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Zusammenfassung 

 

Die Familie der Sp-Transkriptionsfaktoren charakterisiert sich durch ihre DNA-

Bindungsdomäne, bestehend aus drei C-terminalen Zinkfingern vom Typus C2H2. 

Als Folge dieses hochkonservierten DNA-Bindungsmotivs erkennen die einzelnen 

Mitglieder der Sp-Familie jeweils mit gleicher Spezifität und Affinität sogenannte GC- 

(GGGGCGGGG) und GT- (GGTGTGGGG) Boxen. GC- und GT-Boxen sind von 

großer Bedeutung für die Expressionsregulation verschiedenster ubiquitärer, 

gewebespezifischer und viraler Gene. Bis jetzt wurden neun Mitglieder der Sp-

Familie identifiziert (Sp1 bis Sp9). Zusätzlich zur charakteristischen DNA-

Bindungsdomäne besitzen die Transkriptionsfaktoren Sp1 bis Sp4 weitere 

strukturelle Gemeinsamkeiten, wie z.B. zwei glutaminreiche Transaktivierungs-

domänen oder zwei serin-/threoninreiche Regionen. Molekulare sowie funktionelle 

Eigenschaften sind für die Faktoren Sp1, Sp3 und Sp4 beschrieben. Entsprechende 

Maus-Knockouts belegen ihre vielfältige Funktion und essentielle Bedeutung bei der 

Säugerentwicklung. Seit der Klonierung von Sp2, dem am wenigsten konservierten 

Mitglied der aus Sp1-4 bestehenden glutaminreichen Unterfamilie, wurden keine 

weiteren Daten hinsichtlich seiner Funktion in vivo oder in vitro publiziert. Aus diesem 

Grunde war das Ziel der vorliegenden Arbeit, die Untersuchung der Sp2-Funktion 

mittels zwei verschiedener Ansätze: einer funktionellen molekularen 

Charakterisierung, welche unter anderem Expressions-, Transaktivierungs- und 

DNA-Bindungsstudien beinhaltete, sowie der Herstellung von Sp2-Knockout-Mäusen. 

 

Zur Untersuchung der Sp2-Funktion auf molekularer Ebene wurden polyklonale, Sp2-

spezifische Antikörper hergestellt und für Expressionsstudien eingesetzt. Es zeigte 

sich, daß Sp2 ausschließlich im Zellkern lokalisiert ist und in allen getesteten 

Zelllinien und Mausgeweben exprimiert wird, wenn auch in unterschiedlichen 

Mengen. Dies spricht für eine weitläufige bis ubiquitäre Expression in der Maus. In 

einem zweiten Schritt wurde die Fähigkeit von Sp2 analysiert, Promotoren zu 

aktivieren, die GC- bzw. GT-Boxen als Regulationselemente beinhalten. Hierzu 

wurden Reporterassays mit Wildtyp-Sp2-Protein sowie verschiedenen Sp2-

Deletionsmutanten durchgeführt. Im Gegensatz zum Transkriptionsfaktor Sp1, der 

einen starken Aktivator darstellt, aktivierte keines der untersuchten Sp2-Varianten die 

Expression der Reportergene. Auch wenn Sp2-Fragmente an eine heterologe DNA-

Bindungsdomäne fusioniert waren, konnte keine Aktivierung festgestellt werden. 
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Zusätzlich wurde mittels Gelretardationsexperimenten die Fähigkeit und Spezifität 

von Sp2, DNA zu binden, untersucht. Es zeigte sich, daß Wildtyp-Sp2-Protein nicht in 

der Lage war, an DNA zu binden, weder an GC-Boxen („klassische“ Sp1-

Bindungsstelle) noch an GC-Box-Varianten oder andere DNA-Bindungssequenzen, 

wie GT- oder CT-Boxen. Wurden jedoch die N-terminalen Aminosäuren 1-179 

deletiert, erfolgte die Bindung an die DNA. Diese Befunde sprechen dafür, daß der 

Prozeß der Sp2-DNA-Interaktion in vivo reguliert ist. Zur Ermittlung der 

physiologischen Funktion von Sp2, wurden Sp2-Knockout-Mäuse hergestellt. Diese 

Mäuse sind nicht lebensfähig; sie sterben kurz vor bzw. nach der Geburt. Während 

Sp2-mutierte Embryonen bis zum Tag E12,5 keine erkennbaren Abnormalitäten 

aufweisen, sind die Körpergröße und das -gewicht von Embryonen am Tag E18,5 im 

Vergleich zum Wildtyp deutlich reduziert, wenn auch mit großer Varianz. Diese 

Ergebnisse verdeutlichen, daß der Transkriptionsfaktor Sp2 essentiell für eine 

normale Mausentwicklung ist. In welche Differenzierungsprozesse er im Detail 

involviert ist, müssen weitere Untersuchungen zeigen. 
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Summary 

 

The Sp family of transcription factors is characterised by its DNA-binding domain, an 

array of three conserved C2H2 zinc fingers. As a consequence of the conserved 

DNA binding motif, Sp members recognize GC (GGGGCGGGG) and GT 

(GGTGTGGGG) boxes with similar specificity and affinity. GC and GT boxes are 

important for the expression of many different ubiquitous as well as tissue-specific 

cellular and viral genes. To date, nine members of the Sp family (Sp1 - Sp9) have 

been identified. In addition to their DNA-binding domain, Sp1 - Sp4 also share other 

structural features like two glutamine-rich transactivation domains and two 

serine/threonine-rich regions. Molecular and functional properties have been 

described for Sp1, Sp3 and Sp4. Mouse deletion mutants, which have been 

generated for these factors, demonstrate their manifold function and essential 

importance for mammalian development. Since the cloning of Sp2, which is the less 

conserved factor among Sp1 - Sp4, no reports about its function, neither in vitro nor 

in vivo have been published. Therefore, the aim of this thesis work was to unravel 

Sp2 function by two parallel approaches: a functional molecular characterization 

(including expression, transactivation and DNA binding studies) and the generation of 

Sp2 gene targeted mice. 

 

To study the Sp2 protein at the molecular level, Sp2-specific rabbit polyclonal 

antibodies were generated. Sp2 protein, which is exclusively localized to the nucleus, 

was detected in all analyzed cell lines and adult mouse tissues, although in different 

amounts. This favours at least a widely expression of the transcription factor Sp2. To 

explore Sp2 transactivation properties, reporter assays were performed with full-

length Sp2 protein as well as various Sp2 deletion mutants using different GC- and 

GT-box-containing promoters. Unlike transcription factor Sp1, which is a strong 

activator, Sp2 proteins did not activate reporter gene expression. Also, when fusing 

Sp2 deletions to a heterologous Gal4 DNA binding domain, no activation was 

detectable. In addition, the DNA binding capacity and specificity of full-length Sp2 

protein and a series of Sp2 deletion mutants were investigated by Electrophoretic 

Mobility Shift Assays. Full-length Sp2 protein was not able to bind to DNA, neither to 

GC boxes (the “classical” Sp1 binding site) and GC box variants, nor to other DNA 

binding sequences like GT and CT boxes. However, when deleting the N-terminal 

amino acids 1-179, GC box binding was possible. These results suggest that the 
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DNA binding activity is regulated in vivo. To unravel the physiological function of 

transcription factor Sp2, targeted mice were generated. These mice are not viable; 

they die shortly before or after birth. Whereas Sp2-targeted embryos develop normal 

until day E12.5, day E18.5 embryos are characterized by a strongly reduced body 

size and weight, however with strong variations. These results demonstrate a 

fundamental role of the transcription factor Sp2 for normal mouse development. 
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1. Introduction 

 

1.1 Regulation of gene expression 

 

Multicellular organisms like mammals are composed of various cell types with 

different functions. Although displaying different functions, nearly all nuclear cells 

contain the same genetic information. Apart from so-called house-keeping genes, 

which are expressed in all cells, the expression of genes is cell-type-dependent. But 

also cell development or environmental conditions requiring different gene products 

in the cell influence gene expression. This differential gene expression is the basis for 

the formation of complex, multicellular organisms with a great diversity of cell types, 

each of them characterized by a special set of proteins. 

 

Differential gene expression as well as the formation of a functional protein can be 

regulated on different levels, like e.g. transcription, mRNA procession, mRNA 

transport and stability but also translation and stability or activity of the translated 

protein. The regulation on the transcriptional level hereby plays a crucial role. 

 

In eukaryotic cells, gene transcription is driven by three RNA polymerases, RNA 

polymerase I, II and III (Roeder and Rutter, 1969). Protein-coding genes are 

transcribed into mRNA by RNA polymerase II. Transcription of DNA into mRNA by 

RNA polymerase II is one of the most highly regulated processes in the cell. This 

regulation depends on a complex molecular machinery (Fig. 1.1) consisting of 

numerous transcription factors (Lemon and Tjian, 2000). 

 

Eukaryotic promoters generally are composed of a core promoter, a distal promoter 

region and several enhancer or silencer elements. Core promoters often contain the 

so-called TATA-box (25-30 nucleotides upstream of the transcription start point), a 

pyrimidine-rich initiator sequence (Inr) or a so-called downstream core promoter 

element (DPE; approximately 30 nucleotides downstream of the transcription start 

point) (Krajewska, 1992; Mitchell and Tjian, 1989). Enhancer and silencer elements, 

on the other hand, are DNA regions in great distances upstream or downstream to 

the transcription start point. Transcription factors bind to these regions and can 

enhance or silence gene transcription (Brand et al., 1985; Dynan 1989; Levine and 

Manley, 1989; Voss and Pongs, 1986). 
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To initiate transcription, transcription factors bind to the distal promoter and enhancer 

elements and by this enable the recruitment of RNA polymerase II to the core 

promoter region (Orphanides et al., 1996; Roeder, 1996). The first step in 

transcription initiation is the remodeling of chromatin giving access of the pre-

initiation complex to the promoter (Fig. 1.1). The pre-initiation complex is assembled 

stepwise starting with the attachment of the multi-protein complex TFIID to the TATA-

box via its subunit TBP (TATA-box-binding protein; Weinzierl et al., 1993) together 

with the attachment to the DPE element (Drosophila) via a TBP-associated subunit 

(TAF), followed by the association of further general transcription factors like TFIIA, 

B, F, E and H as well as the RNA polymerase II. Assembly of the pre-initiation 

complex is sufficient for a basal promoter activity in vitro (Lewin, 1990; Roeder, 

1991). In vivo, however, other factors like specific transcription factors or different co-

regulators are necessary (Faisst and Meyer, 1992; Roeder, 1991; Wingender, 1988). 

 

Many promoters, enhancers and silencers contain characteristic DNA sequence 

motifs, like e.g. GC or CAAT boxes. These boxes are bound by specific transcription 

factors like Sp factors and can either be located close to the transcription start point 

or as enhancer or silencer in great distance to it. Interaction of these factors with 

factors of the pre-initiation complex can e.g. result in conformational changes and 

initiation of transcription (Kornberg, 1996; Roeder, 1996). 
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Fig. 1.1. Transcription initiation (Lemon and Tjian, 2000). A. Chromatin remodeling to make the 

promoter accessible for the pre-initiation complex formation. B. Stepwise assembly of transcription 

factors and co-regulators at the core promoter. C. Transcription initiation complex. 

 

 

1.2 Transcription factors 

 

Transcription factors can be divided into general or basal transcription factors 

(Roeder, 1991; Goodrich and Tjian, 1994) and specific transcription factors (Lewin, 

1990; Krajewska, 1992). General or basal transcription factors are associated with 

the pre-initiation complex at the core promoter as described in 1.1. Specific 

transcription factors bind to promoter and enhancer or silencer regions, thus directly 

or indirectly regulating transcription. 
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According to their regulatory function, specific transcription factors are composed of 

several functional domains, like e.g. a DNA-binding domain, which enables the 

factors to sequence-specifically bind to regulatory elements on the DNA, as well as 

one or more transactivation domain(s), essential for transcriptional activation 

(Kadonaga, 2004; Mitchell and Tjian, 1989; Ptashne, 1988;). The sequence 

specificity of DNA-binding domains is achieved by a structural diversity of DNA 

binding motifs. Such binding motifs are e.g. leucine-zipper, helix-turn-helix, helix-

loop-helix or zinc finger motifs and enable the specific recognition of a broad variety 

of DNA sequences, like e.g. CAAT or GC boxes (Landschulz et al., 1988; Krajewska, 

1992; Kadonaga et al., 1987; Pabo and Sauer, 1992). High diversity also exists for 

transactivation domains, which can be glutamine-rich as in transcription factor Sp1 

(Courey and Tjian, 1988), proline-rich as in the factors CTF/NF1 and Jun (Mermod et 

al., 1989; Struhl, 1988) or rich in acidic amino acids as in the yeast Gal4 transcription 

factors (Ma and Ptashne, 1987). 

 

In addition, further functional domains, like inhibitory, dimerization or ligand-binding 

domains (e.g., Kadonaga, 2004) regulate transcription by influencing the 

transactivation or DNA binding capability of the transcription factor. DNA binding 

capacity e.g. can be regulated through protein-protein interactions (e.g. Vallian et al., 

1998) or posttranslational protein modifications, like phosphorylation or glycosylation 

(e.g. Rohlff et al., 1997; Armstrong et al., 1997; Han and Kudlow, 1997; Yang et al., 

2001). 

 

 

1.3 The Sp/XKLF super-family of transcription factors 

 

Many different prokaryotic and eukaryotic proteins use zinc-coordinated motifs to 

bind to DNA. One common type of these so-called zinc fingers consists of two beta 

sheets and one alpha helix that contain two cysteine and two histidine residues that 

contact a zinc atom. These C2H2 zinc fingers are often found in clusters that allow 

each of their alpha helices to tightly interact with the major groove of the double-

stranded DNA helix (Pavletich and Pabo, 1991). The amino acid composition of the 

zinc fingers determines their DNA binding specificity and by using them in different 

arrangements zinc finger proteins can recognize the specific sequences of 
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nucleotides to which they bind, thus ensuring a highly specific transcriptional 

regulation. 

 

One particular combination of three conserved C-terminal C2H2 zinc fingers forms 

the DNA binding motif of the still expanding Sp/XKLF super-family of transcription 

factors (reviewed e.g. in Bouwman and Philipsen, 2002; Suske et al., 2005; see also 

Fig. 1.3.1). Sp represents the Sp family of transcription factors, consisting to date of 

nine family members, Sp1-9, which are described in more detail in chapter 1.4. The 

Sp family is named after “specificity protein” or “sephacryl and phosphocellulose” 

columns originally used to purify family founder Sp1 (Kadonaga et al., 1987)). The 

XKLF family, on the other hand, consists of the numerous so-called Krüppel-like 

factors (reviewed in Bouwman and Philipsen, 2002; Suske et al., 2005), named after 

the Drosophila segmentation gene Krüppel displaying a similar zinc finger 

arrangement (Schuh et al., 1986). X hereby represents the main location of 

expression, like erythrocytes for EKLF (erythroid Krüppel-like factor; Miller and 

Bieker, 1993) or lung in the case of LKLF (lung Krüppel-like factor; Anderson et al., 

1995). 
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Fig. 1.3.1. Sp/XKLF super-family of transcription factors (Suske et al., 2005). Relationships 

between the Sp factors and KLFs of human, Drosophila, and C. elegans. Of each factor, the 110-aa 

domain containing the Btd/zinc finger motifs was used for the multiple alignment with ClustalW 

(http://www.ebi.ac.uk/clustalw/). This alignment was used to construct the cladogram. *The current 

sequence of C. elegans F45H11.1 contains only the Btd motif and the first finger. **One amino acid 

was removed from finger 3 of Ce-T22C8.5 (HXXXH instead of HXXXXH), because the extra amino 

acid is not handled appropriately in the multiple alignment generated with ClustalW. ***The sequence 

of D-CG3065 was deduced from the Drosophila genome sequence; the current annotation does not 

contain the complete Btd/zinc finger motif. 
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The zinc fingers of the Sp/XKLF super-family are structurally related to those of the 

transcription factor ZIF268. Therefore Sp/XKLF factors are likely to contact the DNA 

in the same fashion as has been determined for this protein. Following a so-called 

zinc finger code, each zinc finger of ZIF268 contributes with (at least) three DNA-

contacting amino acids to its DNA binding properties (Jamieson et al., 2003; Fairall et 

al., 1993; Kriwacki et al., 1992; Kuwahara et al., 1993; Narayan et al., 1997; 

Pavletich and Pabo, 1991). According to that, Sp family founder Sp1 is thought to 

contact the DNA with the amino acids KHA in the first, RER in the second and RHK 

in the third zinc finger as depicted in Fig. 1.3.2 (Dynan and Tjian, 1983; Philipsen and 

Suske, 1999). 

5’

 
Fig. 1.3.2. Scheme of the Sp1 zinc fingers interacting with a classical GC box (modified after 

Jamieson et al., 2003). The three individual fingers consist of each one alpha helix and two beta 

sheets and are connected by a zinc ion (depicted in grey). At least three amino acids in each alpha 

helix (the critical residues are depicted in black) contact each one nucleotide on the DNA (dotted 

lines), as indicated on the right. Sp1 zinc fingers (as well as the bases which they contact) are 

depicted as follows: finger 1 in red, finger 2 in yellow and finger 3 in violet. DNA is depicted in blue. 

 

As a consequence of the conserved DNA binding motif, Sp/XKLF members all 

recognize the same GC (GGGGCGGGG) and GT/CACC (GGTGTGGGG) boxes 

albeit with different affinities due to substitutions of critical amino acids in the first 

(H→L in Sp2) or in the third (L→K in e.g. BKLF, EKLF, UKLF) finger of some of the 

factors (Bouwman and Philipsen, 2002; Gidoni et al., 1985; Giglioni et al., 1989; 
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Kingsley and Winoto, 1992; Letovsky and Dynan, 1989). GC (commonly referred to 

as “Sp1-binding site”) and GT boxes are frequently found in promoters and 

enhancers/ silencers of many different ubiquitous (e.g. house-keeping genes) as well 

as specifically regulated cellular and viral genes. In addition, these motifs are 

required for the maintenance of the methylation-free status of CpG islands (Brandeis 

et al., 1994; Macleod et al., 1994). 

 

A third subgroup belonging to the Sp/XKLF super-family comprises the transcription 

factors BTEB1/KLF9, BTEB4/KLF16 and BTEB5/KLF14 (basic transcription element 

binding protein 1; Imataka et al., 1992), RFLAT-1/KLF13 (RANTES factor of late 

activated T-lymphocytes 1) as well as TIEG1/KLF10 and TIEG2/KLF11 (TGFß-

inducible early gene 1 and 2; Cook et al., 1998; Subramaniam et al., 1995). Based on 

their zinc finger structure, these factors also primarily bind to the classical GC boxes 

(Bouwman and Philipsen, 2002; Philipsen and Suske, 1999; Suske et al., 2005). 

 

Whereas the DNA binding domain is highly conserved among the Sp/XKLF super-

family members, also eminent structural differences can be observed like the 

presence or absence of inhibitory domains or various transactivation domain 

structures. Together with differences in posttranslational protein modifications, 

protein-protein interactions, expression patterns, etc., this contributes to enhance 

specificity of transcriptional regulation (Bieker and Southwood, 1995; Gillemans et al., 

1998; Bouwman and Philipsen, 2002; Philipsen and Suske, 1999; Suske et al., 

2005). 

 

 

1.4 The Sp family of transcription factors: protein structure and function 

 

To date, the Sp family of transcription factors consists of nine mammalian members, 

Sp1-9 (Fig. 1.4.1; e.g. Bouwman and Philipsen, 2002; Suske et al. 2005). As 

described in 1.3, Sp transcription factors bind to GC and GT/CACC boxes found in a 

variety of promoters and enhancers/ silencers through three characteristic zinc 

fingers of the C2H2 type. The zinc fingers are located at the C terminus of the 

proteins and are formed by a stretch of 81 highly conserved amino acids (Fig. 1.4.2). 
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A B C D 

 
Fig. 1.4.1. Transcription factors Sp1-9 (modified after Bouwman and Philipsen, 2002 and Suske 

et al., 2005). Structural motifs like Sp and Btd boxes, zinc finger, glutamine-rich, serine/threonine-rich, 

proline-rich and highly charged regions, as well as transactivation (AD) and inhibitory (ID) domains are 

indicated following the colour code given above. A, B, C, and D modules of Sp1 (Courey and Tjian, 

1988) are marked with black bars. On the right: lengths in amino acids according to accession 

numbers NM_013672.1 (Sp1), NM_030220.2 (Sp2), BC079874.1 (Sp3), NM_009239.1 (Sp4), 

NM_022435.2 (Sp5), XP_064386 (Sp6/KLF14), NM_130458.1 (Sp7), NM_177082.3 (Sp8), AY591908 

(Sp9). 

 

In addition to their DNA-binding region, Sp transcription factors also share further 

structural features, like the Sp box and the Buttonhead box, of which as yet the 

function is unclear. The Sp box is located at the N terminus of the proteins (Harrison 

et al., 2000) and is characterized by the highly conserved sequence 

SPLALLAATCSR/KI (Bouwman and Philipsen, 2002). It contains a potential 

endoproteolytic cleavage site and is situated close to a region at the N terminus of 

Sp1 that targets proteasome-dependent degradation in vitro (Su et al., 1999). 

Although not required to direct cleavage, the fact that the Sp box is highly conserved 

indicates that it has a putative function in the regulation of Sp factor proteolysis. 

Another possible role for the Sp box may lie in the control of the transactivation 

capacity through interaction with a putative repressor (Murata et al., 1994). 
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The Buttonhead box (Btd) is situated at the C terminus of the proteins, directly N-

terminally to the zinc finger domain. It consists of 11 conserved amino acids and was 

originally described in the Drosophila Sp1 homologue Buttonhead (Btd; Wimmer et 

al., 1993). A deletion of the highly charged C domain (see Fig., 1.4.2) comprising the 

Btd box results in a reduced transactivation potential of Sp1 in vitro (Courey and 

Tjian, 1988). Furthermore, the Btd box appears to be involved in synergistic 

activation by Sp1 or Sp3 with sterol regulatory element-binding proteins (SREBPs; 

Athanikar et al., 1997). 

 

Although the functions of the Sp and Btd boxes are not clear at the moment, their 

absence in the XKLF family confirms the relationship between the Sp transcription 

factors. Besides these structural similarities, the close relationship between these 

factors is also demonstrated in human by their co-localization with the four homeobox 

gene clusters (HOX) on chromosome 12.q13.13 (Sp1 and 7 / HOX C), 17q21.31/32 

(Sp2 and 6 / HOX B), 2q31.1 (Sp3, 5 and 9 / HOX D), 7p21.2 (Sp4 and 8 / HOX A) 

(Bouwman and Philipsen, 2002; Kalff-Suske et al., 1995 and 1996; Matera and Ward, 

1993; Scohy et al., 1998; Suske et al. 2005). 

 

Apart from the Sp and Btd boxes, the N-terminal regions of Sp5-9 are completely 

different from those of Sp1-4 and more closely related to each other (Bouwman and 

Philipsen, 2002; Suske et al., 2005). Since this thesis is focused on transcription 

factor Sp2, the factors Sp5-9 will not be discussed in the following, especially as they 

have not been studied yet in detail. 

 

The protein structure of the transcription factors Sp1-4 is characterized by several 

domains located N-terminally to the highly conserved zinc finger region (Fig. 1.4.2; 

Bouwman and Philipsen, 2002; Philipsen and Suske, 1999). These are two 

glutamine-rich domains (A and B), two serine/threonine-rich regions and a region of 

highly charged amino acids (domain C) directly N-terminally to the zinc finger 

domain. The existence of the first transactivation domain and serine/threonine region 

in Sp2 was unclear when starting this thesis. In addition, the D domain is absent in 

Sp2. The glutamine-rich domains of Sp1, Sp3 and Sp4 harbour the transactivating 

function of these factors, the serine/threonine regions are possible targets of 

posttranslational modifications like phosphorylation. In addition to that, transcription 
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factor Sp3 is characterized by an inhibitory domain located near the C domain 

(Dennig et al., 1996). 

A A B C D 

 
Fig. 1.4.2. Structural features of Sp proteins (Suske, 1999). A. Scheme of the transcription factors 

Sp1-4. Their length in amino acids is indicated on the right. Coloured boxes indicate the zinc finger 

region (black) as well as glutamine- (red) and serine/threonine-rich (yellow) protein domains; (+/−) 

represents a region of highly charged amino acids. Lines above the draw of the Sp1 protein indicate 

the extent of four regions (A, B, C and D) which contribute to the transcriptional properties of Sp1 as 

defined by Courey and Tjian (1988). Known activation (AD) and inhibitory domains (ID) are indicated. 

B. Protein sequence alignment of the zinc finger domains. Stars below the sequence indicate 

sequence identity. Cysteine and histidine residues which coordinate zinc ions are underlayed in 

green, protein regions which contact the DNA in blue. Arrows point to the amino acids which 

determine the recognition specificity by contacting specific bases of the DNA (adapted from Fairall et 

al., 1993; Pavletich and Pabo, 1991). Black lines and the zig-zag lines indicate alpha-helical and beta 

sheet regions, respectively. 

 

Transcription factor Sp1 

As first member of the Sp family, Sp1 was isolated from HeLa cells and described as 

transcription factor binding to the GC boxes of the Simian Virus 40 (SV40) promoter, 

thus leading to transcriptional activation in vitro (Dynan and Tjian, 1983) caused by 

two glutamine-rich domains (A and B, Fig. 1.4.2) (Courey and Tjian, 1988; Gill et al., 

1994; Kadonaga et al., 1988). Human Sp1 consists of 785 amino acids with a 

calculated molecular weight of 80.6 kDa and is ubiquitously expressed. 
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It was discovered that Sp1 can directly interact with itself which has important 

implications for its transactivation capacity (Pascal and Tjian, 1991). Sp1 stimulates 

transcription from promoters as well as from enhancers (Courey et al., 1989). In vitro 

experiments suggest that this synergistic activation is mediated by Sp1 molecules 

bound to proximal and distal sites, which interact with each other thus forming 

stacked tetramers (Mastrangelo et al., 1991), thereby looping out the intervening 

DNA (Li et al., 1991; Mastrangelo et al., 1991; Su et al., 1991). For the 

multimerization, activation domain B appeared to be of critical importance (Pascal 

and Tjian, 1991). Together with domain A, domain B also mediates superactivation of 

Sp1-dependent transcription which can be achieved by non-DNA-binding mutants in 

case of multiple binding sites (Courey et al., 1989; Hagen et al., 1995). For 

synergistic activation by binding to multiple sites, domain D is required in addition to 

both transactivation domains (Pascal and Tjian, 1991). 

 

Moreover, Sp1 interacts with components of the basal transcription machinery (e.g. 

TBP (Emili et al., 1994), several TAFs (Hoey et al., 1993; Tanese et al., 1996)) as 

well as with transcription factors like E2F (Karlsreder et al., 1996) and YY1 (Lee et 

al., 1993). Sp1 is able to recruit the co-activator complex CRSP (cofactor required for 

Sp1 activation), thus stimulating transcription of the respective genes (Ryu et al., 

1999). In addition to that, Sp1 is target of posttranslational modifications like 

glycosylation (Jackson and Tjian, 1988) and phosphorylation (Jackson et al., 1990), 

both being able to influence e.g. its DNA binding or transactivation properties (e.g. 

Armstrong et al., 1997; Merchant et al., 1999; Roos et al., 1997; Yang et al., 2001). 

 

To investigate the physiological function of Sp1, knockout mice were generated 

exhibiting deletion of the exons encoding the zinc finger domain (Marin et al., 1997). 

Sp1-deficient mice display a broad spectrum of abnormalities and die early during 

embryonic development (day E10.5 at the latest). 

 

Transcription factor Sp2 

Among Sp1-4, transcription factor Sp2 is the less explored factor. Sp2 was cloned 

from a T-cell library, which has been screened with a Sp1 zinc finger probe for 

homologous DNA sequences (Kingsley and Winoto, 1992). Due to the exchange of a 

critical amino acid in the first zinc finger necessary for contacting the DNA (Fig. 1.4.2 

and Fig. 1.3.2), Kingsley and Winoto claim a higher binding affinity towards GT than 
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GC boxes. However, investigation of Sp2 binding capacity with a GT box 

oligonucleotide derived from the T-cell antigen receptor α (TCRα) only results in a 

low binding affinity (Kingsley and Winoto, 1992). In comparison to Sp1, Sp3 and Sp4, 

Sp2 exhibits the most structural differences among these factors, e.g. the existence 

of the first transactivation domain and serine/threonine region in Sp2 was unclear 

when starting the thesis. In addition, the D domain is absent. Data from the only 

report of a promoter that is affected by co-transfected N-terminally truncated Sp2 

protein suggest that this factor may function in a cell-type-dependent manner 

(Bacovic et al., 2000). Sp2 repressed Sp1- or Sp3-driven activation of a construct 

containing the murine CTP:phosphocholine-cytidylyltransferase-α promoter in 

Drosophila SL2 cells but activated the same construct in C3H10T1/2 mammalian 

cells. Apart from that, no further reports about Sp2 were available when initiating the 

thesis. 

 

Transcription factor Sp3 

Transcription factor Sp3 was parallely cloned in 1992 by Hagen et al. and Kingsley 

and Winoto. Sp3 is ubiquitously expressed and exists in four different isoforms, two 

of them with a molecular weight of ca. 97-115 kDa and two of them in a range of ca. 

58-70 kDa. Whereas the long isoforms exhibit both transactivation domains (A and B; 

see Fig. 1.4.2), the two short isoforms only contain the B domain (Kenneth et al., 

1997). Mutation analyses suggest that all four isoforms derive from alternative 

translational start sites. Moreover, an upstream open reading frame seems to 

regulate expression of the two long isoforms (Sapetschnig et al., 2004). 

 

Concerning transactivation properties in vivo, Sp3 functions as a transcriptional 

activator (Ihn and Trochanowska, 1997; Liang et al., 1996; Udvadia et al., 1995; 

Zhao et al., 1997), but also displays no or only weak activity (Dennig et al., 1995; 

Majello et al., 1994), depending on the investigated promoter. In addition, the number 

of Sp3 binding sites inside a promoter seems to influence Sp3 activation capacity 

(Dennig, 1996) as well as the respective cell type (Hansen et al., 1999; Sjottem et al., 

1996). Moreover, Sp3 binds to GC boxes with similar affinity as transcription factor 

Sp1, thus being able to repress Sp1-mediated activation by competition (Birnbaum et 

al., 1995; Hagen et al., 1994). 
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Responsible for Sp3 transcriptional inactivity is a so-called inhibitory domain (Dennig 

et al., 1996), located near the C region of the Sp3 protein (Fig. 1.4.2). The inhibitory 

domain is characterized by the amino acid motif IKEE, which can be SUMOylated 

(Sapetschnig et al., 2002). In addition to that, yeast-two-hybrid screens led to the 

identification of PIAS1 (Doll, diploma work, 1998; Liu et al., 1998), an E3 ligase, 

which is involved in the SUMOylation process of proteins and binds to the Sp3 

inhibitory domain (Sapetschnig et al., 2002). 

 

To investigate Sp3 physiological function, knockout mice were generated exhibiting a 

deletion of exon 4, which encodes the two glutamine-rich transactivation domains 

(see Fig. 1.4.2). Heterozygous Sp3 knockout mice develop and reproduce normal 

and display no obvious phenotype apart from a slight growth retardation. In contrast 

to this, homozygous Sp3 knockout mice immediately die after birth due to a lung 

failure. However, the molecular mechanisms behind this are unclear. In addition, they 

are characterized by abnormalities in tooth (lack of amelogenin and ameloblastin) 

and bone development (reduced ossification due to the lack of osteocalcin) 

(Bouwman et al., 2000; Göllner et al., 2001b). Moreover, homozygous Sp3 knockout 

mice exhibit an impaired hematopoiesis (Van Loo et al., 2003). 

 

Transcription factor Sp4 

Transcription factor Sp4 was identified and cloned along with Sp3 due to its capacity 

to bind to GT boxes (Hagen et al., 1992). In contrast to Sp1 and Sp3, Sp4 is 

predominantly expressed in brain, heart, testicles and the epithelial tissue (Hagen et 

al., 1992; Supp et al., 1996). Sp4 also exhibits two glutamine-rich transactivation 

domains but in contrast to Sp1, Sp4 is unable to generate synergistic effects on 

multiple binding sites (Hagen et al., 1995). However, Sp4 can be super-activated by 

zinc-finger-less Sp1 and repressed by Sp3 (Hagen et al., 1995). 

 

Heterozygous Sp4 knockout mice based on the deletion of exon 2 and 3 encoding 

the two transactivation domains exhibit no obvious phenotype. In contrast to this, 

Sp4-deficient mice are characterized by a general growth and weight reduction as 

well as a high post-natal mortality. Moreover, Sp4 knockout males display an 

abnormal reproduction behaviour and females a pronounced delay in sexual 

maturation (Göllner et al., 2001a). 
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1.5 Generation of transgenic mice by “gene targeting” 

 

The principle utilized to target genes of an organism and to generate knockout mice 

is the process of so-called homologous recombination (Smithies et al., 1985). 

Homologous recombination occurs in eukaryotes during meiosis to preserve genomic 

diversity and is characterized by an exchange of identical or similar (= homologous) 

DNA sequences. 

 

To generate knockout mice via “gene targeting”, totipotent embryonic stem (ES) cells 

are isolated from the inner cell mass of an agouti blastocyst (day E3.5) and 

transfected with a linearized knockout construct harbouring the desired mutation (e.g. 

point mutation, deletion, insertion) flanked by sequences that are homologous to the 

genomic region of interest (Fig. 1.5.1). Nowadays, different ES cell lines are 

available, which are mostly transfected by electroporation (e.g., Evans and Kaufman, 

1981; Martin, 1981). By homologous recombination, the genomic regions being 

homologous to the vector sequences are exchanged and the mutation integrated into 

the genome. 

 

As the homologous integration of vector sequences into the genome is a rare event, 

the targeted ES cells have to be selected. In general, this is done by two selection 

markers, a positive and a negative one (Mansour et al., 1988). Positive selection 

normally occurs by antibiotic resistance of the targeted ES cells. Commonly, a 

resistance gene for neomycin or its analogon G418 is integrated into the mouse 

genome together with the homologous genomic DNA sequences (Mansour et al., 

1988; Southern and Berg, 1982). 
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Fig. 1.5.1. Generation of transgenic mice by “gene targeting”. Embryonic stem (ES) cells derived 

from an agouti mouse are transfected with the linearized knockout construct and cultured on selection 

medium containing G418 and/or Gancyclovir. G418 and Gancyclovir enable the selection for the 

integration of the knockout construct into the ES cell genome based on homologous recombination. 

ES cells, which have been integrated the knockout construct by homologous recombination, are 

G418- and Gancyclovir-resistant (by Neo gene but not hsv-TK gene integration, the latter located 

outside the homologous region). These cells are injected into a blastocyst of an albino mouse and 

implanted into a pseudo-pregnant foster mouse, resulting in chimeric mice. Chimeric males are 

crossed with albino mice. In the case of germline transmission of the targeting mutation, mice being 

heterozygous for the entire construct in all body cells can be generated. In contrast to mice without 

germ line transmission, these mice are characterized by a brown coloured coat. If the knockout 

construct contains loxP sites, Cre-driven recombination can be performed either on the ES cell as well 

as on the mouse level enabling the generation of conditional knockout mice. 
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To test, whether the vector DNA integration is locus-dependent or spontaneous, 

which also occurs, a negative selection marker, located outside the homologous 

regions is used. Commonly, the gene coding for the herpes simplex Thymidine 

Kinase (hsv-TK) is used (Mansour et al., 1988). ES cells exhibiting Acyclovir or 

Gancyclovir sensitivity are characterized by spontaneous integration (i.e. also 

integrate the hsv-TK gene), whereas ES cells being resistant display vector DNA 

integration by homologous recombination (i.e. without the hsv-TK gene, located 

outside the homologous region). Thymidine Kinase expression in the cell results in 

phosphorylation of the selective reagent Gancyclovir. Phosphorylated Gancyclovir 

can be integrated during recombination into the DNA instead of thymidine, thus 

leading to replication incapability and cell death. 

 

ES cells selected by G418 and Gancyclovir, thus exhibiting homologous integration 

of the entire knockout construct at one allele, are injected into an albino blastocyst, 

which is then implanted into a pseudo-pregnant foster mouse. Resulting embryos are 

chimeric, i.e. consist of wildtype and targeted cells (Bradley et al., 1984). As wildtype 

cells derived from an albino and targeted cells from an agouti mouse, they can be 

distinguished by their coat colours: wildtype cells display a white, targeted cells a 

brown coloured coat. To select mice with targeted germ cells, chimeric males are 

crossed with albino females. In the case of germline transmission, brown coloured 

embryos are obtained. In these embryos, all cells are heterozygous for the targeted 

gene locus. By intercrossing heterozygous animals, homozygous knockout mice can 

be generated (Bradley et al., Doetschman et al., 1987; Robertson et al., 1986). 

 

An option in gene targeting is the generation of conditional ES cells and knockout 

mice. Conditional gene targeting is characterized by the replacement of a genomic 

sequence by the same sequence that is flanked by two so-called loxP sites. LoxP 

sites (loci of crossing over derived from the recombination machinery of the P1 

phage) consists of 34 highly conserved basepairs (Fig. 1.5.2). Eight central basepairs 

form the core sequence, which is flanked on each side by a 13 bp symmetry element 

in reverse orientation. Four monomers of the P1 phage enzyme Cre recombinase 

(causes recombination) bind to each two symmetry elements of two loxP sites 

(Hoess et al., 1982), thus forming a so-called Holliday intermediate complex (Fig. 

1.5.2). The Cre recombinase monomers cut in the middle of the core sequence and 

either delete (if both loxP sites display the same orientation) or invert (if both loxP 
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sites display an opposite orientation) the DNA sequence between the two loxP sites 

(Stark et al., 1992). 

A.   loxP sites 

5`-ATAACTTCGTATAATGTATGCTATACGAAGTTAT-3’ 

 
Fig. 1.5.2. The Cre-loxP system. A. Scheme of a loxP site. A loxP site consists of a 34 bp double 

strand. The 8 bp core sequence (green) is located in the center of the loxP site and is cut in the middle 

by the Cre recombinase. The core sequence is flanked on each side by a stretch of 13 bp, which are 

symmetrical (red arrows). B. Process of Cre-driven recombination. Four Cre recombinase monomers 

form a complex with two loxP sites by binding to their symmetry elements (red and pink arrows), thus 

resulting in a so-called Holliday intermediate. If the loxP sites display the same orientation (black 

arrows), Cre recombinase cuts in the middle (dashed) of the core sequence (green) and deletes the 

DNA sequence between the two loxP sites (black cord). C. Situation after Cre recombination. After 

sequence deletion, one loxP site remains consisting of two halves of each loxP site depicted in (B). 
 

To enable the generation of conditional knockout mice, it has to be ensured that 

exon-intron structures of the targeted locus remain like in wildtype. For this, it is often 

necessary to delete at first the positive selection cassette via the Cre-loxP system, 

which can be done on the ES cell as well as on the mouse level. Depending on the 

research interests, these mice then can be crossed with mice expressing Cre 

C.   sequence between the two loxP sites is deleted

B.   complex of four recombinase monomers and two loxP sites 

3’-TATTGAAGCATATTACATACGATATGCTTCAATA-5’ 

element of
symmetry symmetry

element of
CORE
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recombinase in a tissue-specific manner or at specific developmental time points, 

leading to a knockout of the gene. 

 

 

1.6 Thesis aims 

 

As mentioned above, no data concerning Sp2 protein expression as well as Sp2 

function in vitro and in vivo were available when starting this thesis work. Therefore, 

the aims were the following: 

 

To enable the analysis of Sp2 protein expression in various cell lines and adult 

mouse tissues as well as Sp2 subcellular localization, a first aim of this thesis was 

the generation of Sp2-specific rabbit polyclonal antibodies. 

 

To characterize Sp2 at the molecular level, Sp2 transactivation function and DNA 

binding properties were investigated. 

 

To study Sp2 function in vivo, the generation of Sp2 gene targeted mice was a 

further major aim of this thesis. 
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2. Materials and methods 

 

2.1. Materials 

 

2.1.1 Laboratory materials and devices 

 

Unless stated otherwise, all laboratory materials and devices used for this work were 

obtained from: Amersham (Freiburg), Biometra (Göttingen), Biorad (München), 

Eppendorf (Hamburg), Falcon (Hamburg), Greiner (Frickenhausen), Heidolph 

(Schwabach), Heraeus/Kendro (Hanau), NanoDrop (USA: Wilmington), Nunc 

(Denmark: Roskilde) and Kodak (Stuttgart). 

 

 

2.1.2 Chemicals 

 

All chemicals used for this work were obtained in p.A. quality from Amersham 

(Freiburg), BD Becton & Dickinson (France: Le Pont de Claix), Calbiochem (Canada: 

La Jolla), Difco (USA: Sparks), Invitrogen (Karlsruhe), Gibco (Karlsruhe), Merck 

(Darmstadt), Perbio (Bonn), Riedel-de-Haen (Seelze), Roche (Mannheim), Roth 

(Karlsruhe), Serva (Heidelberg) and Sigma (München). 

 

 

2.1.3 General solutions 

 

50x Denhardts: 1% (w/v) Ficoll; 1% (w/v) Polyvinylpyrollidon and 1% (w/v) BSA in 

H2O (bidest.). 

DEPC-H2O: 1 ml Diethylpyrocarbonat (DEPC); 9 ml 100% EtOH; 990 ml H2O 

(bidest.). Dissolving of DEPC by stirring o/n at 37°C, followed by autoclaving of the 

solution. 

6x DNA loading buffer: 0.25% Bromphenol blue; 0.25% Xylene-Cyanol FF; 30% 

Glycerol H2O (bidest.). 

Orange G: 1 g Orange G; 20 g Ficoll ad 100 ml H2O (bidest.). 

1x PBS pH 7.4: 8 g NaCl; 0.2 g KCl; 1.15 g Na2HPO4 x 7 H2O; 0.2 g KH2PO4 in 1 l 

H2O (bidest.). 

1x TBE: 89 mM Tris/HCl pH 8.0; 89 mM Boric acid; 2.5 mM EDTA in H2O (bidest.). 

 21



10/1 TE: 10 mM Tris/HCl pH 8.0; 1 mM EDTA pH 8.0 in H2O (bidest.). 

1x TFB pH 6.3: 10 mM K-Mes; 100 mM KCl; 45 mM MnCl2 x 4 H2O; 10 mM CaCl2 x 

2 H2O; 3 mM Hexamine cobalt chloride in H2O (bidest.). 

20x SSC pH 7.0: 3 M NaCl; 0.3 M Sodium citrate in H2O (bidest.). 

 

 

2.1.4 Culture media 

 

2.1.4.1 Media to culture bacteria 

 

Luria Bertani medium (LB): 10 g/l Select Peptone 140 (Invitrogen, Karlsruhe); 5 g/l 

Bacto™ Yeast Extract (BD, USA: Sparks); 10 g/l NaCl. 

 

LB agar plates (with antibiotics): 15 g Select Agar (Invitrogen, Karlsruhe) per 1 l 

LB-Medium (with 50 mg/l of each antibiotic). 

 

SOB medium: 20 g/l Select Peptone 140 (Invitrogen, Karlsruhe); 5 g/l Bacto™ Yeast 

Extract (BD, USA: Sparks); 0.548 g/l NaCl; 0.186 g/l KCl. 

 

SOC medium: 10 ml SOB-Medium; 100 µl 2 M Mg2+ (1 M MgCl2; 1 M MgSO4); 100 

µl Glucose. 

 

 

2.1.4.2 Media to culture eukaryotic cells 

 

Schneider medium: 500 ml Schneider's Drosophila medium (Gibco, Karlsruhe); 55 

ml FBS (Sigma, München; suitable for insect cells); 5.5 ml 100x Penicillin/ 

Streptomycin (Cambrex, Belgium: Verviers); 5.5 ml L-Glutamine (Gibco, Karlsruhe). 

Culture medium for Drosophila SL2 cells (Schneider, 1972). 

 

Fibroblast medium: 200 ml DMEM with GlutaMAX™ I (Gibco, Karlsruhe); 200 ml 

Nutrimix F10 (HAM) (Gibco, Karlsruhe); 45 ml FBS (PAA Laboratories, Austria: 

Parsching); 5 ml 100x Penicillin/ Streptomycin (Cambrex, Belgium: Verviers). Culture 

medium for mouse embryonic fibroblasts (MEFs). 
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HEK medium: 500 ml Nutrimix F10 (HAM) with GlutaMAX™ I (Gibco, Karlsruhe); 55 

ml FBS (PAA Laboratories, Austria: Parsching); 5.5 ml 100x Penicillin/ Streptomycin 

(Cambrex, Belgium: Verviers). Culture medium for human embryonic kidney 293 cells 

(HEK-293). 

 

Ishikawa medium: 500 ml 10x MEM-E (Gibco, Karlsruhe); 55 ml FBS (Gibco, 

Karlsruhe); 5.5 ml 100x Penicillin/ Streptomycin (Gibco, Karlsruhe); 5.5 ml 200 mM L-

Glutamine (Gibco, Karlsruhe); 5.5 ml non-essential amino acids; 20 ml 7.5% 

NaHCO3. Culture medium for Ishikawa cells. 

 

 

2.1.5 Restriction enzymes and DNA-modifying enzymes 

 

Restriction enzymes and DNA-modifying enzymes were obtained from Boehringer 

(Mannheim), Gibco (Karlsruhe), Invitrogen (Karlsruhe), New England Biolabs 

(Frankfurt), Promega (Mannheim) and Roche (Mannheim). 

 

 

2.1.6 Antibiotics 

 

Ampicillin 

Kanamycin 

G418 

Penicillin/ Streptomycin 

Bayer (Leverkusen) 

Boehringer (Mannheim) 

Gibco (Karlsruhe) 

Gibco (Karlsruhe) 

 

 

2.1.7. Antibodies 

 

anti-Sp1; rabbit p.cl. antibody 

anti-Sp2; rabbit p.cl. antibody 

(no. 193, “Zwick”; 10 days after 1. boost) 

anti-Sp3; rabbit p.cl. antibody; sc-644 

anti-Gal4-DBD; rabbit m.cl. antibody; sc-577 

anti-rabbit; HRP-conj.; m.cl. sec. antib.; NA934V 

anti-rabbit; FITC-conj.; m.cl. sec.; 111-095-003 

Hagen et al. 1994 (Marburg) 

generated during this thesis 

 

Santa Cruz (USA: St. Cruz) 

Santa Cruz (USA: St. Cruz) 

Amersham Biosciences (Freiburg)

Jackson IR (USA: West Grove) 
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2.1.8 Radioactive substances 

 

[α-32P] dCTP (3000 Ci/ mmol) 

[α-32P] dATP (3000 Ci/ mmol) 

Amersham Biosciences (Freiburg)

Amersham Biosciences (Freiburg)

 

 

2.1.9 Oligonucleotides 

 

Oligonucleotides were synthesized by Eurogentec Deutschland (Köln), Invitrogen 

(Karlsruhe) and MWG AG Biotch (Ebersberg). The purpose of each oligonucleotide is 

also described in the chapters 2.2.2-4. 

 

 

2.1.9.1 Oligonucleotides to generate Sp2 deletion mutants 

 

Sp2-Coli-Expr-fw 

Sp2-Coli-Expr-rev 

Del1-Sp2-fw 

Del1-1-Sp2-fw 

Del1-2-Sp2-fw 

Del1-3-Sp2-fw 

Del1-4-Sp2-fw 

Del2-Sp2-fw 

Del3-Sp2-fw 

Del4-Sp2-fw 

Del1-Sp2-rev-sh 

Sp2FL-XhoI-fw 

Del1-2-BamHI-rev 

Del2-BamHI-fw 

Del1-BglII-rev-sh 

Gal4-Sp2-pLALL-fw

Gal4-Sp2-pE-rev 

Gal4-Sp2-mE-rev 

Gal4-Sp2-mG-rev 

5'-AGA-TGA-CCA-TGG-CCG-CCA-CTG-CTG-CT-3' 

5'-GCC-TGG-ATC-CGC-ACC-TGT-CCA-TCA-TG-3' 

5'-TTG-AAA-GGA-TCC-GCT-GTT-GAA-GCT-GCA-GTG-AC-3' 

5'-TTG-AAA-GGA-TCC-CCT-ATC-AAA-CCC-GCT-CCT-CT-3' 

5'-TTG-AAA-GGA-TCC-CTG-ATC-AAC-AAA-GGG-AGC-CG-3' 

5'-TTG-AAA-GGA-TCC-ACC-CCG-TCA-ACA-TCT-GGT-CA-3' 

5'-TTG-AAA-GGA-TCC-AGT-ACG-ACT-ACC-ACC-CCT-GT-3' 

5'-TTG-AAA-GGA-TCC-CCG-CTC-AAC-AAC-CTG-GTG-AA-3' 

5'-TTG-AAA-GGA-TCC-CGT-ACA-CCT-TCT-GGT-GAG-GT-3' 

5'-TTG-AAA-GGA-TCC-GTG-CCT-GTC-ACC-ATC-ACC-AA-3' 

5'-AAC-TTT-GGA-TCC-GTC-CTG-GGT-TAG-AAC-GTC-TC-3' 

5'-TTG-AAA-CTC-GAG-GAG-CGA-TCCACA-GAT-GAG-CA-3' 

5'-AAC-TTT-GGA-TCC-GGC-TCC-CTT-TGT-TGA-TCA-GG-3' 

5'-TTG-AAA-GGA-TCC-CGC-TCA-ACA-ACC-TGG-TGA-AC-3' 

5'-AAC-TTT-AGA-TCT-GTC-CTG-GGT-TAG-AAC-GTC-TC-3' 

5'-TTG-AAA-GGA-TCC-CTG-TCA-GTC-CCA-GTG-ACT-AC-3' 

5'-TCC-TTT-CTA-GAT-CAG-CCC-ACT-GAT-AGT-CAG-G-3' 

5'-CCC-TTT-CTA-GAG-TAC-CTG-ACC-AGA-AGG-TGT-A-3' 

5'-CCC-TTT-CTA-GAT-GTT-CAC-CAG-GTT-GTT-GAG-C-3' 
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2.1.9.2 Oligonucleotides for Electrophoretic Mobility Shift Assays (EMSAs) 

 

Sp1-1-fw 

Sp1-1-rev 

Sp2-A-fw 

Sp2-A-rev 

Sp2-C-fw 

Sp2-C-rev 

Sp2-G-fw 

Sp2-G-rev 

Sp2-T-fw 

Sp2-T-rev 

GT-1-fw 

GT-1-rev 

CT-box-5 

CT-box-3 

WT-1-fw 

WT-1-rev 

Gal4-C 

Gal4-D 

5'-AGC-TCT-CCC-CGC-CCC-CCG-3' 

5'-TCG-ACG-GGG-GGC-GGG-GAG-3' 

5'-TCG-ACC-GTT-GGG-GCG-GAG-CTT-CAC-3' 

5'-TCG-AGT-GAA-GCT-CCG-CCC-CAA-CGG-3' 

5'-TCG-ACC-GTT-GGG-GCG-GCG-CTT-CAC-3' 

5'-TCG-AGT-GAA-GCG-CCG-CCC-CAA-CGG-3' 

5'-TCG-ACC-GTT-GGG-GCG-GGG-CTT-CAC-3' 

5'-TCG-AGT-GAA-GCC-CCG-CCC-CAA-CGG-3' 

5'-TCG-ACC-GTT-GGG-GCG-GTG-CTT-CAC-3' 

5'-TCG-AGT-GAA-GCA-CCG-CCC-CAA-CGG-3' 

5'-AGC-TTC-CGT-TGG-GGT-GTG-GCT-TCA-CG-3' 

5'-TCG-ACG-TGA-AGC-CAC-ACC-CCA-ACG-GA-3' 

5'-AGC-TGG-CGC-CTC-CCC-TGA-3' 

5'-TCG-ATC-AGG-GGA-GGC-GCC-3' 

5'-AGC-TTC-TCC-CTC-CCC-CTT-3' 

5'-TCG-AAA-GGG-GGA-GGG-AGA-3' 

5'-GCT-TAG-CGG-AGT-ACT-GTC-CTC-CGA-T-3' 

5'-GGG-ATC-GGA-GGA-CAG-TAC-TCC-GCT-A-3' 

 

Underlined nucleotides represent GC, GT and CT boxes as well as mutated versions 

of these boxes and the Gal4 binding site. Point mutations in the GC box sequence 

are depicted in red. 

 

 

2.1.9.3 Oligonucleotides for RT-PCR, Southern Blot probes and cosmid library 

screen (RZPD) 

 

MSp2-ES-RT-fw 

MSp2-ES-RT-rev 

Sp2-Ex5-RT-fw 

Sp2-Ex6-RT-rev 

Sp2-ES-a-SB-fw 

Sp2-ES-a-SB-rev 

5'-ATG-AGC-GAT-CCA-CAG-ATG-AGC-A-3' 

5'-ACT-TGA-CTT-CTG-GAC-AGG-AGC-T-3' 

5'-ATT-CAG-CTG-CCA-TTC-TCC-GA-3' 

5'-AGC-CCA-CTG-ATA-GTC-AGG-TT-3' 

5'-GCT-GGC-TCC-ACA-TCA-CTT-TG-3' 

5'-AGG-TGA-CGG-TTG-ATG-TGG-TT-3' 
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Sp2-Ex4-RZPD-fw 

Sp2-Ex4-RZPD-rev 

Cyclophillin-fw 

Cyclophillin-rev 

5'-CCG-TCA-ACA-TCT-GGT-CAT-AAG-C-3' 

5'-CTG-AAA-GTT-CTG-AGA-GGG-CTT-C-3' 

5'-TCA-CCA-TTT-CCG-ACT-GTG-GAC-3' 

5'-ACA-GGA-CAT-TGC-GAG-CAG-ATG-3' 

 

 

2.1.9.4 Oligonucleotides for loxP site generation and PCR amplification of Sp2 

genomic fragments 

 

Sp2-loxP1-fw 

 

Sp2-loxP1-rev 

 

Sp2-loxP2-fw 

 

Sp2-loxP2-rev 

 

Sp2-loxP3-fw 

 

Sp2-loxP3-rev 

 

MSp2-In1-fw 

MSp2-In1-rev 

 

MSp2-In2-fw 

MSp2-In2-rev 

MSp2-Ex4-fw 

 

MSp2-Ex4-rev 

5'-CTA-GAA-CTG-TGG-TCG-ACA-TAA-CTT-CGT-ATA-ATG-TAT-

GCT-ATA-CGA-AGT-TAT-GGT-AC-3' 

5'-CAT-AAC-TTC-GTA-TAG-CAT-ACA-TTA-TAC-GAA-GTT-ATG-

TCG-ACC-ACA-GTT-3' 

5'-GGC-CGC-ACT-GTG-CTC-GAG-ATA-ACT-TCG-TAT-AAT-

GTA-TGC-TAT-ACG-AAG-TTA-TGT-CGA-CAC-TGT-G-3' 

5'-TCG-ACA-CAG-TGT-CGA-CAT-AAC-TTC-GTA-TAG-CAT-ACA-

TTA-TAC-GAA-GTT-ATC-TCG-AGC-ACA-GTG-C-3' 

5'-GGC-CGC-ACT-GTG-GGA-TCC-ATA-ACT-TCG-TAT-AAT-

GTA-TGC-TAT-ACG-AAG-TTA-TC-3' 

5'-GGC-CGA-TAA-CTT-CGT-ATA-GCA-TAC-ATT-ATA-CGA-AGT-

TAT-GGA-TCC-CAC-AGT-GC-3' 

5'-ATT-ATA-GCG-GCC-GCG-TGT-CTG-TAA-TAT-C-3' 

5'-TGA-CTC-GGA-TCC-GCA-GGG-ATA-ACA-ACA-CAC-CCA-

GGT-3' 

5'-GAA-TGA-GAA-TTC-GAA-CTA-GAA-CC-3' 

5'-TGC-GAG-GAA-TTC-TTT-CTG-AAA-GA-3' 

5'-TAT-TAT-TGC-GGC-CGC-CGA-CAC-TAG-GCC-AGC-AGG-GC-

3' 

5'-CGG-CAC-TCG-AGT-CAT-TCT-TGC-TGT-TAT-ATA-TAC-TC-3' 

 

 

2.1.9.5. Oligonucleotides for mouse genotyping 

 

MSp2Ex/l3Seq3 

MSp2In2Seq4 

5'-CCC-TCT-CAG-AAC-TTT-CAG-ATC-3' 

5'-CTT-AGG-AGG-GAT-CTA-GAC-TAG-3' 
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Neo 5'-CAT-CGC-CTT-CTA-TCG-CCT-TCT-TGA-3' 

 

 

2.1.10 Plasmids 

 

2.1.10.1 Previously described plasmids 

 

pET3a-d: Plasmid for protein expression in E. coli BL21DE3 bacteria. One 

characteristic feature of the BL21DE3 strain is an IPTG-inducible T7 RNA 

polymerase; a-d represent different reading frames. For further details, see Studier et 

al. (1990). 

 

pPacHD: Drosophila expression plasmid (Bond and Davidson, 1986). 

 

pPacHD-Flag: Drosophila expression plasmid, containing a Flag/ HA epitope. 

 

pPacUbx: Drosophila expression plasmid, containing an Ubx leader sequence. 

Plasmid was obtained as a BamHI fragment of pPacSp1-DBD. 

 

pPac-Sp1: Plasmid for the expression of full-length Sp1 protein in Drosophila SL2 

cells. For detailed information, the reader is referred to Courey and Tjian (1988) and 

Pascal and Tjian (1991). 

 

pPac-Sp3FL-new: Plasmid for the expression of full-length Sp3 protein (containing 

both upstream AUGs) in Drosophila SL2 cells. 

 

pPacUbx-Sp1ZF: Plasmid for the expression of the Sp1 zinc finger region (DNA-

binding domain) in Drosophila SL2 cells. 

 

pSG424Gal4: Plasmid for the expression of the Gal4 DNA-binding domain in 

mammalian cells (HEK-293). Plasmid was obtained as a BamHI/XbaI fragment from 

pSG424Gal4-Sp1A. 
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pSG424Gal4-Sp1A: Mammalian expression plasmid encoding the approx. 186 

amino acid Sp1A fragment N-terminally fused to a Gal4 DNA binding domain 

(Southgate et al., unpublished). 

 

pCMVSport6: Mammalian expression plasmid. Also usable for in-vitro transcription/ 

translation. Invitrogen (Karlsruhe). 
 

pCMVSport6-mSp2cDNA: Plasmid for the expression of mouse full-length Sp2 

(aa1-606) in mammalian cells. The plasmid was obtained from the RZPD Deutsches 

Ressourcenzentrum für Genomforschung GmbH (Heidelberg), clone ID: 

IRAKp961P0541. Sp2 cDNA can be isolated as a SalI/NotI fragment. 

 

pN3: Mammalian expression plasmid. Plasmid was obtained as a SalI/ NotI fragment 

from pEGFP-N3. Clontech (USA: Palo Alto). 

 

pEGFP-C1: Enhanced green fluorescent protein (EGFP) expression plasmid to 

optically determine transfection efficiencies in mammalian cells. Clontech (USA: Palo 

Alto). 

 

p97b: B-galactosidase expression plasmid to normalize transfection efficiencies in 

Drosophila SL2 cells. For detailed information, the reader is referred to Di Nocera 

and Dawid (1983) as well as Hagen et al. (1994). 

 

pRSV-ß-Gal: B-galactosidase expression plasmid to normalize transfection 

efficiencies in mammalian cells. For detailed information, the reader is referred to 

Hagen et al. (1995). 

 

pGL3-Prom: Luciferase reporter plasmid to measure luciferase activity in Drosophila 

SL2 cells. The luciferase gene is driven by the Simian Virus 40 (SV40) promoter 

containing five Sp1 binding sites (GC boxes). For detailed information, the reader is 

referred to Dynan and Tjian (1983). Promega (USA: Madison). 

 

pBCAT-2: Plasmid for transfections in Drosophila SL2 cells expressing a 

chloramphenicol acetyl transferase (CAT) reporter gene driven by an artificial 

promoter containing two Sp1 binding sites of the HTLV promoter and an E1b-TATA 
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box. For detailed information, the reader is referred to Hagen et al. (1994) and Pascal 

and Tjian (1991). 

 

p(GC)2-CAT: Plasmid for transfections in Drosophila SL2 cells expressing a 

chloramphenicol acetyl transferase (CAT) reporter gene driven by an artificial 

promoter containing two GC boxes and the E1b-TATA box. 

 

pGAWG5E1b: Plasmid for transfections in mammalian cells expressing a Luciferase 

reporter gene driven by an artificial promoter containing five Gal4 binding sites and 

the E1b-TATA box. 

 

pPNT: Plasmid containing a pgk-driven neomycin resistance (Neo) and herpes 

simplex Thymidine Kinase (hsv-TK) gene (Tybulewicz et al., 1991; see also Mangold, 

diploma work, 1995). 

 

pGT1,8-IRES-ßGeo: Plasmid containing the En2-SA-IRES-LacZ-Neo-SVpA 

cassette, which can be isolated as a SalI fragment (Mountford and Skarnes, 

unpublished; see also Mangold, diploma work, 1995). Obtained from S. Philipsen 

(Rotterdam). En2: intron of the engrailed gene; SA: splice acceptor site; IRES: 

internal ribosomal entry site; LacZ: ß-galactosidase gene; Neo: neomycin resistance 

gene; SVpA: poly-adenylation signal derived from Simian Virus. 

 

 

2.1.10.2 Plasmids generated during this thesis work 

 

For those fragments, which have been amplified by PCR, the reader should also 

consult chapter 2.1.9 for the oligonucleotide sequences and chapter 2.2.2.2.3 for the 

resulting PCR fragments. 

 

 

2.1.10.2.1 Bacterial expression plasmids 

 

pET3d-mSp2: Plasmid for the expression of full-length mouse Sp2 in E. coli 

BL21DE3 bacteria. The Sp2 fragment was amplified by PCR with primer Sp2-Coli-
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Expr-fw and Sp2-Coli-Expr-rev, the first one containing a NcoI site, the second one 

containing a BamHI site. Sp2 fragment was subcloned into pET3d via NcoI/BamHI. 

 

 

2.1.10.2.2 Drosophila expression plasmids 

 

pPac-mSp2(1-606): Plasmid for the expression of mouse Sp2 (aa1-606) in 

Drosophila SL2 cells. Sp2 was subcloned into pPac as a SalI/NotI fragment with 

BamHI linkers obtained from pCMVSport6-mSp2cDNA. 

 

pPacUbx-mSp2(62-606): Plasmid for the expression of the N-terminal Sp2 deletion 

fragment Sp2 (aa62-606) in Drosophila SL2 cells. Sp2 fragment was amplified by 

PCR with primer Del1-1-Sp2-fw and Del1-Sp2-rev-sh, both containing a BamHI site, 

and subcloned into pPacUbx via BamHI. 

 

pPacUbx-mSp2(112-606): Plasmid for the expression of the N-terminal Sp2 deletion 

fragment Sp2 (aa112-606) in Drosophila SL2 cells. Sp2 fragment was amplified by 

PCR with primer Del1-2-Sp2-fw and Del1-Sp2-rev-sh, both containing a BamHI site, 

and subcloned into pPacUbx via BamHI. 

 

pPacUbx-mSp2(160-606): Plasmid for the expression of the N-terminal Sp2 deletion 

fragment Sp2 (aa160-606) in Drosophila SL2 cells. Sp2 fragment was amplified by 

PCR with primer Del1-3-Sp2-fw and Del1-Sp2-rev-sh, both containing a BamHI site, 

and subcloned into pPacUbx via BamHI. 

 

pPacUbx-mSp2(180-606): Plasmid for the expression of the N-terminal Sp2 deletion 

fragment Sp2 (aa180-606) in Drosophila SL2 cells. Sp2 fragment was amplified by 

PCR with primer Del1-4-Sp2-fw and Del1-Sp2-rev-sh, both containing a BamHI site, 

and subcloned into pPacUbx via BamHI. 

 

pPacUbx-mSp2(207-606): Plasmid for the expression of the N-terminal Sp2 deletion 

fragment Sp2 (aa207-606) in Drosophila SL2 cells. Sp2 fragment was amplified by 

PCR with primer Del2-Sp2-fw and Del1-Sp2-rev-sh, both containing a BamHI site, 

and subcloned into pPacUbx via BamHI. 
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pPacUbx-mSp2(349-606): Plasmid for the expression of the N-terminal Sp2 deletion 

fragment Sp2 (aa349-606) in Drosophila SL2 cells. Sp2 fragment was amplified by 

PCR with primer Del3-Sp2-fw and Del1-Sp2-rev-sh, both containing a BamHI site, 

and subcloned into pPacUbx via BamHI. 

 

pPacUbx-mSp2(441-606): Plasmid for the expression of the N-terminal Sp2 deletion 

fragment Sp2 (aa441-606) in Drosophila SL2 cells. Sp2 fragment was amplified by 

PCR with primer Del4-Sp2-fw and Del1-Sp2-rev-sh, both containing a BamHI site, 

and subcloned into pPacUbx via BamHI. 

 

pPacUbx-mSp2(478-606): Plasmid for the expression of the N-terminal Sp2 deletion 

fragment Sp2 (aa478-606), the DNA binding domain (Sp2 zinc finger region), in 

Drosophila SL2 cells. Sp2 fragment was subcloned as a PstI fragment of full-length 

mouse Sp2 cDNA with BamHI linker (Klenow filling) into pPacUbx via BamHI. 

 

pPacFlag/HA-mSp2(∆112-207): Drosophila expression plasmid encoding a Sp2 

deletion fragment lacking aa112-207. Both Sp2 fragments, Sp2 (aa1-111) and Sp2 

(aa208-606), were amplified by PCR. Primers for the amplification were Sp2FL-XhoI-

fw and Del1-2-BamHI-rev for Sp2 (aa1-111), Del2-BamHI-fw and Del1-BglII-rev-sh 

for Sp2 (aa208-606). Sp2 (aa1-111) was subcloned into pPacHD-Flag via 

XhoI/BamHI, Sp2 (aa208-606) via BamHI, leaving an non-functional BamHI/BglII site 

at the 3'-end of the fragment. 

 

 

2.1.10.2.3 Mammalian expression plasmids 

 

pN3-mSp2cDNA: Plasmid for the expression of mouse full-length Sp2 (aa1-606) in 

mammalian cells. Sp2 cDNA was subcloned into pN3 via SalI/NotI obtained from 

pCMVSport6-mSp2cDNA. 

 

pSG424Gal4-mSp2(6-471): Plasmid for the expression of the fused Gal4-Sp2 

deletion fragment Sp2 (aa6-471) in HEK-293 cells. Sp2 fragment was amplified by 

PCR with primer Gal4-Sp2-pLALL-fw and Gal4-Sp2-pE-rev, the first one containing a 

BamHI site, the second one a XbaI site. The Sp2 fragment was subcloned into 

pSG424Gal4 via BamHI/XbaI. 
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pSG424Gal4-mSp2(6-357): Plasmid for the expression of the fused Gal4-Sp2 

deletion fragment Sp2 (aa6-357) in HEK-293 cells. Sp2 fragment was amplified by 

PCR with primer Gal4-Sp2-pLALL-fw and Gal4-Sp2-mE-rev, the first one containing a 

BamHI site, the second one a XbaI site. The Sp2 fragment was subcloned into 

pSG424Gal4 via BamHI/XbaI. 

 

pSG424Gal4-mSp2(6-215): Plasmid for the expression of the fused Gal4-Sp2 

deletion fragment Sp2 (aa6-215) in HEK-293 cells. Sp2 fragment was amplified by 

PCR with primer Gal4-Sp2-pLALL-fw and Gal4-Sp2-mG-rev, the first one containing 

a BamHI site, the second one a XbaI site. The Sp2 fragment was subcloned into 

pSG424Gal4 via BamHI/XbaI. 

 

pSG424Gal4-mSp2(207-471): Plasmid for the expression of the fused Gal4-Sp2 

deletion fragment Sp2 (aa207-471) in HEK-293 cells. Sp2 fragment was amplified by 

PCR with primer Del2-BamHI-fw and Gal4-Sp2-pE-rev, the first one containing a 

BamHI site, the second one a XbaI site. The Sp2 fragment was subcloned into 

pSG424Gal4 via BamHI/XbaI. 

 

 

2.1.10.2.4 Knockout construct and pre-constructs 

 

pPNT-loxP1: Plasmid used to clone the conditional Sp2 knockout construct. First 

pre-construct. A XbaI-SalI-LoxP-KpnI fragment was synthesized by MWG AG 

Biotech (Ebersberg), hybridized and subcloned into the pPNT vector (see 2.1.10.1). 

 

pPNT-loxP2: Plasmid used to clone the conditional Sp2 knockout construct. Second 

pre-construct. A NotI-XhoI-LoxP-SalI-[XhoI] fragment was synthesized by MWG AG 

Biotech (Ebersberg), hybridized and subcloned into pPNT-loxP1. 

 

pPNT-Intron4: Plasmid used to clone the conditional Sp2 knockout construct. Third 

pre-construct. A ca. 1.8 kb Sp2 genomic fragment downstream of exon 4 (= intron 4; 

genomic DNA: nt32067-nt33907; see 6.2) was amplified by PCR with primer MSp2-

In2-fw and MSp2-In2-rev and subcloned into pPNT-loxP2 via EcoRI. 
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pPNT-Exon4: Plasmid used to clone the conditional Sp2 knockout construct. Fourth 

pre-construct. Sp2 exon 4 flanked by intronic regions (genomic DNA: nt30460-

nt32066; see 6.2) was amplified by PCR with primer MSp2-Ex4-fw and MSp2-Ex4-

rev, the first one containing a NotI, the second one a XhoI linker. The ca. 1.6 kb 

fragment was subcloned into pPNT-Intron5 via NotI/XhoI. 

 

pPNT-loxP3: Plasmid used to clone the conditional Sp2 knockout construct. Fifth 

pre-construct. A NotI-BamHII-LoxP-[NotI] fragment was synthesized by MWG AG 

Biotech (Ebersberg), hybridized and subcloned into pPNT-Exon4. 

 

pPNT-Intron3: Plasmid used to clone the conditional Sp2 knockout construct. Sixth 

pre-construct. A ca. 3.2 kb Sp2 genomic fragment upstream of exon 4 (= intron 3; 

genomic DNA: nt27217-nt30459; see 6.2) was amplified by PCR with primer MSp2-

In1-fw and MSp2-In1-rev, the first one containing a NotI, the second one a BamHI 

linker. The fragment was subcloned into pPNT-loxP3 via NotI/BamHI. 

 

pPNT-cSp2ko: Final construct to target the Sp2 gene in the mouse. A ca. 7.4 kb 

En2-SA-IRES-LacZ-Neo-SVpA fragment derived form pGT1,8-IRES-ßGeo was 

subcloned into pPNT-Intron4 via SalI. 

 

For further details concerning the generation of the final knockout construct and all 

pre-constructs, the reader is also referred to chapter 3.2.4. 

 

 

2.1.11 Cosmids 

 

To receive genomic fragments of murine Sp2, a 129/ola mouse cosmid library (library 

no. 121) was screened at the RZPD Deutsches Ressourcenzentrum für 

Genomforschung GmbH (Heidelberg) with a DNA probe against mouse Sp2 exon 4. 

The probe (called “Ex4-RZPD”) was amplified by PCR with primer MSp2-Ex4-RZPD-

fw and MSp2-Ex4-RZPD-rev (see 2.1.9.3). In total, 15 clones were identified and four 

of them verified by Southern Blot analysis. Clone number MPMGc121L17390Q2 was 

used to amplify the genomic fragments for the conditional knockout construct by 

PCR. Cosmids consist of a 8.7 kb Lawrist 7 vector (ampicillin resistance) usable in E. 

coli and a 38 kb genomic insert. 
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2.1.12 Bacterial strains 

 

Escherichia coli DH5α: Bacterial strain used for plasmid amplification. For detailed 

information, see Hanahan (1983). 

 

Escherichia coli BL21DE3: Bacterial strain used for protein overexpression. This 

strain constitutively expresses the Lac repressor. Moreover, expression of a T7 

polymerase gene is regulated by the IPTG-inducible Lac promoter. Consequently, 

target gene expression is regulated by an IPTG-induced T7 polymerase gene 

expression. In addition, the Lon and OmpT protease genes are absent in BL21DE3, 

thus leading to a decrease in protease activity. 

 

Escherichia coli 294-Cre: Bacterial strain expressing Cre recombinase, thus 

providing a simple assay to test for the recombination competence of constructs that 

are designed for use in Cre-mediated genomic manipulations. Cre recombinase 

expression is regulated by the λ-PR promoter and the temperature-sensitive cI857 

repressor. Recombination competence of loxP sites engineered into a plasmid can 

be tested by transformation into the 294-Cre strain and overnight growth at 37°C 

followed by restriction digestion checks of the plasmid DNA. For further details, the 

reader is referred to Buchholz et al. (1996). 

 

 

2.1.13 Cell lines 

 

Drosophila SL2 cells: Insect cells lacking Sp factors. For a detailed description, see 

Schneider (1972) and Suske (2000). 

 

Mouse embryonic fibroblasts (MEF): Wildtype cell line derived from day E13.5 

mouse embryos of Sp3 heterozygous crossings (Göllner; diploma work, 1998). 

 

Mouse embryonic stem cells (ES): Mouse embryonic stem cells used for Sp2 gene 

targeting derived from the ES cell line C88Bl/6 TdW and were cultured and handled 

by Nynke Gillemans at the Erasmus University of Rotterdam. 
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Human embryonic kidney 293 cells (HEK-293): Cell line derived from human 

embryonic kidney epithelial cells, transformed with adenovirus 5 DNA. 

 

HEK-293-pGAW5E1b cells: A HEK-293 cell line, which has been stabely transfected 

with plasmid pGAWG5E1b, thus constitutively expressing a Luciferase reporter gene 

regulated by an artificial promoter containing five Gal4 binding sites and an E1b-

TATA box. 

 

HeLa (Henrietta Lacks' cells): Cell line derived from human epithelial cells of a 

cervix adeno-carcinoma. HeLa cells are aneuploid and steroid hormone receptor 

negative. For Western Blot analyses or Electrophoretic Mobility Shift Assays 

(EMSAs), nuclear extracts of these cells were kindly provided by Alexandra 

Sapetschnig. 

 

Ishikawa cells: Cell line derived from human endometrial cells of an adeno-

carcinoma (Nishida et al., 1985). 

 

 

2.1.14 Mice 

 

The European house mouse Mus musculus, L. (Mammalia: Rodentia) was used as 

model organism for this thesis. To generate knockout mice, embryonic stem cells, 

derived from 129/ola mouse blastocysts, were transfected with the knockout 

construct, injected into blastocysts and the blastocysts implanted into pseudo-

pregnant foster mice (see also 2.2.4.5). For more detailed information, see Bishop et 

al. (1985). Additionally, all data concerning mouse strains and breeding are available 

at the mouse data bank of the Erasmus University of Rotterdam (EUR). 

 

 

2.1.15 Rabbits 

 

Two New Zealand White rabbits (rabbit no. 193 (“Zwick”) and no. 194 (“Zwack”); 

European wild rabbit Oryctolagus cuniculus, L. (Mammalia: Lagomorpha)) were used 

to generate polyclonal Sp2-specific antibodies. The detailed procedure of Sp2 

antibody generation is described in chapter 2.2.3.6. 
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2.2 Methods 

 

2.2.1 Radiation protection and biological safety 

 

Genetic engineering experiments were performed in accordance with the guidelines 

for genetic engineering (Gentechnikgesetz vom 16. Dezember 1993). Contaminated 

materials and solutions were collected separately and autoclaved. Experiments with 

radioactive substances, including waste disposal, followed the guidelines for radiation 

protection (Strahlenschutzverordnung vom 20. Juli 2001). 

 

 

2.2.2 Molecular biological methods 

 

2.2.2.1 RNA experiments 

 

To protect RNA from ribonucleases (RNases), all experiments were performed as 

sterile as possible: All solutions were freshly prepared, autoclaved and used only for 

RNA experiments. As water, fresh Braun’s aqua ad iniectabilia (Braun, Melsungen) or 

water treated with Diethylpyrocarbonat (DEPC-H2O) was used. Plastic tubes and 

pipette tips were used freshly and autoclaved; glass ware was cleaned with HCl 

(conc.), followed by 2 M NaOH and DEPC-H2O. For all experiments, vinyl gloves 

were used. Unless stated otherwise, all experiments were performed at 4°C. 

 

 

2.2.2.1.1 RNA isolation and purification 

 

To isolate RNA from mouse embryonic stem cells and embryonic or adult organs, 

two different methods were applied: 

 

RNeasy Mini Kit (Qiagen, Hilden) 

To isolate RNA from mouse embryonic stem cells, confluent cells were used. To 

isolate RNA from adult mouse organs, organs were frozen in liquid nitrogen 

immediately after mouse dissection. Organs were ground with a mortar on dry ice 

and dissolved in RNeasy Mini Kit RLT buffer (600 µl buffer per 30 mg pulverized 

organ). To remove insoluble tissue particles, the solution was shortly centrifuged and 

 37



the supernatant dissolved in the same volume of 70% ethanol. The further isolation 

procedure for embryonic stem cells and organs followed the RNeasy Mini Kit user 

manual (Qiagen, Hilden). For more detailed information, the reader is referred to the 

manual and/or to Göllner (PhD thesis, 2002), who performed the isolation. 

 

LiCl/ Urea protocol 

To isolate RNA from mouse embryonic organs, organs derived from day E18.5 

embryos were frozen in liquid nitrogen immediately after embryo dissection. Frozen 

organs were pulverized in 2-3 ml 3 M LiCl + 6 M urea by high pressure mortaring 

(Ultrathorax; Heidolph, Schwabach). The cell suspension was centrifuged at 4°C for 

25 min and the resulting pellet dissolved in 500 µl RB buffer + 500 µl phenol/ 

chloroform after washing with 3 M LiCl + 6 M urea for a second time. To facilitate 

dissolving, the solution was shaken at room temperature for 45 min. After 5 min of 

centrifugation, the water phase, containing the RNA, was dissolved in DEPC-H2O or 

precipitated in 3 volumes of ethanol + 1/10 volumes of 2 M sodium acetate pH 5.6 to 

store (in solution) at -20°C. 

 

RB buffer: 10 mM Tris pH 7.5; 1mM EDTA; 0.5 % SDS. 

 

 

2.2.2.1.2 RNA quantification 

 

RNA was quantified by UV photometry (Amersham Biosciences, Freiburg; or 

NanoDrop Technologies, USA: Wilmington). The UV absorption by nuclear acids 

were measured at a wavelength of λ = 260 nm. At this wavelength the side chains of 

the aromatic amino acids display maximal absorption. The absorption value allows to 

calculate RNA concentration of a solution (1 OD260 = 40 µg/ml). In addition, RNA was 

also quantified by agarose gel electrophoresis. 

 

 

2.2.2.1.3 Reverse transcriptase polymerase chain reaction (RT-PCR) 

 

Two different methods were applied to perform reverse transcriptase polymerase 

chain reactions (RT-PCR): 
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RT-PCR (standard protocol) 

To investigate Sp2 mRNA expression in mouse embryos, RNA from day E18.5 

mouse embryos were prepared (LiCl/ urea method). A SuperScriptII reverse 

transcriptase and a temperature stable DNA polymerase from Thermus aquaticus 

(Taq) (Invitrogen, Karlsruhe) were utilized for cDNA synthesis (RT) and amplification 

(PCR), respectively. The single reaction steps were as follows: 

 

DNase treatment: 

 

 

DEPC-H2O 

RNA (E18.5 embryos) 

10x DNase reaction buffer 

DNase (1 U/µl) (Promega, Mannheim) 

10 µl reaction 

ad 10 µl 

2 µg 

1 µl 

1 µl 

 

Reaction was performed at 37°C for 30 min. To stop the reaction, 1 µl of 25 mM 

EDTA was added to the reaction mix followed by 10 min incubation at 65°C and 

cooling down on ice. 

 

Reverse transcriptase: 

 

To denature RNA secondary structures, RNA mix (after DNase treatment) was 

incubated at 90°C for 5 min before preparing the reverse transcription reaction. 

Components of the reaction mix were obtained from Invitrogen (Karlsruhe). 

 

 

DEPC-H2O 

RNA mix (after DNase treatment) 

5x RT reaction buffer 

10 mM dNTP mix 

100 mM DTT 

Oligo dT (0.5 µg/µl) 

RNase inhibitor (5 U/µl) 

SuperScriptII RT (1 U/µl) 

20 µl reaction 

ad 20 µl 

8 µl 

4 µl 

1 µl 

2 µl 

1 µl 

1 µl 

1 µl 

 

 39



Reaction was performed at 42°C for 1 hour. After a 15 min incubation at 70°C and 

cooling-down at 4°C, 0.5 µl of RNase H (1 U/µl) were added to the reaction mix and 

incubated at 37°C for 30 min to remove RNA. Thus, the synthesized cDNA could be 

used for PCR amplification (reaction components: Invitrogen, Karlsruhe). 

 

Polymerase chain reaction (PCR): 

 

 

H2O (Braun, Melsungen) 

cDNA mix (after RT reaction) 

5'-Primer (see below) 

3'-Primer (see below) 

10x PCR reaction buffer 

10 mM dNTP mix 

50 mM MgCl2
DMSO (5%) 

Taq polymerase (1 U/µl) 

25 µl reaction 

ad 25 µl 

1 µl 

50 ng 

50 ng 

2.5 µl 

0.5 µl 

0.75 µl 

1.25 µl 

1 µl 

 

To detect Sp2 mRNA expression in day E18.5 mouse embryos, primers against exon 

5 and 6 (Sp2-Ex5-RT-fw; Sp2-Ex6-RT-rev) were used. As internal control for equal 

RNA amounts, primers against the cyclophillin gene (Cyclophillin-fw; Cyclophillin-rev) 

were utilized. Expected fragment lengths are: 228 bp for Sp2 and 130 bp for the 

cyclophilin gene. 

 

Reaction temperatures and times: 

 

1. primary denaturing 

2. denaturing 

3. primer annealing 

4. cDNA amplification 

5. 35 cycles (step 2-4) 

6. final extension 

7. cooling 

94°C 

94°C 

60°C 

72°C 

 

72°C 

4°C 

4 min 

30 sec 

30 sec 

30 sec 

 

7 min 

for ever 

 

To analyze the result, 10 µl of each reaction was loaded on an agarose gel. 
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Access RT-PCR System Kit (Promega, USA: Madison) 

To investigate Sp2 mRNA expression in mouse embryonic stem cells, 1 µg of RNA 

derived from Sp3 +/- ES cells were used for RT-PCR (RNA preparation followed the 

RNeasy Mini Kit (Qiagen, Hilden)). These cells represent Sp2 wildtype situation, and 

total RNA from these cells was kindly provided by Heike Göllner. RT-PCR was 

performed following the Access RT-PCR System Kit user manual (Promega, USA: 

Madison). A reverse transcriptase from Avian Myeloblastose Virus (AMV) and a 

temperature stable DNA polymerase from Thermus flavus (Tfl) were utilized. 

 

Reaction mix: 
 

H2O (Braun, Melsungen) 

5x Reaction buffer 

5'-Primer (MSp2-ES-RT-fw) 

3'-Primer (MSp2-ES-RT-rev) 

10 mM dNTP mix 

RNA (ES cells) 

50 µl reaction 

ad 50 µl 

10 µl 

50 pmol 

50 pmol 

1 µl 

1 µg 

 

To eliminate RNA secondary structures, the reaction mix was denatured at 95°C for 5 

min. After cooling down on ice, the reaction mix was completed by adding the 

following components: 

 

 

25 mM MgSO4

AMV Reverse transcriptase (5 U/µl) 

Tfl DNA polymerase (5 U/µl) 

50 µl reaction 

2 µl 

1 µl 

1 µl 

 

Reaction temperatures and times: 

 

Reverse transcription 

1. cDNA synthesis 

2. transcriptase inactivation 

Polymerase chain reaction (PCR) 

1. denaturing 

2. primer annealing 

 

48°C 

94°C 

 

94°C 

57°C 

 

45 min 

2 min 

 

30 sec 

30 sec 
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3. cDNA amplification 

4. 30 cycles (step 1-3) 

5. final extension 

6. cooling 

72°C 

 

68°C 

4°C 

30 sec 

 

7 min 

for ever 

 

To detect the expected Sp2 mRNA fragment (fragment length: 560 bp), 5 µl of each 

reaction were loaded on an agarose gel. 

 

 

2.2.2.1.4 Northern Blot analyses 

 

To detect Sp2 mRNA expression in mouse embryos, RNA from day E18.5 mouse 

embryos were prepared (LiCl/ urea method). 20 µg RNA were dissolved in 5 µl 

DEPC-H2O, added to 20 µl loading buffer, incubated at 65°C for 15 min and loaded 

with 5 µl Orange G (see 2.1.3) on a 1% denaturing formaldehyde agarose gel. To 

receive adequate separation of RNA, the gel was run in 1x MOPS at 20-30 V over 

night. After gel electrophoresis, the gel was stained with ethidiumbromide (1 µl 

ethidiumbromide (25 mg/ml) in 100 ml 1x MOPS) for 30 min, photographed under UV 

light and washed twice with 10x SSC for each 30 min. RNA was blotted in 10x SSC 

at 4°C over night to a Hyobond-N+ nylon membrane (Amersham Biosciences, 

Freiburg). For details the reader is referred to Braun (PhD thesis, 2001), e.g. After 

blotting, RNA was UV-crosslinked to the membrane (0.3 J/cm2) and the membrane 

washed with 3x SSC. The washed membrane was prehybridized at 42°C for 2 hours, 

followed by hybridization in a 6 ml hybridization mix at 42°C over night together with 

the radioactive labeled DNA probe (probe: Ex 3-6 NB; end concentration: 1-2 x 106 

cpm/ml, see also 2.2.2.2.5). The labeled probe was directed against exon 3-6 (cDNA: 

nt 71-1500; see 6.2) of murine Sp2 and obtained by BamHI/BglI digestion of pPac-

mSp2(1-606). Before autoradiography, membrane was washed twice with 2x SSC + 

0.1% SDS at room temperature for each 5 min, once at 50°C for 30 min and finally in 

0.1x SSC + 0.1% SDS at 60-65°C for 1-2 hours to reduce background radiation. 

Autoradiography was performed for 24 hours. 

 

Buffers and solutions: 

• Loading buffer: 375 µl deionized formamide; 75 µl 10x MOPS; 120 µl 37% 

formaldehyde in 50 µl DEPC-H2O. 
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• 10x MOPS pH 7.0: 0.4 M 3-N-Morpholinopropansulfonic acid (MOPS); 0.1 M 

sodium acetate; 0.01 M EDTA in DEPC-H2O. 

• Denaturing formaldehyde agarose gel (1%): 1.5 g agarose; 15 ml 10x MOPS; 

7.5 ml 37% formaldehyde in 127.5 ml DEPC-H2O. Agarose and water were 

autoclaved before adding MOPS and formaldehyde. 

• (Pre-) Hybridization mix: 500 ml formamide; 100 ml 100x Denhardts; 50 ml 1 M 

Tris pH 7.5; 10 ml 10 mg/ml denatured salmon sperm DNA; 90 g dextran sulfate 

(in 250 ml H2O (bidest.)); 58 g NaCl; 5 ml 20% SDS (filtered sterile); ad 1 l H2O 

(bidest.). In contrast to the prehybridization mix, the hybridization mix additionally 

contains the labeled DNA probe. 

 

 

2.2.2.2 DNA experiments 

 

All experimental steps were performed at 4°C, unless stated otherwise. Buffers, 

solutions and media were prepared with bidestilled water and autoclaved or filtered 

sterile before use. The following standard methods were performed as described by 

Ausubel et al. (1987) or Sambrook et al. (1989): 

 

• DNA digestion by restriction endonucleases, 

• DNA treatment with alkaline phosphatase, 

• Klenow filling of sticky DNA ends, 

• agarose gel electrophoresis, 

• DNA preparation from agarose gels, 

• ligation of DNA fragments, 

• ethanol or isopropanol precipitation, 

• phenol/ chloroform extraction, 

• DNA purification by cesium chloride ultra centrifugation. 

 

Purification of DNA from agarose gels or PCR fragments followed the QIAquick user 

manual (Qiagen, Hilden). 

 

Transformation of bacteria was carried out following two different protocols, either the 

heatshock protocol of Hanahan (1983) for standard transfections of E. coli DH5α 
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bacteria with plasmid DNA, or the CaCl2 method for mouse Sp2 protein expression in 

E. coli BL21DE3. For detailed information, see Stielow (diploma work, 2003). 

 

To test recombinase capacity of loxP sites in the conditional Sp2 knockout construct, 

E. coli 294-Cre bacteria were transformed with either the final knockout construct 

pPNT-cSp2ko (containing three loxP sites) or the precursor plasmid pPNT-loxP2 

(containing two loxP sites). Transformations were performed following Hanahan 

(1983). After incubation of transformed bacteria at 37°C over night, plasmid DNA was 

isolated, linearized by NotI or HindIII restriction digestion and analyzed by agarose 

gel electrophoresis. For further details, the reader is referred to 2.1.12 or Buchholz et 

al. (1996). 

 

 

2.2.2.2.1 DNA isolation and purification 

 

Isolation and purification of recombinant DNA from bacteria 

Analytical (small scale) and preparative (large scale) isolation of recombinant DNA 

from bacteria (E. coli) followed the NucleoBond® AX plasmid purification manual 

(Macherey and Nagel, Düren). The protocol for analytical DNA preparation was 

modified as described by Krüger (diploma work, 2002). 

 

Isolation and purification of mouse genomic DNA 

Yolk sac or mouse tail tip DNA was used for PCR genotyping of mouse embryos or 

new born mice, respectively. To isolate DNA, yolk sacs or tail tips were taken up in 

500 µl mouse mix buffer (MMB) with 10 µl proteinase K (10 mg/ml) and incubated for 

1-2 h or over night on a 55°C shaker. After 20 min of centrifugation, the pellet was 

removed and 300 µl isopropanol were added to the supernatant, followed by 30 min 

centrifugation to spin down the precipitated DNA. The DNA pellet was washed twice 

with 75% ethanol and finally dissolved in 100 µl 10/1 TE. For PCR genotyping, 1 µl of 

DNA was used per reaction. 

 

Mouse mix buffer (MMB): 50 ml 1 M Tris/HCl pH 7.5; 5 ml 0.5 M EDTA; 20 ml 5 M 

NaCl; 5 ml 2% (w/v) SDS ad 500 ml H2O (bidest.). 

 

 

 44



2.2.2.2.2 DNA quantification 

 

DNA was quantified by UV photometry (Amersham Pharmacia, Freiburg; or 

NanoDrop Technologies, USA: Wilmington). UV absorption by nuclear acids were 

measured at a wavelength of λ = 260 nm. At this wavelength the side chains of the 

aromatic amino acids display maximal absorption. The absorption value allows to 

calculate DNA concentration of a solution (double strand DNA: 1 OD260 = 50 µg/ml). 

In addition, DNA was also quantified by agarose gel electrophoresis. 

 

 

2.2.2.2.3 Polymerase chain reaction (PCR) 

 

Polymerase chain reaction (PCR) was used for: 

• amplification of Sp2 genomic fragments to generate a conditional knockout 

construct for the Sp2 gene in the mouse; 

• genotyping of mouse embryos; 

• generation of Sp2 DNA fragments for bacterial expression (E. coli BL21DE3); 

• generation of Sp2 deletion fragments; 

• generation of DNA probes to screen a cosmid library at the RZPD for Sp2 

genomic fragments (see also 2.1.11); 

• generation of DNA probes for Southern Blot analyses. 

 

Polymerase chain reaction (PCR) followed three different protocols: 

 

puRe Taq Ready To Go™ Kit (Amersham Biosciences, Freiburg) 

The Ready To Go™ system was used for the amplification of Sp2 genomic 

fragments, Sp2 DNA fragments for bacterial expression, DNA probes for cosmid 

screening as well as Southern Blot analyses. Per reaction, 50 pg of DNA, 15 pmol of 

each primer and H2O (Braun, Melsungen) ad 25 µl were added to the beads. For 

more detailed information, the reader is referred to the Ready To Go™ user manual. 
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Reaction temperatures and times: 

 

1. primary denaturing 

2. denaturing 

3. primer annealing 

4. DNA amplification 

5. 30 cycles (step 2-4) 

6. final extension 

7. cooling 

94°C 

94°C 

55-60°C* 

72°C 

 

72°C 

4°C 

4 min 

30 sec 

30 sec 

30 sec 

 

7 min 

for ever 

 

* Annealing temperatures vary from 55-60°C depending on primer length and the 

relation of G/C to A/T contents in the primers. The annealing temperature was 

determined by the following equation: Tm = 4 x (G+C) + 2 x (A+T). 

 

primer 

Sp2 genomic fragments: 

MSp2-In1-fw and -rev 

MSp2-In2-fw and -rev 

MSp2-Ex4-fw and -rev 

 

Sp2 DNA fragments:

Sp2-Coli-Expr-fw and -rev 

 

Sp2 DNA probes:

Sp2-ES-a-SB-fw and -rev 

Sp2-Ex4-RZPD-fw and -rev 

fragment 

 

genomic fragment 

genomic fragment 

genomic fragment 

 

 

bacterial expression 

 

 

ES Southern Blotting 

RZPD screening 

Tm

 

60°C 

60°C 

60°C 

 

 

60°C 

 

 

57°C 

57°C 

PCR fragment length

 

3.2 kb 

1.8 kb 

1.6 kb 

 

 

1.9 kb 

 

 

387 bp 

525 bp 

 

RZPD cosmid clone no. MPMGc121L17390Q2 (genomic fragments; ES cell 

Southern Blotting) or pCMVSport6-mSp2cDNA (bacterial expression; RZPD 

screening) was taken as DNA template. 

 

To analyze the result, 5-10 µl of each reaction were loaded on an agarose gel. 

Genomic fragments were completely sequenced to check exact amplification. 
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Invitrogen PCR Kit (Invitrogen, Karlsruhe) 

To genotype targeted Sp2 mouse embryos, PCR analyses were performed. All 

reaction components were used from Invitrogen (Karlsruhe). 

 

 

H2O (bidest.) 

DNA (isolated from yolk sacs or tail tips) 

5'-Primer (see below) 

3'-Primer (see below) 

10x PCR reaction buffer 

10 mM dNTP mix 

50 mM MgCl2
DMSO (5%) 

Taq polymerase (1 U/µl) 

25 µl reaction 

ad 25 µl 

1 µl 

50 ng 

50 ng 

2.5 µl 

0.5 µl 

0.75 µl 

1.25 µl 

1 µl 

 

Reaction temperatures and times were as indicated above. Primers annealed at 

55°C. The primers MSp2Ex/L3Seq3 and MSp2In2Seq4 allowed to detect Sp2 

wildtype allele (wt) by a 0.76 kb fragment. Primers Neo and MSp2In2Seq4 led to a 

0.9-1 kb fragment representing the targeted Sp2 locus (lzn). DNA templates derived 

from mouse embryonic yolk sacs or tail tips (see 2.2.2.2.1). To analyze the result, 5-

10 µl of each reaction were loaded on an agarose gel. 

 

 

Phusion™ Kit (Finnzymes Oy, Finland: Espoo) 

To generate Sp2 deletion mutants, the DNA fragments were amplified by PCR 

following the Phusion™ Kit user manual. The kit is based on a proof-reading DNA 

polymerase with an error rate of 4.4 x 10-7 (according to the manufacturer). For 

detailed information including the composition of the reaction mix, reaction times and 

temperatures, the reader is referred to the manual. Annealing temperatures of the 

primers were 58°C. Plasmid pPac-mSp2 served as DNA template (50 pg per 

reaction). 
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primer

Del1-1-Sp2-fw and Del1-Sp2-rev-sh 

Del1-2-Sp2-fw and Del1-Sp2-rev-sh 

Del1-3-Sp2-fw and Del1-Sp2-rev-sh 

Del1-4-Sp2-fw and Del1-Sp2-rev-sh 

Del2-Sp2-fw and Del1-Sp2-rev-sh 

Del3-Sp2-fw and Del1-Sp2-rev-sh 

Del4-Sp2-fw and Del1-Sp2-rev-sh 

 

Sp2FL-XhoI-fw and Del1-2-BamHI-rev 

Del2-BamHI-fw and Del1-BglII-rev-sh 

 

Gal4-Sp2-pLALL-fw and Gal4-Sp2-pE-rev 

Gal4-Sp2-pLALL-fw and Gal4-Sp2-mE-rev 

Gal4-Sp2-pLALL-fw and Gal4-Sp2-mG-rev 

Del2-BamHI-fw and Gal4-Sp2-pE-rev 

PCR fragment length 

1.89 kb 

1.74 kb 

1.60 kb 

1.54 kb 

1.48 kb 

1.05 kb 

0.78 kb 

 

0.37 kb 

1.45 kb 

 

1.39 kb 

1.06 kb 

0.63 kb 

0.79 kb 

 

To analyze the result, 5-10 µl of each reaction were loaded on an agarose gel. Sp2 

deletion fragments were completely sequenced to check exact amplification. 

 

 

2.2.2.2.4 Hybridization and purification of single-stranded oligonucleotides 

 

Hybridization of loxP site oligonucleotides 

To generate loxP sites, single-stranded loxP site oligonucleotides (see 2.1.9.4) were 

hybridized in equimolar amounts at 75°C for 20 min followed by cooling-down slowly 

to room temperature. 

 

Hybridization of oligonucleotides for Electrophoretic Mobility Shift Assays 

Equimolar amounts of single-stranded oligonucleotides (5-10 µg) were hybridized in 

10/1 TE ad 30 µl at 75°C for 20 min and slowly cooled down to room temperature 

over night. Hybridized oligonucleotides were separated from unhybridized ones by 

polyacrylamide-TBE gel electrophoresis on a 12% gel. After gel separation, the gel 

was transferred to a silica plate (Kieselgel 60 F254, Merck, Darmstadt) and the 

silhouette of the hybridized oligonucleotides was detected under UV light (λ = 254 
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nm). Oligonucleotides were cut out and eluted from the gel slices by grinding and 

incubation of the slices in each 500 µl 10/1 TE at 37°C and 250 rpm over night. 

Eluted DNA was separated from polyacrylamide by centrifugation over glass wool 

and purified by NAP-10 columns (Amersham Biosciences, Freiburg), followed by 

ethanol precipitation. Finally, the quantified DNA was radioactively labeled as 

described in 2.2.2.2.5 and used for Electrophoretic Mobility Shift Assays (EMSAs). 

 

Polyacrylamide-TBE gel (12%): 120 ml 5x TBE; 40 ml 30% acrylamide/ bisacrylamide 

(37.5 / 1); 40 ml H2O (bidest.); 1 ml 10% APS; 120 µl TEMED. Running buffer: 1x 

TBE. Electrophoresis: 80 V for 30 min; 130 V for 5-6 hours. 

 

 

2.2.2.2.5 Radioactive labeling of DNA 

 

Radioactive labeling of double-stranded oligonucleotides for EMSA 

To radioactively label double-stranded oligonucleotides for Electrophoretic Mobility 

Shift Assays (EMSAs), 5' sticky ends were filled by the Klenow fragment of the DNA 

polymerase I using the Megaprime DNA Labelling System (Amersham Biosciences, 

Freiburg). 

 

Reaction mix: 

 

oligonucleotides 

10x restriction enzyme buffer B (Roche, Mannheim) 

dATP (Megaprime Kit; Amersham Biosciences) 

dGTP (Megaprime Kit; Amersham Biosciences) 

dTTP (Megaprime Kit; Amersham Biosciences) 

[α-32P] dCTP (3000 Ci/ mmol) 

Klenow enzyme (1 U/µl) 

H2O (Braun, Melsungen) 

20 µl reaction 

20 ng 

2 µl 

1 µl 

1 µl 

1 µl 

2µl 

1 µl 

ad 20 µl 

 

The reaction was incubated at room temperature for 20 min, followed by phenol/ 

chloroform extraction. The extracted oligonucleotides were purified by ProbeQuant™ 

G-50 Micro Columns (Amersham Biosciences, Freiburg) and diluted to a 

concentration of 18000 cpm/µl (Scintillator; Beckman Coulter, Krefeld). 
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Oligonucleotides used for radioactive labeling and Electrophoretic Mobility Shift 

Assays are listed in 2.1.9.2. 

 

 

Radioactive labeling of single-stranded DNA 

The single-stranded DNA probe for Northern Blot analyses was labeled by the Nick 

Translation Kit of Amersham Biosciences (Freiburg): 100 ng DNA together with 4 µl 

dNTP mix (dCTP, dGTP and dTTP), 2 µl of fresh [α-32P] dATP (3000 Ci/mmol), 2 µl 

enzyme mix (1 U/µl) and H2O (bidest.) ad 20 µl were incubated at 37°C for 30 min. In 

contrast to that, single-stranded DNA probes for Southern Blot analyses were labeled 

following the Megaprime Kit of Amersham Biosciences (Freiburg). Here, 20 ng DNA 

together with 2.5 µl primer mix and 10/1 TE ad 14 µl were denatured at 100°C for 5 

min, followed by immediately cooling-down to 4°C. 4 µl of fresh [α-32P] dCTP (3000 

Ci/mmol), 5 µl of 5x buffer containing the other nucleotides and 2 µl Klenow enzyme 

(1 U/µl) were added to the reaction mix and incubated first at 37°C for 15 min, then at 

room temperature for at least 45 min. To remove free nucleotides, the reaction mixes 

were purified by ProbeQuant™ G-50 Micro Columns (Amersham Biosciences, 

Freiburg). 

 

Probes used for Northern (NB) and Southern Blot (SB) analyses were as follows: 

 

probe 

Ex 3-6 NB 

Ex4-RZPD 

ES-a-SB 

function 

NB probe against Sp2 exon 3-6 

SB probe against exon 4 to verify RZPD cosmids 

SB probe to detect targeted Sp2 allele in ES cells 

hybridization (see 6.2)

cDNA: nt 71-1500 

cDNA: nt 533-1057 

DNA: nt 34808-35195 

 

Oligonucleotides to amplify the probes are listed in 2.1.9.3. The Northern Blot probe 

against exon 3-6 (Ex 3-6 NB) was obtained by BamHI/BglI digestion of pPac-

mSp2(1-606). 
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2.2.2.2.6 Southern Blot analyses 

 

Southern Blot analyses (Southern, 1975) were performed to verify results obtained 

from screening a cosmid library at the RZPD Deutsches Ressourcenzentrum für 

Genomforschung GmbH (Heidelberg) for the Sp2 gene as well as to genotype 

targeted Sp2 embryonic stem cells and mouse embryos. For cosmid check, 1 µg of 

each cosmid DNA was digested with BglII, HhaI or EcoRI in a total volume of 20 µl. 

For mouse ES cell and embryo genotyping, 0.5 µg DNA were digested with SacI in a 

total volume of 50 µl. 10 µl (cosmid DNA) or 50 µl (ES cells, embryos) of each 

reaction mix were separated by agarose gel electrophoresis for 4-5 hours. After 

staining the gel for 30 min with ethidiumbromide (1 µl ethidiumbromide (10 mg/ml) in 

100 ml H2O), it was destained with H2O for 15 min and photographed under UV light. 

The gel was incubated in a denaturing solution for 30 min, neutralized for 30 min and 

blotted in 20x SSC over night to a Hyobond-N+ nylon membrane (Amersham 

Biosciences, Freiburg). For methodological details, the reader is referred to Krüger 

(diploma work, 2002), e.g. After blotting, DNA was UV-crosslinked to the membrane 

(0.3 J/cm2; Biometra Crosslinker) and the membrane incubated at 80°C for 1.5 hours. 

The membrane was shortly washed in 5x SSC and prehybridized at 42°C for 2 hours, 

followed by hybridization at 42°C for 4-5 hours (for cosmid clones) or over night (for 

mouse ES cell and embryo DNA) together with the denatured, radioactive labeled 

DNA probe (end concentration: 1-2 x 106 cpm/ml, see also 2.1.9.3 and 2.2.2.2.5). 

The labeled probes used for Southern Blot analyses are listed below. Previous to 

autoradiography, the membrane was washed twice with 2x SSC + 0.1% SDS at room 

temperature for each 1 min, once at 50°C for 30 min and finally in 0.1x SSC + 0.1% 

SDS at 60°C for 45 min to reduce background radiation. Autoradiography was 

performed by film exposure (Kodak, Stuttgart) to the membrane at -80°C over night. 

 

probe 

Ex4-RZPD 

ES-a-SB 

function 

SB probe against exon 4 to verify RZPD cosmids 

SB probe to detect targeted Sp2 allele in ES cells 

and mouse embryos 

hybridization (see 6.2) 

cDNA: nt 533-1057 

DNA: nt 34808-35195 

 

Resulting fragments after restriction endonuclease digestions are as follows: 

• Southern Blot analysis of RZPD cosmids: BglII: 5.8 kb; HhaI: 2.8 kb; EcoRI: 1.6 

kb; 
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• Southern Blot analysis of targeted Sp2 embryonic stem cells and mouse 

embryos: Sac I: 6.9 kb representing wildtype allele, 3.2 kb representing targeted 

allele. 

 

Solutions: 

• Denaturing solution: 0.5 M NaOH; 1.5 M NaCl in H2O (bidest.). 

• Neutralization solution pH 7.4: 1 M Tris; 1.5 M NaCl in H2O (bidest.). 

• Prehybridization solution: 5 ml formamide; 2.5 ml 20x SSC; 1 ml 50x 

Denhardts; 250 µl of 10 mg/ml denatured herring sperm DNA; 500 µl 1M sodium 

phosphate pH 6.4; 100 µl 10% SDS (filtered sterile); H2O (bidest.) ad 10 ml. 

• Hybridization solution: 5 ml formamide; 2 ml 20x SSC; 0.5 ml 50x Denhardts; 

100 µl of 10 mg/ml denatured herring sperm DNA; 200 µl 1 mM sodium 

phosphate pH 6.4; 100 µl 10% SDS (filtered sterile); 2 ml dextran sulfate; H2O 

(bidest.) ad 10 ml. 

 

 

2.2.3 Biochemical methods 

 

Unless stated otherwise, all experimental steps were performed at 4°C to prevent 

proteins from degradation. 

 

 

2.2.3.1 Recombinant Sp2 protein expression and purification from bacterial 

inclusion bodies 

 

Large-scale overexpressed proteins in bacteria accumulate in so-called insoluble 

inclusion bodies. To generate Sp2-specific polyclonal antibodies in rabbits, mouse 

Sp2 protein was expressed in four 1 l cultures of E. coli BL21DE3 bacteria and 

purified from bacterial inclusion bodies following a modified protocol from Nagai et al. 

(1985). Bacterial transformation by CaCl2 and IPTG-induced protein expression 

followed the protocols described in Stielow (diploma work, 2003). In the following 

description of inclusion body isolation and Sp2 protein purification from bacterial 

inclusion bodies, all amounts and volumes are referred to a 1 l culture. 
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Two hours after IPTG induction (0.5 mM IPTG), 1 l of cultured bacteria (E. coli 

BL21DE3) was harvested and spun down at 4000 rpm for 10 min. Bacterial pellets 

were resuspended in 40 ml resuspension buffer and incubated at 4°C for 30 min after 

adding 2.5 mg/ml lysozyme. To digest DNA, 10 µg/ml DNase I together with 1 mM 

MnCl2 and 10 mM MgCl2 were added and the suspension was incubated at room 

temperature on a head-over-tail rotator for 1 hour. After adding 100 ml washing buffer 

1, the suspension was centrifuged at 13000 rpm and 4°C for 12 min to pellet all 

insoluble components, like the inclusion bodies. The inclusion body pellet was 

dissolved in 20 ml washing buffer 1, centrifuged at 4000 rpm and 4°C for 12 min and 

resuspended in 20 ml washing buffer 2. The pellet was centrifuged again, washed up 

to 12 times in washing buffer 2 until the pellet did not decrease in size any more and 

dissolved in 2 ml 2x Laemmli protein loading buffer (see 2.1.2). To purify Sp2 protein 

from inclusion bodies, the suspension was incubated at 100°C for 10 min and 

separated by a discontinual, preparative SDS Polyacrylamide Gel Electrophoresis 

(10% SDS-PAGE; see also 2.2.3.4, 20x volume) at 80 V over night. To detect Sp2 

protein, the gel was stained with 300 mM CuCl2 up to 10 min and repeatedly washed 

in H2O. The Sp2 protein band was cut out from gel, washed three times in washing 

buffer 3 for each 10 min to remove copper ions, and incubated three times in elution 

buffer for each 10 min. Sp2 protein was eluted by electro-elution at 100 V for 6 hours 

in a gel chamber (dialysis tubes: Serva, Heidelberg) by changing the running buffer 

each 45 min. The protein solution was dialyzed against 0.5x PBS at room 

temperature for 5 hours changing buffer four times. To enrich proteins, the solution 

was lyophilized over night and the lyophilisate resuspended in 5-10 ml H2O (Braun, 

Melsungen). After determination of protein concentration by comparing increasing 

Sp2 volumes with a BSA standard of known concentration on a 10% SDS 

polyacrylamide gel, the purified Sp2 protein was used for rabbit immunization (see 

2.2.3.6). 

 

Buffers: 

• Resuspension buffer: 50 mM Tris/HCl pH 8.0; 25% (w/v) succrose; 1 mM 

EDTA. 

• Washing buffer 1: 1% (w/v) deoxycholate; 20 mM Tris/HCl pH 7.5; 2 mM EDTA; 

1.6% (v/v) NP-40; 200 mM NaCl. The components should be added in this order. 

• Washing buffer 2: 50 mM Tris/HCl pH 7.5; 150 mM NaCl; 0.5% (v/v) EDTA. 

• Washing buffer 3: 250 mM Tris/HCl pH 8.8; 250 mM EDTA. 

 53



• Elution buffer: 250 mM Tris/acetate pH 7.4; 1% (w/v) SDS; 100 mM DTT. 

• Running buffer: 50 mM Tris/acetate pH 7.4; 0.1% (w/v) SDS. 

 

 

2.2.3.2 Protein extraction from cells (nuclear extract preparation) 

 

Nuclear proteins derived from cultured cells were prepared for Western Blot analyses 

or Electrophoretic Mobility Shift Assays (EMSAs). 

 

To isolate nuclear proteins from cultured cells (6 cm culture plates), cells were 

washed twice in 1x PBS, harvested with a rubber spatula in 1.4 ml 1x PBS and spun 

down at 13000 rpm for 10 sec. Cell pellets were dissolved in 400 µl of hypotonic NE 

buffer B. After 10 min of incubation at 4°C, cells were spun down for 10 sec and the 

pellets containing the nuclei dissolved in 50 µl hypertonic NE buffer C. Nuclei were 

incubated in NE buffer C at 4°C for 20 min, spun down for 2 min, and the supernatant 

containing the nuclear proteins was split into aliquots. Protein concentration of the 

solutions was determined by Bradford assay (see below) and the aliquots were 

stored at -80°C until use. 

 

Buffers: 

• NE buffer B: 10 mM HEPES/KOH pH 7.9; 1.5 mM MgCl2; 10 mM KCl; 0.5 mM 

DTT; 0.2 mM PMSF; 1x PIC. 

• NE buffer C: 20 mM HEPES/KOH pH 7.9; 1.5 mM MgCl2; 420 mM NaCl; 0.2 mM 

EDTA; 25% Glycerol; 0.5 mM DTT; 0.2 mM PMSF; 1x PIC. 
 

 

2.2.3.3 Determination of protein concentrations 

 

Quantification after Bradford 

Photometric determination of protein concentrations after Bradford (1976) is based 

on a shift of the absorption maximum from λ = 465 nm to λ = 595 nm of Coomassie 

brilliant blue when binding to proteins. This shift can be detected photometrically at a 

wavelength of λ = 595 nm: the increase in extinction is proportional to the protein 

concentration of the measured solution. 5 µl of bovine serum albumin (BSA) in a 

concentration of 0.1 to 1.0 mg/ml were used to generate a standard curve. To 
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measure protein concentrations in a linear range, the measured sample volumes (1-5 

µl) where chosen in that way, that their extinction values did not exceeded OD = 1.0. 

Preparation of the staining solution and measuring procedure followed the 

instructions of the Biorad Protein Assay Kit (Biorad, München). 

 

Quantification after Lowry 

Protein concentrations of solutions containing SDS or other detergences could not be 

determined by Bradford quantification. In that case, a modified method of Lowry 

(1951), basis of the Biorad Detergent Compatible DC Kit (Biorad, München), was 

applied following the kit instructions. 20 µl of the BSA standards and extinction-

dependent sample volumes were used for photometric measurements at a 

wavelength of λ = 750 nm. 

 

 

2.2.3.4 SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 

Based on their molecular weights, proteins were separated by discontinual, 

denaturing SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) (Laemmli, 1970). 

Samples were denatured in 1 volume of 2x Laemmli protein loading buffer (see 2.1.2) 

at 100°C for 5 min before loading on a gel (Mini gel chambers; Biorad, München). 

Gel consists of two parts, one focussing the proteins (pH 6.8), the other one 

separating the proteins (pH 8.8). Percentage of the separating gel section ranged 

from 6-12% depending on the molecular weight of the proteins of interest. Proteins 

were focussed at 80 V until they reached the separating section, and separated at 

120V. After electrophoresis, proteins were stained (Coomassie Brilliant Blue; CuCl2) 

or analyzed in Western Blot. For deeper detailed information, the reader is referred to 

Stielow (diploma work, 2003). Protein staining by CuCl2 is described in 2.2.3.1. For 

Coomassie staining, the reader is referred to the Roti-Blue® user manual (Roth, 

Karlsruhe). 

 

Focussing gel (5%) 

 

H2O (Braun, Melsungen) 

30% acrylamide / bisacrylamide (37.5 / 1) 

focussing buffer (0.5 M Tris/HCl pH 6.8) 

 

end volume: 3 ml 

ad 3 ml 

500 µl 

760 µl 
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10 % sodium dodecyl sulfate (SDS) 

10% ammonium peroxo disulfate (APS) 

N'-tetramethylethylene diamine (TEMED) 

30 µl 

30 µl 

3 µl 

 

 

Separating gel (6-12%) 

 

H2O (Braun, Melsungen) 

30% acrylamide / bisacrylamide (37.5 / 1) 

separating buffer (1.5 M Tris/HCl pH 8.8) 

10 % sodium dodecyl sulfate (SDS) 

10% ammonium peroxodisulfate (APS) 

N'-tetramethylethylene diamine (TEMED) 

 

 

 

end volume: 7.5 ml 

ad 7.5 ml 

1.5 to 3.0 ml 

1.86 ml 

75 µl 

75 µl 

10 µl 

 

Solutions: 

• Running buffer: 25 mM Tris/HCl pH 8.3; 250 mM Glycine; 0.1% (w/v) SDS. 

• Molecular weight standards: Rainbow® marker (Amersham Biosciences, 

Freiburg); Prestained protein ladder (MPI Fermentas, St. Leon-Rot); Protein 

ladder (Biorad, München). 

 

 

2.2.3.5 Western Blot analyses 

 

To selectively detect proteins in protein solutions, Western Blot analyses were 

performed. For this, SDS-PAGE-separated proteins (2.2.3.4) were blotted to a 

polyvinylidene difluoride membrane (PVDF; Immobilon-P transfer membrane; 

Millipore, Eschborn) at 2.5 mA/cm2 for 75 min using a Biometra semi-dry blotting 

system (Biometra, Göttingen). For details, the reader is referred to Göllner (PhD 

thesis, 2002), e.g. The immobilized proteins were blocked in a blocking solution at 

4°C over night. Immune detection was performed with first and secondary antibodies 

listed below at room temperature for each one hour. Detection of the antibody-bound 

proteins was effected by the conjugation of the secondary antibody with horse 

reddish peroxidase (HRP) and the Enhanced Chemiluminescence Plus (ECL-Plus) 

system (Amersham Biosciences, Freiburg). To remove unspecifically bound 
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antibodies, thus reducing background signals, membrane was stringently washed 

after first and secondary antibody incubation for each 30 min in TBST. 

 

Antibody 

anti-Sp1; rabbit p.cl. antibody 

anti-Sp2; rabbit p.cl. antibody 

(no. 193, “Zwick”; 10 days after 1. boost) 

anti-Sp3; rabbit p.cl. antibody; sc-644 

anti-Gal4; rabbit p.cl. antibody; sc-577 

anti-rabbit; HRP-conj.; m.cl. sec. antib.; NA934V

dilutions for Western Blot analyses* 

1/3000 

unless stated otherwise 1/5000 

 

1/1000 

1/1000 

1/10000 

 

* = Antibodies were diluted in a 1% blocking solution. Membrane was incubated in 10 

ml antibody solution. 

 

Solutions:

• 1x TBS: 20 mM Tris/HCl pH 7.6; 137 mM NaCl in H2O (bidest.). 

• 1x TBST: 1x TBS; 0.1% (v/v) Tween 20. 

• 5% blocking solution: 20 mM Tris/HCl pH 7.6; 137 mM NaCl; 0.1% (v/v) Tween 

20; 5% (w/v) Difco™ Skim milk powder (BD, USA: Sparks). 

• Anode buffer 1: 0.3 M Tris/HCl pH 10.4; 10% (v/v) methanol. 

• Anode buffer 2: 25 mM Tris/HCl pH 10.4; 10% (v/v) methanol. 

• Cathode buffer: 25 mM Tris/HCl pH 9.4; 40 mM Glycine 10% (v/v) methanol. 

 

 

2.2.3.6 Rabbit immunization and generation of antiserum 

 

To generate polyclonal Sp2 antisera, two New Zealand White rabbits (no. 193, 

“Zwick” and no. 194, “Zwack”) were immunized with purified mouse Sp2 protein 

expressed in E. coli BL21DE3 bacteria (2.2.3.1). Per each immunization reaction, 1ml 

of protein solution (= 75 µg Sp2) together with 1 ml Freund's Adjuvant were 

subcutaneously injected into 3-4 different areas at the flank. In the first three 

immunization reactions the protein solution was mixed with complete Freund's 

Adjuvant (CFA; Sigma, München), all further immunizations were performed with 

incomplete Freund's Adjuvant (IFA; Sigma, München). In contrast to incomplete 

Freund's Adjuvant, complete adjuvant contains heat-inactivated, dried 
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Mycobacterium tuberculosis bacteria, which unspecifically stimulate the rabbit 

immune system. 

 

Immunization reactions were as follows: Day 1, 3 and 6 with each 75 µg Sp2 in CFA; 

day 36 (1. boost) and 70 (2. boost) with each 75 µg Sp2 in IFA. Before starting the 

first immunization reaction, 5 ml blood were taken from both rabbits for pre-immune 

serum extraction. As well, each 10 days after boost immunizations, 5 ml blood were 

taken to extract the Sp2 antiserum. Rabbit immunization was kindly performed by 

Bastian Stielow. 

 

To extract pre-immune or Sp2 antisera, blood coagulated at room temperature for 30 

min followed by 10 min centrifugation at 4000 rpm. The separated sera were 

transferred to fresh reaction tubes, mixed for conservation with 0.05% sodium azide 

and stored as aliquots at -20°C. Fresh aliquots were used for Western Blot analyses 

as well as immunostaining and Electrophoretic Mobility Shift Assays (EMSAs). 

 

 

2.2.3.7 Electrophoretic Mobility Shift Assay (EMSA) 

 

To investigate protein-DNA interactions, Electrophoretic Mobility Shift Assays (Fried 

and Crothers, 1981; Garner and Revzin, 1986) were performed. For this, nuclear 

extracts containing the protein of interest (either endogenous or overexpressed) were 

incubated with a radioactively labeled double-stranded oligonucleotide containing a 

specific sequence of a protein binding site. The oligonucleotides used to investigate 

Sp2-DNA interactions are listed in 2.1.9.2; the labeling protocol is described in 

2.2.2.2.5. Protein-bound oligonucleotides migrate slower in gel (shift) than unbound 

oligonucleotides. Additional incubation with an antibody directed against the protein 

of interest increases the slower migration of the protein-DNA complex (supershift). 

 

A reaction mix consisting of 0.2-10 µg nuclear extract, 1x BSB, 0.5 mg/ml BSA, 37.5 

ng/µl poly (dIdC), 4 mM DTT and 145 mM KCl in a total volume of 20 µl was 

incubated at 4°C for 10 min. After incubation, the labeled oligonucleotide (18000 

cpm) was added to the reaction mix and incubated at 4°C for 20 min. In case of 

supershift experiments, this incubation was reduced to 15 min followed by incubation 

with 1 µl antibody against the protein of interest (alternatively: pre-immune serum) at 
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4°C for 15 min. Protein-bound oligonucleotide was separated from unbound 

oligonucleotide by a 4% non-denaturing polyacrylamide gel (100 V for 30 min, 140 V 

for ca. 2.5 h). After electrophoresis, gel was transferred to a Whatman filter paper (3 

mm) and vacuum-dried at 80°C for 2 hours (Gel dryer; Biorad, München) followed by 

autoradiography at -80°C over night. 

 

Materials: 

• 5x Bandshift buffer BSB (GH): 62.5 mM HEPES pH 7.5; 31.25 mM MgCl2; 45% 

Glycerol; 25 µM ZnSO4; 0.25% NP-40. 

• 4% Polyacrylamide gel (PAA): 10 ml 40% acrylamide/bisacrylamide (40:1); 10 

ml 5x TBE; 80 ml H2O (Braun, Melsungen); 700 µl 10% APS; 70 µl TEMED. 

Running buffer: 0.5x TBE. 

 

 

2.2.4 Cellbiological methods and animal works 

 

2.2.4.1 Cell handling 

 

Cells were handled sterile. Frozen cells (liquid nitrogen) were transferred to 10 ml of 

the required culture medium, centrifuged at 1000 rpm for 5 min to remove DMSO, 

transferred again to 12 ml of fresh medium and plated for culturing (cell culture 

flasks; Greiner, Frickenhausen). Drosophila SL2 cells were cultured at 27°C, 

mammalian cells at 37°C in a 5% CO2-containing atmosphere. When reaching 80-

100% confluency, cells were split and used either for further culturing or were frozen 

for storage in 1.5 ml medium containing 10% DMSO, first at -80°C for two days, then 

in liquid nitrogen (Cryo Tube™ Vials; Nunc, Denmark: Roskilde). Splitting of 

Drosophila SL2 cells occurred after detaching cells from the culture plate by intensive 

slapping against the plate. Mammalian cells (MEF, HEK-293, Ishikawa) were 

detached from culture plate by 3 min trypsination (1 ml Trypsin/EDTA; Gibco, 

Karlsruhe) after washing with 1x PBS and removing the medium. Split cells were 

dissolved in 12 ml medium and plated again for culturing. Cells having been split for 

more than two times were frozen in liquid nitrogen for at least some weeks to 

recover. For mouse embryonic stem (ES) cell handling, see 2.2.4.5. 
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2.2.4.2 Cell immunostaining 

 

To investigate Sp2 subcellular localization, human embryonic kidney 293 cells (HEK-

293) were grown in a 24 well culture plate (Greiner, Frickenhausen) on 13 mm cover 

slips until 80-90% confluency, washed twice in 1x PBS and fixed at room temperature 

in a 4% paraformaldehyde (PFA) solution. After fixation cells were washed twice with 

PBS and permeabilized with 0.2% Triton X-100 (Serva, Heidelberg) in PBS for 25 

min. Permeabilized cells were washed again three times in 1x PBS, blocked in a 3% 

BSA blocking solution for 1 hour followed by first antibody and secondary antibody 

incubation each for one hour (150 µl per cover slip). To additionally reduce unspecific 

binding of the antibodies, cells were washed after each antibody incubation three 

times in 1x PBS each for 10 min. Mounting of cells to glass slides occurred with one 

drop of Vecta-shield mounting medium containing DAPI-4,6-diamino-2-phenylindole 

(Vector Laboratories, USA: Burlingame). Pictures were taken by a camera mounted 

on a Leica DMLB microscope (Leica, Bensheim) using filters for green (ex.: λ = 480 

nm; em.: λ = 520 nm) and red fluorescence (ex.: λ = 550 nm; em.: λ = 600 nm). 

 

antibody 

anti-Sp1; rabbit p.cl. antibody 

anti-Sp2; rabbit p.cl. antibody 

(no. 193, “Zwick”; 10 days after 1. boost) 

anti-Sp3; rabbit p.cl. antibody; sc-644 

anti-rabbit; FITC-conj.; m.cl. sec.; 111-095-003 

dilutions for immunostaining* 

1/1000 

1/1000 

 

1/1000 

1/300 

 

* = Antibodies were diluted in a 3% BSA blocking solution. Cells were incubated in 

400 µl antibody solution. 

 

3% BSA blocking solution: 3% BSA; 1x PBS; 0.05% (v/v) Tween; filter sterilized. 

 

 

2.2.4.3 Cell transfections 

 

To overexpress proteins in insect (Drosophila SL2) or mammalian cells (HEK-293), 

cells were transiently transfected with the respective expression plasmids listed in 

2.1.10 following three different protocols: 
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Transfection by FuGENE 6 (Roche, Mannheim) 

Standard transfections were performed by FuGENE 6 (Roche, Mannheim). 

Drosophila SL2 or HEK-293 cells (4 x 106 cells per 6 cm culture plate) were 

transfected with 1 µg of cesium-chloride-purified DNA in 5 µl FuGENE 6 reagent or 

with 1 µg of cesium-chloride-purified DNA in 3 µl FuGENE 6 reagent, respectively. 

For further details concerning the protocol, the reader is referred to the user manual. 

To analyze overexpressed proteins in Western Blot or Electrophoretic Mobility Shift 

Assays (EMSAs), cells were harvested for protein extraction 36 hours after 

transfection. 

 

Transfection by jetPEI™ (Biomol, Hamburg) 

To overexpress Gal4 fusion proteins in HEK-293 cells for transactivation assays 

measuring luciferase activity (Luc; see 2.2.4.4), cells were transiently transfected 

following the jetPEI™ transfection protocol (Biomol, Hamburg). Cesium-chloride-

purified DNA was used to enhance the transfection efficiency. Transfection mixes for 

4 x 106 cells per 6 cm culture plate were as follows: 

 

• HEK-293 cells: 1 µg Gal4 fusion plasmid, 3 µg luciferase reporter plasmid 

pGAWG5E1b and 0.5 µg control plasmid for transfection efficiency comparisons 

pRSV-ß-Gal in 9 µl jetPEI™. 

• HEK-293-pGAWG5E1b-(stable) cells: 1 µg Gal4 fusion plasmid and 0.5 µg control 

plasmid for transfection efficiency comparisons pRSV-ß-Gal in 3 µl jetPEI™. 

 

Cells were harvested for transactivation assays 48 hours after transfection. 

 

Transfection by Calcium-Phosphate 

To overexpress proteins in Drosophila SL2 cells for transactivation assays (Luc, CAT; 

see 2.2.4.4), cells were transiently transfected by the Calcium-phosphate method. 

Cesium-chloride-purified DNA was used to enhance the transfection efficiency. For 

both transactivation assays (Luc, CAT), the transfection procedure for 4 x 106 cells 

per 6 cm culture plate was as follows: 0.02-0.5 µg Sp expression plasmid, 4 µg 

luciferase (pGL3-Prom) or chloramphenicol acetyl transferase (pBCAT-2) reporter 

plasmid together with 2 µg p97b control plasmid for transfection efficiency 

comparisons were mixed with 250 µl sterile CaCl2 solution. The solution was added 

drop-wise within 30 sec to 250 µl 2x HeBS while continuously vortexing the HeBS 
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solution. Vortexing, i.e. supplying oxygen to the transfection mix, enables formation of 

calcium-DNA precipitates. After incubation at room temperature for 30 min, mix was 

distributed drop-wise and equally to the cells. Harvesting of cells for transactivation 

assays occurred 48 hours after transfection. 

 

Solutions: 

• CaCl2 solution: 250 mM CaCl2 in 1 mM HEPES pH 7.1; filter sterilized. 

• 250 ml 2x HeBS: 4 g NaCl; 0.175 g KCl; 0.125 g Na2HPO4; 0.5 g Dextrose; 2.5 g 

HEPES pH 7.1; filter sterilized. 

 

 

2.2.4.4 Transactivation assays 

 

Sp2 transactivation properties were investigated by measuring either Sp2-mediated 

luciferase (Luc) activity or chloramphenicol acetyl transferase (CAT) activity. To 

consider variations in transfection efficiency and to calculate relative Luc and CAT 

activity values, ß-galactosidase activity was determined supplementary. 

 

Chloramphenicol acetyl transferase activity assay (CAT assay) 

Investigation of Sp2 transactivation properties by measuring CAT activity was 

performed following the CAT ELISA instruction manual (Roche, Mannheim). 

Transfection procedure and amounts of transfected DNA are indicated in 2.2.4.3. 

 

Luciferase activity assay (Luc assay) 

To determine luciferase activity of transient transfected cells (6 cm culture plates), 

cells were washed twice in 1x PBS, harvested with a rubber spatula in 1.3 ml 1x PBS 

and spun down at 13000 rpm for 10 sec. Cell pellets were dissolved in 100 µl Luc 

resuspension buffer and frozen in liquid nitrogen followed by immediately re-thawing 

at 37°C. Freezing and re-thawing was repeated three times to lyze cells. After 

lyzation, cells were centrifuged at 4°C for 10 min and 50 µl of the supernatant were 

added to 360 µl luciferase buffer. Luciferase activity of the cell suspension was 

measured by light emission (10 sec measuring) by injecting 100 µl D-luciferin solution 

to each sample (AutoLumat LB953; Berthold Technologies, Bad Wildbad). 

 

 

 62



Solutions: 

• Luc resuspension buffer: 120 µl 100 mM Potassium phosphate; 1.2 µl 1 M DTT; 

1.08 ml H2O (Braun, Melsungen). 

• Luciferase buffer (per reaction): 180 µl 50 mM Glycylglycine pH 7.8; 5.4 µl 1 M 

Potassium phosphate pH 7.8; 5.4 µl 1 M MgSO4; 28.8 µl 50 mM EGTA; 7.2 µl 0.1 

M ATP; 3.6 µl 0.1 M DTT; 133.2 µl H2O (Braun, Melsungen). 

• Luciferin solution: 900 µl 1 mM D-Luciferin (Sigma, München); 2.25 ml 50 mM 

Glycylglycine; 9 µl 1 M DTT; 1.35 ml H2O (Braun, Melsungen). 

 

ß-Galactosidase activity assay (ß-Gal assay) 

To consider variations in transfection efficiency and to calculate relative Luc and CAT 

activity values, ß-galactosidase activity was determined (Hall et al., 1983). Cells 

treated as described for Luc and CAT assays were mixed with 250 µl buffer Z and 60 

µl O-Nitrophenyl-ß-D-galactopyranoside (ONPG) and incubated at 30°C until the 

solution became yellow. Depending on assay and cell line, volumes of added cells 

were as follows: 80 µl of cells derived from CAT assay preparation, 60 µl of cells 

derived from Luc assay preparation, whereas in both cases only 5 µl of HEK-293-

pGAWG5E1b-(stable) cells were used. Yellow staining of the solution is based on the 

enzymatic cleavage of ONPG to O-Nitrophenol by ß-galactosidase. To stop the 

enzymatic reaction, 100 µl 1 M Na2CO3 was added and the suspension was 

photometrically measured at λ = 420 nm (Emax Precision Microplate Reader; 

Molecular Devices, München). 

 

Solutions: 

• Buffer Z pH 7.0: 60 mM NaHPO4; 40 mM NaH2PO4; 10 mM KCl; 1 mM MgSO4; 

50 mM ß-Mercaptoethanol. 

• O-Nitrophenyl-ß-D-galactopyranoside (ONPG) pH 7.0: 4 mg/ml ONPG (Sigma, 

München) in 100 mM sodium phosphate buffer. 

 

 

2.2.4.5 Generation of Sp2-targeted mice and mouse handling 

 

Embryonic stem cell works 

To target the Sp2 gene, mouse embryonic stem cells (C88Bl/6 TdW; EUR 

Rotterdam) were grown in BRL-conditioned medium + 103 U/ml Leukaemia inhibitory 
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factor (LIF) on gelatinized (0.1% gelatin) culture plates (Greiner, Frickenhausen). To 

target embryonic stem (ES) cells with the conditional Sp2 knockout construct, cells 

(1x107 per 10 cm2 culture plate) were transfected with 15 µg 2x cesium-chloride-

purified and NotI-linearized DNA by electroporation (BioRad Gene Pulser; Biorad, 

München). After transfection, cells were cultured for ca. 10 days in a selection 

medium containing 200 µg/ml G418 (Gibco, Karlsruhe). Single clones were picked 

and cultured in selection medium until 60-70% confluency on 24-well plates (Greiner, 

Frickenhausen). Then, cells were split, grown again to 60-70% confluency and either 

stored until further use in ES cell medium + 10% DMSO at -70°C or used for DNA-

isolation. To isolate DNA, cells were lyzed in MMB buffer and proteinase K (10 

mg/ml) at 55°C over night, followed by phenol/ chloroform extraction and isopropanol 

(0.6 volumes) precipitation. DNA pellet was washed with 70% ethanol and dissolved 

in 50-75 µl 10/1 TE. For genotyping, 0.5 µg were digested by SacI in a total volume 

of 50 µl and analyzed by Southern Blotting and PCR (see 2.2.2.2.6 and 2.2.2.2.3, 

respectively). All ES cell works were kindly performed by Nynke Gillemans, Southern 

Blot analyses by Imme Krüger at the Erasmus University of Rotterdam. 

 

Media and buffers: 

• ES cell culture medium: 500 ml DMEM (high Gucose + Glutamine) (Gibco, 

Karlsruhe); 200 ml BRL conditioned medium; 50 ml FBS (suitable for embryonic 

stem cells); 5 ml non-essential amino acids; 5 ml 100x Penicillin/ Streptomycin 

(Cambrex, Belgium: Verviers); 0.9 ml ß-Mercaptoethanol (0.1 ml in 14 ml 

medium); 0.9 ml Leukaemia inhibitory factor (LIF of ESGRO) 106 U/ml (Gibco, 

Karlsruhe). 

• Mouse mix buffer (MMB): 50 ml 1 M Tris/HCl pH 7.5; 5 ml 0.5 M EDTA; 20 ml 5 

M NaCl; 5 ml 2% (w/v) SDS ad 500 ml H2O (bidest.). 

 

 

Blastocyst injection and implantation into foster mice 

Injection of targeted embryonic stem cells into blastocysts as well as blastocyst 

implantation into pseudo-pregnant mice was kindly performed by John Kong a Sang 

at the Erasmus University of Rotterdam. Mouse embryos were genotyped either by 

Southern Blot analysis with probe ES-a-SB (2.2.2.2.6 and 2.1.9.3) or by PCR with 

primers MSp2Ex/L3Seq3, MSp2In2Seq4 and Neo as described (2.2.2.2.3). 
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General mouse handling 

To avoid infections, mice were kept and handled as sterile as possible. Only up to 3 

mice were kept in a 22 x 16 cm cage. Mice were used for breeding when being 8-10 

weeks old. To guarantee sterility as well as the accordance with the legal 

requirements of animal protection (Tierschutzgesetz vom 25.05.1998) and gene 

technology (Gentechnikgesetz vom 16. Dezember 1993), mice were handled only by 

the personal of the mouse facilities. All data concerning mouse strains and breeding 

are available at the mouse data bank of the Erasmus University of Rotterdam (EUR). 

 

 

2.2.4.6 Body size and weight measurements and fixation of mouse embryos 

 

Body size and weight of mouse embryos (day E9.5, E12.5 and E18.5) were 

measured immediately after dissection. To determine the body size, the distance 

between top of the skull and tip base was measured. After measuring, embryos were 

fixed in 4% paraformaldehyde in PBS for 2 hours until over night under gentle stirring, 

washed twice in PBS for each 30-60 min and stored in 70% ethanol at 4°C until 

further procedure. Yolk sacs or tail tips were used for PCR genotyping (see 

2.2.2.2.3). To statistically evaluate measurement results, t-tests were performed. 

 

 

2.2.4.7 X-Gal and BluoGal staining of mouse embryos 

 

X-Gal and BluoGal staining of mouse embryos was performed by Dr. Sjaak Philipsen 

(Erasmus University of Rotterdam). 

 

X-Gal staining 

To investigate Sp2 expression in mouse embryos and to prove functional integration 

of the knockout construct into the mouse genome, X-Gal and BluoGal stainings 

based on LacZ expression in Sp2-targeted mice were performed with day E12.5 

embryos. Embryos were prepared and genotyped as described above followed by 30 

min fixation in 4% paraformaldehyde at 4°C while stirring gently. After fixation, 

embryos were washed three times in LacZ washing buffer for each 30 min, first at 

4°C then at room temperature, and stained in LacZ staining solution at 37°C over 

night in the dark while stirring gently. In case of precipitate formation, embryos were 
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shortly washed in DMSO after staining. Pictures were taken by a camera (JVC video 

camera KY-F55BE) mounted on a stereo microscope (Leica Wild M10). Embryos 

were stored until further use in 70% ethanol at 4°C. 

 

Solutions: 

• LacZ washing buffer: 0.2 M Sodium phosphate buffer pH 7.0; 2 mM MgCl2; 

0.02% NP-40; 0.01% Sodium desoxycholate (10% stem solution). 

• LacZ staining solution pH 7.3: 82.5 mg K3Fe(CN)6; 105 mg K4Fe(CN)6; 100 µl 

0.5 M EGTA in 50 ml LacZ washing buffer; 1 mg/ml 5-Bromo-4-chloro-3-indolyl-ß-

D-galactopyranoside (X-Gal solution in DMSO). 

 

BluoGal staining 

BluoGal staining of mouse embryos was performed in the same way as described for 

X-Gal staining. Instead of X-Gal, BluoGal was used at the same concentration. 
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3. Results 

 

3.1 Molecular characterization of the transcription factor Sp2 
 

3.1.1 Generation of rabbit polyclonal Sp2-specific antibodies 

 

When initiating this thesis work, no Sp2-specific antibodies were available. For this, 

Sp2-specific polyclonal antibodies were generated by expressing Sp2 protein in E. 

coli BL21DE3, followed by immunizing two New Zealand White rabbits (no. 193, 

“Zwick” and no. 194, “Zwack”) with SDS-PAGE-purified Sp2 protein (see 2.2.3.1 and 

2.2.3.6). The specificity of the obtained antiserum was tested by Western Blot 

analysis (2.2.3.5). 

 

 

3.1.1.1 Expression of Sp2 protein in E. coli BL21DE3 bacteria 

 

Mouse Sp2 protein was expressed by pET3d-mSp2 in two 1 l cultures of E. coli 

BL21DE3 bacteria. In both cultures IPTG-induced Sp2 expression was detectable 

after 2 hours of induction. 

 
Fig. 3.1.1.1. Expression of mouse Sp2 protein in two 1 l cultures of E. coli BL21DE3. 1 ml of 

each culture (culture 1 and 2) before (-) and after (+) IPTG induction was analyzed for Sp2 

expression. Bacterial pellets were resuspended in 2x Laemmli protein loading buffer and 10 µl of each 

protein solution separated by 10% SDS-PAGE. M, Rainbow® marker. Coomassie staining. 
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3.1.1.2 Isolation of inclusion bodies containing recombinant Sp2 protein 

 

Mouse Sp2 protein expressed in E. coli BL21DE3 accumulates in inclusion bodies. 

Inclusion bodies of two IPTG-induced 1 l cultures were isolated according to Nagai et 

al. (1985; see also 2.2.3.1) and an aliquot of each culture was analyzed by SDS-

PAGE. Sp2 protein could be detected in both inclusion body aliquots (Fig. 3.1.1.2). 
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Fig. 3.1.1.2. Purified inclusion bodies containing recombinant Sp2 protein. Inclusion body pellets 

derived from two 1 l E. coli BL21DE3 cultures were resuspended in equal volumes of 2x Laemmli 

protein loading buffer. 10 µl of each inclusion body solution were separated by 10% SDS-PAGE (lane 

4 and 7). As controls, 10 µl of protein solution derived from each non-induced (-) and induced bacteria 

culture (+) were loaded (lane 2, 3, 5 and 6). M, Rainbow® marker (lane 1). Coomassie staining. 

 

 

3.1.1.3 Immunization of rabbits 

 

Mouse Sp2 protein was purified from inclusion bodies by preparative SDS-PAGE, 

lyophilized and dissolved in H2O as described in 2.2.3.1. Protein concentration was 

determined by comparing increasing Sp2 volumes with increasing amounts of a BSA 

standard of known concentration by SDS-PAGE, resulting in a Sp2 protein 

concentration of approximately 100 ng/µl and a total amount of 500 µg of 

recombinant mouse Sp2 protein. 
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Fig. 3.1.1.3. Rough quantification of purified recombinant mouse Sp2 protein. Quantification of 

recombinant mouse Sp2 protein after purification by preparative SDS-PAGE and lyophilization. 

Increasing Sp2 volumes (1-5 µl; lanes 2-4) compared with increasing BSA amounts (1-5 µg; lanes 5-

7), each dissolved in equal volumes of 2x Laemmli protein loading buffer. M, Protein-Ladder (MBI 

Fermentas, St. Leon-Rot) (lane 1). Coomassie staining. 10% SDS-PAGE. 

 

As the total amount of recombinant Sp2 protein was insufficient for rabbit 

immunization, expression of mouse Sp2 protein in E. coli BL21DE3 was repeated 

under the same conditions as described resulting in additional 250 µg of Sp2 protein 

(data not shown), thus leading to a final amount of 750 µg recombinant mouse Sp2 

protein. To generate Sp2-specific polyclonal antibodies, two rabbits were immunized 

with each 75 µg of recombinant Sp2 per immunization reaction (see 2.2.3.6). 

 

 

3.1.1.4 Characterization of Sp2-specific rabbit antisera 

 

Antiserum taken 10 days after the first boost (see 2.2.3.6) was analyzed in Western 

Blot for Sp2 specificity. In addition, pre-immune serum that has been obtained before 

initiating immunization, was used as a control for antiserum specificity. As depicted in 

Fig. 3.1.1.4, Sp2 antiserum but not the pre-immune serum (both derived from rabbit 

no. 193, “Zwick”) specifically detects recombinant Sp2 protein in Western Blot without 

cross reactivity towards recombinant Sp1 or Sp3 protein. This specificity could be 

confirmed by Western Blot analysis of nuclear extracts (Drosophila SL2, HEK-293 

cells) containing overexpressed mouse Sp2 protein as well as by Electrophoretic 

Mobility Shift Assays (EMSAs) (see 3.1.5). 

1 2 3 4 5 

40 

30 

50 
70 

120 

6 7 
20 

Sp2 

200 

85 

BSA

 69



re
c.

 S
p1

 (1
0 

ng
) 

re
c.

 S
p3

 (1
0 

ng
) 

rec. Sp2

50
 n

g 

50
 n

g 

20
 n

g 

10
 n

g 

5 
ng

 

2 
ng

 

1 
ng

 

 
Fig. 3.1.1.4. Analysis of Sp2-specific rabbit antisera. Western Blot analysis. Decreasing amounts 

of recombinant mouse Sp2 protein (50-1 ng) were separated through 10% SDS-PAGE, blotted to a 

PVDF membrane and incubated with Sp2-specific antiserum (lane 2-7). Antiserum was obtained from 

immunized rabbit no. 193 (“Zwick”), 10 days after the first boost. As control, rabbit pre-immune serum 

was used (Pre; lane 1). To analyze antiserum cross reactivity towards other Sp factors, 10 ng of each 

recombinant Sp1 and Sp3 protein were incubated with the antiserum (lane 8-9). Pre-immune and 

antiserum were diluted 1:5000. 

 

 

3.1.2 Endogenous Sp2 protein expression 

 

When initiating this thesis, no data about endogenous Sp2 expression were available 

(see 1.4). To study Sp2 protein expression, Western Blot analyses were performed 

using various cell lines as well as adult mouse tissues. 

 

 

3.1.2.1 Endogenous Sp2 protein expression in various cell lines 

 

To study endogenous Sp2 protein expression in cells, nuclear extracts derived from 

two mouse (mouse embryonic fibroblasts (MEF); mouse embryonic stem cells (ES 

cells)) and two human (human embryonic kidney cells (HEK-293); Ishikawa cells) cell 

lines were investigated by Western Blot analysis. As depicted in Fig. 3.1.2.1, Sp2 
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protein is detectable in all four cell lines by two distinct bands of approximately 75 

kDa. Whether these two bands reflect two translationally controlled Sp2 isoforms, 

alternative splice variants or different posttranslational modifications, has to be 

clarified. The Sp2-specific antiserum not only detects endogenous mouse Sp2 but 

also human Sp2. This can be explained by the high sequence homology between 

mouse and human Sp2 protein (see 3.2.1). 
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Fig. 3.1.2.1. Endogenous Sp2 protein expression in various cell lines. Western Blot analysis. 28 

µg nuclear protein extracts of MEF (lane 3), undifferenciated mouse ES (lane 4), Ishikawa (lane 5) 

and HEK-293 cells (lane 6) were separated through 10% SDS-PAGE, blotted to a PVDF membrane 

and incubated with Sp2-specific antiserum. 20 ng recombinant Sp2 protein were used as positive 

control (lane 7). To control specificity, 28 µg nuclear protein extracts from undifferenciated mouse ES 

(lane 1) and Ishikawa cells (lane 2) were incubated with rabbit pre-immune serum (Pre). Pre-immune 

and Sp2 antiserum (rabbit no. 193; “Zwick“) were diluted 1:5000. 
 

 

3.1.2.2 Endogenous Sp2 protein expression in adult mouse tissues 

 

To determine Sp2 expression pattern in the adult mouse, total cell extracts from adult 

mouse organs of a Sp2 wildtype mouse were analyzed in Western Blot. The extracts 

were kindly provided by Grigore Rischitor and prepared as described in Rischitor 

(PhD thesis, 2005). Although Sp2 expression signals were weak, Sp2 protein is 

present in all tested organs, however with a certain variation of the expression level 

1 2 3 4 6 7 5 

Sp2 

180 

75 
54 
48 

100 

35 

130 

    Pre   α-Sp2 
(1:5000) (1:5000) 

 71



(Fig. 3.1.2.2). Whereas high expression levels could be detected for liver, kidney and 

heart, the expression values of lung and muscles were comparably low. 

Nevertheless, also in the adult mouse, Sp2 is at least widely expressed and not 

restricted to a subset of organs or body regions. 
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Fig. 3.1.2.2. Endogenous Sp2 protein expression in adult mouse tissues. Western Blot analysis. 

Each 30 µg protein derived from total cell extracts of different adult mouse organs were separated 

through 10% SDS-PAGE as indicated above, blotted to a PVDF membrane and incubated with Sp2-

specific antiserum (lane 1-8). 20 ng recombinant Sp2 protein were used as positive control (lane 9). 

Sp2 antiserum (rabbit no. 193; “Zwick”) was diluted 1:5000. 

 

 

3.1.3 Subcellular localization of Sp2 protein 

 

To obtain information concerning the subcellular localization of endogenous Sp2, 

immunofluorescence analysis of Sp2 protein in HEK-293 cells was performed. 

Endogenous Sp2 is expressed exclusively in the nucleus, thus displaying the same 

subcellular localization as Sp1 and Sp3 (Fig. 3.1.3). 
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Fig. 3.1.3. Subcellular localization of Sp2 protein in HEK-293 cells. Detection of Sp1, Sp2 and Sp3 

protein by α-Sp1 (1:3000), α-Sp2 rabbit no. 193 “Zwick” (1:5000) or α-Sp3 sc-644 (1:1000) and a 

FITC-conjugated secondary antibody (1:300) as indicated. Nuclei are DAPI-stained. 

Immunofluorescence microscope pictures. 

 

 

3.1.4 Transactivation properties of Sp2 protein overexpressed in SL2 cells 

 

An important aspect of transcription factor function is its ability to regulate gene 

expression. To investigate Sp2 transactivation properties, reporter assays were 

performed in Drosophila SL2 cells. As described in 2.2.4.3-4, 4 µg of a luciferase 

(pGL3-Prom) or CAT reporter plasmid (pBCAT-2) were transiently co-transfected 

along with 2 µg of a Sp-independent ß-galactosidase expression plasmid (p97b) and 

0.02-0.5 µg of each Sp1, Sp2 or both, Sp1 + Sp2 expression constructs (Fig. 3.1.4). 

In the reporter plasmid pGL3-Prom a luciferase gene is driven by the Simian Virus 40 

(SV40) promoter containing five Sp1 binding sites (GC boxes), whereas in the 

pBCAT-2 plasmid an artificial promoter harbouring two Sp1 binding sites of the HTLV 

promoter and an E1b-TATA box regulates CAT gene expression. The ß-

galactosidase expression plasmid p97b was used to compare transfection 

efficiencies. 

 

As depicted in Fig. 3.1.4, Sp1 (0.5 µg) strongly activates both promoters (SV40: 84 

fold; BCAT-2: 21 fold activation). However, on both promoters, Sp2 activation values 

did not exceed the values derived from the empty plasmid (pPacHD). Moreover, Sp2 
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had no effect on Sp1 activity (and vice versa) under these conditions. Only for the 

BCAT-2 promoter, a slight decrease of Sp1 activity from 11 fold to 4 fold activity was 

detectable in the case of Sp1 and Sp2 co-transfection (Fig. 3.1.4.B, column 2 and 6). 

However, this can be a normal variation. 

 
Fig. 3.1.4. Transactivation properties of full-length Sp2 protein overexpressed in SL2 cells. 
Drosophila SL2 cells were transiently co-transfected with 4 µg of pGL3-Prom (A) or pBCAT-2 reporter 

(B), 2 µg p97b ß-galactosidase expression plasmid and 0.02 or 0.5 µg pPac-Sp1 and/or pPac-

mSp2(1-606) as indicated. As negative control, the empty plasmid pPacHD was co-transfected with 

the reporter constructs (A, B; column 1). Transfection was performed by the Calcium-phosphate 

method. Cells were harvested 48 hours after transfection. A. Luciferase activity assay. B. 

Chloramphenicol acetyl transferase (CAT) activity assay. 

 

 

3.1.5 DNA binding capacity of Sp2 protein 

 

As transcription factor Sp2 did not activate the GC/GT-box-driven luciferase and CAT 

reporter genes, we next investigated whether Sp2 protein binds to these sequences. 

The interaction between transcription factors and DNA is a complex and often 

regulated process, crucial for the activation capability of the transcription factors (see 

1.1-3). When initiating this thesis work, no detailed report concerning Sp2-DNA 
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interactions was available (apart from the few data of Kingsley and Winoto, 1992). 

However, based on the high sequence homology of the DNA-binding domain (zinc 

finger region) within the individual Sp family members (see 1.4), Sp2 binding to the 

classical GC boxes, was expected. 

 

To study Sp2 DNA binding properties, Electrophoretic Mobility Shift Assays (EMSAs) 

were performed using overexpressed and endogenous Sp2 protein derived from 

insect or mammalian cell lines. The binding capacity towards various oligonucleotides 

harbouring different potential Sp2 binding sites like GC, GT or CT boxes as well GC 

box mutants (see 2.1.9.2) was investigated. In addition to full-length Sp2 protein 

(3.1.5.1-4), the DNA binding capacity of different Sp2 deletion mutants was analyzed 

(3.1.5.5-7). 

 

 

3.1.5.1 GC box binding capacity of full-length Sp2 protein overexpressed in 

Drosophila SL2 cells 

 

To investigate Sp2 GC-box-binding capacity, full-length Sp2 protein was 

overexpressed in SL2 cells (FuGENE 6 transfection) and nuclear extracts were 

incubated with a GC box oligonucleotide as described (Sp2-G; see 2.1.9.2) and 

analyzed by Electrophoretic Mobility Shift Assay (EMSA). Nuclear extracts derived 

from Sp1- and mock- transfected SL2 cells were used as positive and negative 

controls, respectively. As depicted in Fig. 3.1.5.1, no interaction between 

overexpressed Sp2 protein and the DNA is visible although Sp2 protein is detectable 

in Western Blot. Thus, Sp2 incapability to activate reporter gene expression in 

transactivation assays (see 3.1.4) can be explained by the lack of DNA binding. 
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Fig. 3.1.5.1. GC box binding capacity of full-length Sp2 protein overexpressed in Drosophila 

SL2 cells. A. Electrophoretic Mobility Shift Assay (EMSA). 4% native PAA gel. 5 µg nuclear extract of 

either Sp1- (pPac-Sp1; lane 1), mock- (pPacHD; lane 3) or Sp2-transfected (pPac-mSp2(1-106); lane 

4) SL2 cells were incubated with the 32P-labeled GC box oligonucleotide Sp2-G (GC box sequence: 

GGGGCGGGG; see also 2.1.9.2). (•), unspecific signal. FuGENE 6 transfection. B. Western Blot 

analysis to detect Sp2 protein expression in the transfected SL2 cells. 10 µg of SL2 nuclear extracts 

were separated through 10% SDS-PAGE as indicated, blotted to a PVDF membrane and incubated 

with Sp2-specific antiserum (rabbit no. 193; “Zwick“); dilution 1:5000. 30 ng recombinant Sp2 protein 

were used as positive control (lane 6), 30 ng recombinant Sp1 protein as negative control (lane 5). 

 

 

3.1.5.2 GC box binding capacity of endogenous Sp2 protein (MEF, HEK-293 and 

HeLa cells) 

 

To exclude artifacts from Drosophila SL2 cell expression, nuclear extracts from MEF, 

HEK-293 and HeLa cells were used to investigate DNA binding properties of 

endogenous Sp2 protein. Extracts were incubated with the GC box oligonucleotide 

Sp2-G (GC box sequence: GGGGCGGGG; see also 2.1.9.2) and analyzed by 

Electrophoretic Mobility Shift Assay (EMSA). As in the case of SL2-overexpressed 

Sp2 protein, no DNA interaction could be detected in supershift assays, although Sp2 

protein was detectable in Western Blot (Fig. 3.1.5.2). 
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Fig. 3.1.5.2. Potential GC box binding activity of endogenous Sp2 in various cell lines. A. 
Electrophoretic Mobility Shift Assays (EMSAs). 4% native PAA gel. Nuclear extracts derived from MEF 

(each 2 µg; lane 1-5), HEK-293 (each 8 µg; lane 6-8) or HeLa cells (each 5 µg; lane 9-13) were 

incubated with the 32P-labeled GC box oligonucleotide Sp2-G in presence (+) or absence (-) of 

antibodies/-sera against Sp1-3 or pre-immune serum (Pre) as indicated. To see that the Sp2-specific 

antiserum (rabbit no. 193; “Zwick”) is able to recognize Sp2 protein in EMSA, the reader is referred to 

Fig. 3.1.5.6.D. B. Western Blot analysis to monitor Sp2 expression in the respective cells. MEF (15 µg; 

lane 1), HEK-293 (20 µg; lane 2) and HeLa (20 µg; lane 3) nuclear extracts were separated through 

10% SDS-PAGE as indicated, blotted to a PVDF membrane and incubated with Sp2-specific 

antiserum (rabbit no. 193; “Zwick“); dilution 1:5000. 10 ng recombinant Sp2 protein were used as 

positive control (lane 4). 

 

As visible in Fig. 3.1.5.2.A, the presence of other Sp family members (like Sp1 and 

Sp3) binding with high affinity to the GC box oligonucleotide, extremely impede a 

potential Sp2 detection. To prevent from this, all further experiments were performed 

with Sp2 protein, mainly overexpressed in Drosophila SL2 cells, which are 

characterized by the lack of endogenous Sp factors (Suske, 2000). 
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3.1.5.3 Binding capacity of SL2-overexpressed full-length Sp2 protein towards 

GT and CT boxes 

 

As described in chapter 1.3, the DNA-binding domain (zinc finger region) is highly 

conserved among the individual members of the Sp/XKLF super-family. However, 

Sp2 displays a slightly altered amino acid sequence in the first zinc finger (chapter 

1.4). For this, Kingsley and Winoto (1992) claimed a higher binding affinity of Sp2 

protein towards GT than GC boxes. To consider this, Sp2 DNA binding capacity was 

investigated using GT (GGGGTGTGG) as well as CT box (CGCCTCCCC or 

TCCCTCCCC) oligonucleotides (see also 2.1.9.2). However, SL2-overexpressed 

Sp2 protein did neither bind to the GT nor to the CT box oligonucleotides (Fig. 

3.1.5.3.A). 

A 
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Fig. 3.1.5.3. Binding capacity of SL2-overexpressed, full-length Sp2 protein towards GT and CT 

boxes. A. Left: Electrophoretic Mobility Shift Assay (EMSA). 4% native PAA gel. 4 µg nuclear extract 

of either Sp1- (pPac-Sp1; lane 1-4), mock- (pPacHD; lane 6-8) or Sp2-transfected (pPac-mSp2(1-

106); lane 9-12) SL2 cells were incubated with either a 32P-labeled CT box (CT, WT-1), GT box (GT-1) 

or GC box (Sp1-1) oligonucleotide as indicated (for detailed oligonucleotide sequences, see 2.1.9.2). 

(•), unspecific signal. FuGENE 6 transfection. Right: Sequences of the DNA binding motifs inside the 

CT, WT, Sp1-1 and GT-1 oligonucleotides. B. Western Blot analysis to detect Sp2 protein expression 

in the transfected SL2 cells. 10 µg of SL2 nuclear extracts were separated through 10% SDS-PAGE 

as indicated, blotted to a PVDF membrane and incubated with Sp2-specific antiserum (rabbit no. 193; 
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“Zwick”); dilution 1:5000. 20 ng of recombinant Sp1 (lane 4) or Sp2 (lane 5) protein were used as 

negative and positive control, respectively. 

 

 

3.1.5.4 Binding capacity of SL2-overexpressed full-length Sp2 protein towards 

GC box variants 

 

To further consider the H→L substitution in the first zinc finger of Sp2, mutated GC 

box oligonucleotides were designed (2.1.9.2) following the so-called zinc finger code 

(see 1.3 and Fig. 3.1.5.4.A). To investigate Sp2 DNA binding capacity, nuclear 

extracts derived from SL2 cells were incubated with these mutated GC box 

oligonucleotides and analyzed in EMSA. As depicted in Fig 3.1.5.4.B, in contrast to 

overexpressed Sp1, Sp2 protein did not bind to any of the tested oligonucleotides. 
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Fig. 3.1.5.4. Binding capacity of SL2-overexpressed full-length Sp2 protein towards GC box 

variants. A. Scheme of GC box oligonucleotide mutants. Following the so-called zinc finger code (see 

1.3), three amino acids of each zinc finger enable the specific contact between a zinc finger and the 

SL2 

B 

1 2 3 4 

Sp1 Sp2 mock
Sp2-A 
Sp2-T 

Sp2-G 
Sp2-C 

5 7 8 9 10 11 12 

Sp1 

•

GT-1 
Sp1-1 

+ + +
+ + +

+ + +
++ + 

+++
+ +

ZF 3 ZF 2 ZF 1 Sp1 zinc 
finger   K H R R R H  A H K   

L Sp2 

DNA G G G  G G G  3’ 
5’ G C G  

(GC box)  C G C  C C C  C C C  
A GC box T variants C

re
c.

 S
p2

 

C 

m
oc

k 

Sp
2 

6 13 14 16 17 15 

Sp2 

1 2 3 4 

100

kDa

130

75
54
48

180

Sp
1 

 79



DNA by contacting each one nucleotide of the DNA sequence. Considering the H→L substitution in 

the first zinc finger of the Sp2 protein, GC box oligonucleotides were designed exhibiting a mutation 

(depicted in red) of the corresponding second G nucleotide. B. Electrophoretic Mobility Shift Assay 

(EMSA). 4% native PAA gel. Nuclear extract of either Sp1- (each 5 µg; pPac-Sp1; lane 1-6), Sp2- 

(each 10 µg; pPac-mSp2(1-106); lane 7-12) or mock-transfected (each 10 µg; pPacHD; lane 13-17) 

SL2 cells were incubated with either a 32P-labeled GC box (Sp1-1 or Sp2-G), a GT box (GT-1) or one 

of three mutated GC box oligonucleotides (Sp2-A, -C, -T) as indicated (for oligonucleotide sequences, 

see 2.1.9.2 or Fig. 3.1.5.3.A). (•), unspecific signals. FuGENE 6 transfection. C. Western Blot analysis 

to detect Sp2 expression in SL2 cells. 10 µg of SL2 nuclear extracts were separated through 10% 

SDS-PAGE as indicated, blotted to a PVDF membrane and incubated with Sp2-specific antiserum 

(rabbit no. 193; “Zwick”); dilution 1:5000. 30 ng recombinant Sp2 protein were used as positive control 

(lane 4). 
 

 

3.1.5.5 DNA binding capacity of the Sp2 DNA-binding domain overexpressed in 

SL2 cells 

 

Electrophoretic Mobility Shift Assays (EMSAs) were performed using nuclear extracts 

from SL2 cells that were transiently transfected with the zinc finger domain of Sp2 

only. As depicted in Fig. 3.1.5.5, the Sp2 zinc finger fragment Sp2 (aa478-606) is 

able to bind to the classical GC box as well as GC box variants with similar affinity. 

The binding affinity towards the GT box oligonucleotide, however, appears to be 

lower. This suggests that sequences inside the Sp2 protein carry an inhibitory 

function and somehow prevent Sp2 from binding to DNA. Thus, the H→L substitution 

in the first zinc finger of Sp2 seems to have no influence on Sp2 DNA binding 

capacity. 
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Sp1-ZF Sp (aa476-606) mock 

 
Fig. 3.1.5.5. DNA binding capacity of the Sp2 DNA-binding domain overexpressed in SL2 cells. 
Electrophoretic Mobility Shift Assay (EMSA). 4% native PAA gel. 5 µg nuclear extract derived from 

SL2 cells, which have been transfected (FuGENE 6) with an empty vector (pPacHD; lane 7-12) or an 

expression plasmid for the zinc finger region of either Sp1 (pPacUbx-Sp1ZF; lane 1-6) or Sp2 

(pPacUbx-mSp2(478-606); lane 13-18), were incubated with different 32P-labeled oligonucleotides as 

indicated (for oligonucleotide sequences, see 2.1.9.2 or Fig. 3.1.5.3-4.A). (•), unspecific signals. 

 

 

3.1.5.6 DNA binding capacity of SL2-overexpressed N-terminal Sp2 protein 

deletion mutants 

 

To identify putative sequences that prevent full-length Sp2 protein from binding to 

DNA, a series of N-terminal Sp2 deletion mutants were generated (Fig. 3.1.5.6.A; 

see also 2.1.10.2.2) and tested for GC box binding by Electrophoretic Mobility Shift 

Assay (EMSA). As depicted in Fig. 3.1.5.6.B, all Sp2 truncations lacking the first 179 

N-terminal amino acids are able to bind to the GC box oligonucleotide. However, the 

intensity of the DNA binding signal decreased with the length of the Sp2 fragments. 

No or only a very weak signal was detected for the deletion fragment Sp2 (aa160-

606), lacking the first 159 N-terminal amino acids. As all fragments, which the 

antibody is able to detect, display similar expression levels in Western Blot (Fig. 
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3.1.5.6.C), the weak or absent signal has to be interpreted as a reduction or total loss 

of the DNA binding capability. 

  

 
Fig. 3.1.5.6. DNA binding capacity of SL2-overexpressed N-terminal Sp2 deletion mutants. A. 
Schematic drawing of N-terminal Sp2 deletion mutants (see also 2.1.10.2.2). Numbers in brackets 

represent start and end amino acid of the protein fragments. Glutamine-rich putative transactivation 

domains are depicted in red, zinc fingers in black, serine/threonine-rich regions in yellow. (+/-) 

represents an area of charged amino acids. Sp2 (∆112-207) is fused to a Flag/HA tag (depicted in 

grey) derived from the plasmid pPacHD-Flag; all other fragments are fused to an Ubx leader 

sequence derived from the plasmid pPacUbx. Green ellipse point out the N-terminal amino acids 

being present in the Sp2 deletions exhibiting no DNA binding capacity in EMSA experiments. B. 

Electrophoretic Mobility Shift Assay (EMSA). 4% native PAA gel. 5 µg nuclear extract derived from 

SL2 cells, which have been transfected with either Sp1 (pPac-Sp1; lane 1), mock (pPacHD; lane 2) or 
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one of the Sp2 constructs (lane 3-10), were incubated with the 32P-labeled GC box oligonucleotide 

Sp2-G and loaded on the gel as indicated. FuGENE 6 transfection. C. Western Blot analysis to detect 

expression of the N-terminal Sp2 deletions in SL2 cells. 10 µg SL2 nuclear extract were separated 

through 8% SDS-PAGE as indicated, blotted to a PVDF membrane and incubated with Sp2-specific 

antiserum (rabbit no. 193; “Zwick”), dilution 1:5000. Sp2 deletion fragments starting with amino acid 

349, 441 or 478 were not detected by the antiserum. D. Electrophoretic Mobility Shift Assay (EMSA) 

with 5 µg of SL2 nuclear extract expressing the N-terminal deletion mutant Sp2 (aa 207-606) to 

demonstrate functionality of the Sp2-specific antiserum (rabbit no. 193; “Zwick”) in EMSA. Pre, pre-

immune serum. 4% native PAA gel. 

 

To investigate whether only a part of the N-terminal 179 amino acid is responsible for 

the loss of DNA binding capacity, amino acids 112 to 207 were deleted and the Sp2 

deletion protein (Sp2 (∆112-207)) tested for DNA binding by Electrophoretic Mobility 

Shift Assay (EMSA). However, the deletion fragment also was unable to bind to the 

GC box oligonucleotide. (Fig. 3.1.5.6.B). This result indicates that the entire N 

terminus from amino acid 1-179 contains sequences that prevent SL2-overexpressed 

Sp2 from binding. 

 

 

3.1.5.7 DNA binding capacity of Gal4-fused C-terminal Sp2 deletion mutants 

overexpressed in HEK-293 cells 

 

Based on the result that the N-terminal amino acids 1-179 influence the DNA binding 

capacity of Sp2, we investigated whether the N terminus also inhibits Sp2-DNA 

interactions when being N-terminally fused to a heterologous Gal4 DNA-binding 

domain. For this, C-terminal truncated Sp2 protein fragments were generated lacking 

the zinc finger region and further C-terminal parts of the protein. In addition, one Sp2 

fragment (= Gal4-Sp2 (aa207-471)) was generated lacking both, zinc finger domain 

and the N-terminal region around domain A (Fig. 3.1.5.7.A; see also 1.4 and 

2.1.10.2.3). All four Sp2 fragments were fused at the N terminus to a Gal4 DNA-

binding domain. The Gal4-Sp2 fusion constructs were overexpressed in HEK-293 

cells and tested for DNA binding capacity in Electrophoretic Mobility Shift Assays 

(EMSAs). As depicted in Fig. 3.1.5.7.B, a diffuse signal in the range of the gel slots 

was observed for Gal4-Sp2 (aa6-471), Gal4-Sp2 (aa6-357) and Gal4-Sp2 (aa6-215). 

In contrast to that, no binding signal was obtained for the Gal4-Sp2 (aa207-471) 

fusion fragment, although it lacks the first 207 amino acids, which seem to influence 
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Sp2 DNA binding capacity in the N-terminal Sp2 deletion mutants (see 3.1.5.6). 

However, all fragments exhibit similar expression levels in Western Blot 

(Fig.3.1.5.7.C). 

 
Fig. 3.1.5.7. DNA binding capacity of Gal4-Sp2 fusions overexpressed in HEK-293 cells. A. 
Schematic drawing of Gal4-fused C-terminal Sp2 deletion mutants (see also 2.1.10.2.3). Numbers in 

brackets represent start and end amino acid of the protein fragments. Glutamine-rich domains are 

depicted in red, serine/threonine-rich regions in yellow. (+/-) represents an area of charged amino 

acids. Instead of possessing the zinc finger region, the Sp2 truncations are fused at the N terminus to 

a Gal4 DNA-binding domain derived from pSG424Gal4, depicted in blue. Green ellipse point out the 
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N-terminal amino acids being present in the Sp2 deletion fragments described in 3.1.5.6, which 

exhibited no DNA binding in EMSAs. B. Electrophoretic Mobility Shift Assay (EMSA). 4% native PAA 

gel. Each 2 µg nuclear extract derived from HEK-293 cells, which have been transfected by FuGENE 

6 with each one of the constructs described in (A), were incubated with a 32P-labeled Gal4 binding site 

oligonucleotide and loaded on the gel as indicated. To investigate Gal4-Sp2 (aa207-471) DNA binding 

capacity, EMSA was performed in duplicates with two different nuclear extract preparations containing 

overexpressed Gal4-Sp2 (aa207-471). C. Western Blot analysis to detect expression of the Gal4-

fused Sp2 deletions in HEK-293 cells. HEK-293 nuclear extracts (10 µg) were separated by 8% SDS-

PAGE as indicated, blotted to a PVDF membrane and incubated with an anti-Gal4-DBD antibody 

(USA: St. Cruz; no. sc-577), dilution 1:1000. (∗) The comparably short Gal4-DBD (aa1-145) fragment 

could not be detected as it ran out from gel. 

 

These results suggest that the 179 N-terminal amino acids also impair “correct” 

interaction between the Gal4 DNA-binding domain and the corresponding DNA 

sequence. Thus, the impairment of DNA binding by the Sp2 N terminus appears to 

be independent of the position of the DNA-binding domain (zinc finger → C terminus; 

Gal4-DBD → N terminus). Moreover, the lack of any binding activity in the Gal4-Sp2 

(aa207-471) mutant indicates that also sequences between amino acid 207-471 are 

involved in the DNA binding inhibition.  

 

 

3.1.6 Transactivation properties of Sp2 deletion mutants displaying DNA 

binding capacity 

 

3.1.6.1 Transactivation properties of N-terminal Sp2 deletion mutants 

overexpressed in SL2 cells 

 

Based on the findings that Sp2 deletion fragments lacking the first 179 N-terminal 

amino acids are able to bind DNA in Electrophoretic Mobility Shift Assays (EMSAs) 

(see 3.1.5.6), transactivation assays with these Sp2 deletion mutants were 

performed. Sp2 (aa180-606) and Sp2 (aa207-606), both binding to GC box 

oligonucleotides in EMSA, as well as Sp2 (∆112-207) lacking amino acids 112-207 

were tested for their capability to activate reporter gene expression. In addition, 

control experiments with full-length Sp1 and Sp2 or an empty vector (pPacHD) were 

performed. As reporters, plasmid pGL3-Prom (containing a luciferase gene driven by 

the SV40 promoter) and p(GC)2-CAT (containing a CAT gene driven by an artificial 
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promoter consisting of two GC boxes and the E1b-TATA box) were used. The ß-

galactosidase expression plasmid p97b served to compare transfection efficiencies. 

 

As depicted in Fig. 3.1.6.1.B-C, activation values of all tested Sp2 deletion fragments 

are comparable to the values obtained from mock transfections (pPacHD). Although 

binding to DNA, the Sp2 deletion fragments Sp2 (aa180-606) and Sp2 (aa207-606) 

lacking the glutamine-rich domain A did not activate reporter gene expression in 

these assays. In contrast to that, Sp1 strongly activated luciferase and CAT 

expression (SV40: 33 fold; (GC)2-CAT: 308 fold activation). Possible reasons for 

inactivity will be discussed in chapter 4.2. 
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Fig. 3.1.6.1. Transactivation properties of N-terminal Sp2 deletion mutants in SL2 cells. A. 
Schematic drawing of N-terminal Sp2 deletion mutants used for transactivation analysis (see also 

2.1.10.2.2 and Fig. 3.1.5.6.A). Numbers in brackets represent start and end amino acid of the protein 

fragments. B-C. Drosophila SL2 cells were transiently transfected with 4 µg of either pGL3-Prom (B) 

or p(GC)2-CAT reporter (C), 2 µg p97b ß-galactosidase expression plasmid and 0.5 µg of either 

pPacHD (column 1), pPac-Sp1 (column 2), pPac-mSp2(1-606) (column 3), pPac-mSp2(180-606) 

(column 4), pPac-mSp2(207-606) (column 5) or pPac-mSp2(∆112-207) (column 6), as indicated. 

Transfection was performed by the Calcium-phosphate method. Cells were harvested for 

transactivation assays 48 hours after transfection. B. Luciferase activity assay. C. Chloramphenicol 

acetyl transferase (CAT) activity assay. 

 

 

3.1.6.2 Transactivation properties of Gal4-Sp2 deletion mutants overexpressed 

in HEK-293 cells 

 

Transactivation properties of the Gal4-fused C-terminal Sp2 deletion proteins, at 

least three of them exhibiting a diffuse DNA binding signal in Electrophoretic Mobility 

Shift Assays (EMSAs) (see 3.1.5.7), were investigated by luciferase reporter assays. 

In addition, control experiments with plasmids expressing either only the Gal4 DNA-

binding domain (pSG424Gal4) or a Gal4-fused Sp1-A fragment (pSG424Gal4-Sp1A) 

were performed. As reporter plasmid, pGAWG5E1b, which contains a luciferase 

gene driven by an artificial promoter consisting of five Gal4 binding sites and the E1b-

TATA box, was used. HEK-293 cells were either transiently or stabely transfected 

with the reporter construct and co-transfected with the ß-galactosidase expression 

plasmid pRSV-ß-Gal (to standardize transfection efficiencies) and the Gal4-fused 

expression plasmids. 

 

As depicted in Fig. 3.1.6.2, the three Gal4-Sp2 fragments containing the N-terminal 

amino acids 1-179 did not activate reporter gene expression. No differences were 

detected between cells being transiently or stabely transfected with the reporter 

construct. Investigation of the fusion fragment Gal4-Sp2 (aa207-471) displaying no 

DNA interactions resulted in a 7.3 fold activation in the stabely transfected cells. 

However, no activation was detected in transiently transfected cells, supposing that 

the 7.3 fold activation reflects the normal variation. In contrast to the Gal4-Sp2 

fragments, Sp1 displays 21-53 fold luciferase activity in all experiments. 
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In summary, no Sp2-mediated activation of reporter gene expression could be 

detected in these experiments. Possible reasons for Sp2 inactivity will be discussed 

in chapter 4.2. 

A 

 
Fig. 3.1.6.2. Transactivation properties of Gal4-Sp2 deletion mutants in HEK-293 cells. A. Left: 

Schematic drawing of Gal4-fused C-terminal Sp2 deletion mutants (see also 2.1.10.2.3). Numbers in 

brackets represent start and end amino acid of the protein fragment. Right: Schematic drawing of the 

artificial G5E1b promoter and the luciferase reporter gene in the plasmid pGAWG5E1b. B-E. 
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Luciferase activity assays. HEK-293 cells were either transiently or stabely (3 µg) transfected with a 

luciferase reporter (pGAWG5E1b) and co-transfected with 0.5 µg ß-galactosidase expression plasmid 

(pRSV-ß-Gal) and 1 µg of each Gal4 expression construct, as indicated. Transient transfections were 

performed by the jetPEI™ method (Biomol, Hamburg). Cells were harvested for reporter assays 48 

hours after transfection. B+D. HEK-293 cells, transiently transfected with the luciferase reporter 

plasmid pGAWG5E1b. C+E. HEK-293 cells, stabely transfected with the luciferase reporter plasmid 

pGAWG5E1b (HEK-293-pGAWG5E1b cells). 
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3.2 Generation of Sp2 gene targeted mice 

 

3.2.1 Sp2 gene structure 

 

To design a knockout vector for Sp2 gene targeting in the mouse, the exon-intron 

structure of the Sp2 gene had to be identified. For this, genomic Sp2 DNA sequence 

derived from the Celera data base (Celera access. no.: mCG 13240) was aligned 

with different Sp2 cDNA sequences present in the data base of the National Center 

for Biotechnology Information (NCBI). Exon-intron transitions were identified by the 

splice donor and acceptor site nucleotides GT/(GC) and AG. For this alignment, 

mouse (NCBI access. no.: BC021759 and NM_030220) as well as human cDNA 

sequences (NCBI access. no.: BC016680 and D28588) were used. 
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Fig. 3.2.1. Sp2 gene structure. A. Sp2 exon identification. Mouse genomic Sp2 DNA sequences 

(Celera data base; access. no.: mCG 13240) were aligned with different Sp2 cDNA sequences (NCBI 

data base) as indicated. Exons are numbered and coloured as described in B. Dots represent AUGs 

being in frame in the exons 1, 2, 3 and the two upstream exons (E); vertical lines represent stop 

codons. (Sequence of exon 8 is incomplete in the cDNA sequence NM_030220 (dotted line)). B. 

Exon-intron structure of Sp1-4 (modified after Krüger (diploma work, 2002)). Size of murine and 

human Sp2 gene exons (black numbers) and introns (grey numbers) are indicated. As the 

transcription start site in the first exon was not determined experimentally, only a minimal size could 

be calculated. The size of the last exon was determined until the start of the poly-adenylation 

sequence. As exon 2 is absent in the mouse cDNA sequences, size values could not be determined 

(= ?). Exon colour code: Red exon encodes the two glutamine-rich putative transactivation domains 

(A+B), yellow and orange exons code for the N-terminal protein region, blue exons for the region 

between glutamine-rich domains and zinc finger region, and green exons encode the C-terminal 

protein region including the zinc finger domain. The existence of the dashed exon 2 in mouse has to 

be proven. (∗) represents the codons for the Sp box. 

 

As depicted in Fig. 3.2.1.A, the murine and human Sp2 gene consists of at least 7 

exons (exon 1 and 3-8). Exons 3-8 are present in all analyzed cDNAs, whereas exon 

1 is only present in the Sp2 cDNAs no. BC021759 (mouse) and BC016680 (human) 

but not in NM_030220 (mouse) and D28588 (human). By sequence comparisons of 

Sp2 exon 1 with the first exon of Sp1, Sp3 and Sp4, a consensus sequence of ATG-

AG/CC-G at the 3'-end of the exon could be identified (Krüger, diploma work, 2002). 

As the transcription start site in exon 1 is not known, only a minimal size could be 

calculated (see Fig. 3.2.1.B). Nevertheless, Sp2 mRNA and thus Sp2 protein is 

longer than originally described (Kingsley and Winoto, 1992). 

 

Alignment of human Sp2 cDNA no. D28588 (but not BC016680) with mouse Sp2 

genomic DNA (Celera access. no.: mCG 13240) supports the existence of a potential 

second exon around nt 16520-16660 (genomic Sp2 DNA) which is absent in the 

published mouse cDNAs. Probably this exon is a target of alternative splicing in 

mouse, which has to be proven experimentally. In addition, two potential upstream 

exons with unknown function (genomic Sp2 DNA: nt 10000-10106; nt 11368-11542) 

could be identified by sequence alignment of mouse Sp2 genomic DNA with cDNA 

no. NM_030220 (mouse). 

 

Regarding translation, mouse (BC021759) and human (BC016680) Sp2 mRNA 

exhibit a relatively large number of putative translation start sites (in-frame AUGs) at 
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the 5'-region. The first start site, which not results in an uncompleted translation 

product, is located at the 3'-end of exon 1 (cDNA no. BC021759: nt 32 and 

BC016680, nt 31), according to the situation in Sp1, Sp3 and Sp4 (see above and 

Krüger; diploma work, 2002). This AUG is directly flanked downstream by two AUGs 

in exon 3 (e.g., cDNA no. BC021759: nt 47 and 53). The two putative upstream 

exons also contain three in-frame AUGs, however followed by two stop codons after 

43 amino acids regarding the first AUG (see Fig. 3.2.1.A). 

 

As depicted in Fig. 3.2.1.B, Sp2 displays a similar exon-intron structure as Sp1, Sp3 

and Sp4: Exon 4 encodes the glutamine-rich putative transactivation domains and 

the characteristic Sp box (see 1.4), exons upstream of exon 4 for the N-terminal part 

of the protein, exon 7 for the first two and exon 8 for the third zinc finger as well as for 

the short region C-terminal to the third zinc finger. In contrast to Sp1, Sp3 and Sp4, 

the region between putative transactivation and DNA-binding domain is encoded by 

two exons, exon 5 and 6, the latter encoding the buttonhead box (see 1.4). It has to 

be emphasized that Sp2 (like Sp1, Sp3 and Sp4) exhibits not one but two glutamine-

rich putative transactivation domains. This inconsistency towards previous results 

(e.g., Kingsley and Winoto, 1992) correlates with the finding that the Sp2 N-terminus 

is longer than previously described. 

 

As depicted in Tab. 3.2.1, Sp2 displays high sequence identity on the protein as well 

as on the RNA level between mouse and human. Moreover, the overall identity 

between Sp2 and Sp1, Sp3 and Sp4 protein sequences is at least 24% and is mainly 

based on the highly conserved zinc finger domain. 

 

cDNA alignment 
BC021759 (mouse) x BC016680 (human) 

protein alignment 
BC021759 protein (mouse) x BC016680 protein (human) 

BC021759 protein (mouse) x Sp1 protein sequence (mouse) 

BC021759 protein (mouse) x Sp3 protein sequence (human) 

BC021759 protein (mouse) x Sp4 protein sequence (mouse) 

Identity [%] 
ca. 82% 

 

ca. 94% 

ca. 24% * 

ca. 25% * 

ca. 28% * 

 
Tab. 3.2.1. Sequence identity [%] between murine and human Sp2 cDNA and protein as well as 

between Sp1-4 protein. DNA-Strider analysis. (∗) Identity mainly based on the highly conserved zinc 

finger sequences. 
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Based on the high conservation of exon 3-8 in all analyzed cDNAs and on exon 1 

homology between Sp 1-4, all experiments in this work requiring cDNA were 

performed by using mouse cDNA no. BC021759. The cDNA sequence together with 

the mouse Sp2 genomic DNA sequence is attached in 6.2. For all other cDNA 

sequences, the reader is referred to the NCBI data base. 

 

 

3.2.2 Strategy to target the Sp2 gene in the mouse 

 

Based on the analysis of the Sp2 gene structure (see 3.2.1), a knockout vector was 

designed to target the Sp2 gene in mouse for the investigation of Sp2 function in 

vivo. This vector exhibits the option for the generation of both, a constitutive and a 

conditional Sp2 knockout (Fig. 3.2.2.A). 
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Fig. 3.2.2. Strategy to target the Sp2 gene in the mouse. A. Scheme of the Sp2 protein, wildtype 

locus and targeting vector. Zinc fingers of the DNA binding domain are depicted as black beams, 

glutamine-rich domains A and B as well as exon 4 encoding these domains are depicted in red. The 

floxed exon 4 as well as the floxed SA-IRES-LacZ-Neo-SVpA sequence replace exon 4 after 

homologous recombination. The LacZ-Neo gene is driven by the endogenous Sp2 promoter. Genomic 

fragments (intron 3 and 4), necessary for the homologous recombination, are indicated. The negative 

hsv-TK selection gene driven by a pgk promoter is located downstream of the homologous 

sequences. Triangles represent loxP sites enabling Cre-driven recombination. SA, splice acceptor 

site; IRES, internal ribosomal entry site; LacZ, gene encoding ß-galactosidase; Neo, neomycin 

resistance gene encoding aminoglycoside phosphotransferase; SVpA, poly-adenylation site derived 

from Simian Virus; pgk, phosphoglycerate kinase promoter; hsv-TK, gene encoding the herpes 

simplex virus Thymidine Kinase. For further details concerning the targeting vector, the reader is also 

referred to chapter 3.2.4-5. B. RT-PCR with RNA derived from undifferenciated mouse ES cells to 

prove Sp2 gene expression. 5 µl of each RT-PCR reaction were loaded on a 1.8% agarose gel. 

Primers MSp2-ES-RT-fw and -rev were used to detect Sp2 mRNA (560 bp fragment; lane 2). Primers 

against the myc gene were used as positive control (pc; 273 bp fragment; lane 3); the negative control 

reaction was performed without RNA (nc; lane 4). M, pBR-322 marker after HinfI digestion (lane 1). C. 

Scheme of RT-PCR strategy. Sp2 mRNA; exons 1-8 are indicated following the colour code of 3.2.1. 

Arrows represent primer MSp2-ES-RT-fw (= fw) and MSp2-ES-RT-rev (= rev) used to amplify Sp2 

cDNA by PCR resulting in a 560 bp RT-PCR fragment (black beam). D. Mouse crossing scheme. Mice 

being heterozygous for the entire targeting vector (lzn/wt) were received from ES cell transfection, 

blastocyst injection and crossing of the resulting chimeric mice (see 1.5). The heterozygous mice then 

were crossed to homozygosity (lzn/lzn), exhibiting a functional knockout (see 3.2.8-9). 

 

The knockout construct consists of a floxed exon 4, which encodes the two 

glutamine-rich domains A and B, flanked by two genomic regions (in the following 

named intron 3 and 4), necessary for the homologous recombination. Exon 4 has 

already been successfully used to generate the Sp3 knockout (Bouwman et al., 

2000) and, for this, seems to be appropriate to target also Sp2. 

 

Inside the homologous region, downstream of exon 4, a floxed selection cassette 

was inserted. The cassette consists of a promoter-less LacZ-Neo fusion gene (LacZ 

encodes ß-galactosidase, Neo encodes the aminoglycoside phosphotransferase 

leading to neomycin resistance, thus enabling positive selection of the targeted 

embryonic stem cells), an internal ribosomal entry site (IRES) as well as a splice 

acceptor site (SA) upstream of the LacZ-Neo fusion gene, and a poly-adenylation 

sequence derived from the Simian Virus (SVpA) downstream of the LacZ-Neo fusion 

gene. 
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As the Sp2 gene is expressed in mouse embryonic stem (ES) cells (see Fig. 3.2.2.B), 

the LacZ-Neo gene could be set under the control of the endogenous Sp2 promoter. 

This has the advantage of an increased selection efficiency. Moreover, it opens the 

possibility of Sp2 expression studies by LacZ stainings (X-Gal, BluoGal) in the 

targeted animals (see 2.2.4.7). 

 

The SA, SVpA and IRES elements inside the cassette are required for the 

transcriptional and translational control of the Sp2, LacZ and Neo gene. In the 

knockout mice, Sp2 exons 1-4 will be fused to the LacZ-Neo gene by the splice 

acceptor site (SA) during transcription. The poly-adenylation signal (SVpA) 

downstream of the Neo gene will stop transcription of this fusion product. Thus, Sp2 

exons 5-8 should not be transcribed in the targeted animals. The IRES sequence 

enables an independent translation of the LacZ-Neo transcript, which allows to 

perform LacZ-based expression studies as well as positive selection by neomycin 

resistance. 

 

Unlike the SA-IRES-LacZ-Neo cassette, the hsv-TK (herpes simplex virus Thymidine 

Kinase) gene, regulated by the phosphoglycerate kinase promoter (pgk), is located 

downstream of the homologous sequences, thus serving as negative selection 

marker (see 1.5). 

 

As described in chapter 1.5, mouse embryonic stem (ES) cells were transfected with 

the targeting vector and selected by the two selection markers (Neo, hsv-TK). 

Positively selected ES cell were injected into blastocysts and chimeric mice, followed 

by mice being heterozygous (lzn/wt) for the entire construct, were generated. These 

mice were crossed to homozygosity (lzn/lzn) leading to a functional knockout (Fig. 

3.2.2.D; see also 3.2.8-9). 

 

Due to the floxed exon 4, the targeting vector also enables the generation of 

constitutive or conditional Sp2 knockout mice based on Cre-driven exon 4 deletion 

(see 1.5). 
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3.2.3 Screening for Sp2 genomic DNA 

 

To receive genomic fragments of the murine Sp2 gene, a 129/ola mouse cosmid 

library at the RZPD Deutsches Ressourcenzentrum für Genomforschung GmbH 

(Heidelberg) was screened with a DNA probe against exon 4. The probe was 

amplified by PCR with primer MSp2-Ex4-RZPD-fw and MSp2-Ex4-RZPD-rev (see 

2.1.9.3). In total, 15 clones were identified and four of them scrutinized by Southern 

Blot analysis. Clone number MPMGc121L17390Q2 positively tested by Southern 

Blotting was utilized for PCR amplification of the genomic fragments exon 4, intron 3 

and intron 4 (targeting construct). 

A 
mouse 

 
Fig. 3.2.3. Screening for Sp2 genomic DNA. A. Scheme of the Southern Blot strategy. A 129/ola 

mouse cosmid library was screened with a 525 bp DNA probe against exon 4 at the RZPD Deutsches 

Ressourcenzentrum für Genomforschung GmbH (Heidelberg). The identified cosmid clones were 

digested with either BglII, HhaI or EcoRI as indicated and hybridized with the labeled probe (Southern 

Blot). Clones containing exon 4 exhibit a 5.8 kb fragment for BglII, a 2.8 kb fragment for HhaI and a 
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1.6 kb fragment for EcoRI digestion. B. Southern Blot analysis of cosmid clones no. 

MPMGc121N1886Q2 (lane 1), MPMGc121L17390Q2 (lane 2), MPMGc121G055Q2 (lane 3), 

MPMGc121G23244Q2 (lane 4). The probe (Ex4-RZPD) was amplified by PCR with primer Sp2-Ex4-

RZPD-fw and Sp2-Ex4-RZPD-rev (see 2.2.2.2.3). 

 

 

3.2.4 Generation of the Sp2 knockout construct 

 

To target the Sp2 gene in mouse, a knockout construct was designed displaying the 

option for the generation of both, a constitutive and a conditional Sp2 knockout (see 

3.2.2). The starting vector for the Sp2 knockout was the pPNT plasmid (Fig. 3.2.4.A), 

containing a pgk-driven neomycin resistance (Neo) and herpes simplex Thymidine 

Kinase gene (hsv-TK) (Tybulewicz et al., 1991; see also Mangold, diploma work, 

1995). The PCR-amplified and sequenced Sp2 genomic fragments intron 3, intron 4 

and exon 4 (see 2.2.2.2.3 and Fig 3.2.4.B) as well as the three hybridized loxP sites 

(see 2.2.2.2.4) were subcloned into pPNT as described above (2.1.10.2.4) and 

depicted in Fig. 3.2.4.C. As a final cloning step, the pgk-driven neomycin resistance 

gene (Neo) of the pPNT plasmid was replaced by the En2-SA-IRES-LacZ-Neo-SVpA 

fragment (see 3.2.2) derived from plasmid pGT1,8-IRES-ßGeo (Mountford and 

Skarnes, unpublished; see also Mangold, diploma work, 1995) (Fig. 3.2.4.A). To 

verify correct integration of the subcloned fragments, characteristic restriction 

digestions were performed and the constructs sequenced (data not shown). A 

scheme of the final Sp2 knockout construct pPNT-cSp2ko as well as all pre-

constructs including fragment lengths are depicted in Fig. 3.2.4.C. 
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Fig. 3.2.4. Generation of the Sp2 knockout construct. A. Scheme of the starting plasmid pPNT 

(Tybulewicz et al., 1991) and the plasmid pGT1,8-IRES-ßGeo harbouring the En2-SA-IRES-LacZ-

Neo-SVpA fragment (Mountford and Skarnes, unpublished). B. PCR-amplified genomic fragments 

intron 3 (lane 2+3), intron 4 (lane 4+5) and exon 4 (lane 6+7). M, Lambda 1 marker after EcoRI and 

HindIII digestion (lane 1). 1% agarose gel. C. Scheme of the final Sp2 knockout construct (pPNT-

cSp2ko) and all pre-constructs after NotI linearization. Triangles represent loxP sites. For details, the 

reader is referred to 2.1.10.2.4. 
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3.2.5 Functional analysis of Cre-driven loxP site recombinase capacity 

 

To investigate whether the loxP sites present in the Sp2 knockout construct are 

functional, i.e. whether Cre recombinase is able to delete DNA sequences flanked by 

the loxP sites, a functionality assay in E. coli 294-Cre was performed as described in 

2.2.2.2. For this purpose, the final Sp2 knockout construct pPNT-cSp2ko and the pre-

construct pPNT-IoxP2 were used. Sp2 knockout construct pPNT-cSp2ko contains 

three loxP sites flanking exon 4 and the En2-SA-IRES-LacZ-Neo-SVpA cassette (in 

total 9 kb). Pre-construct pPNT-loxP2 harbours two loxP sites flanking the pgk-driven 

neomycin resistance gene (1.8 kb). Both fragments should be deleted due to Cre 

recombinase expression after transformation into E. coli 294-Cre bacteria. As 

depicted in Fig. 3.2.5, loxP-flanked DNA sequences of both constructs are 

successfully deleted by Cre recombinase, i.e. all three loxP sites are functional. 
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A DH5α Cre pPNT-loxP2 

 
Fig. 3.2.5. Functional analysis of Cre-driven loxP site recombinase capacity. A. E. coli DH5α and 

E. coli 294-Cre bacteria were transformed with either pPNT-loxP2 or the control plasmid pPNT. 

Plasmids were HindIII-digested and separated through a 0.6% agarose gel as indicated. As controls, 

undigested plasmids were loaded. Scheme represents situation before (above) and after Cre 

recombination (below) of pPNT-loxP2 in E. coli 294-Cre. Cre recombination leads to the deletion of 

the floxed Neo cassette (not visible in gel; depicted in brackets) resulting in a remaining 5.4 kb 

plasmid, visible in gel (lane 9). However, when transforming E. coli DH5α with pPNT-loxP2, a ca. 7.2 

kb fragment is expected after linearization (lane 7). In contrast to this, no Cre-driven recombination is 

observed for the loxP-less control plasmid pPNT (lane 5+3). M, Lambda 1 marker after EcoRI and 
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HindIII digestion (lane 1). B. The same experiment, described in (A), was performed with the final Sp2 

knockout construct pPNT-cSp2ko and the loxP-less control plasmid pPNT. Instead of HindIII digestion 

plasmids were linearized by NotI. Expected pPNT-cSp2ko fragment sizes visible in gel are 10.2 kb for 

successful Cre recombination (lane 9) and ca. 19.2 kb without Cre recombination (lane 8). In contrast 

to this, no Cre-driven recombination is observed for the loxP-less control plasmid pPNT (lane 5+4). 

Samples were loaded as indicated. M, Lambda 1 marker after EcoRI and HindIII digestion (lane 1). M1 

pPac-cSp2ko after BamHI digestion (lane 10). 0.4% agarose gel. 

 

 

3.2.6 Sp2 gene targeting in mouse embryonic stem cells 

 

Mouse embryonic stem (ES) cells were transfected with the conditional Sp2 knockout 

construct and selected for homologous recombination as described (2.2.4.5). Positive 

selected clones were tested by Southern Blotting (2.2.2.2.6) for homologous 

integration of the knockout construct (lzn/wt; see also 3.2.2 and 1.5) and used for 

blastocyst injections. Fig. 3.2.6 depicts strategy and results of ES cell genotyping by 

Southern Blot analysis. 
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Fig. 3.2.6. Sp2 gene targeting in mouse embryonic stem cells. A. Southern Blot strategy for ES 

cell genotyping. Wildtype (wt) and targeted (lzn) Sp2 alleles are depicted. A 387 bp probe hybridizes 

with an intronic region downstream of exon 4 (= intron 4). SacI (S) digestion of Sp2 heterozygous ES 

wildtype 
allele (wt) 

targeted 
allele (lzn) 

N- A B +/- 

S S 
6.9 kb 

S S S SS 

S 
4

3.2 kb 

SA-IRES-LacZ-Neo Intron 3 Intron 4 
4

probe 
(387 bp) 

B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 

wildtype 6.9 kb 

targeted 
allele (lzn) 

allele (wt) 

3.2 kb 

mouse ES cell DNA; SacI-digested

 102



cell DNA (lzn/wt) should result in a 6.9 kb fragment representing the wildtype allele (wt) and a 3.2 kb 

fragment representing the targeted Sp2 allele exhibiting homologous integration of the conditional Sp2 

knockout construct (lzn). B. Southern Blot analysis of 19 targeted ES cell clones after SacI (S) 

digestion. The 387 bp probe (ES-a-SB) was obtained by PCR amplification using primer Sp2-ES-a-

SB-fw and Sp2-ES-a-SB-rev (2.2.2.2.3). 

 

 

3.2.7 Genotyping of constitutive Sp2 lzn/lzn knockout mice 

 

Targeted embryonic stem (ES) cells were injected into blastocysts and implanted into 

pseudo-pregnant foster mice as described above (1.5 and 2.2.4.5) resulting in 

chimeric mice. Chimeric mice were crossed to heterozygosity (see 1.5 and 3.2.2). 

Sp2 heterozygous mice display one wildtype allele (wt) and one targeted allele (lzn) 

having replaced exon 4 by the conditional Sp2 knockout construct (floxed exon 4 + 

floxed En2-SA-IRES-LacZ-Neo-SVpA cassette). These mice were crossed to 

homozygosity (lzn/lzn) and genotyped by PCR (see 2.2.2.2.3). Fig. 3.2.7 depicts an 

example of genotyped mouse embryos. 
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Fig. 3.2.7. Genotyping of targeted hetero- and homozygous Sp2 mice. A. Scheme of the PCR 

strategy. Annealing region of the three used primers and resulting PCR fragments are depicted for 

wildtype (wt) and targeted Sp2 allele (lzn). Primers MSp2Ex/L3Seq3 (c) and MSp2In2Seq4 (b) allow 

the detection of the Sp2 wildtype allele (0.76 kb fragment), primers Neo (a) and MSp2In2Seq4 (b) the 

detection of the targeted Sp2 locus (1 kb fragment). B. PCR with DNA templates derived from mouse 

embryo tail tips (see 2.2.2.2.1) and primers indicated above demonstrating wt/wt (lane 2), lzn/lzn (lane 

3) and lzn/wt (lane 4) situation. Detailed PCR conditions are described in 2.2.2.2.3. M, Lambda 1 

marker after EcoRI and HindIII digestion (lane 1). 1% agarose gel. 
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3.2.8 Sp2 expression in targeted Sp2 lzn/lzn knockout mice 

 

PCR genotyping (3.2.7) demonstrated the correct targeting of the Sp2 gene in the 

mouse. To verify that the homozygous integration of the construct leads to a 

functional constitutive Sp2 knockout, Sp2 expression in the lzn/lzn mice was 

examined by Northern Blot analysis (3.2.8.1) and RT-PCR (3.2.8.2). Moreover, to 

study Sp2 protein expression during embryonic development, ß-galactosidase activity 

measurements were performed by LacZ stainings (X-Gal, BluoGal) of day E12.5 

mouse embryos (3.2.8.3). 

 

 

3.2.8.1 Detection of a Sp2-lzn fusion mRNA in the targeted mice 

 

To investigate whether the Sp2 knockout strategy leads to the loss of a functional 

Sp2 transcript, Northern Blot analyses were performed with total RNA from 

homozygous (lzn/lzn), heterozygous (lzn/wt) as well as from wildtype (wt/wt) mouse 

embryos (day E18.5). As depicted in Fig. 3.2.8.1, the expected Sp2 transcript of ca. 

2.5-3 kb was detected in wildtype (wt/wt) and a ca. 6-8 kb transcript representing the 

fusion mRNA of the Sp2 exons 1-4 with the IRES-LacZ-Neo-SVpA cassette in 

homozygous (lzn/lzn) embryos. According to this, both transcripts are detectable in 

heterozygous embryos (lzn/wt). 
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Fig. 3.2.8.1. Detection of a Sp2-lzn fusion mRNA in Sp2-targeted mice. Northern Blot analysis. 20 

µg of total RNA from day E18.5 embryos isolated by the LiCl/urea method (see 2.2.2.1.1) were 

separated through a 1% denaturing formaldehyde agarose gel, transferred to a nylon membrane and 

hybridized with a radioactive labeled probe against exon 3-6 (Ex 3-6 NB; see 2.2.2.1.4). 28S and 18S 

rRNA signals on the gel demonstrate comparable RNA loading amounts in all investigated samples. 

Wt, wildtype Sp2 allele; lzn, targeted Sp2 allele. 

 

 

3.2.8.2 Absence of exon 5-8 in the targeted mice 

 

The existence of a Sp2-LacZ-Neo fusion transcript requires to prove the absence of 

exons downstream of the LacZ-Neo cassette (exon 5-8) in this transcript. For this, an 

RT-PCR experiment was performed with RNA derived from fetal liver and brain (day 

E18.5) using primers against exon 5 and 6 (see 2.2.2.1.3). In wildtype but not lzn/lzn 

embryos these primers should anneal within exon 5 and 6, thus resulting in a 228 bp 

PCR fragment. As expected, Fig. 3.2.8.2 demonstrates the presence of exon 5 and 6 

sequences in the wildtype (wt/wt) but not in the targeted (lzn/lzn) fetal transcript. 
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Consistently, a weak 228 bp signal appears with RNA from heterozygous embryos 

(lzn/wt). 

A fw 

 
Fig. 3.2.8.2. Absence of exon 5-8 in the targeted lzn/lzn mice. A. Scheme of RT-PCR strategy. 

Wildtype Sp2 mRNA (wt) and targeted Sp2-lzn fusion mRNA (lzn) are depicted. Exons 1-8 are 

indicated following the colour code of 3.2.1. Arrows represent primer Sp2-Ex5-RT-fw (= fw) and Sp2-

Ex6-RT-rev (= rev) that should amplify exon 5 and 6 in the Sp2 wildtype (wt) but not in the targeted 

(lzn) RNA, resulting in a 228 bp RT-PCR fragment (black beam). B. RT-PCR with RNA obtained from 

liver (Li) and brain (Br) of lzn/lzn (lanes 2-9), lzn/wt (lanes 10-17) and wt/wt (lanes 18-25) mouse 

embryos (day E18.5) using primer Sp2-Ex5-RT-fw and Sp2-Ex6-RT-rev (for detailed information, see 

2.2.2.1.3). As internal reaction control (pc), primers Cyclophillin-fw and -rev directed against 

sequences of the cyclophillin gene were used resulting in a ca. 100 bp fragment. Each reaction was 

performed in duplicates. M, Lambda 1 marker after PstI digestion (lane 1). 1.6% agarose gel. 

 

 

3.2.8.3 Endogenous Sp2 expression in mouse embryos 

 

To determine Sp2 expression pattern during embryogenesis, ß-galactosidase activity 

in day E12.5 mouse embryos was investigated by X-Gal and BluoGal staining of 

lzn/lzn, lzn/wt and wt/wt embryos (see 2.2.4.7). Lzn/lzn embryos are characterized by 
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integration of the conditional knockout construct at the Sp2 locus of both alleles (see 

1.5 and 3.2.2), thus exhibiting the ß-galactosidase gene (LacZ) under the control of 

the endogenous Sp2 promoter. If the Sp2 promoter is active in these embryos, the 

LacZ gene is expressed and ß-galactosidase activity can be detected by X-Gal or 

BluoGal stainings of the embryos. Thus, all blue-stained embryonic tissues or body 

regions display Sp2 expression. On the other hand, lzn/wt embryos exhibit 

homologous integration of the conditional Sp2 knockout construct only on one allele. 

For this, a weaker ß-galactosidase activity should be observed. In contrast to that, no 

activity should be detected in homozygous wildtype (wt/wt) embryos. Fig. 3.2.8.3 

demonstrates that Sp2 is widely expressed in day E12.5 embryos. Moreover, the 

intensity of X-Gal and BluoGal staining is lower in the heterozygous lzn/wt and 

absent in the wt/wt embryos, as expected. 

A 

 
Fig. 3.2.8.3. LacZ expression in day E12.5 mouse embryos. Lateral view of day E12.5 mouse 

embryos. Blue colour represents ß-galactosidase activity, i.e. Sp2 expression in the corresponding 

tissue or body region. Wt, wild type Sp2 locus; lzn, targeted Sp2 allele. A. X-Gal staining. B. BluoGal 

staining. 
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3.2.9 Preliminary characterization of targeted Sp2 lzn/lzn mice 

 

Two aspects were investigated to characterize Sp2 lzn/lzn knockout mice being 

available at the end of the thesis period: viability (3.2.9.1) and the occurrence of 

growth abnormalities during embryonic development (3.2.9.2). 

 

 

3.2.9.1 Post- and pre-natal viability of targeted Sp2 lzn/lzn mice 

 

Heterozygous Sp2 (lzn/wt) knockout mice are viable, reproduce normal and display 

no obvious phenotype after birth. Also no obvious abnormalities during embryonic 

development were detectable. In contrast to this, homozygous Sp2 lzn/lzn knockout 

mice exhibit a strongly reduced viability: only 1 out of 73 born mice are lzn/lzn (Tab. 

3.2.9.1). This embryo died during the first weeks after birth (Nynke Gillemans, 

personal communication). To find out whether homozygous Sp2 lzn/lzn knockout 

mice already die during embryonic development, embryos of three different 

developmental time points (E18.5, E12.5 and E9.5) were analyzed. As depicted in 

Tab. 3.2.9.1, Sp2 lzn/lzn embryos exhibit a normal Mendelian distribution at all three 

time points. Thus far, no dramatic effect of Sp2 protein deficiency on viability is 

visible in these animals. However, Sp2 lzn/lzn embryos at day E18.5 slightly deviate 

from the Mendelian distribution but probably due to the low number of analyzed 

samples. 

 

 Sp2 lzn/lzn Sp2 lzn/wt Sp2 wt/wt total number

born 
day E18.5 
day E12.5 
day E9.5 
 
expected 
distribution 

1 (1.4%) 
10 (18.5%) 
14 (24.6%) 
7 (24.1%) 

 
 

25% 

52 (71.2%) 
31 (57.4%) 
31 (54.4%) 
15 (51.7%) 

 
 

50% 

20 (27.4%) 
13 (24.1%) 
12 (21.1%) 
7 (24.1%) 

 
 

25% 

73 
54 
57 
29 
 
 
 

 

Tab. 3.2.9.1. Post- and pre-natal viability of targeted Sp2 lzn/lzn mice. Genotype distribution in [n] 

and [%] of either new-born Sp2 mice or day E18.5, E12.5 and E9.5 embryos. Mouse genotyping was 

performed as described in 3.2.7 and 2.2.2.2.3. Wt, wildtype Sp2 allele; lzn, targeted Sp2 allele. 
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3.2.9.2 Reduced growth in day E18.5 Sp2 lzn/lzn embryos 

 

Consistent with the findings, that Sp2 deficiency influences viability of new-born and 

probably also day E18.5 embryos, a significant reduction in body size and weight of 

day E18.5 Sp2 knockout (lzn/lzn) embryos compared to wildtype (wt/wt) and 

heterozygous (lzn/wt) embryos is detectable, however with a strong variation (Fig. 

3.2.9.2.A-B). This reduction is associated with a developmental retardation, at least 

in some of the lzn/lzn embryos (see Fig. 3.2.9.2.B). In addition, the body size at 

earlier developmental time points (E12.5 and E9.5) was determined. However, no 

statistically significant differences between knockout and wildtype or heterozygous 

embryos were observed (Fig. 3.2.9.2.A+C). This favours the conclusion that Sp2 

deficiency effects normal mouse development in later embryonic stages (at least 

E18.5). However, the mechanisms leading to this Sp2-based abnormal development 

have to be explored. 
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Fig. 3.2.9.2. Growth reduction in day E18.5 Sp2 lzn/lzn embryos. A. Weight [mg] and size 

distribution [mm] in day E18.5 mouse embryos as well as size distribution in E12.5 and E9.5 mouse 

embryos. Wt, wildtype Sp2 allele; lzn, targeted Sp2 allele. N, number of analyzed embryos per each 

developmental time point. B. Example of wildtype (wt/wt) and Sp2-targeted (lzn/lzn) mouse embryos 

of embryonic day E18.5. Lateral view. C. Examples of wildtype (wt/wt) and Sp2-targeted (lzn/lzn) 

mouse embryos of embryonic day E9.5. Lateral view. 
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4. Discussion 

 

4.1 Structure comparisons between Sp2 and the glutamine-rich family 

members Sp1, Sp3 and Sp4 

 

Many data exist supporting the fundamental importance of the glutamine-rich Sp 

family members Sp1, Sp3 and Sp4 in a diverse set of biological processes (Philipsen 

and Suske, 1999; Bouwman and Philipsen, 2002). However, until now, such 

information lacks for the transcription factor Sp2, which represents the less 

conserved member of the glutamine-rich Sp subgroup. The studies reported herein 

were conducted to initiate the characterization of structural and functional properties 

of the transcription factor Sp2 on the molecular as well as on the physiological level. 

 

Concerning the gene and protein structure, our analyses demonstrate high 

similarities between transcription factor Sp2 and the glutamine-rich family members 

Sp1, Sp3 and Sp4. The Sp2 gene is characterized by a similar exon-intron structure 

as it is described for these factors. The two most downstream exons of the Sp2 gene 

(exon 7 and 8; see Fig. 3.2.1.B) encode the characteristic DNA-binding domain, a 

large central exon (exon 4) codes for the two glutamine-rich and serine/threonine-rich 

domains, and the exons upstream of exon 4 encode the N terminal part of the 

protein. 

 

Specific for the Sp2 gene is the existence of two exons (exon 5 and 6; see Fig. 

3.2.1.B) encoding the protein region between domain B and the DNA-binding 

domain. In Sp1, Sp3 and Sp4 this region is encoded by only one exon. Whereas 

exon 6 encodes the so-called Btd box (see 1.4 and 3.2.1) and displays homology 

towards the corresponding exon in the remaining glutamine-rich Sp members (Sp1, 

Sp4: exon 4; Sp3: exon 5; see Fig. 3.2.1.B), the evolution and function of exon 5 has 

to be clarified. However, it is conspicuous that the length of exon 5 plus exon 4 

together (the latter encoding domain A and B and being smaller in size as the 

corresponding gene in Sp1, Sp3 and Sp4) is comparable with the length of the exon 

encoding domain A and B in Sp1, Sp3 and Sp4. Supposing Sp2 as the evolutionary 

most basal factor among the glutamine-rich Sp factors (Kolell and Crawford, 2002; 

Suske, 1999), it might be that the large exon coding for the transactivation domains 
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in Sp1, Sp3 and Sp4 evolved from two individual exons. Whether Sp2 exon 5 

displays specialized function, has to be explored. 

 

Also specific for the Sp2 gene is one exon, which is present in the human cDNA 

upstream of exon 3 but not in the published mouse cDNA sequences. Whether this 

exon exists in mouse and whether it is target of alternative splicing has to be 

determined. The occurrence of alternative splicing of the third exon in Sp3 (Krüger, 

diploma work, 2002) could be a hint that such an event is also expectable for Sp2. 

 

In addition, two potential exons upstream to exons 1 (the latter harbouring the 

translation start codon; see Fig. 3.2.1.A) were identified in Sp2 by alignment with the 

mouse cDNA NM_030220. Although these exons also contain several AUG codons, 

the reading frames are closed by stop codons. Moreover, they are not present in the 

other Sp2 cDNAs. Thus, it remains to be clarified whether these are “real” exons. 

 

Apart from these structural differences on the gene level, the similarities in the exon-

intron structure as well as the corresponding functional protein domains support the 

relationship between Sp2 and the glutamine-rich family members Sp1, Sp3 and Sp4. 

On protein level, Sp1-4 share several functional domains like the aforementioned 

highly conserved DNA binding domain, a stretch of 81 amino acids forming three 

C2H2 zinc fingers, and the glutamine- and serine/threonine-rich regions. Contrary to 

previous reports (e.g. Kingsley and Winoto, 1992; Bouwman and Philipsen, 1992), 

Sp2 protein also possesses two glutamine-rich domains (domain A and B) and two 

serine/threonine-rich regions. 

 

Different to the glutamine-rich Sp factors is the lack of the D domain in Sp2, a region 

located C-terminally to the zinc fingers. In Sp1, domain D together with the two 

transactivation domains A and B are required for a synergistic transcription activation 

by binding to multiple sites (Pascal and Tjian, 1991). In theory, this function should 

be absent in Sp2. However, its ability to form multimers via the glutamine-rich B 

domain like in Sp1 (Pascal and Tjian, 1991) should be present. As a result of the 

absence of the D domain, the Sp2 protein is shorter in size as Sp1, Sp3 and Sp4. 

This again supports its evolutionary most distant position within the glutamine-rich Sp 

subgroup. 
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To summarize the analysis of the mouse Sp2 gene and protein structure, it is to 

retain that Sp2 protein shares many of the characteristic structural features with the 

related glutamine-rich Sp family members Sp1, Sp3 and Sp4 like DNA binding and 

glutamine-rich domains. However, as described above, also differences are observed 

when comparing protein and gene structure. Nevertheless, the assumption that Sp2 

should not be recognized as a member of the Sp family, which is favoured by Kolell 

and Crawford (2002) based on the H→L substitution in the first zinc finger and the 

assumed absence of domain A, can be excluded. Whether and how the structural 

distinctions influence the functional specificity of Sp2 has to be unravelled. The 

results of the functional in vitro and in vivo studies presented in this thesis work 

suggest that these structural differences indeed affect Sp2 function (as it will be 

discussed in the following chapters). 

 

 

4.2 Regulation of Sp2 DNA binding capacity and transactivation properties 

 

When initiating this thesis work, no functional data about the transcription factor Sp2 

were available. To analyze Sp2 function, the ability of Sp2 to activate reporter gene 

expression was investigated. Based on the structural similarities towards the other 

glutamine-rich family members (zinc finger domain, glutamine-rich regions, etc.) and 

the results from expression and subcellular localization studies, a similar binding 

affinity towards the classical Sp1 binding site (GC box) was expected. Therefore, 

reporter constructs were used, in which the expression of the reporter gene was 

controlled by a promoter containing Sp1 binding sites. However, no Sp2-driven 

activation was detectable. 

 

Investigation of the Sp2 capacity to bind to GC-box-containing DNA sequences 

resulted in the finding that full-length Sp2 protein –although highly expressed– is 

unable to bind to the classical Sp1 binding site. Also when using DNA sequences 

harbouring other binding motifs, full-length Sp2 failed to bind. However, when 

analyzing N-terminally truncated Sp2 protein fragments, it turned out that those 

fragments lacking the first 179 N-terminal amino acids are able to bind DNA (GC 

boxes). This led to the assumption that the N terminus somehow is involved in the 

regulation of Sp2 DNA binding capacity and that the exchange of a critical amino acid 

in the first zinc finger does not influence sequence specificity as it was previously 
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postulated (e.g. Kingsley and Winoto,1992; Moorefield, 2004). Yet, although binding 

DNA, the N-terminal Sp2 deletions did not activate reporter gene expression. 

 

Unexpected results were obtained, when C-terminally truncated, zinc-finger-less Sp2 

deletion mutants were fused at the N terminus to a Gal4 DNA-binding domain. Those 

Sp2 fragments containing the first 179 N-terminal amino acids were able to bind the 

Gal4 DNA-binding site but exhibited an extremely retarded migration in gel 

electrophoresis (see Fig. 3.1.5.7.B). However, when analyzing a Gal4-Sp2 fusion 

protein fragment lacking these amino acids, no binding signal for this fragment was 

detectable. In addition, compared to a Gal4-Sp1 control, the Gal4-Sp2 deletions did 

not activate reporter gene expression. 

 

These results suggest that a putative regulatory function is not only restricted to the 

N-terminal part of the Sp2 protein but also involves a region located around the B 

domain. Assuming this, three questions arise that should be discussed: (1) What is 

the general nature of the regulating mechanism; (2) why are the Gal4-Sp2 fusions 

containing the N-terminus as well as the region around the B domain (e.g. fragment 

Gal4-Sp2 (aa6-471)) still able to bind DNA; and (3) why does a N-terminal deletion of 

the first 206 amino acids (fragment Sp2 (aa207-606)) rescue from binding inhibition 

but not when the same Sp2 fragment is fused at the N terminus to a Gal4 DNA-

binding domain (fragment Gal4-Sp2 (aa207-471))? 

 

Regarding the general mechanisms regulating Sp2 DNA binding activity, several 

putative alternatives are imaginable, including regulation by posttranslational 

modification and/or protein-protein interactions, either inhibiting or activating the DNA 

binding capacity. As data bank research for known protein modification or interaction 

motifs in the Sp2 sequence did not reveal any helpful information, the further 

discussion is rather speculative. 

 

Regulation of protein activity by posttranslational modifications is a well-known 

mechanism and examples can be found within the Sp family members. Transcription 

factor Sp1 activity, e.g., is regulated by phosphorylation and glycosylation. 

Depending on cell type and stimuli, phosphorylation of Sp1 protein can either 

increase (e.g. Merchant et al., 1999; Rohlff et al., 1997), decrease (e.g. Armstrong et 

al., 1997; Borellini et al., 1990; Leggett et al., 1995), or not affect (Jackson et al., 
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1990) Sp1 DNA binding activity. Reduced O-GlcNAcylation of Sp1 protein is reported 

to result in a decreased Sp1 binding activity (Han and Kudlow, 1997). However, other 

reports correlate increased O-GlcNAcylation of Sp1 protein with a positive (Han and 

Kudlow, 1997; Du et al., 2000) or negative (Yang et al., 2001) regulation of Sp1 

activity. 

 

Another possibility of regulating Sp factor activity by posttranslational modification is 

the inhibition of Sp3 transactivity by SUMO. SUMO regulates Sp3 transactivation 

capacity by attaching to a critical lysine residue within an inhibitory domain (Dennig et 

al., 1996; Sapetschnig et al., 2002). Based on its functional variety (reviewed in 

Seeler and Dejean, 2003), it is conceivable that SUMO also regulates DNA binding 

specificity of transcription factors. However, no classical SUMO site is present in the 

Sp2 protein. 

 

Whether and how Sp2 DNA binding capacity is regulated by posttranslational 

modifications has to be explored. Western Blot analyses of endogenous Sp2 

expression in various cell lines resulted in two differently migrating protein species 

detected by the Sp2-specific antiserum (see Fig. 3.1.2.1-2). Apart from reflecting the 

existence of alternative splice variants or translationally controlled protein isoforms, 

this might also be a hint for posttranslational modifications. It is conceivable, that a 

modification influences protein conformation and by this enables the interaction of 

Sp2 protein with the DNA. On the other hand, it is possible that a modification like 

e.g. glycosylation somehow masks the zinc finger domain thus preventing Sp2 from 

binding. However, it is difficult to explain, why the deletion fragment Sp2 (aa207-606) 

is able to bind DNA whereas the same construct N-terminally fused to a Gal4 DNA-

binding domain is unable to interact. 

 

Another putative mechanism regulating Sp2 DNA binding capacity would be based 

on protein-protein interactions. An interacting protein could either function as 

activator or inhibitor of Sp2-DNA interaction. Our results obtained from DNA binding 

studies with N-terminal truncated Sp2 protein fragments would suggest the existence 

of an inhibitory protein binding within the first 179 N-terminal amino acids of Sp2 

protein. This inhibitor could prevent Sp2 from binding to DNA by conformational 

changes and/or by masking the zinc finger domain. As described above, our results 

obtained from the Gal4-Sp2 studies, however, indicate that also a region around the 
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B domain is involved in the regulation process. Moreover, the fact that Sp2 DNA 

binding inhibition occurs as well in insect (Drosophila SL2) and mammalian (HEK-

293) cells favours the existence of a protein that is highly abundant. 

 

During the period of this thesis work, Horowitz and co-workers published results on 

transactivation and DNA binding properties of Sp2 (Moorefield et al., 2004). 

Consistent with our findings, they observed that SL2-overexpressed Sp2 protein does 

not or at the most very weakly activate the Hamster DHFR promoter. According to 

this, Sp2 protein that has been overexpressed by recombinant baculoviruses in Sf9 

insect cells did only bind to these sequences when being used in a 20-50 fold excess 

compared to Sp1- or Sp3-containing extracts. Also when using several GC-rich 

oligonucleotide variants, Sp2-DNA interactions remained comparably low. In addition, 

Sp2 protein was observed to be expressed in many human and mouse cell lines. 

However, no or only low binding affinity was apparent in extracts prepared from these 

cells. When incubating recombinant Sp2 protein derived from baculovirus-infected 

Sf9 cells with increasing amounts of the mammalian cell extracts before analyzing its 

DNA binding activity, the weak interactions between DNA and the recombinant Sp2 

protein could be totally blocked. Western Blot analyses of the extract mixes 

demonstrated that the loss of DNA binding capacity was not due to Sp2 protein 

degradation. From this, Horowitz and co-workers concluded that Sp2 DNA binding 

activity is inhibited by one or more proteins in mammalian cells, thus supporting our 

results. By protein-protein binding assays, two interacting proteins were identified, a 

84 kDa protein (p84) specifically binding to the glutamine-rich domains of Sp2 and a 

74 kDa protein (p74) also binding to the transactivation domains of Sp1 and Sp3. 

Whereas p84 function is unclear, p74 is reported to decrease the transactivation 

capacity of at least Sp1 (Murata et al., 1994). Whether p74 also negatively influence 

the Sp2 DNA binding capacity and whether it functionally interacts with p84, has to 

be explored. Moreover, Horowitz and co-workers could not prove whether p84 

inhibits Sp2-DNA interactions. 

 

Besides the regulation by one or two inhibitory proteins binding to two distinct sites 

within the Sp2 protein, it is also conceivable that one protein contacts Sp2 by two or 

more binding sites, e.g. within the first 179 N-terminal amino acids as well as the N-

terminal part of the B domain. As depicted in Fig. 4.2, the DNA binding incapability of 

Sp2 fragments containing the first 179 N-terminal amino acids on the one hand and 
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the ability for DNA interactions of those fragments lacking these amino acids on the 

other hand thus would be explainable. Assuming one contact sequence being located 

around the B domain, it could be suggested that a small percentage of the fragments 

Sp2 (aa180-606) (not depicted here) and Sp2 (aa207-606), which contain parts of 

the sequence, still interact with the inhibitor. This would explain the gradual effect 

observed in gelelectrophoresis for these fragments in comparison to the fragments 

completely lacking the N-terminal part of domain B (see Fig. 3.1.5.6). 

 
Fig. 4.2. Hypothetical regulation model of Sp2-DNA interactions. A. This model suggests the 

existence of an inhibitory protein (depicted in green) regulating Sp2-DNA interactions. The inhibitor 

contacts Sp2 through two putative binding sites located at the N-terminal parts of domain A and B. 

Probably due to conformational changes and/or masking of the zinc finger domain, this prevents Sp2 

from contacting the DNA. In the case of Gal4-Sp2 (aa207-471), the inhibitor protein binds to the N-

terminal region of the B domain of each individual Gal4-Sp2 molecule dimerized through the Gal4 

DNA-binding domain. These interactions mask the Gal4-DNA binding sites thus leading to DNA 

binding incapability. Dotted lines represent putative interactions between two inhibitor molecules. B. In 
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the fragment Sp2 (aa207-606), the inhibitor is unable to bind (indicated as red cross) due to the lack of 

the second binding site. This can not be compensated by either a second inhibitor molecule or the 

Gal4 DNA-binding domain like in the corresponding Gal4 fusion fragment. The interaction with the 

dimerized Gal4-Sp2 (aa6-471) fragments should not influence their DNA binding capacity but results 

in a reduced mobility of the fragments during gelelectrophoresis due to the interaction with the two 

inhibitor proteins. A-B. Green ellipse point out the N-terminal amino acids being present in the Sp2 

deletion mutants exhibiting no DNA binding capacity in EMSA experiments (see 3.1.5.6). 

 

Whereas GC boxes can be bound by transcription factor monomers, the Gal4 binding 

sites require dimerization, which occurs through the Gal4 DNA-binding domain. 

Assuming an inhibitory protein, which also contacts sequences of the B domain, it 

can be postulated for the Gal4-Sp2 (aa207-471) fragment that the inhibitor binds to 

the N-terminal region of the B domains of each fusion fragment. This could either 

impede the dimerization process due to steric reasons or could mask the dimerized 

Gal4 DNA-binding domains and prevent them from interacting with the DNA. As the 

unfused fragment Sp2 (aa207-606) appears not to interact with the inhibitory protein, 

it could be assumed that a Gal4-Sp2 (aa207-606) monomer would also be unable for 

this interaction. Only when being dimerized this interaction should be possible. Thus, 

the inhibitor should not prevent from dimerization but impede Gal4-DNA interactions 

by masking the Gal4 DNA-binding domain. 

 

Regarding the situation for those Gal4-Sp2 fusions including the first 179 N-terminal 

amino acids (e.g. Gal4-Sp2 (aa6-471)): Assuming an inhibitor, which binds within the 

first 179 N-terminal amino acids as well as the N-terminal part of the B domain, such 

an effect as described for Gal4-Sp2 (aa207-471) should not be expected. Here, the 

Gal4 DNA-binding domain should remain unmasked because both transactivation 

domains of Sp2 (A and B) are accessible for the inhibitor. In addition, the ability of 

these Sp2 fragments to bind to DNA although interacting with the inhibitor could also 

explain the reduced mobility observed in gelelectrophoresis (see Fig. 3.1.5.7). 

 

In addition to the Sp2-DNA interaction studies with unfused or Gal4-fused truncated 

Sp2 protein fragments, transactivation assays were performed using those fragments 

being able to bind to the GC boxes. However, although binding to DNA, these 

fragments were unable to activate reporter gene expression on different GC-box-

containing promoters. 
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This could be explained by the lack of one transactivation domain in the analyzed 

protein fragments Sp2 (aa180-606), Sp2 (aa207-606), Gal4-Sp2 (aa6-215), Gal4-

Sp2 (aa207-606) or the occupancy of the transactivation domains in the Gal4-fused 

Sp2 fragments including the first 179 N-terminal amino acids (Gal4-Sp2 (aa6-471), 

Gal4-Sp2 (aa6-357)). However, it is reported for Sp1 that one activation domain is 

sufficient for transactivation (Courey and Tjian, 1988). This would favour a repressing 

function of transcription factor Sp2 in the regulation of gene expression. 

 

During the period of this thesis work, Phan et al. (2004) postulated a repressive 

function of transcription factor Sp2 on the expression of the carcinoembryonic 

antigen-related cell adhesion molecule 1 (CEACAM1) in prostate cancer cells. A 

repressive function of Sp2 would support the results presented here in this thesis. 

Their statement was based on the detection of an increased Sp2 expression level 

along with a decreased CEACAM1 expression in prostate cancer cells. Sp2 

expression was detected by using the Sp2-specific Santa Cruz antibody no. sc-643 

(Santa Cruz Biotechnology; USA: Santa Cruz). When trying to detect recombinant 

Sp2 protein by the related Sp2-specific Santa Cruz antibody no. sc-17814 during this 

thesis work, we observed that the antibody does not detect the recombinant protein 

(data not shown). In addition, when analyzing Sp2 protein expression in mouse 

tissues, the antibody detected a protein, which is smaller in size than expected for 

Sp2. This could also be observed for the expression data presented by Phan et al. 

(2004). From this, it can be concluded that the Santa Cruz antibody no. sc-643 might 

also be unable to detect the Sp2 protein. Therefore, the results of Phan et al. have to 

be interpreted cautiously. 

 

In summary, our data suggest a regulation of the Sp2-DNA interaction capacity and 

by that its function as regulator of gene expression. Although exhibiting structural 

similarities like the highly conserved DNA-binding domain, the individual glutamine-

rich Sp family members display a high functional specificity as demonstrated by the 

different knockout phenotypes. The functional specificity is achieved e.g. by 

differences in expression pattern or posttranslational modifications (Bouwman and 

Philipsen, 2002). The regulation of Sp2-DNA interaction capacity probably represents 

a further mechanism leading to this functional specificity. 
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Further steps in analyzing the mechanisms of Sp-DNA binding and transactivation 

regulation could be the attempt to narrow down the putative inhibitor binding sites by 

generating further deletion mutants. In addition, a yeast-two-hybrid screen for 

proteins interacting with the putative binding regions could be a valuable approach. 

On the other hand, the investigation of Sp2 posttranslational modifications should be 

performed. Moreover, a focus should also be directed on the analysis of Sp2-DNA 

interactions in vivo by ChIP assays. 

 

 

4.3 Sp2 is essential for normal mouse development 

 

To unravel the biological function of Sp2, Sp2-targeted mice were generated. These 

mice are characterized by the insertion of a LacZ-Neo cassette downstream of exon 

4, which encodes the two glutamine-rich domains A and B. The insertion results in a 

fusion transcript consisting of the Sp2 exons 1-4 and the LacZ-Neo mRNA. RT-PCR 

experiments demonstrated that the exons 5-8 are absent in the Sp2-LacZ-Neo (Sp2-

lzn) fusion transcript. It is expected that translation of the Sp2-lzn transcript leads to 

an non-functional Sp2 protein fragment. However, Western Blot analyses of Sp2-

targeted and wildtype mouse tissue extracts (day E18.5) did not allow to distinguish 

between the targeted and the wildtype Sp2 protein (data not shown). From this, it has 

to be concluded that the translated Sp2-lzn transcript includes IRES and LacZ 

sequences at the C terminus, thus being similar in size as wildtype Sp2 protein. To 

confirm that the LacZ-Neo insertion reflects Sp2 deficiency and to determine putative 

differences between the Sp2 lzn/lzn and a Sp2 -/- phenotype, the generation of Sp2 

knockout mice based on exon 4 deletion by crossing Sp2 lzn/lzn with Cre 

recombinase-expressing mice is in progress. 

 

Regarding the Sp2 lzn/lzn phenotype: Whereas heterozygous Sp2-targeted mice 

(Sp2 lzn/wt) do not differ from wildtype animals, homozygous targeted mice (Sp2 

lzn/lzn) display a clear phenotype: only one out of 73 born mice was lzn/lzn. This 

animal died within the first weeks after birth. To find out whether Sp2 lzn/lzn mice 

already die during embryonic development, mouse embryos of day E18.5, E12.5 and 

E9.5 were investigated. Whereas embryos appear normal until day E12.5, Sp2 

lzn/lzn embryos at day E18.5 display a significant reduction in body size and weight, 

however with a strong variation. This favours the conclusion that the mutation of the 
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Sp2 gene effects normal mouse development at least at later embryonic stages. As 

Sp2-targeted mice were only available at the end of this thesis work, a detailed 

analysis of the mechanisms leading to the abnormal development could not be 

performed. For this, further studies are required. 

As discussed above, Sp2 is closely related to the glutamine-rich Sp family members 

Sp1, Sp3 and Sp4, all of them recognizing the same DNA elements. However, the 

essential biological functions appear to be different. Whereas Sp1 mutant embryos 

are already severely retarded in the early development and die around day E10.5 of 

gestation (Marin et al., 1997), Sp3-deficient mice develop normal until birth but die a 

few minutes post-natum due to respiratory failure (Bouwman et al, 2000). In addition, 

they are characterized by abnormalities in tooth and bone development (Bouwman et 

al., 2000; Göllner et al, 2001b) and an impaired hematopoiesis (Van Loo et al., 

2003). Disruption of the Sp4 gene revealed that Sp4 also is important for early post-

natal survival since approximately two-thirds of the Sp4-deficient mice die within the 

first weeks after birth for unknown reasons (Göllner et al., 2001a). Surviving mice are 

growth retarded and either exhibit a pronounced delay in sexual maturation (females) 

or an abnormal reproduction behaviour (males). 

 

Although displaying different phenotypes, overlapping functions of the individual Sp 

family members might exist in vivo. This is supported e.g. by the observation that 

Sp3 mRNA is up-regulated in Sp4-deficient mice suggesting a functional 

compensation of Sp4 deficiency by increased Sp3 levels (Göllner et al., 2001a). The 

existence of a certain functional redundancy within the glutamine-rich Sp family 

members could explain why loss of Sp2 does not visibly affect the early mouse 

development (at least until day E12.5). 

 

Another possible explanation for this is based on the assumption that the interaction 

between transcription factor Sp2 and its corresponding DNA binding site in a 

promoter is a regulated process (see 4.2). Although widely expressed in mammals, 

Sp2 thus might control the expression of only a well defined set of genes at certain 

developmental time points or under distinct cellular or environmental conditions 

depending on the nature of the regulating mechanism. This functional specificity 

could be a reason why the effect of Sp2-deficiency is not visible at the early stages of 

development and not in all of the day E18.5 embryos. 
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To elucidate the reasons for the abnormal development of the targeted animals, a 

detailed histological analysis of the E18.5 Sp2 lzn/lzn embryos is required. As well, 

day E16.5 and E14.5 embryos should be examined to determine whether an 

influence of Sp2 deficiency is also observed at this stage of development. 

Additionally, as mentioned before, the generation of Sp2 knockout mice based on the 

complete deletion of exon 4 and the comparison with the lzn/lzn phenotype should be 

performed. Moreover, as the deletion of transcription factor Sp2 leads to lethality, the 

generation of tissue- or time-point-specific conditional knockout mice is necessary to 

unravel precisely its role in adult mice. Thus far, our results demonstrate that the loss 

of transcription factor Sp2 has an tremendous effect on the normal development and 

viability of the mouse. 

 

In addition to the experiments proposed above, two other approaches should be 

performed in future: On the one hand, the occurrence or influence of redundancy in 

the Sp2 mouse phenotype due to the further individual Sp family members should be 

investigated by the generation of double or compound Sp knockouts. On the other 

hand, a second aim should be the identification of Sp2 target genes by the 

microarray technique. 
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6. Appendix 

 

6.1 Abbreviation index 

 

Additionally to the usual SI and IUPAC units, the following shortcuts were used: 

 

A 

APS 

ATP 

bp 

BSA 

C 

°C 

CAT 

cDNA 

cpm 

dATP 

dCTP 

Del 

DEPC 

DMEM 

DMSO 

DNA 

dNTP 

DTT 

EDTA 

EGTA 

ES cells 

FBS 

Fig. 

fw 

G 

G418 

HA 

HEPES 

Adenosin 

Ammonium peroxodisulfate 

Adenosin triphosphate 

base pairs 

Bovine serum albumine 

Cytidin 

degree Celsius 

Chloramphenicol acetyl transferase 

complementary DNA 

counts per minute 

desoxy Adenosin triphosphate 

desoxy Cytidin triphosphate 

deletion 

Diethylpyrocarbonate 

Dulbecco’s modified Eagle’s medium 

Dimethylsulfoxide 

Desoxy ribonucleic acid 

desoxy nucleotide triphosphate 

Dithiothreitol 

Ethylenediamine-tetraacetic acid 

Ethyleneglycol-tetraacetic acid 

embryonic stem cells 

Fetal bovine serum 

Figure 

forward 

Guanosin 

Neomycin analogon G418 

Haemaglutinine 

4-(2-Hydroxyethylene)-1-Piperazineethansulfonate 
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hsv-TK 

HTLV 

IPTG 

kb 

kDa 

Luc 

lzn 

mRNA 

Neo 

nt 

OD 

PAA 

PAGE 

PBS 

PCR 

pgk 

PMSF 

PVDF 

RNA 

rev 

RNase 

rpm 

SDS 

SSC 

SV40 

T 

TBE 

TE 

TEMED 

Tris 

U 

V 

v/v 

wt 

w/v 

herpes simplex virus Thymidine Kinase 

Human T-cell Lymphotrophic Virus 

Isopropyl-ß-D-galactoside 

kilo base pairs 

kilo Dalton 

Luciferase 

LacZ-Neo (targeted Sp2 allele) 

messenger RNA 

Neomycin resistance gene 

nucleotide 

optical density 

Polyacrylamide 

Polyacrylamide Gel Electrophoresis 

Phosphate buffered saline 

Polymerase chain reaction 

phosphoglycerate kinase promoter 

Phenylmethylsulfonylfluoride 

Polyvinylidendifluoride 

Ribonucleic acid 

reverse 

ribonuclease 

revolutions per minute 

Sodium dodecyl sulfate 

SDS sodium citrate buffer 

Simian Virus 40 

Thymidine 

Tris borate EDTA buffer 

Tris EDTA buffer 

Tetramethylethylendiamin 

Tris-hydroxy-methyl-amino-methane 

Unit (enzyme activity) 

Volt 

volume per volume 

wildtype 

weight per volume 
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6.2 Mouse Sp2 genomic DNA and cDNA sequences 

 

Mouse Sp2 genomic DNA sequence; Celera access. no. 
mCG13240 
 
Exon identification via alignment of the genomic Celera mouse Sp2 DNA 
sequence with two mouse (NCBI access. no. BC021759 and NM_030220) 
and two human (NCBI access. no. BC016680 and D28588) Sp2 cDNA 
sequences. 
 
 
9001   ATGAAGACCT GAGTTCATAT CTCCAGTACC CATGTCAAAA ACAGTGTGCA CATTCATAAC 
9061   CCAGGTTCGG GGAAGGTGGA GACAGAAGGG TTTACTGGCC CCAGTCTAGC TGAATCTGCA 
9121   GGTTCTGGTT CAATGAGAGA CTGAGGACAA CTATCGCCTT CTTATGACCA TATGCACACA 
9181   CATGTGCTTG TACCAGAACT CACANNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN 
9241   NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN 
9301   NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN 
9361   NNNNNNNNNN NNNNNNNNNA TGTCTTCGGC GCTCAGCGCT TACACTGTCC CCTGGCTAAG 
9421   CCTTCCTTAA CTAAGGCCCT CTGTCCTCAG AACTGCAGGT GGTTTGGACC AAGTCCTGAG 
9481   TCTTCCCTGC ATTGAGGTGA TGGCTGCCAG GCAGAGCGGG ATGGGCAGTA AGTATGTGGG 
9541   TCTGGGTACA GAGGAAAGGA CAGGAGTGCC GTCCTACAAA TTATGCTATC ATCAATTCAC 
9601   TGTGACCTCA GCCAACTCCA GCACCTTCTC GAGCCTTGGT TTCCCCTGGT CATAAAATAT 
9661   GGGGTTAATT GTCCCTCCTA GGGAAGCTGG GAGGGTTAAT TGGGCAATGG CTCTGAAGAG 
9721   AAGGAGATCT ATAAATACAA GGGATCATTA GAGGGTATTT CACAGCCGTT TTGTGGCCCC 
9781   GATGGTATTA TTAATATGAT TATTGTTATT GTTATCGCCA CCATCACCCA CTTCCCGAGT 
9841   CTCTGCCAGC TGGGTCCTGC TTCCAGGTGA AGGAGCTCTG CCAACAGCCT CTGTGACCCT 
9901   CCACCCTCAG GAGTGTCGGG GACCCCTCAG GAGGTTATTT CATTGTGGCA TTACAGAGGG 
9961   GGTCAAGAGC TTTAAGGGGA GGGGGTGAGG GGACGTGCCA TGCTTGCTTA GTGAGGGCTA 
10021  AAGGCTTTTA GTCCAGGGAT GACCCTGGTC TGCTGTGGGA AGCCTGGACT CGAGAAGCCT 
10081  GATGGCTCCA TGGAAATGTG CTCATGGTGA GGAGAGGGCC AGCAGGAGTT TGAGGGGATG 
10141  GTGTTTTCTG GGACGCTGAG GGACGGGCAG ATGGGGATGT GCTCTCTTGA GGAGGCAAAT 
10201  GGCTCTTCTT AAAGGAATCT CTTTGTAGGG GTCCTAGGAT TCTTAAGGCC TGGGGATGAA 
10261  GGACGGCCTA GGCTGGCCAA TAGTAGGCCC AGAATATCCA CCAGGTTATC TGTGTTTCCT 
10321  CCTTTGGGCA TGTAAAACCA CGGTCAGGGG CTTCTGAAAT GCCTTGGGTG CCCTCTGGCG 
10381  GCAACACGTG AGTGCTACAG AGGACCAACA CCTGCCCAGA GAGCACCTCC TCCTGCCCTC 
10441  GGCGAGAAGG AAGAACCTAC CAGAGGGATG GCTGGAATGT CCTTGCTGGG AGATTCTGTG 
10501  GCAGTTGGCC AGCAGCCATC CACCTGGCCA GGAAGGCCAA GGGTAGAGGG AGCTGTGGGG 
10561  TCACAGCAAG GGACGGAAGT GGTATCCCTG GGTTTGCAAC ACGGGCAGTT GGTGGCTGTA 
10621  TGTGTGCACC AGGATGCACA GTGTGGGGAG CTAGAACATA TGAGGGAATC CACCTTTGGC 
10681  GTTCCTGGAT GGTTCACCCA AACCAAGGGT TTTCCCATCA AGCCACTGTC GGGGTTTATG 
10741  CATCAGGGCA TCAGGGATGT ATGGGAGGGT CTTCTCCATA GGTGGAGAGA GAATGAAGAA 
10801  AGAAAACCAG AGGAGGAAAA GGAAGAGGCA GAGGCCATGG GGAGATCCTA AGGCAAAAGT 
10861  GAGCATCCTC AGAAGGCTGA GGGGGCTGTA ATGGTTTGAA GAATTAGCCT GTCAAACTTG 
10921  GGCCATAGGA GGGAGTGTGA CCCGGTGTGG AGGCCAAGGC TGCCTGCCCT TAGACAAAGG 
10981  CAGTCAGGAC ATGCTTCTAG ACCAAGAGCA ATGTTGAGCC TTGTGGATCT TTCTATATCT 
11041  TCCTGGGGAC AGAGACCATG ACTCCGTGTG TCTCCTTCAG TGTGCTCAGC ACCCTTGGGG 
11101  ACTCTGGATA GACAAGGGCA GCCACATGCA GAAGAGAACA GAGAGGGCTG GGAAGCAGGG 
11161  AGAGCCCAGA AGGGCTTCAC AGGAAGCTGA AGCCAGGGAA GCAATAGAGC GGACATGGAG 
11221  CAAGCTGAGC CCGAGTGAGA AGTGCTCAAA GGACCGCCAA CAGCTGTGCG CCTGCCAGCG 
11281  GCACTGTGCC GGTAGTGGAG GGCGCGCGGT GGAGGTCAAG GTAAACATGG ACCATACGTG 
11341  GTGGAGAACG AGTAACTTTG CACACTAGAA ATGGGGACAG AGTGGAAACG TGGACTAGGA 
11401  GGAGGCTCAA AGCAGCTGGA GGCAGCACCG ACAGAACTTG CTTCCAGACC CACCAGGGAC 
11461  AAGATGGCGC TGTGACGTGG GTGATGTGGG CAGACACAGC TGGAACCGCC TAGCCACCTT 
11521  TGCTCTTCAA ACACCACTGC AGGTAGGGTG GAACAAGGAG CTCTTCAGGG ATGGAGAGGC 
11581  AGGAGTGGGT TGGCTCAGGG CCTTTGGTGA AGGAATGCTT TGTTTACATC TGCCTTGCTT 
11641  ACACATGGAT TACCTGAGGG TCTTCTTCAT ATAGGTGCTC GGCTCCATCC TAGGGACTGA 
11701  CATCCTGGGA TGAGACAGGA GCCCAACTTC AGAACTGGTG AAAGGCCGTC TGCTGAGTCT 
11761  GACGTATAGT CAGGACTCTG ATGTGGTTAG AGCACTTGCT TTTTGTGCAC GAGGCTCTGG 
11821  GTTCAATCCC CAGTATAGGA ATCAGGCATA GTGGAACCTG CTGCCTAGTC TCTTGGAAAT 
11881  GGAGACCTGT GAGAAAAAAA CAGTTGTGCG GTGGTCTGAG GGGGCTTATG AATGAACTTG 
11941  AAAGACTCAT CGGTAGGGTA GGGAATGTGG TTCAGTGGAC CCTGGTTCAG CAAGCATGAG 
12001  GCCCCAGATT CAATGCCCAG TACAAGGGGC AAACAAGCAA ACACAAAGGG TCCCTGTTTT 
12061  TGTCTGTGCC TTTAATAACC TAAAAACAAA ACAAACGTAC ACCCCTTTAA TCCCAGCACT 
12121  CAGAAGGCAG AGGCAGGTGG ATTTCTGTGA CTATGAGACC AGCTTGGTGT ACAGAGTGAG 
12181  TCTACAGGGC TACACAGAGA AACCCTGCCT GGAGAAACGA AAAAAAAAAC CAGATAGCCA 
12241  AAACCCAAAA ACAAACAAAC AAACTGACAG GCTTTAAAAG GGCTGAACCA TTCATTTTAA 
12301  AACTATTGGT ACCAGTTGGG TCTGGTGGCC CATGCCTGAG AGCCTAGCAC TTGGGAGGTA 
12361  GAGGCAGGAA GATCATGAGT TCTGGGCAAG CCTGGGCTAT TTGAGACCCT GTCCTAAAAA 
12421  CAACTAACCA CCCAATCACT ACTACTGGTG AATCCTAGGT TTTCTCACTG TCCCCCACCC 
12481  ACACTTTTCA TGTGTTCTTC ATGAGAGGGC CTCTGGGAAG GACAGAGTTA GCTACCTCCA 
12541  GCTTTGTCCT AGAAGAGGTT TCCACCCAGC AGGATAGTCA GCCCCACCTC CCCACCAAAA 
12601  CCCCTGCACC CTAATGTACC TGAGTCACTG AATCCGGGCG GAGCCCTTGG CTACACAGCA 
12661  AAGCAAGCCA AACTGGAAAC TGGCCCTGGG AACAGAATGT ATGGGCTAAA CAAGTCTTAT 
12721  GCAGATGTAG GAGTATGCAA AGTCATTCTT GAACTCCGAA TCCATTTCCT GATCATCTCG 
12781  GATAGAAGGC CCAGTTCTTC CACTGTAGCT CAGTCCCTTA GGGCAGCCAT GAGGGAGAAT 
12841  GGGGCTCAGT GGTAGAGACT GCCTCCGATG TGGGAGGTCC TGGCCTTGAT TCCCTAGCCC 
12901  TGAAACAAAC AGAAGTGAAA GAGTGGGAGA AGGGAGTCCT TCATGTAAGC CAGTGACAGA 
12961  CCAGGGCAGC CAGCACAAGC AAGGCGAAGC TTGACTGGGC AGGAGTGAAG AGAACAGATT 
13021  TTGTAGGACA AAGGAAAGGC TTACCTAAGA AGAAAGGGAA CTCCTATGTG TTTAGGGACT 
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13081  GTGACACCTT TCCTTGAGAG AAAAGACTAG GGAAGCAAAG AAAGGTGGGG AAAGGCATGA 
13141  AAGACAAGAG CATGGAGGGT ATGTGTGCGT GTGTGTGTGT GTGTGTGTGT GTGTGTGTTT 
13201  GTGTGTGTAA GGGTGAAGGA CCCAGTTTAA GCAGAAAGCT TTGATTTTAT AAAGGACATA 
13261  GAGTCCCAAT GAAGGAACGG TGCGTGGGCA CACATGTGCA CACGGACGCC AGAGCAGGAC 
13321  ATACACTGGG TCCTGCTCTG TTGCTGTGTC TCACAAAGCC TGGAGCTAGG TTGGCCACTG 
13381  GCAGACTCCA GCCATCCTCC GGTCTCCGCC CTGACCTCAC ATGTGAGAGG TGGGGTTACA 
13441  GAGGCTGAAC TCCAGCTTTT CACACGGGCT CTGAACTCAG GCCTCTTGTG TTTGAACAGC 
13501  AAGTGACATC TTCCCAGCCC CAAGTGAAGG ATTCTAGCTC CAGAACTGAT AGCATCTGAT 
13561  GTTTGGTGTT TCAAAACCTA ACCAGAGAGA GGTAGACTGG TAATTCCAAA TTACTACACT 
13621  CTAAGCATTT GGCTCTTTAT TGTTTATTTA TTTATTTTTT TGTTTGTGGT TTGTGGTGTG 
13681  TGTGTGTGTG TGTGTGTGTG TGTGGTTTTT GTTTTAGACA GGGTTTCTCT GTGTAGTCCT 
13741  GGCTGTCCTG GAACTTTCAC TGTAGACCAG GCTGGACTCA AAGTCAGAGA TCTGCCAGCC 
13801  TCTGCCTCCC TGCTGCTGGG ATTGAAGGCC TGGGCCACTG CCACCCAGCT TGGCTCTATA 
13861  TTTTGTTATC ACTTTATCTC AGCAACCTTT TCTTCGAAGT GACAGGAAGA AGGAGGAGGA 
13921  AGATAGAAGA GGCGAAGAGA AAATGTAATG AGAGCTGGGG AACAGCTCGA CGATACAGTT 
13981  CATGCTTAGT GTTTATACAG TTCATGCTTA GTGTTGGGGA CTTGATCCTC AGCAAATAAG 
14041  ACCCCAGCAG GGATGTATGT GTCTCATCTA CCTGCGATCA ATGTCTCTCA AATGTTGATT 
14101  TGGGAAGCTT TGTTACATGT TCTTATAAGT TAATTTACTG GATGTAAAAC ATTTTTTTCT 
14161  CACTGTGGGT TAAAACAACA AAACAAAACC AACCAGGAAG GGTGGTACTA TGAGGTGGAT 
14221  GTGTGAGTGC TCTGGCTTCA ACAAGAGTCT AAGGGTCCAC TGCAGATGGG GTGTGGGGTT 
14281  TCCTACCCAC GCAGGTCTCA AGCCAGCGTG AATTCCCTCT GAGTGCTACG TACAGCTTGC 
14341  CTAAGTTAGT CGTTCGCAGA GGGCCTGGAA GAGAAAGCTA AACCTACCTG TGGTGCCTGT 
14401  CAAGCACGGC CCCTCATACA GGAGGAGATG AAGCAGAGAC CAAGCAGGGT CGCTAGGATG 
14461  CCAGCGTGCA ATTCTGCCCA CCTGAGGCGC AGGCTAAAAT GCAGATTCTA GGCACACACA 
14521  CCCCGCCCCC CGGGAAATAG CAAATGTAAC TAGGGACGAC CCTAGGGATC TGCTTTTGAT 
14581  AAAGGCTCAA ACACGCCTGT CTGAAGCTGA GAGGATCAGG GAAGCTCTGC GAAACATTGG 
14641  TGAAGATTAG CAGGGGCTTG AGATGACATA ATGACAATTC CCTCTAGGAA GTGCCAGGTA 
14701  ACCCAACTCC TGCCAGGTCG TCGACTCTCG AGAGGCGATG GATGGCGGGC GAGGGCCTGA 
14761  GGTGAAGGCG ATGCGCTCAC TGGGGGCCGG GCACCGCGTA TCCGACAGCT ACACTTGAGA 
14821  CTCACCATGC CAGACTGTAT TGAGAGATGT ATAAGCTCTT TACGGGGCAT TTCACAGTAG 
14881  CACTTCTGAT TGGCTTTAGG GCAGATCTAT CACTTATCTG CTGGGTTAGA GGTGGGTGGA 
14941  AGGTCAATTA CGACCAATAC AAAAACACTT CTCGGCTAAG CCCCTCCTCA CCCAGCTTCC 
15001  TGTTGCTGTC CATCAACCTC CTAGCAGGCG GGACTTTGCC TCCCGCCAGT TGGCTAAAGG 
15061  ATACGTCGTT CATTCCCCCG TTGATTTCCG GTTGGCGACT CCTACCGTCT ATCAATGACA 
15121  CTTCACAGTT CTATTGGCCA GACCAACGTC ACTCTAGATG CTTCCCAATG ATTGGTTGAA 
15181  AATGCTGTCG GTCCCCAATG TACCAAGCGT TCATTGGTAA AAGCTGCCGT CGCTCGGGCG 
15241  GTGGCGGGCT CCGGGATTGG CGGGTGCTAG GCGGGCGGTG TCAGGCTCTC GGTGGCGGCG 
15301  GAGGCGGCGG AGGCCAGGGA GGAAGATGTC GTAATGAGCG GTGGGTCCTG GCGTCTGCCG 
15361  GCGGCGTCTT CCCGGCCCTC AAGGGTCGGG AAGACGGACA GAGGCCTCGG GGAGGGGAGG 
15421  CCGGAACCGG GGGTGCCCCC CTGGGACTGG GACTGGCGCC GGGGCCCGGC TACGGGAGGG 
15481  GCGGGGGAGG AAGGATTCCC GCCCGGAGGA GGAGCGCGGC TGGCCGGCCG GGCGGAGGCA 
15541  CCCGGAAGGG GGCGTTAGAC TCCCCGCCCC TCGGAGCCCC GGGCGGGAGG GCGGCGCTTC 
15601  CGGGGCTGGC AGGCGGCGCG GGCAGCAGGG CGAGCCTGAT AACCCCCTTC GCCCCCTCAG 
15661  CTTGGGTCGC GCCGGGCCTT CAGCCTGCGC CCGAGTTTGC TCCACGCAGG CGGCCGACGC 
15721  CCCCTCGGGC TCGTCCTGTG GGCAGCCCAG GCTTGGGACC CAGGTGGTGC CAGTCAGATG 
15781  GGCCCTGCTG GTCTGAACTG CAGCCTGCTG GCCGGGCCAC CGCAGTCCCA GAGGGTGGCA 
15841  GGATTGGAGG GAACGCCCTA GGCAGATGAC TGCTGAACGA AAAACCGACT TTTAATGTTT 
15901  ATACCTGGAT CCTTGAGCCT GCGGCTAGTA TCTGCAAGCT CTTGGAATTT TAGAAGTTTG 
15961  GAGAACTTGT GGACAGAGCT CCCAGGCTAT GGCCCGATGC CCCTTGCGGG NNNNNNNNNN 
16021  NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN 
16081  NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN 
16141  NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN 
16201  NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN 
16261  NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN 
16321  NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN TGTGTACTGG CAGGAACAGA CTACAGCTGT 
16381  TCCATGCTGT GCCCTAGAAG GCCCTTGGCA TTACAGAGGA CAAAACCCTG AGTTGAGACA 
16441  CCCCCCCCAC CCCCCGTGGT GATGAAGGTT GAATCCACAA ATGTTGGACA AGCACCTCTA 
16501  CGGCTGAGCT GTCTTGGAGG GCTAGAAAGG TTAGGGTGAG CCAGCTCACA GTGAACTGGC 
16561  ACAGGGGATG ACAAGAGCCC AGACCACACA GTAGCATTTT CCATTATTGA CACAAAGAAG 
16621  TCCATTGTCT GTAGCGATGA GTATAACTGC AGTGTCTTGT TTTCTTTTAA ATTCTTAAGG 
16681  ACAATGAACA GCGCGGATCT CAGAACCTCC CAATAGGGCT TATGTCAGTG TTGCAGTGGT 
16741  TTCTTATTTA GGTGGTAGGG TGTTGGAGCC TGGTCTTGCT GTGAAGCCCT GGCTGGCGTG 
16801  TGTTTGTCCT GTGATCTGTG TAGGCCTTGA ACTTGAGATC TCTATGCTCC AGCCTCAGCC 
16861  TCCCAAGTGC CGAGGTTATG GGTGTGTACC AATTTGCTTG GTTTCTAGTG ACCAGGCAGA 
16921  CGTCAATCAA TACCAGTGAC CATGAGTTAT CTTTGGCTGA AGTGACGGAT GAGCTGTCTA 
16981  GTTCCAGTCC TCCTACTTGC CTCTTTGAGT AAAATCAACA GCCATTGGGA AAAATAAGCT 
17041  GCTCTGACAC CATTGTGAGC TCCGCAAGCT AGGCTGCTAA AGACACAGGC TCTTTGCCAA 
17101  AGAAAACTAA CTAGGATTTG TCCATAACCG GATCTTCCCC TGGGCACCCA GCTGCTCTGA 
17161  GGGGAAGAGT TTGACATCCC TGCTGATACT ACATAGATGA CCTCTACTTA GATTTGATTT 
17221  AAACATTGGG CCAGGATCAC TGAGAAGGCC CAGTGGGTAA AGACACTTGT TGCCAAGTCT 
17281  GATTACCTGA GTCCTTGTGT CTCACCTGGA AGGAAAGAAA CAACTTCAAT ACTGTTGCAC 
17341  ACAAAGATAC ATACACACAG AGGGAGGGAG GGAGCACAAA ACCAATACAT GAATTAGAAG 
17401  ATATCAAAAA ATGTGGGCCT GTGGAGGCCT GTTAAAGAGA AGAGAAGCAG TAAAAAGATT 
17461  ATACGGCAGA TGTTTGGTTA AAAAGCCCAT CCATGCTGGG CGTGGTGGCG CACGCCTTTA 
17521  ATCCCAGGAG GCAGAGGCAG GTGGATTTCT GAGTTGGAGG CCAGCCTGGT CTATAAAGTG 
17581  AGTTCCAGGA CAGCTAGGGC TACAGAGAAA CCCTGTCTCA AAACAAACAA ACAAACAAAA 
17641  AAAAAGCCTA TCCATTCCAG CAGGTAGAGA AGTTAGTATT TTGGTCTTGA CTATCTTAGT 
17701  TCTTCTAAGT GGTTAAGTGT TTTGGAGAAG TTATAATCCC TTGTAGCAAG CAGTGTCAAG 
17761  TCTGACCGTT GACGCATATG TGGCAATCCC CAAGCTTTCT TTAAGCAAGT GTTGCCCAAC 
17821  CATGGCCCTT AGAACGACTT TTAAAGTTTC TTGCAGCCAG CTAGTAGACT CTAGCAGTTT 
17881  TCTAGACCCT GAGCACTCCA CTGCTGTAAA AATGGGACTT TTTTTTTCTA AGTTTCCTTC 
17941  AGTCCGTCTC TTCTTTGTTC TATCTACACT CCAACTGGAA GCTTTGCTTG CAGATATTGA 
18001  AAGTATCAGT CATTATTTTG GAACAAGTGG ATAATGGGCA CAGAGAGAAA GAGGCAGAGA 
18061  GACCTTATTG TGAAGGTGTT GTGGAGTGTT GTGAGAGCCT CTGGGTTGAC AGCATTATGT 
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18121  AGCCTCATTT TAAGCCTTGT GGGCTGTGAA TTTGGAGTAA TCTGTTAGGA GATCATATAC 
18181  TTCCTTATAT GTTTACTGGG TGGCATGTCT GGACTGTACT TTTGGGTGAT TTAAAGGGTG 
18241  TGTAAACTTC TTCCCAGGAT GTTCTAAACC AGGGGCCCAG GCTGGGGATG GTTGATGCAC 
18301  GTAATCCTAA CATATTCAAG GTTAAGGCAG GAAGATTGAG AGTTTGAGTC TACCCTAGGT 
18361  TACTTATCGA GTTGCAGGCT AGCCTGGGCA TAGCAAGACC TTGTCTCAAA TGAACAAACA 
18421  CAAGGAAATT ATACCCACAG GATGGCCCAA ATGAGTGGTT CTGCTGGGAG CTTCAGTCAC 
18481  CCGAGCCGTT GGTGCTTCTC TGTACTGCTG TGCAGACTCA GGCATGGCCC ATCTCCCTCC 
18541  TGTCCTTCTT TCTCCTTTCC TTCCACAGCC AACTCTCAGG TCTTTGTTTC TGAAATGTAG 
18601  ATGCAGTTCT GTCTCTTAGG GAGCTTTCTT CATTACCAAC CAATGTTTTC ATGAGCAGCT 
18661  TTTCCGAAGA CCCCAGGGCA GAAGGTTCTT TTGGAGCCTG GTGGGAAGGT AAAAGTGGTT 
18721  GAAAGTATGG GGCACGCCAG GCTAAGCAAG AATGAGGCTG GAGGAGGGGC TGGAGGAGGG 
18781  GGTGGGGGTG TCACTCTCGA GAAGCTTCCC TGGTGTCAGT GGTGGACTTG TTCCAGTTGA 
18841  CAAATGGTGA AGTAGAAAAC TTTTTCTACT GCTTCATGGG ACTCTGAAGG TAAAAACAAA 
18901  ACACAGGCGC AAGTTCAGAA TTGGCACCAG CAGCCAGACC TCTCAGTATG CTTCTGGACT 
18961  GCTCTCTGTC CCTGGCACAA GCATCACTGT GCCTTTCCTC GGGGTGCACT CCAGACTGGC 
19021  ATGCTCTAAG CTGAGACATT GCCCAGTACA GGGCTGAGGG TGGGCAGAGT ATCCCATCTT 
19081  GCTGTTTCTC TGTGTGCCCA GAGGGAGCTC CTGGCAGCAT GGAGACATGA AGCTGTCACA 
19141  TCACTGTACA AGCTAGCTGA AGCCCAGCTG TTGGAGTCGG ATGATGGGCA TCTCATCCCT 
19201  CAGCTACCTC TCTTTCTGCA TCAAGACTGC TTGCTGGGAC CGGCCAGCAG CTGCTGAGTT 
19261  ACAGTGCAGA GATTTAGCTT GGGTGGCGAA GGCTAAGTCC TTTGAGAGGC CAGTTTCCCT 
19321  CTGTGTGGTG ATTTAGGCCC TTCAGGTGCC ATTCATGTCA GCCACAGGGC AAAATTGGGA 
19381  AGAATTAGCA GTCATTGCAC GTTTCTAAAT GTCTCTCTAG AACTTGTTTG TTGGGGTTGT 
19441  CATCTCTCCT GTGGGATTTG GTAAAAATCA CAAAGTGGCT CTTGAGACTG GGAACGGGAA 
19501  TTAGGAAATA GCTAGTAGGT CATGCGATTA GAAGTGAAAT AATTCTGCCT CATGGTTTAT 
19561  GTTTAATTGG AAATTGGAGG AGGAAAACAA CCAAGAAACA GACAAAGGCT TTTCCCGGGT 
19621  TTTAGAAGAG TAAATGGAAG CCAGCCTTCC TCTCTTCTCC AGGGAAATGA AGTCACTATT 
19681  CATTTCAGAA GCTGATCCTA GCCTGGGGGA GCTCAAAGAG TGACTCACGA AGACATTGCC 
19741  TAAGCAAAAA AGGCAGCATG TTTGTGTAGA AGGAGATTCT TGGGGGGGAC TCCTGCTTTT 
19801  CTCTATGACG GAATTCTGAG TTCCAGTGTT CTTTTTTTTT TTTTCTTTTT TAAGATTTAT 
19861  TTATTTATTT TACATATATG AGTACTCTAG CTGTCTTCAG ATACACCAGA AGAGGGCATT 
19921  GAATCTCATC ACAGATGGTT GTTCCTAATT GGAAAGGCCT TGCATGGTTT CCTGGGGCTG 
19981  GTCCCATCAT GCTTAAGAGT TCCCATCATC CCGGGGCCCC CACATTGATG CCCTGTGACT 
20041  CAGGCCACAA GCAAACTAGG ACTGACAGCA GTCATGCTTG GACGAAAATA GTCCAGAATG 
20101  AGACAGACCA AGTGTTCACA TTTAGACGCT CTAGTGTATG GTCTGACCTA ATGTCCCCCA 
20161  TTCTCGTGCT AACTGGAAAT GGTAAGAGTG TAGCCTGGAG CTGTAGTGCC GTCTGTGGGT 
20221  TGACGTGCTT GCAATGAAGT GTCTGCCCTG CTACAGCTCA CAGGCATGGC CACACTTAAT 
20281  GGATTGGGTA CTGGGGATGG GACCCGGGCT TGGTGCTCGA TAGGAAAGCA TGCCAGCAAT 
20341  TGAGCCACAC CCCAGCCCTC CTTGGTCTCT AAACTCCATT TAGCATCACT CCCTCTTTGT 
20401  TCCTTCAGGA TTCATTTATT CACAAGTGTA TTAAGCAAAT ATAGAAGGCT CCAACTGTGT 
20461  GCTAAGTTCT AGAGGTACAA GAGAAACCCT TGCCTTTAGG AAATTTGCAT TCTTAATAAG 
20521  ACAGTAATTA AGTAACTAAT GAGTACTTGC TGGGAAGTGG TAAGTGCTAA GGATAAAAAT 
20581  AGGGAGGGAG GGAGGGGAAA TGTGTGGGAG AGGCAGTTAC ACAGGGTGTT CAGGGACATA 
20641  GTGAGATGGG GACTTCATGG AACCCTGAAA GTGACGGGCA TTGAACCAGT TCTGTCTAGA 
20701  GTGAGGGGAG GAGGCTGAAC CATGCAGATG TGGGAGCAAC AGAAGGACCT GGCACAAGAG 
20761  CCCAGAAGCT CTGGGGAGGA CAGGAAGTCA GATCACATAG GCCTGTGCGT GATGGTTGGA 
20821  GCGTCGGCTG TCTGATGGGA TGCTATTGAC CCCTCAACAG AGTGATGATG TGGCTTCATT 
20881  TATGTTTGAT GTGTTGAGAA TAAACTGACA GATCAGTGCC TGTCTCAGCT GCCCAGGAAC 
20941  AGACATGGAT TAGGTGATGG CGTCAGGGTG AACGCCTCAT GTTTGGAATG TGTTTTGAAG 
21001  TTAGAGCTAG AAGTGTTTGC TTCCACATGT GGAAAAAAAA AAAAAACAAA AATCAAAGAC 
21061  AATTCCAAGG TCTTAGGGCC GAGCAGCTGG GTGGATGTGG TTAGCCTTCG CAGTGGGGAA 
21121  TACCTGAAAA AGCATGGAAT CAGGAGCCAT CGGAAACGTG ATTCAGGGCT GCTTACATTC 
21181  AAGGTGCCCA CTGCTGTAAA AGAGAAGATG CCGGCAGGAG GTGGTCTGGA GATAGAAACT 
21241  CAGGTCCTCT TTATTCAGTA TCTGTGAAGC ATTGGCTTTG AAAGCCATGA GAGCTGGCAA 
21301  AATCACCAGA AAGCAGAGAA GACAGAAATG TAGGTCCTGA AATGGATTCT GGAGCTTAGA 
21361  GTTTAACTGC CTAGAATTTG ACAAGAGGGG AAAAACCACC AGAGATTTAG AAGAAACCTG 
21421  CAGAGCAGGA GGCTGTCTTG GGCACATAAA ATAACTGTTT CCAGGACCAA GAACAGTCAG 
21481  CTCTCAGATC ACAAGACAAG GGCTCAGGTC TCGGAGTTAG CAGTTAGATT CAGAAACATG 
21541  AGGCCTGGTA GCATTGGCAG TTTGGGGAGG ATGAATGACG TGTACAGCCT GATTGGAGCC 
21601  ACGCTCAGGA ATGATTGTGG AGAGTAATGA GGAGCAGCAA GTGCACAGCC TGCTGGGCTT 
21661  AGGGTAGAGC TGTCCTTTGC ACAATTGTTT GTTTGTTTGT TTGTTGTGTT TTTCAAGAAA 
21721  GGATTTCCTA GCTGTCCTGG ACTTGCTTTG TAGGCCAGGC TGGCCTCCAA CTCATAGAAA 
21781  TCTGCCTGCC TCTGCCTCCT GAGTGCTGGG ATTAAAGGCG TGCGCCACCA CTGCTCAGCA 
21841  AACTGCTCAG CAAACATGCA TTTTAATATA CCTAGCCTTC CCAATATTAC AGCAAATGTT 
21901  ACACTGGTTT AAAAAACAGG TGTAGTGATG CACATCTGTA TTCACAGCAC TCCAGAGGTG 
21961  GAGGCTGGAG GACCAGGAGT TAAAGGCCAT GCTTGGATCC ATAGTGAATT TGAGGCCAGC 
22021  TTGAACTCCA TGAGACCCTA TCTCAGAAAC CAAAGACTAC TTAGGTTTGC TGAGAGTCAG 
22081  ACAAAGTCAT TTGCCACAAC GTGTTTTATA ACAAAGTGTA TATCATGTAA CTTACTGGAT 
22141  ACTGTACTAA ACTTAGAAAA CATAATTATG AGTGTGCTTT CATGTACTAT GACATTGAAA 
22201  AATGAAGTTG GAAGCCTGCC GGGTAGCTCA GTGCTTCAAG GTGTTAGCCT GTCATGTCAG 
22261  GCTGAGTCTG ACACCACGGA TTCAACCCCA GCACCCACAT GGGGGAAGGG GAGAAACAAC 
22321  TTGTAAAAGT TGTCCTCTGA CCTCATGTTG GCCATGGCAT GTGTGTAGCC ATACACAGAT 
22381  GTCCACACAT ATACACACAA ATAAAATATG TTTAAGGTGA GAAAAAAAGA AAGTTAAGTT 
22441  GAACCAGAGG AGTAAGGAGT CTCCTTGGTG ACTGAGGAGT TAGAGAGGTT AGGAATCCCG 
22501  GCTCAGAAAG GAAGGGTAAC TGCTTGATAA AGTCCTGTGT GTATCTCAGG GTCATGGCGG 
22561  AGCGGTGGGG TCAGGCTTGG GCTGGAGAGG GGATCTGCTC TCTCCTCTTG GCCTGTGGCG 
22621  TTAGCAGCCT CTGCTCAGAG TTCTGCAATG AAAGGCATGA ACTAAATCTT CCTGTGTGTG 
22681  GTTGCTGGGT TCAGTTTTCG GGACAGTTTG GAGCCTGTCC CAGCTCAGCT TGCTCCCTCC 
22741  ACCCTCCATC CAAGCTGATT CATTCACTAG TTTCCCTAGA GGTCCAGTTT TGTTCTTTAA 
22801  AACCAGCTGT AGCTTGCTTT TTCCTCACCA GCTCTGAGTT CTTCCAGGCT AGGCAACTGG 
22861  GAAAGCCTGG CCTTAGAAAC TGCTTTACTG GCTTCTGGCC CAGCCAGACT GACCAAAATA 
22921  GCCACCAGAA GGACTGTTTG TGCAGAGTGA AATTCCTGCT GGGGAAATAC CATAGTGGAG 
22981  GGCTAAGGAA GCCATAGTTG GGAAGGGTTT AAAAAAAAAA AAAAGCCCAG TAGCCTAGGG 
23041  TCTAAGTGTG GACTTTGAGC CCCGTTCCAT CCTAGGATAA CCTGATAATC AGGGCTCAGG 
23101  GTCCTTCCTA TTATGTTCTC CCAACCCAAT CGGCCAGAGA AAGCCCACCC CCTCCAGCGT 
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23161  AGAGCCATCT ATGCTCCCTG CTCTGTGGTG AGGCCAGCAT TGCCAAGGGT GCTACAGGAG 
23221  TGTGCACTGG CACCCAACAA GGTCATCTGC TTCTGGAGAG TAAGTGAGAA ACAACCTCTA 
23281  GGGATTATAA GTGGCCAAAG GAGAGCGCTG GCTTCAGGCT CCCAGGAGAG AGAATGGCAG 
23341  GCGAGGAGGG AGGAGGCTGG GTGCTTGGTC CCTCTAAGCT TATCAGAAGA GCTTCCGAAG 
23401  AAAACTATGG GGGAGGTGTG GTCAGGGGAG AGGGTAGAAG GGTTCTGGGT TTGCAAAGAT 
23461  AGTCTTCCAA AAGTGAACTG GCTGGATAAA GGGAAGTGGG CCAGAGGCTG AAAGCTGCCC 
23521  TGGAGGCTGT GGATGGGAGC TCTGCCTGAG CCTGAGGGGT CATTTAAGCA ATGCCTTGGG 
23581  ATTACTGAAC AGCAAGGAGA GAAACTTGTA CCAAGAATGA GGAGGACCCA GTTACCCACC 
23641  AGGAGGGTGA TGCTCAGGGT CCTGCTGAGA TTGCAACTAC ATATTCCAAA GACTCTATTC 
23701  TCCCCACTCT TGCGGAACTG TACCAGGAAC CAGTGAAGAC CAAGCAGCAG CACAGCTTAC 
23761  TCAAAGAGCA GGCCCTTACT CCCATCCCTT AGGCTGCTCT CACTGTAATG GGCACTGGAT 
23821  GCTAGCAAAA GTCCTGACTT CATCTCAGTC CAGAAAGGAC CCAAGGAGAC GATATACCTG 
23881  TTACAAAATG GCTGTCAATA AATTTTGCTA GGGAGGAAAA TGAAAAGTGG CCTAAAGGTG 
23941  CAAGCATCAG CTGGAAAAGT CAGAAGAGCC CTAAGCAAGG GAAGGGTAAC AGAGATAAGC 
24001  TCCTGGGATC CAAAGGGAGG GCTGCGGAGG CTGGGGAGGG GAAAGAACAA ACAGGCCAGG 
24061  AGGGAATGCT CTGGGTTGGG AGTGTCTGGC TGACCCAGTG AAGGGCCACA GAGGGCTGGG 
24121  CTGAACACAG CCCTGGGAGC GAGCCTGTGG AAGCAGTCTG AAGCCACGTG AACAGACACA 
24181  GTCCCCCAAG GAAAGAGGTC TTGGGTGAGA AGGGTCGTTT GTTGAAGAAT ATCAGTATTT 
24241  CAGTGATGGA GTGAATTTGG AGGGGGCGGC AGCCTCGAGA GAGGTCTGGT GACCTGGTAG 
24301  AAGCAGCCCT CTGAGTGTGG AGGGAGGTGT GGAGGGGACG GCAGCGTGAG GCAGGAGGAG 
24361  AAGGCTGTAC TGGAGGGCAA GAGATGGAGG CGGATGCTCT TAAGAGTCTG GACATTAGGT 
24421  GCTTTTCTCT CTGTCTTGGG TTCTGTTCGG CCCTCAGTTA CCTGATACTC CTTCCTCCCT 
24481  GCTGCCTTGT TCACACCCTC AGGACTTTTC CTTAGGACAG AGATGTGCCG GTCATTATTG 
24541  CTTGTATCAA AGATCACTGC CACACTTCAG CTTAGAGACT TGGGGACGTT TTAGCTGAAA 
24601  TGAATGATAA AATCCAGATT CTACAACTGA GAGACACGCA CTTTTTTCTT TCAAGAATAT 
24661  TTAGTAAGTG TGTGTGATAT GGCTCAGCAG ATAAGGTGAT TGCTGCCAAA CTTGATAACC 
24721  AGGGTTCAGT CCCTACAGAA CCCACGTGGT GGAAAGAACT GGTTCCAAAT TGTTCTGTGA 
24781  CTTTCATATG TGTTCAAACA CACACAAAAT AAATAAATGT AAAAAAGGAG AAAAATGCAG 
24841  TAATCCTTAT TACCCATATT GCTAAGTTGT AGGTTTCAGT GACCACATAC TACGGTACTA 
24901  TTAAAATTTG GTGGCTGTGC TGGAGATGGC TCAGGGGTAT AGCATTTGCT GTGCGTGTGT 
24961  GAGGCCCTGA GTCAAACCCC TAGAACAGGA AGAAGACCGT GTAGCATAGT GGAAGTGGTG 
25021  TGAAGTGATT ACAGAATCAG AGCTGAGCCC CTCTGTGGCT TTCTATCCCA CTCTGCAGTG 
25081  CTCTCAGTAG CGTGGAGGAG CATCAAGCAT GACTTACATC ACATTACACA CGCTAAACAC 
25141  AGGGTTCCAG GTGGAGTGAG GCTGCTCGGA GAATCTGTGG GTACGTGTCT GCCTCTCCTT 
25201  ATCCACATCC ACTGCCTCAC ACCAGCCAGA AGTGCTTCTC TCTTTCTTCT TCTTTCTCTT 
25261  TCCAGAGTAG AATTCTGCAG TGGCAGGGAA ATGTTTCTCC CATTTTTGCC CAGGGGCCAC 
25321  ACAAAGCTCT CAGTGACAAT AGGAGACAGC CATAGTGGTT TTAGACTAAA GAAGTATTTC 
25381  ATGAGCCAGC TGGGGAAGAA AATGAAACTA GGATGAGGTG TGCAGCCGGA AGCAGCAGCC 
25441  CGCAGCCTCC GCAGTAGGCT CTGCTTTACC CTCTGACCCA GTGGCTCTCA ACCTTCCTAC 
25501  CACTGCGACC AGCTGATACA GTTCCTCGTG GAGTGACCGC CAACCATAAA ATTATTTTGT 
25561  TGCCACTTCA TAATTGTAAT TTTGCTATTA TGACTCGCAA TACAAATATC TGATATGCAG 
25621  AATATCTCAT ATGTGGCTCC TACAAAAGGG CCGACTGACA TCCCTTCAGG GGTCATGACT 
25681  CACAGGCTTA AACTCTGGAG TTCAACCAGG TTTCCACACC GATCGATCCA GGGCTACAGA 
25741  GGGAGAGCGA AGCGGTTAGG AAGTGCTGGT CTGTCTTTGT TCCACTTCCT TTTACTCTGC 
25801  CCACTGCAAG TCTCTGTGTT TCGTAATACA GGAAGGACAT CATTCACTAA GTTTTGTTAA 
25861  GTAAACTTGA ATCCTTGAGA GCCTCCTAAG AGACCTTTGT GGGGCTTTTG TTTTGTTTTT 
25921  AAAGATTTAT TTATTTTATT GTATGTGAGT ACACTGTAGC TGTCTTCAGA CACACCAGAA 
25981  GAGGGCATCA GATCTCATTA CGGATAGTTG AGCCACCATG TGGTTGCTGG GAATTGAACT 
26041  CAGGACCTCT GGAAGAGCAG GCAGTGCTCT TAACCGCTGA GCCATCTCTC CAGCCCCAAC 
26101  CTTTGTGTTT TCATCAGCAC AACCTGGACT GAAAATTTTT TGTTTGTTTT GTTTTACTGT 
26161  GCTAGGTATG TAACCAGGGA CCTTGCACAT GTGAGGCAGG GTCTCTCCCA CCTGATCCAC 
26221  ACCCTTGCGC CTCAGGATAA ACATTTGAAA GAAAATGTAG TCCAACTTTT CACCCCACCT 
26281  CTATCCCATC TCCAACAATA TACATCTTGT CTCTGGTTAA ACAATTTTAG AGAAAGGGAG 
26341  ACATCACCCC CTCTGAGACA ACTGGTTCAG TCTTTCAAAG GTATCTTTGA GTTAAACAGA 
26401  AACCTGGCTT CTTGAACATC TACACGGGTG GCTTGCTTTT GTCCTTTGAA CTTACAGAGT 
26461  GTGGTCAGAA GCTTGAAAGT CTCTCGTTGG AAATACCCCT TAGAATGGGC CCAAGACTGA 
26521  ATATAACCCA GTGTGGGGAG TAATATATAG GGAATATTAT TTTTCTTGTC TTATAATTGT 
26581  ATTTTTTAGT TTTTTTAAAA ATAGTTTTTG TTAGCCAAAC ATGGTGGTGC ATGACTTAAA 
26641  TTCCAGCAGT CGGAGGCAAA GGCTAGACTA ATGTGATATT CAGTGAGTAA ATAGTTAATT 
26701  AATTAAAATG ACAATTACCA TAAGGAAAAA AATGTCAGTC AAAAGACCCA AGATGCCTGG 
26761  CCATGGTGGT GCACGCCTTT AATCCCAGCA CTTGGGAGGC AGAGGCAGGC GGATTTCTGA 
26821  GTTCGAGCCA GCCTGGTCTA CAAAGTGAGT TCCAGGACAG CCAGGGCTAC ACAGAGAAAC 
26881  CCTGTCTCAA AAAACCAAAA ACAAACAAAC AAAAAAAGAC CCAAGATGCC TGTGGCCCCT 
26941  GGTCCTGAGC CAAATCTGAG TTGGATACCT TGGCTCGTAC CCACCAACCC TTAGCCCCAA 
27001  ATGATATGAT CACCTTCATT TCCTCCTCCT TGTTCACAAA AATACTATAA GCACTACAAT 
27061  GTCAGGTGAA ACAGAATGTG TGGTGCATGT CTTTTACAGA TGGGCCCATC CAGAACCTTT 
27121  AAAAGCAAAT GGCTGTGCTT ACAGGACTAG TTTTTGCAAT TGCATGCTTT TTTCTGTAGT 
27181  TGTTCCTTCA TAACTGCAAT GATTTTACAG GGATCCGTGT CTGTAATATC CTAGAATCTA 
27241  TGTGTCCACT GCGCAGAACC ATCCACTGGC CTCCCAGTTG GCAGCATCGC AGGATCACCC 
27301  TTGTTCTGCT GCATCTCATG GCTTGGGGCC TGGTGACCAC TGAAGGCACT GTGTTGCTTC 
27361  CTGGCCAGCC AGCCTGCCTG TTTCTCTTTC TTTACCTTCT ACCTTTCAGG GGCCTGAAAA 
27421  AAGCCATGAA TGGTGGTACT TCTGTCCTCA CCAAACTATA GTTCTGTTTC TGCCTGAGCT 
27481  CTGTCCTCAT AGACTCCTGA CTTGGGGTCA GTTCCTGAGC TTCTGTCCCT TGAGTCTTCC 
27541  CCATCTCTCT GTTTCCTGGA ATTTGCTTTC TTAATGTCTA AGATACCAGC CTGACTTCCC 
27601  AGTTGCTTTG CCTTAGTGAT TTATGACTCT TACCATGGCA GAGTCTTCAC CCAGAGCTCT 
27661  TAGGGCTTCA TTTTCCTTTC TTTCTTCTTT TTCTTTCTTT TTTTGTTTGT TTGTTTTTTG 
27721  TTTTTTGGAT TTTTTTTAAT GGGCTCACTA TGTAGACCAG GCTGGCTTCA AACTCCTAGA 
27781  GATCCAGTTT CCCCTGCCTC CCATGTGCTG AGATTAAAGG CGTGTGCCAC CACATCCAGC 
27841  CTCTTGCTTG CCCTTTATTT GTTTAAAATG CTATGTGTAT GGGTTTTCCC CTGCATGTAC 
27901  GTTTTACACC ACTTGCATAT GTGCATCCTG CACTGGAGGC TAGAGGAGGC CAGCCCTTGG 
27961  AACTGGAGTT ACAGAGGATT GTGATGACCA TGTGGGTGCT GGGACTTGAA CATGGGTCTT 
28021  CTGGAAGAAT AGCCAGTACT CTTAGTTTCT CTCTTATCAA AAGTAAGCGG CTGGGCCTGG 
28081  TGGCACACAC CTGTAATCCC AGCCCTTGAG AGACTAGTAA ACGAGTCCCA GGCCAACCTG 
28141  GGATATGGTG CAAGATTCCT GTCTCAAATA AAGTAAAATT AAAGTTTAAA AATTATAGGA 
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28201  GGATACAGTG ATCCTTTGGT ACCCACAGGA GCTCCTGGAG ATTCCAGAAC CCGTAGATGC 
28261  TCAAGACTTA TATATAATGT ATAGAAGTTA CCTGTAAGTT GCACATCTGC CGCATACCTT 
28321  AAGTCATCTG CAGATTATGT AGCACCAACA TTTCTTGATG CATGGTTGGT TGAATCTGTG 
28381  GCTACAGAAC CTGTTGATAT GGAGGTCAAC TATCCAGTTG TGGGGAAATG AGAAGAGAAA 
28441  AATTCTGCCA GCTATTACTG CATATACACA AAAGTGGAAA GTGTTCATTC TTCCATGTAG 
28501  TTGTTAGCCC TGCTGAGTCT ATGACCTACA CAGTCAGATC AGTTGTCCTG GGTAAAGGGG 
28561  TTAGTCCACT TAAGGCAGCG CTTCTCAGCC TTCCTTACGC AGCAACCCTT TAGTGCAGTC 
28621  CCTCATGTTG TGGTGACCCC CAAACATAAC ATTATTTTTT CTGCCACTTC ACAGCCATAC 
28681  TTTTGCTACT CTTACGAAGT GTCATGTAAA TACTTTTGGA GAGGTTTGCC AAATGGGTCA 
28741  CGACCCATAG GCTGAGAACT GCTGGCTTAA AGGAGTTGCC GTCTTCTGGT TCCTGGAGGC 
28801  CCTTGTGTCT CTGTGTGAAG GTTGTGAAGG TTGAGCAGAC AGACAGCCTT TAGAGTAGGA 
28861  CAGCTATGTC CTGCTGCTCA GGAATGCTGG CCTTGCCTTT CTTCTTTCCC AGACTGGCTT 
28921  GCATCTAGCT CCCGCTGGAT TGAGCTGGTA GCCTGCCTTA GCACAAGCCT AGAGGCTCTG 
28981  CCCCAATGAA GAGATTCAGA TTTAGAGGGC TACCAGTGTC CACCAGGGGG CACTCTGGAC 
29041  TCAGCACAGC CGGACCGACA CACGAGTCTC CCAGTTCTCC TCATCTTAGA TGGTGTGGGG 
29101  AGTGTGGTGA AGGCAGGCCT GGCCTGAATC GATGAGTGTA AGCAAAGGAA AAGCTCACCC 
29161  TGGCAAGCCT GGGGCTGGGA TGCTCGAGCG GGGCCTTGCA GGAAAAGCTC TTAACCTGTT 
29221  GGAAAAGCAA CAACAGAGGC AAAAAAAAAA ATTAATTTAA TTTAAAAAGC GGAGGCAAGG 

ATCC 29281  GGCCTTGGGT TCTCCTGTGG TGTGTTTCTT ACATCATTCC ATCTTTCTCC CAGCAG
29341  ACAGATGAGC ATGGCCGCCA CTGCTGCTGT CAGTCCCAGT GACTACCTGC AGCCTGCTGC 
29401  TGCTACTACC CAGGCAAGTG CACGGTGCTC TCTGAGGGCA GGGCCAGAGC CCGGCGGGTT 
29461  GATGAAGTGG GTTTTCTGCC TTACTCAGAC CCGCTCGCTC TCACTGCAGA CACCCAGGGA 
29521  GATTCACTTG TTCTCATTTC TGAACTAAGA CATAGACACC TGTCTAAGAT GTCAAAGTTG 
29581  GGTCAGGCAA AAAGAGTTGT GTTACCCGTG ACCTCTGGGG CTGGGGCCAT GGCTCTTAGT 
29641  AAAGTTGCTG CACATGCATG AGTTCTTGAG TTCAATTCCA AGTTCCCGTG TAAACCGCTG 
29701  GGCTGGGCTT GGTAGTACAC ACCTATAATC CTGGCATTCG AGAGGCAGAC AGAGGGGCTC 
29761  CACTGGGCTT ACTGGCCAAC TAGTCTTGCC CAGTCAGTGA GTTTCAGATT CAGTAAGAGA 
29821  CCCTGTCTCA AAAATGACGG CAAAGGAGGT GGAGAGAGCC AGGCGTGGTG GCGCATGTCT 
29881  TTAATCCCAG CACTCGGGAG GCAGAGGCTG GCGGATTCCT GAGTTCGAGG CCAGCCTGTT 
29941  CTACAAAGTG AGTTCCAGGG CTACACAGAG AAACCCTGTC TTGAAAAGCC AAAAAGAAAA 
30001  AAAGAGGTAG AGAGGTGCTC AGTGGCTTAA GAGCGCTGGC TGCTCCTCCA GAGGCCTGGG 
30061  TTTGATATGA TAGCTCATAC TCCAGGATCA AGTGATCTGA CACCCTCTCT GGCCTCTGAA 
30121  AGCACCAAGT ACAAGTACTT GAGTAAGGCA TAGACATACA TGTGGGAAAA ACACCCACAT 
30181  ACATTAAATA AATAACAATT TAATAAACAA GGGAGAGTCA AAGAGTGAGA CTTCATTAAC 
30241  ATATCTGGCC TCTACCTACT CCACCTATGC TGATTCGGCT ATACCCACAC ACCCTCCACA 
30301  TGAACACATA CATGTATATA ATACACACTC CAGAACAAAA CCAGAAACCT TTTACCGAGA 
30361  GCAAGTTCAT GTCATCTTCC CTCCCCATCA GCTCTCCTCT CCTCCTTGTA CTGAGTTGGT 
30421  AGAATTCCAA CTGATACCTG GGTGTGTTGT TATCCCTGCC GACACTAGGC CAGCAGGGCG 
30481  GGTGGAGGGG GGGGAGAACA GCCTGTGTTG TTGCTGTGTG GTGTCCAAGG CTGCTTCTGG 
30541  GGGGTTTTAC ACTGAGTTCC TTCACTTCAT GGAGAAACCA GCAGGAGCCA ATGAGCCAAT 
30601  GCAGGACACA CGCACGTGTG TGCGCACGTG TGTGTGTGTG TGTGTGTGTG TGTGTGTGTG 
30661  TGTGAGTGAT AGCTTGCCAC AGGGGTGGGG AAGCTGCTGA GAAGAGAGGC TCGTGAGGGC 
30721  AGAGTGTCTG GCTAGTCAGC CCATCTCACT CCTTTCTTCT GTTGATTTTT GCAGGACTCC 
30781  CAGCCATCTC CCTTGGCCCT GCTTGCTGCG ACATGTAGCA AAATTGGCCC CCCAGCTGTT 
30841  GAAGCTGCAG TGACACCTCC TGCTCCCCCC CAGCCTACCC CAAGGAAACT GGTCCCTATC 
30901  AAACCCGCTC CTCTCCCTCT CAGTCCCTGC AAGAATAGCT TTAGCATCTT ATCATCTAAA 
30961  GGAAATATAC TTCAGATTCA GGGCTCCCAG CTGAGTACCT CCTACCCTGG AGGGCAGTTT 
31021  GTGTTTGCAA TCCAGAACCC CACCCTGATC AACAAAGGGA GCCGATCAAA TGCAAGTATC 
31081  CAGTACCAAG TCCCTCAGAT CCAAGGGAAC AGTTCCCAGA CCATCCAGGT GCAGCCCAGT 
31141  CTCACCAACC AGATCCAGGT CATCCCAGGC ACCAACCAAG CCATCATCAC CCCGTCAACA 
31201  TCTGGTCATA AGCCTGTCCC CATCAAGCCA GCTCCTGTCC AGAAGTCAAG TACGACTACC 
31261  ACCCCTGTGC AGAGCGGGGC CAACGTGGTG AAGCTGACAG GCGGGGGTAG CAACATGACG 
31321  CTCACCCTGC CGCTCAACAA CCTGGTGAAC ACCAGCGATA TTGGGGGCCC TGCTCAGCTC 
31381  CTCACTGAGA GCCCCCCCAC CCCACTGTCT AAGACTAACA AGAAAGCTAG GAAGAAGAGC 
31441  CTCCCTGTGT CACAGCCATC CGTAGCTGTG GCTGAGCAGG TGGAGACGGT GCTGATAGAG 
31501  ACCACGGCAG ACAACATCAT CCAGGCAGGA AACAACCTGC TGATCGTCCA GAGCCCTGGC 
31561  GGGGGCCAGC CAGCTGTGGT CCAGCAAGTC CAGGTGGTGC CACCCAAGGC TGAGCAGCAG 
31621  CAGGTGGTCC AGATCCCCCA GCAGGCACTG CGGGTGGTGC AAGCTGCCTC TGCCACCCTC 
31681  CCCACCGTCC CCCAGAAGCC CTCTCAGAAC TTTCAGATCC AGACAACTGA ACCAACACCA 
31741  ACCCAGGTAC CATAGTCCCT CTGCCCTGCC TCCCCTCCTC TGCTCACCCT TTTGGCTTGC 
31801  TTTTGAAACT GAGGCAGATC ATCGTCAGAT CTTACGGGAA GCTGGAGTCA CCATCATTTG 
31861  GGGTGGGCAG GAAATGGCTT CTCCCCTGGA GTCTCTTCAG GTCTTAGGCC AAGTAGTCCT 
31921  GACCTGTAGA AATCAGATGG AACAGGGATA TCTGGTCTGT TTTATTCTTT CCTTATGGGG 
31981  TAGCTCTGGG GGCATAATGG GGTAGATCTG TATACTGTCA TAATAAAGTA TTTTTAATGT 
32041  AAGAGTATAT ATAACAGCAA GAATGAGAAT TCGAACTAGA ACCATAGAAT CTGCTGTAAA 
32101  GTAGGAAAGT TCAAGAGAAA AAAATGCTGG CCTCTGCTAA AGACAAGAGC AATAGCAGTG 
32161  GGGCAGCCAG GCCTTTTCCT TTCTGAGACA GGTCTCCCTG TGGGTCCCAG GTGGGCCTTT 
32221  ACCTCGCTGC ACAGCCCAAG CTGGCTTCAC TCGCTGCACA GCCCAAGCTG GCTTCAGACA 
32281  TGGGACCCTC CTGCTCCAGC CTCAGTGCAG TGCTGGGGTC GCATGTGTGA GCTGTAGCCT 
32341  TGCTTCTTTG CACCCCTGTT TATCCTCCCC GAGAGGGGGT TGTCCTTCTG CTTCCTTCAC 
32401  TGTGTGTGCA TGTGGCCACT GAGCGTGTGT TTTCCCCTCT AGTCTAGATC CCTCCTAAGG 
32461  GAGAAGACAT TCGTCTTCCT GAGCCTGCCA TGTTCCACTC ACCATGATGA CCTCTGGGTT 
32521  CTGGAGTGTG CTCACGGCTG CTTTTGCTTC TGCTGCTGTC AGGGCAGCTG GCCATTCTGC 
32581  CAGCTGTCAA CTCTTGTCTT TTTAGCTGCC CTGTGGCCGC CATCTTGCTG CTTTGGTAGC 
32641  CTGCCCTGCC GGCTGCTTAG CTCTCTGGTC ACTTTGCAGT CTCTGCTGCT GCTTTTTTCT 
32701  TCCTTCCCTT TTTTTTTTTC TGTAGCCCAG GCTGGCCTGA GACTCAGAAA TCTGCCTACC 
32761  TCTGCCTCCT GAGGGCTGGG ATTAAAGGCG TCATCACCGC CACTCAGCTG TTGCTCCTTT 
32821  ATGTTACCAG CTCAGCCCAC TCTAAAAGCA GACAAGAACA GACAGAGCCC AGTGTTGCTC 
32881  AAGACAGACG GGGCAGTAAA GGAGACTCCA GCAGCCATGG GAGTCAAACT GCTCCATTCC 
32941  CCAGTGTCTC TGCTGATTTA CAGGGAAATG GCCATGAGAA GGAGTGCTCA AAATGATCGT 
33001  TTAAAACTTG AGTCAGGTGC TCTGGTGCAC ATCTGTAAAC ATGCATTCAG GGGGCTGAGG 
33061  CAGGACTGAC ATGCGTTGTC ACCAGGCCCA GCAATGGGGC TTGAGCGATG GGTTGTGGTT 
33121  GACTCGCCGC TTTTTCCAGA GGTTCCAAGG TTGATTCCCA GCACTCACGT GGCTCTCAAC 
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33181  CAGCTGTAAC TCCACTCCCA GAGGATTCCG AGTCCTCCTG TAGTCTCCAT CTGCACATGA 
33241  TAAACAAATG TGATAAAGAC ATTAGACAAA GCACCCCCAC ACAGTCAGGT AATAATAAAA 
33301  CAAACAGTGC TTAACACCCA CTCAGTACCC ACCAAGGGAG CAGTGGGCCC TCGCCTGACT 
33361  CAGGGTGTCT GAGGCTAGCA GAAGAGAAGA CAGAAGGGGC AGGTCCTCTC CTTCCTGCGC 
33421  CCCAGTTACT CAGCCAGCCA TTTACTACCT CAGAGAAAAA ACAAGTACAA CATGGTAAGG 
33481  TTTTTAAATG GGGTACATAT ACAGAACTGG AAAGGGACCT GAGGCTTCTA TATGTATTAA 
33541  GGGATGGCAG GTTCAGATGT TATCCTTTAA CTAAAAGTCT TCAGTATCCA GGAATTAAAT 
33601  ATAACCCCAG TTAAAATCAG TCTTACAAAG GATTTTTTTC TCCCTGGATC ATTTAAACAT 
33661  AAACTGCCAC CATGATCCCC CTCCCACTTG CAAATGCTTT AATTCTCCCA CACAGGCACA 
33721  GCCCCTGCGC ACACCGCAGC CTTCAAGCCT GAAACTCACT AGTGAACTGC TGGTGTCTAT 
33781  CGGGGAGGTA CCATTCAGGT CTCACCACAT GCTTCGGATA GTAATTCCAA CGCTGCCTAA 
33841  GGACTCTGTC CACCTTACAT GTAGTTGTCG CATCTCTCTG GTCAGATCTC TCTTTCAGAA 
33901  AGAATTCCTC GCATCCCCCA CCTCCATGGA GCTGGAAATT AAACCAGGGC TTCGTGGATC 
33961  CTAGGCACTT AAGTGTCCTA CCCTGAACTA CATCCTCAGC CCCACTTCCT CTTTAATGTG 
34021  GCAGTCAACC TTGCTGCTGT TGAAGGCCAC AGGCTAGTTG TTTTGTAGAA TGTCCTTTAG 
34081  TTTGTTTATG TGATGTCCCA TGAGTGGATT GCATTTGCCA TCCCAGTGCT CATACAGAGA 
34141  GAGGTGAGAG CAGAAACAGG AGGACCAGAC AGGAACCAGC CAGCCTGGCA TATGCAGTAG 
34201  CGAACAAGAA GCCCTACTTA CAGGAAGGCA AGGTTGTCCT GTGACTTCCA CAAGTGTGCT 
34261  GTAGCACATG CGTACCCATA CTCTCACACA TAAACACATA CACACACACA CATACACACA 
34321  CAACATAAAA TTTTTTCCTC CTTGTATTTC ATTAGTATTT TGAAGAGAGA CATTTTGGGA 
34381  TAAGATAAAT ATCGAGTTCC TCTTAAACAA TTTGCTTAGA TTATTTTATT ATATATATAT 
34441  ATGTATGTAT ATATANNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN 
34501  NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN 
34561  NNNNNNNNNA GGTTCGCTTG CATATATATG TACGTGTACT ATGCCTAAAC ATAGTATGTG 
34621  AACATGCCTC ATGCCTGAGA AGGTCGGCAG AGGGCATCAG CTCCCCTAGA ACTGGAGTTA 
34681  GGGATGACTG TAAGCTACTG TGTGGATGCT GGGAAATCTG GGTCCTCTGG AAGAGCAGCC 
34741  AGTACTCGTA ACCTCAGGCC CATCTCTCCA GCCCCTGCTG TTTAAAGATA GTTTACTGTG 
34801  TGGTTAAGCT GGCTCCACAT CACTTTGTAG CCCATGCTGG TGGTGTGCTT TTTTATTCAT 
34861  CTTCCAGTTT TGAGATTTAG CAGTTAATAT TTTTCCATGC TAAGCAGATT AAAAGTTTGG 
34921  TTGCAGGTCA GTAACCAGCT CATGCCGATT GAGTGCAGGG CAGCATCGGC CCTGTTAAAC 
34981  ATGAGTAGTG CACAAGTGTG TTCTTGGGCT GGATGAGATG ACAGAGGTGT CCCAGTTCTC 
35041  CCTCGGACAA GGAAGGTCAT GCTGCCATCT GTCTTAGAGC ACTCTCTTTT CTCTGGCCCC 
35101  TCAGGTTTAT ATCCGTACAC CTTCTGGTGA GGTACAGACA GTCCTTGTCC AGGACAGCCC 
35161  CCCAGCAACA GCTGCAACCA CATCAACCGT CACCTGTAAC AGCCCTGCAC TCCGAGCTCC 
35221  CCATCTGAGT GGCACCAGCA AAAAACATTC AGCTGCCATT CTCCGAAAAG AGCGGCCCCT 
35281  GCCAAAGATT GCACCTGCTG GGAGCATCAT CAGCCTGAAC GCCGCACAGC TGGCAGCAGC 
35341  TGCTCAGGCC ATGCAGACCA TCAACATCAA TGGTGTCCAA GTCCAGGGTG TGCCTGTCAC 
35401  CATCACCAAC ACTGGCGGTG AGGGAAAGGC CTGAAGCCAG GAGGGTACTG GGAGCAGGGC 
35461  TTTGCATTCA GCATATGGGA ATCCTGAGCC GGGCCCCTGG GGTTTCCAGG GTCAGCCAGG 
35521  AGGATGCTCA GCTTGCTCCT GGTCCCTGCC AGCCTCAGGT CATATCTGTC TTCACACTTG 
35581  GTCCTTACAG TAATACTGTG AGATAGGAAG TCACATGACC ACATGATAAC TGCAGATGTT 
35641  GAATAGAGAC TGAGAAAATA GATGTGTCCA AGTAATATAC AAATTCACAT TAATTTGGCT 
35701  GGTCACTTGC CCAGGTCAGG TAGCTAAGGG CTGTACCTAA TGTAAAGGAA GTCAAGGCTT 
35761  CTTTTGGGGG TCAGGGGTAG TGTTTCGAGA CAGTGATTCT GTATAGTCCT GGCTTTCCTG 
35821  GACCACTGTA GACCAGAACA GCGTCTGCCT CCTGAGCGCT ATTATTAAAG GCATGTGCCA 
35881  CCACCGTCCA GCTAAGGACG GCTGCTGTTG AGAGTGGGAG GCAGGGGAGG GCGTCCTGGG 
35941  CAGCAGGACC AGCTTACACT GCACCAGAGC TGATGATGAT ACATTCTGCG AGTGCAGCTT 
36001  TGAGAAAAAG GGAAAGCGAC TTGGGAGATG GCTCAGTGCT CAGCAACACC GGCTGCTCTT 
36061  CCAGAGCCTG TGTTTCATTC CCAGCACCCA CATGGCAGCT CACAACAGTC TAGTCCCATA 
36121  GGATCTAATG CCCTTTCCTG GTATGTAGAC ATACACACAG ACAAAACATC CATATACATA 
36181  AAATACATAA AAAAATCTTT AAAAAAATAA AAAAATGAAG AGAGAGGGAA GGAGGGAGGG 
36241  AGGGAGAGCT GAGGCTGCCT AGCGAAGCAG GCTGCATCTG CACCTGGGAG TCTGCAGCGC 
36301  CCCCGGCGGC GGCGAGAGCT CACGGCTTTC CACATCCCTA ATAAACGTCG AGCATCTTAG 
36361  GCATTTGCTT GGTCCACAGA ACAAAAATTC TTAGGCGAGT TTCCTGCTAG CAGGGGCAGA 
36421  ATCTCAGGGA GGCCTCTGGC CCTCACTGCC CTCCAGTGTA TTAGGCTCCA TGAGTCTTCC 
36481  TCAGCCAGAG AGAGGGAGAG GGAGGGAGAG AGGGATAGCC TGGGCTTCCT TTCCTGAACC 

GGCAGCAGC AGCTGACCGT GCAGAACGTT TCTGGAAACA 36541  ACACCCTTTT CTCTCCCACA G
36601  ACCTGACTAT CAGTGGGCTG AGCCCCACCC AGATCCAGCT GCAGATGGAG CAGGCTCTAG 
36661  CCGGAGAGGC CCAGCCTGGG GAGAAACGGC GGCGCATGGC CTGCACGTGT CCCAACTGCA 
36721  AGGATGGGGA GAAGAGGTAA TATGCCCGAC CCTGGCCATA CCCACACCCC TGTTCCACAG 
36781  GTCACTCGGG GACAAGTCTT GGCCTGACCT CCCGTGCTTC TCTCCCTTCC CTCTTCCCAA 
36841  CTCCTCCCCC TACTCTGAAC CCAACCCCTC AGGTCTGGGG AGCAGGGCAA GAAGAAGCAC 
36901  GTGTGCCACA TCCCGGACTG CGGGAAGACT TTCCGGAAGA CATCCTTGCT CCGGGCCCAC 
36961  GTCCGCCTGC ACACTGGCGA GCGGCCCTTT GTCTGCAACT GGTTCTTCTG TGGAAAGAGA 
37021  TTCACTCGGA GCGATGAACT CCAGCGACAT GCTCGAACCC CACACAGGTC AGTTCCCCCA 
37081  TGCCCTTGTC TGTCCTTTGT ACACTGTCAC CCATGCCTGT TCGGGGCTTC ACCATCCACA 
37141  CTACCCAGAC CCAAAATCAA AACCAAACCA AACCCAAGCA GTGATGAGAA ATGCCAAATG 
37201  CTGTGTGTAG CATTTTCAGA TAAGTTAGTC CCAGGAAGGC CTTGGAGGGT TACCTCAGTG 
37261  CCAGCCACCT GGCTGAGGTT TGGATAAGTG GCTAGTGGTG GGCAAGCTGG GCTCCTACCC 
37321  AAGCCCTGGG CTCTCAAGGC CACATACTTT GTAAATGCTT TGTTTTAGGA CTTAAGGTCC 
37381  CTCTGTCTCC ACCTCTGTAA AGCCCTGTGA ACTAAGCCAC CAAGCTGGCC TCCAGTCTTG 
37441  GTTTTGGAGA GAGAGCGATA ACAAGATTGA GCCAAGTGTT CAGGCTGCCC TTGCAGCAGT 
37501  CCTGCCTCAG ACTCCAGCTG TTGGGATTAC AGGTGTGAGT CACCACACCC AACTCTTTTT 
37561  GTTTGTTTTA AGACAACATT TTGCTGTACA GCCCAGGTTT ACCTTAAACT CGTGGCACTT 
37621  CTCCTATCTC CTTAATGCTG AGATTACAGG CCTGCTCCGA CATGCATGGC CTACTGCAGG 
37681  CCTGCCTCCA TGGCAGCCTA AGTTTACTAT TAAGGTTGCT ATCACTATTA TGTGCTTTAA 
37741  TGCACCCGAT AGAAGGTGCC TTAAAGATGT CCTGGGCATG CCCAGTGGTC CACTGGCAGA 
37801  TGCTGTTGTA GGGAATGATG CCCTGCTGAG CAGACACTGA GGTGGGGGAC ATGCCTCAGC 
37861  TCCTGGTGAG TCACACCCAT CGCAAGCAGA AGCATACACA CCCTGATACA GGGTGGGTCG 
37921  CTGTGGTCCA GACTCAGGGG CTCAGGGCTG AGATGTCTTC CTGTAAGGAG GAAGGTGTAA 
37981  AGTCCCTGGG ACACAGTCCA GAATGAAGCA GGTATGCAGA GGCTCAAGGA CAAGCAGCCT 
38041  GGGCAAAGAC CAGAGTGTAC CCAAGAACGG AGTGTAGAGA GGTAGATTAG ACGGGGCAGC 
38101  TGGGGCAGAG AGGTGCGACC AATAGACGAC AGGAGGAGGC TGTTAGTGGA GTGCAGAGAC 
38161  AAGGCCAAGT TGGCCTTTCC AGGGGCTCTC ACTTTCTGGA GCTTCTCCTT TCTGGGACTG 
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38221  GGGCAGTGAT ACTGCATGCC CTCTTTGGTA AAAGATATTT CTTCTTCCCA GGGGACAAGC 
38281  GCTTTGAGTG TGCCCAATGT CAGAAGCGCT TCATGAGGAG TGACCACCTC ACCAAGCATT 
38341  ACAAGACCCA CCTAGGCACG AAGGGCTTGT AAGGCCAACT GAGGCAGGAG GCCCTGAAGA 
38401  TGGAACACCT CCCATCTGAT TGGCCCTGGG TCCATGATGG ACAGGTGCCC ACGACTGCCC 
38461  TGGGCAGCCC TCACCCCACT CCTGTTCTGT GGCTGTGTCC CTGCAGAGAG GGACTCTGTT 
38521  CCTGTGTTCT CCTCCTTCCA AAGGCTCTGC CCCTCTCACC GTGAGCTCCT GGCCTGCCCA 
38581  GGCCATGGAC ACTGGCCATG CCCAATGAGA CGTTCTAACC CAGGACGCGT GGGGACCCTT 
38641  ATTTCCAAAG GAAAAACATA CATTTCACTC CGTCGAGGAG CAAAGTGAGC CCCCCATCCC 
38701  CACCCCATCC CCTTCCTCAA CACTGCCGGA GTCCCATTGT GCCATGCCCC CTCCCCCACC 
38761  GTGCCTCCTT GTCCCCCTCA ATTAACTCCT CCTGGGCCGC TAGGGACACC CAGGGGCCCT 
38821  GTACCCAGCC TCCCACTGAC ACCCCCCACC GGGGAGGTGG GAGGCTGCCT CCACTCCACT 
38881  GCCCAGCCCT GCCACGGCTC TCCTCCAGAC ATTCCAACTT CCTATGAAAG GTCAGACGCC 
38941  GAGGACCTGC CCTCCCTCTT TTCTACGGAG AACGTTGCCT TATACTCACT TCAGATGATG 
39001  ACACTGTGGA CGTGTGTGCT TTAACCACAT TTTATTTAAT TGCTCCCTTC CTCTCTTTGC 
39061  TAGACGCCTC CCCCTTGCTT GCATTCAGTT TAGGGTTTTG GGGGCAATGC TGAGCATAGG 
39121  AGGGTCTTTT TTTTTTTGCT ATTTTTTTTC TCACTTTAAC AATTCTTTTC TAAATGACAC 
39181  ATTTCAACTC AAATCTGGAC TCACCTGAGA ACACCTTCCA TCCTGACCCC GCCACGCCCT 
39241  CATCTCCCCC TGCCCAAGCT CCACTGTGTA CAGTGTATAT TGTATAATAG ACTATTGTGT 
39301  CTAAGACATG TTTTAAAAAC ATATTGCTTG TTATTTTTGA GGCTTTTAAA TTAAACAGAA 
39361  ATCCAACTTT ATTTTCGTTG TAACTGCTTG AGGATGTTTT ATTAATTAAG TGAAGATTTG 
39421  TTATCCTTTA TTAACGATGT ATTTTGTTGG TCAGTACTGG GCTGACAAAA AGTTTCTTGC 
39481  TAATAAATTT AGTTGCCCAA GGCAAAGTCT GCGTTTGGCA GTTGGGCTTC CTTTGTCTGT 
39541  GATGTCAGAG GTCTTACAGA AGGATTCCTG AGGCGGGAAC TGTGGACTCA ATTTACCCTC 
39601  CTGGTCCTGG TCCCAAAGGA GACCGGCTCT CAGAGCACCT GGGGGCCTCT GGAGCCAGAG 
39661  CCCAGTGCAG TCTCTGCTTT TTTCTCCCAC TCCCAGTCTT GCTTCAGCCA CAGAGGCGAA 
39721  CCCTAGAAGA ACTTCCTGAG CTGGCCGACT GTTGTACCTC CCACCCCAGC CCCGAGGAAG 
39781  GCACTGCCTC CCAGTCTGTG AGAAGCTAGA GGAGTCAAAA GCCTTAGCCC ACAAGGTTGG 
39841  GTTTGCAGAA AATACTGTTC CCACAGGGTG GGAGGGAAGT CTGGGACCAA GCAGGTTCCT 
39901  CAGGGTCGGC TCTGGGTTTG AGTAGAGTTG CAGAGTGGAA ACTGTATTGG GGGGCACCTT 
39961  TTCATTTTGG CAGAACTACA GAGAAAGAAG TCAGGGATTG TGACTTACTC AGATTTAAAG 
40021  CCACAAGCGT TGGGGGCCTG AAAAGCAGCA GCCAGGCTGG AGGAAGAGGC CAGTGTGCCT 
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