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Introduction

1. Tandem pore domain potassium channels
Potassium channels are protein complexes that form K+ selective pores in

biological membranes and are the largest family of ion channels among all ion channels

in the human genome. There exists a common motif G(Y/F/L)G in all potassium

channels, which is essential for forming a functional potassium conducting pore.

                      

Figure 1. Molecular structure of K+ channel subunits
Molecular structure of K+ channel subunits. Top, subunit with six transmembrane segments
(M1–M6) and one pore domain encodes voltage gated K+ channels. P represents the pore-loop.
Middle, subunits with two transmembrane segments (M1, M2) and one pore loop encode
inward rectifying K+ channels. Bottom, subunits with four transmembrane segments (M1-M4)
and two pore domains (P1, P2) encode K2P channels.



INTRODUCTION

- 2 -

Mammalian potassium channel are classified into three groups according to

their membrane topology (Fig. 1): 6 transmembrane segments (TM)/1 pore domain (P),

2TM/1P and 4TM/2P (tandem domain K+ channel, K2P). 6TM/1P encode voltage-gated

potassium channels. 2TMS/1P encode inward rectifying potassium channels. 4TM/2P

encode the background potassium channels. Background channels was also called leak

channels because it was originally thought those channels have not time and voltage

dependence and can open at resting membrane potential. The currents carried out by

K2P channels are probably larger at depolarized potentials. Background K2P channels

play an important role in control of potassium homeostasis, cell volume, setting the

membrane potential and tuning the action potential.

Figure 2. Phylogenetic tree of the human two-pore domain potassium channel
family
The tree was generated using the neighbor-joining algorithm of the Phylip program on the basis
of a multiple alignment of conserved sequences of the pore-forming domain analyzed with the
ClustalW program (Sano et al., 2003).
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The class of mammalian 4TM/2P background potassium channels consist so far

of 15 members and are classified into several subfamilies (Fig. 2): (1) TWIK-1, TWIK-

2 and KCNK7; (2) acid-sensitive TASK-1 and TASK-3; (3) mechano-sensitive TREK-

1, TREK-2 and TRAAK; (4) alkaline-activated TASK-2, TALK-1 and TALK-2; (5)

THIK-1 and THIK-2; (6) TRESK. So following presentation is brief property of two

pore domain potassium channels.

1.1 Weakly inward rectifier TWIK-1 and TWIK-2

TWIK channels are widely expressed in many tissue types (Arrighi et al., 1998).

TWIK-1 is highly expressed in the brain (Lesage et al., 1997). When expressed in

heterologous expression systems, both TWIK-1 and TWIK-2 produce potassium

currents of weak amplitude (Chavez et al., 1999; Lesage et al., 1996; Lesage et al.,

1997). TWIK-1 has a unitary conductance of 34 pS with flickery behavior in

symmetrical 140 mM KCl (Lesage et al., 1996). TWIK-1 but not TWIK-2 is blocked by

Ba2+, quinine, and quinidine. Both channels are only slightly or not at all sensitive to

the classic potassium channel blockers tetraethylammonium (TEA), 4-aminopyridine

(4-AP), and Cs+. PKC activation increases the TWIK currents, whereas acidification

inhibits them. TWIK-1 and TWIK-2 are not sensitive to changes in extracellular pH

and to treatments that activate protein kinase A (PKA).

But other groups did not observe the activity of TWIK-1 (Orias et al., 1997;

Goldstein et al., 1998). The recent study suggested TWIK-1 was inactive despite

residence in the plasma membrane so long as the protein is covalently modified by

small ubiquitin-ralated modifier protein (SUMO). SUMO-conjugation enzyme

assembled with TWIK-1 and kept it silent. Removal of SUMO by SUMO protease can

activate TWIK-1 channels (Rajan et al., 2005). The function of TWIK-1 channels were

unknown and some results from TWIK-1 knock-out mice indicated it may contribute to

the regulation of renal phosphate (Pi) transport in proximal tubule and water transport

in medullary collecting duct (Nie et al., 2005).
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1.2 Acid-sensitive TASK-1 and TASK-3

TASK-1 is strongly expressed in the brain, for example in cerebellar granule

neurons, somatic motoneurons and the locus coeruleus. TASK-3 is more widely

distributed in the brain and is highly expressed in somatic motoneurons, cerebellar

granule neurons, the locus coeruleus and raphe nuclei, and in various nuclei of the

thalamus and hypothalamus (Talley et al., 2001; De Miera et al., 2001; Karschin et al.,

2001). In the peripheral tissues, TASK channel mRNA has also been found in heart

(Duprat et al., 1997; Kim et al., 1998; Lopes et al., 2000; Kim et al., 1999), a

neuroepithelial body cell line (Hartness et al., 2001; O’Kelly et al., 1999), carotid body

glomus cells (Buckler et al., 2000), adrenal gland (Czirjak et al., 2000; 2002), and

kidney (Kim et al., 2000).

TASK-1 and TASK-3 can generate pH-sensitive whole-cell K+ currents with

little time-dependence and outward rectification. In symmetric K+ solutions, the unitary

conductance of TASK-1 channels (~14 pS) is about one-half that of TASK-3 channels

(~28 pS), although kinetics and voltage-dependence of these two TASK channels are

very similar (Duprat et al., 1997; Kim et al., 1998; Kim et al., 2000; Rajan et al., 2000;

Lopes et al., 2000). Cell-attached patch-clamp recordings of TASK-3 expressed in

HEK293 cells showed that the single channel current-voltage relation was inwardly

rectifying, and open probability increased markedly with depolarization. The outward

rectification found in the whole-cell currents may be reconciled with the inward

rectification of the single K+ channels by taking into account the marked increase in

open probability observed at positive potentials (Rajan et al., 2000).

TASK-1 and TASK-3 can be distinguished from one another by the pH range

over which their activity is modulated. Thus, the pK for inhibition of TASK-1 channels

is ~7.4, in the physiological range, whereas the TASK-3 channel is inhibited at a more

acidic pH, with a pK ~6.7 (Duprat et al., 1997; Kim et al., 1998; Kim et al., 2000;

Rajan et al., 2000; Lopes et al., 2000). In addition to differences in pH sensitivity,

TASK-1 and TASK-3 channels are also reported to be differentially sensitive to block

by ruthenium red, zinc, or anandamide. Ruthenium red blocks TASK-3 at

concentrations that do not inhibit TASK-1 (Czirjak et al., 2002; 2003). Zinc selectively

block TASK-3 but not TASK-1 (Clarke et al., 2004)
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Human TASK-1 was also reported to be blocked by the endocannabinoid

anandamide (Maingret et al., 2001). Local anesthetics such as lidocaine and

bupivacaine inhibited TASK channels (Leonoudakis et al., 1998; Meadows et al.,

2001). The cloned human TASK-1 channel is modestly inhibited by hypoxia (Lewis et

al., 2001).

1.3 Mechano-sensitive TREK-1, TREK-2 and TRAAK

At present, there are three members of the mechano-sensitive TREK subfamily:

TREK-1, TREK-2 and TRAAK. The basic characteristics of TREK-like potassium

channels are their sensitivity to unsaturated free fatty acids, pressure and intracellular

acidosis (Kim, 2003; Patel et al., 2001). Other properties are flicking behavior with low

sensitivity to K+ channel blockers such as tetraethylammonium (TEA) or barium.

There are different expression levels of three mechano-sensitive K+ channels in

human. All three mechano-sensitive K+ channels are found to be expressed in many

parts of the brain (Medhurst et al., 2001). Outside of CNS, TREK-1 mRNA is strongly

expressed in the ovary, stomach, small intestine and myometrium (Bai et al., 2005) but

at very low levels in other tissues. TREK-2 mRNA is highly found in the brain and

kidney and low levels at other tissue. TRAAK mRNA is detected in placenta. In other

species such as rat and mouse, three mechano-sensitive K+ channels were detected in

brain. In the peripheral tissue, TREK-1 also was found in heart.

TREK-1 and TREK-2, but not TRAAK, are activated by clinically relevant

concentrations of inhalation anesthetics such as halothane and isoflurane (Patel et al.,

1999). Like TREK-1 and TREK-2, TRAAK is activated by free fatty acids and

membrane stretch. However, TRAAK is activated by alkaline rather than acid

conditions (Kim et al., 2001). The local anesthetic agent bupivacaine inhibits TREK

and TASK (Kim et al., 2000; Punka et al., 2003). Both TREK-1 and TREK-2 are

activated by heat and inhibited by cold. Riluzole, a neuroprotective agent, is reported to

activate TREK-1 and TRAAK (Duprat et al., 2000). However, sipatrigine, another

neuroprotective agent, significantly inhibits these channels (Meadows et al., 2001).
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1.4 Alkaline-activated TASK-2, TALK-1 and TALK-2

TALK-1a is a member of the K2P channel family and was first isolated from

human pancreas cDNA (Girard et al., 2001). The first two subunits, TALK-1 and

TALK-2, are related to TASK-2. The corresponding channels produce non-inactivating

currents that are activated at alkaline pH. These currents are sensitive to Ba2+, quinine,

quinidine, chloroform, halothane, and isoflurane but are not affected by TEA, 4-AP,

Cs+, arachidonic acid, hypertonic solutions, agents activating protein kinases C and A,

changes of internal Ca2+ concentrations, and by activation of Gi and Gq proteins.

TALK-1 is exclusively expressed in the pancreas. TALK-2 is mainly expressed in the

pancreas, but is also expressed at a lower level in liver, placenta, heart, and lung (Girard

et al., 2001).

The conductance of TASK-2 was estimated to be 14.5 pS in physiological

conditions and 59.9 pS in symmetrical conditions with 155 mM K+. Quinine and

quinidine blocked TASK-2 currents but the other classical K+ channel blockers

tetraethylammonium, 4-aminopyridine, and Cs+ do not affect TASK-2. TASK-2

channels are only slightly sensitive to Ba2+. Like TASK-1, TASK-2 is highly sensitive

to external pH in the physiological range. Unlike all other cloned K2P channels, TASK-

2 is essentially absent in the brain. In human and mouse, TASK-2 is mainly expressed

in the kidney, where in situ hybridization shows that it is localized in cortical distal

tubules and collecting ducts. TASK-2 expression levels in uterus, lung and pancreas are

different between human and mouse. The localization and functional properties of

TASK-2 indicates that it may play an essential role in renal K+ transport (Reyes et al.,

1998).

1.5 Halothane-inhibited THIK-1 and THIK-2

Heterologous expression of rTHIK-1 in Xenopus oocytes revealed a K+ channel

displaying weak inward rectification in symmetrical K+ solution. The current was

enhanced by arachidonic acid and inhibited by halothane. rTHIK-2 did not functionally

express (Rajan et al., 2000). Hypoxia reversibly inhibited THIK-1 currents and caused

membrane depolarization. THIK-1 may play a physiological and/or pathological role

during brain ischemia (Campanucci et al., 2005).
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1.6 TRESK

RT-PCR results suggest that TRESK is expressed in the spinal cord. TRESK

shows outward rectification and functions as a background K+ channel. TRESK was

inhibited by previously reported K+ channel inhibitors Ba2+, propafenone,

glibenclamide, lidocaine, quinine, quinidine, and triethanolamine. TRESK was also

inhibited by unsaturated free fatty acids such as arachidonic acid and docosahexaenoic

acid. TRESK is sensitive to changes in extracellular and intracellular pH. These

properties indicate that TRESK is a novel two-pore domain K+ channel that may set the

resting membrane potential of cells in the spinal cord (Sano et al., 2003).

A new K2P channel named TRESK-2 has been isolated from mouse testis

complementary DNA, which its amino acid sequence shares 65% identity with that of

TRESK-1. Northern blot analysis suggested rat TRESK-2 mRNA was expressed

strongly in the thymus and spleen and at low levels in many other tissues, including

heart, small intestine, skeletal muscle, uterus, testis, and placenta. TRESK-2 mRNA is

also expressed in mouse and human tissues. A time-independent and non-inactivating

K+-selective current was recorded in COS-7 cells transfected with TRESK-2 DNA.

TRESK-2 was insensitive to 1 mM tetraethylammonium, 100 nM apamin, 1 mM 4-

aminopyridine, and 10 µM glibenclamide. TRESK-2 was also blocked by 10 µM

quinidine, 20 µM arachidonate and acid (pH 6.3). The current-voltage relationship of

TRESK-2 was weakly inwardly rectifying in symmetrical 150 mM KCl. The single

channel conductance is 13 pS at +60 mV and 16 pS at -60 mV (Kang et al., 2004).

2. Cardiac K2P channels
Cardiac potassium channels carry outward currents and act either to set the

resting potential near the potassium equilibrium potential or to shorten the action

potential. Those channels can be classified on the basis of differences in their functional

and pharmacological properties. Among the many potassium currents, distinction can

be made between voltage-activated currents (Ito, IKur, IKr, and IKs), the inward

rectifier currents (IK1, IKACh, IKATP) and two pore domain K+ channels (see

Table1).
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K2P currents in cardiomyocytes are insensitive to conventional K+ channel

blockers (4-AP, TEA, Ba2+, Cs+, glibenclamide). Several members of the K2P family

such as TREK-1 show high sensitivity to membrane stretch, changes in pH, fatty acids

and inhalation (e.g. halothane, isoflurane, chloroform) and local (e.g. bupivacaine)

anesthetic agents and are regulated by second messenger phosphorylation.

The following seven K2P channels were detected in the mammalian heart, at

low or high levels, by Northern and reverse transcriptase–polymerase chain reaction

(RT-PCR) experiments: TWIK-1 (human), TWIK-2 (human and rat), TREK-1 (mouse),

TASK-1 (human, mouse, and rat), TASK-3 (rat), THIK-1 (rat), and TALK-2 (human).

Among those cardiac K2P channels only two functional channels were recorded:

TASK-1 and TREK-1. TREK-1 is one of the most attractive members in the K2P

channel family. It is activated by membrane stretch, by polyunsaturated fatty acids such

as arachidonic acid, and by intracellular acidification.
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Table 1. The potassium current of ventricular cardiomyocyte

Cardiac Current Species Protein Gene Open in action potential (phase)

Itof Kv4.2 KCND2 1

Kv4.3 KCND3 1

Itos Kv1.4 KCNA4 1,2

Kv2.1 KCNB1 1,2IK,slow mouse

Kv1.5 KCNA5 1,2

rat Kv1.2 KCNA2 1,2

IK,ur human/rat
/mouse

Kv1.5 KCNA5 1,2,3

IK,ss mouse Kv2.1 KCNB1 1,2,3

rat Kv1.5 KCNK5 1,2,3

IKr erg1 KCNH2 1,2,3

IKs KvLQT1 KCNQ1 1,2,3

Kir2.1 KCNJ2 0,1,2,3,4IK1

Kir2.2 KCNJ12 0,1,2,3,4

Kir3.1 KCNJ3IKAch

Kir3.4 KCNJ5

IKATP Kir6.2 KCNJ11 0,1,2,3,4

IK2P TASK-1 KCNK3 0,1,2,3,4

TREK-1 KCNK2 0,1,2,3,4
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2.1 Cardiac TASK-1

The presence of TASK-1 mRNA in single rat ventricular and atrial cells has

been confirmed by RT-PCR (Kim et al., 1998). Native TASK-1 channel currents with

properties indistinguishable from cloned TASK-1 channel were first recorded by Kim

(Kim et al., 1999). A 14-pS K+ channel with kinetic properties similar to those of

TASK-1 was identified in rat atrial and ventricular cells (Fig. 3) and it has a significant

effect on the resting potential of atrium.

Figure 3. Identification of TASK-like K+ channel in rat atrial cells
A, inside-out patch of TASK-like K+ channel in a right atrial cell held at different potentials. B,
inside-out patch of a COS-7 cell transfected with TBAK-1. Single-channel conductances were
13.5 pS at -80 mV and 9.6 pS at +80 mV for rat atrial K+ channel (Kim et al., 1999).

2.2 Cardiac TREK-1

In initial studies, Kim et al. found arachidonic acid and intracellular acidosis

activated a previously unknown K+ channel in cardiac myocytes (Kim et al., 1989,

1990). Outwardly rectifying potassium-selective channels with conductances of 160 pS

(IKAA) can be opened by arachidonic acid in inside-out patches. The unknown
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potassium channel was not sensitive to internally applied adenosine triphosphate

(ATP), magnesium, or calcium. Lowering the intracellular pH from 7.2 to 6.8 or 6.4

reversibly increased the channel activity three or tenfold. The K+ channel found by Kim

may play an important role in protecting against cell damage caused by ischemia,

which is known to elevate intracellular levels of certain fatty acids, including

arachidonic acid (Schror et al., 1987).

Recently, a similar stretch-activated pH sensitive channel was also found in rat

ventricular muscle (Tan et al., 2002). This channel displayed a nearly linear current-

voltage relation with a slope conductance of 111 pS at +60 mV. The stretch activated

TREK-1 like potassium channel was reversibly activated by clinical concentrations of

volatile anesthetics. In cell attached experiments, the channel was inhibited by 500 µM

chlorophenylthio-cAMP and also by stimulation of β-adrenergic receptors with 1 µM

isoproterenol (Terrenoire et al., 2001).

Evidence for the expression of TREK-1 in atrial (Terrenoire et al., 2001; Niu &

Sachs, 2003) and cardiac ventricular myocytes (Aimond et al., 2000; Tan et al., 2002,

2004) has been obtained by RT-PCR.

3. Cardiac stretch activated ion channels: possible role in

arrhythmogenesis
The electrical activity controls the mechanical activity of the heart. The time

course and amplitude of the contraction of cardiac muscle depends on action potential

duration, on frequency, and on the timing and pattern of preceding action potentials.

Conversely, mechanical stimulation modulates the electrical activity of the heart in a

complex manner, a phenomenon termed mechanoelectric feedback (Taggart et al.,

1996; Ravens et al., 2003). Mechanical stimulation activates a variety of ion channels

in cardiac muscle including stretch-activated non-selective cation channels (Kamkin et

al., 2000; Zeng et al., 2000) and mechanosensitive potassium channels (Kim., 1992;

Isenberg et al., 2003; Niu & Sachs., 2003). Mechanical stretch of isolated

cardiomyocytes can give rise to changes in action potential configuration and to

pacemaker-like afterdepolarizations (Kamkin et al., 2000; Isenberg et al., 2003;
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Ravens., 2003). Mechanical stretch of isolated hearts can initiate premature beats or

ventricular fibrillation (Franz et al., 1989). The arrhythmogenic effects of

mechanoelectric feedback are of considerable pathophysiological interest (Ravens.,

2003), but the physiological function of stretch-activated potassium channels in the

heart is unknown.

3.1 Stretch-activated non-selective cation channels (SACs)

Application of longitudinal stretch in freshly isolated myocytes prolonged the

duration of action potentials elicited by external stimulation, depolarized the resting

membrane potential and initiated “spontaneous” action potentials.

Under whole cell configuration with 0mM K+ bath and pipette solution, the

amplitude of stretch induced transmembrane currents increased reversibly with the

magnitude of stretch. The reversal potential of ISAC is 0mV and is not sensitive to

substitution of Cl– with aspartate ions in the bath solutions. ISAC was inhibited by 5µM

gadolinium (Gd3+)(Kamkin et al., 2003). Thus, stretch-induced Na+ influx is suggested

to prolong APD90 and to promote late depolarization. As a consequence, intensity of

ISAC in myocytes from diseased human hearts may play important role in arrhythmia.

3.2 Stretch-activated potassium channels (SAKs)

Evidence suggested that there exists functional stretch-activated potassium

channels (SAKs) in cardiomyocytes (Isenberg et al., 2003; Niu & Sachs., 2003). But

from single channel levels, so far only a potassium channel was identified in heart by

Kim (Kim, 1992): TREK-1. TREK-1 like potassium channels are not only activated by

polyunsaturated fatty acid and intracellular acidosis but also by membrane stretch.

3.3 Anrep effect

Von Anrep found that when aortic resistance was elevated abruptly in the heart-

lung preparation, the ventricular volume at first increased, but subsequently returned

toward normal within 1 or 2 minutes because a positive inotropic effect followed (Von

Anrep, 1912). Stretch of cardiac muscle generates a biphasic force response, with a

rapid increase in force that has been attributed to increased myofilament Ca2+
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responsiveness and a second slowly developing phase, the SFR. SFR results from an

increase in the Ca2+ transient. The SFR was the possible explanation for the Anrep

effect (Tucci et al., 1984).

4. The objective of this study
In this thesis I will describe the biophysical characteristics and the possible

functional role of cardiac mechano-gated TREK-like potassium channels in cardiac

muscle. In addition I summarize the expression of TREK-1-like potassium channels in

heart tissue, immunolocalization of K2P channel in single cardiomyocytes and the

properties of stretch-activated K+ currents in heart. The latter objectives were met in

collaboration with several colleagues whose contributions are appreciated: RT-PCR

analysis of TREK-1 was carried out by Dr. Regina Preisig-Müller;

immunohistochemistry of TREK-1 was done by Ms. Marylou Zuzarte; whole cell

recording to identify ISAC and ISAK of heart was carried out by Vitaly Dyachenko from

Julius-Bernstein-Institute for Physiology of  the University of Halle and some whole-

cell recording were contributed by Dr. Caroline Putzke from Klinikum of University of

Marburg. These data are included in the result section of this thesis to provide a

complete overview of the study.
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Materials and methods

1. Cell isolation
Isolated cardiomyocytes was obtained from Wistar rat hearts by enzymatic

dispersion. Wistar rats weighing 100–200g were decapitated and their hearts rapidly

excised. A cannula was attached to the aorta (Langendorff preparation), and the

coronary arteries were perfused at a constant flow rate of 10 ml/min using a peristaltic

pump. The heart was submerged in a small organ bath warmed to 37°C.

The perfusing solution contained (in mM) 135 NaCl, 5 KCl, 1 CaCl2, 1 MgCl2,

0.33 NaH2PO4, 2 Na-pyruvate, 10 glucose, and 10 HEPES. The pH was 7.4 (adjusted

with NaOH).

The temperature was 37°C and the elevated K+ concentration of the perfusate

caused cardiac arrest. To initiate dissociation of the cells, the heart was perfused for 5

min with nominally Ca2+-free solution, which otherwise had the same composition as

described above. The heart was then perfused for 10 min with Ca2+-free solution to

which 20 µM Ca2+ and 1 or 1.5 mg/ml collagenase (Worthington, type II) was added.

Digestion of collagenase lasted 10-20 minutes. Subsequently, the heart was removed

from the organ bath, washed briefly in a ‘‘storage solution’’ containing (in mM) 65 K-

glutamate, 45 KCl, 30 KH2PO4, 3 MgSO4, 0.5 EGTA, 20 taurine, and 10 glucose (pH

adjusted to 7.4 with KOH), and submerged in 30 ml of storage solution. The heart was

then cut into small pieces, and the cells were suspended by gentle trituration with a

Pasteur pipette.

2. Patch-clamp recording of currents from rat cardiomyocytes
2.1 Single-channel and whole-cell recording

There are four basic different configurations of patch clamp (Fig. 4). The cell-

attached patch mode produced by applying light suction to the patch pipette to produce

a "gigaseal" (≥109 Ω). This mode is used to record the microscopic currents from only

one channel or from a few channels. The whole-cell clamp mode is produced by

applying strong suction to the patch pipette to rupture the membrane patch and allowing
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the lumen of the pipette to be continuous with the lumen of the cell. This mode is used

to record the macroscopic currents from all ion channels in the cell membrane.

Withdrawal of the pipette from the membrane of cell-attached and whole-cell mode

respective leads to two distinct cell-free recording configurations: inside-out and

outside-out. Both modes are employed for recording the single channel currents

(Hamill et al., 1981).

2.2 Definitions and conventions

1. Polarity of measured signals

The flow of positive current out of the head stage of the amplifier and out of the patch

electrode generates a positive voltage signal at the output of the amplifier proportional

to the measured current.

2. Inward current

Current that flows across the membrane, from the outside surface to inside surface, is

termed inward current.

3. Outward current

Current that flows across the membrane, from the inside surface to outside surface, is

termed outward current.

4. Positive potential

The term positive potential means a positive voltage at the headstage input with respect

to ground.

5. Transmembrane potential

The transmembrane potential (Vm) is the potential at the inside of the cell minus the

potential at the outside. The term is applied equally to the whole-cell membrane and to

membrane patches.

6. Depolarizing/Hyperpolarizing

The resting Vm value of most cells is negative. If a positive current flows into the cell,

Vm initially becomes less negative. Since the absolute magnitude of Vm is smaller, the

current is said to depolarize the cell. Hyperpolarization is a negative shift in Vm.
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Figure 4. Schematic representation of the procedures which lead to recording
configurations
The four recording configurations described in here are: "cell-attached". "whole-cell recording",
"outside-out patch", and "inside-out patch". The upper left frame is the configuration of slight
suction the seal between membrane and pipette increases in resistance by 2 to 3 orders of
magnitude, forming what we call a cell-attached patch. The improved seal allows a l0-fold
reduction in background noise. Upper right, voltage clamp currents from whole cell can be
record after disruption of the patch membrane if cells of sufficiently small diameter are used.
Bottom left, withdrawal of the pipette from the cell-attached (pull) and short exposure of the
pipette tip to air can get isolated inside-out patch. Bottom right, after withdrawal of the pipette
from the whole-cell mode (pull) it is outside-out patch (Hamil et al., 1981).
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2.3 Single channel analysis

Events

For single channel analysis, an event is defined as a sudden change in current as the

result of opening or closing of an ion channel.

Single-channel current amplitude

Amplitude histograms can be used to define the conductance of states of single

channels. Two kinds of amplitude histograms are common: point histograms and event

histograms. The former use all the acquired data points and the latter use each event in

the event list.

Dwell time

A patch clamp record of activity of a single channel will show a sequence of alternate

open and shut periods of different duration, the duration of any particular open or

closed events is its dwell time, denoted by t. A common method of analyzing single

channel records is to sort the individual events according to their dwell times, putting

them into a series of bins of constant width. After several hundred or more openings

have been sorted in this way, normally by computer, a dwell time histogram for the

open state of the channel will be produced. A similar procedure is used to produce a

closed state histogram. These histograms can usually be fitted by one or more

exponential function.

The open probability: Po

The fraction of time that an ion channel is open during a recording is represented

symbolically as Po, the probability that a channel is open. Po can be calculated as the

fraction of data samples that fall into the open channel current distribution from raw

data histogram.
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2.4 Whole-cell recording configuration

Electrical circuit of Whole cell recording

This is the electrical circuit of whole cell recording. Rm is membrane resistance and Rs

represents the series resistance. Em is the resting membrane potential of cells. C means

capacitance that depends on cell size. Vp is pipette potential.

The resting membrane potential

Most cells possess a resting membrane potential, a voltage across the plasma membrane

such that the inside is usually some tens of millivolts negative to outside in the resting

condition. The resting membrane potential is often close to the potassium equilibrium,

indicating that under resting conditions, the permeability to K+ is dominant over other

permeability.

Series resistance

Series resistance (Rs) is a resistance in series with the membrane. Part of the series

resistance arises from the pipette itself, but normally the major part arises from the

residual resistance of broken patch membrane, which provides the electrical access to

Rs

Rm
C

Em

Vp



MATERIALS AND METHODS

- 19 -

the cell interior. In practice, the series resistance usually can not be reduced below a

value about two times the resistance of the pipette alone.

2.5 Single and whole recording in rat ventricular cells

Cardiomyocytes of Wistar rat were isolated as described above. Drops of the

cell suspension were transferred to a small recording chamber that was mounted on the

stage of an inverted microscope (Ziss Axiovert 35). Single channel currents were

recorded using an Axopatch 200B patch clamp amplifier (Axon instruments, USA).

The pipette resistance was in the range 8–12 MΩ.

The pipette and bath solution used for cardiomyocytes contained (mM): 140

KCl, 1 MgCl2, 5 EGTA and 10 HEPES (pH, 7.3). The data were acquired with PC

DAQ1.1.5 software and analysed with software developed in our laboratory using

LabView (National Instruments). Single-channel currents were sampled at 10 kHz and

filtered with a -3 dB cutoff frequency of 2 kHz.

Whole-cell clamp experiments in cardiomyocytes before and after application of

arachidonic acid were performed as described previously (Liu et al., 2001b). For whole-

cell recordings during mechanical stretch, myocytes were prepared according to

Isenberg & Klöckner (1982). The bath solution contained (mM) 150 NaCl, 5.4 KCl, 1.2

MgCl2, 20 glucose, 10 HEPES/NaOH (pH, 7.4) and the pipette solution contained

(mM) 140 KCl, 5 EGTA, 5.5 MgCl2, 5 Na2ATP, 10 MOPS, adjusted to pH 6.0. Whole-

cell currents were recorded with an RK-300 amplifier (Biologic, Echirolle, France).

The data were filtered at 2 kHz, sampled at 5 kHz and digitized with the CED1401

interface (Cambridge instruments, Cambridge, UK). Voltage-clamp commands and

mechanical stretch were controlled by custom-written software. The isolated

cardiomyocytes were continuously stimulated with 35 ms pulses from –45 to 0 mV at a

rate of 1 Hz. The input resistance at 0 mV was >0.4 GΩ; the mean capacitance was

196±22 pF. To study the effect of cell deformation on the net membrane currents, the

membrane was clamped to +60 mV for 50 ms and then repolarized from +60 to

-100 mV at a rate of -200 mV s-1. Curve fit and data evaluation were performed as

described previously (Isenberg et al., 2003).
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Mechanical stimulation was performed with a glass stylus (Kamkin et al., 2000)

pulled from thick walled borosilicate glass capillaries of 2 mm outer diameter. The end

of the stylus was fire-polished to a semi-sphere with a diameter of ≈20 µm. Patch

pipette and stylus were mounted on two piezo-driven micromanipulators (Burleigh

PCS-5000, Victor, NY) equipped with an analog input (npi, Heidelberg, Germany) for

control of x and z axis positions. The distance between stylus and patch pipette was

increased with a time constant of 20 ms. The extent of the movement (µm per mV

analog input) was calibrated in the microscope setup. Before attachment, stylus and

patch electrode were separated by ≈50 µm (48±2 µm, n=41). In typical stretch

experiments this distance was increased to 55 µm.

3. Recording of TREK-1a and TREK-1b channels expressed in

HEK293 and COS-7 cells
3.1 Cell culture

HEK293 cells and COS-7 cells were grown in Dulbecco’s modified Eagle’s

medium (DMEM, life Technologies) in Flask. For subculturing, the culture medium

was removed and discarded and briefly rinsed the cell layer with 0.25% (w/v) Trypsin-

0.53 mM EDTA solution to remove all traces of serum that contains trypsin inhibitor.

Add 2.0 to 3.0 ml of Trypsin-EDTA solution to flask and observe cells under an

inverted microscope until cell layer is dispersed (usually within 5 to 15 minutes). The

next step is putting 6.0 ml complete growth medium and aspirate cells by gently

pipetting. The appropriate aliquots of the cell suspension were put to new culture

vessels. Finally HEK293 cells and COS-7 cells were grown in 35mm tissue culture

dishes.

3.2 Transfection

After 24 hours growth cells reached a density of ~2 ×105/35-mm dish and were

transfected with 0.6–1 µg of rTREK-1 in the pcDNA3.1(1) vector, using

LipofectAMINE (Life Technologies, Inc.).
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At first, the DNA was diluted in 50 µl of Opti-MEM I Reduced Serum Medium

without serum (or other medium without serum) and mixed gently. Lipofectamine™

2000 was mixed gently before use then diluted the appropriate amount in 50 µl of Opti-

MEM I Medium. After incubated for 5 minutes at room temperature, the diluted

Lipofectamine™ 2000 and diluted DNA were combined (total volume = 100 µl) within

30 minutes and incubated for 20 minutes at room temperature. The 100µl of complexes

were put into each dish containing cells and medium and mixed gently by rocking the

plate back and forth. Then the cells were incubated in a CO2 incubator for 18-48 hours

prior to testing for transgene expression. It is not necessary to change the medium, but

medium may be replaced after 4-6 hours.

3.3 Electrophysiological recording

Inside-out and cell-attached single channel currents were recorded using an

Axopatch 200B patch clamp amplifier (Axon instruments, Union City, CA, USA)

within 24-48 hours after transfection. The pipette resistance was in the range of 8–12

MΩ. The normal pipette and bath solution contained: 140 mM KCl, 1 mM MgCl2, 5

mM EGTA, 10 mM HEPES; the pH was adjusted to 7.3 with KOH. Single-channel

currents were sampled at 10 kHz and filtered with a -3 dB cutoff frequency of 2 kHz.

All experiments with cardiomyocytes or transfected cells were carried out at room

temperature (22 oC).

4. Drugs
Salts and other chemicals were purchased from Sigma (St. Louis, MO, USA). 4-

aminopyridine (4-AP), tetraethylammonium (TEA), Ba2+, cadmium (Cd2+) and

bupivacaine were directly dissolved in bath solutions.

Arachidonic acid was obtained from Sigma and dissolved in ethanol to make up

a 10 mM stock solution and kept at -25 oC. The small volumes of the stock solution

were added and vortexed 2 minutes to produce the desired final concentration in the

superfusate. The final ethanol concentration in the superfusate was always less than

0.01% and had no electrophysiological effects at this concentration. Glibenclamide was

dissolved in dimethylsulphoxide (DMSO) and make up to the 10 mM stock solution.
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Glibenclamide was added to the bath solution and get a final concentration of 2 µM. A

10 mM stock solution of forskolin also was dissolved in the bath solution and the

applied concentration was 10 µM. The final DMSO concentration in the bath solution

was less than 0.1% and had no electrophysiological effects at the ion channels studied.

5. Immunofluorescence microscopy
Glass cover slips were acid washed over night and washed thoroughly with

distilled water before sterilizing in EtOH. The cover slips dried under the sterile hood

before being stored in a dry Petri dish.  Freshly isolated myocytes were allowed to

settle and attach on acid-washed cover slips for 30 minutes. The cells were then washed

with PBS and fixed with 4% PFA for 15 minutes at room temperature. Following three

washes with PBS the cells were permeabilized with 0.2% Triton-X100 for 10 minutes.

The cells were washed three times by PBS and then blocked with 1% BSA (Fraction

IV, Sigma) and 5% horse serum (Vector Labs) for 30 minutes at room temperature.

The primary antibody for TASK-1 was from Alomone. The primary antibody

for TREK-1, which should detect both splice variants of the channel protein, was from

Santa Cruz (TREK-1-E-19). The dilution used for the primary antibodies was 1:100.

The myocytes were incubated with the primary antibody for 1 hour at room

temperature, which cover in humidified chamber to prevent drying antibody. After this,

myocytes were washed by PBS buffer for three times.

The Alexa donkey anti-mouse Fluor 488 and 594 were from Molecular Probes

and employed as secondary antibodies at a dilution of 1:1000. The second antibody

containing fluorescence tag was added and incubated for 5 minutes. PBS washed the

myocytes for three times. The cover slips were embedded onto glass slides using a drop

of Mowiol containing n-Propyll gallate. The samples of cover slips allowed drying

before imaging and analyzing.

Wide field images of cardiomyocytes stained for either TASK-1 or TREK-1

were obtained on an inverted microscope (Olympus IX70) equipped with a 60×

objective (numerical aperture, 1.45) and a digital camera (PCO SensiCam, QE).

Confocal images from 15 cardiomyocytes co-stained for TASK-1 and TREK-1 were
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obtained with a Zeiss LSM 510 Meta. Z-stacks were acquired at distances between 300

and 560 nm.

As a check for the specificity of the TREK-1 antibodies, COS-7 cells, cultured

on cover slips, were transfected with TREK-1a as described above for HEK293 cells.

48 hours after transfection, COS-7 cells were prepared for microscopy by the same

procedure as described above for cardiomyocytes.

6. RNA extraction
Isolation of cardiomyocytes and expression analysis of RNA from pure

cardiomyocytes was performed as described previously (Preisig-Muller et al., 1999).

Total RNA from isolated cardiomyocytes was extracted by using the Highpure RNA kit

(Roche, Mannheim, Germany), which included DNase I digestion. Usually about 500

cardiomyocytes were picked under visual control by using a hydraulic cell picker and

transferred to 500 µl of the lysis buffer. Subsequently, total RNA was extracted

according to the instructions of the manufacturer and eluted into 50µl RNase-free

water.

7. Reverse transcription
Reverse transcription (RT) was performed by using 200 units Superscript II

reverse transcriptase (Invitrogen) and a random hexanucleotide (Applied Biosystems)

mixture. In a 20µl RT reaction either 10µl eluate of total RNA extracted from pure rat

cardiomyocytes or 1µg of total rat heart RNA (purchased from Clontech) were used.

RT reaction (20 µl)

RNA (1µg) 10µl

5 × RT Buffer 5 µl

10 × random hexanucleotides 0.5µl

dNTP (2 mM) 6 µl

DTT (0.1 µM) 2.5µl

Superscript II (200U/µl) 1 µl
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The RT reaction was incubated for 50 minutes at 42°C and finally the Superscript II

reverse transcriptase was inactivated by heating at 70°C for 15 minutes.

8. Cell-specific RT-PCR
Cell-specific RT-PCR expression analysis was performed with gene-specific,

intron-spanning primers of 24–28 nucleotides in length. The total PCR volume was 25

µl, including 1-2 µl of RT reaction, 25 pmol of each primer, and 1.2 units of AmpliTaq

Gold (Applied Biosystems). The tubes were placed in the thermal cycler (model 2400,

Applied Biosystems). Following is the volume of composition:

PCR was run with a hot start for 5 min at 96°C; then for 35 cycles of 0.5 min at 96°C,

0.5 min at 55°C, and 1.5 min at 72°C; and finally 10 min at 72°C (final extension).

 15 µl of the PCR probe were size fractionated by agarose gel electrophoresis.

To verify the identity of the PCR products, DNA fragments of the expected length

were isolated and directly sequenced using an ABI prism 310 DNAsequencer (Applied

Biosystems).

The RT-PCR expression analysis was performed with gene-specific and intron-

spanning primers for GAPDH (house-keeping gene) and TREK-1 splice forms. To

verify the isolation of pure cardiomyocytes we used the following marker genes:

troponin T (TnT) for cardiomyocytes, endothelin-1 for endothelial cells and calponin-1

for smooth muscle cells. The following primers were used:

PCR reaction (25 µl)

10×PCR Buffer + 15mM MgCl2 2.5 µl

DMSO 1 µl

dNTP (2 mM) 2.5 µl

Forward primer (25 pmol/µl) 1 µl

Reverse primer (25 pmol/µl) 1 µl

Taq DNA polymerase (5 U/µl) 0.24 µl

cDNA from first-strand reaction 1 µl

RNase-DNase free water 15.76 µl
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GAPDH (343 bp fragment): for 5′-CATCACCATCTT CCAGGAGCGA-3′, rev

5′-GTCTTCTGGGTGGCAGTGATGG-3′;

rTREK1 (398 bp fragment): for 5′-CTCAGGAGATTTCTCAGAGGACCAC-

3′, rev 5′-CTAACATTCCACTTAATAAATGT GTC-3′;

rTREK1a (236 bp fragment): for 5′-CTGCCCGTGCAGCTCGGAGCG-3′, rev

5′-ACACCGTGGCTCCGATGATCAGGTA-3′;

rTREK1b (254 bp fragment): for 5′-GAATGCTGCATGCCTCATGCTT-3′, rev

see above;

rTnT (525 bp fragment): for 5′-CTGAACGAGCTGCAGACTCTGATCG-3′,

rev 5′-GACTTTCTGGTTGTCG TTGATCCTG-3′;

Endothelin-1 (360 bp fragment): for 5′-CGCAGGTCCAAGCGTTGCTCCTG

CTC-3′, rev 5′-GTCTTGATGCTGTTGCTGATGGCCTC-3′;

Calponin (384 bp fragment): for 5′-GAGCCTGAGAAGCTGAGAGAAGGC-3′,

rev 5′-CTCTGGATATTCCGGGGTCAGGCA-3′.

9. Gel extraction.
The DNA of a RT-PCR reaction was loaded on a 1.5% gel after mixing with the

loading buffer. The electrophoresis was carried out in 1×TEA buffer at 80V for 30 min.

The DNA fragments on the gel were stained with ethidiumbromide and fragments of

the expected size were extracted by using a commercially available extraction kit

according to the instructions of manufacturer (QIAquick gel extraction kit, Qiagen).

Finally DNA was collected by eluting into 25-50 DNase/RNase-free water.

10. DNA restriction, ligation reactions, transformation into

Escherichia-coli and isolation of Plasmid DNA
Restrication digestion was carried out at 37°C for 1-2 hours with the appropriate

restriction enzymes. Ligation reactions were performed with T4-DNA ligase (New

England Biolabs) at 16°C overnight. Ligated DNA was transformed into Escherichia-

coli and plated onto LB plates containing the appropriate antibiotic. Recombinant

plasmid DNA was isolated according to Qiagen handbook.
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11. Statistics

Data are reported as means ± standard deviation. Unless otherwise stated, the

statistical significance was evaluated by student’s t-test. Difference were considered

significant at P<0.05.
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Results

1. Expression of TREK-1 channels in cardiomyocytes
The potassium channel TREK-1 (KCNK2) has at least two splice variants

differing in exon 1 at their extreme N-terminus. The gene structure of both human and

rat TREK-1 is shown in Fig. 5A. The channel sequence originally described for the

mouse (Fink et al., 1996) is denoted TREK-1a here. TREK-1a from rat (accession

number AY727922) differs from its mouse ortholog in only six amino acids. In all

orthologs of TREK-1a, exon 1 encodes only a methionine residue. In the other splice

variant, denoted TREK-1b here, exon 1 encodes 16 amino acids (Koizumi et al., 1999;

Bockenhauer et al., 2001) (Fig. 5B and C). Both splice variants of TREK-1 are

expressed in rat heart (Fig. 6A), whereas the other stretch-sensitive K2P channels,

TREK-2 and TRAAK, could not be detected with specific primers (not illustrated).

Using cell-specific expression analysis we found robust expression of TREK-1b in rat

cardiomyocytes (Fig. 6B). Re-amplification of the PCR-products showed that TREK-1a

is also expressed in cardiomyocytes, albeit very weakly.

2. TREK-1 localization
Immunohistochemistry with antibodies against TREK-1 showed a striking

localization pattern. The wide field image of TREK-1 proteins shown in Fig. 7A,

focused on the surface of a rat cardiomyocyte, revealed distinct longitudinal stripes. In

contrast, immunostaining of TASK-1, focused on the center of the cell, showed

transverse stripes related to the T-tubules (Fig. 7B), as has been reported previously

(Jones et al., 2002). The specificity of the TREK-1 antibody was checked by

transfecting COS-7 cells with TREK-1a 48 hours before fixation. Fig. 7C shows

TREK-1 positive transfected cells; no staining was seen in non-transfected cells (Fig.

7D). After pre-absorption with the antigenic peptide only very weak punctuate staining

was observed (Fig. 7E). The secondary antibody conjugated with Alexa 488 showed no

unspecific staining (Fig. 7F).
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 Figure 5. Gene structure of TREK-1 in cardiac muscle
A, gene structure of hTREK-1 and rTREK-1 and the nucleotide sequences of the two variants
of exon 1 (Exon 1a and Exon 1b). hTREK-1 is on contig NT_021877.15, chromosome 1q41;
rTREK-1 is on contig NW_042862.1, chromosome 13q26. B, N-terminal cDNA and amino
acid sequences of human and rat TREK-1 splice variants. The accession numbers are
AF004711 for hTREK-1b and AF325671 as well as AF385402 for rTREK-1b. The splice sites
of the first intron are underlined and bold, the coding sequences are given in capital letters. C,
alignment of the N-terminal region of the splice forms of human and rat TREK-1.
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Confocal imaging of cardiomyocytes co-stained for TREK-1 and TASK-1

channel proteins (n=15) demonstrated that the longitudinal stripes of TREK-1 channels

were restricted to the cell surface membrane, as illustrated in Fig. 8. In the T-tubules

TASK-1 channels were prominent, but a weak TREK-1 signal could also be detected.

Figure 6. RT-PCR analysis of TREK-1a and TREK-1b
A, RT-PCR from rat (rHeart) heart tissue with three different primer pairs, recognizing all
TREK-1 splice variants (TREK-1), TREK-1a and TREK-1b (giving two bands), or TREK-1b
only (see text). GAPDH was used as housekeeping gene. B, cell-specific RT-PCR of rat
cardiomyocytes (rCMC), performed as described previously (Preisig-Muller et al., 1999).
Troponin T (TropT) was used as a marker for cardiomyocytes, rat endothelin-1 (ET-1) for
endothelial cells and calponin-1 (hCalp) for vascular smooth muscle cells. The endothelin-1
and calponin-1 signals were negative in all myocyte preparations tested (n=5). Robust
expression of TREK-1b was detected using 35 PCR cycles. Re-amplification showed very
weak expression of TREK-1a as well. C, schematic drawing of the mRNA of TREK-1a and
TREK-1b. The primer pair recognizing all splice variants (denoted TREK-1 in A) is indicated
by green arrows. The forward primers for TREK-1a (red) and TREK-1b (blue) were used in
combination with the same reverse primer (black). Note that, for clarity, the length of the exons
is not exactly drawn to scale.
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Figure 7. Immunofluorescence microscopy of TREK-1 and TASK-1 channels
A, immunostaining for TREK-1 proteins; the image was focused on the surface of the cell.
B, immunostaining for TASK-1 proteins; the image was focused on the center of the cell.
C-F, tests for the specificity of the TREK-1 antibodies. COS-7 cells were immunostained 48
hours after transfection with TREK-1a (C) or at the same time point without transfection (D).
E, control image taken after preabsorption of the antibodies with the antigenic peptide supplied
by the manufacturer. F, control image taken only with the secondary antibody.
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Figure 8. Subcellular localization of TREK-1 and TASK-1 in cardiomyocytes
Confocal image of a rat cardiomyocyte co-stained for TREK-1 (red) and TASK-1 (green). One
XY, XZ and YZ plane is shown.
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3. Changes in whole-cell current induced by arachidonic acid and axial

stretch
Functional expression of the channels was tested by measuring the effect of

arachidonic acid, a known activator of TREK-1 (Patel et al., 2001; Kim., 2003), on the

steady-state current-voltage relation of rat ventricular cardiomyocytes. To eliminate

any contribution of ATP-sensitive K+ channels and voltage-activated Ca2+ channels, the

measurements were carried out in the presence of 1 µM glibenclamide and 100 µM

CdCl2. Application of 10 µM arachidonic acid induced an additional steady-state out-

Figure 9. Effect of arachidonic acid on the current voltage relation in rat cardio-
myocytes
Very slow voltage ramps (6 mV s-1) were applied between +30 and -90 mV; the upper curve
was obtained 10 min after application of 10 µM arachidonic acid.

ward current between -60 and +30 mV that increased with depolarization (Fig. 9). The

difference current measured after application of 10µM arachidonic acid reversed near

the calculated K+ equilibrium potential and showed outward rectification. Under control

conditions the current measured at +30 mV was 164±44 pA; 10 min after application of

arachidonic acid it was 266±46 pA. Since the other two arachidonic-acid sensitive K2P

channels, TREK-2 and TRAAK, are not expressed in rat heart our findings suggest that
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TREK-1 channels can carry a substantial current component in the plateau range of

potentials.

Another important characteristic of TREK-1 is activation by membrane stretch.

Therefore we studied the changes in whole-cell current induced by local axial stretch of

cardiomyocytes. Previous studies in mouse and guinea-pig cardiomyocytes had shown

that axial stretch changed several current components including stretch-activated

nonselective cation channels (SACs), stretch-activated K+ channels (SAKs) and inward

rectifier channels (Kamkin et al., 2000; Isenberg et al., 2003). We have now confirmed

these findings for rat cardiomyocytes (not illustrated). The stretch-activated current at

positive potentials could be described by two components: a linear stretch-activated

nonselective cation current with a reversal potential of ≈-10 mV (Kamkin et al., 2000;

Niu & Sachs., 2003) and an outwardly rectifying stretch-activated K+ current.

Application of 5 µm stretch increased the outward current +60 mV from 950±283 to

1542±496 pA (n=10).

To study the stretch-activated K+ current in more detail, we carried out whole-

cell measurements in the presence of a blocker cocktail. L-type ICa and Na+/Ca2+

exchange currents were eliminated by removal of extracellular Ca2+ and addition of

200 µM CdCl2 to the bath solution; inward rectifier currents were minimized by

addition of 500 µM BaCl2; ATP-sensitive K+ channels were blocked by 2 µM

glibenclamide, β-adrenergic receptors (which might inhibit TREK-1 channels via PKA

(Terrenoire et al., 2001)) were blocked by addition of 1 µM propranolol. We also tried

to eliminate stretch-activated cation channels (SACs) with gadolinium, but application

of 20 µM GdCl3 blocked the mechanosensitivity of the K+ current components as well.

Since outward currents through SACs may superimpose on mechanosensitive K+

currents we selected those experiments for analysis in which stretch produced only a

small difference current at the K+ equilibrium potential (<50 pA between -87 and -91

mV).

Fig. 10A shows a representative example of the outward currents recorded in

the presence of the blocker cocktail. Application of stretch, i.e. increasing the distance
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Figure 10. Effects of axial stretch on whole cell current in cardiomyocytes
Typical recordings in the presence of a blocker cocktail are shown (see text). The noisy lines
represent the measured curves, the smooth lines represent the reconstructed curves. Current-
voltage relations measured before (A, blue) and after stretch (B, red) were reconstructed (black)
by adjusting the amplitude of the linear stretch-activated nonspecific cation current (light blue),
a stretch-activated outwardly rectifying current (olive), and the residual inward rectifier
component (green), as described in detail by Isenberg et al (2003). C, the measured difference
current (noisy line) between A and B and the reconstructed difference current (black line).
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between stylus and patch pipette by 5 µm, increased the stretch-activated K+ current at

+60 mV (olive line in Fig. 10B) by ≈200 pA. On average, 5 µm stretch increased the

current at +60 mV from 1120±90 to 1320±40 pA (n=5). This increment in outward

current was much larger than the calculated linear current component related to opening

of SACs (light blue line). The voltage dependence of the difference current (Fig. 10C)

showed outward rectification.

4. Native TREK-like K+ channels in rat cardiomyocytes
To get more information on the elementary events underlying the stretch-

activated K+ current we then turned to single-channel recording. In outside-out patches

from ventricular myocytes we found two K+ channels that could be activated by stretch

of the patch membrane and displayed the 'flickery burst' behavior typical for members

of the K2P family: bursts of brief openings interrupted by extremely short closures, and

relatively long closures in between bursts (Fig. 11A and B). Typical all-point

histograms (raw data) of the two channels measured in outside-out patches at -40 mV

are shown in Fig. 11C and D.

The channel with the larger conductance (Fig. 11B), which was found in ≈15%

of outside-out patches, showed outward rectification and had a conductance of

132.3±5.1 pS (n=4) at positive potentials (Fig. 11F, ■ ). Its biophysical properties were

similar to those of the 'classical' TREK-1 channel (Kim & Duff., 1990; Kim., 1992;

Terrenoire et al., 2001; Tan et al., 2002) and were therefore not studied further. The

channel with the smaller conductance (Fig. 11A) has not been described previously in

cardiac muscle. It showed slight inward rectification and had a conductance of 41.4±4.8

pS (n=10) at positive potentials (Fig. 11E, ■ ). This channel appears to be strongly

expressed at the surface membrane since it was found in ≈60% of outside-out patches.

The filled circles in Fig. 11E and F show the single-channel current voltage relations

measured after reduction of extracellular K+ from 140 to 32 mM. The extrapolated

reversal potential (×) of both channels was shifted by about -34 mV, as predicted by the

Nernst equation, indicating that the channels were indeed K+ selective. The

conductance of both TREK-like channels depended on the presence of extracellular
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Figure 11. TREK-like channels in outside-out patches from rat cardiomyocytes
A, small conductance, inwardly rectifying channel. The transmembrane potential is indicated
on the left. B, large-conductance, outwardly rectifying channel. C and D, the all-point
amplitude histogram of the two channels shown in panels A and B, respectively, at -40 mV. E,
single-channel currentvoltage relation of the small-conductance channel with 140 mmol/L ( )
and 32 mmol/L ( ) external K+. F, single-channel current-voltage relation of the large-
conductance channel with 140 mmol/L (■ ) and 32 mmol/L (● ) external K+. The crosses (×)
indicate the extrapolated reversal potentials. Error bars were omitted when they were smaller
than the size of the symbols.
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Figure 12. The conductance of both TREK-like channels depended on the
presence of extracellular Mg2+ and single channel recording of TASK-1
A and B, typical outside-out recordings of the small-conductance (A) and the large-
conductance TREK-like channel (B) in the presence or absence of 1 mM Mg2+ (in Ca2+ free,
symmetrical high-K+ solution). C, in the presence of 1 mM extracellular Mg2+ the slope
conductance at -60 mV (g-60) of the small-conductance channel was 52.5±4.5 pS (open
squares; n=4); in the absence of Mg2+, g-60 was 156±15 pS (open triangles; n=5). D, in the
presence of 1 mM extracellular Mg2+, g-60 of the large-conductance channel was 60.7±6.0 pS
(filled squares; n=10); in the absence of Mg2+, g-60 was 209±12 pS (filled triangles; n=3).

divalent cations. Removal of external Mg2+ induced a large increase of the conductance

in the inward direction. In the small-conductance channel removal of external Mg2+
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increased the slope conductance at -60 mV from 61±6 (n=10) to 156±15 pS (n=4;

Fig. 12A and C). In the large-conductance channel removal of external Mg2+ increased

Figure 13. Outside-out recording of TASK-1 in rat ventricular myocytes.

the slope conductance at -60 mV from 53±5 pS (n=5) to 209±12 pS (n=3; Fig. 12B and

D). We also can record the TASK-1 with single channel conductance 16.8 pS (n=5; Fig.

13) as reported previously (Kim et al., 1999) in rat cardiomyocytes.

In another series of experiments we tested the effects of various K+ channel

blockers on the smaller TREK-like channel. The current amplitude measured at +40

mV in outside-out patches was unchanged by application of 1 mM TEA (2.10±0.29 vs.

2.07±0.34 pA; n=4), 1 mM 4-aminopyridine (2.03±0.30 vs. 2.02±0.33 pA; n=3) or 1

mM BaCl2 (1.97±0.36 vs. 1.94±0.31 pA; n=3). The value of NPo measured at +40 mV

was also not affected by the three drugs.

5. Regulation of the novel TREK-like channel by pH, stretch and

arachidonic acid
The open probability (Po) of the novel cardiac TREK-like K+ channel increased

with intracellular acidification (Fig. 14). Compared to control (pH 7.3), NPo (number of

channels in the patch × Po) increased by a factor of 5.7 at pH 6.8 (n=3) and by a factor

of 136 at pH 6.3 (n=3). In Fig. 16, the pH-dependent changes in NPo are shown on a

logarithmic scale (n=3). NPo of the small-conductance TREK-like channel could be

increased by changes in hydrostatic pressure applied to the patch pipette. In inside-out

patches application of negative pressure (-40 cm H2O; Fig. 15) increased NPo by factor
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Figure 14. pH sensitivity of TREK-1 in rat ventricular myocytes
 Inside-out recording at a holding potential of +40 mV at pH values of 7.3, 6.8 and 6.3.

Figure 15. Stretch sensitivity of TREK-1 in rat ventricular myocytes
Left, inside-out recording before, during and after application of negative pressure (-40 cm
H2O; holding potential, +40 mV). Right, outside-out recording before, during and after
application of positive pressure (+80 cm H2O; holding potential, -40 mV). The hydrostatic
pressure in the patch pipette was changed by adjusting the water level in a calibrated U-shaped
glass tube using a syringe.
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of ≈27, whereas application of negative pressure had no effect. In outside-out patches,

positive pressure (+80 cm H2O; Fig. 15) increased NPo by a factor of ≈3, whereas

negative pressure had no effect. Thus, in both inside-out and outside-out patches,

distention of the cell membrane appeared to increase Po. The mean values of NPo

obtained in at least three experiments are shown on a logarithmic scale in Fig. 16.

Application of arachidonic acid activated the novel TREK-like channel in inside-out

patches (Fig. 16). On average, NPo increased by a factor of ≈18 during application of

10 µM arachidonic acid (n=4; Fig. 16). Thus, the novel channel shared many of the

characteristic properties of the 'classical' TREK-1 channels described previously (Kim,

2003).

Figure 16. Response of TREK-1 to Arachidonic acid and statistic analysis
Upper, increase in NPo produced by application of 10µM arachidonic acid in an inside-out
patch at +40 mV. Bottom, statistics of the effects of intracellular acidification (inside-out),
negative pressure (inside-out), positive pressure (outside-out), and arachidonic acid (inside-out)
on NPo of the small-conductance TREK-like channels, shown on a logarithmic scale. Only
steady-state changes in channel activity (after >5s) were evaluated. Asterisks indicate that the
changes were statistically significant (Student's t-test; p<0.05).
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6. Heterologous expression of TREK-1a and TREK-1b channels
To test whether one of the native cardiac TREK-like K+ channels might corre-

spond to TREK-1 we expressed both TREK-1a and TREK-1b channels in HEK293

cells. The biophysical properties of the two splice variants were virtually identical.

Surprisingly, transfection of either splice variant in HEK293 cells produced two

populations of channels with different characteristics (Fig. 17). In some of the inside-

out patches of TREK-1a channels (n=7) we found both a high-conductance channel

reminiscent of classical TREK-1 and a low-conductance channel similar to that

observed in cardiomyocytes. In the majority of inside-out patches of TREK-1a (n=11)

we found only the low-conductance channel. It had a conductance of 65.8±4.6 pS

(n=12) at negative potentials and 37.4±5.9 pS at positive potentials (Fig. 18); the

corresponding values for TREK-1b (n=7) were 65.9±4.9 pS and 38.0±4.1 pS (Fig. 18),

which is not significantly different (p>0.05).

The high-conductance channel in inside-out patches displayed a conductance of

105.4±24.4 pS for TREK-1a (n=4) and 96.6±27.8 pS for TREK-1b (n=3) at positive

potentials. In a few cases, the nature of the channel changed from high- to low-

conductance or vice versa. Fig. 17A shows an example in which a TREK-1a channel

first displayed a high conductance (110 pS, upper trace), converted to a low

conductance (40 pS, middle trace) two minutes later, and changed back to its earlier

characteristics after another minute. In cell-attached patches, both channel types were

also regularly observed, as illustrated in Fig. 17B. The simplest interpretation of these

experiments is that the TREK-1 channels can assume two different functional states or

‘modes’ with different conductances.
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Figure 17. Two conductance modes of TREK-1 channels
A, inside-out recording at +80 mV of TREK-1a expressed in a HEK293 cell. The three traces
are part of a continuous measurement; they were recorded 1 min (upper trace), 3 min (middle
trace) and 4 min (lower trace) after establishment of the inside-out configuration. B, cell-
attached recording from a HEK293 cell transfected with TREK-1a, taken at +80 mV with high-
K+ solution in bath and pipette. The patch contained both a high-conductance and a low-
conductance channel. The all-point amplitude histogram shows a distinct peak for the opening
of the low-conductance channel. The other two peaks, corresponding to the high-conductance
channel alone and to the superposition of both channels are not clearly separated, due to the
rapid flicker of both channels.
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Figure 18. Comparison of TREK-1a and TREK-1b in HEK290 cell line
A, inside-out recording of TREK-1a at different membrane potential. B, inside-out recording of
TREK-1b at different membrane potential. C, current-voltage relationship of TREK-1a and
TREK-1b.
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Figure 19. Comparison of TREK-1a and TREK-1b in COS-7 cell line
A, cell-attached recording of TREK-1a at different membrane potential. B, cell-attached
recording of TREK-1b at different membrane potential. C, current-voltage relationship of
TREK-1a and TREK-1b.
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Expression of the two TREK-1 splice variants in COS-7 cells gave similar

results as in HEK293 cells. Typical cell-attached measurements in COS-7 cells are

shown in Figure 19. In the low-conductance mode, the mean conductance of TREK-1a

was 61.2±6.4 pS at negative potentials and 34.9±5.3 pS at positive potentials (n=4); the

corresponding values for TREK-1b were 60.5± 4.4 pS and 31.8±2.6 pS (n=4), which is

not significantly different (p>0.05). In conclusion, in all patch-clamp configurations

examined, two different modes of TREK-1a or TREK-1b channels were observed, but

the majority of patches showed only the low-conductance mode.

7. Comparison of the cloned TREK-1 channel with native cardiac

channels
Since TREK-1b is strongly expressed in rat cardiomyocytes we compared the

biophysical properties of this splice variant with those of the low-conductance cardiac

TREK-like channel. Fig. 20 shows typical inside-out recordings of the smaller cardiac

TREK-like channel described above (panel A) and of TREK-1b channels expressed in

HEK293 cells (panel B). It can be seen that the single-channel current-voltage relations

(Fig. 20C, � and ) were indistinguishable. The conductance of the cardiac channel

was 67.2±1.9 pS (n=4) at negative potentials and the conductance of TREK-1b was

65.9±4.9 pS (n=7). Furthermore, the kinetics of channel opening was also very similar.

Both the native and the cloned channel opened in bursts interrupted by very short

closures. At +40 mV, the smaller TREK-like channel in cardiomyocytes had mean open

time of 0.29±0.03 ms (n=3) and TREK-1b expressed in HEK293 cells had a mean open

time of 0.28±0.03 ms (n=3). TREK-1b, like the cardiac TREK-like channels, could be

activated by stretch and by intracellular acidification (not illustrated).

Fig. 20D illustrates that, despite the inward rectification of the single-channel

current voltage relation, the whole-cell current in HEK293 cells transfected with
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Figure 20. Comparison of cardiac TREK-like channels with cloned TREK-1b
channels
A, inside-out recording of the low-conductance channel in rat cardiomyocytes. B, inside-out
recording of TREK-1b expressed in HEK cells. The recordings were performed in symmetrical
high-K+ solution. Note that the gaps between bursts are shorter at positive potentials. C, inside-
out current-voltage relations of transfected TREK-1b channels in HEK293 cells ( ) and of the
low-conductance TREK-like channel in cardiomyocytes ( ). D, whole-cell current-voltage
relation of HEK293 cells transfected with TREK-1b (● ; n = 6) and in mock-transfected cells
(■ ; n = 18), recorded in high-K solution. The insets show current traces obtained from
transfected (lower right quadrant) and mock-transfected cells (upper left).
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TREK-1b showed slight outward rectification (● ). This apparent discrepancy was

probably due to an increase in open probability with depolarization (Bockenhauer et

al., 2001; Maingret et al., 2002), as can also be seen in Fig. 20B. Typical amplitude

Figure 21. Open probability changes with membrane potential
 A, all-point amplitude histograms measured at +40 mV (upper panel) and at -40 mV (lower
panel) in an inside-out patch from a transfected HEK293 cell. The ratio of the number of data
points on either side of the dotted line was calculated to obtain an estimate of NPo. B,
dependence of NPo of TREK-1b channels on membrane potential.

histograms of a single TREK-1b channel at -40 and +40 mV is shown in Fig. 21A. NPo

was estimated by dividing the amplitude histogram at the minimum between the two

peaks (dotted line) and calculating the ratio of data points corresponding to open and

closed state, respectively. Fig. 21B shows that NPo strongly increased with

depolarization in the voltage range -80 to +80 mV.

The kinetics of TREK-1b channel opening were analyzed in inside-out patches

from transfected HEK293 cells (Fig. 22). The membrane potential was -40 mV (left

column) and +40 mV (right column), respectively. The open-time histograms (panels A

and B) show a single exponential component, and the mean open times (τo) measured at

-40 mV (0.38±0.02 ms; n=3) and at +40 mV (0.28±0.03 ms; n=3) were similar. The

closed-time histogram could be fitted with two exponentials. The shorter component
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(τc1, panels C and D) corresponds to the rapid closures during the burst, whereas the

longer component (τc2, panels E and F) represents the gaps between bursts. τc1 was

similar at -40 mV (0.43±0.07 ms; n=3; panel C) and +40 mV (0.50±0.05 ms; n=3;

panel D). In contrast, τc2 was markedly prolonged at -40 mV (193±65 ms; n=4; panel

E) as compared to +40 mV (49±34 ms; n=4; panel F). The difference was statistically

significant (p<0.01; paired Student's t-test). The mean ratio of τc2 at -40 mV to τc2 at

+40 mV in the same patch was 5.0±2.4. These results suggest that the lower open

probability of TREK-1b channels at more negative potentials is mainly attributable to a

prolongation of the gaps between bursts. The longer gaps between bursts are also

apparent in the original recordings (see Fig. 20A and B).
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Figure 22. The kinetics of TREK-1b channel opening patches
Time histograms derived from inside-out recordings from transfected HEK293 cells in
symmetrical high-K+ solution; the membrane potential was -40 mV (left column) and +40 (right
column), respectively. A and B, open-time histograms. C and D, closed-time histograms for
short closures (τc1, closures during bursts). E and F, closed-time histogram for longer closures
(τc2, gaps between bursts). Note that the slow component of the mean closed time, τc2, was
markedly increased at -40 mV.
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8. Block of TREK-1b channels by bupivacaine
The local anesthetic bupivacaine, which has been shown to block mouse and

human TREK-1a channels (Kindler et al., 1990; Punke et al., 2003), may be a useful

tool for clarifying the function of TREK-1 in cardiac muscle. Therefore we studied the

effects of bupivacaine on rat TREK-1b channels expressed in HEK293 cells. Figure 23

illustrates that the TREK-1b whole-cell current in HEK293 cells superfused with

physiological salt solution the whole-cell current carried by TREK-1b channels showed

outward rectification and could be blocked by application of 1 mM bupivacaine. The

control current was 10.2±2.8 nA at +80 mV and was reduced to 1.2±0.4 nA (n=6,

p<0.05).

Figure 23. Effects of bupivacaine on rat TREK-1b channels expressed in HEK293
cells
Whole-cell current voltage relation of TREK-1b measured under control conditions (■ ; n = 6)
and in the presence of 1 mM bupivacaine (● ; n = 6). The insets show typical current traces.
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9. Block of TREK-1b channels by forskolin
In addition to its sensitivity to arachidonic acid, TREK-1 is inhibited by cAMP

via PKA phosphorylation of Ser333 in the C-terminal part of the channel structure

(Patel et al., 1998). The native cardiac channel generating IKAA can also be regulated

by cAMP. In cell-attached experiments, CPT-cAMP, the permeant analog of cAMP,

produced a complete inhibition of IKAA when the current had been activated by either

AA or stretch (Terrenoire et al., 2001)

Figure 24. Effects of forskolin on rat TREK-1b channels expressed in HEK293
cells
Whole-cell current voltage relation of TREK-1b measured under control conditions (�; n = 8)
and in the presence of 10 µM forskolin (О; n = 8). The insets show typical current traces.
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We tested the effects of PKA phosphorylation induced by forskolin on TREK-

1b (Fig. 24). Application of 10 µM forskolin produced a significant decrease from

12.6±3.1 nA to 3.5±1.2 nA at +80 mV (n=8, p<0.05).

Taken together, our single-channel measurements suggest that the two TREK-

like channels found in cardiomyocytes correspond to the low- and high-conductance

modes of either TREK-1 splice variant. Since TREK-1a was barely detectable in the

cell-specific RT-PCR experiments, most of the cardiac channels were probably encoded

by TREK-1b. Our kinetic measurements suggest that under physiological conditions the

whole-cell current flowing through TREK-1 channels should be outwardly rectifying,

despite the fact that, with symmetrical K+ concentrations, the single-channel current

voltage relation of the low-conductance mode showed inward rectification (Fig. 20C).

The outward rectification is due, firstly, to the voltage dependence of NPo, and,

secondly, to the asymmetric K+ concentrations across the sarcolemma.
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Discussion

So far many characteristics and the functional role of cardiac background

potassium TREK-1 are unknown. We employed cell-specific RT-PCR to detect the

level of TREK-1 mRNA in rat ventricular muscle. Expression of two different splice

variants, TREK-1a and TREK-1b, was found and re-amplification of the PCR-products

suggested that TREK-1b mRNA was predominant. The localization pattern of plasma

membrane TREK-1 from immunofluorescence is longitudinal stripes at the external

surface and this may correspond to its function. The outwardly rectifying macroscopic

K+ selective currents were induced by mechanical stretch in rat cardomyocytes and

similar currents were found after application of 10 µM arachidonic acid. Under

symmetrical K+ conditions, we observed a large TREK-1 channel with single channel

conductance of 132±5 pS at positive potentials and a novel small TREK-1 channel with

single channel conductance of 41±5 pS at positive potentials. The open probability of

novel channel could be enhanced by intracellular acidification, arachidonic acid and

stretch. Augmentation of the novel channel activity not only was induced by negative

pressure at inside-out patch but also by positive pressure at outside-out patch.

Apparently the way that the novel channel was activated by stretch was decided by the

configuration of the patch. In heterologous expression systems (HEK293 cells and

COS-7 cells), we found no significant differences between TREK-1a and TREK-1b and

both show the high and the low conductance mode. Properties of TREK-1 in HEK293

or COS-7 cells are also identical to those in rat cardiomyocytes. Those results suggest

there are two operative modes of TREK-1 and the low conductance mode of TREK-1 is

the major one. The TREK-1 channel is the best candidate that corresponds to the stretch

activated whole cell K+ currents (ISAK) since other TREK superfamily members such as

TREK-2 and TRAAK were not detected in rat cardiomyocytes. It can be reasonably

speculated that ISAK is the opposite side of ISAC that can be simultaneously activated by

stretch.



DISCUSSION

- 54 -

1. TREK-1 channels in rat ventricular cells
1.1 Expression of TREK-1 in rat ventricular cells

RT-PCR to detect the TREK-1 (access number: U73488) was run by Tan et al

and indicated TREK-1 expressed in both adult rat atrial and ventricular cells (Tan et al.

2002). Aimond et al. also employ the primer for TREK-1 (access number: U73488)

and suggest high presence of TREK-1 in rat ventricular myocytes (Aimond et al.

2000). The group of Lazdunski also showed expression of TREK-1 in rat atrial

(Terrenoire et al., 2001) cells. Our study carried out cell-specific RT-PCR of rat

cardiomyocytes (rCMC) and employed three different primer pairs, recognizing all

TREK-1 splice variants (TREK-1), TREK-1a and TREK-1b (giving two bands), or

TREK-1b only, and detected robust expression of TREK-1b. Re-amplification showed

very weak expression of TREK-1a as well. Previous research did not differentiate the

expression level of TREK-1a and TREK-1b in cardiomyocytes by employing the cell-

specific RT-PCR and different primer pairs. The first detection of rat TREK-1a and

TREK-1b in cardiomyocytes is attributable to the different design of the primers.

1.2 Localization of TREK-1 in rat ventricular cells

The early work of localization of TREK-1 shows the TREK-1 staining in rat

atrial cells by peroxidase-DAB method (Terrenoire et al., 2001). In the present study,

immunohistochemistry with antibodies against TREK-1 showed a striking localization

pattern at the plasma membrane. The wide field image of TREK-1 proteins focussed on

the surface of a rat cardiomyocyte, revealed distinct longitudinal stripes. In contrast,

immunostaining of TASK-1, focussed on the centre of the cell, showed transverse

stripes related to the T-tubules, as has been reported previously (Jones et al., 2002).

Confocal imaging showed that TREK-1 channel proteins are arranged in longitudinal

stripes at the surface of cardiomyocytes. This localization pattern appears to be suitable

for sensing longitudinal stretch of the cells.
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2.  TREK-like channels in cardiomyocytes
The first TREK-like K+ channels in rat ventricular myocytes were recorded by

Donghee Kim (Kim & Clapham., 1989; Kim & Duff., 1990; Kim., 1992). In his initial

paper (Kim & Clapham., 1989) Kim found two types of potassium selective channels

activated by intracellular arachidonic acid or phosphatidylcholine in neonatal rat atrial

cells. In inside-out patches, arachidonic acid activated a large-conductance (160 pS,

IK.AA) outwardly rectifying potassium selective channel. Although K2P channels were

not known at the time, the channel described by Kim resembles large conductance

TREK-1 found in our study in many respects: activation by arachidonic acid, stretch

and intracellular acidification, as well as the typical 'flickery burst' kinetics. With

symmetrical K+ concentrations, the channel displayed outward rectification with a

slope conductance of 106 pS at +60 mV (Kim., 1992). But 10 µM phosphatidylcholine

can activate a second K+ channel (IK.PC) when applied to the intracellular surface of

patch in initial paper (Kim & Clapham., 1989). The single channel conductance was 68

pS in the outward direction and 44 pS in the inward direction but arachidonic acid and

its metabolites had no effect on channel activation. The small-conductance outward

rectifier channel described by Kim differs substantially from the small conductance

channel presented in our study that is inwardly rectifying and the activity of channel

can be enhanced by arachidonic acid. Strangely, Kim did not mention the small

conductance K+ channel in later study.

Using rat ventricular myocytes, Kim found perfusion of the cytoplasmic side of

the membrane with unsaturated fatty acid such as 10 µM arachidonic acid almost

completely inhibited ATP-sensitive K+ channels (KATP) but activated a ATP-insensitive

K+ channel with a outwardly rectifying property. When the both pipette and bath

solutions contain 140 mM K+, the single channel conductance was 150 pS in outward

current direction and 82 pS in inward current direction (Kim & Duff., 1990). In 1992,

Kim described a mechanosensitive potassium channel in adult rat atrial cells with a

slope conductance of 94±11 pS at +60 mV and 64±8 pS at –60 mV with symmetrical

high K+ conditions. Mechanical stimulation, arachidonic acid and intracellular acidosis

also can activate the channel.
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The group of Lazdunski used negative pressure and arachidonic acid

stimulation in inside-out patch confirmed presence of IK.AA in adult Wistar rat atrial

cells. The corresponding current-voltage curves were outwardly rectifying both in

physiological and in symmetrical K+ conditions, with chord conductances at +50 mV

of 41±1 pS and 118±4 pS, respectively (Terrenoire et al., 2001). A similar ventricular

stretch-activated pH sensitive channel was later found by Tan et al (2002). In adult rat

ventricular myocytes at symmetrical 150mM K+, this channel displayed a nearly linear

current-voltage relation with a slope conductance of 111±3 pS at positive potential.

The channel was not blocked by 4-AP, TEA and glibenclamide.

The high-conductance TREK-like channel described in the present study

showed outward rectification and had a conductance of 132 pS at positive potentials.

Thus, its properties were in reasonable agreement with the channels observed

previously in rat ventricular (Kim & Duff., 1990; Tan et al., 2002) and atrial muscle

(Kim., 1992; Shui & Boyett., 2000; Terrenoire et al., 2001). Similar to the native

channels, the high-conductance channels observed after transfection of rat TREK-1a

and TREK-1b in HEK293 cells showed outward rectification in symmetrical high-K+

solution and had a mean conductance of about 100 pS at positive potentials. These

findings are consistent with the data reported previously for mouse TREK-1a (95-130

pS) (Patel et al., 1998; Koh et al., 2001; Honore et al., 2002; Han et al., 2003; Kang et

al., 2005). Rat TREK-1b expressed in Xenopus oocytes was found to have a

conductance of 85 pS with 100 mM K+ solution (Bockenhauer et al., 2001), which may

translate to ∼100 pS with 150 mM K+.

The low-conductance cardiac K+ channel described in this thesis is clearly

different: it showed inward rectification with a mean conductance of 66 pS at negative

and 41 pS at positive potentials. It was found in ∼60 % of outside-out patches, about

four times more frequently than the high-conductance TREK-like channel. The

following considerations suggest that this novel channel was also encoded by TREK-1:

(i) its single-channel current-voltage relation was indistinguishable from that of the

low-conductance mode TREK-1a or TREK-1b expressed in HEK cells; (ii) its kinetics

were very similar to those of the low-conductance mode of TREK-1b; (iii) both

channels were activated by stretch and intracellular acidification; (iv) TREK-1b was
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robustly expressed in cardiomyocytes, whereas the two other stretch-sensitive K+

channels, TREK-2 and TRAAK, could not be detected. Since TREK-1a was barely

detectable by cell-specific RT-PCR, most of the cardiac low- and high-conductance

TREK-like channels were probably encoded by TREK-1b.

After carefully checking the previous articles, we did not find other reports of

the small inwardly rectifying K+ channel in heart tissue before. But the Kim group

recently found four different arachidonic-acid-activated TREK-like K+ channels in

magnocellular hypothalamic neurons (Han et al., 2003). One of these channels

(denoted iK.AA3), which was observed more frequently than the others, had properties

almost identical to the low-conductance cardiac channel described here. A search run

by Kim group in GenBank for a DNA sequence similar to those of TREK-1, TREK-2

or TRAAK failed to yield any novel TREK-like K+ channel gene.

3. Properties of TREK-like potassium channel
3.1 Stretch activation of TREK-1

NPo of the small-conductance TREK-like channel could be increased by

changes in hydrostatic pressure applied to the patch pipette. In inside-out patches

application of negative pressure (-40 cm H2O; Fig. 15 in Results) increased NPo but

application of negative pressure had no effect. In outside-out patches, positive pressure

(+80 cm H2O; Fig. 15 in Results part) increased NPo but application of negative

pressure had no effect. Thus, in both inside-out and outside-out patches, distension of

the cell membrane appeared to increase Po. So far people only found that negative

pressure can activate TREK-1 like potassium channels with both cell-attached and

inside-out configuration (Kim., 1992; Patel et al., 1999; Lesage et al., 2000). We

reported for the first time that positive pressure activates the channels in the outside-out

configuration. So it is worth speculating on the mechanism in order to understand the

channel better. After suction, the membrane patch of cell-attached and inside-out can

be formed and the piece membrane is concave. When applying negative pressure by

pipette, the curvature of membrane becomes larger and consequently the channel

activity is enhanced. In outside-out configuration, the original membrane shape is

convex. Application of positive pressure by pipette pushes the patch membrane and
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makes the membrane more convex and resulted in stimulating the channel (Fig. 25).  In

either case we have distension (stretch) of the membrane and increase in curvature.

Analysis of deletion and chimeric mutants indicated that activation of TREK-2

by fatty acid and membrane stretch involves a distinct molecular mechanism (Kim et

al., 2001). Protonation of E306 drastically tightens channel–phospholipid interaction

and leads to TREK-1 opening at atmospheric pressure (Chemin J et al., 2004). But there

is very poor knowledge of the mechanism that stretch activates the TREK-1 channel.

Figure 25. Schematic of different direction pressure works on different patch
configuration
Left, in inside-out or cell-attached mode, suction deforms patch membrane from control (solid
line) to stretch shape (dashed line). The arrow shows the direction of pressure. Right, in
outside-out mode, positive pressure changes the patch membrane from control (solid line) to
stretch shape (dashed line), The arrow shows the direction of pressure.

3.2 Voltage-dependent activity of TREK-1

Despite the inward rectification of the single-channel current voltage relation,

the whole-cell current in HEK293 cells transfected with TREK-1b showed slight

outward rectification. This apparent discrepancy was probably due to an increase in

open probability with depolarization (Bockenhauer et al., 2001; Maingret et al., 2002).

Fig. 21 (in Results part) shows that NPo strongly increased with depolarization in the

voltage range -80 to +80 mV. Kinetic analysis suggests that the lower open probability

Positive pressure

Negative pressure

Inside-out Outside-out
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of TREK-1b channels at more negative potentials is mainly attributable to a

prolongation of the gaps between bursts. Deletional and chimeric analysis demonstrates

that the carboxy terminal domain of TREK-1 is responsible for voltage-dependent

gating (Maingret et al., 2002). We speculate that outward rectification of TREK-1 in

rat cardiomyocytes would favour channel opening at depolarized potentials and

contribute to the shortening of the action potential

Other K2P channel such as TASK-3 also displays similar properties. Cell-

attached patch-clamp recordings of TASK-3 expressed in HEK293 cells showed that

the single channel current-voltage relation was inwardly rectifying and open probability

increased markedly with depolarization. The outward rectification found in the whole-

cell currents may be reconciled with the inward rectification of the single K+ channels

by taking into account the marked increase in open probability observed at positive

potentials (Rajan et al., 2000).

3.3 Divalent cations regulate the single channel conductance

The conductance of both TREK-like channels depended on the presence of

extracellular divalent cations. Removal of external Mg2+ induced a large increase of the

conductance in the inward direction. In the small-conductance channel removal of

external Mg2+ increased the slope conductance at -60 mV from 61±6 to 156±15 pS. In

the large-conductance channel removal of external Mg2+ increased the slope

conductance at -60 mV from 53±5 pS to 209±12 pS. The group of Lazdunski also

found mouse TREK-1 activity, in transiently transfected COS cells, is reduced at

negative resting membrane potentials by external Mg2+ (Maingret et al., 2002).

Our group’s previous works also suggested when divalent cations were omitted

from the pipette solution, the mean single channel (outward) current of TASK-3 at

+100 mV was nearly unchanged, whereas the inward current at +100 mV was about

twice as large as in the presence of external divalent cations. E70 is an important

determinant of sensitivity of extracellular divalent cations in TASK-3 and mutation of

this glutamate to lysine (E70K) led to reduced the channel sensitivity to above ions

(Derst et al., 2002). It is unknown to which residue response to Mg2+ block of TREK-1

and it will be answered in future.
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3.4 Two operating modes of TREK-1

Transfection of either TREK-1 splice variant in HEK293 cells produced two

populations of channels with different characteristics (Fig. 17 in Results). In some of

the inside-out patches of TREK-1a channels we found both a high-conductance

channel reminiscent of classical TREK-1 and a low-conductance channel similar to that

observed in cardiomyocytes. In the majority of inside-out patches of TREK-1a we

found only the low-conductance channel.

Comparison of TREK-1a and TREK-1b channels in HEK293 and COS-7 cells

showed that their properties were virtually identical. Both splice variants displayed a

low- and a high-conductance mode, and both modes were regulated by physical and

chemical stimuli in a very similar way. Apparently the low- and high-conductance

modes of splice variants do not represent the subconductances because in this case

sublevels should only be observed in the presence of main state activity (Fox, 1987).

The simplest explanation for our surprising observation of two channel modes is that

covalent modification of the channel or interaction with an accessory intracellular

protein may induce a second conformational state of TREK-1 channels with a different

conductance. Variation in the nature or extent of glycosylation may provide a

mechanism. It is also possible that the two conductance modes are related to

mechanical tension of the membrane or to interaction of the channel protein with

phospholipids (Chemin et al., 2005). A recent study suggested that sumoylation kept

the plasma membrane TWIK-1 channel silent (Rajan et al., 2005) and we can speculate

that sumoylation may play a role in two operative modes of TREK-1.

In guinea-pig cardiomyocytes, it was reported that there was a novel K+ channel

that represented a different ‘mode’ of the classical inward rectifier channel in which

opening occurs only at very negative potentials. In cell-attached recordings the novel

channel frequently converted to a classical inward rectifier channel, and vice versa.

This conversion was not voltage dependent. After excision of the patch, the novel

channel always converted to a classical inward rectifier channel within 0–3 min. This

conversion was not affected by intracellular Mg2+, phosphatidylinositol (4,5)-

bisphosphate or spermine (Liu et al., 2002).
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The biophysical characteristics of two modes of TREK-1 channel activity

described here are quite different from the two open states of TREK-1 channels

observed by Bockenhauer et al. In the presence of Mg2+, which were "consistent with

unblocked and blocked current levels at negative potentials" (Bockenhauer et al.,

2001). Our findings are in line with the results of Han et al (2003) who found four

different arachidonic-acid-activated TREK-like K+ channels in magnocellular hypo-

thalamic neurons. One of these channels (denoted iK.AA3), which was observed more

frequently than the others, had properties almost identical to the low-conductance

cardiac channel described here, whereas the other endogenous K+ channels showed the

properties of ‘classical’ high-conductance TREK-1, TREK-2 and TRAAK.

3.5 Block by bupivacaine

Punke et al found that bupivacaine inhibited human TREK-1 channels in a

concentration-dependent and reversible manner (Punke et al., 2003). Bupivacaine also

blocked the other K2P member TASK-3 (Kim et al., 2000). Our study also suggested

that bupivacaine strongly inhibited TREK-1 current in HEK293 cells. Bupivacaine like

lidocaine and is a local anaesthetic. The modulation function of bupivacaine on K2P

channels may link to work mechanism of local anaesthetic. Local anaesthetic such as

lidocaine and bupivacaine may block K2P background K+ currents and depolarised the

membrane potential, consequently, reduced the excitation of cells (depolarisation

block). This effect may contribute the effects of local anaesthetic.

3.6 Regulation by phosphorylation

TREK-1 is inhibited by cAMP via PKA phosphorylation of Ser333 in the C-

terminal part of the channel structure (Patel et al., 1998). The native cardiac channel

generating IKAA can also be regulated by cAMP. In cell-attached experiments, CPT-

cAMP, the permeant analog of cAMP, produced a complete inhibition of IKAA when

the current had been activated by either AA or stretch (Terrenoire et al., 2001). Our

study indicated that PKA induced by forskolin blocked TREK-1b in HEK293 cells.

Such a TREK-1 channel might contribute to the positive inotropic effects produced by

β-adrenergic stimulation of the heart. It is well known that the upregulation of the β-
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adrenergic activity produces the positive inotropic effects by activation of voltage-

dependent Ca2+ channels and the simultaneous inhibition of TREK-1 could contribute

to the positive inotropic effect by inducing a prolongation of the action potential and

thus a further increase in Ca2+ influx.

TREK-1 is not only inhibited by PKA-dependent phosphorylation through Gαs-

coupled receptors but also inhibited by PKC-dependent phosphorylation by Gαq-

coupled receptors (Murbartian et al., 2005). There are two TREK-1 phosphorylation

sites that are required for PKA-, PKC- and receptor-mediated inhibition: a previously

described PKA site at Ser-333 and a novel site at Ser-300. Progressive

dephosphorylation at whole cell configuration contributes to the TREK-1 current ‘run-

up’ that currents increase with time (Murbartian et al., 2005).

Other K2P channel members also regulated by G protein coupling receptor. In

hypoglossal motoneurones and cerebellar granule cells, these TASK-like currents are

inhibited by different neurotransmitters known to stimulate Gq/11-coupled receptors

(acetylcholine, serotonin, norepinephrine, thyrotropin- releasing hormone, substance P,

and glutamate). Co-expressing a Gq coupled receptor and the cloned TASK channel in

transfected cells also produced similar results (Millar et al., 2000; Talley et al., 2000).

3.7 Activation by arachidonic acid

One of the basic characteristics of TREK-1 is that AA can activate it. There is

the natural asymmetric distribution of the negatively charged phosphatidylserines in the

inner leaflet of the plasma membrane and some lipids (as for instance arachidonic acid)

tend to preferentially insert in the external leaflet of the bilayer, leading to a convex

curvature of the membrane. The change of membrane curvature might lead to the

opening of TREK-1 (Sheetz et al., 1974). An alternative hypothesis is that compounds

with a smaller polar head and a large hydrophobic tail, such as AA, are considered as

cones with the base of the cone at its hydrophobic tail and the membrane is deformed

by insertion of cone (AA)-shaped lipids. Then the deformation of membrane makes the

TREK-1 open (Patel et al., 2001).
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4. Stretch-activated whole-cell currents in cardiac muscle
Confocal imaging showed that TREK-1 channel proteins are arranged in

longitudinal stripes at the surface of cardiomyocytes. This localization pattern appears

to be suitable for sensing longitudinal stretch of the cells. In cells superfused with

physiological salt solution, stretch activated a large outward current at positive

potentials that was probably attributable to activation of both SACs and SAKs

(Kamkin et al., 2000; Isenberg et al., 2003). We succeeded in isolating the current

component flowing through SAKs by applying only moderate stretch, by selecting

cells that showed only little current through SACs and by inhibiting other current

components with a blocker cocktail. The remaining stretch-activated whole-cell current

showed outward rectification and was probably carried by both the 'classical' high-

conductance (Kim., 1992; Terrenoire et al., 2001; Niu & Sachs., 2003) and the novel

low-conductance TREK-like channels. It should be noted, however, that we studied

only steady-state current changes. Single-channel recordings of stretch-activated

TREK-like K+ channels in rat atrium (Niu & Sachs., 2003) showed substantial

inactivation (or adaptation) with a time constant of ≈1 s. Thus, the phasic stretch-

activated K+ current flowing during myocardial stretch in vivo, for example at the end

of diastole during high preload, may be much larger than the steady-state outward

current shown here. Furthermore, TREK-1 currents are expected to be much larger at

37 °C (Kang et al., 2005).

5. The possible functional role of TREK-1 channels in the heart
5.1 Cardiac protection in ischemia or hypoxia

The cardiac TREK-1 channel may play an important role in protecting against

cell damage caused by ischemia, which is known to elevate intracellular levels of

certain fatty acids, including arachidonic acid (Schror et al., 1987)

During ischemia or hypoxia, the intracellular pH decreases and may

consequently activate the TREK-1 in cardiomyocytes. Opening of TREK-1 can induce

hyperpolarization of membrane potential and close the voltage-gated Ca2+ channel,

which lead to influx of Ca2+, further protecting the cells from ischemic or hypoxia
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damage. Recently, the role of TREK-1 in polyunsaturated fatty acid and

lysophospholipids-induced neuroprotection was further indicated by the genetic

inactivation of TREK-1. TREK-1(–/–) mice display an increased sensitivity to both

ischaemia and epilepsy; Activation of TREK-1 by volatile anesthetics can protect the

neuron( Heurteaux et al., 2004). A recent study suggests that TREK-1 and its activation

by arachidonic acid is resistant to hypoxia (Buckler et al., 2005). So those results

suggest the TREK-1 not only tolerates hypoxia but also antagonizes the damage of

hypoxia to protect the tissue.

In glomus cells, hypoxia inhibited a TASK-1 potassium channel, which was

characterized by weak voltage dependence, low activity upon extracellular acidosis and

a unitary conductance recorded in cell attached patches of 14 pS (Buckler et al., 2000).

A 14-pS K+ channel with kinetic properties similar to those of TASK-1 was identified

in rat atrial and ventricular cells (Kim et al., 1999). So interesting question is raised

whether the inhibition of TASK-1 mediated by hypoxia is counterbalance to activation

of TREK-1 by hypoxia in cardiomyocytes. But first we must get evidence that hypoxia

really enhances the TREK-1 activity in heart.

5.2 Counterbalance of SACs

In the beating heart, stretch may activate both SACs and SAKs. The net effect

of stretch applied during diastole is usually a depolarization that may initiate

ventricular premature beats or even fibrillation when it reaches threshold (Franz et al.,

1992; Zabel et al., 1996; Zeng et al., 2000; Janse et al., 2003; Ravens., 2003).

However, arrhythmogenesis may not be the only function of SACs and SAKs; it is

conceivable that they may also play a role in the length-dependent regulation of

contractile force of cardiomyocytes.

Rapid stretch of cardiac muscle produces an instantaneous change in isometric

force of contraction, which is followed by slow increase in force over several minutes.

This slow force response (SFR, also denoted the Anrep effect) is associated with a slow

increase in the magnitude of the intracellular calcium transient (Allen & Kentish.,

1985; Nichols et al., 1988). It has been proposed that opening of ISAC contributes to the

slow length dependent changes in the force of contraction (Lab et al., 1994; Tavi et al.,
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1998; Calaghan & White., 2004). At diastolic negative potentials SACs are

predominantly carried by Na+ ions (Isenberg et al., 2003), i.e. stretch of the myocytes

during the ventricular filling phase is thought to increase the submembrane Na+

concentration, which in turn augments the cellular Ca2+ load via Na+-Ca2+ exchange

(NCX) (Tavi et al., 1998; Perez et al., 2001). The resulting increased filling of the

intracellular Ca2+ stores (Lab et al., 1994; Tavi et al., 1998; Perez et al., 2001;

Calaghan & White., 2004) might contribute to the slow force response observed after

an increase in preload.

Previous reports showed that neither L-type Ca2+ currents (Hongo et al., 1996)

nor the sarcoplasmic reticulum (SR) (Kentish et al., 1998) contribute to the increase in

Ca2+ transient during the SFR. Other reports suggested that stretch triggered an

autocrine/paracrine mechanism that activated the Na+-H+ exchange (NHE), increased

the [Na+]i and subsequently Ca2+ entry through the reverse mode of Na+-Ca2+ exchange

(Perez et al., 2001).

These considerations suggest that Na+ influx through SACs or NHE during the

late filling phase of the cardiac cycle may make a major contribution to the slow force

response (Lab et al., 1994; Tavi et al., 1998; Calaghan & White., 2004; Cingolani et

al., 1998), and the same mechanisms may also be responsible for arrhythmogenic

afterpotentials (Tavi et al., 1998). The simultaneous opening of SAKs might serve to

prevent excessive diastolic depolarization under conditions of high preload. Thus, one

of the major functions of TREK-like channels in cardiomyocytes may be to

counterbalance the inward current produced by activation of ISAC and to prevent the

occurrence of ventricular extrasystoles.
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Summary

Cardiac TREK-1 like potassium channels play an important role in the function

of cardiomyocytes. A novel low-conductance TREK-1 like potassium channel and a

high-conductance TREK-1 like potassium channel in rat cardiomyocytes are described

in this thesis. The biophysical properties of the two cardiac TREK-like channels were

similar to those of TREK-1a or TREK-1b channels expressed in HEK293 cells, which

both displayed a low- and a high-conductance mode.

● Using cell-specific RT-PCR we found strong expression of a splice variant of

rat TREK-1, denoted TREK-1b, in which the N-terminus is extended by 15

amino acids compared to the 'classical' TREK-1a channel protein.

● Immunohistochemistry with antibodies against TREK-1 showed localization of

the channel in longitudinal stripes at the external surface membrane of

cardiomyocytes.

● When the cardiomyocytes were mechanically stretched using a glass stylus, an

outwardly rectifying K+ current component could be detected in whole-cell

recordings.

● In single-channel recordings with symmetrical high K+ solution, two TREK-like

channels with 'flickery-burst' kinetics were found: a ‘high-conductance’ K+

channel (132±5 pS at positive potentials) and a novel ‘low-conductance’

channel (41±5 pS at positive potentials). The low-conductance channel could be

activated by negative pressure in inside-out, positive pressure in outside-out

patches, intracellular acidification and arachidonic acid. Its open probability

was strongly increased by depolarization, due to decreased duration of gaps

between bursts.

● The biophysical properties of the two cardiac TREK-like channels were similar

to those of TREK-1a or TREK-1b channels expressed in HEK293 cells, which

both displayed a low- and a high-conductance mode. Our results suggest that the
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TREK-like channels found in rat cardiomyocytes may reflect two different

modes of TREK-1.

● The current flowing through these mechano-gated channels may serve to

counterbalance the inward current flowing through stretch-activated non-

selective cation channels during the filling phase of the cardiac cycle and thus

to prevent the occurrence of ventricular extrasystoles.
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Abbreviations

ATP Adenosine triphosphate
bp Base pairs
cAMP Cyclic adenosine mono phosphate
cDNA Complementary DNA
cRNA Complementary RNA
DMEM Dulbecco’s modified Eagles’s medium
DNA De-oxy-ribo-nucleic acid
DNase Deoxyribonuclease
dNTP Deoxyribonucleotide
DTT Dithiothreitol
E.coli Escherichia coli
EDTA Ethylenediaminetetraacetate
EGFP Enhanced green fluorescent protein
HEK cells Human embryonic kidney cells
HEPES N-(2-hydroxyethyl)piperazineN’-2(hydroxy)propanesolphonic acid
kb Kilo base pairs
kDa Kilo Dalton
mM milli molar
PCR Polymerase chain reaction
PKA Protein kinase A
PKC Protein kinase C
RNA Ribo-nucleic acid
RNase Ribonuclease
rpm Revolutions per minute
RT Reverse transcription
TASK TWIK related Acid Sensitive K+ channel
THIK Tandem pore domain Halothane Inhibited K+ channel
TRAAK TWIK Related Arachidonic Acid stimulated K+ channel
TREK TWIK Related K+ channel
Tris Tris-(hydroxymethyl)-aminomethan
TWIK Tandem of P domains in a Weak Inward rectifying K+ channel
TALK TWIK related Alkaline pH activated K+ channel
U Units
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