PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGS – AUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat)

> dem Fachbereich 18 –Geowissenschaftender Philipps-Universität Marburg vorgelegt von

> > Dipl.-Geol. Claus Schubert Zwiebelsfelder Weg 9 34369 Hofgeismar

> > > Hofgeismar 2005

Danksagung

Für die Anregungen und fürsorgliche Betreuung dieser Arbeit gilt meinem Diplomund Doktorvater Herrn Prof. Dr. H. Prinz mein besonderer Dank. Dem Dekan des Fachbereichs Geowissenschaften an der Universität Marburg, Herrn Prof. Dr. St. Vogler danke ich für die Übernahme des Korreferats. Herrn Prof. Dr. P. Buck möchte ich für seine guten Ratschläge im Zusammenhang mit der Entstehung dieser Arbeit Dank aussprechen.

Für die wissenschaftliche Unterstützung bei Fragen der Bodendynamik möchte ich insbesondere dem Leiter des Curt-Risch-Instituts, Hannover, Herrn Dipl.-Ing. Gerasch Dank aussprechen.

Ferner möchte ich mich für die fachliche und logistische Unterstützung meiner Arbeit durch Herrn Dipl.-Geol. M. Kimm, Herrn Wittich sowie Frau Dipl.-Geol. Blume bedanken.

Der Initiative und Unterstützung der Firmen Tensar GmbH und Naue Fasertechnik GmbH ist es zu verdanken, dass die Untersuchungen unter praxisnahen Bedingungen stattfinden konnten. Für die Bereitstellung einer ausreichenden Mange Geokunststoffe wird Ihnen gedankt.

Dank gilt auch den beiden Erd- und Tiefbaufirmen Wagner GmbH, Hofgeismar, und Schaperdot GmbH, Beverungen, für die bauübliche Herstellung der Testfelder.

Ein ganz besonderes Dankeschön möchte ich abschließend meinem privaten Umfeld, insbesondere meiner Familie, für das aufgebrachte Verständnis während der Entstehung dieser Arbeit aussprechen und all jenen danken, die mit Rat und Tat zum erfolgreichen Abschluss beigetragen haben.

Zusammenfassung

Der Einsatz von Geokunststoffen, d.h. Geogittern und Geovliesen im Erd- und Straßenbau ist heute Stand der Technik. Die verschiedenen Materialien werden beschrieben. Sie werden i.W. zum Bewehren, Trennen oder Filtern verwendet.

Der hohe Qualitätsstandard und die Bemessung des Materials basieren auf praxisnahen Modellversuchen in den vergangenen Jahrzehnten. Die Modellversuche und ihre Ergebnisse werden ausführlich beschrieben. Sie haben zu dem Ergebnis geführt, dass durch die Einlage von Geokunststoffen, vor allem von Geogittern, deutliche Verbesserungen hinsichtlich der Tragfähigkeit von Schottertragschichten erzielt werden können. Es hat sich gezeigt, dass sich durch eine Geogitterbewehrung der Verformungsmechanismus des Tragschichtsystems dahingehend ändert, dass eine Verringerung der Tragschichtstärke möglich wird, was zu einer Einsparung von Schottermaterial führen kann. Diese Verbesserungen basieren vorrangig auf der Membrantheorie und dem Gewölbemodell. Etabliert hat sich in dieser Hinsicht die so genannte "Ein-Drittel-Regel", wonach bei günstigen Bedingungen bis zu einem Drittel der Tragschichtstärke nach Einlage einer Geogitterbewehrung eingespart werden kann.

Die bisherigen Modellversuche haben sich praktisch auf statische und zyklische Beanspruchung beschränkt. Aus einer Aufgabe der ingenieurgeologischen Praxis ergab sich die Fragestellung, ob und in welcher Form sich durch die Einlage von Kunststoffen die Ausbreitung von Erschütterungswirkungen beeinflussen lässt. Um dieser Frage auf wissenschaftlicher Basis nachzugehen, wurden auf eigene Veranlassung unterschiedliche Prüffelder mit verschiedenem Unterbau und ohne bzw. mit unterschiedlichen Geokunststoffeinlagen hergestellt und entsprechende Erschütterungen vorgenommen, bei denen festgestellt werden sollte, auf welche Entfernungen Erschütterungen wirken und ob bzw. wie durch die Einlage von Geokunststoffen ein Immissionsabbau zu erreichen ist.

Die durchgeführten großflächigen Feldversuche

auf unterschiedlichen Untergrundverhältnissen

Versuch Liebenau: Lehmuntergrund weich bis steif Versuch Beverungen: Kiesuntergrund, dicht Versuch Cuxhaven: Klei, weich

und verschiedenen zusammengesetzten Unterbausystemen

Versuch Liebenau: Schotter 0/100, gebrochen, Kalkstein Versuch Beverungen: Kies 0/45, gerundet, Flusskies Versuch Cuxhaven: Kies 0/32, gerundet

sowie unterschiedlichen Geokunststoffeinlagen an der Basis des Unterbaus

Versuch Liebenau/Beverungen: monolithisch extrudiertes Geogitter Tensar SS30, Geovlies Secutex, Naue GmbH

Versuch Cuxhaven: gelegtes Geogitter

und auch verschiedenen Schwingungserregern

haben zusammenfassend keinen merkbaren Einfluss auf das Schwingungsverhalten im Untergrund und keinerlei Dämpfungswirkung des auf der Oberfläche des Unterbaus erzeugten Schwingungsanregung in der Frequenz 10-50 Hz ergeben.

Abstract

Use of geosynthetics in unbound layers of roads and trafficked areas indicates significant improvement of system properties as documented by intense research.

Up to now shielding effects of vibrations in a geosynthetic reinforced system have not been taken under consideration. Hence the amplitude decrease on a half-space surface was investigated.

Considerable increase of the load bearing capacity result from reinforcement of unbound (granular) layers in a static system. In contrast the use of geosynthetics shows no appreciable impact on the shielding of vibrations within test sites. This even holds true for juxtaposed areas of natural soil.

The non-reinforced granular layer itself induces a reduction of oscillatory movement, as evidenced by a leap in amplitude impedance along the margin of test sites. Moreover translateral movements within different test sites are not significantly influenced by the type of geosysthetic employed. The natural frequency of the system construction/subsurface (i. e. granular layer/soil) remains unchanged.

Physical properties of the unbound layer reinforced by geosynthetics were initially expected to approach a sheet of high bending strength. If this was to be maintained, the presumed difference in shielding behaviour is masked by reflections along the geosysthetic interface.

Future research is expected to further illuminate the dynamic interaction within geosynthetic reinforced, unbound layer systems. Consequently, parameters have to be systematically changed. First of all variations in type an frequency of both vibration and construction should result in variable shielding effects. Standardised means of calculation are the ultimate aim to define exactly the approach to reinforced unbound layer systems.

Inhaltsverzeichnis:

Danksagung2						
Zusammenfassung						
Absti	Abstract 4					
1 Ziel der Arbeit						
2	Δhric	es der historischen Entwicklung	Q			
2.			0			
3.	Geor		9			
	3.1	Aligemeines	9			
	3.2	Geokunststoffprodukte und ihre Anwendungen	10			
		3.2.1 Geolexilleri	11			
		3212 Gaweba	11 12			
		3213 Maschenware	יב 13			
		3214 Anwendung und Auswahl von Vliesstoffen Maschenware und Geweben	14			
		3.2.2 Geogitter	15			
		3.2.2.1 Gewebte Geogitter	16			
		3.2.2.2 Gestreckte Geogitter	16			
		3.2.2.3 Gelegte Geogitter	16			
		3.2.2.4 Geogitter aus Bändern und stabförmigen Elementen	17			
		3.2.3 Verbundstoffe	17			
		3.2.4 Dichtungsbahnen	18			
	3.3 W	irkungsweise von Geokunststoffen für die Anwendung als Tragschichtbewehrung	18			
		3.3.1 Allgemeines	18			
		3.3.2 Membrantheorie	18			
		3.3.3 Gewölbemodell	20			
4.	Bem	essungsgrundlage zur Bewertung der Tragfähigkeit des Bodens -				
	Kenr	ngrößen	22			
	4.1	Ällgemeines	22			
	4.2	Statischer Verformungsmodul (Ev2-Wert)	22			
	4.3	California Bearing Ratio (CBR-Wert)	23			
5.	Forse	chungs- und Entwicklungsstand für die Anwendung zur Verbesserung der	٢			
	Trad	fähigkeit durch den Einsatz von Geokunststoffen	2			
	51	Vorläufige Bemessungsansätze	24			
	5.2	Bisherige Untersuchungen formstabiler, knotensteifer Geogitter.	25			
	0.2	5.2.1 Statische Lastversuche	25			
		5.2.1.1 Versuche der Universität Oxford Anfang der 1980er Jahre bezüglich der				
		Verbesserung des Lastaufnahmevermögens und der Lastausbreitung	25			
		5.2.1.2 Modellversuch zur Optimierung der Geogitteranordnung	27			
		5.2.1.3 Großmaßstäbliche Untersuchungen durch die Federal Highway Administration	n			
		FHWA – Bestätigung der Untersuchungen von GUIDO ET AL. (1987)	29			
		5.2.2 Zyklische Lastversuche	30			
		5.2.2.1 Dynamische Lastversuche – Optimierung der Tragfähigkeit des bewehrten				
		Untergrundes	30			
		5.2.3 Versuche mit rollendem Verkehr	32			
		5.2.3.1 TRRL Tragfähigkeitsuntersuchungen 1988/1989	32			
		5.2.3.2 Vergleich von verschiedenen Geogitterarten	34			
		5.2.3.3 Vergleichsuntersuchungen der Universität von Newcastle	35			
		5.2.3.4 Untersuchung der Wirkungsweise bewehrter Tragschichten hinsichtlich der				
		Knotensteifigkeit von Geogittern	36			
		5.2.4 Andere Untersuchungen	37			
		5.2.4.1 I est zur Bestimmung der Knotensteifigkeit	37			
		5.2.4.2 Plattendruckversuche – Untersuchung des E_{v2} -Wertes des Untergrundes	38			
		5.2.4.3 Plattendruckversuche, dargelegt von SEILER (1995) – Untersuchung des E_{v2}				
		vvertes des Untergrundes	39			
		5.2.4.4 Erataliversuche – Beweis des Verzahnungsettektes	40			

		5.2.4.5 TRRL-Untersuchung 2002 (WATTS ET AL.)	42			
	5.3	Zusammenfassung und Ausblick für die eigenen Versuche	44			
6.	Stan	dardisierte Vorgaben und Anforderungskriterien für den Straßenbau in				
	Deut	Deutschland				
7	Auswirkungen baulicher Tätigkeit					
Crundlagan dar Radandynamik						
0.		49				
	0.1	Ausbreitung der Schwingungen auf der Halbraumeherfläche	49			
	0.Z 8 3	Auswirkungen von Schwingungsimmissionen und Richtwerte				
	84	Entwicklung und Normung der Schwingungsmessung				
a	Fold	Enduntoreuchungen zum Abschirmungeverheiten unbewehrter / howehrter				
э.	Troo	untersuchungen zum Abschnnungsvernalten unbewennter / bewennter	50			
	Trag	Schichlen III Elu- und Straisenbau	59			
	9.1	Drüffelder om Standert Liebeneu" und Beverungen"				
	9.2.	Pruneider am Standort "Liebenau und "Deverungen				
		S.2.1 Geographische und geologische Emotundig des Fruheides_"Liebenau , Kiels	61			
		9.2.2 Frmittlung der relevanten Bodenkennwerte	01			
		9.2.3 Versuchsdurchführung	-0 88			
		9.2.4 Erläuterungen zu den oszilloskopischen Darstellungen in den Anlagen.	76			
		9.2.5 Auswertung	77			
	9.3.	Geographische und geologische Einordnung des Prüffeldes "Beverungen",				
		Kreis Höxter	80			
		9.3.1 Ermittlung der relevanten Bodenkennwerte	83			
		9.3.2 Versuchsdurchführung	86			
		9.3.3 Auswertung	95			
10.	Ergebnisvergleich der beiden Feldversuche					
11.	Impu	Ilsanregung am Standort Beverungen als Vergleich	99			
	11.1	Wahl der Schwingungsaufnehmer und Speicherung der Messdaten	99			
	11.2	Anordnung der Messpunkte	99			
	11.3	Messablauf	100			
	11.4	Auswertung der Messungen	101			
		11.4.1 Periodische Erregung	101			
		11.4.2 Impulserregung	103			
	11.5	Berechnung der resultierenden Schwinggeschwindigkeitsamplituden	114			
		11.5.1 Messpunkte außerhalb des Versuchsfeldes	114			
		11.5.2 Messpunkte auf den Versuchsfeldern	114			
	11.6	Berechnung der resultierenden Schwinggeschwindigkeitsamplituden bei fehlenden	115			
		Messwerten.	115			
		11.6.1 Messpunkte ausernald des Pruffeldes	115			
	11 7	Interpretation der Massargebnisse	110			
10	Drov	interpretation der Messergebrisse	110			
12.	Prax		110			
	12.1	Veraniassung	118			
	12.2	Mossy orboroitung und nunktanordnung	101			
	12.3	Messdurchführung	121			
	12.4	Auswertung	124			
12	Dick	ussion der Frachnisse und Aushlick	12/			
10.	13. Diskussion dei Liyebilisse und Ausbilck					
Liter	Literatur					
Karten						

1. Ziel der Arbeit

Beim Einsatz von Geokunststoffen im Baugewerbe steht die Verbesserung von Filter-, Trenn- und Bewehrungseigenschaften im Vordergrund. Aufgrund vielfacher theoretischer und praktischer Versuche, Forschungen und Anwendungen, ist eine Wirkungsverbesserung durch die Kombination von Geokunststoff und Baugrund heute Stand der Technik. Bisherige Untersuchungen zur Wirkungsweise von Geokunststoffen zur Bodenverbesserung berücksichtigen jedoch zumeist nur die Auswirkungen statischer Belastungen auf die miteinander kombinierten Systemkomponenten.

Eine Baumaßnahme im norddeutschen Rübke in den Jahren 1996-1998 gab Anlass zu Überlegungen, wie eigentlich dynamische Einflüsse auf ein System aus Boden und "geokunststoffbewehrter Erde" wirken. In einigen Straßenabschnitten wurden für den Fahrbahnunterbau sog. Geogitter unter der Tragschicht eingebaut, um die Tragfähigkeit des weichen Untergrunds zu verbessern. Vormals auftretende Gebäudeerschütterungen bei Schwerlastverkehr seien nach Aussagen von Anwohnern nach der Straßensanierung deutlich zurückgegangen. Daher stellte sich die Frage, welchen Anteil das eingebaute Geogitter auf die zu vermutende Verringerung des Schwingungseinflusses hatte.

Die gebäuderelevanten Schwingungen liegen allgemein in Bereichen zwischen 10 bis 20 Hz. Zur modellhaften Untersuchung von Schwingungsausbreitungen innerhalb und außerhalb einer ungebundenen Schottertragschicht wurden daher Testfelder mit unterschiedlichem Aufbau angelegt und mittels bauüblicher Verdichtungsgeräte überfahren. Die dabei auftretenden Schwingungen wurden mit einem Erschütterungsmessgerät aufgezeichnet.

Mit Blickrichtung auf die Fragestellung wird in der vorliegenden Arbeit zunächst auf die Entwicklungen und Forschungen im Bereich der Geokunststoffe eingegangen. Es werden zudem die aktuellen Prüfmethoden, Prüfvorschriften und Anforderungen für den Untergrund in Verbindung mit Tragschichten und Geokunststoffen bei Baumaßnahmen erläutert.

Anschließend werden die örtlichen geologischen Gegebenheiten und der Aufbau der beiden Prüffelder in Liebenau und Beverungen dargestellt. Die darauf folgenden Kapitel beinhalten die physikalischen Grundlagen von Schwingungsmessungen und beschreiben den Messvorgang vor Ort. Abschließend werden die Ergebnisse unter der Fragestellung der Schwingungsausbreitung in den unterschiedlichen Tragschicht-Geokunststoff-Kombinationen unter Berücksichtigung der verschiedenen Böden zusammengestellt und ausgewertet.

2. Abriss der historischen Entwicklung

Das Bestreben, mit Hilfe von unterschiedlichen Baustoffen festigende Verbundkonstruktionen zu erhalten, reicht bis in die ältesten Kulturen zurück und ist bis in die Altsteinzeit nachweisbar. Schon in der Frühzeit wurde versucht, durch die Kombination von Schüttstoffen, in die Pflanzenzweige eingearbeitet wurden, stabile Matten herzustellen. Mit Hilfe von derart verfestigten Konstruktionen war es möglich, menschlichen Behausungen Schutz gegen klimatische Einflüsse zu liefern.

Auch aus dem Bereich des Erd- und Wasserbaus sind Jahrtausende alte Überlieferungen bekannt, wonach mineralische Dichtmittel und Asphalt eingesetzt wurden, um durch Kombination verschiedener Baustoffe dem Ausgangsmaterial zusätzliche positive Wirkungseigenschaften zu verleihen. HENNE (1995) schreibt "Schon die alten Babylonier dichteten vor 4000 Jahren mit Asphalt, andere Naturvölker mit Ton und Lehm oder Zusätzen davon".

Durch den Einsatz von vielfältigen Naturstoffen wurde eine Verbesserung der Festigkeit des Untergrundes in weichen und kompressiblen Böden erreicht. So wurden je nach Region Gehölze aus Weidengeflecht, Bambus oder auch Sisal sowie Tierfelle zur Stabilisierung eingesetzt. Diese wurden lagenweise aufgeschichtet und jeweils mit Bodenmaterial überlagert.

Große Bedeutung erlangte zu Anfang des 20. Jahrhundert die Arbeit des französische Gärtners Monnier. Dieser kam auf die Idee, dem lange zuvor bekannten Baustoff "Beton" eine Verfestigung zu verschaffen, die es gestattete, dem Beton höhere Zugfestigkeiten zuzuordnen. Er legte in die Betonschüttung Eisenstäbe ein und schuf so die Grundlage für den heutigen Stahlbetonbau.

In den 1960er Jahren erfand Henri Vidal in Frankreich das System "Bewehrte Erde" und entwickelte es zur Praxisreife, wobei er Monniers "Zugfestigkeitserhöhung" übernahm. Es handelt sich dabei um ein Verbundsystem aus Boden, Bewehrungsbändern und einer Außenhaut, das ursprünglich vorzugsweise bei Aufschüttungen entlang von Geländesprüngen eingesetzt wurde. Er hatte damit das Potential für vielfältige Einsatzmöglichkeiten bei unterschiedlichen Problemstellungen geschaffen.

Mit der Entwicklung von Kunststoffprodukten für industrielle Bereiche ging analog hierzu auch im bautechnischen Geschehen der Einsatz entsprechender Produkte einher. Die Verwendung von Geokunststoffen z.B. in Form von Geotextilien und flächenhaften Dichtungsbahnen im Erd- und Wasserbau beginnt etwa ab Ende der 1950er Jahre. Bis heute sind erhebliche Entwicklungsfortschritte zu verzeichnen, und so finden Geokunststoffe inzwischen in den verschiedensten Sparten des Erd-, Grund- und Tiefbaus Anwendung. Zu nennen sind hier insbesondere der Verkehrswege- und Deponiebau, der Damm- und Böschungsbau sowie der Wasserverkehrsbau.

Insbesondere die letzten Jahrzehnte haben dazu geführt, dass mit der vermehrten Verwendung von Kunststoffen eine einsetzende Optimierung der Systemeigenschaften erfolgte. Im Verbund mit einem als Baustoff eingesetzten Schüttmaterial ist im Erd- und Straßenbau nunmehr eine definierbare Erhöhung der Tragfähigkeitseigenschaften des Untergrundes möglich. Insbesondere eine Erhöhung der Zugfestigkeit und Konstruktionsbiegesteifigkeit geht hiermit einher.

Es zeichnet sich ab, dass in Zukunft die Qualifizierungskriterien in Form technischer Regeln in ihrer empirischen Ausgereiftheit weiterentwickelt und verbindlich eingeführt werden.

Ein Haupteinsatzgebiet ist heute die Optimierung erdstatischer Kennwerte durch verbundverlegte geotextile Bahnen. Im Straßenbau liegen allerdings zur Zeit noch keine abgesicherten theoretischen Grundlagen zur Bestimmung der Verbesserung der Tragfähigkeit durch den Einsatz von Geokunststoffen vor. Dies gilt insbesonders im Hinblick auf schwingungsabhängige Fragestellungen. In Ermangelung modellhafter Theorien werden daher Bemessungen nur auf der Grundlage von empirisch entwickelten Modellen durchgeführt. Im Rahmen der eigenen Untersuchungen soll nun herausgestellt werden, ob dynamische Wirkungsunterschiede durch geokunststoffbewehrte Aufbauten im Erd- und Straßenbau bestehen.

Die bisherigen Untersuchungen zielen vornehmlich auf die statischen Wirkungseigenschaften eines mit Geokunststoffen verbesserten Systems bzw. auf die materialimmanenten Kennwerte ab. Dynamische Einwirkungen wurden bisher nicht untersucht. So liegen nach den durchgeführten Literaturrecherchen keine Erfahrungen über das Dämpfungsverhalten einer Geokunststoffeinlage im ungebundenen Tragschichtverband vor. Erst durch die eingangs erwähnten Erfahrungen aus der Praxis ergab sich die Vermutung, dass nach dem Bau einer mit Geogittern hergestellten Straßenunterbaukonstruktion das Eigenschwingungsverhalten der unmittelbar an die sanierte Straße angrenzenden Wohnhäuser deutlich verbessert worden sein soll. Diese Beobachtung bot den Anlass zu Untersuchungen über das Schwingungsverhalten von geokunststoffbewehrten und unbewehrten Schottertragschichten. Ziel dieser Untersuchung ist nunmehr festzustellen, ob durch den Einbau von Geokunststoffen in der mineralischen Tragschicht tatsächlich eine Verbesserung des Schwingungsabschirmungsverhaltens erreicht werden kann.

Zu diesem Zweck werden nachfolgend zunächst die unterschiedlichen zur Zeit auf dem Markt befindlichen Geokunststoffe mit Schwerpunkt der Produkte zur Bewehrung ungebundener mineralischer Tragschichten, deren Wirkungsweise sowie der derzeitige Stand der Forschung und Entwicklung vorgestellt.

Anschließend werden die eigenen Erfahrungen zur Untersuchung des Schwingungsverhaltens von bewehrten und unbewehrten Tragschichten erörtert.

3. Geokunststoffe

3.1 Allgemeines

Geokunststoffe werden für die folgenden Anwendungen im Erd- und Tiefbau sowie im Straßenbau eingesetzt:

→ **Trennen** von zwei aneinandergrenzenden Bodenkörpern

- → **Erosionsschutz** von natürlichen und künstlichen Böschungen
- → **Filtern** eines zu entwässernden Bodens
- → Dränieren eines wasserhaltenden Bodens zur Vermeidung der Ausschwemmung von Bodenfeinstteilchen
- → **Schützen** von Abdichtungen gegen Beschädigung (z.B. Dichtungsfolien)
- → **Abdichten** gegen Wasser oder schadstoffhaltige Flüssigkeiten
- → Bewehren von: Erdkörpern bei übersteilen Böschungen und Stützkonstruktionen Dammaufstandsflächen Ungebundenen Tragschichten Asphaltdeckschichten

Bei Verwendung von Geokunststoffen kommt es häufig zu einer Überschneidung der verschiedenen Anwendungsgebiete, vgl. Abb. 1.

Abbildung 1: Anwendungsbereiche von Geogittern und Geotextilien

In dieser Arbeit soll zunächst auf die bewehrenden Eigenschaften von Geokunststoffen eingegangen werden.

3.2 Geokunststoffprodukte und ihre Anwendungen

Aufgrund der verschiedenen Anforderungen an die Produkte für die oben genannten Einsatzgebiete existieren zahlreiche unterschiedliche Produkte mit spezifischen mechanischen und hydraulischen Eigenschaften. Sie werden wie folgt untergliedert:

- Geotextilien
 - Vliesstoffe
 - Gewebe
 - Maschenware
- Geogitter
 - Gewebte Geogitter
 - Gestreckte Geogitter
 - Gelegte Geogitter
 - Geogitter aus Bändern und stabförmigen Elementen
- Verbundstoffe
- Dichtungsbahnen

3.2.1 Geotextilien

3.2.1.1 Vliesstoffe

Vliesstoffe sind flexible Flächengebilde, die durch Verfestigung von Faservliesen hergestellt sind (DIN 60000 und DIN 61210); diese bestehen aus flächenhaft aufeinander abgelegten ungeordneten Spinnfasern oder Filamenten. Weiterhin versteht man unter Vliesstoffen Geotextile in der Form einer hergestellten Bahn, eines Vlieses oder einer Faserschicht von ausgerichteten oder wirr gelegten Fasern, die durch Reibung und / oder Kohäsion und / oder Adhäsion miteinander verbunden sind (DIN ISO 10318, SAATHOFF UND ZITSCHER 2001).

Die ausgerichteten oder wirr gelegten Fasern oder Filamente werden durch Vernadelung (Abbildung 2) oder thermisch bzw. adhäsiv (Abbildung 3) miteinander verbunden.

Vliesstoffe haben hohe Dehnungseigenschaften. Sie besitzen eine gute Anpassungsfähigkeit an unebenen Oberflächen und haben bei Schädigung des Vliesstoffes die allerdings beschränkte Fähigkeit einer Kraftumleitung der Fasern um die Schadstelle herum.

Abbildung 2: Mechanisch verfestigter Vliesstoff

Abbildung 3: Thermisch verfestigter Vliesstoff

3.2.1.2 Gewebe

Bei Geweben handelt es sich gemäß der Definition nach DIN 60000 und DIN ISO 10318 um Flächengebilde, die mittels Fachbildung aus sich rechtwinkelig kreuzenden Fäden zweier Fadensysteme -Kette und Schuss- hergestellt sind. Weiterhin ist ein Gewebe ein Geotextil, das durch in der Regel rechtwinkelige Verkreuzung von zwei oder mehr Systemen aus Fäden, Fasern, Filamenten, Bändchen oder anderen Elementen hergestellt wird (SAATHOFF UND ZITSCHER 2001).

Die Kettfäden verlaufen in der Längsrichtung, die Schussfäden in der Querrichtung. Die bekannteste Art, welche die mechanischen Eigenschaften beeinflussen kann, ist die Leinenbindung.

Die Abbildung 4 zeigt ein Folienbändchengewebe, welches mit den Spleißgarnen zu den Geweben zählt. Sie unterscheiden sich durch die Art der Garne und das Webmuster und bestehen aus schmalen Folienstreifen, die zu Streifen oder Garnen verdrillt bzw. verwebt werden. Hingegen weisen Multifilamentgewebe Bündel paralleler Fasern auf (Abbildung 5).

PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGSAUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

Abbildung 4: Folienbändchengewebe

Abbildung 5: Multifilamentgewebe

3.2.1.3 Maschenware

Der Begriff Maschenware ist ein Oberbegriff für Flächengebilde, die aus einem oder mehreren Fadensystemen bestehen, die schleifenförmig miteinander verbunden (vermascht) sind oder aus einem oder mehreren geradlinig verlaufenden Fadensystemen bestehen und durch ein weiteres Fadensystem miteinander verbunden werden (Fadenlagennähgewirke, Kettenwirkware, Raschelware). Weitere Definitionen beziehen sich auf gestrickte und gewirkte Geotextile, die durch Vermaschen von einem oder mehreren Garnen, Fasern, Filamenten oder anderen Elementen hergestellt werden (DIN ISO 10318), (SAATHOFF UND ZITSCHER 2001).

In Abbildung 6 ist eine Maschenstruktur dargestellt, die durchgehende Multifilamentgarnbündel enthält.

Abbildung 6: Maschenware

Gewebe und Maschenware können mit sehr hohen Zugfestigkeiten produziert werden. Auf Grund ihrer zusätzlichen Filtereigenschaften werden sie für Dammbewehrungen eingesetzt, wenn hohe Setzungen zu erwarten sind oder zur Überbrückung von potentiellen Erdfällen.

3.2.1.4 <u>Anwendung und Auswahl von Vliesstoffen, Maschenware und</u> <u>Geweben</u>

Gemäß der Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV 1994) werden Vliesstoffe, Maschenware und Gewebe in Verbindung mit einer Schüttung eingesetzt, wenn eine Trennung zwischen Untergrund und Schüttmaterial erforderlich wird. Dies ist der Fall, wenn von einer fehlenden Filterstabilität zwischen übereinanderliegenden Schichten ausgegangen werden muss. Gleichermaßen ist das Einlegen einer Trennschicht sinnvoll, wenn die Gefahr einer Vermischung und/oder des Durchbrechens bei einer Schüttung auf wenig tragfähigem Untergrund besteht.

Mechanisch verfestigte Vliesstoffe weisen nach FGSV (1994) eine tragfähigkeitserhaltende und in begrenztem Umfang auch eine tragfähigkeitserhöhende Wirkung auf. Wesentlicher Gesichtspunkt ist dabei die Verhinderung des Einwanderns von Feinstkornbestandteilen in das meist kiesige Material einer Schüttung. Hierdurch wird die Herabsetzung des Reibungswinkels des Schüttmaterials unterbunden. Die tragfähigkeitserhöhende Wirkung ergibt sich aus der Fähigkeit des Vliesstoffes, die Schichtgrenze zum weichen Untergrund zu stabilisieren, da Feinstkornbestandteile in dem Vliesstoff festgehalten werden und dieser damit als Verbundwerkstoff Boden/Vliesstoff an der Schichtgrenze wirkt (BBG 2004).

Zur Auswahl von geeigneten Geotextilien für spezielle praktische Anwendungssituationen werden Hinweise in einem Merkblatt des FGSV (1994) Hinweise gegeben. Zur Einordnung in definierte Gruppen wurden einzelne Produkte auf maßgebliche Eigenschaften wie Zugfestigkeit, Filterwirksamkeit, Reibung, etc. geprüft. Die Gruppen werden nach Geotextilrobustheitsklassen (GRK) unterteilt und sind im Fall von Vliesstoffen durch die Stempeldurchdrückkraft (kN) und Masse pro Flächeneinheit (g/m²) charakterisiert. Die Stempeldurchdrückkraft erhält man mit Hilfe des Stempeldurchdrückversuches nach EN ISO 12236. An Geovliesen wird die Kraft ermittelt, bei beim Durchdrücken eines stumpfen Stempels durch die Messprobe auftritt. Hierbei werden die Durchdrückkraft in kN, der Durchdrückweg in mm und, wenn gefordert, auch die Eindrückkraft bei bestimmten Eindrückwegen bestimmt.

Bei Produkten aus Folienbändchen oder Multifilamentgeweben wird nicht die Stempeldurchdrückkraft, sondern die Höchstzugkraft in kN/m als Einordnung in die GRK herangezogen.

In Tabelle 1 ist die Einordnung in Geotextilrobustheitsklassen bei Vliesstoffen aufgeführt (FGSV 1994).

Geotextilrobustheitsklasse (GRK)	Stempeldurchdrückkraft (x*-s)	Masse pro Flächenein- heit (x*)		
1	[≥] 0,5 kN	[≿] 80 g/m²		
2	[≥] 1,0 kN	[≥] 100 g/m²		
3	[≥] 1,5 kN	[≥] 150 g/m²		
4	[≥] 2,5 kN	[≥] 250 g/m²		
5	[≥] 3,5 kN	[≥] 300 g/m²		
Für Vliesstoffe wird der Mittelwert der Stempeldurchdrückkraft (x*) minus Standard- abweichung (s) verwendet.				

Tabelle 1: Geotextilrobustheitsklassen für Vliesstoffe nach FGSV 1994

MOSER UND BREYMANN (2001) versuchten alternativ zum Stempeldurchdrückversuch das Verhalten von Geotextilien bei dynamischer Beanspruchung zu erforschen. Dazu wurde der Pyramidendurchdruckversuch nach RVS 8S.01.2 auf verschiedene Produkte angewendet. Hierbei wird eine pyramidenförmige Prüfspitze gemäß ÖNORM S 2076 (1993) sowohl statisch als auch - unter zyklischer Auf- und Abbewegung - dynamisch durch das Geotextil gedrückt. Die dadurch ermittelte Pyramidendurchdruckkraft gilt als Beurteilungskriterium in den österreichischen Technischen Vertragsbedingungen der RVS 8S.01.2 (1997) für die Anwendung von Geotextilien im Unterbau.

Anmerkung: Für die eigenen Versuche wurde aus dem Feld der Geotextilien ein Vliesstoff der Robustheitsklasse GRK 3 verwendet.

3.2.2 Geogitter

Geogitter sind regelmäßige, flache Gitter mit fest verbundenen Längs- und Querelementen, deren Öffnungen größer als die Fäden bzw. Streben sind. Die Verbindung erfolgt beispielsweise durch Extrudieren, Verweben, Kettenwirken oder Verschweißen (RÜEGGER UND HUFENUS 2003).

Je nach Herstellung weisen Geogitter entweder gleiche Zugfestigkeiten in Längsund Querrichtung (biaxiale Geogitter) oder eine deutlich höhere Zugfestigkeit in einer Richtung (uniaxiale Geogitter) auf.

Geogitter werden als Bewehrungselement von Erdkörpern eingesetzt. Wegen der Vielzahl von Produkten ergibt sich ein großes Anwendungsgebiet: Sie können zum

Bewehren von Böschungen und Stützkonstruktionen, zur Dammbewehrung, als Bewehrung im ungebundenen Straßenbau sowie zur Asphaltbewehrung und zum Erosionsschutz eingesetzt werden.

3.2.2.1 Gewebte Geogitter

Im Merkblatt für den "Straßenbau auf wenig tragfähigem Untergrund" (FGSV 1994) werden gewebte Geogitter als Gewebe mit Öffnungen über 10 mm bezeichnet (Abbildung 7).

Abbildung 7: Gewebtes Geogitter

3.2.2.2 Gestreckte Geogitter

Gestreckte Geogitter (Abbildung 8) werden aus gelochten Kunststoffbahnen hergestellt, die in einer oder in beiden Richtungen gestreckt werden. Durch den Streckvorgang werden die Polymermoleküle in Streckrichtung orientiert und dadurch die Dehnung erniedrigt (FGSV 1994).

Für die weiteren Untersuchungen wurde aus der Produktgruppe der Geogitter ein Vertreter der gestreckten Geogitter herangezogen.

Abbildung 8: Gestrecktes Geogitter

3.2.2.3 Gelegte Geogitter

Bei gelegten Geogittern werden, wie auf Abb. 9 zu sehen, Bänder aus gewebten oder gewirkten Streifen an den Kreuzungsstellen z.B. durch Verschweissen, Verweben oder Kettenwirken miteinander verbunden (FGSV 1994).

Abbildung 9: Gelegtes Geogitter

3.2.2.4 Geogitter aus Bändern und stabförmigen Elementen

Geogitter aus Bändern und stabförmigen Elementen entstehen aus gebündelt verlaufenden Garnlagen, die von einem Kunststoffmantel umhüllt werden (WILMERS 1994 und FGSV 1994).

3.2.3 Verbundstoffe

Verbundstoffe werden definiert als mehrschichtige Geotextilien aus flächenhaft verbundenen unterschiedlichen Schichten, die sich in ihrer Struktur voneinander unterscheiden. Die Einzelkomponenten können Gewebe und Vliesstoffe oder andere Flächengebilde mit Sonderkonstruktionen sein. Es handelt sich um ein zusammengesetztes Material, das mindestens aus einem Geotextil oder einem geotextilverwandten Produkt innerhalb der Komponenten besteht (DIN EN ISO 10318, SAATHOFF UND ZITSCHER 2001). Bei Verbundstoffen wird durch die Verbindung bzw. die Verknüpfung mehrerer Geokunststoffe die Verbesserung einer oder mehrerer Eigenschaften erreicht. Als Beispiel sei in Abb. 10 eine Kombination porenmäßig aufeinander abgestimmter Vliese oder einer Sickerschicht aus einem Grobfasertextil genannt, das durch beiderseitig aufgebrachte Vliese fixiert und vor Einspülung von feinkörnigen Bodenbestandteilen geschützt wird. Derartig aufgebaute Verbundstoffe können gegenüber herkömmlichen mineralischen Filtermedien bei Filter- und Dränschichten einen höheren Wirkungsgrad erzielen.

Abbildung 10: Beispiele für Verbundstoffe

3.2.4 Dichtungsbahnen

Bei Dichtungsbahnen wird allgemein unterschieden zwischen Hochpolymerbahnen und mit Kunststoffeinlagen verstärkten Bitumenbahnen, wobei sich Kunststoffdichtungsbahnen wiederum in amorphe oder teilkristalline Thermoplaste und Elastomere aufgliedern. Wird beispielsweise Polyethylen mit Bitumen vermischt, entstehen Mischpolymerisate.

3.3 Wirkungsweise von Geokunststoffen für die Anwendung als Tragschichtbewehrung

3.3.1 Allgemeines

Da sich die Untersuchungen dieser Arbeit auf die Verbesserungen der Tragfähigkeit von Schottertragschichten unter Einsatz von biegesteifen und biegeschlaffen Geokunststoffen beziehen, werden die nachfolgenden Betrachtungen über die Wirkungsweise von Geokunststoffen auf diesen Anwendungsbereich eingegrenzt. Wie oben dargelegt, existieren jedoch unterschiedliche Produkte, durch die eine Verbesserung der Tragfähigkeit erreicht werden kann. Durch die beschriebenen Materialeigenschaften ergeben sich deutliche Unterschiede in der Wirkungsweise dieser Geokunststoffprodukte. Monolithische, extrudierte sowie gelegte Geogitter erreichen eine Tragfähigkeitserhöhung laut Herstellerangaben mehr oder weniger durch Gewölbewirkung.

Die übrigen Produkte erzielen ihre Wirkung durch die so genannte Membrantheorie. Beide Theorien werden nachfolgend erläutert; die Untersuchungen, die zur Erklärung beider Wirkungsweisen geführt haben, sind detailliert in Kapitel 5 dargelegt.

3.3.2 Membrantheorie

Die bewehrende Wirkung von Geokunststoffen auf Grundlage der Membrantheorie wird durch Reibung des Schüttmaterials mit dem Geokunststoff erzielt (FGSV 1988). Hierdurch wird eine Art "biegeschlaffe Bewehrung" erzeugt.

Setzungen des Untergrundes führen zu einer Verformung und dadurch zu einer Initialdehnung des Geokunststoffes, durch welche die Zugkraft mobilisiert wird. Gemäß FGSV (1988) werden hohe Zugkräfte sowie eine zu bestimmende Verankerungslänge, über die die entstehenden Kräfte über Reibung abgetragen werden, gefordert (s. Abbildung 11).

In die Bemessung zur Bestimmung der Gebrauchszugkraft gehen die folgenden Parameter ein:

- § Erforderliche Tragfähigkeit der Schicht nach ZTVE-StB (FGSV 1997); ZTVT-StB (FGSV 2002)
- § Tragfähigkeit des Untergrundes
- § Veränderung der Tragfähigkeit des Untergrundes bei Verkehrsbeanspruchung und durch Wassergehaltsänderungen (Frostaufgang)
- § Eigenschaften des Schüttmaterials und Dicke der Schüttlage

PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGSAUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

- § Kraft-/Dehnungsverhalten der Bewehrung
- § Reibung zwischen Bewehrung und Schüttmaterial
- § Erwartete Verkehrsbelastung

Abbildung 11: Systemskizze der Membrantheorie

Unter Dauerlast zeigen Geokunststoffe je nach Rohstoff, Art der Herstellung und Kurzzeitfestigkeit mehr oder weniger ausgeprägte Kriechverformungen, die vom Spannungsniveau und der Temperatur beeinflusst werden. Weiterhin ist eine gewisse Robustheit gegen Beanspruchungen beim Einbau des Schüttmaterials und beim Überfahren der Überschüttung erforderlich. Bei Geotextilien (vgl. Kapitel 3.2.1) wird diese Eigenschaft durch eine Einteilung in Geotextilrobustheitsklassen gemäß dem "Merkblatt über Straßenbau auf wenig tragfähigem Untergrund" (FGSV 1988) berücksichtigt. Hierbei werden verschiedene Anwendungsfälle je nach der Beanspruchung durch das Schüttmaterial sowie den Einfluss durch Einbau und Baubetrieb unterschieden. Außerdem muss eine Abminderung der Höchstzugkraft durch Verbindungen und Einflüsse in Folge von Bewitterung, UV-Einfluss, im Boden enthaltenen Chemikalien etc. berücksichtigt werden. Alle diese Faktoren sind produkt- und anwendungsspezifisch. Die zulässige Gebrauchslast der Bewehrung F_d wird aus der Höchstzugkraft des Produktes unter Berücksichtigung der folgenden Abminderungsfaktoren ermittelt [FGSV 1988, Oxford University 1980):

$$F_{d} = F_{k} / [(A_{1} \times A_{2} \times A_{3} \times A_{4}) \times \gamma]$$

mit:

- F_d: Gebrauchszugkraft
- F_k: Höchstzugkraft
- A1: Zeitstandfestigkeit bzw. Kriechverformung unter Dauerlast
- A₂: Beschädigung der Bewehrung durch Transport, Einbau und Verdichtung
- A₃: Verarbeitung (Verbindungsstellen)
- A₄: Umgebungseinflüsse (Wetterbeständigkeit, Beständigkeit gegen Chemikalien u.a.)
- γ : Partialsicherheitsbeiwert (1,75 nach FGSV 1988)

Ein Anwendungsprodukt, das den Regeln der Membrantheorie folgt, ist das Geovlies. Aus diesem Grund wurde für die unten aufgeführten eigenen Untersuchungen ein geovliesverstärktes Feld behandelt. Die genaue Produktbezeichnung lautet "Naue GembH, Secutex GRK-3 Geovlies".

3.3.3 Gewölbemodell

Bei knotensteifen, formstabilen Geogittern kommt es durch die Verzahnung mit dem Schüttmaterial zum Materialverbund und in Verbindung mit der Zugfestigkeit der Geogitter zu einer günstigeren Lastverteilung. Hierbei muss die Öffnungsweite der Geogitter auf die Korngröße des Schüttgutes abgestimmt sein. Dieser Verzahnungseffekt (vgl. Abbildungen 12 und 13), der bei gestreckten Geogittern zusätzlich für den Lastabtrag verantwortlich ist, setzt eine formstabile, unverschiebbare Knotenverbindung voraus. Sowohl ein horizontales als auch ein vertikales Ausweichen des Schüttmaterials wird erheblich vermindert. Spannungsspitzen werden abgebaut, und die Lastverteilung wird durch eine Vergrößerung des Lastverteilungswinkels optimiert. Es entsteht eine quasi-biegesteife Platte, wodurch eine Überbrückung von lokalen Senkungsbereichen sowie eine Vergleichmäßigung von Setzungsdifferenzen erzielt wird.

Abbildung 12: Systemskizze des Gewölbemodells

Abbildung 13: Darstellung der Verzahnung des Schüttmaterials in knotensteifen Geogittern

Über die Wirkungsweise der knotensteifen Geogitter wurden umfangreiche Untersuchungen durchgeführt, die detailliert in Abschnitt 5.2 beschrieben werden. Hieraus wurde ein Bemessungsmodell entwickelt, das eine Aussage über die mögliche Re-

PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGSAUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

duzierung der Tragschichtstärke bei Einsatz von knotensteifen Geogitter erlaubt (BRP CONSULT 1994). Dafür wurden verschiedene Anforderungen an das zu erreichendeVerformungsmodul E_{v2} (45, 80, 120 und 150 MN/m²) definiert. Die Auswertung der Untersuchungen führte zu Bemessungsdiagrammen für unbewehrte und bewehrte Tragschichten, in denen sich die erforderliche Tragschichtdicke für den jeweiligen Ausgangs- E_{v2} -Wert des Untergrundes ablesen lässt (Beispiel: Bemessungsdiagramme für bewehrte und unbewehrte Tragschichten für einen zu erreichenden E_{v2} -Wert von 120 MN/m², Abbildung 14 und 15).

Abbildung 14: Bemessungsdiagramm für mit knotensteifen Geogittern bewehrte Tragschichten unter Berücksichtigung eines zu erreichenden E_{v2} -Wert von 120 MN/m² (BRP CONSULT 1994)

Abbildung 15: Bemessungsdiagramm für unbewehrte Tragschichten unter Berücksichtigung eines zu erreichenden E_{v2} -Wert von 120 MN/m² (BRP CONSULT 1994)

4. Bemessungsgrundlage zur Bewertung der Tragfähigkeit des Bodens - Kenngrößen

4.1 Allgemeines

Der Einsatz von Geokunststoffen im Erd- und Straßenbau folgt dem Gedanken, dem Untergrund mit einfachen Mitteln höhere Tragfähigkeiten verleihen zu können. In der praktischen Anwendung wurden hierzu umfangreiche Labor- und Feldversuche durchgeführt. Ein Ziel der Auswertungen war die Bestimmung eines Verhältniswertes bzw. einer Gleichung, um eine Relation zwischen der unbewehrten und der mit Geogittern bewehrten ungebundenen Tragschichtdicke zu bestimmen.

Während der Einsatz von Vliesstoffen zur Baugrundverbesserung Grenzen aufzeigt, erlangen Geogitter zunehmend Bedeutung.

Die mögliche Verringerung der Dicke der mineralischen Tragschicht durch die Einlage von Geogittern konnte während der Herstellung von unbefestigten Straßen an unterschiedlichen, räumlich voneinander getrennten Standorten bzw. in Laborversuchen nachgewiesen werden.

Die entscheidenden Parameter beim Entwurf des unbefestigten Straßenaufbaus und der Auswahl des geeigneten Geogitters sind die Tragfähigkeit des Untergrundes und die Art der Verkehrsbelastung. Die Tragfähigkeit des Untergrundes wird durch länderspezifische Kenngrößen beschrieben. In Deutschland ist dies meist der E_{v2}-Wert, im englischsprachigen Raum der sogenannten CBR - Wert (California Bearing Ratio).

4.2 Statischer Verformungsmodul (E_{v2}-Wert)

Der "**statische Plattendruckversuch**" wird in Deutschland seit Mitte der 1950er zur Prüfung des Trag- und Verformungsverhalten des Planums als Unterlage für den Straßenoberbau herangezogen.

Nach DIN 18134 besteht die Versuchseinrichtung aus einer Platte, deren Durchmesser je nach Anforderung 300, 600 oder 762 mm beträgt, einer Druckvorrichtung mit Gegengewicht und der Messeinrichtung. Durch Be- und Entlastung mit anschließender Wiederbelastung der Versuchseinheit wird eine Drucksetzungslinie ermittelt, aus der die Verformungsmodule für die Erst- und Wiederbelastung (E_{v1} und E_{v2}) abgeleitet werden können.

Die Ermittlung des Verformungsmoduls erfolgt in der Regel für den Spannungsbereich 0,3 (= σ_{01}) bis 0,7 (= σ_{02}) der aufgebrachten Normalspannung nach der Beziehung:

Verformungsmodul E_v = 1,5 * r
$$\frac{\Delta \sigma_0}{\Delta s}$$
 [MN/m²]

wobei r der Radius der Lastplatte ist.

Die versuchsgemäße Einwirktiefe ist auf etwa 1,5 x Plattendurchmesser begrenzt.

Das Verhältnis der Verformungswerte Ev_1/Ev_2 liefert einen Hinweis darauf, ob durch weitere Verdichtung der E_{v_2} - Wert noch erhöht werden kann.

4.3 California Bearing Ratio (CBR-Wert)

Der "kalifornische" CBR-Wert ist ein empirisches Maß zur Ermittlung der relativen Tragfähigkeit des Untergrundes. Das Verfahren wurde in den USA vom *California State Highway Departement* im Jahre 1929 entwickelt und später vom *US Corps of Engineers* für die Bemessung von Rollfeldern übernommen und verbessert.

Das Prüfverfahren besteht aus einem sogenannten "Stempeleindrückversuch", bei dem ein ø 5 cm messender Druckstempel bei gleichmäßiger Vorschubgeschwindigkeit von 1,25 mm/min in die zu prüfende Bodenschicht eingedrückt wird. Die Eindrückung ist auf eine Verformung von maximal 1,25 cm begrenzt.

Durch einen Vergleich der gemessenen Stempeldrücke (N/mm²) mit dem Wert eines "genormten Bodens" erfolgt der Berechnungsansatz über die Formel:

In England ist die Bemessung nach der CBR-Methode offiziell in die TRRL - Vorschriften (Transport and Road Research Laboratory) aufgenommen worden. In Deutschland ist dieses Verfahren jedoch nur wenig verbreitet.

5. Forschungs- und Entwicklungsstand für die Anwendung zur Verbesserung der Tragfähigkeit durch den Einsatz von Geokunststoffen

Um eine Grundlage für die eigenen Modellversuche zur Untersuchung des Abschirmverhaltens von Schwingungen durch Geokunststoffeinlagen und entsprechende Untersuchungstechniken zu erhalten und zu vermitteln, werden in den nachstehenden Kapiteln zunächst die Grundlagen und Ergebnisse der bisherigen Modellversuche auf statischer Grundlage ausführlich dargelegt. Dabei mag auffallen, dass es sich bei den Modellversuchen vorwiegend um Arbeiten aus der englischsprachigen Literatur handelt. Dies hängt in der Hauptsache damit zusammen, dass sich die Forschungsarbeiten in Deutschland überwiegend mit den Materialeigenschaften und theoretischen Modellberechnungen befasst haben und weniger mit direkten Modellversuchen. Die Materialeigenschaften sind in Deutschland durch eine Vielzahl von Normen und Richtlinien festgelegt, wie z.B. die DIN EN ISO 10318 (2001), Geokunststoffe - Geotextilien, geotextilverwandte Produkte, Dichtungsbahnen und geosynthetische Tondichtungsbahnen, oder EBGEO (1997), Empfehlungen für Bewehrungen aus Geokunststoffen.

5.1 Vorläufige Bemessungsansätze

Bis heute liegt eine Vielzahl von Forschungsarbeiten vor, die sich mit Versuchen zur Bestimmung allgemein gültiger Bemessungsansätze beschäftigen. Als Bemessungsmethoden für ungebundene Schichten des Erdbaus im Straßenbau wurden u.a. einer breiteren flächigen Verteilung der Achs- bzw. Radlasten oder einer Entlastung des Bodens durch den sogenannten Membraneffekt besondere Aufmerksamkeit geschenkt. Die Bemessungen wurden auf Grundlage von praktischen Erfahrungen oder Modellversuchen durchgeführt. Dabei erfolgte die Prüfung der mechanischen Eigenschaften von Geokunststoffen vorrangig an deren "Bruchmechanismen" (BEYER 1999) und den Auswirkungen in ungebundenen Materialien.

Die bisherigen Untersuchungen beschränken sich im Wesentlichen auf Schottertragschichten über einem Untergrund mit geringen Tragfähigkeiten. Hierbei konnte zwar eine Erweiterung des Kenntnisstandes erreicht werden, die jedoch streng genommen nur auf Baustraßen beschränkt ist. Eine Übertragung auf den Straßenbau ist nicht ohne Weiteres möglich.

Über die in Kapitel 3.4.2 und 3.4.3 erwähnten Modellvorstellungen hinausgehenden Erklärungen über die Wirkungsweise von Geokunststoffen zur Bewehrung von ungebundenen mineralischen Schichten liegen noch nicht vor. Gründe dafür sind die unterschiedlichen, materialspezifischen Wirkungsweisen bei verschiedenen Geokunststoffen.

Die Bewertung von Geokunststoffen für den Einsatz im Straßenbau ist bis jetzt allein im Hinblick auf die Reißkraft und Rissdehnung erfolgt. Begründet wird dies dadurch, dass die Geokunststoffe bei Dehnungen (< 3%) kein lineares Materialverhalten mehr besitzen und die Beanspruchungsparameter im Betriebszustand deutlich kleiner sind als im Prüfzustand.

In der Forschungsarbeit von BEYER (1999) wurde u.a. ein dreidimensionales FE-Modell mit realitätsnahen Abmessungen vorgestellt, mit deren Hilfe das mechanische Verhalten eines Fahrbahnaufbaues (Tragschicht und Untergrund) für die erste Be- und Entlastung simuliert werden kann. Untersucht wurde dort die Wirkung von gestreckten Geogittern sowie Raschelware. Unter Zugrundelegung durchgeführter Versuche konnte nachgewiesen werden, dass ein gestrecktes Geogitter (Stabelemente) den weitaus größten Einfluss auf das Systemverhalten ausübt. Gewebte Geogitter zeigen noch deutlichere Auswirkung, während Raschelware so gut wie keine Veränderungen im Berechnungssystem hervorruft.

Logische Schlussfolgerung hieraus ist also die Entwicklung eines Bemessungsverfahrens, das es erlaubt, auch im Regelstraßenbau die tragfähigkeitsverbessernde Wirkung von Geokunststoffen zu bestimmen und entsprechende Regelwerke zu entwickeln.

5.2 Bisherige Untersuchungen formstabiler, knotensteifer Geogitter

Nachfolgend sollen die bisher durchgeführten Modellversuche am Beispiel von formstabilen, knotensteifen Geogittern dargelegt werden, da diese seit über zwanzig Jahre von zahlreichen unabhängigen Institutionen mit unterschiedlichen Ansätzen untersucht wurden. Ziel hierbei war, genauere Informationen über die Wirkungsweise und Wechselwirkung zwischen den ungebundenen mineralischen Schichten und den biaxialen, knotensteifen Geogittern zu erlangen. Diese nachfolgend aufgeführten Untersuchungen beinhalten eine enorme Datenmenge, die die Basis für die Bemessung von bewehrten mineralischen Schichten bildet. Die Untersuchungen können in die folgenden Kategorien unterteilt werden:

- Statische Lastversuche
- Zyklische Lastversuche
- Versuche mit rollenden Verkehr
- Andere Untersuchungen

5.2.1 Statische Lastversuche

5.2.1.1 Versuche der Universität Oxford Anfang der 1980er Jahre bezüglich der Verbesserung des Lastaufnahmevermögens und der Lastausbreitung

An der Universität Oxford wurden Anfang der 1980er Jahre kleinmaßstäbliche Versuche durchgeführt, um den Vorteil einer geogitterbewehrten mineralischen Tragschicht über einem wenig tragfähigen Untergrund zu untersuchen (IVANI UND BUSCHMEYER 1989). Anfängliche einfache Untersuchungen der Universität Oxford führten zu ersten Erkenntnissen über die Wirkungsweise von Geogittern (Abbildung 19). Hierbei wurde die Veränderung der Lastausbreitung im Vergleich zwischen einer bewehrten und einer unbewehrten mineralischen Tragschicht ausgewertet. Die gewonnenen Daten zeigten eine Verbesserung des Lastausbreitungswinkels von ca. 50° bei einer unbewehrten Tragschicht auf ca. 38° bei der geogitterbewehrten Tragschicht.

Damit war die Praxis-Erfahrung belegt, dass die Mächtigkeit der mineralischen Tragschicht bei gleicher Auflast auf den Untergrund durch die Geogitterbewehrung um ca. 50% reduziert werden kann. In den Abbildungen 16 und 17 sind zwei weitere Versuche abgebildet. Hell dargestellt ist der wenig tragfähige weiche Ton, dunkel abgebildet ist die mineralische Tragschicht. Die Belastung bestand jeweils aus zwei streifenförmigen Auflasten.

Die Abbildungen 16 und 17 stellen zwei Versuche mit gleicher Auflast dar. Deutlich zu sehen ist das Versagen des Untergrundes beim Versuchsaufbau ohne Geogitter (Abbildung 16). Das grundbruchartige Versagen dokumentiert sich in den Aufwölbungen neben den Laststreifen. Abbildung 17 zeigt wesentlich geringere Verformungen der geogitterbewehrten Tragschicht bei gleicher Auflast. Die Last-Verformungskurven der Abbildung 18 zeigen eine Zunahme der Tragfähigkeit von ca. 40 %. Rechts neben den Verformungskurven ist jeweils die undrainierte Scherfestigkeit des Untergrundes dargestellt.

Die Geogitterbewehrung änderte offensichtlich den Verformungsmechanismus. Die körnigen Bestandteile der mineralischen Tragschicht wurden durch den Verzahnungseffekt mit dem Geogitter lagestabil festgehalten, wobei hierfür die Verformungsstabilität des Geogitters Voraussetzung ist. Im unbewehrten Versuch konnten dagegen diese Bestandteile ausweichen, was zuerst zu einer Reduzierung der Mächtigkeit der Tragschicht und letztlich zum Grundbruch führte.

Abbildung 16: Lastversuch ohne Geogitter (IVANI UND BUSCHMEYER 1989)

Abbildung 17: Lastversuch mit Geogitter (Lage des Geogitters zur Verdeutlichung markiert), (IVANI UND BUSCHMEYER 1989)

PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGSAUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

Abbildung 18: Ergebnisdarstellung der Versuche der Universität Oxford (1980)

Abbildung 19: Verbesserung des Lastausbreitungswinkels

5.2.1.2 Modellversuch zur Optimierung der Geogitteranordnung

Die nächsten Schritte führten zu einer Untersuchung der Wirkungsweise von mehreren Geogitterlagen. Hierzu wurden von GUIDO ET AL. (1987) Modellversuche durchgeführt. Als Schüttmaterial für die Tragschicht wurde Sand verwendet. Die folgenden Parameter wurden variiert (Abbildung 20): Breite des Geogitters (b), vertikaler Abstand der Geogitterlagen (Δz), Abstand der Lastplatte zur obersten Geogitterlage (u) und die Anzahl der Geogitterlagen (N).

Die Auswirkung der Breitenänderung des Geogitters ist in Abbildung 21 dargestellt. Die Auswertung zeigt, dass eine geogitterbewehrte Fläche, die um den Faktor 1,5 größer als die Breite der Lastplatte (Quotient b/B) ist, nur noch eine geringe Zunahme der Lastaufnahme erreicht. Diese Erkenntnis stimmt mit dem Ergebnis der Universität von Oxford überein, die einen Lastausbreitungswinkel von 38° bei einer geogitterbewehrten Tragschicht festgestellt hatte (vgl. Abschnitt 5.2.1.1).

Eine weitere Schlussfolgerung dieses Ergebnisses ist die Tatsache, dass bei den knotensteifen und formstabilen Geogittern eine seitliche Verankerung z.B. durch einen Umschlag offensichtlich nicht erforderlich ist, um die gewünschte Bewehrungswirkung zu erzielen.

Abbildung 20: Darstellung des Modellversuches von GUIDO ET AL. (1987)

Abbildung 21: Darstellung der Ergebnisse des Modellversuches von GUIDO ET AL. (1987)

Die Ergebnisse weiterer Untersuchungen von GUIDO ET AL. zeigten, dass ein maximaler bewehrender Effekt bei Einhaltung folgender Faktoren erreicht wird:

• die Tiefe der obersten Geogitterlage (u) beträgt weniger als das 0,25fache der Breite der Lastaufstandsfläche (B)

- der vertikale Abstand (∆ z) zwischen den einzelnen Geogitterlagen beträgt das 0,25-fache der Breite der Lastaufstandsfläche (B) oder weniger
- der Einbau von zwei bis drei Geogitterlagen ist ausreichend (darüber hinaus zeigen zusätzliche Geogitterlagen keine wesentliche Verbesserung im Tragfähigkeitsverhalten)

5.2.1.3 Großmaßstäbliche Untersuchungen durch die Federal Highway Administration FHWA – Bestätigung der Untersuchungen von GUIDO ET AL. (1987)

Im Jahre 1997 wurden von der FHWA / USA ähnliche Versuche durchgeführt, die von ADAMS UND COLLIN (1997) ausgewertet wurden. Es wurden quadratische Testfelder mit einer Breite bis zu 0,91 m auf sandigem Untergrund hergestellt. Die Breite der Geogitterbewehrung unterhalb der Lastaufstandsfläche wurde variiert (Abbildung 22). In Abbildung 23 sind die Ergebnisse dieser Testfelder dargestellt. Es ist deutlich zu sehen, dass eine einzelne Geogitterlage eine deutliche Tragfähigkeitszunahme bewirkt. Ein wesentlich über die Fläche des Lastausbreitungswinkels herausragendes Geogitter bewirkt hierbei keine Zunahme der Tragfähigkeit.

Dieses Ergebnis ist nahezu identisch mit den Schlussfolgerungen von GUIDO ET AL. (1987). Da auch hier keine seitliche Einbindung erfolgte, kann die Wirkung nicht auf dem Membraneffekt und der Zugfestigkeit des Geogitters beruhen, durch die die Spreizkräfte aufgenommen werden, sondern es muss ein anderer Wirkungsmechanismus vorliegen.

Abbildung 22: Untersuchungen durch die FHWA (ADAMS UND COLLIN 1997) – Darstellung des Aufbaus der Testfelder

Abbildung 23: Untersuchungen durch die FHWA (ADAMS UND COLLIN 1997) – Ergebnisse der Testfelder

Durch diese statischen Lastversuche konnten detaillierte Einsichten in die Wirkungsweise von Geogittern gewonnen werden, die zur Bemessung und Dimensionierung von bewehrten Gründungspolstern und Lastübertragungsmatratzen herangezogen werden können. Im Gegensatz zu den statischen Belastungsversuchen wird jedoch bei der Bemessung von Tragschichten im Straßenbau keine definierte Lastfläche und keine permanente Belastung vorgegeben. Daher sind die Versuchsergebnisse nicht direkt übertragbar. Im Straßenverkehr wirken relativ kleinflächige Lasten durch ihre sehr häufige, zyklische Wiederholung. Um diese Prozesse besser verstehen zu können, wurden zyklische Lastversuche durchgeführt, die eine relativ geringe Auflast, aber häufige Wiederholungen beinhalten.

5.2.2 Zyklische Lastversuche

5.2.2.1 Dynamische Lastversuche – Optimierung der Tragfähigkeit des bewehrten Untergrundes

An der Universität von Waterloo / Kanada (HAAS ET AL. 1989) wurden mehrere Serien von Lastübergängen in einem großmaßstäblichen Laborversuch durchgeführt. Ziele war, weitere Erkenntnisse zur Wirkungsweise der Geogitter zu erhalten sowie die Bestimmung der optimalen Geogitterlage festzustellen.

Die erste Versuchsreihe wurde mit einem CBR-Wert des Untergrundes von 3,5 % gefahren. Der Straßenaufbau bestand aus einer ca. 75 mm dicken Asphalttrag-/deckschicht oberhalb einer 200 mm dicken körnigen Tragschicht. Als Auflast diente eine runde Stahlplatte mit einem Durchmesser von 300 mm und einer Traglast von 40 kN, durch die eine 80 kN-Standardachlast simuliert wurde. Der Versuch wurde bei einer Spurrinnentiefe von 20 mm beendet.

Die Abbildung 24 zeigt die Anzahl der Überfahrten bis zu einer Spurrinnentiefe von 20 mm für die verschiedenen Tiefen des eingebauten Geogitters im Vergleich zu

einem unbewehrten Probefeld.

Durch den Einbau einer Geogitterlage an der Basis der Tragschicht konnte eine Reduzierung der Tragschichtstärke um ca. 50% erreicht werden. Es wurde festgestellt, dass der Einbau der Geogitter idealer Weise in der unteren Hälfe der Tragschicht erfolgen sollte.

Die Auswertung des Versuches zeigt weiterhin, dass bei gleicher Mächtigkeit der Tragschicht durch den Geogittereinbau zwischen dem wenig tragfähigen Untergrund und der Tragschicht eine Tragfähigkeitserhöhung des Systems um den Faktor 3 erzielt werden konnte (vgl. Abbildung 24). Die Anzahl der Überfahrten bis zu einer Spurrinnentiefe von 20 mm vergrößerte sich von 200.000 auf 600.000 Überfahrten.

Abbildung 24: Darstellung der Ergebnisse der Universität Waterloo (Versuch 1) nach HAAS ET AL. 1989.

In einer zweiten Versuchsreihe wurde die Tragschicht des geogitterbewehrten Aufbaus in ihrer Mächtigkeit variiert, mit dem Ziel, die mögliche Einsparung des Tragschichtmaterials im Vergleich zu einer unbewehrten Tragschicht bei gleicher Wirksamkeit, d.h. bis zu einer Spurrinnentiefe von 20 mm zu bestimmen. Resultat war eine Einsparung von ca. 50% des Tragschichtmaterials beim bewehrten Aufbau bei einem CBR-Wert des Untergrundes von 3,5 % (Abbildung 25).

Die Tragschichtmächtigkeit wird in den USA durch die konventionelle Bemessung nach AASHTO (American Association of State Highway and Transportation Officials) bestimmt und anschließend um 33 % abgemindert. Durch den Geogittereinbau wird so die gleiche Tragfähigkeit wie im unbewehrten Zustand erzielt. Die o.g. Versuche zeigen zwar, dass eine Einsparung von ca. 50 % der Tragschichtdicke möglich ist. Durch die Reduzierung um ein Drittel ist jedoch eine Sicherheit für eventuell inhomogenen Untergrund bzw. schlechtes Schüttmaterial berücksichtigt. Diese Bemessungsmethode, auch "Ein-Drittel-Regel" genannt, hat sich in zahlreichen Projekten bewährt.

Abbildung 25: Darstellung der Ergebnisse der Universität von Waterloo (Versuch 2) nach HAAS ET. AL (1989)

5.2.3 Versuche mit rollendem Verkehr

Eine Überprüfung der Ergebnisse der Universität Waterloo lässt sich nur durch großmaßstäblich angelegte, realitätsnahe Versuche mit rollendem Verkehr erreichen. Um einen Vergleich zu einem konventionellen Aufbau zu erhalten, wurden verschiedene Versuche durchgeführt. Gemeinsam war allen ein Straßenaufbau, der in unterschiedliche Sektionen mit verschiedenen variierenden Parametern unterteilt wurde und ein Kontrollfeld beinhaltete. Anschließend wurden Überfahrten mit definierter Radlast durchgeführt und die Spurrinnenbildung an der Oberfläche des Aufbaus sowie die Deformation in unterschiedlichen Tiefen des Tragschichtaufbaus registriert.

5.2.3.1 TRRL Tragfähigkeitsuntersuchungen 1988/1989

Das Forschungszentrum "Transport and Road Research Laboratory / TRRL" führte Überfahrtversuche im Labor und auf der Baustelle mit Baustellenfahrzeugen maßstabsgetreu durch. Die Mächtigkeit der Tragschicht wurde in Versuchsrichtung variiert (Abbildung 26), (CHADDOCK 1988 und TRRL 1989). Der Bewehrungseffekt von Geogittern wurde hierbei erneut bestätigt. Abbildung 27 zeigt die Deformationen eines bewehrten und eines unbewehrten Abschnittes nach 800 Überfahrten. Hier ist schon die Deformation des (unbewehrten) Kontrollabschnittes an der Oberfläche deutlich, aber auch am Kontakt zwischen mineralischer Tragschicht und Untergrund zu erkennen. Die Deformation an der Oberfläche des geogitterbewehrten Testfeldes ist demgegenüber nur ca. halb so groß, die Deformation im Untergrund ist vernachlässigbar gering.

Abbildung 26: Aufbau des großmaßstäblichen Versuches - TRRL-Untersuchung 1988 nach CHADDOCK, es ist deutlich die Abnahme der Schichtstärke von hinten nach vorne zu erkennen (rot markiert)

Abbildung 27: Versuchsergebnisse - TRRL-Untersuchung (CHADDOCK 1988)

Das Gesamtergebnis des Versuches war, dass eine mit Tensar - SS-Geogittern bewehrte Tragschicht bis zum Erreichen der gleichen Spurrinnentiefe eine 3,5-mal höhere Verkehrslast aufnehmen kann als eine unbewehrte Tragschicht gleicher Mächtigkeit. Durch die Geogitterbewehrung werden große Verformungen des Untergrundes verhindert, auch wenn die Tragschicht während der Bauphase überbeansprucht wird.

5.2.3.2 Vergleich von verschiedenen Geogitterarten

Im Auftrag der US-Behörde Federal Aviation Authority wurde vom US Army Corps of Engineers (USACE) in der Versuchsanstalt Vickburg unter Leitung von WEBSTER (1991) eine firmenunabhängige Forschungsreihe durchgeführt, um den Bewehrungseffekt verschiedener Geokunststoffe für die Dimensionierung von Rollbahnen für leichte Flugzeuge feststellen zu können.

Es wurde zum Einen das Verhalten unbewehrter und Geogitter bewehrter Aufbauten, zum Anderen das Verhalten von Aufbauten mit unterschiedlichen Geogittertypen gemessen und verglichen.

Der Großversuch bestand aus vier Fahrspuren, die auf tonigem Untergrund mit einer 350 mm starken Tragschicht aus gebrochenem Kalkstein und 50 mm Deckschicht aus Asphaltbeton aufgebaut wurden. Der niedrigste gemessene CBR-Wert des Untergrundes lag bei ca. 3 %.

Abbildung 28: Darstellung eines Untersuchungsergebnisses von WEBSTER (1991)

Als Versagenskriterium war eine Spurrinnentiefe von 25 mm definiert. Jede Fahrspur wurde mit einer 133 kN schweren Radlast (entsprechend der Anforderungen durch die Flugzeuge) befahren. Abbildung 28 zeigt exemplarisch die Ergebnisse der Über-fahrtversuche für die verschiedenen eingesetzten Geogitterprodukte Das Ergebnis variierte von keiner messbaren Verbesserung bis hin zu einer Erhöhung um den Faktor 5 bei dem Geogitter "Tensar SS2". Andere extrudierte oder gewebte Geogitter lagen trotz hoher Nennzugfestigkeiten im unteren Bereich der Versuchsergebnisse. Nur durch den Einbau der knotensteifen und formstabilen Geogitter konnte eine Erhöhung der Anzahl der Überfahrten bis zum Versagenskriterium um den Faktor 5

erreicht werden. Als Grund hierfür wird die Verhinderung der horizontalen Verlagerung der Tragschichtpartikel durch die Verzahnung mit den knotensteifen Geogittern angesehen.

Eine detaillierte Betrachtung dieser Untersuchungsergebnisse verdeutlicht die Abhängigkeit des Bewehrungseffektes von den Eigenschaften der Geogitter. Diese Eigenschaften umfassen die Form, Steifigkeit und Dicke der Rippen, die Größe, Formstabilität und Form der Geogitteröffnung sowie die Verbindung der Längs- und Querrippen. Die Anforderungen sind in Tabelle 2 dargestellt.

	Dicke	Je dicker, desto besser
Rippe	Steifigkeit	Je steifer, desto besser
	Form	Eckig ist besser
	Größe	Materialabhängig, nicht größer als 40 mm
Öffnung	Form Rund oder quadratisch	
	Steifigkeit	Je steifer, desto besser
Knoten	Festigkeit	Hohe Festigkeit gegenüber der Rippe
	Torsionssteifigkeit	Minimale Steifigkeit
Gitter	Stabilität	Je größer, desto mehr Widerstand gegenüber Verformungen

 Tabelle 2: Eigenschaften der Geogitter und deren Einfluss auf die Bewehrungswirkung, nach WEBSTER (1993)

Im USACE-Report wurde erstmals der sog. Traffic Improvement Factor (TIF) zur Bestimmung der Tragfähigkeitserhöhung vorgestellt. In Abhängigkeit von einem bestimmten Untergrund ist der TIF wie folgt definiert:

Anzahl der Überfahrten mit Geogitter

Anzahl der Überfahrten ohne Geogitter

5.2.3.3 Vergleichsuntersuchungen der Universität von Newcastle

Auch an der Universität von Newcastle, UK, wurden Überfahrtversuche an unbefestigter Straßenoberfläche durchgeführt. Die in Abbildung 29 dargestellten Ergebnisse sind mit den zuvor durchgeführten Versuchen vergleichbar.

Die Spurrinnentiefe des unbewehrten Kontrollfeldes war nach 52.000 Überfahrten etwa mit der Spurrinnentiefe der Testfelder, die mit einem ummantelten gewebten Polyestergitter bzw. einem extrudierten Polypropylengitter bewehrt worden waren, vergleichbar. Die Spurrinnentiefe der Testfelder mit knotensteifen, formstabilen Geogittern (roter Balken in Abbildung 29) war nur etwa halb so groß wie die des Testfeldes.

Abbildung 29: Ergebnis der Überfahrtversuche durch die Universität Newcastle

5.2.3.4 Untersuchung der Wirkungsweise bewehrter Tragschichten hinsichtlich der Knotensteifigkeit von Geogittern

Im Jahre 2000 wurden vom britischen Transport and Road Resarch Laboratory (TRRL) weitere Untersuchungen mit bewehrten Tragschichten durchgeführt (TRRL 2000). Die eingebauten Geogitter wiesen alle eine Nennzugfestigkeit von 40 kN/m auf, unterschieden sich aber in Art und Herstellungsweise.

Die ungebundene Tragschicht mit einer Mächtigkeit von 320 mm wurde auf einem eingebauten homogenen Ton mit einem CBR-Wert von 1,5 % aufgebracht. Anschließend wurden Überfahrten mit einem 4 t-Doppelrad, das eine Seite einer 8 t-Achse simulierte, bis zu einer Spurrinnentiefe von 40 mm (Versagenskriterium) durchgeführt.

Die Ergebnisse dieser Überfahrtversuche sind in Abbildung 30 dargestellt. Bei fast allen Geogittern wurde nach maximal 1.000 Überfahrten eine Spurrinnentiefe von > 40 mm erreicht; Ausnahme war das mit einem formstabilen, knotensteifen Geogitter bewehrte Feld, das erst nach ca. 4.000 Überfahrten das Versagenskriterium erreichte. Die Versuche wurden trotzdem weitergeführt. Nach maximal 5.000 Überfahrten wurde eine Spurrinnentiefe von > 80 mm erreicht, so dass die Versuche abgebrochen wurden. Die einzige Ausnahme bildete die mit dem knotensteifen formstabilen Tensar-SS40-Geogitter bewehrte Tragschicht, die noch nach 10.000 Überfahrten befahrbar war und eine Spurrinnentiefe von weniger als 50 mm aufwies.

Abbildung 30: Anzahl der Überfahrten bis zu einer Spurrinnentiefe von 40 mm (TRRL 2000)

5.2.4 Andere Untersuchungen

5.2.4.1 Test zur Bestimmung der Knotensteifigkeit

KINNEY UND XIAOLIN (1995) von der Universität von Alaska haben versucht, die beim Versuch von WEBSTER (1991) festgestellte Eigenschaft der Torsionssteifigkeit hinsichtlich deren Wirksamkeit experimentell zu ermitteln und zu bestimmen. Hierzu wurden die Geogitter, die bei den Versuchen von WEBSTER benutzt wurden, in einen Rahmen eingespannt. Ein Greifer, bestehend aus vier Stäben, umschloss einen freiliegenden Knotenpunkt und belastete das Geogitter mit einem Torsionsmoment (Abbildung 31).

Die Ergebnisse sind in Abbildung 32 dargestellt. Es zeigt sich, dass der TIF (vgl. Abschnitt 5.2.3.2) bei den knotensteifen, formstabilen Geogittern um den Faktor 2 bis 4 höher ist als bei gewebten bzw. extrudierten Geogittern. Damit konnte die Relation zwischen dem Torsionsmoment der untersuchten Geogittertypen und der Wirksamkeit der Tragfähigkeitsverbesserung aufgezeigt werden.

Nach KINNEY UND XIAOLIN (1995) ist das Torsionsmoment als Modul der bestimmten so genannten Knotensteifigkeit "ein Maß der Materialeigenschaften, das (wie Abb. 32 zeigt) für die Wirkung des Geogitters bei Bodenstabilisierung" von Bedeutung ist.

Abbildung 31: Schematische Darstelllung des Versuchsaufbaus nach KINNEY UND XIAOLIN (1995)

Abbildung 32: Darstellung der Versuchsergebnisse nach KINNEY UND XIAOLIN (1995)

5.2.4.2 Plattendruckversuche – Untersuchung des E_{v2}-Wertes des Untergrundes

In den meisten europäischen Ländern werden die E_{v2} -Werte auf dem Planum des Untergrundes als Eingangsparameter für die Bestimmung der Tragschichtdicke verwendet. Von VANGGAARD (1999) wurden die Ergebnisse von Plattendruckversuchen, die zur Untersuchung des Baugrundes auf verschiedenen Baustellen in Dänemark durchgeführt wurden, mit den erreichten $E_{v2,oben}$ -Werten auf der Oberfläche von unbewehrten oder geogitterbewehrten ungebundenen Tragschichten verglichen

und ausgewertet.

Das Verhältnis zwischen den Verfomungsmodulen $E_{v2,unten}$ und $E_{v2,oben}$ -Wert wird als Maßstab für den Vergleich der Zunahme der vertikalen Steifigkeit des Bodens gewertet. In Abbildung 33 sind die Messwerte als Kurven für den bewehrten und den unbewehrten Fall dargestellt. Die Werte der mit knotensteifem Geogitter bewehrten Tragschichten zeigen einen im Vergleich zum unbewehrten Zustand deutlich steileren Anstieg. Die Werte der mit gewebten Geogittern bewehrten Tragschichten liegen zwischen diesen beiden Kurven.

Abbildung 33: Darstellung der Versuchsergebnisse von VANGGAARD (1999)

5.2.4.3 Plattendruckversuche, dargelegt von SEILER (1995) – Untersuchung des Ev2-Wertes des Untergrundes

Beim Ausbau der Bahnlinie Berlin – München wurde auf Grund des wenig tragfähigen Untergrundes der Einsatz von Geogittern vorgeschlagen. Um die erforderliche Aufbaustärke der Tragschichten zu bestimmen, wurden Testfelder auf dem Untergrund, der E_{v2}-Werte zwischen 7 und 15 MN/m² (CBR-Wert ca. 0,5 bis 1,0 %) aufwies, durchgeführt. Daher wurden zwei Aufbaustärken von 40 bzw. 60 cm untersucht.

Durch den Einbau einer Geogitterlage (in diesem Fall Tensar SS 2, dem Vorläufer von Tensar SS30) wurde ein Anstieg der Tragfähigkeit von ca. 100 % registriert (Abbildung 34). Diese Ergebnisse korrespondieren mit denen von VANGGAARD (1999) und belegen die signifikante Verbesserung des Verformungsmoduls auf der Oberkante der ungebundenen grobkörnigen mineralischen Tragschichten bei Einbau eines Geogitters.

Abbildung 34: Ergebnisse der Testfelder, SEILER (1995)

5.2.4.4 Erdfallversuche – Beweis des Verzahnungseffektes

An der Universität von Wales (BRIDLE ET AL. 1994) wurden Versuche durchgeführt, um die Wirkungsweise von uniaxialen, formstabilen Geogittern bei der Überbrückung von aufbrechenden Erdfällen zu untersuchen. Es galt festzustellen, ob solcherart bewehrte Tragschichten beim Auftreten eines oberflächennahen Erdfalles die Stabilität der Straße für einen gewissen Zeitraum aufrechterhalten können, bis dieser Straßenabschnitt gesichert und abgesperrt werden kann. Als Anforderung wurde definiert, dass auf der Straße zunächst nur eine flache Einmuldung auftreten durfte, die Straße aber insgesamt bis zur Durchführung von Reparaturmaßnahmen befahren werden kann.

Abbildung 35: Aufbau des Erdfallversuches, Universität von Wales (BRIDLE ET AL. 1994)

Der Aufbau des Erdfallversuches ist in Abbildung 35 dargestellt. Zwischen Beton-

mauern wurde ein Hohlraum mit einem Durchmesser von 3,0 m erzeugt, der anschließend mit Sand verfüllt und verdichtet wurde. Darauf erfolgte der Aufbau einer 0,6 m starken Tragschicht, die mit zwei Geogitterlagen (Tensar SS 35) bewehrt wurde. Die Geogitterlagen wurden weder fixiert noch umgeschlagen.

Mit Betonsteinen erfolgte auf diese Konstruktion eine Lastaufbringung von 5 MN/m². Danach wurde die Sandverfüllung entfernt. Dehnungsmessgeber an den Geogittern in unterschiedlicher Entfernung vom Zentrum des Hohlraumes zeichneten das zeitabhängige Verformungsverhalten auf. In Abbildung 36 sind die Messergebnisse von den Aufzeichnungen der unteren Geogitterlage dargestellt.

Abbildung 36: Ergebnisse des Erdfallversuches (BRIDLE ET AL. 1994)

Die gewonnenen Ergebnisse sind aus verschiedenen Gründen bemerkenswert:

- Gemäß der Membrantheorie hätte die Dehnung deutlich über der Höchstzugkraftdehnung liegen müssen
- Laut Membrantheorie und dem Kriechverhalten eines Geogitters aus dem Rohstoff Polypropylen hätte die Dehnung mit der Zeit stark zunehmen müssen
- Die Dehnung des Geogitters erreichte jedoch unmittelbar nach "Herstelung des Erdfalles" maximal 4 % (maximale Dehnung in der unteren Geogitterlage) und stieg bis zum Abbau des Versuches nach 72 Stunden nur noch gering an.
- Die Dehnung und damit die Last, die an zwei Punkten oberhalb der Betonmauer gemessen wurde beträgt 0 %. Dies zeigt deutlich, dass die Wirkungsweise nicht auf Reibung zwischen Geogitter und Maueroberkante beruht.

• Der Versuch zeigt, dass durch den Verzahnungseffekt eine quasibiegesteife Matratze an der Basis der ungebundenen mineralischen Tragschicht geschaffen wird. Weiterhin konnte ein deutlicher Unterschied zwischen der Membrantheorie und dem so genannten "Gewölbeprinzip" herausgearbeitet werden.

5.2.4.5 TRRL-Untersuchung 2002 (WATTS ET AL.)

Bei zwei Versuchsreihen durch das Road Research Laboratory (TRRL) in Großbritannien wurden von WATTS ET AL. (2004) großmaßstäbliche Überfahrtversuche mit 12 verschiedenen Geokunststoffen durchgeführt. Ziel der Versuche war eine Abschätzung der Wirkung der verschiedenen geokunststoffbewehrten ungebundenen Tragschichten zur Reduzierung der Spurrinnenbildung bei einem ungebundenen Straßenaufbau.

Die Versuchsanlage (Pavement Test Facility; PTF) umfasste eine Grube von 10 m Breite und 25 m Länge. Sie war 3 m tief mit Ton verfüllt, auf dem ein ungebundener Straßenaufbaus erfolgte. Als wenig tragfähiger Untergrund wurde ein stark plastischer Ton ("London clay") verwendet, dessen CBR-Wert zwischen 1,5 und 2,5 % liegt. Die ungebundene Tragschicht wurde aus gebrochenem Granitschotter mit einer Mächtigkeit von 31 - 33 cm hergestellt. Ein Gerüst, an dem ein Rad vor- und rückwärts bewegt werden kann, überspannte diese Grube.

Bei beiden wurden jeweils drei Fahrspuren von 2,4 m Breite über die gesamte Länge des Versuchsfeldes angelegt. Diese wurden, mit unterschiedlichen Geokunststoffen bewehrt, in jeweils vier Felder unterteilt. Zu Vergleichszwecken blieben bei jeder Versuchsreihe jeweils zwei Felder unbewehrt. Es mussten zwei Versuchsreihen durchgeführt werden ("trial A" und "trial B"), da insgesamt 21 Versuchsfelder angelegt wurden. Der Aufbau war für beide Versuchsreihen prinzipiell gleich.

Die Geokunststoffe wurden an der Basis der ungebundenen mineralischen Tragschichten (Planum) direkt auf dem tonigen Untergrund verlegt. Ein Versuchsfeld wurde mit einer zweilagigen Bewehrung aufgebaut, wobei das zweite Geogitter mittig eingebaut wurde.

Vergleichskriterium war die Spurrinnentiefe. Mit einer Belastungsmaschine wurden bis 10.000 Lastwechsel aufgebracht. Die Überfahrten wurden mit einem Zwillingsreifen (Achslast 40 kN) und einer Radlast von 20 kN vorgenommen. Diese entspricht der Hälfte einer Standardlast. Die Überfahrtgeschwindigkeit betrug 15 km/h. Als Versagenskriterium galt eine vertikale Deformation in der Spurrinne von mehr als 80 mm.

Die Auswertung der Ergebnisse wurde als Beziehung zwischen der Verformung unterhalb der Radspur und der Anzahl der Überfahrten dargestellt und zusätzlich mit der von GIROUD UND NOIRAY (1981) aufgestellten Gleichung für ungebundene Tragschichten im Straßenbau verglichen.

Bei den durchgeführten Versuchen schnitten alle geokunststoffbewehrten Felder besser ab als die unbewehrten Vergleichsfelder. Die Ergebnisse zeigen aber auch,

dass unterschiedliche Geokunststoffe nicht den gleichen Verbesserungsfaktor aufweisen.

Um die erforderliche Mächtigkeit der ungebundenen Tragschicht zu ermitteln, wurde das von GIROUD UND NOIRAY (1981) aufgestellte Verhältnis zwischen der Tragschichtdicke und der Anzahl der Standardachslastüberfahrten bis zum Erreichen der 40 mm Spurrinnentiefe benutzt: **Gleichung nach GIROUD und NOIRAY**

$$log_{10}N = - \frac{h(CBR)0,63}{190}$$

mit:

N = Anzahl der Standardachslasten

h = Dicke der Tragschicht für eine Spurrinnentiefe von 75 mm (entspricht 40 mm Verformung)

Abbildung 37: Schematische Verformungsstruktur

Abbildung 37 zeigt die schematische Verformungsstruktur. Für eine Vorgabe von 10.000 Überfahrten bei einem CBR-Wert von 2 % beträgt die erforderliche Dicke der unbewehrten Tragschicht 491 mm. Um die entsprechende Dicke einer bewehrten Tragschicht abzuschätzen, wurde die empirisch ermittelte 1/3-Regel angewandt, die 329 mm ergibt (vgl. Abschnitt 5.2.2.1). Für die Versuche bei der TRL wurde diese Dicke nochmals auf 300 mm reduziert, damit messbare Deformationen erzielt würden. Dabei erreichten nur Testfelder, die mit monolithischen Geogittern bewehrt waren, die maximale Anzahl von 10.000 Überfahrten. In einigen Feldern wurde die maximal zulässige Deformation von 40 mm schon nach einer überraschend geringen Anzahl von Überfahrten erreicht. Es fällt auf, dass einige Produkte eine wesentlich bessere Wirkung im Frühstadium der Fahrbahnbelastung zeigten.

Ausgehend von der bekannten Anzahl der Überfahrten, die zu einer Verformung von 40 mm führen, dem CBR-Wert des Untergrundes und der durchschnittlichen Mächtigkeit der unbewehrten Tragschicht (D1) kann mit der Gleichung nach GIROUD und NOIRAY die theoretisch erforderliche Mächtigkeit einer unbewehrten Tragschicht (D2) ermittelt werden.

In Tabelle 3 sind das Verhältnis zwischen der theoretisch erforderlichen und der tatsächlichen Mächtigkeit (D2 / D1) sowie die Verringerung der theoretisch ermittelten Tragschichtmächtigkeit dargestellt. Die ermittelten Werte zeigen, dass die so genannte "Ein-Drittel-Regel" zur Abschätzung der Dicke einer bewehrten Tragschicht in dieser Form zwar für die meisten, aber nicht für alle Geokunststoffe zutrifft.

PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGSAUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

Feld	Produkt	Anzahl der Überfahrten	D1 [mm]	D2 [mm]	Verhältnis D2/D1	Reduktion [%]					
Versuchsreihe A											
1a	Lotrac 40	1.100	320	444	1,39	28					
1b	Secugrid 40	1.610	328	448	1,37	27					
1c	Telegrid 40	480	320	408	1,28	22					
2a	Tensar SS40	9.800	322	568	1,77	43					
2b	Tenax LBO330	3.300	323	499	1,55	35					
2c	Unbewehrt	600	331	411	1,24	19					
3a	Tensar SS30	10.000	331	591	1,79	44					
3b	Tenax LBO330	4.650	334	542	1,62	38					
3c	TRC 40	1.550	327	476	1,45	31					
4a	Unbewehrt	300	316	362	1,14	13					
4b	Tensar SS20	1.590	318	365	1,46	32					
4c	Tensar SS30	1.770	304	478	1,57	36					
	1	Versu	chsreih	e B							
1a	Fornit 40/40	800	288	342	1,19	16					
1b	Unbewehrt	530	292	319	1,09	8					
1c	Tensar SS20	1.310	292	364	1,25	20					
2°	Tensar SSLA30	6.100	286	423	1,48	32					
2b	Tensar SS30	3.150	292	399	1,37	27					
2c	Tensar SS30	2.350	275	397	1,44	31					
3a	Unbewehrt	570	280	314	1,12	11					
3b	Enkagrid 40	1.380	283	362	1,28	22					
3c	Secugrid 60	1.340	284	371	1,31	23					

 Tabelle 3: Vergleich der tatsächlichen und theoretisch ermittelten Mächtigkeit der unbewehrten Tragschicht (WATTS ET AL. 2004)

5.3 Zusammenfassung und Ausblick für die eigenen Versuche

Die zuvor dargestellten Versuche, Forschungen und Entwicklungen in Verbindung mit Geokunststoffen geben einen Überblick über die Funktionen und die Wirksamkeit der Materialien im Erd- und Straßenbau. Als Vorteile haben sich demnach vorrangig die Erhöhung von Tragfähigkeitseigenschaften und die Regulierung der Lastenverteilung auf einem Untergrund mit wechselnden Konsistenzen herauskristallisiert. Die dargestellten Versuche beziehen sich auf statische Betrachtungen wirkender Lasten auf ein mit Geokunststoffen und Boden/Tragschicht kombiniertes System. Zusammenfassend lassen sich die folgenden Schlussfolgerungen für die weiteren, eigenen Untersuchungen ziehen:

- Der Einbau einer geosynthetischen Bewehrung in das Schüttmaterial einer ungebundenen Schottertragschicht verbessert deren Tragverhalten. Unterschiedliche Geokunststoffe bewirken jedoch einen unterschiedlichen Grad der Verbesserung.
- Die durch die Gleichung von GIROUD UND NOIRAY (1981) ermittelten

Werte der ungebundenen Tragschichten ergaben eine sichere Lösung für alle in der Untersuchung eingesetzten Geokunststoffe. Bei einigen Produkten erschienen sie jedoch allzu konservativ.

Verlauf und Verhalten dynamischer Schwingungen in einem solchen System, die beispielsweise durch Straßenverkehr oder Verdichtungsarbeiten bei Bauarbeiten auftreten, werden in den zuvor dargestellten Versuchsreihen nicht berücksichtigt. Daher behandelt die vorliegende Arbeit, ergänzend zu den zuvor zusammengestellten Versuchsergebnissen mit statischen Belastungen, die Ausbreitung von Schwingungen auf ein mit Geokunststoffen bewehrtes Tragschicht-System.

Gerade hinsichtlich der ausgewählten Produktgruppenvertreter wurde darauf geachtet, in ihrer Wirkung erheblich einander differierende Geokunststoffe zu untersuchen.

Unter Berücksichtigung dieser Ergebnisse auf statischer Grundlage wurden die Felduntersuchungen zur Feststellung der Auswirkungen von Geokunststoffen auf eine Schwingungsausbreitung bzw. eine mögliche Dämpfung dieser Schwingungen an drei verschieden aufgebauten Probefeldern durchgeführt:

- 1. Unbewehrtes Kontrollfeld
- 2. Mit Straßenbauvlies der Klasse 3 bewehrtes Probefeld (Wirkungsweise gemäß Membranmodell)
- 3. Mit knotensteifem, formstabilen gestrecktem Geogitter bewehrtes Probefeld (Wirkungsweise gemäß Gewölbemodell).

Würde es zutreffend sein, dass die Einlage eines knotensteifen, formstabilen Geogitters eine quasi-biegesteife Platte erzeugt, so sollten sich die Schwingungen zum unbewehrten Kontrollfeld verändern.

Auf der Grundlage der unterschiedlichen Modellansätze sollten sich darüber hinaus dynamische Wirkungsunterschiede zwischen den einzelnen Testfeldern herauskristallisieren.

Mit der o.g. Auswahl der in ihrer statischen Systemwirkung äußerst unterschiedlichen Geokunststoffe müsste auch ein dynamischer Wirkungsunterschied erkennbar sein.

Aus diesem Grund wurde für die nachfolgende Untersuchung des Schwingungsverhaltens in Schottertragschichten des Erd- und Straßenbaus jeweils ein Vertreter der biegeschlaffen und der biegesteifen Produkte ausgewählt. Als biegeschlaffes Produkt wurde das bereits o.g. Geovlies mit der GRK 3 der Fa. Naue GmbH mit der Bezeichnung Secutex eingesetzt. Als biegesteifes Produkt kam ein gestrecktes Geogitter vom Typ SS 30 der Fa. Tensar zum Einsatz.

Zur Beurteilung der Frage, ob überhaupt Geokunststoffe Schwingungen das Tragschichtsystem beeinflussen, waren somit vergleichende Untersuchungen zwischen verschiedenartig bewehrten und unbewehrten Bodenschichten anzustellen, bei denen festgestellt werden soll, auf welche Entfernung Erschütterungen wirksam sind und ob und wie ein Immissionsabbau mit Zunahme des Abstandes von der Erschütterungsquelle auftritt.

6. Standardisierte Vorgaben und Anforderungskriterien für den Straßenbau in Deutschland

Der standardisierte Oberbau einer Straße gemäß RStO 01 (FGSV 2001) setzt eine bestimmte Qualität des Planums, d.h. in diesem Fall der Oberfläche des Untergrundes voraus. Die Anforderungskriterien sind in Abbildung 38 dargestellt.

Abbildung 38 : Anforderungskriterien an den Untergrund

Die Qualitätsanforderungen sind in Abhängigkeit von der Verkehrsbelastung in der ZTVE-StB 94/97 (FGSV 1997) festgeschrieben.

Als Bezugswert für die Verdichtungsanforderungen dient die Proctordichte ρ_{pr} , die in dem von PROCTOR 1933 in den USA entwickelten Proctorversuch zusammen mit dem für die Verdichtung günstigsten Wassergehalt (w_{pr}) ermittelt wird. Für gemischtund feinkörnige Böden sowie bei steinigen bindigen Mischböden und veränderlich festen Gesteinen besteht zusätzlich die Anforderung an den Luftporengehalt $n_a \leq$ 12%. Der Versuch ist in Deutschland in der DIN 18127 genormt.

Die Verdichtungsanforderungen sind als Verdichtungsgrad definiert, dessen Bezugsgröße die Proctordichte ist:

$$D_{pr} = \rho_d / \rho_{pr} \text{ (in \%)}$$

D_{pr}	=	Verdichtungsgrad
$ ho_{d}$	=	Trockendichte (g/cm ³)
$ ho_{pr}$	=	Proctordichte (g/cm ³)

Der erforderliche Verdichtungsgrad beträgt auf dem Planum bis 0,5 m Tiefe nach ZTVE-StB 94/97 (FGSV 1997), Tabellen 2 und 3, bei bindigen Böden 97 % und für die nichtbindigen bzw. gemischtkörnigen Böden der Tragschichten 100 %.

Als Hilfskriterium kann ersatzweise der E_{v2} -Modul des statischen Plattendruckversuches herangezogen werden, der auf dem Planum bei bindigen Böden mindestens 45 MN/m² betragen muss.

Ein Verdichtungswert von $E_{v2} = 45 \text{ MN/m}^2$ setzt bei bindigem Boden mindestens halbfeste Konsistenz voraus, die selten gegeben ist. E_{v2} -Module $\geq 45 \text{ MN/m}^2$ lassen sich daher meist nur mittels aufwendiger Bodenverbesserungen erreichen.

Für eine solche Bodenverbesserung stehen die verschiedensten Verfahren zu Verfügung. Je nach Aufgabenstellung ist insbesondere das Verfahren zur Bodenverfestigung in Form von Bindemittelzugabe, eine Bodenverbesserung durch Einarbeiten fehlender Kornfraktionen oder ein Bodenaustausch mit Ersatz der weichen Böden durch Fremderdbaustoffe zu nennen.

Maßnahmen der Bodenverbesserung oder Bodenverfestigung sind auch auf Grund eigener praktischer Erfahrungen bei Verformungsmodulen zwischen $E_{v2} = 30$ bis 45 MN/m² durchführbar. Bei geringerem Verformungsmodul muss ein Bodenaustausch vorgenommen werden. Die erforderliche Stärke des Bodenaustauschs kann durch Testfelder bestimmt werden.

Die Notwendigkeit eines tragfähigkeitsverbessernden Bodenaustausches stellt einen kostenintensiven Aufwand dar, da geeignete Erdstoffe oftmals über einen weiten Transportweg herangeschafft werden müssen. Die Austauscherdstoffe müssen über einbau- und verdichtungsfähige Eigenschaften verfügen und derart eingebaut und verdichtet werden, dass sie den Anforderungen genügen.

Alternativ werden bei nicht ausreichenden Verformungsmodulen ($E_{v2} < 45 \text{ MN} / \text{m}^2$) in zunehmenden Maße die vormals erwähnten Geokunststoffe verwendet, die als Verbundsystem "Tragschicht - Geokunststoff - Untergrund" eine Reduzierung der Untergrundverformungen und eine langfristige Standfestigkeit gewährleisten sollen. Grundlage für den Einsatz von Geotextilien im Straßenbau sind die derzeit geltenden Richtlinien. Neben den einschlägigen bautechnischen Vorschriften wie ZTVE – StB 94/97, RStO 01 sind dies hinsichtlich des Einbaues von Geokunststoffen die folgenden Regelwerke:

- Merkblatt für die Anwendung von Geotextilien und Geogittern im Erdbau des Straßenbaus, 1994 (FGSV 1994)
- Technische Lieferbedingungen für Geotextilien und Geogitter für den Erdbau im Straßenbau (TL Geotex E - StB 95, FGSV 1995)

Eine Hilfestellung bei der Planung, Bau und Bauvorbereitung findet sich auch in den

- "Checklisten für die Anwendung von Geotextilien und Geogittern im Erdbau des Straßenbaus, FGSV 1999".

Die Abbildung 39 zeigt jeweils das Profil eines Straßenaufbaus ohne ("unbewehrt") und mit ("bewehrt") Einlage eines Geogitters. Bei beiden Beispielen wird jeweils von einer nicht ausreichenden Tragfähigkeit auf dem Planum ($E_{v2} < 45 \text{ MN/m}^2$) ausgegangen. Auf der Oberkante der kombinierten Frostschutz-Tragschicht soll ein Verformungsmodul von $E_{v2} > 120 \text{ MN/m}^2$ erreicht werden.

Abbildung 39: Möglichkeiten zur Verbesserung der Tragfähigkeit

Es wird deutlich, dass die erforderliche Tragfähigkeit auf Oberkante Tragschicht sowohl durch einen Bodenaustausch, als auch durch die Einlage eines geeigneten Geogitters an der Basis der Frostschutz-Tragschicht erreicht werden kann.

Aus dieser Veranlassung heraus werden heute auch im Straßenbau zunehmend Geokunststoffe eingesetzt, die im Verbund mit lagenweise eingebrachten ungebundenen Tragschichten eine Reduzierung der Untergrundverformungen ermöglichen und zumindest eine Verminderung der erforderlichen Bodenaustauschdicken bewirken.

Die mögliche zusätzliche Eigenschaft von Geotextilien Erregerschwingungen abzudämpfen, soll in den folgenden Kapiteln dieser Arbeit untersucht werden.

7. Auswirkungen baulicher Tätigkeit

In bebauten Gebieten treten vielfach Fragen nach der Erschütterungswirkung durch benachbarte Baumaßnahmen auf bestehende Gebäude auf. Erschütterungen emittieren dabei zumeist aus Verdichtungsarbeiten einhergehend mit Tiefbau- bzw. Straßenbaumaßnahmen sowie von Verkehr als solchem.

Dazu gehören sowohl der an- und abfahrende Schwerlastverkehr, Baggerarbeiten, bis hin zu Arbeiten zur Sicherung von Geländeanschnitten (z.B. Einbringen von Verbausystemen). Dazu kommen gelegentlich auch Gewinnungssprengungen zum Abbau von Festgesteinen, die Immissionseinwirkungen auf Bauwerke auslösen können.

Veranlasst durch häufige Klagen von Anwohnern und angezeigte Schadensauftritte werden durch Bauherren, Planungsbüros oder durch bauausführende Firmen Sach-

verständigenbüros hinzugezogen, deren Aufgabe es ist, im Rahmen eines privaten Beweissicherungsverfahrens präventiv oder nach eingetretenen Schäden die Plausibilität von möglichen Erschütterungseinwirkungen zu prüfen und abzuschätzen. Dabei ist auch immer öfter der Einsatz von Geotextilien im Spiel, dessen Auswirkungen auf die Verbreitung von dynamischen Immissionen bislang völlig unbekannt sind.

Die Zunahme derartiger Anfragen hat den Anstoß mit dem Ziel gegeben, Untersuchungen vorzunehmen, den Einfluss von horizontal eingelegten Geokunststoffen im Erd- und Straßenbau auf die Ausbreitung von Erschütterungseinwirkungen zu prüfen bzw. ob und in welcher Form dadurch ein Abschirmeffekt zu erreichen ist.

Derartige Maßnahmen im Erd- und Straßenbau wären neue eigenständige, großflächige Methoden praktisch am Erregerstandort, die nur indirekt vergleichbar sind mit vertikalen Abschirmmöglichkeiten einzelner Objekte vor speziellen Erschütterungserregern, wie sie in der Fachliteratur diskutiert werden (Methoden und Literatur s. Prinz 1997).

8. Grundlagen der Bodendynamik

Die im Rahmen des Themas vorgesehenen Untersuchungen erfordern die Kenntnis gewisser Grundlagen der Bodendynamik und eine Charakterisierung der geotechnisch relevanten Schwingungsphänomene als Grundlage für die maßgeblichen dynamischen Bodenparameter und die Grundlagen der Wellenausbreitung.

8.1 Schwingungstheorie

Schwingungen werden durch Bewegungen im Untergrund angeregt. Vereinfacht ausgedrückt handelt es sich um eine Form von hin- und hergehender Bewegung. Die anschauliche Beschreibung geschieht dadurch, dass für eine Wegkoordinate x deren Zeitverlauf x (t) angegeben wird. Der einfachste Fall ist hierbei eine harmonische (sinusförmige) Schwingung.

Als charakteristische Größen sind Wegamplitude (A), Schwingungsdauer (t), Frequenz (f), Kreisfrequenz (ω) und Phasenwinkel (ϕ) zu nennen.

Formal wird eine harmonische Schwingung durch die folgende Formel dargestellt:

$$x (t) = A \cdot sin (\omega t + \varphi)$$
 (VERSPOHL 2000)

wobei der Phasenwinkel ϕ die Verschiebung gegenüber der reinen Sinusfunktion angibt. Hinsichtlich des generellen Zeitverlaufs x (t) werden folgende Typen unterschieden:

- Periodische Schwingungen

Der Bewegungsablauf wiederholt sich in gleichen Zeitabständen t. Im Unterschied zur harmonischen Bewegung ist der Zeitverlauf innerhalb einer Periode beliebig. Regelmäßig aufeinander folgende stoßartige Bewegungen lassen sich ebenfalls als periodische Schwingungen einordnen.

- Stochastische Schwingungen

Die Bewegung erfolgt unregelmäßig ohne feste Periodendauer.

- Transiente Schwingungen

Die Bewegung erfolgt als einmaliges, mehr oder weniger unregelmäßiges Ereignis.

In der Abbildung 40 sind die Typen von Schwingbewegungen dargestellt.

Abbildung 40: Typen von Schwingbewegungen (VERSPOHL 2000), a) Periodische Schwingung, b) Stochastische Schwingung, c) Transiente Schwingung

Zur Beschreibung von Schwingungen dient als einfachstes mechanisches Modell der Einmassenschwinger. Er besteht aus einer einzigen punktförmigen Masse, die über eine Feder und einen viskosen Dämpfer mit einem festen Punkt verbunden ist. Als Festpunkt wird üblicherweise der Untergrund angenommen. Mit der punktförmigen Masse kann die im Schwerpunkt konzentrierte Masse beschrieben werden (z.B. Fundament, Gebäude als Ganzes....).

Jede elastische Struktur besitzt ein charakteristisches Eigenschwingungsverhalten (ungedämpfte Eigenfrequenz). Die Eigenfrequenz nimmt mit wachsender Steifigkeit zu und mit wachsender Masse ab. Wenn bei einem schwingungsfähigen Gebilde eine Eigenfrequenz mit der Erregerfrequenz übereinstimmt, wächst die Amplitude stark an (Aufschaukeln durch Resonanzeffekte). Um Resonanzerscheinungen zu vermeiden, ist bei dynamisch angeregten Baustrukturen die Kenntnis der Eigenfrequenzen folglich von großer Bedeutung. Eine genauere Bestimmung ist meist nur durch FE - Modelle möglich (VERSPOHL 2000).

Bei komplexen Strukturen reicht eine einzige Koordinate, welche die Bewegung des Massenschwerpunktes angibt, meist nicht aus, um das Bewegungsverhalten mit genügend hoher Genauigkeit zu beschreiben. Die Struktur muss daher in einzelne Massenpunkte, Feder- und Dämpfungselemente diskretisiert werden. Im Gegensatz zum Einmassensystem gibt es nun nicht mehr nur eine einzige Eigenfrequenz, sondern eine größere Anzahl. Jede Eigenfrequenz entspricht dann einem Freiheitsgrad.

In der Bodendynamik werden verschiedene Schwingungssysteme zur Modellierung von bodenphysikalischen Aufgabenstellungen herangezogen. Ohne darauf näher einzugehen, sind hier Zweimassensysteme mit geführten Massenpunkten (zwei Freiheitsgrade) oder eine Massenscheibe mit drei Freiheitsgraden zu nennen, wie sie beispielsweise ein Fundamentblock mit Maschine und rotierenden Teilen darstellt.

8.2 Ausbreitung der Schwingungen auf der Halbraumoberfläche

Schwingungen breiten sich auf der Halbraumoberfläche als Wellen aus. Die Wellenausbreitung wird als ein Vorgang beschrieben, der von den Einflussbedingungen der jeweiligen örtlichen Gegebenheiten abhängig ist. Diese können Gebäude, sich hierin aufhaltende Personen sowie Einrichtungen beeinträchtigen bzw. schädigen. Zu nennen sind insbesondere:

- Abstand zwischen der Störquelle und benachbartem Objekt
- dynamische Eigenschaften der Erschütterungsquelle (z.B. das Frequenzspektrum)
- Untergrundaufbau (Bodenart, Wassergehalt, Lagerungsdichte, Grundwasseroberfläche)
- Wellenüberlagerungen und Resonanzerscheinungen
- Dämpfung infolge Energieabsorption und dadurch Abnahme der Amplitude
- Fundamentgründung, Konstruktion und Zustand des Bauwerkes
- Einleitung der Erschütterungen durch das Fundament in das Bauwerk

Daher ist die im Untergrund auftretende Wellengeschwindigkeit und der Dämpfungsgrad aufgrund der vorstehenden Einflussfaktoren nicht konstant. Weiterhin sind Unterschiede hinsichtlich der Frequenzdämpfung zu berücksichtigen.

Der Dämpfungskoeffizient ist bei harten magmatischen Gesteinen gering, streut bei den Sedimentgesteinen, je nach Festigkeit, sehr stark und ist bei Lockergesteinen relativ hoch (PRINZ 1997). Anteile an tieffrequenten Schwingungen können sich in entsprechend Schall leitendem Untergrund u.U. nahezu ungedämpft über größere Distanzen ausbreiten (Spektrum zw. 1 und 10 Hz). Die Schwingungsimmissionen im Untergrund können infolge von Resonanzeffekten deutlich zunehmen, wenn die Hauptfrequenz der sich ausbreitenden Welle mit der Bodeneigenfrequenz zusammenfällt. Analog gilt dies auch für die Bauwerksresonanz (Eigenfrequenz bei Gebäuden zwischen 10 und 20 Hz).

Für Schadensauftritte an Gebäuden sind oftmals tieffrequente Schwingungsanteile verantwortlich, da schon bei niedriger Energiezufuhr entsprechende Resonanzeffekte ausgelöst werden können.

Als wichtigste Wellentypen sind zu nennen:

- Kompressions- oder Primärwelle (P Welle)
- Scher- oder Sekundärwelle (S Welle)
- Rayleigh Welle (R Welle)

Die Abbildung 41 nach PRINZ (1997) stellt die Typen der Wellen graphisch dar.

Abbildung 41: Typen von Schwingbewegungen (PRINZ 1997)

Für Bauwerks schädigende Erschütterungen sind niederfrequente Vibrationen im Spektrum zwischen 10 und 50 Hz relevant. Diese treten im Untergrund als Raumwellen bzw. Oberflächenwellen auf.

Bei der Ausbreitung von Raumwellen (P - Typ) erfolgt abwechselnd eine Pressung oder Zerrung des Mediums. Bei der Welle des S - Typs beschreibt die Ausbreitung eine reine Scherverformung mit Biegung und Schub des Mediums. Wellen des P - Typs verursachen eine Erhöhung des Porenwasserdrucks, während die langsameren S - Wellen infolge der Scherbeanspruchung eine Umlagerung des Korngefüges bewirken.

Beide Wellentypen werden an freien Oberflächen reflektiert, womit eine Oberflä-

chenwelle, eine Welle des R - Typs (sogenannte Rayleighwelle), entsteht.

Werden Erschütterungen im Untergrund ausgelöst, so werden zumeist alle drei Wellentypen erzeugt, wobei deren einzelne Intensitäten und ihr Verhältnis zueinander von der Größe und der Art der Anregung abhängen. Die Ausbreitungsgeschwindigkeit der verschiedenen Wellentypen hängt von den mechanischen Eigenschaften des Untergrundes ab.

Der Boden weist gegenüber Erschütterungen ein ausgeprägt nichtlineares Verhalten auf. Die wichtigsten Einflussgrößen sind:

- Porenzahl
- Wassergehalt
- Spannungszustand

Die stoffliche Nichtlinearität äußert sich darin, dass die elastischen Parameter und die Dämpfung keine Materialkonstanten sind, sondern von der Verformung, insbesondere von den Dehnungsamplituden abhängen. Für kleinere Deformationen ($\gamma < 10^{-3}$ %) können die dynamischen Eigenschaften des Bodens jedoch noch linear betrachtet werden (KLEIN 1996).

Die mittleren bzw. wahrscheinlichen Schwingungs - Kennwerte für die einzelnen Bodenarten sind in Tabellen aufgelistet (KLEIN 1996). Elastische Wellen im Untergrund, die von einer punktförmigen Quelle ausgehen, bilden im Raum eine kugelförmige und auf der Geländeoberfläche eine kreisförmige Wellenfront. Da sich dabei die transportierte Energie auf eine zunehmende Fläche verteilt, nimmt die Energie, d.h. Amplitude der Welle, in Ausbreitungsrichtung ab (Abstrahlungsdämpfung). Zusätzlich werden die Schwingungsamplituden auch aufgrund der Materialdämpfung des Bodens mit wachsender Entfernung von der Quelle geringer.

Im Nahfeld einer Erschütterungsquelle wird bei üblichen Bodenverhältnissen der entfernungsabhängige Amplitudenrückgang praktisch nur durch die Abstrahlungsdämpfung bestimmt (außer bei sehr starken Schwingungen), während die Materialdämpfung erst bei größeren Abständen, also im Fernfeld, maßgebend wird.

In den oberflächennahen Einwirkungen haben die R - Wellen die größte Bedeutung.

8.3 Auswirkungen von Schwingungsimmissionen und Richtwerte

Schwingungsimmisionen können von einer Vielzahl von Erregern ausgelöst werden. Es werden hierbei folgende Arten von Schwingungen unterschieden:

- transiente (kurzzeitige)
- intermittente (zeitweise)
- stationäre (anhaltende)

Für stationäre Erschütterungen kommen u.a. Rüttler oder Rammgeräte, Verdichter, Hammer- und Brecheranlagen, Schrottscheren, Sägegatter sowie Stanzen in Betracht. Kurzzeitige Erschütterungen treten beispielsweise bei Abbrucharbeiten, Sprengungen oder Erdbeben auf (Fallimpulse).

Im Hinblick auf die Belästigungen der Anlieger und schadensauslösenden Wirkungen auf bauliche Anlagen sind hinsichtlich der Beurteilung von Schwingungsimmisionen Regelwerke aufgestellt worden.

Die normativen Festlegungen für das Messen von Schwingungsimmisionen finden sich in der DIN 45669 (1995). Der Teil 1 enthält die Anforderungen an Schwingungsmesser sowie Prüfverfahren. Im Teil 2 werden Messverfahren festgelegt, und Teil 3 befasst sich mit der Prüfung der Schwingungsmesseinrichtung.

Für die Beurteilung von Erschütterungen im Bauwesen ist die DIN 4150 (1999/2001) zu berücksichtigen. Hierin enthält der Teil 1 die Vorermittlung von Schwingungsgrößen, der Teil 2 Einwirkungen auf Menschen in Gebäuden und der Teil 3 Einwirkungen auf bauliche Anlagen.

Bei Gebäuden erfolgt die Messung der Erschütterungseinwirkung an Kellerfundamenten und Decken. Die Messungen werden zweckmäßigerweise an der dem Erreger zugewandten Gebäudeseite ausgeführt. Im Bereich der Decke (oberstes Geschoss) werden die Messeinrichtung in der Fußbodenmitte sowie nahe einer durchgehenden Mauer platziert. Während in Deckenmitte der vertikale Schwingungsanteil aufgenommen wird, wird an der Mauer der horizontale Anteil gemessen. Ein 3-Komponenten - Messgerät, welches in den drei Hauptschwingungsrichtungen v_z (senkrecht), v_x und v_y (waagrecht, längs bzw. quer zum Erreger) misst, wird im Bereich des Kellerfundamentes aufgestellt.

In der Praxis wird vor allem der Zeitverlauf der Schwinggeschwindigkeit gemessen.

Um den Einfluss der Schwingfrequenz und der zeitlichen Aufeinanderfolge von Spitzen der Schwinggeschwindigkeit zu erfassen, kann das Signal zusätzlich einer Frequenz- und einer Zeitbewertung unterzogen werden.

Das Basisverfahren für Schwingungsmessungen ist die Aufzeichnung des *bandbe*grenzten unbewerteten Signals nach DIN 45669, Teil 1.

Das unbewertete Signal (Schnellesignal) v (t) im Sinne dieser Norm ist ein der Schnelle proportionales und bandbegrenztes Signal (DIN 45669, Teil 1, Abschn. 3.3).

Nachstehende Tabelle 4 enthält die frequenzabhängigen Anhaltswerte für die Schwinggeschwindigkeit v_i zur Beurteilung der Wirkung von kurzzeitigen Erschütterungen auf Bauwerke (DIN 4150, Teil 3).

PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGSAUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

Zeile	Gebäudeart	Anhaltswerte für die Schwinggeschwindigkeit v _i in mm/s							
		ne	Fundament Frequenzen		Oberste Deckenebe-				
		1 Hz bis 10 Hz	10 Hz bis 50 Hz 5	i0 Hz bis 100 Hz*) a	alle Frequenzen				
1	Gewerblich genutzte Bauten, Industriebauten und ähnlich strukturierte Bauten	20	20 bis 40	40 bis 50	40				
2	Wohngebäude und in ihrer Konstruktion und / oder Nutzung gleichartige Bauten	5	5 bis 15	15 bis 20	15				
3	Bauten, die wegen ihrer besonderen Erschütterungs- empfindlichkeit nicht denen nach Zeile 1 und 2 entsprechen und besonders erhaltenswert (z.B. unter Denkmalschutz stehend) sind	3	3 bis 8	8 bis 10	8				

<u>Bei Frequenzen über 100 Hz dürfen mindestens die Anhaltswerte für 100 Hz angesetzt werden</u> Tabelle 4 : Anhaltswerte für die Schwinggeschwindigkeit v_i (DIN 4150, Teil 3)

Bei Schäden an Gebäuden ist zu unterscheiden zwischen direkten Einwirkungen und indirekten Folgeerscheinungen. Bei direkten Einwirkungen können sowohl Gebäude als Ganzes als auch einzelne Bauteile (z.B. Geschossdecken von Gebäuden) zu Schwingungen angeregt werden. Aufgrund der statischen Struktur sind z.B. Gebäude gegenüber horizontalen Schwingungseinwirkungen empfindlicher als gegenüber vertikalen. Im Unterschied hierzu erregen vertikale Schwingungen die Eckbereiche der Gebäude deutlicher als horizontale.

Indirekt können Schwingungen zu Setzungen. Eine Prognose über mögliche Setzungsgrößen ist schwierig zu treffen.

Die in der vorstehenden Tabelle aufgelisteten frequenzabhängigen Schwinggeschwindigkeiten repräsentieren jedoch keine Absolutwerte. Vielmehr geben die Normenwerke den Hinweis, dass bei Unterschreitung üblicherweise keine Störungen oder Schäden eintreten. Die Grenzwerte sind somit als Richtwerte zu verstehen, was bedeutet, dass es bei Überschreitung nicht zwangsläufig zu Beeinträchtigungen oder Schäden kommen muss. Auch müssen gewisse Streuungen vermutet werden.

Der Ansatz deutlich geringerer Richtwerte für anhaltende oder sich wiederholende Erschütterungen wird zur Zeit in den entsprechenden Gremien diskutiert.

Verminderungen des Gebrauchswertes von Gebäuden oder Gebäudeteilen durch Erschütterungseinwirkungen im Sinne der einschlägigen Normen sind u.a.:

- die Beeinträchtigung der Standsicherheit von Gebäuden und Bauteilen und
- die Verminderung der Tragfähigkeit von Decken.

Leichte Schäden können sein:

- Risse im Putz von Wänden
- Vergrößerung bereits vorhandener Risse

- Abriss des Verbundes von Trenn- und Zwischenwänden zu tragenden Wänden oder Decken

Die Auswirkung von Erschütterungen auf Böden sind unterschiedlich. Vor allem in locker bis mitteldicht gelagerten nichtbindigen Böden (Sande, Kiese) können starke Erschütterungen zu Sackungen des Bodens und damit zu Setzungen von Gründungskörpern führen. Das gilt besonders für häufige Erschütterungen, für gleichförmige Sande und für Böden unterhalb des Grundwasserspiegels (DIN 4150, Teil 3, Abschn. 4.6).

Da in der vorliegenden Arbeit das Schwingungs - Abschirmverhalten im Vordergrund steht und untersucht werden soll, wie sich die Wellenausbreitung mit dem zunehmenden Abstand zur Erschütterungsquelle ändert, werden nachfolgend die Auswirkungen der an der Erdoberfläche überwiegend auftretenden Oberflächenwellen (Rayleighwellen) untersucht.

Der Hauptanteil der Energie dieses in horizontal und vertikale Richtung auftretenden Wellentypes - der langsamsten und gleichzeitig auch am langsamsten abklingenden Welle im Untergrund - wird mit einer Geschwindigkeit von

$$c_R \approx 0.9 \cdot \sqrt{G} / \rho > 100 \text{ m} / \text{ s}$$

an der Oberfläche weitergeleitet.

hierin bedeuten: c_R = Raileighwellengeschwindigkeit G = Schubmodul ρ = Dichte

Gemäß Definition der DIN 4150 werden für die folgenden Untersuchungen die Auswirkungen im Bereich des sogenannten "Fernfeldes", also entlang einer "freien" Wellenausbreitung berücksichtigt. Mathematisch wird im Fernfeld die Amplitudenabnahme der Schwinggeschwindigkeit mit folgender Formel umschrieben:

$$v_l = v_0 \cdot R^{-n} exp^{-\alpha \cdot R}$$

hierin bedeuten:

- v1 = Amplitude der Schwinggeschwindigkeit mm / s
- v_0 = Amplitude der Schwinggeschwindigkeit mm / s in der Entfernung R
- R = Entfernung
- n = Exponent in Abhängigkeit von der Wellenart, Quellengeometrie und Schwingungsart
- α = Abklingkoeffizient m⁻¹

Sind Messwerte bekannt, so kann mit Hilfe der Beziehung

$$\mathbf{v}_{\mathbf{R}_{2}} = \mathbf{v}_{\mathbf{R}_{1}} \cdot \left(\frac{\mathbf{l}_{1}}{\mathbf{l}_{2}}\right)^{\mathbf{n}} \cdot \mathbf{e}^{-\boldsymbol{\omega} \cdot \mathbf{D} \cdot \Delta \mathbf{l}/\mathbf{c}}$$

die Schwinggeschwindigkeit in jeder beliebigen Entfernung berechnet werden. Im Nahbereich der Erregung (~ eine Wellenlänge) kann

und danach

angesetzt werden.

Mit:

n = 1 $v_{R_{\perp}}$: res. Schwinggeschwindigkeitsamplitude am Punkt 1

$\omega \cong 2\pi \ \ \approx 80 = 502 \ 1 \ \ / \ rad \\ v_{R_{a}}: \ res. \ Schwinggeschwindigkeitsamplitude \ am Punkt \ 2$

$$\Delta I = I_2 - I_1$$

 $c_L \cong 200 \ m \ / \ s$

 $c_R \cong 100 \; m \; / \; s$

Hieraus folgt:

$$v_{R_2} = v_{R_1} \cdot \frac{0.80}{5} \cdot e^{-0.25} = v_{R_1} \cdot 0.12 \text{ [mm/s]}$$

$$v_{R_3} = v_{R_2} \cdot \sqrt{\frac{5}{10}} \cdot e^{-0.50} = v_{R_2} \cdot 0.42 \text{ [mm / s]}$$

$$v_{R_4} = v_{R_2} \cdot \sqrt{\frac{5}{15}} \cdot e^{-1,0} = v_{R_2} \cdot 0.21 \text{ [mm / s]}$$

$$v_{R_{5}} = v_{R_{2}} \cdot \sqrt{\frac{5}{20}} \cdot e^{-1.5} = v_{R_{2}} \cdot 0.11 \text{ [mm/s]}$$

Steht kein Messwert zur Verfügung, so kann die resultierende Schwinggeschwindigkeitsamplitude in einer beliebigen Entfernung von der Emission folgendermaßen berechnet werden:

$$\mathbf{v}_{\mathbf{R}} = \frac{\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \sqrt{\mathbf{E}}}{1}$$

Mit:

c₁: Abhängig von der Erregung 10 ÷ 20

c₂: Abhängig vom Boden $0,8 \div 1,0$

E: Eingeleitete Energie [kNm]

I: Entfernung: Emissionsort - Immissionsort

8.4. Entwicklung und Normung der Schwingungsmessung

Messnormen zur Erschütterungsbeurteilung sind bereits in den dreißiger Jahren entstanden. Untersuchungen von REIHER und MEISTER (1931) haben erste Grundlagen zur Beurteilung von Schwingungseinwirkungen, insbesondere auch auf den Menschen, gelegt. Untersuchungen von GERASCH zur Festigkeit von baulichen Anlagen, insbesondere Geschossdecken aus den frühen 1970er Jahren, gaben einige wesentliche Grundlagen zur Bewertung von Schwingungseinwirkungen auf bauliche Anlagen (mündliche Auskunft von BEITZER). Erst in den 1970er Jahren kam wieder Bewegung in die Normungsarbeit. Neuere Erkenntnisse und Fortschritte der Messtechnik führten zunächst zur Spezifikation einer Messgerätenorm (DIN 45669 mit dem Teil 1, Erstausgabe 1980; aktuelle Ausgabe Juni 1995 - Teil 2, Erstausgabe 1984; aktuelle Ausgabe 2004 sowie der neue Teil 3; Ausgabe 2004).

Mit der Vornorm DIN 4150 aus 1975 gab es dann aussagefähige normative Festlegungen zum Erschütterungsschutz. Wegen der anfangs unsicheren Datenbasis konnte erst 1985 / 86 der Weißdruck von DIN 4150 Teil 1 und 3 erscheinen. Im Jahr 1992 wurde dann Teil 2 aufgelegt. Die maßgeblichen Ausgaben sind inzwischen von 1999 bzw. 2001 (Teil 1).

9. Felduntersuchungen zum Abschirmungsverhalten unbewehrter / bewehrter Tragschichten im Erd- und Straßenbau

Für die geplanten Untersuchungen war der Bau von Versuchsfeldern erforderlich, in denen die Messungen unter realitätsnahen Bedingungen analog einer infrastrukturellen Baumaßnahme durchgeführt werden konnten. Darüber hinaus sollten die Abmessungen der Versuchsfelder der flächigen Ausdehnung einer innerörtlichen Verkehrsfläche entsprechen.

Vor Versuchsbeginn wurden eingehende bodenmechanische Prüfungen des Untergrunds vorgenommen und auf einen homogenen Aufbau der Prüffelder geachtet. Die Untersuchungen sollten weiterhin unterschiedliche Untergrundverhältnisse zu Zwecken der Tragfähigkeitsverbesserung konstruktiv gewählter Schichtdicken bei Überschüttungen des Untergrundes umfassen.

Neben einem unbewehrten Erdbaufeld als "Referenzprüfung" wurde zusätzlich der einlagige Einbau eines Geogitters und Geovlieses gewählt.

9.1 Messsystem und Darstellung der Ergebnisse

Die Messungen auf den Versuchsfeldern wurden mit Schwingungsmesssystemen nach DIN 45669, Teil 1 vorgenommen. Die Systeme erlauben die Durchführung normgerechter Messungen nach den Vorschriften der DIN 4150. Hierdurch ist es möglich, sowohl Ergebnisse gemäß Teil 2 (Einwirkungen auf Menschen in Gebäuden) als auch nach Teil 3 (Einwirkungen auf bauliche Anlagen) zu ermitteln.

Die Systeme bestehen aus der Messhardware (Geophone, Verkabelung, Verstärker) und dem weiterverarbeitenden System (A/D - Wandler, Rechner und Verarbeitungssoftware). Als Geophone stehen eine 3-Komponentenstation mit zwei horizontalen und einer vertikalen Messrichtung sowie zwei in vertikale und zwei in horizontale Richtung aufnehmende Komponenten zur Verfügung (7-Kanalmesssystem). Die Messaufnehmer (Geophone) sind einzeln kalibriert nach DIN 45669 und erfüllen somit die Genauigkeitsklasse 1. Die normgerechte Hochpassfilterung bei 1 Hz und Tiefpassfilterung bei 80 (320) Hz ist gewährleistet. Weiterhin besteht Übersteuerungskontrolle über den gesamten Messpfad gem. DIN 45669. Die Komponenten des Meßsystems sind in Abbildung 42 dargestellt.

Abbildung 42: Komponenten des Schwingungsmesssystems

Die Geophone werden über LEMO - Kabel mit den entsprechenden Kanälen des Messsystems verbunden. Die Verbindung zwischen Messsystem und Kabeltrommel erfolgt über "Peitschen". Die freien Kabelenden der Trommeln werden mit den Messverstärkern verbunden. Die Zuordnung der Geophone zu den einzelnen Kanälen liegt durch die individuelle Kalibrierung fest, so dass eine Vertauschung ausgeschlossen ist.

Die Messverstärker und Anti - Alaising - Filter befinden sich in einem eigenständigen Gehäuse, der Analog - Digital - Wandler (A/D) im Rechner. Als Rechner steht ein Pentium III 350 / 128 MB RAM (Notebook) zur Verfügung.

Das unbewertete Signal nach DIN 45669 ist die Standartvariante für Zeitverlaufs -Auswertungen und wird nach BEITZER 2002 im Messverstärker aufbereitet, durch einen Hochpassfilter bandbegrenzt, dann vom A / D - Wandler abgetastet und in digitale Werte umgesetzt (sogen. *Samples*). Die Abtastrate ist entsprechend den Bedingungen des Abtasttheorems an die obere Grenzfrequenz gebunden. Die beiden nominellen Grenzfrequenzen nach DIN 45669 betragen 80 und 320 Hz. Dies erfordert "nachrichtentechnische" obere Grenzfrequenzen (-3 dB Punkt) von jeweils 100 Hz und 400 Hz, die in den Anti - Aliasing - Filtern realisiert sind. Die untere Grenzfrequenz, "nachrichtentechnische" 0,8 Hz wird als Hochpass - Filterung in der Frequenzgangkompensation realisiert (BEITZER 2002).

Der Anwender bedient das Meßsystem durch Menüsteuerung. Die Signale werden als hochauflösende Grafiken auf dem Bildschirm und auf Papier ausgegeben. Während der Messungen ist eine oszilloskopische Darstellung der augenblicklichen Messgrößen aller oder ausgewählter Kanäle möglich. Die Auswertung erfolgt durch Ausgabe bzw. Darstellung in Grafiken und Tabellen. Die Grafik enthält die Darstellungen des Zeitverlaufes für jeden Einzelkanal und der zugehörigen Frequenzanalyse in nebeneinander liegenden Spalten. Die Tabelle umfasst die Ergebnisse der Zeitverlaufsauswertungen für jeden Einzelkanal und gibt hierfür den jeweiligen, gemessenen Spitzenwert $v_{\mbox{\tiny peak}}$ für das unbewertete und das frequenzbewertete Signal an.

Im Einzelnen wird der Einfluss der Schwingungsausbreitung auf die Umgebung einer Erschütterungsquelle gemäß DIN 4150 untersucht, wobei zu Untersuchungszwecken zunächst bewusst auf eine Auswertung der Frequenzanalyse verzichtet wird, um die Datenmengen in überschaubaren Grenzen zu halten. Daher wird für die ersten (statistischen) Untersuchungen nur der Spitzenwert v_{peak} der Schwinggeschwindigkeit in die Prüfungen einbezogen.

9.2. Prüffelder am Standort "Liebenau" und "Beverungen"

Zwei Bauunternehmen aus dem Raum Hofgeismar waren bereit, diese Arbeit aktiv zu unterstützen. Die erforderlichen Prüfflächen wurden zum einen im Zusammenhang mit einem Wegebau nahe des Ortes "Liebenau" in Nordhessen, Kreis Kassel, zur Verfügung gestellt. Das zweite Prüffeld wurde in Ostwestfalen bei "Beverungen", Kreis Höxter, nahe der Weser im Bereich einer Kiesgrube angelegt.

9.2.1 Geographische und geologische Einordnung des Prüffeldes "Liebenau", Kreis Kassel

Das Prüffeld "Liebenau" liegt etwa 200 m östlich der gleichnamigen nordhessischen Ortschaft im Bereich der Diemelaue (s. Abb. 43 und 44). Angrenzend zur Diemelaue befinden sich Höhenzüge, die am Westrand der hessischen Senke liegen und als nördlicher Ausläufer des Habichtswälder Berglands gelten (MEIBURG 1983). Die Höhenzüge bestehen vorrangig aus Gesteinen des Muschelkalks und sind tektonisch der Nethe-Scholle zuzuordnen. Die Hänge sind im unteren Bereich mit Lösslehm überdeckt, dessen Mächtigkeit mit ansteigender Höhe abnimmt. Der Standort des Versuchsfeldes befindet sich in der Talaue. Der Auelehm ist mit dünnen Sandund Kieslagen durchsetzt und wird ab 1,5 m unter Gelände von einem sandigen Auekies unterlagert. Nach der tektonischen Karte, Beiblatt zur GK 4521, liegen die Talablagerungen dem Oberen Buntsandstein (Röt) auf, der vermutlich mit flacher Neigung nach Nordwesten einfällt.

Abbildung 43: Lage des Versuchsfeldes Liebenau und Einordnung in die Geologische Karte (GK 4521, Liebenau, 1983)

Abbildung 44: Beginn des Wegebaues, im Hintergrund der Ortsrand von Liebenau

Zur Feststellung des natürlichen Bodenaufbaus wurden im mittleren Bereich des Prüffeldes am 30.04.2004 eine Rammkernsondierung nach DIN 4020 – 4022 (1990) sowie eine Rammsondierung (DPL) nach DIN 4094 (1990) ausgeführt. Die Profile der Sondierungen sind zusammen mit der örtlichen Situation in Abbildung 45 dargestellt.

PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGSAUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

Abbildung 45: Darstellung der Sondier-Profile, Lage und Unterteilung des Prüffeldes Liebenau

Auf der Grundlage der Sondierungen wird der Profilaufbau nachfolgend zusammen-

fassend beschrieben.

1. Schichtzone

Oberboden

aus **Schluff,** organisch, feinsandig, schwach tonig - steif

Basis: 0,30 m unter GOK.

2. Schichtzone

Auenlehm

aus **Schluff** feinsandig, tonig, weich bis steif Basis: 1,50 m unter GOK.

3. Schichtzone

Terrassenkies	aus	Kies,	steinig,	sandig,	schwach			
	schluffig, schwach tonig							
	dicht bis sehr dicht gelagert							

Bei den Sondierungen konnte in einer Tiefe von 2,00 m unter GOK kein weiterer Rammfortschritt erzielt werden, da die anstehenden Terrassenkiese eine dichte bis sehr dichte Lagerung aufweisen.

Grundwasser wurde im Bohrloch am 30.04.2004 in einer Tiefe von 0,7 m unter Geländeoberkante eingemessen. Es ist anzunehmen, dass es sich um gespanntes Grundwasser innerhalb der kiesigen Horizonte handelt, das im Bereich des Bohrloches auf 0,7 m unter Gelände angestiegen ist.

9.2.2 Ermittlung der relevanten Bodenkennwerte

Während der Sondierarbeiten wurden aus den einzelnen Horizonten Bodenproben entnommen und anschließend im Labor Kornverteilungen nach DIN 18123 (1996) und weitere Bodenkennwerte ermittelt. Die einzelnen Körnungslinien sind in der Abbildung 46 logarithmisch als Kornsummenkurve aufgetragen:

Die Körnungslinien der Proben P 1 und P 2 zeigen einen schluffigen, stark feinsandigen und wechselnd tonigen Auelehm. Die Probe P 3 entspricht einem grobkörnigen nichtbindigen Kies. Die Probe 3 wurde den ab etwa 1,2 Tiefe anstehenden Terrassenkiesen entnommen.

Von den bindigen Bodenproben wurden die Zustandsform und die Konsistenzgrenzen nach DIN 18122 Teil 1 und 2 (1997) ermittelt. Die Ergebnisse sind im Laborstammdatenblatt (Abbildung 47) zusammengefasst.

PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGSAUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

Abbildung 46: Körnungslinien der Proben P 1 bis P 3, Prüffeld Liebenau

Projekt : Lebenau Ort : Prüffeld Datum :13.05.2004 Bearbeiter :su						L	abors	tamm	datei	nblat	tt ^{sa}	Soden u Soden u S. Schul chverständiger genieur- und	ind Umw bert Gmk fur Umweltgeolog	elt oH jie BE	3 U	>			
				0.4.			_	Kornve	rteilung:	- C	122	TT	Wasser	rgehalt:	1 Annuall	Caluman	Zustandsfo	rm:	TN-
Tiefe unter GOK	⊏ ungest∂ ∣ gestört	Bodenart aori			< 0.002 mm	0.002-0.06 mm	0.06-2.0 nm	2 0-60 mm	d(60/d10)	ea	grenze WL (%)	grenze	grenze Ws	zahl Ip	zahl Ic	lāssi			
0,4-1,2	gestört	Schluff,	, fein	sandig				2.6	48.9	48.5	-	8.2	24,1	30.6	15.1	11,2	15.5	0,41	1,1 *
0,4-1,0	gestört	Schluff,	fein	sandig				7.4	50.6	40.6	1.4	21,2	22,4	30.9	18.9	15,9	12,0	0,71	8,9 *
													_		ORG	ANISCHE	GEHALTE	E (C _{org})	
enz					-		-												
zahi le		2	1.25		1.0		0.75		^{0.50} P 1: 3,85% / P 2: 3,21 %										
orm	fe	est	ha	lbfest	s	teif	W	veich	brei	ig		flüssi	g						
	-						1	8	1			-							
Bodenart		W	's		Wp				WB		,	VL W	í <u>n</u>						
.0.		1	1,2		15,1		24,1				2	\$0,6							
s.o.		1.	5,9		18,5		22,4				2	60,9							
tszahl I _A	nach	SKEMPT	ON		A	KTIV	1	NORM	A IN	AKTIV									
			20				_				D1	_							
			20				/		\square			~							
			15	드	\succ		-	10	.75		Р2 Г	ĩ							
		Ip	[%]	Ľ		4/		1				٦							
			10	I _A =	=1,25	X	/												
	Tiefe unter GOK (m) 0.4-1.2 0.4-1.2 0.4-1.0 nz eabl le orm Bodenart 	Tiefe unter GOK (m) gestört 0,4-1,2 gestört 0,4-1,0 gestört nz rahl le fr Bodenart fr 3.0. fr 3.0. fr box fr	Tiefe unter ungestor GOK gestor GOK gestor GOK gestor GOK gestor GOK gestor Schluff 2 nz 2 cable Le 2 orm fest Bodenart 9 .0. 1 .0. 1 tszahl I A nach SKEMPT Iz 1	File Image for the second s	operation instant Bode Triefe unter GOK (m) instant Bode 0.4-1,2 gestort Schluff, feinsandig 0.4-1,2 gestort Schluff, feinsandig 0.4-1,0 gestort Schluff, feinsandig nz schluff, feinsandig instantig nz schluff, feinsandig instantig statt ws, instantig iszahl Ic 11,2 instantig iszahl I A nach SKEMIPTON 20 instantig 15 15 15 10 15 10 17	Bodemart ws ws and Fest 11,2 15,9 and fest 11,2 15,9 and fest 11,2 15,9 and and 15,9 18,9 and and and 15,9 and and and and and and and and and and and and and and and and and and and and	Bodenart Ws Ws and I c 11.2 15.1 Image toring 11.2 16 Image toring Image toring Image toring Image toring Image toring	operation Encoded and the second and	Kornver earbeiter :su Kornver igestort GOK (m) igestort Schluff, feinsandig 0.4-1,2 gestort Schluff, feinsandig 0.4-1,2 gestort Schluff, feinsandig 7.4 Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"C	Kornverteilung: Bodenart Ion Schluff, feinsandig 2.6 0.4-1,2 gestört gestört Schluff, feinsandig 0.4-1,2 gestört gestört Schluff, feinsandig 0.4-1,2 gestört schluff, feinsandig 7.4 50 Schluff, feinsandig 0.4-1,2 gestört schluff, feinsandig 7.4 schluff, feinsandig 7.4 schluff, feinsandig 2.6 wish weich breit halbfest steif weich wish weich steif weich breit 15.9 11,2 15.1 20 15.9 15 1.4 16 1.4 17.2 1.5 18.9 22.4	Kornvertellung: Kornvertellung: Tiefe unter GOK (m) ungestort 0.4-1,2 gestort Schluff, feinsandig 2.6 0.4-1,2 gestort Schluff, feinsandig 7.4 50.6 40.6 1 10 60K 7.4 50.6 40.6 1 10 1 10 1 10 1 10 1 10 1 10 1 15,1 24,1 15,9 30,0 11,2 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 15,1 14 16,1 14	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Kornvereiung: Vassergehalt: Zustandefo 11:10:10:10:10:10:10:10:10:10:10:10:10:1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Abbildung 47: Laborstammdatenblatt

Bei den Laborversuchen wurden Konsistenzen zwischen weich bis breiig ermittelt. Die Tonminerale haben einen quellfähigen Charakter. Im Plastizitätsdiagramm nach Casagrande ist der Boden in den Bereich der leichtplastischen Tone einzuordnen (s. Abbildung 48).

Abbildung 48: Plastizitätsdiagramm nach Casagrande (nach PRINZ 1997)

Die Bodenansprachen vor Ort, sowie die durchgeführten Laboruntersuchungen führen zusammenfassend zu dem Ergebnis, dass im Bereich des Prüffeldes auf dem Planum ein weicher bis steifer Auenlehm ansteht, der in Bezug auf die bekannten Anforderungen des Straßenbaus gemäß ZTVE StB 94/97 und ZTVT StB 95 als unzureichend tragfähiger Baugrund einzuordnen ist.

Zur Ermittlung der Tragfähigkeiten wurden vor und nach der Herrichtung der Prüffelder statische Plattendruckversuche nach DIN 18134 (1993) durchgeführt. Die Drucksetzungslinien der durchgeführten Lastplattendruckversuche sind in der Abbildung 49 dargestellt:

Die Verformungsmodule sind zusammenfassend in der Tabelle 5 dargestellt:

Prüffeld	Ansatzpunkt	Ev1-Wert [MN/m ²]	Ev2-Wert [MN/m ²]	Ev2/Ev1
Planum	UK Prüffeld	9,02	18,67	2,07
Unbewehrt	OK Prüffeld	23,71	53,39	2,25
Geovlies	OK Prüffeld	27,95	63,14	2,26
Geogitter	OK Prüffeld	33,82	91,71	2,71

 Tabelle 5:
 Verformungsmodule nach DIN 18134

PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGSAUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

Abbildung 49: Drucksetzungs-Diagramme der LP-Versuche in Liebenau

9.2.3 Versuchsdurchführung

Zunächst war zu untersuchen, welche Schwinggeschwindigkeiten im Planum auftreten und wie sich diese im Umfeld der Erschütterungsquelle ausbreiten. Anschließend wurden nachfolgende Messreihen gefahren.

- 1. Messreihen "Planum"
- 2. Messreihen "unbewehrte Schottertragschicht"
- 3. Messreihen "geogitterbewehrte Schottertragschicht"
- 4. Messreihen "geovliesbewehrte Schottertragschicht"

Auf dem Planum des ersten Versuchsfeldes "Liebenau" in den Abmessungen I / b = 10,0 / 4,0 m erfolgte sodann der Aufbau der Messeinrichtungen, die gemäß den Abbildungen 50 und 51 angeordnet wurden:

MP 1 = Messpunkt Nr. 1

Abbildung 50: Messanordnung und Abstand zur Erschütterungsquelle eines Testfeldes in Längsrichtung

Abbildung 51: Prüffeld "Planum"

An den jeweiligen Messpunkten wurden die Messwertaufnehmer (Geophone) wie folgt aufgestellt (s. Tabelle 6):

PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGSAUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

Schwingungsmesser	Anordnung	Messrichtung H = Horizontal V = Vertikal	Ankopplung
Kanal 4 - 6 (3-Komponentenstation)	Messpunkt 1	Kanal 4 = H (radial = parallel zur Messstrecke) Kanal 5 = H (quer) Kanal 6 = V	Stahlplatte mit abgerundeten Füßen auf Erdspieß *
Kanal 1 und 3	Messpunkt 2	Kanal 1 = H Kanal 3 = V	
oder		oder alternativ (immer als Pärchen)	abgerundeten Füßen auf Erdspieß *
Kanal 2 und 7	Messpunkt 3	Kanal 2 = H Kanal 7 = V	

 Tabelle 6: Zuordnung Messwertaufnehmer zu den Messpunkten

* n. DIN 45669, Teil 2, Abschn. 5.3.3

Die Ankoppelung der Messwertaufnehmer erfolgte nach normativen Festlegungen der DIN 45669 (1995) mittels Erdspießen (s. Abb. 52). Bei dem Einbau der Erdspieße wurde im Besonderen berücksichtigt, dass die Aufschlagplatte kraftschlüssig auf der Halbraum - Oberfläche auflag.

Abbildung 52: Erdspieß zur Ankoppelung der Schwingungsaufnehmer an das Erdreich

Als Erschütterungserreger wurde ein Verdichtungsgerät des Typs **"Wacker DPU 7060**, eingesetzt (s. Abbildung 53). Es handelt sich hierbei um eine handelsübliche und stark verbreitete Vibrationsmaschine, bei der ein Unwuchterreger fest mit einem im Kontaktbereich mit dem Schüttgut ebenen Stahlkörper als Arbeitsteil verbunden ist. Dieses Arbeitsteil trägt zur Schwingungsisolierung einen Aufbau, der u.a. den Antriebsmotor umfasst. Hierbei bewirkt der Erreger den Bewegungsvortrieb der Vibrationsplatte.

Das dynamisch arbeitende Geräte beruht auf dem Prinzip, dass die Fliehkräfte die exzentrisch angeordneten Massen der Walze (Bandage) zu vertikalen Schwingungen anregt. In der Abbildung 53 wird das eingesetzte Gerät gezeigt. Gemäß DIN 4150, Teil 1 handelt es sich hier um eine stationäre Erschütterungsquelle (Oberflächenwelle, periodisch).

Abbildung 53 : Vibrationsmaschine

Geräteparameter It. Hersteller:

Betriebsgewicht
Arbeitsbreite
Zentrifugalkraft
Frequenz
Maximale Leistung

Im normalen Einsatz bewegt sich das Gerät langsam in Bewegungsrichtung vorwärts, so dass durch Veränderung des Abstandes zu den Messorten eine Veränderung des Amplitudenspektrums und der -spitzenwerte auftritt. Um dies zu vermeiden, wurde das Gerät im Versuchsbetrieb am Standort gehalten.

Nach einer Null - Messung mit allen Messwertaufnehmern zur Einstellung der Systemparametrierung (0 - Messung) wurde für die Messungen ein Zeitspektrum von 10 sec gewählt. Der anschließende Vorgang umfasste in Folge 10 Messdurchgänge, um eine mögliche Streuung der Schwingungsspitzen infolge versuchsbedingter Ungleichmäßigkeiten oder äußerer Einflüsse auszugrenzen. Für die 4 Prüffelder sind somit 40 Messungen mit insgesamt 280 Einzelergebnissen protokolliert worden.

In der Anlage 1 sind die oszilloskopischen Grafiken und Ergebnisse der Spitzengeschwindigkeit der Messungen Nr. 1 bis 40 abgebildet.

1. Messreihen "Planum"

Die Einzelergebnisse sind in der nachstehenden Tabelle 7 dokumentiert. Die unterste Zeile enthält die arithmetischen Mittelwerte aus den Einzelmessungen

PRAXISORIENTIERTE WIRKUNGSVERGLEICHE BIEGESTEIFER / BIEGESCHLAFFER GEOKUNSTSTOFFE IM ERD- UND STRASSENBAU UNTER BERÜCKSICHTIGUNG DER SCHWINGUNGSAUSBREITUNG AUF DER HALBRAUMOBERFLÄCHE

Messung	Mess	spunkt 1(a = 2	,50 m)	Messpunkt	2 (a = 5,00 m)	Messpunkt 3 (a=10,00 m)		
Nr.	Horizontal (x)	Horizontal (y)	Vertikal (z)	Horizontal	Vertikal	Horizontal	Vertikal	
		v _{peak} = mm / s		V _{peak} =	mm / s	V _{peak} =	mm/s	
1	4,765	0,510	4,562	0,867	4,598	4,507	0,007	
2	4,433	0,856	0,797	4,438	2,442	0,535	0,884	
3	2,537	2,539	2,941	0,618	1,616	0,516	0,654	
4	3,368	3,029	4,833	0,903	2,376	0,560	0,008	
5	2,191	2,245	2,216	0,636	2,275	2,185	0,786	
6	1,247	1,727	2,368	2,265	1,252	1,453	0,593	
7	2,945	3,086	3,985	0,894	1,916	0,457	0,704	
8	0,009	1,496	0,657	0,833	1,616	0,421	0,878	
9	2,253	3,967	4,019	0,700	1,990	1,975	0,726	
10	2,913	2,386	3,729	1,953	2,401	0,662	0,007	
Mittelwert	2,666	2,184	3,011	1,411	2,248	1,327	0,525	
Tabelle 7: N	Aesswertzusa	ammenstellun	a			4	.765 = Maximal-	

 Tabelle 7: Messwertzusammenstellung

 wert

0,009 = Minimalwert

Die Einzelmesswerte wurden dann in doppellogarithmischer Darstellung in Abbildung 54 aufgetragen und spiegeln das Spektrum der Streuung wider.

Abbildung 54: Doppellogarithmische Auftragung der Messwerte bei a = 2,50 m / 5,00 m / 10,00 m

2. Messreihen "unbewehrte Schottertragschicht"

In dem zweiten Teilfeld wurde auf das Planum eine d = 0,25 m dicke Lage eines weitgestuften, kohäsionslosen und normal erdfeuchten Kalkstein - Splitt - Schottergemisches der handelsüblichen Lieferkörnung 0 / 64 mm lose aufgebracht und eingeebnet.

[.]

Nachstehende Abbildung 55 zeigt schematisch den Versuchsaufbau mit aufgebrachter unbewehrter Schottertragschicht.

eines Testfeldes in Längsrichtung

In der nachstehenden Tabelle 8 sind die Messwerte aufgelistet. Die untere Zeile enthält wieder die arithmetischen Mittelwerte aus den Einzelmessungen.

Messung	Mess	spunkt 1(a = 2	,50 m)	Messpunkt	2 (a = 5,00 m)	Messpunkt 3 (a=10,00 m)		
Nr.	Horizontal (x)	Horizontal (y)	Vertikal (z)	Horizontal	Vertikal	Horizontal	Vertikal	
11	5 553	$v_{\text{peak}} = \min / S$	1 000	V _{peak} =	6 854	$v_{\text{peak}} =$	2 350	
11	3,333	0,990	1,000	0,302	0,004	0,000	2,009	
12	7,210	4,226	9,266	2,179	4,266	1,199	1,245	
13	4,522	1,265	6,290	1,367	3,947	3,647	1,331	
14	0,986	0,848	0,010	3,516	3,575	4,178	0,578	
15	2,951	2,524	0,740	0,365	2,497	1,719	0,008	
16	6,009	3,229	10,516	0,770	4,845	2,953	1,042	
17	4,204	4,207	0,015	1,065	2,112	1,082	0,863	
18	5,029	0,575	4,050	0,562	1,189	3,930	0,008	
19	4,466	2,631	1,444	3,734	3,797	4,467	0,007	
20	4,903	12,090	1,404	0,652	4,733	1,291	0,686	
Mittelwert	4,583	3,259	3,4735	1,957	3,782	2,447	0,813	

 Tabelle 8: Messwertzusammenstellung

 wert

7,210 = Maximal-

0,986 = Minimalwert

Nachstehende doppellogarithmische Grafik der Abbildung 56 zeigt das Messwertespektrum der Einzelmessungen.

Abbildung 56: Doppellogarithmische Auftragung der Messwerte bei a = 2,50 m / 5,00 m / 10,00 m

3. Messreihen "geogitterbewehrte Schottertragschicht"

Im dritten Versuchsvorgang wurde auf dem Planum ein Geogitter der Fa. Tensar GmbH mit der Produktbezeichnung "SS-30" vollflächig verlegt und mit den Erdbaustoffen der Schottertragschicht entsprechend der 2. Versuchsanordnung überschüttet. Nachstehende schematische Darstellung verdeutlicht den Versuchsaufbau (Abbildung 57).

Abbildung 57: Einbau geogitterbewehrte Schottertragschicht eines Testfeldes in Längsrichtung

MP 1 = Messpunkt Nr. 1

Die Spitzenwerte der Schwinggeschwindigkeiten beim nachfolgenden Erschütterungsvorgang können der nachstehenden Tabelle 9 entnommen werden.

Messung	Mess	spunkt 1(a = 2	,50 m)	Messpunkt	2 (a = 5,00 m)	Messpunkt	3 (a=10,00 m)
Nr.	Horizontal (x)	Horizontal (y) v _{peak} = mm / s	Vertikal (z)	Horizontal _{Voeak} =	Vertikal mm / s	Horizontal _{Voeak} =	Vertikal mm / s
21	1,467	1,333	0,516	0,790	0,884	0,758	0,497
22	7,808	1,394	5,195	0,049	2,996	2,980	1,452
23	7,885	4,167	1,144	4,155	1,149	3,193	4,266
24	4,742	4,557	4,616	0,954	3,216	2,961	4,922
25	4,354	0,010	4,417	3,089	3,259	2,797	0,914
26	4,420	0,010	4,828	4,392	3,181	3,161	2,922
27	1,081	1,074	4,017	2,744	5,071	4,400	1,121
28	0,959	2,298	0,968	2,276	4,888	0,956	2,876
29	4,529	4,776	2,249	3,840	1,228	2,217	1,265
30	4,177	4,193	6,328	2,498	3,830	2,526	5,584
Mittelwert	4,142	2,381	3,428	2,479	2,970	2,595	2,248

 Tabelle 9: Messwertzusammenstellung

 wert

7,885 = Maximal-

0,959 = Minimalwert

Die Abbildung 58 zeigt die Verteilung der Einzelmesswerte.

4. Messreihen "geovliesbewehrte Schottertragschicht"

Im vierten Versuchsvorgang wurde auf dem Planum ein Geovlies der Fa. Naue mit der Bezeichnung Secutex GRK III ebenfalls vollflächig verlegt und wieder mit den Erdbaustoffen der Schottertragschicht entsprechend der 2. Versuchsanordnung überschüttet. In den nachstehenden Abbildungen 59 und 60 ist der Versuchsaufbau dargestellt.

Abbildung 59: Einbau Geovlies punkt Nr. 1 eines Testfeldes in Längsrichtung

Abbildung 60: Prüffeld "geovliesbewehrte Tragschicht"

Messung	Messpunkt 1 (a = 2,50 m)		Messpunkt 2 (a = 5,00 m)		Messpunkt 3 (a=10,00 m)		
Nr.	Horizontal (x)	Horizontal (y)	Vertikal (z)	Horizontal	Vertikal	Horizontal	Vertikal
		v _{peak} = mm / s		V _{peak} =	mm / s	V _{peak} =	mm / s
31	4,491	2,681	6,502	2,377	2,807	0,730	1,261
32	4,863	6,831	0,030	2,546	1,275	0,674	6,883
33	4,852	4,513	5,992	2,251	2,333	2,210	4,902
34	8,911	8,880	9,013	8,905	0,027	1,112	4,939
35	4,611	4,640	0,031	6,318	0,025	1,996	8,226
36	7,807	0,814	8,173	2,101	3,549	0,807	1,311
37	4,598	0,046	0,029	8,739	4,794	0,748	8,779
38	7,740	2,829	6,685	2,075	2,961	0,738	1,036
39	0,032	4,005	7,977	7,864	2,801	1,806	0,948
40	0,726	2,427	0,030	7,384	0,028	0,702	0,043
Mittelwert	4,863	3,767	4,446	5,056	2,060	1,152	3,833

Die Tabelle 10 enthält die Messwerte.

Tabelle 10: Messwertzusammenstellung

8,911 = Maximalwert

MP 1 = Mess-

0,032 = Minimalwert

Die Abbildung 61 zeigt grafisch das Spektrum der Einzelmesswerte.

Abbildung 61: Doppellogarithmische Auftragung der Messwerte bei a = 2,50 m / 5,00 m / 10,00 m

9.2.4 Erläuterungen zu den oszilloskopischen Darstellungen in den Anlagen

Nachstehende Abbildung 62 zeigt ein typisches Bild der Schwingungen der exemplarisch ausgewählten Messung Nr. 14. Die numerisch markierten Elemente der Darstellung werden nachfolgend erläutert.

Abbildung 62: Oszilloskopisches Ergebnis der Messung Nr.14 als Beispiel

- zu 1. Die "Wellen-Spitzen" sind in erster Linie aufgrund der gestauchten Darstellung zu erklären. Mit der Zoom-Funktion des eingesetzten Schwingungsmesssystems kann die Darstellung gestreckt und somit der Schwingungsverlauf detailliert betrachtet werden.
- zu 2. Der Kanal 6 hat offenbar kein Signal (1/1200 des Vollausschlags) erhalten. Was hier erkennbar wird, ist nur das Rauschen multipliziert mit der Hanning-Gewichtsfunktion. Auch die Frequenzanalyse zeigt, dass das Signal nicht von der Anregung beeinflusst wird (keine erkennbaren Frequenzkomponenten bei 27 und 54 Hz).
- zu 3. und 5.

Die Darstellung wurde in der Sonder-Betriebsart Hanning nach DIN 4150 erzeugt. Man sieht nur das Dauersignal multipliziert mit der Hanning-Gewichtsfunktion (beginnend mit Null, und endend wieder mit Null - Multiplikation mit einer sinus² - Glockenfunktion).

zu 4. Der eingesetzte Rüttler ist handgeführt. Hierdurch treten zufällige Schwankungen in der Ankopplung ans Erdreich auf. Aus diesem Grunde könnte es sinnvoller sein, statt Spitzenwerten der Schnelle gemäß DIN 4150 besser auf die Ergebnisse der FFT-Frequenzanalyse zurückzugreifen. Diese sind immer Mittelwerte über die gesamte ausgewertete Signallänge, wodurch Zufälligkeiten eliminiert werden, die eine Auswertung nach Spitzenwerten stark streuen lassen. Die kurzen Anregungsmaxima führen außerdem zu der Aufspaltung der Frequenzanalyse um die jeweilige Anregungsfrequenz herum.

9.2.5 Auswertung

Die im Verlauf der Feldversuche auf dem Planum bzw. auf der Schotteroberfläche gewonnenen Messwerte wurden in Form der horizontalen und vertikalen Amplitudenmittel in doppellogarithmischen Darstellung auftragen (s. Abb. 63). Die Ergebnisse zeigen im Testfeld Liebenau das unterschiedliche Verhalten bei Erschütterungseinwirkung der verschiedenen Systeme:

Mittel 1. für "Planum"

Mittel 2. für "unbewehrte Schottertragschicht"

Mittel 3. für geogitterbewehrte Schottertragschicht"

Mittel 4. für geovliesbewehrte Schottertragschicht"

Abbildung 63: Amplitudenmittel sowie logarithmische Trendlinie "horizontale und vertikale Antworten"

Um einen Vergleich zwischen den *"horizontalen"* und *"vertikalen"* Messergebnissen herstellen zu können, erfolgt in den nachstehenden Abbildungen 64 und 65 getrennt die Darstellung der betreffenden Antworten.

Abbildung 64: Amplitudenmittel sowie logarithmische Trendlinie "horizontale Antworten"

Abbildung 65: Amplitudenmittel sowie logarithmische Trendlinie "vertikale Antworten"

Ausgehend von den Referenzmessungen auf dem Planum des 1. Teilfeldes (Mittel 1) ergeben sich für die Messungen des 2. bis 4. Teilfeldes deutliche Abweichungen. Die Werte auf der unbewehrten Schottertragschicht (Mittel 2) zeigen zwar höhere Spitzenwerte der Schwinggeschwindigkeiten, das Abklingverhalten hinsichtlich des Verlaufes entspricht aber etwa dem der Messung auf dem Planum (s. Mittelwertlinie Abbildung 63).

Die bewehrten Schottertragschichten (Mittel 3 und 4) haben beide in der Gesamtbetrachtung höhere Schwinggeschwindigkeiten ergeben, sowohl gegenüber den Referenzmessungen auf dem Planum als auch gegenüber der unbewehrten Schottertragschicht. Lediglich im Nahbereich zur Erregerquelle (hier bis Messpunkt I = 5,00 m) liegt der Mittelwert der Schwinggeschwindigkeit der geogitterbewehrten Tragschicht unterhalb des Wertes der unbewehrten Tragschicht.

Bei den "horizontalen" und "vertikalen" Antworten war für das Prüffeld mit bewehrter Schottertragschicht gegenüber der Referenzmessung auf dem Planum eine deutlich höhere Schwinggeschwindigkeit festzustellen. Allerdings verläuft das Abklingen der Schwinggeschwindigkeit in horizontaler Messrichtung nahezu proportional zur Referenzmessung (s. Mittelwertlinie Abbildung 64 und 65).

Zwischen den horizontalen Messungen im Prüffeld der geogitter- und geovliesbewehrten Tragschicht liegen verhältnismäßig geringe Unterschiede vor. Am Messpunkt I = 10,00 m sind sogar nahezu identische Messwerte ermittelt worden.

Die vertikalen Antworten in den Prüffeldern der geogitter- und -vliesbewehrten Tragschicht weisen gegenüber den Werten der unbewehrten Tragschicht ebenfalls höhere Schwinggeschwindigkeiten auf. Nur im Nahbereich zur Erregerquelle sind geringere Schwinggeschwindigkeiten gemessen worden, die jedoch auf Abschirmeffekte kaum Bedeutung haben.

9.3. Geographische und geologische Einordnung des Prüffeldes "Beverungen", Kreis Höxter

Das Prüffeld "Beverungen" liegt etwa 500 m ost-nordöstlich der gleichnamigen ostwestfälischen Ortschaft im Bereich der Weseraue (s. Abbildung 66). Westlich grenzen Gesteinsformationen des Muschelkalks an die Weseraue an. Östlich der Weser befindet sich vorrangig Buntsandstein. Diese Höhenzüge gehören zum westlichen Rand des Solling-Gewölbes, das vornehmlich durch die Gesteine des Buntsandsteins charakterisiert ist (GLNW 1979). Die geologische Karte GK-C4318 (Paderborn) stuft die Position des Prüffeldes Beverungen in Übergangsbereiche zwischen Auenlehm und Niederterrassenkiese/-sande ein. Der Auelehm ist bereits abgetragen. Die Mächtigkeiten der Terrassenkiese können bis 10,0 m betragen. Das Prüffeld liegt auf dem Gelände einer im Abbau befindlichen Kiesgrube der Schaperdot Kieswerke GmbH. Die Kiese werden bis zu einer Tiefe von 8,0 m abgebaut.

Abbildung 66: Lage des Versuchsfeldes Beverungen, Kreis Höxter, und Einordnung in die Geologische Karte (C 4318, Paderborn, 1979)

Die Abbildungen 67 und 68 zeigen die örtliche Situation.

Abbildung 67: Standortsituation im Umfeld, Beverungen bei Höxter

Abbildung 68: Kiesbaggergrube mit nahezu senkrechtem Einschnitt

Etwa 50,0 m nördlich des Prüffeldes befindet sich im Bereich einer bereits abgebauten Fläche ein Baggersee mit einem Wasserstand von 3,1 m unter GOK.

Der Bodenaufbau und die Lagerungsdichte wurden im Bereich des Prüffeldes durch eine Rammkernsondierung nach DIN 4020 - 4022 und eine Rammsondierung nach DIN 4094 untersucht (Abb. 69).

Abbildung 69: Profildarstellungen der Sondierungen, Lage und Aufbau des Prüffeldes Beverungen

Auf der Grundlage der örtlichen Feststellungen wird der Profilaufbau nachfolgend übersichtlich und zusammenfassend beschrieben.

1. Schichtzone

	Niederterrasse	<i>Kies</i> , sandig, schwach schluffig, mitteldicht gelagert Basis: 0,80 m unter GOK.
<u>2. Schichtzone</u>		
	Niederterrasse	<i>Kies</i> sandig, schwach schluffig, mitteldicht bis dicht gelagert Basis: 1,20 m unter GOK.

3. Schichtzone

Niederterrasse

Kies, sandig, schwach schluffig dicht bis sehr dicht gelagert

In den Sondierungen konnte aufgrund Auslastung des Bohrgerätes in Tiefen von 2,00 m unter GOK, konnte kein weiterer Rammfortschritt erzielt werden.

Die Gemengteile der Kiese bestehen vorrangig aus Buntsandstein- und Muschelkalkgeröllen. Vereinzelt sind quarzitische Kiesel enthalten.

Grundwasser wurde bis zur sondierten Endtiefe nicht festgestellt. Nach Beobachtung des nahe gelegenen Baggersees, wird Grundwasser in Tiefen ab 3,0 m unter GOK angenommen.

9.3.1 Ermittlung der relevanten Bodenkennwerte

Aus dem Bohrkern der Rammkernsondierung wurde eine Mischprobe zusammengestellt (MP 1) und der Wassergehalt nach DIN 18121, sowie die Kornverteilung nach DIN 18123 bestimmt. Abbildung 70 zeigt die Kornverteilung als Summenkurve nach logarithmischer Auftragung.

Die Körnungslinie zeigt einen sandigen, schwach schluffigen Kies. Der Wassergehalt liegt bei 5,4 Gewichtsprozent.

Vor- und nach Herrichtung der Prüffelder wurden Lastplattendruckversuche nach DIN 18134 durchgeführt. Die Drucksetzungs-Diagramme sind auf Abb. 71 dargestellt.

Abbildung 70: Kornverteilung nach DIN 18123

Die ermittelten Verformungsmodule sind in Tabelle 11 zusammengefasst:

Prüffeld	Ansatzpunkt	Ev1-Wert [MN/m ²]	Ev2-Wert [MN/m ²]	Ev2/Ev1
Planum	UK Prüffeld	23,24	61,32	2,64
unbewehrt	OK Prüffeld	56,43	117,37	2,08
Geovlies	OK Prüffeld	63,81	134,96	2,12
Geogitter	OK Prüffeld	70,68	156,06	2,21

Tabelle 11: Verformungsmodule nach DIN 18134

Die Verformungsmodule zeigen, wie bei den zuvor beschriebenen Prüfungen in Liebenau, einen Anstieg der Tragfähigkeit des Bodens von unbewehrter Fläche zu bewehrter Tragschicht mit Geovlies und Geogitter.

Abbildung 71: Drucksetzungslinien der Lastplattendruckversuche

9.3.2 Versuchsdurchführung

Das Prüffeld Beverungen befindet sich in einer Kiesgrube der Fa. Schaperdot Kieswerke GmbH. Die kiesbedeckte Oberfläche wurde hier ebenso wie am vorbeschriebenen Standort Liebenau in vier Felder eingeteilt. Die Abmessungen betrugen hier jeweils I / b = 12,0 / 4,0 m

Die Untersuchung der Ausbreitung der Schwinggeschwindigkeit wurde in gleicher Weise durchgeführt wie am Standort "Liebenau". Es wurden daher die Messreihen gefahren:

- 1. Messreihen "Planum"
- 2. Messreihen "unbewehrte Kiessandschicht"
- 3. Messreihen "geogitterbewehrte Kiessandschicht"
- 4. Messreihen "geovliesbewehrte Kiessandschicht"

Der Aufbau der Messeinrichtungen des ersten Teilfeldes (1. Messreihe) ist auf den Abbildungen 72 und 73 dargestellt.

Abbildung 72: Messanordnung und Abstand zur Erschütterungsquelle eines Testfeldes in Längsrichtung

MP 1 = Messpunkt Nr. 1

Abbildung 73: Messanordnung der 1. Messreihe, Beverungen bei Höxter

Messwertaufnehmer (Geophone) sind gemäß Tabelle 12 aufgestellt worden:

Schwingungsmesser	Anordnung	Messrichtung	Ankopplung
		H = Horizontal V = Vertikal	
Kanal 4 - 6 (3-Komponentenstation)	Messpunkt 1	Kanal 4 = H (radial = parallel zur Messstrecke) Kanal 5 = H (quer) Kanal 6 = V	Stahlplatte mit abgerundeten Füßen auf Erdspieß *
Kanal 1 und 3	Messpunkt 2	Kanal 1 = H Kanal 3 = V (als Pärchen)	Stahlplatte mit abgerundeten Füßen auf Erdspieß *
Kanal 2 und 7	Messpunkt 3	Kanal 2 = H Kanal 7 = V (als Pärchen)	Stahlplatte mit abgerundeten Füßen auf Erdspieß *

 Tabelle 12: Zuordnung Messwertaufnehmer zu den Messpunkten
 * n. DIN 45669, Teil 2, Abschn. 5.3.3

Die Halbraumoberfläche wurde hier mit Hilfe eines handelsüblichen Vibrationsverdichtungsgerätes des Typs "BOMAG BP 23 / 48" zu dynamischen Schwingungen angeregt. Die Abbildung 74 zeigt das eingesetzte Gerät.

Abbildung 74: Vibrationsmaschine

Geräteparameter It. Hersteller:137 kgBetriebsgewicht630 mmArbeitsbreitek.A.Zentrifugalkraftk.A.Frequenz4 kWMaximale Leistung

Die DIN 4150, Teil 1, Abschn. 5.2.3, ordnet das Gerät ebenfalls als eine stationäre Erschütterungsquelle (Oberflächenwelle, periodisch) ein. Die Arbeitsweise im Ver-

suchsbetrieb und der mechanische Vorgang ist identisch mit dem Verfahren am Standort "Liebenau".

In der im Anhang beigefügten Anlage 2 sind die oszilloskopischen Grafiken und Ergebnisse der Spitzengeschwindigkeit der Messungen Nr. 1 bis 40 abgebildet.

1. Messreihen "Planum"

Messung	Mess	spunkt 1(a = 2	,50 m)	Messpunkt	2 (a = 5,00 m)	Messpunkt	3 (a=10,00 m)
Nr.	Horizontal (x)	Horizontal (y)	Vertikal (z)	Horizontal	Vertikal	Horizontal	Vertikal
		v _{peak} = mm / s		V _{peak} =	mm / s	V _{peak} =	mm / s
1	0,422	2,117	0,010	2,151	0,410	2,316	0,177
2	1,743	1,753	1,436	0,376	2,399	0,486	1,816
3	0,401	2,735	0,145	0,529	0,538	0,398	0,150
4	1,574	1,551	1,042	1,016	1,898	0,869	0,142
5	0,006	0,014	2,690	0,335	5,852	0,166	0,171
6	0,511	0,524	0,513	0,274	0,511	5,144	1,618
7	1,264	2,306	1,194	0,427	1,894	0,370	0,130
8	2,595	1,797	0,160	0,329	4,506	0,333	0,347
9	1,819	1,812	3,585	0,666	1,817	0,287	1,885
10	0,646	0,013	0,140	0,137	0,808	0,297	0,010
Mittelwert	1,098	1,462	1,092	0,624	2,063	1,067	0,645

Die nachstehende Tabelle 13 enthält die Messergebnisse.

Tabelle 13: Messwertzusammenstellung

2,595 = Maximalwert0.006 = Minimalwert

Die Einzelmesswerte wurden in die nachstehende doppellogarithmische Darstellung der Abbildung 75 aufgetragen und zeigen die Streuung der Einzelmesswerte.

2. Messreihen "unbewehrte Kiessandtragschicht"

Im Gegensatz zum Standort "Liebenau" wurden hier im zweiten Prüffeld zwei Schichtlagen eines weitgestuften, nahezu kohäsionslosen und normal erdfeuchten Kies - Sand - Gemisches mit dem vor Ort abgebauten Rundkorn-Material (0 / 45 mm) mit jeweils einer Höhe von H = 0,25 m aufgebracht. Die einzelnen Einbaulagen wurden jeweils dreimal verdichtet, so dass eine dicht gelagerte Schicht über dem Planum vorhanden war.

Die nachstehende Abbildung 76 zeigt den Versuchsaufbau mit aufgebrachter unbewehrter Kiessandtragschicht.

1			10,00 m
		5,00 m	
	2,50 m		
	~		
Ercobüt	torupacquello		
Erschut			
	MP 1	MP 2	MP 3
र	* •	 Kiessandtragschic 	ht d = 0,50 m auf Planum \checkmark

Abbildung 76 : Einbau unbewehrte Kiessandtragschicht eines Testfeldes in Längsrichtung

MP 1 = Messpunkt Nr. 1

Am Rand des Prüffeldes wurde eine Abgrabung vorgenommen, um den Aufbau des Kies - Sand - Gemisches bildlich darzustellen. Die nachstehende Abbildung 77 zeigt den Abgrabungsbereich.

Abbildung 77: Abgrabung neben dem Prüffeld

Die in dem Prüffeld gemessenen Werte sind in der nachstehenden Tabelle 14 zu-

sammengestellt.

Messung	Mess	spunkt 1(a = 2	,50 m)	Messpunkt	2 (a = 5,00 m)	Messpunkt	3 (a=10,00 m)	
Nr.	Horizontal (x)	Horizontal (y)	Vertikal (z)	Horizontal	Vertikal	Horizontal	Vertikal	
		v _{peak} = mm / s		V _{peak} =	mm/s	V _{peak} =	mm/s	
11	3,057	0,070	1,690	0,199	1,540	0,069	0,226	
12	0,365	1,193	1,467	0,388	1,431	2,589	0,183	
13	0,535	0,011	0,183	0,284	1,497	1,475	0,559	
14	2,942	0,246	1,693	1,461	0,565	0,250	0,256	
15	2,013	1,281	0,197	0,519	2,033	0,237	0,201	
16	2,690	1,177	1,560	0,525	1,219	0,548	0,555	
17	0,154	1,418	0,498	0,485	0,159	2,291	0,008	
18	0,009	1,796	1,654	0,478	0,521	1,633	0,144	
19	0,515	2,631	2,668	0,279	0,504	0,150	1,698	
20	0,912	1,099	0,922	0,008	0,201	0,912	0,479	
Mittelwert	1,319	1,092	1,253	0,463	0,967	1,015	0,431	
Tabelle 14	Tabelle 14: Messwertzusammenstellung							

I abelle 14: Messwertzusammenstellung

0,009 = Minimalwert

Nachstehende doppellogarithmische Grafik der Abbildung 78 zeigt das Messwertespektrum der Einzelmessungen.

3. Messreihen "geogitterbewehrte Kiessandtragschicht"

Für den dritten Versuchsvorgang wurde auf dem Planum der gleiche Gittertyp (SS30) wie am Standort Liebenau vollflächig verlegt und mit der Kiessandschicht entsprechend der 2. Versuchsanordnung überschüttet. Die nachstehende schematische Abbildung 79 verdeutlicht den Versuchsaufbau. Ein Foto davon zeigt Abb. 80.

Messort Nr. 1

Mit der Abbildung 80 wird das Prüffeld mit dem Versuchsaufbau dargestellt.

Abbildung 80: Versuchsanordnung "geogitterbewehrte Kiessandtragschicht"

Messung	Messpunkt 1 (a = 2,50 m)			Messpunkt 2 (a = 5,00 m)		Messpunkt 3 (a=10,00 m)		
Nr.	Horizontal (x)	Horizontal (y)	Vertikal (z)	Horizontal	Vertikal	Horizontal	Vertikal	
		v _{peak} = mm / s		V _{peak} =	mm / s	V _{peak} =	mm / s	
21	0,817	0,278	0,543	0,555	2,214	0,450	0,495	
22	2,076	2,108	0,434	2,081	2,132	0,414	0,007	
23	0,387	5,144	1,492	1,452	0,287	0,276	0,289	
24	1,048	2,491	0,007	0,396	0,320	0,397	0,009	
25	1,393	0,545	0,321	0,527	0,327	1,364	0,554	
26	1,943	1,288	0,353	1,926	1,958	1,945	3,052	
27	3,890	1,867	0,230	1,649	0,239	0,494	0,008	
28	2,004	4,036	0,839	0,820	0,520	0,367	2,058	
29	7,017	2,056	2,067	0,600	2,061	2,039	0,632	
30	1,855	1,817	1,865	0,389	0,400	0,391	0,725	
Mittelwert	2,243	2,163	0,515	1,040	1,046	0,814	0,783	
Tabollo 15.								

Das Ergebnis der Messwerte ist in der Tabelle 15 aufgelistet.

elle 15: Messwertzusammenstellung wert

7.017 = Maximal

0.387 = Minimalwert

In der doppellogarithmischen Abbildung 81 wird die Streuung der Einzelmesswerte grafisch dargestellt.

Abbildung 81: Doppellogarithmische Auftragung der Messwerte bei a = 2,50 m / 5,00 m / 10,00 m

4. Messreihen "geovliesbewehrte Kiessandtragschicht"

Vor dem vierten Versuchsvorgang wurde wieder das Geovlies des gleichen Typs wie am Standort Liebenau vollflächig auf das Planum aufgelegt und mit den Erdbaustoffen der 2. Versuchsanordnung überschüttet. In der Abbildung 82 ist der Aufbau schematisch dargestellt. Die verwendete Geovlies - Rollenware ist in der Abbildung 83 erkennbar.

MP

1

Abbildung 82: Einbau Geovlies Messpunt Nr. 1 eines Testfeldes in Längsrichtung

Abbildung 83: Geovlies-Rollenware

Die Spitzenwerte der Schwinggeschwindigkeiten beim nachfolgenden Verdichtungsvorgang sind der nachstehenden Ergebnisdarstellung der Tabelle 16 zu entnehmen.

Messung	Mess	spunkt 1(a = 2	,50 m)	Messpunkt	2 (a = 5,00 m)	Messpunkt	3 (a=10,00 m)
Nr.	Horizontal (x)	Horizontal (y)	Vertikal (z)	Horizontal	Vertikal	Horizontal	Vertikal
		v _{peak} = mm / s		V _{peak} =	mm / s	V _{peak} =	mm / s
31	1,155	0,283	0,288	0,632	0,514	0,189	0,008
32	0,590	1,214	0,980	0,261	0,392	0,395	0,009
33	3,402	1,070	0,471	0,502	0,466	0,222	0,229
34	0,239	0,246	0,012	1,570	0,470	3,390	0,481
35	3,891	0,272	0,499	0,008	0,498	3,819	0,253
36	1,206	2,009	1,219	0,600	0,504	0,600	0,273
37	0,851	0,684	0,868	0,680	0,283	3,040	0,330
38	1,523	1,298	0,618	1,283	1,526	3,142	0,264
39	2,025	0,193	0,279	0,280	0,737	0,739	0,627
40	0,871	1,793	0,882	1,766	0,433	0,185	0,192
Mittelwert	1,575	0,906	0,611	0,758	0,582	1,572	0,267
Tabelle 16: Messwertzusammenstellung 3,891 = Maximalwert							

0,239 = Minimalwert

Die Abbildung 84 zeigt wieder die Streuung der Einzelmesswerte.

9.3.3 Auswertung

Die Auftragung der in den Feldversuchen ermittelten Messwerte für die horizontalen und vertikalen Amplitudenmittel ist in der nachstehenden doppellogarithmischen Abbildung 85 erfolgt. Die Ergebnisse zeigen die Unterschiede der Systeme:

- Mittel 1. für "Planum"
- Mittel 2. für "unbewehrte Kiessandtragschicht"
- Mittel 3. für geogitterbewehrte Kiessandtragschicht"

Mittel 4. für "geovliesbewehrte Kiessandtragschicht"

Abbildung 85: Amplitudenmittel sowie doppellogarithmische Mittelwertlinie "horizontale und vertikale Antworten"

Zur vergleichenden Betrachtung wurden die Messergebnisse der *"horizontalen"* und *"vertikalen"* Amplitudenmittel in den Abbildungen 86 und 87 getrennt dargestellt.

Abbildung 86: Amplitudenmittel sowie doppellogarithmische Mittelwertlinie "horizontale Antworten"

Abbildung 87: Amplitudenmittel sowie doppellogarithmische Mittelwertlinie "vertikale Antworten"

Unter Zugrundelegung der Referenzmessungen auf dem Planum des 1. Teilfeldes (Mittel 1) konnten gegenüber den Messungen des 2. bis 4. Teilfeldes (Mittel 2 bis 4) Abweichungen festgestellt werden. Die Werte auf der unbewehrten Kiessandtrag-

schicht (Mittel 2) zeigen bereits am ersten Messpunkt (Abstand I = 2,50 m zur Erregerquelle) geringere Spitzenwerte der Schwinggeschwindigkeiten, die mit der Entfernung (Abstand I = 10,0 m) gegenüber den Werten auf dem Planum weiter deutlich abnehmen.

Die Schwinggeschwindigkeit der geogitterbewehrten Kiessandtragschicht (Mittel 3) ist zwar am Messort I = 2,50 m gegenüber dem Messwerte auf dem Planum höher, nimmt jedoch zwischen den Messpunkten I = 5,0 und I = 10,0 m gegenüber den Werten auf dem Planum ebenfalls deutlich ab.

Schließlich ergaben die Messwerte in der geovliesbewehrten Kiessandtragschicht (Mittel 4) am Messpunkt I = 2,50 m gegenüber allen Systemen die geringsten Schwinggeschwindigkeiten. Allerdings zeigte sich auch, dass das Abklingverhalten entlang des Messverlaufs nicht so deutlich ausgeprägt ist, wie sich das bei den übrigen Versuchssystemen dargestellte.

Werden die Amplitudenmittel in die horizontalen und vertikalen Antworten getrennt betrachtet, ergibt sich folgendes Bild.

<u>Horizontale Antworten:</u> Die mittlere Schwinggeschwindigkeit der unbewehrten Kiessandtragschicht (Mittel 2) liegt gering unterhalb des Wertes des Planums (Mittel 1). Es ist ein nahezu gleichartiges Abklingverhalten zu beobachten (paralleler Verlauf der Mittelwertlinie).

Der Messwert (Mittel 3) innerhalb der geogitterbewehrten Kiessandtragschicht zeigt am Messpunkt I = 2,50 m gegenüber den anderen Systemen die höchste Schwinggeschwindigkeit, nimmt aber mit der Entfernung auch am stärksten ab. Darüber hinaus ist zwischen den Messpunkten I = 5,0 m und I = 10,0 m eine Unterschreitung der Schwinggeschwindigkeit gegenüber denen des Planums festzustellen.

Bei der geovliesbewehrten Kiessandtragschicht ist der Messwert (Mittel 4) am Messpunkt I = 2,50 m nahezu identisch mit dem Mittelwert des Planums. Während alle Systeme ein Abklingverhalten mit der Entfernung zur Erregerquelle festgestellt haben, steigen die Schwinggeschwindigkeiten hier mit der Entfernung an.

<u>Vertikale Antworten:</u> Gegenüber den horizontalen Antworten weist der Mittelwert (Mittel 2) der "vertikalen" Schwinggeschwindigkeit der unbewehrten Kiessandtragschicht mit der Entfernung ein deutlich ausgeprägtes Abklingverhalten mit der Entfernung vom Erregerort auf. Das Amplitudenmittel ist bereits am Messpunkt I = 2,50 m deutlich geringer als auf dem Planum.

Der Mittelwert (Mittel 3) der Schwinggeschwindigkeit innerhalb der geogitterbewehrten Kiessandtragschicht besitzt am Messpunkt I = 2,50 m gegenüber der horizontalen Komponente einen geringeren Spitzenwert. Während die horizontalen Antworten ein Abklingen mit der Entfernung registriert haben, steigt die Schwinggeschwindigkeit der vertikalen Antworten an. Im Vergleich zu den Messergebnissen des Planums zeigt die doppellogarithmische Abbildung 87, dass der Mittelwertverlauf dennoch unterhalb der Werte der Referenzmessung liegt.

Die Schwinggeschwindigkeit innerhalb des Systems der "geovliesbewehrten Kiessandtragschicht" hat in der Betrachtung der vertikalen Antworten gegenüber den übrigen Systemen die niedrigsten Mittelwerte (Mittel 4) und ein am deutlichsten ausgeprägtes Abklingverhalten ergeben. Entgegen der Zunahme der Schwinggeschwindigkeit im Messbereich der horizontalen Antworten nehmen die vertikalen Antworten mit der Entfernung ab.

10. Ergebnisvergleich der beiden Feldversuche

Die Durchführung der Messungen und die Messanordnung war an beiden Standorten ähnlich. Aufgrund der eingesetzten Vibrationsmaschinen und des unterschiedlichen Konstruktionsaufbaues der Prüffelder war ein völlig einheitliches Ergebnis der Messungen nicht zu erwarten. Vielmehr sollten in der praxisorientierten Untersuchung Hinweise gefunden werden, ob in unterschiedlichen Tragschichtarten und stärken bei Verwendung gleicher Geogitter und Geovliese ein effektives Abschirmverhalten erreicht werden kann.

Um einen bildlichen Überblick über den Ergebnisvergleich zu erreichen, wurden die Mittelwerte der Schwinggeschwindigkeiten in eine doppellogarithmische Grafik aufgetragen. Die nachstehende Abbildung 88 zeigt die Amplitudenmittel der horizontalen und vertikalen Antworten der einzelnen Prüffelder an den Standorten Liebenau und Beverungen.

Abbildung 88: Amplitudenmittel sowie doppellogarithmische Mittelwertlinie "horizontale und vertikale Antworten" im Vergleich der Standorte "Liebenau" / "Beverungen"

Die Messungen am Standort Liebenau erfolgten mit höherer Betriebsfrequenz der eingesetzten Vibrationsmaschine. Daher sind aufgrund der dynamischen Lasteinleitung in die Halbraumoberfläche die deutlich höheren Schwinggeschwindigkeiten zu erklären. Entgegen den Messergebnissen am Standort Beverungen, bei denen ein Abschirmungseffekt abgeleitet werden konnte, haben die Feldversuche am Standort Liebenau gegenüber der Referenzmessung auf dem Planum höhere Schwingungsgeschwindigkeiten festgestellt. Als Ursache wird ein Resonanzeffekt innerhalb der unverdichteten Schottertragschicht angenommen, welcher dazu führt, dass frequenzselektiv Überhöhungen auftreten. Vorstellbar ist daher, dass durch die Aufschüttung zufällig bei der Frequenz, die die Vibrationsmaschine erzeugt, eine Eigenfrequenz stattfindet. Die kann dazu führen, dass die Aufschüttung nach außen hin wie eine Verstärkung wirkt. Es liegt daher die Vermutung nahe, dass die "lose" eingelegten Geotextilien den Resonanzeffekt noch verstärkt haben.

Die am Standort Beverungen festgestellten günstigeren Abschirmungseffekte wurden durch eine weitere Untersuchung geprüft. Hierzu wurde ein alternatives Schwingungsmesssystem gewählt und die Versuchsanordnung auf den beibehaltenen Prüffeldern sowie außerhalb angeordnet. Anschließend erfolgten Messungen innerhalb der Testfelder und orthogonal hierzu.

11. Impulsanregung am Standort Beverungen als Vergleich

11.1 Wahl der Schwingungsaufnehmer und Speicherung der Messdaten

Für die Vergleichsuntersuchungen wurden Schwinggeschwindigkeitsaufnehmer eingesetzt, die eine Eigenfrequenz von f = 4,5 Hz aufweisen. Oberhalb ihrer Eigenfrequenz arbeiten sie unverzerrt und spiegeln die Wirklichkeit exakt wider. Da in der Erregung Energie in den Frequenzen f < 4,5 Hz nur unwesentlich enthalten ist, können die Schwinggeschwindigkeitsaufnehmer eingesetzt werden, ohne dass ein Informationsverlust vorliegt. Die Schwinggeschwindigkeitsamplituden sind proportional zur elektrischen Spannung, die von den Aufnehmern induziert werden. Bevor die Messsignale auf einem Laptop gespeichert werden, müssen sie mittels elektrischen Verstärkern vergrößert werden, damit das Verhältnis "Nutzsignal zu Störsignal" groß ist.

11.2 Anordnung der Messpunkte

In allen Messpunkten wurden die Schwingungen dreier senkrecht zueinander liegenden Richtungen erfasst. Bei der ersten Messreihe wurde im Bereich der Erregung auf der Kiessandtragschicht ein Messpunkt eingebaut. Weitere vier Messpunkte wurden in den Abständen I = 5,0 m, I = 10,0 m, I = 15,0 m und I = 20,0 m orthogonal außerhalb zum Prüffeld stationiert. In der nachstehenden Abbildung 89 ist die Anordnung der Messpunkte dargestellt.

Abbildung 89: Messpunkte orthogonal zum Prüffeld

Messpunkt 1: auf dem Prüffeld Messpunkt 2: 5 m vom Prüffeld entfernt Messpunkt 3: 10 m vom Prüffeld entfernt Messpunkt 4: 15 m vom Prüffeld entfernt Messpunkt 5: 20 m vom Prüffeld entfernt

Bei der zweiten Messreihe wurden drei Messpunkte jeweils auf den Prüffeldern in Entfernungen von I = 2,50 m, I = 5,0 m und I = 10,0 m eingebaut. Ein weiterer Messpunkt wurde außerhalb des Prüffeldes auf der Höhe der Messorte I = 10,0 m angeordnet. Die Abbildung 90 zeigt die Messpunkte.

Abbildung 90: Messpunkte in / außerhalb des Prüffeldes

Messpunkt 1: 2,5 m entfernt auf dem Prüffeld Messpunkt 2: 5 m entfernt auf dem Prüffeld Messpunkt 3: 10 m entfernt auf dem Prüffeld Messpunkt 4: 10 m entfernt von MP 3 neben dem Prüffeld

Die Schwinggeschwindigkeitsaufnehmer wurden über Erdspieße mit der Halbraumoberfläche verbunden.

11.3 Messablauf

Die Halbraumoberfläche wurde im Bereich des Prüffeldes durch dynamische Belas-

tungen zu Schwingungen angeregt. Bei der ersten Messreihe wurde ein Unwuchterreger eingesetzt, der mit unterschiedlichen Erregerfrequenzen periodische Kräfte in den Boden einleitete. Die erzeugten Schwingungsamplituden waren klein, da die Kiessandtragschicht eine relativ große Impedanz aufweist.

Als weitere Testfunktion wurde jeweils eine Impulsbelastung aufgebracht. Bei der transienten Erregung wird ein breites kontinuierliches Spektrum erzeugt. In jedem Versuchsfeld wurden sechs Impulslasten in den Boden eingeleitet.

Bei der zweiten Messreihe wurden in jedes Prüffeld 10 Impulse in den Untergrund eingeleitet.

11.4 Auswertung der Messungen

11.4.1 Periodische Erregung

Der Unwuchterreger hat keine harmonischen, sondern periodische Kräfte in den Boden eingeleitet. Der Zeitverlauf wurde deshalb mit Hilfe der Spezial-Software für Schwingungsmessungen "Medusa" gefiltert, so dass die Amplituden mit dem Vielfachen der Grunderregerfrequenz ausgelöscht wurden. Obwohl die Schwingungsamplituden in der Grunderregerfrequenz klein sind, liegen die Nutzsignale wesentlich über den Rauschsignalen, so dass eine Auswertung erfolgen kann.

Die ungefilterten Messsignale der drei Prüffelder, bei denen die wesentlichen Schwingungsamplituden bei den hohen Frequenzen liegen, zeigen bezogen auf die Einzelkomponenten (x,- y,- z - Richtung) und auf die resultierenden Schwinggeschwindigkeitsamplituden keinen Einfluss des Geovlieses und des Geogitters auf die Amplituden auf der Halbraumoberfläche. Die Messergebnisse sind in der Anlage 3, Abbildungen A1 bis A3 dargestellt.

Werden die Messsignale derart gefiltert, dass allein die Amplitude der Grunderregerfrequenz berücksichtigt wird, so ist bei der Erregerfrequenz von $f_{Err} \cong 18$ Hz, und $f_{Err} \cong 48$ Hz ebenfalls kein Einfluss der Einbauten auf die Schwingungsamplituden zu erkennen. Die nachstehenden Grafiken der Abbildungen 91 bis 95 zeigen die Schwinggeschwindigkeitsamplituden bei $f \cong 48$ Hz

Abbildung 91: Balkendarstellung der Schwinggeschwindigkeit

Abbildung 92: Schwingungsgeschwindigkeit x-Richtungen

Abbildung 94: Schwingungsgeschwindigkeit z-Richtungen

Die resultierenden Schwinggeschwindigkeitsamplituden weisen ebenfalls keinen Einfluss auf die Schwingungsamplituden auf (Abbildung 96).

Abbildung 96: Resultierende Schwinggeschwindigkeiten

11.4.2 Impulserregung

Es wurden in jedem Prüffeld sechs Impulslasten, die die gleichen Energien aufweisen, in den Boden eingeleitet. Ist die resultierende Schwinggeschwindigkeitsamplitude auf den Prüffeldern gleich groß, so ist deutlich zu erkennen, dass sich die resultierenden Schwinggeschwindigkeitsamplituden auf der Halbraumoberfläche in größeren Entfernungen vom Emissionsort unabhängig von der Konstruktion des Prüffeldes unwesentlich unterscheiden. Dieses trifft auch für die Einzelkomponenten der Schwinggeschwindigkeitsamplituden zu (s. Anlage 3 mit Abbildungen A4 bis A6).

Die Messwerte auf dem Prüffeld unterscheiden sich, obwohl jeweils die gleiche Energie eingeleitet wurde. Der wesentliche Unterschied liegt zwischen den beiden Prüffeldern Geogitter, ohne Bewehrung und dem Prüffeld Geovlies. Da der Messpunkt 1 etwa einen Abstand von I \cong 0,80 m von der Erregung aufwies, kann der Messwert am Messpunkt 1 durch kleine Veränderungen der Entfernung sehr streuen.

Da jeweils die gleiche Energie eingeleitet wurde, ist davon auszugehen, wenn gleiche Bodenverhältnisse vorliegen und sich der Abstand zur Erregung nicht unterscheidet, dass die Schwinggeschwindigkeitsamplituden nur unwesentlich voneinander abweichen. Wird der arithmetische Mittelwert der resultierenden Schwinggeschwindigkeitsamplitude der jeweils sechs Impulse miteinander verglichen, so ist zu erkennen, dass die Schwinggeschwindigkeitsamplituden in den Messpunkten 2 - 5 bei der Erregung auf den Prüffeldern mit Geogitter und unbewehrt keine bedeutenden Unterschiede aufweisen. Die nachstehenden Tabellen 17 bis 20 enthalten die statistischen Auswertungen der Schwingungsamplituden.

Schwinggeschwindigkeit in x-Richtung		Geogitter	Vlies	ohne Bewehrung
	arithm. Mittel [mm/s]	1,537331667	2,723516667	2,118416667
MP 1 (Feld)	Varianz	0,493923301	1,566551974	0,410892062
	Standardabweichung [mm/s]	0,702796771	1,25161974	0,641008628
	arithm. Mittel [mm/s]	0,614166667	0,818845	0,463485
MP 2 (5 m)	Varianz	0,082178412	0,033807787	0,00702929
	Standardabweichung [mm/s]	0,286667773	0,18386894	0,083840862
	arithm. Mittel [mm/s]	0,162616667	0,305486667	0,176451667
MP 3 (10 m)	Varianz	0,001268815	0,004218191	0,000468825
	Standardabweichung [mm/s]	0,035620426	0,064947606	0,021652374
	arithm. Mittel [mm/s]	0,092927333	0,081594833	0,102771833
MP 4 (15 m)	Varianz	0,000492962	0,000346088	0,000493065
	Standardabweichung [mm/s]	0,022202756	0,018603449	0,022205067
	arithm. Mittel [mm/s]	0,066101333	0,1030965	0,049197
MP 5 (20 m)	Varianz	0,000321113	0,000267868	2,36257E-05
	Standardabweichung [mm/s]	0,017919628	0,01636666	0,004860622

 Tabelle 17 : Statistische Auswertung x-Richtung

Schwinggesch	vindigkeit in y-Richtung	Geogitter	Vlies	ohne Bewehrung
	arithm. Mittel [mm/s]	5,883533333	10,78173333	6,233033333
MP 1 (Feld)	Varianz	4,427969519	33,13868983	2,787829575
	Standardabweichung [mm/s]	2,104274107	5,756621391	1,669679483
	arithm. Mittel [mm/s]	0,628426667	0,666325	0,410825
MP 2 (5 m)	Varianz	0,04925812	0,048554294	0,012324164
	Standardabweichung [mm/s]	0,221941705	0,22035039	0,111014252
	arithm. Mittel [mm/s]	0,122372167	0,367566667	0,134673333
MP 3 (10 m)	Varianz	0,000600735	0,013471973	0,000408367
	Standardabweichung [mm/s]	0,024509903	0,116068831	0,020208094
	arithm. Mittel [mm/s]	0,049899333	0,059217	0,070287
MP 4 (15 m)	Varianz	7,6938E-05	3,92808E-05	0,000294358
	Standardabweichung [mm/s]	0,008771429	0,006267438	0,017156879
MP 5 (20 m)	arithm. Mittel [mm/s]	0,033726167	0,079164667	0,036665667
	Varianz	5,53084E-05	0,000268266	3,94585E-05
	Standardabweichung [mm/s]	0,007436962	0,016378833	0,006281597

 Tabelle 18: Statistische Auswertung y-Richtung

Schwinggeschwindigkeit in z-Richtung		Geogitter	Vlies	ohne Bewehrung
MP 1 (Feld)	arithm. Mittel [mm/s]	2,037233333	3,966733333	2,110066667
	Varianz	0,444693927	2,522930303	0,107094027
	Standardabweichung [mm/s]	0,666853752	1,588373477	0,327252237
MP 2 (5 m)	arithm. Mittel [mm/s]	0,335815	0,438135	0,18372
	Varianz	0,002846983	0,010114168	0,00092861
	Standardabweichung [mm/s]	0,053357127	0,10056922	0,030473097
MP 3 (10 m)	arithm. Mittel [mm/s]	0,115045	0,155578333	0,134655
	Varianz	0,000162923	0,000471168	0,000381491
	Standardabweichung [mm/s]	0,012764142	0,021706397	0,019531802
MP 4 (15 m)	arithm. Mittel [mm/s]	0,017885	0,032032	0,0283015
	Varianz	1,29916E-06	3,64385E-05	1,46488E-05
	Standardabweichung [mm/s]	0,001139807	0,006036435	0,003827373
MP 5 (20 m)	arithm. Mittel [mm/s]	0,036652167	0,039311167	0,035942333
	Varianz	1,33895E-05	3,44749E-05	9,17734E-06
	Standardabweichung [mm/s]	0,003659171	0,005871531	0,003029412

Tabelle 19: Statistische Auswertung z-Richtung

res. Schwinggeschwindigkeit		Geogitter	Vlies	ohne Bewehrung
MP 1 (Feld)	arithm. Mittel [mm/s]	6,439106167	11,83005484	6,925047398
	Varianz	4,717726814	36,565883	3,107207965
	Standardabweichung [mm/s]	2,172032876	6,046973045	1,762727422
MP 2 (5 m)	arithm. Mittel [mm/s]	0,945916464	1,147018755	0,647992407
	Varianz	0,053732822	0,081443921	0,017227349
	Standardabweichung [mm/s]	0,231803413	0,285383813	0,131252996
MP 3 (10 m)	arithm. Mittel [mm/s]	0,234880915	0,504116892	0,259927076
	Varianz	0,001414996	0,016359095	0,001069061
	Standardabweichung [mm/s]	0,037616427	0,127902676	0,032696502
MP 4 (15 m)	arithm. Mittel [mm/s]	0,107341672	0,106163911	0,128252996
	Varianz	0,000478885	0,000325379	0,000627419
	Standardabweichung [mm/s]	0,021883447	0,01803827	0,025048343
MP 5 (20 m)	arithm. Mittel [mm/s]	0,083035271	0,135917126	0,071231178
	Varianz	0,00033625	0,000532011	5,14854E-05
	Standardabweichung [mm/s]	0,018337115	0,023065369	0,007175329

Tabelle 20: Statistische Auswertung Resultierende

Es ist festzustellen, dass die resultierenden Schwinggeschwindigkeitsamplituden bei der Erregung auf dem Prüffeld mit Geovlies am größten sind. Dieses trifft auch für den arithmetischen Mittelwert der Einzelkomponenten der Schwinggeschwindigkeitsamplituden zu. Die Varianz ist nur am Messpunkt 1 groß, in allen anderen Messpunkten ist die Varianz klein, so dass die Messwerte wenig um den Mittelwert herum streuen. Entsprechend klein ist auch die Standardabweichung.

Den Abbildungen 97 bis 99 sind die Abnahmekurven der Schwinggeschwindigkeitsamplituden eines Impulses sowie der Resultierenden zu entnehmen. Das arithmetische Mittel der Ergebnisse aller Impulsversuche ist in den Abbildungen 101 bis 104 dargestellt. Es werden die Abnahmekurven der Schwinggeschwindigkeitsamplituden dargestellt.

Abbildung 97: Abnahmekurve der Schwinggeschwindigkeitsamplituden in x - Richtung

Abbildung 98: Abnahmekurve der Schwinggeschwindigkeitsamplituden in y-Richtung

Abbildung 99: Abnahmekurve der Schwinggeschwindigkeitsamplituden in z-Richtung

Abbildung 100: Abnahmekurve der resultierenden Schwinggeschwindigkeitsamplituden

Abbildung 101: Abnahmekurve - arithm. Mittel - der Schwinggeschwin eitsamplituden in x-Richtung

Abbildung 102: Abnahmekurve - arithm. Mittel - der Schwinggeschwindigkeitsamplituden in y-Richtung

Abbildung 103: Abnahmekurve - arithm. Mittel - der Schwinggeschwindigkeitsamplituden in z-Richtung

Abbildung 104: Abnahmekurve - arithm. Mittel - der resultierenden Schwinggeschwindigkeitsamplituden

Den Abbildungen 105 bis 107 sind die maximalen Schwinggeschwindigkeitsamplituden der Einzelkomponenten und der resultierenden Amplituden die während der zweiten Messreihe auf den drei Prüffeldern auftraten, verursacht durch die Impulserregung, zu entnehmen. Außerdem ist jeweils das arithmetische Mittel der Amplitudenversuche angegeben.

							Schwingges	chwindigkeit in	n x-Richtung				
Station		Entfernung						ohne					
1 Massung 2 Massung 3 Massung 4 Massung 5 Massung 7 Massung 8 Massung 9 Massung 10 Massung Mi									arithm.				
1	1. Messung 2. Messung 3. Messung 4. Messung 5. Messung 6. Messung 7. Messung 6. Messung 9. Messung 10. Messung Mittel												
MP 1	2,50		4,6147	3,6672	3,2727	3,4629	2,9450	2,3388	3,2253	3,6339	3,9857	3,5172	3,4663
MP 2	5,00		1,4514	1,2313	1,0491	1,1554	0,9874	0,8052	0,9693	1,0699	1,2787	1,0719	1,1070
MP 3	10,00		0,2657	0,2777	0,2738	0,2615	0,2596	0,2596	0,2320	0,2239	0,2158	0,2458	0,2515
MP 4	11,18	10m Abstand neben Feld	0,1933	0,2090	0,2147	0,2085	0,2228	0,1657	0,1728	0,1966	0,2042	0,1876	0,1975

Messung in Höxter (Impuls)

							Schwingges	chwindigkeit in [mm/s]	n y-Richtung				
Station		Entfernung						ohne					
		[m]						Bewehrung					
													arithm.
			1. Messung	Messung 2. Messung 3. Messung 4. Messung 5. Messung 6. Messung 7. Messung 8. Messung 9. Messung 10. Messung Mittel									
MP1	2,50		3,7037	3,8964	3,6923	3,7373	3,2806	1,6759	4,3708	3,8777	5,0210	3,4960	3,6752
MP 2	5,00		0,6916	0,6365	0,5120	0,5405	0,5224	0,6090	0,5395	0,4520	0,5577	0,5167	0,5578
MP 3	10,00		0,3951	0,3450	0,3091	D,3342	0,3115	0,1882	0,2307	0,2593	0,3625	0,2302	0,2966
I MP4	11.18	10m Abstand neben Feld	0.1868	0.1852	0.1764	0.1749	0.1571	0.1294	0.1948	0.2140	0.1999	0.2169	0.1835

							Schwingges	chwindigkeit i [mm/s]	n z-Richtung					
Station		Entfernung						ohne						
		(m)						Bewehrung						
													arithm.	
			 Messung 	sung 2. Messung 3. Messung 4. Messung 5. Messung 6. Messung 7. Messung 8. Messung 9. Messung 10. Messung Mittel										
MP 1	2,50		1,1727	0,9757	0,8045	0,8344	0,8296	0,7497	0,7245	0,7478	0,8768	0,7386	0,8454	
MP 2	5,00		0,3565	0,3641	0,3774	0,2920	0,3394	0,2995	0,3546	0,3451	0,3375	0,3679	0,3434	
MP 3	10,00		0,1174	0,1579	0,1222	0,1372	0,1339	0,1019	0,0958	0,1045	0,1151	0,1139	0,1200	
MP 4	11,18	10m Abstand neben Feld	0,0766	0,0379	0,0447	0,0433	0,0433	0,0447	0,0513	0,0489	0,0550	0,0489	0,0495	

							res. Sch	winggeschw [mm/s]	indigkeit				
Station		Entfernung						ohne					
1		[m]						Bewehrung					
													arithm.
			1. Messung	2. Messung	3. Messung	Messung	5. Messung	6. Messung	7. Messung	8. Messung	9. Messung	10. Messung	Mittel
MP 1	2,50	1	6,0322	5,4389	4,9991	5,1629	4,4859	2,9734	5,4801	5,3666	6,4703	5,0137	5,1222
MP 2	5,00		1,6468	1,4331	1,2269	1,3085	1,1675	1,0531	1,1646	1,2117	1,4353	1,2454	1,2862
MP 3	10,00	1	0,4904	0,4702	0,4307	0,4459	0,4270	0,3364	0,3409	0,3582	0,4373	0,3555	0,4070
MP 4	11,18	10m Abstand neben Feld	0,2795	0,2818	0,2815	0,2756	0,2761	0,2149	0,2654	0,2948	0,2911	0,2909	0,2742

Abbildung 105: Darstellung der maximalen Schwinggeschwindigkeitsamplitude (unbewehrte Kiessandtragschicht)

Messung in Höxter (Impuls)

							Schwingges	chwindigkeit ir [mm/s]	n x-Richtung				
Station		Entfernung [m]						Vlies					
			1. Messung	Messung 2. Messung 3. Messung 4. Messung 5. Messung 6. Messung 7. Messung 8. Messung 9. Messung 10. Messung 4.								arithm. Mittel	
MP 1	2,50	1		2,9946	1,6984	3,6252	3,3027	2,0437	3,3313	2,1180	3,3627	2,7362	2,8014
MP 2 MP 3	5,00			1,1440 0,3836	0,7226	1,5084 0,4577	1,3651 0,4787	0,9693	1,3585 0,4103	0,7871 0,2563	1,1858 0,3912	1,1345 0,3427	0,3667
MP 4	11,18	10m Abstand neben Feld		0,3337	0,2908	0,3706	0,3613	0,2718	0,3503	0,2951	0,3327	0,3298	0,3263

							Schwingges	chwindigkeit ii [mm/s]	n y-Richtung				
Station		Entfernung [m]						Vlies					
1. Messung 2. Messung 3. Messung 4. Messung 5. Messung 6. Messung 7. Messung 8. Messung 9. Messung 10. Messung								10. Messung	arithm. Mittel				
MP 1 MP 2	2,50 5,00			1,2738 0,4597	1,2221 0,4311	1,5614 0,4150	2,5236 0,6775	1,2381 0,4901	2,3375 0,4463	1,8122 0,8200	2,8646 0,7116	2,7180 0,7421	1,9501 0,5771
MP 3 MP 4	10,00 11,18	10m Abstand neben Feld		0,3242 0,3051	0,3143 0,1890	0,3087 0,3602	0,4017 0,3461	0,2642 0,3146	0,3554 0,3268	0,3309 0,2050	0,3384 0,2901	0,3297 0,2732	0,3297 0,2900

							Schwingges	schwindigkeit li	n z-Richtung					
								[mm/s]						
Station		Entfernung						Vlies						
		[m]												
				ar										
			1. Messung	ssung 2. Messung 3. Messung 4. Messung 5. Messung 6. Messung 7. Messung 8. Messung 9. Messung 10. Messung M										
MP 1	2,50			1,5523	1,3370	1,5760	1,9075	1,1594	1,6081	0,9110	1,4409	1,3956	1,4320	
MP 2	5,00			0,4439	0,3793	0,3964	0,5502	0,3508	0,4230	0,3299	0,4020	0,3906	0,4074	
MP 3	10,00			0,2164	0,1838	D,2625	0,2423	0,1784	0,2522	0,1391	0,2162	0,2162	0,2119	
MP 4	11,18	10m Abstand neben Feld		0,0647	0,0640	0,0743	0,0837	0,0647	0,0780	0,0621	0,0734	0,0752	0,0711	

							res. Sch	winggeschw [mm/s]	indigkeit				
Station		Entfernung [m]						Vlies					
			1. Messung	Messung 2. Messung 3. Messung 4. Messung 5. Messung 6. Messung 7. Messung 8. Messung 9. Messung 10. Messung Mitte									
MP 1	2,50			3,6055	2,4830	4,2501	4,5732	2,6559	4,3758	2,9326	4,6465	4,1014	3,7015
MP 2	5,00			1,3103	0,9230	1,6139	1,6371	1,1414	1,4912	1,1836	1,4402	1,4108	1,3350
MP 3	10,00			0,5470	0,4474	0,6113	0,6703	0,4516	0,5985	0,4410	0,5606	0,5224	0,5368
MP 4	11,18	10m Abstand neben Feld		0,4568	0,3527	0,5223	0,5072	0,4207	0,4854	0,3646	0,4475	0,4348	0,4423

Abbildung 106: Darstellung der maximalen Schwinggeschwindigkeitsamplitude (Geovlies)

Messung in Höxter (Impuls)

							Schwingges	chwindigkeit ir	n x-Richtung				
Station		Entfernung [m]						Geogitter					
	•		1. Messung 2. Messung 3. Messung 4. Messung 5. Messung 6. Messung 7. Messung 8. Messung 9. Messung 10. Messung								arithm. Mittel		
MP 1 MP 2 MP 3	2,50 5,00		3,5496 1,1944 0,5167	3,1406 0,8773 0,3712	3,6136 0,9447 0,4520	3,7037 0,9969 0,4544	2,8621 0,8612 0,4287	3,7037 1,0775 0,4915	3,6624 0,9827 0,4145	4,0662 1,0301 0,4421	3,1874 0,8223 0,3018	3,8144 0,9408 0,3869	3,5304 0,9728 0,4260
MP 4	11,18	10m Abstand neben Feld	0,2218	0,1743	0,2009	0,2009	0,1609	0,1890	0,1585	0,2038	0,1438	0,1890	0,1873

							Schwingges	chwindigkeit ir	n y-Richtung				
								[mm/s]					
Station		Entfernung						Geogitter					
		(m)											
													arithm.
			1. Messung	2. Messung	3. Messung	4. Messung	5. Messung	6. Messung	7. Messung	8. Messung	9. Messung	10. Messung	Mittel
MP 1	2,50		2,0471	1,7004	2,3807	2,1777	1,5584	2,2378	1,5340	1,9503	1,5952	1,5368	1,8718
MP 2	5,00		0,9741	0,6851	0,6185	0,5482	0,6756	0,6661	0,7801	0,6965	0,6365	0,6394	0,6920
MP 3	10,00		0,4620	0,3079	0,5102	0,4573	0,4204	0,5551	0,2926	0,4223	0,3155	0,4322	0,4175
MP 4	11,18	10m Abstand neben Feld	0.2183	0.1486	0.1835	0.1758	0,1660	0,1877	0.1774	0,1881	0,1608	0,1767	0,1783

							Schwingges	schwindigkeit i [mm/s]	n z-Richtung				
Station		Entfernung						Geogitter					
I		t i i											
			1. Messung	ssung 2. Messung 3. Messung 4. Messung 5. Messung 6. Messung 7. Messung 8. Messung 9. Messung 10. Messung Mit									Mittel
MP 1	2,50	T	1,1386	0,9856	1,0593	1,2048	0,7996	0,9573	1,1935	1,2822	1,1764	1,4051	1,1202
MP 2	5,00		0,5341	0,3527	0,3698	0,3698	0,3774	0,4001	0,4648	0,4324	0,4571	0,4875	0,4246
MP 3	10,00		0,1523	0,1106	0,1302	0,1207	0,1106	0,1344	0,1193	0,1504	0,1386	0,1551	0,1322
MP 4	11,18	10m Abstand neben Feld	0,0780	0,0724	0,0785	0,0813	0,0743	0,0823	0,0537	0,0884	0,0799	0,0907	0,0810

							res, Sc	winggeschwi [mm/s]	indigkeit					
Station		Entfernung						Geogitter						
		[m]												
													arithm.	
			1. Messung	ssung 2. Messung 3. Messung 4. Messung 5. Messung 6. Messung 7. Messung 8. Messung 9. Messung 10. Messung Mitte										
MP 1	2,50		4,2528	3,7049	4,4551	4,4622	3,3555	4,4319	4,1462	4,6884	3,7534	4.3458	4,1500	
MP 2	5,00		1,6311	1,1676	1,1882	1,1963	1,1578	1,3284	1,3380	1,3165	1,1358	1,2376	1,2671	
MP 3	10,00		0,7096	0,4948	0,6939	0,6559	0,6106	0,7535	0,5212	D,6295	0,4581	0,6005	0,6110	
MP 4	11,18	10m Abstand neben Feld	0,3209	0,2402	0,2832	0,2791	0,2428	0,2788	0,2720	0,2910	0,2300	0,2742	0,2710	

Abbildung 107: Darstellung der maximalen Schwinggeschwindigkeitsamplitude (Geogitter)

In den Abbildungen 108 bis 111 ist die Abnahme der Schwinggeschwindigkeitsamplituden graphisch dargestellt. Durch die Impulserregung wird ein breites Spektrum erzeugt. In den Abbildungen A7 bis A9 der Anlage 3 sind die Spektren jeweils eines typischen Impulses ersichtlich.

Abbildung 108: Abnahmekurve - arithm. Mittel - der Schwinggeschwindigkeitsamplituden (x-Richtung)

Richtung)

Abbildung 110: Abnahmekurve - arithm. Mittel - der Schwinggeschwindigkeitsamplituden (z-Richtung)

Abbildung 111: Abnahmekurve - arithm. Mittel - der Schwinggeschwindigkeitsamplituden (Resultierende)

11.5 Berechnung der resultierenden Schwinggeschwindigkeitsamplituden

11.5.1 Messpunkte außerhalb des Versuchsfeldes

Mit der im Abschnitt 8.3 dargestellten Beziehung ergeben sich an den Messpunkten 2 bis 5 folgende Amplituden:

MP 2:	$v_{R} = 0,76 \text{ mm} / \text{s}$	(Geogitter)
	v _R = 1,40 mm / s	(Geovlies)
	$v_{R} = 0,82 \text{ mm} / \text{s}$	(unbewehrt)
MP 3:	v _R = 0,39 mm / s	(Geogitter)
	$v_{R} = 0,48 \text{ mm} / \text{s}$	(Geovlies)
	$v_{R} = 0,27 \text{ mm} / \text{s}$	(unbewehrt)
MP 4:	v _R = 0,19 mm / s	(Geogitter)
	$v_{R} = 0,24 \text{ mm} / \text{s}$	(Geovlies)
	v _R = 0,14 mm / s	(unbewehrt)
MP 5:	v _R = 0,10 mm / s	(Geogitter)
	$v_{R} = 0,12 \text{ mm} / \text{s}$	(Geovlies)
	v _R = 0,07 mm / s	(unbewehrt)

Wird der Messpunkt 2 als Ausgangsmessgröße zugrunde gelegt, so ist zu erkennen, dass die Schwinggeschwindigkeitsamplituden der Messpunkte 3 - 5 der Messung mit der Berechnung beim Versuchsfeld ohne Bewehrung gut übereinstimmt.

11.5.2 Messpunkte auf den Versuchsfeldern

Wird der Messpunkt 1 als Ausgangsgröße zugrunde gelegt, so ergeben sich mit Hilfe der Beziehung des Abschnittes 8.3 für die anderen Entfernungen folgende resultierende Schwinggeschwindigkeitsamplituden:

MP 2:	$v_{R} = 1,43 \text{ mm} / \text{s}$	(Geogitter)
	v_{R} = 1,30 mm / s	(Geovlies)
	v_{R} = 1,78 mm / s	(unbewehrt)
MP 3:	$v_{R} = 0,43 \text{ mm} / \text{s}$	(Geogitter)
MP 3:	$v_{R} = 0,43 \text{ mm} / \text{s}$ $v_{R} = 0,39 \text{ mm} / \text{s}$	(Geogitter) (Geovlies)

Beim Versuchsfeld ohne Bewehrung ist die Abnahme der gemessenen Schwinggeschwindigkeitsamplituden mit zunehmender Entfernung zur Erregerquelle größer als die mit Hilfe der Beziehung aus Abschnitt 8.3 berechneten Amplituden. Die Amplituden der anderen Versuchsfelder zeigen diese Eindeutigkeit nicht. Am MP 2 liegen die gemessenen Amplituden über den berechneten Werten.

11.6 Berechnung der resultierenden Schwinggeschwindigkeitsamplituden bei fehlenden Messwerten

11.6.1 Messpunkte außerhalb des Prüffeldes

Wird angenommen, dass kein Messwert vorliegt, aber die Energie bekannt ist, die in den Boden eingeleitet wurde, so ergeben sich rechnerisch folgende resultierende Schwinggeschwindigkeitsamplituden:

> E = 0,3 kNm; $c_1 = 10;$ $c_2 = 0,8$ $v_{R_1} = \frac{10 \cdot 0.8 \cdot \sqrt{0.3}}{0.8} = 5,5 \text{ mm / s}$

 $v_{R_{2}} = = 0,88 \text{ mm}/\text{s}$

- $v_{R_3} = = 0,44 \text{ mm} / \text{s}$
- $v_{R_4} = 0,29 \text{ mm/s}$
- $v_{R_s} = = 0,22 \text{ mm} / \text{s}$

Die berechneten resultierenden Schwinggeschwindigkeitsamplituden liegen in den Punkten $2 \div 5$ über den gemessenen Amplituden. Die aus der Empirie gewonnene

Gleichung basiert auf Untersuchungen im Frequenzbereich von $f = 5 \div 50$ Hz. Ist viel Energie in einem höheren Frequenzbereich vorhanden, so nehmen die wirklichen Amplituden stärker ab.

11.6.2 Messpunkte auf den Versuchsfeldern

Liegt kein Messwert vor, so können, wie im Abschnitt 8.3 dargestellt, die Schwinggeschwindigkeitsamplituden folgendermaßen berechnet werden:

E = 0,35 kNm; $c_1 = 20;$ $c_2 = 0,8$ $v_{R_1} = \frac{20 \cdot 0.8 \cdot \sqrt{0.35}}{2.5} = 3,78 \text{ mm / s}$ $v_{R_2} = = 1,89 \text{ mm / s}$ $v_{R_3} = = 0,94 \text{ mm / s}$

Die berechneten Schwinggeschwindigkeitsamplituden liegen bis auf den MP1 alle über den gemessenen Amplituden. Die Ursache für die größeren Amplitudenabnahme der Messwerte liegt im relativ hohen Spektrum der Schwingungen. Die hohen Frequenzen führen zu einer starken Abnahme der Amplituden.

11.7 Interpretation der Messergebnisse

Werden die Messwerte der resultierenden Schwinggeschwindigkeitsamplituden in den Entfernungen I = 5,0 m und I = 10,0 m der unterschiedlichen Prüffelder miteinander verglichen, so zeigen die Amplituden der Messpunkte auf den Prüffeldern eine gute Übereinstimmung:

l = 5,0 m

v _R = 1,27 mm / s	(Geogitter)
$v_{R} = 1,33 \text{ mm} / \text{s}$	(Geovlies)

 $v_{R} = 1,29 \text{ mm} / \text{s}$ (unbewehrt)

l = 10,0m

v _R = 0,61 mm / s	(Geogitter)
v _R = 0,53 mm / s	(Geovlies)

 $v_R = 0.41 \text{ mm} / \text{s}$ (unbewehrt)

Die Unterschiede der Amplituden bei der Freifeldmessung sind größer:

l = 5,0 m

I = 10,0 m

$v_{R} = 0,95 \text{ mm} / \text{ s}$	(Geogitter)
$v_{R} = 1,15 \text{ mm} / \text{s}$	(Geovlies)
$v_{R} = 0,65 \text{ mm} / \text{s}$	(unbewehrt)
$v_{R} = 0,23 \text{ mm} / \text{s}$	(Geogitter)
$v_{R} = 0,50 \text{ mm} / \text{s}$	(Geovlies)
v _R = 0,26 mm / s	(unbewehrt)

Obwohl die Erregung bei beiden Versuchen die gleiche Energie aufwies, sind die Amplituden in den Messpunkten des Freifeldes wesentlich kleiner als die Amplituden auf dem Versuchsfeld. Eine wesentliche Ursache des Unterschiedes der Amplitudenabnahme dürfte in dem Übergang der Schwingungen von dem Prüffeld auf das Freifeld liegen.

Werden die maximalen resultierenden Schwinggeschwindigkeitsamplituden miteinander verglichen, so ist zu erkennen, dass die Amplituden auf dem Prüffeld ohne Bewehrung oder in dessen Umgebung in den dargestellten Entfernungen die kleinsten oder fast kleinsten Amplituden aufweisen.

Werden die Vertikalkomponenten, die wesentlich für die Größe der Schwingungen der Geschossdecken in den Gebäuden sind, miteinander verglichen, so ist zu erkennen, dass die Amplituden auf und in der Umgebung des Prüffeldes ohne Bewehrung meistens kleiner sind als die Amplituden auf den anderen Prüffeldern.

l = 5.0 m			
. 0,0	Prüffeld:	Freifeld:	
	$v_z = 0,42 \text{ mm} / \text{s}$	$v_z = 0,34 \text{ mm} / \text{s}$	(Geogitter)
	$v_z = 0,58 \text{ mm} / \text{s}$	$v_z = 0,44 \text{ mm} / \text{s}$	(Geovlies)
	$v_z = 0,34 \text{ mm} / \text{s}$	$v_z = 0,18 \text{ mm} / \text{s}$	(unbewehrt)
I = 10,0 m	$v_z = 0,13 \text{ mm} / \text{s}$	$v_z = 0,12 \text{ mm} / \text{s}$	(Geogitter)

$v_z = 0,21 \text{ mm} / \text{s}$	$v_{z} = 0,16 \text{ mm} / \text{s}$	(Geovlies)
$v_z = 0,12 \text{ mm} / \text{s}$	v _z = 0,13 mm / s	(unbewehrt)

Werden die Spektren der Antwortsignale im Frequenzbereich von f = 5 bis 100 Hz miteinander verglichen, so ist in x - Richtung eine deutliche Amplitudenspitze bei f \cong 80 Hz vorhanden. Das Spektrum der Antwort in y - Richtung zeigt ebenfalls eine Amplitudenspitze bei f \cong 80 Hz. Die Antwort in z - Richtung weist auch eine Amplitudenüberhöhung bei f \cong 80 Hz auf. Wesentlich ist aber die Amplitudenspitze des Spektrums bei f \cong 14 Hz. Es kann sich um die tiefste translatorische "Eigenfrequenz" des Systems "Prüffeld / Boden" handeln. Deutlich ist zu erkennen, dass sich die "Eigenfrequenz" unabhängig von den Einbauten, nicht verschiebt. Somit erfolgt durch die Einbauten der Geogitter und der Geovliese keine Erhöhung der Steifigkeit der Konstruktion im Verhältnis zum unbewehrten Prüffeld.

Durch die Impulserregung wird ein breites Spektrum mit relativ konstanter Energiedichte bis f = 100 Hz der einzelnen Prüffelder miteinander verglichen, so ist nicht zu erkennen, dass die Schwingungsamplituden in den höheren Frequenzen der bewehrten Prüffelder stärker reduziert werden als die Amplituden des unbewehrten Prüffeldes.

12. Praxisvergleich im Testfeld Cuxhaven

Die diversen Untersuchungen in Liebenau und Beverungen zeigten unter modellhaft nachgestellten Bedingungen mit Baustraßencharakter, d.h. ohne bituminösen Oberbau, keinen nennenswerten Einfluss eines Geokunststoff bewehrten Systems auf das Schwingungsverhalten. Aus diesem Grunde wurde unter praxisnahen Bedingungen an einer Teststrecke im Verlauf einer asphaltierten Kreisstraße ein weiterer Wirkungsvergleich angestrebt.

12.1 Veranlassung

Im Zusammenhang mit der Sanierung eines Teilabschnittes der Fahrbahn entlang der Scholienstraße (K 16) in Otterndorf, wurden infolge der Verkehrsbelastung, insbesondere durch Schwerlastverkehr, unterschiedliche Schwingungsimmissionen vermutet.

Zum Nachweis möglicher Erschütterungen sollten Schwingungsmessungen hinsichtlich der Auswirkung auf die Umgebung und als Grundlage einer weiteren Sanierungsplanung sowie deren Umsetzung durchgeführt werden.

Als Grundlage für die Durchführung von Schwingungsmessungen diente erneut die DIN 4150 und die DIN 45669.

12.2 Geographische Zuordnung, Örtliche Situation

Die Verkehrsführung der Scholienenstraße beginnt am östlichen Randbereich des Innenstadtkerns von Otterndorf ab der Einmündung in die Stader Straße und verläuft von hier aus nach Süden, in Richtung der Ortschaft Osterbruch.

Die zweispurige Fahrbahn ist durchgehend mit einer Asphalt - Verschleißschicht befestigt. Nach RstO 01 ist die Straße nach Tabelle 2, Zeile 2, der Bauklasse II / III zugehörig.

Der Abbildung 112 ist die geographische Einordnung des Straßenzuges und die Lagekennzeichnung des betreffenden Sanierungs- / Messabschnittes zu entnehmen.

Der betreffende Straßenabschnitt befindet sich vor dem Grundstück "Scholienstraße Nr. 11" und besitzt eine Entfernung von abschätzend 150 m bis zur Einmündung in die Stader Straße.

In der Abbildung 113 ist die örtliche Situation fotodokumentarisch dargestellt.

Abbildung 112: Geographische Zuordnung des Sanierungsabschnittes / Messortes

Abbildung 113: Örtliche Situation - Blick auf den Sanierungsabschnitt im Hintergrund Einmündungsbereich in die Stader Straße

Die Fahrbahn besitzt beiderseitig außerhalb der Verlängerung der Gebäudelängsseiten des Hauses - Nr. 11 Anspritzungen einer Bitumenemulsion in Fahrbahnquerrichtung. Die Ausgleichsmasse markiert den Sanierungsabschnitt der Fahrbahn, benachbart des vorgenannten Grundstückes (s. Abbildung 113). In der gegenüber liegenden Fahrbahnhälfte besteht der ursprüngliche Fahrbahnoberbau.

Ein genauer Konstruktionsaufbau für beide Bereiche ist nicht bekannt. Nach Auskunft von BEYER (2004, mündliche Auskunft) sollen im Untergrund des Sanierungsabschnittes Bodenbildungen aus Klei anstehen. Darüber sei der Oberbau aus Sand und Asphalt erfolgt.

Die nachstehende schematische Abbildung 114 zeigt den betreffenden Abschnitt.

Abbildung 114: Markierung und Länge des Sanierungsabschnittes

12.3 Messvorbereitung und -punktanordnung

Um mögliche Unterschiede, relativ zueinander, nachweisen zu können, wurde ein Messprogramm festgelegt. Im Unterschied zu einer Reihenmessung, bei der alle Messpunkte gleichzeitig erfasst werden, war hierzu eine separate Messdurchführung im Bereich der einzelnen Abschnitte erforderlich. Diese Vorgehensweise sollte verhindern, dass die durch die Erregerquelle erzeugten und mit der Entfernung abklingenden Restschwingungen des vorgeschalteten Messabschnittes Auswirkungen auf nachfolgende Messwertaufnehmer haben konnten.

Darüber hinaus sollten die Messungen unter Berücksichtigung der Beanspruchung durch Schwerlastverkehr und bei unterschiedlichen Überfahrtsgeschwindigkeiten unter realitätsnahen Bedingungen erfolgen. In der Versuchsanordnung wurden die Messungen entlang der Fahrtrichtung wie folgt gefahren:

Fahrbahnhälfte benachbart dem Gebäude

- 1. Messpunkt 15 m vor dem Sanierungsabschnitt
- 2. Messpunkt innerhalb des Sanierungsabschnittes
- 3. Messpunkt 15 m hinter dem Sanierungsabschnitt

Fahrbahnhälfte gegenüber liegende Seite

- 1. Messpunkt 15 m hinter dem Sanierungsabschnitt
- 2. Messpunkt innerhalb des Sanierungsabschnittes
- 3. Messpunkt 15 m vor dem Sanierungsabschnitt

Zusätzlich wurde eine Messung im Bereich eines benachbarten Kanaldeckels sowie eine weitere Messung während der Durchfahrt eines Zuges eines in geringer Entfernung vorhandenen Bahnüberganges durchgeführt.

In der nachstehenden skizzenhaften Abbildung 115 ist die Versuchsanordnung dargestellt.

Abbildung 115: Anordnung der Messpunkte

Aufgrund der getrennten Prüfung und Betrachtungsweise des Fahrbahnoberbaues ist die Nummerierung der Messpunkt je Fahrbahnhälfte jeweils mit MP 1 bis 3 festge-

legt worden.

In der nachstehenden Abbildung 116 ist die Anordnung des MP 2 mit dem Messaufnehmer (Geophon) vor dem Haus - Nr. 11 zu sehen.

Abbildung 116: Anordnung Messpunkt MP 2 und Messwertaufnehmer

12.4 Messdurchführung

Zielsetzend für die Messdurchführung war zu klären, welche Schwingungsimmissionen innerhalb der Fahrbahn bei Einwirkungen von dynamischen Belastungen auftreten und wie sich der unterschiedliche Fahrbahnoberbau zwischen der Altkonstruktion und dem Sanierungsabschnitt hinsichtlich der Schwingungsausbreitung auswirkt.

Die Belastungen, die hierbei auftreten, werden gekennzeichnet durch:

- impulsförmige Einleitung von Schwingungen in den Untergrund
- Fahrzeuge oder Teile davon (Fahrgestell, Achsen) werden zu Eigenschwingungen angeregt, die auf die Fahrbahn und damit den Untergrund rückwirken.

Als Messgröße für die Schwingungsmessungen wird nach DIN 45669, Teil 1,

v(t) in mm/s

berücksichtigt.

Zur Durchführung der Messungen ist ein Schwingungsmesser nach DIN 45669, Teil 1 - A3HV1 - 80 verwendet worden, der der Durchführung normgerechter Messungen nach den Vorschriften der DIN 4150

-Erschütterungen im Bauwesen-

Teil 1: "Vorermittlung von Schwingungsgrößen"	(Juni 2001)
Teil 2: "Einwirkungen auf Menschen in Gebäuden"	(Juni 1999)
und	
Teil 3: "Einwirkungen auf bauliche Anlagen"	(Februar 1999)

genügt.

Das System umfasst 7 Messkanäle mit insgesamt 5 Messaufnehmern (Geophonen) sowie Verstärker. Die Weiterverarbeitung der Signale und Auswertung erfolgt mittels entsprechend lizenzierter Software rechnergesteuert.

Im Hinblick auf die punktuelle Einzelmessung wurde zur Aufnahme der Schwingungen jedoch nur ein Messwertaufnehmer gewählt. Dieser enthält allerdings als 3-Komponentenstation 3 Messrichtungen wie folgt:

H_x = Horizontal - parallel zur Fahrbahn

- H_v = Horizontal quer zur Fahrbahn
- V_z = Vertikal

Die Ankoppelung an den Untergrund erfolgte über Erdspieße.

Für die Messungen stand als Erregerquelle ein LKW mit Anhänger zur Verfügung.

Es wurden folgende Fahrzeugdaten angegeben:

LKW - Gesamtgewicht	= 18,92 to
Anhänger - Gesamtgewicht	= 8,84 to
LKW - Gewicht Vorderachse	= 7,46 to
LKW - Gewicht Hinterachse	= 11,52 to
Anhänger - Gewicht Vorderachse	= 4,80 to
Anhänger - Gewicht Hinterachse	= 4,04 to

LKW und Anhänger - Gesamtgewicht = 27,82 to

LKW - Luftdruck vorn	=	8,5 bar
LKW - Luftdruck hinten	=	8,5 bar
Anhänger - Luftdruck vorn Anhänger - Luftdruck hinten	=	6,5 bar 6,5 bar

<u>Wetter zum Zeitpunkt</u>	
der Messdurchführung:	Lufttemperatur 8° - Fahrbahn trocken
<u>Untergrund:</u>	Nicht geprüft
Fremdeinflüsse:	Keine erkennbar

12.5 Auswertung

Für die Auswertung der Messergebnisse sind in erster Linie die Spitzenwerte der Schwingungsgeschwindigkeit relevant.

Da gemäß der Zielvorgabe ausschließlich die Unterschiede der Schwinggeschwindigkeit in den einzelnen Fahrbahnabschnitten geprüft werden sollten, entfällt die Beurteilung nach DIN 4150, Teil 2 und 3.

Nachfolgend werden die Ergebnisse der Schwingungsmessungen gemäß Tabelle 21 statistisch dargestellt und ausgewertet, vgl. Abbildung 118. Die Situation im Umfeld des Prüffeldes ist schematisch auf Abbildung 117 dargestellt. Das detaillierte Ergebnis kann den oszilloskopischen Darstellungen und Messwerttabellen der beigefügten **ANHANG 4** entnommen werden.

Schwingungsmessungen Fahrbahn benachbart dem Haus - Nr. 11

Abbildung 117: Anordnung der Messpunkte

Mess-	Horizontal	Horizontal	Vertikal	
punkt	parallel zur Fahrbahn	quer zur Fahrbahn		
Nr.	v _{peak} (mm/s)	v _{peak} (mm/s)	v _{peak} (mm/s)	
1	0,011	0,004	0,014	
2	0,019	0,010	0,013	
3	0,009	0,010	0,024	

Überfahrt bei 30 km/h

 Tabelle 21: Ergebniszusammenstellung

Abbildung 118: Graphische Darstellung der Schwingungsgeschwindigkeit

Die Belastung der Fahrbahn durch die eingesetzte Erregerquelle "LKW mit Anhänger" erfolgte im niederfrequenten Bereich bei 1 Hz. Die Abbildung 119 zeigt die Überfahrt der Sanierungsstrecke.

Abbildung 119: Überfahrt LKW mit Anhänger

Die Messwerte bei Überfahrt mit 30 km/h zeigte ein Amplitudenspektrum zwischen 0,004 und 0,024 mm/s.

Während der "vertikale" Anteil der Schwingungsausbreitung außerhalb des Sanierungsabschnittes sich am größten darstellt, weist die "horizontale" Antwort (längs zur Fahrbahn) den höchsten Spitzenwert auf.

Bei Betrachtung der Spitzenwerte aller Messpunkte ist erkennbar, dass die Schwingungsausbreitung am Messpunkt 1 am geringsten ist, gefolgt von Messpunkt 2 (Sanierungsabschnitt) und Messpunkt 3. Die Schwingungsausbreitung innerhalb des Sanierungsabschnittes nimmt somit eine Mittelstellung ein.

Mess- punkt	Horizontal parallel zur Fahrbahn	Horizontal quer zur Fahrbahn	Vertikal
Nr.	v _{peak} (mm/s)	v _{peak} (mm/s)	v _{peak} (mm/s)
1	0,007	0,017	0,012
2	0,012	0,011	0,009
3	0,012	0,011	0,015

Überfahrt bei 60 km/h, vgl. Tabelle 22

Tabelle 22: Ergebniszusammenstellung

Abbildung 120: Graphische Darstellung der Schwingungsgeschwindigkeit

Die Messwerte bei Überfahrt mit 60 km/h zeigte ein Amplitudenspektrum in Abbildung 120 zwischen 0,007 und 0,017 mm/s. Im Ergebnis sind somit geringere Schwinggeschwindigkeiten aufgetreten als bei der Überfahrt mit 30 km/h.

Die maximalen Amplituden bilden sich gemäß Tabelle 22 Messort 1 bei der "horizontalen" Antwort in Fahrbahnquerrichtung ab. Im Bereich des Sanierungsabschnittes, Messpunkt 2, bildet sich die maximale Amplitude ebenfalls in "horizontaler" Messrichtung, jedoch längs zur Fahrbahn ab. Am Messpunkt 3 zeigt sich der Spitzenwert in vertikaler Richtung. Hier ist unter Betrachtung der Spitzenwerte aller Messpunkte im Sanierungsabschnitt der geringste Maximalwert der Schwingungsgeschwindigkeit gemessen worden.

Schwingungsmessungen Fahrbahn gegenüber liegende Seite, vgl. Abb. 121

Abbildung 121: Anordnung der Messpunkte

Mess-	Horizontal	Horizontal	Vertikal
punkt	parallel zur Fahrbahn	quer zur Fahrbahn	
Nr.	v _{peak} (mm/s)	v _{peak} (mm/s)	v _{peak} (mm/s)
1	0,013	0,012	0,013
2	0,008	0,008	0,015
3	0,010	0,010	0,012

Überfahrt bei 30 km/h

 Tabelle 23:
 Ergebniszusammenstellung

Abbildung 122: Graphische Darstellung der Schwingungsgeschwindigkeit

Das Amplitudenspektrum bei Überfahrt mit 30 km/h liegt hier, wie Abbildung 122 und Tabelle 23 zeigt, zwischen 0,008 und 0,015 mm/s. Der Spitzenwert der Schwingungsgeschwindigkeit liegt deutlich unterhalb des Wertes auf der gebäudebenachbarten Fahrbahnhälfte (gleiche Überfahrtsgeschwindigkeit). Bei Messpunkt 2 ist der höchste Absolutwert der Schwingungsgeschwindigkeit im Bereich der "vertikalen" Richtung gemessen worden. Die Messpunkte 1 und 3 zeigten ebenfalls die höchsten Absolutwerte der Schwingungsgeschwindigkeit in vertikaler Messrichtung (bei MP 1 analog zur horizontalen Antwort längs zur Fahrbahn). Es besteht jedoch eine geringe Werte - Differenz zum Messpunkt 2.

Da ausschließlich der Spitzenwert der Schwingungsgeschwindigkeit relevant ist, liegt die größte Immission im mittleren Messfeld (MP 2) vor.

Obertanit ber 45 km/m				
Mess-	Horizontal	Horizontal	Vertikal	
Nr.	v _{peak} (mm/s)	v _{peak} (mm/s)	v _{peak} (mm/s)	
1	0,012	0,012	0,012	
2	0,016	0,012	0,014	
3	0,014	0,020	0,017	

Überfahrt bei 45 km/h

 Tabelle 24:
 Ergebniszusammenstellung

Abbildung 123: Graphische Darstellung der Schwingungsgeschwindigkeit

Aufgrund der verfügbaren geringen Beschleunigungsstrecke konnte hier nur eine maximale Überfahrtgeschwindigkeit von 45 km/h erreicht werden.

Bei Überfahrt mit 45 km/h wurden Messwerte laut Tabelle 24 und Abb. 123 zwischen 0,012 und 0,020 mm/s registriert. Diese liegen höher als bei der Überfahrt mit 30 km/h und auch gering höher als bei Überfahrt 60 km/h auf der gebäudebenachbarten Fahrbahnseite.

Die Amplitudenspitzen am Messpunkt 1 sind in allen Messrichtungen gleich. Am MP 2 zeigte sich der Spitzenwert der Schwingungsgeschwindigkeit bei der horizontalen Messrichtung (längs zur Fahrbahn). Im Bereich des MP 3 liegt die maximale Amplitude in horizontaler Richtung quer zur Fahrbahn.

Bei Betrachtung der Spitzenwerte aller Messpunkte ist erkennbar, dass die Schwingungsausbreitung am Messpunkt 1 am geringsten ist, gefolgt von Messpunkt 2 und Messpunkt 3. Die Schwingungsausbreitung innerhalb des Sanierungsabschnittes nimmt somit eine Mittelstellung ein und verhält sich ähnlich wie bei der Messung bei Überfahrt 30 km/h, entlang der gebäudebenachbarten Fahrbahnhälfte.

Schwingungsmessungen im Bereich Kanaldeckel, vgl. Abb. 124

Abbildung 124: Anordnung des Messpunktes

Überfahrt bei 30 km/h, vgl. Tab. 25

Mess- punkt	Horizontal parallel zur Fahrbahn	Horizontal quer zur Fahrbahn	Vertikal
Nr.	v _{peak} (mm/s)	v _{peak} (mm/s)	v _{peak} (mm/s)
1	0,017	0,015	0,018

 Tabelle 25:
 Ergebniszusammenstellung

Überfahrt bei 60 km/h, vgl. Tab. 26

Mess- punkt	Horizontal parallel zur Fahrbahn	Horizontal quer zur Fahrbahn	Vertikal
Nr.	▪ v _{peak} (mm/s)	v _{peak} (mm/s)	v _{peak} (mm/s)
1	0,016	0,018	0,012

 Tabelle 26:
 Ergebniszusammenstellung

Die Spitzenwerte der Schwingungsgeschwindigkeit bei Überfahrt 30 bzw. 60 km/h liegen gemäß Abb. 125 gleichauf bei 0,018 mm/s.

Im Vergleich zu den Überfahrten benachbart dem Kanaldeckel, bei dem bei 30 km/h ein Spitzenwert von 0,014 bzw. bei 60 km/h ein Maximalwert von 0,017 mm/s gemessen wurde, liegt zumindest statistisch eine (gering) höhere Beanspruchung vor.

Schwingungsmessung Zugvorbeifahrt, vgl. Abb. 126

Abbildung 126: Anordnung des Messpunktes

Zugvorbeifahrt

Mess- punkt	Horizontal parallel zur Fahrbahn	Horizontal quer zur Fahrbahn	Vertikal
Nr.	· v _{peak} (mm/s)	v _{peak} (mm/s)	v _{peak} (mm/s)
1	0,009	0,010	0,018

 Tabelle 27: Ergebniszusammenstellung

Abbildung 127: Graphische Darstellung der maximalen Schwingungsgeschwindigkeit

Der Maximalwert der Schwingungsgeschwindigkeit wurde wie Abb. 127 und Tab. 27 zeigt mit 0,018 mm/s ermittelt und zwar in vertikaler Messrichtung. Dieser Wert entspricht hinsichtlich seiner Größenordnung exakt den Werten bei Überfahrt über den vorbeschriebenen Kanaldeckel. Darüber hinaus liegt der Wert nach statistischer Betrachtung gering oberhalb der Messwerte an den Messpunkten 1 beider Fahrbahnhälften bei Überfahrt 30 / 45 / 60 km/h.

<u>Vergleich der maximalen Schwingungsgeschwindigkeit an allen Messpunkten,</u> vgl. Abb. 128

Mess-	Beschreibung	Maximalwert der Schwin-
punkt		gungsgeschwindigkeit aus
Nr.		allen drei Messrichtungen
		v _{peak} (mm/s)
1	benachbarte Fahrbahnhalfte - 15 m	0,014
	vor dem Sanierungsabschnitt - Uber-	
	fannt 30 km/n	0.010
2	behachbarte Fahrbannhailte - Inner-	0,019
	libertebrt 20 km/b	
2	bonachbarta Eabrhabhhälfta 15 m	0.024
5	binter dem Sanierungsabschnitt	0,024
	liberfahrt 30 km/b	
4	benachbarte Fahrbahnhälfte - 15 m	0.017
•	vor dem Sanierungsabschnitt - Über-	0,011
	fahrt 60 km/h	
5	benachbarte Fahrbahnhälfte - inner-	0,012
	halb des Sanierungsabschnittes -	
	Überfahrt 60 km/h	
6	benachbarte Fahrbahnhälfte - 15 m	0,015
	hinter dem Sanierungsabschnitt -	
	Überfahrt 60 km/h	
7	gegenüber liegende Fahrbahnhälfte -	0,013
	15 m hinter dem Sanierungsabschnitt	
	- Uberfahrt 30 km/h	0.015
8	gegenuber liegende Fahrbahnhalfte -	0,015
	Innernalb des Sanlerungsabschnittes -	
0	Uberrannt 30 km/n	0.010
9	15 m vor dom Saniorungsabschnitt	0,012
	Überfahrt 30 km/b	
10	gegenüber liegende Fahrbahnhälfte -	0.012
10	15 m hinter dem Sanierungsabschnitt	0,012
	- Überfahrt 45 km/h	
11	gegenüber liegende Fahrbahnhälfte -	0.016
	innerhalb des Sanierungsabschnittes -	,
	Überfahrt 45 km/h	
12	gegenüber liegende Fahrbahnhälfte -	0,020
	15 m vor dem Sanierungsabschnitt -	
	Überfahrt 45 km/h	
13	Uberfahrt über Kanaldecke bei	0,018
	30 km/h	
14	Uberfahrt über Kanaldeckel bei	0,018
	60 km/h	0.010
15	Vorbeitahrt Zug	0,018

maximale Schwingungsgeschwindigkeit an allen Messorten, vgl. Tab. 28

Tabelle 28: Ergebniszusammenstellung

Abbildung 128: Graphische Darstellung der maximalen Schwingungsgeschwindigkeit aller Messpunkte

Zur besseren Übersicht sind die Messergebnisse den jeweiligen Messpunkten in den nachstehenden fotodokumentarischen Abbildungen 129 und 130 zugeordnet.

Abbildung 129: Messpunkte und Messwerte

Abbildung 130: Messpunkte und Messwerte

Nach statistischer Auswertung der in ANHANG 4 dargestellten Schwingungsamplituden, den Tabellen und graphischen Darstellungen, zeigen sich variierende Antworten hinsichtlich der eingehenden Signale.

Die Abbildung 128 stellt in einer vergleichenden Gegenüberstellung graphisch das Verhalten der Schwingungsausbreitung an den einzelnen Prüforten dar.

Danach ist an dem Messpunkt 3 der gebäudebenachbarten Fahrbahnhälfte der höchste Maximalwert der Schwingungsgeschwindigkeit aufgetreten. Die niedrigsten Werte wurden am Messpunkt 2 der gebäudebenachbarten Fahrbahnhälfte bei Überfahrt 60 km/h (Sanierungsabschnitt) sowie an den Messpunkten 3 bei Überfahrt 30 km/h und 1 bei 45 km/h -beide gegenüber liegende Fahrbahnhälfte- gemessen.

Der dem gebäudebenachbarten Sanierungsabschnitt gegenüber liegende Fahrbahnteil nimmt sowohl bei Überfahrt 30 km/h als auch bei 45 km/h gegenüber den MP 1 und 3 hinsichtlich der Maximalwerte der Schwingungsgeschwindigkeit eine Mittelstellung ein.

Im Vergleich der mittleren Prüfabschnitte liegen untereinander einerseits höhere und andererseits niedrigere Werte vor. Bei einer Überfahrt mit 30 km/h zeigte sich im Bereich der gebäudebenachbarten Fahrbahnhälfte ein höher Wert, während dies bei der Überfahrt mit 45 km/h im Bereich der gegenüberliegenden Fahrbahnhälfte im Unterschied zum Prüfabschnitt bei 60 km/h feststellbar war.

13. Diskussion der Ergebnisse und Ausblick

Die intensive Forschung der vergangenen Jahrzehnte über die Wirkung von Geokunststoffen in ungebundenen Tragschichten des Erd- und Straßenbaus hat deutliche Verbesserungen der Systemeigenschaften aufgezeigt.

Gemäß TL Geotex E - StB 95 (FGSV 1995) wird durch den Einsatz von Geogittern eine Erhöhung der Tragfähigkeit innerhalb ungebundener Schichten mit zusätzlichem gebundenem Oberbau erreicht. Als Prüfverfahren fungiert der Lastplattendruckversuch durch die Ermittlung des Verformungsmoduls E_{v2} . BEYER (1999) hält dagegen: "Da eine Veränderung der Größe dieses Bewertungskriteriums Verformungsmodul E_{v2} bei dem Einsatz von Geokunststoffen nicht messbar ist, wird in der Fachwelt vielfach die Ansicht vertreten, dass eine Kunststoffeinlage im Regelstraßenbau gemäß RStO 01 keine bewehrende Wirkung habe". Dennoch können auf der Grundlage der durchgeführten Versuche und auch rechnerischer Ansätze die folgenden Bewehrungswirkungen festgestellt werden:

- Verminderung der Maximalwerte der horizontalen Verschiebung
- Verminderung der horizontalen Gesamtdehnungen
- Verminderung der bleibenden horizontalen Dehnungen im Aufbau
- Erhöhung der Schubspannungen im Bereich der Einlage
- Verminderung der Schubkräfte im Bereich des Untergrundes

Sämtliche Untersuchungen ließen allerdings das Abschirmverhalten von in das System initiierten Erregerschwingungen außer Acht, so dass sich aus einer Aufgabe der ingenieurgeologischen Praxis die Frage ergeben hat, ob auf der Halbraumoberfläche eine Amplitudenabnahme feststellbar ist. Dieser Untersuchungsansatz ist, wie eingehende Recherchen gezeigt haben, bisher in der Forschung kaum berücksichtigt worden.

Während aus statischer Sicht durch die Einlage von Geokunststoffen eindeutige Veränderungen der Tragfähigkeitswerte des Untergrunds und Systemeigenschaften ungebundener Tragschichten mit Bewehrungseinlagen resultieren, haben Geokunststoffe nach den eigenen Untersuchungsergebnissen keinen nennenswerten Einfluss auf das Abschirmverhalten von Schwingungen. Weder innerhalb der "bewehrten Erde" noch außerhalb wurden signifikante Wirkungsunterschiede festgestellt.

Es konnte jedoch gezeigt werden, dass die unbewehrte Schottertragschicht als solche bereits zu einer Reduktion des Schwingungsverhaltens beiträgt. Dies manifestiert sich in den Impedanzsprüngen der Schwingungsamplituden beim Verlassen der Testfelder.

Allerdings werden translatorische Bewegungen innerhalb der unterschiedlichen Testfelder nicht durch die Einlage verschiedener Geokunststoffen beeinflusst, d.h. die Eigenfrequenz des Systems Aufbau/Untergrund, bzw.Schottertragschicht/Boden,

wird nicht verändert. Entgegen den Erwartungen, dass sich die mit Geokunststoffen bewehrte Schottertragschicht wie eine quasi-biegesteife Platte im Halbraum verhält, treten offensichtlich Reflexionen an der Trennschicht Aufbau/Untergrund auf, die eine unterschiedliche Ausbildung des Abschirmverhaltens nicht zulassen.

Die Ergebnisse der Messungen beim Prüffeld "Liebenau" haben nach Auswertung der Abbildungen 63 bis 65 zwar erkennbare Unterschiede des Verhaltens bei Erschütterungseinwirkungen ergeben. Auf der Grundlage der Referenzmessungen auf dem Planum wurden jedoch mit den Systemen "unbewehrte Kiessandtragschicht" und "geogitter- bzw. -vliesbewehrte Kiessandtragschicht" keine Verbesserungen des Abklingverhaltens mit Zunahme der Entfernung zum Erschütterungsort festgestellt. Vielmehr deuten die grafischen Darstellungen nach erstem Anschein darauf hin, dass das Abschirmverhalten der geovliesbewehrten Schottertragschicht ungünstigere Eigenschaften aufweist, als dies bei der geogitterbewehrten Schottertragschicht lässt nach dem subjektiven Erscheinungsbild keinen Hinweis auf die Möglichkeit einer Verminderung von Schwingungsimmisionen gegenüber dem Planum erkennen.

Unter Zugrundelegung der Amplitudenmittel beim Prüffeld "Beverungen" aus der Abbildung 85 kann für die verschieden aufgebauten Systeme ein unterschiedlich ausgeprägtes Verhalten bei Erschütterungseinwirkung angenommen werden. Ausgehend von der Referenzmessung auf dem Planum wurden mit den Systemen "unbewehrte Kiessandtragschicht" und "geogitter- bzw. -vliesbewehrte Kiessandtragschicht" Verbesserungen des Abklingverhaltens mit Zunahme der Entfernung zum Erschütterungsort erwiesen. Das jeweilige Verhalten ist jedoch nicht gleichmäßig oder gleichartig. Die Schwinggeschwindigkeit der unbewehrten Tragschicht hat hierbei das günstigste Abklingverhalten, da der Mittelwert der Schwinggeschwindigkeit bereits am Messort unterhalb des Referenzwertes auf dem Planum lag. Darüber hinaus fiel die Schwinggeschwindigkeit mit der Entfernung im Vergleich mit den anderen Systemen am deutlichsten ab.

Die geogitterbewehrte Tragschicht zeigt anfangs zwar bei den Impulsanregungen in Beverungen einen höheren Mittelwert gegenüber dem Referenzwert, jedoch führt der Einbau ab einer bestimmten Entfernung zur Erregerquelle zu einer Verbesserung des Abschirmverhaltens. Bei der geovliesbewehrten Tragschicht ist gegenüber der Referenzmessung entlang der Prüfstrecke insgesamt eine günstigere Prognose hinsichtlich des Abschirmeffektes abzuleiten. Gegenüber einer geogitterbewehrten Tragschicht ist in kurzer Entfernung die geovliesbewehrte Tragschicht günstiger. Nach den Untersuchungen zeigt sich allerdings, dass zwischen den Messpunkten I = 5,0 m und I = 10,0 m eine Umkehrung eintritt. Dies bedeutet, dass die geogitterbewehrte Tragschicht ab dieser Entfernung eine bessere Abschirmwirkung erzielen kann.

Im Vergleich zwischen dem unbewehrten und den bewehrten Prüffeldern ist festzustellen, dass das Abschirmverhalten nach Einlage des verwendeten Geogitters ungünstiger ist. Hingegen ist im Nahbereich zur Erregerquelle (hier etwa bis zum Messpunktort I = 5,0 m) ein günstigeres Verhalten festzustellen. Im weiteren Verlauf zeigte sich allerdings eine Umkehrung, so dass dann die unbewehrte Tragschicht wieder ein besseres Abschirmverhalten aufwies. Die Schwingungsmessungen der Vergleichsmessung in "Beverungen" führten auf den jeweiligen Teilfeldern ebenfalls zu keiner erkennbaren Veränderung der Schwinggeschwindigkeitsamplituden in der Nachbarschaft der Prüffelder. Das Antwortspektrum weist bei der periodischen Erregung und bei der Erregung durch Impulse einen Frequenzbereich bis f \cong 100 Hz auf. Da im Bauwesen das interessierende Spektrum im wesentlichen bei f \cong 50 Hz reicht, ist damit auch gewährleistet, dass ein Einfluss der Einbauten auf die Schwinggeschwindigkeitsamplituden auch im Frequenzbereich bis etwa 100 Hz nicht vorhanden ist.

Bei den Messungen in Cuxhaven haben sich nach Betrachtung der Schwinggeschwindigkeitsamplituden lediglich unerhebliche Unterschiede ergeben. Eine signifikante Veränderung der Schwingungsgeschwindigkeit zwischen den Messorten ist unter Zugrundelegung der in der Versuchsanordnung eingesetzten Erregerbelastung nicht erkennbar. Auch bei höheren Erregerbelastungen ist zwar eine Zunahme des Maximalwertes der Schwingungsgeschwindigkeit zu erwarten, dennoch wird mit einem maßgeblichen Unterschied zwischen den Prüfabschnitten nicht zu rechnen sein. Die aufgetretenen bzw. gemessenen Schwingungsgeschwindigkeiten liegen weit unterhalb einer maßgeblichen Immission, so dass eine relevante Auswirkung auf die Umgebung nicht abzuleiten ist.

Anhand der umfangreichen Untersuchungsergebnisse aller Messungen kann letztlich angenommen werden, dass Einflussfaktoren auf dynamische Wirkungseigenschaften

- Art und Frequenz der dynamischen Erregung
- Boden/Baugrund
- Geokunststoff
- Schüttung

sein können.

Aus diesem Grunde wurden verschiedene Versuchsaufbauten gewählt. Trotz einer Variation von Versuchsparametern konnten letztlich keine signifikanten Wirkungsunterschiede festgestellt werden.

Auch unter Einbeziehung des bituminösen Oberbaus konnte am Beispiel "Cuxhaven" gezeigt werden, dass keine nennenswerten Unterschiede im Schwingungsausbreitungsverhalten mit und ohne Geokunststoffeinlage bestehen.

Die hohe Streuung der Messwerte erfordert bei künftigen Untersuchungen eine wesentlich höhere Datendichte zur statistischen Absicherung der Versuchsergebnisse.

Analog zur Anwendung vertikaler Bauelemente (z.B. Dichtwände mit Gelsuspension) zur wirksamen Eindämmung von Schwingungsimmissionen ist die Einlage horizontaler Trennschichten in Straßenunterbauten denkbar. Hierzu sind allerdings weitere Untersuchungen mit gel- oder luftgefüllten Geokunststoffen erforderlich.

Literatur

ADAMS, M.T., COLLIN, J.G., (1997), Large Model Spread Footing Load Tests on Geosynthetic Reinforced Soil Foundations. *Journal of Geotechnical Engineering,* ASCE, Vol. 123, No. 1, 66-72

BBG (2004), Schriftliche Ausarbeitung der Bauberatung Geokunststoffe über die Wirkungsweise von Vliesen, unveröffentlicht

BEITZER, M. (2002), Messtechnik, Burgdorf, Anwendungshandbuch zur Schwingungsmessung "System 9000", Eigenverlag, 64 S.

BEYER, H. (1999), Zur Wirkungsweise von Geokunststoffen in ungebundenen Schichten des Straßenbaues, Dissertation, Eigenverlag Hannover, 153 S.

BEYER, H. UND NIMMESGERN, M. (1994): Zur Wirkungsweise von Geotextilien und Geokunststoffen im ungebundenen Straßenbau. *Straße* + *Autobahn* 7, S. 373-378

BRIDLE, R.J., JENNER, C.G., BARR, B. (1994), Novel Applications of geogrids in Areas of Shallow Mineworkings, Proc. 5th Int. Conf. on Geotextiles, Geomembranes an Related Products, Singapore, Band 1, 297 – 300

BUNDESMINISTERIUM FÜR VERKEHR (1985), "Bauverfahren Bewehrte Erde", Allgemeines Rundschreiben Straßenbau Nr. 4 / 1985, Bonn, 240

CHADDOCK, B.C.J. (1988), Deformation of Road Foundations with Geogrid Reinforcement, TRRL Research Report 140, Department of transport, Crowthorne, Berkshire, UK, 8 S.

DIN EN ISO 10318 (Norm-Entwurf), DEUTSCHES INSTITUT FÜR NORMUNG E.V. (2001), Geokunststoffe - Geotextilien, geotextilverwandte Produkte, Dichtungsbahnen und geosynthetische Tondichtungsbahnen - Begriffe und ihre Definitionen, Beuth Verlag GmbH

DIN EN ISO 12236, DEUTSCHES INSTITUT FÜR NORMUNG E.V. (2004), Geokunststoffe - Stempeldurchdrückversuch (CBR-Versuch), DIN Taschenbuch, Beuth Verlag GmbH

DIN 18121 Teil 1, NORMENAUSSCHUSS BAUWESEN IM DIN E.V. (1998), Wassergehalt; Teil 1: Bestimmung durch Ofentrocknung, DIN Taschenbuch 113, Beuth Verlag GmbH, 253-256

DIN 18122 Teil 1, NORMENAUSSCHUSS BAUWESEN IM DIN E.V. (1997), Zustandsgrenzen (Konsistenzgrenzen); Teil 1: Bestimmung der Fließ- und Ausrollgrenze, DIN Taschenbuch 113, Beuth Verlag GmbH, 264-272

DIN 18123, NORMENAUSSCHUSS BAUWESEN IM DIN E.V. (1996), Bestimmung

der Korngrößenverteilung, DIN Taschenbuch 113, Beuth Verlag GmbH, 273-284

DIN 18125, NORMENAUSSCHUSS BAUWESEN IM DIN E.V. (1997), Teil 1 – Laborversuche, Teil 2 - Feldversuche, DIN Taschenbuch 113, Beuth Verlag GmbH, 291-302

DIN 18127, NORMENAUSSCHUSS BAUWESEN IM DIN E.V. (1987), Versuche und Versuchsgeräte, Proctorversuch, DIN Taschenbuch 113, Beuth Verlag GmbH, 313-328

DIN 18134, NORMENAUSSCHUSS BAUWESEN IM DIN E.V. (1993), Plattendruckversuch, DIN Taschenbuch 113, Beuth Verlag GmbH, 362-371

DIN 18196, NORMENAUSSCHUSS BAUWESEN IM DIN E.V. (1988), Bodenklassifikation für bautechnische Zwecke, DIN Taschenbuch 113, Beuth Verlag GmbH, 409-412

DIN 4020-4022, NORMENAUSSCHUSS BAUWESEN IM DIN E.V. (1990), 4020: Geotechnische Untersuchungen für bautechnische Zwecke, 4021: Aufschluss durch Schürfe und Bohrungen sowie Entnahme von Proben, 4022: Benennen und Beschreiben von Boden und Fels, DIN-Taschenbuch 113, Beuth Verlag Berlin, 406 S.

DIN 4094, NORMENAUSSCHUSS BAUWESEN IM DIN E.V. (1990), Erkundung durch Sondierungen, DIN Taschenbuch 113, Beuth Verlag GmbH, 213-243

DIN 4150, Teil 1, 2 und 3, DEUTSCHES INSTITUT FÜR NORMUNG E.V. (1999/2001), Erschütterungen im Bauwesen Teil 1: Vorermittlung von Schwingungsgrößen, Teil 2: Einwirkungen auf Menschen in Gebäuden, Teil 3: Einwirkungen auf bauliche Anlagen, Beuth Verlag Berlin, 73 S.

DIN 45669, Teil 1 bis Teil 3, DEUTSCHES INSTITUT FÜR NORMUNG E.V. (2004), Messung von Schwingungsimmisionen, Teil 1: Schwingungsmessung Anforderungen, Prüfung, 1995, Teil 2: Messverfahren, 2004, Teil 3: Prüfung der Schwingungseinrichtung, 2004, Beuth Verlag Berlin, 25 S.

DIN 60000, DEUTSCHES INSTITUT FÜR NORMUNG E.V. (1969), Textilien; Grundbegriffe, Beuth Verlag Berlin

DIN 61210, DEUTSCHES INSTITUT FÜR NORMUNG E.V. (1982), Vliese, verfestigte Vliese (Filze, Vliesstoffe, Watten) und Vliesverbundstoffe auf Basis textiler Fasern; Technologische Einteilung, Beuth Verlag Berlin

FLOSS, R. (1969), Erdbautechnische Voraussetzungen für standardisierte Straßenbefestigungen - *Straße und Autobahn*, Heft 2, 39-45

FLOSS, R. (1970), Vergleich der Verdichtungs- und Verformungseigenschaften unstetig und stetiger Kiessande hinsichtlich ihrer Eignung als ungebundenes Schüttmaterial im Straßenbau, Bundesanstalt für Straßenwesen Heft 9, Ernst und Sohn Berlin

FLOSS, R. (1971), Über den Zusammenhang zwischen der Verdichtung und dem

Verformungsmodul von Böden - Straße und Autobahn, Heft 10, 433-439

FLOSS, R. (1973), Bodenmechanische Gesichtspunkte bei der Auswahl und Dimensionierung von Straßenbefestigungen - *Straße und Autobahn*, Heft 1, 17-26

FLOSS, R. UND BRÄU, G. (1988): Geotextilien in Baufahrstraßen. 1. Kongreß Kunststoffe in der Geotechnik, K-GEO S. 55-68, Hamburg 1988

FORSCHUNGSGESELLSCHAFT FÜR STRAßEN- UND VERKEHRSWESEN FGSV (1987), Richtlinien für die Anlage von Straßen RAS, Teil Entwässerung, FGSV Verlag, Köln, 71 S.

FORSCHUNGSGESELLSCHAFT FÜR STRAßEN- UND VERKEHRSWESEN FGSV (1988), Merkblatt über Straßenbau auf wenig tragfähigem Untergrund, FGSV Verlag Köln, 34 S.

FORSCHUNGSGESELLSCHAFT FÜR STRAßEN UND VERKEHRSWESEN FGSV (1994), Merkblatt für die Anwendung von Geotextilien und Geogittern im Erdbau des Straßenbaues, FGSV Verlag Köln, 72 S.

FORSCHUNGSGESELLSCHAFT FÜR STRAßEN- UND VERKEHRSWESEN FGSV (1995), TL Geotex E - StB 95, FGSV Verlag Köln, 26 S.

FORSCHUNGSGESELLSCHAFT FÜR STRAßEN- UND VERKEHRSWESEN FGSV (1997), Zusätzliche Technische Vertragsbedingungen und Richtlinien für Erdarbeiten im Straßenbau ZTVE-StB 94, FGSV Verlag Köln, 107 S.

FORSCHUNGSGESELLSCHAFT FÜR STRAßEN- UND VERKEHRSWESEN FGSV (1999), Checklisten für die Anwendung von Geotextilien und Geogittern im Erdbau des Straßenbaus, Nr. 533 FGSV Verlag Köln, 12 S.

FORSCHUNGSGESELLSCHAFT FÜR STRAßEN- UND VERKEHRSWESEN FGSV (2001), Richtlinien für die Standardisierung des Oberbaues von Verkehrsflächen - RStO 01, FGSV Verlag Köln, 51 S.

FORSCHUNGSGESELLSCHAFT FÜR STRAßEN- UND VERKEHRSWESEN FGSV (2002), Zusätzliche Technische Vertragsbedingungen und Richtlinien für Tragschichten im Straßenbau ZTVT-StB 95, FGSV Verlag Köln,126 S.

FUNK, K. (1996), Expertensystem für Lärm- und Erschütterungsprognosen beim Einbringen von Spundbohlen, Dissertation, Curt-Risch-Institut Eigenverlag, 145 S.

GLNW, GEOLOGISCHES LANDESAMT NORDRHEIN-WESTFALEN (1979), Erläuterungen zu Blatt C 4318 Paderborn, Joh. Van Acken, Krefeld, 55 S.

GIROUD, J. P., NOIRAY, L. (1981), Geotextile Reinforced Unpaved Road Design, *Journal of the Geotechnical Engineering Division*, ASCE, Vol. 107, No. GT9, 1233-1254

GUIDO, V.A., KNUEPPEL, J.D., SWEENY, M.A. (1987), Plate Loading Tests on Geogrid-Reinforced Earth Slabs, Proc. Geosynthetics '87 Conference, New Orleans,

USA, 216-225

HAAS, R., WALLS, J., CAROLL, R.G. (1989), Geogrid Reinforcement on Granulas Bases in Flexible Pavements, Transportation Research Record 1188, 19-27

HENNE, J. (1995), Zur Bewehrung von Bodenschichten durch Einsatz zugfester Geokunststoffe, Dissertation, Eigenverlag IGS Stuttgart, 154 S.

HILDEBRANDT, T. (2001), Vergleichsuntersuchung zur Bestimmung der wirksamen Scherfestigkeit von Böden sowie der Reibungs- und Adhäsionseigenschaften von Böden im Kontakt mit Geokunststoffen, Diplomarbeit HTW Dresden, http://www.bau.htw-dresden.de/wasserwesen/diplom/xml/TH8633.pdf

IVANI, G., BUSCHMEYER, W. (1989), Betonkalender 2000, 89. Jahrgang, ERNST und SOHN Verlag Berlin, 457-533

KINNEY, T.C. & XIAOLIN, Y. (1995), Geogrids Aperture Rigidity by In-Plane Rotation. *Proceedings, Geosynthetics '95,* Nashville, Tennessee, February, Vol. 2, 1253 S.

KIRSCHNER, R. (1991), Langzeitverhalten von polymeren Bewehrungseinlagen in Erdkörpern, *Straßen- und Tiefbau* 6'91, Giesel-Verlag Iserlohn, 21-26

KLEIN, G. (1996), Bodendynamik und Erdbeben, Grundbau - Taschenbuch, Fünfte Auflage Teil 1, Ernst & Sohn Verlag Berlin, 443-495

KNAPTON, H., AUGUSTIN, T.A. (1996), Laboratory Testing of Reinforced Unpaved Roads, *Proceedings of the International Symposium on Earth Reinforcement*, Fukuoka/Kyushu, Japan, Balkema, Vol. 1, 615-618

KOLYMBAS, D. (1998), Geotechnik, Bodenmechanik und Erdbau, Springer-Verlag Berlin-Heidelberg-New York, 425 S.

KÖNIG, F. (1995), Verdichtung im Erd- und Straßenbau, Bauverlag GmbH Wiesbaden und Berlin, 260 S.

MATHARU, M.S. (1994), Geogrid Cut Ballast Settlement Rate on Soft Substructures, *Railway Gazette International*, 3/94

MEIBURG, P. (1983), Erläuterungen zur Geologischen Karte von Hessen 1:25000, Blatt Nr. 4521 Liebenau, HlfB Eigenverlag Wiesbaden, 175 S.

MILLIGAN, G.W.E & LOVE, J.P. (1985), Model testing of geogrids under an aggregate layer on soft ground. Proc Symp Polymer Grid Reinforcement, Institution of Civil Engineers, 128-138

MOSER, M., BREYMANN, H. (2001), Das Durchdrückverhalten von Geotextilien unter dynamischer und statischer Belastung – der Pyramidendurchdrückversuch nach RVS 85.01.2, <u>http://www.bvfs.at/htm/pub/geo.htm</u>

NAUE FASERTECHNIK GMBH& CO. KG, LÜBBECKE (2002), Bewehrung mit Geokunststoffen, Anwendungen und Bemessung in Beispielen, Eigenverlag Lübbecke, 50 S.

NAUE FASERTECHNIK, LÜBBECKE (2003), Secugrid - Vorträge 2000 / 2001 und 2003, Eigenverlag

ÖNORM S2076 (1993), Deponien – Dichtungsbahnen aus Kunststoff - Verlegung

OXFORD UNIVERSITY (1980), The use of mesh products to improve the perfomance of granular fill on soft ground, Report 1396/81, Netlon Limited

PRINZ, H. (1997), Abriss der Ingenieurgeologie, Ferdinand Enke Verlag Stuttgart 1991, 546 S.

PROCTOR, R. R. (1933), Fundamental Principles of Soil Compaction. *Engineering News Record*, Vol. 11, n. 9, 148-156

REIHER, H., MEISTER, F. J. (1931), Die Empfindlichkeit des Menschen gegen Erschütterungen, *Forschung auf dem Gebiet des Ingenieurwesens*, 381

RÜEGGER, R. (2002), Grundlagen für die Anwendung von Geokunststoffen von der Planung bis zur Ausschreibung, <u>http://www.geotex.ch/Info/Information.html</u>

RUEGGER, R., HUFENUS R. (2003), Bauen mit Geokunststoffen; Handbuch für den Geokunststoff-Anwender, Eigenverlag, CH - St. Gallen, 191 S.

RVS 8S.01.2 (1997), Technische Vertragsbedingungen – Baustoffe – Geotextilien im Unterbau, Bundesministerium für wirtschaftliche Angelegenheiten, Forschungsgesellschaft für das Verkehrs- und Straßenwesen

SAATHOFF, F., ZITSCHER, F.-F. (2001), Geokunststoffe in der Geotechnik und im Wasserbau, Grundbau - Taschenbuch, 6. Auflage Teil 2, Verlag Ernst & Sohn, Berlin, 423-693

SEILER, J. (1995), Versuche und praktische Erfahrungen mit gestreckten und gewebten Geogittern auf der Strecke Hochstadt / München – Probstzella der Fernbahn München – Berlin, *Geotechnik* Sonderheft zur 4. Informations- und Vortragsveranstaltung über Kunststoffe in der Geotechnik München, Verlag DGGT Essen, 140-145

STRAUßBERGER, D. (2002), Gründung eines mit Geokunststoffen bewehrten Autobahndammes auf weichen Untergrund, Tagungsband der 12. Donau - Europäischen Konferenz; Deutsche Gesellschaft für Geotechnik e.V. DGGT, Verlag Glückauf GmbH Essen, 381-382

TENSAR INTERNATIONAL GMBH (1989), Tensar geogrid reinforced sub-bases (Mit Tensar - Geogitter bewehrte Tragschichten – Fallstudien), Eigenverlag

TENSAR INTERNATIONAL GMBH (2001), Produktpräsentationskatalog, Eigenverlag Bonn

TENSAR INTERNATIONAL TRRL (2000), Field Trials of Tensar Geogrid Rein-

forcement of Sub-Base Capping Layers. Unpublished Report

BRP (1994), Anwendung von Tensar Geogittern im Straßenbau; Unterlagen zur Bemessung des ungebundenen Straßenbaus (von Beckmann, Ruppert und Partner GmbH), Eigenverlag, 17 S.

TRRL (1989), Field Trials of Tensar Geogrid Reinforcement of Sub-Base Capping Layers. TTU/PE/3/89 unpublished Report to Netlon Limited

VANGGAARD, M. (1999), The effect of reinforcement due to choice of geogrid, Proc. 2nd Int. Symp. on Pre-Failure Deformation Characteristics of Geomaterial - IS TORINO 99, Torino, Italy (ed. M. Jamiolkowski et. al.), Rotterdam: A.A. Balkema, Vol. 1

VERSPOHL, J. (2000), Dynamisch belastete Fundamente und Erdbebenwirkungen aus Hettler, A., Gründung von Hochbauten, Ernst & Sohn Verlag Berlin, 343-417

VOB (2002), Vergabe- und Vertragsordnung für Bauleistungen, Beuth Verlag GmbH Berlin, 904 S.

VOTH, B. (1978), Boden; Baugrund und Baustoff, Bauverlag GmbH Wiesbaden und Berlin, 197 S.

WATTS, G.R.A., BLACKMAN, D.I., JENNER, C.G. (2004), The Performance of Reinforced Unpaved Sub - Bases Subjected to Trafficking; EUROGEO 2004, München, Band 1, 261 – 266

WEBSTER, S. L. (1993). Geogrid Reinforced Base Courses for Flexible Pavements for Light Aircraft: Test Section Construction, Behaviour Under Traffic, Laboratory Tests, and Design Criteria, Technical Report GL-93-6, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, USA, 86 S.

WEBSTER, S.L. (1991), Geogrid Reinforced Base Courses for Flexible Pavements for Light Aircraft: Literature Review and Test Section Design. Geotechnical Laboratory, Department of the Army, Waterways Experiment Station, Corps of Engineers, Mississippi

WILMERS, W. (1994), Zur Einführung der Technischen Lieferbedingungen TL Geotex E-StB 95 und des Merkblattes für die Anwendung von Geotextilien und Geogittern im Erdbau des Straßenbaues, *Straße* + *Autobahn* 10/95, 565-582

ZODET, S. (2003), Geotechnische Untersuchungen und Berechnungen im konstruktiven Ingenieurbau und im Erdbau des Straßenbaus, VSVI - Seminar Nr. 13-2002/2003, <u>http://www.vsvi-rlpsaar.de/neu/dok1.pdf</u>

Karten

Geologische Karte von Nordrhein-Westfalen 1:100000, Blatt C 4318 Paderborn (1979)

Geologische Karte von Hessen 1:25000, Blatt 4521 Liebenau (1983)

Amtliche Topographische Karten Nordrhein-Westfalen 1:50000, Landesvermessungsamt Nordrhein-Westfalen (2001)

Amtliche Topographische Karten Hessen 1:50000, Landesvermessungsamt Hessen (2001)

ANHANG 1

Oszilloskopische Darstellung und Messergebnisse der

am Standort "Liebenau"

- Messungen 1 bis 40 -
-

😽 Zei	itverlauf: Ergebnisse				_ 🗆 ×
	LIEBENAU - Me	ssung Nr 1	24.5.200	04 16:06:31 Uhr ID=48	<u> </u>
	unbewertet		— frequen	zbewertet	
	peak		F-max	F-Tm r.m.s. Flags	VA
1	0,867 mm/s	KB	0,543	0,231	12,2
2	4,507 mm/s	KB	2,838	1,380	12,3
3	4,598 mm/s	KB	2,903	1,389	12,4
4	4,765 mm/s	KB	3,091	1,424	12,3
5	0,510 mm/s	KB	0,334	0,165	12,3
6	4,562 mm/s	КВ	2,945	1,420	12,5
7	0,007 mm/s	KB	0,002	0,001	12,8
	Auswerteläng	je = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeitfens	ter: Hanning n	ach DIN 41	50 ТЗ	

😽 Zeit	tverlauf: Ergebnisse				_ 🗆 ×
	LIEBENAU - Me	essung Nr 2	24.5.200	04 16:06:47 Uhr ID=51	<u> </u>
	unbewertet		— frequen	zbewertet ———	
	peak		F-max	F-Tm r.m.s. Flags	VA
1	4,438 mm/s	КВ	2,868	1,332	12,2
2	0,535 mm/s	КВ	0,340	0,190	12,3
3	2,442 mm/s	КВ	1,671	0,911	12,4
4	4,433 mm/s	КВ	2,840	1,392	12,3
5	0,856 mm/s	КВ	0,584	0,336	12,3
6	0,797 mm/s	КВ	0,481	0,197	12,5
7	0,884 mm/s	КВ	0,607	0,349	12,8
	Auswertelän	ge = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeitfen:	ster: Hanning n	ach DIN 41	50 T 3	
					*

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
😽 Beitzer System 9000 – LIEBENAU Messung Nr. 3 24.5.2004 16:07:03	

😽 Zeit	tverlauf: Ergebnisse				_ 🗆 >	×
	LIEBENAU - Me	ssung Nr 3	24.5.200	04 16:07:03 Uhr ID	i=46	*
	unbewertet		— frequen	zbewertet ———		
	peak		F-max	F-Tmr.m.s.	Flags VA	
1	0,618 mm/s	KB	0,389	0,175	12,2	
2	0,516 mm/s	КВ	0,329	0,163	12,3	
3	1,616 mm/s	КВ	1,096	0,640	12,4	
4	2,537 mm/s	KB	1,589	0,701	12,3	
5	2,539 mm/s	KB	1,589	0,701	12,3	
6	2,941 mm/s	КВ	1,796	1,105	12,5	
7	0,654 mm/s	КВ	0,446	0,265	12,8	
	Auswerteläng	e = 10,2 sec		Startzeit = 0 sec		
	FFT-Zeitfenst	er: Hanning I	nach DIN 41	50 T3		
						-

😽 Zei	tverlauf: Ergebnisse				_ 🗆 ×
	LIEBENAU - M	essung Nr 4	24.5.200)4 16:07:19 Uhr ID=25	<u>×</u>
	unbewertet neak		— frequen F-max	zbewertet ——— F-Tm rms Elaas	VA
1	0,903 mm/s	КВ	0,571	0,230	12,2
2	0,560 mm/s	КВ	0,374	0,212	12,3
3	2,376 mm/s	КВ	1,610	0,814	12,4
4	3,368 mm/s	КВ	2,072	0,934	12,3
5	3,029 mm/s	КВ	1,749	0,869	12,3
6	4,833 mm/s	КВ	2,986	1,277	12,5
7	0,008 mm/s	KB	0,002	0,001	12,8
	Auswertelän	ge = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeitfen	ster: Hanning n	ach DIN 41	50 T 3	
					v

😽 Zei	tverlauf: Ergebnisse	1			_ 🗆 ×
	LIEBENAU - M	essung Nr 5	24.5.200)4 16:07:37 Uhr ID=29	<u> </u>
	unbewertet peak		– frequen F-max	zbewertet F-Tm r. m. s. Flags	VA
1	0,636 mm/s	КВ	0,382	0,155	12,2
2	2,185 mm/s	КВ	1,336	0,629	12,3
3	2,275 mm/s	КВ	1,332	0,690	12,4
4	2,191 mm/s	КВ	1,321	0,625	12,3
5	2,245 mm/s	КВ	1,333	0,693	12,3
6	2,216 mm/s	КВ	1,101	0,382	12,5
7	0,786 mm/s	КВ	0,540	0,288	12,8
	Auswertelär	ige = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeitfen	ster: Hanning n	ach DIN 41	50 T 3	
					-

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
😽 Beitzer System 9000 - LIEBENAU Messung Nr. 6 24.5.2004 16:07:54	

😽 Zeit	verlauf: Ergebnisse				_ 🗆 🗙
	LIEBENAU - Me	essung Nr 6	24.5.200	04 16:07:54 Uhr ID=33	<u> </u>
	unbewertet peak		— frequen F-max	zbewertet ——— F-Tm rms Elay	ns VA
1	2,265 mm/s	КВ	1,516	0,755	12,2
2	1,453 mm/s	КВ	0,979	0,550	12,3
3	1,252 mm/s	КВ	0,663	0,368	12,4
4	1,247 mm/s	КВ	0,658	0,366	12,3
5	1,727 mm/s	КВ	0,988	0,583	12,3
6	2,368 mm/s	КВ	1,585	0,783	12,5
7	0,593 mm/s	КВ	0,405	0,213	12,8
	Auswertelän	ge = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeitfen:	ster: Hanning n	iach DIN 41	50 T 3	
					-

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"
Beitzer System 9000 - LIEBENALL Messuno Nr. 7, 24,5 2004, 16:08:09

😽 Zeit	verlauf: Ergebnisse)					_ [⊐ ×
	LIEBENAU - M	essung Nr 7	24.5.20	04 16:08:09 (Uhr ID	=35		*
	unbewertet		— frequen	zbewertet —				
	peak		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,894 mm/s	КВ	0,547		0,302		12,2	
2	0,457 mm/s	КВ	0,296		0,152		12,3	
3	1,916 mm/s	КВ	1,311		0,738		12,4	
4	2,945 mm/s	КВ	1,761		0,903		12,3	
5	3,086 mm/s	КВ	1,849		0,922		12,3	
6	3,985 mm/s	КВ	2,538		1,419		12,5	
7	0,704 mm/s	КВ	0,480		0,291		12,8	
	Auswertelär	nge = 10,2 sec		Startzeit = 0 se	с			
	FFT-Zeitfen	ster: Hanning n	iach DIN 41	50 T 3				
								-

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
😔 Beitzer System 9000 - LIEBENAU Messung Nr. 8 24.5.2004 16:08:25	

🚭 Zeit	tverlauf: Ergebnisse				_ 🗆 ×
	LIEBENAU - Me	essung Nr 8	24.5.200)4 16:08:25 Uhr ID=37	<u> </u>
	unbewertet peak		— frequen F-max	zbewertet ——— F-Tm r.m.s. Flags	VA
1	0,833 mm/s	КВ	0,543	0,297	12,2
2	0,421 mm/s	KB	0,262	0,135	12,3
3	1,616 mm/s	КВ	1,086	0,618	12,4
4	0,009 mm/s	KB	0,002	0,001	12,3
5	1,496 mm/s	KB	0,956	0,580	12,3
6	0,657 mm/s	КВ	0,445	0,249	12,5
7	0,878 mm/s	КВ	0,571	0,311	12,8
	Auswerteläng	ge = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeittens	ter: Hanning n	ach DIN 41	50 T3	

Oszilloskoj	pische	Darst	ellung und	d Mes	sergebnisse	am Standort	: "Liebenau"
😽 Beitzer System	9000 - LI	EBENAU	Messung Nr. 9	24.5.2004	16:08:40		

😽 Zeit	verlauf: Ergebnisse				_ 🗆 ×	
	LIEBENAU - M	essung Nr 9	24.5.200	04 16:08:40 Uhr ID=	39 🗕	
	unbewertet		— frequen	zbewertet ———		
	peak		F-max	F-Tmr.m.s.	Flags VA	
1	0,700 mm/s	КВ	0,442	0,269	12,2	
2	1,975 mm/s	KB	1,350	0,777	12,3	
3	1,990 mm/s	КВ	1,361	0,783	12,4	
4	2,253 mm/s	KB	1,340	0,750	12,3	
5	3,967 mm/s	КВ	2,370	1,299	12,3	
6	4,019 mm/s	КВ	2,401	1,316	12,5	
7	0,726 mm/s	КВ	0,486	0,287	12,8	
Auswertelänge = 10,2 sec Startzeit = 0 sec						
FFT-Zeitfenster: Hanning nach DIN 4150 T3						

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
A Baitzar System 9000 - LIEBENALL Messung Nr 10 24 5 2004 16:08:58	

Zeitverlauf: Ergebnisse							
	LIEBENAU - N	lessung Nr 10) 24.5.20	004 16:08:58 Uhr	ID=41		
	unbewertet		— frequen	- frequenzbewertet			
	peak		F-max	F-Tm r.m.s	s. Flags	VA	
1	1,953 mm/s	КВ	1,285	0,746	i	12,2	
2	0,662 mm/s	KB	0,459	0,255	5	12,3	
3	2,401 mm/s	KB	1,409	0,712	2	12,4	
4	2,913 mm/s	KB	1,958	0,894	I	12,3	
5	2,386 mm/s	KB	1,399	0,706	i	12,3	
6	3,729 mm/s	KB	2,140	1,126	i	12,5	
7	0,007 mm/s	KB	0,003	0,001		12,8	
Auswertelänge = 10,2 sec Startzeit = 0 sec							
FFT-Zeitfenster: Hanning nach DIN 4150 T3							
							$\overline{}$

😽 Zeit	verlauf: Ergebniss	3e				
	LIEBENAU -	Messung Nr 11	24.5.2	004 16:40:39 Uhr II)= 4 3	
	unbewertet peak		— frequen F-max	zbewertet ——— F-Tm r.m.s.	Flags VA	
1	5,362 mm/s	КВ	2,301	1,222	12,2	
2	0,006 mm/s	КВ	0,002	0,001	12,3	
3	6,854 mm/s	КВ	3,627	1,577	12,4	
4	5,553 mm/s	КВ	2,404	1,247	12,3	
5	0,996 mm/s	КВ	0,463	0,245	12,3	
6	1,008 mm/s	КВ	0,470	0,248	12,5	
7	2,359 mm/s	КВ	1,239	0,603	12,8	
Auswertelänge = 10,2 sec Startzeit = 0 sec						
FFT-Zeitfenster: Hanning nach DIN 4150 T3						
					V	

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Liebenau"
🔂 Beitzer System 9000 – LIEBENAU Messung Nr. 12 24.5.2004 16:4	10:55 📃 🗗 🗙
5 000-1	
Kan 1 (mm/s)	Pri imm/si
-5.000-1	0.000-
2.000 - Kan 2 (mm/s)	0.500 FF T (mm/s)
	0.350
-2 000-	
5.000-1 Kán 3 imm/si	
	0.500-
-5.000-1 1 1 1 1	
TU.UU-Kan 4 (mm/s)	2.000-
	1.000-
-10.00-	0.000-
5.000 - Kan 5 (mm/s)	1.000
10.00-1 / / / / / / / / / / / / / / / / / / /	
	1.000-
-10.00-1	0.000-location destruction and define the second se
2.000 - Kan 7 (mm/s)	U.5UU FF[T (mm/s]
	0.250-
-2.000-	0.000-
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
😽 Beitzer System 9000 – LIEBENAU Messung Nr. 12 24.5.2004 16:40:55	

😽 Zeit	verlauf: Ergebnisse						_ 🗆	×
	LIEBENAU - M	essung Nr 12	2 24.5.20	004 16:40:5	5 Uhr II	D=54		*
	unbewertet		— frequen	zbewertet -		_		L
1	peak 2.170 mm/o	٧D	1 1 0 C	F-Im	r. m. s. 0 cc7	Flags	VA	
	2,179 mm/s	KB	1,100		0,007		12,2	
2	1,199 mm/s	КВ	0,570		0,324		12,3	
3	4,266 mm/s	KB	2,201		1,097		12,4	
4	7,210 mm/s	КВ	3,349		1,732		12,3	
5	4,226 mm/s	KB	2,203		1,087		12,3	
6	9,266 mm/s	КВ	4,700		2,721		12,5	
7	1,245 mm/s	КВ	0,592		0,337		12,8	
Auswertelänge = 10,2 sec Startzeit = 0 sec								
FFT-Zeitfenster: Hanning nach DIN 4150 T3								
								-

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
Beitzer System 9000 - LIEBENAU Messung Nr 13 24 5 2004 16:42:04	

😽 Zeit	verlauf: Ergebn	isse			_ 🗆 ×		
	LIEBENAU	- Messung Nr 1	3 24.5.20	004 16:42:04 Uhr I	D=56		
	unbewertet		— frequen	zbewertet			
	peak		F-max	F-Tmr.m.s.	Flags VA		
1	1,367 mm/s	s KB	0,637	0,266	12,2		
2	3,647 mm/s	s KB	1,946	0,721	12,3		
3	3,947 mm/s	s KB	2,105	0,732	12,4		
4	4,522 mm/	s KB	2,686	1,232	12,3		
5	1,265 mm/	s KB	0,624	0,235	12,3		
6	6,290 mm/	s KB	3,411	1,412	12,5		
7	1,331 mm/	s KB	0,648	0,244	12,8		
Auswertelänge = 10,2 sec Startzeit = 0 sec							
FFT-Zeitfenster: Hanning nach DIN 4150 T3							
					v		

😽 Zei	tverlauf: Ergebniss	;e					_ [□×
	LIEBENAU -	Messung Nr 14	1 24.5.20	004 16:42:3	36 Uhr II	D=58		<u></u>
	unbewertet peak		— frequen F-max	zbewertet – F-Tm	r. m. s.	Flags	VA	
1	3,516 mm/s	КВ	2,010		0,998		12,2	
2	4,178 mm/s	KB	2,314		1,211		12,3	
3	3,575 mm/s	КВ	2,055		1,006		12,4	
4	0,986 mm/s	КВ	0,489		0,195		12,3	
5	0,848 mm/s	КВ	0,420		0,226		12,3	
6	0,010 mm/s	КВ	0,002		0,001		12,5	
7	0,578 mm/s	КВ	0,273		0,129		12,8	
Auswertelänge = 10,2 sec Startzeit = 0 sec								
FFT-Zeitfenster: Hanning nach DIN 4150 T3								
								-

 $\overline{\mathbf{v}}$

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	

🚭 Zeitv	erlauf: Ergeb	nisse					_ 🗆 >	<
	LIEBENAU	- Messung Nr	15 24.5.20	004 16:42:	53 Uhr I	D=62	_	*
	unbewertet		— frequen	zbewertet -				
	peak		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,365 mm,	/s KB	0,187		0,066		12,2	
2	1,719 mm,	/s KB	0,919		0,453		12,3	
3	2,497 mm,	/s KB	1,287		0,477		12,4	
4	2,951 mm,	/s KB	1,760		0,763		12,3	
5	2,524 mm,	/s KB	1,230		0,636		12,3	
6	0,740 mm,	/s KB	0,497		0,215		12,5	
7	0,008 mm,	/s KB	0,003		0,001		12,8	
	Auswe	ertelänge = 10,2 sei	с	Startzeit = 0	sec			
	FFT-2	Zeitfenster: Hannind	nach DIN 41	50 T 3				
		-						

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"						
😽 Beitzer System 9000 – LIEBENAU Messung Nr. 16 24.5.2004 16:4	3:11 📃 🗗 🗙					
1 000	0.000					
1.000 - Kan 1 (mm/s)	0.200 FFT (mm/s)					
-1.000-						
5.000-						
ally the case of the case						
	0.250-					
and the addition of the state						
-5.000-	0.000-					
5.000-Kán 3 (mm/s)	1.000 FFT (mm/s)					
	0.500					
-0.000-						
Kan 4 (mm/s)	FFI (mm/s)					
	0.500-					
-10.00-						
5.000 - Kain 5 (mm/s)	0.500					
and a second state of the						
-5.000-	2 000					
20.00 Kan 6 (mm/s)	2.000 FFT [mm/s]					
-20.00-	0.000					
2.000- Kan 7 (mm/s)	0.200-					

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
🚭 Beitzer System 9000 – LIEBENAU Messung Nr. 16 24.5.2004 16:43:11	_

🚭 Zeitverlauf: Ergebnisse 📃 🗖 🗙								⊐×	
	LIEBEI	NAU - M	essung Nr 16	24.5.2	004 16:43:1	1 Uhr II	D=65		*
	unbewe	ertet		- frequer	zbewertet -				
	pea	k		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,770	mm/s	КВ	0,415		0,182		12,2	
2	2,953	mm/s	KB	1,488		0,639		12,3	
3	4,845	mm/s	KB	2,848		1,274		12,4	
4	6,009	mm/s	KB	2,905		1,367		12,3	
5	3,229	mm/s	КВ	1,220		0,643		12,3	
6	10,516	mm/s	КВ	6,123		2,695		12,5	
7	1,042	mm/s	KB	0,521		0,293		12,8	
	Å	Auswertelär	nge = 10,2 sec		Startzeit = 0	sec			
FFT-Zeitfenster: Hanning nach DIN 4150 T3									

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"						
🔂 Beitzer System 9000 - LIEBENAU Messung Nr. 17 24.5.2004 16:4	14:24 📃 🖅 🗙					
Kan 1 jmm/sj	FFI Imm/s					
	0.100-					
-2.000-						
2.000 - Kan 2 (mm/s)	0.200-					
-2.000-	0.000-					
5.000-	0.500-r					
	0.250-					
5 000						
-5.000-	1 000-					
5.000 Kån 4 (mm/s)	FFT (mm/s)					
	0.500-					
-5.000-	0.000-					
5.000 - Kán 5 (mm/s)	1.000 FFT (mm/s)					
-5 000-						
0.020-1 Kin 6 (mm/d)	0.0002-					
╹.000. ⁰						
Kan 7 (mm/s)	0.200 FF[T [mm/s]					
-1.000-	0.000-					
U.U 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	U 1U 20 30 40 50 60 70 80 90 100					

Oszilloskor	bische Darstellun	g und Messergebnis	se am Standort "Liebenau"
		0 0	//

🚭 Zeit	verlauf: Ergebniss	e					_ [l ×
	LIEBENAU -	Messung Nr 17	7 24.5.20	04 16:44:24	Uhr I	D=67		4
	unhowartat		— frequer	zhowortot ——				
	peak		F-max	F-Tm r.	. m. s.	Flags	VA	
1	1,065 mm/s	КВ	0,588	1	0,286		12,2	
2	1,082 mm/s	KB	0,594	1	0,288		12,3	
3	2,112 mm/s	КВ	1,187		0,586		12,4	
4	4,204 mm/s	КВ	1,779		1,034		12,3	
5	4,207 mm/s	KB	1,789		1,033		12,3	
6	0,015 mm/s	КВ	0,003	1	0,001		12,5	
7	0,863 mm/s	КВ	0,425	1	0,233		12,8	
	Auswertel	änge = 10,2 sec		Startzeit = 0 sec				
FFT-Zeitfenster: Hanning nach DIN 4150 T3								
								-

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
😽 Beitzer System 9000 − LIEBENAU Messung Nr. 18 24.5.2004 16:44:40	

😽 Zeit	verlauf: Ergebnisse	I.					_ [l ×
	LIEBENAU - M	essung Nr 18	3 24.5.20	004 16:44:4	IO Uhr II	D=70		*
	unbewertet		— frequen	zbewertet –				
	peak		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,562 mm/s	КВ	0,265		0,108		12,2	
2	3,930 mm/s	KB	1,974		0,713		12,3	
3	1,189 mm/s	КВ	0,559		0,193		12,4	
4	5,029 mm/s	KB	2,418		0,891		12,3	
5	0,575 mm/s	KB	0,266		0,109		12,3	
6	4,050 mm/s	КВ	2,110		0,743		12,5	
7	0,008 mm/s	КВ	0,003		0,001		12,8	
	Auswertelär	ige = 10,2 sec		Startzeit = 0 :	sec			
	FFT-Zeitfen	ster: Hanning n	iach DIN 41	50 T 3				
								-

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Liebenau"
😽 Beitzer System 9000 – LIEBENAU Messung Nr. 19 24.5.2004 16:4	4:58 📃 🗗 🗙
£ 000	1 000
S.000 - Kan 1 (mm/s)	FFT (mm/s)
	0.500-
-5.000-	
5.000-1 Kan 2 mm/si	
	0.250-
-5.000-1	
5.000-Kan 3 (mm/s)	FF[T (mm/s)
	0.500-
-5 000-	
5.000-1 Kin 4 mm/d	0.500-
	0.250-
-5.000-	
5.000 - Kain 5 (mm/s)	0.500-
	0.050
-5 000-	
2.000-1 Kin 6 Imm/d	0.200-
sufflite cost & cost	
	0.100-
-2.000-1	
0.010 - Kan 7 [mm/s]	0.0002-
-0.010-	
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	0 10 20 30 40 50 60 70 80 90 100

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"
Reitzer System 9000 - LIEBENALL Massung Nr. 19, 24.5 2004, 16:44-58

- Z eit	verlauf: Ergebnis	se					_ [⊐ ×
	LIEBENAU -	Messung Nr 19	3 24.5.20	004 16:44:9	58 Uhr II	D=73		*
	unbewertet neak		— frequen F-max	zbewertet - F-Tm	r m s	Flags	VA	
1	3,734 mm/s	КВ	2,260		0,859		12,2	
2	4,467 mm/s	КВ	1,998		0,949		12,3	
3	3,797 mm/s	КВ	2,301		0,874		12,4	
4	4,466 mm/s	КВ	2,003		0,949		12,3	
5	2,631 mm/s	КВ	1,208		0,520		12,3	
6	1,444 mm/s	КВ	0,672		0,260		12,5	
7	0,007 mm/s	КВ	0,002		0,001		12,8	
	Auswerte	länge = 10,2 sec		Startzeit = 0	sec			
	FFT-Zeit	fenster: Hanning r	nach DIN 41	50 T 3				

🔶 Ze	eitverlauf: E	irgebnisse						_ [l ×
	LIEBE	NAU - M	essung Nr 20	24.5.2	004 16:45:1	4 Uhr II	D=75		*
	unbew	ertet		- frequer	zbewertet –				
	pea	ak		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,652	mm/s	КВ	0,260		0,102		12,2	
2	1,291	mm/s	КВ	0,611		0,255		12,3	
3	4,733	mm/s	КВ	2,474		0,783		12,4	
4	4,903	mm/s	КВ	2,222		0,967		12,3	
5	12,090	mm/s	KB	5,653		2,056		12,3	
6	1,404	mm/s	КВ	0,660		0,270		12,5	
7	0,686	mm/s	КВ	0,271		0,108		12,8	
		Auswertelän	ge = 10,2 sec		Startzeit = 0 :	sec			
		FFT-Zeitfen:	ster: Hanning na	ach DIN 41	50 T 3				
									-

Oszilloskopische Darstellung und Messer	Jebhisse am Standort "Liebenau
🔂 Beitzer System 9000 - LIEBENAU Messung Nr. 21 24.5.2004 17:13	2:40 _ 🛃 🔀
wall head the add head the de in the interview	
	0.100-
-1.000-	
1.000- Kạn 2 (mm/s)	0.100-
	0.050-
-1.000-1 1 1 1 1	0.000
Kán 3 (mm/s)	0.200 FFT (mm/s)
	0.100-
-1 000-	
2.000-1 Kin 4 mm/si	0.500-
and the second	
	0.250-
at at a static second se	
-2.000-	
2.000 - Kan 5 (mm/s)	0.200-
	0.100
-2 000-	
1.000-1	
	0.050-
-1.000-	0.000-L
0.500- Kan 7 (mm/s)	0.100-
	0.050-
0.500-	0.000

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
😽 Beitzer System 9000 - LIEBENAU Messung Nr. 21. 24.5 2004. 17:12:40	

😽 Zeit	verlauf: Ergebnisse						_ [l ×
	LIEBENAU - M	essung Nr 2 [.]	1 24.5.20	004 17:12:4	10 Uhr II	D=79		*
	unbewertet		— frequen	zbewertet -				
	peak		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,790 mm/s	KB	0,343		0,202		12,2	
2	0,758 mm/s	КВ	0,317		0,138		12,3	
3	0,884 mm/s	KB	0,337		0,175		12,4	
4	1,467 mm/s	KB	0,590		0,290		12,3	
5	1,333 mm/s	KB	0,521		0,236		12,3	
6	0,516 mm/s	КВ	0,111		0,065		12,5	
7	0,497 mm/s	КВ	0,114		0,067		12,8	
	Auswertelän	ge = 10,2 sec		Startzeit = 0	sec			
	FFT-Zeitfen:	ster: Hanning r	nach DIN 41	50 T 3				
								-

C	Dszilloskoj	pische	Darst	ellung	und	Mess	sergeb	onisse	am	Standort	"Lieben
Δ	🗸 Beitzer System	9000 - L	IEBENAU	Messung	Nr. 22-2	24.5.2004	17:12:57				

🚭 Zei	tverlauf: Ergebnisse				_	
	LIEBENAU - M	essung Nr 2	2 24.5.20	004 17:12:57 Uhr	ID=81	4
	unbewertet peak		— frequen F-max	zbewertet — F-Tm r.m.s	. Flaqs VA	
1	0,049 mm/s	КВ	0,003	0,001	12,2	
2	2,980 mm/s	КВ	1,409	0,744	12,3	
3	2,996 mm/s	КВ	1,420	0,749	12,4	
4	7,808 mm/s	КВ	3,639	1,731	12,3	
5	1,394 mm/s	КВ	0,593	0,275	12,3	
6	5,195 mm/s	КВ	2,579	1,309	12,5	
7	1,452 mm/s	КВ	0,617	0,285	12,8	
	Auswertelär	ige = 10,2 sec		Startzeit = 0 sec		
	FFT-Zeitfen	ster: Hanning ı	nach DIN 41	50 T3		
						-

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Liebenau
Beitzer System 3000 - LIEBENAU Messung Nr. 23 24.5.2004 17:1	3:13 <u>_ B'</u> .
5.000 - Kan 1 (mm/s)	U.SUU-
	0.250-
-5.000-	
5.000 - Kan 2 (mm/s)	FFT [mm/s]
	0.500-
and the first the section of a statements and a statements and a statements and a statements and a statements a	
-5.000	0.000-
Kan 3 (mm/s)	FFT [mm/s]
	0.100-
-2.000-	2 000-
and the second s	
	1.000-
5.000-	0.500
and the second sec	
	0.250-
-5 000 -	
2.000 - Kan 6 (mm/s)	0.200-
-2.000-	0.000-1
5.000- Kán 7 (mm/s)	0.500-
	0.250-
-5.000-	0.000
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	0 10 20 30 40 50 60 70 80 90 100

ماما ا " .:.. _ *с*. п 1 N I. . . • **~**. . .

🚭 Zeit	verlauf: Ergebnisse					_ [l ×
	LIEBENAU - Me	essung Nr 23	3 24.5.20	004 17:13:13 Uhr	ID=83		A
	unbewertet		— frequen	zbewertet	_		
	peak		F-max	F-Tm r.m.	s. Flags	VA	
1	4,155 mm/s	KB	2,276	0,85	5	12,2	
2	3,193 mm/s	KB	1,740	0,82	5	12,3	
3	1,149 mm/s	КВ	0,535	0,24	1	12,4	
4	7,885 mm/s	КВ	4,404	1,78	B	12,3	
5	4,167 mm/s	KB	2,309	0,86	4	12,3	
6	1,144 mm/s	KB	0,538	0,24	6	12,5	
7	4,266 mm/s	KB	2,387	0,89	B	12,8	
	Auswertelän	ge = 10,2 sec		Startzeit = 0 sec			
	FFT-Zeittens	ter: Hanning r	ach DIN 41	50 T3			
							-

Beitzer System 9000 - LIEBENAU Messung Nr. 24 24.5.2004 17:13:28 Image: Comparison of the second
1.000 Kan 1 [mm/s] 0.200 FFT [mm/s] 0.000 I I I I I I I I I I I I I I I I I I I
1.000 Kan 1 [mm/s] 0.200 FFT [mm/s] 0.000 I I I I I I I I I I I I I I I I I I I
0.000 Image: start product of the start pr
0.000 - ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +
-1.000- 5.000- 6.000
-1.000- 5.000 - +++++++++++++++++++++++++++++++++
5.000- Kan 2 (mm/s) 1.000- FFT (mm/s) 0.000- -11-1+++++++++++++++++++++++++++++++++
0.000 + + + + + + + + + + + + + + + +
0.000- Image: Control of the second of the
-5.000- 5.000- 0.000-+++++++++++++++++++++++++++++++++
5.000- 6.000- 6.000- 6.11-1+ 6.200- 6.200
5.000 ⁻ Kan 4 (mm/s) 1.000 ⁻ FFT (mm/s)
5.000- Kán 6 (mm/s) 1.000-
<u>_5.000-1 I IV'' (''''''''''' I I I I I I I I I I I I I </u>
5.000 - Kán 7 (mm/s) 1.000 - FFT (mm/s)
-5.000- W WWW W WWW
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2 0 10 20 30 40 50 60 70 80 90 100

Л 4 M : مر ما ~ m Standort Liph " .:11 ı. . ~

😽 Zeit	verlauf: E	rgebnisse						_ [ı ×
	LIEBEI	NAU - Mes	sung Nr 24	24.5.20	004 17:13:2	8 Uhr II	D=85		*
	unbewe	ertet k		— frequen F-max	zbewertet – F-Tm	Flage	VA		
1	0,954	mm/s	КВ	0,424		0,234	i iuga	12,2	
2	2,961	mm/s	КВ	1,494		0,661		12,3	
3	3,216	mm/s	КВ	1,487		0,701		12,4	
4	4,742	mm/s	КВ	2,067		0,957		12,3	
5	4,557	mm/s	КВ	2,194		1,220		12,3	
6	4,616	mm/s	КВ	2,217		1,237		12,5	
7	4,922	mm/s	КВ	2,131		0,994		12,8	
	A	Auswertelänge	= 10,2 sec		Startzeit = 0	sec			
	ł	FFT-Zeitfenste	r: Hanning n	ach DIN 41	50 T 3				
									-

No Delizer System 9000 - LIEBENAU Messung Nr. 25 24:5:2004 17:13:44 PT PT PT 5.000	Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Liebenau"
5.000- 0.000- -5.000- 5.000	😽 Beitzer System 9000 – LIEBENAU Messung Nr. 25 24.5.2004 17:1	3:44 📃 🗗 🗙
5.000- 0.000- 5.000-		
2.000 I.000 I.000 FFT (mms] 5.000 I.000 I.000 I.000 I.000 5.000 I.000 I.000 I.000 I.000 I.000 5.000 I.000 I.000 I.000 I.000 I.000 I.000 6.000 I.000 I.000 I.000 I.000 I.000 I.000 I.000 6.000 I.000	5 000-	1000
0.000 ++++++++++++++++++++++++++++++++++++	3.000 Kản 1 [mm/s]	FFT [mm/s]
-5.000		0.500-
5.000 0.000 <td< td=""><td>and the second sec</td><td></td></td<>	and the second sec	
5.000 icir 2 immig 0.500 FFT (mmig) 5.000 0.000 0.000 0.000 0.000 5.000 0.000 0.000 0.000 0.000 5.000 0.000 0.000 0.000 0.000 5.000 0.000 0.000 0.000 FFT (mmig) 5.000 0.000 0.000 0.000 0.000 FFT (mmig) 5.000 0.000 0.000 0.000 FFT (mmig) 0.500 0.000 0.000 0.000 0.000 FFT (mmig) 0.500 0.000 0.000 0.000 FFT (mmig) 0.500 0.500 0.000 FFT (mmig) 0.00050 FFT (mmig) 0.00050 FFT (mmig) 0.0000 FFT (mmig) 0.00050 FFT (mmig) 0.00050 FFT (mmig) 0.0000 FFT (mmig) 0.00050 FFT (mmig) 0.00050 FFT (mmig) 0.0000 FFT (mmig) 0.0000 FFT (mmig) 0.0000 FFT (mmig) 0.0000 FFT (mmig) 0.0000 FFT (mmig) 0.0000 FFT (mmig) <td>-5.000-</td> <td>0.000-llauddikaalauddia</td>	-5.000-	0.000-llauddikaalauddia
0.000	5.000-Kán 2 (mm/s)	0.500-
U U U U U U U U U U U U U U U U U U U		
5.000 Kin 3 (mm/s) 0.000 0.000 FFT (mm/s) 5.000 Kin 3 (mm/s) 0.250 0.250 0.250 5.000 0.000 0.000 0.000 0.000 0.000 5.000 Kin 3 (mm/s) 0.250 0.000 0.000 5.000 Kin 4 (mm/s) 0.000 0.000 0.000 0.000 5.000 Kin 5 (mm/s) 0.000 0.000 0.000 0.000 5.000 Kin 5 (mm/s) 0.0000 0.00050 FFT (mm/s) FFT (mm/s) 0.000 Kin 5 (mm/s) 0.00050 0.00050 FFT (mm/s) FFT (mm/s) 0.000 Kin 5 (mm/s) 0.00050 0.00050 FFT (mm/s) FFT (mm/s) 0.000 Kin 5 (mm/s) 0.00050 0.00050 FFT (mm/s) FFT (mm/s) 0.000 Kin 7 (mm/s) 0.00050 0.00050 FFT (mm/s) FFT (mm/s) 0.000 Kin 7 (mm/s) 0.500 0.0000 FFT (mm/s) FFT (mm/s) 0.000 FFT (mm/s) 0.500 0.0000 FFT (mm/s) FFT (mm/s) 0.000		0.250-
5.000 K4n 3 [mm/4] 0.500 FFT [mm/4] 0.250 FFT [mm/4] 0.250 5.000 K4n 4 [mm/4] 0.250 0.000 FFT [mm/4] 0.250 FFT [mm/4] 5.000 K4n 4 [mm/4] 0.250 0.000 FFT [mm/4] 0.250 FFT [mm/4] 5.000 K4n 4 [mm/4] 0.250 0.000 FFT [mm/4] 0.250 FFT [mm/4] 0.000 FFT [mm/4] 0.000 FFT [mm/4] 0.250 FFT [mm/4] 0.250 0.000 FFT [mm/4] 0.000 FFT [mm/4] 0.00050 FFT [mm/4] 0.00050 0.000 FFT [mm/4] 0.00050 FFT [mm/4] 0.00050 FFT [mm/4] 0.00050 0.000 FFT [mm/4] 0.00050 FFT [mm/4] 0.00025 FFT [mm/4] 0.00025 0.000 FFT [mm/4] 0.00050 FFT [mm/4] 0.0000 FFT [mm/4] 0.0000 0.000 FFT [mm/4] 0.0000 0.000 FFT [mm/4] 0.0000 FFT [mm/4] 0.0000 0.000 FFT [mm/4] 0.200 FFT [mm/4] 0.200 FFT [mm/4] 0.100	5 000-	
0.000 ++++++++++++++++++++++++++++++++++++	5 000-1	
0.000	Kan 3 (mm/s)	
-5.000 0.000 -5.000 0.000 -5.000 0.000 -5.000 -		0.250-
5.000- Kan 4 [mm/s] 0.000- FFT [mm/s] 5.000- Kan 4 [mm/s] 0.000- FFT [mm/s] 0.000- Kan 4 [mm/s] 0.000- FFT [mm/s] 0.000- Kan 5 [mm/s] 0.000- FFT [mm/s] 0.000- Kan 5 [mm/s] 0.00050- FFT [mm/s] 0.000- Kan 5 [mm/s] 0.00025- FFT [mm/s] 0.0000- FFT [mm/s] 0.0000- FFT [mm/s] 0.0000- FFT [mm/s] 0.0000- FFT [mm/s] 0.000- FFT [mm/s] 0.000- FFT [mm/s] 0.000- FFT [mm/s] 0.000- FFT [mm/s] 0.000- FFT [mm/s] 0.000- FFT [mm/s] 0.000- <		
5.000- Kin 4 [mm/s] 1.000- FFT [mm/s] 0.000- FFT [mm/s] 0.500- 0.500- FFT [mm/s] 0.000- FFT [mm/s] 0.500- 0.00050- FFT [mm/s] 0.000- FFT [mm/s] 0.00050- 0.00050- FFT [mm/s] 0.000- FFT [mm/s] 0.00050- FFT [mm/s] FFT [mm/s] 0.000- FFT [mm/s] 0.00050- FFT [mm/s] FFT [mm/s] 0.000- FFT [mm/s] 0.00050- FFT [mm/s] FFT [mm/s] 0.000- FFT [mm/s] 0.00025- FFT [mm/s] FFT [mm/s] 0.000- FFT [mm/s] 0.00025- FFT [mm/s] FFT [mm/s] 0.000- FFT [mm/s] 0.00025- FFT [mm/s] FFT [mm/s] 0.000- FFT [mm/s] 0.000-	-5.000-1	0.000-1
0.000	5.000 - Kain 4 (mm/s)	1.000 - FFT (mm/s)
0.000 -5.000 0.000 -5.000 0.0000 -5.000 0.0000 -5.000		
-5.000- 0.010- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.0000- 0.0000- 0.0000- 0.0000- 0.0000- 0.0000- 0.0000- 0.0000- 0.0000- 0.0000- 0.0000- 0.0000- 0.0000- 0.000-		
0.010- Kin 6 [mm/s] 0.00050- FFF [mm/s] 0.000- 0.0002- 0.0002- 0.0002- 0.000- 0.0002- 0.0002- 0.0002- 0.000- 0.0002- 0.0002- 0.0002- 0.000- 0.0000- 0.0000- 0.0000- 0.000- 0.0000- 0.0000- 0.0000- 0.000- 0.0000- 0.0000- 0.0000- 0.000- 0.000- 0.0000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000-	-5.000-	
0.000 - + + + - + + + + + + + + + + + + +	0.010-1 Kán 5 Imm/si	
0.000		
-0.010- 5.000- 0.000- 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.00025-
-0.010 -0.000-		
0.000 If a 6 [mm/s] 1.000 FFT [mm/s] FFT [mm/s] 0.000 If a 6 [mm/s] 0.500 0.500 0.000 1.000 If a 6 [mm/s] 0.500 0.000 0.000 1.000 If a 6 [mm/s] 0.500 0.000 0.000 1.000 If a 6 [mm/s] 0.000 0.000 If a 6 [mm/s] 0.500 0.000 If a 6 [mm/s] 0.000 0.000 If a 6 [mm/s] 0.000 1.000 If a 6 [mm/s] If a 6 [mm/s] 0.000 0.000 If a 6 [mm/s] 0.000 If a 6 [mm/s] If a 6 [mm/s] 0.000 If a 6 [mm/s] 0.000 1.000 If a 6 [mm/s] If a 6 [mm/s] 0.000 0.000 If a 6 [mm/s] 0.000 If a 6 [mm/s] If a 6 [mm/s] If a 6 [mm/s] 0.000 If a 6 [mm/s] 0.000 If a 6 [mm/s] 0.000 If a 6 [mm/s] 0.000 If a 6 [mm/s] If a 6 [mm/s]	-0.010-	1.000
0.000 - + + + + + + + + + + + + + + + + +	to antilliner to the discussion of the second states of the second state	FFT [mm/s]
-5.000- 1.000- 0.000- 1.000- 1.000- 0.000- 1.000- 1.000- 0.13 2.6 3.8 5.1 6.4 7.7 9.0 10.2 0.10 20 30 40 50 60 70 80 90 100		0.500-
-5.000- 1.000- 0.000- 1.000- 1.000- 0.000- 1.1 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
1.000- Kin 7 [mm/s] 0.200- 0.200- 0.100- 0.000- 0.13 2.6 3.8 5.1 6.4 7.7 9.0 10.2 0 10 20 30 40 50 60 70 80 90 100	-5.000-1	0.000- ¹
0.000	1.000 - Riturs description (Millington and Kan 7 (mm/s)	0.200-
-1.000- 0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2 0 10 20 30 40 50 60 70 80 90 100		0.100-
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2 0 10 20 30 40 50 60 70 80 90 100		
	0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	<u>Ó</u> 10 20 30 40 50 60 70 80 90 100

1:.... ." _ ~ .

😽 Zei	itverlauf: Ergebnisse	;					_ [⊐×
	LIEBENAU - M	lessung Nr 2	5 24.5.20	004 17:13:4	14 Uhr II	D=89		4
	unbewertet		— frequen	zbewertet -				
	peak		F-max	F-Tm	r. m. s.	Flags	VA	
1	3,089 mm/s	КВ	1,421		0,773		12,2	
2	2,797 mm/s	KB	1,545		0,608		12,3	
3	3,259 mm/s	KB	1,558		0,756		12,4	
4	4,354 mm/s	KB	2,236		1,166		12,3	
5	0,010 mm/s	КВ	0,002		0,001		12,3	
6	4,417 mm/s	КВ	2,266		1,182		12,5	
7	0,914 mm/s	КВ	0,448		0,242		12,8	
	Auswerteläi	nge = 10,2 sec		Startzeit = 0	sec			
	FFT-Zeitfer	nster: Hanning r	nach DIN 41	50 T 3				
								-

Oszilloskopische Darstellung und Messerg	jebnisse am Standort "Liebenau"
🔂 Beitzer System 9000 – LIEBENAU Messung Nr. 26 24.5.2004 17:1	3:59 📃 🗗 🗙
5 000-0	
Kan 1 (mm/s)	FFI (mm/s)
	0.500-
-5.000-1 1 1 1 1 1	0.000- ¹
5.000 - Kain 2 (mm/s)	0.500 - FF T (mm/s)
-5.000-	0.000- <mark> </mark>
5.000-	0.500-
a sum all all all all and all a	
-5.000-	1 000-
Kan 4 (mm/s)	FFT (mm/s)
	0.500-
-5.000-1	
0.020 - Kain 5 (mm/s)	0.00050
-0.020-	
5.000-	1.000-r FF[T [mm/s]
a second distance of the second se	
2 000-	
5 000-	
Kan 7 [mm/s]	FFT [mm/s]

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
Reitzer System 2000 - LIEBENALL Mossung Nr. 26, 24 5 2004, 17:13:50	

😽 Zeit	verlauf: Ergeb	nisse			_ 🗆 >	<
	LIEBENAU	- Messung Nr 2	6 24.5.20	004 17:13:59 Uhr II	D=91 -	*
	unbewertet peak		— frequen F-max	zbewertet ——— F-Tm r.m.s.	Flaqs VA	
1	4,392 mm,	/s KB	1,845	0,947	12,2	
2	3,161 mm,	/s KB	1,480	0,710	12,3	
3	3,181 mm,	/s KB	1,493	0,715	12,4	
4	4,420 mm,	/s KB	1,858	0,957	12,3	
5	0,010 mm,	/s KB	0,002	0,001	12,3	
6	4,828 mm,	/s KB	2,400	1,322	12,5	
7	2,922 mm,	/s KB	1,368	0,636	12,8	
	Auswe	ertelänge = 10,2 sec		Startzeit = 0 sec		
	FFT-2	Zeitfenster: Hanning	nach DIN 41	50 T 3		
						V

gebnisse am Standort "Liebenau
14:16 <u> </u>
0.500-
0.000-
FFT (mm/s)
0.250-
0.000-0-0
1.000
0.500-
0.000-1
0.200-
0.100-
FFT [mm/s]
0.500-
0.000-1
0.200
0.100-
0.000
21 0 10 20 30 40 50 60 70 80 90 100

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
Are Beitzer System 9000 - LIEBENALL Messung Nr 27 24 5 2004 17:14:16	

😽 Zeit	lverlauf: Ergebnisse				_ 🗆 ×
	LIEBENAU - Me	essung Nr 23	7 24.5.2	004 17:14:16 Uhr ID=94	×
	unbewertet		— frequen	zbewertet	
	peak		F-max	F-Tm r.m.s. Flags	VA
1	2,744 mm/s	КВ	1,473	0,678	12,2
2	3,400 mm/s	KB	1,476	0,712	12,3
3	5,071 mm/s	КВ	2,726	1,278	12,4
4	1,081 mm/s	КВ	0,481	0,237	12,3
5	1,074 mm/s	KB	0,484	0,237	12,3
6	4,017 mm/s	KB	1,749	0,820	12,5
7	1,121 mm/s	KB	0,500	0,246	12,8
	Auswertelän	ge = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeitfens	ster: Hanning r	ach DIN 41	50 T3	
					-

Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Liebenau"
😽 Beitzer System 9000 – LIEBENAU Messung Nr. 28 24.5.2004 17:1	4:33
5 000-1	0.500
Kan 1 [mm/s]	
	0.250-
-5.000-1	
1.000-Kan 2 (mm/s)	U.200-FFT (mm/s)
	0.100-
5.000- Kán З (mm/s)	1.000-
	0.500-
-2.000-	
1.000-1 / / / / / / / / / / / / / / / / / / /	0.200
	0.100-
a boll that the first the first the second	
	0.500
0.000 - Kan 5 (mm/s)	0.000-
	0.250-
-5.000-1	0.000-1
1.000 - Kan 6 (mm/s)	0.200 FFT [mm/s]
	0.100
-1.000-	0.000 <mark></mark>
5.000 - Kan 7 (mm/s)	
	0.500-
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	

😽 Zeitv	verlauf: Ergebnisse)					_ 🗆	×
	LIEBENAU - M	lessung Nr 28	24.5.20	004 17:14:33	Uhr	ID=96		A
	unbewertet		- frequen	zbewertet —		- 1		Ы
1	peak 2276 mm/s	KB	F-max 1134	F-Im	r.m.s. 0530	Flags	VA 12.2	
2	0.956 mm/s	KB	0.414		0.223		12.2	
3	4.888 mm/s	KB	1 937		1 094		12.4	
4	0.959 mm/s	KB	0.413		0.223		12.3	
5	2 298 mm/s	KB	1 150		0.538		12.3	
6	0.968 mm/s	КВ	0.417		0.226		12.5	
7	2,876 mm/s	KB	1,371		0,691		12,8	
	Auswertelär	nge = 10,2 sec		Startzeit = 0 se	с			
	FFT-Zeitten	ister: Hanning na	ach DIN 41	50-13				

Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Liebenau"
😽 Beitzer System 9000 – LIEBENAU Messung Nr. 29 24.5.2004 17:1	4:50 📃 🗗 🗙
5 000-	0.500-
Kan 1 [mm/s]	0.000 FFT [mm/s]
	0.250-
and a second second part of the figure of the second	
-5.000-	0.000-0
5.000-Kán 2 (mm/s)	0.500-
5 000	
-5.000-	0.000-
Kan 3 (mm/s)	0.200 FFT (mm/s)
	0.100-
-2.000-	0.000- ¹
5.000- Kan 4 (mm/s)	1.000-
5 000-	
Kan S [mm/s]	FFT [mm/s]
	0.500-
-5.000-	0.000-1
5.000- Kán 6 (mm/s)	0.500 FF[T (mm/s]
	0.250-
5 000-	
2 000-	
Kan 7 [mm/s]	FFT [mm/s]
-2.000-	
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"
😝 Beitzer System 9000 – LIEBENAU Messung Nr. 29 24.5.2004 17:14:50

😽 Zeit	verlauf: Ergebnisse	;			_ [ı ×
	LIEBENAU - M	lessung Nr 29	3 24.5.20	004 17:14:50 Uhr II	D=97	
	unbewertet peak		— frequen F-max	zbewertet ——— F-Tm r.m.s.	Flaqs VA	
1	3,840 mm/s	KB	1,817	0,787	12,2	
2	2,217 mm/s	КВ	1,122	0,516	12,3	
3	1,228 mm/s	КВ	0,578	0,248	12,4	
4	4,529 mm/s	КВ	2,288	0,920	12,3	
5	4,776 mm/s	КВ	1,985	0,841	12,3	
6	2,249 mm/s	КВ	1,150	0,523	12,5	
7	1,265 mm/s	КВ	0,596	0,256	12,8	
	Auswertelär	nge = 10,2 sec		Startzeit = 0 sec		
	FFT-Zeitfer	ister: Hanning r	ach DIN 41	50 T3		
						-

😽 Zei	tverlauf: Ergebniss	e				_ 🗆	×
	LIEBENAU - I	Messung Nr 30	24.5.2	004 17:15:06 Uhr	ID=101		*
	unbewertet peak		- frequen F-max	zbewertet —	- 5. Flags	VA	
1	2,498 mm/s	КВ	1,335	0,573	; –	12,2	
2	2,526 mm/s	КВ	1,350	0,579	l	12,3	
3	3,830 mm/s	КВ	1,983	0,851		12,4	
4	4,177 mm/s	КВ	2,106	0,832	2	12,3	
5	4,193 mm/s	КВ	2,113	0,832	2	12,3	
6	6,328 mm/s	КВ	3,113	1,283		12,5	
7	5,584 mm/s	КВ	2,226	0,836	i	12,8	
	Auswertelä	inge = 10,2 sec		Startzeit = 0 sec			L
	FFT-Zeitte	nster: Hanning n	ach DIN 41	50 T 3			L

-

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Liebenau"
🔂 Beitzer System 9000 - LIEBENAU Messung Nr. 31 24.5.2004 18:0	14:39 📃 🗗 🔀
1.000-1 Kin 1 imm/d	
and a filling the state of the	
-1.000-' ' ' ' ' ' '	
5.000 Kan 2 (mm/s)	FFT (mm/s)
	0.500-
-5.000-	0.000-
2.000 - Kán 3 (mm/s)	0.500-
-2 000-	
5.000-1 Kin 4 Imm/d	
د منه بالاست. محمد الألب منه بالأمراك ما يسمى الألب من الألب من الألب من الألب من الألب من الألب من	
0.000- <mark>-11</mark>	
-5.000-1	
5.000-Kan 5 [mm/s]	U.5UU-
-5.000-	0.000-
10.00 - Kajn 6 (mm/s)	2.000
5 000-	
	FFT [mm/s]
	0.000-

... . . . ~ . . 1 . . . " 111 .

😽 Zeit	verlauf: Ergebniss	e				_ 🗆 🗙
	LIEBENAU - N	dessung Nr 31	24.5.2	004 18:04:39 Uhr	ID=103	<u> </u>
	unbewertet		- frequer	zbewertet	Flogo	
1	0730 mm/s	KB	n 201	r-im r.m.s. 0.200	riays	VA 48.8
2	2,377 mm/s	KB	1,335	0,697		49,3
3	1,261 mm/s	КВ	0,711	0,279		49,7
4	4,491 mm/s	КВ	1,904	1,100		49,3
5	2,681 mm/s	КВ	1,472	0,692		49,3
6	6,502 mm/s	KB	3,253	2,016		49,9
7	2,807 mm/s	КВ	1,529	0,719		51,2
	Auswertelä	inge = 10,2 sec		Startzeit = 0 sec		
	FFT-Zeitfe	nster: Hanning na	ach DIN 41	50 T 3		

Oszilloskopische Darstellung und Messerg	jebnisse am Standort "Liebenau"
Beitzer System 9000 - LIEBENAU Messung Nr. 32 24.5.2004 18:04	1.56 _ <mark>_ </mark> 🗗 🗙
1.000-	0.200-
and an attribution of the second s	
	0.100-
the sufficiency of the stand indiversity of th	
-1.000-	0.000- ¹ laundututututututututututututututututututu
5.000- Kan 2 (mm/s)	1.000 FF T (mm/s)
	0.500-
5 000-	
-0.000	2 000-
Kan 3 (mm/s)	FFT (mm/s)
	1.000-
-10.00-	0.000-
5.000- Kán 4 (mm/s)	1.000-
بالألون ومرجعة فالأرباد الألفي فلاتنا والتراثية فأشته فالشريب المتلين والمراجع المتلويان	
	0.500-
-5.000-	2.000
Kan 5 [mm/s]	2.000 - FFT [mm/s]
	1 000-
-10.00-	
0.050-	0.002-
0.000- <mark></mark>	0.001-
	البابان متصادر ويتبر ويتقرب اللالية ويحددون ويتماد وتحاد
-0.050-	
2.000 - Kain 7 (mm/s)	U.200-FFT [mm/s]
	0.100-
-2 000-	
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
↔ Beitzer System 9000 - LIEBENAU Messung Nr. 32 24.5.2004 18:04:56	

😽 Zeit	verlauf: Ergebnisse						_ [l ×
	LIEBENAU - Me	essung Nr 32	2 24.5.20	004 18:04:5	56 Uhr II	D=105		*
	unbewertet peak		— frequen F-max	zbewertet – F-Tm	r. m. s.	Flags	VA	
1	0,674 mm/s	KB	0,355		0,192		48,8	
2	2,546 mm/s	КВ	1,521		0,695		49,3	
3	6,883 mm/s	КВ	4,124		2,179		49,7	
4	4,863 mm/s	КВ	2,410		1,246		49,3	
5	6,831 mm/s	КВ	4,091		2,163		49,3	
6	0,030 mm/s	КВ	0,010		0,005		49,9	
7	1,275 mm/s	КВ	0,653		0,263		51,2	
	Auswerteläng	je = 10,2 sec		Startzeit = 0	sec			
	FFT-Zeittens	ter: Hanning r	iach DIN 41	50 T 3				
								Ŧ

😽 Zeit	verlauf: Ergebnisse				_ 🗆 ×
	LIEBENAU - Me	essung Nr 33	24.5.2	004 18:05:11 Uhr ID=107	<u> </u>
	unbewertet		- frequer	zbewertet ———	
1	2,210 mm/s	КВ	1,245	0,689	48.8
2	2,251 mm/s	KB	1,258	0,697	49,3
3	4,902 mm/s	КВ	2,510	1,176	49,7
4	4,852 mm/s	КВ	2,497	1,178	49,3
5	4,513 mm/s	KB	2,030	1,256	49,3
6	5,992 mm/s	KB	3,544	2,052	49,9
7	2,333 mm/s	КВ	1,302	0,724	51,2
	Auswerteläng	ge = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeittens	ter: Hanning na	ach DIN 41	50 ТЗ	

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Liebenau"
🚭 Beitzer System 9000 - LIEBENAU Messung Nr. 34 24.5.2004 18:0) 5:28
2.000-1 Kán 1 (mm/s)	
	0.100-
2,000-	
Kall 2 (0005)	
	1.000-
and a state of the	
-10.00-	
Kan 3 (mm/s)	FFT (mm/s)
	0.500-
-5.000-	
10.00 - Kan 4 (mm/s)	2.000
-10.00-	0.000-
10.00 - Kán 5 (mm/s)	2.000
	1 000
-10.00-	0.000-
10.00 - Kán 6 (mm/s)	2.000
-10.00-	
0.050Kan 7 imm/si	

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
😽 Beitzer System 9000 - LIEBENAU Messung Nr. 34 24.5.2004 18:05:28	_

- Z eit	verlauf: Ergebnisse	1				_ [J×
	LIEBENAU - M	essung Nr 34	4 24.5.20	004 18:05:28 Uhr	ID=109		<u> </u>
	unbewertet neak		— frequen F-max	zbewertet — F-Tm r m :	- s Flags	VA	
1	1,112 mm/s	КВ	0,506	0,21	B	48,8	
2	8,905 mm/s	КВ	4,514	2,07	4	49,3	
3	4,939 mm/s	КВ	2,799	1,28	4	49,7	
4	8,911 mm/s	КВ	4,514	2,073	2	49,3	
5	8,880 mm/s	КВ	4,514	2,07	5	49,3	
6	9,013 mm/s	КВ	4,590	2,10	D	49,9	
7	0,027 mm/s	KB	0,011	0,00	6	51,2	
	Auswertelär	nge = 10,2 sec		Startzeit = 0 sec			
	FFT-Zeitfer	ster: Hanning r	nach DIN 41	50 T 3			
							-

_ 🗆 ×

USZIIIOSKOPISCHE DARStellung und Messer	gebnisse am Standort "Liebenau"
C DEILZER System Suud - LIEDENAU Messung Nr. 35 24.5.2004 To.0	3.44
	0.500-
-2.000-	0.000
10.00 - Kan 2 (mm/s)	2.000 - FFT (mm/s)
	1.000-
-10.00-	
10.00 - Kain 3 (mm/s)	2.000 FFT (mm/s)
	1 000-
-10.00- ¹	
-5.000-1	
5.000 - Kan 6 [mm/s]	1.000 FFT [mm/s]
	0.500-
-5.000-	0.000
0.050 - Kán 6 (mm/s)	0.002 FFT (mm/s)
	0.001-
-0.050-1	0.002
	0.001-
-0.050-	

am Standort, Liebenau" - 1 . - |-Р toll чм nobnicco

😽 Zeitverlauf:	Ergebnisse
----------------	------------

	LIEBENAU - Mes	sung Nr 35	5 24.5.20	18:05:4	4 Uhr II	D=111		
	unbewertet	frequenzbewertet						
	peak		F-max	F-Tm	r. m. s.	Flags	VA	
1	1,996 mm/s	КВ	1,239		0,630		48,8	
2	6,318 mm/s	KB	3,390		1,590		49,3	
3	8,226 mm/s	КВ	3,971		2,146		49,7	
4	4,611 mm/s	КВ	2,300		1,213		49,3	
5	4,640 mm/s	КВ	2,300		1,213		49,3	
6	0,031 mm/s	КВ	0,010		0,006		49,9	
7	0,025 mm/s	КВ	0,010		0,006		51,2	
	Auswertelänge = 10,2 sec			Startzeit = 0 sec				

FFT-Zeitfenster: Hanning nach DIN 4150 T3

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"							
🔂 Beitzer System 9000 – LIEBENAU Messung Nr. 36 24.5.2004 18:0	6:01 _ <mark>_ </mark>						
1 000-							
with an attraction of the second s	FFT [mm/s]						
	0.100-						
	0.000						
5.000 - Kán 2 (mm/s)	1.000-						
	0.500-						
C 000							
-5.000-	0.500						
Kan 3 (mm/s)	FFIT (mm/s)						
	0.250-						
-2.000-	0.000-						
10.00- Kan 4 (mm/s)	1.000-						
ي المحدث المحد							
10.00							
1 000-							
Kain 5 (mm/s)	0.200 FFT [mm/s]						
-1.000-1	0.000						
10.00- Ка́л 6 (mm/s)	2.000 FF[T (mm/s]						
5 000-	0.500-						
Kan 7 (mm/s)	FFT (mm/s)						
-5.000-							
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2							

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
↔ Beitzer System 9000 - LIEBENAU Messung Nr. 36 24.5.2004 18:06:01	

🚭 Zeitverlauf: Ergebnisse 📃 🗖 🗙								⊐ ×
	LIEBENAU - M	lessung Nr 3	6 24.5.20	004 18:06:0)1 Uhr II	D=113		*
	unbewertet	unbewertet		- frequenzbewertet			1/4	
1	0,807 mm/s	КВ	0,388	1 - 1 111	0,189	riays	48,8	
2	2,101 mm/s	КВ	1,287		0,631		49,3	
3	1,311 mm/s	КВ	0,724		0,274		49,7	
4	7,807 mm/s	КВ	3,635		1,554		49,3	
5	0,814 mm/s	КВ	0,390		0,191		49,3	
6	8,173 mm/s	КВ	3,983		2,080		49,9	
7	3,549 mm/s	KB	1,782		0,690		51,2	
	Auswertelänge = 10,2 sec Startzeit = 0 sec				sec			
FFT-Zeitfenster: Hanning nach DIN 4150 T3								
								-
Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Liebenau"							
--	---------------------------------							
😽 Beitzer System 9000 – LIEBENAU Messung Nr. 37 24.5.2004 18:0	6.17 📃 🗗 🗙							
1.000-	0.200							
Kan 1 [mm/s]	0.2007 FFT [mm/s]							
	0.100-							
-1.000-								
10.00-1 Kan 2 (mm/s)	2.000-							
	1.000-							
All a sauder Million								
10.00 - Kain 3 (mm/s)	2.000 - FFTT (mm/s)							
	1000							
-10.00-	n nnn							
	0.500-							
-5.000-	0.000- ¹							
0.050 - Kain 5 [m.m/s]	0.002-							
	0.001-							
-0.050-1								
5.000- Kán 7 (mm/s)	1.000-• FF T (mm/s)							
	0.500-							
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2								

Oszilloskopische Darstellung und Messergebnisse am Standort "Liebenau"	
A Beitzer System 9000 - LIFRENALL Messung Nr 37 24 5 2004 18:06:17	

😽 Zeit	verlauf: Ergebnisse					_ 🗆 ×	
	LIEBENAU - M	essung Nr 37	7 24.5.20	004 18:06:17 Uhr	ID=115		
	unbewertet		— frequen	zbewertet ———			
	peak		F-max	F-Tm r.m.s.	Flags	VA	
1	0,748 mm/s	КВ	0,377	0,199		48,8	
2	8,739 mm/s	КВ	3,666	1,586		49,3	
3	8,779 mm/s	КВ	3,692	1,597		49,7	
4	4,598 mm/s	КВ	2,490	1,324		49,3	
5	0,046 mm/s	КВ	0,010	0,006		49,3	
6	0,029 mm/s	КВ	0,010	0,006		49,9	
7	4,794 mm/s	КВ	2,587	1,375		51,2	
	Auswertelär	ige = 10,2 sec		Startzeit = 0 sec			
	FFT-Zeitfen	ster: Hanning n	iach DIN 41	50 T 3			

- 0 X

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Liebenau"
Weitzer System 9000 - LIEBENAU Messung Nr. 38 24.5.2004 18:0	
1.000Kain 1 (mm/s)	0.200-
	0.100
-1.000-	0.000-
5.000 - Kain 2 (mm/s)	1.000-
	0.500
	0.000-
-5.000-	0.000-
2.000 - Kain 3 (mm/s)	0.200 FF[T (mm/s]
-2.000-1 1 1 1 1	0.000-
10.00 - Kan 4 (mm/s)	2.000
-10.00-1 1 1 1	
5.000 - Kain 6 (mm/s)	0.500 FFT (mm/s)
	0.250-
a second second littly after the second s	
-5.000-1	
10.00 Kan 6 [mm/s]	2.000 FF[T (mm/s]
-10.00-'	
Kan 7 [mm/s]	FFT (mm/s)

مأمأ المس - N I. " • • • . . *с*. п i . . . **~**' . .

\sim	Zeitverlauf:	Ergebnisse

	LIEBENAU - Mess	sung Nr 3	8 24.5.20	104 18:06:34 Uhr ID=1	17 -
	unbewertet		— frequen: E-max	zbewertet ———	9 9 6 \/A
1	0.738 mm/s	KB	0.348	0.191	ays VA 48.8
2	2,075 mm/s	KB	1,147	0,651	49,3
3	1,036 mm/s	КВ	0,587	0,256	49,7
4	7,740 mm/s	КВ	3,935	1,599	49,3
5	2,829 mm/s	КВ	1,312	0,672	49,3
6	6,685 mm/s	КВ	3,574	2,076	49,9
7	2,961 mm/s	КВ	1,363	0,699	51,2
	Auswertelänge	= 10,2 sec		Startzeit = 0 sec	

FFT-Zeitfenster: Hanning nach DIN 4150 T3

Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Liebenau"
🔂 Beitzer System 9000 – LIEBENAU Messung Nr. 39 24.5.2004 18:0	6:49 📃 🗗 🗙
	Fri (mms)
	0.500-
-2.000-1	0.000-1
10.00 - Kain 2 (mm/s)	2.000-
	1 000-
-10.00-	0.000-
1.000	0.200-
0.000- + Hotel and the second state of the sec	
0.050-	
Kan 4 (mm/s)	0.002
-0.050-1	
5.000 - Kain 5 (mm/s)	1.000
	0.500-
-5.000-	0.000-ll.uuuuuuuuuuuuuuuuuuuuuuuuu
10.00- Kin 6 [mm/s]	2.000
10.00-	
5 000-1	

... ~ . . . 1.1.1 " ...

😽 Zeit	verlauf: Ergebniss	e			_ 🗆 ×
	LIEBENAU -	Messung Nr 39	24.5.2	004 18:06:49 Uhr ID=119	<u> </u>
	unbewertet		- frequer	zbewertet	
	peak		F-max	F-Tm r.m.s. Flags	VA
1	1,806 mm/s	КВ	0,991	0,553	48,8
2	7,864 mm/s	КВ	3,659	1,723	49,3
3	0,948 mm/s	КВ	0,505	0,224	49,7
4	0,032 mm/s	КВ	0,011	0,006	49,3
5	4,005 mm/s	КВ	2,144	0,985	49,3
6	7,977 mm/s	КВ	3,707	1,746	49,9
7	2,801 mm/s	КВ	1,434	0,642	51,2
	Auswertel	änge = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeitte	enster: Hanning ne	ach DIN 41	50 T 3	

Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Liebenau"
😽 Beitzer System 9000 - LIEBENAU Messung Nr. 40 24.5.2004 18:0	7.06 📃 🗗 🗙
Kan T (mms)	
	0.100-
-1.000-1	
10.00-Kán 2 (mm/s)	2.000-
	1 000-
Course of the second	
-10.00-	0.000- <mark></mark>
0.050 - Kán 3 (mm/s)	0.002-
Kan 4 (mm/s)	FFI (mm/s)
	0.100-
-1.000-	
5.000 - Kan 5 (mm/s)	U.500-
	0.250-
-5.000-	<u> </u>
0.050 - Kán 6 (mm/s)	0.002
0.050-	
	0.001

rt Lich " • • • *с*. п 1 N I . • <u>.</u>

😽 Zeit	verlauf: Ergebnisse						_ [×
	LIEBENAU - M	essung Nr 40	24.5.2	004 18:07:0	16 Uhr II	D=119		*
	unbewertet peak		- frequer F-max	zbewertet – F-Tm		Flags	VA	
1	0,702 mm/s	КВ	0,330		0,188	- -	48,8	
2	7,384 mm/s	КВ	4,022		1,902		49,3	
3	0,043 mm/s	КВ	0,010		0,006		49,7	
4	0,726 mm/s	КВ	0,330		0,190		49,3	
5	2,427 mm/s	КВ	1,222		0,641		49,3	
6	0,030 mm/s	КВ	0,010		0,006		49,9	
7	0,028 mm/s	КВ	0,011		0,006		51,2	
	Auswertelän	ge = 10,2 sec		Startzeit = 0	sec			
	FFT-Zeitfen:	ster: Hanning na	ach DIN 41	50 T 3				

ANHANG 2

Oszilloskopische Darstellung und Messergebnisse der

am Standort "Beverungen"

- Messungen 1 bis 40 -

😽 Zeit	verlauf: Ergebnisse				_ 🗆 ×
	BEVERUNG - M	essung Nr	1 2.9.20	04 12:56:12 Uhr ID	-4
	unbewertet		— frequen	zbewertet	Elege VA
1	2.151 mm/s	КВ	1.108	0.516	12 2
2	2,316 mm/s	KB	1,054	0,586	12,3
3	0,410 mm/s	КВ	0,238	0,136	12,4
4	0,422 mm/s	КВ	0,236	0,134	12,3
5	2,117 mm/s	КВ	1,099	0,512	12,3
6	0,010 mm/s	КВ	0,002	0,001	12,5
7	0,177 mm/s	КВ	0,086	0,048	12,8
	Auswerteläng	e = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeitfenst	er: Hanning	nach DIN 41	50 T 3	

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
🚭 Beitzer System 9000 - BEVERUNG Messung Nr. 2 2.9.2004 12:50	6.27
0.500-t L L L Kin dimensi	
	0.050-
-0.500-1	
U.5UU- Kan 2 (mm/s)	0.200-
and the second state of th	
-0.500-	0.000-1
5.000- Kain 3 (mm/s)	0.500-
	0.250-
C 000	
2,000-	0.500-
Kan 4 (mm/s)	FFT [mm/s]
	0.250-
Shundly Derenation of the Derenative State of the Dere	
-2.000-	0.000-6
2.000 - Kan 5 (mm/s)	0.500
	0.250-
-2 000 -	
2.000-1 Kin 6 (mm/d)	
	0.250-
-2.000-1	
Z.UUU - Kan 7 (mm/s)	U.500-
	0.250-
-2.000-	0.000
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	

Oszilloskopische Darste	llung und Messergebnisse	am Standort "Beverungen"
🚭 Beitzer System 9000 - BEVERUNG	Messung Nr. 2 2.9.2004 12:56:27	

😽 Zeit	tverlauf: Ergebnisse]			_ 🗆 🗙
	BEVERUNG -	Messung Nr	2 2.9.20	04 12:56:27 Uhr II	D=6
	unhewertet		— frequer	zhewertet	
	peak		F-max	F-Tm r.m.s.	Flags VA
1	0,376 mm/s	КВ	0,173	0,088	12,2
2	0,486 mm/s	KB	0,250	0,145	12,3
3	2,399 mm/s	КВ	1,047	0,532	12,4
4	1,743 mm/s	КВ	0,998	0,521	12,3
5	1,753 mm/s	КВ	1,000	0,521	12,3
6	1,436 mm/s	КВ	0,720	0,385	12,5
7	1,816 mm/s	КВ	1,035	0,541	12,8
	Auswertelär	nge = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeitten	ster: Hanning ı	nach DIN 41	50 T3	
					*

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverungen"					
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 3 2.9.2004 12:56	.42				
1.000- Kan 1 (mm/s)	0.100-				
-1.000-	0.000-hannel				
U.500-Kan 2 (mm/s)	U.100-FFT [mm/s]				
	0.050-				
a soo					
-0.500-					
Kan 3 (mm/s)					
	0.050-				
-1 000-					
0.500-	0.100-				
	0.050-				
-0.500-	0.000- ¹				
5.000 - Kan 5 (mm/s)	0.500				
	0.250-				
-5.000-1	0.000-location development of a station to the the theorem in the second s				
U.200 - Kán 6 (mm/s)	U.U5U-FFT [mm/a]				
	0.025-				
-0.200-'	0.050-				
C DOO Kan 7 (mm/s)	0.025				

🚭 Zeit	verlauf: Ergebnisse	9					_ 🗆	×
	BEVERUNG -	Messung Nr 3	2.9.20	04 12:56:42	Uhr ID	=11		*
	unbewertet neak		- frequen F-max	zbewertet — F-Tm	rm s	Flags	VA	L
1	0,529 mm/s	КВ	0,210		0,096	i lago	12,2	
2	0,398 mm/s	КВ	0,229		0,082		12,3	
3	0,538 mm/s	КВ	0,249		0,128		12,4	
4	0,401 mm/s	КВ	0,230		0,082		12,3	
5	2,735 mm/s	КВ	1,337		0,680		12,3	
6	0,145 mm/s	КВ	0,075		0,039		12,5	
7	0,150 mm/s	KB	0,077		0,040		12,8	
	Auswertelä	nge = 10,2 sec		Startzeit = 0 s	ес			L
	FFT-Zeitfer	nster: Hanning na	ach DIN 41	50 T 3				L

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
😝 Beitzer System 9000 - BEVERUNG Messung Nr. 4 2.9.2004 12:56	6:57 📃 🖃 🗙
2 000-1	
Kan 1 jmm/sj	PFT (mm/s)
	0.100-
and a shirt of the state of the	
-2.000-	0.000-hassed and a second stream of the second stre
1.000 - Kan 2 (mm/s)	0.200-
	0.100
-1.000-	0.000-
2.000 - Kán 3 Imm/sl	0.500-
	0.250-
2,000-	
Z.000 Kan 4 (mm/s)	0.000 FFT [mm/s]
	0.250-
-2.000-	0.000- <mark>hannalaanaalaanaalaanaalaanaalaanaalaanaalaanaalaanaalaal</mark>
2.000 - Kán 5 (mm/s)	0.500
-2 000 -	
2.000-1 Via 6 (mm/d)	
i ser a nulla addition .	1 1 I Innesi
	0.100-
a 111 terms - a childheatter	
-2.000-'	
U.200 Kan 7 (mm/s)	0.020 FFT (mm/s)
-0.200-	
U.U 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	

- Z ei	tverlauf: Erg	jebnisse						_ ['×
	BEVERU	UNG - Me	essung Nr 4	2.9.200	04 12:56:57	Uhr ID	=13		*
	unbewer peak	tet		- frequen F-max	zbewertet — F-Tm	r. m. s.	Flags	VA	
1	1,016 n	nm/s	KB	0,454		0,227	-	12,2	
2	0,869 n	nm/s	КВ	0,353		0,181		12,3	
3	1,898 n	nm/s	КВ	0,961		0,481		12,4	
4	1,574 n	nm/s	КВ	0,575		0,333		12,3	
5	1,551 n	nm/s	KB	0,589		0,332		12,3	
6	1,042 n	nm/s	КВ	0,465		0,233		12,5	
7	0,142 n	nm/s	KB	0,064		0,032		12,8	
	Au	iswertelänge	e = 10,2 sec		Startzeit = 0 s	ec			
	FF	-T-Zeitfenste	er: Hanning ne	ach DIN 41!	50 T 3				
									-

Oszilloskopische Darstellung und Messere	gebnisse am Standort "Beverungen"
🚭 Beitzer System 9000 - BEVERUNG Messung Nr. 5 2.9.2004 12:57	2:12
0.500-	
	0.025-
-0.500-	
0.200-1 Kin 2 mm/d	
the second secon	
	0.025-
-0.200-	2 000-
Kan 3 (mm/s)	2.000 FFT [mm/s]
	1.000-
-10.00-	
U.UIU-Kan 4 (mm/s)	0.00000- FFIT (mm/s)
	0.00025-
-0.010-	
0.020- Kan 5 (mm/s)	0.00050 - FF/T (mm/s)
	0 00025-
-0.020-1	0.00000-butullinarallalidikadi mitatulililililihidi habilialalihinalihia bu
5.000-Kan 6 (mm/s)	1.000 FFT (mm/s)
	0.500
	0.000
-5.000-	0.000-
0.200- Kán 7 (mm/s)	0.050
	0.025-
-0.200 -	0.000-00-
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	Ó 10 20 30 40 50 60 70 80 90 100

😽 Zeit	verlauf: Ergebnisse				_ 🗆 ×
	BEVERUNG -	Messung Nr !	5 2.9.20	04 12:57:12 Uhr ID=1	5 4
	unbewertet		— frequer	zbewertet	
	peak		F-max	F-Tmr.m.s.F	lags VA
1	0,335 mm/s	КВ	0,188	0,075	12,2
2	0,166 mm/s	КВ	0,079	0,042	12,3
3	5,852 mm/s	КВ	3,252	1,659	12,4
4	0,006 mm/s	KB	0,002	0,001	12,3
5	0,014 mm/s	КВ	0,002	0,001	12,3
6	2,690 mm/s	КВ	1,391	0,681	12,5
7	0,171 mm/s	KB	0,085	0,045	12,8
	Auswertelär	ge = 10,2 sec		Startzeit = 0 sec	
	FFT-Zeitten	ster: Hanning n	ach DIN 41	50 ТЗ	
					-

Oszilloskopische Darstellung und Messere	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 6 2.9.2004 12:57	26 – 🗗 🗙
0.500-1 Kin 1 mm/d	0.100-
	0.050-
-0.500-	1.000-
10.00 Kan 2 (mm/s)	FFT [mm/s]
	0.500-
pand filmed a star a star	
-10.00-	
1.000- Кán З (mm/s)	0.200-
	0.100-
-1.000-	0.000-1
1.000- Ка́л 4 (mm/s)	0.100-
	0.050-
-1.000-	0.000-11
1.000- Kan 5 (mm/s)	0.100-
	0.050-
-1 000-	
1.000-1 / / / / / / / / / / / / / / / / / / /	
	0.100-
1.000	
2 000-	0.500-
Kan 7 (mm/s)	FFT [mm/s]
	0.200
	0.000-10

🚭 Zeit	verlauf: Ergebni	sse					ı ×
	BEVERUNG	- Messung Nr	6 2.9.20	04 12:57:26 Uhr	ID=17		4
	unbewertet peak		— frequer F-max	zbewertet —— F-Tm r.m		VA	
1	0,274 mm/s	КВ	0,134	0,0	70	12,2	
2	5,144 mm/s	кв	2,609	0,9	28	12,3	
3	0,511 mm/s	кв	0,252	0,1	33	12,4	
4	0,511 mm/s	кв	0,252	0,1	24	12,3	
5	0,524 mm/s	кв	0,252	0,1	13	12,3	
6	0,513 mm/s	кв	0,252	0,1	34	12,5	
7	1,618 mm/s	кв	0,930	0,4	77	12,8	
	Auswer	telänge = 10,2 sec		Startzeit = 0 sec			
	FFT-Ze	itfenster: Hanning ı	nach DIN 41	50 T 3			

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverungen"					
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 7 2.9.2004 12:5	7:40				
0.500 - Kain 1 (mm/s)	0.200-				
	0.100-				
-0.500-	0.000				
0.500 - Kan 2 (mm/s)	0.100-				
	0.050-				
-0.500-1					
2.000 - Kán 3 (mm/s)	1.000-FFT [mm/s]				
	0.500-				
2.000 - Kan 4 (mm/s)	U.5UU-				
	0.250-				
-2.000-1					
5.000 - Kan 5 (mm/s)	U.5UU-				
	0.250-				
-5.000-					
2.000 - Kan 6 (mm/s)	U.SUU-				
	0.250-				
-2.000-					
U.2UU-Kan 7 (mm/s)	U.U.2U-FFT [mm/s]				
	0.000-10				

😽 Zei	tverlauf: Erge	ebnisse			_ 🗆 ×
	BEVERU	NG - Messung Nr	7 2.9.20	04 12:57:40 Uhr ID:	=19
	unhoworte		froquon	zhowartat	
	peak	з і — — — —	F-max	F-Tm r.m.s.	Flags VA
1	0,427 mi	m/s KB	0,235	0,126	12,2
2	0,370 mi	m/s KB	0,192	0,080	12,3
3	1,894 mi	m/s KB	1,012	0,619	12,4
4	1,264 mi	m/s KB	0,773	0,397	12,3
5	2,306 mi	m/s KB	1,173	0,643	12,3
6	1,194 mi	m/s KB	0,760	0,389	12,5
7	0,130 mi	m/s KB	0,059	0,030	12,8
	Aus	wertelänge = 10,2 sec	;	Startzeit = 0 sec	
		2			
	FFT	- Zeitfenster: Hanning	nach DIN 41	50 T 3	

Oszilloskopische Darstellung und Messere	gebnisse am Standort "Beverungen"
🚭 Beitzer System 9000 - BEVERUNG Messung Nr. 8 2.9.2004 12:57	7:55
0.500-1 Kan 1 (mm/s)	
-0.500-	
0.500-	
	0.050-
-0.500-	
5.000-	
	1.000-
-5 000-	
5.000-1 Kin 4 imm/d	
	0.250-
-5 000-	
2.000-1 Kin 5 (mm/d)	1.000-
0.000-+++++++++++++++++++++++++++++++++	0.500-
-2 000 -	
0.200-1 Kan 6 (mm/s)	0.050-
	0.025-
-0.200-	0.000-0
0.500- Kán 7 (mm/s)	
	0.050-
-0.500-	0.000
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	<u> </u>

Oszilloskopisch	ne Darstellung un	d Messergebnisse	e am Standort	"Beverunger
😽 Beitzer System 9000 -	BEVERUNG Messung Nr. (3 2.9.2004 12:57:55		

😽 Zeit	verlauf: Ergebniss	e					_ [⊐×
	BEVERUNG -	Messung Nr 8	8 2.9.20	04 12:57:5	5 Uhr ID	=21		×
unbewertet frequenzbewertet								
1	0.329 mm/s	KB	0.149	1-110	0.081	riays	12.2	
2	0,333 mm/s	KB	0,173		0,079		12,3	
3	4,506 mm/s	КВ	2,703		1,193		12,4	
4	2,595 mm/s	КВ	1,378		0,577		12,3	
5	1,797 mm/s	КВ	1,136		0,559		12,3	
6	0,160 mm/s	KB	0,087		0,036		12,5	
7	0,347 mm/s	КВ	0,180		0,082		12,8	
	Auswertelä	inge = 10,2 sec		Startzeit = 0	sec			
	FFT-Zeitfe	nster: Hanning n	ach DIN 41	50 T 3				
								-

😽 Zeit	verlauf: Erge	ebnisse				_ 🗆 🗙
	BEVERU	NG - Messung N	lr 9 2.9.201	04 12:58:10 Uhr IC)=23	A
	unbewerte	et ——	frequen F-max	zbewertet ———	Flanc V.	
1	0,666 m	m/s KB	0,293	0,169	12,2	2
2	0,287 m	m/s KB	0,138	0,074	12,3	3
3	1,817 m	m/s KB	0,855	0,425	12,4	1
4	1,819 m	m/s KB	0,858	0,421	12,3	3
5	1,812 m	m/s KB	0,848	0,422	12,3	3
6	3,585 m	m/s KB	2,073	0,875	12,9	5
7	1,885 m	m/s KB	0,891	0,438	12,8	3
	Aus	wertelänge = 10,2 se	с	Startzeit = 0 sec		
FFT-Zeitfenster: Hanning nach DIN 4150 T3						
						-

😽 Zeit	tverlauf: E	rgebnisse						_	□×
	BEVE	RUNG - M	dessung Nr 1	0 2.9.2	004 12:58:	24 Uhr	ID=25		*
	unbew	ertet		– frequen	zbewertet –				
	pea	ık		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,137	mm/s	КВ	0,085		0,036		12,2	
2	0,297	mm/s	КВ	0,168		0,080		12,3	
3	0,808	mm/s	КВ	0,419		0,198		12,4	
4	0,646	mm/s	КВ	0,427		0,147		12,3	
5	0,013	mm/s	KB	0,002		0,001		12,3	
6	0,140	mm/s	KB	0,087		0,037		12,5	
7	0,010	mm/s	KB	0,002		0,001		12,8	
	,	Auswertelän	ge = 10,2 sec		Startzeit = 0	sec			
		FFT-Zeitfen:	ster: Hanning n	ach DIN 41	50 T 3				
									T

Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 11 2.9.2004 13:3	6:10 📃 🗗 🗙
0.000	0.050
0.200 - Kan 1 [mm/s]	0.000-
	0.025-
	0.023
-0.200-	0.000- ¹
0.100-	
	0.010-
and the second	
-0.100-1	
2.000 - Kain 3 (mm/s)	0.500-
	0.250-
2 000-	
5,000-	
Kan 4 (mm/s)	FFT [mm/s]
	0.500-
and the second se	
-5.000-	0.000- ¹ 1
0.100- Kan 5 (mm/s)	0.020-
ورجوع فتقويلا والمناجع المنتسور الأمالية والمحمد والانتجاب والمحمد والانتجاب والمحمد والمراجع والمراجع	
	0.010-
C 100	
-0.100-' ' ' ' ' ' ' '	
2.000 Kan 6 [mm/s]	0.000- FFT [mm/s]
	0.250-
Course of the second state	
-2 000-	
0.500-1 Kin 7 Imm/d	
	0.025-
	0.020

_

😽 Zeit	verlauf: Ergebr	isse					_ 🗆	×
	BEVERUNG	i - Messung Nr	11 2.9.2	004 13:36:1	0 Uhr I	D=27		-
	unbewertet peak		— frequen F-max	zbewertet – F-Tm	r. m. s.	Flags	VA	
1	0,199 mm/	s KB	0,095		0,051		12,2	
2	0,069 mm/	s KB	0,031		0,016		12,3	
3	1,540 mm/	s KB	0,728		0,421		12,4	
4	3,057 mm/	s KB	1,260		0,663		12,3	
5	0,070 mm/	s KB	0,031		0,016		12,3	
6	1,690 mm/	s KB	0,877		0,458		12,5	
7	0,226 mm/	s KB	0,087		0,043		12,8	
	Auswe	telänge = 10,2 sec		Startzeit = 0 s	sec			
	FFT-Z	eitfenster: Hanning	nach DIN 41	50 T 3				
								-

Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 12 2.9.2004 13:3	i6:25 📃 🗗 🗙
0.500-1 Kán 1 (mm/s)	
ي من خان مان مان من	
	0.050-
A New Address of the	
-0.500-	
Kan 2 (mm/s)	FFT [mm/s]
	0.500-
-5.000-	
2.000 - Kan 3 (mm/s)	U.5UU-
	0.250-
-2.000-	
0.500 - Kan 4 (mm/s)	0.100-
	0.050
	0.030
	0.000-ll.uuuluuuuluuuuluuuuluuuulu
2.000 - Kán 5 (mm/s)	0.500-
	0.250-
-2 000-	
2.000- Kan 6 imm/si	0.500-
a second dealing all the second states are as the second	
	0.250-

😽 Zeit	verlauf: Erg	ebnisse						_	
	BEVERU	JNG - N	lessung Nr 1	2 2.9.2	2004 13:36:	25 Uhr I	D=29		*
	unbewert	let		– frequer	nzbewertet -				
	peak			F-max	F-Tm	r. m. s.	Flags	VA	
1	0,388 m	n m/ s	KB	0,175		0,085		12,2	
2	2,589 m	n m/ s	KB	1,316		0,680		12,3	
3	1,431 m	n m/ s	КВ	0,807		0,370		12,4	
4	0,365 m	n m/ s	KB	0,177		0,086		12,3	
5	1,193 m	n m/ s	KB	0,613		0,353		12,3	
6	1,467 m	n m/ s	KB	0,811		0,372		12,5	
7	0,183 m	n m/ s	KB	0,081		0,047		12,8	
Auswertelänge = 10,2 sec Startzeit = 0 sec									
	FF	T-Zeitfens	ter: Hanning n	ach DIN 41	50 T3				
									-

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverungen"						
😽 Beitzer System 9000 – BEVERUNG Messung Nr. 13 2.9.2004 13:3	6:39					
0.500-	0.050					
-0.500-	0.000-ll					
2.000- Kan 2 (mm/s)	0.500-					
-2.000-	0.000-1					
2.000-	0.500-					
-2.000-	0.000-6					
1.000- Ка́л 4 (mm/s)	0.100-					
-1.000-	0.000-Illinoolaanaalaanaalahariilliniittiinaaniihaataalaanaalaanaa					
0.020 - Kan 5 (mm/s)	0.00050 - FFit (mm/s)					
-0.020-1						
U.200- Kan 6 (mm/s)	U.U5U FFT [mm/s]					
	0.025					
-0.200-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.000- ¹ ····································					
1.000- Kan 7 (mm/s)	UUUUU FFT [mm/s]					
	0.000- <mark>1999-999-999-9999-9999-9999-9999-99</mark>					

😽 Zei	tverlauf: E	rgebnisse						_ [⊐×
BEVERUNG - Messung Nr 13 2.9.2004 13:36:39 Uhr ID=31							<u></u>		
	unbewertet frequenzbewertet								
	pea	ık .		F-max	F-Tm	r.m.s.	Flags	VA	
1	0,284	mm/s	КВ	0,157		0,065		12,2	
2	1,475	mm/s	KB	0,635		0,323		12,3	
3	1,497	mm/s	КВ	0,618		0,318		12,4	
4	0,535	mm/s	KB	0,177		0,100		12,3	
5	0,011	mm/s	KB	0,002		0,001		12,3	
6	0,187	mm/s	KB	0,109		0,048		12,5	
7	0,559	mm/s	KB	0,183		0,105		12,8	
Auswertelänge = 10,2 sec Startzeit = 0 sec									
		FFT-Zeitfens	ter: Hanning n	ach DIN 41	50 T 3				
									-

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 – BEVERUNG Messung Nr. 14 2.9.2004 13:3	36:54 📃 🗗 🗙
2 000-	1 0 200
Kan 1 (mm/s)	6.200 FFT (mm/s)
-2.000-	0.000- <mark>10.000-10.00000000000000000000000</mark>
0.500- Kan 2 (mm/s)	
	0.025-
a construction of the descent of the second second	
-0.500-	
1.000 Kan 3 (mm/s)	0.100 FF[T (mm/s)
	0.050-
-1.000-	
5.000-1 Kán 4 (mm/d)	
	0.250-
and the second state and the second state of the second second second second second second second second second	
-5.000-	0.000-luonaadiinaadiinaadiinaadiinaadiinaadiinaadiinaadiinaadiinaadiinaadiinaadiinaadiinaadiinaadiinaadiinaadii
0.500 - Kain 5 (mm/s)	0.050
0.500-	
2 000-1	
	FFT (mm/s)
	0.250-
-2.000-	0.000-
0.500-Kan 7 (mm/s)	0.050
	0.025-
ריין איז איז איז איז און איז און איז און איז	

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverunge
Pailans Contam 0000 DEVEDUNC Managements 14 2 0 2004 12-20-54

🚭 Zeitverlauf: Ergebnisse 📃 🗆 🗴						
	BEVERU	NG - Messung Nr	14 2.9.20	004 13:36:54 Uhr ID	=33	
unhowartat fraguanzhowartat						
	peak	ε ι	F-max	F-Tm r.m.s.	Flags VA	
1	1,461 mi	m/s KB	0,547	0,287	12,2	
2	0,250 mr	m/s KB	0,110	0,059	12,3	
3	0,565 mi	m/s KB	0,216	0,115	12,4	
4	2,942 mi	m/s KB	1,072	0,578	12,3	
5	0,246 mi	m/s KB	0,110	0,059	12,3	
6	1,693 mr	m/s KB	0,644	0,341	12,5	
7	0,256 mi	m/s KB	0,117	0,061	12,8	
	Aus	wertelänge = 10,2 sec		Startzeit = 0 sec		
FFT-Zeitfenster: Hanning nach DIN 4150 T3						
					¥	

Non- Kin 1 (mm/s) 0.100 FFT (mm/s) 0.000
1.000 Kin 1 (mm/s) 0.100 FFT (mm/s) 0.000 I I I I I I I I I I I I I I I I I I I
1.000- Kán 1 (mm/s] 0.100- FFT (mm/s] 0.000- 0.000- 0.000- 0.000- -1.000- Kán 2 (mm/s] 0.050- 0.050- 0.500- Kán 2 (mm/s] 0.050- FFT (mm/s] 0.500- Kán 2 (mm/s] 0.050- FFT (mm/s] 0.500- Kán 2 (mm/s] 0.050- FFT (mm/s] 0.500- Kán 3 (mm/s] 0.000- FFT (mm/s]
0.000 - + + + + + + + + + + + + + + + + +
-1.000- 0.500- 0.500- 0.500- 0.500- Kin 3 (nm/s) 0.500- Kin 3 (nm/s)
-1.000- -0.000- -0.000- -0.000- FFT (mm/s] 0.500- -0.500- 0.000- 0.000- -0.000- -0.500- -0.500- -0.000- -0.000- 5.000- Kan 3 (mm/s] 0.500- FFT (mm/s]
0.500- 0.000- -0.500- 5.000- Kin 3 (nm/s] 0.500- Kin 3 (nm/s]
0.00011-+
0.000- -0.500- 5.000- Kán 3 (mm/s)
_0.500- 5.000- Кán 3 (mm/s)
-5.000- 5.000- Кán 3 (mm/s) 0.500-
Kan 3 (mm/s)
5.000- Kán 4 (mm/s) 0.500- FfT (mm/s)
this is a second s
In the distribution of the
-2.000-1 0.000-
U.2UU- Kán 8 (mm/s) 0.050 - FFT (mm/s)

🚭 Zeitverlauf: Ergebnisse 📃 🖸 🔀							:	
	BEVERUNG -	Messung Nr	15 2.9.2	004 13:37:0	9 Uhr II	D=35	<u>.</u>	-
unbewertet frequenzbewertet								
	peak		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,519 mm/s	КВ	0,192		0,094		12,2	
2	0,237 mm/s	КВ	0,107		0,046		12,3	
3	2,033 mm/s	КВ	0,835		0,413		12,4	
4	2,013 mm/s	КВ	0,828		0,410		12,3	
5	1,281 mm/s	КВ	0,640		0,337		12,3	
6	0,197 mm/s	КВ	0,081		0,043		12,5	
7	0,201 mm/s	КВ	0,083		0,045		12,8	
	Auswertel	änge = 10,2 sec		Startzeit = 0 s	ec			
FFT-Zeitfenster: Hanning nach DIN 4150 T3								
								Ŧ

Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Beverungen"
Heitzer System 9000 - BEVERUNG Messung Nr. 16 2.9.2004 13:3	7.25
1.000- Kan 1 (mm/s)	0.200 FFT [mm/s]
	0.100-
Course and the state of the sta	
-1.000-	0.000-
1.000 - Kan 2 (mm/s)	0.100-
	0.050-
-1.000-	0.000- ¹ 111111111111111111111111111111111
2.000 - Kan 3 (mm/s)	0.500-
	0.250-
The second	
-2.000-	0.000-
5.000 - Kan 4 (mm/s)	1.000 FFT (mm/s)
	0.500-
-5.000-1	0.000-ltala.a.a.dadadadadadadada
2.000 - Kan 5 (mm/s)	U.500-
	0.250-
-2.000-1	0.000-1
Z.000 Kan 6 [mm/s]	FFT [mm/s]
	0.250-
Ministration and the state of t	
-2.000-	0.200
	0.100 FFT [mm/s]
-1.000-; 0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	

🚭 Zeitverlauf: Ergebnisse 📃 🗆 🗙							⊐×		
BEVERUNG - Messung Nr 16 2.9.2004 13:37:25 Uhr ID=37							<u></u>		
	unbew	ertet		— frequen	zbewertet -				
	pea o coc	1K	KD.	F-max	F-Im	r.m.s.	Flags	VA	
•	0,929	mmys	KB	0,200		0,142		12,2	
2	0,548	mm/s	KB	0,194		0,103		12,3	
3	1,219	mm/s	KB	0,749		0,440		12,4	
4	2,690	mm/s	КВ	1,326		0,660		12,3	
5	1,177	mm/s	KB	0,742		0,435		12,3	
6	1,568	mm/s	KB	0,930		0,435		12,5	
7	0,555	mm/s	KB	0,263		0,149		12,8	
		Auswerteläng	ge = 10,2 sec		Startzeit = 0	sec			
FFT-Zeitfenster: Hanning nach DIN 4150 T3									
									-

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
🚭 Beitzer System 9000 - BEVERUNG Messung Nr. 17 2.9.2004 13:3	37:40 🛛 🗌 🖅 🗙
	0.050-
-0.500-	0.000-havenden and that the transition of the tr
5.000 - Kán 2 (mm/s)	0.500 FFT (mm/s)
	0.250-
-5.000-	
0.200-1 / / / / / / / / / / / / / / / / / / /	
المعالي المعالي المعالية المعالي	
0.000- <mark></mark>	0.025-
a second second first second with the second sec	
-0.200-1	0.000-beaused as a solution of the set of th
0.200 - Kan 4 (mm/s)	0.050
	0.007
-0.200-	
2.000-1 Kin 6 Imm/d	
Kan S junios	
	0.100-
and the second state of th	
-2.000-	
U.5UU- Kan 6 (mm/s)	U.1UU FFT [mm/s]
	0.050-
-0.500-	
0.010-	
	0.00025-

Oszillosko	pische Dar	stellung und	d Mess	sergebnisse	am Stando	ort "Beverunger
😽 Beitzer System	0.9000 - BEVEBU	NG Messung Nr. 1	7 2 9 2004	13:37:40		

😽 Zeit	verlauf: Ergebnisse						<u> </u>
	BEVERUNG - I	Messung Nr	17 2.9.2	004 13:37:40	Uhrl	D=39	<u></u>
	unbewertet peak		— frequen F-max	zbewertet — F-Tm	r.m.s.	Flags	VA
1	0,485 mm/s	КВ	0,209		0,100	-	12,2
2	2,291 mm/s	КВ	0,916		0,443		12,3
3	0,159 mm/s	КВ	0,067		0,039		12,4
4	0,154 mm/s	КВ	0,066		0,039		12,3
5	1,418 mm/s	КВ	0,531		0,306		12,3
6	0,498 mm/s	КВ	0,213		0,102		12,5
7	0,008 mm/s	КВ	0,002		0,001		12,8
	Auswertelän	ge = 10,2 sec		Startzeit = 0 se	с		
FFT-Zeitfenster: Hanning nach DIN 4150 T3							
							v

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 18 2.9.2004 13:	37:54
0.500-1 Kán 1 Imm/si	
	0.025-
0.500-	
2.000-1 / / / / / / / / / / / / / / / / / / /	
	0.250-
COOL	
1.000-	
Kan 3 (mm/s)	FFT (mm/s)
	0.050-
	0.00000-*
	0.00025-
2.000 - Kan 5 (mm/s)	0.500
	n 25n-
-2.000-	0.000- ¹
2.000 - Kan 6 [mm/s]	0.500-FFT (mm/s)
	0.250
-2.000-	0.000-
0.200- Kán 7 (mm/s)	0.050
	0.025-
-0.200 -	0.000
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	? 0 10 20 30 40 50 60 70 80 90 100

Zeitverlauf: Ergebnisse							□×		
	BEVE	RUNG - M	lessung Nr 1	8 2.9.2	004 13:37:	54 Uhr I	D= 4 1		*
	unbewe	ertet		- frequer	zbewertet -		F I		
1	pea 0,478	mm/s	КВ	r-max 0,190	F-IM	r.m.s. 0,103	Flags	VA 12.2	
2	1,633	mm/s	КВ	0,899		0,355		12,3	
3	0,521	mm/s	КВ	0,197		0,112		12,4	
4	0,009	mm/s	KB	0,002		0,001		12,3	
5	1,796	mm/s	KB	0,877		0,424		12,3	
6	1,654	mm/s	КВ	0,912		0,360		12,5	
7	0,144	mm/s	KB	0,081		0,042		12,8	
	, A	Auswertelän	ge = 10,2 sec		Startzeit = 0	sec			
FFT-Zeitfenster: Hanning nach DIN 4150 T3									
									-

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 19 2.9.2004 13:	38:09
0.500-1 Kan 1 [mm/s]	0.050
المراجع والمراجع والمراجع والمراجع والمراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	
-0.500-	
0.200-1 Kán 2 (mm/d)	
	0.025-
a and a state of the state of t	
-0.200-	0.000-
Kan 3 (mm/s)	FFT (mm/s)
	0.050-
. I a distant and the state of	
	0.000-litteredament
1.000 - Kan 4 (mm/s)	0.050 FFT (mm/s)
	0.025-
and the second se	
-1.000-	
5.000 - Kain 5 (mm/s)	0.500-
	n 25n-
-5.000-	0.000-hannalalltaalaalltaalaalltaalaalltaalaalltaalaal
5.000-Kan 6 (mm/s)	0.500
	0.050
	0.250
-5.000-	0.000-
2.000 - Kán 7 (mm/s)	0.500-
	0.250-
-2 000-	
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	2 0 10 20 30 40 50 60 70 80 90 100

Oszilloskopische Darste	llung und	Messergebnisse	am Standort ,	"Beverungen"
😽 Beitzer System 9000 – BEVERUNG	Messung Nr. 19	2.9.2004 13:38:09		

😽 Zeit	verlauf: Ergebniss	e					_ [] ×
	BEVERUNG -	Messung Nr	19 2.9.2	004 13:38:0	09 Uhr I	D=43		*
	unbewertet		— frequen	zbewertet -				
	peak		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,279 mm/s	KB	0,122		0,056		12,2	
2	0,150 mm/s	КВ	0,065		0,034		12,3	
3	0,504 mm/s	КВ	0,229		0,113		12,4	
4	0,515 mm/s	КВ	0,184		0,089		12,3	
5	2,631 mm/s	KB	1,049		0,514		12,3	
6	2,668 mm/s	КВ	1,072		0,520		12,5	
7	1,698 mm/s	КВ	0,663		0,337		12,8	
	Auswertelä	inge = 10,2 sec		Startzeit = 0	sec			
	FFT-Zeitfe	nster: Hanning ı	nach DIN 41	50 T 3				
								-

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverungen"							
😽 Beitzer System 9000 – BEVERUNG Messung Nr. 20 2.9.2004 13:3	18:25 _ E ×						
0.010 - Kan 1 (mm/s)	0.00050						
	0.00025-						
-0.010-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Kan 2 (mm/s)	U.200-						
	0.100-						
1 000							
0.500-t							
-0.500-	0.000						
1.000 - Kán 4 (mm/s)	0.200-						
-1.000-1							
2.000 - Kan 5 (mm/s)	0.200						
	0.100-						
	0.200-						
-1.000	0.000						
0.500 - Kan 7 (mm/s)	0.050 - FFT [mm/s]						
	0.025-						
-0.500-							
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	0 10 20 30 40 50 60 70 80 90 100						

 Z eit	tverlauf: Ergebnis	se					_ [⊐×
	BEVERUNG -	Messung Nr 3	20 2.9.2	004 13:38:	25 Uhr II	D= 4 5		A
	unbewertet		— frequen	zbewertet -				
1	peak 0.000 mm/o	20	F-max	F-Tm	r. m. s.	Flags	VA	
1	0,000 1111175		0,002		0,001		12,2	
2	0,912 mm/s	КВ	0,406		0,210		12,3	
3	0,201 mm/s	КВ	0,082		0,040		12,4	
4	0,912 mm/s	КВ	0,407		0,210		12,3	
5	1,099 mm/s	КВ	0,581		0,280		12,3	
6	0,922 mm/s	КВ	0,412		0,213		12,5	
7	0,479 mm/s	КВ	0,176		0,083		12,8	
	Auswerte	änge = 10,2 sec		Startzeit = 0	sec			
	FFT-Zeitf	enster: Hanning n	ach DIN 41	50 T 3				
								T

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
🚭 Beitzer System 9000 – BEVERUNG Messung Nr. 21 2.9.2004 14:0	8:59
Kan i prints	
	0.050-
U.5UU- Kan 2 (mm/s)	U.100-FFT (mm/s)
	0.050-
The first of the f	
-0.500-	0.000-
5.000- Kain 3 (mm/s)	0.200-
	0.100
-5 000-	
1.000-	
المتعادي المحالي المحالي المحالي المحالية	
1 000	
-1.000-	0.050-
Kan 5 (mm/s)	0.000 FFT [mm/s]
	0.025
a sumalified to the state of the second state of t	
-0.500-	0.000-team.downadmuthillitititititititititititititititititi
1.000 - Kan 6 (mm/s)	U.1UU FF[T (mm/s]
	0.050-
C.C.C.C. The second	
-1.000-	0.000-1
0.500- Kán 7 (mm/s)	
	0.050-
0.500-	
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	

C	Oszillosko	pische	e Darste	ellung ur	nd Mes	sergebr	nisse am	Standort	"Beverung	gen"
Δ	😽 Beitzer System	19000 - E	BEVERUNG	Messung Nr.	. 21 2.9.200	4 14:08:59				

*							
-							
Auswertelänge = 10,2 sec Startzeit = 0 sec FFT-Zeitfenster: Hanning nach DIN 4150 T3							

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverungen"						
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 22 2.9.2004 14:0	09:14 📃 👘 📜 🗗 🗙					
5.000- Kajn 1 (mm/s)	0.500					
	0.250-					
-5.000-	0.000					
0.500- Kan 2 (mm/s)	0.100					
a construction of the state of						
-0.500-	0.000					
5.000 - Kán 3 (mm/s)	0.500-					
-5.000-	0.000- ¹ 0					
5.000- Kan 4 (mm/s)	0.500					
	0.070					
	0.250-					
-5.000-	0.000- ¹					
5.000- Кán 5 [mm/s]	0.500-					
	0.750					
-5.000-	0.000- ¹ 0					
0.500 - Kan 6 (mm/s)	0.100-					
	0.050-					
	0.030					
-0.500-	0.000-					
0.010-Kan 7 (mm/s)	0.00050					
	0.00025-					
-0.010-	0.00000-1000010000000000000000000000000					
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	0 10 20 30 40 50 60 70 80 90 100					

-0.010-¦ 0.0	1.3 2.6	3.8 5.1	6.4 7.7	9.0 10.2		40 50 60	70 80 90 1	oo
 Z ei	itverlauf: E REVE	rgebniss	e Moceuna N	r 22 2 9 2	ND4 14-09-14 LIB	n ID=49		×
	unbew	ertet ak			zbewertet	 S Elands	VA	
1	2,081	mm/s	КВ	1,036	0,6	i59	12,2	
2	0,414	mm/s	КВ	0,185	0,0	93	12,3	
3	2,132	mm/s	КВ	0,600	0,2	.77	12,4	
4	2,076	mm/s	КВ	1,045	0,6	66	12,3	
5	2,108	mm/s	КВ	0,595	0,2	275	12,3	
6	0,434	mm/s	КВ	0,189	0,0	93	12,5	
7	0,007	mm/s	КВ	0,003	0,0	01	12,8	
		Auswertelä	inge = 10,2 se	с	Startzeit = 0 sec			
		FFT-Zeitfe	nster: Hanning	g nach DIN 41	50 T 3			

Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 23 2.9.2004 14:0	9:30 📃 🗗 🗙
2.000-	0.500
2.000 Kan 1 (mm/s)	0.000-
	0.250-
	0.200
-2.000-	0.000- <mark>1</mark>
0.500-	0.050-r
and an a statistical and the second	
	0.025-
-0.500-	0.000-based and a statistic sta
0.500- Kain З (mm/s)	0.050 FFT (mm/s)
	0.005
0.500-	
0.500-	
Kan 4 [mm/s]	FFI (mm/s)
	0.050-
A STATE OF A	
-0.500-	0.000- ¹
10.00 - Kain 5 (m.m./s)	2.000 FFT (mm/s)
10.00	
-10.00-	0.500-
2.000 Kan 6 [mm/s]	0.000 FFT [mm/s]
	0.250-
-2.000-	0.000- ¹ 10IIIIII
0.500- Kan 7 (mm/s)	0.050-
	0.025-

Oszillosko	pische Darst	ellung und N	/lessergebnisse	am Standort	"Beverungen
😽 Beitzer System	9000 - BEVERUNG	Messuna Nr. 23-2.	9.2004 14:09:30		

 Z eit	verlauf: Erg	ebnisse			_ 🗆 🗙
	BEVERI	JNG - Messun	g Nr 23 2.9.	2004 14:09:30 Uhr	ID=51
	unhoword	lat.	froque	nahowortot	
	peak	.et —	F-max	F-Tm r.m.s.	Flags VA
1	1,452 m	n m/ s K	B 0,684	0,357	12,2
2	0,276 m	n m/s K	B 0,117	0,068	12,3
3	0,287 m	n m/ s K	B 0,118	0,068	12,4
4	0,387 m	n m/ s K	B 0,198	0,103	12,3
5	5,144 m	n m/s K	B 2,685	1,432	12,3
6	1,492 m	n m/s K	B 0,700	0,366	12,5
7	0,289 m	n m/ s K	B 0,122	0,071	12,8
	Au	swertelänge = 10,2	2sec	Startzeit = 0 sec	
	FF	T-Zeitfenster: Har	ining nach DIN 4	I150 T3	
					v

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
Beitzer System 9000 - BEVERUNG Messung Nr. 24 2.9.2004 14:	D9:45
0.500-1	
Kan 1 (mm/s)	PF I jmm/sj
	0.025-
and the second sec	
-0.500-	
0.500 - Kan 2 (mm/s)	0.050 - FFT (mm/s)
	0.025
-0.500-	
0.500-	
to the Distribution for the second	
	0.025-
. Int the first strength of the	
2.000 - Kan 4 (mm/s)	U.200-
-2.000-	0.000- ^I IIIIIIIIIIIIIIIII
5.000- Kain 5 (mm/s)	1.000
and the second	
	0.500-
5 000-	
<u>····································</u>	0.00025-
-0.010-1 1 1 1 1	
U.UIU- Kain 7 (mm/s)	U.UUU5U
<u>┈┼┼╌┼┽┯┿╤╪╤╬╬╬╬╫╋┺╫╂╋╗╢╏╏╢╗╔╗╝</u> ╎╠╂┼╗╗╬╎╎╗╏╎	0.00025-
-0.010-	0.00000-0.00000000000000000000000000000
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	0 10 20 30 40 50 60 70 80 90 100

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverunge
A Beitzer System 9000 - BEVERLING Messung Nr 24 2 9 2004 14:09:45

😽 Zeitverlauf: Ergebnisse 📃 🗖 🗙									
	BEVERUNG -	Messung Nr	24 2.9.2	004 14:09:4	5 Uhr I	D=53		*	
	unbewertet		— frequen	zbewertet —					
	peak		F-max	F-Tm	r. m. s.	Flags	VA		
1	0,396 mm/s	КВ	0,136		0,069		12,2		
2	0,397 mm/s	KB	0,138		0,070		12,3		
3	0,320 mm/s	КВ	0,110		0,057		12,4		
4	1,048 mm/s	КВ	0,442		0,232		12,3		
5	2,491 mm/s	KB	1,366		0,814		12,3		
6	0,007 mm/s	KB	0,002		0,001		12,5		
7	0,009 mm/s	KB	0,002		0,001		12,8		
	Auswertelär	nge = 10,2 sec		Startzeit = 0 s	ec				
	FFT-Zeitfen	ster: Hanning r	nach DIN 41	50 T 3					
								-	

Oszilloskonische Darstellung und Messer	gebnisse am Standort, Beverungen"
Beitzer System 9000 - BEVERUNG Messung Nr. 25 2.9.2004 14:	
1.000-1	0.100-•
	0.050-
-1.000-	0.000
2.000 - Kin 2 (mm/s)	0.200-
_2.000-	0.000-llasan
Kan 3 (mm/s)	FFIT (mm/s)
	0.000-liberational development in the initial initial initial initial development in the second seco

0.000-0.200-

0.100-

0.100-

0.050-

0.000-0.050-

0.025-

0.050-0.000-<mark>---</mark>0

0.000-^{11....}

10 20

0.000-^{|||}

Kan 4 (mm/s)

Kan 5 (mm/s)

Kan 6 (mm/s)

Kan 7 (mm/s)

9.0

+++

10.2

<u>-0.500-</u> 2.000-

0.000-

-2.000-1.000-

0.000-

<u>-1.000-</u> 0.500-

0.000-

<u>-0.500-</u> 1.000-

0.000-

-1.000-

1.3

2.6

الغاناه

10

الم الألك

5.1

6.4

7.7

3.8

ահատանությունությունները

ահուստություն

30

40

.....վ||կտիկեստով||լի.ոսիկ.....||

ANHANG 2

FFT (mm/s)

FFT [mm/s]

FFT (mm/s)

FFT [mm/s]

.....<mark>.</mark> 90 100

ահհատ

70 80

Zen	BEVE	rgeonisse RUNG - M	lessung Nr (25 2.9.20	004 14:09:	59 Uhr II	D=55		- 1 5
	unbew	ertet		— frequen	zbewertet -				
	pea	ık		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,527	mm/s	КВ	0,232		0,135		12,2	
2	1,364	mm/s	КВ	0,525		0,298		12,3	
3	0,327	mm/s	КВ	0,127		0,065		12,4	
4	1,393	mm/s	KB	0,526		0,298		12,3	
5	0,545	mm/s	KB	0,229		0,133		12,3	
6	0,321	mm/s	KB	0,130		0,066		12,5	
7	0,554	mm/s	KB	0,244		0,142		12,8	
	,	Auswerteläng	je = 10,2 sec		Startzeit = 0	sec			
		FFT-Zeitfens	ter: Hanning n	ach DIN 41!	50 T 3				

Oszilloskopische Darstellung und Mess	ergebnisse am Standort "Beverungen"
Beitzer System 9000 - BEVERUNG Messung Nr. 26 2.9.2004	14:10:14
2.000-	0.500
Z.000- Kan 1 (mr	m/s] 0.000-
COOC THE STORE AND ADDRESS OF A DESCRIPTION OF A DESCRIPR	1 0.200
-2.000-	0.000-1
2.000-1 Kin 2 (mr	
	+ 0.250-
-2.000-	0.000-beautilitation and a second and a second and a second and a second s
2.000- Kán 3 (mr	m/sj 0.500-
	+ 0.250-
The second	
2.000- Kan 4 (mr	m/sj U.500-
	0.200
-2 000-	
2.000-1 // // // // // // // // // // // // //	
-2.000-	0.000-lumaalinaalinaalinaa
0.500- Кал 6 (mr	m/sj 0.050-
an addition of the bill of the	
	+ 0.025-
a non a na	
5.000 Kan 7 (mr	m/sj I.UUU-
	+ 0.500-
-5.000-	0.000-
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0	10.2 0 10 20 30 40 50 60 70 80 90 100

_

😽 Zeit	verlauf: Er	gebnisse						_ 🗆	×
	BEVER	UNG - M	lessung Nr 2	6 2.9.2	004 14:10:1	I4 Uhr I	D=57		*
	unbewei	rtet		- frequer F-max	zbewertet – F-Tm	r m s	Flage	VA	L
1	1,926 i	` mm/s	КВ	1,134		0,624	i iugo	12,2	
2	1,945	mm/s	КВ	1,147		0,631		12,3	
3	1,958	mm/s	КВ	1,155		0,636		12,4	
4	1,943	mm/s	КВ	1,147		0,631		12,3	
5	1,288	mm/s	КВ	0,580		0,279		12,3	
6	0,353	mm/s	КВ	0,138		0,065		12,5	
7	3,052	mm/s	КВ	1,622		0,956		12,8	
	A	uswerteläng	je = 10,2 sec		Startzeit = 0	sec			L
FFT-Zeitfenster: Hanning nach DIN 4150 T3									

Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Beverungen"
🔂 Beitzer System 9000 - BEVERUNG Messung Nr. 27 2.9.2004 14:1	0:29 📃 🖅 🗙
2 000-1	
	0.250-
-2.000-	0.000- ^{to}
0.500 - Kain 2 (mm/s)	0.100-
	0.050
	0.050-
-0.500-	
0.500-1 Kin 2 /mm/d	
ta tuli duale a	
	0.025-
-0.500-	
5.000 - Kain 4 (mm/s)	1.000 FFT (mm/s)
	0.500-
	0.000
-5.000-	0.000- ¹ 1
2.000- Kan 5 mm/s	0.500-
and a star dealer that the star while the star start of the	
	0.250-
I. in the day is dealed as a second s	
-2.000-1	
0.000 Kan 6 [mm/s]	0.000- FFT [mm/s]
	0.025-
-0.500-	0.000-0.000-0.0000000000000000000000000
0.010Kajn 7 [mm/s]	0.00050 - FF(T [mm/s]
	0.00025-

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverungen
↔ Beitzer System 9000 - BEVERUNG Messung Nr. 27 2.9.2004 14:10:29

Zeitverlauf: Ergebnisse									
	BEVERUNG -	Messung Nr	27 2.9.2	004 14:10:29 Uhr ID=	59				
	unbewertet frequenzbewertet								
	peak		F-max	F-Tmr.m.s.F	Flags VA				
1	1,649 mm/s	КВ	0,607	0,345	12,2				
2	0,494 mm/s	KB	0,219	0,101	12,3				
3	0,239 mm/s	КВ	0,098	0,057	12,4				
4	3,890 mm/s	KB	1,942	1,157	12,3				
5	1,867 mm/s	KB	0,737	0,375	12,3				
6	0,230 mm/s	КВ	0,099	0,057	12,5				
7	0,008 mm/s	KB	0,002	0,001	12,8				
	Auswertelär	ige = 10,2 sec		Startzeit = 0 sec					
	FFT-Zeitfen	ster: Hanning r	nach DIN 41	50 T3					

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverungen"								
😽 Beitzer System 9000 – BEVERUNG Messung Nr. 28 2.9.2004 14:1	0:46							
1.000- Kan 1 [mm/s]								
المراجع المراجع المراجع المراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع								
	0.050-							
0.500-1 Kán 2 (mm/s)								
	0.050-							
with the state of the state								
	0.025-							
1 000								
5 000-								
Kan 4 (mm/s)								
	0.250-							
-5.000-								
5.000 - Kan 5 (mm/s)	2.000 FFT [mm/s]							
	1.000-							
-5.000-1								
I.UUU- Kan 6 (mm/s)	U.100-							
	0.050-							
and the second high the second s								
-1.000-								
5.000 - Kán 7 (mm/s)	U.5UU-							
	0.250-							
-5.000-								
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	0 10 20 30 40 50 60 70 80 90 100							

Oszilloskopische Darstellung	und Messe	ergebnisse am	Standort "Be	verunge
	NI- 90 9 0 9004 1	4.10.40		

- Z eit	verlauf: Ergebnis	se					IX
	BEVERUNG	- Messung Nr	28 2.9.2	004 14:10:46 Uhr	ID=61		4
	unbewertet		— frequen	zbewertet			
	peak		F-max	F-Tm r.m.s.	. Flags	VA	
1	0,820 mm/s	КВ	0,339	0,142		12,2	
2	0,367 mm/s	КВ	0,183	0,104		12,3	
3	0,520 mm/s	КВ	0,200	0,086		12,4	
4	2,004 mm/s	КВ	0,850	0,384		12,3	
5	4,036 mm/s	КВ	2,199	1,188		12,3	
6	0,839 mm/s	КВ	0,342	0,145		12,5	
7	2,058 mm/s	КВ	0,878	0,399		12,8	
	Auswerte	länge = 10,2 sec		Startzeit = 0 sec			
	FFT-Zeit	fenster: Hanning r	nach DIN 41	50 ТЗ			
							T

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 29 2.9.2004 14:1	1:01 _ <mark>_ </mark>
1.000-1 Kán 1 mm/s	
and a state of the	
	0.100-
5 000-	0.500-
Kan 2 [mm/s]	FFT [mm/s]
	0.250-
-5.000-	
5.000 - Kan 3 (mm/s)	U.5UU-
	0.250-
a second s	
-5.000-	0.000- ¹ ····································
10.00- Kan 4 (mm/s)	2.000 FF T (mm/s)
	1 000-
-10.00-	0.000-lul
5.000 - Kan 5 (mm/s)	0.500
-5 000-	
5.000-1 Kan 6 (mm/s)	
	0.250-
5 000-	
1 000	

	alaaba Da	سيبية متنالم المع		معرم معامرهم		
USZIIIOSKOI	DISCHE Da	irstelluna ur	ia iviessera	ephisse am	Standort .	Beverunden
					•••••••••••••••••••••••••••••••••••••••	
🔼 Boitzor Svetom	9000 - BEVE	LING Moccurd Nr.	20 2 0 2004 14-11	-01		

🚭 Zeit	verlauf: Ergeb	nisse			_			
	BEVERUN	G - Messung Nr	29 2.9.20	004 14:11:01 Uhr I	D=63	*		
	unbewertet frequenzbewertet neak F-max F-Tm r m s Flags							
1	0,600 mm	/s KB	0,342	0,170	12,2			
2	2,039 mm	/s KB	0,856	0,458	12,3			
3	2,061 mm	/s KB	0,863	0,461	12,4			
4	7,017 mm	/s KB	4,123	1,945	12,3			
5	2,056 mm	/s KB	0,856	0,458	12,3			
6	2,067 mm	/s KB	0,867	0,464	12,5			
7	0,632 mm	/s KB	0,357	0,179	12,8			
	Ausw	ertelänge = 10,2 sec	:	Startzeit = 0 sec				
	FFT-2	Zeitfenster: Hanning	nach DIN 415	50 T 3				

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
🕁 Beitzer System 9000 - BEVERUNG Messung Nr. 30 2.9.2004 14:1	1:16 📃 🗗 🗙
0.500-	
6.500 Kan 1 [mm/s]	0.100 FFT (mm/s)
	0.050
and the second sec	
-0.500-	0.000- <mark></mark>
0.500-	
المربح والمربعة والمرافع والمرافع المتعار فالمرافع والمراجع المراجع والمراجع والمراجع والمراجع والمراجع	
0.000- <mark>+++++++++++++++++++++++++++++++++</mark>	0.050-
and the part of the second	
-0.500-	
0.500 - Kain 3 (mm/s)	0.100-
-0.500-	
2 000-1	
Kan 4 (mm/s)	
and the state of the	
-2.000-	0.000-Narsan I.a. and an addited with the second of the se
2.000- Kán 5 (mm/s)	0.200
والمستعد والالحادة والعصاد الألفان والأرفع والمحاد الأطلب والمحاد والمح	
	0.100-
C C C C C C C C C C C C C C C C C C C	
-2.000-	0.200-
Kan 6 [mm/s]	0.200 FFT [mm/s]
-2.000-	0.000- ¹
1.000-1 Kan 7 Imm/st	0.100-
	0.050-
0.0 1.3 2.0 0.0 0.1 0.4 1.1 0.0 10.2	

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverunge	n"
↔ Beitzer System 9000 - BEVERUNG Messung Nr. 30 2.9.2004 14:11:16	

😽 Zeit	tverlauf: E	rgebnisse						_ [⊐×
	BEVE	RUNG - M	dessung Nr 3	0 2.9.2	004 14:11:	16 Uhr	ID=66		*
	unbew	ertet		– frequenzbewertet –––––					
	pea	ık		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,389	mm/s	KB	0,180		0,092		12,2	
2	0,391	mm/s	KB	0,182		0,093		12,3	
3	0,400	mm/s	КВ	0,183		0,094		12,4	
4	1,855	mm/s	КВ	0,680		0,320		12,3	
5	1,817	mm/s	KB	0,682		0,313		12,3	
6	1,865	mm/s	KB	0,686		0,323		12,5	
7	0,725	mm/s	KB	0,283		0,145		12,8	
	,	Auswertelän	ge = 10,2 sec		Startzeit = 0	sec			
		FFT-Zeitfen:	ster: Hanning n	ach DIN 41	50 T 3				
									-

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
Beitzer System 9000 - BEVERUNG Messung Nr. 31 2.9.2004 14:4	40:25
	0.050-
-1.000-	
0.200- Kan 2 (mm/s)	0.020-
1.000-	
0.000-	0.050-
2.000- Kan 4 (mm/s)	U.200-
-2.000-	0.000- <mark>0</mark>
0.500 - Kan 5 [mm/s]	
0.000- <mark></mark>	
C COO	
U.DUU Kan 6 (mm/s)	0.100 FFT [mm/s]
	0.050-
-0.500-	0.000
0.010- Kán 7 (mm/s)	0.00050
	0.00025-
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	

Oszilloskopische Darstellung	g und Messergebnisse am Standort "Bever	ungen"
😽 Beitzer System 9000 - BEVERUNG Messung	ng Nr. 31 2.9.2004 14:40:25	

🚭 Zeit	verlauf: Ergebnisse	9						⊐×
	BEVERUNG -	Messung Nr	31 2.9.2	004 14:40:25	Uhr	ID=68		4
	unbewertet		— frequen	zbewertet —				
	peak		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,632 mm/s	КВ	0,238		0,109		12,2	
2	0,189 mm/s	KB	0,079		0,040		12,3	
3	0,514 mm/s	KB	0,291		0,147		12,4	
4	1,155 mm/s	KB	0,450		0,243		12,3	
5	0,283 mm/s	KB	0,146		0,082		12,3	
6	0,288 mm/s	КВ	0,148		0,083		12,5	
7	0,008 mm/s	КВ	0,003		0,001		12,8	
	Auswertelä	nge = 10,2 sec		Startzeit = 0 se	C			
	FFT-Zeitfei	nster: Hanning r	nach DIN 41	50 T 3				
								-
Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"							
---	-----------------------------------							
🔂 Beitzer System 9000 - BEVERUNG Messung Nr. 32 2.9.2004 14:4	10:41 🔋 👘 📕 🖂 👘							
0.500-1 Kán 1 (mm/s)	0.050-							
-0.500-1								
U.5UU- Kan 2 (mm/s)	U.1UU-							
	0.050-							
-0.500-								
0.500-								
and the second								
	0.050-							
and the second framework in the second								
1.000 - Kan 4 (mm/s)	0.100-							
المراجب ومستهمينان التعادية الأقرار فالثلثان وتعتمد مستمالته والتقاتين استحمي المراجب المحموص	0.050							
	0.050-							
-1.000-	0 000- <mark></mark>							
2.000-								
	0.100-							
-2.000-1								
المالية المالي	U.2UU-FFFT [mm/s]							
-1.000-	0.000- <mark></mark>							
0.010Kan 7 [mm/s]	0.00050-							
	0.00025-							

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverungen"	"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 32 2.9.2004 14:40:41	

🚭 Zeit	verlauf: Ergebnisse						_ 🗆	×
	BEVERUNG -	Messung Nr	32 2.9.2	004 14:40:4	41 Uhr I	D=70		*
	unbewertet		— frequen	zbewertet -				
	peak		F-max	F-Tm	r. m. s.	Flags	VA	
1	0,261 mm/s	КВ	0,132		0,072		12,2	
2	0,395 mm/s	KB	0,232		0,119		12,3	
3	0,392 mm/s	KB	0,233		0,120		12,4	
4	0,590 mm/s	KB	0,259		0,119		12,3	
5	1,214 mm/s	KB	0,431		0,240		12,3	
6	0,980 mm/s	КВ	0,532		0,266		12,5	
7	0,009 mm/s	KB	0,003		0,001		12,8	
	Auswertelär	ige = 10,2 sec		Startzeit = 0	sec			
	FFT-Zeitfen	ster: Hanning	nach DIN 41	50 T 3				
								-

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 33 2.9.2004 14:4	40:56 👘 👘 👘 👘 👘
1.000-1 Kán 1 (mm/s)	0.200-
and the state of t	
	0.100-
-1 000-	
0.500-1 Kin 2 (mm/s)	0.050-
and a state of the	
	0.025-
-0.500-	
0.500-1 I I. Kan 3 (mm/s)	
المراجع والمراجع	
-0.500-	
5.000-1 Kan 4 (mm/s)	
-5.000-	0.000-0
2.000- Kan 5 [mm/s]	0.200-r
-2.000-	0.000-1
0.500 - Kán 6 (mm/s)	0.100-
-0.500-	0.000-
0.500 - Kán 7 (mm/s)	0.050
	0.025-
-0.500-	
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	0 10 20 30 40 50 60 70 80 90 100

	niaska Davata	الممتنية متنال			
USZIIIOSKO	dische Darste	elluna una ivi	esseraephiss	e am Standort	Beverunde
			Jeengeenee		"= • • • • • • • •
A Boitzor System	9000 - BEVERLING	Moccund Nr 33 2 9	2004 14-40-56		

😽 Zei	tverlauf: Ergebnisse	9					_ 🗆 ×
	BEVERUNG -	Messung Nr	33 2.9.2	004 14:40:	56 Uhr IC)=72	
	unbewertet		— freauen	zbewertet –			
	peak		F-max	F-Tm	r. m. s.	Flags	VA
1	0,502 mm/s	КВ	0,262		0,125		12,2
2	0,222 mm/s	КВ	0,116		0,059		12,3
3	0,466 mm/s	КВ	0,186		0,105		12,4
4	3,402 mm/s	КВ	1,668		0,910		12,3
5	1,070 mm/s	КВ	0,439		0,244		12,3
6	0,471 mm/s	КВ	0,187		0,105		12,5
7	0,229 mm/s	КВ	0,115		0,061		12,8
	Auswertelä	nge = 10,2 sec		Startzeit = 0 :	sec		
	FFT-Zeitfer	nster: Hanning i	nach DIN 41	50 T 3			
							-

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 – BEVERUNG Messung Nr. 34 2.9.2004 14:4	11:11 📃 🖉 🗙
2 000-	0.500
2.000 Kain 1 [mm/s]	FFT [mm/s]
	0.250-
The second se	
-2.000-	0.000- ¹ 1
5.000- Kán 2 (mm/s)	1.000-
2 000	
-5.000~	0.000
	FFT (mm/s)
	0.100-
-0.500-	0.000- ¹ ¹ ¹ ¹ ¹ ¹ 000.0
0.500- Kán 4 (mm/s)	0.020
and the second	
0.500	
0.500-	0.000-
Kan 5 (mm/s)	0.000 FFT [mm/s]
and the second	
-0.500-	0.000- ¹
0.020 - Kan 6 (mm/s)	0.00050 - FF T (mm/s)
ŮŮŮŮŮ [−] ╸┼┼┼┼┼┼┼┽┽╅┥┽┥┙┙╡╗╝╗╝╗╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝	
	0.400

Oszilloskopische Darstellung und Messergebnisse am Standort "B	everungen"
₩ Beitzer System 9000 - BEVERUNG Messung Nr. 34 2.9.2004 14:41:11	

😽 Zeit	verlauf: Ergebr	isse				_ 🗆 ×
	BEVERUNG	i - Messung Ni	r 34 2.9.2	004 14:41:11 Uhr	ID=74	<u>_</u>
	unbewertet		— frequen	zbewertet		
	peak		F-max	F-Tm r.m.s.	Flags	VA
1	1,570 mm/	s KB	0,506	0,302		12,2
2	3,390 mm/	s KB	1,823	0,953		12,3
3	0,470 mm/	s KB	0,248	0,129		12,4
4	0,239 mm/	s KB	0,082	0,045		12,3
5	0,246 mm/	s KB	0,114	0,064		12,3
6	0,012 mm/	s KB	0,003	0,001		12,5
7	0,481 mm/	s KB	0,255	0,133		12,8
	Auswe	rtelänge = 10,2 sec	;	Startzeit = 0 sec		
	FFT-Z	eitfenster: Hanning	nach DIN 41	50 T 3		
						-

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
🔂 Beitzer System 9000 – BEVERUNG Messung Nr. 35 2.9.2004 14:	41:26 📃 🗗 🗙
0.010 - Kan 1 (mm/s)	0.00050
	0.00025-
-0.010-1	
5.000 - Kan 2 (mm/s)	FFT [mm/s]
	0.500-
5 000-	
0.500-1	
	0.100-
-0.500-	0.000-
5.000- Kan 4 (mm/s)	1.000
	0.500
0.000 and the second state of the second state	
-5.000-	0.000-0
0.500 - Kan 5 (mm/s)	0.050
	0.025-
a construction of the second	
	0.200-
	0.100-
-0.500-	
0.500 - Kin 7 Imm/sl	
	0.050-
-0.500-	0.000-00-
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	0 10 20 30 40 50 60 70 80 90 100

😽 Zeit	tverlauf: Erge	ebnisse				_ 🗆 🗙
	BEVERU	NG - Messung N	Nr 35 2.9.2	004 14:41:26 Uhr I	ID=76	<u> </u>
	unbewerte peak	et ——		zbewertet ——— F-Tm r.m.s.	Flags	VA
1	0,008 mi	m/s KB	0,003	0,001	1:	2,2
2	3,819 mi	m/s KB	1,936	0,995	1:	2,3
3	0,498 mi	m/s KB	0,277	0,135	1:	2,4
4	3,891 m	m/s KB	1,923	1,017	1:	2,3
5	0,272 m	m/s KB	0,126	0,057	1:	2,3
6	0,499 mi	m/s KB	0,275	0,132	1:	2,5
7	0,253 m	m/s KB	0,135	0,074	13	2,8
	Aus	wertelänge = 10,2 se	90	Startzeit = 0 sec		
	FFI	Γ-Zeitfenster: Hannin	ig nach DIN 41	50 T 3		

/lesser@	gebnisse am Standort "Beverungen"
9.2004 14:4	11:43 📃 🗗 🗙
Kan 1 (mm/s)	U.100-
	0.050
Kan 2 imm/si	

.....

.....

.11.

.11.

Oszilloskopische Darstellung und M

Kan 2 (mm/s)

Kan 3 (mm/s)

Kan 4 (mm/s)

Kan 5 (mm/s)

Kan 6 (mm/s)

+ | |

++

++

++

0.050-

0.000-0.100-

0.050-

0.000-0.500-

0.250-

0.000-

0.500-

0.250-

0.500-

0.250-

0.000-

0.000-^{||}...

بالمنفان أبازان

until to st

1

1.000-

0.000--1.000

1.000-

0.000-

-1.000-

1.000

0.000-

<u>-1.000-</u> 2.000-

0.000-

-2.000-

5.000-

0.000-

<u>-5.000-</u> 2.000-

0.000-

-2.000

++•

0.000				(an 7 [mm/s] 0.0	25-			FFT (m	m/s]	
0.0	1.3 2.6	3.8 5.1	6.4 7.7 9	9.0 10.2	⁻ 0 10 20	30 40	50 60 7	70 80 90	100	
 Zeit	verlauf: E	rgebniss	9						IJŇ	
	BEVE	RUNG -	Messung Nr	36 2.9.2	004 14:41:	43 Uhr	ID=78		<u> </u>	
	unbew	ertet		— frequer	zbewertet -					
	pea	ık		F-max	F-Tm	r. m. s.	Flags	VA		
1	0,600	mm/s	КВ	0,241		0,121		12,2		
2	0,600	mm/s	KB	0,240		0,121		12,3		
3	0,504	mm/s	КВ	0,246		0,128		12,4		
4	1,206	mm/s	КВ	0,630		0,347		12,3		
5	2,009	mm/s	КВ	0,832		0,403		12,3		
6	1,219	mm/s	КВ	0,639		0,352		12,5		
7	0,273	mm/s	КВ	0,115		0,065		12,8		
Auswertelänge = 10,2 sec					Startzeit = 0	sec				
	FFT-Zeitfenster: Hanning nach DIN 4150 T3									

ANHANG 2

FFT (mm/s)

FFT (mm/s)

FFT [mm/s]

FFT [mm/s]

FFT [mm/s]

-

ատեսինովությո

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 37 2.9.2004 14:4	11:58 📃 🖉 🔀
1.000- Kan 1 [mm/s]	0.100-
-1 000-	
5.000-1 Kin 2 (mm/d)	
and a second	
	0.500-
C DDD	
0.500-1	
	0.025-
-0.500-	
	FFI [mm/s]
	0.100-
-1.000	
Kan 5 (mm/s)	0.100 FFT [mm/s]
	0.050
An international Association and the second second second	
-1.000-1	
	0.200-*
	0.100
-1.000-	
U.5UU-Kan 7 (mm/s)	U.1UU-
-0.500-	
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	

Oszillosko	pische Dars	tellung und	Messei	rgebnisse	am Standort	"Beverunger
😽 Beitzer System	9000 - BEVEBUN	G Messung Nr 37	2.9.2004 14	:41:58		

😽 Zeit	verlauf: Ergebnisse				_ 🗆 ×		
	BEVERUNG - N	dessung Nr	37 2.9.2	004 14:41:58 Uhr I	D=80		
	unbewertet		— frequen	zbewertet ———			
	peak		F-max	F-Tmr.m.s.	Flags VA		
1	0,680 mm/s	KB	0,269	0,142	12,2		
2	3,040 mm/s	КВ	1,619	0,844	12,3		
3	0,283 mm/s	КВ	0,115	0,052	12,4		
4	0,851 mm/s	КВ	0,390	0,202	12,3		
5	0,684 mm/s	КВ	0,272	0,144	12,3		
6	0,868 mm/s	КВ	0,394	0,203	12,5		
7	0,330 mm/s	КВ	0,165	0,087	12,8		
	Auswertelän	ge = 10,2 sec		Startzeit = 0 sec			
FFT-Zeitfenster: Hanning nach DIN 4150 T3							
						~	

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 38 2.9.2004 14:4	12:12 _ E ×
2.000-1 Kan 1 [mm/s]	0.500
	0.250-
-2 000-	
5.000-1 Kán 2 (mm/d	
	0.500-
2 000-1	
	FFI Imm/s
	0.250-
C. CARDAR MARKED AND A CARDINAL AND A CARD AND A CARD AND A CARD A CA	
-2.000-	0.500
2.000 Kan 4 (mm/s)	0.000 FFFT (mm/s)
	0.250-
a construction of the factor o	
-2.000-1	
2.000 Kan 5 [mm/s]	0.000 FFT [mm/s]
	0.250-
-2.000-1	
I.UUU- Kan 6 (mm/s)	U.1UU-
	0.050-
11. A State of the	
-1.000-1	
U.5UU - Kain 7 (mm/s)	U.U5U
-0.500-	
U.U 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	0 10 20 30 40 50 60 70 80 90 100

😽 Zei	tverlauf: Ergebniss	;e					_ [⊐×
	BEVERUNG -	Messung Nr	38 2.9.2	004 14:42:	12 Uhr I	D=82		*
	unbewertet neak		— frequen E-max	zbewertet - F-Tm	rms	Flage	VA	
1	1,283 mm/s	КВ	0,722		0,330	riago	12,2	
2	3,142 mm/s	КВ	1,531		0,755		12,3	
3	1,526 mm/s	КВ	0,603		0,327		12,4	
4	1,523 mm/s	КВ	0,598		0,324		12,3	
5	1,298 mm/s	KB	0,730		0,334		12,3	
6	0,618 mm/s	КВ	0,287		0,114		12,5	
7	0,264 mm/s	КВ	0,110		0,057		12,8	
	Auswertei	änge = 10,2 sec		Startzeit = 0	sec			
FFT-Zeitfenster: Hanning nach DIN 4150 T3								

Oszilloskopische Darstellung und Messerg	gebnisse am Standort "Beverungen"
🚭 Beitzer System 9000 - BEVERUNG Messung Nr. 39 2.9.2004 14:4	12:27 📃 🖅 🗙
0.500-1 Kin 1/mm/d	
Kan t jmms	
	0.050-
A DESCRIPTION OF THE PROPERTY OF T	
-0.500-	
1.000 - Kan 2 (mm/s)	U.1UU-
	0.050-
	0.000- ¹¹
1.000Kan 3 (mm/s)	0.100-
المراجع والمنافر والألالي ومتعداده والمراجع والمراجع المتعاريون والمتعاريون والمراجع والمراجع والمراجع والمراجع	
1.000-	
5 000-	
Kan 4 (mm/s)	
	0.250-
-5.000-	0.000-Itherest.com.tenanticationaria and filling the second statements of the second statement to the second statement of the
U.200- Kan 5 (mm/s)	U.U5U-
	0.025-
and the second sec	
-0.200-	0.000- ¹
0.500- Ка́л 6 (mm/s)	0.100-
	0.050-
-0.500-	
1.000-1 / / / / / / / / / / / / / / / / / / /	

😽 Zeit	verlauf: Ergebni	sse				_ 🗆 ×	
	BEVERUNG	- Messung Nr	39 2.9.2	004 14:42:27 Uhr	ID=84	<u>_</u>	
	unbewertet peak		— frequen F-max	zbewertet — F-Tm r. m. s	- s. Flags	VA	
1	0,280 mm/s	КВ	0,135	0,07	l	12,2	
2	0,739 mm/s	КВ	0,319	0,12	}	12,3	
3	0,737 mm/s	КВ	0,324	0,12)	12,4	
4	2,025 mm/s	КВ	1,021	0,570	i	12,3	
5	0,193 mm/s	КВ	0,088	0,049	3	12,3	
6	0,279 mm/s	КВ	0,137	0,073	2	12,5	
7	0,627 mm/s	КВ	0,216	0,120	i	12,8	
	Auswertelänge = 10,2 sec Startzeit = 0 sec						
FFT-Zeitfenster: Hanning nach DIN 4150 T3							
						-	

Oszilloskopische Darstellung und Messer	gebnisse am Standort "Beverungen"
😽 Beitzer System 9000 - BEVERUNG Messung Nr. 40 2.9.2004 14:4	12:43 📃 🖅 🗙
2.000-1 Kin 1 mm/d	0.500-r
	0.250-
-2.000-1	
	U.U5U-*
	0.025-
-0.200-	0.000-beautiliteriteriteriteriteriteriteriteriteriter
0.500 - Kan 3 (mm/s)	0.100-
	0.050
	0.050
-0.500-	0.000- <mark>0</mark>
1.000- Kan 4 (mm/s)	0.500
and a starting all which the starting of the s	
2.000-1	
	0.250-
-2.000-	
Kan 6 (mm/s)	0.000 FFT [mm/s]
	0.250
The state and the second state	
-1.000-	
U.200- Kán 7 (mm/s)	U.U5U FF[T (mm/s]
	0.025-
-0.200 -	0.000
0.0 1.3 2.6 3.8 5.1 6.4 7.7 9.0 10.2	0 10 20 30 40 50 60 70 80 90 100

Oszilloskopische Darstellung und Messergebnisse am Standort "Beverungen"	
₩ Beitzer System 9000 - BEVERUNG Messung Nr. 40 2.9.2004 14:42:43	

😽 Zeit	verlauf: Ergebnisse							l ×
	BEVERUNG - I	dessung Nr	40 2.9.2	004 14:42:	43 Uhr I	D=84		*
	unbewertet peak		— frequen F-max	zbewertet - F-Tm	r. m. s.	Flags	VA	L
1	1,766 mm/s	КВ	0,789		0,408		12,2	
2	0,185 mm/s	KB	0,088		0,051		12,3	
3	0,433 mm/s	КВ	0,223		0,130		12,4	
4	0,871 mm/s	KB	0,536		0,296		12,3	
5	1,793 mm/s	KB	0,796		0,412		12,3	
6	0,882 mm/s	КВ	0,543		0,299		12,5	
7	0,192 mm/s	KB	0,091		0,053		12,8	
Auswertelänge = 10,2 sec Startzeit = 0 sec								L
FFT-Zeitfenster: Hanning nach DIN 4150 T3								L
								-

Oszilloskopische Darstellung

am Standort "Beverungen"

- Vergleichsmessungen -

ANHANG 3, Seite 3

ANHANG 3, Seite 4

ANHANG 3, Seite 5

Abbildung A6: Zeitverlauf (ohne Einbauten) - Impulserregung

ANHANG 3

ANHANG 3, Seite 9

ANHANG 3, Seite 10

Oszilloskopische Darstellungen und Ergebnistabellen "Cuxhaven"

Messungen Nr. 1 - 15

😽 Zei	itverlauf: Ergebnisse						_ □	×
	OTTER1 - Mess	ung Nr 1	15.12.2004	12:08:10 U	ihr ID=	13		A
	unbewertet peak		— frequenz F-max	bewertet — F-Tm	r.m.s.	Flags	VA	L
1	0,011 mm/s	КВ	0,003		0,002		12,2	
2	0,004 mm/s	КВ	0,003		0,002		12,3	
3	0,014 mm/s	КВ	0,003		0,001		12,4	
	Auswertelänge	e = 3,2 sec		Startzeit = 0 se	с			L
	FFT-Zeitfenster: Hanning nach DIN 4150 T3							H
								H
								H

😽 Ze	itverlauf: Ergebnisse					_ 🗆 🗙
	OTTER1 - Mess	ung Nr 2	15.12.2004	12:14:48 Uhr ID	=16	A
	unbewertet peak		— frequenz F-max	bewertet —— F-Tm r.m.s.	Flags	VA
1	0,019 mm/s	KB	0,003	0,002		12,2
2	0,010 mm/s	KB	0,003	0,002		12,3
3	0,013 mm/s	КВ	0,002	0,001		12,4
	Auswerteläng					
	FFT-Zeitfenst	er: Hanning I	nach DIN 415	0 T 3		
						7

🔶 Ze	eitverlauf: Ergebnisse				_ 🗆 ×
	OTTER1 - Mess	ung Nr 3	15.12.2004	12:18:48 Uhr ID=18	8 -
	unbewertet peak		— frequenz F-max	bewertet ——— F-Tm r.m.s.	Flags VA
1	0,009 mm/s	KB	0,003	0,001	12,2
2	0,010 mm/s	KB	0,003	0,002	12,3
3	0,024 mm/s	KB	0,003	0,002	12,4
	Auswerteläng	e = 3,2 sec		Startzeit = 0 sec	
	FFT-Zeitlenst	er: Hanning I	nach DIN 415	0 73	~

🔶 Z	eitverlauf: E	rgebnisse						_ ['×
	OTTE	R1 - Mess	ung Nr 4	15.12.2004	12:22:18	Uhr ID=	20		*
	unbewertet peak			— frequenz F-max	bewertet — F-Tm	r.m.s.	Flags	VA	L
1	0,017	mm/s	KB	0,003		0,002		12,2	
2	0,015	mm/s	KB	0,003		0,002		12,3	
3	0,018	mm/s	KB	0,003		0,002		12,4	
		Auswerteläng	e = 3,2 sec		Startzeit = 0 s	ec			L
		FFT-Zeitfens	ter: Hanning r	iach DIN 415	0 Т 3				
									~

🔶 Ze	eitverlauf: Ergebnisse					⊐×		
	OTTER1 - Mess	ung Nr 5	15.12.2004	12:28:36 Uhr ID=	-22	4		
	unbe w ertet peak		— frequenz F-max	bewertet — F-Tm r.m.s.	Flaqs VA			
1	0,007 mm/s	КВ	0,003	0,001	- 12,2			
2	0,017 mm/s	KB	0,003	0,002	12,3			
3	0,012 mm/s	КВ	0,003	0,002	12,4			
	Auswertelänge	Auswertelänge = 3,2 sec Startzeit = 0 sec						
	FFT-Zeitfenste	er: Hanning i	nach DIN 415	ю т з				
						~		

😽 Ze	itverlauf: Ergebnisse				_ 🗆 ×
	OTTER1 - Mess	ung Nr 6	15.12.2004	12:34:22 Uhr ID=	24
	unbewertet peak		— frequenz F-max	bewertet — F-Tm r.m.s.	Flags VA
1	0,012 mm/s	КВ	0,003	0,002	12,2
2	0,011 mm/s	KB	0,003	0,002	12,3
3	0,009 mm/s	КВ	0,002	0,001	12,4
	Auswertelänge	e = 3,2 sec		Startzeit = 0 sec	
	FFT-Zeitfenst	er: Hanning	nach DIN 415	0 T 3	

😽 Zei	itverlauf: Ergebnisse					- 🗆 🗙
	OTTER1 - Mess	ung Nr 7	15.12.2004	l 12:40:35 Uhr ID-	-26	<u></u>
	unbewertet peak		— frequenz F-max	bewertet ——— F-Tm r.m.s.	Flaqs VA	
1	0,012 mm/s	KB	0,003	0,002	- 12,2	
2	0,011 mm/s	КВ	0,003	0,002	12,3	
3	0,015 mm/s	KB	0,003	0,002	12,4	
	Auswerteläng	e = 3,2 sec		Startzeit = 0 sec		
	FFT-Zeitfenst	er: Hanning i	nach DIN 415	io T3		
						Y

🔂 Zeitverlauf: Ergebnisse 📃 🗖 🗙									
	ΟΤΤΕ	R1 - Mess	ung Nr 8	15.12.2004	12:45:49	Uhr ID=	28		*
	unbew pea	ertet ak		— frequenz F-max	zbewertet - F-Tm	r.m.s.	Flags	VA	
1	0,016	mm/s	KB	0,003		0,001		12,2	
2	0,018	mm/s	KB	0,003		0,002		12,3	
3	0,012	mm/s	KB	0,003		0,002		12,4	
		Auswerteläng FFT-Zeitfenst	ie = 3,2 sec ter: Hanning r	nach DIN 415	Startzeit = 0	sec			¥

😽 Zeit	verlauf: Ergebnisse				_ [⊐×
	OTTER1 - Mess	ung Nr 9	15.12.2004	13:03:06 Uhr ID-	-32	*
	unbewertet peak		— frequenz F-max	bewertet — F-Tm r.m.s.	Flags VA	
1	0,013 mm/s	КВ	0,003	0,001	12,2	
2	0,012 mm/s	KB	0,003	0,002	12,3	
3	0,013 mm/s	KB	0,003	0,001	12,4	
	Auswerteläng	e = 3,2 sec		Startzeit = 0 sec		
	FFT-Zeitfenst	er: Hanning	nach DIN 415	ю Т3		Y

🔶 Ze	itverlauf: Ergebnisse				_ 🗆	×
	OTTER1 - Mess	ung Nr 10	15.12.200	4 13:08:13 Uhr ID	=34	A
	unbe w ertet peak		— frequenz F-max	bewertet —— F-Tm r.m.s.	Flags VA	
1	0,008 mm/s	КВ	0,003	0,002	12,2	
2	0,008 mm/s	KB	0,002	0,001	12,3	
3	0,015 mm/s	KB	0,003	0,002	12,4	
	Auswertelänge	e = 3,2 sec		Startzeit = 0 sec		
	FFT-Zeitfenste	er: Hanning r	ach DIN 415	ю т з		
						-

😽 Zeitverlauf: Ergebnisse 📃 📃 🗙									
	ΟΤΤΕ	R1 - Mess	ung Nr 11	15.12.200	13:11:4	5 Uhr ID	=36		*
	unbew pea	ertet ak		— frequen: F-max	zbewertet – F-Tm	r.m.s.	Flags	VA	
1	0,010	mm/s	КВ	0,003		0,002		12,2	
2	0,010	mm/s	КВ	0,003		0,002		12,3	
3	0,012	mm/s	KB	0,003		0,001		12,4	
		Auswerteläng	e = 3,2 sec		Startzeit = 0 :	sec			
		FFT-Zeitfenst	er: Hanning n	ach DIN 415	50 T 3				
									-

😽 Zei	itverlauf: Ergebnisse					×
	OTTER1 - Mess	ung Nr 12	15.12.200	4 13:15:58 Uhr ID	=38	
	unbe w ertet peak		— frequenz F-max	bewertet —— F-Tm r.m.s.	Flags VA	
1	0,012 mm/s	KB	0,002	0,001	12,2	
2	0,012 mm/s	KB	0,002	0,001	12,3	
3	0,012 mm/s	KB	0,003	0,001	12,4	
	Auswerteläng	e = 3,2 sec		Startzeit = 0 sec		
	FFT-Zeitfenst	er: Hanning r	ach DIN 415	0 T 3		
						~

😽 Zei	itverlauf: Ergebnisse				>	<
	OTTER1 - Messi	ung Nr 13	15.12.200	4 13:20:08 Uhr ID	-40	4
	unbewertet peak		— frequenz F-max	bewertet ——— F-Tm r.m.s.	Flags VA	
1	0,016 mm/s	КВ	0,002	0,001	12,2	
2	0,012 mm/s	KB	0,003	0,002	12,3	
3	0,014 mm/s	КВ	0,003	0,002	12,4	
	Auswertelänge	e = 3,2 sec	:	Startzeit = 0 sec		
	FFT-Zeitfenste	er: Hanning r	nach DIN 415	0 T 3		
						4

Zeitverlauf: Ergebnisse											
	OTTER1 - Mess	ung Nr 14	15.12.200	4 13:23:21 Uhr II	D= 4 2	<u> </u>					
	unbewertet peak	unbewertet ———— peak		— frequenzbewertet ——— F-max F-Tm r. m. s. Flags							
1	0,014 mm/s	KB	0,003	0,001		12,2					
2	0,020 mm/s	KB	0,003	0,001		12,3					
3	0,017 mm/s	KB	0,002	0,001		12,4					
	Auswertelänge	e = 3,2 sec		Startzeit = 0 sec							
	FFT-Zeitfenste	er: Hanning r	nach DIN 415	0 T 3							

Zeitverlauf: Ergebnisse										
	OTTEF	OTTER1 - Messung Nr 15			15.12.2004 13:29:29 Uhr ID=10				*	
	unbewertet		– frequen: F-max	zbewertet – F-Tm	r.m.s.	Flags	VA			
1	0,009	mm/s	KB	0,002		0,001		12,2		
2	0,010	mm/s	KB	0,003		0,001		12,3		
3	0,018	mm/s	КВ	0,003		0,001		12,4		
	Auswertelänge = 15,2 sec Startzeit = 0 sec									
	FFT-Zeitfenster: Hanning nach DIN 4150 T3									
									7	
Erklärungen betr. Abgabe einer elektronischen Dissertation

[Exemplar für Verfasser/in]

Verfasser/in: Titel der Dissertation:	
Fachbereich/Institut: Erscheinungsjahr/Promotionsdatu	m:
E-Mail/Telefonnummer:	
Adresse:	

Erklärung der/s Doktorandin/Doktoranden

Ich überlasse der Universitätsbibliothek (UB) meine Dissertation in elektronischer Form. Ich versichere, daß die elektronische Fassung vollständig mit der Printversion übereinstimmt und übertrage der UB das Recht, die Dissertation auf ihrem Archivserver aufzulegen und über das Internet zugänglich zu machen. Rechte Dritter stehen der Veröffentlichung nicht entgegen. Mit später evt. notwendigen Konvertierungen in andere Datenformate bin ich einverstanden.

Marburg	
	(Doktorandin/Doktorand)

Erklärung des Fachbereichs

Erklärung der Universitätsbibliothek

Wir bestätigen, von Frau/Herrn o.g. Dissertation in elektronischer Form und zusätzlich 4 Archivexemplare in gedruckter Form erhalten zu haben. Wir sichern die Langzeitverfügbarkeit der Arbeit und ihre inhaltliche Integrität und Authentizität zu, verzeichnen sie in unseren Katalogen und machen sie über das Internet zugänglich. Die Verwertungsrechte verbleiben bei der/dem Autorin/Autor.

Marburg i.A.

06.03.2000 - http://archiv.ub.uni-marburg.de/ubtexte/edissf1.pdf

Erklärungen betr. Abgabe einer elektronischen Dissertation

[Exemplar für UB]

Verfasser/in: Titel der Dissertation:	
Fachbereich/Institut: Erscheinungsjahr/Promotionsdatu	m:
E-Mail/Telefonnummer:	
Adresse:	

Erklärung der/s Doktorandin/Doktoranden

Ich überlasse der Universitätsbibliothek (UB) meine Dissertation in elektronischer Form. Ich versichere, daß die elektronische Fassung vollständig mit der Printversion übereinstimmt und übertrage der UB das Recht, die Dissertation auf ihrem Archivserver aufzulegen und über das Internet zugänglich zu machen. Rechte Dritter stehen der Veröffentlichung nicht entgegen. Mit später evt. notwendigen Konvertierungen in andere Datenformate bin ich einverstanden.

Marburg	
	(Doktorandin/Doktorand)

Erklärung des Fachbereichs

Erklärung der Universitätsbibliothek

Wir bestätigen, von Frau/Herrn o.g. Dissertation in elektronischer Form und zusätzlich 4 Archivexemplare in gedruckter Form erhalten zu haben. Wir sichern die Langzeitverfügbarkeit der Arbeit und ihre inhaltliche Integrität und Authentizität zu, verzeichnen sie in unseren Katalogen und machen sie über das Internet zugänglich. Die Verwertungsrechte verbleiben bei der/dem Autorin/Autor.

Marburg i.A.

06.03.2000 - http://archiv.ub.uni-marburg.de/ubtexte/edissf1.pdf