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1 Introduction  
 

Non-syndromic syndactyly is a common, heterogeneous hereditary condition of webbed 

fingers and/or toes. The malformation can be unilateral or bilateral, and the fusion 

within the web may be cutaneous or bony. The phenotype varies in families, and intra-

familial variability is quite common. The majority of syndactylies show autosomal 

dominant mode of inheritance, with variable expression and incomplete penetrance. 

Cenani-Lenz syndactyly is the only type which is autosomal recessively inherited 

(Cenani and Lenz 1967). The frequency of syndactyly varies in populations and a 

prevalence of 3 per 10,000 births has been suggested in a Latin-American study 

(Castilla et al. 1980).  

1.1 Classification of syndactylies 
Roblot (1906) grouped syndactylies into syndromic and non-syndromic entities. But it 

was Julia Bell (1953), who pioneered a more sophisticated classification of non-

syndromic syndactylies by reviewing 63 families with autosomal dominant inheritance. 

She separated different variants according to the involvement of hands and/or feet. 

Since some families had hands and feet involvement, she introduced subgroups, which 

made the classification difficult to use. Therefore, Temtamy and McKusick (1978) 

established a new classification based on clinical features and inheritance. They 

identified five types (I-V) on the basis of the anatomic location of the web and the 

combinations of involved fingers and/or toes within the web. Although some 

phenotypic overlap between the various types was observed, each type had its 

distinguishing features. All variants were reported to exhibit autosomal dominant 

inheritance with variable expression and incomplete penetrance. Kindreds with obvious 

autosomal recessive syndactylies were not part of this classification. Goldstein et al. 

(1994) extended the Temtamy and McKusick classification to eight types. They added 

an autosomal recessive entity, the Cenani-Lenz syndactyly as type VII (Cenani and 

Lenz 1967).  

The advances in the understanding of molecular embryology of the limb bud prompted 

Winter and Tickle (1993) to propose a new classification of limb defects. They 

separated various syndactyly types based on normal or abnormal patterning of the limb. 
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But this classification was not practical as syndactylies with various pattern defects 

were observed in the same families (Akarsu et al. 1995; Sayli et al. 1995).  

In this thesis I use the classification system proposed by Temtamy and McKusick 

(1978) and extended by Goldstein et al. (1994). A survey of all syndactyly types is 

presented in Table 1-1. 
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Table 1-1: Syndactyly classification based on Temtamy and McKusick (1978) with the extension by Goldstein et al. (1994). 

 
Type Description Key features Inheritance Locus Reference 

I Zygodactyly, SD1 Webbing of 3rd and 4th fingers and/or 2nd or 3rd toes AD 2q34-q36  Bosse et al. (2000) 

II Synpolydactyly, SPD Webbing of 3rd and 4th fingers, duplication of fingers in the web, 
webbing of 4-5-6 toes 

AD 2q31, 
(HOXD13) 

Muragaki et al. (1996) 

III Ring and little finger 
syndactyly, ODD* 

Webbing of 4th and 5th fingers AD 6q22-q23, 
(GJA1) 

Paznekas et al. (2003) 

IV Complete syndactyly Syndactyly of all digits 1-2-3-4-5 AD  Haas (1940) 

V Postaxial syndactyly with 
metacarpal synostosis 

Fusion of 4th and 5th metacarpals, soft tissue syndactyly of toes AD  Robinow et al. (1982) 

VI Mitten syndactyly Unilateral syndactyly of digits 2—5 in hands and feet AD  Temtamy and McKusick (1978) 

VII Cenani-Lenz type Gross metacarpals and carpals fusion, radio-ulnar synostosis, 
spoon-shaped hand 

AR  Cenani and Lenz (1967) 

VIII Metacarpal 4—5 fusion  AD, X-R  Lerch (1948) 

* oculodentodigital dysplasia 
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1.1.1 Syndactyly Type I (SD1; MIM 185900) 

Syndactyly type I is characterized by complete or partial webbing between the 3rd and 

4th fingers and/or 2nd and 3rd toes. In some cases the webbing between fingers is 

associated with fusion of the distal phalanges. This syndactyly is the most common type 

of syndactyly which accounts for the majority of isolated syndactylies (Castilla et al. 

1980). Type I syndactyly segregates as an autosomal dominant trait, and the occurrence 

of skipped generations indicates that penetrance is <100% (Montagu 1953). The gene 

for type I syndactyly has been localized in a large German family to chromosome 2q34-

q36 (Bosse et al. 2000). The clinical spectrum of digital malformation in the German 

family reached from skin fusion between 2nd and 3rd toes to complete webbing between 

the 2nd to 5th fingers and 1st to 5th toes. Ghadami et al. (2001) reported an Iranian family 

which was also linked to the same locus on chromosome 2q34-q36. 

1.1.2 Syndactyly Type II, Synpolydactyly (SPD; MIM 186000) 

Synpolydactyly is characterized as a cutaneous or bony fusion between the middle and 

ring fingers associated with complete or partial duplication of the ring finger in the web. 

Duplication of fifth toe in the feet is a usual finding (Temtamy and McKusick 1978). 

The more extreme phenotype shows complete soft tissue syndactyly involving both 

hands and feet. In the hands there is polydactyly of the preaxial, mesoaxial, and 

postaxial digits, loss of the normal tubular shape of the carpal, metacarpal, and 

phalangeal bones (Akarsu et al. 1995) 

Synpolydactyly shows an autosomal dominant mode of inheritance with variable 

expressivity and an estimated penetrance of 96% (Sayli et al. 1995). First linkage was 

reported to chromosome 2q31 in a large Turkish family (Sarfarazi et al. 1995). 

Polyalanine tract expansion mutations in the homeobox containing gene HOXD13 have 

been described for SPD (Muragaki et al. 1996). Later studies showed that there is a 

correlation between the size of expansion in the polyalanine tract and the severity of 

SPD (Goodman et al. 1997). A complex type of synpolydactyly was observed in a 

patient with chromosomal translocation, t(12;22), disrupting the fibulin-1 gene (FBLN1) 

on chromosome 22q13.3 (Debeer et al. 2002). 
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1.1.3 Syndactyly Type III (MIM 186100)  

In this syndactyly type there is a complete and bilateral syndactyly between the 4th and 

5th fingers. Usually it is soft tissue syndactyly but occasionally the distal phalanges are 

fused. The 5th finger is short with an absent or rudimentary middle phalanx. The feet are 

not affected. Type III syndactyly has been reported as a part of oculodentodigital 

dysplasia (ODD; MIM 16420). The family reported by Johnston and Kirby (1955) was 

one of the largest fully described pedigrees, involving 7 males and 7 females in a pattern 

compatible with autosomal dominant inheritance. Bony fusion was observed at the 

terminal phalanx of the fused phalanges. Brueton et al. (1990) described a family with 

type III syndactyly and a facial phenotype resembling that of oculodentodigital 

dysplasia (ODD) but without any of the other characteristic ocular and dental features of 

ODD. Gladwin et al. (1997) localized the gene for ODD on chromosome 6q22-q24. 

They proposed that isolated type III syndactyly may be encoded by the same gene as 

ODD syndrome. Paznekas et al. (2003) found mutations in GJA1 gene which encodes 

for the gap junction protein alpha 1 (connexin 43).  

1.1.4 Syndactyly Type IV, Haas Type Syndactyly (MIM 186200) 

Syndactyly type IV is characterized by complete fusion of all fingers in both hands 

(Haas et al. 1940). Flexion of the fingers gives the hands a cup-shaped form (Gillessen-

Kaesbach and Majewski et al. 1991). There is usually an association of polydactyly, 

with 6 metacarpals and 6 digits. When feet are involved, they usually show complete 

fusion of all toes. Haas type syndactyly is a rare phenotype, and there are only four 

reports available in the literature. The most likely mode of inheritance is autosomal 

dominant with variable expressivity. 

1.1.5 Syndactyly Type V  (MIM 186300)  

Syndactyly type V is a postaxial syndactyly which is associated with 4th and 5th 

metacarpal and metatarsal fusion. Soft tissue syndactyly usually affects the 3rd and 4th 

fingers and the 2nd and 3rd toes. Robinow et al. (1982) reported syndactyly type V in a 

mother and 3 of her 4 children. All had fusion of metacarpals 4 and 5. None had 

metatarsal fusion although other anomalies of the feet were present. It is a rare 

autosomal dominant type with only two reports published so far (Temtamy and 

McKusick 1978; Robinow et al. 1982).  
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1.1.6 Syndactyly Type VI, Mitten syndactyly  

Mitten syndactyly is characterized by a webbing of digits 2—5 in both hands and feet. It 

can be mistaken for congenital ring constrictions (amniotic bands). Only one family has 

been described in the literature. The inheritance was autosomal dominant with variable 

expression and incomplete penetrance (Temtamy and McKusick 1978). No MIM 

number has yet been allocated to this phenotype. 

1.1.7 Syndactyly Type VII, Cenani-Lenz Syndactyly (MIM 212780) 

Cenani-Lenz syndactyly is characterized by complete syndactyly of hands and feet, 

abnormal phalanges, carpal and metacarpal fusion, giving the hand a spoon-like 

appearance. Occasional mesomelic shortening of arm, radio-ulnar and metacarpal 

synostosis, as well as disorganized phalanges have been observed. Feet are only mildly 

affected (Cenani and Lenz 1967). More than fifteen cases have been described in the 

literature. Cenani-Lenz is the only type known to be segregating as an autosomal 

recessive entity. No linkage has been reported for Cenani-Lenz syndactyly. 

1.1.8 Syndactyly Type VIII 

Syndactyly type VIII shows unilateral or bilateral fusion of metacarpal 4th and 5th. The 

5th metacarpal is usually hypoplastic and the 5th ray is consequently short. There is, 

however, great variability in expression, so the degree of fusion may range from 

minimal to complete and the external aspect of the hand may vary. For the isolated 

forms an autosomal dominant inheritance was suggested, while the familial cases 

segregate as X-linked recessive (Lerch 1948; Lonardo et al. 2004). No MIM number has 

yet been allocated to this phenotype. 
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1.2 Animal models for syndactyly 
1.2.1 Synpolydactyly homologue (spdh) and Hoxd13 

Johnson et al. (1998) described a spontaneous mouse mutant which provided an 

accurate model for human synpolydactyly. The new mutation, named synpolydactyly 

homolog (Spdh), has a 21-bp in-frame duplication within the polyalanine-encoding 

region of the 5-prime end of the Hoxd13 coding sequence. The duplication expands the 

stretch of alanines from 15 to 22. The same type of expansion has been found in human 

synpolydactyly (Goodman et al. 1997). Homozygote mice exhibit severe malformations 

of both fore limbs and hind limbs, including polydactyly, syndactyly, and 

brachydactyly. Spdh probably acts as a dominant-negative or a gain-of-function 

mutation. Further research to examine the interactions with other HOX genes and their 

protein products during limb development is therefore needed. In 2002 an allelic variant 

for Spdh was described with a same phenotype with an autosomal recessive inheritance 

(Albrecht et al. 2002).  

1.2.2 Syndactyly 1, Sndy1 (Sndy1Jrt/Sndy1+) 

Rossant (2004) described a syndactylous mouse, Sndy1. These chemically induced 

heterozygous mutant mice (Sndy1Jrt/Sndy1+) usually exhibit simple complete and/or 

incomplete syndactyly of digits 2nd and 3rd on one or both of hind limbs. Occasionally 

digits 1st and 2nd or 3rd and 4th are fused on the hind limbs. However, no involvement of 

the fore limbs has been detected. Syndactyly 1 maps on mouse chromosome 6 (37.2 

cM), and the homologous region in humans is on chromosome 3p25.1. This mouse 

phenotype is very close to the human syndactyly type I, which maps on chromosome 

2q34-q36 (Bosse et al. 2000).  
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1.3 Limb development 
The vertebrate limb is a widely used experimental model for analysing cell-cell 

signalling and spatiotemporal patterns of gene expression during patterning of 

embryonic fields and organogenesis. Studying limb development has a number of 

advantages. In particular, (i) limbs develop externally and are readily accessible in 

model animals for analysis; (ii) limbs consist of various well-defined segments and are 

characterized by clear anatomical polarity; (iii) limbs can be experimentally 

manipulated (both surgically and genetically) without influencing the viability of the 

embryo, and yet many of the emerging principles can be applied to understand earlier 

developmental events, such as specifying the main body axes; finally (iv) in humans, 

developmental malformations of limbs do not interfere with reproductive fitness. In 

addition, the analysis and comparison of limb development in diverse species has 

provided much insight into the evolutionary mechanisms through which exchanges in 

developmental pathways have led to the extraordinary diversity of limbs (Schwabe et al. 

1998; Grzeschik 2002).  

Much of our understanding of limb development is coming from study of mice. The 

limb bud first appears as a small protrusion from the flank of the embryo with the 

establishment of a special group of cells termed the “limb field”. Limb morphogenesis 

occurs along three axes, which become gradually fixed. During outgrowth the bud 

elongates along the proximo-distal axis (Pr-D, shoulder-to-finger-tips), flattens along 

the dorsal-ventral axis (D-V, back-of-hand-to-palm), and develops an asymmetric 

pattern of cartilage condensations along the anterior-posterior axis (A-P, thumb-to-little-

digit) (Figure 1-1). The growth and patterning along these three axes depend on the 

establishment and maintenance of three distinct signalling regions within the limb bud: 

(i) the apical ectodermal ridge (AER), a group of columnar cells at the distal edge of the 

bud at the dorsal-ventral boundary; (ii) the nonridge ectoderm of the bud; and (iii) the 

zone of polarizing activity (ZPA), a region of specialized mesenchymal cells beneath 

the posterior boundary of the bud (Figure 1-1) (Niswander 2003). 

Some of the molecules produced by these signalling centers and the responding 

mesenchymal cells have been identified. HoxA and HoxD genes express in an 

overlapping fashion in the limb bud, and the cells at different positions express different 

combinations of Hox genes (Figure 1-2). Fibroblast growth factors (FGFs) produced by 

AER cells are required for outgrowth as well as continued production of Sonic 
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hedgehog (Shh), which is produced in the ZPA (Sun et al. 2000). The expression of 

FGFs in the AER is in turn up-regulated by Shh through Gremlin, which suppresses 

FGF inhibition by Bmp-2 (Litingtung 2002). Shh, FGFs, and their downstream effectors 

regulate limb outgrowth and coordinate the patterns of gene expression, in particular the 

Hox family (Tickle 2000; Niswander et al. 1994). This morphogenetic landscape of 

signals is “interpreted” by a population of proliferating, undifferentiated cells just below 

the AER.  

 

 

 

 

 

 

 

 

 

Figure 1-1: Growing limb bud with signal centres. 

  The limb morphogenesis occurs in three axes of development: Pr-D (proximal-distal), D-V 
(dorsal-ventral), A-P (anterior-posterior).  
(AER, apical ectodermal ridge; PZ, progress zone (mesodermal); ZPA, zone of polarizing 
activity).  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2:  A: Overlapping patterns of expression of Hoxd genes in the posterior limb bud.  
 B: Signalling molecules involved in A-P limb patterning. 
  (Shh, Sonic Hedgehog; Gre, Gremlin; Bmp2, Bone morphogenetic protein 2; Fgf-2,-4,-8, 

Fibroblast growth factors). 

Fgf2, Fgf8  

Shh Fgf4, Fgf2, Fgf8 

Gre 

Bmp2 

A B 

ZPA 

PZ 

AER 



Introduction 

 10

1.3.1 Anteroposterior axis and digit morphogenesis  

The digit number and identity (thumb vs. little finger/big toe vs. little toe) is regulated 

by signalling from ZPA (i.e. Shh) (Riddle et al. 1993). Digit identity depends on 

distance from the polarizing region: the most posterior digit forms next to the polarizing 

region, the most anterior furthest away. Digit number is related to the width of the bud, 

and this depends on the length of the AER (Brickell and Tickle 1989). The development 

of a proper hand plate with a series of digits and progressive posteriorization of digit 

identity depends on Shh.  

Reciprocal antagonism of Gli3 and dHand prepatterns the limb bud mesenchyme before 

activation of Shh signalling (Figure 1-3). dHAND is required to activate Shh expression 

by polarizing region cells. Shh signalling inhibits the processing of Gli3, which acts as 

transcriptional repressor (Gli3R). Shh positively regulates HoxD (5'HOX) gene and 

Gremlin (Gre) expression in distal mesenchyme (Figure 1-3). The Shh-Fgf feedback 

loop between the polarizing region and the AER is established through Gremlin-

mediated Bmp antagonism (te Welscher et al. 2002). 

Each of the digital rays will develop from cells with a particular antero-posterior 

identity, and this identity should then determine the subsequent morphogenesis of that 

particular ray (e.g. number, relative length and shape of phalanges). Morphogenesis of 

rays can be modified by adjacent interdigital mesenchyme, and the rays develop in 

accordance with the most posterior interdigital cues received.  

 

 

 

 

 

 

 

Figure 1-3: Positive feedback loops between 5'Hox genes, Shh, and dHand. 

This feedback loop triggers the progressive expansion of posterior identity, mostly through the 
graded impact of the Shh product on Hox gene expression in the distal bud. I to V indicate 
presumptive digits, and the graded blue zones represent the Shh gradient (adapted from 
Zakany et al. 2004). 
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1.3.2 Separation and spacing of digits 

Setting up digital versus interdigital areas is the basis for spacing the digits. The initial 

divergence between digital and interdigital regions in an alternating fashion is achieved 

by different programmes of cell differentiation (chondrogenesis or apoptosis, 

respectively). Members of the Tgf?  superfamily execute two different programmes: (i) 

Tgf? s as chondrogenic signals and, (ii) Bmps as apoptotic signals (Figure 1-4) (Ganan 

1996; Zuzarte-Luis and Hurle 2002). Apoptosis helps to sculpt the limb by freeing 

digits. Interdigital cell death has been shown to occur mainly by caspase-dependent 

apoptosis (Lindsten et al. 2000). The chromosomal localization of genes involved in 

human limb development and the known syndactyly loci are shown in Figure 1-5. 

 

 

 

 

 

 

 

 

 

 

Figure 1-4: Apoptosis in mesoderm in developing chick limb bud. 

The areas of cell death that have been termed the Interdigital Necrotic Zones (INZs) are 
shown in red (from Zuzarte-Luis and Hurle 2002).  
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Figure 1-5: Chromosomal localization of human loci involved in limb development (black) and 

candidate loci for non-syndromic syndactylies (red). 
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1.4 Objectives of the study 
 
A wide variety of congenital limb abnormalities reflect the complexity and precision of 

limb development. Identification and characterization of the underlying gene(s) can 

increase our understanding of normal limb development.  

I got the possibility to study three large, inbred Pakistani families with limb defects. I 

reasoned that these large families may provide an excellent opportunity to localize the 

limb malformation in the human genome, to identify the underlying gene and hence, to 

get to know the underlying pathomechanisms of the malformation. Therefore, my aim 

was: 

?? to diagnose the hand/foot malformations and to categorize them using the 

existing classification system;  

?? to establish whether the limb malformations in these families are syndromic or 

non-syndromic; 

?? to find out about the intrafamilial and interfamilial variability of the phenotype 

(clinical heterogeneity); 

?? to check the hypothesis whether clinically distinct limb malformations in 

different families are also genetically heterogeneous; 

?? to infer the mode of inheritance of the limb phenotype segregating in the three 

families by constructing the pedigrees; 

?? to localize the limb malformations within the human genome using a combined 

strategy of homozygosity mapping, candidate gene approach and genome-wide 

search;  

?? to conduct fine mapping in case a locus is identified, and to narrow down the 

newly established candidate regions; 

?? having these families linked to a unique locus/loci, the next target should be to 

identify the underlying gene(s) through mutation screening and finally, to 

characterize the newly identified gene(s) and protein(s).  
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3

2 Families and Probands 
 

Four families with non-syndromic syndactylies were ascertained from various parts of 

Pakistan (Figure 2-1). During the fieldwork, families were visited at their places of 

residence, and a detailed pedigree was constructed in each case. Information about 

intermarriages and deceased subjects was also documented. The information was 

crosschecked by interviewing different family members. For the clinical study, 

photographs and radiographs of the affected as well as normal subjects were obtained. 

Variations in the involvement of one or both hands, upper and lower extremities and 

bony and soft tissue syndactylies were documented. The malformation in one family 

showed autosomal recessive mode of inheritance, while in the other three families, the 

malformation was segregating in an autosomal dominant fashion. For the molecular 

study, blood samples were drawn from the affected and normal subjects. All material 

was collected after getting informed consent according to the Helsinki II declaration. 

Clinical and molecular data of Family 4 were not included in this thesis. 

Later in the study the molecular data of a Turkish and a German family was included in 

the thesis. The results of these families are in press and have been described in the 

discussion part of the thesis. 

 

 

 

 

 

 

 

 

Figure 2-1: The places of origin of the four families. 
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2.1 Family 1 
 

The family originates from the North-Western part of Pakistan. A pedigree of the family 

was constructed by interviewing the elders of the family (Figure 2-2). The information 

was cross-checked by interviewing several relatives. Four affected (V-1, V-2, V-7, V-9) 

and six normal subjects (III-5, III-7, IV-1, IV-6, V-6, V-12) of the family were 

physically examined. Photographs of three individuals (V-2, V-7, V-9) and X-ray films 

of two subjects (IV-6, V-9) were obtained.  

Six phenotypically normal parents  (III-3 and III-4; IV-1 and III-5; IV-5 and IV-6) in 

three consanguineous loops, had eight affected (five males and three females), and eight 

normal offspring. All affected subjects have mesoaxial reduction of phalanges of hands 

and preaxial syndactyly of toes. An autosomal recessive inheritance is most likely 

(Figure 2-2). Peripheral blood samples from four affected and five normal subjects were 

obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-2: Pedigree of Family 1 with autosomal recessive syndactyly.  

 Solid symbols represent affected subjects, while the open symbols represent normal 
individuals. Horizontal bars on symbols denote individuals who were physically 
examined. An asterisk (*) on the symbols indicates the subjects of whom blood was 
sampled for molecular study. 
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2.1.1 Clinical report 

 

2.1.1.1 Propositus (V-9) 

The propositus (V-9), a 27 year old male, is one of the three affected sibs of related, 

phenotypically normal parents. The propositus has four ‘fingers’, which do not hamper 

in his day-to-day life (Figure 2-3, A). All the digits have lost their shape and identity, 

except for both thumbs. Radiographs show synostosis of 3rd and 4th metacarpals (Figure 

2-3, B). The fused 3rd and 4th metacarpal generate a single, broad and conical proximal 

phalanx, ending in dysplastic middle and terminal phalanx. In the right hand, the index 

finger is more like a middle finger, while in left hand the index finger is stumped, 

bending at 90° on the radial side. The distal head of proximal phalanx of second 

phalange shows mild hypertrophy, while in the left hand, this proximal phalanx is 

drastically reduced in to a triangular bone, bearing remnants of middle phalanx on the 

radial side. In fifth fingers, there is bilateral clinodactyly along with symphalangism of 

distal phalanx. Distal heads of metacarpals generally show hypoplasia. There is 

crowding of carpal bones, scaphoid and trapezium showing slight misalignment. Radial 

and ulnar heads seem to be normal.   

In the feet, first three toes are webbed (Figure 2-3, C). Radiological study do not show 

any bony fusion, yet there is hypoplasia of middle and distal phalanx of all toes (Figure 

2-3, D). First metatarsals in both feet appear broad with signs of distortion at the distal 

heads. There is symphalangism of proximal and distal phalanx of halluces. All the 

metatarsals generally show hypoplastic distal heads.  

2.1.1.2 Sister (V-7) of the propositus  

Severe aplasia of digits is observed in the sister of propositus (V-7, age 29 years). In 

this subject the defect not only affects the mesoaxial fingers but also ranges on either 

side of the mesoaxial skeletal rays (Figure 2-3, E). The photographs shows that 

mesoaxial digits 2-3-4 are reduced to one or two dysplastic fingers in the right and left 

hand, respectively. In the right hand, the thumb seems bifid at the terminal phalanx but 

this is not confirmed by radiographs. The brother (V-11) of the propositus reportedly 

has hand involvement similar to V-7, while his feet are said to be normal (no 

photographs available).  
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2.1.1.3 Relatives 

The relative V-2, a 33 year old male, also shows severe aplasia of digits (Figure 2-3, F). 

On the right hand, there is hypoplastic thumb, a single phalange representing the 3rd and 

4th fingers and clinodactyly of the 5th finger. However, on the left hand, severe reduction 

of all fingers except the thumb is observed, the fifth finger remains as a peg. His feet are 

found to be normal on clinical examination. His sister (V-1) and one brother (V-4) have 

the same phenotype (no photographs available). 

Dermatoglyphic changes characteristic of syndactyly are observed in the hands of the 

examined subjects, showing replacement of triradii by single or bifurcating horizontal 

or oblique lines (Figure 2-3, F). All affected individuals have normal intelligence and no 

other associated defects such as craniofacial symptoms.  

Six other subjects (III-5, III-7, IV-1, IV-6, V-6, V-12) were examined and found to be 

phenotypically normal. X-ray films of subject (IV-6) do not show the presence of any 

type of pathological findings.  
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Figure 2-3: Phenotypic appearance of affected subjects in Family 1 with syndactyly. 

A, B and C, D: Hands and feet of the male propositus (V-9);  
               E: Hands of female subject V-7;  
               F: Hands of male subject V-2. 
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2.2 Family 2 
 
 

The family originates from DG Khan district of Pakistan. An extended pedigree of the 

family comprising seven generations was constructed by interviewing the elders of the 

family (Figure 2-4). The information was crosschecked by interviewing several 

individuals. Thirteen affected and six normal subjects of the family were physically 

examined. Photographs and X-ray films of two subjects (V-3 and V-7) were taken. 

A total of fifteen subjects (9 males and 6 females) are found to be affected in this inbred 

family. All the affected subjects have cutaneous webbing of 2nd and 3rd toes only. The 

phenotypic manifestation is variable throughout the family ranging from mild 

(unilateral partial fusion) to severe (bilateral complete syndactyly of toes including a 

fusion of nails). No subject had a syndactyly of hands.  

All affected subjects have at least one affected parent, except subjects IV-2 and IV-3. 

No phenotypic information is available about their deceased parents (III-5 and III-7; 

Figure 2-4). Therefore, the most obvious mode of inheritance in this family is autosomal 

dominant.  

Blood samples were obtained from seventeen subjects (12 affected and 5 normal) for 

molecular study. 
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Figure 2-4: Pedigree of Family 2 with autosomal dominant syndactyly. 

 Solid symbols represent affected subjects, while the open symbols represent normal 
individuals. Horizontal bars on symbols denote individuals who were physically examined. 
An asterisk (*) on the symbols indicates the subjects of whom blood was sampled for 
molecular study.  
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2.2.1 Clinical report 

 

2.2.1.1 Propositus (V-7) 

The propositus (V-7), a 30 year old male, is one of the three affected subjects in a 

sibship of six individuals. His mother (IV-2) and maternal uncle (IV-3) are also 

affected. He has bilateral, symmetrical soft tissue syndactyly of 2nd and 3rd toes (Figure 

2-5, A). The webbing is complete and results in medial diversion of terminal phalanges 

of 2nd toes. There is partial fusion of nails at the distal end of the syndactylous toes. 

Other toes are not involved in the webbing.  

The radiographs do not show any bony fusion of the syndactylous toes (Figure 2-5, B). 

There is however evidence of hypoplastic terminal phalanges of all toes. Both hands 

were found to be normal with normal dermatoglyphics. 

2.2.1.2 Brother (V-3) of the propositus  

Contrasting to the propositus, his brother (V-3) shows only partial cutaneous syndactyly 

of 2nd and 3rd toes. The webbing is bilateral, symmetrical and reaches up to mid-half of 

the fused toes (Figure 2-5, C). The medial diversion of 2nd toe is not witnessed. There is 

no involvement of other toes. Both hands are normal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-5: Phenotypic appearance of affected subjects in Family 2 with syndactyly. 

 A and B: Feet of subject V-7, showing complete cutaneous syndactyly of 2nd and 3rd toes. 
     C: Feet of subject V-3, with partial cutaneous syndactyly of 2nd and 3rd toes. 

A B 
complete cutaneous syndactyly 

partial cutaneous syndactyly 
C 
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2.2.1.3 Other relatives 

Bilateral complete syndactyly of 2nd and 3rd toes is also observed in subjects IV-3, VI-9 

and VI-10. The subject V-5 has complete 2nd and 3rd toe webbing in her right foot but 

only partial fusion in the left foot (no photographs available). In individual IV-2, there 

is bilateral partial syndactyly reaching up to mid-half of the respective toes. Both hands 

are normal. 

Subjects IV-4, VI-13, V-9, V-12 and VII-1 have partial syndactyly of 2nd and 3rd toes in 

one of the two feet and only a minor impression of webbing in the second foot. Both 

hands are normal in all these subjects (no photographs available). 
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2.3 Family 3 
 

The family was ascertained from a remote area of Larkana district, Southern Pakistan. 

This large family is allocated in three closely situated villages. An extended pedigree 

was constructed which comprises 124 individuals (Figure 2-6). The information was 

crosschecked by interviewing several relatives. Eighteen subjects were physically 

examined. For the clinical study, photographs and X-rays films of two affected subjects 

(IV-41 and V-24) were obtained. 

A total of fifty subjects (24 males and 26 females) are found to be affected segregating 

in five generations. Syndactyly is bilateral and symmetrical in most patients, affecting 

both hands and feet. All affected subjects have at least one affected parent, except one 

instance.  Parents of subjects III-14 and III-18 are deceased (II-7 and II-8), and the 

elders of the family could not recall their phenotype (Figure 2-6). The most likely mode 

of inheritance is autosomal dominant. Blood samples were obtained from fifteen 

individuals (13 affected and 2 normal) for molecular study. 
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Figure 2-6: A shortened pedigree of Family 3 with autosomal dominant syndactyly. 

 Solid symbols represent affected subjects, while the open symbols represent normal individuals. Horizontal bars on symbols denote individuals who were 
physically examined. An asterisk (*) on the symbols indicates the subjects of whom blood was sampled for molecular study.  
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2.3.1 Clinical report 

 

2.3.1.1 Propositus (IV-41) 

2.3.1.1.1 Hands 

The propositus has a total of “four” fingers in both hands (Figure 2-7, A). The thumbs 

are small and low-set with weak terminal phalanx. Both index fingers have 

camptodactyly with tapering ends. The flexion movement of these fingers is limited. 

The 3rd and 4th fingers show complete syndactyly, which gives an impression of bony 

fusion (Figure 2-7, A). The 3rd finger overrides the 4th finger, both ending in a single 

bony mass. At the terminus, the nails are fused. Fifth fingers in both hands show 

clinodactyly and symphalangism. 

The radiographs show hypoplastic terminal phalanx of both thumbs (Figure 2-7, B). 

Symphalangism of first and second phalanges of index fingers is evident, which 

explains the limited movement of these fingers. There is osseous fusion of 3rd and 4th 

fingers at their tips. The terminal phalanges of both fingers loose their shape and fuse in 

a knotty structure. The first and second phalanges of 4th fingers are dysmorphic and 

dysplastic. There is symphalangism of all phalanges of 5th fingers with mid-phalangeal 

hypoplasia, giving all fingers a clinodactylous shape (Figure 2-7, B).  

Metacarpals are club shaped with hypoplastic distal heads. Carpal bones show crowding 

and misalignment. Trapezium and trapezoid fuse into each other. Similarly, capitate and 

hamate are located close to each other. Carpals bones are generally hypoplastic and 

dysmorphic. Distal heads of radius and ulna are normal. 

2.3.1.1.2 Feet 

There is bilateral synpolydactyly of 5th toes (Figure 2-7, C). The cutaneous webbing 

extends from 4th to 6th toes. The nails of syndactylous toes are not fused. The 

radiographs reveal the duplication of terminal phalanges of 5th toes, but no additional 

metacarpal is observed. The terminal phalanges of all toes are hypoplastic, a feature 

which is more pronounced in the left foot. There is symphalangism of halluces, 

bilaterally. The distal heads of all metacarpals show lateral protuberances. 
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Figure 2-7: Phenotypic appearance of affected subjects in Family 3 with syndactyly.  

A and B: Hands of propositus (IV-41) showing complete osseous syndactyly of 3rd and 4th 
fingers and clinodactyly of 5th finger. 

C and D: Feet of propositus (IV-41) with  synpolydactyly of 5th toe. 
E and F: Hands of subject V-24. 
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2.3.1.2 Relative V-24 

  

2.3.1.2.1 Hands 

Both thumbs are normal (Figure 2-7, E). The index finger seems normal in the right 

hand, whereas in the left hand it shows clinodactyly with bending towards the medial 

axis. In the right hand, the 3rd finger shows swelling and camptodactyly of first 

phalangeal joint. The 4th finger is bent at 45° towards the radial axis, attaining an odd 

position over the 3rd finger (Figure 2-7, E). In the left hand, the 3rd and 4th fingers are 

completely fused, giving an impression of bony fusion. Minor soft tissue syndactyly is 

observed between 4th and 5th fingers in left hand. The 5th fingers show clinodactyly, 

bilaterally, which is more pronounced in the left hand. 

The radiographs of both thumbs are normal (Figure 2-7, F). In the right hand, there is an 

incompletely grown bony element between the 3rd and 4th metacarpals.  The first 

phalange of 4th finger is dysplastic which results in the tilting of this finger towards the 

medial axis.  

In the left hand, the index finger shows clino-camptodactyly of first phalangeal joint. 

The third metacarpal is hypertrophic, whereas the fourth metacarpal is dysplastic. There 

is osseous fusion at the distal ends of 3rd and 4th metacarpals, which give rises to 

dysmorphic phalanges, showing osseous fusion. Midphalangeal hypoplasia of fifth 

fingers is observed in both hands which results in clinodactyly. 

All the epiphyseal ends of the long bones show lack of ossification. Metaphyses are 

hypoplastic showing lack of maturity. Carpal bones are normal whereas the distal heads 

of radius and ulna have immature epiphyses.  

2.3.1.2.2 Feet 

The clinical findings in the feet were essentially the same as observed in propositus IV-

41.  
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3 Materials and Methods 

3.1 Materials 
 

3.1.1 Devices and accessories 

Autoclave Grössner, Hamburg 

ABI Prism 377 DNA-Sequencer Applied Biosystems, USA 

Balance AE 240 

Balance PM 2000 

Mettler, Giessen, Switzerland 

Mettler, Giessen, Switzerland 

Centrifuge Sorvall RT 6000B  

Cooling centrifuge Sorvall RT 6000 

Eppendorf-Centrifuge 5417 C 

Du Pont, Dreieich 

Du Pont, Dreieich  

Eppendorf, Hamburg 

Electrophoresis Horizontal tank, A2 

Electrophoresis Hoefer apparatus, SE600 

Owl Scientific Inc. Wobum, USA 

Pharmacia Biotech, San Francisco 

Filter Millex-GS 0.22 µm 

Filter Minisart NML 0.45 µM 

Millipore, Ireland  

Sartorius GmbH, Göttingen 

Gel Documentation system: E.A.S.Y. RH-3 Herolab, ST. Leon Rot, Wiesloch 

GeneAmp PCR System 2400  

GeneAmp PCR System 9600 

Applied Biosystems, USA 

Applied Biosystems, USA 

Gradient Cycler Bio-Rad Laboratories GmbH, München 

Microwave Oven Bosch, Gerlingen-Schillerhöhe 

Milli-Q Filtration unit Spectrum Laboratories 

pH-Meter CG 840 Schott, Hofheim a. Ts. 

Photometer GeneQuant II, Novospec II  Pharmacia Biotech, Uppsala, Sweden 

Pipette Tips Biosphere Quality 

Pipette Tips Star Lab (101-1250µl) 

Sarstedt, Nümbrecht 

Star Lab, Helsinki 

Pipettes: 

Eppendorf Pipettes 

Multipette plus 

Multipipette 

 

Hamilton Pipette 

 

Eppendorf, Hamburg 

Eppendorf, Hamburg 

Dunn Labortechnik und 

Geräteentwicklung GmbH, Asbach 

Hamilton, Bonaduz, Sweden 

Power Supply EPS 500/400 Pharmacia, Uppsala, Sweden 
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Power Supply LKB ECPS 3000/150 Gibco, BRL, USA 

Reaction tubes: 

Falcon Tubes (50 ml) 

Falcon Tubes (15 ml) 

Micro Test tubes (1.5 ml) 

MicroTubes (0.5 ml)  

Strip tubes 

 

Falcon, USA 

Falcon, USA 

Eppendorf, Hamburg 

Sarstedt, Nümbrecht  

Star Lab, Ahrensburg 

Spectrophotometer, Smartspec 3000 Bio-Rad Laboratories GmbH, München 

Transilluminator Ultra-Violet Products 

Transilluminator UVT-40 M Herolab, St. Leon Rot, Wiesloch 

Vortex REAX 2000 Heidolph, Hamburg 

Waterbath Type 3042 Köttermann, Hänigsen 

 

3.1.2 Chemicals 

All chemicals were purchased from the following companies: Sigma (München), Merck 

(Darmstadt), Roth (Karlsruhe), Riedel-de-Häen (Seelze), Roche Diagnostics 

(Mannheim), Serva (Heidelberg), FMC Bioproducts (USA). 

Electrophoresis Gel for ABI 377 automated sequencer 

Long Ranger Gel Solution  

  

Rotiphorese ® NF-Acrylamide/Bis 

BioWhittaker Molecular Applications, 

USA Carl Roth, Karlsruhe 

Electrophoresis Gel for Single Strand Conformational Analysis (SSCA) 

Acrylamid PAGE 

Bisacrylamide 

12% 

0.03% 

  

Triton X-100  Serva, Heidelberg 

Tween-20 Sigma, Deisenhofen 

DMSO (Dimethylsulfoxide) Serva Reinbiochemica, Heidelberg 

TEMED (Tetramethylendiamide) Serva Reinbiochemica, Heildelberg 
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3.2 Buffers and standard solutions 
All buffers and solutions were made with Milli-Q water.  

DNA Extraction  

1x TE-Buffer  10 mM Tris-HCl, pH 7.5 

1 mM EDTA 

Solution A 0.32 M Sucrose 

10 mM Tris, pH 7.5 

5 mM MgCl2 

1% Triton X-100 

Solution B 10 mM Tris, pH 7.5 

400 mM NaCl2  

2 mM EDTA pH 8.0 

Extraction Buffer 20 % SDS  

Salting-out Buffer 6 M NaCl2  

Gel Electrophoresis  

5x TBE-Buffer 5 M Tris-HCl, pH 8.3 

0.45 M Boric Acid  

100 mM EDTA 

3.2.1 Enzymes 

Taq DNA Polymerase Qiagen, Heidelberg 

PeqLab, Erlangen 

3.2.2 DNA size standards  

100 bp DNA ladder Gibco BRL, Eggenstein 

GeneScan-500 TAMRA Applied Biosystems, Warrington, UK 

3.2.3 Reaction kits 

Ready-To-Go PCR Beads Amersham Pharmacia Biotech, 

Piscataway, USA 

QIAquick PCR Purification Kit Qiagen, Hilden 

DYEnamic ET Terminator Cycle Sequencing 
Kit 

Amersham, Buckinghamshire, UK 
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3.2.4 PCR reagents 

10x PCR Buffer 

MgCl2 (25 mM) 

DMSO (Dimethylsulfoxide) 

Qiagen, Heidelberg 

Qiagen, Heidelberg 

Merck, Darmstadt 

3.2.5 Loading dye 

6x Agarose Gel Loading Dye 

 

Blue Dextran 

Formamide Loading Buffer/Dye 

2.5 mg/ml Bromophenol blue 

150 mg/ml Ficoll 400 

Applied Biosystems, USA 

38.4 ml formamide  

1600 ? l 0.5M EDTA 

20 mg bromophenol blue 

20 mg Xylencyanol 

 

3.2.6 Oligonucleotides 

The PCR primers were designed for microsatellite repeat analysis and sequencing by 

the online program Primer 3 (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi). All synthetic oligonucleotides were supplied by 

SIGMA-Genosys (UK) and GENSET (France). The optimal annealing temperature was 

also calculated using the Primer 3 software. The information on microsatellite markers 

(primer sequences, product length, repeat type, heterozygosity, allelic variants) was 

obtained from Marshfield Medical Center, Genome Database (GDB) and Centre d'Etude 

du Polymorphisme Humain (CEPH). 
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3.2.6.1 Primers for sequencing 

Gene Genebank Primer Name  Sequence 5’? 3’ 
Product 

Size 

ROX NM_020310 Ex-01-for 
Ex-01-rev 

ggc ggg agg cat cgg aag g  
gcc agc ccg gcc gct cac 390 

  Ex-02a-for 
Ex-02a-rev 

ggg tgt cac tga gta ctg act gg 
gca ggc tcc tta atg ctg agt cc 434 

  Ex-02b-for 
Ex-02b-rev 

cct ggc gcc tcg tca gcc   
ggg cac ctt gtc ttg cac aca g 392 

  Ex-03/04-for 
Ex-03/04-rev 

cag gaa ggc cgt cta atc g   
gcc cca tac ctg gat gta cc 371 

  Ex-05-for 
Ex-05-rev 

ggt gtc ctg ctg tcc ctt ac   
cca ggg cca tct ttt cta gc 331 

  Ex-06a-for 
Ex-06a-rev 

cac aga ggg tga gga caa ca 
cgt ggt tca cag tct gga tg 377 

  Ex-06b-for 
Ex-06b-rev 

ctc acg ctt cag tca tcc ag 
cca tgg tca cag ggt tga g 367 

  Ex-06c-for 
Ex-06c-rev 

ctc gca cca gca agt caa c 
gag tct ttg cac ccc ctt c 328 

CT120 NM_024792 CT-01-for 
CT-01-rev 

gcg gag ggt tga aat cgc g   
ccc ctt ttc cgc cct gg 300 

  CT-02-for 
CT-02-rev 

aat ggc cga tga gcc tcc 
ttc tga gcg cgt gtg ctg 306 

  CT-03-for 
CT-03-rev 

caa gca cca agc ttg gct gt   
gac acc cag ctc aac cca g 330 

  CT-04-for 
CT-04-rev 

ccg tca cag tta ccc ttt tc   
atc aga acc ctc act ctc tc 280 

  CT-05-for 
CT-05-rev 

tta ctg tgg tgg gac ttg gg   
agg gca caa ttt ggt cca tgg 430 

LOST1 NM_172367 LT-01-for 
LT-01-rev 

agt ctg ggc tgg gga atg   
taa tct ctg ggg gct tct tg 398 

  LT-02-for 
LT-02-rev 

cct tca agg cca tct ccg ag   
tct aag agg aag gag gag gcc 371 

  LT-03-for 
LT-03-rev 

act tct ccg ggg aca gcc   
tat gga ctg gga gga taa ggc 449 

  LT-04-for 
LT-04-rev 

ttc cca agc ctt agc ctt ctc   
ggt ttc cct ttg agt ctg tgc 293 
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3.3 Softwares and databanks 
3.3.1 Softwares 

Software Source 

Text Editor  

Tables and Data storage 

Graphics 

Word 2000, Microsoft  

Excel 2000, Microsoft 

PowerPoint 2000, Microsoft 

Adobe Acrobat Reader 2000 (5.0) 

Adobe Photoshop 2000 (6.0) 

Pedigree Drawing: Cyrillic version 2.1.3 Cherwell Scientific Publishing 1997 
www.cherwell.com 

Gel Documentation: EasyWin32 Herolab, ST. Leon Rot, Wiesloch 

DNA Fragment Analysis: 

GeneScan version 3.1.2 

Genotyper version 2.0 

 

Applied Biosystems, USA 

Applied Biosystems, USA 

Linkage Analyses: 

MAKEDATA  

MEGA2 

LINKAGE  

MLINK version 5.1 

FASTLINK version 4.1 

GENEHUNTER version 2.1 

SIMWALK2 version 2.83 

 

Dr. Yurii Aulchenko, Rotterdam 

Mukhopadhyay et al. (1999) 

 

Lathrop et al.  (1984) 

Cottingham et al. (1993) 

Kruglyak et al. (1996) 

Sobel and Lange (1996) 

Primer Designing: Primer 3 http://frodo.wi.mit.edu/cgi-
bin/primer3/primer3_www.cgi 

Sequence Analysis: Sequencher version 4.2 Gene Codes, Ann Arbor, USA 
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3.3.2 Databanks 

Application Databank Internet address 

Literature search PubMed www.ncbi.nlm.nih.gov/entrez 

Genetic disorders catalogue OMIM (Online Mendelian 
Inheritance in Man) 

http://www.ncbi.nlm.nih.gov/OMIM 

Genome resource NCBI (National Center for 
Biotechnology Information) 

http://www.ncbi.nlm.nih.gov/ 

Genome data bank UCSC Genome Bioinformatics http://genome.ucsc.edu/ 

Microsatellite resource center Marshfield Medical Center http://research.marshfieldclinic.org/ 

genetics/ 

Microsatellite resource center GDB (The Genome Database) http://www.gdb.org/ 

Microsatellite resource center CEPH (Centre d'Etude du 
Polymorphisme Humain) 

http://www.cephb.fr/ 

Microsatellite resource center CHLC (The Cooperative Human 
Linkage Center) 

http://gai.nci.nih.gov/CHLC/ 

Linkage resource center Laboratory of Statistical Genetics, 
Rockefeller University 

http://linkage.rockefeller.edu/ 

Bioinformatics resource center HGMP Resource Centre http://www.hgmp.mrc.ac.uk/ 

Mouse genome data bank Mouse Genome Informatics http://www.informatics.jax.org/ 
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3.4 Methods 
3.4.1 Blood sampling 

Blood samples were drawn by 10 ml syringes and vacutainer tubes containing EDTA. 

The blood was stored at 4°C until DNA extraction.  

3.4.2 Genomic DNA extraction 

Genomic DNA was purified from peripheral blood lymphocytes according to standard 

salting out SDS-proteinase-K extraction method (Sambrook and Russel 2001).  

1. Eight to ten ml blood collected in 50 ml falcon tube.  

2. The volume was set to 45 ml by the addition of solution A and was stored on ice 

for 30 minutes.  

3. After chilling, centrifugation was carried out at 5000 rpm for 30 minutes at 4°C 

to separate white blood cells.  

4. The supernatant was discarded and the pellet was resuspended in solution A and 

centrifuged again.  

5. The pellet was resuspended in 3 ml of solution B and incubated overnight at 

37°C by adding 100 µl 20 % SDS and 0.5 ml proteinase-K (2 mg/ml).  

6. On the following day, the tube was vigorously shaken for 15 seconds after the 

addition of 1.5 ml saturated solution of sodium chloride (~6M).  

7. The tube was centrifuged twice at 5000 rpm to obtain a clean supernatant 

containing genomic DNA.  

8. The clear supernatant was transferred to a new falcon tube, and DNA was 

precipitated by the addition of two volumes of absolute ethanol.  

9. The precipitated DNA was fished out with micropipette tip, washed in 70% 

ethanol and was placed in a 1.5 ml reaction tube.  

10. After evaporation of residual ethanol, DNA was dissolved in an appropriate 

amount of TE-buffer and stored at 4°C.  

11. Genomic DNA was quantified by spectrophotometer at OD260, and was diluted 

to   50 ng/µl for amplification by polymerase chain reaction (PCR). 
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3.4.3 Polymerase chain reaction (PCR) 

Polymerase chain reactions were performed in a total volume of 20 ? l, containing 50 ng 

of genomic DNA, 2 ? l 10x PCR buffer (Qiagen), 1.8 mM MgCl2, 5 mM dNTPs, 12.5 

ng of each primer and 0.5 U of Taq DNA polymerase (Qiagen). The PCR reaction was 

as follows: 

Step Temperature °C Duration Cycles 

Denaturation 94   5 min. 1 

Denaturation 94 25 sec. 

Annealing 53-63 25 sec. 

Extension 72 30 sec. 

28-35 

Final Extension 72 10 min. 1 

 

3.4.4 Horizontal gel electrophoresis 

The amplification of the genomic region was checked on 1-2% agarose gel, which was 

prepared by melting 1-2 g. of agarose in 100 ml 1x TBE buffer in a microwave oven for 

few minutes. Ethidium bromide (final conc. 0.5 µg/ml) was added to the gel to facilitate 

visualization of DNA after electrophoresis. PCR reaction products were mixed with 

Bromophenol blue dye and loaded into the wells. Electrophoresis was performed at 100 

Volts for half an hour in 1x TBE buffer. Amplified products were detected by placing 

the gel on UV transilluminator. 

3.4.5 Genotyping 

For genomic study of the putative candidate regions, highly polymorphic microsatellite 

markers were selected from Marshfield Medical Center 

(http://research.marshfieldclinic.org/genetics/). For genome-wide search a panel of 360 

autosomal markers was obtained from CHLC screening Set version 6, with an average 

spacing of ~10 cM and heterozygosity >70%. All markers were 5´end-labeled with 

fluorescent dyes: 6-FAM, TET or HEX. A CEPH subject (1347-02) was used as a 

reference for microsatellite markers. 

1.4 ? l of pooled PCR products was mixed with 1.6 ? l loading buffer containing 

formamide, blue dextran, and GS500XL, the internal lane standard (Applied 

Biosystems), and analysed on 6% denaturing polyacrylamide gel (Rotiphorese ® NF-
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Acrylamide/Bis, Carl Roth, Karlsruhe) in an ABI 377 automated sequencer (Applied 

Biosystems). Fragment analysis was performed using GeneScan (ver 3.1.2) and 

Genotyper (ver 2.0) softwares.  

3.4.6 Linkage analysis 

Pedigree and genotype data were managed and recorded for linkage analysis using 

Cyrillic 2.1.3 and Excel 2000 (Microsoft). File formating was done by using 

MAKEDATA software (Dr. Yurii Aulchenko, Rotterdam) and Mega2 (Mukhopadhyay 

et al. 1999). Genotype incompatibilities and Mendelian inconsistencies were identified 

by using PedCheck software version 1.1 (O'Connell and Weeks 1998).  

Pedigrees were simulated in order to estimate the potential of finding linkage by using 

SLINK program of LINKAGE software package version 5.1 (Lathrop et al.  1984). 

Hundred replicates were used in each simulation. Two-point LOD scores were 

calculated using the MLINK program of LINKAGE software package version 5.1 

(Lathrop et al.  1984) and FASTLINK version 4.1 (Cottingham et al. 1993). Analyses 

were automated by using linkage support programs (LSP, LCP, MAKEPED, 

PREPLINK). Multipoint analysis was done with GENEHUNTER version 2.1, and 

haplotypes were constructed using SIMWALK2 version 2.83 (Kruglyak et al. 1996; 

Sobel and Lange 1996).  

For the Family 1, an autosomal recessive model with a penetrance of 0.999 (phenocopy 

rate of 0.001 for homozygous normal and heterozygous individuals) and a disease allele 

frequency of 0.001 was assumed. For Families 2, 3 and 4, an autosomal dominant 

model with a penetrance of 0.9999 (phenocopy rate of 0.0001 for homozygous normal 

individuals) and a disease allele frequency of 0.0001 was assumed. The mutation rate 

was set to zero and equal recombination rates between males and females were 

assumed. Marker allele frequencies were taken from Marshfield human diversity panel 

(Asia-Pakistan population, based on approximately 190 individuals) or from CEPH 

database (http://www.cephb.fr/). For fine mapping, the marker allele frequencies were 

calculated from the family founders or assumed to be equal. Microsatellite marker order 

and genetic map positions were obtained from Marshfield Medical Center 

(http://research.marshfieldclinic.org/genetics/), deCODE map (Kong et al. 2002) and 

UCSC Genome Bioinformatics Santa Cruz (http://genome.ucsc.edu/). Analyses were 
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also conducted by using the online facility of GLUE (Genetic Linkage User 

Environment, UK HGMP Resource Centre; http://www.rfcgr.mrc.ac.uk/).  

3.4.7 Mutation screening 

 

3.4.7.1 Primer designing 

Primers for PCR amplification and subsequent sequencing of the candidate regions were 

designed by using software at the Primer3 Web site (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi) to flank all the exon–intron boundaries. 

3.4.7.2 Single strand conformational analysis (SSCA) 

For mutation screening, SSCA was conducted on Hoefer apparatus SE600 (Pharmacia 

Biotech). 3.5 ? l of PCR products were mixed with equal volume of HPLC-H20 and 8 ? l 

of formamide loading buffer and analysed on 12% polyacrylamide non-denaturating, 

vertical slab gels (size 18cm x 16cm x 0.075cm). Two parallel electrophoresis reactions 

were performed at 10 and 20°C with a running solution of 0.5x TBE.  The gel was run 

for an initial 10 min. at 200V and subsequently for 90 min. at 600V. Bands were 

visualised through silver staining. Gels were mounted and stretched on cellophane sheet 

and dried overnight for permanent storage.  

3.4.7.3 Silver staining 

All solutions were prepared fresh and staining was performed in a washing tub set on an 

automated shaker (3 cycles/min). Staining was performed through the following steps: 

1. Fixation with 10% glacial acetic acid for 5 min.  

2. Oxidation with 1% nitric acid for 10 min.  

3. Washing with distilled water, three times. 

4. Silver staining with 12 mM AgNO3 for 20 min. 

5. Quick washing, three times. 

6. Reduction with 280 mM Na2CO3 until the bands are visible. 

7. Conservation with 10% glacial acetic acid with 2—3% glycerol. 
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3.4.7.4 DNA sequencing 

In order to screen for mutations in the putative candidate genomic regions, sequencing 

was conducted through the following steps: 

3.4.7.5 PCR purification  

The PCR products of the amplified candidate regions were purified by using QIAquick 

PCR Purification Kit (Qiagen). 

1. Added 5 volumes of Buffer PB to 1 volume of the PCR sample and mixed it 

thoroughly.  

2. Placed a QIAquick spin column in a provided 2 ml collection tube.  

3. To bind DNA, the sample was applied to the column and centrifuged for 30–60 

s. 

4. Discarded the flow-through and placed the column back into the same tube.  

5. To wash DNA, added 750 µl Buffer PE to the column and centrifuged for 30–60 

s. 

6. Discarded the flow-through and placed the column back into the same tube. 

7. To dry the sample, centrifuged it for an additional 1 min.  

8. Placed the column in a clean 1.5 ml microcentrifuge tube.  

9. To elute DNA, added 30-50 µl Buffer EB (10 mM Tris·Cl, pH 8.5) or HPLC 

water to the center of the QIAquick membrane and centrifuged the column for 1 

min. 

Alternatively, for increased DNA concentration, added 30 µl elution buffer to the center 

of the QIAquick membrane, allowed the column to stand for 1 min. and then 

centrifuged. 

All centrifugation steps were conducted at 13,000 rpm on a tabletop microcentrifuge 

(Eppendorf). 

3.4.7.6 Sequencing PCR reactions  

The sequencing PCR reactions were done by using DYEnamic ET Terminator Cycle 

Sequencing Kit (Amersham), containing the labeled dNTPs. 
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The composition of the sequencing PCR reaction was as follows: 
 
Component Volume (µl) 

Template DNA (40 ng/µl) 01 

Primer (3.2 pmol) 01 

HPLC H2O 04 

Sequencing reagent premix (Amersham) 04 

Total volume 10 

 

The contents were mixed thoroughly in the reaction tubes by gentle pipetting and 

centrifuged briefly to bring contents to the bottom of the tubes or wells. Following PCR 

reaction was conducted:  

Step Temperature °C Duration Cycles 

Denaturation 95   2 min. 1 

Denaturation 95 20 sec. 

Annealing 53-59 15 sec. 

Extension 61 60 sec. 

28 

Final Extension 72   5 min. 1 

 
 

3.4.7.7 Sequencing PCR purification 

 

This step is important to ensure very low background noise in the sequencing 

electrophoresis reaction.  

1. 10 µl of HPLC-H2O was added to the PCR products to make the total volume of 

20 µl. 

2. Added 2 µl (1/10 volume) of sodium acetate/EDTA buffer to each tube (before 

adding ethanol).  

3. Added 80 µl of 95% ethanol to each reaction and mixed well using a vortex. 

4. Incubated for 20 min. at room temperature.  

5. Centrifuged the tubes for 15 min at ~ 14,000 rpm.  

6. Removed the supernatant by aspiration from each microcentrifuge tube. 

7. Washed the DNA pellets with 300 µl of 70% ethanol. 
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8. Centrifuged for 10 min. at ~14,000 rpm.  

9. Removed the supernatant quickly by aspiration 

10. Air-dried the pellets for 5-10 min.  

3.4.7.8 Resuspension of samples and electrophoresis 

The purified PCR products were dissolved in 4 µl formamide loading dye (US79448, 

Applied Biosystems) for optimal sequencing results and analyzed on 5% denaturing 

polyacrylamide gel (Rotiphorese ® NF-Acrylamide/Bis, Carl Roth, Karlsruhe) in an 

ABI 377 automated sequencer (Applied Biosystems).  

3.4.7.9 Sequence data analysis 

The sequence data was obtained from the ABI 377 automated sequencer (Applied 

Biosystems) by Sequence Analysis Software ver 3.4.1 (Applied Biosystems) and was 

analysed by Sequencher software ver 4.2 (Gene Codes). 
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3.5 Classification protocol for syndactylies 
 

A simple protocol has been designed to facilitate the typing of syndactylies including 

the eight types established by Temtamy and McKusick (1978) and Goldstein et al. 

(1994), as well as a ninth type by Malik et al. (2004). Hands with five fingers and feet 

with five toes are represented by two diagrams with five boxes (Figs. 4-1—3). Shading 

indicates cutaneous syndactyly of phalanges (e.g. type I), while shading with no 

separating line indicates bony syndactyly (e.g. type IV). Crosshatching represents 

metacarpal fusion (e.g. type II). An associated polydactyly is symbolised by adding 

bars, showing the location of the extra digit (e.g. preaxial, postaxial or mesoaxial 

polydactyly). Absence of digits is expressed by omitting the box for the corresponding 

missing digit (e.g. type IX). Fusion of carpal bones and radioulnar synostosis is 

represented accordingly. For simplicity, two hands and two feet are shown on the same 

graph. 

For a test trial of the protocol a literature search for reports with syndactylies was 

performed comprising the years 1910-2003. 104 different index cases, with and without 

other affected family members were ascertained through 60 publications. Seventy-eight 

cases/families fulfilled the criteria of a good documentation (clinical description, 

photographs and/or radiograms) and were therefore included in the trial. Families from 

different publications with an identical or very similar phenotype were grouped into one 

diagram. For each family the most common phenotype was documented. In a few 

instances the phenotype within the family was so divergent, that both phenotypic 

versions (mild and severe), were listed. Families described in more than one publication 

are listed only once.  
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4 Results 

4.1 Proposed syndactyly classification 
To simplify the handling of the classification, syndactylies have been regrouped 

according to similarities in the phenotype and inheritance into three categories (Figure 

4-1, Figure 4-2, Figure 4-3).  

Group 1 (Figure 4-1): syndactylies with autosomal dominant inheritance and 

involvement of phalanges only;  

Group 2 (Figure 4-2): syndactylies with autosomal dominant inheritance and 

malformations of phalanges as well as 

metacarpal/metatarsal bones;  

Group 3 (Figure 4-3): syndactylies with autosomal recessive inheritance, 

involvement of all bony elements in hands/feet and 

radial/ulnar fusion, as well as syndactylies with missing 

fingers.  

The first group (Figure 4-1) includes type I, III, IV, and VI featuring various degrees of 

cutaneous webbing in hands/feet and bony fusion at the phalangeal tips. 

Metacarpal/metatarsal synostosis is not a feature of this group. Based on the clinical and 

genetic findings in the Family 2, syndactyly type I has been further divided into four 

subtypes. 

The group is dominated in numbers by type I and III. The two types can easily be 

discriminated from each other, since type III is part of the oculodentodigital (ODD) 

syndrome. A constant feature in type I is the mesoaxial involvement with a 3-4 finger 

and a 2-3 toe syndactyly. The hallmark of type III is the bony 4-5 finger syndactyly, and 

the graph shows that this is not a feature by other members of the group. There is at 

least one gene (GJA1) identified for ODD. 

Type IV has more severe features involving all fingers. If a hexadactyly is present, 

additional metacarpal bones are also observed, and in these cases discrimination 

between pre- and postaxial is not possible. An unclassified family of Temtamy and 

McKusick (1978) was named type VI by Goldstein et al. (1994), and it shows features 
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similar to type IV. Most cases in this group are autosomal dominantly inherited, but 

sporadic cases are also described. 
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Figure 4-1: Group 1: Syndactylies with involvement of phalanges only. 
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Group 2 includes syndactylies type II, V and VIII (Figure 4-2). This group is dominated 

in numbers by the extremely variable type II syndactyly or synpolydactyly. It is easy to 

see that the hallmark of this type is postaxial synpolydactyly with metacarpal/metatarsal 

synostosis. There is genetic heterogeneity for this type, and mutations in two genes 

(HOXD13, FBLN1) have been reported. The inheritance is autosomal dominant, and the 

closest phenotype is type V syndactyly, with only two cases in the literature.  

A distinct type in this group is type VIII syndactyly with a 4-5 metacarpal fusion and X-

linked inheritance. Confusion with other types is not possible. 
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Figure 4-2: Group 2: Syndactylies involving phalanges and metacarpal/metatarsal synostosis. 
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Group 3 (Figure 4-3) is the only one with well-described autosomal recessive 

phenotypes (types VII, IX). These phenotypes are fairly severe. The Cenani-Lenz type 

is easy to differentiate from all other syndactylies, since there is additional carpal- and 

radio/ulnar fusion.  

Based on the work described in this thesis I introduced a ninth type (type IX, Malik-

Percin type) to the classification, since a Pakistani and a Turkish family have a 

remarkable phenotypic similarity (Malik et al. 2004; Percin et al. 1998). Both families 

show metatarsal/metacarpal synostosis and absence of fingers.  

I added in Figure 4-3 two unclassified cases described by Thomsen (1927): mild 

mesoaxial syndactyly with pre- and postaxial polydactyly (family 7); preaxial 

polydactyly of fingers, postaxial involvement of metacarpal bones and fusion of carpal 

bones (family A). The combination of clinical features is not in agreement with any of 

the syndactyly types I—IX.  

Applying this classification to published syndactylies, in 71 cases I came to the same 

conclusion as the original investigators, which proved that my protocol is effective. 

Cases/families reported by Alvord (1947), De Smeet et al. (1996) (Figure 4-2), Verma 

et al. (1976), Percin et al. (1998) and Percin and Percin (2003) (Figure 4-3) were 

reclassified. Two well-documented families reported by Thomsen (1927) (family 7, 

family A) could not be categorized and are added as a point of interest in Figure 4-3.  

This work on the proposed classification of syndactyly is in press (Malik et al. 2005a, 

Genetic Counseling). 
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Figure 4-3: Group 3: Severe syndactylies showing autosomal recessive inheritance. 
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4.2 Family 1 
4.2.1 Autosomal recessive mesoaxial synostotic syndactyly with 

phalangeal reduction (MSSD) 

The distinctive phenotype observed in Family 1 has not been witnessed in any 

syndactyly types established by Temtamy and McKusick (1978) and Goldstein et al. 

(1994). The cardinal clinical features in Family 1 are mesoaxial reduction of fingers, 

synostosis of 3rd and 4th metacarpals, clinodactyly of 5th fingers and preaxial webbing of 

toes. There was a minimal overlap of clinical features with syndactyly type I, II and III, 

but combination of clinical features and an autosomal recessive mode of inheritance 

make Family 1 a unique syndactyly type (Figure 4-4; based on METHODS section 3.5).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-4: A graphical comparison of the phenotype in Family 1 with the phenotypes in other 
syndactyly types. 
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4.2.2 Exclusion of loci for syndactyly type I, II and III 

Family 1 was evaluated for the possibility that the phenotype is linked to the known loci 

for syndactyly, namely 2q34-q36 (SD1), 2q31 (SPD) and 6q22-q23 (Bosse et al. 2000; 

Sarfarazi et al. 1995; Paznekas et al. 2003). Two point linkage analysis yielded 

significant negative (?  -2.0) LOD scores at ?  = 0.0 for all loci (Table 4-1). Haplotypes 

constructed for the critical regions do not show homozygosity in the affected 

individuals. The results excluded all critical regions for syndactylies type I, II and III, 

flanked by markers D2S1776-D2S1391, D2S434-D2S1279, and D6S474-D6S1003.  

 

Table 4-1: Two-point LOD scores between the phenotype and markers on chromosome 2q and 6q. 

Chromosome 2 Recombination fraction (?)  

Phenotype Locus cM Marker 0.00 0.01 0.05 0.1 0.2 0.3 0.4

 2q12.2 118.16 D2S436 -4.48 -3.68 -1.86 -1.04 -0.38 -0.13 -0.02

  125.18 D2S410 -5.07 -3.55 -2.13 -1.46 -0.78 -0.38 -0.13

 2q21.1 134.45 D2S2215 -0.03 0.21 0.52 0.58 0.49 0.31 0.13

  142.83 D2S114 -0.70 0.14 0.63 0.71 0.61 0.39 0.17

173.00 D2S1776 -3.20 -1.99 -0.90 -0.46 -0.13 -0.02 0.00
SPD 

HOXD13 

2q31 ? 186.21 D2S1391 -2.88 -1.77 -0.71 -0.29 -0.01 0.04 0.03

  205.00 D2S1649* -2.85 -2.09 -1.15 -0.58 -0.13 0.00 0.03

215.78 D2S434 -5.90 -3.90 -2.24 -1.45 -0.70 -0.33 -0.12

227.00 D2S1363 -6.41 -3.17 -1.73 -1.08 -0.51 -0.24 -0.08SD1 2q34-q36 ? 

240.79 D2S1279 -6.85 -4.59 -2.33 -1.39 -0.63 -0.32 -0.14

 2q37.3 260.63 D2S125 -5.17 -3.39 -2.38 -1.91 -1.11 -0.57 -0.23

Chromosome 6        

 6q11.1 80.45 D6S1053 -7.41 -5.13 -3.43 -2.31 -1.09 -0.50 -0.18

  88.63 D6S1031 -6.89 -4.13 -2.07 -1.20 -0.50 -0.24 -0.11

 6q14.3 92.85 D6S1270 -0.47 -0.22 0.09 0.18 0.15 0.06 0.01

  102.81 D6S1056 -6.23 -2.70 -1.32 -0.71 -0.23 -0.05 0.00

118.64 D6S474 -4.20 -3.58 -2.38 -1.61 -0.84 -0.43 -0.17

128.93 D6S1040 -5.03 -4.11 -3.12 -2.52 -1.48 -0.77 -0.31

137.74 D6S1009 -6.41 -4.51 -2.48 -1.54 -0.70 -0.30 -0.09
 

GJA1 

6q22-q23 ? 

144.46 D6S1003 -6.37 -4.81 -2.81 -1.80 -0.83 -0.35 -0.10

  159.98 D6S1007 -4.98 -3.35 -2.08 -1.30 -0.55 -0.20 -0.04

 6q26 173.31 D6S1277 -0.73 -0.47 -0.10 0.04 0.10 0.08 0.04

* Microsatellite marker not present in Marshfield map 
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4.2.3 Genome-wide search, fine mapping and locus identification 
on chromosome 17p13.3 

After the exclusion of three loci for syndactyly, a genome-wide search was performed. 

Only a single autozygous region on 17p13-pter was identified in all four affected 

individuals (Figure 4-5). No other region was identified with fully informative markers 

being homozygous in all affected individuals. The subsequent saturation of this region 

with an extended map of polymorphic microsatellite markers confirmed the presence of 

a large region of autozygosity in the affected individuals (Figure 4-6, Figure 4-7). The 

homozygous critical interval spans between markers D17S643 and D17S1828 

comprising a region of ~10 cM (Figure 4-6, Figure 4-7). Two-point linkage analysis 

showed a maximum LOD score (Zmax) of 3.47 for marker D7S1528 at a recombination 

fraction of zero (?  = 0.00; Table 4-2). Multipoint analysis gave a LOD score of 3.06 

(Figure 4-8).  

 

Table 4-2: Two-point LOD scores between the phenotype and the markers on chromosome 17p13. 

  Recombination fraction (?) 
cM Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 

0.63 D17S643 -0.05 0.91 1.32 1.27 0.91 0.48 0.17 

0.63 D17S849 2.78 2.72 2.45 2.11 1.44 0.80 0.28 

0.63 D17S1308 2.38 2.31 2.06 1.74 1.12 0.56 0.15 

0.63 D17S926 3.38 3.28 3.00 2.59 1.81 1.03 0.38 

3.67 D17S695 3.15 3.08 2.79 2.42 1.67 0.94 0.34 

3.96 D17S596 1.65 1.62 1.51 1.35 0.99 0.62 0.28 

3.99 D17S1533 2.48 2.41 2.16 1.84 1.20 0.63 0.19 

6.60 D17S831 2.01 1.96 1.75 1.49 0.96 0.48 0.13 

6.60 D17S1528* 3.47 3.39 3.08 2.69 1.88 1.06 0.39 

6.60 D17S1798 1.92 1.90 1.77 1.58 1.14 0.69 0.29 

7.19 D17S1583 3.28 3.22 2.91 2.53 1.73 0.97 0.34 

10.02 D17S1828 -7.31 -5.53 -3.27 -2.06 -0.93 -0.39 -0.11 

10.72 D17S1298 0.84 0.82 0.76 0.67 0.50 0.33 0.16 

* The marker that yielded highest LOD score 
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Figure 4-5: Electropherograms (A—C) of three microsatellite markers from chromosome 17p 
linked to the phenotype. 

Red arrows indicate marker alleles homozygous in affected subjects  
(V-9, V-7, V-1, V-2).  
(A = affected; N = normal; R = CEPH reference individual) 
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Figure 4-6: Haplotypes of the individuals in Family 1 for thirteen microsatellite markers from 
chromosome 17p13. 

The homozygous region in affected subjects segregating with the phenotype is shown in green. 
The individual IDs on the pedigree are the same as described in Fig. 2.2. A sign of (-) shows 
alleles which were not typed due to technical/PCR problems. 
* Typing for these markers is also shown in Figure 4-5. 
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4.2.4 Mutation screening 

During the candidate gene investigations within the critical interval segregating with the 

syndactyly type IX, the following genes were found to be interesting to screen for 

mutation: 

4.2.4.1 ROX   

The most likely candidate within the critical interval was ROX (NM_020310). Rox 

(MAX binding protein) is involved in transcriptional regulation and mediates cell 

differentiation and proliferation. MAX binding proteins share a basic helix-loop-helix 

leucine zipper domains (bHLHZip) and bind DNA at an E box (CANNTG) by forming 

heterodimers with MAX (Meroni et al. 1997). ROX contains six exons, the smallest 

being 42 bp and the largest 749 bp. Primers were designed to cover all the exons and the 

flanking sequences of exon-intron boundaries. Sequencing of the coding regions in two 

affected and one normal subject did not reveal any mutation.  

4.2.4.2 CT120  

CT120 (NM_024792) is a membrane protein expressed in epithelial-like lung 

adenocarcinoma. It contains five exons (NM_024792). Sequencing of the coding 

regions in two affected and one normal subject did not reveal any mutation. 

4.2.4.3 LOST1  

LOST1 (NM_172367) contains three exons. Sequencing of the coding regions in two 

affected and one normal subject did not reveal any mutation. 
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Figure 4-7: Genetic map of chromosome 17 markers used in the saturation mapping. 

The marker-map positions (cM) are based on the sex-averaged map from the Center for 
Medical Genetics, Marshfield Medical Research Foundation or Genome Database (GDB). 
Markers flanking the syndactyly locus are shown in boldface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-8: Multipoint LOD score analysis for region 17p13.3.  

The multipoint linkage analysis localized the locus for syndactyly within an interval of ~7.5 
cM between markers D17S849 and D17S1583. Multipoint score throughout this interval was 
3.06. 
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4.3 Family 2 
4.3.1 Family with autosomal dominant zygodactyly  

Family 2 shows cutaneous fusion of 2nd and 3rd toes without hand malformation. The 

clinical features are characteristic for zygodactyly (Temtamy and McKusick, 1978). The 

phenotype in Family 2 is similar to the affected subjects described in a family by Stiles 

and Hawkins (1946). A comparison of phenotype in Family 2 with other type I 

syndactyly families is given by a graphical method (Figure 4-9; based on METHODS 

section 3.5).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-9: A graphical comparison of the phenotype in Family 2 with the phenotypes in other 
reported type I syndactyly families. 

 



Family 2                                                                                                                                               Results 

 58

4.3.2 Exclusion of candidate locus SD1 on chromosome 2q34-q36 

Since there is a locus for type I syndactyly (SD1) on chromosome 2q34-q36, the 

malformation in Family 2 was checked for cosegregation with this region (Bosse et al. 

2000; Ghadami et al. 2001). A significant negative LOD score (?  2.00 at ?  = 0.0; Table 

4-3) at the critical region for SD1 and throughout the long arm of chromosome 2 

excluded the possibility of linkage with the malformation in Family 2.  

 

Table 4-3: Two-point LOD scores between the phenotype and markers on chromosome 2q. 

   Recombination fraction (?) 
Phenotype Locus cM Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40

 118.16 D2S436 -8.60 -3.46 -1.59 -0.87 -0.34 -0.17 -0.09

 125.81 D2S410 -3.70 -1.19 -0.07 0.23 0.31 0.19 0.50

 134.45 D2S2215 -5.19 -1.11 0.06 0.41 0.49 0.33 0.12

 142.83 D2S114 -5.62 -1.57 -0.33 -0.60 0.25 0.20 0.10

 147.40 D2S442 -6.12 -1.79 -0.55 -0.12 0.12 0.13 0.06

 161.81 D2S418 -4.30 -1.07 -0.55 -0.41 -0.24 -0.09 -0.02

 173.00 D2S1776 -4.28 -1.05 -0.41 -0.19 -0.05 -0.02 -0.01

 186.21 D2S1391 -12.71 -6.06 -2.98 -1.71 -0.62 -0.17 0.00

 200.43 D2S1384 -5.14 -2.87 -1.28 -0.62 -0.12 0.03 0.06

 205.00 D2S1649* -2.09 -1.94 -1.13 -0.68 -0.31 -0.15 -0.05

  210.43 D2S1345 -2.16 -1.12 -0.48 -0.21 0.00 0.06 0.05

215.78 D2S434 -2.15 -1.12 -0.48 -0.23 -0.04 0.02 0.03

227.00 D2S1363 -6.85 -2.56 -1.23 -0.70 -0.24 -0.05 0.01SD1 2q34-q36 ?  

240.79 D2S1279 -8.92 -2.96 -1.10 -0.42 0.02 0.10 0.05

 250.54 D2S338 -9.18 -3.52 -1.57 -0.82 -0.23 -0.03 0.02

 260.63 D2S125 -10.89 -4.80 -2.24 -1.24 -0.43 -0.14 -0.03

* Microsatellite marker not present in Marshfield map 
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4.3.3 Genome-wide search 

After the exclusion of the known SD1 locus, a genome-wide search was conducted 

using DNA of 17 subjects of this family. Six chromosomes yielded a LOD score ?  1 in 

the initial genome scan (Table 4-4). However, the only significant evidence of linkage 

was found at chromosome 3 with marker D3S2409 (two-point LOD score 3.36; ?  = 

0.00).  

Table 4-4: Microsatellite markers which produced a LOD score > 1 in the whole genome scan. 

Chromosome cM Marker LOD Score Theta (?) 

3 70.61 D3S2409 3.36 0.00 

9 14.23 D9S2169 1.38 0.10 

93.92 D10S1432 1.20 0.00 
10 

100.92 D10S2327 1.10 0.00 

12 160.68 D12S1045 1.10 0.10 

15 78.92 D15S653 1.21 0.00 

74.45 D17S809 1.09 0.10 
17 

93.27 D17S2059 1.10 0.00 

 

4.3.4 Fine mapping and locus identification on chromosome 
3p21.31 

Saturation mapping by a dense grid of microsatellite markers from chromosome 3p 

revealed a novel locus segregating with the disease in the Family 2 (Figure 4-10). A 

maximum two-point LOD score (Zmax) 4.18 was obtained with marker D3S3629 (?  = 

0.00; Table 4-5). Multipoint LOD score of 3.28 was obtained when analyses were 

conducted by breaking the pedigree due to computational constraints of software 

(Figure 4-13). Haplotype analysis disclosed key recombination events between marker 

Chr3_4919 and D3S2409 in individual IV-2, defining the telomeric boundary of the 

disease locus. The centromeric limit is determined by a crossover between marker 

D3S3629 and marker D3S2456, observed in the same subject (Figure 4-11). Therefore, 

the syndactyly locus lies within the <1 cM region delimited by Chr3_4919 and 

D3S2456 markers (Figure 4-12). It was observed that subject III-3 harbours no disease 

haplotype. Therefore it was assumed that this individual has a hand malformation not 

linked to 3p21.31. Analyses were also repeated by coding subject IV-3 as affected 

(Table 4-6). 
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Figure 4-10: Electropherograms (A, B) of two microsatellite markers from chromosome 3p linked 

to malformation. 

Red arrows indicate shared bands observed in all the affected subjects  
(IV-3, IV-2, V-5, VI-10, V-7, VI-9, V-3, VI-14, IV-4, V-9, V-12, VI-11). In normal subjects 
(V-2, V-8, VI-15, V-4) this band represents an allele introduced by married-in individuals. 
(A = affected; N = normal) 
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Family 2                                                                                                                                               Results 

 61

Table 4-5: Two-point LOD scores between the phenotype and markers on chromosome 3p21.31. 

 Recombination fraction (?) 

CM Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 

61.52 D3S1768 -5.41 0.18 0.74 0.86 0.77 0.51 0.19 

67.94 D3S3564 -6.51 -0.31 0.81 1.08 1.02 0.68 0.27 

68.47 D3S3647 -5.02 0.45 0.98 0.86 0.52 0.52 0.15 

68.48 D3S3597 -5.02 0.46 0.98 1.05 0.86 0.51 0.15 

69.19 D3S3582 -6.78 -0.78 0.37 0.72 0.79 0.57 0.25 

70.61 D3S3640 -5.02 0.56 0.82 1.10 1.07 0.79 0.43 

70.61 D3S3729 1.82 1.79 1.66 1.50 1.16 0.81 0.42 

70.61 D3S3560 1.44 1.41 1.32 1.20 0.94 0.66 0.35 

70.61 Chr3_4919 -4.02 1.62 2.09 2.08 1.71 1.15 0.50 

70.61 D3S2409 3.36 3.24 3.03 2.75 2.11 1.40 0.63 

70.61 Chr3_4940 1.89 1.86 1.73 1.56 1.21 0.84 0.44 

70.61 D3S3629* 4.18 4.11 3.80 3.44 2.62 1.73 0.78 

70.61 D3S2456 -7.49 -1.36 -0.21 0.11 0.14 -0.06 -0.17 

70.61 D3S3026 -7.99 -2.81 -1.44 -0.88 -0.39 -0.17 -0.05 

71.41 D3S1289 -7.14 -0.94 0.27 0.62 0.71 0.55 0.29 

78.64 D3S1766 -5.72 -2.44 -1.10 -0.55 -0.14 -0.04 -0.04 

* The marker that yielded highest LOD score 

 

Table 4-6: Revised two-point LOD scores when subject IV-3 was coded as affected. 

 Recombination fraction (?) 

CM Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 

70.61 Chr3_4919 -3.83 1.37 1.79 1.74 1.34 0.81 0.3 

70.61 D3S2409 3.36 3.31 3.01 2.63 1.87 1.11 0.42 

70.61 Chr3_4940 -1.13 -0.28 0.26 0.42 0.45 0.35 0.19 

70.61 D3S3629 0.31 1.52 1.92 1.88 1.48 0.94 0.39 

70.61 D3S2456 -8.51 -3.6 -1.72 -1.02 -0.48 -0.24 -0.08 
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Figure 4-11: Haplotypes of the individuals in Family 2 for sixteen microsatellite markers from 

chromosome 3p21.31. 

The shared haplotype in affected subjects segregating with the phenotype is shown in green. 
The individual IDs on the pedigree are the same as described in Fig. 2.4. A sign of (-) shows 
the alleles which were not typed due to technical/PCR problems. 
* Typing for these markers is also shown in Figure 4-10. 
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Figure 4-12: Genetic map of chromosome 3 markers used in the saturation mapping. 

The marker-map positions (cM) are based on the sex-averaged map from the Center for 
Medical Genetics, Marshfield Medical Research Foundation or Genome Database (GDB). 
Markers flanking the syndactyly locus are shown in boldface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-13: Multipoint LOD score analysis for region 3p21.31. 

The multipoint linkage analysis localized the locus for zygodactyly between markers D3S3582 
and D3S2456 with a LOD score of 3.28. 

.
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4.4 Family 3 
4.4.1 Family with autosomal dominant syndactyly type II  

Family 3 shows osseous fusion of 3rd and 4th fingers and synpolydactyly of toes. These 

features are characteristic for type II syndactyly or synpolydactyly (SPD) (Temtamy and 

McKusick 1978). The phenotype in Family 3 is similar to the affected subjects 

described in families by Cross et al. (1968), Temtamy and McKusick (1978) and 

Camera et al. (1995). However, no additional fingers were observed in the hands of the 

affected subjects in Family 3. A comparison of phenotype in Family 3 with other type II 

syndactyly families is given by a graphical method (Figure 4-14; based on METHODS 

section 3.5).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-14: A graphical comparison of the phenotype in Family 3 with the phenotypes in other 
reported type II syndactyly families. 
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4.4.2 Exclusion of candidate genes HOXD13 on chromosome 2q31 
and FBLN1 on chromosome 22q13.31 

Since homeobox gene HOXD13 on chromosome 2q31 is known to be mutated in type II 

syndactyly (SPD; Sarfarazi et al. 1995), the malformation in Family 3 was checked for 

cosegregation with this region. A significant negative LOD score (?  -2.00 at ?  = 0.0; 

Table 4-7) at the critical region for SPD excluded the possibility of linkage with the 

malformation in Family 3. Likewise, the malformation was also excluded from 

chromosome 22q13.31 harbouring FBLN1. The results showed that there is genetic 

heterogeneity for type II syndactyly beyond the known loci on chromosome 2q31 and 

22q13.31.  

Table 4-7: Two-point LOD scores between the phenotype and markers on chromosome 2q and 22q. 

Chromosome 2  Recombination fraction (?) 

Phenotype Locus cM Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40

 125.81 D2S410 -10.21 -6.16 -3.51 -2.30 -1.16 -0.59 -0.24

 134.45 D2S2215 -12.41 -4.84 -2.31 -1.33 -0.56 -0.23 -0.07

 142.83 D2S114 -13.86 -4.71 -2.13 -1.13 -0.34 -0.06 0.02

 147.40 D2S442 -10.67 -2.43 -0.58 0.06 0.44 0.42 0.23

 149.89 D2S1326 -3.28 0.11 0.63 0.75 0.70 0.50 0.24

 161.81 D2S418 -4.43 -2.09 -0.89 -0.43 -0.09 0.00 0.01

173.00 D2S1776 -7.30 -3.99 -2.03 -1.26 -0.59 -0.25 -0.06
SPD 

HOXD13 

2q31?  186.21 D2S1391 -2.16 -1.14 -0.53 -0.29 -0.11 -0.04 -0.01

 200.43 D2S1384 -4.56 -0.69 -0.07 0.11 0.16 0.09 0.02

 205.00 D2S1649* 1.42 1.40 1.29 1.14 0.83 0.51 0.23

 210.43 D2S1345 -4.04 -1.31 -0.31 0.19 0.25 0.13 0.02

 215.78 D2S434 2.20 2.16 1.98 1.75 1.27 0.79 0.34

 227.00 D2S1363 -10.21 -6.56 -3.30 -1.95 -0.79 -0.29 -0.07

 240.79 D2S206 -1.63 -0.62 -0.07 0.07 0.10 0.05 0.01

 240.79 D2S1279 -12.66 -7.79 -4.06 -2.49 -1.13 -0.52 -0.19

 250.54 D2S338 -12.60 6.58 -3.92 -2.75 -1.46 -0.73 -0.28

 260.63 D2S125 -16.97 -8.36 -4.42 -2.81 -1.35 -0.62 -0.21

Chromosome 22          

 28.57 D22S689 -6.92 -1.66 -0.52 -0.2 -0.11 -0.14 -0.1 

32.39 D22S685 -4.12 -1.08 -0.55 -0.13 0.09 0.08 0.04 
 

FBLN1 

22q13.31?  36.22 D22S683 -5.72 -3.27 -1.71 -1.05 -0.45 -0.16 -0.03 

* Microsatellite marker not present in Marshfield map 
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4.4.3 Genome-wide search 

After the exclusion of HOXD13 a genome-wide search was conducted using DNA of 15 

available subjects of this family. Five chromosomes yielded a LOD score ?  1 in the 

initial genome scan (Table 4-8). However, suggestive linkage was found for 

chromosomes 2q and 14q with markers D2S434 and D14S297 (two-point LOD scores ?  

1.5; ?  = 0.00).  

 
Table 4-8: Microsatellite markers which produced a LOD score > 1 in the whole genome scan. 

Chromosome cM Marker LOD Score Theta (?) 

205.00 D2S1649 1.42 0.00 
2q 

215.78 D2S434 2.20 0.00 

10q 173.13 D10S169 1.20 0.00 

14q 31.75 D14S297 1.58 0.00 

15q 70.73 D15S650 1.27 0.01 

22q 4.06 D22S420 1.40 0.00 
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4.4.4 Fine mapping and locus identification on chromosome  
2q34-q36 

Chromosomes 2q and 14q were selected for the saturation mapping by a dense grid of 

microsatellite markers. Saturation mapping on chromosome 2q34-q36 yielded a highest 

two-point LOD score (Zmax) 2.2 with microsatellite marker D2S434 (?  = 0.00; Table 

4-9). The LOD score in this genomic region could not be improved by saturation 

mapping. The haplotype analysis showed that this locus is not in total agreement with 

the phenotype (Figure 4-15). For instance, the haplotype is similar in the affected 

subject V-18 and the normal subject V-19 (Figure 4-15). Interestingly, this genomic 

region harbours a locus for type 1 syndactyly (SD1; 2q34-q36).  

 

Table 4-9: Two-point LOD scores between the phenotype and markers on chromosome 2q34-q36. 

 Recombination fraction (?) 

cM Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 

214.71 D2S301 1.05 1.03 0.92 0.79 0.53 0.30 0.11 

214.71 D2S164 -3.36 -1.01 0.17 0.53 0.59 0.40 0.17 

215.25 D2S1371 1.32 1.31 1.21 1.05 0.71 0.38 0.14 

215.78 D2S295 -9.95 -4.78 -2.26 -1.27 -0.50 -0.20 -0.13 

215.78 D2S2210 -4.19 -0.48 0.16 0.35 0.36 0.23 0.09 

215.78 D2S434* 2.20 2.16 1.98 1.75 1.27 0.79 0.34 

215.78 D2S2249 0.78 1.43 1.80 1.76 1.39 0.91 0.41 

215.78 D2S173 -2.01 -0.92 -0.33 -0.13 -0.01 0.02 0.02 

215.78 D2S2179 -3.22 -1.76 -0.58 -0.14 0.13 0.16 0.10 

215.78 D2S104 -2.26 -0.11 0.41 0.51 0.43 0.25 0.08 

216.31 D2S433 -1.92 -0.90 -0.33 -0.15 -0.07 -0.06 -0.04 

215.78 D2S2244 -0.63 0.35 0.85 0.92 0.75 0.47 0.18 

218.45 D2S1242 -4.36 -1.35 -0.22 0.12 0.21 0.12 0.02 

* The marker that yielded highest LOD score 
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Figure 4-15: Haplotypes of the individuals in Family 3 for thirteen microsatellite markers from 

chromosome 2q. 

The imperfect haplotype is shown in green which is not in total agreement with the phenotype. 
The individual IDs on the pedigree are the same as described in Fig. 2.6. A sign of (-) shows 
the alleles which were not typed due to technical/PCR problems. 
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4.4.5 Fine mapping and locus identification on chromosomes 14q12 

Fine mapping on chromosome 14q revealed a novel locus segregating with the 

malformation in Family 3 (Figure 4-16). A maximum two-point LOD score (Zmax) 3.4 

was obtained by marker D14S1034 (Table 4-10). Multipoint LOD score of 3.19 was 

obtained when analyses were conducted by breaking the pedigree due to computational 

constraints of software (Figure 4-19). Haplotype analysis disclosed key recombination 

events between microsatellite markers D14S742 and D14S1280 in subjects IV-1 and 

IV-5, defining the telomeric boundary of the disease locus (Figure 4-17, Figure 4-18). 

The centromeric limit is determined by a crossover between microsatellite marker 

D14S121 and D14S1060, observed in the index subject IV-41. Therefore, the 

syndactyly locus lies within the ~22.97 cM region flanked by microsatellite markers 

D14S742 and D14S1060 (Figure 4-18). It was observed that subject V-34 harbours no 

disease haplotype. Therefore it was assumed to have a malformation not linked to 

14q12. Analyses were conducted by coding subject V-34 as normal (Table 4-10). 

Table 4-10: Two-point LOD scores between the phenotype and markers on chromosome 14q. 

 Recombination fraction (?) 

cM Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 

27.01 D14S1431 -5.90 -1.88 -0.11 0.44 0.64 0.49 0.24 

28.01 D14S275 -3.03 -1.15 -0.53 -0.34 -0.23 -0.16 -0.08 

28.01 D14S615 -5.29 -0.26 0.83 1.08 0.99 0.67 0.32 

28.01 D14S608 2.40 2.35 2.15 1.89 1.37 0.86 0.38 

28.01 D14S1042 1.96 1.91 1.67 1.39 0.87 0.42 0.11 

28.01 D14S262 3.21 3.14 2.85 2.48 1.74 1.04 0.42 

31.13 D14S975 1.65 1.60 1.43 1.21 0.78 0.41 0.14 

31.75 D14S54 2.41 2.34 2.07 1.74 1.12 0.57 0.15 

31.75 D14S1071 2.25 2.22 2.08 1.88 1.40 0.89 0.41 

31.75 D14S1040 2.74 2.68 2.41 2.07 1.40 0.78 0.31 

31.75 D14S1034* 3.40 3.33 3.04 2.66 1.89 1.12 0.44 

31.75 D14S297 1.91 1.87 1.68 1.45 0.99 0.55 0.21 

34.43 D14S121 1.47 1.43 1.29 1.11 0.77 0.46 0.20 

34.43 D14S1060  -0.20 0.78 1.21 1.21 0.92 0.55 0.22 

36.76 D14S741 -2.70 -1.00 0.07 0.38 0.45 0.31 0.15 

44.06 D14S306 -9.65 -3.51 -1.62 -0.89 -0.26 -0.02 -0.05 

* The marker that yielded highest LOD score 
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Figure 4-16: Electropherograms (A, B) of two microsatellite markers from chromosome 14q linked 

to malformation. 

Red arrows indicate shared bands observed in all the affected subjects (A). In normal subjects 
(N) this band represents an allele introduced by married-in individuals. 
(A = affected; N = normal) 

A 
 
 
B 

D14S121  
 
 
 
 
D14S297 
 
 
 
Status 
 
Subjects 

2/2   2/2  3/2   1/2   2/2  1/2   1/2   1/2  1/2  1/2  3/2   2/2  2/2   3/2   3/2   2/2   Genotype  
 
 
 
 
 
Genotype  
 1/1    1/1    1/2  1/1   1/2   1/1   1/1   1/1  1/1  1/1  1/1  1/1  1/1   1/1  1/1 1/1   
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Figure 4-17: Haplotypes of the individuals in Family 3 for eighteen microsatellite markers from 

chromosome 14q.  

The shared haplotype in affected subjects segregating with the phenotype is shown in green. 
The individual IDs on the pedigree are the same as described in Fig. 2.6. A sign of (-) shows 
the alleles which could not be assigned correctly. 
 * Typing of these markers is also shown in Figure 4-16. 
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Figure 4-18: Genetic map of chromosome 14 used in the saturation mapping. 

The marker-map positions (cM) are based on the sex-averaged map from the Center for 
Medical Genetics, Marshfield Medical Research Foundation or Genome Database (GDB). 
Markers flanking the syndactyly locus are shown in boldface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-19: Multipoint LOD score analysis for region 14q12. 

The multipoint linkage analysis localized the locus for synpolydactyly between markers 
D14S975 and D14S121 with a LOD score of 3.19. 
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5 Discussion 
 

5.1 Genetic mapping in Pakistani families 
In contrast to the European population the Pakistani population has unique socio-

demographic features like stable communities within defined geographic regions, large 

sibships and a high consanguinity rate. Due to the coexistence of various linguistic and 

ethnic strata, marriages within families are strongly favored. In geographically remote 

and inaccessible areas the isolated tribal groups are inclined to marry within the family 

due to cultural and economic basis (Shami et al. 1989). In an inbred population existing 

in isolation over many generations without genetic interchange from other 

subpopulations, rare hereditary diseases and malformations, especially recessive, 

occasionally become frequent. Therefore, such inbred populations have long been 

subject of interest for both medical and population genetic studies.  

Four large inbred Pakistani families (Fig. 2-1) with unidentified limb malformations and 

several affected individuals were ascertained by the help of local medical practitioners 

who approached the colleagues in the Department of Biological Sciences (Quiad-I-

Azam University Islamabad) and the Department of Biology (Government College DG 

Khan). We reasoned that these large families may provide an excellent opportunity to 

localize the limb malformation in the human genome, to identify the underlying gene 

and hence, to get to know the underlying pathomechanisms of the malformations. 

Therefore, these families were visited at their places of residence in order to get 

permission from the head of the families to conduct a clinical and molecular study. In 

each family affected and normal subjects were examined to categorize the limb 

malformation. In order to infer the correct genealogy and the inheritance pattern, an 

extended pedigree was drawn in each case with the help of the elders of the family. 

Information was obtained regarding intermarriages, deceased subjects and associated 

defects.  

5.2 Phenotyping and diagnosis 
In order to identify the limb phenotypes segregating in the Pakistani families clinical 

features were documented during the fieldwork. Intrafamilial phenotypic variability was 

carefully noted. Detailed photographs and X-rays were obtained for the correct 

diagnosis of the limb malformations. Information was also obtained about the subjects 
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who had undergone surgical treatment for limb malformation. Since in all four families 

the hallmark of the malformation was a fusion of fingers and toes without any 

associated defects, the initial clinical impression was that the malformations could be 

classified into the non-syndromic syndactylies.  

Since it is important in a clinical and molecular study to establish strict diagnostic 

criteria for the phenotype in question, the phenotype assignment must be done in a 

rigorously consistent fashion. Especially in a linkage study, even a few misassigned 

phenotypes may have major negative implications on the analyses, leading to both false 

positive and/or false negative results. For instance, given the recombination fraction (?) 

of 0.01 and an estimated misclassification rate of 10%, twice as much data must be 

sampled to obtain the same power of analysis as would be needed if no misclassification 

existed (Ott 1992). Therefore, to categorize the syndactylies, a protocol was designed 

which allows simple and smooth classification of the syndactylies in the Pakistani 

families. In this thesis, three of the four clinically investigated families are described.  

5.2.1 Protocol for the syndactyly classification 

In order to use the existing classification of syndactylies but to simplify the clinical 

typing I have designed a protocol (see section 3.5) using the syndactyly literature from 

1910-2003. After an exhaustive review of 60 publications 104 different index cases, 

with and without other affected family members, were ascertained. Seventy-eight cases 

were selected for the test trail of this protocol. In 71 cases I came to the same conclusion 

as the original investigators, which proved that my protocol is effective. Using this 

protocol the different syndactyly types are simple to understand and their minor 

differences are easy to record in clinics or visiting the patient and his family at home. It 

is straightforward to define the phenotype of a family and it takes a small amount of 

time to categorize the malformation, saving the need to extensively explore the 

literature beforehand. Scoring can be done at a glance immediately in the counseling 

session by complementing the diagram with photographs and roentgenograms and the 

whole clinical spectrum within a family can be typed accordingly. More sophisticated 

typing might be necessary in a second step. Although the protocol shows both hands 

and both feet in one graph, in some instances it might be more appropriate to document 

them separately.  



Discussion 

 75

With the help of the protocol, the clinical typing of the Pakistani families with 

syndactylies was straightforward. The phenotype in family 2 is consistent with type I 

syndactyly (subtype 1; Fig. 4-9; Malik et al. 2005c). The clinical picture in Family 3 

was found to be compatible with type II syndactyly (synpolydactyly; Fig. 4-13). The 

protocol revealed that the unique autosomal recessive phenotype in Family 1 is not in 

complete agreement with any of the previously described syndactyly types. Therefore, a 

ninth type of syndactyly was introduced into the international literature (Fig. 4-4), 

extending the present systematics of syndactyly. I have proposed to name this novel 

phenotype mesoaxial synostotic syndactyly with phalangeal reduction (MSSD, type IX 

syndactyly, Malik-Percin type), and it has been introduced to the international scientific 

community with this title (Malik et al. 2005b). A more detailed description of the 

families is given in sections 5.9.   

5.3 Inheritance of limb malformations 
Clustering of several affected subjects within a family is highly suggestive of a 

hereditary condition. Hereditary diseases, especially recessive, occasionally become 

frequent in inbred populations. In the case of syndactyly the diagnosis is made by 

clinical examination only. The mode of inheritance is easy to infer by drawing the 

pedigree and observing the transmission to the family members and then deciding 

whether it is compatible with autosomal dominant or autosomal recessive inheritance. 

In Family 1 all the affected subjects are the product of consanguineous loops and all 

parents have normal phenotypic status, thus making an autosomal recessive inheritance 

the most likely explanation. Occasionally, in highly inbred families the underlying 

mode of inheritance of the phenotype is difficult to judge. For instance, a homozygous 

affected individual mates with someone who is heterozygous for the same gene by 

virtue of descent from a common ancestor, thus giving an impression of an autosomal 

dominant inheritance. In this case the transmission of an autosomal recessive trait 

mimicks a dominant pattern and is therefore called pseudodominant inheritance. There 

was no evidence of pseudodominant transmission of the limb malformations in the 

described Pakistani families. 

Similarly, an autosomal dominant inheritance may be easily overlooked in inbred 

families and the homozygous status of a dominant gene may remain undetected. 

Autosomal dominant conditions may show incomplete penetrance, resulting in skipped 

generations with unaffected, obligate carriers. The transmission of the limb phenotype 
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in Family 2 and 3 is consistent with autosomal dominant inheritance, since the affected 

subjects have at least one affected parent and there is equal affected male-to-female 

ratio. There is no evidence of incomplete penetrance or skipped generations. There are 

several instances of male-to-male transmission making an autosomal dominant the most 

likely inheritance pattern. In addition, autosomal dominant conditions depict variability 

in the degree of phenotypic expression. Family 2 shows type I syndactyly and the 

phenotype varies from unilateral, minor 2nd and 3rd toe webbing to bilateral complete 2nd 

and 3rd toe webbing resulting in the fusion of nails. Family 3 depicts type II syndactyly 

and the phenotype varies from bony fusion of 3rd and 4th fingers to an addition of a 

mesoaxial bony element within the osseous web. Intrafamilial variability of the 

phenotype may be due to factors such as epistasis, mosaicism or genetic heterogeneity. 

In summary, inheritance patterns of rare phenotypes may be difficult to infer in inbred 

populations and occasionally only the results of molecular haplotype study may give the 

correct answer. However, in certain instances the findings in molecular haplotyping 

may lead to confusing results, as discussed in more details for Family 3 (section 5.11).  

5.4 Collection of biological material 
Before undertaking a linkage study, it is critical to know whether the available pedigree 

information and the number of individuals is sufficient to allow the detection of the 

locus underlying the trait of interest. If the family is not large enough then several small 

families with an identical clinical presentation are recruited for a linkage study, with the 

assumption that a similar mutated gene is segregating with the malformation in all 

families. The selection of individuals for genotyping is crucial for a successful linkage 

study. It depends heavily on the family structure, availability of the subjects and the 

inheritance pattern of the malformation (i.e. disease model). In case of an autosomal 

dominant pedigree each informative meiosis leads to an addition of 0.3 in the maximum 

likelihood of linkage (i.e. LOD score), while for an autosomal recessive pedigree each 

affected genotyped subject contributes 0.6 in the LOD score. Therefore, minimum of 

twelve subjects are needed to map a phenotype in a family with an autosomal dominant 

transmission and six subjects are required to achieve a highly significant evidence of 

linkage (i.e. LOD score, Zmax ?  3.00) in a family with an autosomal recessive mode of 

inheritance.  

To perform a genome screen, a relatively large and consistent amount of DNA is 

required. Usually such a supply is obtained through the collection of whole blood in 
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small amounts (5—10 ml). The villages of the Pakistani families presented in this thesis 

are situated in remote areas, which are not easily accessible. It was not practical to 

revisit the family several times especially due to harsh weather conditions and this is 

why I tried to collect as many blood samples as possible during the initial visit to each 

family. Another reason for sampling as many individuals as possible was that the 

laboratory work was intended to be conducted abroad. A large number of samples will 

assure a successful linkage study and a positive check on the linkage results. All 

biological material was collected after informed consent by the head of the family 

according to the Helsinki II declaration.  

5.5 Approach to a genome screen 
In recent years, there has been success in localizing genes of autosomal dominant and 

autosomal recessive phenotypes in inbred and isolated populations, since they offer 

many advantages for genome-wide mapping studies. For the recessive disorders, 

appearing in inbred sibships, molecular studies using the homozygosity mapping 

strategy are readily feasible. In this approach, affected individuals can be used for 

mapping under the assumption that each of them is homozygous for the markers linked 

to the disease locus.  

In Family 1, with an autosomal recessive syndactyly, I have combined the strategy of 

homozygosity mapping with the candidate gene approach. Previously identified regions 

for syndactylies on chromosome 2q34-q36, 2q31 and 6q21, were selected to check for 

homozygosity. After excluding these chromosomal regions, in a second step the 

phenotype of the family was checked for linkage with candidate genes for limb 

development (i.e. SHH, GLI3, BMP4, FORMIN, GREMLIN, FGF4). Finally, a genome-

wide screening approach was conducted, in which I attempted to cover the entire human 

genome using markers evenly spaced across the human genetic map.  

For Family 2 and 3, consistent with autosomal dominant mode of inheritance, I have 

conducted the candidate gene approach in order to check whether any of the candidate 

loci (i.e. chromosome 2q34-q36, 2q31 and 6q21) or genes (i.e. SHH, GLI3, BMP4, 

FORMIN, GREMLIN, FGF4) segregates with the phenotypes in these families. In 

autosomal dominant families, I looked for one shared haplotype segregating in all the 

affected subjects which surrounds the gene in question. The same haplotype should not 

segregate in any of the normal subjects of the family.  
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After the initial evidence of linkage emerged in a family, the locus was confirmed by 

fine mapping. A dense grid of microsatellite markers was used within a specified 

genomic interval and all family members were typed. Fine mapping finally led to define 

and pinpoint the disease locus in all three families. 

5.6 Genotyping 
A conventional genome-wide study involves genotyping with highly polymorphic di-, 

tri- or tetranucleotide repeat microsatellites markers, which are highly informative, 

randomly distributed throughout the genome, segregate in Mendelian fashion and are 

easy to type through PCR. Dinucleotide repeat microsatellite markers, quite often, are 

difficult to type due to their “smear nature” in the PCR. Therefore, tri- and 

tetranucleotide repeat markers are generally favored, because they are more reliable, 

easy to score and, in many cases, show higher heterozygosity and informativeness. For 

instance, the latest version of the genome screening sets (set # 14) of Marshfield (Center 

for Medical Genetics, Marshfield, USA), contains 95% tri- and/or tetrancleotide 

microsatellite repeat markers. For the fine mapping, the selection of microsatellite 

markers is limited by their availability within the candidate regions. Sometimes, a 

highly informative microsatellite marker in one population might prove to be 

homozygous in other population and thus yields no inheritance information. Therefore, 

in fine mapping an effective strategy is to employ a combination of di-, tri- and 

tetranucleotide repeat microsatellite markers. For the genotyping of the Pakistani 

families, I used a panel of 360 markers for the genome-wide screen. During saturation 

mapping, additional 80 microsatellite markers were employed in various candidate 

regions, roughly 12 markers for each region.  

In this study, the detection and scoring of microsatellite maker alleles was performed on 

a semi-automated system of ABI 377 automated sequencer (Applied Biosystems). This 

system uses a separation gel of 2 mm in thickness, which allows to overcome the 

problems of unsmooth lane running and band-shifts like in the conventional 

polyacrylamide gels. Fragment analyses were performed by using GeneScan and 

Genotyper software packages, which is a highly precise and sensitive method. This 

software is able to discriminate even one base pair differences in fragment sizes, 

especially in dinucleotide repeat markers, which are hard to analyse in normal 

polyacrylamide gels. In the conventional polyacrylamide vertical gels with ethidium 

bromide or silver staining the exact allele sizes cannot be detected because the 
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fragments are analysed only by visual inspection. In this study, a control individual 

from the CEPH database (Centre d'Etude du Polymorphisme Humain, France) was 

always genotyped with each microsatellite marker in order to standardize the allele 

sizes.  

Various research institutes offer commercial genotyping services, ranging from 

genotyping of candidate regions to genome-wide searches (Microsatellite Center, 

Berlin; Genotyping Resource Center, Rockefeller University). These services can save 

time and labour, but on the other hand one does not have the opportunity to learn the 

methodology. Additionally, these services are expensive. Since I intended to get 

experience in the laboratory techniques and the hardware and software handling, 

therefore, I decided to perform each and every single step myself.  

5.7 Data management 
Data management is vital to the success in genotyping and in the subsequent stages of 

linkage analysis. It is especially important in the genome-wide screen of large 

pedigrees, where the number of genotypes required for the analysis will be in hundreds. 

The task of data management includes the description of the phenotype of each family 

member and the handling of photographs and X-rays, as well as pedigree information 

and sometimes further clinical tests. It also includes data storage and backup for 

subsequent use and effective retrieval. During my study, the field observations were 

recorded in an electronic word-processing file. The pedigree data and the status 

information of each individual was managed and recorded using Cyrillic 2.1.3. The 

genotyping data obtained from the allele-calling procedure of Genotyper software was 

directly transferred into a spreadsheet for linkage analyses and permanent storage. 

To avoid errors and bias of ascertainment myself and a second researcher performed 

fragment analyses and scoring of the microsatellite markers. The genotyping errors were 

identified and removed through a multistage approach. Fragment sizes were compared 

with gels and fluorograms to avoid allele size disparity. This method enables to 

effectively mitigate the genotyping errors, which emerge during electrophoresis, lane-

extraction method of GeneScan software and allele-calling procedure of Genotyper 

software. Such errors are more common in case of dinucleotide repeat microsatellite 

markers. Genotypic incompatibilities and Mendelian inconsistencies were identified by 
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employing PedCheck software (O'Connell and Weeks 1998), and by using the 

UNKNOWN program of LINKAGE software package (Lathrop et al.  1984).  
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5.8 Linkage analysis 
5.8.1 Two-point LOD score analysis 

Linkage refers to the tendency of alleles from two loci to segregate together in a family 

if they are located physically close to each other on a chromosome. LOD score analysis 

is a likelihood-based parametric or model based approach to find the evidence for 

linkage and to estimate the recombination fraction (?). The LOD score represents log10 

of the ratio for two likelihoods, the likelihood of observing a particular configuration of 

a trait and a marker locus in a family assuming linkage (i.e. ?  < 0.5), and the likelihood 

of observing the same configuration of the two loci within the same family assuming no 

linkage (i.e. ?  = 0.5; Ott 1999). This ratio is referred to as a two-point LOD score (or 

pair-wise LOD score), since it involves linkage between only two loci (i.e. a disease 

locus and a marker locus). LOD score analysis is statistically more powerful than any 

nonparametric method (e.g. association studies). It utilizes every family member’s 

phenotype and genotype information. For the estimation of maximum likelihood (Zmax), 

LOD scores are calculated and reported at recombination fractions (?) of 0.00—0.40. In 

my study, all families were relatively large and inbred with various consanguineous 

loops, which restricted the straightforward computation of LOD scores. Therefore, 

inbreeding loops were broken to conduct the two-point analyses. Untyped individuals 

were removed from the pedigree due to the computational and memory constraints of 

the linkage softwares (UNKNOWN, MLINK). I have conducted two-point analysis 

with all the microsatellite markers genotyped in three families. Two-point LOD scores 

were calculated against all the recombination fractions (?) from 0.00—0.40.  

Maximizing LOD score depends on number of parameters: mode of inheritance, disease 

allele frequency, family structure, penetrance, phenocopy rate, and marker allele 

numbers and frequencies. In parametric analysis, misspecifying the disease gene 

frequency leads to minor penalty in the maximum LOD score (Pal et al. 2001). In my 

analyses I assumed a disease allele frequency of 0.001 for the autosomal recessive 

syndactyly family and 0.0001 for autosomal dominant syndactyly family. Microsatellite 

marker allele frequencies were taken either from Marshfield human diversity panel or 

assumed to be equal. In fine mapping, the allele frequencies can be calculated from the 

family founders, especially when no prior estimate of allele frequencies is available and 

the pedigree is sufficiently large or several families are analysed together. The impact of 

changing allele frequencies decreases with increasing pedigree size. In this study, the 
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allele frequencies of the linked alleles were not allowed to be less than 0.1 to avoid 

overstated evidence of linkage caused by underestimation of marker allele frequencies.  

5.8.2 Haplotyping 

Haplotype is a linear, ordered arrangement of alleles on a chromosome. Haplotype 

analysis is a conventional method to identify the disease segregating chromosome in a 

family. It is useful in identifying the ancestral chromosome and the recombination 

events which define the candidate interval of the trait. I have performed haplotype 

analysis with the help of SIMWALK software (Sobel and Lange 1996). Option 46.1 in 

the batch file was used to obtain vertical haplotypes. Final haplotypes were drawn with 

the pedigree in Excel (Microsoft 2000) after manual checking.    

5.8.3 Multipoint analysis 

Multipoint LOD score analysis is an extension of two-point analysis in which linkage of 

a disease trait is tested not to just one marker, but to an entire map of markers. There are 

several advantages of multipoint LOD score analysis. First, it provides an opportunity to 

impute the genotype information at an original uninformative locus via haplotype 

information. Thus the linkage results are less sensitive to the uninformative or missing 

genotype at any single marker. In essence, multipoint analysis can extract more of the 

total inheritance information from the pedigree. Second, it can be very useful to 

pinpoint a disease gene location in the fine mapping of a Mendelian disorder (Ott 1999). 

However, if all the meioses are informative in a pedigree then the multipoint analyses 

cannot yield a higher LOD score. 

In my study, the multipoint analyses were not straightforward due to the large family 

size and large number of markers. Although, there are softwares which allow multipoint 

computation in large families (e.g. SIMWALK; Sobel and Lange 1996), they do not 

provide exact estimation of LOD scores. Therefore, I have split the families into 

reasonable sizes to conduct multipoint computation by GENEHUNTER software 

(Kruglyak et al. 1996). Breaking the pedigree into pieces and the removal of the founder 

subjects from the first generation resulted in loss of inheritance information. 

Consequently the multipoint analyses in Family 1 and 2 showed a decrease in LOD 

score, in comparison to the two-point analysis (Figure 4-8; Figure 4-13).   
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5.9 Family 1: Autosomal recessive mesoaxial synostotic 
syndactyly with phalangeal reduction (MSSD) maps to 
chromosome 17p13.3 

 

Malik S, Arshad M, Amin-Ud-Din M, Oeffner F, Dempfle A, Haque S, Koch MC, Ahmad W, Grzeschik K-H (2004) A novel type 
of autosomal recessive syndactyly: clinical and molecular studies in a family of Pakistani origin. Am J Med Genet 
126A:61-67 

Malik S, Percin FE, Ahmad W, Percin S, Akarsu NA, Koch MC, Grzeschik K-H (2005b) Autosomal Recessive Mesoaxial 
Synostotic Syndactyly with Phalangeal Reduction Maps to Chromosome 17p13.3. Am J Med Genet (in press) 

 

The phenotype in Family 1 is not in complete agreement with any of the described eight 

known syndactylies. All affected subjects are the product of consanguineous loops, 

making an autosomal recessive inheritance the most likely explanation. The OMIM 

catalogue [http://www.ncbi.nlm.nih.gov/Omim/] documents 109 entries for autosomal 

recessive syndactylies. All except Cenani-Lenz syndactyly (MIM 212780) are reported 

to be syndromic conditions. Cenani-Lenz type is a ‘total’ digit syndactyly with 

extensive metacarpal and carpal fusions, often accompanied by partial or complete 

radio-ulnar synostosis, culminating in a sort of spoon-like hand. The feet are usually 

mildly affected (Cenani and Lenz 1967). This makes Family 1 phenotypically distinct 

from Cenani-Lenz type. 

Family 1 shows a distinctive phenotypic manifestation and has minimal overlap of 

clinical features with syndactylies type I, II, III and V. The defect is predominantly 

mesoaxial and more severe than syndactylies of type I (SD1). Involvement of the index 

fingers and first toes in the web is an extremely rare finding in SD1, as pointed out by 

Bosse et al. (2000). Since the classical feature of type II syndactyly the mesoaxial 

polydactyly is missing in all 5 affected members, it almost rules out this type. No family 

member shows any craniofacial symptoms like type III syndactyly, but it overlaps with 

this condition by showing involvement of mesoaxial skeletal rays. Syndactyly type V is 

also excluded because of its postaxial involvement of digits and occassional association 

of brachydactyly and camptodactlyly (Temtamy and McKusick 1978; Robinow et al. 

1982). 

Since minimal overlap with the clinical features of known syndactylies was observed in 

this family, the phenotypic status might represent an allelic variant of one of the 

previously described types. Therefore, the phenotype of the family was checked for 

cosegregation with one of the known loci for syndactylies. Using a panel of highly 



Discussion 

 84

polymorphic microsatellite markers, the phenotype was excluded from the critical 

regions of syndactyly type I (2q34-q36), type II (2q36) and type III (6q22-q23) (Table 

4-1). Thus, the clinical impression of the phenotype not fitting into syndactyly type I, II 

and III has been proven by the exclusion of established candidate gene loci. Genome-

wide search with 360 microsatellite markers revealed that the phenotype maps to 

chromosome 17p. Homozygosity was observed in all the affected subjects for the 

microsatellite markers selected from chromosome 17p13.3 (Figure 4-6). 

A literature search showed that the phenotype of Family 1 resembles three affected 

subjects in a Turkish family (Percin et al. 1998). Since it is an inbred family and the 

three affected subjects have normal parents, the most likely mode of inheritance is 

autosomal recessive. I have included this Turkish family in my study. The field work, 

the blood collection and the typing of microsatellite markers were performed at the 

Cumhuriyet University Research Center, Sivas, Turkey. Linkag analysis was done at the 

Institute of Human Genetics, Philipps University Marburg, Germany. The data of the 

Turkish family is presented in Figure 5-1 and Table 5-1, in comparison with Family 1. 

The phenotype of the Turkish family was checked for linkage with the microsatellite 

markers on chromosome 17p under an autosomal recessive model. Genotyping proved 

that the three family members (51, 55, 57; Figure 5-1) with a complex hand-foot 

phenotype, similar to the individuals in Family 1, are homozygous for a cosegregating 

segment in the critical region on 17p. Two recombination events in individuals 51 and 

55 place the disease locus distal to marker D17S831 (Figure 5-1). Thus, in the Turkish 

family the homozygous region is flanked by markers D17S1866 and D17S831 (Figure 

5-1). A maximum two-point LOD score of 1.89 was obtained for marker D17S1533 in 

the Turkish family (?  = 0.00; Table 5-1).  

When both families (Family 1 and Turkish family) were analysed together, a maximum 

two-point LOD score (Zmax) of 4.97 was obtained at marker locus D17S695 (?  = 0.00; 

Table 5-1). The homozygous region in both families spans between markers D17S643 

and D17S831 with a critical interval of 6.6 cM. The identification of a single locus for a 

complex hand foot malformation in two inbred families with distinct ethnic 

backgrounds gives evidence for a new form of autosomal recessive syndactyly. I have 

proposed to name this phenotype mesoaxial synostotic syndactyly with phalangeal 

reduction (MSSD), respectively type IX syndactyly, Malik-Percin type.  
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In addition, an autosomal dominant 2nd and 3rd toe webbing without hand malformation 

is segregating in nine family members of the Turkish family (Percin et al. 1998). This 

phenotype is a hallmark of type I syndactyly, which has been mapped to the SD1 locus 

on chromosome 2q34-q36 (Bosse et al. 2000; Ghadami et al. 2001). Therefore, the 2nd 

and 3rd toe phenotype of the Turkish family was checked for cosegregation with the 

SD1 locus. The most informative microsatellite marker, D2S2382, excluded the disease 

phenotype for at least 8.9 cM outside the critical region (exclusion area = 0.089 at Zmax 

?  -2; Table 5-2). The 2nd and 3rd toe webbing was excluded from chromosome 17p13.3 

locus under an autosomal dominant model. It is evident that subjects with 2nd and 3rd toe 

webbing are missing the disease haplotype for 17p (e.g. individual 56; Figure 5-1). 

Therefore, it is concluded that two different syndactyly types with different inheritance 

patterns are segregating in the Turkish family: an autosomal recessive type IX 

syndactyly which localises on chromosome 17p13.3, and an autosomal dominant type I 

syndactyly, which is neither linked to chromosome 2q34-q36 (SD1) nor to 17p13.3 

(MSSD).  

The candidate region of homozygosity on 17p contains a number of genes, but none of 

these have previously been associated with developmental defects in humans or mice 

(e.g. YWHAE, MIM 605066; SKIP, MIM 607875; MYO1C, MIM 606538). The most 

likely candidate within the critical interval was ROX, which codes for a MAX-binding 

protein (ROX, MIM 603039), which is part of MAX complexes. These complexes are 

known to be involved in transcriptional regulation, cell differentiation and proliferation. 

Other candidates were CT120 and LOST1, both close to ROX. Mutation screening of 

these three genes was conducted in two affected individuals (V-9, V-1) and one normal 

subject (IV-1) of Family 1. No mutation was observed within the coding regions of 

these three genes. 
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Figure 5-1: Haplotypes for fifteen microsatellite markers from chromosomal region 17p13.3 in 
Family 1 and the Turkish family. 

The homozygous region segregating in both families is shown by allele numbers in 
boldface. In the Turkish pedigree the solid symbols show subjects with the autosomal 
recessive phenotype of type IX syndactyly. Half shaded symbols represent subjects with 
autosomal dominant 2nd and 3rd toe webbing. A sign of (-) shows markers which have not 
been typed. 
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Table 5-1: Two-point LOD scores between type IX syndactyly and microsatellite markers on 
chromosome 17p13.3 in Family 1 and the Turkish family. 

 
 

 Family 1 Turkish family 

 Recombination fraction (?) 

Marker 0.00 0.01 0.05 0.10 0.00 

D17S1866 - - - - -1.06 

D17S643 -0.05 0.91 1.32 1.27 - 

D17S849 2.78 2.72 2.45 2.11 0.63 

D17S1308 2.38 2.31 2.06 1.74 0.19 

D17S926 3.38 3.28 3.00 2.59 1.54 

D17S695 3.15 3.08 2.79 2.42 1.82 

D17S596 1.65 1.62 1.51 1.35 - 

D17S1533 2.48 2.41 2.16 1.84 1.89 

D17S831 2.01 1.96 1.75 1.49 -0.99 

D17S654 - - - - -0.96 

D17S1528 3.47 3.39 3.08 2.69 -0.81 

D17S1798 1.92 1.90 1.77 1.58 - 

D17S1583 3.28 3.22 2.91 2.53 -0.9 

D17S1828 -7.31 -5.53 -3.27 -2.06 - 

D17S1298 0.84 0.82 0.76 0.67 - 

 

 

Table 5-2: Two-point LOD scores between 2nd and 3rd toe syndactyly and the candidate loci on 
chromosomes 2q34-q36 and 17p13.3 in the Turkish family. 

Exclusion area was determined according to the recombination fraction (cM) at which the 
LOD score was ?  -2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Recombination fraction (?) 
Locus Marker CM 0.00 0.01 0.05 0.10 

Exclusion 
(cM) 

Chromosome 2 
D2S2382 213.49 -4.89 -4.02 -2.34 -1.49 6.03 

D2S301 214.71 -4.07 -2.56 -1.34 -0.81 2.00 

D2S173 215.78 -3.71 -2.59 -1.64 -1.11 3.00 

D2S163 218.45 -4.88 -3.86 -2.23 -1.43 6.03 
2q34-q36 

D2S344 219.52 -4.77 -3.64 -2.26 -1.14 6.54 

Chromosome 17 
D17S695 3.67 -3.87 -1.54 -0.35 0.04 1.00 

D17S1533 3.99 -3.77 -1.45 -0.24 0.15 1.00 17p13.3 
D17S1528 6.60 -3.82 -1.53 -0.34 0.03 1.00 
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5.10 Family 2: Zygodactyly maps to chromosome 3p21.31 
 

Malik S, Schott J, Ali SW, Oeffner F, Amin-ud-Din M, Ahmad W, Grzeschik K-H, Koch MC (2005c) Evidence for clinical and 
genetic heterogeneity of syndactyly type I: the phenotype of second and third toe syndactyly maps to chromosome 3p21.31. 
Eur J Hum Genet (submitted) 

 

Based on clinical observation type I syndactyly can be divided into at least four 

different subtypes. The most frequent subtype, and probably the most prevalent form of 

all syndactylies, is characterized by bilateral webbing of 2nd and 3rd toe without hand 

anomalies. The inheritance of the phenotype is autosomal dominant and was originally 

named zygodactyly (Schofield 1921; Weidenreich 1923; Stiles and Hawkins 1946; 

Penrose 1946; Alvord 1947; Grebe 1964). Later, it became accepted to use the term 

zygodactyly as a synonym for type I syndactyly (Tematamy and McKusick 1978; 

Percin et al. 1998). No locus is known for this subtype. 

The second subtype is characterized by bilateral cutaneous 3rd and 4th finger, and 2nd and 

3rd toe webbing. More severely affected family members may have additional fingers 

and toes involved, even with bony impairment (Thomsen 1927; Lucken 1939; Grebe 

1964; Tematamy and McKusick 1978; Ghadami et al. 2001). The dominant phenotype 

was mapped to chromosome 2q34-q36 in a large German family originally described by 

Lucken in 1939 (Bosse et al. 2000). The gene locus was subsequently confirmed in an 

Iranian family and was designated as syndactyly type I locus (SD1; Bosse et al. 2000; 

Ghadami et al. 2001). 

The other two subtypes are very rare and no gene loci are known for them. The 

hallmark of the third subtype is bilateral cutaneous or bony webbing of 3rd to 4th finger 

and occasionally of 3rd to 5th finger. Feet are not involved and the inheritance is 

autosomal dominant (Montagu 1953; Grebe 1964; Hsu 1965). The fourth subtype 

(bilateral cutaneous webbing of 4th and 5th toe) was mentioned in an epidemiological 

study from Brazil (Castilla et al. 1980). Since neither a detailed clinical description of 

the phenotype nor the inheritance was given by the authors, the status of subtype four 

remains uncertain. A phenotypic comparison of the four subtypes is presented in Figure 

4-9 as a simplified graph (Malik et al. 2005a).  

Apart from clinical evidence that subtype 1 and 2 are two distinct phenotypes, the 

molecular proof came from a linkage study in a Turkish family with autosomal 
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dominant zygodactyly, which was excluded from the SD1 locus (section 5.9; Malik et 

al. 2005b). Additional molecular evidence came from the exclusion of the SD1 locus for 

the zygodactyly phenotype segregating in Family 2 (Table 4-3).  Finally, the 

zygodactyly phenotype segregating in a German family was also excluded from the 

SD1 locus (LOD score < -2.00; Table 5-3). The exclusion of the SD1 locus in three 

ethnically different families with zygodactyly confirmed that there is clinical and 

genetic heterogeneity for type I syndactyly. These results also established that within 

type I syndactyly, subtype 1 (i.e. zygodactyly) is a distinct entity from subtype 2 (3rd 

and 4th finger, and 2nd and 3rd toe webbing).  

The genome-wide search in Family 2 revealed that the zygodactyly phenotype is linked 

to chromosome 3p21.31 (Zmax LOD score = 4.18; Table 4-5). It is the first locus for 

zygodactyly, and a second locus for type I syndactyly. It was observed that the affected 

subject (IV-3) in the Family 2 has no disease haplotype (Figure 4-11). Therefore, the 

zygodactyly phenotype in this subject is not linked to chromosome 3p21.31. Only his 

wife (V-9) transmits the disease haplotype to four of the affected offsprings (VI-9—12). 

It is unknown whether the affected subject VI-13 in the same sibship harbors maternal 

or paternal haplotype, because the individual was not blood sampled for her young age 

(3 years). 

Interestingly, zygodactyly segregating in the German family was excluded from 

chromosome 3p21.31 (LOD score < -2.00; Table 5-4; Figure 5-2). The exclusion of 

chromosome 3p21.31 in the German family reinforces the observation that zygodactyly 

is genetically heterogeneous. These findings have proved that zygodactyly is in itself 

genetically heterogeneous and has at least two types: one type maps to chromosome 

3p21.31, while the other is not linked to chromosome 3p21.31. I therefore, propose to 

refer to chromosome 3p21.31 locus as ZD1 (i.e. zygodactyly 1). On the account of the 

high prevalence of zygodactyly in most populations I expect the discovery of several 

loci. Finally, it would also be interesting to verify whether subtype 3 (i.e. webbing of 3rd 

and 4th finger without feet malformation) and subtype 4 (i.e. webbing of 4th and 5th toe) 

are linked either to SD1 (2q34-q36) or ZD1 (3p21.31). Based on my clinical 

understanding I expect genetic heterogeneity for subtype 3 and 4.  

This novel locus brings us a step further towards molecular genetic delineation of this 

heterogeneous condition. There is no promising limb phenotype or candidate gene 
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mapped in this region in humans or mice. In zygodactyly the digit number and shape 

remain unaffected. The defect appears in the final step of separation and spacing of 

digits. Therefore, in case of zygodactyly I expect an underlying gene involved in the 

interdigital cell death (Zuzarte-Luis and Hurle 2002).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-2: Pedigree of the German family with autosomal dominant zygodactyly showing the 

haplotypes of 6 microsatellite markers on chromosome 3p. 

Horizontal bars on symbols denote individuals who were physically examined. 
The vertical bars indicate the ancestral haplotype, which is transmitted to both grand 
children. 

 
 



Discussion 

 91

Table 5-3: Pairwise LOD scores between the zygodactyly phenotype in the German family and the 
microsatellite markers on chromosome 2q34-q36 (SD1 locus). 

 
 Recombination Fraction (?) 

cM Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 
200.43 D2S1384 -2.30 -1.36 -0.71 -0.44 -0.19 -0.07 -0.02 

205.00 D2S1649 -2.30 -1.36 -0.71 -0.44 -0.19 -0.07 -0.02 

210.43 D2S1345 -2.30 -1.36 -0.71 -0.44 -0.19 -0.07 -0.02 

215.78 D2S434 -2.30 -1.36 -0.71 -0.44 -0.19 -0.07 -0.02 

227.00 D2S1363 0.30 0.29 0.26 0.21 0.13 0.06 0.02 

 
 
 
Table 5-4: Pairwise LOD scores between the zygodactyly phenotype in the German family and the 

microsatellite markers on chromosome 3p21.31 (ZD1 locus). 

 
 Recombinatin Fraction (?) 

cM Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 
69.19 D3S3582 -2.39 -1.36 -0.71 -0.44 -0.19 -0.07 -0.01 

70.61 Chr3_4919 0.30 0.29 0.27 0.25 0.20 0.14 0.07 

70.61 D3S2409 -2.39 -1.36 -0.71 -0.44 -0.19 -0.07 -0.01 

70.61 Chr3_4940 -2.39 -1.36 -0.71 -0.44 -0.19 -0.07 -0.01 

70.61 D3S3629 -2.39 -1.36 -0.71 -0.44 -0.19 -0.07 -0.01 

70.61 D3S2456 -2.39 -1.36 -0.71 -0.44 -0.19 -0.07 -0.01 
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5.11 Family 3: Synpolydactyly (SPD) maps to chromosome 
14q12 

Among all syndactyly types, type II syndactyly or synpolydactyly (SPD) was the first to 

be localized on chromosome 2q31 (Sarfarazi et al. 1995). Polyalanine expansion 

mutations in the homeotic gene HOXD13 were observed in families with SPD 

(Muragaki et al. 1996; Goodman et al. 1997). Subsequently, a number of reports 

verified these findings (Table 5-5). Since there is no evidence of change in expansion 

size within families even over six generations, there is a highly significant increase in 

penetrance and severity of the phenotype (genetic anticipation) with increasing 

expansion size. The remarkable correlation between the phenotype and the expansion 

size suggests that expansion of the polyalanine tract leads to a specific gain of function 

in the mutant HOXD13 protein, and has interesting implications for the role of 

polyalanine tracts in the control of transcription (Goodman et al. 1997). 

Table 5-5: Mutational spectrum in the reported families with synpolydactyly (SPD). 

Phenotype Locus Gene Mutation Reference 

SPD 2q31 HOXD13 21—30-bp duplications Muragaki et al. 1996 

SPD 2q31 HOXD13 27-bp duplication Akarsu et al. 1996 

SPD 2q31 HOXD13 21—42-bp duplications Goodman et al. 1997 

SPD with novel foot 
malformation 

2q31 HOXD13 Del. 323—336bp exon 1; 
del 834bp exon 2 

Goodman et al. 1998 

SPD 2q31 HOXD13 27-bp duplication Kjaer et al. 2002 

Severe digital 
anomalies 

2q31 HOXD13 Missense R31W Debeer et al. 2002 

SPD 2q31 HOXD9-
HOXD13, EVX2 

117-kb microdeletion Goodman et al. 2002 

3/3’/4 
synpolydactyly  

22q13.3 FBLN1  Debeer et al. 2002 

 

The affected subjects in Family 3 show mesoaxial syndactyly of hands with an 

additional mesoaxial digital element within the web. Additionally, there is postaxial 

synpolydactyly of feet. This phenotype is consistent with synpolydactyly (SPD) or 

syndactyly type II. HOXD13 gene on chromosome 2q31 was a likely candidate for this 
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phenotype in Family 3, but the linkage results excluded this gene locus (LOD score < -

2; Table 4-7). Therefore, a candidate gene approach was conducted, which excluded 

linkage between the synpolydactyly phenotype and the candidates of limb development 

(i.e. SHH, GLI3, BMP4, FORMIN, GREMLIN, FGF4). A genome-wide search showed 

five chromosomes with a LOD score > 1. Finally, the subsequent fine mapping 

established two loci with an evidence of linkage. There is one locus on chromosome 

14q12 (LOD score Zmax 3.40; Table 4-10) with a disease interval of about 23 cM 

segregating with the phenotype (Figure 4-17), and possibly, a second locus on 

chromosome 2q34-q36 (LOD score 2.2; Table 4-9). Interestingly, chromosome 2q34-

q36 harbours a candidate locus for type I syndactyly (SD1) which shows quite a 

different phenotype from the synpolydactyly phenotype segregating in Family 3 (Bosse 

et al. 2000).  

Therefore, the question arises: is there a main locus for the synpolydactyly in Family 3 

on chromosome 14q12 and a modifier locus on chromosome 2q34-q36? The most likely 

candidate locus for the syndactyly phenotype in this family is the 14q12 region, since it 

depicts a highly significant evidence of linkage with a LOD score of 3.40. This score is 

supported by fourteen subjects of the family. The affected subject V-34 does not 

contribute to the score because he does not harbour the 14q12 haplotype (Figure 4-17). 

The most likely explanation is, that the syndactyly phenotype in this subject is not 

linked to chromosome 14q12 and it localizes elsewhere. Therefore, this subject 

represents a phenocopy and gives evidence of further genetic heterogeneity of the 

phenotype. Since the parents of this subject were not genotyped, an autosomal recessive 

nature of his phenotype cannot be excluded.  

The locus on chromosome 2q34-q36 segregates in one loop of three generations in 

Family 3 (i.e. descendents of III-14 and III-18; Fig. 4-14), while in other parts of the 

pedigree the haplotype is segregating in subjects scattered in the pedigree. Therefore the 

segregation of this locus is not straightforward. Moreover, the suggestive linkage is the 

result of only one marker (i.e. D2S343, LOD score 2.2; Table 4-9) and might be due to 

chance alone due to the inbred nature of the pedigree.  

To adequately answer the question if there is a main and a modifier locus it is important 

to revisit the family.  Phenotypes of affected and seemingly normal subjects have to be 

ascertained again together with the haplotype findings. It is also crucial to sample 
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missing subjects, especially to add more normal individuals of the family and to review 

the pedigree structure for undetected inbreeding loops. Alternatively, more families with 

a similar phenotypic presentation might be recruited which could confirm the linkage 

findings in Family 3.  

 



Outlook 

 95

5.12 Outlook  
 

In this study I have localized syndactyly malformations in three Pakistani families to 

three different loci. In two families (Family 1, 3), the candidate interval is rather large 

(~5 and ~23 cM) and contains a number of genes. There are no limb phenotypes or 

known genes of limb development mapped in these regions or in the homologous 

regions in mice. Therefore, in these two families the search for the underlying causative 

genes is not straightforward. An optimal way to proceed might be to sample more 

affected and normal subjects from these families in order to find recombinants, which 

may narrow down the candidate intervals. I am also looking for collaborations with 

international groups interested in limb development, who may have access to families 

with similar limb phenotypes. New families might have individuals with critical 

recombination events and therefore might help to refine the disease interval to get closer 

to the ultimate gene identification. The analysis of the fourth family is under way, and it 

is expected that for this family yet another locus will be identified.  

For the three families I expect the discovery of three unique genes in different molecular 

cascades, since the syndactyly phenotype in each family is specific. In Families 1 and 3, 

the malformation appears at the metacarpal level and disrupts the digit number and 

identity. In mice, the digit number and identity (thumb vs. little finger/big toe vs. little 

toe) is thought to be regulated by Shh from the zone of polarizing activity (ZPA), a 

region of specialized mesenchymal cells next to the posterior boundary of the bud. Digit 

identity depends on the distance from the polarizing region: the most posterior digit (i.e. 

little finger/little toe) forms next to the polarizing region, whereas the most anterior 

digit (i.e. thumb/big toe) forms furthest away. Digit number is related to the width of the 

bud, which depends on the length of the apical ectodermal ridge (AER). Few of the Shh 

target genes have been discovered (Gli3, dHand, Formin, Gremlin and Bmps), and they 

are expressed in the mesenchyme. Indirect targets of Shh include Fgf4, Fgf9 and Fgf17, 

which are expressed in posterior AER. The initial positional information of digit 

identity is subsequently interpreted and refined by other factors (i.e. Hox code) that 

influence the size and number of digits. In Families 1 and 3, the above named genes 

have been excluded, which means that there must be unknown factors responsible for 

digit number and identity during limb development. These unknown factors may be 

directly or indirectly involved in the Shh pathway. Furthermore, in Families 1 and 3 it 

may well be that two different mutated proteins are somehow connected in a similar 
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molecular pathway. These proteins may result in diverse phenotypes when mutated 

alone. On the other hand, mutations in HOXD13 are implicated in synpolydactyly 

phenotype. Since the phenotype in Family 3 is very close to the subjects with mutations 

in HOXD13 it might well be that the underlying gene in Family 3 is a part of HOXD13 

regulation.  

In Family 2 with zygodactyly, I expect the identification of a gene which is responsible 

for digit separation in the final stages of limb development. The basis for spacing the 

digits is to establish digital vs. interdigital areas. The initial divergence between digital 

and interdigital regions in an alternating fashion is achieved by different programmes of 

cell differentiation. In the digital areas chondrogenesis takes place while the interdigital 

areas show apoptosis. Members of the TGF?  superfamily, along with their receptors, 

and intracellular transducers control the choice between digital and interdigital fates in 

the autopod. Apoptosis helps to sculpt the limb by freeing digits. In Family 2, I expect 

that the underlying gene might be regulating an apoptitic mechanism. Since in a 

zygodactyly phenotype hands are never involved the candidate gene is expected to show 

a hind-limb-specific expression pattern.  
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5.13 Summary 
 

Non-syndromic syndactyly is a common, heterogeneous hereditary condition of webbed 

fingers and/or toes. It has a prevalence of 3 per 10,000 births. The malformation can be 

unilateral or bilateral, and the fusion within the web may be cutaneous or bony. 

Phenotypic variability exists not only between affected individuals, but also within 

individuals. Nine different types have been described majority of which show 

autosomal dominant mode of inheritance, except Cenani-Lenz type (type VII) and 

Malik-Percin syndactyly (type IX) which segregate as autosomal recessive entities. 

Syndactyly shows failure to achieve a normal limb development, more precisely, the 

malformation affects the digits number, identity and separation in the last 

developmental cascades. 

In this thesis I report on the clinical and molecular data as well as gene localizations in 

three large Pakistani families with non-syndromic syndactylies. 

 

?? I have categorized these families according to the existing syndactyly 

classification. 

?? I have proposed a clinical protocol which helps to use the existing systematics of 

syndactyly, and on the other hand simplifies the clinical typing of this 

malformation.  

?? For the first time I report on a family with a novel autosomal recessive hand/foot 

malformation with mesoaxial synostotic syndactyly (Family 1). In order to 

classify this type, I have extended the existing syndactyly systematics and have 

proposed a new name for this novel syndactyly: mesoaxial synostotic syndactyly 

with phalangeal reduction (MSSD); type IX syndactyly, Malik-Percin type. This 

term was introduced into the international literature. Through a genome-wide 

study with highly polymorphic microsatellite markers and linkage analysis, I 

have localized this unique autosomal recessive syndactyly phenotype on 

chromosome 17p13.3 with a disease interval of ~5 cM.  

?? By my own experience of phenotyping limb defects in different families and by 

reviewing the international literature I propose that type I syndactyly has at least 

four subtypes. I have established that zygodactyly in Family 2, the most 

common subtype, has a locus on chromosome 3p21.31 with a critical interval of 
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~0.38 Mb. Additionally, I provide molecular evidence of further genetic 

heterogeneity within zygodactyly. Considering the high prevalence of 

zygodactyly in all populations I expect, that diverse loci are responsible for the 

phenotype and therefore I expect more loci. 

?? Since HOXD13 gene has been excluded in Family 3, therefore, I have good 

evidence that syndactyly type II is genetically heterogeneous. A genome-wide 

search has depicted that the phenotype in this family is mapped on chromosome 

14q12 and might have a modifier locus on chromosome 2q34-q36. 

 

The discovery of three novel loci for syndactylies will significantly help in the clinical 

and genetic delineation of this complex limb malformation. It will be of tremendous 

help to the families with limb malformations seeking genetic advice. The ultimate 

elucidation of the underlying genes might increase our understanding of limb 

development, especially in the context of getting insight into the developmental 

cascades of digit number, identity and separation. 
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6 Abbreviations 
 
 
AgNO3   Silver nitrate 

APS    Ammonium peroxodisulfate  

ATP    Adenosintriphosphate  

bp    base pair  

cDNA    complementary DNA  

CEPH    Centre d'Etude du Polymorphisme Humain, France 

cM   centi Morgan 

DMSO   Dimethyl sulfoxide  

DNA    Deoxyribonucleic acid  

dNTP    Deoxynucleotidetriphosphate  

EDTA   Ethylenediaminetetraacetic acid 

Fig   Figure 

for   forward 

g    gram  

HCL   Hydrochloric acid 

HPLC   High Performance Liquid Chromatography 

kb    kilo bases 

LOD   Logarithm of Odds 

M   Molar 

Mb    Mega base pair  

MgCl2   Magnesium chloride 

mRNA   messenger Ribonucleic acid  

MSSD   mesoaxial synostotic syndactyly 

NaCl   Sodium chloride 

Na2CO3  Sodium Carbonate 

ng    nanogram  

OD    Optical density  

Oligos   Oligonucleotides 

OMIM   Online Mendelian Inheritance in Man (online catalogue) 

PCR    Polymerase chain reaction  

pmol    picomol  
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r   reverse 

RNA    Ribonucleic acid  

SDS   Sodium Dodecyl Sulfate 

SSCA   Single-stranded conformational analysis 

Taq    Polymerase isolated from Thermus aquaticus  

TBE    Tris-Borate-EDTA 

TE    Tris-EDTA buffer  

TEMED   Tetramethylethylene diamine  

Tris    Tri-hydroxymethyl aminomethane  

U    Unit  

UV    Ultra violet  

V    Voltage 

ver   version  

w/v    weight/volume  
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