurement, we assume that 

all phenotype classifications are correct.  We begin with some notation. 

Notation.  For all terms, the index  is either 0 (case) or 1 (control) and the 

integer indices  range from 1 through k inclusive, where k is the number of 

haplotype pairs. 

' i

' and jj
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We use prime superscripts to distinguish true categories from observed categories.  

For example, refers to the true haplotype pair classification for an individual.  Also, we 

use the superscript t to denote “true” (as compared with observed) when referring to 

either an event or a parameter.  For example, the notation represents the event that an 

individual’s true haplotype pair classification is , whereas the notation represents 

the event that an individual’s observed haplotype pair classification is 

'j

t
jX '

'j jX

j  (see below).  

Similarly, the notation represents the true probability of the haplotype pair  for 

individuals with (true) phenotype classification i , whereas the notation represents 

the observed probability of the haplotype pair 

t
jip '' 'j

' jip '

j  for individuals with (true) phenotype 

classification .  With this notation, we may distinguish between the events and 

and the probabilities and .  

'i tX 0

0X tp01 01p

)1(
'' jjin = Number of individuals with (true) phenotype category i , true haplotype pair 

category , and observed haplotype pair category 

'

'j j .  (These individuals are double-

sampled on haplotype pair classification.) 

∑=+
j

jjiji nn )1(
''

)1(
'' . 

)2(
' jin  = Number of individuals with (true) phenotype category i and observed haplotype 

pair category 

'

j . 

∑

∑
=

=

+

+

'

)2(
'

)2(

)2(
'

)2(
'

i
jij

j
jii

nn

nn
 

∑∑∑∑∑ +=
'

)2(
'

' '

)1(
''

i j
ji

i j j
jji nnn  ; Note that n is the total sample size. 
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t
iY ' =Event that an individual has phenotype )1,0'(,' =ii . 

jX =Event that an individual has observed haplotype pair kjj ≤≤1, . 

t
jX ' =Event that an individual has true haplotype pair kjj ≤≤ '1,' . 

t
jiX '' =Event that an individual has phenotype )1,0'(,' =ii and true haplotype pair 

 kj ≤'' .j ≤1,

)Pr( ''
t

i
t
i Yq = = True sampling frequency of phenotype i . '

)|Pr( ''
t

ijji YXp = = Observed population frequency of haplotype pair j for individuals 

with true phenotype i .  '

)|Pr( ''''
t

i
t
j

t
ji YXp =

'

= True population frequency of haplotype pair for individuals with 

phenotype i .  

'j

)Pr( ''*
t
j

t
j Xp =

t
j

t
j pp 1'0 =

= True population frequency of haplotype pair under the null hypothesis 

that .   

'j

t
jp '*' =

)Pr(* jj Xp = = Observed population frequency of haplotype pair j under the null 

hypothesis that .  t
j

t
j

t
j ppp '*'1'0 ==

Note: For each i .  Also, q . ∑ ∑ ==
'

''' 1 ,'
j j

ji
t

ji pp 110 =+ tt q

 )|Pr( '' jjjj XX=θ  

Note: When , these parameters are referred to as misclassification parameters 

(Tenenbein 1972; Gordon et al. 2002). We make use of the double-sample data structure 

to determine estimates of haplotype pair misclassification values 

jj ≠'

jj 'θ .  The 

misclassification parameter estimates are (see below).  jj 'θ̂ += ''' /ˆ
jjjjj mmθ
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)',1( ' kjjm jj ≤≤ = The number of individuals that have been classified by the fallible 

method as haplotype pair j and by the infallible method as haplotype pair . 'j

 '' ∑=+
j

jjj mm . 

)ln( ,1 stdL

jp0

= Log-likelihood of data when not correcting for misclassification, where 

haplotype pair frequencies are allowed to differ among different phenotype classes 

(i.e., is not necessarily equal to  for every 

jip '

jp1 j ) (also see equation 3.1b below). 

)ln( ,0 stdL = Log-likelihood of data when not correcting for misclassification, where 

haplotype pair frequencies are constrained to be equal among different phenotype 

classes (i.e., for every 

jip '

jjj ppp *10 == j ) (also see equation 3.1b). 

)ln( ,1 aeL = Log-likelihood of data as represented in equation (3.4), where haplotype pair 

frequencies ' are allowed to differ among different phenotype classes.  (i.e., is not 

necessarily equal to  for every ) 

t
jip '

t
jp '0

t
jp '1 'j

)ln( ,0 aeL

tt
j pp 1'0 =

= Log-likelihood of data as represented in equation (3.4) below, where haplotype 

pair frequencies are constrained to be equal among different phenotype classes.  (i.e., 

for every ) 

t
jip ''

t
jj p '*' = 'j

 

Log-likelihood of observed data and likelihood ratio test statistics 

We compute the log-likelihood of the observed data under the null and alternative 

hypotheses, allowing for error.  The null hypothesis we test is  for all t
j

t
j

t
j pppH '*'1'00 : ==
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haplotype pairs .  The alternative hypothesis is for at least one ' .  

Under either hypothesis, we have, by definition, the log-likelihood of the data given by: 

'j t
j

t
j ppH '1'01 : ≠

,ln[Pr( '
)2(

'

j

∑=
i j

t
iji Yn

, jj

j≤

ln(

Pr(

,)])],,ln[Pr()ln(
'' '

''
)1(
'' ∑∑∑∑ + j

i j j

t
jj

t
ijjiae XXXYnL   (3.1a)       

where the notation is the probability of observing event A and event B and 

event C and so forth and represent the counts for different categories of double-

sample information (see above for definitions of all notation).  For example,  is the 

number of individuals who have been double-sampled for haplotype pair classification 

and who have true phenotype classification i , true haplotype pair classification , and 

observed haplotype pair classification 

,...),,Pr( CBA

)2(
'

)1(
'' , jijji nn

)2(
'' jjin

j' '

j .  In equation (3.1a), the subscript i runs over all 

phenotype classifications (

'

1'0 ≤≤ i

kj ≤',

) and the subscripts ' run over all haplotype pair 

classifications (1 ).   

When a double-sample has not been collected or when we assume that there is no 

error in the data, equation (3.1a) reduces to: 

.)]ln()[ln(

)ln(
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=
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     (3.1b) 

A key assumption in our work is that the observed haplotype pair is only dependent on 

the underlying true haplotype pair and not on phenotype so that 

.  It follows that: )|),|Pr( '''
t
jj

t
i

t
jj XXYXX =
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Using equation (3.2) and the fact that  

∑=
'

''' ),,,Pr(),Pr(
j

t
jj

t
ij

t
i XXYXY     (3.3) 

we may rewrite the log-likelihood (3.1a) as: 

.]ln[]ln[)ln(
' '

''''
)2(

'
' '

''''
)1(
'' ∑∑ ∑∑∑∑ +=

i j j

t
i

t
jijjji

i j j

t
i

t
jijjjjiae qpnqpnL θθ   (3.4) 

From equation (3.4) we can determine the log-likelihood of the data under  using the 

EM algorithm estimates of and  (see (Gordon et al. 2004)). Similarly, we can 

determine the log-likelihood of the data under  using the EM algorithm estimates of 

and .  The estimates of may differ under the null and alternative hypotheses.  

1H

t
jip ''

t
iq '

t
iq '

0H

t
jp '*

t
iq '

It follows from equation (3.4) that the log-likelihoods ln( and  

(equation (3.1a)) are completely determined by misclassification parameters 

),0 aeL )ln( ,1 aeL

jj 'θ , the true 

parameters , and sample counts ( ).  In the previous sentence, 

 refers to the situation under the null hypothesis, where the terms  in equation 

(3.4) are replaced by .  In contrast,  refers to situation under the alternative 

hypothesis, where the terms  in equation (3.4) remain.  Our test of versus is a 

likelihood ratio test (Kendall et al. 1994), which we call the likelihood ratio test allowing 

for error, or LRT

,, '*''
t

j
t

ji pp t
iq '
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)2(
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'' , jijji nn

)ln( ,0 aeL t
ip '

1H

j '

j ' )ln( ,1 aeL

t
jip '' 0H

ae.  It is given by   

LRTae )],ln()[ln(2 ,0,1 aeae LL −=          (3.5a) 
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where and are determined using equation (3.4) with the EM algorithm 

estimates of the various parameters.  Asymptotically, LRT

)ln( ,1 aeL )ln( ,0 aeL

ae is distributed as , where 

the degrees of freedom (df) are k – 1 for a set of k observed haplotype pairs (Gordon et al. 

2004). For small samples or in situations where the asymptotic distribution may not hold, 

we can compute p-values via permutation (Gordon et al. 2004; Proudnikov et al. 2006).   

2
1−kχ

The standard likelihood ratio test, denoted LRTstd, that does not make any 

correction, has its log-likelihoods computed solely from the observed data.  That is,  

LRTstd )],ln()[ln(2 ,0,1 stdstd LL −=         (3.5b) 

where the log-likelihoods under the null and alternative hypotheses are computed using 

the estimates , ( ) that are then 

substituted into equation (3.1b) (Rice and Holmans 2003).  When there is no correction 

for misclassification, there is no need to compute under both the null and alternative 

hypothesis, as the terms with will cancel in the expression for the difference of the log-

likelihoods (equation (3.5b)).    
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Permuted and asymptotic p-values.  We applied two methods for evaluating the 

p-value or statistical significance of each statistic.  The first method relies on using the 

central χ2 distribution to find the p-value since, according to statistical theory under the 

null hypothesis of no association, twice the natural logarithm of the likelihood ratio 

follows the central χ2 distribution asymptotically for large sample sizes (Agresti 1996).   

In addition, it has been shown that when Cochran’s rule is followed (more than five 

observations in each cell of the contingency table), the presence of non-differential 
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misclassification does not affect the distribution of the likelihood ratio test statistic under 

the null hypothesis of no association (Mote and Anderson 1965; Gordon et al. 2004).  

The second method employs permutation testing to generate the distribution of the test 

statistic under the null hypothesis and to determine its statistical significance.  In this 

thesis, p-values found with the former and latter approaches are referred to as asymptotic 

p-values and permutation p-values, respectively. 

 

Description of data generation and analysis.  To investigate the behavior of 

these test statistics for a variety of situations, we applied these statistical tests to many 

simulated datasets.  Figure 3.1 illustrates the procedure we used to simulate the data and 

to evaluate the false positive rate and power at fixed significance levels for each statistic.  

For the analysis of each replicate dataset simulated, the multilocus genotype data from 

cases and controls were pooled to infer haplotype pairs for each individual.  Individuals 

were assigned the haplotype pair with the highest posterior probability.  The posterior 

probability of a given haplotype pair is defined as the probability of that haplotype pair 

being the true haplotype pair conditioned on the observed multilocus genotypes.  For 

example, consider two SNP marker loci where A and a represent the alleles at the first 

locus while B and b represent the alleles at the second locus.  The posterior probability of 

the haplotype pair, AB and ab, can be expressed as 

}Pr{}Pr{}Pr{}Pr{
}Pr{}Pr{},|,Pr{

aBAbabAB
abABobservedBbAatrueabAB

+
===    

by applying Bayes’ Theorem and simplifying.  The EM algorithm can be used to estimate 

the probability of each haplotype in the posterior probability expression from multilocus 

genotypes. 
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The inferred haplotypes are sufficient for the computation of LRTstd; however, 

LRTae requires additional information in the form of molecular haplotypes for a subset of 

the individuals in the study.  We employed two alternative procedures for selecting 

individuals for the double-sample (individuals with molecular haplotypes in addition to 

genotypes).  In one selection scheme, individuals were selected randomly.  In the other 

selection scheme, individuals possessing the most ambiguity in their statistically inferred 

haplotype pairs were prioritized in selecting the double-sample.  Specifically, we double-

sampled those individuals with the smallest posterior probabilities associated with their 

inferred haplotype pair up to a posterior probability threshold, δ, of 0.85 or until the 

number of individuals specified by the maximum double-sample proportion was reached.  

Therefore, under this second selection scheme the number of individuals double-sampled 

varied between replicate datasets.  In this thesis, the former and latter procedures for 

determining the double-sample are referred to as random and threshold double-sample 

selection, respectively. 
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Figure 3.1  Schematic flow chart illustrating the procedure for data simulation and 

analysis 

Infer haplotype pairs 
for each 

individual from 
their multilocus 

genotypes 
(cases and 

controls pooled).
1) SNPHAP
2) PHASE

Calculate statistics
1) LRTstd
2) LRTae

a) random double-
sample selection

b) threshold double-
sample selection

Create 
many 

replicate 
datasets.

Examine the false positive rate for several significance thresholds 
(0.05, 0.01, and 0.001) after all replicates completed.

Find the p-value
1) permutation 
2) asymptotic

Simulate haplotypes from known population frequencies 
and arbitrarily assign to cases and controls.A)

Simulate haplotypes from known frequencies 
(conditional on affection status).  These conditional 

frequencies are based on the selected disease model.
B)

Remove phase 
leaving only 
multilocus 
genotypes 
for each 

individual.

 

Legend for Figure 3.1:  This schematic flow chart illustrates the procedure employed for 

computing (A) type I error and (B) power by way of data simulation. 

 

Two SNP scenario 

Evaluation of false positive rate for permutation and asymptotic p-values.  For 

the simplest non-trivial case, the scenario where the haplotype under evaluation includes 

two SNPs, we applied a fractional factorial design (Box et al. 1978) to perform a 

comprehensive study of type I error.  For the type I error, haplotype pairs were inferred 

using both SNPHAP v 1.3.1 (see Electronic Resource Information) and PHASE v 2.1.1 

(Stephens et al. 2001b) (see also Electronic Resource Information).  Table 3.1 contains 

the fractional factorial design settings for the study of type I error for the scenario 

involving two SNP markers.  We consider a )2(2 g1  fractional factorial design, where 
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g = 6.  Because of redundancy, we were able to reduce the number of experimental runs 

from 32 to 18.  For instance, under the null hypothesis of no association, a run with 1000 

cases and 250 controls is equivalent to a run with 250 cases and 1000 controls (with all 

other factors having equal settings to those for the first run).  During each run, 10,000 

replicate datasets were simulated.  We performed the 18 runs with both of the two 

alternative procedures for selecting the double-sample – random and threshold double-

sample selection.  For the threshold double-sample selection method, δ was 0.85, and the 

maximum double-sample proportion was set to the value of α in the fractional factorial 

design. 

 

Table 3.1  Fractional factorial design parameter settings for the study of type I error 

assuming the haplotype under investigation contains two SNP markers 

Description of parameter Low High 
Number of cases 250 1000 
Number of controls 250 1000 
Minor allele frequency at locus 1 0.1 0.5 
Minor allele frequency at locus 2 0.1 0.5 
LD between locus 1 and 2 (measured by D’) 0 0.9 
Proportion of individuals double-sampled (α) 0.25 0.75 
 
Legend for Table 3.1: This table presents the settings for all parameters considered in the type I 

error simulations assuming the haplotype under investigation contains two SNP markers.  We 

consider a )2(2 g1 fractional factorial design, where g = 6.  The number of experimental runs 

was reduced from 32 to 18 due to redundancy.  D’ is the standardized linkage disequilibrium 

measure.  The simulations included 10,000 replicates, and haplotype pairs were inferred using 

both SNPHAP v 1.3.1 and PHASE v 2.1.1.  LRTae was computed with the random and threshold 

double-sample selection methods for all 18 runs in the fractional factorial design.  For the 

threshold double-sample selection method, δ was 0.85, and the maximum double-sample 

proportion was set to the value of α in the fractional factorial design. 
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To evaluate each test statistic’s ability to maintain the correct type I, we examined 

the distribution of the p-values computed for data simulated under the null hypothesis of 

no association.  We performed two goodness-of-fit tests, the Kolmogorov-Smirnov (KS) 

and the Anderson-Darling (AD) tests (DeGroot 1991), to determine whether the p-values 

deviate significantly from the standard uniform distribution and examined the false 

positive rate for significant thresholds of 0.05, 0.01, and 0.001 .  

 

Evaluation of power for fixed cost.  We also evaluated the behavior of these 

statistics under the hypothesis that a disease allele at an unobserved locus exists in 

linkage disequilibrium (LD) with the haplotype under study.  Table 3.2 contains the 

factorial design settings for the power study in the scenario involving two SNP markers.  

The factorial design includes three factors, disease model, genotype relative risk (Schaid 

and Sommer 1993) for the homozygote genotype (R2), and the disease allele frequency 

(DAF).  Each factor contains two levels.  For the disease model factor, the two levels are 

a dominant disease model and a multiplicative disease model.  The dominant disease 

model requires that  while the multiplicative disease model requires that 

, where R

12 RR =

2
12 RR = 1 and R2 are the genotype relative risks for the heterozygote and 

homozygote genotypes, respectively.  Specifically, the genotype relative risks are defined 

as the following.  If the penetrances, , are defined by if

allele) disease of copies |dPr(affecte if i = , where 2  1,  0,=i , the genotype relative 

risks, R1 and  R2, are defined by  

011 ffR = and 022 ffR = , respectively (Schaid and Sommer 1993). 
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Table 3.2  Factorial design parameter settings for the study of power assuming the 

haplotype under investigation contains two SNP markers 

Description of parameter Low High 
Disease model dominant multiplicative 
Genotype relative risk of homozygote (R2) 2 3.5 
Disease allele frequency (DAF) 0.07 0.27 
 

Legend for Table 3.2: This table presents the settings for all parameters considered in the power 

simulations assuming the haplotype under investigation contains two SNP markers.  We consider 

a  factorial design, where g = 3.  The dominant disease model requires that  while the 

multiplicative disease model requires , where R

g2 12 RR =

2
12 RR = 1 and R2 are the genotype relative risks 

for the heterozygote and homozygote genotypes, respectively.  For the random double-sample 

selection method, the proportion of individuals double-sampled (α) was 0.75 while a haplotype 

pair posterior probability threshold (δ) of 0.85 and a maximum double-sample proportion of 0.75 

were used for the threshold double-sample selection method.  The cost ratio of molecular 

haplotyping to genotyping (r) was 5.  For each combination of settings, 1000 replicate datasets 

comprised of 500 cases and 500 controls were simulated.  The disease prevalence was 0.025; the 

LD between the disease allele and the linked haplotype was 0.9 (measured by D’); and the 

population haplotype frequencies were 0.05, 0.15, 0.25, and 0.5.  The haplotype with a frequency 

of 0.05 was linked to the disease allele when DAF = 0.07, and the haplotype with a frequency 

0.25 was linked to the disease allele when DAF = 0.27.  Haplotype pairs were inferred using both 

SNPHAP v 1.3.1 and PHASE v 2.1.1. 

 

As with the study of type I error, we inferred the haplotypes for the power 

simulations with both SNPHAP v 1.3.1 and PHASE v 2.1.1.  The proportion of 

individuals double-sampled, α, for the LRTae method (random double-sample selection) 

was set at 0.75.  For the threshold double-sample selection, δ was set at 0.85, and the 

maximum double-sample proportion was 0.75.  In the power simulations, the conditional 

(on case status) haplotype frequencies were found from the specified disease model 
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parameters by a method described by Sham and subsequently by De La Vega et al. 

(Sham 1998; De La Vega et al. 2005) (also see the Power for Association with Error 

(PAWE) website at http://linkage.rockefeller.edu/derek/pawe1.html).  However, we 

selected a specific haplotype to be in LD with the disease allele.  For completeness, 

details regarding the conditional haplotype frequencies including notation and 

computation as described by De La Vega et al. (2005) are provided at the end of this 

section.  During each run, 1000 replicate datasets comprised of 500 cases and 500 

controls were simulated.  For these simulations, the disease prevalence was 0.025; the LD 

between the disease allele and the linked haplotype was 0.9 (measured by D’ (Lewontin 

1964)); and the population haplotype frequencies were 0.05, 0.15, 0.25, and 0.55.  

Selection of the specific haplotype in LD with the disease allele depended on the disease 

allele frequency (DAF).  The haplotype occurring with a frequency most similar to that of 

the disease allele was selected.  Thus, haplotypes with frequencies of 0.05 and 0.25 were 

selected as the variant in LD with the disease when the DAF was set at 0.07 and 0.27, 

respectively.  As with the evaluation of the false positive rate, we performed all 8 runs 

from the factorial design using both random and threshold double-sample selection. 

To compare the power of the two test statistics, we evaluated the power of the 

statistics under fixed cost conditions.  Since the LRTae requires the additional cost 

associated with obtaining molecular haplotypes on a subset of the samples, we reduced 

the number of samples when the LRTae statistic was applied so that the same total cost 

would be incurred as for the runs with the LRTstd.  The reduced sample size for the LRTae 

sample was computed using equation (3.6),  
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where NDS is the sample size for the LRTae; N is the sample size for the LRTstd; Cp is the 

cost of phenotyping; Cg is the cost of genotyping; r is the cost ratio of molecular 

haplotyping to genotyping (Cmh/Cg); and α is the proportion of individuals in the LRTae 

sample which have molecular haplotypes determined (double-sampling proportion).  We 

consider the phenotyping costs, Cp, to include costs associated with ascertainment and 

diagnosis.  We illustrate fixed cost sample sizes for the following example.  With settings 

of Cp/Cg = 25, r = 5, α = 0.75, and N = 1000 for the LRTstd method, then the 

corresponding total sample size for the LRTae method, NDS, is 874.  The reader should 

note that the reduced sample size results from the additional cost incurred by double-

sampling 75% of the total sample for the LRTae method.  If Cp/Cg = 1000, note this term 

will dominate the expression in equation (3.6) and the fixed cost sample size, NDS, will 

not differ greatly from the sample size for the LRTstd, N.  All power simulations were 

performed under fixed cost conditions.  Since the double-sample proportion, α, varies 

from replicate to replicate when the threshold double-sample selection method is 

employed, we first performed several test runs to determine the mean double-sample 

proportion, α .  Using α , we computed NDS*, the total sample size for the LRTae 

determined from the expectation of α.  For a specific disease model, we performed a 

comprehensive study of the power difference between the LRTae and LRTstd for the 

situation of a haplotype comprised of two SNPs. 
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Computation for conditional haplotype frequencies.  For completeness, here we 

illustrate how the conditional (on case status) haplotype frequencies were computed as 

described by De La Vega et al. (2005). 

List of notation 

Marker Loci: 

hi = population haplotype frequency of the ith haplotype (out of w possible haplotypes) 

Disease Locus: 

pd = allele frequency of disease-causing allele at the disease locus 

p+ = allele frequency of the wild-type allele at the disease locus 

Disease-Marker Haplotypes: 

h+,j = frequency of disease-marker haplotype containing the wild-type allele (+) at the 

disease locus and the marker haplotype j.  This is the probability that the wild-type allele 

is on the same chromosome as a given haplotype j. 

hd,j = frequency of disease-marker haplotype containing the disease allele (d) at the 

disease locus and the marker haplotype j.  This is the probability that the disease allele is 

on the same chromosome as a given haplotype j. 

Disequilibrium Parameters: 

D’ = standardized LD parameter (Lewontin 1964), ( 0 1≤≤ 'D ) 

Dmax = , where z is the haplotype selected to be LD with the disease 

allele 

[ zzd hp),h(pmin +−1 ]

Penetrances: 

f0 = Pr{affected|++ at disease locus} 

f1 = Pr{affected|+d at disease locus} 
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f2 = Pr{affected|dd at disease locus} 

Conditional Probabilities: 

21 ,, jjiI

j≤ 1 ,1

= Pr{individual possesses marker haplotypes j1 and j2|affection status i}, 

, i = 0 (affected) or 1 (unaffected) wj ≤2

3, jiI = Pr{individual possesses marker haplotype j3|affection status i}, , i = 0 

(affected) or 1 (unaffected) 

wj ≤≤ 31

Prevalence: 

φ  = disease prevalence =  2
2

10
2  )1(2 )1( fpfppfp dddd +−+−

LD Pattern and Disease-Marker Haplotype Frequencies: 

Because the number of linkage disequilibrium parameters increases as the number 

of haplotypes increases (Lewontin 1964), we simplify the analysis by constructing an LD 

pattern that, for estimated haplotype frequencies , is a function of a single 

parameter D’.  Note that D’ can vary between 0 and 1, where 0 represents linkage 

equilibrium and 1 represents complete linkage disequilibrium.  We now describe the LD 

pattern for a “selected” haplotype, z, where 

whh ,,1 K

wz ≤≤1 .  By “selected”, we mean that 

haplotype z is in positive LD with the disease allele (occurs in phase with the disease 

allele more often than under linkage equilibrium conditions).  The LD pattern is given by: 


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Using the LD pattern described above, for the “selected” haplotype z, we write the 

following two equations for the disease-marker haplotype frequencies: 

)LD(
),LD(

jhph
jhph

jdj,d

jj,

+=

−= ++      (3.8) 
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Since h+,j and hd,j are the probabilities that the jth marker haplotype resides on the same 

chromosome as the wild-type and disease allele, respectively,  for j = z (the 

haplotype “selected” to be LD with the disease allele). 

j,j,d hh +≥

Applying the definition of conditional probability and the law of total probability, we can 

write the conditional haplotype pair frequencies as 

( )[ ]
( ) ( )( ) ( )[ ] ( )
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and the conditional haplotype frequencies as 
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We used these conditional (on case status) haplotype frequencies as the generating 

frequencies in our simulations under the alternative hypothesis (power runs).  Using the 

above equations, we were able to compute these conditional haplotype frequencies from 

the disease prevalence (f), the disease allele frequency (pd or DAF), the disease model, 

the genotype relative risk for the homozygote (R2), the population haplotype frequencies 

(hj), the “selected” haplotype (z), and the LD between the “selected” haplotype, and the 

disease allele (measured by D’).  For example, suppose we set f = 0.025, pd = 0.07, 

R2 = 3.5, h1 = 0.05, h2 = 0.25, h3 = 0.15, h4 = 0.55, z = haplotype 1, and D’ (between d 

and the haplotype 1) = 0.9 and use a dominant disease model.  Since the dominant disease 

model requires that , the genotype relative risk for the heterozygote (R12 RR = 1) must 

also be 3.5.  Using the definitions for the genotype relative risks ( 011 ffR = and 

022 ffR = ) and the definition of the disease prevalence, we find that f0 = 0.019, 

f1 = 0.065, and f2 = 0.065.  Then by using the definition of Dmax as well as equations (3.7) 
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and (3.8), we find each disease-marker haplotype frequency (h+,j and hd,j).  Now with the 

penetrances (f0,  f1, and f2) and the disease-marker haplotype frequencies (h+,j and hd,j), 

we can use equation 3.9 to find the conditional haplotype pair frequencies ( ).  

Finally, applying equation (3.10) we find the conditional haplotype frequencies, 

  

21 j,j,iI

,.I 123001 = ,.I 048011 = ,.I 231002 =  ,.I 250012 = ,.I 139003 =  ,.I 150013 = ,508.I 004 = and 

.  Note that the frequency of the “selected” haplotype (haplotype 1) is elevated 

in cases (relative to the population frequency for this haplotype) while the frequency of 

all other haplotypes is lowered in cases (relative to the populations frequencies for these 

haplotypes). 

551014 .I =

 

Multi-SNP scenario 

Evaluation of false positive rate and power for fixed costs.  Through additional 

simulations, we investigated the behavior of these statistics when applied to haplotypes 

comprised of larger numbers of SNPs.  Because these simulations required additional 

computational time, we only utilized SNPHAP v 1.3.1 (see Electronic Resource 

Information) for inferring haplotypes.  Our simulations were based on haplotype 

frequencies from two datasets – 1) a dataset of molecular haplotypes with very high 

levels of pair-wise LD between markers (Horan et al. 2003) and 2) a dataset of multilocus 

genotypes from the TAP2 gene within the major histocompatibility complex, a region 

with low pair-wise LD between markers (International HapMap Consortium 2003; 

International HapMap Consortium 2005) (see also Electronic Resource Information), 

hereafter referred to as the Horan and HapMap TAP2 datasets, respectively.  Figure 3.2 

displays the inter-marker LD for each of these two datasets using GOLD plots (Abecasis 
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and Cookson 2000).   For the Horan dataset, we determined the generating population 

haplotype frequencies for our simulations directly using the counting method (Ott 1999).  

For the HapMap TAP2 dataset, we found the generating population haplotype 

frequencies for our simulations indirectly using SNPHAP v 1.3.1 (see Electronic 

Resource Information).  In the latter case, haplotype frequencies were estimated from the 

parents of each trio in the Yoruba population group from the International HapMap 

Project.  For the type I error simulation studies, 1000 replicate datasets containing 250 

cases and 250 controls were simulated.  For the type I error runs based on the Horan data 

and the HapMap TAP2 data, we simulated haplotypes comprised of 15 SNPs and 10 

SNPs, respectively, while for the power runs, we simulated haplotypes comprised of 5 

SNPs (Horan et al. 2003; International HapMap Consortium 2003; International HapMap 

Consortium 2005).  Figure 3.2 specifies the SNPs we utilized from each dataset in the 

type I error and power runs.  For the Horan dataset, we provide the SNP markers’ 

positions (relative to the transcription start site of the GH1 gene) while for the HapMap 

TAP2 dataset, we provide the name of the SNP marker.  As a result, we simulated 

haplotypes using 17 haplotype variants with frequencies greater than 0.01 for both the 

Horan and HapMap TAP2 type I error simulations.  In addition, we simulated haplotypes 

using 5 and 10 haplotype variants with frequencies greater than )t( 21 , where t is the 

total number of individuals (t = 153 for the Horan dataset and t = 60 for the HapMap 

TAP2 dataset), for the Horan and HapMap TAP2 power simulations, respectively.  For 

each scenario, we normalized the frequencies so that they summed to unity.  As with the 

power studies for the two SNP scenario, the selection of the specific haplotype in LD 

with the disease allele depended on the DAF.  The rationale for the selection procedure is 
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provided in section 3.3 addressing multi-SNP power.  For multi-marker type I error and 

power studies, we employed both the random and threshold double-sample selection 

methods in computing the LRTae statistic.  When the random double-sample selection 

method was utilized, the double-sample proportion, α, was 0.75.  When the threshold 

double-sample method was utilized, the setting of δ = 0.85 was used, and the maximum 

proportion of individuals included in the double-sample was 0.75. 
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Figure 3.2  GOLD plots for the Horan and HAPMAP TAP2 datasets 

 

 

Legend for Figure 3.2: These GOLD plots (Abecasis and Cookson 2000) show the pair-wise intermarker LD in terms of D’ for (A) 15 SNP 

markers within the proximal promoter region of human pituitary expressed growth hormone (GH1) and (B) 10 SNP markers with the TAP2 gene.  

In (A), the SNP markers are listed as their position relative to the transcription start site of the GH1 gene whereas in (B), the SNP markers are 

listed by their National Center for Biotechnology Information (NCBI) reference SNP (rs) numbers.  Physical distances are provided.  All SNP 

markers displayed were included in the type I error study while SNP markers accompanied by an asterisk (*) were included in the power study.



Identifying the nature of haplotype pair misclassification.  For all the 

simulations performed, we recorded the details of the misclassifications that occurred.  

Specifically, for every replicate we computed the misclassification rates, 

j'jθ  = Pr{observed haplotype pair classification is j| true haplotype classification is j’}, 

where  (Gordon et al. 2004).  Previous research studying genotype misclassification 

rates in tests of genotypic association provides the motivation for ascertaining these 

values (Kang et al. 2004).  This notation is also used in the description of the LRT

jj ≠'

std and 

LRTae statistics.  

 

3.3 Results 

Two SNP scenario.  Our type I error and power results from the simulations 

utilizing SNPHAP v 1.3.1 and PHASE v 2.1.1 for the haplotype inference were almost 

identical.  Although we present graphs and tables that display the results where SNPHAP 

v 1.3.1 provided the haplotype inference, the reader should note that similar results were 

found using  PHASE v 2.1.1 for the haplotype inference. 

 

Evaluation of false positive rates for permutation and asymptotic p-values.  The 

type I error simulations demonstrated that the approach for determining statistical 

significance is critical for maintaining the correct false positive rate.  While KS and AD 

test results indicated that the distribution of permutation p-values was consistent with the 

standard uniform distribution, they indicated that the distribution of asymptotic p-values 

did not resemble the standard uniform distribution.  These results were reinforced by the 

false positive rates we found.  For all the simulation runs displayed in Table 3.1, 
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Figure 3.3 shows the false positive rate for various significance thresholds for  LRTstd and 

LRTae (using the random and threshold double-sample selection methods) association 

tests in which statistical significance was indicated by permutation and asymptotic p-

values.  The graph in Figure 3.3A shows that asymptotic p-values for  LRTae are anti-

conservative while those for LRTstd fluctuate between conservative and anti-conservative 

values when a significance threshold of 0.05 is applied.  In contrast, the permutation p-

values for both statistics consistently maintain the nominal significance level of 0.05.  We 

found that the asymptotic and permuted p-values demonstrated similar behavior for 

significance thresholds of 0.01 and 0.001.  However, for the 0.001 significance threshold, 

the p-values appear more scattered due to the scale at this extreme significance threshold.   

Haplotype pairs were inferred using SNPHAP v 1.3.1 for the simulation results displayed 

in the graph.  These results are not surprising since several simulation parameter settings 

have expected cell counts of less than five counts, violating Cochran’s rule (Cochran 

1952). 
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Figure 3.3  Line graph illustrating estimates of the false positive rate at various 

significance levels for LRTstd and LRTae 

 
Legend for Figure 3.3: The line graphs show estimates of the false positive rate at the (A) 0.05 

significance level, (B) 0.01 significance level, and (C) 0.001 significance level for LRTstd and 

LRTae with p-values determined by both permutation and the asymptotic central χ2 distribution.  

The 18 runs correspond to the combinations of parameter settings described in Table 3.1.  For all 

18 runs, LRTae was computed with the random and threshold double-sample selection methods.  

When the threshold double-sample method was utilized to compute LRTae, the setting of δ = 0.85 

was used, and the maximum proportion of individuals included in the double-sample was the 

value for α specified by the fractional factorial design.  Haplotype pairs were inferred using 

SNPHAP v 1.3.1 for the simulation results displayed in the graph. 

 78



Evaluation of power for fixed cost.  Based on the results for the false positive 

rates, we conclude that power can only be evaluated using the permutation p-values.  We 

compare the power of LRTae (using the random and threshold double-sample selection 

methods) to LRTstd.  Table 3.3 presents summary statistics for the power difference 

(LRTae power – LRTstd power) at various significance levels for the two cost ratios 

 and  using the 8 parameter settings from the factorial design 

(Table 3.2).  Note that in all runs, we set the cost ratio of molecular haplotyping to 

genotyping, r, to be 5, and the proportion of individuals to be double-sampled, α, to be 

0.75 (for the random double-sample selection method).  The values reported correspond 

to the simulations utilizing SNPHAP v 1.3.1.   

25/ =gp CC 1000/ =gp CC
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Table 3.3  Summary statistics for power difference (LRTae – LRTstd) at various significance levels 

 Significance Level = 0.05 Significance Level = 0.01 Significance Level = 0.001 
DS 

Selection 
Method 

Summary 
Statistic 

25/ =gp CC 1000/ =gp CC 25/ =gp CC 1000/ =gp CC 25/ =gp CC  1000/ =gp CC  

minimum       -0.061 -0.004 -0.062 0.001 -0.056 0.000
median       0.004 0.014 0.005 0.019 -0.007 0.021random 

maximum       0.036 0.105 0.033 0.089 0.025 0.135
minimum       -0.010 -0.004 0.001 0.003 -0.001 0.000
median       0.043 0.045 0.048 0.048 0.064 0.068threshold 

maximum       0.126 0.162 0.117 0.123 0.151 0.152
 

Legend for Table 3.3: This table presents summary statistics for the power difference between the LRTae and LRTstd methods (p-values evaluated 

using permutation) at the 0.05, 0.01, and 0.001 significance levels.  Results are shown for LRTae computed using both the random and threshold 

double-sample selection methods.  The methods are compared for fixed costs where the power for LRTae is computed under two conditions, 1) the 

cost ratio of phenotyping to genotyping (Cp/Cg) is 25 and 2) the cost ratio of phenotyping to genotyping (Cp/Cg) is 1000.  The sample size for 

LRTstd, N, is 1000 (500 cases, 500 controls).  For the LRTae statistic, settings of α = 0.75 (random double-sample selection method) and r = 5 were 

used.  When the threshold double-sample selection method was utilized to compute LRTae, the setting of δ = 0.85 was used, and the maximum  

proportion of individuals included in the double-sample was 0.75.  Haplotype pairs were inferred using SNPHAP v 1.3.1.



For the random double-sample selection method, the minimum power difference 

occurred when C  for a dominant disease model with R25/ =gp C 2 = 2 and DAF = 0.27 at 

a significance level of 0.01.  For these settings, the LRTae power was 0.544 and LRTstd 

power was 0.606.  The maximum power difference occurred whenC  for a 

dominant disease model with R

1000/ =gp C

2 = 3.5 and DAF = 0.07 at a significance level of 0.001.  

For these settings, the LRTae power was 0.910 and LRTstd power was 0.775. 

For the threshold double-sample selection method, the minimum power difference 

occurred when C  for a dominant disease model with R25/ =gp C 2 = 2 and DAF = 0.27 at 

a significance level of 0.05.  For these settings, the LRTae power was 0.821 and LRTstd 

power was 0.831.  The maximum power difference occurred whenC  for a 

dominant disease model with R

1000/ =gp C

2 = 2 and DAF = 0.07 at a significance level of 0.05.  For 

these settings, the LRTae power was 0.573 and LRTstd power was 0.411. 

 

Power difference as a function of double-sample proportion and cost ratio.  In 

the spirit of response surface analysis for factorial design (Box et al. 1978), we performed 

a more thorough analysis of the parameter settings that provided the maximum power 

difference when LRTae was computed with the random double-sample selection method.  

These parameter settings are a dominant disease model with R2 = 3.5 and DAF = 0.07.  

These settings provided the additional benefit of power results greater than 75% for both 

the LRTae and LRTstd methods at the 0.05, 0.01, and 0.001 significance levels for both 

cost ratios of C  and 25/ =gp C 1000/ =gp CC .  The analysis involved computation of 

the LRTae with the random double-sample selection method.  Figure 3.4 displays the two-

dimensional contour plots of the power difference between the LRTae and the LRTstd as a 
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function of r, the cost ratio of molecular haplotyping to genotyping, and α, the proportion 

of individuals double-sampled.  These power differences are computed for the fixed 

parameter settings of 25/ =gp CC  (Figure 3.4A) and 1000/ =gp CC  (Figure 3.4B) at 

significance level = 0.001 for the disease model described immediately above.  The 

values of r considered in the contour plots are 1, 5, 10, 25, and 50 while the values of α 

considered are 0.25, 0.50, 0.75, and 1.0.  One should note that α = 1.0 indicates all 

individuals in the study are double-sampled regardless of phase ambiguity.  Simulations 

were performed with 1000 replicates and 10,000 permutations for each combination of 

parameters, and SNPHAP v 1.3.1 was utilized for the haplotype inference.  The sample 

size for the LRTstd, N, was 1000 (equal numbers of cases and controls). 
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Figure 3.4  Contour plots of the power difference between LRTae and LRTstd at a significance level of 0.001 (two SNP scenario) 

 
Legend for Figure 3.4: The contour plots display the power difference between the LRTae and LRTstd at various settings for the cost ratio of 

molecular haplotyping to genotyping (r) and the proportion of individuals double-sampled (α).  Power is compared at the 0.001 significance level.  

The cost ratio of phenotyping to genotyping for (A) is 25 while the cost ratio of phenotyping to genotyping for (B) is 1000.  The two SNP scenario 

is examined for the parameter settings that provided the maximum power difference for factorial design (Table 3.2) using the random double-

sample selection method.  Generating haplotype frequencies for cases and controls were based on a dominant disease model with f = 0.025, 

R2 = 3.5, and DAF = 0.07, as well as, population haplotype frequencies of 0.05, 0.25, 0.15, and 0.55.  The haplotype with a frequency of 0.05 was 

placed in LD (D’ = 0.9) with the disease allele.  LRTae was only computed with the random double-sample selection method.  Haplotype pairs 

were inferred using SNPHAP v 1.3.1.  



Figure 3.4A shows that the LRTae provides a power advantage over the LRTstd 

when r is less than 10 and α is greater than 0.5.  The maximum power gain is 0.16 and 

occurs when r and α are 1.0.  Conversely, when r is greater than 10, LRTae is less 

powerful than LRTstd for these parameter settings.  The maximum power loss is 0.58 and 

occurs when r is 50 and α is 1.0.  Note that for these values the total sample available for 

the LRTae method, NDS (equation (1)), is 342 while the total sample available for the 

LRTstd method, N, is 1000. 

Figure 3.4B illustrates that LRTae is always at least as powerful as LRTstd when 

.  We observe a minimum power gain of 0.02 when r is 50 and α is 0.25 

and a maximum power gain of 0.17 when r and α are 1.0.  Furthermore, Figure 3.4B 

indicates that for any cost ratio, r, increasing the double-sampling proportion, α, always 

increases the power gain with the maximum power gain occurring when α = 1.0. 

1000/ =gp CC

Figures 3.5 and 3.6 display similar contour plots of the power difference between 

the LRTae and the LRTstd (as a function of r, the cost ratio of molecular haplotyping to 

genotyping, and α, the proportion of individuals double-sampled) using the same 

parameters as above at significance levels of 0.01 and 0.05, respectively.  Again, these 

power differences are computed for fixed parameter settings of 25/ =gp CC  

(Figures 3.5A and 3.6A) and 1000/ =gp CC  (Figures 3.5B and 3.6B).  Figures 3.5 and 

3.6 show that the results using significance thresholds of 0.01 and 0.05 are similar to 

those using a significance threshold of 0.001 (Figure 3.4).  When r is less than 10 (same 

as for Figure 3.4A), Figures 3.5A and 3.6A show that LRTae provides a power advantage 

over LRTstd.  As the significance level increases, the power advantage decreases.  Thus, 
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the power advantage is greatest for the 0.001 significance level, less for the 0.01 

significance level, and least for the 0.05 significance level.  Figures 3.5B and 3.6B 

illustrate that when 1000/ =gp CC , LRTae is always more powerful than LRTstd at 

significance levels of 0.01 and 0.05, respectively.  Again, the power advantage decreases  

as the significance level increases.
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Figure 3.5  Contour plots of the power difference between LRTae and LRTstd at a significance level of 0.01 (two SNP scenario) 

 
Legend for Figure 3.5: The contour plots display the power difference between LRTae and LRTstd at various settings for the cost ratio of molecular 

haplotyping to genotyping (r) and the proportion of individuals double-sampled (α).  Power is compared at the 0.01 significance level.  The cost 

ratio of phenotyping to genotyping for (A) is 25 while the cost ratio of phenotyping to genotyping for (B) is 1000.  The two SNP scenario is 

examined for the parameter settings that provided the maximum power difference for factorial design (Table 3.2) using the random double-sample 

selection method.  Generating haplotype frequencies for cases and controls were based on a dominant disease model with f = 0.025, R2 = 3.5, and 

DAF = 0.07, as well as, population haplotype frequencies of 0.05, 0.25, 0.15, and 0.55.  The haplotype with a frequency of 0.05 was placed in LD 

(D’ = 0.9) with the disease allele.  LRTae was only computed with the random double-sample selection method.  Haplotype pairs were inferred  

using SNPHAP v 1.3.1



Figure 3.6  Contour plots of the power difference between LRTae and LRTstd at a significance level of 0.05 (two SNP scenario) 

 
Legend for Figure 3.6: The contour plots display the power difference between LRTae and LRTstd at various settings for the cost ratio of molecular 

haplotyping to genotyping (r) and the proportion of individuals double-sampled (α).  Power is compared at the 0.05 significance level.  The cost 

ratio of phenotyping to genotyping for (A) is 25 while the cost ratio of phenotyping to genotyping for (B) is 1000.  The two SNP scenario is 

examined for the parameter settings that provided the maximum power difference for factorial design (Table 3.2) using the random double-sample 

selection method.  Generating haplotype frequencies for cases and controls were based on a dominant disease model with f = 0.025, R2 = 3.5, and 

DAF = 0.07, as well as, population haplotype frequencies of 0.05, 0.25, 0.15, and 0.55.  The haplotype with a frequency of 0.05 was placed in LD 

(D’ = 0.9) with the disease allele.  LRTae was only computed with the random double-sample selection method.  Haplotype pairs were inferred 

using SNPHAP v 1.3.1.  



Multi-SNP scenario 

Evaluation of false positive rates for permutation and asymptotic p-values.  

Table 3.4 displays our estimates of the false positive rate using various significance 

thresholds (0.05, 0.01, and 0.001) and the results of the KS test for the Horan and 

HapMap TAP2 dataset-based simulations.  Again, only the permuted p-values resemble 

the standard uniform distribution.  In addition, the permuted p-values maintain the 

nominal significance level while the asymptotic p-values are anti-conservative. 
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Table 3.4  False positive rate estimates for simulations with generating population 

haplotype frequencies based on the Horan and HAPMAP TAP2 datasets 

Horan Dataset HAPMAP TAP2 Dataset 
Sig. 

Level 
p-Value 

Type Statistic 
DS 

Selection 
Method 

False 
Positive 

Rate 
95% C.I. KS p-

Value 

False 
Positive 

Rate 
95% C.I. KS p-

Value 

LRTstd N/A 0.396 (0.366, 0.427) < 0.001 0.424 (0.393, 0.455) < 0.001
random 0.500 (0.469, 0.532) < 0.001 0.659 (0.629, 0.688) < 0.001asymptotic 

LRTae threshold 0.490 (0.459, 0.522) < 0.001 0.632 (0.601, 0.662) < 0.001
LRTstd N/A 0.062 (0.048, 0.079) 0.931 0.041 (0.030, 0.055) 0.770 

random 0.053 (0.040, 0.069) 0.718 0.047 (0.035, 0.062) 0.665 

0.05 

permuted 
LRTae threshold 0.051 (0.038, 0.067) 0.143 0.048 (0.036, 0.063) 0.267 
LRTstd N/A 0.122 (0.102, 0.144) < 0.001 0.154 (0.132, 0.178) < 0.001

random 0.181 (0.158, 0.206) < 0.001 0.336 (0.307, 0.366) < 0.001asymptotic 
LRTae threshold 0.168 (0.145, 0.193) < 0.001 0.314 (0.285, 0.344) < 0.001
LRTstd N/A 0.014 (0.008, 0.023) 0.931 0.010 (0.005, 0.018) 0.770 

random 0.010 (0.005, 0.018) 0.718 0.008 (0.004, 0.016) 0.665 

0.01 

permuted 
LRTae threshold 0.004 (0.001, 0.010) 0.143 0.012 (0.006, 0.021) 0.267 
LRTstd N/A 0.020 (0.012, 0.031) < 0.001 0.013 (0.007, 0.022) < 0.001

random 0.033 (0.023, 0.046) < 0.001 0.062 (0.048, 0.079) < 0.001asymptotic 
LRTae threshold 0.026 (0.017, 0.038) < 0.001 0.070 (0.055, 0.088) < 0.001
LRTstd N/A 0.003 (0.001, 0.009) 0.931 0.004 (0.001, 0.010) 0.770 

random 0.003 (0.001, 0.009) 0.718 0.002 (0.000, 0.007) 0.665 

0.001 

permuted 
LRTae threshold 0.001 (0.000, 0.006) 0.143 0.000 (0.000, 0.003) 0.267 

 

Legend for Table 3.4: This table presents estimates of the false positive rate and the 

corresponding 95% confidence intervals for the LRTstd and LRTae statistics (asymptotic and 

permuted p-values) for various significance levels.  The generating population haplotype 

frequencies for the simulations were based on the Horan and HAPMAP TAP2 datasets (as 

described extensively in the Methods section).  Simulations for 1000 replicate datasets containing 

250 cases and 250 controls were performed.  LRTae was computed with the random and threshold 

double-sample selection methods.  When the random double-sample selection method was 

utilized, a setting of α = 0.75 was used.  When the threshold double-sample method was utilized 

to compute LRTae, the setting of δ = 0.85 was used, and the maximum proportion of individuals 

included in the double-sample was 0.75.  The table also displays p-values for the Kolmogorov-

Smirnov Test (KS Test) which tests the null hypothesis that the p-values computed for each 

statistic are drawn from a standard uniform distribution.  Haplotype pairs were inferred using 

SNPHAP v 1.3.1. 
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Evaluation of power for fixed cost.  In our power study for haplotypes comprised 

of five SNPs, we again utilized the disease model parameter settings that provided the 

maximum power difference (LRTae power – LRTstd power) for the two SNP factorial 

design (Table 3.2) with LRTae computed using random double-sample selection.  These 

parameter settings are a dominant disease model with R2 = 3.5 and DAF = 0.07.  We 

based the population haplotype frequencies on the Horan and HapMap TAP2 datasets as 

described in the Methods section.  For each dataset, we selected the haplotype with a 

frequency closest to 0.05 as the haplotype in LD with the disease allele.  By this choice of 

haplotype, we approximated the frequency of the linked haplotype for the two SNP 

scenario (see section 3.2) when DAF = 0.07.  As with two SNP power study, the LD 

between the disease allele and the linked haplotype was 0.9 (measured by D’) (Lewontin 

1964).   The cost ratio of molecular haplotyping to genotyping (r) was 5.  When the 

random double-sample selection method was utilized to compute LRTae, the double-

sample proportion (α) was 0.75.  When the threshold double-sample method was utilized 

to compute LRTae, the setting of δ = 0.85 was used, and the maximum proportion of 

individuals included in the double-sample was 0.75. 

For the Horan dataset, the power estimates for LRTstd and LRTae were almost 

identical at the 0.05, 0.01, and 0.001 significance levels for cost ratios (C ) of both 

1000 and 25 (results not shown).  The high pair-wise intermarker LD present in the 

Horan dataset causes the haplotype inference to occur with almost complete fidelity.  In 

the absence of misclassification, the LRT

gp C/

ae statistic reduces to LRTstd.  Therefore, the 

high degree of similarity in power for these statistics is not surprising. 
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For the HAPMAP TAP2 dataset, Table 3.5 displays the power estimates and the 

corresponding 95% confidence intervals for the LRTstd and LRTae methods at the 0.05, 

0.01, and 0.001 significance levels assuming fixed costs.  When C , LRT1000/ =gp C ae 

provides a substantial power benefit over LRTstd with the power difference ranging from 

6% and 7% at a significance level of 0.05 to 14% and 21% at a significance level of 

0.001 for random double-sample selection and threshold double-sample selection, 

respectively.  When 25/ =gp CC , the advantage of LRTae over LRTstd is still substantial 

for threshold double-sample selection but more modest for random double-sample 

selection.  For the three significance levels under investigation, the power difference 

ranged from 7% to 22% and 1% to 3.5% for threshold and random double-sample 

selection, respectively.  
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Table 3.5  Power estimates for simulations with generating population haplotype 

frequencies based on the HAPMAP TAP2 datasets 

Significance 
Level Statistic 

DS 
Selection 
Method

Cp/Cg Power 95% C.I. 

LRTstd N/A N/A 0.858 (0.835, 0.879) 

1000 0.919 (0.900, 0.935) 
random

25 0.868 (0.845, 0.888) 

1000 0.924 (0.906, 0.940) 

0.05 
LRTae 

threshold
25 0.935 (0.918, 0.950) 

LRTstd N/A N/A 0.666 (0.636, 0.695) 

1000 0.801 (0.775, 0.825) 
random

25 0.701 (0.672, 0.729) 

1000 0.804 (0.778, 0.828) 

0.01 
LRTae 

threshold
25 0.817 (0.792, 0.841) 

LRTstd N/A N/A 0.405 (0.374, 0.436) 

1000 0.546 (0.515, 0.577) 
random

25 0.421 (0.390, 0.452) 

1000 0.613 (0.582, 0.644) 

0.001 
LRTae 

threshold
25 0.626 (0.595, 0.656) 

 

Legend for Table 3.5: This table presents power estimates and the corresponding 95% confidence 

intervals for LRTstd and LRTae statistics (permuted p-values) at various significance levels.  The 

simulations were performed under fixed costs such that the number of samples when LRTae is 

applied is reduced according to equation (3.6).  The generating population haplotype frequencies 

for the simulations were based on the HAPMAP TAP2 dataset (as described extensively in the 

Methods section).  The disease model is dominant with R2 = 3.5, disease prevalence = 0.025, 

DAF = 0.07, and D’ between the disease allele and the associated haplotype = 0.9.  Settings of 

α = 0.75 (random double-sample selection method) and r = 5 were used.  When the threshold 

double-sample method was utilized to compute LRTae, the setting of δ = 0.85 was used, and the 

maximum proportion of individuals included in the double-sample was 0.75.  Haplotype pairs 

were inferred using SNPHAP v 1.3.1. 
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We found that the median power gain of LRTae over LRTstd for the threshold 

double-sample selection method was consistently greater than that for the random 

double-sample selection method for the runs associated with the factorial design settings 

displayed in Table 3.2 and the HAPMAP TAP2 power simulations (see Tables 3.3 and 

3.5).  Furthermore, the power gain for the threshold double-sample selection method 

occurred for either setting of C .  For the threshold double-sample selection method, gp C/

α  was small (less than 21%) in our simulations so that our computed NDS* corresponded 

to 963 individuals. 

Power difference as a function of double-sample proportion and cost ratio.  As 

we did for the two SNP scenario, we performed a more thorough analysis to explore the 

effect of varying the cost ratio of molecular haplotyping to genotyping (r) and the double-

sample proportion (α) on the power difference between LRTae and LRTstd for the multi-

SNP scenario.  Again, we used the parameter settings of a dominant disease model with 

R2 = 3.5 and DAF = 0.07.  As before, f was set to 0.025, and the haplotype with a 

frequency closest to 0.05 was placed in LD (D’ = 0.9) with the disease allele.  The 

population haplotype frequencies were those from the HAPMAP TAP2 dataset 

(haplotype comprising 5 SNPs).  The analysis involved computation of LRTae with the 

random double-sample selection method.  Figures 3.7, 3.8, and 3.9 display the two-

dimensional contour plots of the power difference between LRTae and LRTstd as a 

function of r and α at significance levels of 0.001, 0.01, and 0.05, respectively.  These 

power differences are computed for the fixed parameter settings of 25/ =gp CC  

(Figures 3.7A, 3.8A, and 3.9A) and 1000/ =gp CC (Figures 3.7B, 3.8B, and 3.9B).  The 

values of r considered in the contour plots are 1, 5, 10, 25, and 50 while the values of α 
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considered are 0.25, 0.50, 0.75, and 1.0.  Simulations were performed with 1000 

replicates and 1000 permutations for each combination of parameters, and 

SNPHAP v 1.3.1 was utilized for the haplotype inference.  The sample size for LRTstd, N, 

was 1000 (equal numbers of cases and controls). 
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Figure 3.7  Contour plots of the power difference between LRTae and LRTstd at a significance level of 0.001 (multi-SNP scenario) 

 
Legend for Figure 3.7: The contour plots display the power difference between LRTae and LRTstd at various settings for the cost ratio of molecular 

haplotyping to genotyping (r) and the proportion of individuals double-sampled (α).  Power is compared at the 0.001 significance level.  The cost 

ratio of phenotyping to genotyping for (A) is 25 while the cost ratio of phenotyping to genotyping for (B) is 1000.  Generating haplotype 

frequencies for cases and controls were based on a dominant disease model with f = 0.025, R2 = 3.5, and DAF = 0.07, as well as, population 

haplotype frequencies found from the HAPMAP TAP2 dataset (haplotype comprising 5 SNPs).  The haplotype with a frequency closest to 0.05 

was placed in LD (D’ = 0.9) with the disease allele.  LRTae was only computed with the random double-sample selection method.  Haplotype pairs 

were inferred using SNPHAP v 1.3.1. 



Figure 3.8  Contour plots of the power difference between LRTae and LRTstd at a significance level of 0.01 (multi-SNP scenario) 

 
Legend for Figure 3.8: The contour plots display the power difference between LRTae and LRTstd at various settings for the cost ratio of molecular 

haplotyping to genotyping (r) and the proportion of individuals double-sampled (α).  Power is compared at the 0.01 significance level.  The cost 

ratio of phenotyping to genotyping for (A) is 25 while the cost ratio of phenotyping to genotyping for (B) is 1000.  Generating haplotype 

frequencies for cases and controls were based on a dominant disease model with f = 0.025, R2 = 3.5, and DAF = 0.07, as well as, population 

haplotype frequencies found from the HAPMAP TAP2 dataset (haplotype comprising 5 SNPs).  The haplotype with a frequency closest to 0.05 

was placed in LD (D’ = 0.9) with the disease allele.  LRTae was only computed with the random double-sample selection method.  Haplotype pairs 

were inferred using SNPHAP v 1.3.1.  



Figure 3.9  Contour plots of the power difference between LRTae and LRTstd at a significance level of 0.05 (multi-SNP scenario) 

 
Legend for Figure 3.9: The contour plots display the power difference between LRTae and LRTstd at various settings for the cost ratio of molecular 

haplotyping to genotyping (r) and the proportion of individuals double-sampled (α).  Power is compared at the 0.05 significance level.  The cost 

ratio of phenotyping to genotyping for (A) is 25 while the cost ratio of phenotyping to genotyping for (B) is 1000.  Generating haplotype 

frequencies for cases and controls were based on a dominant disease model with f = 0.025, R2 = 3.5, and DAF = 0.07, as well as, population 

haplotype frequencies found from the HAPMAP TAP2 dataset (haplotype comprising 5 SNPs).  The haplotype with a frequency closest to 0.05 

was placed in LD (D’ = 0.9) with the disease allele.  LRTae was only computed with the random double-sample selection method.  Haplotype pairs  

were inferred using SNPHAP v 1.3.



Like the two SNP scenario, Figures 3.7, 3.8, and 3.9 illustrate that for the multi-

SNP scenario the power difference between LRTae and LRTstd increases as the 

significance threshold decreases.  Figures 3.7A, 3.8A, and 3.9A show that LRTae 

provides a power advantage over LRTstd when r is less than 5 and α is greater than 0.5 

when significance thresholds of 0.001, 0.01, and 0.05, respectively, are applied.  In each 

case a maximum power gain (0.182 for the 0.001 significance level, 0.153 for the 0.01 

significance level, and 0.084 for the 0.05 significance level) occurs when r and α are 1.0.  

Conversely, when the r is greater than 5, LRTae is less powerful than LRTstd for these 

parameter settings. 

Figures 3.7B, 3.8B, and 3.9B show that LRTae is almost always at least as 

powerful as LRTstd when 1000/ =gp CC  for the multi-SNP scenario.  We observe a 

slight power loss of 0.02 at the 0.001 significance level when α = 0.25 and r = 10 and of 

approximately 0.01 at the 0.01 and 0.05 significance levels when α = 0.25 and r = 5.  The 

maximum power gain of 0.217 occurs when r and α are 1.0 using a significance threshold 

of 0.001 (Figure 3.7B).  As we observed with the two SNP scenario, Figures 3.7B, 3.8B, 

and 3.9B indicate that for any cost ratio, r, increasing the double-sampling proportion, α, 

always increases the power gain with the maximum power gain occurring when α = 1.0.   

Furthermore, comparing the multi-SNP scenario (Figures 3.7, 3.8, and 3.9) with 

the two SNP scenario (Figures 3.4, 3.5, and 3.6), we find the same fundamental trends for 

both and 25=gp C/C 1000/ =gp CC .  However, the multi-SNP scenario generally 

displays a larger power advantage for LRTae over LRTstd due to the greater opportunity 

for misclassification of haplotypes composed of more double heterozygotes. 
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3.4 Discussion 

In practice, few researchers employ molecular haplotyping techniques in genetic 

case-control studies.  The absence of a high-throughput procedure relative to current SNP 

genotyping technologies is arguably the main reason that this methodology is not more 

widely used.  Another related reason is the cost in terms of both time and money 

associated with employing this methodology.  Our research suggests that the additional 

costs involved in molecular haplotyping may be worth the effort, especially if the cost of 

phenotyping is high relative to the cost of genotyping for a study.  Ji et al. found 

analogous results for the effects of genotype misclassification on genotypic tests of 

association (Ji et al. 2005).  Other research has shown that molecular haplotypes can 

greatly increase the power of family-based linkage studies for mapping complex diseases 

(Gillanders et al. 2006).  In practice, the situation where the cost of phenotyping is high 

relative to the cost of genotyping arises for replication studies.  A genome-wide scan 

involving thousands of SNP markers along with subsequent fine mapping in an initial set 

of case and control individuals may identify a number of promising regions for follow-up 

studies.  These follow-up or replication studies involve recruiting an independent sample 

of cases and controls for which only SNPs in the promising regions will be genotyped 

(Skol et al. 2006).  In replication studies for complex traits, the cost ratio of phenotyping 

to genotyping may be on the order of thousands.  For these situations, the LRTae for 

testing haplotype association should provide the most utility.  It is interesting to note, 

however, that applying the threshold double-sample selection method provided 

comparable powers for both high and low phenotyping to genotyping cost ratios.  This 
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finding suggests that this selection strategy may provide additional power for an initial 

genome-wide association study as well as for a replication study. 

One potential limitation of the test statistics that we selected is the increase in 

degrees of freedom associated with using haplotype pairs rather than individual 

haplotypes.  In general, larger degrees of freedom may result in a loss of power.  That is, 

methods that fully account for uncertainty in the phase assignment process (Schaid et al. 

2002; Zaykin et al. 2002; Stram et al. 2003) may be more powerful than LRTae because 

the LRTae method examines haplotype pairs rather than single haplotypes and therefore 

has more degrees of freedom.  We chose these statistics for the following reasons: 1) The 

most general misclassification model involves modeling errors in haplotype pairs rather 

than in individual haplotypes (Douglas et al. 2002; Sobel et al. 2002; Gordon et al. 2004).  

2) When haplotype pair frequencies deviate from Hardy Weinberg Equilibrium in either 

case or control sample populations, test statistics that utilize single haplotype frequencies 

may increase false positive rates and/or lose power (Sasieni 1997; Czika and Weir 2004).  

3) In contrast with methods that utilize single haplotype frequencies, the Cochran-

Armitage Linear Test of Trend maintains the nominal false positive rate and does not lose 

power (Cochran 1954; Armitage 1955; Czika and Weir 2004).  To our knowledge, a 

version of this test that incorporates double-sampling procedures to correct for haplotype 

miscalls does not currently exist. 

A point for further research involves identifying the scenarios that produce 

differential and non-differential haplotype pair misclassification as well as the effects of 

each kind of misclassification on type I error and power.  Under the null hypothesis that 

haplotype frequency distributions are equal in case and control populations, theoretical 
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and simulation studies (including the work presented in this chapter) suggest that 

misclassification is non-differential.  Under the alternative hypothesis, it is conceivable 

that haplotype pair misclassification rates may be different in case and control 

populations.  While recent research (Clayton et al. 2005; Moskvina et al. 2006) indicates 

that differential misclassification increases the type I error, the effects of differential 

misclassification on the power of these statistics remain unclear.  

While the current perception may be that molecular haplotyping costs are not 

cost-effective, recent publications suggest that for relatively small regions of the genome 

accurate molecular haplotyping is no more expensive than performing fluorescent 

polymerase chain reactions (Proudnikov et al. 2004; Proudnikov et al. 2006).  In addition, 

current techniques are able to provide molecular haplotypes for an entire chromosome at 

a cost ratio (Cmh/Cg) of approximately 5 (C. Ding; personal communication).  Finally, as 

technology improves, the costs associated with molecular haplotyping will likely 

decrease, and the throughput will likely increase. 
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CHAPTER 4:  ASCERTAINING THE DISTRIBUTION FOR THE 

LIKELIHOOD RATIO STATISTIC 

 

4.1 Introduction 

Although haplotype misclassification can decrease the power for a study, the issue 

can be avoided by applying an approach that does not infer haplotype pairs for each study 

participant.  An alternative approach is to employ a test statistic that relies on haplotype 

frequency estimates rather than haplotype calls.  Besides the consequences of estimates 

deviating from their true values, this alternative approach faces complications of its own.  

In some situations, the exact distribution of the test statistic under both the null and 

alternative hypotheses can be unclear. 

Haplotype-based studies are often hindered by the fact that some haplotypes occur 

very rarely.  The number of possible haplotypes grows exponentially as the number of 

component SNP loci increases.  Consequently, the number of possible haplotypes is often 

quite large, and many of these possible haplotypes are rare or do not appear at all in the 

population.  Recent studies have found that haplotypes appear in blocks such that there 

are several common variants while many other variants do not appear at all or are very 

rare (Daly et al. 2001; Patil et al. 2001; Stephens et al. 2001a; Subrahmanyan et al. 2001; 

Gabriel et al. 2002; International HapMap Consortium 2003; International HapMap 

Consortium 2005).  As mentioned earlier, several strategies, such as clustering based on 

similarity (Hoehe et al. 2000), pooling rare haplotypes (Sham and Curtis 1995; Schaid et 

al. 2002; Zhao et al. 2003), and applying haplotype diversity criteria for SNP selection 

(Johnson et al. 2001; Jannot et al. 2004) 

102 



(http://www-gene.cimr.cam.ac.uk/clayton/software/stata/htSNP/htsnp.pdf), have been 

utilized to reduce the number of haplotype categories and potentially to gain power.  

However, rare or non-existent haplotypes can have other effects on an analysis besides a 

reduction in power. 

Since multilocus genotypes lack phase information, the testing situation for 

haplotype-based association studies is more complex than that for other genetic 

association studies where the variants under investigation are directly observed.  In tests 

of haplotype-based association where haplotype frequencies are estimated from 

multilocus genotypes, estimation procedures may find a small frequency for some 

haplotypic variants.  There is uncertainty whether haplotypes with small frequency 

estimates are present but rare in the sample or not present in the sample at all but merely 

compatible with the multilocus genotypes observed.  The effect of this situation on the 

distribution of the resulting test statistic under both null and alternative hypotheses 

remains unclear.  One still expects that the test statistic will follow a central χ2 

distribution under H0 and a noncentral χ2 distribution under H1.  However, the degrees of 

freedom associated with either χ2 distribution are no longer well defined.   

In this work, we investigate the distribution of a test statistic which relies on 

haplotype frequency estimates to detect an association between a haplotype and disease 

status.  In particular, we are interested in the distribution of this statistic when some 

haplotypic variants are extremely rare or nonexistent.  Furthermore, we apply a rule to 

predict the distribution of the statistic and evaluate the accuracy of its prediction. 
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4.2 Methods 

Test statistic.  We considered a likelihood ratio statistic for detecting haplotype-

based association with disease.  The null hypothesis we test is  for all 

haplotypes 

j*jj hhh:H == 100

j  while the alternative hypothesis is jj hh:H 101 ≠  for at least one j where 

, , and  are the haplotype frequencies for cases, controls, and the entire 

population, respectively, for the j

jh0 jh1 jh∗

th haplotype.  The statistic is computed using the 

equation 
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where and are the likelihood of the data under the alternative and null 

hypotheses, respectively.  Each likelihood (L) can be expressed as 
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where N is the number of individuals genotyped, Hi is the set of haplotype pairs 

compatible with the ith multilocus genotype, and and are haplotype frequencies for 

a haplotype pair consistent with the i

1i
h

2i
h

th multilocus genotype.  Expressing these likelihoods 

in terms of the haplotype frequencies (equation (4.2)), we have a missing data problem 

(since we do not observe phase directly).  However, we can overcome this hurdle by 

applying the EM algorithm (Dempster et al. 1977) to find these likelihoods and estimates 

of  the haplotype frequencies.  We implement this strategy by employing the software 

package EHP (see Electronic Resource Information).  This software was developed to 

compute haplotype frequency estimates for datasets where the DNA samples from 

several individuals have been pooled together.  However, since our analysis did not 
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require any pooling of samples, we set our pool size to one.  Equation (4.1) can be 

rewritten as: 

[ ] [ ] [ ][ ]∗−+×= LlnLlnLlnLRT 102     (4.3) 

where , , and  are the likelihoods computed from the multilocus genotypes from 

cases alone, controls alone, and all samples, respectively.  The reader should note that  

represents the likelihood under H

0L

∗

1L ∗L

∗L

1L

0 since the haplotype frequencies must be equal for 

cases and controls.  In addition, the product of  and  represents the likelihood under 

H

0L 1L

1 since the haplotype frequencies for cases and controls are unconstrained.  Applying 

the EM algorithm (Dempster et al. 1977) as implemented in EHP, we computed , , 

and  and utilized equation (4.3) to find the LRT statistic.  To differentiate this LRT 

statistic from LRT

0L

L

ae and LRTstd described in the previous chapter, we will refer to it as 

LRTem from this point forward. 

 

Description of data generation and analysis.   To investigate the distribution of 

the LRT statistic for a variety of situations, we applied LRTem to many simulated datasets.  

Figure 4.1 illustrates the procedure we used to simulate the data and compute the LRTem 

statistic under the null and alternative hypotheses.  For each replicate dataset, we 

simulated haplotype pairs for each individual from known frequencies (population 

haplotype frequencies under H0 and conditional haplotype frequencies under H1).  Next 

we removed the phase information for each individual.  We utilized the remaining 

multilocus genotypes to compute the LRTem statistic using the EHP software as described 

above.  After all replicate datasets had been simulated, we examined the distribution of 

the resulting LRTem statistics.  In order to find the distribution from which the LRTem 
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statistics derive, we performed a goodness-of-fit test, the Kolmogorov-Smirnov (KS) test, 

for χ2 distributions with various degrees of freedom.  Since all KS tests in this chapter are 

for χ2 distributions, we use the notation KSv, j to indicate a KS test for a χ2 distribution 

with noncentral parameter, v, and degrees of freedom, j.  In addition, we visually 

compared distributional plots of the LRTem statistic with several χ2 distributions with 

various degrees of freedom. 

Figure 4.1  Schematic flow chart illustrating the procedure for data simulation and 

analysis 

Use EM algorithm (as implemented 
in the EHP software) to calculate 

the likelihood and estimate 
haplotype frequencies from the 
multilocus genotypes for cases 
separately, controls separately, 

and all individuals pooled

Create 
many 

replicate 
datasets.

Examine the distribution of the LRT statistics after all replicates completed 
and compare with c2 distributions with various degrees of freedom

Find the 
LRTem
statistic

Simulate haplotypes from known population frequencies 
and arbitrarily assign to cases and controls.A)

Simulate haplotypes from known frequencies 
(conditional on affection status).  These conditional 

frequencies are based on the selected disease model.
B)

Remove phase 
leaving only 
multilocus 
genotypes 
for each 

individual.

 

Legend for Figure 4.1:  This schematic flow chart illustrates the procedure employed to create a 

distribution of LRTem statistics under (A) the null hypothesis and (B) the alternative hypothesis by 

way of data simulation. 
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Two SNP scenario 

Examination of the distributional properties of LRTem under the null 

hypothesis.  As in chapter 3, for the simplest non-trivial case, the scenario where the 

haplotype under evaluation includes two SNPs, we applied a factorial design (Box et al. 

1978).  Here we utilized the factorial design to perform a comprehensive study of the 

distributional properties of LRTem.  Table 4.1 contains the factorial design settings for the 

scenario involving two SNP markers.  We consider a  factorial design, where g = 4.  

We reduced the number of experimental runs from 16 to 12 due to redundancy.  For 

example, a run with a haplotype comprised of a SNP with minor allele frequency 0.5 at 

the locus 1 and a SNP with minor allele frequency 0.01 at locus 2 is equivalent to a run 

with a haplotype comprised of a SNP with minor allele frequency 0.01 at locus 1 and a 

SNP with minor allele frequency 0.5 at locus 2 (with all other factors having equal 

settings to those for the first run).  Since minor allele frequencies of 0.05 and 0.01 are 

commonly used thresholds for SNP selection in association studies, we chose 0.01 (the 

more extreme threshold) as the low setting for the minor allele frequency at loci 1 and 2.  

Within each replicate dataset, the number of cases and controls were equal.  During each 

run, 10,000 replicate datasets were simulated.  

g2
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Table 4.1  Factorial design parameter settings assuming the haplotype under 

investigation contains two SNP markers 

Description of parameter Low High 
Number of subjects (equal cases and controls) 500 2000 
Minor allele frequency at locus 1 (MAF1) 0.01 0.5 
Minor allele frequency at locus 2  (MAF2) 0.01 0.5 
LD between locus 1 and 2 (measured by D’) 0 0.9 
 
Legend for Table 4.1: This table presents the settings for all parameters considered in the 

simulations to study the distribution of LRTem under H0 and H1 assuming the haplotype under 

investigation contains two SNP markers.  We consider a 2  factorial design, where g = 4.  The 

number of experimental runs was reduced from 16 to 12 due to redundancy.  D’ is the 

standardized linkage disequilibrium measure.  The simulations included 10,000 replicates, and 

EHP was used to estimate haplotype frequencies and calculate likelihoods for LRT

g

em. 

 

Examination of the distributional properties of LRTem under the alternative 

hypothesis.  We also examined the distribution of the LRTem statistics under the 

hypothesis that a disease allele at an unobserved locus exists in linkage disequilibrium 

(LD) with the haplotype under study.  Table 4.1 contains the factorial design settings for 

the study of the distribution of LRTem under H1.  As for the study under H0, the allele 

frequencies at each marker locus and the LD between marker loci were used to determine 

the population haplotype frequencies.  For the study under H0, these haplotype 

frequencies were used directly to simulate haplotypes.  However, for the study under H1, 

we used the population haplotype frequencies to compute the conditional (on case status) 

haplotype frequencies.  These conditional haplotype frequencies were then used, in turn, 

to simulate haplotypes for case and control individuals.  Conditional haplotype 

frequencies were found from population haplotype frequencies and specified disease 

model parameters by a method described by Sham and subsequently by De La Vega et al. 
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(Sham 1998; De La Vega et al. 2005) (also see the Power for Association with Error 

(PAWE) website at http://linkage.rockefeller.edu/derek/pawe1.html).  However, we 

selected a specific haplotype to be in LD with the disease allele.  For completeness, 

details regarding the conditional haplotype frequencies including notation and 

computation as described by De La Vega et al. (2005) are provided in subsection 3.2 of 

chapter 3.  For all runs under H1, the generating haplotype frequencies for cases and 

controls were based on a dominant disease model ( 12 RR = ) with f = 0.025, R2 = 3.5, and 

DAF = 0.07.  In addition, the marker haplotype with a frequency closest to 0.05 was 

placed in LD (D’ = 0.9) with the disease allele.  (In the previous chapter, we utilized 

these disease parameter settings for the in-depth power analysis for both the two SNP and 

multi-SNP scenarios.)  Subsection 3.2 also provides an example of how the conditional 

frequencies are computed.  As for the study under H0, we reduced the number of 

experimental runs from 16 to 12 due to redundancy.  Again, the number of cases and 

controls were equal within each replicate dataset, and 10,000 replicate datasets were 

simulated during each run. 

 

Multi-SNP scenario 

Examination of the distributional properties of LRTem under the null and 

alternative hypotheses.  We performed additional simulations to investigate the 

distributional properties of LRTem when applied to haplotypes comprised of larger 

numbers of SNPs.  Table 4.2 contains the factorial design settings for the study of the 

distribution of LRTem under H0 and H1 when the haplotype under investigation contains 

many SNPs.  Our simulations were based on haplotype frequencies from two datasets—
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the Horan (Horan et al. 2003) and HapMap TAP2 (International HapMap Consortium 

2003; International HapMap Consortium 2005) datasets.  The datasets are described in 

subsection 3.2 of chapter 3 along with an explanation of how the generating population 

haplotype frequencies were attained from each dataset.  Also in subsection 3.2, Figure 3.2 

displays the inter-marker LD present in each dataset.  For the experimental runs (both 

under H0 and H1) based on these datasets, we simulated haplotypes comprised of five and 

ten SNPs.  In Figure 3.2, the five SNP markers comprising the five-SNP haplotype are 

indicated with an asterisk (*) for both Horan and HAPMAP TAP2 datasets.  For the 

experimental runs with the ten-SNP haplotype, we used the last ten SNP markers 

appearing in Figure 3.2A for the Horan dataset, and all ten SNP markers appearing in 

Figure 3.2B for the HAPMAP TAP2 dataset.  The number of cases and controls were 

equal within each replicate dataset, and 1000 replicate datasets were simulated during 

each run. 
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Table 4.2  Factorial design parameter settings assuming the haplotype under 

investigation contains many SNP markers 

Description of parameter Low High 

Inter-marker LD HAPMAP TAP2 Horan 
Number of SNPs comprising haplotype 5 10 
Number of subjects (equal cases and controls) 500 2000 
 
Legend for Table 4.2: This table presents the settings for all parameters considered in the 

simulations to study the distribution of LRTem under H0 and H1 assuming the haplotype under 

investigation contains many (more than two) SNP markers.  We consider a  factorial design, 

where g = 3.  Simulations were based on population haplotype frequencies from a dataset with 

low inter-marker LD, the Horan dataset (Horan et al. 2003), and on population haplotype 

frequencies from a dataset with high inter-marker LD, the HAPMAP TAP2 dataset (International 

HapMap Consortium 2003; International HapMap Consortium 2005).  The simulations included 

1000 replicates, and EHP was used to estimate haplotype frequencies and calculate likelihoods 

for LRT

g2

em.  

 

Predicting the degrees of freedom.  One goal of this work is to establish a “rule 

of thumb” for predicting the degrees of freedom for the χ2 distribution which most 

closely resembles the distribution of LRTem for a set of simulation parameters.  The rule 

that we test is that 
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tĥ
x

j

j
j . 

In equation (4.4), df is the predicted number of degrees of freedom for the χ2 distribution; 

J is the total number of possible haplotypes; , , and  are frequency estimates for jĥ0 jĥ1 jĥ∗
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the jth haplotype using cases alone, controls alone, and all samples, respectively; and t , 

, and t  are the number of cases, the number of controls, and the total number of 

samples, respectively.   

0

1t

0

jx0

According to statistical theory, for large sample sizes the LRTem statistic 

asymptotically follows a central χ2 distribution under H0 and a noncentral χ2 distribution 

under H1 (Mitra 1958; Hogg and Craig 1995; Agresti 1996). The number of degrees of 

freedom associated with either χ2 distribution equals the difference between the number 

of free parameters estimated under H1 and H0 in equation (4.1).  For LRTem in the context 

of haplotype-based association, this quantity can be expressed as  

110 −−+= *df ηηη      (4.5) 

where η , 1η , and ∗η  are the number of haplotypes estimated using cases alone, controls 

alone, and all samples, respectively.  The rule described above in equation (4.4) examines 

how 0η , 1η , and ∗η  should be found.  Suppose we estimate haplotype frequencies from 

multilocus genotypes from t individuals.  A single individual possessing one copy of the 

variant represents the minimum frequency of a haplotypic variant present in this sample.  

Thus, the rule described in equation (4.4) applies this minimum frequency ( t21 ) as a 

threshold to distinguish haplotypes present in the sample from those that are not present.   

To test the performance of this rule, we computed the average values for , , 

and  over all replicate datasets for cases alone, controls alone, and all samples together 

and computed the predicted degrees of freedom using equation (4.4).  We rounded the 

value computed for df and plotted the χ

jx∗

jx1

2 distribution with df degrees of freedom (along 

with χ2 distributions with df –1 and df +1) for comparison with the distribution LRTem.   
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The software package R (see Electronic Resource Information) was used to create these 

plots.  The noncentrality parameter (ncp) for the “predicted” χ2 distribution was 

computed using  
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as described by others (see http://linkage.rockefeller.edu/derek/pawe2.html) (Mitra 1958; 

Sham 1998; Gordon et al. 2002).  Under the null hypothesis, ncp = 0 since  and  

are equal for each haplotype j. 

jh0 jh1

 

4.3 Results 

At the end of section 4.3, Table 4.3 summarizes the results for all experimental 

runs (both two SNP and multi-SNP scenarios under H0 and H1) presented in this chapter. 

 

Two SNP scenario. 

Examination of the distributional properties of LRTem under the null 

hypothesis.  Our simulation results under the null hypothesis can be classified into three 

categories—1) experimental runs where the rule described in equation (4.4) successfully 

predicts the correct distribution; 2) experimental runs where the rule described in 

equation (4.4) successfully predicts the correct distribution for larger sample sizes only; 

and 3) experimental runs where the rule described in equation (4.4) fails to predict the 

correct distribution regardless of sample size.  Figure 4.2 displays the distribution of 

LRTem for simulation runs that represent each of these categories.  In our factorial design 

(Table 4.1), some experimental runs contain no rare haplotypes in the generating 
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haplotype frequencies.  One example is the run in which MAF1 = 0.5, MAF2 = 0.5, and 

the LD between locus 1 and 2 (measured by D’) is 0.  These parameter settings result in 

four haplotypes with equal frequencies (0.25).  These frequencies serve as the generating 

frequencies for the simulation.  Figure 4.2A displays a histogram and density line for the 

LRTem statistic computed from simulations utilizing these parameter settings under H0 for 

500 samples (equal numbers of cases and controls).  Figure 4.2A shows that the 

distribution of LRTem for this experimental run closely resembles a central χ2 distribution 

with 3 degrees of freedom, the distribution predicted by the rule in equation (4.4).  Since 

all the generating haplotype frequencies are large, we expected LRTem for this run to 

exhibit this behavior.  For this run, the KS0,3 test (testing a central χ2 distribution with 

df = 3) p-value = 0.248 indicating that the distribution of LRTem is consistent with a 

central χ2 distribution with 3 degrees of freedom.  The experimental run with the same 

parameter settings and a sample size of 2000 showed similar results (results not shown). 
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Figure 4.2  Histograms displaying the distribution of LRTem under H0 for the two SNP 

scenario 

 
Legend for Figure 4.2: The histograms display the distribution of LRTem along with the density 

lines for several central χ2 distributions for a number of experimental runs.  The distribution of 

LRTem was created by simulating haplotypes comprised of two SNPs under H0.  For (A), 

MAF1 = 0.5 and MAF2 = 0.5; for (B and C), MAF1 = 0.5 and MAF2 = 0.01; and for (D) 

MAF1 = 0.01 and MAF2 = 0.01.  For all runs displayed, LD between SNP 1 and 2 = 0 (measured 

by D’).  10,000 replicate datasets comprised of 500 samples (A and B) and 2000 samples (C and 

D) were simulated.  The graphs were scaled to the observed data, and density lines off the scale 

were truncated. 
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Other experimental runs required larger sample sizes for the rule described in 

equation (4.4) to predict the correct distribution.  The experimental run in which 

MAF1 = 0.5, MAF2 = 0.01, and LD between locus 1 and 2 = 0 (measured by D’) exhibited 

this behavior.  This run had a minimum generating haplotype frequency (0.005) that was 

substantially smaller than the minimum generating haplotype frequency for the run 

described above yet still greater than any of the thresholds established by the rule 

described in equation (4.4).  Figures 4.2B and 4.2C display histograms for LRTem 

computed from simulations utilizing these parameter settings.  Figure 4.2B shows the 

distribution for simulated datasets containing 500 samples while Figure 4.2C shows the 

distribution for simulated datasets containing 2000 samples.  In Figure 4.2B, the 

distribution of LRTem does not resemble a central χ2 distribution with 2 degrees of 

freedom, the distribution predicted by the rule in equation (4.4) for this run.  Instead, it 

roughly resembles a central χ2 distribution with 3 degrees of freedom.  Figure 4.2C 

shows that increasing the sample size leads to a better fit with a central χ2 distribution 

with 3 degrees of freedom, the distribution predicted with the increased sample size using 

the rule described in equation (4.4).  Although the distribution of LRTem visually matches 

the density plot for the central χ2 distribution with 3 degrees of freedom in Figure 4.2C, 

the KS0,3 p-values for both the 500 and 2000 sample size runs are approximately 0.  Thus, 

the distribution of LRTem for the 2000 sample run still deviates from a central χ2 

distribution with 3 degrees of freedom. 

The rule described in equation (4.4) failed to predict the distribution for other 

experimental runs regardless of the sample size.  The experimental run in which 

MAF1 = 0.01, MAF2 = 0.01, and LD between locus 1 and 2 = 0 (measured by D’) is in 
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this category.  This run had a minimum generating haplotype frequency (0.0001) that was 

below all of the thresholds (for both a sample size of 500 and 2000) established by the 

rule described in equation (4.4).  Figure 4.2D displays a histogram for LRTem computed 

from simulations utilizing these parameter settings.  Figure 4.2D shows the distribution 

for simulated datasets containing 2000 samples.  In Figure 4.2D, the distribution of 

LRTem does not resemble a central χ2 distribution with 2 degrees of freedom, the 

distribution predicted by the rule in equation (4.4) for this experimental run.  Instead, the 

distribution of LRTem falls between central χ2 distributions with 2 and 3 degrees of 

freedom.  The distribution of LRTem utilizing the same parameters for simulating datasets 

with 500 samples exhibited near identical behavior (results not shown).  Thus, in this 

case, increasing the sample size did not increase the accuracy of the prediction rule 

described in equation (4.4). 

 

Examination of the distributional properties of LRTem under the alternative 

hypothesis.  The prediction rule in equation (4.4) was not as successful for our 

simulations under the alternative hypothesis for the two SNP scenario.  Although for the 

majority of cases the distribution of LRTem did not resemble the distribution selected by 

the rule, in some situations increasing the sample size provided a distribution of LRTem 

predicted by the rule (as we observed under H0).  Figures 4.3A and 4.3B display the 

distribution of LRTem for one such set of experimental runs.  Here MAF1 = 0.5, 

MAF2 = 0.5, and LD between SNP 1 and 2 = 0.9 (measured by D’).  Figures 4.3A and 

4.3B show the results from simulations of datasets with 500 and 2000 samples, 

respectively.  Although the distribution of LRTem appears to follow a noncentral χ2 
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distribution with df = 3 (the distribution predicted for both runs) in Figure 4.3A, the fit is 

improved in Figure 4.3B.  Furthermore, only the KS test results for the run with a sample 

size of 2000 support the idea that LRTem follows the predicted distribution (KS34.0,3 test 

p-value = 0.145 and KS8.5,3 test p-value = 0).  Figures 4.3C and 4.3D display the 

distribution of LRTem for datasets of 500 and 2000 samples, respectively, simulated for 

haplotypes comprised of two SNPs where MAF1 = 0.01, MAF2 = 0.01, and LD between 

SNP 1 and 2 = 0 (measured by D’).  The predicted distribution for both experimental runs 

is a noncentral χ2 distribution with df = 2; however, the distribution of LRTem in Figures 

4.3C and 4.3D seems to bear a greater resemblance to a noncentral χ2 distribution with 

df = 3.  For the run with 2000 samples, the results of the KS test support the idea that 

LRTem follows a noncentral χ2 distribution with df = 3 (KS13.1,3 test p-value = 0.286 and 

KS13.1,2 test p-value = 0). 
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Figure 4.3  Histograms displaying the distribution of LRTem under H1 for the two SNP 

scenario 

 
Legend for Figure 4.3: The histograms display the distribution of LRTem computed from 

simulated datasets comprised of 500 samples (A and C) and 2000 samples (B and D) along with 

the density lines for several noncentral χ2 distributions.  The distribution of LRTem was created by 

simulating haplotypes comprised of two SNPs under H1.  For (A) and (B), MAF1 = 0.5, 

MAF2 = 0.5, and LD between SNP 1 and 2 = 0.9 (measured by D’) while for (C) and (D), 

MAF1 = 0.01, MAF2 = 0.01, and LD between SNP 1 and 2 = 0 (measured by D’).  10,000 

replicate datasets containing equal numbers of cases and controls were simulated.  The graphs 

were scaled to the observed data, and density lines off the scale were truncated. 
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Multi-SNP scenario 

Examination of the distributional properties of LRTem under the null and 

alternative hypotheses.  For our simulations under the null and alternative hypotheses 

that rely on haplotype frequencies from the Horan dataset, LRTem did not follow the 

distribution predicted by equation (4.4).  Figure 4.4 displays histograms for LRTem 

computed from simulations utilizing haplotype frequencies from the Horan dataset as the 

generating haplotype frequencies.  Figures 4.4A and 4.4C show the distribution of LRTem 

for a haplotype comprised of 5 SNP markers (for data simulated under H0 and H1, 

respectively) while Figures 4.4B and 4.4D show the distribution of LRTem for a 

haplotype comprised of 10 SNP markers (for data simulated under H0 and H1, 

respectively).  The simulations providing the data for Figures 4.4 created 1000 replicate 

datasets, each containing 2000 samples (equal numbers of cases and controls).  For the 

haplotype simulations under H0 or H1 involving 5 SNP markers, the distribution predicted 

by equation (4.4) is a central or noncentral (ncp = 64.6), respectively, χ2 distribution with 

4 degrees of freedom.  Figures 4.4A and 4.4C demonstrate that the distribution of LRTem 

more closely approximates a central χ2 distribution with 5 degrees of freedom.  The KS0,5 

test (under H0) p-value of 0.099 and the KS64.6,5 test (under H1) p-value of 0.163 confirm 

this similarity (while the KS0,4 and KS64.6,4 had p-values of 0). When the number of SNPs 

included in the haplotype is increased to ten for simulations under H0 or H1, the 

distribution predicted by equation (4.4) is a central or noncentral (ncp = 85.3), 

respectively, χ2 distribution with 19 degrees of freedom.  Figures 4.4B (under H0) and 

4.4D (under H1) show that the distribution of LRTem more closely approximates a central 

χ2 distribution with 20 degrees of freedom and a noncentral χ2 distribution with 18 
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degrees of freedom, respectively.  The results from the KS tests indicate that there is the 

most evidence to support the idea that, under H0, LRTem is distributed as a central χ2 

distribution with 21 degrees of freedom (KS0,21 p-value = 0.054) and, under H1, LRTem is 

distributed as a noncentral χ2 distribution with 18 degrees of freedom (KS85.3,18 

p-value = 0.342).  However, under H1, a noncentral χ2 distribution with 19 degrees of 

freedom is also consistent with the data (KS85.3,19 p-value = 0.243). 
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Figure 4.4  Histograms displaying the distribution of LRTem for simulations based on 

haplotype frequencies from the Horan dataset 

 
Legend for Figure 4.4: The histograms display the distribution of LRTem computed from 

simulations based on haplotype frequencies from the Horan dataset along with the density lines 

for several central χ2 distributions.  The distribution of LRTem was created by simulating 

haplotypes comprised of (A) 5 SNP markers and (B) 10 SNP markers under H0 and haplotypes 

comprised of (C) 5 SNP markers and (D) 10 SNP markers under H1.  1000 replicate datasets 

containing 2000 samples (equal numbers of cases and controls) were simulated.  The graphs were 

scaled to the observed data, and density lines off the scale were truncated. 

 

122 



The rule described by equation (4.4) had some success in determining the 

distribution of LRTem for the simulations under H0 and H1 based on haplotype 

frequencies from the HAPMAP TAP2 dataset.  Figures 4.5A and 4.5C show the 

distribution under H0 and H1, respectively, for a haplotype comprised of 5 SNP markers 

while Figures 4.5B and 4.5D show the distribution under H0 and H1, respectively, for a 

haplotype comprised of 10 SNP markers.  The simulations providing the data for 

Figures 4.5A and 4.5C created 1000 replicate datasets with 2000 samples (equal numbers 

of cases and controls) while the simulations providing the data for Figures 4.5B and 4.5D 

created 1000 replicate datasets with 500 samples (equal numbers of cases and controls).  

For the haplotype simulations involving 5 SNP markers, the distribution predicted by 

equation (4.4) under H0 or H1 is a central or noncentral (ncp = 76.3), respectively, χ2 

distribution with 9 degrees of freedom.  In Figure 4.5A, the distribution of LRTem under 

H0 falls between central χ2 distributions with 9 and 10 degrees of freedom.  Although the 

p-values for the KS tests are small, they favor a central χ2 distribution with 9 degrees of 

freedom (KS0,9 p-value = 0.006).  The distribution of LRTem under H1 presented in 

Figure 4.5C does not resemble the predicted noncentral χ2 distribution but instead 

appears to be derived from a noncentral χ2 distribution with many fewer degrees of 

freedom.  When we increased the number of SNPs to ten, both under H0 and H1 equation 

(4.4) predicted that LRTem would follow a central χ2 distribution with 16 degrees of 

freedom.  According to Figures 4.5B and 4.5D, the distribution of LRTem falls between 

central χ2 distributions with 16 and 17 degrees of freedom.  The KS test results under H0 

indicate that LRTem most likely follows a central χ2 distribution with 17 degrees of 

freedom (KS0,17 p-value = 0.750).  (Interestingly, before rounding, equation (4.4) 
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predicted df = 16.4.)  Figure 4.5D shows that, under H1, LRTem appears to follow a 

noncentral χ2 distribution with df = 16 and ncp = 18.0 (KS18.0,16 p-value = 0.628).  Thus, 

under H0 and H1, equation (4.4) demonstrated an ability to predict the approximate 

correct degrees of freedom for the multi-marker haplotypes simulations although it 

lacked consistency for exacting precision. 
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Figure 4.5 Histograms displaying the distribution of LRTem for simulations based on 

haplotype frequencies from the HAPMAP TAP2 dataset 

 
Legend for Figure 4.5: The histograms display the distribution of LRTem computed from 

simulations based on haplotype frequencies from the HAPMAP TAP2 dataset along with the 

density lines for several central χ2 distributions.  The distribution of LRTem was created by 

simulating haplotypes comprised of (A) 5 SNP markers and (B) 10 SNP markers under H0 and 

haplotypes comprised of (C) 5 SNP markers and (D) 10 SNP markers under H1.  1000 replicate 

datasets containing (A and C) 2000 samples and (B and D) 500 samples (equal numbers of cases 

and controls) were simulated.  The graphs were scaled to the observed data, and density lines off 

the scale were truncated. 
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Table 4.3  Summary table for the results from all experimental runs presented 

Scenario Hypothesis MAF1 MAF2 LD between SNP 1 and SNP 2 (D') Category Code

0.5 0.5 0.0 1 

0.5 0.01 0.0 2 H0 

0.01 0.01 0.0 3 
0.5 0.5 0.9 2 

Two SNP 

H1 0.01 0.01 0.0 3 
Scenario Hypothesis Dataset Number of SNPs in Haplotype Category Code

5 3 H0 
10 3 
5 3 H1 

Horan 

10 3 
5 3 H0 10 3 
5 3 

Multi-SNP 

H1 

HAPMAP 
TAP2 

10 1 
 

Legend for Table 4.3:  This table summarizes the results for all experimental runs presented in 

section 4.3.  The category codes are defined as: 1) experimental runs where the rule described in 

equation (4.4) successfully predicts the correct distribution; 2) experimental runs where the rule 

described in equation (4.4) successfully predicts the correct distribution for larger sample sizes 

only; and 3) experimental runs where the rule described in equation (4.4) fails to predict the 

correct distribution regardless of sample size. 

 

4.4 Discussion 

Even for the multi-SNP scenario where the range for the possible degrees of 

freedom of the χ2 distribution is much wider (from 1 to 2b, where b is the number of 

SNPs comprising the haplotype), the rule described in equation (4.4) was fairly consistent 

in predicting the χ2 distribution closest to the distribution of LRTem within a few degrees 

of freedom.  However, while the rule sometimes predicted the correct distribution of the 

test statistic, it was not consistently accurate.  Because of this inconsistency, we advocate 
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applying permutation and simulation methods to empirically generate the distribution of 

the test statistic under the null and alternative hypotheses, respectively, rather than 

applying the rule in equation (4.4).  Future research is required to investigate alternative 

threshold settings and refine the prediction capability of this rule.  

Knowing the precise distribution of a test statistic under the null and alternative 

hypotheses can be extremely practical.  This knowledge allows researchers the freedom 

to employ the distribution to determine the statistical significance (distribution under H0) 

and power (distribution under H1) of the test rather than relying on more computationally 

intensive methods such as permutation and simulation to generate the null and alternative 

distributions empirically.  Of course, reliance on a classically defined distribution (e.g. 

normal distribution, central χ2 distribution, F distribution, etc.) that does not accurately 

describe the distribution of a statistic under the null and alternative hypotheses can lead to 

erroneous estimates of the type I error and power.  In such cases, empirical techniques 

such as permutation and simulation are necessary even at the expense of computational 

resources.  Often, this compromise is inconsequential when analyzing a real dataset.  In 

fact, with modern computer processors and efficiently written code thousands of 

permutations can generally be performed in a reasonable timeframe.  The limitation of 

this approach is often only apparent when many tests, all requiring a separate permutation 

procedure, are performed.  Obviously, this situation arises for genome scans but can also 

be present for a haplotype-based association study that employs a sliding window 

approach across the SNPs in a single candidate gene. 

Estimating low haplotype frequency estimates while computing LRTem is 

somewhat analogous to constructing a sparse contingency table.  However, methods that 
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utilize observations from a contingency table exhibit two qualities not available to 

likelihood-based methods that rely on haplotype frequency estimates – 1) a clear 

guideline defining when the central χ2 distribution can be applied to determine the 

statistical significance and 2) the ability to combine categories containing rare 

observations.  Unless Cochran’s rule is violated (five or more observations in each cell of 

the contingency table), the central χ2 distribution can be applied to determine the 

statistical significance for Pearson χ2 or likelihood ratio statistics that utilize a 

contingency table (Cochran 1952).  We have been unable to establish a parallel guideline 

for likelihood-based statistics that rely directly on haplotype frequency estimates.  In 

addition, rare observations can be pooled (Sham and Curtis 1995; Schaid et al. 2002; 

Zhao et al. 2003) to produce a contingency table that is no longer sparse and contains a 

reduced number of categories.  While frequency estimates for rare haplotypes can be 

pooled, for LRTem the EM algorithm computes the likelihood during the haplotype 

frequency estimation step.  Thus, pooling does not affect the computation of the statistic.  

The likelihood could be computed in a subsequent step using the multinomial distribution 

after haplotype frequencies were estimated and low haplotype frequency estimates were 

pooled.  However, this approach is contrary to a key feature of LRTem in that it treats 

expected counts from the estimates as observations rather than working directly with 

estimates.  By working directly with haplotype frequency estimates in the expression for 

the likelihood, LRTem avoids assumptions regarding the “observed” counts required for a 

contingency table. 
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CHAPTER 5:  DISCUSSION 

 

5.1 Synopsis 

Although haplotypes can provide a powerful tool for gene mapping (Martin et al. 

2000; Akey et al. 2001; Fallin et al. 2001; Morris and Kaplan 2002; Zaykin et al. 2002; 

Botstein and Risch 2003; Clark 2004), several factors add to the complexity of haplotype-

based association studies relative to other forms of genetic association.  First, in common 

practice, original observations are multilocus genotypes, which lack phase information.  

Consequently, estimation or inference procedures are required to apply a haplotype-based 

test.  Second, haplotypes are a combination of alleles at multiple loci generally resulting 

in a large number of haplotypic variants.  In the context of association studies, a large 

number of variants corresponds to many degrees of freedom and often a less powerful 

test.  Third, as the number of marker loci comprising a haplotype grows, the number of 

possible haplotypic variants increases exponentially; however, many of these variants are 

not present in the population even though they may have positive frequency estimates.  

The complexity caused by these factors surfaces in several issues uniquely present in 

haplotype-base studies of association (as compared with other genetic association tests).  

For this thesis, we have developed work aimed at addressing several of these issues 

inherent in tests of haplotype-based association.  Specifically, these issues include 1) the 

multiple testing problem introduced by employing hierarchical clustering to group similar 

haplotypes; 2) haplotype misclassification resulting from statistically inferring haplotype 

pairs from multilocus genotypes; and 3) uncertainty predicting the precise distribution of 
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the haplotype-based association test statistic when haplotype frequency estimates are very 

small or zero.   

In the first part of this thesis, we examined the practice of applying a hierarchical 

clustering to haplotypes and then performing statistical tests at each step in the resulting 

hierarchy in the framework of multiple testing.  To determine the empirical significance 

level or global p-value of the experiment, we proposed a method that takes into account 

the clustering process as well as the correlation structure of the tests performed.  We 

applied our approach to datasets from haplotype association and microarray expression 

studies where hierarchical clustering has been used.  In all of the cases we examined, we 

found that relying on one set of classes in the course of clustering leads to significance 

levels that are too small when compared with the significance level associated with an 

overall statistic that incorporates the process of clustering.  In other words, relying on one 

step of clustering may furnish a formally significant result while the overall experiment is 

not significant. 

In the second portion of this work, our simulations showed that the 

misclassification present in calling phased haplotypes from multilocus genotypes using 

statistical methods is complete.  That is, each misclassified haplotype pair is consistently 

misclassified as the same incorrect haplotype pair throughout the entire dataset.  In 

addition, our simulations under the null hypothesis of no association demonstrate that 

applying the central χ2 distribution to evaluate the significance of test statistics produces 

conservative and anticonservative p-values while applying permutation methods 

consistently produces p-values that maintain the nominal false positive rate.  

Consequently, permutation methods should be exclusively used to determine statistical 
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significance for the tests we perform.  As expected, the LRTae provides the greatest 

advantage in terms of power over the LRTstd in situations where more haplotype 

misclassification errors are present.  These situations arise when the haplotype under 

investigation is comprised of many SNP markers with low pair-wise intermarker LD. 

For fixed costs, the power gain of the LRTae over the LRTstd varied depending on 

the relative costs of genotyping, molecular haplotyping, and phenotyping.  In general, the 

LRTae showed the greatest benefit over the LRTstd when the cost of phenotyping was very 

high relative to the cost of genotyping.  This situation is likely to occur in a candidate 

gene replication study as opposed to a genome-wide association study.  For intermediate 

phenotyping to genotyping cost ratios (e.g. 25/ =gp CC ), the LRTae may still provide a 

power advantage if the cost ratio of molecular haplotyping to genotyping is low 

(C  for 10/ <gmh C 5.0≥α ).  Currently, inexpensive long-range PCR methods for 

molecular haplotyping are under development.  As technology improves leading to less 

expensive molecular haplotyping methods, the LRTae will become applicable to a wider 

set of circumstances. 

The final part of this thesis proposes a rule for predicting the distribution of a 

likelihood-based statistic that relies on haplotype frequency estimates.  The rule 

consistently predicted the χ2 distribution closest to the distribution of the statistic within a 

few degrees of freedom even for haplotypes containing many SNP markers.  However, 

the rule did not consistently predict the distribution of the test statistic with pinpoint 

accuracy.  Because of this inconsistent performance, we do not advocate applying the 

predicted distribution to determine statistical significance or power.  Instead, permutation 

and simulation techniques should be employed to generate the distribution of the statistic 
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under the null hypothesis for determination of type I error and under the alternative 

hypotheses for determination of power, respectively. 

 

5.2 Future Directions 

This thesis introduces unique approaches for researchers utilizing haplotypes in 

case-control study designs to localize disease genes.  The approaches proposed overcome 

pitfalls in analyzing datasets; however, they also have several limitations.  One such 

limitation that is relevant for all three strategies described above is the means for 

computing type I error.  In each case, permutation proves to be the most reliable method 

because of the possibility of sparse datasets.  However, there are computational costs for 

this reliability.  With modern processor speeds, analyses which utilize a large number of 

permutations can be performed in a practical amount of time.  However, in the case of 

our computation of the global p-values for datasets where hierarchical clustering has been 

applied, the procedure is computationally more intensive.  After permuting the data to 

compute null statistics, the procedure requires a myriad of comparisons between these 

null statistics (at the same step in the hierarchy) to compute null p-values.  As a result, 

this procedure can be time-consuming, especially if the hierarchy created by clustering 

contains many steps.  Similarly, the computational time required for permutation can be a 

factor when many association tests are performed at different locations in the genome, as 

is the case for a genome-wide scan.  In addition, this situation arises for haplotype-based 

association studies within a single candidate gene that use a sliding window across the 

SNP markers in the gene.  Permutation can be a valuable tool; however, the researcher 
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needs to be aware of the context of the application to plan for the time required for the 

procedure. 

Aside from the computational issues, some limitations are inherent in the 

statistical methods themselves.  For example, the LRTae procedure relies on haplotype 

pairs to detect association.  As stated above, the number of haplotypes present can be 

quite large.  Consequently, the number of inferred haplotype pairs can be very large 

( ( )!2!2
!
−w

w , where w is the number of inferred haplotypes) resulting in many degrees of 

freedom for this test.  Tests with larger degrees of freedom are generally equated with a 

loss in power.  Thus, methods which examine single haplotypes (Schaid et al. 2002; 

Zaykin et al. 2002; Stram et al. 2003) rather than haplotype pairs may be more powerful 

than LRTae.  Future research will need to compare the power for these approaches with 

that of the LRTae.  Another option is to develop a version of the Cochran-Armitage 

Linear Test of Trend (Cochran 1954; Armitage 1955; Czika and Weir 2004) which 

incorporates a double-sampling procedure to correct for haplotype miscalls.  Unlike the 

LRTae which makes no assumptions regarding a disease model, the Cochran-Armitage 

Linear Test of Trend relies on specific weights for each risk category and has only one 

degree of freedom.  As a result, this test has the potential to be very powerful relative to 

other haplotype-based association tests, especially with the added capability of allowing 

for haplotype misclassification.  However, specifying the incorrect disease model can 

negatively impact the power of the test (Freidlin et al. 2002).  Future research will need to 

develop this test and assess its robustness to incorrect model selection. 

Another potential limitation of LRTae is that the method assumes non-differential 

misclassification between cases and controls in estimating haplotype misclassification 

133 



rates.  However, this assumption is not necessarily valid.  A future research direction is to 

extend LRTae to estimate haplotype misclassification rates separately from cases and 

controls.  Presumably, this feature will increase the effectiveness of the test. 

In our power studies of LRTae and LRTstd, we used the entire dataset to infer 

haplotype pairs for each individual.  We chose this approach because 1) it is conservative 

in terms of the power analysis (since differences between haplotype pair frequencies in 

cases and controls should not be as great); 2) the EM algorithm shows improved accuracy 

for haplotype frequency estimates when larger sample sizes are used (Fallin and Schork 

2000); and 3) the EM algorithm assumes Hardy-Weinberg equilibrium, and one is more 

likely to violate this assumption when analyzing cases and controls separately.  However, 

in practice researchers are more likely to examine cases and controls separately while 

inferring haplotype pairs.  Presumably, the power will increase for both LRTae and LRTstd 

for an analysis conducted in this fashion; however, the relative power gain is not clear.  

Additional studies are required to assess the power of LRTae relative to LRTstd for data 

analyzed with this alternative inference scheme. 

Finally, our rule for determining the distribution of LRTem did not consistently 

provide a precisely accurate prediction.  In some cases, a larger sample size improved the 

rule’s accuracy.  There are a number of possible explanations for this improvement.  

First, an increased sample size reduces the sparseness of the dataset.  Second, an 

increased sample size improves the accuracy of the haplotype frequency estimates.  

Third, an increased sample size decreases the frequency threshold for distinguishing 

haplotypes present in the sample from those that are not present.  Future research is 
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required to refine the prediction rule by investigating alternative algorithms for 

determining the thresholds for the estimated haplotype frequencies. 

Technological advancements, in the form of SNP chips and online databases, 

have provided the capability to cost-effectively assay and manage hundreds of thousands 

of SNP markers throughout the genome (Smith 2005).  With this explosion of genetic 

data, haplotype-based association studies have tremendous potential to localize disease 

genes.  Specifically, genotypes are available genome-wide with an average density less 

than a kilobase.  Prior to SNP chip technology which allows for this great density of 

genetic information, genome-scans were performed at substantially lower densities, such 

that the markers were in linkage equilibrium with one another and haplotype-based 

association analyses were less meaningful.  Now the desire for molecular haplotypes 

presents a new technological frontier.  Currently, the perception among molecular 

biologists appears to be that molecular haplotyping is too expensive to warrant 

widespread use.  However, the cost of molecular haplotypes over small regions of the 

genome can be roughly equivalent to that for performing fluorescent polymerase chain 

reactions (Proudnikov et al. 2004; Proudnikov et al. 2006).  In addition, industry has 

shown a serious interest in developing resources to reduce the cost of longer-range 

molecular haplotypes (Smith 2005).  As molecular haplotyping becomes more affordable 

and hence more commonly used, the approaches explained in this thesis will continue to 

be relevant for identifying genes for complex traits. 
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NOTATION INDEX 

 

Expression Brief Description        

gC  cost of genotyping 

mhC  cost of molecular haplotyping 

pC  cost of phenotyping 

gp CC  cost ratio of phenotyping to genotyping 

df  degrees of freedom for the (central or noncentral) χ2 distribution  

D’ standardized LD parameter, ( )1'0 ≤≤ D  

Dmax  maximum possible LD 

DAF disease allele frequency 

if  penetrance associated with possessing i copies of the disease allele 

g number of variables in a (fractional) factorial design 

hj or   population haplotype frequency of the jjh∗
th haplotype (consisting of 

exclusively of marker loci) 

jh0  haplotype frequency in cases of the jth haplotype  

jh1  haplotype frequency in controls of the jth haplotype 

h+,j  frequency of disease-marker haplotype containing the wild-type 

allele (+) at the disease locus and the marker haplotype j 

hd,j frequency of disease-marker haplotype containing the disease 

allele (d) at the disease locus and the marker haplotype j 

1i
h and  pair of haplotype frequencies for a haplotype pair consistent with 

the i

2i
h

th multilocus genotype 

jĥ∗  frequency estimates using all samples for the jth haplotype 

jĥ0  frequency estimates using cases alone for the jth haplotype 

jĥ1  frequency estimates using controls alone for the jth haplotype 

Hi set of haplotype pairs compatible with the ith multilocus genotype 
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21 ,, jjiI  conditional (on case status i) haplotype pair frequency for 

haplotype pair j1, j2 

3, jiI  conditional (on case status i) haplotype frequency for haplotype j3 

J number of total possible haplotypes 

k number of haplotype pairs 

KSvj the Kolmogorov-Smirnov (KS) test for a χ2 distribution with 

noncentrality parameter (ncp) of v and degrees of freedom (df) of j 

)ln( ,1 aeL  log-likelihood of data, where haplotype pair frequencies ' are 

allowed to differ among different phenotype classes 

t
jip '

)ln( ,0 aeL  log-likelihood of data , where haplotype pair frequencies ' are 

constrained to be equal among different phenotype classes 

t
jip '

)ln( ,1 stdL  log-likelihood of data when not correcting for misclassification, 

where haplotype pair frequencies are allowed to differ among 

different phenotype classes 

jip '

)ln( ,0 stdL  log-likelihood of data when not correcting for misclassification, 

where haplotype pair frequencies are constrained to be equal 

among different phenotype classes 

jip '

L likelihood of the data 

0HL  likelihood of the data under the null hypothesis 

1HL  likelihood of the data under the alternative hypothesis 

∗L   likelihood computed from the multilocus genotypes from cases and 

controls together 

0L  likelihood computed from the multilocus genotypes from cases 

alone 

1L  likelihood computed from the multilocus genotypes from controls 

alone 
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LD(j) amount of deviation from the equilibrium value for a disease-

marker haplotype comprised of the jth marker haplotype and either 

the wild type or disease allele. 

LRTstd standard likelihood ratio statistic (computed from contingency table) 

LRTae likelihood ratio statistic allowing for errors (computed from 

contingency table) 

 ' jjm  number of individuals that have been classified by the fallible 

method as haplotype pair j and by the infallible method as 

haplotype pair , where 'j kjj ≤≤ ',1  (where k is the number of 

haplotype pairs) 

 '+jm  number of individuals that have been classified by the infallible 

method as haplotype pair , where 'j kj ≤≤ '1  (where k is the 

number of haplotype pairs) 

m number of permutations 

)(min ii p  minimum of local p-values 

MAFj minor allele frequency at the jth SNP locus 

n number of steps in hierarchy 
)1(
'' jjin  number of individuals with (true) phenotype category , true 

haplotype pair category , and observed haplotype pair category  

'i

'j j
)2(

' jin  number of individuals with (true) phenotype category  and 

observed haplotype pair category  

'i

j

ncp noncentrality parameter for the noncentral χ2 distribution  

N sample size for the LRTstd 

NDS sample size for the LRTae 

NDS* sample size for the LRTae determined fromα  

),...,,( 21 npppp =
r  vector of local p-values  

pmin global p-value 

pd  allele frequency of disease-causing allele at the disease locus 

p+  allele frequency of the wild-type allele at the disease locus 
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jip '   observed population frequency of haplotype pair for individuals 

with true phenotype i  

j

'
t

jip ' '  true population frequency of haplotype pair for individuals with 

phenotype i  

'j

'
t

jp '*  true population frequency of haplotype pair under the null 

hypothesis that  

'j

t
j

t
j

t
j ppp '*'1'0 ==

t
iq '  true sampling frequency of phenotype  'i

gmh CCr =  cost ratio of molecular haplotyping to genotyping 

1R  genotype relative risk for the heterozygote 

2R  genotype relative risk for the homozygote 

s number of genetic variants 

t  total number of individuals (used to determine a threshold from 

haplotype frequencies) 

0t  number of cases (used to determine a threshold from haplotype 

frequencies) 

1t  number of controls (used to determine threshold from haplotype 

frequencies) 

u  mean vector 

V variance-covariance matrix 

w number of haplotypes (consisting of exclusively of marker loci) 

jx∗  indicator function for the jth haplotype (associated with frequency 

estimates using all samples) 

jx0  indicator function for the jth haplotype (associated with frequency 

estimates using only cases) 

jx1  indicator function for the jth haplotype (associated with frequency 

estimates using only controls) 

),...,,( 21 nXXXX =
r

 vector of statistical values (generic) 

Xnull matrix of null statistics 
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jX  event that an individual has observed haplotype pair kjj ≤≤1,  

(where k is the number of haplotype pairs) 
t
jX '  event that an individual has true haplotype pair  (where 

k is the number of haplotype pairs) 

kjj ≤≤ '1,'

t
jiX ''  event that an individual has phenotype )1,0'(,' =ii and true 

haplotype pair kjj ≤≤ '1,'  (where k is the number of haplotype 

pairs) 
t

iY '  event that an individual has phenotype )1,0'(,' =ii  

 Yi multivariate normal random variable transformed from null local 

p-value at ith step in hierarchy 

α double-sample proportion 

α  mean double-sample proportion 

δ posterior probability threshold for the threshold double-sample 

selection method 

∗η  number of haplotypes estimated using all samples 

0η  number of haplotypes estimated using controls alone 

1η  number of haplotypes estimated using cases alone 

 ' jjθ  misclassification probability that the true haplotype pair  will be 

misclassified as haplotype pair  

'j

j

φ  disease prevalence 
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ELECTRONIC RESOURCE INFORMATION 

 
 
The adenocarcinoma dataset published by Garber et al. (Garber et al. 2001) can be found 

at http://genome-www.stanford.edu/lung_cancer/adeno/index.shtml. 
 
The B-cell lymphoma dataset published by Alizadeh et al. (Alizadeh et al. 2000) can be 

found at http://llmpp.nih.gov/lymphoma/. 
 
The documentation for StatXact 5 software can be found at http://www.cytel.com/. 
 
The documentation for SNPHAP and PHASE can be found at 

http://www-gene.cimr.cam.ac.uk/clayton/software/ and 
http://www.stat.washington.edu/stephens/software.html, respectively. 

 
The documentation for PAWE can be found at 

http://linkage.rockefeller.edu/derek/pawe1.html.  
 
Data for the estimation of haplotype frequencies from SNP markers within the TAP2 

gene were downloaded from http://www.hapmap.org/downloads/index.html.en 
(HapMap public release #16c.1). 

 
LRTae software is available at ftp://linkage.rockefeller.edu/software/lrtae. 
 
EHP software is available at http://linkage.rockefeller.edu/yyang/resources.html. 
 
The documentation for the software package R is available at http://www.r-project.org/. 
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