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Abstract 

 

Autophagy Delivers Viral Antigens for MHC Class II Presentation 

and is Regulated by Viral Infection 

 

Dorothee Schmid, Ph.D. 

The Rockefeller University 2007 

 

MHC class II molecules generally present peptides derived from exogenous antigens 

after endocytosis. However, biochemical studies have revealed that MHC class II ligands 

are frequently derived from intracellular proteins after endogenous processing. 

Endogenous MHC class II antigen presentation has been described for viral and model 

antigens and might represent an important mechanism to initiate CD4+ T cell responses to 

intracellular pathogens.  

We studied this unusual MHC class II presentation pathway using the Epstein-

Barr virus nuclear antigen 1 (EBNA1) as a model antigen with relevance for human 

disease. We found that EBNA1 was degraded by lysosomal proteases and detected 

EBNA1 in double membrane structures by immuno-electron microscopy. Furthermore, 

inhibition of autophagy led to reduced stimulation of EBNA1-specific CD4+ T cells, 

suggesting that EBNA1 was delivered for MHC class II presentation by autophagy. This 

defines a new endogenous MHC class II processing pathway and EBNA1 is the first 

pathogen-derived antigen found to follow this pathway.  



To address the general relevance and the efficacy of this novel MHC class II 

pathway, we quantified autophagy in MHC class II-positive human cells and 

demonstrated constitutive autophagosome formation in epithelial, B and dendritic cells. 

The autophagosome marker Atg8/LC3 strongly overlapped with markers of MHC class II 

loading compartments (MIICs) by confocal and immuno-electron microscopy, suggesting 

that autophagosomes frequently fuse with MIICs. Furthermore, this pathway was of 

functional relevance, because targeting of influenza matrix protein 1 to autophagosomes 

via LC3 fusion led to strongly enhanced CD4+ T cell stimulation. This suggests that 

autophagy constitutively and efficiently delivers cytosolic antigens for MHC class II 

presentation and can be harnessed for improved helper T cell stimulation.  

In addition to its role in antigen presentation, autophagy might be an innate 

immune mechanism to restrict virus replication. We found that autophagosomes strongly 

accumulated in influenza A virus-infected lung epithelial cells, most likely because they 

do not fuse with lysosomes anymore. Infected cells contained unusually large 

autophagosomes filled with amorphous protein or nucleic acid, possibly of viral origin. 

Inhibition of autophagy led to an increase in influenza virus replication, suggesting that 

autophagy might be a mechanism to restrict or delay virus replication. 
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Chapter 1: Introduction 

1.1 General introduction 

The vertebrate body is constantly challenged by a variety of pathogens, such as viruses, 

bacteria, fungi and parasites. In order to respond to this constant threat, vertebrates have 

evolved an elaborate immune system that - in many cases - confers protective immunity 

to disease-causing microorganisms. The immune system is commonly divided into two 

major branches: innate and adaptive immunity. Innate immunity serves as a first line of 

defence against an invading pathogen and involves the recognition of particular 

molecular patterns that are common to many pathogens but are absent in the host. 

However, innate immunity only rarely leads to immunological memory [1], which is 

primarily a feature of the adaptive immune system [2]. Adaptive immune responses are 

highly specific for a particular pathogen and can provide long-lasting protection against 

reinfection. Adaptive immunity is conveyed by two types of lymphocytes: B lymphocytes 

or B cells, which mature in the bone marrow, and T lymphocytes or T cells, which 

mature in the thymus [2]. B cells are responsible for the production of antibodies, which 

are mainly involved in the elimination of extracellular pathogens, such as most bacteria 

or parasites. In contrast, T cells play an important role in the elimination of intracellular 

microorganisms, such as viruses: With their T cell receptor (TCR), T cells scan the cell 

surface for fragments, which are generated within all body tissues and displayed on 

Major Histocompatibility Complex (MHC) molecules. Detection of a pathogen-derived 

fragment leads either to direct destruction of the infected cell or to activation of other 

components of the immune system.  
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1.2 Antigen presentation on MHC molecules 

1.2.1 Major histocompatibility complex (MHC) molecules and antigen recognition 

by T cells 

There are two types of MHC molecules, called MHC class I and MHC class II, which 

share most of their structural features: Both are transmembrane proteins whose two outer 

extracellular domains form a long cleft in which a single peptide fragment can be bound 

(Fig. 1) [2]. However, slight differences in their structures allow them to bind peptides of 

different length, and differences in their intracellular trafficking allow loading with 

protein fragments produced in different proteolytic systems: The MHC class I peptide 

binding cleft can only accommodate peptides that are between 8 and 10 amino acids long 

(Fig. 1). Peptides that meet these requirements are produced by the proteasome and bind 

to MHC class I in the endoplasmic reticulum (ER). In contrast, the peptide binding cleft 

of MHC class II molecules has a more open conformation and therefore can 

accommodate much longer peptides (Fig. 1). MHC class II ligands mainly are mainly 

produced by lysosomal degradation and bind to MHC class II in late endosomes. Antigen 

access to these two proteolytic compartments determines how efficiently T cells detect 

invaders and, therefore, an understanding of these antigen processing pathways is crucial 

to our understanding of successful versus insufficient immune responses as well as 

vaccine efficacy. 

MHC class I and II molecules not only present peptides generated in different 

proteolytic systems. They also activate different classes of T cells that fulfil different 

functions [2]: MHC class I-peptide complexes activate CD8+ T cells, which are the main 

killer cells of the adaptive immune system and therefore are called cytotoxic T 
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Figure 1: Structural features of MHC molecules (adapted from [2]). 

A, B: Schematic representation of a MHC class I and MHC class II molecule, 

respectively. MHC Class I molecules consist of a membrane-spanning α-chain, which 

folds into three domains (α1, α 2 and α 3), and a non-covalently associated β2-

microglobulin. In contrast, MHC class II molecules are composed of two transmembrane 

proteins (α-and β-chain) that have two domains each (α1, α 2 and β1 and β2). 

C, D: Crystal structure of a human MHC class I and MHC class II molecule, 

respectively. Both structures are very similar, with two immunoglobulin-like domains 

and two domains that together form a peptide-binding cleft.  

E, F: Peptide binding cleft with peptide, looking down on the molecule from above. In 

both molecules, a β-pleated sheet forms the floor and two α-helices form the sides of the 

cleft. The major differences lie at the ends of the peptide-binding cleft, which are more 

open in MHC class II molecules. As a consequence, peptides bound to MHC class II 

molecules can protrude from the cleft and typically are 13-18 amino acids long, whereas 

MHC class I ligands are completely buried in the peptide binding groove and are not 

longer than 10 amino acids.    
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lymphocytes (CTL). In contrast, MHC class II-peptide complexes stimulate CD4+ T cells, 

whose main function it is to secrete cytokines and to activate other cell types of the 

adaptive immune system. The functions of CD8+ and CD4+ T cells are discussed in more 

detail in chapter 1.4. 

 

1.2.2 Classical antigen presentation pathways 

MHC class I and II molecules are loaded with their peptide cargo in different cytoplasmic 

locations [3] (Fig. 2). Antigens for MHC class I presentation are degraded by 

proteasomes, large multicatalytic proteases found in cytosol and nucleus [4]. Access to 

proteasomal degradation is primarily regulated via ubiquitinylation of its substrates, and 

this degradation pathway regulates mostly short-lived proteins [5]. One group of short-

lived proteasomal substrates are so called defective ribosomal products (DRiPs), which 

are degraded by the ubiquitin-proteasome system immediately after misfolding or 

premature termination of their translation [6]. It was suggested that 30% all of newly 

synthesized proteins are in some way defective and therefore are immediately ubiquitin-

tagged and degraded by the proteasome [7]. This could be especially important in the 

context of virus infection, as viral antigens would be displayed as soon as viral proteins 

are translated, allowing the immune system to rapidly detect and destroy the infected 

cells. Proteasomal products of 8-10 amino acids in length are translocated via the 

transporter associated with antigen processing (TAP) into the endoplasmic reticulum 

(ER) (Fig. 2), where they meet newly synthesized MHC class I molecules, which are 

cotranslationally inserted into the ER membrane. Within the MHC class I loading 

complex in the ER, which contains chaperones, aminopeptidases and thiol 
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Figure 2: The classical pathways of antigen presentation on MHC class I and II. 

In the classical view of antigen presentation, intracellular antigens are presented on MHC 

class I molecules (red) and extracellular antigens are presented on MHC class II 

molecules (blue). Intracellular proteins (yellow) are degraded by the proteasome into 

short peptides, which subsequently are transported via the transporter associated with 

antigen processing (TAP) into the endoplasmatic reticulum (ER), where they are loaded 

into the peptide-binding groove of newly synthesized MHC class I molecules. The MHC 

class I-peptide complexes then follow the secretory pathway to the cell surface, where 

they are recognized by cytotoxic CD8+ T cells. Extracellular antigens (pink) are taken up 

via phagocytosis, macropinocytosis or endocytosis and are delivered to a late 

endosomal/lysosomal compartment, where they are denatured by low pH and degraded 

by lysosomal proteases. Newly synthesized MHC class II molecules are targeted from the 

ER to the same compartment after they associate with a transmembrane glycoprotein 

called invariant chain (black), which contains a targeting signal for late endosomes. Once 

MHC class II-inv.chain complexes reach this compartment, invariant chain is degraded 

by lysosomal proteases and other peptides are loaded into the peptide-binding groove of 

MHC class II molecules with the help of the peptide-loading chaperone HLA-DM/H2-M 

(green). Degradation of invariant chain also removes the endosome targeting signal from 

MHC class II, allowing MHC class II-peptide complexes to traffic to the cell surface for 

recognition by CD4+ T cells.  
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oxidoreductases, octamer or nonamer peptides are loaded onto MHC class I molecules 

[8]. Stably associated MHC class I-peptide complexes are then exported via the Golgi 

apparatus to the plasma membrane, where they stimulate CD8+ T cells (Fig. 2). As MHC 

class I ligands are mainly generated in a TAP- and proteasome-dependent fashion, they 

are thought to mainly originate from cytosolic and nuclear proteins. 

MHC class II ligands on the other hand are thought to primarily originate from 

extracellular antigens after endocytosis and degradation in lysosomes [3]. Newly 

synthesized MHC class II molecules associate in the ER with a chaperone called 

invariant chain (Ii) (Fig. 2), which contains a targeting signal that directs MHC class II 

molecules into late endosomal/lysosomal compartments [9]. In these acidic 

compartments, which are also called MHC class II loading compartments (MIICs), Ii is 

degraded by lysosomal proteases and the remaining peptide (CLIP for class II-associated 

invariant chain peptide) is replaced by lysosomal products under the influence of the 

chaperone HLA-DM/H2-M [10]. Assembled MHC class II-peptide complexes then 

migrate to the cell surface for surveillance by CD4+ T cells. As a result of this pathway, 

MHC class II ligands are mainly generated from extracellular antigens after endocytosis 

and degradation in lysosomes and therefore are thought to be primarily of extracellular 

origin. 

 

1.2.3 MHC class II loading compartments and generation of MHC class II ligands 

The nature of the MHC class II loading compartment (MIIC) has long been a matter of 

debate. It is now thought that MIICs are conventional late endosomes or lysosomes that 

in addition to late endosomal/lysosomal markers contain the MHC class II loading 
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machinery, such as MHC class II and HLA-DM molecules (Fig. 2). In addition, they 

should match the following functional criteria: They should be acidic and accessible by 

endocytosis, and should allow transport of MHC class II-peptide complexes to the plasma 

membrane [11]. Late endosomes fit these requirements best and are likely to be the major 

compartments for peptides loading [11, 12]. 

The importance of lysosomal proteolysis in MHC class II antigen presentation has 

long been recognized: Drugs that impair lysosomal acidification, such as NH4Cl or 

chloroquine, impair proteolysis and thus block antigen presentation on MHC class II 

molecules [13]. Lysosomal proteases have at least two clear roles in MHC class II 

function: Generation of antigenic peptides and processing of the invariant chain Ii [14]. 

Several endo- and exopeptidases are thought to be involved in these processes (Table 1).  

 

Table 1: Lysosomal proteases involved in MHC class II antigen processing. 
 
Class of proteases Enzyme Specificity Role 

Cysteine proteases 
 

Cathepsin L (mouse) 
Cathepsin V (human) 

Endo-, after Φ 
 

Ii degrad. in thymic epithelial cells 
 

 Cathepsin S Endo-, after Φ Ii  degrad. and antigen processing 

 Cathepsin B Carboxy- and Endo- Antigen processing 

 Cathepsin H Aminopeptidase Antigen processing 

 Cathepsin F Endo- Ii  degrad. and antigen processing 

 Cathepsin Z Carboxy- Antigen processing 

 AEP Endo-, after N Antigen processing 

Aspartyl proteases Cathepsin D Endo-, after Φ Antigen processing 

 Cathepsin E Endo-, after Φ Antigen processing 

References: [14-16]  

 

Cysteine proteases, such as cathepsin L, S, B, H, F and Z, aspartyl proteases 

(cathepsin D and E) and the asparaginyl endopeptidase (AEP) have all been implicated in 
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antigen processing [16]. Most of these proteases have acidic pH optima and rather broad 

substrate specificity. The potent endoprotease activities of cathepsin D, E, F, L, S and 

AEP may be important in revealing antigens, the carboxy-and aminopeptidase activities 

of cathepsin B, H and Z may fine tune this processing and are likely to account for the 

heterogenous size of naturally processed MHC class II epitopes (12-24 amino acids) [17]. 

In addition to proteases, reductases, such as the IFNγ–inducible lysosomal thiol reductase 

GILT may be involved in the reduction and possibly unfolding of protein antigens [18, 

19]. Furthermore, MHC class II molecules may themselves directly participate in antigen 

processing: The open ends of the class II peptide binding groove are well suited to 

capture unfolded antigen domains [20] and this might be an essential mechanism to avoid 

overdigestion and destruction of T cell epitopes. 

 

1.2.4 Professional and non-professional antigen-presenting cells (APCs) 

From studying MHC class I and II presentation in different cell types, it has become clear 

that different cell types can present antigens with vastly different efficiencies [3]. This 

had led immunologists to term the most efficient antigen-presenting cells (APCs) 

“professional APCs”. These professionals are B cells, macrophages and dendritic cells 

(DCs). They are characterized by constitutive MHC class II expression and they often 

have specialized functions of their antigen presentation pathways. For example, B cells 

express exceptionally high levels of MHC class II [3] and readily internalize antigen via 

their surface Ig receptor. This allows them to present large quantities of MHC II-peptide 

that stimulates antigen-specific CD4+ T cells, which in turn provide help for the antigen-

presenting B cells (see chapter 1.4.1). Macrophages upregulate MHC class I and II 
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molecules upon activation by proinflammatory cytokines and bacterial products and 

readily ingest any form of antigen, either non-specifically or via receptor-mediated endo- 

or phagocytosis.  

The dendritic cell (DC) is the cell type that is most specialized in antigen 

presentation and is unique among all APCs because it has the capacity for naive T cell 

activation (“priming”). DCs are enriched in T cell areas of secondary lymphoid organs, 

where naïve T cells are first activated [21, 22]. They also have unique migratory 

properties and upon antigen encounter undergo an elaborate maturation process [23]: 

Immature DCs are highly phagocytic/endocytic and accumulate large amounts of 

antigens and MHC class II molecules in lysosomal compartments. They continuously 

circulate through peripheral and lymphoid tissues, where they sample antigens and store 

them in MHC class II loading compartments. After encountering microbial products or 

other stimuli (e.g. inflammatory cytokines, CD40 ligand of T cells or innate lymphocytes, 

such as NK cells), immature DCs transform into mature DCs. They migrate from 

peripheral sites to secondary lymphoid organs at increased frequency and almost 

completely downregulate phagocytosis and macropinocytosis and instead process and 

present the previously ingested antigen, by transporting MHC class II–peptide complexes 

from lysosomes to the cell surface [23]. In addition, they increase MHC class I and 

costimulatory molecules on their cell surface, produce proinflammatory cytokines and 

extend their characteristic dendrites. This allows them to efficiently interact with and 

activate naïve, antigen-specific T cells. In the absence of a microbial stimulus, dendritic 

cells can also present self antigen to self-reactive T cells, which in turn get deleted or 

silenced, i.e. tolerized [24]. The nature of these tolerogenic DCs is still not clear. They 
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have been suggested to be immature DCs [24], however, immature DCs are inefficient in 

antigen presentation and migration to T cell areas. Therefore, it seems more likely that 

tolerogenic DCs have a partially mature phenotype [3]. It is clear that depending on the 

absence or presence of a microbial stimulus, DCs can be either tolerogenic and 

immunogenic. However, the exact nature and properties of tolerogenic vs. immunogenic 

DCs remain to be elucidated.  

In addition to these professional APCs, other “non-professional” cell types can 

present antigens on MHC class I and II molecules. However, in contrast to DCs, they 

cannot stimulate naive T cells and can only be recognized by previously activated 

effector T cells. All nucleated cell types express MHC class I molecules and therefore 

can be recognized by activated CD8+ T cells. Endothelial, epithelial and tumor cells and 

inflamed tissues can in addition also express MHC class II molecules [25-27] and can, 

therefore, be recognized by activated CD4+ T cells. These may mediate tissue damage in 

autoimmune conditions or may contribute to the immune surveillance of tumors. 

 

1.2.5 Non-classical pathways of antigen presentation 

Until recently, MHC class I and II molecules were thought to be specialized in presenting 

peptides derived from distinct sources. MHC class I ligands were thought to be derived 

from cytosolic and nuclear proteins, whereas MHC class II ligands were believed to be 

solely generated from extracellular sources. Although these classical pathways of antigen 

presentation remain correct, it has become apparent that other pathways contribute to 

antigen presentation, and that antigens from inside and outside the cell can be presented 

on both MHC class I and II [3].  
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The classical paradigm of antigen processing was first challenged, when it was 

discovered that professional APCs, especially dendritic cells (DCs), are able to present 

extracellular antigen not only on MHC class II, but also on MHC class I [28, 29]. This 

new exogenous pathway, termed "cross-presentation" pathway, is thought to be important 

in both immunity and tolerance. It allows dendritic cells to prime CD8+ T cell responses 

to antigens synthesized by cells other than DCs and to trigger both CD8+ and CD4+ T cell 

responses at the same time, generating more effective and sustained T cell responses. 

The argument that the immune system should be able to survey all cell types and 

that antigens from all cellular compartments should be presented on both classes of MHC 

molecules, implies that a similar change in the antigen presentation paradigm might be 

necessary for MHC class II. Pathogens that replicate in the cytoplasm of professional 

APCs should be detectable for the immune system via both MHC class I and II 

presentation. Indeed, it has been shown that MHC class II molecules can present 

intracellular antigens, including cytosolic and nuclear proteins. This non-classical MHC 

class II pathway was coined "endogenous MHC class II pathway" and will be further 

discussed in the next paragraphs. 

 

1.2.6 Endogenous MHC class II processing 

The first evidence for the existence of an endogenous MHC class II pathway came from 

the analysis of natural MHC class II ligands. The analysis of eluted peptides from 

immunoaffinity purified MHC class II molecules of mouse and human macrophages and 

B cells, including Epstein-Barr virus (EBV) transformed human B cell lines, revealed that 

the majority of MHC class II ligands were derived from intracellular proteins [30, 31]. 
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While most ligands were found to originate from transmembrane and secretory proteins, 

around 20% were found to have nuclear and cytosolic sources (Table 2) [17, 31]. These 

studies suggested that intracellular proteins gain access to MHC class II presentation by 

one or more non-classical endogenous antigen processing pathways. The sources of these 

peptides included cytoskeletal proteins (e.g. actin, tubulin, F-actin capping protein), 

constitutive metabolic enzymes (e.g. glyceraldehyde-3-phophate dehydrogenase 

[GAPDH], aspartate aminotransferase [AAT]), heat shock proteins [Hsp70]) and proteins 

involved in vesicular trafficking (Rab5A) (Table 2). In addition, a few of the identified 

peptides were derived from nuclear proteins, such as histones [32].  

Further evidence for the existence of an endogenous MHC class II pathway came 

from the fact that CD4+ T cell could recognize cytosolic and nuclear proteins after 

endogenous processing (Table 3). This pathway for CD4+ T cell recognition was first 

described by Long and colleagues, who studied presentation of cytosolic measles virus 

and influenza virus antigens to CD4+ T cells [33-36]. These authors performed cell-

mixing experiments to test whether the recognized antigens exit the cell and reenter via 

endocytosis, i.e. follow the classical MHC class II pathway. They observed, however, 

that antigen-specific CD4+ T cells did not recognize mixtures of antigen-negative, HLA 

class II-matched B cells with antigen-expressing, HLA class II-mismatched B cells, but 

only antigen-expressing, HLA class II- matched B cells, thereby demonstrating that the 

antigen was not released and then endocytosed for MHC class II presentation [33, 34]. 
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Table 2: Cytosolic/nuclear proteins that give rise to natural MHC class II ligands. 
 
Protein source Localization Cell type* 

Actin Cytosol B, M 
Actin-like protein Cytosol M 
F-actin capping protein Cytosol B, M 
Tubulin α- and β-chain Cytosol B, M 
Microtubule-associated protein PB1 Cytosol B 
α-Catenin Cytosol B 
Clp36 Cytosol B 
GAPDH Cytosol B, M, E 
Aspartate aminotransferase Cytosol B, M 
Alcohol dehydrogenase Cytosol M 
Glucose-6-phosphate isomerase Cytosol M 
Casein Kinase 1-α Cytosol B 
Rab5A Cytosol B 
Cofactor D Cytosol B 
pp65 macrophage protein Cytosol M 
ATP citrate lyase  Cytosol B 
Actin interacting protein 1  Cytosol B 
Triosephosphate isomerase 1  Cytosol B 
Peptidylprolyl isomerase A  Cytosol B 
Atg8 (MAP1LC3b) Cytosol B 
Annexin A2 Cytosol B 
Rab7 Cytosol B 
Acetyl-CoA acyltransferase 1  Cytosol B 
Dipeptidyl peptidase II  Cytosol B 
Phosphoglycerate kinase Cytosol B 
Pyruvate Kinase Cytosol B, E 
MIF (Macrophage migration inhibitory factor) Cytosol B 
GBP-2 (IFN-induced guanylate-binding protein) Cytosol B 
NADH-cytochrome b5 reductase Cytosol B 
c-Myc Cytosol B 
k-Ras Cytosol B 
Myosin Cytosol E 
Fatty acid synthase Cytosol E 
α-Enolase Cytosol B 
Elongation Factor 1 Cytosol B 
Hsc70 Cytosol/Nucleus B 
Hsp90-beta Cytosol/Nucleus B 
Ribosomal proteins S10, S13  Cytosol/Nucleus B 
Ubiquitin Cytosol/Nucleus B 
EBV Major Capsid Protein Cytosol/Nucleus B 
Histone H3 Nucleus B 
Histone H2B Nucleus B 
Rad23b Nucleus B 
RAN Nucleus B 

*Cell type: B = B cells, M = macrophages, E = epithelial cells 
References: [17, 31, 32, 37-39]  
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Table 3: Intracellular antigens processed endogenously onto MHC class II. 
 
Type of 
antigen 

Protein Localization Cell type Reference 

Viral 
 

Measles Virus  
Matrix Protein  

Cytosol HLA-DR transf. fibroblasts [33] 

 
 

Measles Virus  
Nucleocapsid 
Protein 

Cytosol HLA-DR transf. fibroblasts [33] 

 Influenza A Virus 
Matrix Protein 1 

Cytosol, nucleus B cells [35, 36, 40] 

 Influenza A Virus 
Hemagglutinin  

Cytosol, ER HLA-DR-transf. HeLa,  
B cells 

[34, 41]  

 Hepatitis C Virus  
Core protein 

Cytosol B cells [42] 

 Epstein-Barr Virus 
nuclear antigen 1 
(EBNA1) 
 

Nucleus B cells [43] 

Self Glutamate 
decarboxylase 
(GAD65) 

Cytosol B cells [44] 

 Complement C5 Cytosol B cells, macroph. [45] 
 Actin, AAT, Rab5 Cytosol B cells, DCs [31] 
 Igλ light chain 

 
ER B cells [46] 

Model Hen egg lysozyme 
(HEL) 

Cytosol, ER,  
mitoch., nucleus 

B cells, MHC class II-transf. 
sarcoma cells 

[47, 48] 

 Ovalbumin, 
Conalbumin 

Cytosol B cells, macroph. [49] 

 Neomycin 
phosphotransferase 
II 

Cytosol, nucleus B cells, IFNγ-treated epith. 
cells 

[50] 

 β-Galactosidase Nucleus Thymic epithelial cells [51] 
 I-Eα52-68-GFP 

 
Cytosol Macroph. [52] 

Tumor MUC-1 Cytosol DCs [53] 
 Mutated Cdc27 Cytosol HLA-DR-transf. 293 cells, 

melanoma cells 
[54] 
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These experiments showed for the first time that endogenous processing of cytosolic 

antigens could lead to MHC class II presentation. Subsequently, presentation of 

endogenous proteins on MHC class II has been described for a number of other viral 

antigens [41-43, 55, 56] as well as self antigens [31, 44, 45, 57], model antigens [47-52], 

and tumor antigens [54] [53] (Table 3).  

On the basis of these findings, four endogenous MHC class II processing 

pathways can be postulated [58-60] (Fig. 3). Firstly, secreted/transmembrane proteins 

(for example influenza hemagglutinin (HA) [41] can associate with newly synthesized 

MHC class II molecules in the ER, and then follow MHC class II-Ii complexes to 

endosomal compartments, where processing and peptide-loading occurs. Secondly, 

cytosolic peptides can be imported into the ER or into endosomes via TAP for binding to 

MHC class II molecules [34]. In certain APCs, such as dendritic cells, this pathway is 

even accessed by exogenous antigens like Influenza hemaglutinin and neuraminidase, 

which leave the endosome for proteasome- and TAP-dependent processing onto MHC 

class II [61]. A third pathway involves processing of cytosolic or nuclear proteins (for 

example glutamate decarboxylase 65 (GAD65) by the proteasome and is TAP-

independent [44, 52]. For this pathway, peptides seem to be imported directly into 

endosomal/lysosomal compartments via LAMP-2a, the transporter of chaperone 

mediated autophagy [62]. In addition, cytosolic/nuclear proteins can be directly imported 

into endosomes/lysosomes via a fourth, proteasome- and TAP-independent pathway. For 

example neomycin phosphotransferase II [50] or influenza matrix protein MP1 [36, 40] 

can be directly imported into endosomes/lysosomes and are degraded by lysosomal 

proteases. For neomycin phosphotransferase II, autophagy was implicated in the delivery 
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Figure 3: Proposed processing pathways for presentation of intracellular antigens 

on MHC class II.  

Four different pathways have been postulated: (1) Secreted/transmembrane proteins (e.g. 

influenza A haemagglutinin) can associate with newly synthesized MHC class II 

molecules after their cotranslational synthesis into the ER via the Sec61 transporter. 

Complexes of antigen with MHC class II-Ii then traffic to endosomal compartments, 

where processing and peptide-loading onto MHC class II occurs. (2) Similar to the 

classical MHC class I processing pathway, cytosolic peptides (e.g. a 12-mer 

haemagglutinin peptide) can be imported via TAP into the ER and then associate with 

MHC class II molecules. It is thought that peptides either bind into the peptide binding 

groove of MHC class II molecules that failed to associate with invariant chain (Ii) or they 

co-migrate with MHC class II-Ii complexes and get loaded onto MHC class II in the 

endosomal MIIC with the help of HLA-DM. (3) Other cytosolic proteins (for example 

GAD65) are degraded by the proteasome and then follow a TAP-independent pathway 

onto MHC class II. It is thought that peptides are directly imported into 

endosomal/lysosomal compartments via a peptide transporter, possibly Lamp-2a. (4) 

Cytosolic and nuclear proteins (for example neomycin phosphotransferase II) can be 

processed by lysosomal proteases after direct import into endosomal/lysosomal 

compartments.  
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of the antigen into lysosomes, while this has not been demonstrated for influenza MP1.  

The first pathway (association with MHC class II molecules in the ER) probably 

contributes the majority (80%) of endogenous MHC class II ligands, which are derived 

from secreted/transmembrane proteins [17, 31, 32]. The latter three pathways (processing 

of cytosolic or nuclear proteins by proteasome-dependent or -independent mechanisms) 

probably contribute the remaining 20% of endogenous MHC class II ligands, which are 

of cytosolic and nuclear origin. Thus, proteins residing in a compartment that is 

topologically distinct from the secretory/endocytic route and thus isolated from the 

classical MHC class II pathway, can gain access to MHC class II molecules and broaden 

the repertoire of MHC class II ligands. 

 

 

1.3 Autophagy, a lysosomal degradation pathway 

1.3.1 Different pathways of intracellular protein degradation 

Intracellular proteins are degraded in two distinct compartments: Short-lived proteins are 

degraded by the ubiquitin-proteasome pathway [63], while long-lived proteins and 

organelles are degraded within lysosomes by a process called autophagy [64]. 

Autophagy, a lysosomal degradation pathway for cytoplasmic material, was originally 

recognized as a response to starvation [65] and has been recently confirmed to play an 

essential role during starvation periods in neonates [66]. In addition, autophagy is now 

accepted as a basal house-keeping mechanism that degrades long-lived proteins and 

organelles in the steady state [64, 67-70].  
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Three types of autophagy have been described: chaperone-mediated autophagy, 

microautophagy and macroautophagy (Fig. 4A). In chaperone-mediated autophagy, 

cytoplasmic proteins or peptides containing a short signal sequence (KFERQ or related 

motifs) are imported into lysosomes via the LAMP-2a transporter [71, 72] with the help 

of cytosolic [73] and lysosomal [74] Hsc70 members. During microautophagy, small 

amounts of cytoplasm are taken up into the lysosomal lumen via invagination of 

lysosomal membrane, but this pathway has not been well characterized in mammalian 

cells so far [75]. Finally, during macroautophagy, cytoplasmic material is engulfed by a 

characteristic double-membrane vacuole, called autophagosome, which then fuses with 

lysosomes for degradation of the sequestered material [76]. Macroautophagy is thought to 

play the most important role for lysosomal degradation of cytosolic constituents, and thus 

the term autophagy is generally used to describe macroautophagy. 

 

1.3.2 The hallmarks and molecular mechanisms of macroautophagy 

During macroautophagy (hereafter simply referred to as autophagy), a double membrane-

coated vesicle is formed via elongation of a cup-shaped structure, called isolation 

membrane (Fig. 4B), whose origin is still debated to date [77, 78]. Cytoplasmic material 

and organelles are enveloped into this newly forming double membrane vesicle, called 

autophagosome, which rapidly fuses with lysosomes. The sequestered content is broken 

down by lysosomal hydrolases, which allows for the recycling of degraded constitutents 

[79]. Autophagy is seen in all nucleated cell types and is well-conserved from yeast to 

mammals [64]. The molecular machinery required for autophagosome formation has 

been identified through genetic screens in yeast. To date, about thirty autophagy-related
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Figure 4: Autophagy delivers cytoplasmic constituents to lysosomes.  

A: Three autophagy pathways have been described in eukaryotic cells. Chaperone- 

mediated autophagy delivers signal sequence-dependent cytosolic proteins directly into 

the lysosomal lumen (1). In this process, cytosolic and lysosomal Hsc70 proteins mediate 

the import of signal sequence-containing substrates through the Lamp-2a transporter. 

During microautophagy, small cytosol-containing vesicles bud into the lysosomal lumen, 

where they are subsequently degraded (2). Finally, macroautophagy involves the 

formation of a cup-shaped membrane that engulfs cell organelles and long-lived proteins 

(3). The resulting autophagosome fuses with lysosomes for degradation of its content and 

of the intravesicular membranes. 

B: During the process of macroautophagy, a double-membrane structure, called isolation 

membrane, surrounds portions of the cytoplasm and organelles. Fusion of the tips of the 

isolation membrane forms a double-membrane vesicle, called autophagosome, of about 

0.5-1 μm diameter. The autophagosome then fuses with late endosomes/lysosomes and 

the sequestered content and the inner membrane are degraded by lysosomal hydrolases. 

The fusion of autophagosomes with lysosomes occurs rapidly and hence the half life of 

autophagosomes is short (t1/2 about 8 min).  
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genes (called Atg) have proven to be involved in macroautophagy in yeast, and 

mammalian homologues of most of these genes have been identified [80].  

Of central importance for the formation of autophagosomes are two ubiquitin-like 

protein conjugation systems (Fig. 5): First, the ubiquitin-like Atg12 protein is covalently 

linked to the Atg5 protein by the E1- and E2-like enzymes Atg7 and Atg10, and the 

resulting complex localizes to the isolation membrane [81]. The Atg5-Atg12 complex is 

essential for membrane elongation and autophagosome formation [82]. Since it 

preferentially localizes to the convex membrane of the forming autophagosome, it might 

determine the curvature of the forming membrane. The mature autophagosome does not 

carry Atg5 and Atg12. Therefore, it is thought that these proteins leave the isolation 

membrane just prior to or upon closure of the isolation membrane. The second ubiquitin-

like system involves coupling of the ubiquitin-like protein Atg8, also called microtubule-

associated protein 1 (MAP1) light chain 3 (LC3), to phosphatidylethanolamine in the 

autophagosome membrane by the E1- and E2-like enzymes Atg7 and Atg3 [83, 84] (Fig. 

5). LC3 is a soluble cytoplasmic protein that first must be cleaved by the Atg4 protease. 

The C-terminal glycine residue that is generated in this cleavage event is then covalently 

conjugated to the phospholipid’s amino group. In this fashion, LC3 becomes attached to 

both the inner and the outer autophagosome membrane and is essential for its completion 

[85, 86]. After autophagosome completion, LC3 remains coupled to the autophagosome 

and is degraded by lysosomal proteases after fusion with lysosomes [84, 87] (Fig. 5). Due 

to its covalent attachment to autophagosomal membranes, LC3 and GFP-tagged LC3 are 

reliable and specific markers to monitor autophagosomes in vitro and in vivo [68, 88]. 
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Figure 5: Two ubiquitin-like systems participate in autophagosomes formation. 

The first ubiquitin-like system involves the ubiquitin-like protein Atg12, whose C-

terminal Gly140 residue is covalently coupled to a lysine residue (Lys130) in the Atg5 

protein. This reaction is catalyzed by the E1- and E2-like enzymes Atg7 and Atg10. The 

resulting Atg5-Atg12 complex localizes to the isolation membrane and is essential for 

membrane elongation and autophagosome formation. After closure of the isolation 

membrane, the Atg5-Atg12 complex leaves the membrane again, so that the mature 

autophagosome does not carry any Atg5 or Atg12.  

The second ubiquitin-like protein Atg8, also called microtubule-associated protein 1 

(MAP1) light chain 3 (LC3), is a soluble cytoplasmic protein that first must be cleaved by 

the Atg4 protease. The C-terminal glycine residue that is generated in this cleavage event 

(Gly120) is then covalently conjugated to the amino group of a phospholipid in the 

forming isolation membrane, a reaction catalyzed by the E1- and E2-like enzymes Atg7 

and Atg3. In this fashion, LC3 becomes attached to both the inner and the outer 

autophagosome membrane and thus decorates the autophagosome.  
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In addition to these two ubiquitin-like protein conjugation systems, a number of 

signaling proteins have been identified to be involved in the regulation of autophagy: 

Class I PI3 kinase and TOR kinase suppress autophagy, while class III PI3 kinase and its 

binding partner beclin-1 activate autophagy [89-91]. The class III PI3K-beclin-1 complex 

seems to be an important signaling checkpoint in starvation-induced autophagy, since 

beclin-/- cells are unable to upregulate autophagy in response to starvation [92, 93]. Other 

regulators of the autophagic pathway are the eIF2α kinases GCN2, PERK and PKR [94]. 

In response to starvation, ER stress and viral infection, respectively, these kinases not 

only phosphorylate eIF2α to induce translational arrest, but they also upregulate 

autophagy, most likely via beclin-1 [95].  

 

1.3.3 Autophagy as an innate immune response against bacteria and viruses 

Recently it was appreciated that macroautophagy not only contributes to the turnover of 

cytoplasmic constituents, but also targets intracellular pathogens for degradation during 

innate immunity [96]. Bacteria and viruses have developed strategies to escape 

destruction via autophagy, indicating that this is an important mechanism of innate 

immunity [97].  

After phagocytosis, successful bacterial pathogens either leave phagosomes for 

the cytosol, as is the case for Listeria monocytogenes, or stop maturation of phagosomes 

to acidic vesicles, as for Mycobacterium tuberculosis. Both cytosolic and phagosome-

resident bacteria can then be targeted by macroautophagy [98]: Listeria monocytogenes 

escapes the phagosome with the help of the protein Listeriolysin O and subsequently 

replicates in the cytosol. However, when its protein synthesis is inhibited by 



 28

chloramphenicol, it is trapped by autophagosomes and is delivered for lysosomal 

destruction [99]. Similarly, when Streptococcus pyogenes manages to leave endosomes of 

nonphagocytic cells, it becomes enveloped in autophagosomes and the bacterial load 

decreases after lysosomal degradation [100]. Finally, Shigella flexneri lyses phagosome 

with its gene product IpaB and then prevents degradation via macroautophagy with 

another gene product IcsB [101]. Furthermore, autophagic degradation of pathogen-

containing phagosomes has been reported for Mycobacterium tuberculosis (Mtb). Mtb is 

degraded in lysosomes after IFN-γ stimulation in macrophages. Recently it was suggested 

that the IFN-γ-induced guanosine triphosphatase LRG-47 participates in autophagosome 

formation and these autophagosomes target Mtb-containing phagosomes for lysosomal 

destruction [102, 103]. On the other hand, Legionella pneumophila, Coxiella burnetii and 

Brucella abortus all replicate inside autophagosomes, by slowing their maturation and 

fusion with lysosomes [104-107]. These examples demonstrate that cytosolic and 

phagosomal bacteria can be degraded via macroautophagy, but many microorganisms 

have developed strategies to avoid or subvert this innate immune mechanism. 

Although several viruses enhance autophagy upon infection, its contribution to 

anti-viral innate immunity has been less clearly defined. Several single-stranded RNA 

and double-stranded DNA viruses seem to be sensitive to and subvert autophagy to their 

benefit [97, 108]. Two main steps in the autophagic process can be targeted by viruses: 

The generation and the degradation of autophagosomes. The ssRNA viruses poliovirus 

and mouse hepatitis virus (MHV) block degradation of autophagosomes and use them as 

scaffolds to assemble their RNA replication complexes [109-111]. Therefore, 

autophagosomes accumulate after infection with these viruses and stimulation of 
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autophagy increases viral yield, while inhibition of autophagosome formation decreases 

virus replication. In contrast, viruses that cannot make use of autophagosomes for their 

replication have developed strategies to block autophagosome formation and thus escape 

autophagic degradation. This has been demonstrated for the α- and γ-herpesviruses 

herpes simplex virus 1 (HSV-1) and Kaposi Sarcoma-associated herpesvirus (KSHV). 

HSV-1 encodes for an early antigen ICP34.5 that interacts with beclin-1 to inhibit PKR-

induced autophagy [95]. KSHV encodes a viral Bcl-2 homologue that interacts with a 

different domain of beclin-1 and also inhibits autophagy [93]. If these viral escape 

mechanisms are eliminated or if beclin-1 is overexpressed, autophagy is induced and 

virus replication and virulence are impaired [93, 95, 112], suggesting that autophagy 

induction during viral infections might restrict virus replication within infected cells. The 

fact that viruses have developed effective strategies to prevent autophagy induction, 

indicates strong evolutionary pressure to escape this innate immune mechanism. 

 

1.3.4 Methods for studying autophagy 

The most important methods for studying autophagy include (a) morphological methods, 

(b) biochemical detection of autophagosomes and (c) inhibition of autophagy via 

silencing of specific Atg gene. For a long time, morphologic detection of 

autophagosomes by electron microcopy (EM) has been the only reliable method for 

monitoring autophagy [88]. Autophagy was first discovered using EM [113] and this 

method has remained an important tool for studying autophagy. In EM, autophagosomes 

appear as double membrane vesicles containing cytoplasmic material, while at later 

stages, they have a single membrane and contain cytoplasmic material at various stages 
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of degradation [114]. After fusion with endosomes, they may also contain endocytosed or 

phagocytosed material and it is sometimes difficult to distinguish the different types of 

autophagic and endocytic vesicles solely by morphology [115]. Immuno-electron 

microscopy using antibodies against autophagosome marker proteins is probably a more 

reliable method [84, 88]. Newer morphological methods for monitoring autophagy rely 

on immunofluorescence microscopy and the specific autophagosome marker protein 

Atg8/LC3. GFP-tagged LC3 has been used to visualize autophagosomes in cultured cells 

[68, 84, 102] and GFP-LC3 transgenic mice have been used to quantify constitutive and 

starvation-induced autophagy in murine tissues [68]. GFP-LC3 localization to 

autophagosomes can also be observed in real time by live cell imaging [116, 117].  

Besides these morphological methods, a biochemical assay is now frequently used 

to detect and quantify autophagy. Autophagosome-coupled LC3 (LC3-II) and free 

cytosolic LC3 (LC3-I) migrate with different speed on an SDS-PAGE gel (apparent 

mobility: 16 and 18 kD, respectively). Consequently, anti-LC3 immunoblots usually 

gives two bands and the amount of LC3-II or the LC3-I/LC3-II ratio correlates with the 

number of autophagosomes [84, 88].  

Other useful tools for studying autophagy are based on the Atg gene products 

Atg5, Atg7 and Atg12. The Atg12-Atg5 conjugate is essential for autophagosome 

formation and Atg7 is required for both Atg12 coupling to Atg5 and Atg8 coupling to 

phsophatidylethanolamine [82]. Gene targeting of either gene completely inhibits 

autophagy. Therefore, Atg5-/- or Atg7-/- cells or siRNAs to silence Atg5, Atg7 or Atg12 

are important tools for studying autophagy. Inhibition of autophagy with pharmacologic 

drugs, for example 3-methyladenine (3-MA) [118], which inhibits the class III PI3K-
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beclin-1 complex, is also frequently used. However, at higher inhibitor concentrations, 

the effects of 3-MA are not always specific for autophagy, as 3-MA also inhibits other 

cellular processes [88]. Therefore, an effect by 3-MA does not always implicate 

autophagy and results should always be confirmed by more specific Atg gene silencing.  

 

 

1.4 CD4+ T cell responses in viral and tumor immunity  

1.4.1 Effector mechanisms of activated T cells  

Antigen-specific T cells play an essential role in eradicating cells that express foreign or 

abnormal proteins. When T cells detect MHC-bound fragments derived from such 

proteins, they will be activated to perform specific effector functions – either target cell 

killing or activation of other components of the immune system [2].  

T cells can kill target cells via two different mechanisms: The more rapid 

mechanism involves the release of the pore-forming protein perforin and proteases called 

granzymes, which enter through the pores and trigger programmed cell death [119, 120]. 

The alternative and more slower killing mechanism is via expression of cell surface-

associated effector proteins of the TNF family, such as Fas ligand, TRAIL, TNF-α and –

β [120]. These molecules can bind to TNF receptor family members on target cells and 

trigger apoptosis via these death receptors. Target cell killing is the main function of the 

CD8+ T cells (CTLs). However, as discussed in the next paragraph, CD4+ T cells can also 

contribute to the killing of infected or transformed cells. 

Besides killing, the main effector function of T cells is the activation of other cell 

types of the immune system, and this function is mainly fulfilled by CD4+ T cells. CD4+ 
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T cells are of two functional types: Th1 cells and Th2 cells [121]. Th1 cells secrete IFN-γ 

and other cytokines and can activate or kill MHC class II-positive target cells via the cell 

surface proteins CD40 ligand or Fas ligand, respectively. In addition, a subset of CD4+ 

Th1 cells is capable of perforin mediated lysis. In contrast, Th2 cells secrete the B cell 

growth factors IL-4 and IL-5 and activate B cells via CD40 ligand-CD40 interaction to 

undergo Ig class switching and to become antibody-producing plasma cells.  

 

1.4.2 The contributions of CD4+ T cells to adaptive immunity 

The capacity of CD8+ T cells to expand rapidly and to lyse target cells directly has 

focused previous research efforts mainly on this arm of the adaptive immunity. More 

recently, however, the equally important contribution of CD4+ T cells to cell-mediated 

immune responses against viruses and cancer has been appreciated [122-124]. Both direct 

and indirect CD4+ T cell functions seem to be important in the immune control of 

malignancies and persistent infections [125, 126]: Direct functions of CD4+ T cells 

include induction of apoptosis by TNF family members, such as FasL and TRAIL [127], 

and less frequently perforin/granzyme-mediated cytotoxicity [128-130]. Another direct 

function of CD4+ T cells is the secretion of cytokines, mainly IFN-γ, which has proven to 

mediate resistance against viral infections [131, 132] and tumors [133]. Apart from these 

direct antiviral and cytolytic functions, the CD4+ T cell compartment has been shown to 

be crucial for the development [134, 135] and maintenance [124, 136-140] of effective 

CD8+ T cell responses. Therefore, for efficient vaccination against viruses and tumors, 

CD4+ T cells should be stimulated alongside with CD8+ T cells to allow for the induction 

of long-lasting CD8+ T cell memory.  
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1.4.3 Examples of CD4+ T cell responses to viral infections and tumors 

CD4+ T cells play a role in controlling both persistent viral infections, such as Epstein-

Barr virus (EBV), cytomegalovirus (CMV), and human papillomavirus (HPV) [141] and 

acute viral infections, such as influenza A virus [142]. Interestingly, many of the 

predominant CD4+ T cell antigens are localized in the cytoplasm or nucleus of infected 

cells. For example, the EBV nuclear antigen 1 (EBNA1) is the predominant antigen 

recognized by EBV-specific CD4+ T cells during latent EBV infection, and nearly all 

healthy EBV carriers display strong CD4+ T cell responses to this antigen [43, 143]. Two 

main CD4+ T cell antigens of the high risk HPV type 16 are the viral oncoproteins E6 and 

E7, which are localized to the cytoplasm and nucleus, respectively [144, 145]. An 

example of an antigen that is recognized by CD4+ T cells in an acute viral infection is the 

influenza A virus matrix protein M1, which mediates the transport of viral 

ribonucleoprotein out of the nucleus [146]. In addition to these viral antigens, different 

types of melanoma antigens (differentiation antigens, cancer-testis antigens and mutated 

self antigens) are recognized by melanoma-specific CD4+ T cells [147, 148]. 

Even though the importance of CD4+ T cells for effective antiviral and antitumor 

responses is now widely accepted, it is unclear how endogenously expressed viral and 

tumor antigens are presented onto MHC class II, and hence targeting strategies for this 

important MHC class II pathway remain elusive. One aim of this thesis project was to 

characterize the pathway for MHC class II presentation of endogenously expressed viral 

and tumor antigens and to targting antigens efficiently for MHC class II presentation, to 

elicit more comprehensive, CD8+ and CD4+ T cell-based immunity against viruses and 

tumors. 
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1.5 Epstein-Barr Virus 

1.5.1 Epstein-Barr Virus (EBV), a ubiquitous human tumor virus 

Epstein-Barr virus (EBV) is a human gamma herpesvirus that preferentially infects B 

lymphocytes and occasionally other cell types, such as epithelial cells [149]. The virus 

was originally visualized in Burkitt’s lymphoma, a human B cell lymphoma, by Epstein, 

Achong and Barr in 1964 [150, 151]. When they examined Burkitt’s lymphoma-derived 

cell lines by electron microscopy, these investigators discovered herpesvirus-like 

particles in a proportion of the cells, and thus discovered the first candidate for a human 

tumor virus.  

EBV is one of the most highly growth transforming viruses known in any species 

[152]. When B cells are infected by EBV in vitro, the cells become immortalized and 

form permanently growing lymphoblastoid cell lines (LCLs) [153]. In vivo, the virus can 

give rise to a number of different B cell tumors, including Burkitt’s lymphoma, 

nasopharyngeal carcinoma, Hodgkin’s disease, post-transplant lymphoproliferative 

disease (PLD), and AIDS-associated non-Hodgkin’s lymphoma as well as epithelial cell 

cancers, including nasopharyngeal carcinoma and gastric carcinoma [154]. 

Seroepidemiological studies have shown that more than 95% of the human adult 

population carry EBV as a lifelong asymptomatic infection [149]. However, despite its 

strong growth transforming capacity, the virus causes no disease in the vast majority of 

infected individuals, because a potent EBV-specific cytotoxic T cell response controls the 

infection and prevents the outgrowth of EBV-positive B cells [155]. Nevertheless, the 

virus cannot be completely eliminated from the hematopoetic system, but persists in the 

infected host in a quiescent state for life. Resting memory B cells that express no viral 
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gene products at the protein level are thought to be the site of EBV-persistence in the 

body [156]. The ubiquity and persistence of the virus are typical features of all herpes 

viruses [149].  

 

1.5.2 Primary and persistent EBV infection 

After saliva exchange with an infected individual, infectious virus can enter the 

nasopharyngeal lymphoid system via the tonsils [156]. Once in the lymphoid system, the 

virus infects naïve B cells and establishes a so-called latent infection. In the latency state, 

no lytic genes products are expressed and no viral particles are produced. Instead, of the 

nearly 100 genes encoded in the EBV genome, only a small set of so-called “latency 

genes” is expressed: six nuclear antigens (EBNA1, EBNA2, EBNA3A, EBNA3B, 

EBNA3C, and EBNA-LP), three transmembrane proteins (LMP1, LMP2A, and LMP2B) 

as well as non-translated RNAs, including EBER1 and 2 [BamH1 transcript, microRNAs 

and maybe more] [149] (Table 4). The combined actions of the latency proteins and the 

EBERs cause the previously resting B lymphocytes to enter the cell cycle, proliferate 

continuously and resist apoptosis.  

 Latently EBV-infected B cells can express four different genetic programs, which 

are characterized by the expression of specific viral latency genes [149] (Table 5). The 

so-called latency III program is characterized by the expression of all 11 latency gene 

products. This program, also referred to as “growth program” [156], activates resting B 

cells to become proliferating lymphoblasts, and can be observed in newly infected naïve 

B cells and in in vitro-generated lymphoblastoid cell lines (LCLs). In the latency II  
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Table 4: EBV latency genes and known functions (adapted from [149]). 
 
Latency gene Function References 
EBNA1 
 
 
 
 

Binds to viral replication origin (oriP) and initiates viral 
episome replication before mitosis. Also anchors the viral 
episome to mitotic chromosomes to ensure segregation of the 
episome. 
 

[157, 158] 

EBNA2 
 
 

Initiates transcription of other viral latency genes (EBNA1, 
LMP1, LMP2) and of cellular genes (CD23, CD21, c-myc). 
 

[159, 160] 

EBNA3A,B,C 
 
 
 

EBNA3A and C abrogate cell cycle check points and drive B 
cells into continuous proliferation. EBNA3B is not essential for 
transformation 
 

[161, 162] 

EBNA-LP 
 

Cooperates with EBNA2 and enhances its effects  
 

[163] 

LMP1 
 
 
 
 

Mimics CD40 signalling and thereby rescues B cell from 
apoptosis (upregulates bcl-2). Also upregulates cellular 
adhesion molecules (ICAM1, LFA1, LFA3) and activation 
markers (CD21, CD23, CD40) 
  

[156] 

LMP2A,B 
 

LMP2A mimics survival signal from the B cell receptor  
 

[156] 

EBER 1, 2 
 
 

Increases oncogenesis in Burkitt’s lymphoma cells (upregulates 
bcl-2). Antagonized interferon action.  
 

[164, 165] 
 

BamH1 
transcripts and 
microRNAs 
 

Functions not clearly characterized. 
 
 
 

[149] 

Abbreviations: 
EBNA: EBV nuclear antigen, LMP: latent membrane protein, EBER: EBV-encoded RNA 
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Table 5: Different gene expression programs during latent EBV infection (adapted 
from [149]). 
 
Gene expression 
program 

Genes expressed 
 

Examples 
 

Latency III program 
 
 
 
 

EBNA1, 2, 3A, 3B, 3C, LP 
LMP1, 2A, 2B,  
EBERs and other non-
translated RNAs 
 

Newly infected naïve B cells, 
posttransplant lymphoproliferative 
disease, LCLs 
 
 

Latency II program 
 
 
 

EBNA1, LMP1, 2A 
EBERs and other non-
translated RNAs 
 

Hodkin’s lymphoma, 
nasopharyngeal carcinoma, nasal T 
cell lymphoma 
 

Latency I program 
 
 
 

EBNA1 
EBERs and other non-
translated RNAs 
 

Burkitt’s lymphoma 
 
 
 

Latency 0 program 
 
 
 

(EBNA1), (LMP2A) 
EBERs  and other non-
translated RNAs 
 

Resting memory cells from 
peripheral blood of healthy EBV 
carriers 
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program, viral gene expression is restricted to EBNA1, LMP1, LMP2A and the non 

translated RNAs. This expression pattern is found in several EBV-associated 

malignancies, such as Hodgkin’s lymphoma and nasopharyngeal carcinoma. The latency 

I expression pattern, which can be found in Burkitt’s lymphoma cells, is characterized by 

the presence of a single viral protein, the nuclear antigen EBNA1. Because of its critical 

functions for the replication and maintenance of the viral DNA during cell division [157, 

158], EBNA1 has to be maintained in all proliferating EBV-infected cells. The fourth 

pattern of latency, called latency 0, is found in resting memory B cells in the blood of 

healthy EBV carriers. Besides the non-translated RNAs, only EBNA1 and LMP2 are 

detected in a subset of these cells by RT-PCR [166, 167], suggesting that most memory 

cells express no EBV proteins. By downregulating the expression of all viral genes, 

EBV-infected memory cells avoid recognition by the immune system, and therefore 

provide a site for long-term EBV persistence in the body [156]. 

In a small fraction of EBV-infected memory B cells, reactivation from latent to 

lytic infection can occur upon cognate antigen encounter [149]. Accordingly, lytic EBV 

replication can be found in plasma cells of healthy virus carriers [168]. Thus, even long-

term virus carriers continue to secrete low levels of infectious virus into the saliva and 

help to spread the virus among the human population.  

 

1.5.3 T cell responses in persistent EBV infection 

Despite the growth-transforming capacity of EBV, more than 95% of the adult population 

carry the virus for life without any symptoms. In healthy individuals, the outgrowth of 

EBV-infected B cells is prevented by a strong adaptive immune response [155]. The 
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importance of this immune control becomes apparent in immunocompromised hosts, 

such as immunosuppressed transplant patients or AIDS patients, who frequently develop 

B cell lymphomas [149].  

Both CD8+ and CD4+ memory T cells provide long-term surveillance of EBV-

infected B cells [149]. Most CD8+ T cell responses target the EBNA3 proteins [169]. 

Less frequently, CD8+ T cell responses against epitopes from LMP1 [170] and LMP2 

[171] have been reported. Thus, EBV-infected B lymphocytes expressing the latency III 

expression pattern (Table 5) can be efficiently controlled by EBV-specific CD8+ T cells. 

CD4+ T cell responses are dominated by EBNA1-specific T cells, which have been 

identified in all healthy EBV carriers [43, 143]. When isolated from the peripheral blood 

of healthy donors, these T cells consistently recognize and kill HLA-matched EBV-

transformed B cells, including Burkitt’s lymphoma cell lines [43, 56]. Thus, EBNA1-

specific CD4+ T cells could explain, how latency I and II malignancies, such as Burkitt’s 

and Hodgkin’s lymphoma, are avoided in healthy EBV carriers. In these malignancies, 

EBNA1 is the main T cell target, since EBNA3 proteins are not expressed (Table 5). 

Thus, EBNA1-specific CD4+ T cells could be the principal effectors in the surveillance of 

latency I and II expressing cells. EBNA1-specific CD4+ T cells could also be important 

for the maintenance of an effective CD8+ T cell memory (see chapter 1.4.2).  

 

1.5.4 EBNA1 and its processing in B cells 

EBNA1 was originally identified as an EBV nuclear antigen that is present in all EBV-

infected B cells [172]. It is localized in the nucleus, where it is responsible for replication 

and maintenance of the EBV genome in the infected cell [173]. Like all nuclear proteins, 
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EBNA1 is synthesized at cytosolic ribosomes and is subsequently imported into the 

nucleus by virtue of its nuclear localization sequence (NLS). A unique feature of the 

EBNA1 protein is the long, irregular glycine-alanine (GA) repeat domain that stretches 

from amino acid 90 to 327. The repeat was shown to prevent EBNA1 mRNA translation 

[174] as well as EBNA1 protein degradation by the ubiquitin-proteasome system [175] in 

cis and thus strongly decreases MHC class I presentation of EBNA1. Presumably, only 

truncated EBNA1 DRiPs (defective ribosomal products) immediately after their synthesis 

can be processed by the proteasome and give rise to some CD8+ T cell epitopes [176, 

177]. Thus, the virus has evolved a unique mechanism to specifically suppress CD8+ T 

cell recognition of an essential viral protein [178]. 

In contrast to the weak MHC class I presentation, EBNA1 is consistently 

presented on MHC class II molecules of infected B cells, and hence can be targeted by 

EBNA1-specific CD4+ T cells [43, 143]. Münz et al. demonstrated that MHC class II 

presentation of EBNA1 is not due to the uptake of dying EBNA1-expressing B cells 

(classical exogenous pathway), but to the direct processing of the protein in the infected 

cell (non-classical endogenous pathway) [43]. Even though endogenous MHC class II 

presentation has been described for other cytosolic and nuclear antigens (see chapter 

1.2.6), its molecular basis is not very well understood so far.  
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1.6 Influenza A virus 

1.6.1 Influenza A virus (IAV) and its life cycle 

Influenza is a contagious, acute respiratory disease caused by infection of respiratory 

tract epithelial cells by influenza A virus (IAV). In the industrialized world, it is the 

leading viral cause of mortality and it remains a major public health concern due to its 

potential to cause devastating pandemics [179].  

IAV is an enveloped single-stranded RNA virus that belongs to the family of 

Orthomyxoviridae [180]. Its genome is composed of eight single-stranded RNA segments 

of negative polarity, encoding 11 proteins (Fig. 6A). These RNA segments are always 

tightly associated with viral proteins, forming ribonucleoprotein (RNP) complexes [181]. 

The main protein components of RNPs are nucleoprotein (NP) and the trimeric 

polymerase complex (PB1, PB2, PA). The RNP core is surrounded by the viral matrix 

protein (MP1 or M1), which associates with RNPs and the lipid envelope (Fig. 6A). Three 

integral membrane proteins are inserted into the lipid bilayer: Haemagglutinin (HA), 

neuraminidase (NA) and small amounts of the M2 ion channel.  

The influenza life cycle is depicted in Fig. 6B. During entry into cells, HA binds 

to sialic acid residues on cell surface glycoproteins or glycolipids and mediates 

endocytosis of viral particles. Acidification of endosomes results in a conformational 

change in HA, leading to fusion of the viral envelope with the endosomal membrane 

[182] and release of viral RNPs into the host cell cytoplasm. M2 ion channel activity is 

essential for this uncoating process, as it permits the flow of ions into the virion core, 

leading to the disruption of RNP-MP1 interactions [183]. Once RNPs are in the 
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Figure 6: Influenza A virus structure and life cycle.  

A: Schematic diagram of the structure of the influenza A virus particle (adapted from ). 

IAV is an enveloped virus whose genome consists of eight different segments of single-

stranded RNA. The genomic segments encode for a total of 11 proteins. The major 

structural proteins are the matrix protein M1 (green), which underlies the lipid envelope 

(grey), and the transmembrane glycoproteins haemagglutinin (HA) and neuraminidase 

(NA), which are inserted into the lipid bilayer.  

B: Schematic diagram of the life cycle of influenza A virus (adapted from [180]). 
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cytoplasm, they get imported into the nucleus for transcription and replication [184]. 

MP1 also enters the nucleus, where is associates with newly generated RNPs and 

mediates their export from the nucleus [185]. Newly synthesized positive-stranded 

mRNAs are also exported into the cytoplasm for translation. The integral membrane 

proteins HA, NA and M2 are cotranslationally synthesized into the ER and then are 

transported to the plasma membrane for virion assembly and budding [180].  

 

1.6.2 Adaptive immune responses to influenza A virus 

Both humoral and cellular immune responses are important for protective immunity to 

IAV. Neutralizing antibodies are mainly directed against the viral envelope proteins HA 

and NA and therefore they are usually only effective against homologous virus strains, 

but not heterologous virus strains with serologically distinct glycoproteins [186]. In 

contrast to antibodies, T cells can recognize internal virus proteins (e.g. NP, MP1, NS2, 

PA, PB1 and PB1-F2), which are more conserved among heterologous virus strains. Both 

CD8+ and CD4+ T cell responses are stimulated by IAV [142, 186]. Priming and 

expansion of influenza-specific CD8+ T cells occur in draining mediastinal lymph nodes 

3-4 days after infection [187]. 5-7 days after infection, they appear in the airway 

epithelium and secrete antiviral cytokines and lyse influenza-infected target cells [188]. 

Secondary influenza-specific CTL responses arise about 2 days faster than the primary 

response and have a greatly increased level of activity. Influenza-specific CD4+ T cell 

responses are much less well characterized than their CD8+ counterparts. Studies in CD4+ 

T cell-deficient mice have shown that influenza-specific CD4+ T cells seem to play an 

important role for CD8+ memory T cell expansion and function [189], although this 
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defect was mainly seen in the draining lymph node and spleen and not in the lung [190]. 

In addition, it has been suggested that CD4+ T cells have direct effector functions against 

IAV and may contribute to immunopathology [142].  

 

1.6.3 Innate immune mechanisms to restrict influenza A virus 

In addition to the above described adaptive immune responses, innate defense 

mechanisms, such as the production of type I IFNs, can restrict virus replication [191]. In 

virus-infected cells, toll-like receptor (TLR) family members (TLR 7, 8 and 3) and 

cytoplasmic RNA helicases (RIG-I and mda-5) can sense viral dsRNA or ssRNA and 

induce the expression of IFN-α and –β [192]. These in turn then stimulate the expression 

of more than 100 IFN-stimulated genes (ISGs), whose concerted action leads to the 

generation of an antiviral state [191]. Among the best characterized ISGs is protein 

kinase R (PKR), whose activity results in an inhibition of protein translational and in 

autophagy induction (see chapter 1.3.2).  

It is not surprising that many viruses, including IAV, have evolved ways to down-

modulate the IFN response. In the case of IAV, the viral non-structural protein 1 (NS1) 

binds viral dsRNA and thus prevents its recognition by cellular sensors [179, 193]. In 

addition, IAV activates a cellular inhibitor of PKR, p58IPK, and thus inactivates one of 

the most important ISGs [194]. In the face of these effective anti-IFN mechanisms, it is 

conceivable that host cells have evolved other innate immune mechanisms to restrict IAV 

replication at early stages, before the adaptive immune response can take over. 
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Chapter 2: Material and methods  

2.1 Reagents 

2.1.1 Inhibitors, synthetic peptides and cytokines 

Ammonium chloride, chloroquine, 3-methyladenine, E64, Leupeptin and Pepstatin A 

were purchased from Sigma and lactacystin was from Calbiochem. Peptides EBNA1481-

501, EBNA1514-527 and EBNA3A325-333 were synthesized by the Fmoc solid phase method 

on a peptide synthesizer (model 432A, Applied Biosystems). Peptide purity and identity 

were confirmed by reverse phase HPLC (System Gold, Beckman) and mass spectrometry 

(LD-TOF G2025A, Hewlett-Packard). Lyophilized peptides were dissolved in 1% 

DMSO to a concentration of 1 mM. The MP1 peptide mix was purchased from the 

Proteomics Resource Center of the Rockefeller University. Lyophilized MP1 peptides 

were dissolved in 10% DMSO to a concentration of 1 mM. Recombinant human IL-4 

was from Peprotech and recombinant human GMCSF was “Leukine” from Berlex. IL-1β, 

IL-6 and TNF-α were from R&D Systems. Recombinant human IFN-γ was from 

ProSpec-Tany TechnoGene LTD and was used at 200 U/ml to induce MHC class II 

expression. Recombinant human IFN-α-2b was from Schering Corporation. 

 

2.1.2 Antibodies  

Anti-LC3 antiserum was generated by immunizing two rabbits with the N-terminal 

peptide LC31-15 (MPSEKTFKQRRTFEQR) conjugated to KLH carrier protein (Cocalico 

Biologicals). Animals were boosted 5 times (2, 3, 7, 11 and 15 weeks after initial 

inoculation) and then sacrificed to obtain terminal bleeds. Antiserum collected from one 
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rabbit showed good LC3 reactivity by ELISA and Western blot and was used for Western 

blots at a dilution of 1:2000.  All other antibodies are listed in Table 6.  

 

Table 6: List of antibodies. 

1° antibodies Dilution Source 

Rat anti-EBNA1ΔGA (clone 1H4), monoclonal 1:200 (WB) [195] 

Mouse anti-EBNA1408-641 (clone 5F12), monoclonal 
 

1:10  (IF) 
1:50  (EM) [196] 

Mouse anti-HLA-A,B,C (clone w6/32), monoclonal 1:10 ATCC 
Mouse anti-HLA-DR,DP,DQ (clone IVA12), monocl. 1:10  ATCC 
Mouse anti-HLA-DM (clone MaP-DM1), monoclonal 1:400 (IF) BD Pharmingen 
Mouse anti-transferrin receptor (clone  DF1513), monocl. 1:800 (IF) Sigma 
Mouse anti-actin (clone AC-40), monoclonal 1:2500 (WB) Sigma 
Mouse anti-LAMP1 (clone H4A3), monoclonal 1:400 (IF) Southern Biotech 
Mouse anti-LAMP2 (clone H4B4), monoclonal 1:200 (IF) Southern Biotech 
Rabbit anti-EBNA3A, polyclonal  1:1000 (WB) Oncogene 
Rabbit anti-GFP, polyclonal 1:50 (EM) Molecular Probes 
Rabbit anti-HLA-DR (C6861), polyclonal 1:50 (EM) Peter Cresswell 
Rabbit anti-influenza A-MP1 (7648), polyclonal 

 

1:1000 (IF)                 
1:2000 (WB) 

[184] 
 

Goat anti-EEA1, polyclonal 1:300 (IF) Santa Cruz Biotech 
   
2° (HRP or biotin-conjugated) antibodies Dilution Source 

Goat anti-mouse-IgG-HRP  1:10,000 (WB) BioRad 

Goat anti-rabbit IgG-HRP 1:50,000 (WB) Jackson ImmunoRes 
Goat anti-rat IgG-HRP 1:1000 (WB) Amersham 
Goat anti-mouse IgG-biotin 1:300 (EM) Hercules 
   
2° (Fluorochrome-conjugated) antibodies Dilution Source 

Mouse anti-HLA-DR-FITC (clone TÜ36), monoclonal 1:20 (FACS) BD PharMingen 

Mouse anti-human CD4-PE, monoclonal 1:20 (FACS) BD PharMingen 

Mouse anti-human CD8-PE, monoclonal 1:120 (FACS) BD PharMingen 
Donkey anti-mouse IgG-Rhodamine Red-X, F(ab)2  1:300 (IF) Jackson ImmunoRes 
Donkey anti-rabbit IgG-Rhodamine Red-X, F(ab)2  1:300 (IF) Jackson ImmunoRes 
Donkey anti-goat IgG-Rhodamine Red-X, F(ab)2  1:300 (IF) Jackson ImmunoRes 
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2.2 Cell lines and primary cells 

2.2.1 Cell lines 

A variety of epithelial and B cell lines were used in this study. All epithelial cell lines 

were routinely cultured in DMEM with 10% fetal calf serum (FCS, Sigma), 2 mM 

glutamine, 110 μg/ml sodium pyruvate and 2 μg/ml gentamycin, except MLE-12, which 

was cultured in a 50:50 mix of DMEM:Ham’s F12, supplemented with 2% FCS, 5 μg/ml 

insulin, 10 μg/ml transferrin, 30 mM sodium selenite, 10 nM hydrocortisone, 10 nM beta-

estradiol, 2 mM glutamine and 2 μg/ml gentamycin. Epithelial cell monolayers were 

detached by one wash in PBS/0.5 mM EDTA followed by incubation in 0.05% 

trypsin/0.53 mM EDTA (Gibco). B cell lines and hybridomas were maintained as 

suspension cultures in RPMI-1640 medium with 10% FCS, 2 mM glutamine and 2 μg/ml 

gentamycin. All cell lines are listed in Table 7.  

 

2.2.2 PBMC isolation and preparation of monocytes and dendritic cells (DCs) 

Human peripheral blood mononuclear cells (PBMCs) were isolated from leukocyte 

concentrates (buffy coats) from the New York Blood Center or blood donations from 

healthy lab donors, which provided informed consent for this Rockefeller University 

Internal Review board approved study. PBMCs were isolated by density gradient 

centrifugation on Ficoll-Paque Plus (GE Healthcare). CD14+ monocytes/macrophages 

were isolated by positive magnetic cell separation (MACS) using anti-CD14 MicroBeads 

(Miltenyi Biotec). To generate monocyte-derived DCs, 3x106 CD14+ cells were plated 

into each well of a 6-well plate in 3ml of RPMI-1640 + 1% single-donor plasma +
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Table 7: List of cell lines. 

Name of cell line Type of cell line Source 

HaCat Human keratinocyte  Rajiv Khanna, Brisbane, Australia 

MDAMC Human breast carcinoma Irene Joab, Paris, France 

HeLa Human cervical carcinoma ATCC 

293 Human kidney epithelium ATCC 

A549 Human lung carcinoma Thomas Moran, New York, U.S. 

MLE-12 Mouse lung epithelium Arnaud Didierlaurent, London, UK 

MDCK Canine kidney epithelium Peter Palese, New York, U.S. 

SL-LCL EBV-transformed B lymphoblastoid      
cell line (B-LCL) 

Generated by culturing PBMCs of a 
healthy donor with supernatant of 
the marmoset cell line B95.8   

MS-LCL EBV-transformed B-LCL Generated as described above  

CM-LCL EBV-transformed B-LCL Generated as described above   

BM-LCL EBV-transformed B-LCL Rajiv Khanna, Brisbane, Australia 

LG2 EBV-transformed B-LCL ATCC [197] 

LCL721.221 MHC class I-negative EBV-
transformed   B-LCL 

ATCC 

Ag876 EBV-positive Burkitt’s lymphoma  Rajiv Khanna, Brisbane, Australia 

RPMI6666 EBV-positive Hodgkin’s lymphoma ATCC 

L591 EBV-positive Hodgkin’s lymphoma Martina Vockerodt and Dieter 
Kube, Göttingen, Germany 

L428 EBV-negative Hodgkin’s lymphoma Martina Vockerodt and Dieter 
Kube, Göttingen, Germany  [198] 

L428E1PC5 EBNA1-transfected L428 Martina Vockerodt and Dieter 
Kube, Göttingen, Germany [198] 

IVA12 Mouse hybridoma (anti-HLA-
DR,DP,DQ) 

ATCC 

W6/32 Mouse hybridoma (anti-HLA-A,B,C) ATCC 

5F12 Mouse hybridoma (anti-EBNA1) Jen-Yang Chen, Teipei, Taiwan 
[196] 
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glutamine + gentamycin + recombinant human IL-4 (rhIL-4, 500 U/ml, Peprotech) and 

rhGMCSF (1000 U/ml, “Leukine” from Berlex). rhIL-4 and rhGMCSF were added again 

on day 2 and 4 and floating immature DCs were collected on day 5. For maturation, 

immature DCs were transferred to new plates on day 5 and half of the medium was 

replaced with fresh medium containing proinflammatory cytokines [IL-1β (10 ng/ml), IL-

6 (1000 U/ml), TNF-α (10 ng/ml) from R&D Systems, and PGE2 (1 μg/ml, Sigma)] or 

200 ng/ml lipopolysaccharide (LPS, Sigma). For lentiviral transduction of DCs, CD14+ 

monocytes were infected with lentivirus at an MOI of 10 on day 1 after isolation, in the 

presence of 8 μg/ml polybrene (Sigma), rhIL-4 and rhGM-CSF and immature/mature 

DCs were generated as described above. 

 

2.2.3 EBNA1- and EBNA3A-specific T cell clones  

The EBNA1-specific CD4+ T cell clones A4.E116 and RJD.79 were generated as 

described in [56] and [199]. Briefly, EBNA1-specific CD4+ T cell lines were obtained 

after stimulation of MACS-purified CD4+ T cells with irradiated autologous 

vvEBNA1ΔGA-infected or EBNA1514-527 peptide-pulsed autologous DCs for one week 

and one week restimulation with irradiated autologous rEBNA1-loaded DCs. The 

EBNA3A-specific CD8+ T cell clone MS.B11 was derived from an EBNA3A-specific T 

cell line, which was obtained from an HLA-B8+ donor by two weeks of stimulation with 

the autologous LCL, followed by magnetic separation with EBNA3A325-333/HLA-B8 

tetramer-PE and αPE-MACS beads (Miltenyi Biotec). T cells were cloned by limiting 

dilution at 10, 1, or 0.3 T cells/well and expanded in RPMI-1640 + 8% PHS + 150 U/ml 

rhIL-2 (Chiron) + 1 μg/ml PHA-L (Sigma) + glutamine + gentamycin. 105 irradiated 
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PBMCs/well and 104 irradiated LCLs/well were added as feeder cells. After 14 days, 

expanded cells were tested in split-well IFNγ−ELISPOT assays for peptide specificity 

and MHC-restriction and specific clones were expanded under the same conditions [200]. 

The EBNA1-specific CD4+ T cell clone P3-B7 was a gift from Drs. Kui Shin Voo and 

Rong-Fu Wang, Houston, TX [176]. A4.E116 recognizes the peptide EBNA1514-527 

restricted by HLA-DR1. RJD.79 specifically recognizes peptide EBNA1481-501 in the 

context of HLA-DQ2/3. P3-B7 specifically recognizes peptide EBNA1519-532 in the 

context of HLA-DP3.  MS.B11 recognizes peptide EBNA3A325-333 bound to HLA-B8 and 

the QIMR-WIL EBV strain transformed HLA-B8+ LCL BM-LCL. Peptides were pulsed 

on target cells at 1-10 μM and 37oC for 1h in RPMI, followed by two washes. 

 

2.2.4 Influenza A virus matrix protein (MP1)-specific T cell clones  

The MP1-specific CD4+ T cell clones 9.26, 10.9, 11.46 and the MP1-specific CD8+ T cell 

clone 9.2 were generated as described in [199]. Briefly, CD14-negative PBMCs were 

stimulated with autologous mature DCs electroporated with in vitro transcribed influenza 

MP1-RNA, a gift from Irina Tcherepanova, Durham, NC (PBMC:DC ratio = 30:1, 

medium: RPMI-1640 with 5% human serum + glutamine + gentamycin). DCs were 

electroporated with 10 μg RNA in Opti-MEM at 300 V and 150 μF with a BioRad Gene 

Pulser plus Capacitance Extender (BioRad). On day 8 of PBMC/DC coculture, the 

stimulation was repeated and 10 U/ml IL-2 were added to enhance T cell survival. On 

day 21, the surviving cells were cloned by limiting dilution as described above for the 

EBNA1-specific T cell clones. On day 40, expanded cells were tested in split-well IFNγ 

ELISPOT assays for recognition of an MP1 peptide mix (64 15-mer peptides overlapping 
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by 10 amino acids) and the HLA-A2 immunodominant epitope MP158-66 (GILGFVFTL). 

Clones 9.26 and 10.9 are specific for the epitope MP162-72 and clone 11.46 is specific for 

MP1103-113. The CD8+ T cell clone 9.2 specifically recognizes MP158-66 bound to HLA-

A2.  

 

 

2.3 Experimental procedures 

2.3.1 Lysate preparation, SDS-PAGE and immunoblotting 

Cells were lysed in ice cold lysis buffer (50 mM Tris-HCl pH 8.0, 140 mM NaCl, 1.5 

mM MgCl2, 0.5% NP-40 with Complete protease inhibitor cocktail from Roche) for 5 

min on ice (about 106 cells/200 μl). Whole cells and cell debris were pelleted by low 

speed centrifugation (400 g, 3 min) and cleared supernatants were transferred to a new 

tube. Protein concentration was determined by BCA protein assay (Pierce). Samples were 

boiled for 5 min in the presence of 4x SDS-PAGE-loading buffer (250 mM Tris-HCl pH 

6.8, 40% glycerol, 8% SDS, 0.57 M β-mercaptoethanol, 0.12% bromophenol blue). 

Equal amounts of protein were run on 11 or 12% SDS-PAGE gels and transferred onto a 

PVDF membrane (Hybond-P, Amersham Biosciences). Primary antibodies were 

visualized with HRP-conjugated goat anti-rabbit or anti-mouse IgG and the ECL plus 

detection system (Amersham Biosciences).  

 

2.3.2 Immunofluorescence (IF) staining of EBNA1 

The EBV-transformed B lymphocyte cell line SL-LCL was washed in RPMI, left to 

sediment on poly-lysine treated printed-well slides (Carlson Scientific) for 30 minutes in 
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RPMI at 37°C and fixed in 4% paraformaldehyde/PBS/0.1% saponin (Sigma Aldrich) for 

20 minutes at 4°C. The cells were then washed three times with blocking buffer from the 

TSA amplification kit (NEN Life Sciences). For EBNA1 detection, the cells were 

blocked for 30 minutes at room temperature with blocking buffer and incubated with the 

1H4 or 5F12 monoclonal antibodies in RPMI containing 0.1% saponin and 5% normal 

goat serum for two hours at 4°C. After three blocking buffer washes, the cells were 

incubated with HRP-conjugated goat anti-rat or goat anti-mouse antibody in RPMI 

containing 0.1% saponin, for two hours at 4°C. The Cyanin-3 TSA amplification kit 

(NEN Life Sciences) was used according to the manufacturer’s instructions. After 

labeling, all cells were washed three times and incubated for one minute with DAPI 

(Sigma). After three washes the cells were mounted using Aqua Polymount 

(Polysciences). The slides were analyzed using a fluorescence wide-field microscope 

(Olympus). Pictures were taken with an Olympus digital camera and pictures were 

processed with Metamorph software (Universal Imaging Corporation).  

 

2.3.3 Subcellular fractionation 

Subcellular fractionation was performed as previously described [201]. 1-3x 107 

L428E1PC5 or 108 LG2 cells were washed three times in cold PBS before resuspension 

in 10 ml of ice cold homogenization buffer (10 mM Tris-HCl pH 7.4, 250 mM sucrose, 1 

mM DTT, 1 mM EDTA, 30 μg/ml DNase, 0.1 mM PMSF, 1 μg/ml Leupeptin, 1 μg/ml 

Pepstatin A) and homogenization in a 15 ml Dounce homogenizer. Whole cells, cell 

debris, and nuclei were pelleted by two low speed spins (3,000 g, 10 min). Microsomes 

and mitochondria were pelleted by a subsequent high speed spin (100,000 g, 1h). Pellets 
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were resuspended in 1 ml homogenization buffer and were loaded on top of a two-step 

sucrose gradient (2M, 0.5 M). After centrifugation at 100,000 g for 1 h, microsomes were 

collected from the interphase. Aliquots were taken from all fractions and were analyzed 

by SDS-PAGE/immunoblotting antibodies specific for EBNA1, EBNA3A and LAMP1. 

 

2.3.4 Electron miscroscopy of EBNA1-transfected cells 

L428 Hodgkin’s lymphoma cells, transfected with full-length EBNA1, were used for 

these studies. The cells were first synchronized with medium containing 100 nM 

colchicine for 48 hours. After washing, lysosomal acidification was blocked in 50 μM 

chloroquine-containing medium or medium alone, for another 48 hours. Then the cells 

were prepared for electron microscopy: Cells were plated on Alcian Blue coated petri 

dishes, fixed in PLP fixative (periodate-lysine-paraformaldehyde fixative [202], and 

permeabilized in 0.01% Saponin/0.1% BSA/PBS (Buffer A). For the EBNA1 and isotype 

control staining, the 5F12 anti-EBNA1 antibody or the isotype control antibody was 

diluted 1/50, goat anti-mouse-biotin 1/300, and neutravidin-HRP (Molecular Probes), in 

buffer A. After another fixation step in 0.5% glutaraldehyde, stable DAB was applied for 

10 minutes, and the cells were postfixed and stained in reduced Osmium tetroxide [1% 

OsO4, 1%(K4Fe(CN)6]. Then the cells were dehydrated in a graded series of ethanol 

washes (70%, 95%, 100%), and removed from the petri dishes by adding propylene oxide 

and gently pipeting.  After rinsing the cells several times in propylene oxide to remove 

dissolved plastic from the culture dishes, the cells were resuspended in Embed (Electron 

Microscopy Sciences), microfuged into a pellet in the resin and allowed to polymerize in 

a 60° oven for 48 hours. Thin sections were cut in an Ultracut E and viewed and 
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photographed at 80kV in a JEOL100CXII electron microscope. The morphology studies 

were carried out as follows: Cells were fixed in 2.5% glutaraldehyde fixative and 

microfuged into a pellet. After postfixing in 1% OsO4 on ice and block staining in 0.5% 

uranyl acetate, cells were dehydrated and processed into Embed as stated above. Sections 

were post-stained with uranyl acetate and lead before viewing. 

 

2.3.5 IFN-γ ELISPOT assay 

Enzyme-linked immunospot (ELISPOT) assays for IFN-γ-secreting cells were performed 

as described previously [203]. Briefly, MAHA S45 plates (Millipore) were coated with 

anti-IFN-γ-antibody 1-D1K (Mabtech) overnight at 4°C. Plates were blocked with RPMI 

+ 5% pooled human serum. Afterwards, 105 T cell clones and 5x104 stimulator B cells 

were added per well and incubated overnight. Then plates were incubated with 

biotinylated anti-IFN-γ-antibody 7-B6-1 (Mabtech). Afterwards, preassembled avidin-

peroxidase complexes (Vectastain ABC kit, Vector Laboratories) were added. Spots were 

developed by addition of stable DAB (Research Genetics). Plates were washed three 

times with water and air-dried. SFCs (spot forming cells) were counted using a 

stereomicroscope (mean counts of duplicates). 

 

2.3.6 Flow cytometry assays 

MHC class I and II surface levels on T cell targets were measured by staining cells with 

IVA12 or w6/32 hybridoma supernatants and AlexaFluor488-conjugated rabbit anti-

mouse IgG (Invitrogen-Molecular Probes). T cell clones were analyzed for CD4/CD8 

expression by staining with anti-CD4-PE and anti-CD8-PE (BD Pharmingen). Cell 
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viability was analyzed by staining cells with Annexin-V-PE for 10 min in Annexin-V-

staining buffer (BD Pharmingen) and the addition of 7-AAD (BD Pharmingen) directly 

before flow cytometry. Cells were analyzed on a FACScalibur instrument (Becton-

Dickinson). 

 

2.3.7 siRNA-mediated gene silencing 

 All siRNAs were a gift of Markus Landthaler and Thomas Tuschl, New York, except 

lamin A/C-specific siRNAs, which were purchased from Dharmacon. siRNA duplexes 

(20 or 100 μM) were prepared by heating sense and antisense oligos for 1 min at 90ºC in 

siRNA-annealing buffer (Dharmacon), followed by 1 h incubation at 37ºC. siRNA 

duplexes were stored in aliquots at -80ºC. For delivery of siRNAs into B-LCLs, cells 

were washed in serum-free Opti-MEM medium and 5x106 cells in 300 μl Opti-MEM in a 

2 mm gene pulser cuvette were electroporated with 10 μM siRNA at 300 V and 150 μF 

using a Biorad gene pulser II. Cells were used for T cell stimulation 4-5 days after the 

knockdown, to allow for turnover of preexisting MHC class II-peptide complexes. For 

delivery of siRNAs into epithelial cell lines, siRNAs were transfected with lipofectamine 

2000 (Invitrogen), using 30 pmol siRNA + 1.5 μl lipofectamine/well in a 24-well format. 

Effect of knockdown was analyzed after 2-3 days. siRNA sequences are listed in Table 8.  
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Table 8: List of 21-nt siRNA oligos  

Name Sequence 

Atg12.1 sense 5’-GUGGGCAGUAGAGCGAACAUdT-3’ 

Atg12.1 antisense 5’-UCAUGUAGUAGCAAGUUGAUdT-3’ 

Atg12.2 sense 5’-UCAACUUGCUACUACAUGAUdT-3’ 

Atg12.2 antisense 5’-UCAUGUAGUAGCAAGUUGAUdT-3’ 

GFP sense 5’-CUUGAAGAAGUCGUGCUGCUdT-3’ 

GFP antisense 5’-GCAGCACGACUUCUUCAAGUdT-3’ 

Lamin A/C sense 5’-CUGGACUUCCAGAAGAACAdTdT-3’ 

Lamin A/C antisense 5’-UGUUCUUCUGGAAGUCCAGdTdT-3’ 

Firefly luciferase sense 5’-CGUACGCGGAAUACUUCGAdTdT-3’ 

Firefly luciferase antisense 5’-UCGAAGUAUUCCGCGUACGdTdT-3’ 

 

 
2.3.8 RT-PCR 

2-4 days after siRNA delivery into B-LCLs, total RNA was isolated using the RNeasy 

mini kit (Qiagen) and reverse transcription and PCR was carried out by using the 

OneStep RT-PCR kit (Qiagen). Different cycle numbers were used to amplify the PCR 

product and the lowest cycle number for which a band was detectable on an agarose gel 

was used to quantify the mRNA level.  

 

2.3.9 Generation of expression plasmids and lentiviral constructs 

The cDNA of human MAP1LC3B sequence (NM_022818) was PCR-amplified from a 

human B-LCL by RT-PCR with gene specific primers and cloned into the multiple 

cloning site of the mammalian expression vector pEGFP-C2 (Clontech). The cDNA of 

Influenza A/WSN/33 matrix protein 1 (MP1) was PCR-amplified from the 
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pCAGGS/MCS-MP1 vector (a gift from Peter Palese, New York) with or without a stop 

codon at the 3' end. The PCR products then were inserted into the pEGFP-LC3 vector in 

place of the EGFP sequence to obtain MP1-LC3 fusion constructs. For lentiviral 

constructs, the EGFP-LC3, MP1-LC3 or MP1Stop-LC3 sequences were subcloned into 

the lentiviral vector pHR-SIN-CSGWΔNotI (a gift from Jeremy Luban, Bellinzona, 

Switzerland). For production of lentiviral particles, lentiviral vectors were co-transfected 

with the helper plasmids pCMVΔR8.91 and pMDG into 293T cells by calcium phosphate 

transfection. Culture supernatants containing recombinant viral particles were harvested 

on day 1, 2 and 3 after transfection, filtered through a 0.45 μm filter and frozen at –80ºC. 

For lentiviral transduction of cells, cells were infected with an MOI of 10-40.  

 

2.3.10 Immunocytochemistry and confocal microscopy 

Epithelial cells were grown on microscopy cover glasses in 24 well plates overnight, 

whereas B cells or dendritic cells were plated onto polylysine-coated cover glasses 

immediately before the staining procedure. Cells were fixed in 3% paraformaldehyde in 

PBS for 15 min and permeabilized in 0.1% Triton X-100 in PBS for 5 min. Cells were 

blocked for 30 min in blocking buffer (from Perkin Elmer's TSA kit) + 0.1% saponin. 

Primary and secondary antibodies were applied in blocking buffer + 0.1% saponin + 5% 

normal donkey serum for 30-60 min, followed by three 5 min-washes in PBS + 0.1% 

saponin. Finally, cells were stained with DAPI nucleic acid stain (0.5 μg/ml, Invitrogen-

Molecular Probes) for 1 min and cover glasses were mounted onto microscope slides 

using Aqua Polymount (Polysciences) or Prolong Gold antifade reagent (Invitrogen-

Molecular Probes). All steps were carried out at room temperature. Cells were analyzed 
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either on an Olympus wide-field microscope with a 60x or 100x/1.4 N.A. oil immersion 

lens and pictures were processed with the Metamorph Software (Universal Imaging 

Corporation) or on an inverted LSM 510 laser scanning confocal microscope (Zeiss 

Axiovert 200) with a 63 or 100x/1.4 N.A. oil immersion lens using a pinhole diameter of 

1 Airy unit. Pictures were taken with the LSM 510 confocal software (Zeiss). 

Colocalization of markers was quantified using the profile tool of the LSM 510 software. 

The number of double-positive vesicles compared to the total number of red vesicles was 

determined in 10-15 double-positive cells/condition.  

 

2.3.11 Immuno-electron microscopy analysis of MHC class II loading 

compartments 

MDAMC cells stably transfected with GFP-LC3 were fixed for 1h at RT with 4% 

paraformaldehyde (PFA, Electron Microscopy Sciences) in 0.25 M Hepes, pH 7.4, 

followed by overnight fixation at 4°C in 8% PFA/Hepes. Cells were embedded in 5% 

gelatin in PBS, small pieces of gelatin pellets were infiltrated overnight at 4°C with 2.3 M 

sucrose in PBS, mounted onto cryospecimen pins and frozen in liquid nitrogen. Ultrathin 

sections (80 nm) were cut using a Leica ultracut ultramicrotome with an FCS 

cryoattachment at -108°C and collected on formvar- and carbon-coated nickel grids using 

a 1:1 mixture of 2% methyl cellulose (25 centipoises; Sigma) and 2.3 M sucrose in PBS. 

Cells were quenched with 0.1 M NH4Cl in PBS, blocked in 1% fish skin gelatin (FSG, 

Sigma) in PBS and subsequently labeled with rabbit anti-HLA-DR antiserum and 10 or 

15 nm protein A–gold (purchased from the Department of Cell Biology, University of 

Utrecht, Netherlands). After fixation in 1% glutaraldehyde and quenching with 0.1 M 
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NH4Cl, the same labeling procedure was repeated for the rabbit anti-GFP antibody. After 

final fixation in 1% glutaraldehyde, grids were washed 8x in HPLC-grade water. Sections 

were infiltrated for 10 min on ice with a mixture of 1.8% methylcellulose and 0.5% 

uranyl acetate (Electron Microscopy Sciences), washed 3x in 0.5% uranyl acetate/1.8% 

methylcellulose and air-dried. Samples were analyzed in a Tecnai 12 Biotwin (FEI) 

microscope and pictures were taken using Kodak 4489 film.  

 

2.3.12 Target cell-T cell coculture and IFN-γ ELISA  

Target cells were cocultured overnight with EBNA1-, EBNA3A- or MP1-specific T cell 

clones in 5% PHS medium (RPMI-1640 with 5% PHS + glutamine + gentamycin) in 96-

well round bottom plates (105 T cells/well + variable target cell numbers). HaCat target 

cells were treated with 200 U/ml IFN-γ 24h before the coculture to upregulate MHC class 

II expression and were washed 3x in DMEM before addition of T cells to remove IFN-

γ. After coculture, IFN-γ in culture supernatants was measured using the human IFN-

γ ELISA kit from Mabtech according to the manufacturer’s instructions. Recombinant 

human IFN-γ  (Mabtech) at concentrations of 30-2,000 pg/ml was used as a standard. If 

IFN-γ levels in supernatants exceeded 2000 pg/ml, supernatants were diluted in 5% PHS 

medium and IFN-γ was remeasured by ELISA.  

 

2.3.13 Statistics 

Paired or homocedastic, one-tailed student’s T test statistics were applied where 

indicated. 
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2.3.14 Influenza A virus infection 

For most experiments, influenza A virus strain Aichi X:31 (A/Aichi/68, H3N2, purified 

virus, purchased from Charles River Laboratories) was used. Where indicated, influenza 

A/PR8/34 (H1N1) or the isogenic deletion mutant A/PR8/34ΔNS1 (a gift of Adolfo 

Garcia-Sastre, New York), influenza A/WSN/33 (H1N1) or the isogenic deletion mutant 

A/WSN/33ΔPB1-F2 (a gift of Peter Palese, New York) were used. Before infection, cells 

were washed three times in RPMI-1640 to remove FCS and then were incubated with 

influenza virus in a small volume of RPMI-1640 for 1 h at 37ºC at an MOI of 0.1-0.2, 

unless indicated otherwise. After one hour, cells were washed once in culture medium 

(DMEM + 10% FCS + glutamine + gentamicin) and then were kept in culture medium 

for the indicated amount of time, usually 24 hours. For heat-inactivation, virus was 

incubated in a 56ºC water bath for 30 min and then was added to cells as described 

above.  

 

2.3.15 Transmission electron microscopy of influenza-infected cells 

A549 cells (uninfected or 24 hours post-infection with influenza A/Aichi/68) were 

washed 3x in PBS, fixed in 2.5 % glutaraldehyde (Electron Microscopy Sciences) in 

0.1M sodium cacodylate buffer (pH 7.4) for 1 hour at room temperature and then washed 

3x 5 min in 0.1M sodium cacodylate buffer. Cells were scraped off the culture plates with 

a cell scraper and postfixed in 1% osmium tetroxide (Electron Microscopy Sciences) in 

cacodylate buffer for 1 h at room temperature. Cells were stained in 2% aqueous uranyl 

acetate, dehydrated in a graded series of ethanol, and embedded in epoxy resin (Embed-

812, Electron Microscopy Sciences). Ultrathin sections (60 nm) were cut with a Reichert 
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ultracut E ultramicrotome, stained with 2% uranyl acetate and lead citrate and examined 

in a Tecnai 12 Biotwin electron microscope. Micrographs were generated using a Morada 

CCD camera (Olympus Soft Imaging Solutions). 

 

2.3.16 Live cell imaging 

Cells were grown on 35 mm culture dishes with No. 1.5 coverglass inserts (MatTek 

Corporation) and infected with influenza virus as described in section 2.3.14. 24 hours 

post-infection, medium was replaced by CO2-independent Medium 199 supplemented 

with 10% FCS, 2 mM glutamine and 25 mM Hepes (Gibco) prewarmed to 37ºC. For 

staining of acidic compartments, 50 nM Lysotracker Red (Molecular Probes) was added 

to the medium. After 30 min, medium was replaced with fresh supplemented Medium 

199 and cells were analyzed on an inverted Zeiss Axiovert 200 microscope equipped with 

an UltraView spinning disk confocal head (Perkin-Elmer) and a 37ºC environmental 

chamber, using a 63x/1.4 N.A. oil immersion lens. Pictures were taken at various 

intervals with a Hamamatsu Orca ER cooled CCD camera using Metamorph Software 

(Universal Imaging Corporation). Vesicles that had a minimum diameter of 0.5 μm were 

tracked over time using Imaris software (Bitplane). For each condition, > 200 vesicle 

tracks total were analyzed (uninfected: n=222, infected: n=269) and average vesicle 

speed was calculated with the Imaris software. 

 

2.3.17 Determination of virus titer by plaque assay 

Culture supernatants were centrifuged for 5 min at 300g to pellet any floating cells and 

supernatant was transferred to a new tube and frozen at -80ºC. For titer determination, 
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supernatants were thawed on ice and serially diluted (1:10 dilutions, 8 dilutions total) in 

infection medium (EMEM, 0.2% BSA, glutamine, pen/strep). Dilutions were added to 

100% confluent MDCK cells growing in a 6-well plate (100 μl/well) for 1 h at room 

temperature. Then, inoculum was removed and cells were covered with 2ml/well 

plaquing medium (MEM, 0.2%BSA, 0.01% DEAE Dextran, 2 μg/ml TPCK trypsin, 

0.6% oxoid purified agar, glutamine, pen/strep). Agar was allowed to solidify at room 

temperature, then plates were placed upside down in 37ºC incubator for 2 days. Cells 

were fixed in 4% paraformaldehyde for 10 min and agar plugs were washed off with 

running water. Then, cells were stained with crystal violet for 10 min. Plates were 

washed in water and after drying plaques were counted to determine titers.  
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Chapter 3: Results 

3.1 Endogenous MHC class II processing pathway of the EBV 

nuclear antigen 1 (EBNA1) 

As described in chapter 1.2.6, intracellular antigens can be endogenously processed for 

presentation on MHC class II molecules, but the exact processing pathway has remained 

unclear, especially for cytosolic and nuclear antigens that usually don’t gain access to the 

secretory pathway or endocytic system. The first aim of this thesis project was to dissect 

the intracellular route by which cytosolic/nuclear antigens gain access to MHC class II 

loading compartments.  

EBNA1 is an ideal antigen to study endogenous MHC class II presentation of a 

viral protein relevant for disease: First, it is the dominant CD4+ T cell antigen during 

latent EBV infection and can be detected by CD4+ T cells after endogenous processing in 

EBV positive lymphoma cells [43]. Second, presentation of EBNA1 epitopes on MHC 

class I for CD8+ T cell recognition is decreased because the full-length form of EBNA1 

prevents its own proteasomal processing and therefore presentation on MHC class I [175, 

178]. Instead, EBNA1 is endogenously processed for MHC class II presentation and can 

be detected by CD4+ T cells in nearly all healthy virus carriers [43]. Third, EBNA1's 

processing under physiologic conditions of latent EBV infection can easily be studied in 

B-lymphoblastoid cell lines (LCLs). Hence, we studied endogenous MHC class II 

processing of EBNA1, in order to gain insight into the cell biology of this non-classical 

pathway of MHC class II presentation.  
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3.1.1 EBNA1 is degraded by lysosomal, not cytosolic proteases 

EBNA1 was found to be endogenously processed and presented on MHC class II 

molecules in B cells [43]. However, the protease(s) responsible for degradation of 

EBNA1 have not been identified so far. To identify the proteolytic pathway in which 

EBNA1 is degraded, we investigated the effect of various protease inhibitors on whole 

cell EBNA1 protein levels. To test whether lysosomal proteases are involved in the 

degradation of EBNA1, EBNA1-expressing B cell lines were treated with inhibitors of 

lysosomal acidification (NH4Cl or chloroquine) and their effect on EBNA1 levels was 

monitored by Western blot. Initially, experiments were carried out with the EBV-

negative Hodgkin’s lymphoma cell line L428 stably transfected with EBNA1 (L428-E1). 

EBNA1 expression in this cell is about 10-fold higher than in EBV-transformed B 

lymphocytes [198] so that EBNA1 can be detected more easily in Western blot. We 

found that total cellular EBNA1 levels were increased upon blocking lysosomal 

acidification for 48 hours with NH4Cl or chloroquine (Fig. 7A). At earlier time points, 

EBNA1 accumulation was small to undetectable (data not shown). Since none of these 

inhibitors affect the rate of protein synthesis, the enrichment of EBNA1 must be due to a 

reduced rate of degradation. This suggests that endosomal/lysosomal proteolysis is 

responsible for degradation of EBNA1. 

In order to specify the proteases responsible for EBNA1 degradation, we treated 

L428-E1 cells with protease inhibitors specific for particular families of lysosomal 

proteases. We observed that EBNA1 levels increased upon inhibition of aspartyl 

proteases with pepstatin A (Fig. 7B). Possible candidates are the aspartyl proteases 

cathepsin D and E, which are abundantly expressed in lysosomes of B cells and have 
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Figure 7: Accumulation of EBNA1 after inhibition of lysosomal proteolysis.  

A and B: The EBV-negative Hodgkin’s lymphoma cell line L428 and the stably 

EBNA1-transfected cell line L428-E1 were treated with increasing concentrations of the 

lysosomal acidification inhibitors NH4Cl and chloroquine (A) or the lysosomal protease 

inhibitors leupeptin and pepstatin A (B) for 48 hours and levels of EBNA1 and the 

control protein β-actin in whole cell lysates were visualized by Western blot. One 

representative experiment of three is shown.  

C: The EBV-transformed B lymphocyte cell line (LCL) LG2 and the Burkitt lymphoma 

(BL) cell line Ous were cultured with different concentrations of the lysosomal protease 

inhibitor pepstatin A for 48 hours, and EBNA1 and β-actin were visualized by Western 

blot. The Western blots for LG2 and Ous required longer exposure times due to 10 fold 

lower EBNA1 expression levels present in these cells compared to EBNA1-transfected 

L428 cells.  

D: As in A, except that the cytosolic protease inhibitors lactacystin or calpeptin were 

used. One representative experiment of two is shown. 
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previously been implicated in antigen processing [204-208]. In contrast, cysteine 

proteases such as cathepsin L, S and B, seem to play a minor role in EBNA1 degradation, 

since treatment with the cysteine protease inhibitor leupeptin had no effect on EBNA1 

protein levels (Fig. 7B). Even leupeptin concentrations, that were sufficient to inhibit 

invariant chain degradation and cause downregulation of the MHC class II surface level 

as determined by flow cytometry (40 μM leupeptin reduced MHC class II levels by 40%; 

data not shown), had no effect on overall EBNA1 levels. An accumulation of EBNA1 

after pepstatin A treatment could also be observed in EBV transformed cells of a 

lymphoblastoid cell line (LCL LG2) and a Burkitt lymphoma cell line (Ous, Fig. 7C), 

which express physiological levels of EBNA1. This suggests that EBNA1 is degraded by 

aspartyl proteases in both EBV-transformed cell lines and EBNA1-transfected B cell 

lines.  

In addition to lysosomal proteases, cytosolic proteases, such as proteasomes and 

calpains, have been shown to play a role in the endogenous pathway of MHC class II 

presentation [44, 49]. However, they do not seem to be involved in the degradation of 

EBNA1. The proteasome inhibitor lactacystin had no effect on the steady state level of 

EBNA1 (Fig. 7D), which is consistent with the finding that EBNA1 is resistant to 

proteasomal degradation [175]. Furthermore, treatment with the calpain inhibitor 

calpeptin did not affect the EBNA1 level either (Fig.7D). While a role for additional 

proteases cannot be excluded, our data indicate that EBNA1 is mainly degraded by 

aspartyl proteases in the endosomal/lysosomal pathway. 
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3.1.2 EBNA1 accumulates in lysosomal compartments after inhibition of lysosomal 

acidification 

Since we had detected an accumulation of EBNA1 in whole cell lysates after lysosomal 

protease inhibition, we wanted to address in which compartments EBNA1 accumulated 

under these conditions. Immunofluorescence microscopy showed that EBNA1 

accumulated in cytosolic vesicles that partially costained with the lysosomal marker 

protein LAMP1 (Fig 8A).  

Subcellular fractionation confirmed that upon blocking lysosomal acidification, 

EBNA1 was enriched in microsomes (Fig. 8B and C): In L428-E1 cells without 

lysosomal protease inhibition, EBNA1 was confined to the whole-cell lysate and the 

nuclear fraction, whereas after chloroquine treatment, EBNA1 could be found in the 

postnuclear supernatant and the highspeed pellet derived thereof. Discontinuous sucrose 

gradient centrifugation to further purify microsomes revealed that EBNA1 had 

accumulated in microsomes after chloroquine treatment. EBNA1 fractionated with the 

lysosomal marker LAMP1. We confirmed accumulation of EBNA1 in microsomes in the 

EBV-transformed B cell line LG2, which in contrast to L428-E1 expresses physiological 

levels of EBNA1 (Fig. 8C). This cell line also expresses other EBV latency antigens and 

therefore allowed us to examine how other nuclear EBV antigens behave after lysosomal 

protease inhibition. EBNA3A, another nuclear EBV antigen and prominent CD8+ T cell 

antigen [209], was not enriched in the microsomal fraction after chloroquine treatment 

(Fig. 8C). These results demonstrate that EBNA1 is degraded in cytosolic and partially 

lysosomal vesicles and confirm our previous finding that EBNA1 is degraded by 

lysosomal proteases.  
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Figure 8: EBNA1 accumulates in lysosomal/microsomal compartments after 

inhibition of lysosomal acidification. 

A: The B lymphoblastoid cell line SL-LCL was left untreated (first row) or treated with 

20 mM NH4Cl for 48 h (second and third row) and then stained for EBNA1, LAMP1 and 

DNA content (DAPI). Arrows indicate cells with EBNA1/LAMP1 colocalization. One of 

three experiments is shown. (Experiment performed in collaboration with Casper 

Paludan, Laboratory of Viral Immunobiology, Rockefeller University). 

B and C: The EBNA1-transfected Hodgkin’s lymphoma cell line L428-E1 (B) or the 

EBV-transformed B-LCL LG2 (C) were treated with 50 μM chloroquine for three days 

(+CQ). After homogenization (H), intact cells and nuclei (N) were pelleted (2x 3000 g, 

10 min) and the postnuclear supernatant (S1) was centrifuged at 100,000 g for 1 h to 

obtain a microsomal pellet (P) and a postmicrosomal supernatant (S2). The microsomal 

pellet was resuspended in homogenization buffer and purified over a two-step sucrose 

gradient (2M/ 0.5M sucrose) and microsomal vesicles were collected from the interphase 

(M). The amount of EBNA1 within each fraction was determined by Western blot. The 

same blots were reprobed with antibodies specific for the lysosomal marker LAMP1 (B 

and C) and the EBV nuclear antigen EBNA3A (C). One of nine experiments is shown. 
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3.1.3 EBNA1 is taken up into double-membrane vesicles 

Our immunofluorescence microscopy and cell fractionation experiments suggested that 

EBNA1 was degraded in lysosomal compartments. The resolution of these methods is 

however limited and therefore these experiments are only able to provided a first 

evidence that EBNA1 is degraded in lysosomes. To confirm our findings, we performed 

immuno-electron microscopy (IEM), which allowed us to assess the ultrastructural 

features of EBNA1-containing vesicles. In collaboration with Casper Paludan, 

Laboratory of Viral Immunobiology and Eleana Sphicas, Bioimaging Resource Center, 

Rockefeller University, EBNA1-transfected L428 Hodgkin’s lymphoma cells were 

stained for EBNA1 and analyzed by electron microscopy. Upon inhibition of lysosomal 

acidification, EBNA1 could be observed in cytosolic vesicles, surrounded by double 

membranes (Fig. 9B, black arrows). Some of these structures had the cup-shaped 

appearance of forming autophagosomes/isolation membranes (Fig. 9B, middle panel). An 

isotype control antibody produced no staining (data not shown). Without lysosomal 

protease inhibition, no cytosolic/vesicular EBNA1 staining could be detected (data not 

shown), presumably because EBNA1 is degraded by lysosomal proteases. The 

observation that EBNA1 is taken up by cup-shaped structures and accumulates in double-

membrane vesicles suggest that autophagy participates in the delivery of EBNA1 to 

lysosomes.  
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Figure 9: Electron micrographs of EBNA1-transfected B cell line show that EBNA1 

is taken up into autophagosomes. (Experiment performed in collaboration with Casper 

Paludan, Laboratory of Viral Immunobiology and Eleana Sphicas, Bioimaging Resource 

Center, Rockefeller University). 

A: The EBNA1-transfected Hodgkin’s lymphoma cell line L428-E1 was left untreated (-

CQ) or was treated with 50 μM chloroquine (+CQ) for 48 hours to inhibit EBNA1 

degradation. Then cells were fixed and processed for electron microscopy. Pictures show 

morphology of untreated and chloroquine-treated cells. Black arrows indicate electron-

dense autophagosomes/lysosomes, which are stabilized by chloroquine.  

B: L428-E1 cells treated with chloroquine for 48 hours were stained with the EBNA1-

specific monoclonal antibody 5F12 before processing for electron microscopy. Blue 

arrows indicate nuclear EBNA1, black arrows show EBNA1 in forming or mature 

autophagosomes. One of three experiments is shown.  
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3.1.4 Inhibition of autophagy with a pharmacologic inhibitor leads to decreased 

MHC class II-restricted CD4+ T cell recognition of EBNA1 

In order to test whether autophagy indeed leads to endogenous MHC class II presentation 

of EBNA1, we determined whether inhibition of this pathway would block antigen 

presentation to EBNA1-specific CD4+ T cell clones [43, 56, 210]. As a first indication, 

we used 3-methyladenine (3-MA), which is a frequently used pharmacologic inhibitor of 

autophagy [118]. 3-MA inhibits the class III PI3K kinase complex, which is essential for 

autophagosome formation [89]. Therefore, 3-MA inhibits macroautophagy. When we 

treated EBV-transformed B cells or EBNA1-transfected Hodgkin’s lymphoma cells with 

3-MA for 2 to 4 days, EBNA1-specific CD4+ T cell recognition of the cells was 

decreased by 30-70% in IFN-γ ELISPOT assays, while the proteasome inhibitor 

lactacystin [211] had little effect (Fig. 10A). In contrast, the IFN-γ response of an 

EBNA3A-specific CD8+ T cell clone was not affected by 3-MA but decreased upon 

lactacystin treatment by 50% (Fig. 10A). The inhibition time of 2-4 days was chosen 

since high affinity MHC class II-peptide complexes have a half life around 24 h [212]. 

MHC class II surface expression was not decreased by 3-MA or lactacystin at the 

reported concentrations, as assessed by flow cytometry (Fig. 10B). Moreover, recognition 

of inhibitor-treated target cells was completely restored by pulsing cells with the cognate 

peptide (Fig. 10C), demonstrating that the MHC class II levels were not affected by 

inhibitor treatment. Together, these experiments indicate that autophagy might be 

involved in MHC class II presentation of EBNA1, but not the presentation of the MHC 

class I-restricted antigen EBNA3A. Furthermore, inhibition of EBNA3A presentation by 

lactacytin confirmed that the proteasome is involved in processing EBNA3A for MHC 
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Figure 10: Blocking of autophagy with the pharmacological inhibitor 3-

methyladenine leads to decreased MHC class II-restricted CD4+ T cell recognition 

of EBNA1. 

A: IFN-γ ELISPOT assays with EBNA1-specific CD4+ T cell clones A4.E116 and 

RJD.79 or EBNA3A-specific CD8+ T cell clone MS.B11. T cell clones were stimulated 

with untreated, 3-methyladenine- or lactacystin-treated cognate target cells. As negative 

control, non-cognate target cells (same restriction element, but EBV-negative or different 

EBV strain) were used. As positive control, non-cognate target cells were pulsed with the 

specific peptide. Target cells treated with 10 mM 3-methyladenine and 1 μM lactacystin 

were added for 3 days prior to the T cell stimulation, but were not present during the 

stimulations. One of four experiments is shown. 

B: HLA-DR surface levels on the target cell line L428-E1 after treatment with 3-

methyladenine or lactacystin for 3 days were evaluated by flow cytometry. Mean 

fluorescence values are given in the FACS blots. One of two experiments is shown. 

C: IFN-γ ELISPOT assay with EBNA1-specific CD4+ T cell clones A4.E116 and EBV+ 

(LCL721.221) or EBV- (HDLM-2) cells as target cells. Target cells were either left 

untreated or were treated with 10 mM 3-methyladenine or 1 μM lactacystin for 3 days. 

Then cells were either cocultured with T cell clones directly, or were pulsed with the 

specific EBNA1 peptide before T cell coculture. Under all conditions, maximal T cell 

activation was restored, demonstrating that MHC class II levels were not affected by 

inhibitor treatments. One of two experiments is shown. 
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MHC class I presentation, but is not involved in the degradation of EBNA1 for 

endogenous MHC class II presentation. 

 

3.1.5 Specific inhibition of autophagy by RNA interference leads to decreased 

MHC class II-restricted CD4+ T cell recognition of EBNA1 

3-MA-induced inhibition of class III PI3 kinase also inhibits other intracellular vesicle 

trafficking processes, such as endocytosis [88], and therefore 3-MA effects have to be 

interpreted with caution. Therefore, we used RNA interference to silence the essential 

autophagy gene atg12 [79, 82, 213] and thereby specifically inhibit autophagy and no 

other vesicle transport process. siRNAs against two different regions of atg12 (Atg12.1 

and Atg12.2), but not a GFP-specific siRNA, efficiently down-regulated the atg12 

mRNA level in EBV-transformed B cells (Fig. 11A). Knock-down of atg12 with both 

siRNA duplexes decreased the IFN-γ response of EBNA1-specific CD4+ T cell clones by 

40-60% (p=0.003), whereas treatment with the GFP siRNA had no effect. In contrast, 

MHC class I presentation of the nuclear EBV antigen EBNA3A was not affected by 

atg12 knockdown, since EBNA3A was still efficiently recognized by the CD8+ T cell 

clone MS.B11 (Fig. 11B). Treatment with atg12-specific siRNAs did not affect the MHC 

class II surface levels on the B cells (Fig. 11C). Exogenous MHC class II processing of 

EBNA1 could be excluded, since LCLs were unable to sensitize bystander B cells for 

EBNA1-specific CD4+ T cell recognition [43]. In addition, EBNA1 was undetectable in 

supernatants of LCLs and EBNA1-transfected L428 cells with the use of ELISA assays 

(detection limit was 0.1 μg/ml), whereas 1 to 10 μg/ml were necessary to increase CD4+ 

T cell recognition of EBV+ and EBV- B cell lines (data not shown). Thus, blocking of 
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Figure 11:  Specific inhibition of autophagy by RNA interference leads to decreased 

MHC class II-restricted CD4+ T cell recognition of EBNA1. 

A: mRNA levels of atg12 and GAPDH were analyzed on day 4 after knock-down by 

semi-quantitative RT-PCR from whole cell RNA isolated from T cell targets. The results 

are representative of five experiments and the example shown here corresponds to the 

experiment shown in B.  

B: IFN-γ-ELISA assays of the EBNA1-specific CD4+ T cell clone P3-B7 and the 

EBNA3A-specific CD8+ T cell clone MS.B11. Target cells (P3-B7: HLA-DP3+ Ag876 

cells; MS.B11: HLA-B8+ BM-LCL cells) were electroporated with 10 μM siRNA (GFP- 

or atg12-specific) on day 0 and 2 and on day 4 targets were cocultured with T cell clones 

overnight. IFNγ in culture supernatants was measured in IFN-γ-ELISA assays. One of 

three experiments is shown.  

C: HLA-DR surface levels on the target cell line Ag876 after knock-down of atg12. 

Mean fluorescence values are given in the FACS blots. One of two experiments is shown.  
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autophagy by siRNA-mediated silencing of atg12 inhibits endogenous MHC class II 

presentation of EBNA1, but not presentation of the MHC class I-restricted EBV antigen 

EBNA3A.  

 

3.1.6 Conclusion: EBNA1 is processed for MHC class II presentation by 

autophagy 

Using various protease inhibitors, we could show that EBNA1 is degraded by lysosomal 

proteases, especially aspartyl proteases, whereas cytosolic proteases, such as the 

proteasome and calpains, are not involved in EBNA1 degradation. Furthermore, when 

lysosomal proteolysis was inhibited, EBNA1 was detected in the microsomal fraction and 

could be visualized in partially LAMP1-positive compartments by immunofluorescence 

microscopy. Furthermore, EBNA1 localized to cup-shaped isolation membranes of 

double-membrane vesicles by immuno-electron microscopy. Finally, inhibition of 

autophagy with pharmacologic drugs or atg12-specific siRNAs showed that autophagy 

was involved in delivering EBNA1 for MHC class II presentation and CD4+ T cell 

stimulation. Together, these data provide strong evidence that EBNA1 is delivered for 

endogenous MHC class II presentation by autophagy. Thus, autophagy probably 

contributes to the immune control of Epstein-Barr virus (EBV) and represents a novel 

pathway by which intracellular protein antigens can be loaded endogenously onto MHC 

class II molecules.  

 



 82

3.2 General relevance of autophagy for MHC class II presentation 

and targeting of autophagy to boost CD4+ T cell stimulation 

Our studies of the EBNA1 processing pathway have shown that autophagy plays a role in 

endogenous MHC class II presentation of this viral antigen [214]. Autophagy was also 

implicated in MHC class II presentation of one model antigen (neomycin 

phosphotransferase II) [50], one self antigen (Complement C5) [45] and one tumor 

antigen (MUC-1) [53], but the general relevance of this pathway for MHC class II 

presentation is not known. We wondered whether macroautophagy is a general and 

efficient pathway for MHC class II presentation of intracellular antigens in a variety of 

antigen-presenting cells. In order to address this question, we analyzed the autophagy 

level in different MHC class II-positive human cell types, to see if they exhibit 

constitutive autophagy and therefore might be predisposed for immune surveillance by 

CD4+ T cells. Furthermore, we analyzed the overlap of autophagosomes with MHC class 

II loading compartments (MIICs) to see how frequently MHC class II loading 

compartments receive input from the autophagy pathway. Finally, we determined the 

efficiency with which a cytosolic antigen is presented on MHC class II molecules if it is 

specifically targeted for autophagic degradation.  

 

3.2.1 GFP-LC3 as a tool to visualize autophagosome formation  

To quantify the autophagy level in MHC class II-positive human cells, we made use of 

the specific autophagosome marker autophagy-related gene 8 (Atg8), also called light 

chain 3 (LC3). LC3 is an ubiquitin-like protein that is covalently coupled via its C-
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terminus to a phospholipid in the newly forming inner and outer autophagosomal 

membranes and thus is specifically incorporated into autophagosomes [84]. GFP-tagged 

LC3 has been used to visualize autophagosomes in cultured cells [68, 84, 102] and GFP-

LC3 transgenice mice have been established to quantify constitutive and starvation-

induced autophagy in murine tissues [68]. It has been shown previously that 

overexpression of GFP-LC3 does not alter the autophagic activity [68], and we confirmed 

this in our own experimental system (see section 3.2.3, Fig. 14). 

 To visualize autophagosomes in MHC class II-positive human cells, we generated 

a construct encoding for GFP-LC3, by cloning the cDNA of human LC3 into the 

mammalian expression vector pEGFP-C2 (Fig. 12A). Expression of the construct after 

transient transfection into 293 cells was tested by immunoblotting and fluorescence 

microscopy (Fig. 12B and C). Western blots with an anti-GFP antibody showed a single 

band of the predicted molecular weight (42kD) (Fig. 12B). In fluorescence microscopy, 

GFP-LC3 was seen to be evenly distributed throughout the cytoplasm and to localize to 

small, cytosolic vesicles (Fig. 12C, left). Since only few GFP-LC3-positive vesicles were 

observed in most cells, we treated cells with the lysosomal acidification inhibitor 

chloroquine in order to inhibit degradation of autophagosomes by lysosomes. Already 2 

hours after chloroquine treatment, many more GFP-labeled vesicles were observed in 

GPF-LC3 transfected 293 cells (Fig. 12C, middle). These vesicles were also larger in size 

and were more brightly labeled with GFP-LC3 than vesicles observed in untreated cells, 

indicating that GFP-LC3 had accumulated inside these vesicles. The accumulation of 

GFP-LC3+ vesicles was even more pronounced 10 hours after chloroquine treatment (Fig. 

12C, right). This suggests that large numbers of autophagosomes have formed and fused
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Figure 12: GFP-LC3 as a tool to visualize autophagosomes. 

A: Schematic diagram of the EGFP-LC3 construct. EGFP is fused in frame to the human 

LC3 sequence via a short linker region. The five C-terminal residues MKLSV are cleaved 

off by the Atg4 protease and subsequently the protein is coupled to the autophagosome 

membrane via Gly120. 

B: Expression of GFP-LC3 in 293 cells as tested by anti-GFP Western blot.  

C: 293 cells stably transfected with a GFP-LC3 reporter construct were left untreated (no 

CQ) or were treated with 50 μM chloroquine (CQ) for 2 or 10 hours. Cells were fixed, 

stained with DAPI and analyzed in an epifluorescence microscope. Inhibition of 

lysosomal acidification with CQ leads to a gradual accumulation of GFP-LC3-labeled 

autophagosomes over time. Representative fields from one experiment out of two are 

shown.  

D: MDAMC cells stably expressing GFP-LC3 were either mock transfected or with 

siRNA duplexes specific for lamin A/C or atg12. After 2 days, cells were treated with 50 

μM CQ for 6 h (+CQ) or were left untreated (no CQ), stained with DAPI and examined 

in an epifluorescence microscope. Inhibition of autophagy by atg12 knockdown 

abrogates CQ-mediated autophagosome accumulation. One of two experiments is shown.  
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with lysosomes during the 10 hour observation period. The accumulation of GFP-LC3+ 

vesicles upon CQ treatment was dependent on autophagosome formation, because 

siRNA-mediated knockdown of atg12, a gene essential for autophagosome formation 

[79] completely abrogated accumulation of these vesicles (Fig. 12D). This demonstrates 

that the accumulation of GFP-LC3-positive vesicles upon CQ-treatment is indeed due to 

autophagosome formation and therefore can be used to assess the autophagy level of a 

given cell type. 

 

3.2.2 Generation and characterization of a rabbit polyclonal anti-LC3 antiserum 

To analyze autophagosome formation more quantitatively and to look at endogenous 

LC3, we generated a LC3-specific antiserum. Autophagosome-coupled LC3 (LC3-II) and 

free cytosolic LC3 (LC3-I) can be distinguished by their apparent molecular weights in 

SDS-PAGE gel electrophoresis (16 and 18 kD, respectively) and thus can be quantified 

separately in anti-LC3 immunoblots [84]. Therefore, anti-LC3 Western blots can be used 

to quantify autophagosome-associated LC3-II, which is proportional to the number of 

autophagosomes [84, 88].  

We generated a polyclonal rabbit antiserum against the N-terminal peptide of 

human LC3 (PSEKTFKQRRTFEQRC, LC31-15) coupled to KLH carrier protein and 

tested it in ELISA and Western blot assays. The second and third bleed from rabbit 

RU1129 recognized the LC31-15 peptide, but not a control EBNA1 peptide in an ELISA 

assay, whereas the prebleeds did not show any LC31-15 reactivity (Fig. 13A). In Western 

blots, the antiserum recognized the GFP-LC3 fusion protein (42 kD) in lysates of GFP-

LC3 transfected-293 cells and showed little cross-reactivity to other proteins (Fig. 13B). 
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Figure 13: Characterization of polyclonal rabbit anti-LC3 antiserum. 

Polyclonal antiserum against the N-terminal LC3 peptide was raised in rabbit RU1129. 

After the second and third boost, bleeds were collected and analyzed by ELISA and 

Western blot (A and B). After an additional boost, terminal bleed were collected and used 

in Western blots to visualized endogenous LC3 in different cell lines (C).  

A: ELISA plates were coated with the LC31-15 peptide or a control EBNA1 peptide and 

serial dilutions of rabbit bleeds (prebleeds, second and third bleeds) were tested for LC3 

reactivity. 

B: Third bleed from rabbit RU1129 was tested for LC3 reactivity in Western blots on 

lysates of 293 cells, untreated and chloroquine (CQ)-treated GFP-LC3-transfected 293 

cells. As a control, lysates were probed in parallel with GFP-specific antiserum (left). 

Both antisera specifically recognize two forms of GFP-LC3 (cytosolic and 

autophagosome-coupled).  

C: Final bleed of rabbit RU1129 was tested on lysates of untreated or chloroquine (CQ)-

treated HaCat and MDAMC cells. The antiserum strongly recognizes endogenous LC3-II 

and more weakly LC3-I. A cross-reacting band around 28 kD is indicated by an asterisk. 

Two different exposures of the same blot are shown.  
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chloroquine-treated cells, a second band of slightly lower molecular weight (40 kD) 

appeared, which most likely corresponds to lipidated GFP-LC3-II that migrates with a 

smaller apparent molecular weight. The antiserum also recognized endogenous 16/18 kD 

LC3 in lysates of different epithelial cell lines and revealed a strong accumulation of 

endogenous LC3-II upon chloroquine treatment (Fig. 13C). Since LC3-II is proportional 

to the number of autophagosomes, a strong LC3-II accumulation reflects a strong 

autophagosome accumulation and therefore a high rate of autophagosome formation. 

Therefore, anti-LC3 Western blots can be used to quantify the autophagic activity of a 

given cell type. Furthermore, the LC3 antiserum can be used to show that expression of 

GFP-LC3 does not change the autophagic activity [68]: As shown in Figure 14, 

expression of GFP-LC3 does not alter the LC3-I/LC3-II ratio, indicating that autophagy 

is not enhanced by overexpression of GFP-LC3. 

 

3.2.3 Autophagosomes are formed constitutively in human epithelial cell lines 

To test whether MHC class II-positive human cells exhibit constitutive autophagy, we 

first analyzed the autophagy level in human epithelial cell lines. Epithelial cells readily 

up-regulate MHC class II molecules in response to inflammatory cytokines both in vitro 

and in vivo [215]. Because they have only limited endocytic potential, we wondered 

whether these cell lines might rely on endogenous degradation pathways, such as 

autophagy, to generate peptide ligands for their MHC class II molecules.  

  To assess the autophagy level in human epithelial cell lines, we transfected cell 

lines derived from different organs [HaCat (skin), HeLa (cervix), MDAMC (breast), 293 

(kidney)] with a GFP-LC3 construct and treated them with chloroquine (CQ) to block 
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Figure 14: GFP-LC3 expression does not enhance autophagosome formation. 

A: Human epithelial cell lines HaCat and MDAMC transfected with GFP-LC3 or 

untransfected were analyzed by Western blot with the LC3-specific antiserum. In GFP-

LC3-transfected cells, strong GFP-LC3 (42/40 kD) expression can be seen. The longer 

exposure shows that levels of endogenous LC3-I and –II and therefore autophagy levels 

are not affected by GFP-LC3 overexpression. 

B: The experiment shown in A was repeated on 293 cells that were in addition subjected 

to 50 μM chloroquine (CQ) for 10 h to visualize autophagosome turnover. CQ leads to an 

accumulation of LC3-II and GFP-LC3-II. In GFP-LC3 transfected cells, the ratio of LC3-

I/LC3-II is slightly increased in comparison to untransfected cells, presumably because 

some GFP-LC3 is incorporated into autophagosomes instead of LC3. However, no 

increase in LC3-II and therefore no increase in autophagosome formation can be 

observed after GFP-LC3 overexpression. 
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lysosomal proteolysis and thus visualize the accumulation of GFP-LC3 in autolysosomes. 

In the steady state (no CQ), most cells had only a few GFP-LC3-labeled autophagosomes 

(typically 0-5) and only a small fraction of cells had >10 GFP-LC3-positive vesicles (Fig. 

15A, left). However, after 10 hours of CQ-treatment, GFP-LC3 strongly accumulated in 

cytosolic vesicles in all cell lines examined (Fig. 15A, right), suggesting that large 

numbers of GFP-LC3 labeled autophagosomes had formed and fused with lysosomes 

during the 10-hour observation period.  

To measure autophagosome formation more quantitatively and to extend our 

results with GFP-LC3 to endogenous LC3, we analyzed the same four epithelial cell lines 

by Western blot with the anti-LC3 antiserum described in section 3.2.2. We cultured the 

cell lines in the presence or absence of the lysosomal protease inhibitor chloroquine (CQ) 

for 10 hours and quantified LC3-II accumulation by immunoblotting. In all cell lines, 

autophagosome-associated LC3-II strongly accumulated upon CQ-treatment (Fig. 15B), 

demonstrating that LC3-II labeled autophagosomes were constitutively forming over the 

course of 10 hours. As shown in Fig. 15C for the HaCat cell line, cellular LC3-II levels 

were already increased 1 hour after CQ-treatment and gradually accumulated after longer 

treatment times, confirming that autophagosomes are being produced continuously and 

that their accumulation is not just an effect of long-term inhibitor treatment. Density 

quantification of immunoblots revealed that LC3-II accumulated 5-fold in HaCat and 

MDAMC, 15-fold in HeLa and 30-fold in 293 cells after 10 hours of CQ-treatment (Fig. 

15D). LC3-II accumulated to similar levels when cells were treated with inhibitors of 

lysosomal cathepsins for 10 hours  (Fig. 15E).  In comparison to starvation, lysosomal 

protease inhibition led to a much stronger LC3-II accumulation (Fig. 15E), demonstrating 
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Figure 15: Constitutive autophagosome formation in human epithelial cell lines 

under nutrient-rich conditions. 

A: Human epithelial cell lines HaCat (keratinocyte), HeLa (cervical carcinoma), 

MDAMC (breast carcinoma), and 293 (kidney) were stably transfected with a GFP-LC3 

reporter construct. To assess turnover of GFP-LC3 in endosomal and lysosomal 

compartments, cells were treated with 50 μM chloroquine for 10 h (+CQ) or were left 

untreated (no CQ). Cells were fixed, stained with DAPI nucleic acid stain and analyzed 

by confocal microscopy. Scale bars: 20 μm. Representative fields from one experiment 

out of three are shown. 

B: Human epithelial cell lines (HaCat, HeLa, MDAMC, and 293) were treated for 10 h 

with 50μM CQ (+) or were left untreated (--). Whole cell lysates were analyzed by anti-

LC3 immunoblots. Actin blots show general protein amounts. One of three experiments 

is shown.  

C: HaCat cells were treated with 50 μM CQ for 0, 1, 2, 10 or 24 h and gradual 

accumulation of LC3-II was visualized by anti-LC3 immunoblot. Anti-actin blot controls 

for sample loading. One of two experiments is shown.  

D: LC3-II accumulation in Western blots as quantified with OpenLab software.  

E: MDAMC cells were left untreated (--), cultured in Hanks Balanced Salt Solution 

(starv.), treated with 50 μM chloroquine (+CQ) or with the protease inhibitors E64 (28 

μM), Leupeptin (40 μM) and Pepstatin A (15 μM) (+Prot. inhib.) for 10 hours. Whole 

cell lysates were analyzed by anti-LC3 Western blotting. Actin blot demonstrates equal 

protein loading. While nutrient starvation induces LC3-II only weakly, inhibition of 

lysosomal proteases by treatment with CQ or the protease inhibitors E64, Leupeptin and 

Pepstatin A leads to a strong accumulation of LC3-II. One of two experiments is shown. 
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that lysosomal protease inhibition does not equal starvation of cells.  

Taken together, these experiments confirm that autophagy is a constitutively 

active process in all human epithelial cell lines analyzed. Although autophagy can be 

associated with nutritional deprivation [216], the gradual accumulation of LC3 

demonstrates that autophagosomes continuously deliver LC3 for lysosomal degradation, 

i.e., that autophagy is constitutively active in human epithelial cell lines under nutrient-

rich conditions. 

 

3.2.4 Autophagy is a constitutively active process in professional antigen-

presenting cells 

Next, we sought to analyze the autophagic activity of professional antigen-presenting 

cells (APCs) that are constitutively MHC class II-positive, such as B cells and dendritic 

cells. Dendritic cells (DCs) are the most efficient professional APCs and exist in two 

functionally and phenotypically distinct states, immature and mature [23]. Immature DCs 

continuously circulate through tissues and lymphoid organs to present antigens to T cells 

for tolerance induction [24]. In contrast, mature DCs have an exceptional capacity to 

initiate adaptive and innate immune responses. Given the crucial role of DCs in both 

tolerance and immunity, we were wondering whether autophagy might contribute to 

MHC class II presentation in these cells.  

To quantify autophagy in human B cells and dendritic cells, we visualized the 

turnover of lentivirally delivered GFP-LC3 in EBV-transformed B lymphoblastoid cell 

lines (LCLs) and in monocyte-derived immature and mature DCs. In all three cell types, 

GFP-LC3-labeled autophagosomes strongly accumulated after treatment with CQ for 10 
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h (Fig. 16A), indicating constitutive autophagosome formation. Although LCLs only 

contained up to 10 autophagosomes after CQ exposure, as previously observed [214], 

immature DCs accumulated up to 100 GFP-LC3+ vesicles, similar to epithelial cell lines. 

Accumulation of GFP+ vesicles did not occur upon CQ-treatment of GFP-transfected 

immature DCs, showing that GFP+ vesicles are not due to phagocytic uptake of 

neighboring GFP+ DCs or debris (Fig. 16B). Furthermore, LC3 immunoblots confirmed 

that endogenous LC3 was continuously degraded by lysosomal proteases in human B cell 

lines, in freshly isolated CD14+ monocytes as well as in monocyte-derived immature and 

mature dendritic cells (Fig. 16C). These experiments demonstrated that autophagy is a 

steady-state process not only in epithelial cells, which present antigens on MHC class II 

only upon immune activation, but also in professional APCs. Furthermore, constitutive 

autophagy is not restricted to transformed human cell lines, but is also a feature of 

primary human cells, as demonstrated for primary monocytes and dendritic cells.  

 

3.2.5 GFP-LC3 colocalizes with markers of MHC class II loading compartments in 

IFN-γ-treated human epithelial cell lines 

To test whether autophagosomes fuse with MHC class II loading compartments (MIICs), 

we examined by confocal microscopy whether the autophagosome marker GFP-LC3 

would colocalize with markers of MIICs. MIICs have been characterized as conventional 

late endosomal compartments that in addition to late endosomal and lysosomal markers, 

such as LAMP-1 and –2, contain the components for MHC class II loading, namely MHC 

class II and the peptide-loading chaperone HLA-DM [3]. 
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Figure 16: Autophagy is a constitutive process in professional antigen-presenting 

cells (APCs), including dendritic cells. 

A: To assess autophagosome formation in professional APCs, an EBV-transformed B 

lymphocyte cell line (B-LCL) stably expressing GFP-LC3 and GFP-LC3-expressing 

immature and mature DCs (iDC and mDC) were treated with 50 μM chloroquine for 10 h 

(+CQ) or were left untreated (no CQ). Cells were fixed, stained with DAPI and analyzed 

by confocal microscopy. Scale bars: 20 μm. Representative fields from one experiment 

out of two are shown. 

B: GFP-transfected mature DCs were treated with 50 μM CQ for 10 hours and analyzed 

for GFP+ vesicles by confocal microscopy. No GFP+ vesicles appear in GFP-expressing 

iDCs after 10 hours of CQ treatment. 

C: Human B cell lines (MS-LCL, RPMI6666 and L591, left) and CD14+ monocytes 

(Mono.), immature DCs (iDC) and LPS-matured DCs (mDC) (right) were treated for 10 

h with 50 μM CQ (+) or were left untreated (--). Whole cell lysates were analyzed by 

anti-LC3 immunoblotting. Actin blots demonstrate that CQ-treatment did not affect 

general protein levels. One of three experiments is shown.  
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We initially focused our analysis on epithelial cells, because they might rely heavily on 

endogenous MHC class II antigen processing due to their limited endocytic potential 

compared to classical APCs, such as DCs. We confirmed that most of our human 

epithelial cell lines, with the exception of 293 cells, expressed MHC class II molecules 

after IFN-γ treatment (Fig 17A). In the human cell lines used in this study, IFN-

γ treatment did not lead to a detectable upregulation of autophagy, as determined by 

immunoblot (Fig. 17B), although we cannot exclude that the IFN-γ treatment slightly 

influenced the autophagy activity, in addition to inducing MHC class II-positive 

compartments.  

For colocalization analysis, cells were treated with IFN-γ, transiently transfected 

with the GFP-LC3 reporter construct, and stained with antibodies specific for the MIIC 

markers MHC class II, HLA-DM and LAMP-2 in MDAMC (Fig. 18A) and HaCat cells 

(data not shown). MHC class II positive compartments frequently colocalized with GFP-

LC3 (Fig. 18A). When we quantified colocalization of MHC class II and HLA-DM with 

GFP-LC3 using the LSM510 software's profile tool, which overlays the intensity profiles 

along a cross section through a cell, we found that in double-positive cells, 58% (± 10%) 

of MHC class II+ and 52% (± 20%) of HLA-DM+ compartments contained GFP-LC3. An 

example of the profile analysis is shown in Fig. 18B.  

  To assess the proportion of MIICs that showed no colocalization with GFP-LC3 

due to degradation of the autophagosome marker protein, we performed the same 

experiments on CQ-treated MDAMC and HaCat cells. Colocalization of GFP-LC3 with 

MHC class II, HLA-DM and LAMP-2 was more pronounced under these conditions (Fig. 

18C and data for HaCat not shown). Colocalization analysis with the LSM 510 profile 
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Figure 17: Effect of recombinant IFNs on human epithelial cell lines. 

A: Human epithelial cell lines (HaCat, HeLa, MDAMC and 293) were treated for 48 h 

with 200 U/ml recombinant human IFN-γ and MHC class II surface levels were analyzed 

by flow cytometry. With the exception of 293 cells, all epithelial cell lines upregulate 

MHC class II after IFN-γ treatment. One of two experiments is shown. 

B: Human epithelial cell lines (293T, HaCat and MDAMC) were treated for 24 h with 

1000 U/ml recombinant human IFN-α or IFN-γ or were left untreated (--). Whole cell 

lysates were prepared and equal amounts of protein were run on a 12% SDS-PAGE gel. 

LC3-I and –II were visualized by anti-LC3 Western blotting. The high molecular weight 

bands marked with an asterisk (*) are proteins that cross-react with the LC3 antiserum 

and demonstrate equal protein loading. LC3-II levels and hence autophagy are not 

affected by IFN treatment.  
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Figure 18: GFP-LC3 colocalizes with markers of MHC class II loading 

compartments (MIICs) in human epithelial cell lines. 

A: MDAMC cells were treated with 200 U/ml IFN-γ, transiently transfected with a GFP-

LC3 reporter construct and 48 h later stained with antibodies to MHC class II, HLA-DM, 

LAMP-2 and DAPI for DNA content. Colocalization of GFP-LC3 with MIIC markers 

was analyzed by confocal microscopy. Scale bars: 10 μm. Representative cells from one 

experiment out of three are shown. 

B: Example of the colocalization analysis performed with the LSM 510 software’s profile 

tool. Graph shows fluorescence intensities of GFP-LC3 (green) and MHC class II (red) 

along the profile path shown to the left. In the given example, 12 out of 18 MHC II+ 

vesicles contain significant amounts of GFP-LC3 (fluorescence intensity >100). 

C: Same as A, except that 50 μM chloroquine (CQ) was present during the last 10 h of 

the culture. Scale bars: 10 μm. Representative cells from one experiment out of three are 

shown.  
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tool showed that after CQ treatment, colocalization increased to 86% (± 9%) for MHC 

class II+ and to 71% (± 12%) for HLA-DM+ vesicles. This demonstrates that the majority 

of MHC class II loading compartments obtain input from autophagosomes in human 

epithelial cell lines. The CQ-induced accumulation of GFP-LC3 inside MIICs 

furthermore shows that GFP-LC3 is degraded in MHC class II loading compartments, 

suggesting that other autophagosomal cargo proteins might also be degraded in MIICs for 

MHC class II loading. 

 

3.2.6 GFP-LC3 and MHC class II colocalize in electron-dense multivesicular 

compartments  

To identify GFP-LC3 and MHC class II double-positive compartments by electron 

microscopy, we prepared ultrathin cryosections of untreated or CQ-treated, stably GFP-

LC3 transfected MDAMC cells, stained them with antibodies specific for HLA-DR and 

GFP, and applied antibodies labeled with 10 and 15 nm protein A-Gold particles (in 

collaboration with Dr. Marc Pypaert, Yale University, New Haven). In both untreated and 

CQ-treated cells, the two antibodies strongly labeled large (1-2 μm), electron-dense, 

multivesicular compartments (Fig. 19A). Other organelles, such as nuclei and 

mitochondria, were mostly gold-negative, however some GFP-LC3 staining was 

observed in the cytosol and MHC class II staining could be seen on the ER, on the Golgi 

and at the cell membrane (Fig. 19B). The morphology of the double-labeled 

compartments was very similar in untreated and CQ-treated cells, but they were found 

much more frequently in CQ-treated cells and some of them displayed the characteristic 

swollen phenotype of lysosomal compartments under chloroquine treatment (Fig. 19C). 
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Figure 19: GFP-LC3 and MHC class II colocalize in electron-dense multivesicular 

compartments. 

A: Untreated (I and II) or CQ-treated (III and IV) MDAMC cells stably expressing GFP-

LC3 and MHC class II-positive due to IFN-γ induction were fixed in 4% 

paraformaldehyde and cut into 80 nm-thin cryosections. Sections were labeled with an 

HLA-DR-specific antiserum and 10 nm protein A-Gold (PAG10) and antibody-PAG 

complexes were irreversibly fixed with glutaraldehyde. Subsequently, sections were 

labeled with a GFP-specific antibody and 15 nm protein A-Gold (PAG15) and were 

analyzed by electron microscopy. As a control, PAG10 and PAG15 were interchanged 

and were shown to produce the same labeling pattern (I/II vs. III/IV). Scale bar: 1 μm. 

Inserts from panels I and III are shown at higher magnification in panels II and IV, 

respectively. Representative fields from one experiment out of three are shown.  

B: Same experiment as in A, with MHC class II labeled by 15 nm gold and GFP-LC3 by 

10 nm. MHC class II labeling (15 nm gold) can be seen both on GFP-LC3-positive 

electron-dense multivesicular compartments and on the plasma membrane. Scale bar: 1 

μm. 

C: MDAMC-GFP-LC3 cells were treated with 50 μM CQ for 10 h and ultrathin 

crysections were double-labeled for MHC class II (10 nm gold) and GFP (15 nm gold). 

After CQ treatment, double-labeled multivesicular compartments frequently appear 

expanded and swollen, with a diameter of >1 μm and some empty space. Three 

representative fields from one experiment out of three are shown. Scale bar: 1 μm. 
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At higher magnification, the presence of electron-dense material, numerous small 

vesicles and sometimes larger lipid membranes became apparent (Fig. 19A). Both GFP-

LC3 and MHC class II molecules were often found in close proximity to each other on 

intraluminal lipid membranes. This suggests that autophagosomes frequently fuse with 

MHC class II compartments, giving rise to multivesicular compartments that contain both 

MHC class II molecules and LC3 on internal membranes.  

 

3.2.7 GFP-LC3 is degraded in MHC class II loading compartments of dendritic 

cells 

After having observed an overlap of autophagosomes with MHC class II loading 

compartments in human epithelial cell lines, we wondered whether we could observe the 

same colocalization in professional APCs, most notably dendritic cells. To address this 

question, we transfected CD14+ monocytes with a lentiviral GFP-LC3 reporter construct, 

generated immature and mature DCs and stained them with an MHC class II-specific 

antibody. Because DCs are constitutively MHC class II-positive, no IFN-γ treatment was 

necessary for these experiments. In the absence of the lysosomal acidification inhibitor 

CQ, GFP-LC3 was mainly present in the cytosol and only very few GFP-LC3+ vesicles 

could be observed in both immature and mature DCs (Fig. 20, upper rows, also see Fig. 

16A). Therefore, no colocalization analysis could be performed for untreated DCs. 

However, when cells were treated for 10 hours with chloroquine, MHC class II 

compartments of immature DCs frequently contained the autophagosome marker GFP-

LC3 (Fig. 20 bottom rows). Colocalization analysis showed that 41% (±7%) of MHC 

class II-labeled compartments were positive for GFP-LC3. In the majority of mature 
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Figure 20: GFP-LC3 colocalizes with MHC class II loading compartments in 

dendritic cells. 

Untreated or chloroquine (+CQ)-treated GFP-LC3-expressing immature and mature 

dendritic cells (iDCs and mDCs) were stained with an MHC class II-specific antibody 

and DAPI and were analyzed by confocal microscopy. Scale bar: 10 μm. Without CQ, 

(upper rows), no or few GFP-LC3+ vesicles were observed and therefore, no 

colocalization analysis with MHC class II could be performed. After CQ treatment, many 

GFP-LC3+ vesicles accumulated (bottom rows), which partially overlapped with MHC 

class II molecules. In the majority of mature DCs, MHC class II was mainly localized at 

the cell surface (second and fourth row), but a subset of cells had intracellular MHC class 

II compartments (fourth row, white arrow). Scale bar: 10 μm. Representative cells from 

one experiment out of three are shown.  
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DCs, MHC class II molecules were mainly localized at the cell surface (Fig. 20, second 

and fourth row) and therefore the overlap with autophagosomes was minimal. However, 

in a subset of cells that still had some intravesicular MHC class II staining, GFP-LC3 was 

frequently localized within these MIICs after CQ treatment (Fig. 20, white arrow in 

fourth row). The accumulation of GFP-LC3 in MIICs of CQ-treated immature and 

mature DCs showed that autophagosomes feed into the MHC class II pathway not only in 

epithelial cell lines but also in professional APCs, namely dendritic cells.  

 

3.2.8 GFP-LC3 minimally colocalizes with markers of early endosomes or MHC 

class I loading compartments  

To determine if autophagosomes selectively fuse with MIICs, we analyzed the overlap of 

GFP-LC3 with markers of other endocytic compartments, specifically early endosomes 

(positive for early endosomal antigen, EEA1) and recycling endosomes (positive for 

transferrin receptor, TR). For the MDAMC cell line, GFP-LC3 did not show a 

pronounced overlap with either EEA1 or transferrin receptor, even in the presence of 

chloroquine (Fig. 21A). When we quantified colocalization of EEA1 with GFP-LC3, 

colocalization was low in untreated MDAMC cells (9%), but slightly increased after 

chloroquine treatment (to 26%) (Fig. 21B). The difference between GFP-LC3 

colocalization with MHC class II or HLA-DM versus EEA1 was statistically significant 

in the presence and absence of CQ (p < 0.001) (Fig. 21B). In HaCat cells, the overlap of 

GFP-LC3 with EEA1 or transferrin receptor was also minimal (data not shown). 

Furthermore, also in IFN-γ treated cells, GFP-LC3 rarely entered early or recycling 

endosomes (data not shown).  
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Figure 21: GFP-LC3 minimally colocalizes with markers of early endosomes or 

MHC class I loading compartments. 

A: MDAMC cells were transiently transfected with a GFP-LC3 reporter construct and 36 

h later treated with 50 μM chloroquine for 10 h. Cells were stained with antibodies to 

early endosomal antigen (EEA1) or transferrin receptor (TR) and DAPI and analyzed by 

confocal microscopy. Scale bars: 10 μm. Representative cells from one experiment out of 

two are shown.  

B: Quantitative analysis for colocalization of GFP-LC3 with MHC class II, HLA-DM 

and EEA1 in untreated or CQ-treated MDAMC cells. Results were obtained using the 

LSM 510 software’s profile tool. Data represent means from 10-15 cells from one 

representative experiment out of two. Error bars indicate standard deviations. P-values 

from homocedastic, one-tailed student’s T test statistics are shown.  

C: As in A, except that cells were stained with an MHC class I-specific antibody.  

 



 112

 
A

C MHC class I OverlayDAPIGFP-LC3 +CQ

EEA1

TR

OverlayDAPI+ CQ

B

0

10

20

30

40

50

60

70

80

90

100

MHC II HLA-DM EEA1

C
ol

oc
al

iz
at

io
n 

(%
)

Untreated
CQ-treatedp < 0.001

p < 0.001

GFP-LC3



 113

Macroautophagy has been implicated in the presentation of intracellular antigens on 

MHC class II, but does not seem to influence MHC class I presentation [50, 214]. To 

further address this issue, we analyzed the overlap of GFP-LC3 with MHC class I-

molecules. As expected, MHC class I was mainly found in perinuclear ER and Golgi 

regions and on the plasma membrane and did not colocalize with the more peripherally 

distributed GFP-LC3-positive vesicles (Fig. 21C). Together, our data suggest that 

autophagosomes mainly fuse with MIICs in MHC class II-positive cells, but only rarely 

with early and recycling endosomes or MHC class I compartments.  

 

3.2.9 Cytosolic/nuclear antigens can be targeted for autophagic degradation by 

fusion to LC3   

The observation that autophagosomes continuously fuse with MHC class II loading 

compartments suggests that this pathway might deliver cytosolic antigens efficiently for 

MHC class II presentation to CD4+ T cells. To test this hypothesis, we investigated 

whether the targeting of a cytosolic antigen for autophagy would lead to enhanced CD4+ 

T cell recognition. For this purpose, we generated a fusion construct of the Influenza 

matrix protein 1 with the autophagosome marker protein LC3, reasoning that the LC3 

portion of such a fusion protein should target the antigen to autophagic membranes and 

subsequently degradation in MIICs. We stably expressed the MP1-LC3 fusion protein or 

the MP1 wild-type protein (Fig. 22A) in the human epithelial cell lines HaCat and 

MDAMC. Immunoblot analysis showed that the antigens were expressed in both cell 

lines and had the expected molecular weights (MP1: 28 kD; MP1-LC3: 43 kD) (Fig. 

22B). Notably, the MP1-LC3 fusion protein was present at slightly lower amounts than 
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Figure 22: Targeting of influenza A matrix protein 1 (MP1) to autophagosomes by 

fusion to Atg8/LC3. 

A: Schematic diagram of the two constructs encoding for MP1 and MP1-LC3, 

respectively. The influenza A virus matrix protein 1 (MP1) coding sequence was fused to 

the N-terminus of the human LC3 sequence, either with or without a stop codon at the 3' 

end of MP1. 

B: HaCat and MDAMC cell lines were stably transfected with lentiviral MP1 and MP1-

LC3 constructs and protein expression was analyzed by Western blot with anti-MP1 

antiserum. Actin blot shows equal protein loading. Note that MP1-LC3 levels are slightly 

lower than MP1 levels. 

C: MDAMC cells stably expressing GFP-LC3 were infected with lentivirus encoding for 

MP1 or MP1-LC3. To inhibit degradation of autophagosome substrates in lysosomes, 

cells were treated with 50 μM chloroquine for 10 h (+CQ). Cells were stained with anti-

MP1 antiserum and DAPI and analyzed by confocal microscopy. MP1-LC3 localizes to 

GFP-LC3+ compartments, whereas MP1 is homogenously distributed in cytosol and 

nucleus and does not accumulate in autophagosomes even after CQ treatment. Scale bars: 

10 μm. Representative fields from one experiment out of two are shown.  
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MP1 in both cell lines. In order to test whether the fusion protein would indeed localize 

to autophagosomes, we coexpressed GFP-LC3 and the MP1-constructs in MDAMC cells 

(Fig. 22C) and HaCat cells (data not shown) and analyzed their colocalization by 

confocal microscopy. As expected, wild-type MP1 was homogenously distributed in the 

cytosol and nucleus, and this pattern did not change after CQ-treatment (Fig. 22C, top 

rows). In contrast, the MP1-LC3 fusion protein showed punctate cytosolic staining, 

which overlapped with GFP-LC3-positive autophagosomes (Fig. 22C, bottom rows). 

Furthermore, after CQ-treatment for 10 hours, GFP-LC3 and MP1-LC3 accumulated in 

the same cytosolic vesicles, demonstrating that the LC3 tag indeed targets the influenza 

matrix protein 1 to autophagosomes for subsequent degradation by lysosomal proteases.  

 

3.2.10 Targeting of antigens for autophagic degradation leads to enhanced CD4+ T 

cell recognition   

To test the hypothesis that targeting of cytosolic and nuclear antigens for autophagic 

degradation via LC3 fusion leads to enhanced MHC class II presentation, we analyzed 

the recognition of MP1- versus MP1-LC3-expressing target cells by MP1-specific CD4+ 

T cell clones (Fig. 23). For this purpose, we generated MP1-specific CD4+ T cell clones 

from a healthy lab donor that was HLA-DR and –DQ matched to the HaCat cell line, so 

that IFN-γ−treated HaCat cells could be used as target cells. To analyze the effect of the 

LC3 fusion on MHC class I presentation, we also generated an HLA-A2-restricted CD8+ 

T cell clone from the same donor (Fig. 23), which then could be tested for recognition of 

HLA-A2-positive MDAMC target cells. Furthermore, autologous EBV-transformed B-
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Figure 23: Characterization of Influenza MP1-specific CD4+ and CD8+ T cell clones. 

A: CD4 and CD8 expression of T cell clones as analyzed by flow cytometry. Clones 

9.26, 10.9 and 11.46 were homogenously CD4+CD8- and clone 9.2 was homogenously 

CD8+CD4-.  

B: Recognition of MP1 peptides by T cell clones in IFN-γ ELISPOT assays. An MP1 

peptide library (64 15-mer peptides overlapping by 10 amino acids) was divided in 6 

subpools covering MP1 amino acid positions 1-51 (pool I), 41-88 (pool II), 78-128 (pool 

III), 118-163 (pool IV), 152-203 (pool V) and 193-252 (pool VI). Clones 9.2, 9.26 and 

10.9 responded specifically to pool II and clone 11.46 to pool III. In addition, the CD8+ T 

cell clone 9.2, but not the CD4+ T cell clones, recognized the HLA-A2-restricted MP1 

epitope 58-66. Error bars indicate standard deviations. 

C: MP1-specific CD4+ T cell clones were tested for recognition of individual peptides 

covering MP1 amino acid sequence 29-128, including all peptides of MP1 pools II and 

III. Clones 9.26 and 10.9 specifically recognized peptide epitope MP162-72 and clone 

11.46 was specific for epitope MP1103-113. Error bars indicate standard deviations.  
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LCLs and monocyte-derived DCs from the same donor could be used as target cells for 

both CD4+ and CD8+ T cell clones. 

To assess how well the two different forms of MP1 could be presented on MHC 

class II, we measured IFN-γ secretion of three MP1-specific CD4+ T cell clones in 

response to MP1 or MP1-LC3-expressing target cells (HaCat epithelial cells, B-LCLs or 

DCs). The response of the CD4+ T cell clones (clone 9.26, 10.9 and 11.46) was strongly 

increased by the LC3 fusion (Fig. 24A). This effect was seen for all types of target cells, 

epithelial, B and DCs. Although at the lowest ratio of T cell clone to cellular targets 

(effector to target or E:T ratio) MP1-LC3 typically elicited only 2-4 fold higher IFN-γ  

production, the difference in IFN-γ secretion was especially pronounced at higher E:T 

ratios, when the target cells and thus MHC class II-peptide complexes became limiting. 

At these E:T ratios, IFN-γ secretion by the CD4+ T cell clones in response to MP1-LC3 

compared to MP1 was increased 12-17 fold for HaCat epithelial targets, 4-8 fold for B-

LCL targets, 5-17 fold for immature DCs and 7-20 fold for mature DCs. Untransfected 

and GFP-LC3 transfected target cells were not recognized above background (Fig. 24A). 

Although the IFN-γ response to MP1 transfectants of the HaCat cell line never exceeded 

30% of the amount secreted upon recognition of the peptide-pulsed HaCat positive 

control, MP1-LC3 transfectants were able to stimulate up to 95% of the maximal CD4+ T 

cell recognition achieved with peptide pulsed targets. Mixing experiments demonstrated 

that MHC class II presentation of MP1 and MP1-LC3 was indeed due to endogenous 

processing, because the mixing of HLA-matched HaCat cells with mismatched MP1- or 

MP1-LC3 expressing MDAMC cells did not stimulate any T cell responses (Fig. 24A, 

upper panel). Furthermore, when MHC class II was not induced on HaCat cells by IFN-γ, 
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Figure 24: Fusion of MP1 to LC3 enhances CD4+ T cell recognition. 

A: MP1-specific CD4+ T cell clones 9.26, 10.9 and 11.46 were stimulated at various 

effector to target cell (ET) ratios with different MP1 or MP1-LC3 expressing target cells: 

HaCat cells (IFN-γ-treated to induce MHC class II), CM-LCL or immature/mature DCs. 

The next day, IFN-γ in culture supernatants was measured by ELISA to assess MHC 

class II presentation of MP1. As a positive control, target cells were pulsed with cognate 

peptide (+pept.) and as negative controls, untransfected and GFP-LC3-transfected target 

cells were used. For HaCat cells, further negative controls included no IFN-γ 

pretreatment to demonstrate MHC class II-restriction. Furthermore, coculture of 

untransfected HaCat cells with MHC class II-mismatched MP1- or MP1-LC3-expressing 

MDAMC cells demonstrated that the presentation occurred after endogenous, not 

exogenous processing. Error bars indicate standard deviations. P-values for paired, one-

tailed student’s T test statistics across all E:T ratios are shown. For each target cell type, 

one representative clone out of three is shown (HaCat: 10.9, CM-LCL: 11.46, DCs: 9.26) 

and the experiments were performed twice.  

B: MHC class II surface levels on target cells as analyzed by flow cytometry. Enhanced 

CD4+ T cell recognition of MP1-LC3-expressing cells is not due to a higher MHC class 

II level. 
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MP1- and MP1-LC3-expresssing cells were unable to stimulate CD4+ T cell responses 

(Fig. 24A, upper panel), confirming that the presentation was MHC class II-restricted. In 

addition, MHC class II surface staining showed that approximately equal MHC class II 

surface levels were present on all MP1- and MP1-LC3-expressing target cells (Fig. 24B), 

demonstrating that the enhanced recognition of MP1-LC3 was not due to enhanced MHC 

class II expression.  

 

3.2.11 LC3 fusion does not influence MHC class I presentation and CD8+ T cell 

recognition  

To assess the effect of the LC3 fusion on MHC class I presentation, we analyzed the IFN-

γ response of an MP1-specific CD8+ T cell clone to MP1- and MP1-LC3-expressing 

target cells (MDAMC epithelial cells, B-LCLs or DCs). For all types of target cells and 

across all E:T ratios, similar amounts of IFN-γ were secreted by CD8+ T cells in response 

to MP1- and MP1-LC3 expressing targets (Fig. 25). This suggests that the LC3 fusion 

does not impair MHC class I presentation and both constructs give rise to similar 

amounts of defective ribosomal products (DRiPs), which are then efficiently processed 

for CD8+ T cell recognition [6]. This was observed for both IFN-γ-treated MDAMC 

target cells and untreated MDAMC cells, although MHC class I presentation seemed to 

be slightly enhanced by the IFN-γ treatment (Fig. 25, upper panel), which is consistent 

with an enhanced MHC class I processing machinery [3]. Taken together, our data 

suggest that targeting of cytosolic and nuclear antigens for autophagic degradation via 

LC3 fusion can strongly increase CD4+ T cell recognition, without impairing CD8+ T cell 

recognition.  
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Figure 25: CD8+ T cell recognition is not affected by LC3 fusion. 

The MP1-specific CD8+ T cell clone 9.2 was stimulated at various effector to target cell 

(ET) ratios with different MP1 or MP1-LC3 expressing target cells: MDAMC cells (IFN-

γ-treated or untreated), CM-LCL or immature/mature DCs. The next day, IFN-γ in 

culture supernatants was measured by ELISA to assess MHC class I presentation of MP1. 

As a positive control, target cells were pulsed with the HLA-A2-restricted MP158-66 

peptide (+pept.) and as negative controls, untransfected and GFP-LC3-transfected target 

cells were used. MP1- and MP1-LC3-expressing target cells stimulated the CD8+ T cell 

clone to similar levels. Error bars indicate standard deviations. One of two experiments is 

shown.  

 



 124

IF
N

-γ
(p

g/
m

l)
IF

N
-γ

(p
g/

m
l)

IF
N

-γ
(p

g/
m

l)

+p
ep

t.

GF
P-

LC
3

MP
1

MP
1-L

C3

---

MDAMC
No IFN-γ

+p
ep

t.

GF
P-

LC
3

MP
1

MP
1-L

C3

---

MDAMC
+ IFN-γ

iDC mDC

+p
ep

t.

GF
P-

LC
3

MP
1

MP
1-L

C3

+p
ep

t.

GF
P-

LC
3

MP
1

MP
1-L

C3

0

500

1000

1500

2000 E:T=2
E:T=5
E:T=12.5

0
200
400
600
800

1000
1200
1400
1600 E:T=2

E:T=5
E:T=10

+p
ep

t.

MP
1

MP
1-L

C3

---

CM-LCL

0

1000

2000

3000

4000

5000

6000 E:T=5
E:T=10
E:T=20



 125

3.2.12 Autophagosome targeting depends on the molecular machinery of 

macroautophagy  

In order to determine whether coupling to the autophagosomal membrane was crucial for 

antigen targeting to enhance MHC class II presentation, we mutated the amino acid 

Gly120 of LC3 to Ala in our fusion construct (MP1-LC3(G120A)). Gly at position 120 is 

crucial for cleavage of the 125 amino acid LC3 precursor protein by the Atg4 protease 

(see Fig. 5), and it has been shown that mutation of Gly120 to Ala abrogates coupling of 

LC3 to the autophagosome membrane [84, 102]. When we expressed our MP1-

LC3(G120A) construct in MDAMC epithelial cells, the mutant protein failed to localize to 

GFP-LC3+ autophagosomes (Fig. 26A). In addition, the preferential targeting for MHC 

class II presentation was completely abrogated by this point mutation: Influenza MP1-

specific CD4+ T cell recognition of MP1-LC3(G120A) was similar to MP1 after 

transfection into HaCat cells (Fig. 26B). All constructs were expressed to similar amounts 

in HaCat and MDAMC cells (Fig. 26C) and elicited comparable Influenza MP1-specific 

CD8+ T cell stimulation (Fig. 26B). These data suggest that the ubiquitin-like conjugation 

of LC3 to the autophagosomal membrane is crucial for LC3-mediated targeting to 

enhance MHC class II presentation.  

To further confirm that autophagy is required for targeting of LC3 fusion antigens 

to MHC class II loading compartments, we analyzed colocalization of MP1-LC3 with 

MHC class II molecules, with and without atg12-specific RNA interference. In cells 

transfected with control siRNA, MP1-LC3 colocalized substantially with MHC class II in 

cytosolic vesicles of IFN-γ-treated MDAMC cells (Fig. 27). In contrast, in cells 

transfected with atg12-specific siRNA, MP1-LC3 was diffusely distributed and did not 
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Figure 26: Autophagosome targeting depends on covalent coupling of LC3 to the 

autophagosome membrane via Gly120. 

A: MDAMC cells stably expressing GFP-LC3 were infected with lentivirus encoding for 

MP1, MP1-LC3 or MP1-LC3(G120A). To visualize autophagosome formation, cells were 

treated with 50 μM chloroquine for 10 h (+CQ) and were stained with anti-MP1 

antiserum and DAPI and analyzed by confocal microscopy. Scale bars: 10 μm. Mutation 

of Gly120 to Ala abrogates autophagosome targeting and degradation of MP1-LC3. 

B: The MP1-specific CD4+ T cell clone 11.46 or the MP1-specific CD8+ T cell clone 9.2 

were stimulated at various effector to target cell (ET) ratios with target cells expressing 

either MP1, MP1-LC3 or MP1-LC3(G120). The next day, IFN-γ in culture supernatants 

was measured by ELISA to assess presentation of MP1 on MHC class II or I, 

respectively. MP1-LC3(G120) stimulates the CD4+ T cell clone as weakly as MP1 does, 

indicating that Gly120 is required for enhanced MHC class II presentation. Error bars 

indicate standard deviations and P-values for paired, one-tailed student’s T test statistics 

across all E:T ratios are shown. One of two experiments is shown. 

C: Expression level of different MP1 constructs in HaCat and MDAMC cell lines, 

analyzed by Western blot with anti-MP1 antiserum. Actin blot shows equal protein 

loading. MP1-LC3 and MP1-LC3(G120) are expressed at the same level. 
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Figure 27: Autophagy is required for delivery of MP1-LC3 to MHC class II loading 

compartments. 

MDAMC cells stably expressing MP1-LC3 were transfected with control siRNA 

(specific for firefly luciferase) or siRNA specific for atg12 (Atg12.2). After 36 h, cells 

were treated with 200 U/ml IFN-γ to upregulate MHC class II expression and were 

cultured for another 36 h.  To prevent degradation of MP1-LC3 by lysosomal proteases, 

cells were treated with 50 μM chloroquine (CQ) during the last 6 hours of the culture, 

where indicated (+CQ). Cells were fixed, stained with MP1- and MHC class II-specific 

antibodies and DAPI and analyzed by confocal microscopy. Scale bar: 10 μm. 

Representative fields from one experiment out of two are shown. In control siRNA-

treated cells, a substantial fraction of MP1-LC3-containing vesicles can be observed to 

colocalize with MHC class II compartments, whereas this colocalization is completely 

abrogated after atg12 knockdown. 
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colocalize with punctate MHC class II compartments any more (Fig. 27). These 

experiments suggest that LC3 fusion antigens enter MHC class II loading compartments 

primarily via autophagy.  

Taken together, the two ubiquitin-like conjugation systems, LC3-lipid and Atg12-

Atg5, are required for targeting of LC3 fusion proteins for MHC class II loading and 

enhanced MHC class II presentation, because mutation of the residue involved in LC3 

conjugation to the autophagic membrane as well as atg12-specific RNA interference 

inhibit this pathway. 

 

3.2.13 Conclusions: Autophagy constitutively contributes to MHC class II 

presentation and can be targeted from improved T helper stimulation 

By analyzing autophagosome formation in different MHC class II-positive human cell 

types, we have shown that constitutively MHC class II-positive APCs, such as B cell 

lines, monocytes and dendritic cells, as well as epithelial cell lines with IFN-γ inducible 

MHC class II expression display substantial amounts of steady-state autophagy. 

Furthermore, MHC class II loading compartments (MIICs) in epithelial and dendritic 

cells contain substantial amounts of GFP-LC3, suggesting that MIICs continuously 

receive input from the autophagy pathway. Finally, we demonstrated that by targeting 

this pathway via fusion to the autophagosome marker LC3, MHC class II presentation 

and CD4+ T cell recognition of Influenza MP1 could be strongly enhanced, without 

compromising its CD8+ T cell recognition. This novel MHC class II targeting strategy 

utilizes the unusual lipid coupling mechanism of the LC3 protein and is dependent on 

autophagosome formation. Together, our data demonstrate that autophagosomes 
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frequently and efficiently fuse with MHC class II loading compartments and that this 

pathway can be targeted for better CD4+ T cell stimulation. 
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3.3 Autophagy regulation by influenza A virus 

Our studies have demonstrated that autophagy is constitutively active in MHC class II-

positive human cells and efficiently delivers cytosolic antigens for MHC class II loading 

in the steady state. We wondered if this process is further regulated by immune 

activation. We did not see an effect of IFNs on the autophagy level (Fig. 17B), although 

an enhancement of autophagy by IFN-γ has been reported for murine macrophages [102, 

103]. Furthermore, autophagy did not seem to change during differentiation of monocytes 

into dendritic cells (DCs) or during DC maturation with proinflammatory cytokines, 

poly-IC or LPS (Fig. 16). Since activation of cells with cytokines did not lead to a 

detectable change in the autophagy level, we studied autophagy in the context of a more 

physiological immune system stimulus, namely viral infection. As a model virus, we used 

influenza virus, because it can productively infect different types of MHC class II-

positive cells, such as lung epithelial cells and dendritic cells, allowing us to study 

autophagy and MHC class II presentation during the viral replication/infection cycle. 

 

3.3.1 Autophagosomes are strongly increased after influenza A virus infection of 

human epithelial cell lines and dendritic cells 

To investigate whether the cellular autophagy level is altered in response to influenza A 

virus infection, we infected stably GFP-LC3-transfected human epithelial cell lines with 

influenza virus strain A/Aichi/68 (H3N2). We infected cells at a low multiplicity of 

infection (MOI between 0.1 or 0.2), which typically resulted in an infection rate of 50-

70% (Fig. 28A). At these MOIs, cell viability was still mostly unimpaired 24 hours post-

infection, whereas 48 hours post-infection, a large number of apoptotic cells could be  
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Figure 28: Autophagosomes are strongly increased after influenza A virus infection 

of human epithelial cell lines and dendritic cells. 

A: Titration of influenza virus A/Aichi/68 (H3N2) on human lung epithelial cells. A549 

cells were infected with virus at different MOIs and 24 hours later cells were stained with 

an MP1-specific antibody. Percentage of MP1-positive cells was determined in 6 

different fields for each MOI. 

B: Cell viability of A549 cells 24 hours and 48 hours post-infection. Cells were infected 

with influenza virus A/Aichi/68 at low MOI (0.1-0.2). 24 hours and 48 hours later were 

stained for Annexin-V and the dead cell marker 7-AAD and analyzed by flow cytometry. 

One of two experiments is shown.  

C: Left: Stably GFP-LC3-transfected epithelial cell lines A549, MLE12 and MDAMC 

were infected with influenza virus A/Aichi/68 and after 24 hours were analyzed in an 

epifluorescence microscope. Right: GFP-LC3+ A549 cells were infected with different 

strains of influenza virus (A/Aichi/68, A/WSN/33 and A/PR8/34) and 24 hours later were 

analyzed in an epifluorescence microscope. One of two experiments is shown.  

D: The human epithelial cell lines HaCat and 293T and monocyte-derived immature DCs 

were infected with influenza virus A/Aichi/68 at low MOI. 24 hours post-infection, 

lysates of uninfected or infected cells were prepared and analyzed by Western blot for the 

LC3 protein. All cell types show an increase in LC3-II. The cross-reacting band marked 

with an asterisk (*) shows equal protein loading. One of two experiments is shown. 
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detected (Fig. 28B). We therefore chose to analyze cells 24 hours post-infection. In 

comparison to uninfected cells, influenza-infected cells showed a strong increase in GFP-

LC3-positive autophagosomes in all cell types examined (Fig. 28C, left). In infected 

human and murine lung epithelial cells, large GFP-LC3-positive structures could be 

observed in the perinulear area (Fig. 28C left, upper two rows). These structures probably 

are either very large autophagosomes or clusters of many small autophagosomes in close 

proximity to each other. The increase and swelling/clustering of autophagosomes in lung 

epithelial cells occurred after infection with different strains of influenza virus 

[A/Aichi/68 (H3N2), A/WSN/33 (H1N1) and A/PR8/34 (H1N1)] (Fig. 28C, right). The 

increased autophagosome number could also be observed by Western blot on the level of 

endogenous LC3: When lysates of uninfected and A/Aichi/68-infected cells were 

analyzed by anti-LC3 immunoblot, LC3-II was strongly increased in influenza-infected 

epithelial cell lines and dendritic cells (Fig. 28D). These data demonstrate that in 

different infectable cell types, autophagosomes are strongly increased after influenza A 

virus infection, suggesting that autophagy is a process that is regulated in response to 

influenza infection.  

 

3.3.2 Ultrastructural analysis of influenza-infected cells reveals unusually large 

autophagosomes containing amorphous, electron-dense material 

To see if the large GFP-LC3-positive structures that we observed in influenza-infected 

lung epithelial cells are autophagosomes of very large size or are clusters of small 

autophagosomes, we analyzed influenza-infected human lung epithelial cells (A549) by 

electron microscopy (in collaboration with Dr. Marc Pypaert, Yale University, New 
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Haven). This also allowed us to look at the autophagosome content/morphology at the 

ultrastructural level.  

In uninfected cells, a few small (0.5 – 1 μm) autophagosomes or autolysosomes 

containing internal lipid vesicles and electron dense material could be observed (Fig. 29A 

black arrows). In contrast, 24 hours after influenza infection, cells contained many more 

multivesicular, membrane-rich autophagosomes of about 0.5 – 1.5 μm, which sometimes 

were in close proximity to each other (Fig. 29 B, left panels). In addition, some cells 

contained extremely large autophagosomes (up to 7 μm) that sometimes even reached the 

size of the nucleus (Fig. 29B, right panels). The giant autophagosomes contained 

electron-dense, amorphous material, which was not present in uninfected cells and 

therefore might consist of viral protein complexes or nucleic acids, such as viral RNPs. 

Autophagosomes did not seem to contain large amounts of other organelles, such as 

mitochondria or rough ER, as these organelles were mainly seen in the cytoplasm, but not 

inside autophagosomes (Fig. 29B).  

Our ultrastructural analysis of influenza-infected cells confirms that 

autophagosome numbers are strongly increased after influenza infection. Furthermore, it 

suggests that at least some of the large GFP-LC3-positive structures observed in 

fluorescence microscopy represent unusually large autophagosomes that might contain 

viral components, such as protein or RNA complexes. 
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Figure 29: Influenza-infected cells contain unusually large autophagosomes with 

amorphous, electron-dense material (Experiment performed in collaboration with Dr. 

Marc Pypaert, Yale University, New Haven.). 

Uninfected or influenza (A/Aichi/68)-infected A549 cells were fixed 24 hours post-

infection with 2.5 % glutaraldehyde for 1 hour and were processed for electron 

microscopy. Representative pictures from one experiment are shown. 

A: Uninfected A549 cells have few, small autophagosomes / autolysosomes containing 

lipid membranes and electron-dense material (black arrows). Scale bars: 2 μm (black 

line). 

B: Influenza-infected A549 cells have numerous small and medium size (0.5-1.5 μm) 

autophagosomes containing internal lipid membranes or electron dense material (left 

panels). Some influenza-infected cells have in addition one or few extremely large 

autophagosomes (up to 7 μm) that often contained electron-dense, amorphous or fibrous 

material not present in uninfected cells (right panels). Scale bars: 2 μm (black line). 
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3.3.3 Small autophagosomes show highly increased mobility in influenza-infected 

cells 

Since we observed both small and unusually large autophagosomes in influenza-infected 

cells, we wondered if these two different autophagosome pools have distinct mobility and 

how they interact with each other. To address this question, we observed live GFP-LC3-

transfected A549 lung epithelial cells in spinning disc confocal microscopy. We 

confirmed that influenza-infected cells contained numerous small autophagosomes (Fig. 

30A, middle) and sometimes one large GFP-LC3+ vesicle of ≥ 5 μm diameter (Fig. 30A. 

right), whereas uninfected cells contained a smaller number of evenly distributed, small 

to medium size autophagosomes (Fig. 30A, left). The larger autophagosomes (≥ 1 μm) in 

both uninfected and infected cells moved only slowly; especially the very large vesicles 

appeared almost immobile when followed over a period of 10 min (Fig. 30B). In 

uninfected cells, smaller autophagosomes (< 1 μm) moved slightly more rapidly than 

large autophagosomes and therefore could be seen to move slowly when followed over a 

period of 30 seconds (average speed = 0.1 μm/s, Fig. 30C left). Strikingly, small 

autophagosomes in influenza-infected cells behaved very differently from the ones in 

uninfected cells and from large autophagosomes: Vesicle tracking showed that small 

autophagosomes in infected cells moved very rapidly throughout the whole cell body 

(Fig. 30C). The movement seemed to be random and non-directional, since vesicles 

moved towards and away from the central perinuclear region containing immobile large 

autophagosomes. The average speed of autophagosomes in infected cells was about 0.3 

μm/s, however, this number is probably a severe underestimation, since it includes the  
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Figure 30: Mobility of autophagosomes in uninfected and influenza-infected cells 

analyzed by live cell spinning disc confocal microscopy. 

Uninfected or influenza (A/Aichi/68)-infected GFP-LC3+ A549 cells were transferred to 

CO2-independent medium and analyzed at 37ºC on a spinning disc confocal microscope 

with a 63x oil immersion lens. One of two experiments is shown.  

A: Still images showing that uninfected cells contain a smaller number of evenly 

distributed GFP-LC3+ autophagosomes of normal size (0.5 – 1.5 μm), whereas infected 

cells contained much higher numbers of small autophagosomes (middle) and sometimes 

one or two extremely large (> 5 μm) autophagosomes (right). Scale bars: 10 μm. 

B: Pictures were taken at 15 s intervals over a total period of 10 min. Snapshots from the 

indicated time points are shown. Large autophagosomes move very slowly or are 

immobile in both uninfected and influenza-infected cells. Smaller autophagosomes move 

more rapidly and therefore their movement is lost at this time resolution. Scale bars: 10 

μm.  

C: Pictures were taken at 200-600 ms intervals over a total period of 24-30 sec and 

vesicle movement was tracked using Imaris software. Vesicle tracks are represented as 

color-coded lines (t = 0 in blue, t = end in white). In uninfected cells, overall vesicle 

movement is slow. In influenza-infected cells, large autophagosomes are also slow to 

immobile, whereas small autophagosomes move rapidly throughout the whole cell body. 

Average speed of all vesicles from three representative fields was determined using 

Imaris software and is shown in the graph to the right. Error bars indicate standard 

deviations.  
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values for the very large immobile autophagosomes, which are present in influenza-

infected cells at large numbers.  

Taken together, the two pools of autophagosomes in influenza-infected cells 

move with dramatically different speed: Large, strongly GFP-LC3-positive 

autophagosomes are very slow to immobile, as are autophagosomes in uninfected cells. 

In contrast, small and faintly GFP-LC3-labelled structures in influenza-infected cells 

move very rapidly throughout the whole cell body. The relationship between large, 

immobile and small, highly mobile autophagosomes and the physiological relevance of 

the accelerated autophagosome movement needs further investigation.  

 

3.3.4 In influenza-infected cells, autophagosomes are not degraded in lysosomes  

Since autophagosomes in influenza-infected cells show altered mobility and cellular 

distribution compared to uninfected cells, we wondered if altered autophagosomes still 

fused with lysosomes and were degraded by lysosomal proteases. To investigate fusion of 

autophagosome with lysosomes, we labelled acidic compartments with red fluorescent 

lysotracker 24 hours after influenza infection or mock infection and analyzed cells live 

under the spinning disc confocal microscope. In uninfected cells, about 25% of GFP-

LC3+ vesicles overlapped with lysotracker staining, indicating that a fraction of 

autophagosomes had fused with lysosomes and had become acidified (Fig. 31A). In 

contrast, in influenza-infected cells almost no overlap between autophagosomes and 

lysotracker staining was observed, especially large perinuclear autophagosomes were 

always devoid of lysotracker staining (Fig. 31A). This suggests that after influenza 

infection, autophagosomes do not fuse with acidic compartments.  
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Figure 31: Autophagosomes in influenza-infected cells are not degraded by 

lysosomal proteases. 

A: Uninfected or influenza (A/Aichi/68)-infected GFP-LC3-expressing A549 cells were 

stained with lysotracker red for 30 min and then were imaged at 5 s intervals on a 

spinning disc confocal microscope. Green and red channels were imaged with a time lag 

of 2-3 s, therefore the degree of colocalization is probably underestimated for the smaller, 

more mobile vesicles. Still, a significant fraction (27%) of the larger, immobile 

autophagosomes in uninfected cells was stained with lysotracker, whereas almost no 

overlap with lysotracker was seen for the large, immobile autophagosomes in influenza-

infected cells. Representative still images from two independent experiments are shown.  

B: The GFP-LC3+ human epithelial cell lines (A549 and MDAMC) were infected with 

influenza virus (A/Aichi/68) at an MOI of 0.4, so that most cells in the culture would 

become infected. 24 h post-infection, cells were treated with chloroquine (CQ) for 6 h 

and lysates were analyzed by anti-LC3 Western blot. One of two experiments is shown. 
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To confirm this result in a different assay, we infected cells with influenza virus or mock 

infected them and 24 hours post-infection treated them with the lysosomal proteolysis 

inhibitor chloroquine (CQ) for 6 hours. In uninfected cells, LC3-II and GFP-LC3-II 

accumulated upon CQ treatment, indicating that autophagosomes are turned over by 

lysosomal proteases (Fig. 31B). In contrast, in influenza-infected cells, no further 

accumulation of LC3-II and GFP-LC3-II could be observed in response to CQ treatment, 

demonstrating that autophagosomes were not turned over by lysosomal proteases in 

infected cells. This fits our observation that autophagosomes do not fuse with acidic 

compartments and suggests that autophagosome increase and swelling observed upon 

influenza infection is due to a block in autophagosome degradation. Although it cannot 

be excluded that an increased rate of autophagosome formation contributes to this effect, 

it seems very likely that the observed phenomenon is mainly due to a block in 

autophagosome-lysosome fusion. 

 

3.3.5 Autophagosome increase occurs only in directly and productively infected 

cells 

To investigate at what time point after infection the autophagosome increase first occurs, 

we prepared lysates at various time points post-infection and analyzed them by anti-LC3 

Western blot. LC3-II was first increased 10 hours post-infection in infected dendritic 

cells and lung epithelial cells and gradually accumulated to higher levels at later time 

points (Fig. 32A). Thus, the increase in autophagosomes was not an extremely rapid 

response, indicating that viral or cellular factors might have to be produced first.  
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Figure 32: Autophagosome increase occurs only in directly and productively 

infected cells. 

A: Immature DCs and the lung epithelial cell line A549 were infected with influenza 

virus (A/Aichi/68) and lysates were prepared at the indicated time points post-infection 

and then analyzed by anti-LC3 Western blot. LC3-II first increased 10 hours post-

infection and accumulated to higher levels at later time points. One of two experiments is 

shown. 

B: GFP-LC3-expressing epithelial cell lines (A549, MLE-12 and MDAMC) were either 

left untreated or were incubated with live or heat-inactivated (56ºC for 30 min) influenza 

virus A/Aichi/68. 24 hours later, cells were analyzed by anti-LC3 Western blot (top) or 

by fluorescence microscopy (bottom). LC3-II and GFP-LC3-II accumulated only in cells 

incubated with live virus, not in cells treated with heat-inactivated virus. One of two 

experiments is shown. 

C: The GFP-LC3-expressing epithelial cell line MDAMC was left uninfected or was 

infected with influenza virus A/Aichi/68 and 24 hours later was stained for matrix protein 

1 (MP1) and analyzed in an epifluorescence microscope. GFP-LC3-positive vesicles 

accumulated only in cells that were stained for MP1, not in MP1-negative, uninfected 

cells. One of two experiments is shown.  
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To see whether cells have to be directly and productively infected or whether uptake of 

inactivated viral particles is sufficient to mediate autophagosome accumulation, we 

exposed cells to live or heat-inactivated influenza virus and analyzed their 

autophagosome number by LC3 Western blot or fluorescence microscopy. Only live 

influenza virus was able to elicit an autophagosome accumulation, whereas heat-

inactivated virus did not cause any change in LC3-II levels (Fig. 32B). Thus, contact with 

the viral envelope or endocytosis of inactivated virus particles is not sufficient to elicit an 

autophagosome increase.  

To visualize more directly that productive infection is necessary for 

autophagosome regulation, we stained uninfected and infected cells with an MP1-specific 

antibody, to see if the autophagosome increase occurs only in cells that produce viral 

protein. Indeed, autophagosome accumulation and formation of large perinuclear 

autophagosomes only occurred in cells that expressed MP1, whereas MP1-negative cells 

did not change their autophagosome number (Fig. 32C). This indicates that 

autophagosome accumulation occurs only in directly and productively infected cells and 

is not mediated by a soluble factor present in the culture. In line with this, we could show 

that type I IFNs were not responsible for the observed effect, since blocking of the 

IFNα/β receptor did not abrogate the influenza-induced autophagosome accumulation 

(data not shown).  
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3.3.6 The viral proteins NS1 and PB1-F2 are not required and dsRNA is not 

sufficient for autophagosome accumulation 

 Since autophagosomes started to accumulate not before 10 hours post-infection and 

seemed to require direct and productive infection, we hypothesized that virally encoded 

products produced by infected cells might be responsible for the observed 

autophagosome accumulation. Two viral proteins that are not involved in virus 

replication, but rather have immunomodulatory functions, are the non-structural protein 1 

(NS1) and PB1-F2. NS1 suppresses the host IFN response by preventing the activation of 

pro-IFN transcription factors and PKR [179, 193] and PB1-F2 accelerates apoptosis by 

inducing mitochondrial permeabilization [217]. Influenza virus deletion mutants that lack 

NS1 or PB1-F2 are able to infect cells normally and undergo productive replication and 

therefore can be studied in the context of a full replication cycle [179, 217]. We utilized 

isogenic NS1 and PB1-F2 deletion viruses to test if these proteins might be involved in 

modulating autophagy. However, cells infected with PR8ΔNS1 virus or WSNΔPB1-F2 

still showed an increase in autophagosomes 24 hours post-infection, as did their wild-

type counterparts (Fig. 33A and B). Therefore, NS1 and PB1-F2 are not required for 

autophagy regulation in influenza-infected cells. 

To test if cytosolic double-stranded RNA (dsRNA) produced during the viral life 

cycle might mediate the autophagosome increase, we externally added or transfected the 

dsRNA mimic poly-IC. Western blot analysis showed that LC3-II levels were not 

increased by external addition of poly-IC (25 μg/ml) or cytosolic delivery of poly-IC (0.5 

μg/ml) with different transfection reagents (Fig. 33C). Therefore, it seems unlikely that 

viral dsRNA is responsible for the observed phenomenon. Further experiments are 
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Figure 33: The viral proteins NS1 and PB1-F2 are not required and dsRNA is not 

sufficient for autophagosome accumulation. 

A: The GFP-LC3+ lung epithelial cell lines A549 was infected with influenza virus 

A/PR8/34 or the isogenic deletion mutant Α/PR8/34ΔNS1 and 24 h post-infection cells 

were analyzed in an epifluorescence microscope. Cell death was slightly increased in 

ΔNS1-infected cells, but accumulation of GFP-LC3+ vesicles occurred to a similar extend 

as in PR8 wt-infected cells, showing that NS1 is not responsible for autophagosome 

accumulation. Representative fields from one experiment are shown.  

B: The GFP-LC3+ lung epithelial cell lines A549 was infected influenza virus A/WSN/33 

or the isogenic deletion mutant Α/WSN/33-ΔPB1-F2 at different MOIs. 24 h post-

infection, cell lysates were prepared and analyzed by anti-LC3 Western blot. Conversion 

of GFP-LC3-I into GFP-LC3-II occurred with both wt and ΔPB1-F2 virus, showing that 

PB1-F2 is not responsible for autophagosome accumulation. Experiment was repeated 

and confirmed by fluorescence microscopy. 

C: A549 cells were left untreated (--), infected with influenza A/Aichi/68 or were treated 

extracellularly with a high dose of poly-IC (25 μg/ml, ++). In addition, small amounts of 

poly-IC (0.5 μg/ml, +) were introduced into the cytosol with two different transfection 

reagents. 24 h after treatment, lysates from all conditions were prepared and analyzed by 

anti-LC3 Western blot. The cross-reacting band indicated with an asterisk (*) shows 

equal protein loading. Poly-IC does not induce accumulation of LC3-II. One of two 

experiments is shown. 
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required to investigate which viral components are responsible for modulating the 

autophagy pathway.  

 

3.3.7 After inhibition of autophagy, influenza virus replicates more efficiently, 

suggesting that autophagy might restrict virus replication 

Autophagosomes strongly accumulate in influenza-infected cells, however, it is not clear 

if and how autophagy influences viral replication. If viral components are indeed 

sequestered into autophagosomes, as our electron microscopy data suggest, autophagy 

might be a host cell response to restrict virus replication. However, it is also possible that 

influenza virus subverts autophagy for its own purposes and blocks autophagosome-

lysosome fusion because autophagosomes are beneficial to virus replication.  

To address if autophagy is beneficial for the host cell or the virus, we eliminated 

autophagy by siRNA-mediated silencing of atg12 and then measured how many virus 

particles were produced by atg12-silenced or control cells upon influenza infection. 

atg12-silencing worked efficiently in at least 70% of the cells, as indicated by the lack of 

GFP-LC3+ vesicle formation (Fig. 34A). Larger amounts of virus particles were first 

detectable in supernatants of infected cells at 12 hours post-infection under conditions of 

single-round virus replication (Fig. 34B). Starting at 16 hours post-infection, virus titers 

were consistently increased in supernatants of atg12-silenced cells compared to control 

cells (increase between 1.4 - 2.7-fold) (Fig. 34B). This suggests that autophagy might 

impair virus replication and thus might restrict or delay virus replication in infected lung 

epithelial cells.  
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Figure 34: Influenza virus replicates more efficiently after inhibition of autophagy 

(experiment performed in collaboration with Gina Conenello, Mt. Sinai School of 

Medicine, New York).  

The GFP-LC3-expressing lung epithelial cell lines A549 was transfected with atg12-

specific siRNA (Atg12.2) or firefly luciferase-specific control siRNA. After 2 days, 

autophagosome accumulation in response to chloroquine (6 hours) was analyzed by 

fluorescence microscopy (A). Simultaneously, cells were infected with influenza virus 

(A/Aichi/68) and virus titers in culture supernatants collected at various time points post-

infection were determined by plaque assay (B). The experiment was performed only once 

so far and needs to be repeated.  

A: GFP-LC3+ autophagosomes accumulate after CQ treatment in control siRNA-treated 

cells, but not in the majority (70%) of atg12-siRNA-treated cells.  

B: From 16 hours post-infection onwards, influenza virus titers were higher in 

supernatants of atg12-silenced cells compared to control siRNA-treated cells under 

conditions of single cycle replication. The experiment was performed in duplicate wells, 

error bars indicate standard deviations.  
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3.3.8 Conclusion: Autophagy is regulated by influenza A virus and restricts virus 

replication 

Taken together, we observed a strongly increased number of autophagosomes in cells that 

are productively infected with influenza A virus. Two types of autophagosomes seem to 

be present in influenza-infected cells: A large number of small autophagosomes that 

move unusually rapidly and one or few giant autophagosomes (up to 7 μm) that are 

almost immobile and contain amorphous protein or nucleic acid, possibly of viral origin. 

The accumulation and swelling of autophagosomes are probably due to a block in 

autophagosome-lysosome fusion. The sequestration of viral components into 

autophagosomes might help to restrict virus replication, as our data indicate that 

influenza virus is able to replicate more efficiently when autophagy is inhibited. We 

propose that autophagy is an innate immune mechanism that helps to restrict or delay 

influenza A virus replication/dissemination until the adaptive immune response kicks in.  
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Chapter 4: Discussion 

4.1 Endogenous MHC class II processing pathway of EBNA1 

4.1.1 Evidence that lysosomal proteases and not cytosolic proteases are involved in 

the processing of EBNA1 

It is well established that the glycine-alanine repeat domain of EBNA1 prevents 

proteasomal degradation of the full length protein in cis [175]. Nevertheless, EBNA1 is 

not completely resistant to proteolysis, as it can be endogenously processed for 

presentation on MHC class II molecules [43]. However, the proteases involved in this 

unusual antigen processing pathway have not been identified so far. We speculated that 

lysosomal enzymes might be responsible for processing of EBNA1. This indeed seemed 

to be the case, since treatment of an EBNA1-transfected B cell line with lysosomal 

acidification inhibitors led to an increase in the steady state levels of EBNA1 (Fig. 7A). 

After inhibitor treatment, EBNA1 accumulated in partially LAMP1-positive vesicles 

(Fig. 8A) and the microsomal fraction (Fig. 8B), indicating that EBNA1 degradation 

takes place in vesicular, partially lysosomal compartments and not the cytosol. Finally, an 

inhibitor of aspartyl proteases also led to an accumulation of EBNA1 (Fig. 7B and C), 

which is consistent with a role for the lysosomal aspartyl proteases cathepsin D and E. 

Both are expressed in B cells and have previously been implicated in antigen processing 

[204-208]: Cathepsin E was found to be upregulated in activated B cells [218] and 

cathepsin D was found to be involved in the processing of ovalbumin [204], glutamate 

decarboxylase (GAD) [44], and soluble leishmania antigen [205] in vivo. Cathepsin D 

was found to be optimally active at very acidic pH values (between pH 3.0 and 4.0) [16], 
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and its activity is probably strongly compromised after treatment with the lysosomal 

acidification inhibitors. Thus, the observation that EBNA1 is degraded less efficiently 

upon treatment with pH-raising drugs is consistent with a role of cathepsin D in the 

processing of EBNA1. Furthermore, the strongly acidic pH optimum of cathepsin D 

suggests that it would function best late in the endocytic pathway, i.e. in late endosomes 

or lysosomes [16]. Thus, it can be speculated that these compartments may be involved in 

the processing of EBNA1.  

Cytosolic proteases, such as proteasomes and calpains, have been implicated in 

the processing and presentation of other endogenous proteins on MHC class II [44, 49], 

but do not seem to be involved in case of EBNA1: Treatment of an EBNA1-transfected B 

cell line with the proteasome inhibitor lactacystin did not change the steady state level of 

EBNA1 (Fig. 7D), which is consistent with the finding that EBNA1 is resistant to 

proteasomal degradation [178]. Similarly, inhibition of the cytosolic proteases calpain I 

and II, which were reported to play a role in the processing of endogenously expressed 

GAD [44], did not affect EBNA1 levels (Fig. 7D). The inhibitor concentrations we used 

seem to be sufficient to achieve effective inhibition of the proteasome and calpains, 

respectively: First, even the lowest inhibitor concentrations used in our experiments (0.25 

µM lactacysteine and 5 µM calpeptin) have previously been reported to be effective in 

blocking antigen processing in B cells [44]. Second, FACS analysis revealed that the 

highest lactacystin concentration used (1 µM) was just below the lethality threshold and 

higher concentrations severely impaired the viability of the inhibitor treated B cells (data 

not shown). These observations suggest that the inhibitors were indeed effective in the 

presented experiment and that neither proteasomes nor calpains play a role in the 
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processing of EBNA1. Even though a role of other cytosolic proteases can not be 

excluded, the presented data suggest that EBNA1 is mainly degraded by 

endosomal/lysosomal proteases.   

 

4.1.2 Evidence that macroautophagy is involved in MHC class II presentation of 

EBNA1 

By immune-electron microscopy, EBNA1 was detected on isolation membranes or 

double membrane surrounded autophagosomes (Fig. 9) and inhibition of autophagy with 

the pharmacologic inhibitor 3-methyladenine (Fig. 10) or atg12-specific siRNAs (Fig. 

11) significantly reduced MHC class II presentation of EBNA1 to CD4+ T cell clones. 

These experiments suggested that EBNA1 is processed for MHC class II presentation by 

macroautophagic degradation.  

Two model antigens (neomycin phosphotransferase II and cytosolic complement 

C5) and one tumor antigen (MUC-1) have also been suggested to be processed for MHC 

class II presentation by macroautophagy [45, 50, 53]. In all these studies, inhibitors of 

class III PI3 kinase, such as 3-methyladenine and wortmannin, were used to inhibit 

autophagosome formation and to down-regulate CD4+ T cell recognition of the respective 

antigen. As discussed in chapter 1.3.4, these inhibitors can affect other vesicular transport 

and fusion processes and therefore the obtained results have to be interpreted with 

caution. We did not exclusively rely on the use of pharmacologic inhibitors and 

complemented our studies with a more specific approach to inhibit autophagy, involving 

siRNA-mediated silencing of atg12. Using this strategy, we observed that EBNA1-

specific CD4+ T cell recognition was reduced by about 40-60% (Fig. 11).  
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The fact that the EBNA1-specific CD4+ T cell response was only partially (40-60%) 

reduced after atg12 knockdown could be explained either by an incomplete knockdown 

(see residual atg12 mRNA level in Fig. 11A), by the presence of long-lived MHC class 

II-peptide complexes on the cell surface [212]. Therefore, it is still possible that EBNA1 

is processed for MHC class II presentation exclusively by macroautophagy. 

Alternatively, other endogenous processing routes, such as chaperone-medited autophagy 

or microautophagy might partially contribute to MHC class II presentation of EBNA1. 

Although we can not exclude that these alternative pathways are involved, our data 

provide good evidence that macroautophagy contributes significantly to MHC class II 

presentation and CD4+ T cell recognition of EBNA1. 

 

4.1.3 Chaperone-mediated autophagy in MHC class II presentation 

In addition to macroautophagy, chaperone-mediated autophagy has been implicated in 

endogenous autoantigen processing for MHC class II presentation. For two autoantigens, 

glutamate decarboxylase 65 (GAD65) and the mutated immunoglobulin κ light chain 

SMA, overexpression of the LAMP-2a transporter was reported to enhance endogenous 

MHC class II presentation to GAD65- and Ig κ-specific T cell hybridomas [62]. In 

addition, the cognate GAD65-derived CD4+ T cell epitope associated to a higher degree 

with MHC class II in LAMP-2a overexpressing cells as indicated by co-

immunoprecipitation. Proteasomal degradation was required for endogenous MHC class 

II processing of both autoantigens [44, 219]. Therefore, proteasomal products or peptides 

of GAD65 and Ig κ seem to be transported into MHC class II loading compartments via 

chaperone-mediated autophagy.  
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Although chaperone-mediated autophagy can play a role in endogenous MHC 

class II processing, this does not seem to be the major processing route for EBNA1. First 

of all, EBNA1 was visualized in vesicles that are only partially LAMP1 positive (Fig. 8). 

Furthermore, in immuno-electron microscopy we detected EBNA1 on autophagic 

isolation membranes and double membrane autophagosomes rather than on classical 

lysosomes (Fig. 9). Finally, MHC class II presentation of EBNA1 required atg12 (Fig. 

11), which is specifically involved in macroautophagy, but not chaperone-mediated 

autophagy. Together, our data support a major role of macroautophagy and not 

chaperone-mediated autophagy in MHC class II presentation of EBNA1. 

 

4.1.4 Relationship between half life and MHC class I vs. II presentation 

Autophagic delivery seems to allow cytosolic and nuclear antigens to gain access to 

MHC class II presentation [45, 50, 53, 214]. Therefore, intracellular antigens can be 

monitored by CD4+ T cells, although this pool of antigens was previously believed to be 

under the exclusive surveillance of CD8+ T cells via MHC class I presentation [3]. Since 

antigen localization is not the decisive factor for MHC class I versus class II presentation 

anymore, the question arises what determines whether a nuclear/cytosolic antigen is 

preferentially presented on MHC class II or MHC class I.  

We scrutinized the features of the most frequently identified natural MHC class I 

and II ligands (Table 9) and found that the half-life of proteins might determine in part on 

which class of MHC molecules an antigen is presented. The available evidence suggests 

that short-lived proteins are preferentially presented on MHC class I, while long-lived 

proteins preferentially access MHC class II loading (Table 9). Cyclin-derived peptides 
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Table 9: Natural MHC class I and class II ligands and their half lifes. 

The three most frequent cytosolic/nuclear MHC class II ligands (HSC70, HSP70 and 

GAPDH) are compared to the most frequent natural MHC class I ligands (cyclins) in 

terms of half life and presentation on MHC class I or II, respectively. Data were compiled 

from the SYFPEITHI database of MHC ligands (www.syfpeithi.com) [30]. 

 
Protein Cellular 

compartm. 
Half 
life 

Restricting 
MHC II alleles 

# Restricting 
MHC I alleles 

# 

HSC70 Cytosol 20 h 

[220] 

H2-Ek 
HLA-DQB1*0603 
HLA-DRB1*0401 
HLA-DRB1*0402 
HLA-DRB1*1101 
HLA-DRB1*1104 

 

6 HLA-A*6801 
HLA-B*5101 

2 

HSP70 Cytosol 4 h 

[221] 
[222] 

H2-Ak 
HLA-DQB1*0602 
HLA-DRB1*0701 
HLA-DRB1*1101 
HLA-DRB1, unass 

. 

5 HLA-A*0201 
HLA-A*3004 
HLA-A*6801 
HLA-B*4601 
 

4 

GAPDH Cytosol 130 h 

[223] 

HLA-DQA1*0301 
/DQB1*0301[224] 
HLA-DRB1*0402 
HLA-DRB1*0404 
HLA-DRB1*1101 

 

4 - 0 

Ornithine 
decarboxylase 

Cytosol 12 min 

[223] 

- 0 HLA-A*01 
HLA-A*0201 

 

2 

Cyclins C, D, E Nucleus 15 min 

[225-
227] 

- 0 H2-Db (D1) 
HLA-A*01 
(D2)[228] 
HLA-A*0201 (D1) 
HLA-A*6601 (D2) 
HLA-A*6801 (D1) 
HLA-B*1509 
HLA-B*3801 
HLA-B*39011 
HLA-B*40 (B) 
HLA-B*4601 (B) 

10 
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have frequently been eluted from a variety of human and mouse MHC class I molecules, 

and their half-lives are thought to be around 15 min [225]. In contrast, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) is one of the most abundant natural MHC class II 

ligands [30, 32, 229] and its half-life was estimated to be 130 h [223]. Interestingly, 

cyclin peptides have so far not been eluted from MHC class II and vice versa GAPDH 

fragments were not found on MHC class I. Another example of a short-lived protein 

giving rise to MHC class I but not MHC class II ligands is ornithine decarboxylase 

(ODC) with a half-life of 12 min [223] (Table 9).  

In line with these observations, half-life modification was shown to influence 

MHC class I versus MHC class II presentation: Only long-lived (t1/2 = 5h) influenza 

matrix protein 1 (MP1) was presented endogenously on MHC class II to CD4+ T cells 

[40]. When the protein half-life was shortened to 10 min via N-end rule modification, 

MHC class II presentation and CD4+ T cell recognition were undetectable. Furthermore, 

EBNA1 is a very long-lived protein (t1/2 > 20h in human B cells) [175] and EBV 

transformed B cells are only weakly detected by EBNA1-specific CD8+ T cells [230]. 

However, when the glycine-alanine (GA) domain of EBNA1 is removed its half-life 

drops significantly [175] and CD8+ T cell recognition is enhanced 4-fold [231]. In 

addition, defective ribosomal products, which are prematurely truncated or misfolded 

translation products, have a very short half-life and contribute significantly to MHC class 

I presentation [7, 232]. Together, these studies suggest that short-lived proteins are 

preferentially presented on MHC class I and long-lived proteins are preferentially loaded 

onto MHC class II.  
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Short-lived proteins, such as cyclins, DRiPs and GA domain-deleted EBNA1, 

have been found to be primarily degraded by proteasomes [5]. In contrast, long-lived 

proteins are classical substrates of autophagy [233]. In line with this, we found that the 

long-lived EBNA1 protein is degraded by autophagy (Fig. 9-11) and GAPDH was found 

to be both a substrate of chaperone-mediated autophagy [234] and to be contained in 

autophagosomes [235]. Therefore, we suggest that proteasomal degradation of short-lived 

nuclear/cytosolic antigens leads primarily to MHC class I presentation and autophagic 

catabolism of long-lived proteins leads primarily to MHC class II presentation. While 

substrate selection for proteasomal degradation via ubiquitinylation has been 

characterized in great detail [5], the mechanism by which long-lived proteins are selected 

for autophagic degradation is still unclear to date (see next paragraph). 

 

4.1.5 Possible signals for autophagic degradation 

Although no defined signal for substrate selection has been characterized so far, the 

selective degradation of damaged organelles and long-lived proteins argues that 

macroautophagy is not entirely non-selective. Several lines of evidence suggest that 

macromolecular assemblies and protein aggregates might be specifically selected for 

autophagy: First, in the related cytosol-to-vacuole (Cvt) pathway in yeast, the well-

characterized Cvt substrate aminopeptidase I (ApeI) assembles into dodecamers in the 

cytosol, then binds to Atg9 and is delivered to the yeast vacuole via a double membrane-

coated vesicle [236-238]. Second, atg5 or atg7 gene disruption in mouse liver or neurons 

leads to the accumulation of ubiquitin-positive protein aggregates in the cytosol [67, 69, 

70]. Two candidates have been suggested to be involved in the recognition of ubiquitin-
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positive protein aggregates: The autophagy-linked FYVE protein (Alfy) and 

p62/sequestosome. Both proteins localize  partially to autophagosomes and to ubiquitin-

positive protein aggregates and possibly target one to the other [239, 240]. Third, the 

proteasome, a large protein complex in the cytosol and nucleus, can be degraded by 

autophagy [241-243]. Overall, these observations suggest that protein aggregates or large 

protein complexes are preferentially degraded by autophagy, either because they are 

specifically recognized by the autophagosome machinery via a yet unknown mechanism, 

or simply because they cannot be unfolded and degraded by the proteasome.  

For EBNA1, it has been speculated that newly synthesized EBNA1 might form 

aggregates due to the extended hydrophobic glycine-alanine repeat [244]. In 

neurodegenerative diseases, proteins with expanded polyglutamine and polyalanine 

repeats are known to form aggregates that in turn are degraded by autophagy in vitro and 

in vivo [245, 246]. Even though EBNA1 aggregates have not been described so far, it is 

possible that the GA repeat of EBNA1 favors microaggregate formation and thus 

degradation by the autophagy machinery. Alternatively, EBNA1 might associate with the 

proteasome and might be delivered for autophagic degradation along with this 

macromolecular protein complex. It has been shown that proteins that bind to the 

proteasome, but cannot be translocated into the catalytic core, stably associate with the 

proteasome and block its function [247]. The GA repeat of EBNA1 indeed can block the 

proteasome in trans [248]. Since the proteasome is one of the most abundant proteins, 

only a small fraction of the total proteasome pool would be inactivated by EBNA1 

binding and subsequently discarded by autophagy. So far, no data exist to prove by which 

mechanism EBNA1 is shuttled into the autophagy pathway. Further studies are needed to 
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determine how EBNA1 and other long-lived proteins are preferentially selected for 

autophagic degradation and MHC class II presentation.  

 

 

4.2 Autophagy as a constitutive and efficient mechanism for MHC 

class II presentation 

4.2.1 Autophagy as a constitutive process in antigen presenting cells 

Our analysis of MHC class II-positive cells has shown that a variety of human epithelial 

cell lines, B cell lines as well as primary monocytes and dendritic cells display substantial 

amounts of steady-state macroautophagy: A combination of fluorescence microscopy and 

biochemical analysis showed that autophagosomes form constitutively in all MHC class 

II-positive cell types under nutrient-rich conditions (Fig. 15 & 16). Autophagosome 

formation depended on atg12 activity (Fig. 12D) and was not induced by starvation (Fig. 

15E).  

 Our observations are in line with some other reports that have shown that 

autophagy is a constitutively active house-keeping mechanism in many mammalian 

tissues: First, analysis of GFP-LC3 transgenic mice has shown that in some murine 

tissues, e.g. thymus and kidney epithelium, autophagy occurs actively even under 

nutrient-rich conditions [68]. In response to starvation, autophagy seems to be 

differentially regulated in different tissues: In some organs (muscle and liver) autophagy 

is indeed strongly upregulated in response to starvation, presumably because these tissues 

are responsible for nutrient homeostasis of the body. However, other tissues, such as 

thymus and kidney epithelium, display high basal levels of autophagy even without 
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starvation. The authors concluded that the regulation of autophagy is organ dependent 

and the role of autophagy is not restricted to the starvation response [68]. Second, loss of 

atg5 or atg7 in neurons leads to accumulation of protein aggregates and 

neurodegeneration, suggesting that a basal level of autophagy is required in neurons for 

continuous clearance of microaggregates [69, 70]. Our study extends constitutive 

autophagy to cell types relevant to the immune system, including B cells, monocytes, 

dendritic cells and MHC class II-positive epithelial cells. MHC class II presentation of 

endogenous antigens after autophagy should enable the immune system to monitor these 

MHC class II-positive cell types for infections.  

 

4.2.2 Fusion of autophagosomes with MHC class II loading compartments 

Our analysis by immunofluorescence confocal and electron microscopy showed that 

MHC class II loading compartments (MIICs) contain substantial amounts of GFP-LC3 

(Fig. 18-20), suggesting that autophagosomes continuously fuse with MIICs. Consistent 

with our findings, autophagosomes have been described to fuse with late endosomes 

[114, 115], but the significance of this fusion event for antigen targeting to MHC class II 

presentation had not been investigated. Our study closes this knowledge gap and 

implicates fusion of autophagosomes with late endosomal MHC class II loading 

compartments as a means to continually present cytosolic proteins to CD4+ T cells.  

Our analysis by electron micrsocopy suggests that autophagosome content meets 

MHC class II molecules in multivesicular bodies (Fig. 19). The ultrastructural features of 

these MHC class II- and LC3-containing compartments are consistent with previous 

descriptions of MHC class II loading compartments: MIICs were usually described to be 
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multivesicular or multilaminar and can be expanded and swollen after chloroquine 

treatment [3, 249, 250]. Interestingly, mature autophagosomes morphologically resemble 

multivesicular/multilaminar MHC class II loading compartments: Isolated 

autophagosomes often display multiple intravesicular membranes [251, 252] and 

autophagosomes have been shown to give rise to multilamellar bodies [253]. Therefore, 

the multivesicular/multilaminar nature of MHC class II loading compartments might in 

part be explained by the frequent fusion with autophagosomes containing a double 

membrane and multiple internal membrane sheets [114, 254].  

 

4.2.3 Natural MHC class II ligands generated by autophagy 

Our studies have provided evidence that autophagosomes frequently fuse with MHC 

class II loading compartments in different types of antigen presenting cells (Fig. 18-20) 

and that this pathway efficient delivers autophagy substrates, such as LC3 fusion 

proteins, for MHC class II loading and CD4+ T cell stimulation (Fig. 24 and 27). To 

uncover this efficient MIIC delivery pathway, we relied on proteins that were excellent 

autophagy substrates (e.g. GFP-LC3 and MP1-LC3) and therefore were targeted into this 

pathway very efficiently. Our studies were nicely complemented by Dengjel et al., who 

analyzed the MHC class II ligandome of Epstein-Barr virus transformed B cell lines (B-

LCL) and found that autophagy indeed can generate natural MHC class II ligands from 

cytosolic and nuclear proteins. In their studies, they characterized HLA-DR ligands with 

and without autophagy induction by starvation [37]. 24 hours after autophagy induction, 

MHC class II ligands derived from intracellular and lysosomal proteins were increased by 

50%, while ligands derived from membrane and secreted proteins remained constant. 
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Three cytosolic/nuclear proteins (eukaryotic translation elongation factor 1 alpha, 

ubiquitin protein ligase NEDD4La and RAD23 homolog B nucleotide excision repair 

protein) and one lysosomal protein (cathepsin D) were most dramatically up-regulated in 

their presentation on HLA-DR. This suggested that upregulation of autophagy leads to 

enhanced MHC class II presentation of cytosolic/nuclear proteins. 

In addition, in the same study two peptides derived from the autophagosome-

associated protein Atg8/LC3 (MAP1LC3B) were found to be presented on HLA-DR 

under nutrient rich conditions. This suggested that Atg8/LC3, which is coupled to 

autophagosome membranes and partially degraded with autophagy substrates, is naturally 

processed onto MHC class II under steady-state conditions. This is consistent with our 

findings that autophagosomes frequently fuse with MHC class II loading compartments 

and that Atg8/LC3 is degraded in these compartments (Fig. 18). Therefore, not only 

under starvation conditions, but also in the steady state, natural MHC class II ligands are 

generated by autophagy.  

 

4.2.4 Role of autophagy in professional and non-professional antigen presenting 

cells (APCs) 

We detected constitutive autophagy and fusion with MHC class II loading compartments 

in both professional antigen presenting cells (B cells, dendritic cells, Fig. 16 & 20) and 

non-professional antigen presenting cells (epithelial cell lines, Fig. 15 & 18). Here I 

discuss what role autophagy might play in these different cell types during an immune 

response.   

 



 169

4.2.4.1 Role of autophagy in professional APCs 

Pathogens that can infect professional APCs, such as B cells or dendritic cells, might be 

made detectable for the immune system by way of MHC class II presentation after 

autophagy. The case of EBNA1 exemplifies how autophagy can contribute to the 

immune surveillance of infected B cells. Cytolytic anti-viral CD4+ T cells have been 

characterized in both mouse and man ex vivo [129, 130]. They have been demonstrated to 

control viral infections [255, 256]and can exert protective roles in the control of B cell 

tumors and viremia caused by murine and human γ-Herpesvirus infections [56, 257-260]. 

During persistent EBV infection, EBNA1-specific CD4+ T cells might even be the only T 

cell response preventing the occurrence of EBV associated malignancies expressing 

EBNA1 as the sole antigen, e.g. Burkitt’s lymphoma.  

In dendritic cells, the most proficient antigen-presenting cells of the immune 

system, autophagy might contribute to two fundamental properties of DCs: Induction of 

CD4+ T cell tolerance and stimulation of naïve CD4+ T cells. Although DCs are very 

adept in picking up exogenous antigens, such as dying cells or environmental proteins, 

intracellular proteins might also be processed endogenously onto MHC class II molecules 

of DCs to comprehensively tolerize against DC specific antigens and efficiently prime 

naïve CD4+ T cells after direct infection of DCs. The latter mechanism might be 

especially important for noncytolytic pathogens that leave infected host cells intact, so 

that dying cells are not readily available as a source of exogenous antigen. In these 

situations, autophagy might contribute to endogenous MHC class II antigen processing in 

DCs. This could be tested in vivo by DC-specific knockout of autophagy in mice.  
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4.2.4.2 Role of autophagy in non-professional APCs 

MHC class II presentation by autophagy might be even more important for cell types that 

are not as phagocytic/endocytic as professional antigen presenting cells, such as DCs or 

macrophages. Cells that have only limited endocytic potential, e.g. epithelial and tumor 

cells, might depend on endogenous antigen processing routes, such as autophagy, to load 

antigens onto their MHC class II molecules. All epithelial EBV-associated malignancies, 

such as nasopharyngeal or gastric carcinoma, express MHC class II [149]. Furthermore, 

many epithelial and tumor cells upregulate MHC class II in response to inflammatory 

cytokines, such as IFN-γ [215]. Epithelial cells in inflamed tissues are often surrounded 

by cytolytic CD4+ T cells, suggesting immune surveillance by CD4+ T cells of these 

tissues in vivo [261-263]. 

Furthermore, thymic cortical epithelium was shown to have high levels of 

constitutive autophagy [68]. Cortical epithelial cells are capable of mediating positive 

selection of T cells in the thymus, including CD4+ T cells that have to be educated on 

MHC class II [264]. Since thymic cortical epithelial cells are only weakly phagocytic, 

endogenous MHC class II antigen processing might play a major role in loading MHC 

class II molecules for positive selection of CD4+ T cells and constitutive autophagy might 

contribute self-antigens for this positive T cell selection. This could be tested by specific 

Atg gene knockout in thymic epithelium in a mouse model. 
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4.2.5 Targeting antigens for autophagic degradation to enhance MHC class II 

presentation 

In our studies, influenza matrix protein (MP1) could be targeted for enhanced MHC class 

II presentation by fusion to the autophagosome-associated LC3 protein (Fig. 24A). 

Although earlier work by Long and colleagues and our experiments with unmodified 

MP1 reveals access of MP1 to MHC class II presentation by an intracellular route [40], 

fusion to LC3 markedly increased MHC class II presentation of MP1 by up to 20 fold. 

This increase occurred in spite of the fact that the MP1-LC3 fusion protein was expressed 

at lower levels than wild-type MP1 after transfection (Fig. 22B) and did not influence 

surface expression of MHC class II (Fig. 24A).  

Control experiments with an MP1-specific CD8+ T cell clone showed that LC3 

fusion did not impair MHC class I presentation of the targeted antigen (Fig. 25). This 

result might seem surprising, considering that the MP1-LC3 fusion protein is so 

efficiently shuttled into the autophagy pathway and thus away from proteasomal 

degradation. However, most likely both constructs give rise to similar amounts of 

defective ribosomal products (DRiPs), which are efficiently processed by the proteasome 

for MHC class I presentation [6].  

In our experiments, unmodified matrix protein (MP1) was also endogenously 

presented on MHC class II molecules in all three types of target cells, although at a very 

low level (Fig. 24A). We excluded presentation from exogenous sources, because mixing 

of HLA-mismatched MP1-expressing epithelial cells with HLA-matched untransfected 

target cells was unable to stimulate CD4+ T cells (Fig. 24A, top). Since autophagy is a 

constitutively active pathway in all three target cell types, it is tempting to speculate that 
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endogenous MHC class II presentation of MP1 might be due to autophagy. We tried to 

address this question by atg12 silencing in target cells and subsequent T cell coculture 

(data not shown). However, we were unable to efficiently silence atg12 in HaCat, B-LCL 

or dendritic cell targets, using the described atg12-specific siRNAs or shRNAs. 

Knockdown efficiency never reached more than 50% and therefore MHC class II 

presentation was not significantly reduced after treatment with atg12 siRNAs. Therefore, 

we could not conclusively address whether endogenous MHC class II presentation of 

MP1 involves macroautophagy or other processing pathways. 

 

4.2.6 Application of LC3 targeting strategy in recombinant viral vaccines and 

tumor immunotherapy 

Strongly enhanced MHC class II presentation after LC3 targeting occurred in three 

different target cell types, among them dendritic cells, the most potent activators of naïve 

T cells (Fig. 24A, bottom). This suggests that the LC3 targeting strategy might be useful 

for vaccine antigens expressed in dendritic cells, for example after intracellular delivery 

via viral vectors. Notably, the MP1-LC3 fusion protein was also efficiently processed 

onto MHC class I molecules (Fig. 25). Therefore, DCs that express LC3 fusion antigens 

would be expected to efficiently prime both CD4+ and CD8+ T cell responses. CD4+ T 

cells can have direct antiviral and cytolytic functions, but moreover they are crucial for 

the maintenance of protective CD8+ T cell effector functions and memory [265]. 

Therefore, improved stimulation of helper T cells could be a valuable component of 

vaccine development.  
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In recombinant viral vaccines or DNA vaccines, vaccine antigens could easily be 

engineered to express the relatively small LC3 tag at their C-terminus. Therefore this 

strategy should be considered for recombinant viral vaccines or DNA vaccines. For 

tumor immunotherapy, dendritic cells electroporated with tumor-derived mRNA have 

been used to efficiently stimulate tumor-specific MHC class I-restricted responses, 

however presentation of the expressed antigens on MHC class II is often inefficient 

[266]. Modification of tumor antigens with the LC3 sequence might enhance MHC class 

II presentation in electroporated DCs and stimulate more efficient antitumor immunity.  

 

4.2.7 Comparison of LC3 targeting with other MHC class II targeting strategies 

Other targeting strategies have been explored to enhance MHC class II presentation of 

vaccine antigens. All strategies employ targeting sequences that delivers the antigen of 

interest for degradation in late endosomal/lysosomal compartments. The oldest MHC 

class II targeting method utilizes the cytosolic/transmembrane tail of the invariant chain 

fused to the N-terminus of the antigen [54, 267, 268]. Other targeting strategies use the 

cytosolic domains of LAMP1 or DC-LAMP plus a signal sequence for import into the ER 

[266, 269]. Antigens fused to these endosomal targeting sequences are indeed targeted to 

endosomal/lysosomal compartments and are more efficiently presented on MHC class II 

than the antigen itself [266].  

 Although we have not formally compared our targeting strategy with these 

existing targeting strategies, we think that MHC class II targeting via LC3 fusion could 

be advantageous over LAMP or invariant chain targeting for the following reason: 

Proteins carrying the invariant chain or LAMP targeting signal have to pass the quality 
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control for secreted and membrane proteins in the endoplasmic reticulum and therefore 

face the danger of retrograde transport and proteasomal degradation [270]. That this 

indeed seems to occur can be seen from the fact that MHC class I presentation is also 

somewhat enhanced by invariant chain or LAMP targeting [266]. ER quality control, 

retrograde transport and subsequent proteasomal degradation presumably reduces the 

efficiency with which the chimeric antigens are targeted to MHC class II loading 

compartments. In contrast, LC3 fusion proteins don’t have to go through the ER quality 

control system because they gain direct access to MHC class II loading compartments. 

This probably leads to very efficient MHC class II presentation, as can be seen from our 

T cell assays, where LC3 fusion antigens were able to stimulate up to 95% of the 

maximal CD4+ T cell recognition achieved with peptide pulsing of target cells (Fig. 

24A).  

However, a direct comparison of the different targeting strategies would be 

needed to determine which targeting method best enhances MHC class II presentation 

and CD4+ T cell stimulation. 

 

 

4.3 Autophagy regulation by influenza A virus 

4.3.1 Autophagosome accumulation after influenza A virus infection: Reasons and 

consequences 

When we studied influenza A virus infection of lung epithelial cell lines in vitro, we 

observed that autophagosomes strongly accumulated between 10-24 hours post-infection 

(Fig. 28 & 32). The phenomenon was not related to cell death and required live influenza 
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virus (Fig. 32). It occurred in different cell types, including epithelial and dendritic cells, 

and with different strains of influenza virus (Fig. 28).  

The increase in autophagosomes/LC3-II could have two fundamentally different 

causes: First, autophagosome formation could be upregulated (e.g. by increased beclin-

expression or increased PI3K activity), so that more LC3-I is converted to LC3-II and 

more autophagosomes and autolysosomes are formed. Alternatively, autophagosome 

degradation in lysosomes could be blocked, so that LC3-II-labeled autophagosomes 

accumulate over time. Several pieces of evidence argue for the second scenario: First, 

autophagosomes in influenza-infected cells do not seem to fuse with acidic compartments 

to the same extent as they do in uninfected cells (Fig. 31). Second, LC3-II is not degraded 

by lysosomal proteases in influenza-infected cells (Fig. 31). Finally, a block in 

autophagosome degradation would be expected to lead to a gradual accumulation of 

autophagosomes and LC3-II, which is exactly what we observed 10-24 hours post-

infection (Fig. 32). Although we cannot exclude that an upregulation of autophagy 

contributes to the observed effect, it is very likely that a block in fusion with lysosomes is 

at least in part responsible for the increase in autophagosomes in influenza-infected cells.  

The mechanism that causes a block in autophagosome-lysosome fusion remains to 

be determined. Acidic compartments do exist and move normally in influenza-infected 

cells (Fig. 31 and data not shown). Therefore, it is more likely that autophagosomes are 

the culprits and are modified in a way that renders them unable to fuse with lysosomes. 

The abnormally high mobility of small autophagosomes or the immobility of very large 

autophagosomes could be at the root of the autophagosomes’ inability to fuse with acidic 

compartments. Alternatively, the protein machinery involved in autophagosome-
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lysosome docking, tethering or fusion might be altered or impaired in influenza-infected 

cells.  

One can speculate that influenza A virus evolved the autophagosome-lysosome 

fusion block as a mechanism to avoid autophagic degradation and MHC class II 

presentation of viral antigens. This would represent a novel immune escape mechanism 

of influenza A virus. Alternatively, the block in autophagosome-lysosome fusion might 

not have evolved as a viral immune escape mechanism, but might just be a byproduct of 

altered autophagosome physiology, e.g. altered mobility or protein composition. 

Nevertheless, it would be interesting to test whether endogenous MHC class II 

presentation of bystander (i.e. non-influenza) antigens is reduced after influenza 

infection. 

 

4.3.2 Altered morphology and behavior of autophagosomes in influenza-infected 

cells 

By both transmission electron microscopy and live cell fluorescence microscopy we 

observed unusually large autophagosomes in influenza-infected cells (Fig. 29 & 30). 

These “giant” autophagosomes were up to 7 μm in diameter and sometimes even reached 

the size of the nucleus. They contained electron-dense, amorphous material that did not 

resemble cellular organelles, such as ER or mitochondria, nor did it have the spherical 

shape of influenza virions [271]. Nevertheless, the material contained within the giant 

autophagosomes most likely consists of viral protein or nucleic acid, since these 

molecules would appear electron-dense and would be present in infected cells only.  
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The influenza A virus genome consist of ribonucleoprotein (RNP) complexes that 

have the shape of a twisted rod of 10-15 nm width and 30-120 nm length [271]. By 

transmission electron microscopy, RNPs can be seen as electron-dense rod-like structures 

within the viral envelope. Since RNPs are probably produced in high numbers in 

influenza-infected cells and their macromolecular nature would fit the criteria of 

preferred autophagy substrates (see chapter 3.1.5), it seems possible that the fibrous 

electron-dense material within influenza-induced autophagosomes are viral RNPs. This 

hypothesis should be addressed by immuno-staining for RNP components, such as the 

nucleoprotein (NP).  

It is unclear how the giant autophagosomes arise in influenza-infected cells. The 

process of autophagosome formation could be altered such that isolation membranes 

elongate to unusually long structures, giving rise to very large autophagosomes. This 

might be caused by alterations in the Atg protein machinery or might be triggered by 

unusually large substrates. We did not observe unusually long isolation membranes by 

electron microscopy and the length of RNPs (30-120 nm) does not immediately explain 

an abnormal elongation of isolation membranes. Another possibility would be that the 

giant autophagosomes form by homotypic fusion between two or multiple 

autophagosomes, giving rise to one large autophagosome. Such fusion compartments 

would be expected to contain multiple internal membranes derived from the inner 

membranes of fusing autophagosomes. In our influenza-infected cells, autophagosomes 

were often seen in close proximity to each other and they almost always contained 

multiple internal membranes and vesicles (Fig. 29), suggesting homotypic fusion as a 

possible mechanism for giant autophagosome biogenesis. Although homotypic fusion 
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between autophagosome has not been described before, it might occur in influenza-

infected cells as an alternative to fusion with lysosomes, e.g. due to a remodeled vesicle 

fusion machinery. Although the function of such an altered fusion behavior is unclear, it 

could explain how the autophagosomal membrane expands to such unusual size and why 

autophagosomes do not fuse with lysosomes in influenza-infected cells.  

Apart from size, another property of autophagosomes that is altered in influenza-

infected cells is mobility: Infected cells contained numerous small autophagosomes that 

moved very rapidly throughout the entire cytoplasm (Fig. 30). One can speculate that this 

change in autophagosome mobility might facilitate sequestration of viral components into 

autophagosomes. The rapidly moving GFP-LC3-positive structures observed in live cell 

fluorescence microscopy might be isolation membranes that formed in response to newly 

exported RNPs and that move with accelerated speed to ensure rapid sequestration of 

RNPs into newly forming autophagosomes. Alternatively, the accelerated speed of 

autophagosomes might not be related to the sequestration of viral components, but rather 

to the altered fusion behavior of autophagosomes discussed in the previous paragraph. 

More experiments are needed to determine the exact nature of the rapidly moving 

structures and to investigate the mechanism and functional of the accelerated 

autophagosome mobility.  

 

4.3.3 Autophagy as an innate immune mechanism against viral infections 

Our preliminary data suggest that influenza A virus replication might be restricted by 

autophagy: When we treated cells with atg12-siRNAs, the virus replicated more 

efficiently than in cells that had normal autophagy levels (Fig. 34). The enhancement in 
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virus replication achieved by atg12 silencing was only 2-3 fold, however the experiment 

was done under conditions of single-round replication, i.e. the released virus particles 

were unable to reinfect cells and therefore amplify the infection. The experiment should 

be repeated under conditions of multicycle replication (different virus strain, such as 

influenza A/WSN/33, or addition of trypsin). Future experiments should also include 

later timepoints (e.g. 48 hours post-infection), since differences in virus replication might 

become more apparent at these very time points (see plateau in control cells in Fig. 34B).  

Although the results presented in Fig. 34 are still preliminary, they suggest that 

autophagy might be a mechanism to impair or delay influenza A virus replication. A 

similar role of autophagy has been suggested for other viruses. In Sindbis virus infection, 

neuronal overexpression of the autophagy-inducing gene beclin-1 protects mice against 

lethal Sindbis virus encephalitis [112]. In plants, beclin-1, atg3 and atg7 decrease TMV 

replication and prevent the spread of virus-induced cell death [272]. In contrast to these 

single-stranded RNA viruses, double-stranded DNA viruses with a more complex 

genome have developed escape mechanisms against autophagy: Karposi sarcoma-

associated herpes virus (KSHV) encodes a viral Bcl-2 homologue that interacts with 

beclin-1 to inhibit autophagy [93]. Similarly, herpes simplex virus type 1 (HSV-1) 

encodes for an early antigen ICP34.5, which interacts with a different beclin-1 domain to 

inhibit PKR-induced autophagy [95, 273]. If these viral escape mechanisms are 

eliminated or if beclin-1 is overexpressed, autophagy is induced and virus replication and 

virulence are impaired, suggesting that autophagy may restrict virus replication and 

virulence [93, 95, 112].  
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Our preliminary finding that influenza A virus replication might be impaired by 

autophagy, would add an important human pathogen to the list of viruses that can be 

restricted by autophagy. Presumably, the small influenza virus RNA genome does not 

allow for an autophagy escape mechanism, although it remains to be seen if block in 

autophagosome-lysosome fusion represents a viral immune escape mechanism to prevent 

autophagy-mediated MHC class II presentation. Furthermore, in vivo experiments with 

mice are needed to determine if autophagosome accumulation also occurs during 

intranasal infection with influenza A virus. Recombinant influenza A virus carrying an 

autophagy inhibitor, such as ICP34.5, would be an ideal tool to further investigate the 

physiologic role of autophagy during in vivo infection.  

Different models on how influenza A virus replication can be restricted by 

autophagy can be envisioned. One hypothesis could be that rough endoplasmic reticulum 

(ER) containing the viral glycoproteins HA and NA is sequestered into autophagosomes. 

It has recently been demonstrated in yeast that ER stress leads to ER expansion and 

sequestration of the expanded ER into autophagosomes, without degradation in 

lysosomes. However, our electron microscopy analysis failed to reveal the presence of 

rough ER inside influenza-induced autophagosomes and thus this model does not seem 

very likely. Alternatively, it can be proposed that the sequestration of RNPs by 

autophagosomes limits influenza virus replication. In influenza-infected cells, newly 

formed RNPs are exported into the cytoplasm at large quantities and might recognized by 

the autophagy machinery and taken up into autophagosomes due to their macromolecular 

nature. Our electron microscopy data would be consistent with the uptake of fibrous, 

protein- or nucleic acid-containing material, for example rod-like, electron dense RNPs 
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(Fig. 29). Although the sequestered RNPs may not be degraded in lysosomes (Fig. 31), 

uptake of RNPs into autophagosomes might limit the availability of RNPs for the 

assembly of new virus particles and thus reduce the number of new virions that bud from 

the infected cell (Fig. 34).  

 

4.3.4 Inhibition of autophagy by viruses 

Although influenza virus replication seems to be restricted by autophagy (see previous 

paragraph and Fig. 32), our data indicate that influenza virus interferes with the 

autophagy pathway at the level of autophagosome-lysosome fusion (Fig. 31). This 

represents a fundamental change in the autophagosomes’ “life cycle”, since they 

normally readily fuse with late endosomal/lysosomal compartments to deliver autophagy 

substrates for lysosomal degradation [76, 87].  

Other viruses have been reported to inhibit autophagy, although at different stages 

and for different purposes than influenza A virus [108]. The first class of viruses, 

exemplified by KSHV and HSV-1, inhibit autophagosome generation by inhibiting 

beclin-1-dependent autophagy upregulation [93, 95]. In the case of HSV-1, this 

mechanism allows the virus to replicate efficiently in the central nervous system (CNS) 

and to cause fatal pathology [95]. The second class of viruses, exemplified by poliovirus 

and mouse hepatitis virus (MHV), block the degradation of autophagosomal membranes 

to use them as scaffolds for their RNA replication complexes [110, 111]. Accumulation 

of autophagosome-like structures is therefore a hallmark of poliovirus and MHV 

infections and interference with autophagosome formation compromises replication of 

these viruses [108, 110].  
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 Influenza A virus also seems to inhibit degradation of autophagosomes (Fig. 31), 

although for different purposes than poliovirus and MHV. Influenza virus replicates its 

RNA in the nucleus [180], therefore it does not utilize autophagosomal membranes for its 

replication, like poliovirus and MHV do. Hence, inhibition of autophagy by influenza 

virus represents a new class of viral interference with the autophagy pathway, since the 

virus prevents autophagosome degradation, but does not utilize autophagosome 

membranes for its replication. It is possible that influenza virus utilizes autophagic 

membranes for a different step during the viral life cycle, such as virus assembly. 

Alternatively, the purpose of the autophagosome-lysosome fusion block might also be to 

evade MHC class II presentation of viral antigens. This would represent a novel immune 

escape mechanism. A third hypothesis could be that the accumulation of large numbers of 

autophagosomes depletes the cytosol from essential Atg proteins, (e.g. LC3), so that the 

formation of new autophagosomes is compromised and the sequestration of viral 

components, such as RNPs, is prevented. Since the bulk of LC3 and GFP-LC3 molecules 

seem to be engaged with autophagic membranes in influenza-infected cells (Fig. 28 and 

30), it is conceivable that this is indeed the case. It remains to be tested if such a negative 

feedback loop exists to prevent the autophagic sequestration of viral components needed 

for virus replication.  
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