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INTRODUCTION

“LIFE IS CONTROLLED BY OVER 50.000 PROTEIN-PROTEIN INTERACTIONS.”
(ANDREW HAMILTON, YALE UNIVERSITY, MARCH 2005, INTERNATIONAL WORKSHOP NAD3 IN RAUISCHHOLZHAUSEN, GERMANY)

Protein-Protein interactions are playing a crucial role in virtually any biological system. 

Over the past 10 year great efforts has been made to find molecules, which modulate such 

interactions, since the modification of protein-protein interactions promise a valuable 

target. The market for the area of protein-protein interactions is expected to reach over 

$50 billion by year 2010.

It has been assumed that all proteins in a cell are forming an extended network with 

non-covalent interactions continuously forming and dissociating. Thus, the detection of 

specific protein-protein interactions and the determination of their affinity are of pivotal 

interest. Therefore, the observation of protein-protein interactions generated a multiplicity 

of methodologies, in particular yeast two-hybrid systems, phage display, and BIAcore. 

Additionally, lots of databases has been created to gather the huge amount of cumulating 

data in order to enlighten networks of interacting proteins in a general or target-specific 

way, such as the Database of Interacting Proteins (DIP) or the Mammalian Protein-

Protein Interaction database (MPPI). Furthermore, different tools has been developed 

to extract information from the given protein-protein interactions and their complexes. 

Consequently, it has been shown, that the driving forces for such interactions include 

electrostatic forces, hydrogen bonds, van der waals forces and hydrophobic effects. It 

has been shown, that hydrophobic effects drive protein-protein interactions, whereas 

hydrogen bonds and electrostatic interactions govern the specificity of the interface.

Transient associations between proteins spread across wide range of biological 

processes, which includes signal transduction, antibody against antigen reactions, 

hormone-receptor binding, and repairing actions by chaperones. In contrast, permanent 
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protein-protein complexes are essential in areas where the stability or function are 

defined by a multimeric state. Those complexes, for instance, are located in muscle 

fibres or participate at the formation of intracellular structures (e.g. microtubules). The 

importance of protein-protein interactions can be imposingly illustrated by the mode 

of action of G Protein Coupled Receptors (GPCRs), for instance the β-adrenergic 

receptor. The heterotrimeric so-called G protein is attached to the cytoplasmic part of 

the transmembrane located receptor. It is composed out of two permanently associated 

subunits, Gβ and Gγ, and the GTP-binding subunit Gα. Upon the binding of an agonist 

hormone (in this case adrenaline) to the extracellular face of the GPCR, the intracellular 

part of the receptor is triggered to change its conformation. Thereby, the subunit Gα gets 

induced to exchange the bound GDP into energetically more active GTP and dissociates 

from the still assembled Gβ and Gγ subunits. The activated Gα subunit is known to 

subsequently activate the enzyme adenylyl cyclase, which is also anchored within the 

intracellular membrane. Accordingly, the production of cyclic AMP (cAMP), which is 

often termed as second messenger, is promoted. Further on, cAMP-dependent kinases 

may get stimulated by cAMP and precipitate a cascade of subsequent reactions, which 

are also mediated by protein-protein interactions.

As we have seen in this example, the current state, whether protein-protein complexes 

have permanent character or tend to dissociate, can be triggered, either by conformational 

changes and/or electrostatic effects (phosphorylation by kinases). Therefore, it is of basic 

interest to understand the physicochemical properties, which leads protein complexes to 

disassemble. Accordingly, the specific modulation of desired protein-protein interactions 

allows the manipulation of distinct metabolic pathways and may finally lead to complete 

new classes of drugs. Thus, the distinction between permanent and transient complexes 

and the extraction of their discriminating features are of extraordinary interest, as 

we have seen for the G-protein complex (Gα and Gβ/Gγ). Furthermore, strategies to 

modulate protein-protein interactions in a specific way are highly desirable. 
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Therefore, this work focus on the one hand side on the extraction of discriminating 

features between different protein-protein complexes. This is achieved by applying 

algorithms from the area of Machine Learning in combination with Feature Selection 

methods. We discriminate between permanent and transient protein-protein complexes 

and developed an approach to quantify the relevance of the descriptors, which were 

applied for the classification. This work also focus on strategies to search and design 

stabilizers of protein-protein interactions. The approach of stabilizing protein-protein 

interactions appears as a promising alternative to the classical approach of inhibiting 

those. Finally, this work describes a database, which was developed with the goal to 

collect affinity data for given crystal structures of protein-ligand complexes. The database 

holds over 730 affinity values, handcurated from literature, for protein complexes of the 

Protein Databank (PDB) and is a valuable source for deriving regression-based scoring 

functions.
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PHYSICOCHEMICAL DESCRIPTORS TO DISCRIMINATE PROTEIN-

PROTEIN INTERACTIONS IN PERMANENT AND TRANSIENT 

COMPLEXES SELECTED BY MEANS OF MACHINE LEARNING 

ALGORITHMS

INTRODUCTION

In recent years substantial efforts have been dedicated to the investigation of protein-

protein interactions since they play a crucial role in nearly every biological system. 

Essential protein-protein interactions have proven to be highly specific and diverse at 

the same time (Sheinerman et al., 2000; Nooren & Thornton, 2003; Liddington, 2004). 

The ability to modulate protein-protein interactions could, therefore, be of interest 

in drug research and possibly provides access to new classes of targets. Accordingly, 

specific modulation of selected protein-protein interactions may lead to completely new 

classes of drugs. Protein-protein interaction complexes may belong to different kinds of 

categories: permanent or transient; biological or crystallographic. Permanent complexes 

are naturally formed during protein biosynthesis, thus they are also known as folding 

complexes, whereas transient complexes are those that form temporarily. Especially the 

mutual recognition of proteins via comparatively large surface interfaces plays a key role 

in most signaling pathways (e.g. G-Protein Coupled Receptors) or in hormone-receptor 

binding. Therefore, this type of complexes is also known as recognition complexes. 

Some authors have referred to these classes also as two-state (permanent) or three-state 

(transient) complexes (Tsai et al., 1997a). On the other hand, crystallographers are 

often faced with question whether a protein-protein complex in a crystal structure is the 

biologically functional form or a crystallographically enforced crystal contact which 

is biologically not relevant (crystal contact). According to prior publications we adopt 

the definition of crystal-contact complexes as monomer structure, whereas biological 

complexes are termed homodimers (Ponstingl et al., 2000).
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Despite the considerable importance of protein-protein interactions, there is only little 

knowledge about the mechanisms resulting in stable protein complexes that dissociate 

under certain physiological conditions. To obtain better insights into these mechanisms, 

closer investigations at the atomic level are required. Descriptors accounting for 

the nature of protein complex formation are highly desired, primarily to classify 

various protein complexes. In recent years, several reviews (Chakrabarti & Janin, 

2002; Jones & Thornton, 1996; Lo Conte et al., 1999) have summarized the general 

physicochemical properties of protein complexes, aimed at the discovery of appropriate 

descriptors to distinguish different types of protein complexes. It has been shown that the 

average amino acid propensity in the interfaces of permanent complexes is comparable to 

that observed in the core of proteins, whereas transient complexes are rather composed as 

a mixture of core and solvent-exposed amino acids (Tsai et al., 1997b). This is due to the 

fact that transient complexes need to be soluble when dissociated. Permanent complexes 

are normally stable complexes under physiological conditions, thus their interfaces 

show the hydrophobic character similar to the interior of an average globular protein 

(Lo Conte et al., 1999, Jones & Thornton, 1996). Based on a statistical analysis, Tsai et al. 

(Tsai et al., 1997b) also found that protein-protein interfaces are more hydrophobic than 

the exterior of proteins, yet more polar than the interiors of proteins. This may be due to 

the fact that this intermediate character is needed to promote association of the individual 

monomers. Lo Conte et al. calculated a similar packing density in the center of protein-

protein interfaces in comparison to the interior of proteins (Lo Conte et al., 1999). The 

driving force to stabilize protein-protein complexes is considered to be the hydrophobic 

effect (Dill, 1990), although it is not supposed to be the driving force in the association 

process (Sheinerman et al., 2000).

Furthermore, permanent complexes tend to have larger and more twisted interfaces 

than transient ones. Especially the size of the interface in non-physiological complexes 

(e.g. crystal contacts) is a major discriminant to functional homodimer complexes, since 

crystal contacts have an average interface size in the range of 550 (± 270) Å2, whereas 
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FIGURE 1. Distribution of protein-protein interfaces sizes in Å2. (a) The distribution of the 
homodimer complexes (yellow) are wide spread from about 200 to 14.000 Å2, whereas 
monomer crystal contact complexes (black) show a small distribution from about 200 to 
3.000 Å2. (b) Permanent complexes (black) show a wide spread distribution from about 
200 to 14.000 Å2, whereas transient complexes (yellow) show smaller distribution from 
about 200 to 5.500 Å2.
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physiologically stable homodimers normally exceed a size of > 1900 (± 1200) Å2 (Fig. 1). 

Nevertheless, it has to be kept in mind that biological systems such as protein complexes 

do not obey in all cases a straight-forward classification in either permanent or transient 

complexes. While splitting permanent and transient complexes in terms of the amino acid 

propensities across their interfaces, we are faced with the fact that a large proportion of 

protein complexes satisfies both criteria and would fall into both categories. Despite of 

all the knowledge and understanding about the properties of protein complexes today, it 

is not possible to easily classify them in terms of simple sequence-based descriptors.

This study focuses on the classification of crystal contact complexes versus functional 

homodimer complexes, as well as permanent versus transient complexes. We aim to 

establish a classification on a physicochemical basis by representing the protein-protein 

interfaces by their physical and chemical properties at the atomic level. The first study 

on the classification of protein-protein complexes was introduced by Ponstingl et al. 

(Ponstingl et al., 2000) using statistical atom pair potentials to distinguish functional 

contacts from artificial contacts enforced by the crystallographic packing environment 

(crystal contacts). Ponstingl et al. were able to classify a dataset with 96 monomers and 

76 homodimers with a success rate of 88.9%. This rate indicates a small but significant 

improvement over the pure measure of accessible surface area (ASA) buried by the 

interface-contributing atoms, which leads to a prediction rate of 84.6% (Ponstingl et al., 

2000). The continuing work of Valdar et al. (Valdar & Thornton, 2001) enhanced the 

prediction accuracy to 92% by applying sequence conservation properties. To establish 

the correlation they also used an optimizing artificial neural network. Bahardur et al. 

dissected specific and non-specific protein-protein interfaces by applying statistical 

parameters. The combination of non-polar interface area, fraction of buried interface 

atoms and residue propensity score of the interfaces resulted in ~94% prediction accuracy 

(correctly classified complexes) using a dataset comprising 188 monomers (crystal 

contacts) and 122 homodimers (Bahadur et al., 2004). Mintseris et al. (Mintseris & Weng, 

2003) introduced the concept of Atomic Contact Vectors (ACV) for taking advantage of 
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the power of methods in multivariate analysis and pattern recognition. They evaluated the 

dataset initially used by Ponstingl et al. with Quadratic Fisher Discriminant (QFD) and 

Kernel Discriminant Analysis (KDA) and achieved an impressive prediction accuracy of 

93%. Mintseris et al. were the first to classify protein complexes in terms of being either 

permanent or transient in biological systems, which corresponds to differentiation into 

permanent or transient complexes. They compiled a dataset of 345 structures comprising 

147 permanent and 198 transient complexes with a maximum of 25% sequence identity 

according to pairwise BLAST all-against-all sequence comparisons. By applying KDA, 

they achieved the remarkable prediction accuracy of 91.0% in a leave-one-out cross-

validation. The method QFD fell back with only 80% correctly predicted complexes.
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TABLE 1. PDB codes of dataset A, listed by their class.
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TABLE 2. PDB codes of dataset B, listed by their class.
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The work of Ofran et al. (Ofran & Rost, 2003) did not rely primarily on derived 

information to classify different protein complexes, but introduced an information 

theory-based analysis approach by combining information from different databases. By 

means of their comprehensive data set they were able to apply simple statistical methods 

to find significant correlations between the amino acid distributions in protein-protein 

interfaces and the protein complex type. Ofran et al. distinguish six types of protein-

protein complexes: (1) interfaces within one structural domain, (2) interfaces between 

different domains within one chain, (3) interfaces between permanently interacting 

identical chains, (4) interfaces between transiently interacting identical protein chains, 

(5) interfaces between permanently interacting different protein chains and (6) interfaces 

between different transiently interacting protein chains.

In the present work we focus on the classification between crystal contact complexes 

and functional homodimer complexes using the dataset of Ponstingl et al. with 172 

structures (Ponstingl et al., 2000) (dataset A, Tab. 1), as well as on the classification 

between permanent and transient complexes by means of the dataset compiled by 

Mintseris et al. (Mintseris & Weng, 2003) (dataset B, Tab. 2). The classification is 

carried out by algorithms from the field of machine learning. We compare the prediction 

accuracy with four different algorithms that can be considered for a wide spectrum of 

approaches in the field: Support Vector Machines (SVM), Decision Trees (C4.5), K 

Nearest Neighbors (KNN) and Naïve Bayes (NB).

Although SVM is a relatively new approach (Schoelkopf, 2002), there are already 

several studies in literature which use this algorithm to predict properties of protein-

protein interaction from primary sequence data (Bock & Gough, 2001), the location of 

protein-protein binding-sites (Bradford & Westhead, 2005, Lo et al., 2005) or protein-

protein interface residues (Yan et al., 2004). SVM and Decision Trees were implemented 

to predict beta-sheet recognition in protein-protein complexes (Siepen et al., 2003) and 

other machine learning algorithms such as artificial neural networks have also been 
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utilized to predict protein-protein interaction sites (Fariselli et al., 2002, Zhou & Shan, 

2001). SVM and the combination of KNN with Genetic Algorithms were furthermore 

applied to classify molecules by “kinase inhibitor-likeliness” recently (Briem & Guenther, 

2005).

In this study, the aforementioned classification algorithms have been combined with 

different feature selection methods, namely: Filter and Wrapper as well as Genetic 

Algorithms. This combination enables us to extract those descriptors from the protein 

complexes that are supposed to best discriminate among the different types of complexes. 

As data representation to describe the protein-protein complexes we adapted on the one 

hand the ACVs with the atom type notation ACE (Zhang et al., 1997) from Mintseris 

et al. (ACVACE), on the other hand we created new alternative representations: Atomic 

Contact Vectors using Sybyl atom type notation (ACVSybyl), DrugScore Potential Vectors 

(DCV), and SFCscore Descriptor Vectors (SDV). In particular the latter concentrate on 

physicochemical properties across the interface.

THEORY AND METHODS

PROTEIN-PROTEIN INTERFACES

The classification of monomers and homodimers is based on the Ponstingl et al. 

dataset with 172 structures comprising 96 crystal contact complexes and 76 functional 

homodimers. The classification of permanent and transient complexes is based on the 

Mintseris et al. dataset with 345 structures comprising 147 permanent and 198 transient 

complexes. The atom coordinates of all structures can be obtained freely from the Protein 

Data Bank (PDB) operated by the Research Collaboratory for Structural Biology (Berman 

et al., 2000). Protein structures in the PDB are always deposited as their asymmetric 

unit, which does not necessarily correspond to the biological unit of the protein. In fact, 

monomers often represent the entire asymmetric unit in crystal structures, especially in 
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the homomeric complexes. Since our work relies on protein complexes, we first had to 

generate the crystal packing to obtain the biologically functional unit of all proteins. 

The program SYBYL (see ref.: SYBYL 7.0) was used to apply the symmetry operations, 

deposited in the PDB data file, on the monomers. Every chain in each dataset shows 

a maximal sequence identity of 25% with other entries, a commonly accepted level to 

consider protein chains as non-homologous. All structures were reviewed against the 

original publication with respect of being either a monomer or a homodimer complex, 

or a permanent or transient complex (Ponstingl et al., 2000, Mintseris & Weng, 2003). 

Most protein-protein complexes are composed of two chains, clearly defining the 

protein-protein interface, whereas some protein-protein complexes are constructed of 

three or even four chains. In the latter case, we had to take into account to which part of 

the biologically relevant complex each chain belongs. Technically chains belonging to 

one “side” of the interface were considered as one single chain. An accurate definition 

of the protein-protein interface is essential since in the following we consider only the 

atoms contributing to the interface and derive information about atom-atom contacts 

across the interface entirely on the basis of this assignment. All atom coordinates and 

additional meta information were stored in a database for easy and convenient access 

and data management. All protein-protein complexes were inspected visually to assess 

the relevance of the assignments of the complexed protein chains.

The data representation of protein complexes is a crucial step in using machine 

learners for classification and feature selection, since the prediction accuracy is 

strongly dependent on the quality of the input data. Furthermore, a sophisticated data 

representation is mandatory for a meaningful discussion of the selected features. 

Therefore, all atoms contributing to the protein-protein interface have to be determined. 

Two different methods have been described in literature for this task: In the first one, 

all atoms from one side of the interface contacting an atom on the other side within a 

given distance cutoff are classified as being part of the interface. The cutoff is set to 6 Å, 

assuming attractive interatomic contacts up to this distance. This method is an accurate 
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and fast way to retrieve all interface atoms. In the second, all atoms changing their 

accessible surface area (ASA) upon in silico complex formation (Hubbard & Thornton, 

1993, Sanner et al., 1996) are considered (ΔASA). From a theoretical point of view the 

latter method appears very relevant, but all atoms which are already completely buried 

in the uncomplexed state are neglected since obviously these atoms cannot change their 

ASA upon complex formation. Furthermore, different results are obtained when using 

different algorithms to calculate ASAs. Nevertheless, comparative evaluations applying 

the distance cutoff method and the ΔASA method show very similar results with respect 

to the assigned interface atoms (data not shown). Accordingly, we decided to work with 

the distance cutoff method particularly for reasons of comparability with results from 

other publications.

ACV WITH ACE & SYBYL ATOM TYPE NOTATION (ACVACE, ACVSYBYL)

Encouraged by the convincing results achieved with Atomic Contact Vectors (ACV) to 

represent protein-protein interfaces (Mintseris & Weng, 2003), we decided to adopt this 

approach. ACVs are simple vectors holding counts of occurrences of atom-atom contacts 

across the protein-protein interface, categorized with respect to the contact type. Only 

atoms in the protein-protein interface were considered for the generation of the ACVs. 

For comparative purposes, we followed the approach of Mintseris et al. and created 

ACVs with the atom type notation of Atomic Contact Energy (ACE) (Zhang et al., 1997). 

In the following we call these vectors ACVACE. The atoms of the 20 proteinogenic amino 

acids are described by 18 different ACE atom types. This leads to a vector size of 171.

Encouraged by the convincing results achieved with Atomic Contact Vectors (ACV) 

to represent protein-protein interfaces (Mintseris & Weng, 2003), we decided to adopt 

this approach. ACVs are simple linear vectors holding counts of occurrences of atom-

atom contacts across the protein-protein interface, categorized with respect to the contact 

type. Only atoms in the protein-protein interface were considered for the generation of 



CHAPTER 1 - THEORY AND METHODS 21

the ACVs. For comparative purposes, we followed the approach of Mintseris et al. and 

created ACVs with the atom type notation of Atomic Contact Energy (ACE) (Zhang et al., 

1997). In the following we call these vectors ACVACE. The atoms of the 20 proteinogenic 

amino acids can be described by 18 different ACE atom types. This leads to a vector 

size of 171 attributes: ���� ����. On the other hand, we created ACVs based on the widely 

used Sybyl atom type notation, derived from the TRIPOS FORCE FIELD (Clark et al., 1989). 

The atoms of the proteinogenic amino acids can be represented by 12 different Sybyl 

atom types, which leads to 78 different atom pairs: ���� ����. These vectors are named 

ACVSybyl.

DRUGSCORE CONTACT VECTORS (DCV)

The original implementation of ACVs simply counts the raw occurrences of specific 

atom-atom contacts across the protein-protein interface. This approach, however, does not 

consider that, depending on their mutual distance, contact pairs can differ dramatically 

with respect to their contribution to binding affinity. This fact is taken into account 

by knowledge-based scoring functions, which use distance-dependent atom-atom pair 

potentials extracted from distributions in comprehensive structural databases. 

Statistical pair-potentials were derived from the two datasets in analogy to the 

DrugScore scoring function (Gohlke et al., 2000). In contrast to the original DrugScore 

implementation, where pair potentials were derived from protein-ligand complexes, 

here pair potentials were compiled using protein-protein complexes. The distance cutoff 

threshold was maintained at 6 Å. Instead of the raw contact counts in case of the original 

ACV, we derived scored atom-atom contacts in the DCVs. DrugScore potentials were 

only collected for Sybyl atom types corresponding to the original atom type list used in 

the genuine DrugScore implementation. The scores for every atom-atom contact type in 

the protein-protein interface is summed up to serve as a descriptor.
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SFCSCORE DESCRIPTOR VECTORS (SDV)

SFCscore has recently been developed as an empirical regression-based scoring 

function based on descriptors for protein-ligand complexes (Sotriffer et al., in 

preparation). SFCscore provides descriptors for hydrogen bonding, ring interactions, 

rotatable bonds, and hydrophobic complementarity, as well as a variety of other surface 

measures. The SFCscore library was attached to the EPIC library in order to subject this 

set of descriptors also to the characterization of protein-protein complexes. We generated 

a set of 63 SFCscore descriptors for each chain in every protein-protein interface of the 

dataset. These descriptors served as input vectors for the machine learning algorithms. 

Not all of the considered descriptors are of relevance for the protein-protein interface 

classification, e.g. the metal scores. Since there are no metals in the interfaces of the 

protein-protein complexes selected for this study, the score is always 0. Attributes adopting 

the same value across all vectors are not considered by the machine learners accordingly, 

such irrelevant descriptors do not interfere with the results of the classification. They 

rather serve as reference attributes for the following feature selection process. 

MACHINE LEARNING ALGORITHMS

In this work we are dealing with supervised learning, i.e. the learning system is 

provided with n labeled patterns. Every pattern is a vector of m features

�����
�
� �

�
� ��� � �����������������������

in this work ��������� ����� ��� �� �. Consequently, a pattern is a point in the input space 

. Furthermore, for the training set S every pattern is labeled with a class ������ �.

������ � ��� � ���� � ���� ���� ��� � ��

(1)

(2)
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The elements of S will be referred to as examples. We assume that we have an independent 

and identically distributed set of examples, i.e. the data are generated from an unknown 

but fixed probability distribution:

 
�� �� ���

���

�

�� ��� � �����
���

�

�� � ����� � �� � ���

The goal in supervised learning is to compute a hypothesis from the examples which is 

able to correctly classify a new and previously unseen patterns (x,y) that are also taken 

from Pr(x,y). Accordingly, we try to find a functional relationship between patterns and 

labels:

�� � ��

We use h in order to classify new patterns on a hypothetical basis. The generalization 

performance of the hypothesis h is measured in terms of its classification accuracy, i.e., 

the more accurate new patterns are classified by h, the better this hypothesis generalizes 

beyond the observed data. More specifically, the classification accuracy of h can be 

measured by means for a loss function:

� ���� ������

with � � � � ���� for all ���� For discrete sets Y we can use:

� � � � �� ����� � �� ��� �� ��� ��� �

and for real valued sets of Y:

� � � � � ������� ���� � ��

(3)

(4)

(5)

(6)

(7)
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The first loss function is referred to as 0/1-loss, the second as mean square error. It is 

important to notice that minimizing the training error or empirical risk

���� ����
�

�
�
���

�

� � 	� � � �����

does not imply a small risk averaged over test examples extracted from the underlying 

distribution Pr(x,y). Risk is defined as:

� �����
���

� � � � �� ���	�� � � � � �

Over-fitting occurs if Remp is very small or 0 and R is very large. In this case, the system 

is able to classify the training set very well, but performs poorly in classifying new and 

unseen patterns. Since the underlying distribution Pr(x,y) is not known we only can 

estimate R from the training set. One of the simplest is k-fold cross-validation with the 

special case of leave-one-out cross-validation. In k-fold cross-validation the training set 

is divided into k (approximately) equal-sized subsets. The learning algorithm is trained 

with k-1 subsets and the omitted subset is used to estimate the error. This procedure is 

repeated n times. In the case that k equals the sample or training set size, it is called leave-

one-out cross-validation.

SUPPORT VECTOR MACHINES (SVM)

A relatively new approach in machine learning is provided by Support Vector 

Machines (SVM) (Schoelkopf, 2002; Cortez & Vapnik, 1995). SVMs try to separate data 

by means of optimally assigned hyperplanes. The basis of SVMs are linear functions or 

hyperplanes. From the set of possible hyperplanes, SVMs select the one which has the 

maximum margin. It can be shown that SVMs follow the so-called principle of structural 

risk minimization (Vapnik, 1998). To deal with data that is not linearly separable in 

the original input space, the idea of SVMs is to map the data into a higher dimensional 

(8)

(9)
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feature space. A linear hyperplane in this feature space corresponds to a non-linear 

decision boundary in the original input space. The mapping from the latter to the former 

is accomplished by means of so-called kernel functions. It is important to mention, 

however, that this mapping is never computed explicitly. Instead, the optimization 

problem of finding a hyperplane with maximal margin in the feature space can be solved 

implicitly, a property that make SVMs computationally tractable for high-dimensional or 

even infinite-dimensional feature spaces. We applied the RBF kernel, since it produced 

the best results in test scenarios. 

We implemented the freely available library LIBSVM (Chang & Lin, 2001) into 

EPIC. LIBSVM delivers a Python interface, which simplified the implementation in the 

Python-based EPIC library and speeds up the classification since no I/O operations are 

necessary.

DECISION TREES (C4.5)

Decision Trees generate a tree structure which can be exploited to classify data. Since 

tree representations are well readable and their classification performance is powerful, 

Decision Trees are a very popular machine learner. Decision Trees are composed of 

three elements: nodes, edges, and leafs, where nodes without children are termed leafs. 

Nodes represent tests with respect to a feature. For every possible answer of the test, 

there is an edge to a child node. Every leaf represents a classification. A pattern can be 

classified by testing the pattern according to a property in every node starting with the 

root. Based on the value of the feature in the pattern, one child of the node is chosen. If 

the child is a leaf, the pattern becomes the class that is represented by this leaf. To create a 

Decision Tree the set of examples S will be recursively separated on the basis of a feature 

(Algorithm 1: Line 5-11). If all examples belong to the same class, the separation ends 

and the resulting leaf is returned (Algorithm 1: Line 2 and 3).
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Decision tree learning is a heuristic approach that aims at inducing simple models, i.e., 

small trees, since such models are supposed to generalize better than complex models. 

The complexity of a decision tree strongly depends on the choice of suitable splitting 

attributes in line 6 of the algorithm. In this connection, potential candidate features are 

evaluated in terms of an information measure such as, e.g., the information gain which 

is based on the well-known Shannon entropy, and the “most informative” attribute is 

selected. To avoid over-fitting it is useful to “prune” the trees either in the building 

process or in a post-processing step. We used the original C4.5 algorithm of Quinlan 

(Quinlan, 1993), which is freely available on the Internet. Since this code is written in 

C, it was easy to write a wrapper application to implement it in the Python-based EPIC 

library. This speeds up the classification by the factor of 10, since no speed-reducing I/O 

operations are required. 

 1 Decision Tree(S,A)

 2 if all examples belong to the same class c then

 3  return leaf marked with class c

 4 else

 5  Select a feature �
�
��

 6  create node r with label Ai

 7  for all �
�
� ���� � �

�
������

�
� do

 8   � ������� � � ��� � �� � �� ��
 9   �

�
�

����������	��� ���
�

� � � �����
 10   add �

�
�

 as child to r with test � ��� � �� � ���

 11  end for

 12  return r

 13 end if

ALGORITHM 1. General algorithm for generating decision trees. S is a set of (classified) 
examples, A is the set of features and p is a predicate.
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(10)

K NEAREST NEIGHBORS (KNN)

KNN classifiers (Dasarathy, 1991) approximate the probability distribution over Y at the 

point x of the input space by the relative frequency of the class in the neighborhood of x. 

Thus, KNN relies on the assumption of locally constant class probabilities. In the case of 

a 0/1 loss function, classification simply amounts to predicting the most prevalent among 

the classes of the k nearest neighbors of x (majority voting). This basic estimation principle 

has been extended in various directions. A straightforward and intuitively reasonable idea, 

for example, is to weight the neighbors according to their closeness to x.

Needless to say, the choice of the neighborhood size k has a strong influence on the 

performance of KNN classification, and there are different methods for optimizing this 

parameter. Besides, a suitable distance measure must be defined on the input space X. 

If X corresponds to the m-dimensional Euclidean space (or a subset thereof), as in our 

application, one typically employs the Euclidean distance. As a local estimation method, 

KNN is known to have problems in high-dimensional input spaces. Thus, feature selection 

and feature weighting is of critical importance for KNN methods (Wettschereck et al., 

1997). We applied KNN with k=5, which showed best results in test scenarios. The KNN 

algorithm was implemented in Python into the EPIC library.

NAÏVE BAYES (NB)

Using the well-known Bayes‘ rule, the probability of observing class y, given an input 

vector ����
�
� ��� � �

�
�, can be expressed as

� � � ��� � ��� � ����� ��� � ��� � �� � � ��� � � ��� ��� � ��� � ���
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In principle, (10) could be used to estimate the probability for every class y and, 

hence, to derive the most probable prediction (note that the denominator in (10) is a 

constant factor that does not depend on y and can hence be ignored.) However, since 

the conditional probabilities � ��� � ��� � �� � �� as well as the (prior) probabilities P(y) are 

usually unknown, they must be estimated from the data given. This is problematic, since 

the number of these probabilities can be huge (note that conditional probabilities must be 

estimated for every feature combination, i.e., for each potential input pattern). The Naïve 

Bayes classifier makes the simplifying assumption that the attributes are conditionally 

independent given the class. Thus, � ��� � ��� � �� � �� simplifies to � ��� � � �� � ��� ��� ��� � � � �

thereby reducing the number of probabilities to be estimated dramatically.

Needless to say, the Naïve Bayes assumption of conditional independence will usually 

not be satisfied in practice and at best provides a good approximation. In particular, 

this assumption is obviously incorrect in the applications considered in this work. (For 

example, the number of atom-atom contacts for the pairs (a,b) and (b,c) is definitely 

not independent.) Nevertheless, the Naïve Bayes classifier has proven to perform rather 

well over a wide range of practical classification problems. This can partly be explained 

by the fact that classification is quite robust toward variations of the class probabilities 

and, hence, toward imprecise probability estimations. In fact, note that the classification 

remains correct as long as the true class receives the highest probability, even if the 

estimated probabilities themselves are not very accurate. If the attribute Ai has a very large 

range and not many examples are given, some of the � ��� � �� in � ��� � ��� � ��� ��� ��� � � �

can be nearly by 0 or more worse they are 0. To avoid this the so called m-estimate and 

discretisation can be used (Mitchell, 1997). A not very sophisticated discretisation 

showed not very much impact to the classification and therefore no discretisation was 

used. Due to very poor results without m-estimate the Naïve Base classifier was only 

used with m-estimate. The Naïve Bayes algorithm was implemented in Python into the 

EPIC library.
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FEATURE SELECTION APPROACHES

Similar to the human brain a machine learner can increase its learning performance 

by filtering out irrelevant features. As a welcome side-effect, the classification speed 

increases by focusing on less features. Feature selection can be viewed as a combinatorial 

problem: Given a set of m features, a subset of k<<m features has to be found that 

minimizes the risk R. Since there are 2m possible subsets, an exhaustive search in space 

of all feature subsets is not feasible in most cases. Several methods have been developed 

to overcome this problem. In literature there are two most commonly applied approaches 

described to solve this problem: Filter and Wrapper approaches (Blum, 1997). In the Filter 

approach, feature selection is performed as a preprocessing step to the actual learning 

algorithm. The preprocessing step estimates general characteristics of the training set to 

select the most promising features and to discard all other features. Wrappers utilize the 

machine learning algorithm itself to extract the discriminating features. In this work, we 

used both a RELIEF F Filter approach and a backward elimination Wrapper. Furthermore, 

we implemented a Genetic Algorithm (GA) in Python into EPIC to overcome the 

combinatorial problem of evaluating huge numbers of combinations and extracting the 

discriminating features from the input data.

FILTER APPROACH

RELIEF F, a Filter approach, is an enhancement of the former RELIEF feature selection 

method. The basic idea behind RELIEF F is the assumption that the selected features have 

dissimilar values for samples with different labels and similar values for samples with 

the same labels. RELIEF F follows this concept by assigning a quality to every feature. 

In order to compute the RELIEF F quality of every feature, d examples from S with

��� ���������� are randomly chosen. The quality for feature Ai is then:

������� �� ��������� � ������� �� ����� �������� �� ����� �� ������� ��� ������ � ������� ��
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��� �������� �������� �� � ������������� ���� ������� ����������� ��� ������� ��������

��������� ������� ���� ��� ���� �� � ��������� �� � ������� ������ ����� ������������ ��������

��� �������������� �������� �� ��� �������� ���������� �� ��������� �� ������ ���������� ��
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���������������
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��������� ��� ����� ������� ������� ��� ���������� �������� �� �������� ����� ��� ��������

��������� ������� ����� �� �� ��� �������� �� ������� � �� ����� ������� �������� ������� �������

���� ���� ��������� �� �������� ���� �������� ����� ��� ������ ��� ����� �� �������

����������� ��� �� ������ ������� ��������� ��� ��� �������� ������������ ��� �������

��������� ������ ���� � ������� ��� �� ���� ��� ������ ��������� ��� ������������ ���� �������

���������� ����� ������� ��� �������������� ��������� ��� �������� ����������� ������ ���� ���
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where k is used to overcome the problem of background noise in the data distribution and 

can be selected arbitrarily (but is supposed to be not too small), where � �� �� is the distance 

between vector r and s at the position i. Filter approaches try to find the relevant features 

in a preprocessing step without considering the machine learning algorithm itself. This 

may lead to a selection of a feature subset which subsequently enhances the classification 

accuracy of the learning algorithm. An advantage of Filter approaches is their speed.

WRAPPER APPROACH

Wrapper approaches utilize the learning algorithm itself to choose the discriminating 

features. For every feature subset, the prediction accuracy is computed using the learning 

algorithm itself. Since it is not feasible to explore the full space of all 2m feature subsets, 

several methods have been developed for searching this space in a heuristic (greedy) 

manner, thereby gaining efficiency at the cost of (possibly) loosing optimality. There 

are mainly two kinds of Wrapper approaches: The so called forward selection and 

the backward elimination. The forward selection starts with a feature set of only one 

single attribute and successively adds further attributes which improve the classification 

accuracy. The backward elimination starts with the full set of all features and successively 

removes attributes which reduce the classification accuracy. We implemented the 

backward elimination in EPIC and started with the full set of features. In every step, the 

feature which decreased the prediction accuracy most was discarded in the next step. In 

avoidance of local minima the algorithm was applied until only one attribute was left 

and the set of attributes with the best classification accuracy was used. The classification 

accuracy was estimated by a leave-one-out cross-validation. 
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GENETIC ALGORITHMS

Genetic Algorithms (GA) belong to a family of search algorithms which are inspired 

by the concept of natural evolution. These algorithms encode a potential solution for a 

specific problem in a chromosome-like structure and apply recombination (crossover) 

and mutation operators to these structures. Recombination can be understood as 

copying parts of the chromosomes and mutation can be regarded as flipping „bits“ on 

the chromosomes. From a computational point of view, the chromosomes are bitstrings 

representing 0s and 1s only. 

An essential idea of any GA is the application of the “survival of the fittest‘‘ principle. 

I.e., the generated individuals compete with each other, and those individuals scoring 

best with respect to the given target problem are given a higher chance to reproduce. 

Better solutions are measured according to a function � which will be referred to as 

fitness function. Thus, using GAs implies that a fitness function appropriate for the 

problem can be defined. Usually GAs are utilized to find the optimum of the function �. 

In this study, � was considered as prediction accuracy of leave-one-out cross validation. 

Traditional techniques such as gradient descent are appropriate for local optimization 

problems. However, this kind of optimization technique is not applicable if the function 

has many local optima or, even worse, if the gradient cannot be computed. Major 

advantage of GAs is in fact that little knowledge is required about the function to be 

optimized and their applicability to large scale problems. Both holds for the present 

problem of extracting features from our input vectors: we only have little knowledge 

about the underlying function of the problem and the search space is very large (2171 in 

case of ACVACE vectors).

GAs use a random walk through a highly exploitative search space encoded by discrete 

entities, i.e. the transition from one state to another in the search space is probabilistic 

and not deterministic. We implemented a so-called Simple Genetic Algorithm in EPIC, 
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written in Python. After preliminary tests, a population size of 30, a crossover rate of 

75%, and a mutation rate of 5% was chosen for all studies. The offspring is created 

via two-point crossover between the mates and mutation was performed by single bit 

substitutions (point mutations). As termination criterion we defined convergence with no 

further changes over 10 generations or a 100% prediction quality.

FEATURE ANALYSIS

The GA optimized feature selection, which is receiving the best results, was chosen 

for the analysis of the extracted features. It is not relevant to consider the chromosome 

of the fittest individual, since this would only correspond to a snap-shot during the 

optimization process. To obtain clear trends, we analyzed around 2•105 chromosomes 

evaluated during the GA process. The more often a feature was considered (i.e. appeared 

in the chromosome) of a given fitness, the higher it was ranked as discriminating feature 

by calculating the frequency of occurrence in percentage with respect to this feature. 

Redundant descriptors, such as the metal contact score in SDV (always showing the 

value of 0), are supposed to result in a 50% probability since metal contacts are irrelevant 

for the classification. By plotting the calculated frequency of occurrence for each feature 

against the correspondingly obtained prediction accuracy, an estimate for its relevance 

is obtained represented by the gradient (or slope) m of the line of best fit. I.e., features 

becoming more relevant during the GA process show m>0, irrelevant features m=0, and 

features reducing the prediction accuracy m<0. Thus, m is a measure for the significance 

of every feature contributing to the classification process; in the following, referred to 

as EPICscore.

The analysis of GA generated feature subsets was only performed for the combination 

of the C4.5 machine learner together with the SDV data representation, since C4.5 is 

according to our results the algorithm with the best discriminating power and the SDVs 

are the descriptors most amenable to a physicochemical interpretation.
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RESULTS AND DISCUSSION

We investigated both dataset A and B and classified them with four different machine 

learning algorithms: Support Vector Machines (SVM), Decision Trees C4.5, K Nearest 

Neighbors (KNN) and Naïve Bayes (NB). We utilized three different feature selection 

methods: Filter, Wrapper, and Genetic Algorithm.

CLASSIFICATION OF MONOMER VERSUS HOMODIMER COMPLEXES

We used the dataset of Ponstingl et al., who classified this dataset with a prediction 

accuracy of up to 88.9%. They used a bootstrap re-sampling validation using 

statistical potentials, based on atom-atom contact frequencies across the interface 

(Mintseris & Weng, 2003). We performed leave-one-out cross-validations for all 

combinations of the data representation and applied machine learning algorithms with 

and without feature selection algorithms. Also, we run k-fold cross-validations to assess 

the robustness of the predictions. The cross-validation results using this dataset (Tab. 3) 

show that all machine learning algorithms are capable to discriminate crystal packing 

enforced monomer contacts from functional homodimer contacts. Without any feature 

selection, the C4.5 algorithm shows a prediction accuracy between 89.0% for ACVSybyl 

and 87.8% for DPV in the leave-one-out cross-validation (Tab. 3a) and between 90.9% 

(± 5.9%) for SDV and 84.1% (± 3.4%) for DPV in the k-fold cross-validation, which was 

performed with k=2 and repeated 20 times (Tab. 3b). The KNN algorithm holds the best 

prediction accuracy for a leave-one-out cross-validation without any feature selection. 

In combination with ACVSybyl input vectors, 91.3% correctly predicted complexes are 

revealed. This is also true for the k-fold cross-validation with 89.5% (± 0.8%) for the 

same combination. But also the ACVACEs and the DPVs are scoring well, with 87.2% 

and 89.5% in case of the leave-one-out respectively, and 86.2% (± 2.2%) and 85.6% 

(± 2.5%) in case of the k-fold cross-validation. Only the SDV data representation is 

dropping back with 84.9% and 76.2% (± 5.0%), respectively. The SVM algorithm leads 
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to prediction accuracy between 88.4% and 86.0% for the leave-one-out and 86.2% 

(± 1.8%) to 84.3% (± 2.0%) for the k-fold cross-validation. The NB algorithm shows 

only 82.6% to 84.3% for the leave-one-out and 80.0% (± 3.7%) to 61.1% (± 10.2%) 

for the k-fold cross validation. This is by no means a satisfying result, since Ponstingl 

et al. reported already 84% prediction accuracy simply based on the size of the protein-

protein interface. The poorly performing NB algorithm is probably due to the fact that the 

assumption of conditional independence is not satisfied in our study, since, for instance, 

the number of atomic contacts is strongly interdependent.

Utilizing the feature selection algorithms in combination with leave-one-out 

cross-validations, we were able to extract the most discriminating features by enhancing 

the prediction rate simultaneously. RELIEF F is the computationally least expensive 

algorithm. By discarding those features from the vector having the RELIEF F quality q<=0 

the vectors were reduced from 171 to 108 (ACVACE), 78 to 63 (ACVSybyl) , 78 to 56 (DPV) 

and 63 to 54 (SDV) attributes. The results show that the gain in prediction accuracy is 

too small to extract meaningful information out of the selected features (Tab. 3c). The 

average enhancement in prediction accuracy is at most around 2%, in some cases we 

even observe a small loss in prediction accuracy. RELIEF F seems not to be a reliable 

feature selection algorithm for the given problem.

The backward elimination Wrapper approach is computationally quite expensive, since 

we have to run at most ������ cross-validations, where n is the size of the given attributes, 

i.e. 14706 for ACVACE, 3003 for ACVSybyl and DPV, and 1953 for SDV. The Wrapper 

performs better than the RELIEF F approach by enhancing the prediction rate on average 

by about 3%. However, the Wrapper benefits in comparison to the Filter approach since 

it is optimally tailored towards the applied machine learner. The backwards elimination 

pruned the input vectors dramatically, e.g. the ACVACE attributes from 171 to 47. 

The highest prediction accuracy with the Wrapper was achieved with the combination 

C4.5/SDV resulting in 93.0%. NB still performs worst of the given algorithms with only 
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Method ML ACVACE ACVSybyl DPV SDV

Loo cv

C4.5 88.4% 89.0% 87.8% 88.4%

SVM 87.2% 88.4% 87.2% 86.0%

NB 84.3% 83.1% 82.6% 82.6%

KNN 87-2% 91.3% 89.5% 84.9%

k-fold cv
k=2

n=20

C4.5 87.8% ± 2.2% 84.7% ± 4.4% 84.1% ± 3.4% 90.9% ± 5.9%

SVM 85.1% ± 1.2% 84.3% ± 2.0% 86.2% ± 1.8% 84.9% ± 2.1%

NB 79.1% ± 4.4% 80.0% ± 3.7% 78.2% ± 3.9% 61.1% ± 10.2%

KNN 86.2% ± 2.2% 89.5% ± 0.8% 85.6% ± 2.5% 76.2% ± 5.0%

Filter

C4.5 88.4% 108 89.0% 63 89.5% 56 89.5% 54

SVM 87.2% 108 88.4% 63 86.6% 56 86.0% 54

NB 84.9% 108 83.7% 63 82.6% 56 80.6% 54

KNN 88.5% 108 91.9% 63 89.5% 56 83.1% 54

Wrapper

C4.5 91.3% 47 89.5% 41 91.9% 51 93.0% 36

SVM 88.4% 74 88.4% 56 89.0% 44 87.2% 41

NB 85.5% 102 84.0% 63 84.9% 57 86.0% 49

KNN 90.1% 52 91.9% 44 89.5% 42 89.5% 43

GA

C4.5 94.8% 26 91.3% 32 93.0% 32 94.2% 24

SVM 91.3% 34 90.1% 40 91.9% 32 91.9% 31

NB 85.6% 30 85.6% 31 86.6% 29 83.1% 34

KNN 90.7% 31 94.2% 24 92.4% 28 91.9% 29

TABLE 3. Results for the classification of dataset A. (a) Leave-one-out cross-validation 
(Loo), (b) k-fold cross-validation (k-fold cv) with k=2 on average over n=20 iterations, (c) 
Leave-one-out cross-validation with Filter RELIEF F, (d) Leave-one-out cross-validation 
with Wrapper, (e) Leave-one-out cross-validation with Genetic Algorithm. 
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Method ML ACVACE ACVSybyl DPV SDV

Loo cv

C4.5 78.3% 77.7% 78.6% 77.7%

SVM 82.1% 81.8% 81.8% 80.3%

NB 80.0% 73.2% 70.5% 75.4%

KNN 81.7% 79.4% 80.0% 77.4%

k-fold cv
k=2

n=20

C4.5 76.3% ± 2.2% 75.4% ± 3.1% 76.0% ± 3.1% 75.4% ± 2.9%

SVM 79.2% ± 1.9% 78.3% ± 1.1% 79.2% ± 2.4% 78.3% ± 1.6% 

NB 77.7% ± 3.3% 74.0% ± 2.3% 70.7% ± 4.8% 73.2% ± 5.3%

KNN 79.5% ± 2.1% 78.6% ± 1.9% 78.0% ± 2.5% 76.2% ± 3.9%

Filter

C4.5 79.2% 106 81.2% 58 78.6% 48 80.0% 52

SVM 82.1% 106 80.3% 58 80.0% 48 79.2% 52

NB 79.2% 106 76.2% 58 68.5% 48 67.0% 52

KNN 80.3% 106 80.0% 58 80.0% 48 77.4% 52

Wrapper

C4.5 91.0% 32 87.0% 52 87.0% 51 86.1% 38

SVM 87.0% 67 88.4% 61 89.0% 46 88.4% 35

NB 85.4% 77 80.6% 56 81.2% 52 83.2% 41

KNN 82.7% 68 85.2% 53 84.3% 51 84.6% 39

GA

C4.5 93.6% 62 91.0% 37 91.3% 41 91.0% 34

SVM 91.3% 56 89.3% 40 90.1% 32 89.6% 36

NB 87.8% 76 85.5% 44 84.9% 51 86.7% 38

KNN 84.6% 68 85.2% 48 85.8% 51 86.1% 39

TABLE 4. Results for the classification of dataset B. (a) Leave-one-out cross-validation 
(Loo), (b) k-fold cross-validation (k-fold cv) with k=2 on average over n=20 iterations, (c) 
Leave-one-out cross-validation with Filter RELIEF F, (d) Leave-one-out cross-validation 
with Wrapper, (e) Leave-one-out cross-validation with Genetic Algorithm.
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82.0% (SDV) to 85.5% (DPV) correctly predicted complexes. Both KNN and SVM 

predict around 90% of the considered complexes correctly, rather independently of the 

data representation used (Tab. 3d).

Finally, the Genetic Algorithm approach was utilized to extract discriminating features 

from the dataset. GAs are computationally very expensive, thus we performed all 

runs on a cluster with 25 CPUs (Intel® Pentium® 4, 2.8 GHz, 1GB RAM) in parallel 

to reduce the elapse time. With this approach we observed the highest prediction 

quality, using the C4.5 machine learning algorithm, in combination with the ACVACE. 

Here we achieved remarkable 94.8% correctly assigned complexes, using only 26 of 

the original 171 attributes. C4.5 also performs better than 90%, using any other data 

representations: 94.2% (SDV, 25 attributes), 93.0% (DPV, 51 attributes) and 91.3% 

(ACVSybyl, 41 attributes). KNN and SVM also predict in the range of 90% to 94% using 

the different data representations, simultaneously reducing the input features remarkably. 

Again the NB algorithm cannot convince, revealing at most 86.6% prediction accuracy 

in case of the DPVs (Tab. 3e). 

To show the robustness of the selected features, we performed again a k-fold cross-

validation with k=2 and n=100 for the selected features of the GA. Since the performance 

of machine learning algorithms decreases with a smaller data basis, we expected slightly 

worse results for the k-fold cross-validation. Indeed the SDV drops back to 92.7% 

(± 1.8%), ACVACE 92.3% (± 2.1%), DPV 90.4% (± 1.4%) and ACVSybyl 89.4% (± 2.8%). 

Nevertheless, the extracted features are robust against over-fitting.

CLASSIFICATION OF FOLDING COMPLEXES VERSUS RECOGNITION COMPLEXES

Mintseris et al. reported a 76% prediction rate simply focusing on the sizes of the 

interfaces. This underlines the importance of the size of the contact surface as factor for 

distinguishing permanent from transient complexes. Since we do not normalize our input 
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data, this factor is considered implicitly in the input vectors. In comparison to KDA used 

by Mintseris et al. (91%) with ACVACE input vectors, the methods applied here cannot 

achieve the same quality in prediction accuracy. However, in combination with the 

feature selection methods Wrapper and GA, we were able to classify with the same or 

even higher accuracy. Possibly Mintseris et al. also used some kind of feature selection 

methods.

The cross-validation for this dataset B does not show as robust results as obtained for 

dataset A (Tab. 4). The best leave-one-out cross-validation results were achieved with 

the SVM algorithm with 82.1% correctly predicted complexes in case of the ACVACE 

input vectors. The other data representations fall into the same range showing 81.8% 

(ACVSybyl and DPV) and 80.3% for the SDV. KNN performs well in combination with the 

ACVACE input vector with 81.7% prediction rate, 80.0% with DPV, 79.4% with ACVSybyl, 

but only 77.4% with the SDVs. The well performing C4.5 with respect to dataset 

A, does not accomplish the expectation on this dataset: Around 78% were achieved, 

independently of the given input vector. The NB algorithm again performs worst across 

the considered machine learners: From 80.0% (ACVACE) to only 70.5% (DPV) (Tab. 4a). 

Again we performed k-fold cross-validations with k=2 and n=20 with no significant loss 

in accuracy (Tab. 4b).

We applied the RELIEF F feature selection algorithm with q>0 to remove irrelevant 

attributes from the input vectors. RELIEF F reduces the ACVACE to 106, ACVSybyl to 58, 

DPV to 48 and the SDV to 52 attributes, but it does increase prediction accuracy only in 

case of the C4.5 algorithm by about 2% on average. RELIEF F stagnates or even decreases 

in prediction accuracy with all other used algorithms (Tab. 4c).
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In contrast, the Wrapper approach leads to an enormous increase in prediction accuracy: 

by pruning the ACVACE data vectors from 171 attributes to only 32, we achieve 91.0% 

correctly predicted complexes with C4.5. Also SVM (87.0%), NB (85.4%) and KNN 

(82.7%) show better results using ACVACE. The other data representations also increase in 

prediction accuracy after removing non-relevant attributes from the vectors (Tab. 4d).

Finally, we used the GA approach on this dataset. After pruning the input vectors the 

best algorithm together with a GA is the C4.5 algorithm, although this machine learner 

did not show exceptionally convincing results without the pruning. Independently of the 

selected data representation, we achieve prediction accuracies beyond 90%, cumulating 

at 93.6% for ACVACE. Also the SVM results in around 90% correctly predicted complexes. 

KNN and NB do not exceed the 90% barrier, but enhance the prediction accuracy in all 

cases (Tab. 4e).

A k-fold cross-validation with the extracted attributes, k=2 and n=100, achieved 

a  prediction accuracy of 91.5% (± 1.6%) for ACVACE/C4.5 and 90.1% (± 0.9%) for 

SDV/C4.5. This shows that the selected features are robust with respect to possible 

over-fitting.

FEATURE ANALYSIS WITH GENETIC ALGORITHMS

First, we analyzed the GA selected features of classification for dataset A. We 

dissected around 1.7•105 chromosomes from 326 GA runs (Fig. 2a) and plotted the 

tendencies of relevance for selected descriptors (of example in Fig. 3 and 4). As 

expected, irrelevant features such as the metal contact descriptor act as control value 

and show a gradient approximately equal to 0. The most discriminating feature of 

the classification procedure are the contacts of hydrophobic and/or aromatic atoms 

located in the protein-protein interfaces (HH_HA_AH_AA_surfc). This descriptor is 

a prime example for demonstrating a decreasing prediction accuracy by removing and 
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FIGURE 2. (a) Genetic Algorithm feature analysis for SDV data representation with 
C4.5 machine learner for the classification of dataset A. Each data point represents the 
population fitness averaged over 326 GA runs in dependency to the generation. (b) Genetic 
Algorithm feature analysis for SDV data representation with C4.5 machine learner for 
the classification of dataset B. Each data point represents the average population fitness 
averaged over 350 GA runs in dependency to the generation.
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FIGURE 3. Analyzed individuals from GA feature analysis plotted by prediction accuracy 
(x-axis) against relative frequency of occurrence (y-axis) for the SDV descriptors 
of dataset B. (a) HH_HA_AH_AA_surfc represents contacts of hydrophobic and/or 
aromatic atoms in (b) c_hb represents charged hydrogen bonds across the protein-protein 
interface. The straight line (slope of the curves) represents the importance of the selected 
feature (EPICscore). The dashed line represents the moving average over 10 values.
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FIGURE 4. Analyzed individuals from GA feature analysis plotted by prediction accuracy 
(x-axis) against relative frequency of occurrence (y-axis) for the SDV descriptors of 
dataset B. (a) met serves as reference descriptor (see text) (b) n_hb represents non-
charged hydrogen bonds across the protein-protein interface. The straight line (slope of 
the curves) represents the importance of the selected feature (EPICscore). The dashed 
line represents the moving average over 10 values.
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an increasing prediction accuracy by retaining it, consequently achieving the highest 

EPICscore with 4.2 (Tab. 5). Furthermore, the pure hydrophobic/hydrophobic atom 

contacts (SURFC_HYDROPHOBIC_HYDROPHOBIC) and the polar/hydrophobic 

atom contacts (SURFC_POLAR_HYDROPHOBIC) in the protein-protein interfaces 

are potent discriminating features with an EPICscore of 2.9 and 2.5, respectively. The 

score for charged hydrogen bonds (c_hb) across the protein-protein interfaces also 

shows a clear tendency to be an important descriptor (EPICscore: 2.9). Also the ring-

ring interactions show discriminating power with an EPICscore of 1.6. In contrast to the 

latter ones, descriptors such as the total buried surface (TotBurSurf, EPICscore: -2.7), the 

hydrogen bond score (HBScore, EPICscore: -2.2), or the score of non-charged hydrogen 

 
 4.2 HH_HA_AH_AA_surfc
 2.9 c_hb
 2.9 SURFC_HYDROPHOBIC_HYDROPHOBIC
 2.5 SURFC_POLAR_HYDROPHOBIC
 1.6 RRScore
 1.1 NHBonds
 0.6 AroBurSurf
 0.0 SURFC_AROMATIC_AROMATIC
 -0.1 BURCP
 -0.1 met
 -0.3 SURFC_POLAR_POLAR
 -0.3 PolBurSurf
 -0.7 PH_HP_surfc
 -1.2 HydBurSurf
 -1.2 AHPDI
 -1.7 PH_HP_PA_AP_surfc
 -2.0 n_hb
 -2.2 HBScore
 -2.7 TotBurSurf

 DATASET A
 
 4.4 HH_HA_AH_AA_surfc
 2.6 SURFC_HYDROPHOBIC_HYDROPHOBIC
 2.5 SURFC_POLAR_HYDROPHOBIC
 2.2 c_hb
 0.9 AroBurSurf
 0.7 NHBonds
 0.3 RRScore
 0.1 met
 0.0 SURFC_POLAR_POLAR
 -0.2 PolBurSurf 
 -0.4 PH_HP_PA_AP_surfc
 -0.4 PH_HP_surfc
 -0.7 SURFC_AROMATIC_AROMATIC
 -0.7 HydBurSurf
 -1.6 AHPDI
 -1.7 BURCP
 -1.9 n_hb
 -2.1 HBScore
 -2.8 TotBurSurf

 DATASET B

TABLE 5. EPICscores of selected SFCscore features sorted by their relevance, determined 
by GA feature analysis for crystal contact versus homodimer classification (dataset A) 
and permanent versus transient classification (dataset B).
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bonds (n_hb, EPICscore: -2.0) are detrimental for the prediction accuracy. The curves 

clearly show an increasing prediction accuracy upon removing these latter descriptors 

from the classification process.

Subsequently, we investigated 2•106 chromosomes from 350 GA runs from the 

classification of dataset B (Fig. 2b). We find results similar to the analysis of dataset A; 

however, the individual values are varying slightly and, thus, their rank order is some 

degree altered. Nevertheless, HH_HA_AH_AA_surfc (EPICscore: 4.4, Fig. 3a), SURFC_

HYDROPHOBIC_HYDROPHOBIC (2.6), SURFC_POLAR_HYDROPHOBIC (2.5) 

and c_hb (2.2) are still the descriptors with the most discriminating power, and alike n_hb 

(-1.9), HBScore (-2.1) and TotBurSurf (-2.8) remain to be the descriptors perturbing the 

classification at most. Major differences to dataset A arise with respect to the consideration 

of the descriptors RRScore (EPICscore: 0.3 for dataset B, whereas 1.6 for dataset A) and 

BURCP (-1.7 for dataset B, whereas -0.1 for dataset A). RRScore represents the score of 

ring-ring interactions, whereas BURCP is the percentage of buried carbon atoms.

In both datasets, the contributions of hydrophobic, aromatic, polar surface patches and 

charged hydrogen bonds, respectively, are playing a crucial role for the discrimination 

between the given classes of complexes. As shown in previous studies (Larsen et al., 1998), 

the contribution of hydrophobic (also aromatic) and polar surface patches show significant 

differences across the considered complex classes. Since permanent protein-protein 

complexes, for instance, almost never dissociate under physiological conditions, their 

amino acid composition across the interface differs from that of transient complexes, 

which are exposing their interfaces temporarily to the solvent. The same holds true for 

the analysis of complexes enforced by crystal contacts and functional homodimers, 

since in the soluted state the surfaces of crystal-contact complexes are solvent exposed. 

By visualizing the contribution of the extracted descriptors such as hydrophobic (and 

aromatic) contacts across the protein-protein interface, we are able to recognize the 

differences between the considered complex classes. Additionally, by means of the 
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implemented scoring function, we are able to quantify the differences (EPICscore). By 

visual inspection of the extracted features one can frequently observe that homodimer 

and permanent complexes often exhibit a hydrophobic core in the protein-protein 

interface surrounded by a rather hydrophilic corona (Fig. 5a and 5b), whereas transient 

complexes show evenly distributed contacts, as, according to their functional properties, 

these must expose their protein-protein interfaces temporarily to solvent (Fig. 6a and 

6b). The present approach does not allow to quantify these geometric features and 

their occurrence frequency directly, but the extraction and the high weighting of the 

corresponding descriptors is a clear indicator that such physicochemical properties are 

important for the properties of the considered protein complexes.

Also, the charged hydrogen bonds (c_hb) are scored to be a major discriminant 

between both types of datasets. Hydrogen bonds were evaluated and ranked following 

the approach of Wang et al. (Wang et al., 2002), based on the distance and angle ranges 

between the interacting atoms. Closer analysis of all 3644 charged hydrogen bonds present 

in the interfaces of dataset B showed two significantly distinctive features: (a) permanent 

complexes exhibit one charged hydrogen bond per 60 interface atoms, whereas in 

transient complexes one charged hydrogen bond is observed per only 55 interface atoms 

on average. (b) Charged hydrogen bonds in permanent complexes are on average scored 

higher (0.51) in comparison to their transient counterpart (0.46). Possibly this observation 

is due to the fact that permanent complexes are geometrically better optimized to form 

enhanced hydrogen bonds with more appropriate distances and angles. In contrast to the 

charged hydrogen bonds, the 3215 non-charged hydrogen bonds in dataset B show only 

one hydrogen bond per 65 atoms. The average score of these hydrogen bonds, admittedly, 

shows deviating values for permanent and transient complexes of 0.56 and 0.52, 

respectively. Nevertheless, the scoring of non-charged hydrogen bonds as implemented 

in SFCscore does not emerge as a relevant feature for discrimination. It is worthwhile 
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to mention that the average distance between the interacting atoms forming hydrogen 

bonds is almost exactly 3.0 Å (measured between the heavy atoms) for both permanent 

and transient complexes independent whether charges are involved or not.

The RRScore descriptor, considering various ring-ring interactions, is a discriminating 

feature in case of dataset A (EPICscore: 1.6). Rings were considered to be interacting 

if the center of the first ring falls below a distance threshold of 6.5 Å to the center of 

the second. The RRScore is calculated based on distance and the angle ranges between 

both interacting rings. We investigated all 223 ring-ring interactions in dataset A and 

640 ring-ring interactions in dataset B, and indeed, the average RRScore in dataset A 

for crystal contacts (0.86 ± 0.45) differs from the score of the functional homodimers 

(0.78 ± 0.31), whereas in dataset B both the permanent and the transient complexes 

show an average score of 0.78 ± 0.31. Consequently, the EPICscore indicates the 

discriminative power of RRScore in dataset B to be low (0.3), and this descriptors is 

considered as more or less insignificant in feature selection. Undoubtably, lower scores 

can be expected for the crystal-contact complexes, since they can be assumed as weakly 

interacting, which is supported by the fact that rather high B-values are found for the 

involved residues. Nevertheless, we believe that the highly scored ring-ring interactions 

found for theses examples arise from the fact that only a low number of observations 

(only 48 in 96 complexes) is given with high standard deviations (± 0.45). On the other 

hand, the 76 functional homodimer complexes show on average 2.3 ring-ring-interactions 

per complex, whereas the highest occurrence frequency for permanent complexes with 

an average of 2.6 per complex; transient complexes result in only 1.2 per complex. Thus, 

the RRScore descriptor is of discriminating power for dataset A, but not significant with 

respect to the sparsely populated data basis.
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a

b

FIGURE 5. Representation of protein-protein interfaces, displaying hydrophobic (blue) 
and polar contacts (yellow). The direction of each contact is displayed by thin lines. (a) 
Permanent complex PDB 1icw, interleukin-8 mutant. Often observed hydrophobcores 
(red) with surrounding hydrophilic rims in permanent complexes. (b) Permanent complex 
PDB 1jsg, 14tcl1, an oncogene product involved in t-cell prolic ymphocytic leukemia.
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a

FIGURE 6. Representation of protein-protein interfaces, displaying hydrophobic (blue) 
and polar contacts (yellow). The direction of each contact is displayed by thin lines. 
(a) Transient complex PDB 1d6r, cancer chemopreventive bowman-birk inhibitor in 
ternary complex with bovine trypsin. (b) Transient complex PDB 1jdp, atrial natriuretic 
peptide clearance receptor in complex with C-type natriuretic peptide. Even distributed 
hydrophobic and hydrophilic contacts in transient complexes.

b
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SUMMARY AND CONCLUSIONS

Machine learning algorithms are generally appropriate to successfully classify protein-

protein complexes. We used two different datasets: complexes being reinforced by the 

local environment (crystal contacts) versus physiologically functional homodimers, and 

permanent versus transient complexes. The predictive power and accuracy depends on 

the type of data representation, the applied machine learning algorithm, and the used 

feature selection algorithm. The best predictive power has been achieved using the 

Decision Tree algorithm C4.5, the weakest correlation resulted from the simple Naïve 

Bayes algorithm, independent of the chosen data representation. The feature selection 

method RELIEF F was not convincing, as it pruned features without enhancing the overall 

prediction rate significantly. In contrast, Wrapper and GA show superior performance by 

correctly predicting complexes without suffering from over-fitting as proven by repeated 

k-fold cross-validations. We were able to classify the Ponstingl dataset (A) based on 

96 crystal contact and 76 functional homodimer complexes with an accuracy of 94.8% 

and 94.1% using a GA optimized C4.5 algorithm in combination with ACVACE or SDV data 

representation, respectively. The classification of the Mintseris dataset (B), comprising 

147 permanent and 198 transient complexes, resulted in 93.6% correctly predicted 

complexes by using the GA optimized C4.5 machine learner in combination with ACVACE 

vectors, which were also used by Mintseris. For the SDV data representation, the same 

analysis reveals 91.0% correct predictions.

Furthermore, the analysis of the GA feature selection method gave us valuable 

insights into the understanding of protein-protein interactions at the atomic level. By 

analyzing each single chromosome evaluated during the GA procedure, we calculated 

a figure-of-merit for each attribute (EPICscore). This was performed with the SDV 

data representation in combination with the C4.5 algorithm, since particularly SDVs 

are straight-forward to interpret in physicochemical terms. We are able to elucidate the 

different nature of hydrophobic and polar surface patches present in protein-protein 
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interfaces. Visual inspection of the features shows that homodimer and permanent 

complexes often show hydrophobic cores surrounded by a corona of polar residues. Also 

the number and geometry of charged and non-charged hydrogen bonds, formed across 

the interface, have discriminative power which is perhaps not obvious at first glance.

We developed the integrated toolkit EPIC composed by several machine learning 

algorithms, feature selection methods, visualization tools linked to database and storage 

facilities. Thus, on the one hand we are able to distinguish very reliably between different 

types of protein-protein complexes, while on the other we can extract discriminating 

features thus improving the understanding of protein-protein interactions at the atomic 

level. However, with respect to the interpretation of the extracted features, one has to 

note that the classification of protein complexes based on multidimensional input vectors 

which provide an intercorrelated result. Thus, the significance of one single highlighted 

feature must always be discussed in its context and should not be over-interpreted. On the 
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STRATEGIES TO SEARCH AND DESIGN STABILIZERS OF 

PROTEIN-PROTEIN INTERACTIONS: A FEASIBILITY STUDY

INTRODUCTION

Major part of the presently known small molecule drugs are either enzyme inhibitors, 

allosteric effectors or receptor agonists or antagonists. They replace natural substrates or 

endogenous ligands mostly in deeply buried stringent binding pockets. Accordingly, the 

presently applied drug design tools are all methodologically focused on the competitive 

replacement of such ligands or substrate portions by appropriate lead structures that occupy 

a similar region of the deeply buried binding pocket. However, functional regulation of a 

biological system can also be achieved via interference with protein-protein interactions. 

In many processes, activation of protein function requires coactivation or cross-talk via 

the assembly of several protein components, e.g. by formation of a multidomain complex. 

A large number of signal transduction cascades, e.g. transfering information across the 

cell membrane, operate via the formation of protein-protein complexes. Accordingly, 

interference with this recognition process by means of small molecule drugs would – in 

principle – allow developing drugs of entirely new mode of action. However, inhibiting 

the interaction between two proteins is challenging in many respects, first of all due to 

unfavorable thermodynamic considerations. Usually such recognition complex interfaces 

are rather flat and featureless, accordingly it will be very difficult to bind a small 

molecule to such surfaces. Thus upon association of both proteins, the small molecule 

would have to compete at such surfaces with the interface formation. Considering the 

gain in entropy due to the hydrophobic effect and solvation/desolvation upon protein-

protein complexation would simply “wash-off” any ligand associating with the surface 

of the protein. Therefore, it is not surprising that biological processes under physiological 

conditions often modulate the interaction between proteins allosterically. In such a case, 
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a ligand binds to a cavity remote from the protein-protein interface and modulates the 

complex formation via electrostatic effects or conformational rearrangements in one or 

both of the interacting proteins.

Amazingly, the opposite of inhibiting protein-protein interactions, namely stabilizing 

them, is a widely unstudied principle today. Such concepts require either allosteric 

stabilization or binding of a small molecule to a crevice at the rim of protein-protein 

interfaces thus fasten both macromolecular portions tighter together. Nevertheless, 

stabilizing protein complex formation may also result in the desired effect, for instance, 

by delaying a signal in a transduction cascade. Furthermore, the approach of stabilizing 

protein-protein interactions has other advantages compared to inhibition: On the one 

hand, similar to protein-ligand interactions, the thermodynamic properties are potentially 

favorable. On the other hand, established principles and tools from small molecule 

structure-based drug design can be applied. It has been estimated that life is controlled 

by over 50000 protein-protein interactions (Yin & Hamilton, 2005) there is supposedly 

a sizable number of targets forming a druggable cavity at the boundary of the protein 

complex. To get a rough idea about the potential occurrence frequency of such cavities, 

we analyzed a dataset of 198 so-called protein-protein recognition complexes which are 

known to be transient on a particular time scale. We extracted all cavities falling next 

to the margin of each protein-protein complex and inspected these cavities visually for 

putative druggability. If such cavities are frequently given and considering the increasing 

speed by which novel structures of protein-protein complexes are determined either by 

X-ray crystallography, NMR and other methods (Berman et al., 2000), this may possibly 

open the floodgate to a new realm of targets for structure-based drug design.

Stimulated by the fact that rather frequently rim-exposed cavities are found at the protein-

protein interfaces of potentially dissociating complexes we picked the example of a plant 

H+-ATPase forming a complex with a 14-3-3 protein. This complex is stabilized by 

the natural product Fusicoccin that binds into a small cavity composed by both protein 
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domains. In this contribution we report on strategies and novel tools developed to 

perform a virtual screening campaign to discover novel leads that could successfully 

stabilize a protein-protein interaction.

MATERIALS AND METHODS

DATA ANALYSIS AND TOOLS FOR VIRTUAL SCREENING

Inhibiting protein-protein interactions is a well studied field in protein science today 

and many successful examples have been summarized in recent reviews (Berg, 2003; 

Yin & Hamilton, 2005; Zhao & Chmielewski, 2005; Arkin, 2005). However, the major 

part of these inhibitors are from the area of monoclonal antibodies (Waldmann, 1993), 

miniature proteins (Martin et al., 1994; Nord et al., 1997), functional oligopeptides 

(Schneider et al., 1995) or peptidomimetics (Moss et al., 1996). Most of these inhibitors 

are far from being druglike. Nevertheless, there have also small and some druglike 

molecules been developed that inhibit protein-protein interactions efficiently, for 

instance, the interaction between (1) p53 and MDM2 (Fasan et al., 2004; Vassilev et 

al., 2004), (2) Bcl-xL and Bcl-2 (Baell et al., 2002; Wang et al., 2000), both playing 

a crucial role in cell apoptosis (Wang et al., 2003; Reed, 1997), and (3) IL-2 and the α 

subunit of its receptor (IL-2Rα) (Nguyen & Wells, 2003), (4) CTLA4 and B7-2 (Green et 

al., 2003), both important for T-cell proliferation (Greenfield et al., 1998). Despite these 

outstanding successes, the mentioned protein-protein interactions addressed in these 

examples by small molecules exhibit special features that unlikely allow to generalize 

them into a common inhibition strategy. This is due to the fact, that along the protein-

protein interface one of the macromolecular interaction partners is either rather small 

and/or protrudes deeply into a buried binding pocket that forms across the protein-protein 

interface.
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STABILIZERS OF PROTEIN-PROTEIN INTERACTIONS

Many small molecules are known to be capable to induce the interaction between 

different proteins, e.g. the dimerization of receptors (Qureshi et al., 1999; Tian et al., 

1998). Furthermore, the phenomenon of stabilizing an already formed protein-protein 

interaction has been observed both in physiological processes and as mode of action 

of some drug molecules. For example, the immunosuppressive drug Rapamycin (also 

known as Sirolimus), a triene macrolide antibiotic, which also exerts anti-fungal, anti-

inflammatory, and anti-tumor effects, acts as a protein-protein interface stabilizer. After 

binding to the receptor protein FKBP12, the complex binds to mTOR (mammalian Target 

Of Rapamycin). This prevents the subsequent interaction of mTOR with other target 

proteins in the signaling pathway (Choi et al., 1996). The immunosuppressant Tacrolimus 

operates following to a related principle by tightening up two different proteins, which 

otherwise do not show measurable affinity for each other (Griffith et al., 1995). 

Further prominent stabilizers are (1) Brefeldin A, a small molecule which stabilizes the 

transient ternary complex between Arf-GDP and its guanine nucleotide exchange factor 

(Peyroche et al., 1999; Chardin & McCormick, 1999); (2) Taxol, a diterpenoid, acting 

as effective anti-cancer drug by stabilizing microtubules and preventing their de- and 

repolymerization (Jennewein et al., 2001); (3) Forskolin, a diterpene, by stabilizing 

subunits of the adenylylcyclase (Tesmer et al., 1997); (4) Kirromycin and fusidic acid, by 

interfering with the peptide transfer in the protein biosynthesis of prokaryotic ribosomes 

by stabilization processes (Tesmer et al., 1997; Agrawal & Frank, 1999; Ramakrishnan, 

2002) .

SCREENING FOR NOVEL TARGETS

As pictured above, special prerequisites have to be given that a protein-protein interaction 

can be inhibited by small molecule binding. Accordingly, as an alternative it appears more 

attractive to address cavities or crevices formed along the rim of an interface to modulate 
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the stability of the protein-protein complex formation. To obtain first insights into the 

occurrence of such cavities at the margin of protein-protein interfaces, we screened 

a dataset of 198 recognition complexes reported by Mintseris et al. (Mintseris et al., 

2003). We particularly considered recognition complexes, since they are known to be 

temporarily labile and to dissociate under dynamic conditions whereas folding complexes 

have permanent character avoiding separation. To detect and extract appropriate cavities 

we applied Relibase+ (Guenther et al., 2003; Hendlich et al., 2003) in combination with 

its modular extension Cavbase (Schmitt et al., 2002), by use of the implemented Ligsite 

algorithm (Hendlich et al., 1997). We screened the entire dataset and detected about 

380 rim-exposed cavities which were constructed by more than one chain. To prove our 

assumption, that rim-exposed cavities show properties comparable to those of enzyme 

cavities, which due to their function accommodate ligands, we compiled a dataset of 

2379 enzymes with a maximum of 25% mutual sequence identity according to the recent 

PDB SELECT list (Hobohm et al., 1992; Hobohm & Sander, 1994). The filtering was 

accomplished by mapping the PDB code to the PDBsum database (Laskowski et al., 

1997, 2005) and extracting only structures with assigned E.C. number. Subsequently, 

we considered only pockets with a bound ligand comprising more than six heavy atoms. 

This procedure resulted in 243 enzymes with 636 cavities (in case of multimeric enzymes 

complexes the number of cavities was counted for each monomer.) We compared the 

volume, the relative hydrophilicity, and the buriedness of the pocket contributing atoms 

between enzyme and rim-exposed cavities. The relative hydrophilicity was determined 

by the ratio of exposed hydrophilic and hydrophobic properties (coded by the assigned 

pseudocenters in Cavbase, for details see Schmitt et al., 2002) in the binding pockets. 

The buriedness and pocket volume are descriptors calculated by Ligsite. Here pronounced 

buriedness is reflected by a large number of deeply buried cavity atoms. 
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Cavbase detects common subsets of pseudocenters in pockets to be compared and after 

superimposition a similarity score is calculated by evaluating the amount of matching 

surface properties (Schmitt et al., 2002). To estimate on a possibly given druggability of 

rim-exposed binding pockets we evaluate the similarity with different enzyme pockets. 

THE H+-ATPASE/14-3-3 SYSTEM

In this study, we screened for alternative stabilizers of the interaction between 

plant H+-ATPase and 14-3-3 protein. The ATPase builds up an electrochemical proton 

gradient across the plasma membrane, which is important for maintaining of the cell 

turgor (Morsomme & Boutry, 2000). The C-terminus of the proton-pump as well as the 

N-terminus is located within the cytoplasm of the cell and acts as an intrasteric inhibitor 

(Kuhlbrandt et al., 2002). The autoinhibition force is subsequently alleviated upon 

complexation with the 14-3-3 protein (Fuglsang et al., 1999; Svennelid et al., 1999; 

Maudoux et al., 2000). The latter proteins are highly conserved molecules regulating 

various physiological processes. They are known to bind in a sequence-specific and 

phosphorylation-dependent manner to their targets (Sehnke et al., 2002; Tzivion & Avruch, 

2002; Yaffe, 2002). However, the stabilization of a given protein-protein complex results 

in an irreversible activation of the proton-pump, followed by an irreversible opening of 

the stomatal pores finally cumulating in the wilting of the plant (Ballio et al., 1964). 

This effect is stimulated by the binding of the fungal phytotoxin Fusicoccin (FC, Fig. 1), 

which boosts the weak interaction between the ATPase and 14-3-3 protein by nearly a 

factor of 100 (Wurtele et al., 2003). Although the fungus Fusicoccum amygdali, which is 

producing the diterpene Fusicoccin, is host specific, isolated Fusicoccin exerts its action in 

almost any higher plant (Marre et al., 1979). Accordingly, Fusicoccin is a total herbicide, 

which turns it into an interesting agrochemical. However, from a synthetic point of view, 

Fusicoccin is a complex molecule. Nevertheless, any molecule, which stabilizes this 

protein-protein complex and is accessible to simple synthesis could be highly attractive. 

In a search for alternative stabilizers, a large number of Fusicoccin derivatives have been 
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synthesized as summarized by Ballio (Ballio et al., 1979). It turned out, that already 

minor modifications of the FC ring system strongly impairs biological activity and the 

potency to stabilize the given protein-protein complex. This stimulated us to search for 

novel scaffolds, which potentially mimic the mode of action of Fusicoccin.

THE FUSICOCCIN BINDING SITE

Major part of the Fusicoccin binding site is composed by the amino acids of the 

14-3-3 protein; only the C-terminal Val5 of the H+-ATPase contributes to the surface 

of the binding pocket. It has been shown that the binding affinity of Fusicoccin to 

the 14 3 3 protein is very weak as long as not complexed to the ATPase (Ki: 66 µM) 

(Wurtele  et al., 2003). This is due to the fact that upon complexation with the H+-

ATPase the FC binding site widens up by a small but crucial extent: The hydrophobic 

sub-pocket, comprised by Ile175 and Ile226, is extended by the hydrophobic side chain 

FIGURE 1. The structure of the fungal toxin 
Fusicoccin (FC).
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FIGURE 2. Fusicoccin (blue) and the pentapeptide representing the H+-ATPase (yellow) 
in stick and surface representation. The hydrophobic ring system (ring A, B and C) are 
wrapped around the C-terminal Val5 of the H+-ATPase. The tight binding of Fusicoccin 
in the 14-3-3 binding site and the hydrophobic stacking to the H+-ATPase results in a 
nearly 100-fold increased affinity between 14-3-3 and H+-ATPase.

Fusicoccin

H+-ATPase

of the C-terminal amino acid (Val5 in case of PDB 1o9f). This side chain gets virtually 

clasped by the carbocyclic framework of Fusicoccin (Fig. 2), resulting in an extensive 

hydrophobic contact upon binding. The hydrophobic environment is completed by 

Val53 and Phe126 that are located toward the “rear” to Fusicoccin. Furthermore, the 

unprotonated carboxylic C-terminus of the H+-ATPase is supposed by forming a salt 

bridge with protonated Lys129, which adopts a gauche conformation. In consequence 

the positively charged amino group of Lys129 is (weak) hydrogen bonded to the ether 

function of Fusicoccin (Fig. 3). Furthermore, FC creates tight contacts to the 14-3-3 

protein to enhance the protein-protein interaction. The alcohol function at ring B of 

Fusicoccin forms a hydrogen bond to the most likely unprotonated carbocyclic acid 
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of Asp222 (Fig. 3) and a further water-mediated hydrogen bond to Asn49. In total, 

Fusicoccin exhibits nearly perfect shape complementarity to the target protein (Fig. 4). 

In conclusion, the stabilizing effect of FC binding to the 14-3-3/H+-ATPase complex 

can be explained (1) by the close interaction of FC with the C-terminal amino acid of 

the H+-ATPase, (2) by FC’s shape complementarity to the target protein, and (3) by the 

mainly water-mediated hydrogen-bond network. 

WATER AND THE FUSICOCCIN BINDING POCKET

A closer examination of the crystal structure (PDB 1o9f) reveals that FC does not 

completely fill the binding pocket. A sub-pocket, exclusively composed by amino acids 

of the 14-3-3 protein and located next to the tip of the C-terminus of the H+-ATPase, 

hosts four water molecules (Fig. 3). Possibly this sub-pocket exists because other 

H+-ATPase occupy this region by the extension of one amino acid at their C-terminus. 

The water molecules form a tight hydrogen-bond network with the amino acids of the 

14-3-3 protein and among each other. Also FC is involved in this network by building 

a tight hydrogen bond of 2.51 Å via its alcohol function at ring C to one of the water 

molecules, and a loose hydrogen bond to the ether-attached ring A (3.36 Å). Since ethers 

are relatively weak acceptors, and this function is supposedly already involved in a 

hydrogen bond to the positively charged amino group of Lys129, an additional contact 

to the latter water molecule appears unlikely. Nevertheless, the replacement of these 

water molecules upon ligand binding may result in a favorable, entropy driven binding. 

In our design attempts to discover alternative molecular skeletons to stabilize the present 

protein-protein interaction we assume that this replacement contributes significantly to 

binding. Nevertheless, mimicking the overall bowl-shape of FC by a small, druglike 

molecule appears a rather challenging task.
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FIGURE 3. A hydrogen-bond network is formed by four waters molecules and Fusicoccin 
in a sub-pocket of the binding site. Further interactions are formed between the ligand 
and the H+-ATPase protein chain. Additional amino acids involved in the binding are 
Val5, Ser52, Asp133 and Tyr134. In addition, Fusicoccin participates with its alcohol 
function at ring C and its ether group in forming hydrogen bonds to the 14-3-3 protein. 
The alcohol function at ring B of Fusicoccin forms hydrogen bonds to Asp222 and a 
water-mediated hydrogen bond to Asn49.

Asp222

Val5

Tyr134

Ser52

Asn49

Lys129

Asp133

FC
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VIRTUAL SCREENING CAMPAIGNS

Two strategies can be followed in a virtual screening campaign: forwards and 

backwards filtering of hits obtained by docking. In forward filtering, various criteria are 

used to reduce the initial screening sample of candidate molecules from some millions 

to several hundred to thousand most promising ones to be docked. In backwards filtering 

all entries from the screening sample are docked to the target and filter criteria are 

subsequently applied to rank the generated docking solutions. Since flexible docking 

is computationally the most demanding step, forward filtering requires less resources. 

Usually filter criteria are based on some preconceived knowledge about the target or 

the chemical structures of known actives. They exploit similarity considerations with 

either a protein-based pharmacophore hypothesis or the properties of bound ligands. 

Applying such filters in too stringent fashion could possibly result in a biased search 

discarding unexpected and novel chemistry at early filtering steps. In the past, we have 

been quite successful in a hierarchical forward filtering strategy (Brenk et al., 2003; 

Grueneberg et al., 2002; Evers & Klebe, 2004). However, in these studies we selected 

well-established enzyme targets and took reference to some known druglike ligands. The 

crevice formed along the H+-ATPase/14-3-3 protein interface appears as a novel type 

of binding pocket and the accommodated FC shows most likely not a high molecular 

similarity with entries in the candidate library. Under these given restraints we decided 

to follow a rather unbiased backward filtering approach starting with large scale docking 

of candidate ligands to the binding pocket, followed by a post-filtering taking reference 

to sophisticated 3D-pharmacophores. The advantage of this strategy is that different 

pharmacophore hypotheses can be rapidly applied to all generated docking solution. 

Furthermore, this allows us easily to select the number of compounds we want to 

consider for further in-depth searches. Nevertheless, this strategy involves the demanding 

task to keep track of a huge amount of data generated during the virtual screening 

run. Accordingly, elaborate tools to extract the relevant information are desirable. In 

consequence, we developed SCREENINGDB, a software suite written in Python and C with 
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FIGURE 4. Pronounced shape complementarity of Fusicoccin (white, red) in the binding 
pocket formed by the 14-3-3 protein (blue) and the pentapeptide representing the H+-
ATPase (green). 

an integrated MySQL database. SCREENINGDB stores all relevant information produced 

by the tools FLEXX, AutoDock, GOLD, or FTREES along with the CORINA-generated 3D 

models. The core of SCREENINGDB comprises the compound library holding about two 

million candidate molecules from various commercial compound suppliers (Tab. 1). It 

stores primary molecule information such as name and origin (database), a mol2- (Clark 

et al., 1989) and SMILES-format (Weininger, 1988) representation, as well as derived 
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information such as molecular mass, number of total or heavy atoms, or number of 

rotatable bonds. The latter is calculated using the SFCscore library (Sotriffer et al., in 

preparation), and considers amide and ester groups as rigid.

PREPROCESSING OF THE CANDIDATE MOLECULES

We extracted all candidate molecules from commercial compound suppliers, listed 

in Tab. 1, and processed them in an unique fashion by BABEL (see ref. BABEL) and 

CORINA 3.1 (Gasteiger et al., 1990). CORINA was used to assign Sybyl atom types 

Database No. of Compounds

ACD 239929

AMBINTER 571309

ASINEX BBLOCKS 4108

ASINEX GOLD 227273

ASINEX PLATINUM 113617

BIONET HTS 41333

CLAB 70343

IBS 287883

LEADQUEST 81201

MAYBRIDGE 59485

MAYBRIDGE HITFINDER 15997

SIGMA ALDRICH 5744

SPECS 169293

SPECS NATURAL 669

Total 1940184

TABLE 1. Selected databases of commercially available 
compounds, which were used for the virtual screening 
campaigns. In total, nearly two million of molecules are 
covered.
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(corina -d newtypes) to each entry. Since CORINA requires molecules without 

hydrogens for the atom type assignment, we removed all hydrogen atoms with BABEL 

(babel -d). Candidate molecules stored as salts were stripped and neutralized. In case 

of a tautomeric or stereoisomeric molecule, the database given isomer was preserved. 

Finally, in house software corrected atom types in moieties such as amidines and 

guanidines, not properly handled by BABEL nor CORINA. Canonical SMILES were 

generated with the FROWNS library (Kelly, WWW). Additionally, we developed a 

command-line driven tool to access the database. For example, to retrieve all structures 

within the compound library, possessing a molecular weight between 250 and 450 Da, 

a maximum number of six rotatable bonds together with a carboxylic acid moiety requires 

only a few seconds. The tool allows the user to save the result in either mol2 format, as 

input for the subsequent docking campaign, or as SMILES annotation.

DOCKING FUSICOCCIN

To access the reliability of the docking tools FLEXX 2.0 (Rarey et al., 1996), GOLD 

2.2 (Verdonk et al., 2003), and AUTODOCK 3.0 (Murray et al., 1998), Fusicoccin was 

redocked into the binding pocket of the H+-ATPase/14-3-3 complex. Since the sugar 

moiety of Fusicoccin is not involved in protein binding (Ballio et al., 1971, 1981), we 

only docked the aglycon. All three programs are capable to place the aglycon with a 

near-native binding mode into the binding pocket. GOLD generated the top 30 docking 

poses out of 50 attempts within 0.4 Å rms deviation to the native binding mode of FC 

(Fig. 5), whereas 98 out of 100 docking poses of AUTODOCK were found within 1.1 Å 

to the crystal structure. FLEXX placed 10 out of 30 docking solutions better than 2.0 Å, 

which is a commonly accepted threshold for near-native binding modes.
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“HOT SPOT” ANALYSIS

We calculated “hot spots” in the Fusicoccin binding site of the H+-ATPase/14-3-3 complex 

using Superstar (Verdonk et al., 1999) and DrugScore (Gohlke et al., 2000). The binding 

pocket, accommodating Fusicoccin appears rather hydrophobic as observed by the fields 

for the methyl-carbon probe of Superstar and the C.2, C.3, C.ar probe of DrugScore. 

FIGURE 5. Redocked Fusicoccin aglycon. The native binding mode (yellow) superimposed 
with the 30 top-ranked docking solutions of GOLD 2.2. They show up to 0.4 Å rms 
deviation to the crystallographically determined binding mode.
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They indicate extensive hydrophobic character of the pocket. It is mainly located in the 

region where the carbocyclic skeleton of Fusicoccin is found in the crystal structure. 

The carbonyl oxygen and the O.2 probe, respectively, represent generic hydrogen-bond 

acceptors; they indicate a “hot spot” next to Fusicoccin’s ether function. Additionally, 

the sub-pocket filled by water is suggested as favorable acceptor region, in agreement 

with crystallographic evidence. An alcohol oxygen and an O.3 probe, respectively, which 

represents a generic hydrogen bond donor, propose a donor functionality in a region that 

is actually occupied by the alcohol group at ring B of Fusicoccin and by the waters in 

the sub-pocket. Accordingly, the generated pharmacophore hypotheses corresponds well 

with the adopted binding pose of the reference ligand Fusicoccin. 

FTREES

For feature-based ligand similarity searching, we incorporated FTREES (Rarey & Dixon, 

1998) into SCREENINGDB. Physicochemical properties are assigned to the functional 

groups in each candidate molecule together with their topographical location and this 

information is translated into a so-called Feature Tree. The optimal similarity of two 

Feature Tree entries is calculated by an alignment score, similarly as for the alignment 

of protein sequences. The similarity scores are scaled to values between 1 (identical) 

and 0 (completely different). In literature (Rarey & Stahl, 2001), the degree of similarity 

has been discussed with respect to the Feature Tree scoring and values between 0.9 and 

0.95 suggest molecules with highly analogous properties to the reference. However, 

they still potentially exhibit different scaffolds (so-called scaffold-hopping). FTREES was 

applied to retrieve candidate molecules with FTree-similarity to Fusicoccin which was 

used as reference molecule (Fig. 1). The most similar molecules found in the screening 

database exhibited a score of only 0.84, thus clearly beyond the above-mentioned range 

of high similarity. This rather low score underlines the unique chemical structure of FC 

which has to be assumed as rather remote from being druglike (Oprea et al., 2001), as 

all entries assembled in the database were requested to obey such properties. To increase 
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a b c
FIGURE 6. FTREES reference molecules: (a) Fusicoccin aglycon, (b) Fusicoccin aglycon 
without ester moiety, and (c) Fusicoccin aglycon without ester moiety and additional 
methylene hydroxy function, which was added as a “decoy” to address the water sub-
pocket. 

the probability to achieve higher similarity scores in particular since FTREES does 

not distinguish between molecular portions determinant for binding (e.g. carbocyclic 

framework) or exhibiting decoration only relevant for e.g. solubility as the sugar, we 

artificially reduced FC to its basic skeleton. Firstly, we deleted the sugar moiety (Fig. 6a), 

then the ester portion (Fig. 6b), since it is not involved in essential contacts to the 

proteins. Finally, to find molecules addressing the water sub-pocket, we extended the 

ether group, attached to ring A, by a methylenhydroxy function (Fig. 6c). Such doing 

allows matching candidates with similarity scores of up to 0.9. A set of 15.481 unique 

compounds with the highest similarity scores was extracted from SCREENINGDB for the 

subsequent docking analysis.
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UNITY DATABASE SEARCH

For the present target only Fusicoccin is known to stabilize this protein-protein 

interaction. This limited information stimulated us to choose a slightly modified 

screening strategy to previous attempts of Brenk et al. (Brenk et al., 2003), Grueneberg 

et al. (Grueneberg et al., 2002), or Evers et al. (Evers & Klebe, 2004). Similarly, UNITY 

(Martin et al., 1992) was used to initially filter on simple criteria. However, deviating 

from the previous screening campaigns sophisticated 3D-pharmacophore filters has 

not been applied for forward filtering. Instead we decided in the present case with a 

much less defined concept about the chemistry to be matched by putative stabilizers to 

apply large-scale docking and to filter the generated docking solutions backwards by 

considering a variety of different 3D-pharmacophore filters.

Only molecules with up to 6 rotatable bonds and a molecular mass between 250 and 

500 Da were considered. Furthermore, highly flexible molecules were discarded, since 

they supposedly show reduced binding affinity due to entropic losses and increase the 

complexity for the subsequently applied flexible docking. In total, 35% of the initial 

database were discarded by these filters. Subsequently, a simple topological filter 

was applied according to the pharmacophore hypothesis given in Fig. 7 (as scheme: 

Fig. 8). The central hydrophobic “hot spot” had to be matched by a hydrophobic ring 

position (green sphere, matching ring A of FC) along with one of the following features: 

(a) a donor and/or acceptor function had to be placed into the water sub-pocket pointing 

to Tyr134 (blue sphere, coinciding the water molecules in PDB 1o9f), (b) a donor 

function addressing the carboxylic acid of Asp222 (magenta sphere, located at the 

hydroxy oxygen of ring B of FC), or (c) an acceptor functionality complementing the 

charged amino group of Lys129 (yellow sphere, located at the ether oxygen attached to 

ring A of FC). Using this pharmacophore UNITY reduced the initial set of compounds to 

about 10%. Together with the molecules retrieved by FTREES search a total screening set 
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FIGURE 7: Pharmacophore hypotheses. All docking poses were filtered combinations 
out of these pharmacophoric constraints. Green: Central lipophilic constraint; Yellow: 
Acceptor constraint; Magenta: Donor constraint; Blue: Donor/Acceptor (“doneptor”) 
constraint.



CHAPTER 2 - MATERIALS AND METHODS 74

FIGURE 8. Pharmacophore scheme according to the „hot spot“-analysis found for the 
Fusicoccin binding pocket. Important residues (Val5, Lys129, Tyr134, and Asp222) 
are displayed with the interaction properties explicitly requested in the different 
pharmacophore hypothesis. Together with the schematically sketched ligand the 
requested interaction types are indicated as acceptor (A), donor (D), „doneptor“ (X), and 
hydrophobic (H) respectively.
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of 161.171 compounds was subjected to docking. As docking tools FLEXX 2.0, GOLD and 

AUTODOCK were used running on a 14 AMD Opteron™ 1.8 GHz computer cluster. The 

obtained results were deposited in SCREENINGDB.

SCORING

The original scores of FLEXX, GOLD and AUTODOCK are automatically stored in 

SCREENINGDB. Additionally, we implemented external scoring functions such as 

DrugScorePDB (Gohlke et al., 2000) and DrugScoreCSD (Velec et al., 2005) in SCREENINGDB, 

along with routines sorting according to these scores. Storage of different scores in the 

database provides the opportunity to build “secondary scores”, such as “consensus 

scores” or “cubic root scores” (score divided by the cubic root of the number of its heavy 

atoms to down-weight scores of increasingly large molecules) or to combine scores 

with other data as the number of rotatable bonds. We also stored the calculated burial of 

solvent accessible surface area (ΔASA) upon docking for each binding site residue using 

NACCESS (Hubbard & Thornton, 1993).

PHARMACOPHORE POST-FILTERING

For post-filtering of the generated docking poses, SCREENINGDB provides an interface 

to apply pharmacophore characteristics. The presence of pharmacophoric features has 

only been considered in terms of spheres although other shapes such as cones or boxes 

have been implemented. The attributes assigned to such a sphere are its interaction-

type, spatial location, and radius. The interactions are classified by the following types: 

DONOR, ACCEPTOR, DONEPTOR (either donor or acceptors, e.g. OH groups), 

EXCLUDED VOLUME or SPATIAL. As the names of the interaction types implies, 

DONOR, ACCEPTOR and DONEPTOR evaluate the docking solutions with respect 

to their match with atoms capable to form hydrogen bonds as donor, acceptor or donor/

acceptor atoms, respectively, regarding the assigned spatial constraints. The property of 



CHAPTER 2 - MATERIALS AND METHODS 76

an atom being hydrogen-bond donor, acceptor or both is defined by their Sybyl atom type 

(Clark et al., 1989), where donor atoms are O.3, N.am, N.4, N.pl3, acceptor atoms are 

N.1, N.ar, O.co2, O.2, O.3 and “doneptor” atoms are N.2, N.3, and O.3. EXCLUDED_

VOLUME constraints define areas where no atom is allowed to penetrate into, whereas 

SPATIAL explicitly demands pronounced spatial occupancy. A particular pharmacophore 

model can be composed by any number and type of constraint, nevertheless SCREENINGDB 

stores the result of each matched constraint individually. Thus, if we decide at a later 

stage to filter according to a modified pharmacophore hypothesis, the already evaluated 

constraints can be easily re-examined. This will speed-up any subsequent filtering steps 

by re-using the already processed constraints. The retrieval of candidate ligands passing 

individual filters is rendered automatically by cross-referencing docking solutions with 

matching pharmacophore constraints. In addition, SCREENINGDB gives access to all 

derived molecular properties such as the molecular mass, the number of rotatable bonds, 

etc. 

SCREENINGDB is able to filter approximately 25.000 docking solutions per minute 

on currently available processors (Intel® Pentium® 4, 3.0 GHz, 1 GB RAM). The 

computational demands for pharmacophore filtering increases with the size of the 

candidate ligands and the complexity of the applied pharmacophore query. In the 

analysis, each molecule proceeds through the following steps: (1) retrieve compound 

data from database, (2) decompress data, (3) filter according to pharmacophore 

hypothesis (4) deposit results in the database. The speed limiting step is data retrieval 

from the database. Although the decompression step is computationally expensive too, 

storing uncompressed files in the database (a) slows down the data retrieval process 

and (b) blows up the storage requirement of the database dramatically. Nevertheless, 

benchmarking showed comparable results for handling compressed or uncompressed 

data, accordingly we decided to store compressed data by default. SCREENINGDB requires 

about 8 GB disk space, holding about 2•105 compounds and 5•105 docking solutions. 

Storing for each docking solution only the transformation matrix with the internal 
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torsional changes with respect to the reference geometry of each entry would reduce the 

data volume by about 25%, however additional computing time would be required to 

regenerate the coordinates of the docking solutions. 

VISUAL INSPECTION

We filtered about 5•105 docking poses with respect to different pharmacophore 

constraints and ranked the pharmacophore matching solutions according to various 

scoring schemes such as DrugScorePDB, DrugScoreCSD and the difference in the solvent 

accessible surface (ΔASA). The selected compounds placed into rank-ordered hit lists 

were prepared for visual inspection in the binding pocket. Although scoring functions 

try to capture all present knowledge about binding poses in algorithmic fashion our 

experience shows that due to the multifactorial correlation of binding mode with 

binding energetics the visual assessment through the eye of an experienced expert is 

of utmost importance. Such analyses focus on generated binding modes with respect 

to conformational distortions, contact surface complementarity, putative involvement 

of interstitial water molecules or remaining unoccupied voids along the protein-ligand 

interface. Accordingly, we visually inspected about 500 of the top-scored hits and 

examined their multiple docking poses. If looking promising, they were selected for the 

more elaborate docking using AUTODOCK and GOLD. 

DOCKING WITH GOLD AND AUTODOCK

Both GOLD 2.2 and AUTODOCK 3.0 apply a genetic algorithm (GA) search strategy to 

optimize the docking geometry within the binding site. Since GAs are computationally 

rather expensive, their application in large-scale docking approaches is not advisable. 

Nevertheless, reliable scoring requires the generation of accurate, near-native binding 

poses. Both programs succeeded to redock Fusicoccin correctly. Accordingly, we decided 

to apply these docking programs for a fine-tune docking whereas the faster FLEXX was 
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used for the large-scale docking. GOLD was run with elaborate parameter settings, using 

a population size of 100, mutation rate of 5%, crossover rate of 95%, and 105  evaluation 

cycles. AUTODOCK was calibrated with a grid spacing of 0.25 Å, population size of 100, 

mutation rate of 2%, crossover rate of 80%, and 5•105 energy evaluations. We generated 30 

docking geometries with each docking program. All docking solutions were processed in 

the same manner following the above-described protocol and stored in SCREENINGDB. 

VISUAL DRUGSCORE

The final visual inspection was assisted by the newly developed graphical evaluation 

tool visual DrugScore. The total score computed by DrugScore is the sum over the 

individual contributions considering all contacts between a ligand an the surrounding 

protein. Nevertheless, this total score can be easily decomposed into per-atom score 

contributions and displayed by assigning these contributions graphically to the contacting 

atoms. We integrated visual DrugScore into the PyMOL molecular visualization system 

(DeLano et al., 2002). The per-atom score contributions are translated into scaled spheres, 

that are mapped onto coordinates of the contacting ligand and protein atoms. Favorably 

interacting atoms are indicated by blue spheres, whereas disfavorable interactions are 

represented in red. The visualization tool is very supportive for the individual inspection 

of the docking solutions and provides valuable insight into protein-ligand interactions 

with respect to ligand portions contacting the protein target. 

RESULTS AND DISCUSSION

The analysis of rim-exposed and enzyme pockets resulted in very similar property 

contributions with respect to each of the considered descriptors (Fig. 9-11). The relative 

hydrophilicity of both kinds of pockets show normal distribution with a mean at about 

0.5. The relative hydrophilicity of five enzymes (Tab. 2), which have proven to posses 

well-druggable binding pockets, show values between 0.39 (Cyclooxygenase II) and 
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0.52 (Dihydrofolate Reductase). Although there might be other druggable pockets with 

a relative hydrophilicity beyond this range, a balanced distribution between hydrophobic 

and hydrophilic properties within the binding site appears to be essential for ligand binding 

in general. In contrast, the volume of the selected binding pockets show a widely spread 

distribution ranging from < 500 Å3 to > 3000 Å3. Nevertheless, both the rim-exposed and 

the enzyme pockets show an accumulated incidence between 500 and 800 Å3. The five 

selected enzyme representatives range from 658 Å3 (Carbonic Anhydrase II) to 2037 Å3 

(Dihydrofolate Reductase). However, even though a rather spacious binding pocket is 

given for Dihydrofolate Reductase, this enzyme can be inhibited by small molecules 

such as Methotrexate or Trimethoprim. The distribution of atom buriedness in the cavity 

also show similarity between both types of pockets with maximum values between 5 and 

6. Acetylcholinesterase deviates from this (Tab. 2), as it exhibits most of the binding-

site atoms with a buriedness value beyond 6. This is due to a rather long tube-shaped 

binding pocket (Fig. 12). As expected, the selected representatives of druggable enzymes 

show most of their binding-site atoms rather deeply buried. In summary, the similarity 

between rim-exposed cavities in protein-protein complexes and enzyme binding pockets 

is suggested as rather high in terms of the considered descriptors.

Subsequently, a mutual comparison between the pockets from the different sets using 

Cavbase has been accomplished. To our experience, Cavbase detects reasonable similarity 

if in both pockets about 8 to 20 pseudocenters are matched in common. Values beyond this 

range either match particularly pronounced similarity between homologous structures, or 

the low scores do no indicate any significant correspondence. The comparison between 

rim-exposed cavities and enzymes pockets resulted in a huge amount of similarity matches 

with scores in the outlined range (of example Fig. 13 and 14). Moreover, this indicates, 

that many rim-exposed pockets appear to expose similar properties compared to enzyme 

pockets. Nevertheless, this is only a rough indication for their putative druggability.
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Relative Hydrophilicity of Enzyme Binding Pockets
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FIGURE 9. Both enzyme and rim-exposed cavities show normal distribution with a mean 
at about 0.5 for relative hydrophilicity.

Relative Hydrophilicity of Enzyme BInding Pockets

Relative Hydrophilicity of rim-exposed Interface Binding Pockets
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Volume of Enzyme Binding Pockets

Volume (A^3)

D
en

si
ty

0 500 1000 1500 2000 2500 3000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

Volume of Interface Covering Binding Pockets

Volume (A^3)

D
en

si
ty

0 500 1000 1500 2000 2500 3000

0e
+0

0
4e

−0
4

8e
−0

4

Volume of rim-exposed Interface Binding Pockets

Volume of Enzyme BInding Pockets

Volume Å3

Volume Å3

FIGURE 10. Both enzyme and rim-exposed cavities are spread over a wide range of 
volumes, but most cavities fall into a range between 500 and 1500 Å3.
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Buriedness of Enzyme Binding Pockets
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FIGURE 11. Both enzyme and rim-exposed cavities show similar distributions in the 
buriedness of their atoms.
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PDB CODE ENZYME
RELATIVE 

HYDROPHILICITY
VOLUME BURIEDNESS

1cil Carbonic Anhydrase II 0.41 658 Å3
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4cox Cyclooxygenase II 0.39 742 Å3
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1o9f H+-ATPase/14-3-3 0.52 874 Å3

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1eve Acetylcholinesterase 0.47 1259 Å3























       

1hxw HIV Protease 0.50 1282 Å3
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1dds  Dihydrofolate 
Reductase  0.52 2037 Å3
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TABLE 2. Relative hydrophilicity, volume, and atom buriedness of known drug binding 
enyzmes from the PDB. Additionally, Fusicoccin binding pocket of the H+-ATPase/14-3-3 
complex (yellow). All pockets show a balanced ratio of hydrophilic and hydrophobic 
properties in the binding site. The pocket volume is spread over a wide range between 
658 and 2037 Å3. The buriedness of the binding site atoms show similar distributions. 
Acetylcholinesterase deviates from this, as it exhibits most of the binding-site atoms with 
a buriedness value beyond 6.
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FIGURE 12. Tube-shpaed binding pocket of Acetylcholinesterase (PDB 1eve) in complex 
with the anti-Alzheimer drug Donepezil (ARICEPT®). The enyzme shows a pronounced 
number of very deeply buried atoms in its binding pocket, significantly higher than the 
average.



CHAPTER 2 - RESULTS AND DISCUSSION 85

FIGURE 13. Rim-exposed cavity of the protein-protein complex between Barley α-amylase 
(gray) with its endogenous protein inhibitor BASI (blue) and complexed calcium ion 
(yellow) (PDB 1ava). The relative hydrophilicity of 0.52 and the volume of 897 Å3 
suggest this pocket putatively as druggable.
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Considering some crude statistics based on the analyzed data set of transient 

complexes, more than 380 rim-exposed cavities can be detected, which suggests on 

average the presence of more than one putative cavity per complex that could be possibly 

addressed by a small molecule ligand. To assess the feasibility of such a strategy in 

each individual case would require rigorous estimates about the druggability of these 

sites as they define the properties to be met by putative interface stabilizers. In a recent 

evaluation Hajduk et al. (Hajduk et al., 2005) suggest a set of discriminative descriptors 

assess the druggability of typical, well-buried binding sites. This study explicitly point 

out the multifactorial nature of the rules determining druggability. Apparently, it appears 

difficult to estimate whether the same type of descriptors are applicable to classify rim-

exposed cavities or crevices at protein-protein interfaces. Nevertheless, their frequent 

occurrence stimulated us to embark into an elaborate virtual screening campaign using 

the H+-ATPase/14-3-3 interface, addressed by Fusicoccin, as a case example.

VIRTUAL SCREENING FOR STABILIZERS OF THE H+-ATPASE/14-3-3 
INTERACTION

Screening for alternative stabilizers of the H+-ATPase/14-3-3 interaction is challenging, 

since only Fusicoccin is presently known to stabilize this protein-protein interaction. 

For our search we applied established structure-based drug design tools, since the 

H+-ATPase/14-3-3 complex exhibits a deep binding pocket, however it exposes only (1) 

a few amino acids qualified to form a directional hydrogen bond to a putative ligand and 

(2) this ligand has to address both, the H+-ATPase and 14-3-3 protein, with a sufficiently 

large hydrophobic surface portion. Therefore, we decided to screen a large data sample 

by docking to avoid early discard of potential hits and novel chemistry by applying too 

stringent filters based on preconceived pharmacophore information. Instead, we defined 

a variety of pharmacophore constraints, suggested by the target, that had to be matched 

by the ligands retrieved in the initial screening run. Accordingly, about 5•105 docking 

poses had to be filtered according to these setups.
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FIGURE 14. Distribution of buriedness of binding pocket atoms in PDB 1ava.

Our first screening was tailored to achieve filling of the water sub-pocket along with 

satisfying a reasonably large hydrophobic contact to the side chain of Val5. Furthermore, 

formation of a hydrogen bond to Lys129 and Asp222 was requested. All docking poses 

were filtered according to the pharmacophoric constraints given in Fig. 7. In total, we 

selected eight molecules for in vitro testing (Fig. 16-23), of which five exhibit a related 

scaffold. All selected hits suggested reasonable docking geometries, well satisfying the 

desired interaction pattern and achieving convincing scores. Similar binding modes were 

suggested by the different docking programs. Furthermore, we applied visual DrugScore 

in combination with DrugScoreCSD potentials to elucidate the score contributions of each 

docking pose. All selected molecules show favorable interaction patterns (Fig. 16-23). 

Four of the selected compounds exhibit a terminal amide group (332884-29-4, Fig. 18; 

604741-06-2, Fig. 19; 606116-94-3, Fig. 20 and 587012-99-5, Fig. 23) accommodate 

the previously water-filled sub-pocket (blue sphere in the pharmacophore hypothesis, 

0 1 2 3 4 5 6 7
0
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0.3

Buriedness
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Fig. 7). Our design was tailored to address the hydroxy group of Tyr134 in this sub-

pocket. Particularly, the ambivalent amide group can adopt an adequate conformation 

to form a hydrogen bond. The other selected compounds show either a carboxylic 

(606117-05-9, Fig. 21), or hydrazidic group (385376-34-1, Fig. 22), or they exhibit ring 

systems with appropriate acceptor functionalities (1518-10922, Fig. 16 and 405279-55-2, 

Fig. 17) to interact with Tyr134. All moieties selected to address the water sub-pocket, 

display attractive per-atom score contributions indicated by visual DrugScore. The 

acceptor functionality of the ether oxygen in Fusicoccin, which forms a hydrogen 

bond to Lys129, is mimicked by either a heterocyclic ether oxygen (405279-55-2, 

Fig. 17; 332884-29-4, Fig. 18; 604741-06-2, Fig. 19; 606116-94-3, Fig. 20 and 

606117-05-9, Fig. 21), a heterocyclic nitrogen (1518-10922, Fig. 16 and 587012-99-5, 

Fig. 23), or the likely negatively charged tetrazol (385376-34-1, Fig. 22). The hydrophobic 

contact to Val5 is formed by either carbocyclic ring portions or other uncharged sidechain 

decoration, which experience high scoring with DrugScore. However, for all selected 

compounds the contacts to Val5 appear suboptimal, compared to the available contacting 

ΔASA experienced by Fusicoccin (Tab. 3).

Despite of this promising match with the requested pharmacophore and convincing local 

scoring, none of the selected compounds showed a permanent stabilizing effect in either 

the fluorescence or BIAcore assay, respectively, whereas Fusicoccin exhibits intensive 

signals (data not shown). Obviously, the tested ligands do not bind sufficiently strong to 

the H+-ATPase and supposedly do not capture strong enough interactions with Val5. Prime 

focus of our initial screen to address the water sub-pocket, which appeared as well-suited 

for small druglike molecules. However, to achieve a net contribution to binding affinity, 

the total inventory of energetic contributions required to replace the waters has to be 

considered. Depending on the enthalpic loss and entropic gain of this replacement, it can 

be detrimental to binding. Possibly, a stronger adhesion of the ligand to the C-terminal 

hydrophobic side chain (Val5) of the H+-ATPase seems to be indispensable for the 

stabilization particularly since this interaction seems to be exhaustively exploited by the 
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FIGURE 15. Fusicoccin aglycon: visual DrugScore representation with DrugScoreCSD 
potentials, DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible 
surface (ΔASA, in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

49.2 59.7 14.0 43.2 24.3 22.0 0.0 7.8 23.4 67.0 9.5 437.9

Molecular Weight: 408.2 

DrugScoreCSD -205666

DrugScorePDB -424566
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OH

O

O

O
N
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N
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FIGURE 16. 1518-10922: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

31.0 30.9 20.3 5.3 24.3 22.6 3.7 11.5 33.6 38.1 5.9 305.6

Molecular Weight: 413.3 

DrugScoreCSD -180056

DrugScorePDB -390873
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FIGURE 17. 405279-55-2: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

34.0 36.5 17.5 0.6 23.5 22.6 3.7 12.1 32.6 44.8 8.3 284.8

Molecular Weight: 371.1 

DrugScoreCSD -131754

DrugScorePDB -355298

N

N
N

O

N
N S

NH2

O

FIGURE 18. 332884-29-4: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

21.6 15.4 15.7 0.0 22.9 22.6 3.7 7.4 24.0 14.8 7.2 183.4

Molecular Weight: 290.2 

DrugScoreCSD -148183

DrugScorePDB -370722
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FIGURE 19. 604741-06-2: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

24.8 17.9 13.9 0.0 23.3 22.6 3.7 8.2 24.7 21.6 7.2 194.5

Molecular Weight: 279.2 

DrugScoreCSD -123073

DrugScorePDB -385868

O

O

N N

O S

O

NH2

FIGURE 20. 606116-94-3: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

40.7 25.1 20.4 11.2 23.8 22.6 3.7 8.0 25.2 27.3 9.1 255.1

Molecular Weight: 293.2 

DrugScoreCSD -136051

DrugScorePDB -432474
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FIGURE 22. 385376-34-1: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

23.3 11.4 18.0 0.0 23.5 22.6 3.7 7.4 22.2 15.0 6.6 182.3

Molecular Weight: 294.2 

DrugScoreCSD -127684

DrugScorePDB -390053

N

N
H

O

N
N

S
OH

O

FIGURE 21. 606117-05-9: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

23.2 19.4 14.7 0.0 23.4 22.6 3.7 9.4 28.1 22.1 7.0 205.1

Molecular Weight: 292.2 

DrugScoreCSD -129744

DrugScorePDB -401228
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FIGURE 23. 587012-99-5: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

36.5 21.4 21.3 17.7 24.3 22.6 3.7 7.4 23.5 12.9 6.3 234.0

Molecular Weight: 316.2 

DrugScoreCSD -180617

DrugScorePDB -374563

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

40.6 40.8 18.5 26.1 23.4 21.2 0.0 7.4 22.7 39.5 6.9 266.5

Molecular Weight: 279.2

DrugScoreCSD -145358

DrugScorePDB -387904

FIGURE 24. 1229-29-4: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.
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Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

54.0 33.0 13.0 29.0 22.3 17.8 0.0 7.9 26.5 27.0 7.7 261.9

Molecular Weight: 305.7 

DrugScoreCSD -194520

DrugScorePDB -373580

FIGURE 25. 134073-67-9: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

53.3 41.4 18.3 35.1 23.3 19.0 0.0 7.0 20.8 32.5 6.7 298.0

Molecular Weight: 337.2 

DrugScoreCSD -174449

DrugScorePDB -440953

FIGURE 26. 140462-76-6: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.
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Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

47.3 33.4 21.3 30.5 24.3 22.6 3.4 9.4 29.3 29.6 8.5 299.4

Molecular Weight: 393.2 

DrugScoreCSD -131793

DrugScorePDB -412425

FIGURE 27. 335393-81-2: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

43.2 28.7 8.6 16.2 17.5 15.5 0.0 6.9 18.7 41.4 9.5 225.5

Molecular Weight: 221.2  

DrugScoreCSD -152819

DrugScorePDB -365014

FIGURE 28. 380635-96-1: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.
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Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

43.8 41.7 12.4 31.2 22.8 15.2 0.0 9.0 24.7 41.6 7.1 263.0

Molecular Weight: 308.2

DrugScoreCSD -155329

DrugScorePDB -387594

FIGURE 29. 47192-66-5: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

51.9 15.0 21.3 27.0 24.0 22.6 3.7 6.2 16.6 12.3 6.8 244.1

Molecular Weight: 315.3

DrugScoreCSD -153267

DrugScorePDB -384644

FIGURE 30. 720674-11-3: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

O

N

N

CH3

S

S

CH3

NH2

O



 
Δ

A
S

A

 

Δ
A

S
A

CHAPTER 2 - RESULTS AND DISCUSSION 97

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

33.4 28.9 4.5 17.9 21.9 16.2 0.0 7.1 19.8 33.6 9.5 201.5

Molecular Weight: 241.2

DrugScoreCSD -130404

DrugScorePDB -295650

FIGURE 31. 82394-01-2: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.

Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

49.3 39.7 18.3 31.4 24.1 19.9 0.0 8,6 26.8 39.8 6.4 295.2

Molecular Weight: 310.3

DrugScoreCSD -162355

DrugScorePDB -360943

FIGURE 32. 844882-80-0: visual DrugScore representation with DrugScoreCSD potentials, 
DrugScoreCSD and DrugScorePDB scores and the loss on solvent accessible surface (ΔASA, 
in Å2) upon complexation for selected residues in the binding site.
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unique architecture of Fusicoccin. Fusicoccin shows attractive per-atom DrugScoreCSD 

contributions throughout almost the entire molecule (Fig. 15). In particular, the ring 

scaffold and the ether attached to ring A experience high local scores. The burial of 

solvent accessible surface (ΔASA) assigned to FC and removed upon binding is 437.9 Å2 

(49.2 Å2 are contributed to Val5). It appears as if spatial arrangement of the three fused 

rings evolved by Fusicoccin is ideally suited to fit the target. The curved ring skeleton 

wraps around the side chain of Val5. Therefore, prospective-looking molecular skeletons 

satisfying these requirements should obey a similar ring system curvature. The fused ring 

systems found in tricyclic antidepressants such as Doxepin exhibit a bent butterfly-type 

arrangement and may represent a promising architecture to wrap around the targeted 

Val5 sidechain. Following this idea, we filtered SCREENINGDB and SCIFINDER SCHOLAR 

for candidates with tricyclic ring moieties and docked them using FLEXX and GOLD. We 

discovered nine compounds, properly wrapping around Val5 and addressing at least one 

of the pharmacophore constraint defined in Fig. 7. The best scored docking solutions, 

with respect to DrugScoreCSD, are shown together with visual DrugScore in Fig. 24-32. 

In this campaign, only FLEXX generated convincing docking solutions, since GOLD places 

the three rings inside the water sub-pocket and these poses are as less favorable. 

In contrast to the first screening, only two of the selected compounds occupy the 

water sub-pocket (335393-81-2, Fig. 27 and 720674-11-3, Fig. 30), but all expose their 

fused-ring system in a way to wrap around Val5. As the large blue spheres in visual 

DrugScore indicate, well-scored interactions to Val5 are experienced, in particular for 

the compounds 140462-72-6 (Fig. 26) and 335393-81-2 (Fig. 27). A donor functionality 

to address Asp222 is present as amino group (1229-29-4, Fig. 24; 134073-67-9, Fig. 25; 

140462-76-6, Fig. 26; 380635-96-1, Fig. 28 and 82394-01-2, Fig. 31) or guanidino group 

(844882-80-0, Fig. 32). Doxepin (1229-29-4, Fig. 24) may even mimic Fusicoccin’s 

ether as it exposes an acceptor functionality via its ether oxygen in the seven-membered 

ring. Compared to Fusicoccin, the compounds selected in the second screen exhibit lower 

DrugScorePDB or DrugScoreCSD scores. This is due to their lower molecular weight and 
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ID Val5 Asn49 Ser52 Val53 Phe126 Lys129 Tyr134 Pro174 Ile175 Asp222 Ile226 total

Fusicoccin 49.2 59.7 14.0 43.2 24.3 22.0 0.0 7.8 23.4 67.0 9.5 437.9

1518-10922 31.0 30.9 20.3 5.3 24.3 22.6 3.7 11.5 33.6 38.1 5.9 305.6

405279-55-2 34.0 36.5 17.5 0.6 23.5 22.6 3.7 12.1 32.6 44.8 8.3 284.8

332884-29-4 21.6 15.4 15.7 0.0 22.9 22.6 3.7 7.4 24.0 14.8 7.2 183.4

604741-06-2 24.8 17.9 13.9 0.0 23.3 22.6 3.7 8.2 24.7 21.6 7.2 194.5

606116-94-3 40.7 25.1 20.4 11.2 23.8 22.6 3.7 8.0 25.2 27.3 9.1 255.1

606117-05-9 23.2 19.4 14.7 0.0 23.4 22.6 3.7 9.4 28.1 22.1 7.0 205.1

385376-34-1 23.3 11.4 18.0 0.0 23.5 22.6 3.7 7.4 22.2 15.0 6.6 182.3

587012-99-5 36.5 21.4 21.3 17.7 24.3 22.6 3.7 7.4 23.5 12.9 6.3 234.0

1229-29-4 40.6 40.8 18.5 26.1 23.4 21.2 0.0 7.4 22.7 39.5 6.9 266.5

134073-67-9 54.0 33.0 13.0 29.0 22.3 17.8 0.0 7.9 26.5 27.0 7.7 261.9

140462-76-6 53.3 41.4 18.3 35.1 23.3 19.0 0.0 7.0 20.8 32.5 6.7 298.0

335393-81-2 47.3 33.4 21.3 30.5 24.3 22.6 3.4 9.4 29.3 29.6 8.5 299.4

380635-96-1 43.2 28.7 8.6 16.2 17.5 15.5 0.0 6.9 18.7 41.4 9.5 225.5

47192-66-5 43.8 41.7 12.4 31.2 22.8 15.2 0.0 9.0 24.7 41.6 7.1 263.0

720674-11-3 51.9 15.0 21.3 27.0 24.0 22.6 3.7 6.2 16.6 12.3 6.8 244.1

82394-01-2 33.4 28.9 4.5 17.9 21.9 16.2 0.0 7.1 19.8 33.6 9.5 201.5

844882-80-0 49.3 39.7 18.3 31.4 24.1 19.9 0.0 8.6 26.8 39.8 6.4 295.2

TABLE 3. The loss on solvent accessible surface area (ΔASA) upon binding of the 
generated docking geometries for the most important residues within the Fusiccocin 
binding pocket of. The values of Fusicoccin are with yellow background.

therefore the fewer contacts formed with the protein-protein complex. Nevertheless, the 

ring-systems wrapping around Val5 are consistently high-scored (cf. visual DrugScore). 

Considering solely the DrugScoreCSD contribution of the three ring-system, e.g. in 

Doxepin, a better score is achieved (-122270) compared to the fused ring skeleton of 

Fusicoccin (-107606). The additional decorations of the Fusicoccin aglycon improves its 

total score nearly a factor of two. In contrast, the sidechains at Doxepin increase scoring 

by approximately 10%. Consistently, the ΔASA burial achieve in the docking poses with 
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respect to the pivotal Val5 contact (35-55 Å2) fall into the same range as of Fusicoccin 

(49.2 Å2 ), although the total ΔASA burial for these ligands (200-300 Å2) is significantly 

smaller than for Fusicoccin (437.9 Å2, Tab. 3). In conclusion, the suggested fused ring-

systems might represent a promising scaffolds for lead stabilizing the H+-ATPase/14-3-3 

complex. 

SUMMARY AND CONCLUSIONS

Modulating protein-protein interactions by small molecular compounds is a challenging 

task. The approach to stabilize such interactions appears very promising, considering 

that several molecules, including known drugs, follow this mode of action. The crystal 

structure of the protein-protein complex of H+-ATPase and 14-3-3 in complex with bound 

phytotoxin Fusicoccin has been used for a feasibility study to discover novel stabilizers 

using structure-based virtual screening. Nearly two millions of commercially available 

compounds have been screened. A versatile combination of several standard screening 

protocols together with tools to analyze, cluster and classify vast of screening results 

has been implemented into SCREENINGDB. Furthermore, visual DrugScore has been 

developed as powerful graphic tool to visualize per atom contributions to the protein-

ligand interactions captured in a generated docking solution. 

The first virtual screening campaign has been focused to fill a previously hydrated 

water sub-pocket, together with a reasonably large hydrophobic contact to the crucial 

side chain of Val5. Additionally, the formation of a hydrogen bond to Lys129 and/or 

Asp222 were requested. A set of eight compounds was selected for a subsequent in vitro 

testing based on their pharmacophore matching and achieved DrugScore rankings. 

However, none of the in vitro tested compounds showed detectable stabilization of the 

H+-ATPase/14-3-3 complex. This might be due to the fact, that the crucial interaction of 

Fusicoccin, which wraps around the side chain of Val5, is not sufficiently well mimicked 

by the selected screening hits. Accordingly, the second screening was focused on the 
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retrieval of compounds forming a more intimate contact to Val5. The discovered hits of 

this screen consistently show a fused system of three rings, which wraps convincingly 

well around Val5 comparable to Fusicoccin. Considering the well-scored ring skeletons, 

e.g. in Doxepin, such scaffolds potentially represent a promising architecture for leads to 

stabilize the H+-ATPase/14-3-3 contact.

In light of the results of this feasibility study, the general concept to use small 

molecules to stabilize protein-protein interactions appears quite tempting. First of all, 

there is a considerable number of small molecules known (including some drugs), 

which actually stabilize protein-protein interactions. Furthermore, the thermodynamic 

prerequisites for the binding of a small molecule to a rim-exposed interface cavity appear 

better achievable and more likely favorable than the binding to a large, rather featureless 

protein-protein interface. This concept is supported by the fact that a sizable number 

of protein-protein complexes exhibit one or more rim-exposed pockets spanning the 

interface. The latter finding results from the analysis of a dataset of 198 transient protein-

protein recognition complexes, which exhibit such cavities. Even though, recent studies 

underline the difficulty estimate the putative druggability of a given pocket simply based 

on structural descriptors, we applied the Cavbase concept compare rim-exposed cavities 

observed across protein-protein interfaces with binding pockets of enyzmes which have 

been successfully subjected to drug development programs. Interestingly, both types of 

cavities achieve pronounced similarity in terms of the distribution of hydrophilicity, the 

volume, and buriedness of pocket-forming atoms. Furthermore, we used the Cavbase 

approach to retrieve similar cavities from both sets of pockets. The frequently found 

correspondence substantiates the hypothesis of druggable cavities at the margin of 

protein-protein complexes. We believe, the idea of targeting rim-exposed pockets 

spanning across protein-protein interfaces may change the paradigm to search and design 

potential modulators of protein-protein complex formation.
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AFFINDB: A FREELY ACCESSIBLE DATABASE OF AFFINITIES 

FOR PROTEIN-LIGAND COMPLEXES FROM THE PDB

INTRODUCTION

Understanding the energetics of biomolecular recognition is of paramount importance 

for a large variety of biomedical and biotechnological disciplines. One of the most 

prominent examples is given by structure-based drug design where the three-dimensional 

structure of a target macromolecule (most frequently a protein) is used to identify, design, 

or optimize small-molecule ligands which bind tightly to the target. Obviously, such 

design can only be successful if the structural requirements for energetically favorable 

interactions and high-affinity binding are known. Much of the current knowledge 

has been gained from comparative analyses of different complex structures and their 

affinities (Klebe & Boehm, 1996; Babine & Bender 1997). These analyses, however, 

were normally restricted to rather small sets of data, and the understanding of protein-

ligand recognition is still far from being complete, as illustrated by the recurring surprises 

during projects of molecular design (Müller et al., 2002; Lange et al., 2003; Brenk et al., 

2003; Specker et al., 2005). Clearly, more data are instrumental to increase the knowledge 

about protein-ligand interactions and to improve not only the qualitative understanding, 

but also the quantitative tools for estimating affinities from complex structures, such 

as empirical, regression-based scoring functions (Wang et al., 1988; Wang et al., 2002; 

Boehm, 1994, 1998; Head et al., 1996; Eldridge et al., 1997).

Structural data of protein-ligand complexes are available to a large and rapidly 

increasing extent through the Protein Data Bank PDB (Berman et al., 2000). This database, 

however, is a general resource for biomacromolecular structures that had not particularly 

been designed for protein-ligand complexes. Accordingly, secondary databases such as 

Relibase (Guenther et al., 2003, Hendlich et al., 2003) or PDBsum (Laskowski et al. 

1997, 2005) have been developed which provide more convenient access to specific 
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information about protein-ligand complexes (e.g., search functions for ligand structures; 

analysis tools for interaction patterns in Relibase). Unfortunately, neither the secondary 

structural databases nor the PDB contain any information about the binding energetics 

of the corresponding complex, since this information is not required to be included upon 

submission of structural coordinates to the PDB. On the other hand, some databases exist 

that collect binding data for enzymes, receptors, or protein-ligand complexes in general, 

such as BindingDB (Chen & Gilson, 2001) or KiBank (Zhang et al., 2004), but these, in 

turn, are not limited to complexes with available structure and do not provide a direct link 

to the available 3D structure of a given complex with measured affinity.

Given the obvious need for databases that establish the missing link between structural 

information from the PDB and the rather sparse and widely distributed affinity data, we 

started to develop AffinDB, a database of affinity values collected from the scientific 

literature for protein-ligand complexes of known structure. Originally intended as 

a simple tabular collection of affinity values related to PDB codes for in-house use 

only, the project has grown over time, both with respect to data content and database 

management, such that it has ultimately been made available to the public as a potentially 

valuable new resource, despite the recent appearance of other databases of similar scope, 

most notably PDBbind (Wang et al., 2004, 2005) and Binding MOAD (Hu et al., 2005). 

In the following, we briefly describe the database architecture and content of AffinDB, 

as well as the data collection procedure, give a succinct introduction to possibilities for 

accessing the data through the user interface, and discuss differences and similarities to 

other databases.
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METHODS

DATABASE ARCHITECTURE

AffinDB is based on a MySQL (4.0.24) backend machine. The web interface is written 

in PHP (4.3.10). The database is designed to provide supplementary information for PDB 

structures of protein-ligand complexes. Accordingly, AffinDB is structured by PDB code, 

which is the primary reference for all data. Basic PDB meta information about the protein 

is available for every PDB structure, basic ligand information is provided for ligands with 

more than five non-hydrogen atoms. Ligand entries of complexes are stored only once in 

AffinDB, i.e. in case of multiple occurrences of the same ligand in different structures, 

a pointer to the reference ligand molecule is used. Affinity data and related information 

are always associated with a specific ligand of a specific PDB structure.

DATA COLLECTION AND DATABASE CONTENT

 The database core is constituted by basic meta information about all PDB structures. 

To obtain these data, a helper-application was generated with a Python-based Relibase 

toolkit and the data were retrieved from Relibase+ (Guenther et al., 2003, Hendlich et 

al., 2003). A further preprocessing step served to store only ligands with more than five 

non-hydrogen atoms in AffinDB, using a unique and consistently created name for these 

molecules. The PDB meta information provided for every entry includes the name of the 

protein or protein class (as given in the header information of the PDB file), the E.C. 

number (for enzymes), the protein source, the resolution of the crystal structure, and the 

name of the authors who determined the structure. In addition, for each PDB code links 

to the following external databases were added: PDB (Berman et al., 2000), Relibase 

(Guenther et al., 2003, Hendlich et al., 2003), MSD (Boutselakis et al., 2003), SCOP 

(Murzin et al., 1995), and PDBsum (Laskowski et al. 1997, 2005).
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The ligand entries consist of the chemical name (as provided in the PDB file), the 

molecular weight, and the SMILES code (Weininger, 1988) as basic information. In 

addition, a 2D molecule drawing of the ligand structure is included. These drawings 

FIGURE 1: Affinity information window for one 
of the the affinity entries for PDB complex 1flr.

are generated for every unique ligand with MARVIN 3.5.7 (MARVIN, WWW). BABEL 

1.6 (BABEL, WWW), CORINA (3.1) (Gasteiger et al., 1998), and in house software was 

used to harmonize the format of the ligands in order to obtain best results from MARVIN. 

This automated procedure provided correct drawings for most of the ligands. A small 

proportion which could either not be drawn by MARVIN or gave distorted pictures had to 

be postprocessed by hand. Titratable functional groups are always shown in their neutral 

state, independent of any actual protonation state.
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The protein and ligand information described so far is shown by AffinDB regardless 

whether affinity data is already available for the PDB entry or not. The main purpose 

of AffinDB, however, is to provide affinity information. Affinity data are exclusively 

extracted from the scientific literature. Both „primary“ and „secondary“ references 

FIGURE 2: Main window showing a PDB entry with affinity data in AffinDB. 
PDB complex 1flr is used as an example. Five different affinity values 
measured in different studies and under different conditions are available for 
this complex. The left navigation bar provides fast access to all functionalities 
of AffinDB. 
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are taken into account. A primary reference is a paper describing the original work of 

the affinity measurement for the corresponding protein-ligand complex. A secondary 

reference, instead, is any other paper that reports an affinity value for a PDB complex; 

this may include publications with compilations of affinity data for the development of 

scoring functions or similar purposes. In a secondary paper, the affinity value for a PDB 

complex is often only cited, without specifying further experimental details. – So far, 

more than 740 affinity values covering over 470 PDB complexes could be collected and 

stored in AffinDB (cf. Discussion).

The input of affinity data into AffinDB is implemented in the form of a wizard. After 

entering the desired PDB code, AffinDB provides a list of all the ligands of the PDB 

entry in combination with a 2D molecule drawing and a hint whether affinity information 

is already stored for the given ligand. After choosing the desired ligand, the user is 

requested to enter the affinity information. Upon submission of the data, simple checks 

of the data integrity are performed and the entry is flagged for review by the database 

curators. Only after a database curator has checked these data, they are released for 

public access in AffinDB.

The binding affinity is thermodynamically quantified as free energy of binding ΔGbind 

or as equilibrium constant (for association: Ka; for dissociation: Kd) for the reversible 

equilibrium reaction between protein P and ligand L to form the protein-ligand complex 

PL: P + L ↔ PL. ΔGbind and the equilibrium constants are related by the equation: 

ΔGbind = -RT ln Ka = RT ln Kd, where T is the temperature (in Kelvin) and R is the ideal 

gas constant (8.314 Jmol-1K-1). For enzyme inhibitors, affinities are more frequently 

quantified in terms of parameters derived from kinetic assays. This may either be the 

inhibition constant Ki (which to a first approximation may be considered as a Kd for 

the enzyme-inhibitor complex, thus ΔGbind = RT ln Ki) or the IC50 value, which is the 

inhibitor concentration leading to 50% inhibition of the enzymatic activity. In AffinDB, 
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the affinity value is stored in the same form as published in the specified reference, i.e., 

without any conversion of type or unit. If available, experimental uncertainties or error 

margins are saved as well.

FIGURE 3. Tabular report, showing part of the search results produced by 
a query for affinity data published by a specific author (“Kurinov”) in a 
primary reference.
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Along with the affinity value itself, also the experimental method and conditions of the 

affinity measurement are stored in AffinDB, if specified in the corresponding reference. 

This information is provided to the user through a separate “affinity information window” 

(Fig. 1), which can be opened by activating the “Details” link next to the affinity entry 

in the main window (Fig. 2). The method by which the affinity was determined is 

characterized by a keyword or a brief statement. Temperature and pH value at which the 

measurements were carried out are stored separately. In addition, the buffer and any other 

significant reagents or additives present in the solution are reported. For the literature 

reference itself, the name of the first author, the title of the journal, as well as volume, 

year, and first page of the publication are stored. The reference is linked to the correspon-

ding PubMed entry, which provides direct access to the abstract. A flag indicates whether 

the reference is of primary or secondary type. Finally, comments and additional valuable 

information regarding the method, the reference, the structure, or the affinity value itself 

are saved in a separate data field.

DATABASE ACCESS 

The database is freely accessible at http://www.agklebe.de/affinity. Data can be 

retrieved via the PDB code, by defining specific search queries using the affinity search 

form, or simply by browsing.

Upon specifying a PDB code in the data entry field on the left navigation bar of the 

main window (cf. Fig. 2), the summary information for the PDB entry is shown. If an 

affinity value for the ligand is available in the database, it is displayed below the ligand 

structure, along with the first author and the year of the publication which reports 

this value. If additional affinity values are available from other references, these are 

displayed as well, each in a separate line (cf. Fig. 2). Further details can be requested 
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for each affinity entry. Searching for a specific PDB entry with the affinity search form 

(accessible through the „Search“ link in the left navigation bar) yields only a result if an 

affinity value is already associated with the corresponding PDB entry.

In the affinity search form, a variety of queries for affinity data and related information 

can be defined. It is possible to search for affinities of a certain range of magnitude and 

for measurements carried out at a specific temperature and/or pH range. Affinities for 

certain enzyme classes or PDB codes may be retrieved, as well as affinities for ligands of 

a certain molecular-weight range. Also the affinity values published by a certain author 

or within a specified time frame can be requested, and the retrieved affinity values may 

be limited to those obtained from primary literature sources.

AffinDB generates tabular reports for displaying affinity search results and for 

browsing through the database (Fig. 3). The format of the tables consists of six columns 

providing the drawing of the ligand structure; the PDB code (linked to the summary 

information for the PDB entry), the affinity value in the originally reported form as well 

as converted to the negative base-10 logarithm (i.e., as pKi, pKd, pIC50 (relative to the 

standard concentration of 1 mol/l)); the pH value of the measurement, the first author 

of the publication (with a link to the PubMed entry); and the year of the publication. 

Tables reporting search results can be saved as „csv“ file, which is an ASCII file with 

semicolon-separated columns and one affinity entry per line.

DISCUSSION

AffinDB has been designed to provide fast and easy access to affinity data. The 

popular MySQL backend was chosen as database machine, since MySQL offers a speed-

optimized SQL engine. Using the scripting language PHP, special care was taken to 
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generate a clearly structured layout which enables fast and easy navigation. Since all 

data can be accessed and retrieved directly via the webbrowser, the user does not have to 

install any special software to work with AffinDB.

Using current PC hardware (CPU: AMD Athlon™ XP 2400+), AffinDB executes 

search queries in less than 0.1 seconds, fairly independent of the complexity of the 

query. The representation of the tabular report including the 2D molecule drawings needs 

between 0.1 and 5 seconds, depending on the number of hits (5 seconds if all entries are 

retrieved). The representation of a PDB entry takes up to 0.2 seconds, depending on the 

number of affinity data available for that entry. These values reflect only a server-side 

benchmarking. Obviously, the real speed also depends on the client-side hardware, the 

Internet connection and the browser.

Data collection for AffinDB is a very time-consuming process which can hardly be 

automated since scientifically educated readers are required to critically extract the relevant 

data from the scientific literature. In contrast to other databases (cf. below), we decided 

to include all affinity data found during literature research for a given PDB complex. 

Multiple affinity entries may, thus, be available for certain structures. These may reflect 

measurements with different methods or under different experimental conditions (e.g., 

PDB 1flr; cf. Fig. 1), or it may be due to additional reports from secondary references, 

which allows the user to trace back in which context the corresponding complex and its 

affinity have already been used. Only purely redundant data are not included (e.g., if the 

value is reported in the same paper as Kd and ΔG derived thereof).

The current coverage of more than 470 PDB structures derives from a priority selection 

made upon constructing the database. The initial basis was formed by compilations of 

affinity values from secondary references concerning empirical scoring functions. Due to 

discrepancies among some of the values and to obtain more detailed information, primary 

references were also retrieved for part of this initial set. Subsequently, the database was 
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augmented by seeking affinity data for PDB complexes of different data sets, such as a 

docking test set of validated structures (Nissink et al., 2002) or data sets for certain target 

classes (e.g., carbonic anhydrases, trypsin-like serine proteases). Furthermore, published 

data from our own laboratory were also directly included.

AffinDB is a valuable resource for anyone interested in correlating structural data 

with binding energetics and complements other databases of similar subject, specifically 

the Ligand-Protein Database LPDB (Roche et al., 2001), the Protein-Ligand Database 

PLD (Puvanendrampillai & Mitchell, 2003), PDBbind (Wang et al., 2004, 2005), and 

Binding MOAD (Hu et al., 2005). LPDB is a compilation of 262 PDB complexes with 

affinity data. Since it also provides scoring values, docked ligand poses („decoys“), 

and ligand files setup for docking, LPDB is primarily intended to serve as a data set 

for testing and developing docking and scoring methods. It does neither provide details 

nor references for the affinity values. The same is true for PLD, which contains 485 

complexes and experimental binding energies for 344 of them. PLD can be searched by 

using a variety of single search criteria, but no combined search queries are possible. 

Like AffinDB it is freely accessible to anybody over the internet, whereas PDBbind 

and Binding MOAD require a registration before granting academic users a free login 

account. The latter two databases offer by far the largest amount of affinity values, 

both covering well beyond 1700 complexes in their latest updates. Details about the 

affinity measurement and experimental conditions, however, are not included, which 

is an information provided by AffinDB for data retrieved from primary references. In 

summary, although there is certainly some overlap among the structure-affinity databases 

recently arosen from independent efforts, there are clear differences in focus, design, and 

content, rendering each database on its own and in mutual combination an indispensable 

tool for the scientific community as long as affinities are not reported by the PDB and/or 

no common repository for biomolecular affinity data exists.
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AffinDB encourages users to contribute data and submit references to papers with 

affinity data for PDB complexes. After registering for upload, an input form can be 

accessed which facilitates the submission of all relevant data in a clear format. Data 

submitted by users do not directly enter the database, but must first undergo revision by 

the database curators. This should ensure high fidelity of the affinity data collected from 

literature and reported by AffinDB.
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SUMMARY

ZUSAMMENFASSUNG

Protein-Protein Interaktionen spielen in nahezu jedem biologischen Organismus 

eine essentielle Rolle, beispielsweise in der Signal-Transduktion, der DNA-Synthese, 

dem Aufbau intramolekularer Strukturen (z.B. Mikrotubuli) oder der Ausbildung 

des aktiven Zentrums von Enzymen (z.B. HIV-Protease). Physiologisch bedeutsame 

Protein-Protein Interaktionen weisen eine hohe Spezifität auf und werden so zu einem 

äußerst interessanten Target für die pharmazeutische Forschung. Eine zielgerichtete 

und spezifische Modulierung dieser Interaktionen könnte eines Tages zu einer völlig 

neuartigen Klasse von Arzneistoffen führen, deshalb ist es von großer Bedeutung ein 

breites Verständnis von Protein-Protein Interaktionen zu erlangen. Für ein rationales, 

strukturbasiertes Design von potentiellen Arzneistoffen ist außerdem die Aufklärung 

von Deskriptoren auf atomarer Ebene von essentieller Natur. So ist es beispielsweise bis 

heute nur unzureichend möglich, Protein-Protein Komplexe zu beschreiben im Hinblick 

auf ihre Eigenschaften, ob es sich um so genannte „permanente“ oder „transiente“ 

Komplexe handelt. Unter „transienten“ Protein-Protein Komplexen versteht man solche 

Komplexe, die unter bestimmten physiologischen Bedingungen dissoziieren können. Sie 

übernehmen häufig die Rolle von Signal-Transduktoren; so z.B. in G-Protein gekoppelten 

Proteinen. „Permanente“ Komplexe sind hingegen so fest miteinander assoziiert, dass sie 

unter physiologischen Bedingungen dauerhafte Kontakte eingehen. 

In dieser Arbeit wird das Programmpaket EPIC (Epic Protein Interface Classification) 

vorgestellt, das die Prozessierung und Klassifizierung von Protein-Protein Komplexen 

mit Algorithmen aus dem Bereich des Maschinellen Lernens (ML) ermöglicht. Es wird 

die Vorhersagequalität von vier verschiedenen ML Algorithmen verglichen: Support 

Vector Maschinen (SVM), C4.5 Entscheidungsbäume, K-Nächste-Nachbarn (KNN) 

und Naïve Bayes (NB). Für die Extraktion relevanter Deskriptoren lassen sich 

diese Algorithmen mit so genannten Feature-Selektionsverfahren kombinieren, wie 
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beispielsweise Filter- bzw. Wrapper-Methode und Genetischen Algorithmen. Die 

Kombination von C4.5 Entscheidungsbäumen und Genetischen Algorithmen konnte einen 

Datensatz von 345 Protein-Protein Komplexen (147 „permanente“ und 198 „transiente“ 

Komplexe) in einer so genannten „Leave-One-Out Cross-Validierung“ zu 93,6% richtig 

vorhersagen. Des Weiteren wurde eine Klassifizierung von so genannten Protein-Protein 

Kristallkontakten (Interaktionen, die allein durch kristallographische Packungseffekte 

erzwungen werden) gegenüber funktionellen Protein-Protein Komplexen durchgeführt. 

Ein Datensatz von 172 Protein-Protein Komplexen (76 funktionelle Komplexe gegenüber 

96 Kristallkontakten) konnte in einer „Leave-One-Out Cross-Validierung” zu 94,8% 

richtig klassifiziert werden.

Mit Hilfe der Auswertung und Optimierung anhand Genetischer Algorithmen ließ 

sich ein Verfahren entwickeln, das es ermöglicht, eine quantitative Aussage über die 

Relevanz einzelner Deskriptoren zu treffen. Dazu werden alle so genannten Individuen 

des Genetischen Algorithmus evaluiert und die relative Häufigkeit der einzelnen 

Deskriptoren ins Verhältnis zur der Vorhersagerate gesetzt. Dadurch lassen sich für alle 

Deskriptoren Tendenzen über ihre Relevanz ableiten. Durch diese Analyse konnte gezeigt 

werden, dass beispielsweise das Verhältnis von hydrophober zu hydrophiler Oberfläche 

zwischen den Protein-Protein Komplexen eine für die Diskriminierung entscheidende 

Rolle spielt. Eine genauere Betrachtung der Protein-Protein Komplexe zeigte, dass 

die Kontaktflächen von permanenten Komplexen häufig ein hydrophobes Zentrum 

aufweisen, welches von einem Ring mit hydrophilen Atomkontakten umgeben ist. Auf 

der anderen Seite zeigen flüchtige Komplexe eine weitgehend gleichmäßige Verteilung 

hydrophiler und hydrophober Atomkontakte. Dieses Phänomen lässt sich vermutlich 

darauf zurückführen, dass flüchtige Komplexe ihre Kontaktoberfläche zeitweise dem 

Lösungsmittel aussetzen und durch eine gleichmäßige Verteilung hydrophiler Gruppen 

eine bessere Solvatisierung erfahren. 
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Der zweite Teil dieser Arbeit konzentriert sich auf die Suche und das Design von 

Stabilisatoren für Protein-Protein Interaktionen. Obwohl ein Großteil der heute eingesetzten 

Arzneistoffe allosterisch fungierende Effektoren bzw. Agonisten oder Antagonisten 

unterschiedlichster Rezeptoren sind, ist die funktionelle Regulierung biologischer Systeme 

prinzipiell auch durch die Modulierung von Protein-Protein Interaktionen möglich. Der 

Forschungsschwerpunkt zum Erreichen einer solchen Modulierungen lag in den letzten 

Jahren eindeutig im Design von Inhibitoren, die kompetitiv die Ausbildung des Protein-

Protein Kontakts stören. Dazu wurden verschiedene Strategien entwickelt, beispielsweise 

die Entwicklung von Miniatur-Proteinen, Oligopeptiden oder Peptidomimetika. Das 

ehrgeizige Ziel kleine, arzneistoffähnliche Moleküle zu entwerfen, die in der Lage sind 

Protein-Protein Interaktionen zu inhibieren, führte allerdings bis heute nur in Einzelfällen 

zu Erfolg. Dies ist unter anderem dadurch zu erklären, dass die Proteinoberfläche in 

der Kontaktfläche von Protein-Protein Komplexen häufig sehr flach ausgebildet ist und 

somit die zur Ausbildung des Protein-Protein Kontakts kompetitive Bindung von kleinen 

Molekülen erschwert. Aus thermodynamischer Sicht kann ein kleines Molekül, das nur 

schwach an die Kontaktoberfläche des Proteins bindet, nur unzureichend ein Protein 

kompetitiv verdrängen.

Eine Modulierung von Protein-Protein Interaktionen muss allerdings nicht zwangsläufig 

durch eine kompetitive Inhibierung erfolgen. Mittels einer gezielten Stabilisierung, bei 

der kleine Moleküle im Randbereich der Proteinkontaktfläche eines Protein-Protein 

Komplexes binden, kann man ebenfalls die gewünschte Modulierung erzielen. Durch 

eine ausgeprägte Wechselwirkung des Liganden zu beiden Proteinen des Komplexes 

kann es folglich zu einer verzögerten Dissoziierung und somit zu einer Modulierung 

der Protein-Protein Interaktion kommen. Dieses Phänomen wird eindrucksvoll durch 

die Bindung von Fusicoccin, einem diterpenoidem Phytotoxin, welches die Interaktion 

zwischen einer pflanzlichen H+-ATPase und einem 14-3-3 Protein um nahezu den Faktor 

100 verstärkt, beschrieben. Diese Stabilisierung führt zu einer dauerhaften Aktivierung 
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der Protonenpumpe und bewirkt letztendlich ein Welken der Pflanze. Beeindruckend 

ist dabei die relativ schwache Bindungsaffinität des Fusicoccins an den Proteinkomplex 

(66 µM).

Auf der Suche nach niedermolekularen Verbindungen, die ebenso wie Fusicoccin den 

Protein-Protein Komplex stabilisieren, wurden verschiedene Datenbanken mit käuflich 

erwerbbaren Molekülen durchmustert. Die Anzahl der ca. 2 Millionen verfügbaren 

Moleküle ließ sich durch verschiedene Filterschritte reduzieren, deren Komplexität 

schrittweise erhöht wurde. Auf diese Weise konnte die Anzahl auf ca. 160000 Kandidaten-

moleküle eingeschränkt werden. Mit verschiedenen Dockingprogrammen wurden diese 

in die Bindetasche des H+-ATPase/14-3-3-Komplexes eingepasst. Die zahlreichen 

generierten Dockingposen wurden in einer Datenbank gespeichert und im Folgenden 

anhand geeigneter Pharmakophorfilter selektiert. Dazu ließen sich Methoden entwickeln, 

die effizient mit großen Datenmengen umgehen können. Diejenigen Moleküle mit 

pharmakophorerfüllenden Eigenschaften und Geometrien wurden anschließend mit 

verschiedenen Bewertungsfunktionen evaluiert. Für einen intuitiven Einblick in die 

Beiträge einzelner Atome des Liganden zu dessen Gesamtbewertung, wurde eine 

etablierte Bewertungsfunktion in ihrer Funktionalität erweitert. Mit Hilfe der erweiterten 

Bewertungsfunktion wurden schließlich verschiedene Moleküle für eine in vitro Testung 

ausgewählt.

Des Weiteren konnte an einem Datensatz mit 198 Protein-Protein Komplexen 

gezeigt, dass nahezu alle der untersuchten Komplexe taschenförmige Vertiefungen im 

Randbereich ihrer Kontaktfläche aufweisen. Eine nähere Betrachtung der Taschen zeigt, 

dass einige eine ähnliche Gestalt zu Bindetaschen in globulären Proteinen aufweisen, die 

bekanntermaßen kleine Moleküle binden. Diese Erkenntnis lässt vermuten, dass auch 

Bindetaschen im Randbereich von Protein-Protein Komplexen ein vielversprechendes 

Target für die Bindung kleiner Moleküle darstellen. Eine Modulierung von Protein-
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Protein Interaktionen im Sinne einer Stabilisierung durch niedermolekulare Verbindungen 

wie im Falle des Fusicoccins erscheint somit als interessante Alternative zur Inhibierung 

solcher Interaktionen.

Ein weiterer Teil dieser Arbeit entstand im Verlaufe eines Projektes zur Entwicklung 

einer verbesserten Bewertungsfunktion in silico generierter Dockingposen, wie sie 

bei der Auswahl möglicher Liganden zum Binden in die Fusicoccin Bindetasche des 

H+-ATPase/14-3-3-Komplexes eingesetzt wurden. Für die Entwicklung empirischer 

Bewertungsfunktionen, bei denen vorhergesagte gegenüber gemessenen Affinitäten 

regressionsbasiert korreliert werden, sind große und diverse Datensätze von Protein-Ligand 

Kristallkomplexen und deren ermittelter Affinität essentiell. In diesem Zusammenhang 

konnte die webbasierte Datenbank AffinDB entwickelt werden. Sie umfasst inzwischen 

über 730 gemessene Affinitäten allgemein zugänglicher Protein-Ligand Kristallstrukturen 

aus der Protein Data Bank (PDB). AffinDB ist im Internet unter http://www.agklebe.de/

affinity frei verfügbar.
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