Aus dem Institut für Anatomie und Zytobiologie der Philipps-Universität Marburg Direktor: Prof. Dr. E. Weihe

Titel der Arbeit:

Superantigen-induzierte Effekte auf die Expression des IL-2 Rezeptors und Proliferation von CD4- und CD8-positiven T-Zellen in der Ratte

Inaugural-Dissertation zur Erlangung des Doktorgrades der gesamten Medizin dem Fachbereich Humanmedizin der Philipps-Universität Marburg vorgelegt von

Tobias Geisler, geb. 25.11.1975 in Werne

Marburg, 2003

Angenommen vom Fachbereich Humanmedizin der Philipps-Universität Marburg am 11.09.2003

gedruckt mit Genehmigung des Fachbereichs 20

Dekan:	Prof. Dr. Maisch
Referent:	Prof. Dr. Weihe
Koreferent:	Prof. Dr. Gemsa
2. Koreferent:	Prof. Dr. Bien

Zusammenfassung:

Die Bindung bakterieller Superantigene (SAg) an T-Zellen mit spezifischen Vβ-Isotypen in ihrem Rezeptor führt zu einer polyklonalen Aktivierung zahlreicher T-Lymphozyten. Im humanen System sind SAg die häufigste Ursache von Lebensmittelvergiftungen, welche einhergehen mit einem hohen Risiko des septischen Schocks. Bei Mäusen ist die immunstimulierende Wirkung der SAg hinreichend untersucht, wohingegen nur wenig bei Ratten bekannt ist.

Die vorliegende Arbeit hat zum Ziel, die immunstimulatorische Wirkung von Staphylokokken Enterotoxin A (SEA) auf Lymphozyten verschiedener Immunorgane der Ratte *in vivo* zu charakterisieren. Hierüber liegen bisher keine systematischen Studien in der Literatur vor.

Das Serum sowie die lymphatischen Organe (Milz, Thymus, mesenteriale Lymphknoten) wurden zu verschiedenen Zeitpunkten nach SEA-Applikation entnommen. Erhöhte IL-2 und IL-6 Serumspiegel zeigten den starken immunstimulatorischen Effekt von SEA. Die Lokalisation von IL-2 Rezeptor alpha mRNA mittels *in-situ* Hybridisierung in der periarteriolären lymphatischen Scheide (PALS) der Milz, einer Region, in der hauptsächlich T-Lymphozyten als Zelltyp vorliegen, unterstreicht die T-Zell-mediierte Immunstimulation. Die Laser-Capture[®] -Microdissection (LCM) der PALS zeigte stark erhöhte IL-2 Rezeptor alpha mRNA Spiegel gemessen in der PCR, im Vergleich zu anderen Regionen der Milz. Signifikant erhöhte Zahlen von CD4⁺ als auch CD8⁺ Lymphozyten, die zusätzlich die IL-2 Rezeptor α -Kette (CD25) auf ihrer Oberfläche exprimierten, wurden in der FACS-Analyse gemessen. Der erwartete starke mitogene Effekt von SEA auf die IL-2 Rezeptor positiven Zellen wurde durch hohe Proliferationsraten von Splenozyten, Thymozyten und auch Zellen des mesenterialen Lymphknoten gezeigt.

Insgesamt läßt sich SEA, in Homologie zum humanen Organismus, als ein potentes Mitogen für das periphere Immunsystem der Ratte charakterisieren.

2

Inhaltsverzeichnis

1	EINLE	ITUNG	3
	1.1	Superantigene	3
	1.2	Der T-Zell Rezeptor	3
	1.3	Die Korezeptoren CD4 und CD8	4
	1.4	Superantigenvermittelte Immunantwort	5
	1.5	Interleukin-2 als Proliferationszytokin für T-Lymphozyten	6
	1.6	Der IL-2 Rezeptor	7
	1.7	Ziel der Arbeit	7
2	MATE	RIAL UND METHODEN	8
	2.1	Tierversuch	8
	2.2	Immunstimulation	8
	2.3	Zellkultur	8
	2.4	Antikörper	8
	2.5	Oligonukleotid-Primer	9
	2.6	Reagenzien	9
	2.7	Gewebeentnahme	13
	2.8	Zellaufreinigung	13
	2.9	IL-2 ELISA	14
	2.10	IL-6 Bioassay	15
	2.11	Ak-Inkubation für FACS-Analyse	15
	2.12	2 FACS-Messung	16
	2.13	Proliferationsassay mit H ³ -Thymidin	17
	2.14	Beschichtungen der Objektträger	18
	2.15	Anfertigung der Kryoschnitte	19
	2.16	5 Durchführung einer nicht-radioaktiven ISH (DIG) 2.16.1 cDNA-Sonden	19 20
		2. 10.2 הפושניווש שישייאומואופונפו טאזאריסטועפון עעוטרו ווו אווט דומוואוויטע	20

	2.16.3 Verdünnung der Sonden	23
	2.16.4 Prähybridisierung	23
	2.16.5 Hybridisierung der Schnitte	24
	2.16.6 Post-Hybridisierung	24
	2.16.7 DIG-ISH-Detektion	25
	2.16.8 Dokumentation	26
	2.17 Micro-Dissection durch Laser-Capture	26
	2.17.1 Schneiden des Gewebes	26
	2.17.2 Färbung mit Kresylviolett	26
	2.17.3 Laser-Capture	27
	2.18 RNA-Extraktion	28
	2.19 RT-PCR	29
	2.20 PCR	30
	2.21 Gelelektrophorese	31
	2.22 Statistische Auswertung der Meßergebnisse	31
3	ERGEBNISSE	32
	3.1 Serum-Zytokinspiegel für IL-2 und IL-6	32
	3.2 <i>In-situ</i> Hybridisierungsnachweis der IL-2 Rezeptor mRNA in der Milz der Ratte	33
	3.3 Isolierung einzelner Splenozyten mittels Laser Capture Technologie und RT-PCR Nachweis der mRNA der IL-2R Ketten	34
	3.4 Quantitativer Nachweis der Expression der IL-2 Rezeptor α -Kette auf T-I vmphozyten mittels der Durchflußzytometrie	
		35
	 3.5 Nachweis der Proliferation von Splenozyten, Thymozyten und Zellen aus mesenterialen Lymphknoten auf Stimulation mit SEA 	35 s 38
4	 3.5 Nachweis der Proliferation von Splenozyten, Thymozyten und Zellen aus mesenterialen Lymphknoten auf Stimulation mit SEA DISKUSSION 	35 ^S 38 40
4	 3.5 Nachweis der Proliferation von Splenozyten, Thymozyten und Zellen aus mesenterialen Lymphknoten auf Stimulation mit SEA DISKUSSION ABKÜRZUNGEN 	35 38 40 46
4 5 6	 3.5 Nachweis der Proliferation von Splenozyten, Thymozyten und Zellen aus mesenterialen Lymphknoten auf Stimulation mit SEA DISKUSSION ABKÜRZUNGEN LITERATURVERWEISE 	35 38 40 46 48

1 Einleitung

1.1 Superantigene

Die Klasse der Superantigene wird gebildet aus einer Reihe von Exotoxinen, die aus Bakterien (22), Mykoplasmen (8) oder Viren (1) stammen.

Das von Staphylokokken gebildete Enterotoxin A (SEA) gehört in die Gruppe der bakteriellen Superantigene. Zu dieser Gruppe gehören ebenfalls die Staphylokokken-Enterotoxine B, C, D, E, das Toxic-Schock-Syndrom-Toxin (TSST) und die aus Streptococcus pyogenes stammenden erythrogenen Toxine A und C. Diese Mitogene stellen einen starken *in vitro* und *in vivo* Stimulus für T-Lymphozyten dar (29,17).

Jedes einzelne der bekannten bakteriellen SAg erfaßt 5-20% aller T-Lymphozyten im Organismus bezogen auf Messungen im humanen und murinen System.

Die Immunreaktion kann zu Schocksymptomen verbunden mit generalisierter Hautrötung, hohem Fieber, Blutdruckabfall bis zu Multiorganversagen und Tod führen (3,33,39).

1.2 Der T-Zell-Rezeptor

Der T-Zell-Rezeptor findet sich ausschließlich auf der Oberfläche von T-Lymphozyten und ist verantwortlich für die MHC-bezogene Antigenerkennung. Er ist ein Komplex aus einem peptidbindenden Teil (α , β -TCR) und mehreren

Abb. 1.1: Aufbau des T-Zell-Rezeptors (TCR)

assoziierten transmembran-Oberflächenproständigen teinen (CD3-,ζ-,η-Proteinen). Der eigentliche Rezeptor (TCR) ist ein mit den Immunglobulinen verwandtes Heterodimer, das aus zwei Polypeptid-Ketten (α und β) besteht, die über Disulfid-Brücken miteinander verbunden sind (10,7).

Eine kleine Subpopulation an T-Zellen, deren genaue Funktion noch diskutiert wird, weist in ihrem TCR stattdessen eine γ - und δ -Kette auf. Diese Zellen unterscheiden sich hinsichtlich ihrer Ontogenese, der gewebespezifischen Lokalisation und der Korezeptor-Expression (Fehlen von CD4 und CD8) von T-Lymphozyten mit dem α , β -TCR.

Sowohl die α - als auch die β -Kette besitzen jeweils eine variable (grün) und eine konstante (rot) Domäne (Abb. 1.1). Die variablen Domänen beider Ketten sind verantwortlich für die Antigenspezifität. An diese bindet das in Assoziation mit MHC-I oder MHC-II-Molekülen präsentierte Antigen.

Der CD3-Protein-Komplex besteht aus zwei Heterodimeren (ε,γ und ε,δ) und in 90% der Fälle einem Homodimer ($\zeta\zeta$) (10% der T-Lymphozyten besitzen stattdessen ein $\eta\zeta$ -Heterodimer). Diese Proteine dienen hauptsächlich der Signaltransduktion ins Zytoplasma und wirken unterstützend für die Expression des α,β -TCR auf der Zelloberfläche (7).

1.3 Die Korezeptoren CD4 und CD8

CD4 und CD8 sind Immunglobulin-verwandte Oberflächen-Glykoproteine auf reifen T-Lymphozyten, die zusammen mit dem TCR an der MHC-bezogenen Antigenerkennung beteiligt sind.

Sie dienen sowohl der Zell-Zell Adhäsion als auch der Signaltransduktion in das Zytoplasma. CD4 bindet an MHC-Moleküle der Klasse II, CD8 ist dagegen MHC-I-restringiert. Die Exprimierung eines der beiden Korezeptoren auf T-Lymphozyten legt deren Funktion fest:

CD4⁺ Zellen sind darauf spezialisiert, andere Zellen zu aktivieren oder in ihrer Differenzierung zu unterstützen. Inflammatorische CD4⁺ T-Zellen regen Makrophagen an, phagozytierte Bakterien abzutöten, CD4⁺ T-Helfer-Zellen stimulieren B-Zellen zur Antikörper-Synthese.

Die Funktion der CD8⁺ Zellen (zyototoxische T-Lymphozyten) besteht in der Abtötung von infizierten Zellen durch Freisetzung von Substanzen wie Perforin und Interferon γ . Doppelt negative (CD4⁻/CD8⁻) und doppelt positive (CD4⁺/CD8⁺) T-Zellen sind Stadien der T-Zell-Reifung im Thymus.

1.4 Superantigenvermittelte Immunantwort

Enterotoxine wie SEA binden direkt an Klasse II MHC-Antigene akzessorischer, antigenpräsentierender Zellen (APZ). Die Reaktion erfolgt hierbei außerhalb der peptidbindenden Region (11,13,27). Die Erkennung durch T-Zellen erfolgt durch Anlagerung an einzelne Isotypen der V β -Ketten des TCR außerhalb der Antigenbindungsstelle (Abb. 1.2). Dadurch wird eine T-Zell-vermittelte Immunantwort ausgelöst, die sich auf alle T-Lymphozyten des jeweiligen V β -Isotyps erstreckt. Superantigene sind nicht unbedingt auf ein bestimmtes V β -Muster beschränkt. Für die Ratte hat man eine Spezifität von SEA für die V β -Isotypen 11, 12, 14, 17 und 18 nachgewiesen (15,38).

Die speziesabhängige Wirkung von Enterotoxinen wird unterschiedlich diskutiert: Während murine und humane T-Lymphozyten durch weitgehend alle Enterotoxine stimuliert werden, gilt dies für die Ratte nur bedingt. SEC und SEE scheinen keine bzw. nur eine sehr schwache Reaktion auszulösen (15,32).

Manche Autoren schreiben SEB eine fehlende bis schwache Т-Immunstimulation von Lymphozyten in der Ratte zu (15,32,2), während andere von starken proliferativen Antworten sprechen (35). SEA wird im Rahmen von in vitro Experimenten als starker Stimulus diskutiert (32). Hinsichtlich Wirkung und klonaler Spezifität muß zwischen rekombinanten und sog. kommerziell erhältlichen, möglicherweise verunreinigten Enterotoxinen unterschieden werden.

Als Antwort auf die T-Zell vermittelte Stimulation durch bakterielle Superantigene erfolgt eine Ausschüttung von Lymphokinen wie IL-2, IL-4, IL-6, TNF und γ -Interferon (6). Für die Auslösung eines systemischen Schocks spielen sowohl das von Makrophagen und T-Lymphozyten gebildete TNF- α als auch das von aktivierten T-Lymphozyten sezernierte TNF- β eine entscheidende Rolle (25).

Es wurde gezeigt, daß Mäuse im Gegensatz zum Menschen relativ resistent gegenüber der sowohl durch Endo- (LPS) als auch Exo- bzw. Enterotoxinen (SEB) induzierten Schocksymptomatik sind (29). Diesen Effekt konnte man durch Behandlung mit dem hepatotoxischen D-Galaktosamin ausschalten (25,19). Unabhängig von der Sensitivierung wurde eine Hochregulation von Zy-tokinen und ihren Rezeptoren beobachtet. Über die symptomatische Wirkung von Enterotoxinen bei der Ratte ist wenig bekannt.

Neben der positiven Selektion können Superantigene während der T-Zell-Entwicklung eine V β -spezifische klonale Deletion (intrathymische Anergie) auslösen.

Weiterhin wurde bei durch SEA/SEB-stimulierten Mäusen eine funktionale Anergie beobachtet. Bei T-Zellen aus Superantigen-exponierten Tieren blieb die Immunantwort bei erneuter *in vitro* -Stimulation aus (21).

1.5 Interleukin-2 als Proliferationszytokin für T-Lymphozyten

Neben der Ausschüttung von TNF ist die Superantigen-induzierte Immunantwort durch eine Hochregulation von Interleukin-2 charakterisiert (6). IL-2 wird gebildet von aktivierten T-Lymphozyten und hierbei hauptsächlich von CD4⁺ (T-Helfer-Zellen) in geringem Maße auch von CD8⁺ Zellen (28). In seiner Rolle fungiert es sowohl als autokriner als auch als parakriner Wachstumsfaktor, d.h. Zielzellen sind die produzierenden T-Lymphozyten selbst als auch andere T-Lymphozyten (CD4⁺ und CD8⁺) in unmittelbarer Umgebung. Beschrieben ist auch die Wirkung auf B-Zellen (Proliferation und Antikörperbildung) und NK-Zellen (Proliferation und Aktivierung). Physiologischer Weise zirkuliert IL-2 nicht im Blut und wirkt somit nicht endokrin über eine weite Distanz (37). Eine polyklonale Stimulation durch SAg dagegen führt zu einer enorm verstärkten Synthese von IL-2 mit meßbaren Serumspiegeln kurze Zeit nach Kontakt mit dem SAg. Anerge T-Zellen verlieren über einen bisher unbekannten Mechanismus ihre Fähigkeit IL-2 in ausreicheder Menge zu produzieren (34).

1.6 Der IL-2 Rezeptor

Die Wirkung von Interleukin-2 wird über die Bindung an den IL-2-Rezeptor vermittelt. Der Rezeptor wird aus drei Oberflächenproteinen gebildet: IL-2R α (CD25), β und γ . Die α -Kette findet sich vor allem auf aktivierten T-Lymphozyten. Im Gegensatz hierzu sind die β und γ -Ketten auch im Ruhezustand exprimiert (36,20). Während die α -Kette spezifisch für den IL-2R ist, findet sich die β -Kette zusätzlich im Rezeptor-Komplex für IL-15. Die γ -Kette ist eine wichtige Komponente der Zytokin-Rezeptoren für IL-4, IL-7, IL-9 und IL-15. Durch den IL-2R α wird die Affinität von Interleukin-2 zum IL-2R β erhöht. Somit kann das Wachstumssignal bei wesentlich niedrigeren IL-2-Spiegeln übertragen werden (26). Die Exprimierung des IL-2R α ist folglich ein früher Marker – 2h nach T-Zellstimulierung tritt IL-2R α mRNA auf (9) - für die beginnende Proliferation nach erfolgter Immunstimulation.

1.7 Ziel der Arbeit

Die bisher unzureichend beschriebene Wirkung von SEA in der Ratte soll charakterisiert werden. Als Readout der *in vivo* Immunstimulation wird der Serumspiegel für IL-2 und für das proinflammatorische Zytokin IL-6 gemessen. Die Expression des IL-2R wird qualitativ durch Nachweis der mRNA in Splenozyten und quantitativ durch FACS-Analyse des Rezeptors auf CD4⁺ und CD8⁺ Zellen aus Lymphknoten, Milz und Thymus bestimmt. Der Effekt von SEA auf die Proliferation gewebespezifischer Zellen wird im Proliferationsassay gemessen.

2 Material und Methoden

2.1 Tierversuch

Im Tierexperiment wurden männliche Wistar Ratten (Alter: 6-8 Wochen; Gewicht: 200-250g) verwendet. Die Tiere stammten von Charles River, Sulzfeld. Sie wurden im hauseigenen Tierstall während der Versuchszeit in einem 12h/12h Tag-/Nacht-Rhythmus mit Futter ad libitum gehalten.

2.2 Immunstimulation

Die Ratten wurden mit Staphylokokken-Enterotoxin von der Fa. SIGMA, München

(Best.Nr.: S-9399, Lot-Nr.: 126H4079 und 78H4009) in einer Konzentration von 400µg/kg stimuliert. Die Injektion erfolgte intraperitoneal zu gleichen Tageszeiten (8:00 morgens).

2.3 Zellkultur

Für die Bestimmung des Interleukins-6 im Serum werden 7TD1 Zellen (ATCC; CRL 1851) verwendet. Hierbei handelt es sich um IL-6 abhängige Hybridomzellen der Maus (*Proc. Natl. Acad. Sci. 83: 9679-9683, 1986*)

2.4 Antikörper

CD4-Antikörper (fluoreszenzmarkiert): Hersteller: Labgen, NatuTec Best.Nr.: CTS 515F Donorspezies: Maus Immunogen: CD4-Korezeptor der Ratte Fluoreszenz: FITC für die FACS-Analyse Der Antikörper wird in einer Konzentration von 1:100 eingesetzt.

CD8-Antikörper (fluoreszenzmarkiert) Hersteller: Labgen, NatuTec Best.Nr.: CTS 418F Donorspezies: Maus Immunogen: CD8-Korezeptor der Ratte Fluoreszenz: FITC für die FACS-Analyse Der Antikörper wird in einer Konzentration von 1:25 eingesetzt.

CD25-Antikörper (fluoreszenzmarkiert) Hersteller: Labgen, NatuTec Donorspezies: Maus Immunogen: immunstimulierte Ratten-T-Zellen Fluoreszenz: Phycoerythrin (RPE) für die FACS-Analyse Der Antikörper wird in einer Konzentration von 1:1,25 eingesetzt.

2.5 Oligonukleotid-Primer

Hersteller: Eurogentec

rIL-2Rα:	Upper:	Pos. 73	5' TTT CAT CCA GTT CCT TCC TGC 3'
	Lower:	Pos. 900	5' TGC TAG ATG GTT CTT CTG CTC 3'
rIL-2Rβ:	Upper:	Pos. 659	5' CCG TAT TCA GCC TCA AGC AG 3'
	Lower:	Pos. 1553	5' GAC ATC CCT TCT CCA TCA TCT C 3'
rβ-Aktin:	Upper:	Pos. 334	5' TGG AAT CCT GTG GCA TCC ATG AAA C 3'
	Lower:	Pos. 806	5' TAA AAC GCA GCT CAG TAA CAG TCC GC 3'

Primermix: je 2 μ M uper und lower Primer in A. bidest

2.6 Reagenzien

<u>10x PBS (100mM):</u>	
Na ₂ HPO ₄ mit 12 H ₂ O	77mM
NaH ₂ PO ₄ mit 1 H ₂ O	23mM
NaCl	1,5M

Für einen Ansatz von 5 Litern werden die Salze in 4,5 I A. bidest gelöst. Mit 1M NaOH wird ein pH von 7,45 eingestellt und mit A. bidest auf 5 I aufgefüllt. Um 10mM PBS zu erhalten wird 10xPBS mit A. bidest 1:10 verdünnt.

PFA-Lsg (4%ig in PBS):

Paraformaldehyd (reinst, Merck)

10x PBS

Die benötigte Menge PFA wird unter dem Abzug abgewogen. A. bidest mit einem Volumen, das der Hälfte des Endvolumens entspricht, wird in der Mikrowelle vorgewärmt und unter dem Abzug bei gleichzeitigem Rühren auf 50-55°C erhitzt. Es wird tropfenweise 1M NaOH hinzugegeben bis die Lsg. völlig klar erscheint.

10x PBS wird mit A. bidest im Verhältnis 1:5 auf das halbe Volumen des Ansatzes verdünnt und kalt gestellt. Beide Lsg. werden hierauf vereint. Nach Abkühlung wird mit konz. HCI auf pH 7,3-7,4 eingestellt. Die fertige Lsg. wird filtriert und bei 4°C gelagert.

<u>FACS-Lsg.:</u> Ca⁺⁺ und Mg⁺⁺-freies PBS (10mM) HorseSerumAlbumin (HSA) (0,1%) 0,1 % Natriumazid (Sigma)

Die entsprechende Menge Natriumazid wird unter dem Abzug abgewogen und in PBS gelöst. HSA wird in entsprechender Menge unter Rühren hinzugegeben. Anschließend wird die Lsg. filtriert.

<u>0,4%TritonX100-Lsg.:</u> 10x PBS A.dest TritonX100 (Sigma)

10x PBS wird mit A. dest 1:10 verdünnt und TritonX100 in einer Endkonzentration von 0,4% hinzugegeben.

<u>TEA-Puffer (500 ml Ansatz):</u> 6,65 ml Triethanolamin (TEA) (Sigma) 493 ml A. bidest

Die Lsg. wird mit konz. HCl auf pH 8,0 eingestellt.

Hybridisierungspuffer:

NaCl (Merck)	600mM
Tris HCl pH 7,5 (Merck)	10mM
EDTA-di-Na (Serva)	1mM
t-RNA (E.coli MRE 600, Boehringer Mannheim)	0,05% (w/v)
Denhardt`s Reagenz (Sigma)	1x
Sonicated Salmon Sperm DNA (Sigma)	100µg/ml
Dextransulfat (Sigma)	10% (w/v)
Formamid (BDH, Poole, England)	50% (v/v)

Der Puffer wird bei -20°C gelagert.

<u>20x SSC:</u>	
NaCl (Merck)	3M
tri-Natriumcitrat-Dihydrat (Merck)	0,3M

Die Lsg. wird mit 10N NaOH auf pH 6,3 eingestellt. Dadurch ergibt sich bei 10x Verdünnung ein pH von 7,05.

DEPC-Wasser:

Diethylpyrocarbonat wird 0,1% ig in A.bidest bei 37°C unter Schütteln gelöst und anschließend autoklaviert.

<u>RNAse-Puffer:</u>	
Tris-HCI pH 8,0 (Merck)	10mM
NaCl (Merck)	0,5M
EDTA (Serva)	1mM
RNAse A (Boehringer Mannheim)	20µg/ml
RNAse T1 (Boehringer Mannheim)	1 U/ml

DIG-ISH-Puffer 1: 100mM Tris-HCI pH 7,5 150mM NaCl A. bidest DIG-ISH-Puffer 2: 100 mM Tris HCl, pH 9,5 100 mM NaCl 50 mM MgCl₂ A. bidest

<u>Blocking-Puffer:</u> 10% Normales Lammserum (NLS) 0,01% TritonX100 Dig-ISH Puffer 1

<u>Chromogen-Lsg.:</u> 10ml Dig-ISH Puffer 2 45 µl Nitroblautetrazoliumchlorid (NBT) 35 µl 5-Brom-4-Chlor-3-Indolyl-Phosphat (BCIP)

<u>10x TAE-Puffer (11):</u> 400mM Tris-Base (48,4g) 10mM Na₂EDTA•2H₂O (3,72g)

Die Reagenzien werden in 800 ml A. dest. gelöst. Anschließend wird mit Essigsäure ein pH von 8,3 eingestellt. Es wird mit A. dest auf 11 aufgefüllt und bei Rt gelagert.

Eine 1:10 Verdünnung (1x) erhält man durch entsprechende Zugabe von A.dest.

<u>1,5% Agarose-Gel:</u> Agarose TAE-Puffer (1x) A. dest Ethidiumbromid (Stratagene) Gel-Kammer 1,5g Agarose werden in 100ml TAE-Puffer gelöst und 2min. gekocht. Man füllt mit A.dest auf 100ml auf und läßt auf Handtemperatur abkühlen. Pro 50ml wird 1 Tropfen Ethidiumbromid (Handschuhe, Abzug !!!) hinzugegeben. Das Gel wird möglichst blasenfrei in die Kammer gegossen. Nach ca. 15min. ist es erstarrt.

2.7 Gewebeentnahme

Zu den Zeitpunkten 3h, 8h, 48h und 10d nach intraperitonealer Injektion von 200µl (50µg) SEA wurde den Tieren nach Tötung durch CO₂ Milz, Thymus und Mesenterial-Lymphknoten entnommen.

Kontrolltiere erhielten eine Sham Injektion (200µl PBS) und wurden 48h nach Applikation getötet.

Gleichzeitig wurde den Tieren post mortem durch Herzpunktion jeweils ca. 100µl Blut zur IL-2 und IL-6 Bestimmung entnommen. Nach 5 min Blutsenkung und anschließender Zentrifugation (10.000 U, 5 min. Rt), wurde das Serum im Überstand abgenommen und bei –20° C eingefroren.

Die Fallzahl betrug n = 3 pro Gruppe.

2.8 Zellaufreinigung

Benötigte Reagenzien: 10 mM PBS (Mg- + Ca-frei): Türksche Lsg. Merck (Essigsäure 10,0 g/l + C.I. Nr. 4242535 0,1g/l)

<u>Benötigte Materialien:</u> Teesieb (autoklaviert) Rührstäbe Falcon[©]-Röhrchen (15 ml) Eis Neugebauer-Zählkammer

Durchführung:

Nach der Präparation werden die Organe in jeweils 10 ml eiskaltem Mg⁺⁺ und Ca⁺⁺-freiem PBS aufgenommen. Es ist wichtig, daß dieser Puffer auch bei den folgenden Waschschritten verwendet wird, da es bei Verwendung von norma-

lem PBS zur Verklumpung der Zellsuspension kommt. Die Gewebe werden in 10 ml PBS durch ein Sieb gerührt, um die Zellen aus dem Gewebeverband zu lösen. Diese Suspension wird in Falcon[©]-Röhrchen überführt und 10 min lang auf Eis kühl gestellt. Der Überstand (obere 9 ml) wird dann in ein Falcon[©]-Röhrchen überführt und 5 min bei 1000 U und 4° C zentrifugiert. Das Pellet wird in 10 ml PBS gewaschen, erneut zentrifugiert und danach in 5 ml PBS resuspensiert. Die Zelldichte wird nach Hinzugabe von Türkscher-Lsg. (Verhältnis 10:1) in der Neugebauer-Zählkammer bestimmt.

2.9 IL-2 ELISA

<u>Benötigte Materialien:</u> Rat ELISA Kit (LER-IL2) Fa. Biomar Serum-Proben

Für das IL-2-Immunoassay wird eine mit anti-rat IL-2-Ak beschichtete ELISA-Platte verwendet. In jedes Well werden 100µl Verdünnungspuffer (0-Wert), Standard bzw. Serum-Probe gegeben. Der Standard ergibt sich aus der von der Fa. Biomar empfohlenden Verdünnungsreihe von rekombinantem IL-2 mit Verdünnungspuffer. Mit Ausnahme der Wells für die 0-Wert-Bestimmung wird in jedes Well 50µl biotinyliertes anti IL-2 gegeben. Die Platte inkubiert man 2h bei Raumtemperatur und wäscht 4x mit Wasch-Puffer, um die nicht gebundenen Antikörper zu entfernen. Hiernach werden 100µl Streptavidin-Peroxidase-Lsg. in jedes Well gegeben. Nach weiteren 30 min. Inkubationszeit (Rt) und anschließendem Waschen inkubiert man 30 min. (Rt) mit 100µl Tetramethybenzidin-Substrat Lsg/Well. Ohne zu waschen werden schließlich in jedes Well 100µl Stop-Lsg (2N H₂SO₄) zur Beendigung der Farbreaktion gegeben. Anschließend wird die Absorption bei 450nm und einer Referenzwellenlänge von 630nm photometrisch bestimmt.

2.10 IL-6 Bioassay

Für die Zellkultur:

Zelllinie: 7TD1-Zellen

Zellmedium: RPMI + 10% dekomplentiertes FCS-Serum + 1% Glutamin + 0,1% Gentamycin + 0,05m β 2 Mercaptoethanol)

Benötigte Materialien: 96-well-Flachboden-Mikrotiter-Platten Serum-Proben rekombinantes Interleukin-6 XTT-Cell Proliferations-Kit (Boehringer Mannheim Nr. 1465015) XTT + electron coupling solution ELISA-Reader Benchmark Microplatereader Biorad

Der Interleukin-6-Serumspiegel wird indirekt durch Proliferationsmessung von 7TD1-Zellen in der Zellkultur bestimmt. Die Zellen werden in Medium unter Dauerkulturbedingungen gezüchtet. Nach zweimaligem Waschen mit Zellmedium, werden 4x10³ Zellen in 50µl 7TD1-Medium pro Well auf eine 96-Well-Flachboden-Mikrotiterplatte gegeben. Hiernach erfolgt die Zugabe von 50µl Serum-Probe bzw. 50µl IL-6 Standard in verschieden Konzentrationen (1ng/ml – 0,001ng/ml verdünnt in 7TD1-Zellmedium). Die Inkubationszeit beträgt 4 Tage bei 37°C und 5% CO₂. Hiernach werden 50µl XTT/Well hinzugegeben. Nach einer weiteren Inkubation von 4h wird die Absorption bei 450nm gegen 650nm gemessen.

2.11 Ak-Inkubation für FACS-Analyse

Antikörper: CD4-Antikörper : Eingesetzte Konz.: 1:100, Verdünnung mit PBS (10mM)

CD8-Antikörper :

Eingesetzte Konz.: 1:25, Verdünnung mit PBS (10mM)

CD25-Antikörper : Eingesetzte Konz.: 1:1,25, Verdünnung mit PBS (10mM)

Lösungen:	Materialien:
Mg ⁺⁺ ,Ca ⁺⁺ -freiem PBS (10mM)	Eppendorf-Caps
FACS-Lsg	FACS-Röhrchen
PFA-Lsg	Zentrifuge

Durchführung:

Für die FACS-Analyse werden ca. 5 x 10⁵ Zellen benötigt. Diese Zellmenge wird in ein Eppendorf-Cap gegeben und zentrifugiert. Nachdem man den Überstand abgenommen hat, wird das Pellet mit 25µl Primärantikörper inkubiert. **Cave**: *Das Pellet darf nicht eintrocknen !*

Die Proben läßt man 40 min unter Lichtabschluß reagieren. Danach wird auf 500µl mit FACS-Lsg. aufgefüllt, zentrifugiert (1000 U, 5 min, 4°C) und der Überstand abgenommen. Das Pellet wird in 20 µl anti-CD25-Ak (Verdünnung s.o). gelöst. Nach einer weiteren Inkubationszeit von 40 min wird nochmals mit 500 µl FACS-Lsg. gewaschen. Schließlich werden die Pellets in 500 µl PFA-Lsg. aufgenommen und in FACS-Röhrchen gemessen. Die Lagerung der Proben erfolgt bei 4° C unter Lichtabschluß.

2.12 FACS-Messung

Die Messung der markierten Zellproben erfolgte mit Hilfe der Durchflußzytometrie. Bei dem verwendeten Gerät handelte es sich um das FACScalibur der Fa. Becton & Dickenson. Das Prinzip der Durchflußzytometrie ist vergleichbar mit dem eines Fluoreszenzmikroskopes. Aufgrund der unterschiedlichen Farbstoffe, in diesem Fall das grünfluoreszierende FITC und das orangefluoreszierende Phycoerythrin, können verschiedene Zellsubpopulationen aufgrund spezifischer Oberflächenmarker unterschieden werden. Nachdem die Zellen durch eine Kapillare angesaugt worden sind, bewirkt eine relativ hohe Beschleunigung eine geringe Zelldichte, die es erlaubt, fast jede einzelne Zelle morphologisch zu erfassen. Das senkrecht zur Flußebene einfallende Laserlicht wird zunächst durch die Zelle gestreut, was als Forwardscatter (FSC) beschrieben wird und

Abb. 2.1: Gezeigt wird ein Dot-Plot für ca. 5 x 10^4 Zellen aus dem Thymus. Die Zellen werden nach Größe und Granularität (FSC und SSC) analysiert. Durch Setzen eines Gates kann die Population der T-Lymphozyten selektiv untersucht werden. Die Zellzahl im Gate beträgt 10^4 Zellen.

Auskunft über die Zellgröße gibt. Gleichzeitig erfolgt eine Ablenkung des Strahles, der sogenannte Side-Scatter (SSC), ein grobes Maß für die extraund intrazelluläre Beschaffenheit (z.B. Größe und Granularität). Außerdem regt der Laserstrahl die durch Antikörper gebundenen Fluoreszenzfarbstoffe zur Aussendung von Licht einer bestimmten Wellenlänge an. Dieses emitierte Licht wird nach einer elektronischen Verstärkung von spezifischen Detekto-

ren erfaßt und nach Digitalisierung der Meßwerte in bestimmte Kanäle einsortiert. Die Auswertung erfolgt softwaregesteuert. Hier kann man durch Setzen von Grenzwerten ganz bestimmte Subpopulationen unter verschiedenen Parametern betrachten.

Die gesamtgemessene Zellzahl wurde so gewählt, daß das Gate (s.Abb. 2.1) ca 10^4 T-Lymphozyten umfaßte.

Die Bearbeitung und Auswertung der FACS-Daten erfolgte mit Hilfe der Software WinMDI V2.8.

2.13 Proliferationsassay mit H³-Thymidin

Benötigte Materialien:

96-well-Rundboden-Mikrotiter Platten

H³-Thymidin Fa Amersham

Zellmedium : Iscoves + 0,1% Gentamycin + 0,1% 2-mercaptoethanol + 1% Glutamin + 5% FCS

Zellen aus Milz, Lymphknoten und Thymus der Ratte

SEA

LPS (Sigma L3129)

ConA (Sigma L7647) Ratten IL-2 (RDI-4002)

Für die Messung:

Filter für Zellharvester (Amersham)

Microszint-Lsg. (Amersham)

Zur in vitro Proliferationsbestimmung wird der Einbau von H³-Thymidin unter Einfluß von SEA und vergleichsweise LPS sowie ConA gemessen. Hierzu werden die Zellen aus Milz, Thymus und Lymphknoten aufgereinigt (s. 2.8) . In jedes Well werden 100µl Zellmedium + 1 x 10⁶ Zellen/ml pipettiert. Die Proliferation wurde mit und ohne Zugabe von IL-2 (50U/ml) gemessen. Das Agens (SEA, ConA, LPS) wurde in verschiedenen Konzentrationen hinzugegeben: SEA: 10µg/ml , 1µg/ml , 100ng/ml, 10ng/ml , 0,1ng/ml ConA: 100µg/ml , 10µg/ml , 1µg/ml , 100ng/ml , 10ng/ml , 1 ng/ml

LPS: 100 ng/ml , 1000 ng/ml , 5000 ng/ml, 10000 ng/ml

Die Kontrollen erhalten kein Mitogen.

Nach einer Inkubationszeit von 24h (37°C, 5%CO₂) wurde mit 0,125 μ Ci/well H³-Thymidin gepulst.

Nach weiteren 24h wurden die Zellen in einem Zellharvester geerntet. Hierbei wurde der Inhalt der Wells auf einen Filter aufgesaugt. Nach Trocknung und Zugabe von Microszint-Lsg. (10µl/well) wurde die inkorporierte Radioaktivität mittels eines Top-Count der Fa. Hewlett Packard gemessen.

2.14 Beschichtungen der Objektträger

Um eine ausreichende Adhäsion der Gefrierschnitte zu gewährleisten, werden die Objektträger beschichtet. Hierzu führt man eine **Sialinisierung** durch:

Materialien: Objektträger 3(Triethoxylsilyl)-Propylamin (TESAP, Merk) 2%ig in technischem Aceton Geschirrspülmittel Aqua bidest Isopropanol (80%) technisches Aceton

Durchführung:

Die Objektträger (OTs) werden 1h in lauwarmen Leitungswasser, dem etwas Spülmittel zugesetzt ist, gereinigt, danach 3-4 mal mit heißem Leitungswasser und zweimal mit A. bidest gespült. Die Entfettung erfolgt durch 50 minütiges Einlegen in 80%igem Isopropanol mit anschließender Trocknung im Trockenschrank.

Danach werden die OTs 30s lang in die TESAP-Lsg. getaucht. Anschließend wäscht man sie 2x 30s in technischem Aceton, dann 2x 30s in A. bidest gewaschen und trocknet sie sofort bei 42° C. Die Aufbewahrung erfolgt bei Raumtemperatur.

2.15 Anfertigung der Kryoschnitte

<u>Material:</u> Kryogewebe (Milz) Sialinisierte Objektträger

<u>Geräte:</u> Kryotom LEICA CM 3050

Durchführung:

Das Kryogewebe wird am Kryotom mit einer Schnittdicke von 20 µm geschnitten und auf sialinisierte OTs aufgezogen. Nach Trocknung erfolgt die Lagerung bei –70 °C.

2.16 Durchführung einer nicht-radiaktiven ISH (DIG)

Die *in-situ* Hybridisierung erlaubt den Nachweis von mRNA im Gewebeschnitt. Hierbei werden spezifische Sonden aus cDNA oder cRNA, die an die gewünschte mRNA binden, verwendet.

Bei der DIG-Hybridisierung wird Digoxigenin, ein pflanzliches Steroid aus *Digitalis purpurea*, an die Sonde gebunden.

Die Detektion erfolgt mit Hilfe von Digoxigenin-spezifischen Antikörpern, an die widerum das Enzym Alkalische Phosphatase (AP) gebunden ist. Als Substrat für die AP dient 5-Brom-4-Chlor-3-Indolyl-Phosphat (BCIP). Bei der enzymati-

schen Reaktion fällt ein bläulicher Niederschlag aus, wobei zur Verstärkung der Farbreaktion zusätzlich Nitroblautetrazoliumchlorid eingesetzt wird.

2.16.1 cDNA-Sonden

Für die *in-situ* Detektion des IL-2 Rezeptors konnte ich auf bereits vorhandene AG-intern linearisierte Plasmide zurückgreifen:

cDNA	Basenlänge (bp)
rIL-2Rα sense/antisense	851
rIL-2Rβ sense/antisense	916

2.16.2 Herstellung DIG-markierter cRNA-Sonden durch *in vitro* Transkription

Benötigte Materialien:

Linearisiertes Plasmid (s. 2.13.1)

10x DIG-RNA-Labeling-Mix (Boehringer Mannheim):

je 10mM ATP, CTP, GTP, 6.5mM UTP, 3.5 mM DIG-11-UTP

10x Transkriptionspuffer (Boehringer Mannheim)

RNase-Inhibitor (Fermentas)

steriles A. bidest

SP6- und T7-Polymerase (20u/µl) (Boehringer Mannheim)

DNAse I, RNAse-frei (Boehringer Mannheim)

Na₂CO₃ (Merck)

10% Essigsäure

3M-Natriumacetat, pH5,2 (Merck)

100% Ethanol (-20°C)

70% Ethanol (-20°C)

Geräte:

Kühlzentrifuge Photometer Wasserbad

Durchführung:

Zunächst wird der Mastermix hergestellt. Für den 1x Ansatz werden

- 1µl 10x Transkriptionspuffer
- 1µl 10x DIG-RNA-Labeling-Mix
- 0,5 µl RNAse-Inhibitor (20-50 u/µl)Fermentas
- 4 µl steriles A. bidest

zusammenpipettiert. Es wird ein (n+1)x Ansatz erstellt.

Pro 6,5µl Mastermix werden 2,5µl Plasmid-DNA (entspricht 0,5µg) + 1µl der entsprechenden Polymerase (SP6 für die antisense-, T7 für die sense-Sonde) hinzugefügt.

Die Ansätze werden für 90-120 min. bei 37°C (Wasserbad) inkubiert.

DNA-Verdau:

Um die noch vorhandene Plasmid-DNA abzubauen, wird zu den Ansätzen jeweils 0,5µl DNAse I hinzugegeben und für 10-15min bei 37 (Wasserbad) inkubiert.

Alkalische Hydrolyse:

Die alkalische Hydrolyse dient der Fragmentierung des Transkriptes, falls es wie in diesem Fall eine Länge von 250 bp überschreitet. Die Fragmentierung führt zu einer verbesserten Penetration der Sonde in das Gewebe.

Die Ansätze werden auf ein Volumen von 20 $\mu I ~(\rightarrow 9,5 \mu I ~hinzu)$ mit A. bidest aufgefüllt.

Die Dauer t für die Alkalische Hydrolyse berechnet sich nach folgender Formel:

Aus der Berechnung ergeben sich folgende Werte:

Sonde	t/min
rIL-2Rα sense/antisense	25
rIL-2R β sense/antisense	26

Um die Hydrolyse zu starten werden 20µl Na₂CO₃ hinzugefügt und für die berechnete Zeit bei 60°C (Wasserbad) inkubiert.

Die Hydrolyse wird beendet durch Zugabe von 2µl (0,05 Volumenprozent) 10%iger Essigsäure.

RNA-Fällung

Das Fällen der Sonde geschieht durch Zugabe von ¹/₁₀ Volumen-Anteil 3M Natrium-

acetat (4µl) und 450µl 100% Ethanol bei –70°C für 1-2h oder bei –20°C über Nacht. Hiernach wird die gefällte Sonde in einer Kühlzentrifuge (4°C, 15000 rpm) für 30min abzentrifugiert. Der Überstand wird verworfen und das Pellet mit 900µl eiskaltem Ethanol (70%) gewaschen. Nach erneutem Zentrifugieren (15min, 15000 rpm, 4°C) wird der Überstand verworfen und das Pellet getrocknet. Danach wird es in 100µl A.bidest resuspendiert.

Photometrische Bestimmung der RNA-Konzentration

Zur Ermittlung der RNA-Konzentration werden 2µl der Probe auf 1:50 mit A. bidest verdünnt und die Absorption bei einer Wellenlänge von 260nm gegen einen Leerwert (A. bidest) gemessen. Dabei entspricht eine Absorption von 1,0 einer RNA Konzentration von 40µg/ml. Die jeweilige Konzentration läßt sich mit Hilfe folgender Formel errechnen:

c= OD x v x 40 µg/ml x 0,001	c: Konzentration (µg/µl)
	OD: optische Dichte (Absorption)
	v: Verdünnungsfaktor (hier 50)

Um gleiche Ausgangskonz. zu erhalten, verdünnt man die Proben auf eine Endkonz. von 0,1 µg/µl. Die Sonden können bei –20°C gelagert werden.

2.16.3 Verdünnung der Sonden

<u>Benötigte Materialien:</u> DIG-markierte Sonde (Herstellung vgl. 2.13.2) Hybridisierungspuffer: (vgl. 2.4)

Die DIG-Sonden werden mit dem Hybridiserungspuffer auf verschiedene Endkonzentrationen (1000, 500, 100 ng/µl) verdünnt und bei –70° C gelagert. Der Hybridiserungspuffer dient v.a. der Absättigung von unspezifischen Bindungsstellen.

2.16.4 Prähybridisierung

Um einen optimalen Erhalt des Gewebes zu gewährleisten, ist eine Fixierung mit Paraformaldehydlsg. notwendig. Danach muß die Zellmebran mittels TritonX für die Sonde durchlässig gemacht werden.

Die basischen Proteine des Gewebes, an die die Sonde unspezifisch binden könnten, werden mit Essigsäureanhydrid acetyliert und die Bindungsstellen so unzugänglich gemacht.

Benötigte Reagenzien:	Materialien:
10 mM PBS	Magnetrührer
0,4% TritonX100 (Sigma) in 10mM PBS	PH-Meter
A. bidest	Schüttler
TEA-Puffer	
Konz. HCI (Merck)	
Essigsäureanhydrid (Sigma)	
50% Isopropanol	
70% Isopropanol	

Durchführung:

Die Schnitte werden für 15-20min luftgetrocknet und anschließend in 4% PFA-Lsg. bei Raumtemp. auf dem Schüttler fixiert.

Unter Rühren wird das Fixans mit PBS 3x10min. ausgewaschen. Anschließend erfolgt unter Rühren die Behandlung der Schnitte mit 0,4% TritonX für 10min.

Danach werden die OTs in den TEA-Puffer gestellt und 1,25 ml Essigsäureanhydrid unter starkem Rühren hinzugegeben. Nach 10 min Acetylierung wird mit 10mM PBS für 10 min unter Rühren gewaschen. Anschließend werden die OTs 1 min. lang in Aqua bidest gewaschen und danach jeweils ca. 30s in 50% und 70% Isopropanol entwässert. Nachdem sie getrocknet sind, kann die Hybridisierung erfolgen. Eine Lagerung bei -20°C ist möglich.

2.16.5 Hybridisierung der Schnitte

<u>Materialien:</u> Gewebeschnitte (Milz) verdünnte Sonden Formamid (50%)

<u>Geräte:</u> Hybridisierungsofen

Durchführung:

Die Objektträger werden je nach Schnittgröße mit 30-50 µl verdünnter Sonde betropft. Anschließend bedeckt man die Schnitte mit Deckgläschen. Danach werden sie in einer feuchten Kammer mit 50%igen Formamid für mind. 14h bei 58°C im Hybridisierungsofen inkubiert.

2.16.6 Post-Hybridisierung

Die Posthybridisierung erfolgt, um nicht gebundene Sonden zu entfernen.

Benötigte Materialien: 20 x SSC (vgl 2.4); Verdünnung durch A. bidest RNAse-Puffer (vgl. 2.4) Bechergläser OT-Ständer Heizplatte mit Rührer Wasserbad Thermometer

Durch Abstreifen werden die OTs entdeckelt. Anschließend stellt man sie in 2x SSC und wäscht für 20min. Daraufhin wird unter Rühren wie folgt gewaschen:

1x SSC	20min.	Raumtemperatur
RNAse	30min. rühren	37°C
1x SSC	20min.	Raumtemperatur
0,5x SSC	20min.	Raumtemperatur
0.2x SSC	20min.	Raumtemperatur
0.2x SSC	1h	60° C
0,2x SSC	15min.	Raumtemperatur
A. bidest	5min.	Raumtemperatur

2.16.7 DIG-ISH Detektion

Benötigte Materialien:

Dig-ISH-Puffer 1 (vgl. 2.5)

Dig-ISH-Puffer 2 (vgl. 2.5)

Blocking Puffer (vgl. 2.5)

Chromogenlsg. (Lsg. erst kurz vor Gebrauch ansetzen, vgl. 2.5)

an Alkalische Phosphatase gekoppelter anti-DIG-Antikörper (Boehringer Mannheim)

1:1000 in Blocking-Puffer

Fettstift (PAP-Pen)

Kaysers Glycerolgelatine

Durchführung:

Nach der Post-Hybridisierung werden die OTs zunächst in Puffer 1 für 10 min. gewaschen. Anschließend umrandet man die Schnitte mit dem PAP-Pen und betropft sie mit dem Blocking Puffer (100-200µl/Schnitt), so daß sie gleichmäßig bedeckt sind.

Die Schnitte werden für 1h bei Rt in einer feuchten Kammer inkubiert.

Danach spült man kurz mit Puffer 1 ab und tropft den verdünnten DIG-Antikörper (100-200µl/Schnitt) auf. Die Inkubation erfolgt für eine 1h bei Rt.

Anschließend wird mit Puffer 1 abgespült und für jeweils 10min. in Puffer 1 und Puffer 2 gewaschen.

Die Chromogenlsg. wird frisch angesetzt und 100-200 μ l werden auf jeden Schnitt gegeben. Die Schnitte für die Detektion der IL-2R α -Kette wurden 24h

bei Rt in einer feuchten Kammer im Dunkeln gelagert. Die Schnitte für die β-Kette zeigten nach 48h Inkubation bei 37°C (Hybridisierungsofen) Ergebnisse. Die Farbreaktion wird durch Überführen in A. bidest gestoppt.

Anschließend werden die OTs in Kaysers Glycerolgelatine eingedeckelt.

2.16.8 Dokumentation

Die Schnitte wurden am Mikroskop Olympus AX70 auf AGFA Film (APX25) fotografiert.

2.17 Micro-Dissection durch Laser-Capture[©]

2.17.1 Schneiden des Gewebes

Für die Laser Mikro-Dissektion werden Kryoschnitte (10 µm) angefertigt und auf nicht beschichtete Objektträger aufgezogen. Nach 15-20 minütiger Lufttrocknung erfolgt eine Färbung mit Kresylviolett.

2.17.2 Färbung mit Kresylviolett

Die Kresylviolettfärbung dient allgemein der Kernfärbung.

Kresylviolett-Färbelösung besteht aus 0,5% Kresylviolett (Fluka) in 60 mM Natriumacetat (Merck) und 340 mM Essigsäure gelöst in DEPC-Wasser. Die Lösung wird im Dunkeln bei Rt 7 Tage gerührt und danach filtriert.

Die Färbung der Schnitte geschieht in folgenden Schritten:

Kresylviolett	15 min
A. bidest	3 min
70 % Isopropanol	2 min
95% Isopropanol	1 min
abs. Isopropanol	2 min
abs. Isopropanol	2 min

Anschließend erfolgt eine Trocknung bei Rt für mind. 10 min.

2.17.3 Laser-Capture

Die Laser Capture Microdissektion ist eine Methode, um Zellen aus spezifischen mikroskopischen Regionen herauszulösen. Hierbei aktiviert ein Laserstrahl einen speziellen Transfer-Film, so daß die Zellen, auf die der Laser fokussiert war, auf diesem haften und vom übrigen Gewebe getrennt werden können. Das Laser-Capture ist mit einer Computer-Einheit verbunden, so daß eine software-gesteuerte Bildauswertung erfolgen kann.

Materialien:	Geräte:
TRIzol (Phenol + Guanidin-Isothiocyanat)	LaserCapture [©] (NIH)
(Gibco BRL)	Computer-Einheit mit Software
Cups für Laser-Capture	ARC2000
Gewebeschnitte	
0,5ml Eppendorf-Caps	

Durchführung:

Die Zellen werden bei folgenden Laser-Einstellungen aus dem Gewebeverband herausgebrannt:

Power	25mW	temp	22.4°C
Repeat	0,2s	target	0-240 V
spot size	15 µm	duration	2,2 ms
current	20 mA		

Anschließend werden die Cups abgehoben und auf 0,5ml Eppendorf-Caps gefüllt mit 0,25ml TRIzol gedrückt. Nach mehrmaligem Schütteln läßt man die Cups für ca. 20 min bei Rt umgedreht inkubieren. Die Behandlung mit TRIzol dient der Zellysis und bewirkt dadurch die Freisetzung der RNA.

2.18 RNA-Extraktion

Materialien: Chloroform (Merck) 0,5ml Ependorf-Caps RNAse freies H₂O RNAse-freies Glykogen 100% Isopropanol 70% Isopropanol

<u>Geräte:</u> Kühlzentrifuge

Durchführung:

Zu 1ml TRIzol werden 0,6ml Chlororoform addiert und für ca. 15 sec geschüttelt. Die Probe wird für 2-3 min bei Rt inkubiert und anschließend für 15 min zentrifugiert (12.000 rpm, 4°C). Die wässrige Phase wird vorsichtig abgenommen und in ein neues Eppendorf-Cap überführt.

Um die RNA-Ausbeute zu maximieren, werden zu der organischen Phase 100µl RNAse-freies Wasser addiert und nach kurzem schütteln erneut für 5 min. zentrifugiert (12.000 rpm, 4°C). Der Überstand wird abgenommen und mit der wässrigen Phase aus dem vorherigen Schritt zusammengeführt.

Zu 100 µl Lösung wird 1µl Glykogen (10 ng) hinzugegeben.

Die RNA wird durch die Zugabe von gleichem Volumen an 100% Isopropanol (ca. 250µl) gefällt. Die Inkubation erfolgt für 20 min bei -70°C oder über Nacht bei -20°C.

Anschließend werden die Proben 25min abzentrifugiert (12.000 rpm, 4°C), der Überstand wird abgenommen und das Pellet mit 0,5ml 70% Ethanol (-20°C) gewaschen. Hiernach wird für 10min. zentrifugiert (12.000 rpm, 4°C) und der Überstand verworfen. Das Pellet wird für ca 1h an der Luft oder für 10-20min. unter Vakuum getrocknet. Anschließend werden 10µl RNAse freies H₂O pro Probe hinzugegeben.

2.19 RT-PCR

Materialien:

Eis

RNA

Oligo (dT)₁₅₋₁₈-Primer (100nM) (Gibco)

RT-Mix: 4µl 5x RT-Puffer (Gibco) : 250 mM Tris-HCI (pH 8,3),

375 mM KCl,

15mM MgCl₂

- 2µl 0,1M DTT (Gibco)
- 1µI d'NTP-Mix: dATP+dCTP+dGTP+dTTP zu gleichen Volumina
- 1µl ddH₂O
- 1µl RNAse Inhibitor Fermentas (20-50 u/µl)
- 1µI Superscript II [™] Gibco

Geräte:

Thermozykler

Durchführung:

Zu 10µl RNA wird 1µl Oligo-dT-Primer addiert. Anschließend werden die Proben bei 70° C für 10min. inkubiert, um die RNA zu denaturieren. Danach wird sie auf Eis auf 4° C abgekühlt.

Der RT-Mix wird auf Eis zusammenpipetiert. Die Reverse Transkriptase (Superscript II) sollte hierbei zum Ende hinzugegeben werden. Anschließend wird im Thermozykler wie folgt erhitzt:

- 10 min 16°C
- 50 min 42°C
- 5 min 94°C
- ∞ 8°C

Die Proben können bei -20°C gelagert werden.

2.20 PCR

Materialien:

Eis

0,25 ml Eppendorf-Caps

Reaktionsgemisch aus RT-PCR

A. bidest

10x Reaktionspuffer (Gibco):

500mM KCI, 100mM TrisBase, 15mM MgCl₂•6H₂O, A.bidest; pH 8,4

MgCl₂ (25mM) Fermentas

dNTP-Mix

Taq-Polymerase (5u/µl) Fermentas

Mastermix (pro Ansatz):

17,375µl A	. bidest
------------	----------

- 2,5µl 10x Reaktionspuffer
- 2,5µl MgCl₂ (25mM)
- 0,5µl dNTP-Mix
- 0,125µl Taq-Polymerase
- je 1µl Primermix für rlL-2R α bzw. rlL-2R β
- 0,5µl rβ-Aktin
- 0,5µl cDNA aus RT-PCR

Geräte:

Thermozykler (DNA-Engine PTC-200)

Durchführung:

Die Lösungen für den Mastermix werden auf Eis aufgetaut und zusammenpipetiert.

18,75 µl Mastermix werden in ein 0,25ml Eppendorf-Cap vorgelegt. Anschließend werden 1 µl Primermix und 0,5µl cDNA aus der RT-PCR hinzugefügt. Die Reaktionsansätze überführt man in den Thermozykler und erhitzt nach folgendem Programm mit insgesamt 40 Zyklen:

Denaturierung	94°C	0:45 min
Annealing	58°C	0:45 min
Transkription	72°C	0:45 min

Nach dem letzten Zyklus wird nochmals für 10min bei 72°C inkubiert und anschließend die Proben bei 55°C gehalten.

Das PCR-Produkt kann bei –20°C gelagert werden.

2.21 Gelelektrophorese

Materialien:	<u>Geräte:</u>
DNA aus PCR	Kammer für Gelelektrophorese
1,5% Agarose-Gel (vgl. 2.4)	Spannungsgeber
1x TAE-Puffer (vgl 2.4)	UV-Transilluminator
10x Loading-Dye Gibco	
100bp-Leiter Gene Ruler [©] Fermentas	

Durchführung:

Die Elektrophoresekammer wird mit 1xTAE-Puffer soweit gefüllt, daß das Flüssigkeitsniveau etwa 1mm über dem Gel ist. 10µl DNA werden mit 1µl 10x Loading Dye gefärbt und auf das Gel getragen.

Parallel läßt man eine 100bp Leiter mitlaufen. Die Elektrophorese dauert bei 100V ca. 30 min (DNA läuft aufgrund seiner neg. Ladung in Richtung Anode). Die Banden können im UV-Transilluminator betrachtet und abfotografiert werden.

2.22 Statistische Auswertung der Meßergebnisse

gende Werte zugrunde gelegt:

Die statistische Auswertung erfolgte mit Hilfe der Software SPSS. Die Gruppen der SEA-Kinetik wurden mit Hilfe des T-Test für unverbundene Stichproben mit den Kontrollwerten verglichen. Für die Bestimmung der Signifikanz wurden fol-

p<0,05 (*):	Signifikant
p<0,01 (**):	hoch-signifikant
p<0,001 (***):	höchst-signifikant

Die Diagramme wurden in Microsoft-Excel 7.0 erstellt.

3 Ergebnisse

3.1 Zytokin-Serumspiegel nach Stimulation durch SEA

Charakteristisch für eine Stimulation des Immunsystems, die über die Aktivierung zahlreicher T-Zellen erfolgt, ist die systemische Freisetzung von

proinflammatorischen Zytoinsbesondere kinen IL-2 und IL-6. Die gemessenen transient vorliegenden Zytokin-Serumspiegel von IL-2 (Abb. 3.1) und IL-6 (Abb. 3.2) zeigen eine effektive Stimulation des Immunsystems der Ratte nach Applikation von SEA. Ein maximaler Serumspiegel für IL-2 fand sich 3h nach Stimulation mit ca. 13 ng/ml Serum. Dieser Spiegel ging bereits nach 8h auf ca. 1ng/ml zurück.

Zeitlich parallel zu den induzierten IL-2 Serumspiegeln fanden sich erhöhte IL-6 Serumspiegel mit einer maximalen Konzentration von ca. 350 ng/ml Serum (Abb. 3.2). Basale Spiegel von ca. 25 pg/ml Serum wurden auch hier innerhalb von 48h nach Applikation des Mitogens erreicht.

Abb. 3.1: Interleukin-2-Serumspiegel nach SEA-Injektion. Der basale IL-2 Spiegel liegt unterhalb der Nachweisgrenze. Gezeigt Mittelwert aus n = 3 Tieren pro Zeitpunkt (angegeben in der Abbildung); Signifikanz: ***p< 0,001

Abb. 3.2: SEA induzierte Interleukin-6 Serumspiegel. Der basale IL-6 Spiegel liegt im Mittel bei 25ng/ml. Gezeigt: Mittelwert aus n = 3 Tieren pro Zeitpunkt (angegeben); Signifikanz ***p< 0,001

3.2 *in-situ* Hybridisierungsnachweis der IL-2 Rezeptor mRNA in der Milz der Ratte

Biologisch aktives IL-2 induziert im humanen als auch im Immunsystem der Maus eine erhöhte Expression der IL-2 Rezeptor mRNA in T-Zellen. Um eine Induktion von IL-2 Rezeptor mRNA *in vivo* in T-Zellen zu zeigen, wurden nicht-radioaktive *in-situ* Hybridisierungen gegen die IL-2R α - und die IL-2R β -Kette in Gefrierschnitten der Milz durchgeführt.

150x

Abb. 3.3: *in-situ* Hybridisierungsnachweis von IL-2R α (A, B) + IL-2R β (C, D) - mRNA mittels Dig-markierter mRNA in der Milz der Ratte 3h nach SEA-Stimulation. IL-2R α + β -mRNA exprimierende Zellen finden sich präferentiell in der weißer Pulpa (WP) und nur vereinzelt IL-2R α + β -mRNA positive Zellen in der roter Pulpa (PR). B und D sind Ausschnittsvergrösserungen aus A bzw. C.

Hierbei zeigten sich klar Mitogen-induzierbare Signale für beide Ketten in der Milz einer Ratte, die für 3h mit SEA stimuliert wurde. Histologisch ließen sich die Signale in dem Bereich der periarteriolären lymphatischen Scheide (PALS) lokalisieren (Abb. 3.3). Die PALS ist eine histologische Region innerhalb der Milz, in der sich T-Zellen in einer hohen Dichte finden. Die *in-situ* Hybridisierungs-Analyse der Milz unstimulierter Tiere zeigen dagegen keine Signale für IL-2Rα-mRNA (nicht gezeigt), was eine klare Stimulation dieser IL-2 Rezeptorkette *in vivo* durch SEA bedeutet. Hybridisierungen mit markierten sense-Templaten ergab keine Hybridisierungssignale (nicht gezeigt) und bestätigt damit die Spezifität der Hybridisierung.

3.3 Isolierung einzelner Splenozyten mittels Laser Capture Technologie und RT-PCR Nachweis der mRNA der IL-2R Ketten

Der Nachweis der Mitogen-regulierten Expression von IL-2R α - und β -mRNA in Splenozyten innerhalb der PALS sollte mittels Isolierung der Zellen unter histologischer Kontrolle erfolgen. Hierzu wurden aus mittels Kresylviolett gegengefärbten Gewebeschnitten Zellen der PALS von unstimulierten Ratten oder Ratten stimuliert mit SEA für 3h mittels eines Laser Capture Mikroskops ausgeschnitten und auf eine Trägerfolie isoliert (Abb. 3.4).

Abb. 3.4: Isolation von Zellen der Milz mit der Laser Capture Technologie Abbildung A zeigt einen Ausschnitt aus einer mit Kresylviolett gegengefärbten Milz. In B wurden Zellen der PALS isoliert und auf die Folie (C) übertragen. Abkürzungen: ZA: Zentralarterie, RP: rote Pulpa.

Die Isolation von ca. 200 Zellen war ausreichend, um genügend mRNA für die RT-PCR Analyse der IL-2 Rezeptor Ketten zu gewinnen. Nach 40 Zyklen in der PCR fanden sich klare Signale für β -Actin. Nach 40 Zyklen zeigte sich in der unstimulierten Milz die Expression der IL-2R β -mRNA (Abb 3.5). Eine basale Expression der IL-2R α -mRNA fand sich erwartungsgemäß nicht. SEA stimulierte die Transkription beider IL-2 Rezeptor Ketten bereits nach 3h. Die Verfügbarkeit eines funktionellen Rezeptors für IL-2 ist damit auch zu dem Zeitpunkt bereits wahrscheinlich, zu dem sich maximale Serumkonzentrationen von IL-2 fanden.

Abb. 3.5: RT-PCR Nachweis von IL-2R α – und β –mRNA in Zellen der Milz. Mittels LCM wurden Splenozyten der PALS aus dem Gewebe herausgeschnitten und für die RT-PCR aufgearbeitet. Pro Lane wurden jeweils 10 µl PCR aus einem PCR Ansatz für eine Rezeptorkette (wie in der Abbildung angegeben) und 10 µl aus einem PCR Ansatz für β -Aktin aufgetragen. Die Amplifikate zeigen die jeweils erwartete Größe (IL-2R α 851 bp, IL-2R β 916 bp und r β -Aktin 472 bp). Die mRNA für die α -Kette des IL-2R ist erst nach SEA Stimulation nachweisbar, während die mRNA für die β -Kette bereits basal in den Splenozyten exprimiert wird.

3.4 Quantitativer Nachweis der Expression der IL-2 Rezeptor α -Kette auf T-

Lymphozyten mittels der Durchflußzytometrie

Um die Translation der gemessenen IL-2 Rezeptor mRNAs und die Anwesenheit der IL-2 Rezeptorketten auf der Oberfläche von *in vivo* stimulierten T-Lymphozyten nachzuweisen, wurde ein immunzytochemischer Nachweis des CD25 Epitops, das für die IL-2 Rezeptor α-Kette spezifisch ist, durchgeführt. Die Expression von CD25 wurde in zeitlicher Folge nach SEA Injektion auf CD4⁺ und CD8⁺ T-Lymphozyten untersucht. Hierzu wurden die Zellen mit Farbstoff-markierten Antikörpern gegen CD4 bzw. CD8 und parallel dazu gegen CD25 angefärbt und mittels Durchflußzytometrie gemessen.

CD4

CD8

Abb.3.6: FACS-Analyse von CD4- bzw. CD8-positiven T-Zellen aus Lymphknoten, Milz und Thymus auf die Expression von CD25 auf ihrer Oberfläche. In den gezeigten Dot-Blots ist die Intensität in der Expression von CD4 oder CD8 auf der Abzisse aufgetragen und die Intensität der Expression von CD25 auf der Ordinate. Verglichen werden Zellen aus Kontrolltieren (sham) mit Tieren, die 48h mit SEA stimuliert wurden. Der rechte obere Quadrant eines jeden Blots reflekiert doppelt positive Zellen, die dort angegebene Zahl den Prozentsatz an doppelt positiven Zellen an der Gesamtzahl der gemessenen T-Zellen.

Die FACS-Analyse (Abb. 3.6) zeigte eine erhöhte Expression der α-Kette des IL-2-Rezeptors auf CD4⁺ und CD8⁺ T-Lymphozyten im Lymphknoten, in der Milz und im Thymus nach 48h im Vergleich zu den T-Zellen, die aus unstimulierten Organen isoliert wurden. Die statistische Auswertung der FACS Analyse

Abb. 3.7: Graphische Auswertung der FACS-Daten. Dargestellt werden die prozentualen Anteile der einfach positiven (CD4 bzw. CD8) als Kurve und doppelt positiven (CD4/CD25 bzw. CD8/CD25) als Balken gemessen an der durch das Gate erfaßten Zahl an T-Lymphozyten. Die Werte beziehen sich auf die Zeitpunkte 3h, 8h, 48h und 10d nach SEA-Stimulation. n=3;

Signifikanz: *: p<0,05, **: p<0,01 für doppelt pos. (Balken); °: p<0,05 für einfach pos. (Kurve)

(Abb. 3.7) zeigt eine signifikante Erhöhung der Expression der α-Kette des IL-2 Rezeptors (CD25) auf CD4⁺ und CD8⁺ Zellen 48h nach *in vivo* Stimulation mit SEA in den lymphatischen Organen Milz und Lymphknoten. CD4 positive Zellen der Milz reagierten bereits nach 3h mit einer Hochregulation ihres IL-2 Rezeptors als Antwort auf den immunstimulatorischen Reiz. Im Thymus zeigten sich keine signifikanten Veränderungen, was die Anzahl der doppelt pos. Zellen (CD4⁺/CD25⁺ bzw. CD8⁺/CD25⁺) angeht. Sowohl die CD4 als auch die CD8 einfach positiven Zellen in allen drei lymphatischen Organen zeigten quantitativ so gut wie keine signifikante Zunahme. Aus diesen Daten läßt sich der Schluß ziehen, daß es in zeitlicher Folge zu der frühen Ausschüttung von IL-2 ins Serum und der Bildung von IL-2Rα–mRNA in T-Zell-spezifischen Regionen zu der Bildung eines funktionellen Rezeptors für IL-2 auf der Oberfläche von T-Lymphozyten peripherer Immunorgane (Milz, Lymphknoten) kommt.

3.5 Nachweis der Proliferation von Splenozyten, Thymozyten und Zellen aus mesenterialen Lymphknoten auf Stimulation mit SEA

Die Expression und Ausschüttung von IL-2 und auch die Hochregulation des IL-2 Rezeptors auf T-Lymphozyten läßt auf die Proliferation dieser Zellen nach

Abb. 3.8 A-C: Proliferationsraten von Splenozyten nach Inkubation mit ConA, SEA und LPS für 48h mit (grün) und ohne (rot) Zugabe von rekombinantem IL-2. Gezeigt sind die Einbauraten (Abzisse) in Abhängigkeit von verschiedenen Konzentrationen an Mitogen. Triplex Messungen wurden durchgeführt.

Signifikanz * p<0,05; ** p<0,01; ***p<0,001

SEA-Stimulation schließen, stellt aber hierfür noch keinen Nachweis dar. Die proliferative Antwort von Zellen aus den lymphatischen Organen Milz, Thymus und mesenteriale Lymphknoten auf SEA wurde im Proliferationsassay in vitro nachgewiesen. Die Wirkung von SEA wurde hierbei mit dem alle T-Zellen stimulierenden Mitogen Concanavalin A (ConA) und dem aus gramnegativen Bakterien stammenden Makrophagen stimulierenden Endototoxin Lipopolysacharid (LPS) verglichen. Durch Zusatz von rekombinantem IL-2 in das Kulturmedium sollte die Sensitivität der T-Lymphozyten auf einen proliferativen Stimulus verstärkt werden.

Die Zellen aus Lymphknoten, Milz und Thymus reagierten nach 48h SEA-Inkubation in vitro glei-

chermaßen mit einer erhöhten Einbaurate an H³-Thymidin (Abb. 3.8.1 u. 3.8.2). Besonders Zellen aus den mesenterialen Lymphknoten (H) zeigten eine signifikant vermehrte Proliferation auf SEA (max. gemessene Einbauraten von 6000 cpm), die auch noch bei Konzentrationen von 0,001 µg/ml vorlag. Die Proliferation auf SEA war vergleichbar mit der durch ConA verursachten (G). Splenozyten und Thymozyten zeigten deutliche, jedoch verglichen zu den Zellen aus dem Lymphknoten geringere Proliferationsraten (B,E). In Anwesenheit von rekombinantem IL-2 im Medium zeigten sich vor allem bei den Zellen aus Milz und Thymus eine Wirkungssteigerung von SEA, wobei nicht die Sensitivität SEA-Konzentrationen erhöht auf wurde, sondern lediglich der Einbau von H³-Thymidin bei allen verwendeten SEA-Konzentrationen .

Abb. 3.8 D-I: Proliferationsraten von Zellen aus Thymus und mesenterialen Lymphknoten nach Inkubation mit ConA, SEA und LPS für 48h mit (grün) und ohne (rot) Zugabe von rekombinantem IL-2. Gezeigt sind die Einbauraten (Abzisse) in Abhängigkeit von verschiedenen Konzentrationen an Mitogen. Triplex Messungen wurden durchgeführt. Signifikanz * p<0,05; ** p<0,01; ***p<0,001

4 Diskussion

Die systemische Ausschüttung von erhöhten Mengen an TNF α wird als einer der kritischen Ereignisse für das Entstehen einer Sepsis angenommen. Dieses Zytokin wird u. a von Makrophagen im Rahmen der frühen zellvermittelten Immunantwort insbesondere auf Endotoxine (LPS) sezerniert. Als direkte Folge verstärkt TNF α die Proliferation von T-Zellen nach Stimulation mit IL-2. Die Ausschüttung anderer proinflammatorischer Zytokine wie IL-1 und IL-6 wird im Rahmen der Akut-Phase Reaktion durch TNFa induziert. Die Stimulation von Mäusen mittels Superantigenen ergibt ebenfalls dramatisch erhöhte Serumspiegel von TNF α , allerdings tritt bei Mäusen bei den bisher in der Literatur verwendeten Dosen -bis zu 300 µg (24)- keine letale Sepsis auf. Erst die Vorbehandlung von Mäusen mit der hepatotoxischen Substanz D-Galaktosamin macht die Mäuse empfindlich für einen letalen Schock nach Enterotoxin(SEB)-Applikation (25). Mäuse scheinen trotz einer eindeutigen Immunreaktion relativ Schock-unempfindlich gegenüber Enterotoxinen zu sein, ganz im Gegensatz zum Menschen, der schon auf kleinste Dosen von Superantigen (schon ab 100ng pro Individuum) mit einer klinischen Symptomatik reagiert (30,12).

Die Ausschüttung von Zytokinen ins Serum ist Kennzeichen der frühen Antwort auf bakterielle Infektionen. TNF α und IL-2 finden sich charakteristisch zu frühen Zeitpunkten nach Gabe von Superantigenen. Versuche mit Mäusen, die mit SEB vorbehandelt wurden, zeigten einen Anstieg der Zytokine innerhalb der ersten 2h (24). Im Rahmen dieser Arbeit wurde das für die T-Zell Aktivierung charakteristische IL-2 sowie IL-6, das bei der Akut-Phase Reaktion eine wichtige Rolle spielt, gemessen. Der Serum-Spiegel für IL-2, der bei basalen Bedingungen unter der Nachweisgrenze liegt und erst bei starker Immunstimulation peripher im Blut messbar ist, erfährt nach Enterotoxingabe einen relativ frühen Anstieg. Drei Stunden nach SEA-Injektion wird eine maximale Konzentration von ca 13ng/ml erreicht und ist damit im zeitlichen Ablauf als auch in der Höhe der Konzentration mit dem der Maus vergleichbar.

Im Tiermodell der Maus wurden zu einem ähnlich frühen Zeitpunkt maximale Konzentrationen von 90 ng/ml bzw. 18 ng/ml für IL-2 nach intraperitonealer bzw. intradermaler (Pfote) Injektion von SEB beobachtet (4, 25). IL-6 erfährt einen ähnlich deutlichen Anstieg (350pg) nach 3h. Vergleichbare Studien bei der Maus liegen für IL-6 nicht vor.

Die Serumspiegel für IL-2 und IL-6 erfahren einen schnellen Abfall, so daß bereits nach 8h fast die Kontrollwerte erreicht sind. Studien anderer Mitarbeiter zeigten deutlich erhöhte TNFα Spiegel im Serum der in dieser Studie untersuchten Tiere. Trotz der erhöhten Serum-Zytokin-Spiegel zeigten die Ratten keine Anzeichen einer Schocksymptomatik. Die gemeinsame Kinetik der Serum-Zytokin-Spiegel bei Maus und Ratte läßt vermuten, daß SEA eine ähnliche Wirkung in der Ratte hatte, wie dies für SEB in der Maus beschrieben wurde. Darüberhinaus führt eine T-Zell-vermittelte Ausschüttung von proinflammatorischen Zytokinen in der Ratte ebenfalls zu keiner letalen Sepsis.

Da die α -Kette des IL-2-Rezeptors auf unstimulierten T-Lymphozyten nur schwach exprimiert wird, ist eine vermehrte Transkription der mRNA zur Bildung eines hochaffinen Rezeptors, der aus der Trimerisation der α,β,γ -Kette entsteht, notwendig (26). Die Stimulation zur Synthese der IL-2Rα erfolgt hierbei vor allem durch Antigen-induzierte Triggerung (31) wird aber durch IL-2 selber angetrieben und aufrechterhalten (5). Der frühen Zytokin-Ausschüttung ins Serum muß also eine Hochregulation der mRNA-Transkription und Expression der α-Kette des IL-2 Rezeptors auf der Zelloberfläche folgen, um eine Proliferation von antigenspezifischen Lymphozyten-Subpopulationen hervorzurufen. Nach Stimulation mit Superantigen wird IL-2 von CD4⁺ T-Helfer-Zellen gebildet (28), nachdem diese durch Vβ-spezifische Bindung des Superantigens aktiviert worden sind. Es wirkt autokrin wie auch parakrin auf zytotoxische T-Zellen (CD8⁺) und T-Helfer-Zellen (CD4⁺). Weitere Zellen des Immunsystems wie B-Lymphozyten, NK-Zellen und Monozyten werden ebenfalls durch IL-2 in ihrer Proliferation unterstützt, sofern sie bereits durch entsprechende Stimuli wie etwa körperfremde Antigene oder Partikel aktiviert worden sind (37). Ziel dieser Arbeit war es, speziell die Reaktion der T-Lymphozyten zu untersuchen, da sie die primäre Quelle für IL-2 darstellen und über die von ihnen gebildeten Zytokine hauptsächlich für die frühe Immunantwort auf Superantigene verantwortlich sind. Durch den Bindungsmechanismus der Superantigene an den TCR und die dadurch bedingte Vorstimulation, wird die Proliferation, die vor allem meßbar an den erhöhten IL-2 Spiegeln und der Ausbildung eines hochaffinen Rezeptors ist, in dieser Zellreihe am ausgeprägtesten sein. Aus diesem Grund bot es sich an, immunhistochemische Untersuchungen an der Milz durchzuführen, da sich in diesem Organ mikroskopisch T-Zell spezifische Regionen gut lokalisieren lassen. Außerdem gerät die Milz verglichen mit anderen lymphatischen Organen relativ früh mit Enterotoxinen in Kontakt, wie sich in Versuchen mit SEB gezeigt hat (4). Es wurden T-Zell spezifische Regionen in der Milz (PALS) untersucht. In der Dig-ISH und der RT-PCR-Analyse zeigte sich eine basale Expression der IL-2R β -Kette und eine rasche Induktion der Transkription der IL-2R α -Kette. In der roten Pulpa ließen sich keine mRNA-Transkripte für IL-2R α nachweisen. Die IL-2R β -mRNA war dagegen auch in der Kontrolle exprimiert. Aufgrund der Lokalisation der IL-2R α -mRNA positiven Zellen in der PALS kann man davon ausgehen, daß es sich um T-Lymphozyten handelt, die die mRNA exprimieren, da sie den Hauptbestandteil der weißen Pulpa ausmachen (Veermann und van Ewijk, 1975).

Eine basale Expression im unstimulierten Tier ließ sich weder durch die ISH noch die sensitivere RT-PCR nachweisen .

Die IL-2Rα-mRNA-Expression in Lymphozyten und Thymus wurde nicht untersucht, jedoch ist davon auszugehen, daß der Zeitpunkt der Hochregulation deutlich später liegt, was aus bisherigen Versuchen mit SEB hervorgeht (24). Radioaktive ISH, die bei lymphatischen Organen der Ratte nach Stimulation mit SEA durchgeführt worden sind, belegen diesen Sachverhalt auch für SEA. Eine Erklärung hierfür könnte sein, daß die Milz aufgrund ihrer guten Durchblutung relativ schnell mit dem SAg in Kontakt gerät und somit einer der primären Orte der IL-2 Bildung ist, während T-Zellen der anderen beiden lymphatischen Organe erst später eine Stimulation durch das SAg erfahren bzw. auf den erhöhten IL-2 Serumspiegel reagieren (4).

In Folge der vermehrten IL-2R α -mRNA Synthese erfolgt eine Akkumulation der α -Kette des IL-2 Rezeptors auf der Oberfläche aktivierter T-Lymphozyten. Hier sind vor allem die durch das Superantigen gebundenen V β -Subtypen betroffen. Zur Erfassung des Zeitpunktes und des Ausmaßes der Expression der α -Kette des IL-2R (CD25) auf der Oberfläche von T-Lymphozyten diente die FACS-Analyse. Bisherige *in vitro* und *in vivo* Studien, die sich mit der Kinetik der

IL-2Rα-Expression mittels Durchflußzytometrie befaßten, zeigten eine Hochregulation innerhalb der ersten 8h nach Superantigen-Gabe (TSST-1, SEB) in der Maus (23). Solche Untersuchungen für SEA im Tiermodell lagen bisher nicht vor.

Es zeigte sich eine Verdopplung der CD25-positiven Zellen im Lymphknoten nach 48h und in der Milz nach 3h und 48h. Zu den anderen Zeitpunkten der Messung (3h, 8h, 10d) ließ sich keine aussagekräftige Zunahme der Expression nachweisen.

Bemerkenswert ist, daß selbst im Kontrolltier die α -Kette des IL-2R auf der Zelloberfläche einiger Zellen (2-6%) exprimiert war. Auch in Studien der Maus wurde ein ähnlicher Prozentsatz positiver T-Zellen beobachtet (23).

Ein Grund hierfür kann in der ex-vivo Stimulation einiger T-Lymphozyten bedingt durch die Aufreinigungsprozedur liegen, so daß diese die IL-2Rα-Kette hochregulierten. Eine durch die nicht-sterilen Haltungsbedingungen resultierende ständige Immunreaktion ist ebenso denkbar.

Insgesamt wäre vor dem Hintergrund der recht starken Signale in der ISH, die bereits nach 3h zu sehen waren, ein stärkerer Anstieg der Rezeptor-Expression zu erwarten gewesen.

T. Miethke et al stellten einen ähnlich schwachen Anstieg fest, als sie den IL-2 Rezeptor auf T-Zellen (Lymphknoten) von TSST-1 stimulierten Mäusen mit Hilfe der FACS-Analyse untersuchten. Diese Beobachtung kann auf folgenden Aspekt zurückgeführt werden: In der FACS-Analyse konnte nur zwischen CD4⁺ und CD8⁺ Zellen unterschieden werden. Durch eine selektivere Messung der aktivierten V β -spezifischen T-Zellen durch Verwendung spezifischer Antikörper für einzelne V β -Isotypen, ließen sich sicherlich höhere prozentuale Unterschiede feststellen (15,24). Hierzu müßte man einen zusätzlichen Fluoreszenzmarkierten Antikörper gegen diejenigen V β -Ketten, an die SEA bindet, verwenden. Bei der Ratte bindet SEA an die V β -Ketten 11,12,14,17 und 18 (24). Leider existierten zum Zeitpunkt der vorliegenden Arbeit keine Antikörper gegen diese Isotypen der Ratte.

Im Thymus waren keine relevanten Veränderungen festzustellen, was sowohl die Population an CD4 bzw. CD8 pos. T-Zellen als auch die α -Kette des IL-2 Rezeptors (CD25) angeht. Da im Thymus vorwiegend unreife (doppelt-positive)

T-Zellen vorliegen, könnte man vermuten, daß die aktivierten V β -Typen größtenteils deletiert werden (18,38,41). Dieser Zustand der klonalen Deletion müßte aber erst zu einem späteren Zeitpunkt eintreten (21).

Die nahezu gleichbleibende Quantität der CD4 bzw. CD8 positiven Zellen in allen drei Organen innerhalb des Versuchszeitraums scheint widersprüchlich zu sein zu der Hypothese der *in vivo* Proliferation von T-Lymphozyten nach Stimulation mit SEA. Der Zeitraum zwischen 48h und 10d wurde in diesem Experiment nicht untersucht. Weiterführend ist diese Untersuchung sinnvoll, da davon auszugehen ist, daß das Maximum der Proliferation zeitlich der IL-2-Ausschüttung und der Expression der α -Kette seines Rezeptors folgt. Untersuchungen an V β 8.2 spezifischen T-Lymphozyten von Mäusen, die mit SEB vorbehandelt waren, belegen diese Hypothese (21).

Im Gegensatz zu der Arbeit von Herrmann et al (15), in der die Zunahme der Lymphoblasten eines bestimmten V β -Musters nach der *in vitro*-Stimulation durch SEB in der FACS-Analyse gezeigt wurde, ist festzustellen, daß hier keine eindeutige morphologische Trennung zwischen Lymphozyten und Lymphoblasten möglich war (s. Abb 1.1). Die Anzahl der mittels FACS erfaßten Lymphoblasten lag in der Mehrzahl der Fälle im statistisch nicht signifikanten Bereich. Ein durch die Methode bedingter Untergang von Lymphoblasten sowie eine nachträgliche Differenzierung zu reifen Lymphozyten stehen einer Diskussion offen.

Um zu überprüfen, ob es als Antwort auf die Stimulation mit SEA tatsächlich zu Auswirkungen auf die Anzahl V β -spezifischer T-Zellen kommt, wurde die Proliferation gemessen. Die SEA-Konzentrationen von 10-0,001 µg/ml führten zu einer meßbaren Induktion von Lymphozyten aus Milz, Thymus und Lymphknoten. Somit besitzt SEA eine ähnlich starke Wirkung wie das alle T-Zellen stimulierende Mitogen Concanavalin A. Im Vergleich zeigte sich bei dem Makrophagen aktivierenden Endotoxin LPS niedrig bis nicht signifikante Proliferationsraten.

Eine besondere Stellung nahm der Thymus ein. Die zusätzliche Gabe von rIL-2 war notwendig, um eine Proliferation nach Inkubation mit SEA zu erhalten. Dies ließe sich durch die Tatsache erklären, daß der Thymus größtenteils unreife (doppelt-positive) T-Lymphozyten enthält, die für eine klonale Anergie wesentlich anfälliger als reife Zellen sind. Da anerge Thymozyten ihre Fähigkeit zur Stimulation und damit nachfolgend zur IL-2-Produktion verlieren, fehlt ein entscheidener Kostimulator für die Proliferation nach Antigenexposition. Durch exogene Zugabe des Zytokins kann die Anergie verhindert und eine klonale Expansion unterstützt werden (34).

Die Ergebnisse des H³-Thymidin-Assays bestätigen die in der FACS ermittelte Zunahme von IL-2R positven Zellen als eine Expansion V β -spezifischer T-Zellen. In welchem Zeitraum diese beginnt ist unklar. Ein Zeitraum von mehr als 2d ist verglichen mit Ergebnissen bei der Maus wahrscheinlich (21). Im *in vitro* Assay war die Proliferation nach einer Inkubationszeit von 48h zu messen. Die FACS-Analyse, bei der die *in vivo* Reaktion gemessen wurde, zeigte keine eindeutige Proliferation von CD4⁺ oder CD8⁺ T-Lymphozyten nach dieser Zeit.

Zusammenfassung:

Es konnte gezeigt werden, daß SEA in der Ratte eine starke *in vivo* und *in vitro* Stimulation von T-Zellen auslöst. 3h nach SEA-Stimulus konnten deutlich erhöhte Serumspiegel für IL-2 und IL-6 gemessen werden. Im Anschluß erfolgte unmittelbar die Gen-Expression der IL- $2R\alpha$ -mRNA in lymphatischen Organen (Milz). Eine quantitative Zunahme der für die α -Kette des IL-2 Rezeptors positiven Zellen aus Lymphknoten und Milz konnte in der FACS gezeigt werden. In *in vitro* Versuchen konnte darüber hinaus die mitogene Wirkung von SEA auf Lymphozyten aus Milz, Lymphknoten und Thymus nachgewiesen werden. Das SEA-Modell der Ratte ist gleichermaßen wie das Maus-Modell der Enterotoxinämie für die Untersuchung der zellvermittelten peripheren Immunantwort geeignet.

5 Abkürzungen

Ak	Antikörper
APZ	Antigen-Präsentierende Zelle
BCIP	5-Brom-4-Chlor-3-Indolyl-Phosphat
Вр	Basenpaare
CD	"Cluster of Differentiation" (Oberflächenmoleküle auf T-
	Lymphozyten)
Con A	Concanavalin A
DIG	Digoxigenin; Steroid aus Digitalis purpurea
DTT	Dithiothreitol
FACS	Fluorescense Activating Cell Sorting
FITC	Fluoresceinisothyozyanat
i.p.	Intraperitoneal
IL	Interleukin
ISH	<i>in-situ</i> Hybridisierung
Kbp	Kilobasenpaare
Lsg	Lösung
LPS	Lipopolysacharid
Mak	monoklonaler Antikörper
MHC	Major Histo-Compatibility Complex
NBT	Nitroblautetrazoliumchlorid
ОТ	Objektträger
PALS	Periarterielle Lymphatische Scheide
PBS	Phosphat-Buffered Saline
PCR	Polymerase-Chain-Reaction
Rpm	rounds per minute
Rt	Raumtemperatur
RT	Reverse Transkriptase
Sag	Superantigen
SEA	Staphylokokken-Enterotoxin A
sham	"Täuschung" → Kontrolle
SSC	Sodium-Sodium-Citrate

TCR	T-Cell-Receptor
TNF	Tumor-Nekrose-Faktor
TSST-1	Toxic-Shock-Syndrom-Toxin-1
Vβ	variabler Teil der β -Kette des T-Zell-Rezeptors

6 Literaturverweise

(in alphabetischer Reihenfolge der Erstautoren)

- 1. Acha-Orbea, H., and Palmer, E. 1991. Mls: a retrovirus exploits the immune system. *Immunol. Today* 12:356
- 2. Ben-Nun, A. 1991. Staphylococcal enterotoxin B as a potent suppressant of T-Cell proliferative responses in rats. *Eur. J. Immunol* 21:815
- 3. Bergdoll, M.S. 1979. Staphylococcal intoxications. In Food Bourne Infections and Intoxications.. *Academic Press. H. Riemann, and F.L. Bryon, editors, New York.* 443-494
- Bette, M., Schäfer, M.K.-H., van Rooijen, N., Weihe, E. and Fleischer, B. 1993. Distribution and kinetics of superantigen-induced cytokine gene expression in mouse spleen *J Exp Med* 178: 1531-1539
- Bismuth, G., Moreau, J.L., Sommé, G., Duphot, M., Dautry Varsat, A., Robb, R.J., and Théze, J. 1985. Regulation of interleukin-2 (IL-2) receptor expression: IL-2 as inducing signal for the expression of ist own receptor on a murine T helper cell line. *Eur. J. immunol.* 15:723-727
- 6. Carlsson, R., and Sjogren, H.O. 1985. Kinetics of IL-2- and interferron-gamma production, expression of IL-2 receptors, and cell proliferation in human mononuclear cells exposed to staphylococcal enterotoxin A. *Cell Immunol. 96:175*
- 7. Clevers, H., Alarcon, B., Wileman, T., Terhorst, C. 1988. The T cell receptor/CD3 complex: a dynamic protein ensemble. *Annu Rev Immunol.* 6:692-62
- 8. Cole, B.C. 1991. The immunbiology of mycoplasma athridis and its superantigens MAM. *Curr. Top. Microbiol. Immunol.* 174:107
- 9. Crabtree, G.R. 1989. Contingent genetic regulatory events in T lymphocyte activation. *Science 243:355-361*
- 10. Davis, M.M., Bjorkman, P.J. 1988. T-cell antigens receptor genes and T-cell recognition. *Nature 335 (6192):744*
- Dellabonna, P., Reccond, J., Kappler, J., Marrack, P., Benoist, C., Mathis, D. 1990. Superantigens react with MHC Class II molecules outside of the antigen groove. *Cell* 62:1115-1121
- Evenson, M.L., Hinds, M.W., Bernstein, R.S., Bergdoll, M.S. 1984. Estimation of human dose of staphylococcal enterotoxin A from a large outbreak of staphylococcal food poisoning involving chocolate milk. *Infect Immun* 44(2):234-40
- Fleischer, B., Schrezenmeier, H. 1988. T cell stimulation by staphylococcal enterotoxins: Clonally variable response and requirement für major histocompatibility complex class II molecules on accessory or target cells. J Exp Med;167:1697

- Herman, A., Croteau, G., Sekaly, R.P., Kappler, J., Marrack, P. 1990. HLA-DR alleles differ in their ability to present staphylococcal enterotoxins to T cells. *J. Exp. Med.*. 172:709
- Herrmann, T., Hochgrebe, T., Torres-Nagel, N.E., Huber, B.T. and Hünig, T. 1994. Control of the rat t cell response to retroviral and bacterial superantigens by class II MHC Products and Tcrb-V8,2 Alleles *J. Immunol.:* 152: 4300
- 16. Huang, W., Koller, L.D. 1998. Superantigen activation and kinetics of cytokines in the Long-Evans rat. *Immunol* 95(3):331-8
- Janeway, C.A., Yagi Jr., J., Conrad, P.J., Katz, M.E., Jones, B., Vroegop, S. and Buxser, S. 1989. T-Cell response to MIs and to bacterial proteins that mimic its behaviour. *Immunol. Rev.* 107:61
- 18. Jones, L.A., Chin, L.T., Longo, D.L., Kruisbeek, A.M. 1990. Peripheral clonal elimination of functional T cells. *Science 250(4988): 1726-9*
- 19. Lehmann, V., Freudenberg, M.A. and Galanos, G. 1987. Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-Galactosamine treated mice. *J. Exp. Med.* 165:657
- 20. Leonard, W.J., Shores, E.W. and Love, P.E. 1995. Role of the common cytokine receptor gamma chain in cytokine signaling and lymphoid development. *Immunol. Rev.* 148:97-114
- MacDonald, H.R., Baschieri, S., Lees, R.K. 1991. Clonal expansion precedes anergy and death of Vβ8+ peripheral T cells responding to staphylococcal enterotoxin B in vivo. *Eur. J. Immunol.* 21:1963-1966
- 22. Marrack, P., and Kappler, J. 1990. The staphylococcal enterotoxins and their relatives. *Science 248:705*
- 23. Miethke, T., Duschek, K., Wahl, C., Heeg, K., and Wagner, H. 1993. Pathogenesis of the toxic shock syndrome: T cell mediated lethal shock caused by the superantigen TSST-1 *Eur. J. Immunol.* 23:1494-1500
- 24. Miethke, T., Gaus, H., Wahl, C., Heeg, K., Wagner, H. 1992. T-Cell Dependent Shock Induced by a Bacterial Superantigen. *Chem Immunol. Basel*
- Miethke, T., Wahl, C., Heeg, K., Echtenacher, B., Kramer, P.H. and Wagner, H. 1992. T Cell-mediated Lethal Shock Triggered in Mice by Superantigen Staphylococcal Enterotoxin B: Critical Role of Tumor Necrosis Factor *J. Exp. Med.* 175: 91-98
- Minami, Y., Kono,T., Miyazaki, T. and Taniguchi, T. 1993. The IL-2 receptor complex: its structure, function and target genes. *Annual Rev Immunol 11:245-268*
- 27. Mollick, J.A., Cook, R.G., Rich, R.R. 1989. Class II MHC molecules are specific receptors for staphylococcus enterotoxin A. *Science;*244:817
- 28. Mosmann, T.R., Coffman, R.L. 1989. Heterogeneity of cytokine secretion patterns and functions of helper T cells. *Advanc. Immunol.* 46 111

- 29. Peavey, D.L., Adler, W.H. and Smith, R.T. 1970. The mitogenic effects of endotoxin and staphylococcal enterotoxin B on mouse spleen cells and human periphal lymphocytes. *J. Immunol.* 105:1453
- 30. Raj H.D., Bergdoll M.S. 1969 Effect of enterotoxin B on human volunteers. *J. Bacteriology 98*(2),833-834
- 31. Robb, R.J., Munck, A. and Smith, K.A. 1981. T cell growth factor receptors, quantitation, specifity, and biological relevance. *J. Exp. Med.* 154:1455-1474
- Rott, O., Mignon-Godefroy, K., Fleischer, B., Charreire, J., Cash, E. 1995. Superantigens Induce Primary T-Cell Responses to Soluble Autoantigens by a Non-Vβ-Specific Mechanism of Bystander Activation. *Cellular Immunol.* 161(2): 158-65
- Schlievert, P.M., Shands, K.N., Dan, B.B., Schmid, G.P. and Nishimura, R.D. 1981. Identification and characterization of an exotoxin from Staphylococcus aureus associated with toxic shock syndrom. *J. infect. Dis.* 143:509
- 34. Schwartz, R.H. 1990. A cell culture model for T-Lymphocyte clonal anergy. *Science 248: 1349-1356*
- Sellins, K.S., Bellgrau, D. and Gold, D.P. 1992. Specifity of rat T cell receptor Vβ chain usage in proliferaitve responses to staphylococcal enterotoxin B. *Eur. J. Immunol.* 22: 1931-1934
- 36. Siegel, J.P., Sharon, M., Smith, P.L., and Leonard, W.J. 1987. The IL-2 receptor beta chain (p70): Role in mediating signals for LAK, NK, and proliferative activities. *Science* 238:75-78
- 37. Smith, K. A. 1988. Interleukin-2: inception, impact and implications. *Science* 240:1169-1176
- Smith, L.R., Kono, D.H., Kammuller, M.E., Balderas, R.S. and Theofilopoulus, A.N. 1992. Vβ repertoire in rats and implications for endogenous superantigens. *Eur. J. Immunol.* 22:641
- 39. Spero, L., Jonson-Winger, A., and Schmidt, J.J. 1988. Enterotoxins of Staphylococci. Handbook of Natural Toxins. C.M. Hardgree, and A.T. Tu, editors, Marcel Dekker, Inc., New York. 131-163
- 40. Tseng, J., Williams, M.J., Lopez, M.R. 1989. Differential migration of lymphoblasts and small lymphocytes induced by mitogens in culture: characteristics of lymphois cells. *Reg Immunol 2 (1): 50-9*
- 41. Webb, S., Morris, C., Sprent, J. 1990. Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. *Cell* 63(6): 1249-56

Meine akademischen Lehrer an der Universität Marburg waren: (in alphabetischer Reihenfolge der Nachnamen)

Arnold	Kretschmer
Aumüller	Krieg
Barth	Lammel
Basler	Lang
Baum	Lange
Bertalanffy	Lennartz
Bien	Maisch
Cetin	Moll
Christiansen	Moosdorf
Czubayko	Mueller
Daut	Neubauer
Doss	Niessing
Engel	Oertel
Feuser	Peter
Gemsa	Pfab
Geus	Reichardt
Gotzen	Remschmidt
Griss	Rothmund
Grzeschik	Schachtschabel
Habermehl	Schäfer
Happle	Schüffel
Hartmann	Schulz
Heeg	Stinner
Heller	v. Wichert
Hesse	Vogelmeier
Hofmann	Vohland
Joseph	Weihe
Kern	Werner
Klenk	Westermann
Klose	

An der Universität Lund / Schweden: Prof. Dr. R. Andersson Dr. Guoguang Lu Prof. Dr. E. Zoucas

Danksagung:

Mein Dank gilt meinem Betreuer Dr. Michael Bette, meinem Doktorvater Prof. Dr. E. Weihe sowie allen Mitarbeitern der AG Weihe am Institut für Anatomie und Zellbiologie der Philipps-Universität Marburg insbesondere Frau Reichert-Preibsch und Frau Jutta Seyfarth. Weiterhin danke ich Dr. Hemmer und seinen Mitarbeitern am Institut für Neurologie der Universität Marburg für ihre Kooperation und freundliche Unterstützung. Schließlich sei der Dank auch an meine Eltern gerichtet, die während meiner gesamten Ausbildung hinter mir standen und mich stets in allen Belangen unterstützt haben. Sie alle lieferten einen wesentlichen Beitrag zum Abschluß der vorliegenden Arbeit.

"Non statim pusillum est, si quid maximo minus est."

Die Ergebnisse der vorliegenden Arbeit wurde in folgenden Publikationsorganen veröffentlicht:

Als Kongressbeiträge:

Neuroimmunomodulation 1999;6:458. [The 4th International Congress of the International Society for Neuroimmunomodulation] Bette M, Geisler T, Romeo H, Schäfer MK-H and Weihe E. Staphylococcal enterotoxin A is a potent t-cell activator in the wistar rat.

Immunology 2000;203:135. [Joint Annual Meeting of Immunology of the German and Dutch Societies, Essen, 2000] Bette M, Geisler T, Fairless R, Romeo H, Schäfer MK-H and Weihe E. Staphylococcal Enterotoxin A (SEA) mediated induction of IL-2 and IL-2 receptor in the Wistar rat.

Als Veröffentlichung:

Cytokine 2003;22:157-167. Bette M, Geisler T, Fairless R, Romeo H, Schäfer MK-H and Weihe E. Plasticity of IL-2 and IL-2 receptor chains in rat lymphoid tissues in situ after stimulation with staphylococcal enterotoxin A.

Die Arbeit war Teil des Forschungprojekts "Neuro-immuno-endokrine Wechselwirkungen" am Sonderforschungsbereich SFB 297, der durch die DFG gefördert wurde.