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Zusammenfassung 

Fettleibigkeit hat sich zu einem weltweiten Gesundheitsproblem in der Öffentlichkeit 

entwickelt. Sie wird durch ein komplexes Ungleichgewicht der Regulation von Appetit und 

Energiestoffwechsel verursacht, die durch verschiedene Faktoren wie genetische Defekte, 

Nahrungspräferenzen und Lebensstil kontrolliert werden. Die hochfetthaltige westliche 

Nahrung ist einer Hauptfaktor, die die Entwicklung von Fettleibigkeit in der menschlichen 

Bevölkerung fördert. Trotzdem werden nicht alle Konsumenten der Hochfettnahrung fettleibig. 

In dieser Studie wurden zwei unterschiedliche Mausinzuchtlinien – AKR/J und SWR/J – 

entweder mit einer hoch fetthaltigen Nahrung oder der Standardnahrung gefüttert. Der AKR/J 

Stamm repräsentiert ein Mausmodel für diät-induzierte Fettleibigkeit (diet-induced obesity = 

DIO). Mäuse dieses Stammes wurden fett wenn sie mit der hochfetthaltigen Diät gefüttert 

wurden, wohingegen sie schlank bei Fütterung mit der Standard-Diät blieben. Im Gegensatz 

dazu waren die Mäuse des SWR/J Stamm resistent gegenüber der DIO, d.h. es war im 

Vergleich kein wahrnehmbar Anstieg des Körpergewichts oder von Fettleibigkeit in Mäusen, 

die mit fetthaltiger Nahrung oder Standard-Diät gefüttert wurden. Genexpressions-Arrays 

wurden benutzt um differentiell exprimierte Gene im Hypothalamus von AKR/J und SWR/J 

Mäusen bei fetthaltiger Fütterung zu identifizieren. Um die Kandidatengene, ausgesucht aus der 

Array Datenanalyse to validieren, wurde Northern Blot Analyse, in situ Hybridisierung und 

real-time RT-PCR durchgeführt.  

Hämoglobin alpha, adult chain 1 (Hba-α1) ist auf dem Chromosom 11 der Maus (Chromosom 

16p13.3 des Menschen) lokalisiert. Die funktionelle Bedeutung der Expression von Hba-α1 ist 

unbekannt. Eventuell erleichtert es den Sauerstofftransport im Gehirn in einer ähnlichen Weise 

wie das Myoglobin im Skelettmuskel. In dieser Arbeit wurde eine höhere ubiquitäre Expression 

von  Hba-α1 im Hirn der SWR/J Maus im Vergleich zur AKR/J Maus beobachtet. Dieser 

Unterschied könnte mit der höheren Stoffwechselrate der SWR/J Mäuse zusammenhängen. So 

weit konnte keine direkte Beziehung zwischen Hba-α1 Expression und Fettleibigkeit hergestellt 

werden. 

Im Gegensatz dazu zeigt die Glyoxalase I (Glo 1) ein spezifisches Expressionsmuster mit 

stärkster Präsenz im Hippocampus. Im Hypothalamus kann die Glo1 Expression im 

arquatischen Nukleus (ARC), im ventromedialen hypothalamischen Nukleus (VMH) und im 

paraventricularen hypothalamischen Nukleus (PVN) detektiert werden. Während die 
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Expression von Glo1 ausserhalb des Hypothalamus ähnlich in beiden Mausstämmen ist, ist die 

mRNA Expression in der hypothalamischen Region viel stärker in AKR/J im Vergleich zur 

SWR/J Mäusen. Das Glo1 Gen befindet sich auf Chromosom 17 der Maus (Chr. 6 des 

Menschen) und an der Entgiftung von Stoffwechselnebenprodukten beteiligt. Außerdem wurde 

Glo1 auf der Fettleibigkeits-Genkarte vom Menschen verzeichnet und vermutet eine 

Verbindung zwischen einer abweichenden Expression des Glyoxalase-Systems und 

Krankheiten wie Krebs und Diabetes. 

Tumor Nekrose Faktor alpha-induziertes Protein 1 (endothelial) (tumor necrosis factor alpha 

induced protein 1 (TNFAIP1) ist auf Maus-Chromosom 11(45,10 cM) und Mensch-

Chromosom 17q22-q23 lokalisiert. Das Protein ist beim Kalium-Eisen-Transport durch 

Proteinbindung und bei der Einstellung der spannungsabhängigen Kaliumkanal Aktivitäten 

involviert. TNFAIP1 lokalisiert sich im ARC, im VMH und PVN. Es wurde durch Hochfett-

Diäten in den AKR/J aber nicht SWR/J Mäusen hochreguliert, was an den Filterarrays und den 

Northern Blots, aber nicht mit der real-time RT-PCR und in situ Hybridisierungen gezeigt 

werden konnte. Obwohl bei der in situ Hybridisierung eine 1,6fache Steigerung der mRNA 

Expression im ARC und VMH durch die Hochfettdiät beobachtet werden konnte, war diese 

Steigerung aufgrund individueller Variationen nicht signifikant. Weitere Experimente mit 

höherer Stichprobenzahl müssten durchgeführt werden um dieses Ergebnis zu bestätigen. Weil 

es sich um ein neu annotiertes Gen handelt, ist nicht viel über die pathologische Relevanz 

bekannt. Bisher hat keine Studie eine Verbindung zwischen TNFAIP1 und Fettleibigkeit 

beschrieben. Es wird angenommen, dass TNFα einen Einfluss auf Körpergewichtsregulation 

hat und wahrscheinlich durch einen lokalen Prozess im Fettgewebe wirkt. Möglicherweise führt 

eine erhöhte Sekretion von TNFα aus Adipozyten in fettleibigen Versuchstieren/-personen zu 

einer Induktion von TNFAIP1 im Hypothalamus. Weitere Studien sollten durchgeführt werden 

um die Funktion von TNFAIP1 im Gehirn aufzuklären.   
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1 Summary   

Obesity has developed to a worldwide public health problem. It is caused by a complex 

disorder of appetite regulation and energy metabolism which are controlled by multiple factors 

such as genetic predisposition, dietary preferences and life style. The high-fat western-type diet 

is one of the major factors promoting the development of obesity in the human population. 

However, not all of the high-fat diet consumers become obese. 

In this study, two different inbred mouse strains – AKR/J and SWR/J were either fed a high-fat 

diet or standard chow diet. The AKR/J strain represents a mouse model for diet-induced obesity 

(DIO). Mice of this strain developed obesity when fed a high fat diet, whereas they remained 

lean on a standard chow. In contrast, mice of the SWR/J strain are resistant to DIO, i.e., there 

was no discernable increase in body weight or adiposity in mice fed a high fat diet as compared 

to standard chow. The gene expression arrays were applied to identify differentially expressed 

genes in the hypothalamus of AKR/J and SWR/J mice in response to high-fat diet feeding. For 

the candidate genes selected from array data analysis, validation was carried out by northern 

blot analysis, in situ hybridization and real-time PCR.  

Hemoglobin alpha, adult chain 1 (Hba-α1) is located on mouse chromosome 11 (human 

chromosome 16p13.3). The functional significance of Hba-α1 expression is unclear. Perhaps it 

facilitates oxygen transport in the brain in a similar manner as myoglobin in muscle. In this 

study, overall the expression of Hba-α1 in brain was higher in SWR/J compared to AKR/J 

mice. This difference between strains may be related to the fact that SWR/J mice have a higher 

metabolic rate. So far, no direct relationship between Hba-α1 expression and obesity has been 

suggested. 

In contrast, Glyoxalase I (Glo 1) shows a very distinct expression pattern with highest levels 

found in the hippocampus. In the hypothalamus, Glo1 expression can be found in the arcuate 

nucleus (ARC), ventromedial hypothalamic nucleus (VMH) and paraventricular hypothalamic 

nucleus (PVN). Whereas the expression of Glo1 outside the hypothalamus is similar in both 

strains, Glo1 mRNA expression within the hypothalamic region is much stronger in AKR/J 

compared to SWR/J mice. Glo 1 is located on mouse chromosome 17 (human chromosome 6) 

and involved in the detoxification of metabolic by-products. It was assigned to the human 
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obesity gene map and has been suggested that aberrant expression of the glyoxalase system is 

related to cancer and diabetes. 

Tumor necrosis factor alpha-induced protein 1 (endothelial) (TNFAIP1) is on mouse 

chromosome 11 (45.10 cM) and human 17q22-q23. The protein functions in potassium ion 

transport by protein binding and voltage-gated potassium channel activity adjustment. 

TNFAIP1 localizes in the ARC, the VMH and PVN. It was upregulated by high fat diet in 

AKR/J mice but not in SWR/J mice, which was shown in filter array and Northern blot but not 

in real-time RT-PCR and in situ hybridization. In the in situ hybridization, although it showed 

1.6 fold upregulation in the ARC and VMH by high fat diet, this difference was not significant 

because of the individual variation, further experiment with more samples should be carried out 

to confirm this conclusion. Because it is a newly assigned gene not much information on its 

pathological relevance is available. So far, there have been no papers linking TNFAIP1 and 

obesity. However, many publications report on a role of TNFα in obesity. It is believed that 

TNFα has an effect on body weight regulation and that it acts probably through a local action 

on adipose tissue. Possibly, elevated secretion of TNFα from adipocytes in obese subjects leads 

to induction of TNFAIP1 in the hypothalamus. Further research needs to be conducted to 

elucidate the function of TNFAIP1 in the brain.  
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2 Introduction 

The word obesity is derived from the Latin – ob, means “on account of”, and esito, means “to 

keep eating”. Obesity is defined by the WHO as a body mass index (BMI) > 30 kg/m2 

(1995;Garrow & Webster, 1985), where BMI is calculated by dividing a person's body weight 

in kilograms by his or her height in meters squared (weight [kg] / height [m2]).  

 

2.1 Epidemiology of obesity 

The prevalence of obesity has increased markedly over the past few decades (1960s). The 

WHO has described obesity as the major unmet public health problem worldwide (2000). From 

1995 to 2000, the number of obese adults has increased from about 200 million to over 300 

million in the world (www.who.int). During the past 20 years there has been a dramatic 

increase in obesity in the United States (Figure 1.1). In 1991, four states reported adult obesity 

prevalence rates of 15–19 percent and no states reported rates at or above 20 percent. In 2002, 

15 states had obesity prevalence rates of 15–19 percent; 31 states had rates of 20–24 percent; 

and 4 state reported a rate over 25 percent (Behavioral Risk Factor Surveillance System 

(BRFSS), CDC www.cdc.gov).  

 

 

 

 

 

 

Figure 1.1 Obesity trends (BMI ≥ 30) among U.S. adults in 1991 1995 and 2002.  

 

The data derived from the third National Health and Nutrition Examination Surveys (NHANES 

III) showed that 56% of adults were overweight (BMI ≥ 25) and nearly a quarter (23%) were 

obese (Flegal et al., 1998). The data from the 1999-2000 NHANES show almost 65% of the 

adult population in the United States is overweight and 31% is obese (www.cdc.gov) (Flegal et 

al., 2002). For the clinically severe obesity (BMI ≥ 45), Sturm reported that from 1986 to 2000 

19951991 200319951991

No Data           <10%              10%–14% 15%–19%           20%–24%No Data           <10%              10%–14% 15%–19%           20%– ≥25%

19951991 200319951991

No Data           <10%              10%–14% 15%–19%           20%–24%No Data           <10%              10%–14% 15%–19%           20%– ≥25%
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the prevalence of a BMI ≥ 40 in adult Americans quadrupled from 1 in 200 to 1 in 20 and that 

of a BMI ≥ 50 from 1 in 2000 to 1 in 400 (Sturm, 2003). 

In Europe, more than half the adult population between 35 and 65 years of age were either 

overweight or obese (Kopelman, 2000). The data from International Obesity Task Force (IOTF, 

http://www.iotf.org) suggest that the range of obesity prevalence in European countries is from 

10 to 20% for men, and 10 to 25% for women. In Germany, 50% of the adult population are 

overweight and 20% are obese (Heseker & Schmid, 2000). Among German school children (7-

14 years old), the prevalence of overweight increased between 1975 and 1995 from 10.0 to 

16.3% in boys and from 11.7 to 20.7% in girls (Kromeyer-Hauschild et al., 1999). For the pre-

school children (5-6 years of age), in 1982, 8.5% of all children were overweight and 1.8% 

were obese; in contrast in 1997 12.3% were overweight and 2.8% were obese (Kalies et al., 

2002).  

Although it is widely acknowledged that obesity has emerged as an epidemic in the recent two 

to three decades in developed countries, it is not just a disease there. Popkin et al. collected the 

data from different countries and reported that adult obesity levels in developing countries are 

as high as or even higher than those reported for the United States and other developed 

countries, and are increasing rapidly (Popkin & Doak, 1998). In China, the prevalence of 

overweight individuals doubled in women (10.4 to 20.8%) and almost tripled in men (5.0 to 

14.1%) from 1989 to 1997 (Bell et al., 2001). In developing countries this problem does not 

emerge only in adults but also in children and adolescents (Popkin et al., 1996;Wang et al., 

2002). 

 

2.2 Effects of obesity  

Obesity is not just a matter of being obese but it has also dramatic effect on health. Obesity is 

an important risk factor for a range of chronic disease conditions, for instance, cardiovascular 

disease (Pi-Sunyer, 1993;Wilson & Kannel, 2002), type II diabetes (non insulin dependent 

diabetes mellitus, NIDDM) (Chan et al., 1994;Colditz et al., 1995), and hypertension (Cassano 

et al., 1990;Huang et al., 1998;Stamler et al., 1978).  Overweight and obesity were significantly 

associated with some kinds of cancer, gallbladder disease and musculoskeletal disorders (Pi-

Sunyer, 1993), high cholesterol, asthma, arthritis, and poor health status (Mokdad et al., 2003).  
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About 300,000 U.S. deaths a year are associated with obesity and overweight, compared to 

more than 400,000 deaths a year associated with smoking (McGinnis & Foege, 1993) 

(www.surgeongeneral.gov). In the EU, Banegas et al. reported that a minimum of 279,000 

deaths were attributable to excess weight (Banegas et al., 2003).  

The economic effect of obesity in the United States is estimated at approximately 6% of the 

national health expenditure and costs of care. The number of physician visits related to obesity 

has increased 88% in a 6-year period (from 1988 to 1994) (Wolf, 1998). In the United States, 

the total direct and indirect costs attributed to overweight and obesity amounted to $117 billion 

(€91 billion) in the year 2000 (2001) (www.surgeongeneral.gov). The total costs to European 

society are between €70 and €135 billion a year (Rayner & Rayner, 2003). In Germany obesity 

and the obesity-related morbidity and mortality caused costs of nearly 20.7 billion DM (€10.6 

billion) in 1995 (Heseker & Schmid, 2000). The direct cost of obesity to the NHS (National 

Health Service, UK) is £0.5 billion (€0.7 billion), while the indirect cost to the UK economy is 

at least £2 billion (€2.8 billion) (Vlad, 2003).  

 

2.3 Etiology  

Obesity is not a single disorder but a heterogeneous group of conditions with multiple causes. 

Obesity involves complex etiological interactions between the genetic, metabolic and neural 

frameworks on one hand and behavior, food habits, physical activity and socio-cultural factors 

on the other. 

 

2.3.1 External factors 

Energy balance and body composition depend upon energy intake and expenditure (Martinez & 

Fruhbeck, 1996;Friedman, 2000), which appears to be under control on an axis with three 

components: food intake; fuel utilization and thermogenesis; and adipocyte metabolism.The 

main reason for the current obesity epidemic is a changing environment that promotes 

excessive food (calorie) intake and discourages physical activity (Hill & Peters, 1998;Hill et al., 

2000;French et al., 2001;Jeffery & Utter, 2003;Stettler, 2002;Jequier, 2002;Poston & Foreyt, 

1999). A study based on the area of Washington showed that the main courses of children's 



  Introduction 
 

 8

meals in US chain restaurants typically contain 700–900 calories, more than half the total 

recommended daily amount (Butler, 2004). The U.S. food supply provides 3800 kilocalories 

per person per day, nearly twice as much as required by many adults (Nestle, 2003). In 

addition, the physical activity decreased from year to year. The proportion of the U.S. 

population that reported no leisure-time physical activity was 31% in 1989, 29% in 1992, and 

25% in 2002 (U.S. Physical Activity Statistics, www.cdc.gov/). Another survey shows that 

more than 50% of American adults do not get enough physical activity to provide health 

benefits; 26% are not active at all in their leisure time (www.cdc.gov). 

 

2.3.2 Internal factors 

Environmental factors and lifestyle are important determinants influencing obesity, however, 

human obesity has also important genetic correlates that interact with relevant environmental 

factors (Comuzzie et al., 1994;Comuzzie et al., 1996;Comuzzie et al., 2001;Barsh et al., 

2000;Clement et al., 2002). Lifestyle factors, especially those related to physical activity levels, 

may interact with the genetic factors and may mask genotype influences (Bray, 2000;Martinez, 

2000). Twin studies, analyses of familial aggregation and adoption studies indicate that obesity 

is largely the result of genetic factors and that an individual's risk for obesity is increased when 

he or she has relatives who are obese (Stunkard et al., 1986a;Stunkard et al., 1986b;Stunkard et 

al., 1990;Sorensen et al., 1992;Vogler et al., 1995). Maes et al. concluded in their review article 

that genetic factors explain 50 to 90% of the variance in BMI from twin studies. Family studies 

generally report estimates of parent-offspring and sibling correlations in agreement with 

heritabilities of 20 to 80%. Data from adoption studies are consistent with genetic factors 

accounting for 20 to 60% (Maes et al., 1997). The importance of genes in the development of 

obesity can be estimated by calculating the family risk. Data obtained from NHANES III 

showed the prevalence of obesity is twice as high in families of obese individuals than in the 

normal population (Lee et al., 1997). Data from Canada Fitness Survey showed that the familial 

risk of obesity was five times higher for relatives in the upper 1% distribution of BMI than in 

the general Canadian population (Katzmarzyk et al., 1999).  
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The discovery of the ‘ob’ gene, which was mapped to human chromosome 7, has led to a 

renewed interest in understanding the patho-biological basis of genetic predisposition in 

obesity. The ‘ob’ gene encodes a hormone called leptin, a 167 amino acid protein that is 

produced in white and brown adipose tissue and placenta (Zhang et al., 1994). A case of human 

obesity caused by mutation of the leptin gene was first found in two severely obese cousin 

children in an inbred Pakistani kindred (Montague et al., 1997). Subsequently, the success in 

the treatment of congenital leptin deficiency with recombinant leptin was reported (Farooqi et 

al., 1999;Farooqi et al., 2002). Other single gene mutations causing human obesity were found 

in the leptin receptor (LEPR) (Clement et al., 1998), in the melanocortin precursor, pro-

opiomelanocortin (POMC) (Krude et al., 1998;Challis et al., 2002), and in the melanocortin-4 

receptor (MC4R) (Yeo et al., 1998;Hinney et al., 1999;Dubern et al., 2001;Farooqi et al., 

2003). Although obesity has a genetic component, normally, it is not a simple genetic disorder 

and cases of obesity caused by single gene mutation are extremely rare.  

 

2.4 Hypothalamus  

Leptin is secreted by adipocytes and its key role is that of communicating to the brain 

information on long term energy stores. The primary site for the leptin signal is in the 

hypothalamus (Figure 1.2), where it influences food intake/appetite and its absence triggers a 

series of neuroendocrine responses that conserve energy when food availability is limited.  

 

 

 

 

 

 

 

 

 

 

 Figure 1.2 Anatomy of human brain showing the hypothalamus and other components. 

hypothalamus thalamus 

corpus callosum 

cerebellum 

cerebrum 
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Energy balance is regulated by an interplay of hormonal and neural mechanisms in response to 

afferent information from peripheral adiposity signals such as leptin and insulin. It has long 

been recognized that the hypothalamus plays a key role in the mechanisms regulating food 

intake and fat accumulation (Anand & Brobeck, 1951a;Anand & Brobeck, 1951b;Kennedy, 

1950;Panksepp, 1974). The major hypothalamic regions implicated in adiposity signalling and 

regulation of food intake are shown in Figure 1.3. For instance, bilateral lesions of the 

ventromedial (VMH) or paraventricular nucleus (PVN) of the hypothalamus cause hyperphagia, 

decreased energy expenditure and pronounced weight gain (Leibowitz et al., 1981;Aravich & 

Sclafani, 1983). Conversely, lesions of the lateral hypothalamic area (LHA) induce hypophagia, 

increased energy expenditure and weight loss (Bernardis & Bellinger, 1993;Milam et al., 

1980;Milam et al., 1982). Electrical stimulation of this area causes hyperphagia and obesity 

(Bray et al., 1990;Hernandez & Hoebel, 1989;Shiraishi, 1991). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recent studies focused on the role of the hypothalamus reveal that several pathways in the 

central nervous system (CNS) forming a complex web of neuropeptide interactions are 

important for body weight regulation. The expression of orexigenic and anorexigenic genes 

shows contrary direction of regulation in response to fasting.  Starvation induces an increase in 

the gene expression of orexigenic neuropeptides such as neuropeptide Y (NPY) (Davies & 

Marks, 1994;Schwartz et al., 1992), agouti-related peptide (AgRP) (Hahn et al., 1998), 

Figure 1.3 Schematic representation of hypothalamic regions implicated in adiposity
signalling and regulation of food intake. Abbreviations of brain structures: AM, amygdala;
CC, corpus callosum; CCX, cerebral cortex; HI, hippocampus; ME, median eminence; OC, 
optic chiasm; SE, septum; TH, thalamus; 3V, third ventricle. 
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melanin-concentrating hormone (MCH) (Qu et al., 1996) and orexin (ORX) (Sakurai et al., 

1998). The gene expression of anorexigenic neuropeptides such as corticotropin-releasing 

hormone (CRH) (Brady et al., 1990;Fekete et al., 2000) and POMC (Bergendahl et al., 

1992;Brady et al., 1990) are depressed by starvation. These are also supported by other related 

studies (Adam et al., 2002;Bertile et al., 2003;Savontaus et al., 2002). Cocaine- and 

amphetamine-regulated transcript (CART) is normally categorized as an anorexigenic gene, 

which is downregulated by fasting (Robson et al., 2002). However, the effects of CART 

injection into different region of the hypothalamus are variable: intracerebroventricular (i.c.v.) 

injection reduced food intake (Asakawa et al., 2001;Volkoff & Peter, 2000) while injection into 

the area of arcuate nucleus neurons (ARC) increased food intake (Abbott et al., 2001;Kong et 

al., 2003). Furthermore, injections of NPY, AgRP, MCH, and ORX directly into the brain 

increased food intake (Qu et al., 1996;Sakurai et al., 1998;Morley et al., 1987;Rossi et al., 

1998), whereas CRH, and POMC derivatives such as α-MSH, have the opposite effect (Britton 

et al., 1982;Tsujii & Bray, 1989). Concerning the localization, NPY and AgRP are co-localized 

in ARC (Broberger et al., 1998;Hahn et al., 1998;Adam et al., 2002), POMC and CART are co-

localized in a distinct, but adjacent, subset of arcuate nucleus neurons (Elias et al., 1998;Adam 

et al., 2002). The arcuate nucleus transduces the information provided by the leptin signal into a 

neuronal response. This hypothesis is supported by the anorexic response to local 

microinjection of leptin into this area (Satoh et al., 1997), and the inability of i.c.v. leptin to 

reduce food intake after the arcuate nucleus has been destroyed (Tang-Christensen et al., 

1999;Dawson et al., 1997). A majority of both NPY/AgRP and POMC/CART neurons have 

been found to co-express leptin receptors (Baskin et al., 1999;Cheung et al., 1997) and both 

types of neurons are regulated by leptin, but in an opposing manner. Schwartz et al. also 

reported that leptin can suppress NPY and upregulate POMC (Schwartz et al., 1996;Schwartz et 

al., 1997). 

From ARC, the signals are mainly sent to the PVN (Gale et al., 2004) and other areas such as 

zona incerta, perifornical area (PF-A) and LHA, all of which are richly supplied by axons from 

arcuate nucleus NPY/AgRP and POMC/CART neurons (Elmquist et al., 1998;Elmquist et al., 

1999). In the PVN, several neuropeptides such as CRH (Bray et al., 1990;Fekete et al., 2000), 

thyrotropin-releasing hormone (TRH) (Kow & Pfaff, 1991), and oxytocin (McMahon & 

Wellman, 1997;Blevins et al., 2003) were found to reduce food intake. Whereas in the LHA 
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and adjacent areas such as PF-A, MCH (Qu et al., 1996;Saito et al., 1999) and orexins A and B 

were found as orexgenic peptides (Hagan et al., 1999;Sakurai et al., 1998). 

 

2.5 Animal model for research 

The first recorded use of mice as research animals occurred in 1664, when the English physicist 

Robert Hooke studied the reactions of mice in experiments on air. The remarkable genetic 

similarity of mice to humans, combined with great conveniences of small size and inexpensive 

maintenance, accounts for mice so often being the experimental model of choice in research. 

Over the past two decades, the mouse has emerged as the preeminent model organism because 

of many physiological, anatomical and metabolic parallels with humans (Bradley, 2002). The 

mouse and human genomes each contains about 30,000 protein-coding genes. The proportion 

of mouse genes with a single identifiable orthologue in the human genome seems to be 

approximately 80%, while less than 1% of mouse genes has not any homologue detectable in 

the human genome (and vice versa) (Mouse Genome Sequencing Consortium, 2002).  

Since the obese (ob) mouse and the diabetes (db) mouse were discovered at The Jackson 

Laboratory in 1950 and 1966 respectively (www.jax.org), obesity research has been developed 

accelerative. And then, the obesity research was forever changed when leptin was cloned and 

identified as the responsible mutation for the obese phenotype of the ob/ob mice in 1994 

(Zhang et al., 1994). Later on, after the leptin receptor was cloned (Tartaglia et al., 1995), 

Friedman's group found that the mutation in the leptin receptor gene was responsible for the 

obese phenotype of the db/db mice (Lee et al., 1996). Inbred strains have long been used for 

genetic studies because of the isogenicity within a strain and the genetic heterogeneity between 

inbred strains. Although the knock -out, -in and –down mice are applied to investigate the 

function of specific genes, the inbred strain mice are still mainly animal models for obesity 

research because obesity is a polygenic disease. The quantitative trait loci (QTL) studies have 

identified many loci (QTL) that control measurable polygenic traits related to obesity 

(www.obesitygene.pbrc.edu).  

In humans, not everyone becomes obese, even for the high fat consumers, not all of them tend 

to obesity (Macdiarmid et al., 1996). Bachmanov et al. investigated male mice from 28 inbred 

strains and found that the strain differences were significant for all of their analyses: body 
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weight, food and water intake, and spout preference (Bachmanov et al., 2002). In this atudy it 

was also shown that AKR/J mice were heavier and ate more (diet g/mouse) than SWR/J mice. 

However, if the food intake was adjusted by body weight, SWR/J mice ate more (diet g/body 

weight g) (Bachmanov et al., 2002). In other studies with respect to the preference of 

macronutrient diet selection, the lean strain of SWR/J consumed more calories from 

carbohydrate diet whereas AKR/J consumed more calories in form of fat (Smith et al., 

1997;Smith et al., 1999;Smith et al., 2000;Smith et al., 2001). The sensitivity of dietary obesity 

was reported by West et al., when exposed to high fat diet, AKR/J mice consumed more energy 

and had more fat content (West et al., 1992;West et al., 1995). For these two inbred mouse 

strains – AKR/J (diet-induce obesity model, DIO) and SWR/J (diet-resistant model, DR), 

although many dietary studies were reported, only Prpic et al. investigated strain specific 

differences in the gene expression of uncoupling protein (UCP) 1 and 2 in adipocytes during 

diet-induced obesity (Prpic et al., 2002). They reported that HF diet induced a modest increase 

in brown adipose tissue (BAT) UCP1 mRNA in SWR/J mice, whereas a large decrease in 

UCP1 expression in AKR/J mice, and that UCP2 was consistently higher in white adipose 

tissue (WAT) from AKR/J than in SWR/J mice and induced by the HF diet in AKR/J but not 

SWR/J mice (Prpic et al., 2002).  

 

2.6 Aim of this study  

As described above, many genes related to obesity are expressed predominantly in the 

hypothalamus. Even so, the genetic etiology of obesity is still unclear and the effective 

pharmaceutical treatment is still in the development stage. In order to investigate the 

differences of body weight, body fat content and food (energy) intake as a function of different 

diets and strains, AKR/J and SWR/J mice were to be fed either a high fat diet or a standard 

control diet. Furthermore, the influence of the different diets and strains on the hypothalamic 

gene expression was investigated using array technology – RZPD high density cDNA filter and 

Affymetrix GeneChip, to identify differentially expressed genes involved in the regulation of 

body weight and “energy turnover”. For the candidate genes selected from array data analysis, 

validation was to be carried out by northern blot analysis and in situ hybridization.
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3 Materials and Methods  

3.1 Diet experiment  

The two inbred mouse strains – AKR/J and SWR/J were purchased from The Jackson 

Laboratory (Bar Harbor, ME, USA) and bred in our animal house. The mice were maintained 

on a 12:12-h light-dark photoperiod with lights on at 6:00 a.m. CET at an ambient temperature 

of 25°C and fed control diet (Standard 1413, Altromin).  

Totally, 20 litters AKR/J mice yielding 104 individuals and 29 litters SWR/J mice yielding 207 

individuals were included in the experiment. Offspring were weaned at 21 days and separated 

into single cage and fed the control diet for 2 weeks. At the age of 35 days, they were assigned 

to two diet groups matched for body mass – one group of mice remained on control diet, while 

the other group was switched to a high fat diet (Sonder C1057, Altromin). The compositions of 

the two different diets used in the diet experiment are shown in Table 3.1. Body mass (± 0.1 g) 

and food intake (± 0.1 g) of each mouse was determined every 3 days from day 21 to day 35 

and then every 2 days until day 45.  

 

 

 

 Contents  Control diet High fat diet 

Fat (Energy %) 13.4 40.2 

Protein (Energy %) 28.9 23.9 

Carbohydrate (Energy %) 57.7 35.9 

Water content (weight %) 6.5 6.0 

Gross energy (KJ/g dry) 18.3 20.7 

Assimilated energy (KJ/g dry) 14.2 ± 0.2 18.2 ± 0.1 

Assimilation efficiency (%) 77.6 87.9 

 

On day 45 mice were killed in deep CO2 anesthesia for the dissection of hypothalamus or intact 

brain and several other selected organs (liver, kidney, inter scapular brown adipose tissue, 

inguinal and retroperitoneal white adipose tissue, and skeletal muscle). After weighing 

(± 0.001 g), all tissues were snap frozen and archived at -80°C. In a subset of individuals, only 

Table 3.1 Metabolic characteristics of control and high fat diet as determined by the 
supplier (Altromin). 
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the hypothalamus was removed and then body composition (fat + lean mass) was measured 

using Dual-Energy X-ray Absorptiometry (DEXA PIXImus, GE Medical Systems, Wisconsin, 

USA). In the group of mice used for in situ hybridization, the intact brain was removed from 

the skull, placed on aluminum foil on dry ice for at least 30 min to allow freezing through and 

subsequently stored at –80°C.   

 

3.2 RNA manipulations  

3.2.1 RNA isolation 

Hypothalamic RNA was isolated with TRIZOL® Reagent (Invitrogen), which is a mono-phasic 

solution of phenol and guanidine isothiocyanate, and an improvement to the single-step RNA 

isolation method developed by Chomczynski and Sacchi (Chomczynski & Sacchi, 1987).  

The hypothalami were transferred from the freezer (-80°C) to the lab bench in liquid nitrogen. 

Each sample was homogenized in a 4 ml tube containing 1 ml of TRIZOL, using a Ultra-turrax 

homogenizator (Janke und Kunkel GmbH) for 30 sec. Following a short centrifugation at 1000 

rmp for 1-2 min, the homogenized sample was transferred into a 1.5 ml tube and total RNA was 

isolated according to the manufacturer’s protocol. 

To purify the isolated RNA, the RNeasy Mini Kit (QIAGEN) was used according to the 

manufacturer’s protocol. 

 

3.2.2 RNA electrophoresis 

The hypothalamic RNA was denatured with formamide and separated in denaturing 

formaldehyde agarose gel. 100 ml of a 1% agarose gel was prepared by dissolving 1 g 

RNase-free agarose in 85 ml of ddH2O. 10 ml of 10 x MOPS and 5 ml of formaldehyde (3.5 %, 

Merck) were added after cooling the melted agarose below 60°C.  

Each RNA sample was pretreated by mixing 10 µl of denature buffer and 2 µl of ethidium 

bromide (0.5 mg/ml), followed by denaturation at 68°C for 15 min and quick cooling on ice for 

5 min. Then 6 x color buffer was added to the samples and they were loaded to the wells of the 

gel. Electrophoresis was conducted at 5-8V/cm in 1 x MOPS for 1-2 h. The ethidium 
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bromide-stained RNA in the gel was visualized by 302 nm UV light and pictures were taken 

with Gel Imager (Intas). 

 

Denature buffer (1.25 ml):  6 x color buffer (1ml):    

750 µl formamide   300 µl ddH2O  

150 µl 10x MOPS   500 µl glycerol (86%) 

250 µl formaldehyde   100 µl 2.5 % bromophenol blue 

100 µl ddH2O    100 µl 2.5 % xylene cyanol 

        2 µl EDTA (0.5 M; pH 8.0)  

10 x MOPS:                  

200 mM MOPS 

50   mM NaOAc 

10   mM EDTA-Na2        

 

3.2.3 RNA transfer 

The RNA in the electrophoresis gel was transferred to a neutral nylon membrane (Hybond N, 

Amersham) by Northern blotting (Sambrook & Russell, 2001). After 16-20 h of transfer, the 

membrane was placed on an UV transilluminator (UV-Stratalinker, Stratagene) and briefly 

irradiated at 254 nm to link the RNA to the membrane.    

 

3.2.4 Northern hybridization 

Northern hybridization (DNA-RNA hybridization) was accomplished as described by 

Sambrook and Russell (Sambrook & Russell, 2001). 

The probes were synthesized from cDNA fragments (see chapters 3.3.2 to 3.3.5) digested by 

restriction nucleases and labeled with α-32P-dCTP (ICN or Amersham) using the Rediprime II 

Randome Prime Labelling System (Amersham). Subsequently, probes were purified with the 

beta-Shield Device System (Stratagene). After overnight hybridization at 64°C and stringent 

wash, membranes were exposed to Kodak X-QMAT film (Scientific Image Film, Kodak) or 

Phosphor Imager screen (Molecular Dynamics). The screen was scanned with PhosphoImaging 
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(Storm, Molecular Dynamics) and the signal intensities were densitometrically quantified using 

the software package ArrayVision (Imaging Research Inc.). 

 

3.3 DNA manipulations  

3.3.1 Genomic DNA isolation  

Mouse genomic DNA was isolated from tail biopsy. About 0.5 cm of the tail tip was clipped, 

put into a polypropylene microfuge tube, and then digested overnight in 0.5 ml DNA digestion 

buffer at 50-55 °C. 

 

DNA digestion buffer:        

50 mM Tris-HCl pH 8.0 

100 mM EDTA pH 8.0 

100 mM NaCl 

1% SDS 

            0.5 mg/ml proteinase K (fresh)           

 

Neutralization was carried out in 0.7 ml of phenol/chloroform/isoamyl alcohol (25:24:1) at RT 

for 30 min at gentle agitation. Samples were then centrifuged at 15000 rpm for 10 min at RT 

and the upper phase (0.5 ml) was transferred to a new microfuge tube. DNA was precipitated in 

1 ml of 100% ethanol and centrifuged at 15000 rpm for 10 min at 4°C. After brief washing in 

1 ml of cold 70% ethanol, DNA was pelleted at 15000 rpm for 5 min at 4°C. The supernatant 

was discarded and the DNA pellet was air-dried. The DNA was redissolved in 50 µl of TE 

buffer at 60°C for 15 min and then stored at -20°C.   

 

3.3.2 Plasmid DNA preparation from E. coli cells 

The cDNA clones in E. coli cells were purchased from RZPD German Resource Center for 

Genome Research, Berlin, Germany. On arriving, the E. coli cells were transferred to 

LB/ampicillin plates and cultured overnight at 37°C followed by overnight culture in LB 

medium containing ampicillin (50 µg/ml).  
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LB-medium (1 l):    LB/ampicillin plate (1 l):      

10g tryptone     15 g agar in 1 l of LB-medium 

  5g yeast extract    100 µg/ml Ampicillin    

  5g NaCl       

pH was adjusted to 7.0 with NaOH  

 

Plasmid DNA was isolated with QIAprep Spin Miniprep Kit (Qiagen) from the overnight liquid 

culture according to the manufacturer’s protocol.  

  

3.3.3 Precipitation of plasmid DNA 

Contamination by small nucleic acid fragments, protein and salt can be reduced to acceptable 

levels by precipitating the DNA in 2.5 volumes of ethanol and 1/10 volume of 3.0 M NaAc (pH 

5.2). The sample was mixed, kept at -20ºC for more than 30 min and centrifuged at 14000 rpm 

for 10 min at 4ºC. The supernatant was discarded and the pellet was washed in cold 70% 

ethanol with subsequent centrifugation at 12000 rpm for 10 min. The purified DNA pellet was 

completely air-dried and then dissolved in TE buffer. 

 

3.3.4 DNA electrophoresis  

Agarose gel DNA electrophoresis is a standard method to separate and purify DNA fragments. 

An agarose gel of 0.8-2.0% (w/v) was prepared by boiling agarose in 1 x TAE buffer and 

pouring it into a gel casting tray. DNA samples were mixed with 1/6 volume of 6 x DNA 

loading buffer. The samples and an appropriate DNA marker (NEB) were separated at 10 V/cm 

for 0.5 - 2 h in 1 x TAE buffer containing ethidium bromide (0.2 µg/l). The ethidium bromide-

stained DNA in the gel was visualized by 302 nm UV light and pictures were taken with Gel 

Imager (Intas). 
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1 x TAE buffer:   6 x loading buffer (1ml):   

40 mM Tris-HCl   300 µl ddH2O 

0.35% glacial acetic acid  500 µl glycerol (86%) 

1 mM EDTA (pH 8.0)   100 µl 2.5 % bromophenol blue 

(0.2 µg/l ethidium bromide)  100 µl 2.5 % xylene cyanol 

     2 µl EDTA (0.5 M; pH 8.0)  

 

3.3.5 Digestion of DNA by restriction endonucleases  

Plasmid DNA (200 ng – 5 µg) was digested by restriction endonuclease(s), using the 

appropriate reaction buffers. The amount of enzyme, DNA, buffer composition and the duration 

of the reaction varied depending on the specific requirements of the emzyme (in general: 37°C 

for 1 h to overnight). In case where it was necessary to treat the same DNA sample with 

different enzymes, the digestion was either carried out in a buffer compatible to different 

enzymes, or first in the enzyme buffer of lowest salt concentration, and then the salt 

concentration was increased to proceed with another enzyme. 

 

3.3.6 DNA isolation from agarose gel 

The resulting restriction fragments were separated in agarose as described in chapter 3.3.4. 

Under UV light, the appropriate DNA band was cut out and DNA purification was carried out 

with QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer’s protocol.  

 

3.3.7 PCR 

The Polymerase Chain Reaction (PCR) is an in vitro technique used to amplify a specific region 

of DNA, which lies between two oligonucleotide sequences (primers). PCRs were 

accomplished with Taq polymerase (Invitrogen) according to the modified manufacturer’s 

protocol. All primers used in this study (Table 3.2) were synthesized by MWG Biotech. The 

PCR reactions took place in a Personal Cycler (Biometra). RT-PCR was carried out using 

SUPERSCRIPTTM II RNase H – Reverse Transcriptase (Invitrogen) according to the 

manufacturer’s protocol.  
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PCR protocol: 

Component   Volume  Final concentration        

10x PCR buffer    5    µl   20 mM Tris-HCl (pH8.4) 

       50 mM KCl 

MgCl2 (50 mM)    1.5 µl   1.5 mM 

dNTP mixture (2.5 mM)   4    µl   0.2 mM 

0.1 % gelatine     0.6 µl   1.2‰ 

100 % DMSO     2.6 µl   5.2 % 

ddH2O    32.3 µl 

Forward primer (10 pmol/µl)   1    µl   0.2 pmol/µl 

Reverse primer (10 pmol/µl)   1    µl   0.2 pmol/µl 

cDNA      1    µl 

Taq Polymerase (1U/µl)   1    µl   20 U/ml    
Final volume   50    µl 

 

A typical PCR program consisted as follows: 

Step    Temperature   Duration  
(1) Initial denaturation:  94°C   2 min 

(2) 25-30 cycles: 

Denaturation:   94°C   1 min 

Annealing:   50-60°C  1 min 

Extension:   72°C   2 min 

(3)  Final extension:   72°C            10 min   
 

 

         

Name Sequence 

Glo1 primer forward ACCCCAGCACCAAGGATTTTCTAC 

Glo1 primer reverse ATTTTCCCGTCATCAGGCTTCTTC 

J0157-Lisch primer forward CCTCGGGCCCGCTCTGTGGAT 

J0157-Lisch primer reverse AAGGCGGAGGTGCTGGGGGATAGT 

L2249-Ppp3 primer forward TTGGTAAAAGAAGGGCGGGTGGAT 

Table 3.2 Primer sequences for the amplification of candidate genes identified from data 
analysis II (chapter 4.4.2.1) 
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L2249-Ppp3 primer reverse GCAAGGGGCAAGCTGTCAAAAG 

2-A2416-primer forward ATTCCGCCAAGCCCGTTCC 

2-A2416-primer reverse GCGCCTAGCAGCCGACTTA 

J2454-atp1a1 primer forward GCCCAGAAACCCCAAAACGGACAA 

J2454-atp1a1 primer reverse TAGGGGAAGGCACAGAACCACCAT 

B0812-(rik) primer forward GTATGCGCCACCGGAAAGGAC 

B0812-(rik) primer reverse AGCGGCCGCCATGAACTGTAA 

L2441-T7-Skp1a primer forward AAGATGACCCTCCTCCTCCTG 

L2441-T7-Skp1a primer reverse GTACCTGGGCCTCTTCCTCTT 

O0316-T7-Ubqln2 primer forward CCGGCGGCGACGACATCAT 

O0316-T7-Ubqln2 primer reverse GCGGCATTCAGCATAGGTTCTTG 

 

3.3.8 PCR purification 

The QIAquick PCR purification kit (Qiagen) was used to purify PCR products from the 

reaction mixture, which contained primers, nucleotides, polymerase and salts. PCR product 

purification was performed according to the manufacturer’s protocol. 

 

3.3.9 DNA ligation 

DNA ligation was carried out using the pGEM-T Easy Vector System (Promega) according to 

the manufacturer’s protocol. The A-tailing procedure of each purified PCR fragment was done 

according to the “Standard Tailing Procedure” in the manufacturer’s protocol. 

 

3.3.10 Transformation of E. coli 

2 µl of ligation reaction and 50 µl of Chemically Competent E. coli (Subcloning Efficiency 

DH5α, Invitrogen) were mixed and incubated on ice for 30 min. Uptake of DNA was induced 

by heat shock (45 s at 42°C), then the cells were diluted in 950 µl of SOC medium and 

incubated for 1 h at 37°C by rotating at 250 rpm. 100 µl of the cell suspension were plated on 

LB plates containing ampicillin and IPTG/X-Gal (MBI Fermentas), and cultured overnight at 
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37°C. On the following day, the white colonies were selected for LB medium overnight culture 

and further experimental processing. 

 
SOC medium (100 ml):  
2 g tryptone 

0.5 g yeast extract 

0.5 g NaCl 

0.25 ml 1M KCl   

1 ml 2 M Mg2+ 

1 ml 2 M glucose      

 

3.3.11 DNA sequencing 

DNA sequencing was done by commercial sequencing (MWG Biotech). 

 

3.4 RZPD filter hybridization 

The high density cDNA Filters (Mouse Unigene Set - RZPD 1, RZPD German Resource Center 

for Genome Research, Berlin, Germany) were applied to investigate gene expression. A filter is 

a nylon membrane of 22 cm x 22 cm size with 24,532 individual clones printed on in duplicate 

(49,064 clone spots). There are 48 * 48 blocks per filter and 5 * 5 dots per block. In each block, 

one Kanamycin guide dot spotted in the center, one pair of Arabidopsis control gene clones 

spotted in fixed positions and 11 different duplicate clones spotted in the other 22 positions 

comprise a special pattern which ensures that the duplicate genes do not have the same 

neighbors.  

3.4.1 Quality control of filter 

The vectors into which the inserts were cloned contain the sequence of M13 primer. To check 

the quality of the filters, a quality control hybridization was done with radiolabeled 33P-M13. 

This ensures that the clones are spotted appropriately. First, the filter was stripped in the 

stripping solution (5 mM sodium phosphate buffer pH 7.2. 0.1% SDS) at 100°C: it was soaked 

from one edge and shaken gently till it had re-cooled to room temperature (approx. 30-45 min). 
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Then the filter was rinsed with TE (100 mM Tris-Cl. 10 mM EDTA. pH 8.0) and left in TE 

until the M13 hybridization was performed.  

The M13 oligonucleotide (MWG Biotech) was labelled with γ-33P ATP (ICN) using T4 

polynucleotide kinase (Roche). 

M13 labelling:         
M13 vector oligonucleotides (100 ng/µl)            100 ng  

10x T4 polynucleotide kinase buffer      2 µl 

T4 polynucleotide kinase (10.000 U/ml)      1 µl 

γ-33P ATP          3 µl 

ddH2O        13 µl             

Final volume       20 µl                  

The 20 µl of mixture was incubated for 30 min at 37°C. 

 

M13 hybridization:  

The labeled M13 sequence was hybridized in 25 ml of Amasino per filter over night at 25°C. 

Amasino:             

20% SDS       350 ml 

1M sodium phosphate buffer pH 7.2    130 ml 

5 M NaCl         50 ml  

ddH2O       470 ml             

Final volume               1000 ml                  

 

On the next day, the filter was washed with wash buffer (1% SDS. 40mM sodium-phosphate) 

2 x 30 min at 25°C and wrapped in Saran film. The filter was then exposed to a Phosphor 

Imager screen for 18 to 24 h. After scanning by PhosphoImaging (Storm, Molecular 

Dynamics), the filter was stripped twice and then wrapped in Saran film and kept at –20°C for 

4-6 weeks to let the radioactivity fully decay.  

 

3.4.2 Complex hybridization 

Prior to the complex hybridization, the filters tested (in section 3.4.1) were exposed to Phosphor 

Imager screen and checked again to assure that no radioactivity was left.  
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Four RNA pools were gathered from total RNA isolated from the hypothalami of male mice of 

the AKR/J Control, AKR/J HF, SWR/J Control and SWR/J HF group.  From the 4 different 

RNA pools radiolabeled 33P-cDNA was synthesized and hybridized with the high density 

cDNA Filters.  

 

3.4.2.1 Preparation of complex cDNA samples 

The complex cDNA samples – 1st strand cDNA were synthesized from total RNA using 

Superscript II RT (Superscript II Reverse Transcriptase Kit, Life Technologies).  

First, 10 µg of total RNA in ddH2O (for two filters) and 1 µg of dTV primer (anchored dT18; 

2 µl of 500 ng/µl) were mixed at RT and the final volume was adjusted to 10.5 µl with ddH2O. 

The mixture was heated for 10 min at 70°C and then immediately cooled on ice. Then the 

following reagents were added on ice in the order indicated:  

cDNA  labeling:           
 RNasin      0.5 µl 

5x first strand buffer     5.0 µl  

0.1 M DTT      2.5 µl  

20 mM dGTP, dATP, dTTP    0.5 µl  

[alpha-33P] dCTP (10 µCi/ul)     5.0 µl  

  

The reaction was prewarmed for 1 min at 37°C followed by the addition of 1 µl Superscript II 

RT (final reaction volume was 25 µl), and vortexed. The reaction was then incubated at 37°C 

for 1 to 2 h.   

The hydrolysis of RNA to generate single strand samples was carried out by adding 1 µl of 

0.5 M EDTA pH 8.0, 1 µl of 10% SDS and 3 µl of 3 N NaOH at RT and mixing after addition 

of each reagent. After incubation for 30 min at 68°C the mix was cooled to RT and then 1 µl of 

1 M Tris-HCl pH 8.0 and 3 µl of 2 N HCl were added. The final volume was 50 µl after 16 µl 

of ddH2O was added. 1 µl of the sample was transferred to 2 ml scintillation fluid and total 

activity was measured by a β-counter (Beckmann LS 3801, Beckman Instruments, Inc).  

In the last step the labeled cDNA was purified using an S-300 column (Mo Bi Tec). The resin 

in the S-300 column was resuspended and then the column was pre-spun for 1 min at 2500 rpm. 

After the cDNA was loaded onto the column it was centrifuged again at 2500 rpm for 2 min. 
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The volume of flow through and the activity of 1 µl in 2 ml scintillation fluid were measured. 

The percentage of labeled dCTP incorporation was calculated from these two activity 

measurements.  

Finally, the denatured sample was heated for 5 min at 100°C and immediately placed on ice. 

 

3.4.2.2 Pre-hybridization 

Each filter was wetted in 7.5 ml of ddH2O and then placed into roller bottle, avoiding formation 

of air bubbles between filter and glass. Salmon sperm DNA (10 mg/ml) was denatured for 

5 min at 100°C immediately placed on ice. For two filters, 30 µl of denatured DNA was added 

into the pre-warmed (65°C) 15 ml of 2x Denhardt's hybridization mix. Finally, 7.5 ml of 

2x Denhardt's hybridization mix was added. Because the roller bottle already contained 7.5 ml 

ddH2O the final concentration of Denhardt's hybridization mix was 1 x.  

Filters were pre-hybridized at least 2 hours at 65°C. 

 

2x Denhardt’s hybridization mix:     

20% SDS        2.5 ml 

20 x SSC      60   ml 

50 x Denhardt's buffer      20   ml  

ddH2O       17.5ml            

Final volume                 100 ml                  

 

50x Denhardt's buffer:      

Ficoll (Type 400)     5 g 

Polyvinylpyrrolidone     5 g 

BSA (Fraction V)     5 g          

 

The reagents for 50x Denhardt's buffer were dissolved in 400 ml ddH2O, stirred for a few hours 

and then adjusted to 500 ml with ddH2O. After filtered through a 0.45 µm filter, aliquots of 10 

and 50 ml were frozen at –20°C. 
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3.4.2.3 Complex hybridization 

The labeled cDNA samples prepared from each pool of total RNA (section 3.4.2.1) were added 

into the roller bottle and hybridized with the filters for 20 to 24 hours at 65°C. Each time, in 

complex hybridization, one pair of labeled cDNA samples was used, for instance, AKR/J 

control and HF or SWR/J control and HF.  

 

3.4.2.4 Post-hybridization 

The first 2 wash steps were done in the hybridization roller bottle (50 ml/bottle) at 65°C: 20 

minutes in wash buffer 1 (1x SSC, 0.1% SDS) followed by 10 minutes in wash buffer 2 

(0.3 x SSC, 0.1% SDS).  

Then the filters were transferred into a large plastic box and washed for 10 minutes in 500 ml 

wash buffer 2 at 65°C in a water bath. A maximum of 8 filters (added one by one) can be 

washed in one box. The shaking frequency of the water bath was not over 20 movements per 

minute to prevent the filters moving up the box walls and drying out.  

The last wash step was to rinse the filters 10 minutes in 500 ml wash buffer 3 (0.1x SSC, 0.1% 

SDS) at 65°C.  

Finally, the filters were taken out of the wash buffer, and remaining buffer was briefly allowed 

to drop off. Each filter was then wrapped in the Saran foil, avoiding air bubbles, crinkles and 

visible liquid drops.  

The wrapped filters were then exposed to a Phosphor Imager screen for 18 to 24 h followed by 

scanning with phosphoimaging (Storm, Molecular Dynamics) and image analysis using the 

software package ArrayVision (Imaging Research Inc.).  

Filters were stripped as described in section 3.4.1 and kept at –20 °C. After scanning, a filter 

can be re-used for 5 times. 

 

3.5 Affymetrix GeneChip hybridization  

The GeneChip® expression arrays (Murine Genome U74Av2) were purchased from Affymetrix. 

The Murine Genome U74v2 set, consisting of three GeneChip® probe arrays (A, B and C 

Chip), contains probe sets interrogating approximately 36,000 full-length mouse genes and EST 
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clusters from the UniGene database (Build 74). In this experiment only the A Chip was applied, 

which contains 12,488 genes.  

3.5.1 RNA isolation  

See section 3.2.1. 

 

3.5.2 cDNA synthesis  

3.5.2.1 First-strand cDNA synthesis 

The first-strand cDNA synthesis was carried out with Superscript II Reverse Transcriptase Kit 

(Life Technologies) with modification. The primer hybridization reaction, containing 5-20 µg 

RNA, T7-oligo (dT) primer 2 µl (50 µM) and DEPC-H2O to 11 µl, was incubated at 70°C for 

10 min and immediately placed on ice. Then 4 µl of 5 x first-strand cDNA buffer, 2 µl of 0.1 M 

DTT and 1 µl of 10 mM dNTP mix were added and incubated at 42°C for 2 min. Finally, 2 µl 

of Superscript II RT were added and the reaction was incubation at 42°C for 1 h.  

 

3.5.2.2 Second-strand cDNA synthesis 

The following reagents were added into the first-strand synthesis tube (20µl): 

 

Second-strand reaction composition:    

DEPC-H2O               91 µl 

5 x second-strand reaction buffer 30 µl 

10 mM dNTP mix     3 µl 

10 U/µl E. coli DNA Ligase    1 µl 

10 U/µl E. coli DNA polymerase I   4 µl 

2 U/µl E. coli RNase H    1 µl  

 Final volume             150 µl 

After brief centrifugation the mix was incubated at 16°C for 2 h, then 2 µl of T4 DNA 

polymerase were added and incubation was continued for another 5 min at 16°C. DNA was 

purified by adding 10 µl of 0.5 M EDTA. 
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3.5.2.3 Cleanup of double-strand cDNA 

Cleanup of the double-strand cDNA was carried out with the GeneChip Sample Cleanup 

Module (Affymetrix). After 600 µl of cDNA binding buffer were added to the 162 µl of final 

double-stranded cDNA, the sample was applied to the cDNA Cleanup Spin Column to 

centrifuge for 1 min at ≥ 8000 g (≥ 10000rpm). The spin column was washed with 750 µl of 

cDNA wash buffer by centrifugation for 1 min at the same speed, followed by additional 

centrifugation for 5 min at maximum speed (≤ 25000 g). The cDNA was eluted from the 

column by loading 14 µl of elution buffer onto the column, 1 min incubation at RT and 1 min 

centrifugation at maximum speed.  

  

3.5.3 cRNA synthesis 

The Enzo®BioArrayTMHigh YieldTM RNA Transcript Labeling Kit (Affymetrix) was used for 

generating labeled cRNA target.  

 

IVT cRNA labeling:     

Template cDNA    10 µl 

ddH2O     12 µl 

10 x HY reaction buffer    4 µl 

10 x biotin-labeled ribonucleotides   4 µl 

10 x DTT      4 µl 

10 x RNase inhibitor mix    4 µl 

20 x T7 RNA polymerase     2 µl  

 Total volume    40 µl 

After brief centrifugation the reaction was incubated at 37°C for 4-5 h. 

 

3.5.4 Cleanup and quantification of biotin-labeled cRNA 

The cRNA sample mixed with 60 µl of ddH2O, 350 µl of IVT cRNA binding buffer and 250 µl 

of ethanol (100%) was loaded to an IVT cRNA cleanup spin column (Affymetrix) and 

centrifuged for 15 sec at ≥ 800 g (10000 rpm). Then the column was washed with 500 µl of 
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IVT cRNA wash buffer and 500 µl of 80% ethanol by centrifugation twice for 15 sec at ≥ 800 g 

(10000 rpm). After an additional centrifugation for 5 min at maximum speed (≤ 25000 g), the 

cRNA was eluted twice with RNase-free water – first with 11 µl, then with 10 µl, by 

centrifugation twice for 1 min at maximum speed (≤ 25000 g). 

The purified cRNA was quantified with Ultrospec 2100 pro spectrophotometer (Amersham 

Pharmacia Biotech). The cRNA must be at a minimum concentration of 0.6 µg/µl. 

 

3.5.5 Fragmenting the cRNA for target preparation 

Fragmentation of cRNA target before hybridization onto GeneChip arrays has been shown to be 

critical in obtaining optimal assay sensitivity. 2 µl of 5 x fragmentation buffer was added for 

8 µl of cRNA, then the mix was incubated at 95°C for 35 min and immediately placed on ice. 

The fragmented cRNA was checked on RNA 6000 Nano Labchips (Agilent Technologies). 

 

3.5.6 GeneChip hybridization 

The hybridization cocktail was prepared as follows and then incubated at 99°C for 5 min 

followed by incubation at 45°C for 5 min. Finally, it was centrifuged at maximum speed for 

5 min.  

Hybridization cocktail :     

Fragmented cRNA     15 µg 

Control oligonucleotide B2 (3 nM)      5 µl 

20 x eukaryotic hybridization controls   15 µl 

Herring sperm DNA (10 mg/ml)      3 µl 

Acetylated BSA (50 mg/ml)       3 µl 

2 x hybridization buffer   150 µl 

H2O      124 µl  

Total volume     300 µl 

 

The GeneChip was equilibrated to RT and filled through one of the septa with 1 x hybridization 

buffer, followed by incubation at 45°C for 10 min with rotation. After removal of hybridization 



  Materials and Methods 
 

 30

buffer and refilling with hybridization cocktail, the chip was put into the hybridization oven for 

16 h at 45°C. 

 

12 x MES stock (1 l):     2 x hybridization buffer (50 ml):  

MES-free acid monohydrate  70.4 g    12 x MES          8.3 ml 

MES sodium salt   193.3 g   5 M NaCl       17.7 ml 

Molecular Biology Grade water 800 ml    0.5 M EDTA         4.0 ml 

After mix the final volume was adjusted to 1 l    10% Tween 20        0.1 ml  

and then filtered through a 0.2 µm filter.    ddH2O       19.9 ml  

 

3.5.7 Post-hybridization 

After 16 h of hybridization, the hybridization cocktail was removed and wash buffer (wash A) 

was filled into the GeneChip. The wash and stain steps (Table 3.3) were carried out in the 

fluidics station with the program edited in the connected computer.  

Table 3.3 Post-hybridization: procedure and buffer 

Post Hyb Wash 1 10 cycles of 2 mixes with wash A at 25°C Wash A: 6 x SSPE, 0.01% Tween 20

Post Hyb Wash 2 4 cycles of 15 mixes with wash B at 50°C Wash B: 100 mM MES, 0.1 M 

NaCl, 0.01% Tween 20 

Stain 10 min in SAPE solution at 25°C SAPE: 1 X MES, 2 mg/ml 

acetylated BSA, 10 µg/ml SAPE 

Post stain wash 10 cycles of 4 mixes with wash A at 25°C   

2nd stain 10 min in antibody solution at 25°C 

Antibody solution: 1 x MES, 2 

mg/ml acetylated BSA, 0.1 mg/ml 

normal goat IgG, 3 µg/ml 

biotinylated antibody 

3rd stain 10 min in SAPE solution at 25°C   

Final wash 15 cycles of 4 mixes with wash A at 30°C 

The holding temperature is at 25°C.   

After complete wash and staining the GeneChip was scanned with the GeneChip scanner 2500 

(Affymetrix) and the image was analyzed using the R software package (Bioconductor). 
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3.6 In Situ hybridization  

The principle behind in situ hybridization (ISH) is the specific annealing of a labelled nucleic 

acid probe to complementary sequences in fixed tissue, followed by visualization of the 

location of the probe. This technique was used here to locate and confirm the differentially 

expressed genes identified by the complex hybridization.   

3.6.1 Brain sectioning 

Coronal brain sections (16 µm) spanning the hypothalamic area were prepared from the intact 

brains with a cryosectioning system (Leica CM 3050). The object temperature was adjusted at –

13°C to –14°C after the brain was fixed on it at –50°C. The chamber temperature was 1-2°C 

lower than object temperature to avoid that the sections melted on the cryostat knife. The first 6 

sections were mounted on 6 slides (A1 to F1 in order), and then the second 6 sections were 

added in the same order, i.e., the distance between sections represented on one slide was 96 µm. 

When the first 6 slides were completed, another series of 6 slides (A2 to F2) was used for 

mounting new sections.   

 

3.6.2 Glass slide preparation – silanization 

For an initial wash, the glass slides (Menzel) were put into a box containing hot tap water and 

detergent for 1 h. They were rinsed 3 times in hot tap water for 15 min. Subsequently, they 

were washed once with deionized H2O and ddH2O for 15 min each. Finally, after being washed 

in 70% ethanol and shaken for 45 min they were dried overnight at 60°C. On the following day, 

they were washed once for 30 s with 2% TESAP in acetone and twice in 100% acetone. After a 

brief rinse with deionised H2O and ddH2O they were dried overnight at 42°C and stored at RT.  

 

3.6.3 Preparation of the probe 

3.6.3.1 Linearization of DNA template from section 3.3.3. 

The plasmid DNA was linearized by the digestion of the restriction enzyme close to the end of 

the insert to avoid transcription from the whole plasmid DNA by RNA polymerase. It is very 

important that there should be no more cutting between the restriction site (e.g., Spe I) and the 
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corresponding primer binding site (e.g., T7) (Figure 3.1). The plasmid DNA samples (5 µg – 

10 µg) were digested in two reaction tubes by one restriction endonuclease (either Spe I or 

Apa I) in each reaction using corresponding reaction buffer. The amount of enzyme, DNA, 

buffer composition and the duration of reaction varied depending on the specific requirements 

of the enzyme (in general: 37°C for 2 h to overnight). 

 

 

 

 

 

 

 

 

 

3.6.3.2 In Vitro transcription (IVT) 

From this step to hybridization, all solutions and devices used must be RNase free, i.e. DEPC 

treated solutions, and baked racks and stainless steel tanks, are necessary.  

For In Vitro transcription the following reagents were added in order indicated:  

                 10 - X µl DEPC H2O  

5  µl 5x transcription buffer 

X µl = approx. 1 µg DNA template  

1  µl 10 mM rCTP 

1  µl 10 mM rGTP 

1  µl 10 mM rATP  

1  µl 0.75 M DTT 

1  µl = 1 U RNase-Block I 

4  µl S35-UTP (50 µCi) 

                      1  µl T3 or T7 polymerase (all 20000 U/ml)                

The final volume was 25 µl. 

 

Insert T3 T7

Spe I Apa I

Figure 3.1 linearization of DNA template. The dark line shows part of the vector
sequence. The gray box in the middle shows the insert and the other two beside it
show the T3/T7 primer binding sites. At both ends of the insert there are restriction
sites by Spe I or Apa I. 
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This reaction was first incubated at 37°C for 1-1.5 h and then for 0.5-1 h after the addition of 

2 U DNase I. During this incubation a ChromaSpin 30 column (BD Biosciences) was prepared 

by resuspending the loading gel in the column and spinning at 1700 rpm for 5 min at 24°C. 

After incubation 25 µl DEPC H2O were added to the reaction and the final volume of 50 µl was 

pipetted onto the ChromaSpin column, and then centrifuged at 1700 rpm for 5 min. The probe 

can be stored at -20°C or -70°C for one week if required. 0.5 µl of the purified probe was taken 

out, diluted to 50 µl and then activity of 5 µl was measured by Beckmann LS 3801. 

 

3.6.4 Pre-hybridization 

The slides were brought to RT in a rack and fixed in 4% paraformaldehyde (PFA) in PBS for 

20 min on ice followed by 2 x 5 min washes in 0.1 M PBS (0.2 M diluted with DEPC H2O).  

Then the slides were immersed in 250 ml of 0.1 M TEA for 2 min; meanwhile, 625 µl of acetic 

anhydride (AA) (Sigma) was added to another dry tank. Subsequently, the 0.1 M TEA was 

poured from first tank into acetic anhydride tank, stirred quickly with a sterile tip or Pasteur and 

then the slides were immersed in this TEA/AA mix for 10 min. After two washes in 0.1 M PBS 

each lasting 2 min, the slides were dehydrated through gradient increasing concentration of 

alcohol – 50, 70, 95 and 100% ethanol/DEPC H2O for 3 min each step. Finally, they were air 

dried for 1-2 h.  

 

3.6.5 Hybridization 

The hybridization buffer and probe mixture were prepared by adding the following reagents and 

mixing well:  

Hybridization buffer (1.5 ml):   Probe mixture (400µl):  

300 µl 5 M NaCl       50 µl radioactive probe 

100 µl 50 x Denhardts   256 µl tRNA (3.9 mg/ml stock)  

  50 µl 1 M Tris (pH 8)    20 µl 1 M DTT 

  10 µl 0.5 M EDTA (pH 8)    74 µl DEPC H2O   

  40 µl DEPC H2O 

   1 ml 50% Dextran sulphate   
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50% dextran sulphate was prepared by dissolving 1 g of dextran sulphate in 1.5 ml DEPC H2O 

in a sterile 4 ml tube at 55-60°C for 2-3 h. After vortexing the solution can be immediately used 

or stored at 4°C. 

The final hybridization cocktail was prepared by mixing 400 µl of probe mixture and 1600 µl 

of hybridization buffer. The mixture can be stored at -20°C (for 1 week) if necessary. 

The radioactivity of the 2000 µl probe was determined. The optimal range of radioactivity is 

80000 – 150000 cpm in 10 µl. 

50-60 µl of the final hybridization cocktail was loaded to each slide. The slides were covered 

by cover slips and incubated for 16-22 h at 60°C in the hybridization oven.  

 

3.6.6 Post-hybridization 

The slides were taken out of the oven and cooled to RT. Subsequently, they were soaked in 4 x 

SSC for 30 min to loosen cover slips. The cover slides were removed by joggling and each slide 

was transferred to another rack in a tank containing 4 x SSC. When all slides were in the rack, 

they were washed four times in 4 x SSC, 5 min each. After incubation in RNase solution at 

37°C for 30 min, the slides were washed in a series of gradient decreasing concentration of SSC 

dilutions and dehydrated in a series of gradient increasing concentration of ethanol solutions.  

  

RNase solution:       Slide wash:        Slide dehydration: 

25 ml 5 M NaCl  

2.5 ml 1 M Tris (pH 8) 

0.5 ml 0.5 M EDTA 

0.5 ml RNase (10 mg/ml) 

222ml dd H2O   

 

3.6.7 Signal detection 

The well-dried slides were fixed in an X-ray cassette and exposed to BioMax MR Film (Kodak) 

for 3-7 days. 

 

4 x SSC RT 4 x 5 min 50% ethanol RT 1 x 3 min
2 x SSC RT 2 x 5 min 70% ethanol RT 1 x 3 min
1 x SSC RT 1 x 10 min 95% ethanol RT 1 x 3 min
0.5 x SSC RT 1 x 10 min 100% ethanol RT 1 x 1 min
0.1 x SSC 60°C 1 x 30 min    
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3.7 Quantitative real-time RT-PCR 

Quantitative real-time reverse transcription polymerase chain reaction (real-time RT-PCR) is 

based on the detection of fluorescence produced by a reporter molecule – e.g., SYBR® Green I, 

which binds to double-stranded DNA (dsDNA) but not to single-stranded DNA. In real-time 

RT-PCR, as PCR product – dsDNA accumulates, the fluorescent dye generates a signal that is 

proportional to DNA concentration and that can be measured using instruments.  

 

3.7.1 First-strand cDNA synthesis 

Hypothalamic RNA isolation is described in section 3.2.1. SuperScriptTM III Platinum® 

Two-Step qRT-PCR kit (Invitrogen) was used to generate first-strand cDNA for real-time 

RT-PCR. 1 µg RNA was added into a tube containing 10 µl of 2 x RT Reaction Mix and 2 µl of 

RT Enzyme Mix. DEPC-treated water was filled up to the final volume of 20 µl. After gentle 

mixing, the reaction was incubated at 25°C for 10 min and at 42°C for 50 min. Subsequently, 

the reaction was terminated at 85°C for 5 min and chilled on ice. Finally, 1 µl (2U) of E. coli 

RNase H was added followed by incubation at 37°C for 20 min. The first-strand cDNA was 

diluted with DEPC-treated water to 100 µl.  

 

3.7.2 Primer design 

Primers (Table 3.4) were designed at www.invitrogen.com using the primer design software – 

OligoPerfectTM Designer and synthesized by MWG Biotech. The amplicon length defined by 

the primer was approximately 80–250 bp to optimize the efficiency of real-time RT-PCR. 

 

 

 

 

 

 

 

 



  Materials and Methods 
 

 36

 

3.7.3 Real-time RT-PCR protocol and program 

Fluorescein (Bio-Rad) was added to the Platinum® SYBR® Green qPCR SuperMix UDG 

(Invitrogen) as internal reference to a final concentration of 20 nM. Each real-time qRT-PCR 

reaction contained 25 µl of Platinum® SYBR® Green qPCR SuperMix UDG with fluorescein, 

1 µl of forward and reverse primer (10 µM) respectively and 1 µl of first-strand cDNA (see 

3.7.1) and DEPC water to a final volume of 50 µl. Beta actin was used as standard gene for 

control because it is expressed identically in all cells.  

A typical real-time RT-PCR cycling program using the iCyclerTM (Bio-Rad) is shown below: 

Cycle  1: (  1X)  
 Step  1:   50.0ºC for 2 min 
 Step  2:   95.0ºC for 2 min  
Cycle  2: ( 45X)  
 Step  1:   95.0ºC for 15 sec 
 Step  2:   55.0ºC for 30 sec 
 Step  3:   72.0ºC for 30 sec 
 Data collection enabled. 
Cycle  3: (100X)  
 Step  1:   70.0ºC for 7 sec 
 Increase setpoint temperature after cycle 2 by 0.2ºC 
 Melt curve data collection and analysis enabled.  
Cycle  4: (  1X)  
 Step  1:    4.0ºC for 5 min 

Name Sequence 

Glo1 primer forward ATGCCTCATGGTACCTCCTG 

Glo1 primer reverse TCCCCTAGAGCAGCCTTGTA 

Hba-α1 primer forward GACGTTGGTTAGCCACCAC    

Hba-α1 primer reverse CTGCAGAAGGGAGCTTATCG 

Ppp3cb primer forward GAGGAGAGCAGTGAGCAAGG    

Ppp3cb primer reverse GGGGGAGTTCCACGTTATCT    

TNFAIP1 primer forward CCTGGGCTCAATCTCCAGTA    

TNFAIP1 primer reverse GGTCCTGGCACTCTGCTTAG    

Table 3.4 Primer sequences for real-time RT-PCR. 
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The fluorescence in each well of the 96-well plate was measured after each extension step 

(Cycle 2, Step 3) during the PCR reaction. As DNA is synthesized, more SYBR Green will 

bind and the fluorescence will increase.  

 

3.8 Data analysis  

Totally 3 sets of data analysis were done. The first set (Data analysis I) was from 8 filters 

hybridized with the probes synthesized from the first set of 4 RNA pools – 2 RNA samples for 

each group. The second set of RNA pools was gathered from the selected RNA after 

transthyretin screening in Northern blot – 11 from SWR/J control groups as well as HF, and 5 

from AKR/J control groups as well as HF. Data analysis II was done using the second set of 

data coming out of second 8 filter hybridizations and 8 GeneChip hybridizations with the same 

second set of RNA pools.  Data analysis III was focus on the data from second filter 

hybridization.  

 

3.8.1 Data analysis I 

The signal intensity of each spot on the filters was determined using ArrayVision procedure AR 

VOL that means artifact-removed density value multiplied by its area. To reduce biasdue to 

technical varision between filters quantile normalization was done for filters using AR VOL 

data corrected with local background. The local background was median intensity of one 

Kanamycin and one pair of Arabidopsis spots in each 5*5 block. For each spot, the intensity 

after background correction was transformed to log2. Next, for each filter the average intensity 

of the duplicate genes was calculated, and then the average intensity of this gene on two 

repeated filters was calculated. An MA plot was made for each comparison, where M means the 

difference of log2-intensity of one gene at two conditions and A means the mean of 

log2-intensity of one gene at two conditions, in other words, M shows log2-ratio (fold change = 

2M) and A shows mean intensity. The candidate genes were selected according to the MA plot 

using a threshold of > 2 fold change in the following 4 comparisons: AKR/J Control vs. AKR/J 

HF, SWR/J Control vs. SWR/J HF, AKR/J Control vs. SWR/J Control and AKR/J HF vs. 



  Materials and Methods 
 

 38

SWR/J HF. Low quality spots were detected and eliminated by checking the differences 

between the duplicates on filter in relation to the M values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.8.2 Data analysis II 

The second set of data from 8 RZPD cDNA Filter hybridizations and 8 Affymetrix GeneChip 

hybridizations was analyzed with different strategy. 

 

  Table 3.5 Array hybridization with the same original RNA pools. 

RNA pools  RZPD cDNA Filter Affymetrix GeneChip 

AKR/J Control 2 x 2 x 

AKR/J HF 2 x 2 x 

SWR/J Control 2 x 2 x 

SWR/J HF 2 x 2 x 

 

The data (AR VOL) from filter hybridization were first corrected with the local background – 

medium intensity of one Kanamycin and two Arabidopsis spots within each 5 x 5 block. And 

then, all filters were complemented in a quantile normalization, followed by the 4 different 

M 

A
Figure 3.2 MA blot of AKR/J control vs. AKR/J HF. M shows difference
of log2-intensity of one gene at two conditions while A is the mean of
log2-intensity of one gene at two conditions. The selected candidate genes 
were marked as “▲”. 
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comparisons: AKR/J Control vs. AKR/J HF, SWR/J Control vs. SWR/J HF, AKR/J Control vs. 

SWR/J Control and AKR/J HF vs. SWR/J HF. MA plot and M – z-scores plot were made for 

each comparison, where z-scores tells how many standard deviations away from the mean of M 

value at this intensity a score resides. The list of candidates was sorted out through several 

criteria: intensity (A), z-scores, fold-change (M), and differences of one gene between two 

replicate filters and between the duplicates within one filter. The threshold of >2 fold change 

was defined for filter data analysis while >1.7 fold change for chip. 

The data from GeneChip hybridizations were treated with the similar analysis method as 

described above.  

In filter data, the genes were listed with RZPD clone ID (e.g., IMAGp952F2058) and GenBank 

accession number (e.g., ai226516, ai266816). However, in chip data the genes were list with 

Affy ID (e.g., 103361_at). By Internet database searching (DAVID Annotation Tool, 

http://apps1.niaid.nih.gov/david/), the list of Affy ID was converted to UniGene cluster. The 

GenBank accession number was converted to UniGene cluster as well. And then the selected 

candidate lists from filter and chip analyses were compared and the overlapped genes in each of 

the 4 comparisons were listed out as the analysis result.  

The candidates were rechecked and the low quality candidates were eliminated through another 

approach – direct going over in the original image of filter.  

 

3.8.3 Data analysis III 

Only the filter data from the second complex hybridization were used in analysis III. The data 

were dealt with as described in 3.8.2 followed by only two comparisons – AKR/J Control vs. 

AKR/J HF and SWR/J Control vs. SWR/J HF.  

 

3.9 Post analysis  

After each analysis, the clones of some candidates were obtained from RZPD, followed by over 

night culture, sequencing, cloning, probe labeling and then Northern blot analysis, In Situ 

hybridization and real-time RT-PCR. 
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3.10 Single nucleotide polymorphism (SNP) analysis 

Single nucleotide polymorphism (SNP) analysis of mouse gene Glo1 was carried out by 

Kathrin Reichwald in the Department of Genome Analysis, Institute of Molecular 

Biotechnology (IMB), Jena, Germany.  
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4 Results 

4.1 Diet induced obesity in mice 

4.1.1 Body mass 

In weanlings of either strain, body mass increased rapidly from day 24 to 35 by about 8-14 g, 

corresponding to the maximal growth spurt in mice. After 2 days on the high fat diet, the body 

mass in the AKR/J high fat diet groups was already 1.5 to 2.0 g higher than in the controls 

(Table 4.1 and Figure 4.1). After 10 days on the diet experiment, both female and male AKR/J 

mice fed the high fat diet were significantly heavier than mice in the control groups. In contrast, 

body mass of both male and female SWR/J mice showed no difference between the high fat 

diet and control groups. In corresponding feeding groups, AKR/J mice were heavier than 

SWR/J mice.  

 

Table 4.1 Effect of different diets on body mass. 

a C: control diet; HF: high fat diet. 

 

 

 

 

 

Body mass (mean ± SD) (g) 
Strain 

Diet groupa and 

number of mice Day 21 Day 35 Day 45 

Female C: n = 10 

Female HF: n = 8 

8.95 ± 2.39 

8.85 ± 2.14 

19.88 ± 2.16 

19.70 ± 1.88 

21.51 ± 1.98 

23.61 ± 2.76 
AKR/J 

(37 mice in 

8 litters) 
Male C: n = 10 

Male HF: n = 9 
10.27 ± 2.31 

10.52 ± 2.22 

23.69 ± 2.65 

23.77 ± 2.57 

26.07 ± 2.51 

29.01 ± 3.30 

Female C: n = 30 

Female HF: n = 25 

8.17 ± 0.71 

8.35 ± 0.67 

16.28 ± 0.99 

16.24 ± 0.85 

17.08 ± 0.96 

17.56 ± 0.93 
SWR/J  

(104 mice in 

14 litters) 
Male C: n = 27 

Male HF: n = 22 

8.65 ± 1.29 

8.54 ± 0.97 

20.96 ± 1.79 

20.76 ± 1.19 

21.77 ± 1.48 

21.84 ± 1.18 
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Figure 4.1 Effect of diet on body mass in two inbred mouse strains fed either control (C –●–) or 

high fat (HF –■–) diet. n = 8-30 individuals per group (Table 4.1). Data indicate means ± SD. 

The dotted lines match the day of diet change for the HF groups.   
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4.1.2 Energy intake  

After weaning, during the first two weeks at the control diet, all mice consumed comparable 

amounts of energy per day, regardless of strain. Energy intake (food intake (g) * energy content 

of diet (KJ/g)) was slightly higher in males than in females, corresponding to sexual 

dimorphism (Figure 4.2). During the subsequent 10-day experimental period, energy intake was 

slightly increased in the control groups reflecting the age-related increase in body mass. In 

contrast, in the high fat diet groups, energy intake was significantly higher in the 10 days after 

the diet change compared to pre-diet change levels and also to the control groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Daily energy intake. Bars indicate mean energy intake per day as assessed from the 2 

weeks period on the control diet and the 10-day experimental period on the control (C █) vs. 

high fat diet (HF █). n = 8-30 (Table 4.1). *** P < 0.001 for HF vs. C. 
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4.1.3 Body fat 

The mean total body fat and its proportion to body mass are plotted in Figure 4.3. Both fat mass 

and the proportion of fat in the AKR/J high fat diet groups were significantly higher than in the 

control groups. In contrast, total fat mass and the percentage of body fat in the SWR/J high fat 

diet groups were only slightly elevated compared to the control groups, and this difference was 

not statistically significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Mean body fat (mass (g) or content (%)) on day 45 of control (C █) and high fat diet 

(HF █) in two inbred mouse strains. n = 11-12 for SWR/J and 5-6 for AKR/J. * P < 0.05, 

** P < 0.01, *** P < 0.001 for HF vs. C.  
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Individual body fat and lean mass content in relation to body mass are shown in Figure 4.3. In 

SWR/J HF and control mice, lean mass and fat mass respectively fall within the same line of 

regression. In AKR/J mice, the high fat diet group did not only have a heavier body mass and a 

lower lean mass than the control group, but also contained more fat and less lean mass at the 

same body mass, i.e., body fat content is disproportionally enlarged with body mass in AKR/J 

mice fed a high fat diet.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Individual body fat/lean mass on day 45 in two inbred mouse strains fed either 

control (C –●–) or high fat (HF –■–) diet. n = 11-12 for SWR/J and 5-6 for AKR/J. Lines 

indicate least square regression estimates for the linear relationship between body mass and fat 

or lean mass in each group.  
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4.1.4 Tissue mass 

For inguinal and retroperitoneal white adipose tissue pads, inter scapular brown adipose tissue 

pad, femoral skeletal muscle, liver and spleen, whole tissue/organ masses and their proportion 

to whole body mass are listed in Tables 4.2 and 4.3. Both the inguinal and the retroperitoneal 

white adipose tissue pads were significantly larger in the AKR/J high fat diet group than in the 

control group. Concerning these comparisons, no difference between control and HF was found 

in the SWR/J groups. In the interstrain comparison, inguinal fat mass in AKR/J control mice 

was smaller than in SWR/J mice (P<0.001), while in the HF groups there was no difference 

between AKR/J and SWR/J mice. Moreover, AKR/J mice had larger femoral muscles and 

smaller spleens than SWR/J mice. Although AKR/J mice had larger livers (mass) than SWR/J 

mice, this difference was reduced after whole body mass correction.  

 

 

 

Tissue/organ mass 

SWR/J AKR/J 

              Data  

 

Tissue C (n=11) HF (n=13) C (n=8) HF (n=9) 

White adipose tissue:  

- iWAT (mg)    

- rpWAT (mg) 

 

329.4±57.0a 

65.8±20.8 

 

372.0±110.0 

78.8±34.6 

 

219.1±47.1b 

71.6±23.3d 

 

345.3±91.0c 

147.7±36.4e 

Brown adipose tissue: 

- isBAT (mg)  

 

70.6±10.2    

 

73±10.3 

 

86.6±15.4 

 

103.6±17.2 

Skeletal muscle: 

- femoral (mg) 111.9±10.8 

 

116.1±10.0 

 

145.3±13.9 

 

155.0±15.4 

Liver (g) 1.37±0.17         1.29 ±0.10 1.50 ±0.15 1.57 ±0.17 

Spleen (mg) 101.1±11.0 102.7±12.8 55.0 ±8.0 60.4 ±1.7 

   

 

 

 

 

Table 4.2 Tissue/organ mass on day 45 in control (C) and high fat diet (HF) groups in

both SWR/J and AKR/J strains.  

Data indicate mean ± SD. Pa-b and Pd-e < 0.001, Pb-c < 0.01.  
iWAT: inguinal white adipose tissue 
rpWAT: retroperitoneal white adipose tissue 
isBAT: inter scapular brown adipose tissue 
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Tissue/organ mass (%) 

SWR/J male AKR/J male 

              Data  

 

Tissue C (n=11) HF (n=13) C (n=8) HF (n=9) 

White adipose tissue:  

- iWAT  

- rpWAT  

 

1.513±0.267a 

0.299±0.086 

 

1.690±0.418 

0.355±0.137 

 

0.904±0.148b 

0.293±0.080d 

 

1.312±0.250c 

0.560±0.093e 

Brown adipose tissue: 

- isBAT  

 

0.326±0.041 

 

0.340±0.005 

 

0.358±0.050 

 

0.396±0.044 

Skeletal muscle: 

- femoral 

 

0.516±0.059 

 

0.527±0.049 

 

0.604±0.054 

 

0.596±0.061 

Liver  6.131±0.387 5.901±0.189 6.228±0.578 6.045±0.410 

Spleen  0.465±0.043 0.467±0.065 0.228±0.017 0.234±0.011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 Proportion of tissue/organ mass to whole body mass on day 45 in control (C)

and high fat diet (HF) groups in both SWR/J and AKR/J strains.  

Data indicate mean ± SD. Pa-b and Pd-e < 0.001, Pb-c < 0.01.  
iWAT: inguinal white adipose tissue 
rpWAT: retroperitoneal white adipose tissue 
isBAT: inter scapular brown adipose tissue 
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4.1.5 Litter size 

In this study, litter size was investigated in both 29 litters of SWR/J and 20 litters of AKR/J 

mice. Litter size at birth was 7±2 individuals in SWR/J mice whereas 5±2 in AKR/J mice 

(Figure 4.5). On day 21 offspring from large litters tended to be smaller than individuals from 

small litters. And the relationship between body mass and litter size is shown in Figure 4.6. The 

body mass of SWR/J mice at age of 21 days was 8.41±0.92 g, lower than SWR/J mice 

(9.50±2.34 g). The variation of body mass in small litter size was higher. To exclude this 

influence, only mice from large litters (>5) were selected for the further experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 frequency distribution of litter size in two inbred mouse stains. Bars indicate the 

number of litters in corresponding litter sizes in SWR/J and AKR/J mice.  
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Figure 4.6 The relationship between body mass (day 21) and litter size in two inbred mouse 

strains. The inverse relation is shown in both strains with r2=0.86 in SWR/J and 0.75 in AKR/J 

mice. 
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4.2 Gene expression study 

The in vivo feeding experiments confirmed that in comparison to AKR/J mice, SWR/J mice 

were resistant to high fat diet feeding in terms of body mass increase and adiposity (body fat 

content). Using array (filter and chip) technology, it was investigated whether these phenotypic 

differences between strains were associated with differential gene expression in the 

hypothalamus. 

 

4.2.1 Data analysis I  

4.2.1.1 Array hybridization 

The numbers of selected candidate genes from the first set of filter complex hybridizations are 

listed in Table 4.3. there were more differentially expressed genes found in the inter-strain 

comparison than in the intra-strain diet comparison, i.e., the impact of genetic background 

(strain) on differential gene expression appeared to be larger than the diet effect.  

 

 

Comparison group Number of candidates 

AKR/J Control vs. HF 10 

SWR/J Control vs. HF 13 

Control AKR/J vs. SWR/J 60 

HF AKR/J vs. SWR/J 28 

 

Focused on the diet related genes, the fold changes in SWR/J gene expression were larger than 

in AKR/J. The candidate genes regulated by different diet within either AKR/J or SWR/J strain 

are shown in Table 4.4 and 4.5. The candidate genes in the inter strain comparison are shown in 

Appendix.  

 

 

 

 

 

Table 4.3 Number of candidate genes in different comparison groups identified from data 
analysis I. 
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Table 4.4 List of candidate genes regulated by diet in AKR/J mice from data analysis I. 

AKR/J 

RZPD clone ID 

GenBank 

accession 

number 

Cluster description by RZPD Fold 

changea 

IMAGp952A0616 aa030182, 

ai323327, 

ai894083 

SRY-box containing gene 3 2.68 

IMAGp952A0534 aa289979, 

ai661640 

ribosomal protein L21 2.55 

IMAGp952I2410 ai413755, 

ai425782, 

w80260 

chaperonin subunit 3 (gamma) 2.26 

IMAGp952F0922 aa119175 serine/threonine kinase 19 2.17 

IMAGp952D0658 ai226511, 

ai266811 

ornithine transcarbamylase 2.12 

IMAGp952O0249 aa673382 mitogen-activated protein kinase kinase 

kinase kinase 6 

2.84 

IMAGp952F0432 aa272827 wingless-related MMTV integration site 

11 

-2.34 

IMAGp952P1311 w97066 transgelin 2.32 

IMAGp952A1121 aa086944, 

ai595208 

ESTs, Weakly similar to S55051 Bicaudal-

C - fruit fly [D.melanogaster] 

-2.29 

IMAGp952H1522 aa119208 M.musculus mRNA for e1 protein 2.10 
a: positive means upregulated in HF group while negative means downregulated 
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Table 4.5 List of candidate genes regulated by diet in SWR/J mice from data analysis I. 

RZPD clone ID  GenBank 
accession 
number 

Cluster description by RZPD Fold 
changea 

IMAGp952C1431 aa048282 ESTs, Highly similar to T17338 
hypothetical protein DKFZp434O125.1 - 
human [H.sapiens] 

13.59 

IMAGp952F2058 ai226516, 
ai266816 

transthyretin 10.16 

IMAGp952F0714 aa011728 ESTs, Weakly similar to KIAA0672 
protein [H.sapiens] 

10.07 

IMAGp952J1319 aa049077 ESTs, Weakly similar to AF161429_1 
HSPC311 [H.sapiens] 

9.16 

IMAGp952N1531 aa060121 Down syndrome critical region homolog 2 
(human) 

8.76 

IMAGp952E149 w71639 ESTs, Weakly similar to matrin cyclophilin 
[R.norvegicus] 

4.02 

IMAGp952L0560 ai227481 programmed cell death 4 -3.36 

IMAGp952B1828 aa267461 ESTs, Weakly similar to TIG1_human 
retinoic acid receptor responder protein 1 
[H.sapiens] 

2.81 

IMAGp952L1821 aa117451 ESTs, Weakly similar to y+L amino acid 
transporter 1 [R.norvegicus] 

-2.62 

IMAGp952K0127 aa168457 ESTs, Weakly similar to ZIP-kinase 
[M.musculus] 

2.59 

IMAGp952L1859 ai117643, 
ai151964 

ESTs, Moderately  similar to glucose 
inhibited division protein A [Pseudomonas 
putida] 

2.51 

IMAGp952A245 w41629 ESTs, Highly  similar to NADH-
ubiquinone oxidoreductase SGDH subunit 
precursor [Bos taurus] 

2.51 

IMAGp952A1547 aa547134, 
ai505917 

baculoviral IAP repeat-containing 6 2.50 

a: positive means upregulated in HF group while negative means downregulated 

 

IMAGp952F2058 (Transthyretin, TTR) was found in the comparisons of SWR/J Control vs. 

HF and HF SWR/J vs. AKR/J (Appendix 2), and it was shown upregulated >10 fold by high fat 

diet.  
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4.2.1.2 Visual inspection of the filter array image  

Each filter image was analyzed using ArrayVision software. All of the candidate genes selected 

in data analysis I (Table 4.4 and 4.5) were checked to find whether the expression image was 

affected by neighbor spots, dirt or other biasing effects. Each candidate (in duplicate) was 

circled both in the control and the HF filter, and the result of the filter image inspection 

(intensity) was consistent with the data analysis result. Examples are given in Figure 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Filter image inspections of IMAGp952 O2034, F2058, C1431, F0714, J1319 and 

N1531. The candidate (in duplicate) was circled both in the control and the HF filter. 
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IMAGp952N1531 
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4.2.1.3 Northern blot analysis 

Two candidates, one from AKR/J Ctrl vs. HF – IMAGp952O2034 (aa289615) and the other 

one from SWR/J control vs. HF – IMAGp952F2058 (Transthyretin, TTR) were tested on 

Northern blot analysis loaded with the same RNA as used in the cDNA synthesis for the filter 

hybridization.  

On the filter, IMAGp952O2034 (aa289615) was two fold upregulated in AKR/J HF compared 

with AKR/J control. However, this result was not confirmed on Northern blot analysis (Figure 

4.8). IMAGp952F2058 (Transthyretin, TTR) was > 10 fold upregulated in SWR/J HF 

compared with SWR/J control but not in AKR/J mice, and this finding was confirmed on 

Northern blot analysis (Figure 4.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 IMAGp952O2034 in Northern blot (right) loaded with the same pooled RNA

samples as used in the cDNA syntheses for the filter hybridizations. The left is the RNA gel

(ethidium bromide staining) used for Northern blotting.  

Figure 4.9 IMAGp952F2058 in Northern blot (right) loaded with the same pooled RNA

samples as used in the cDNA syntheses for the filter hybridizations. The left is the RNA gel

(ethidium bromide staining) used for Northern blotting. 
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Northern blots loaded with 16 different individual RNA samples were used for further testing 

of these two candidates. Whereas IMAGp952O2034 (aa289615) (Figure 4.10) was again not 

confirmed. The expression of IMAGp952F2058 (Transthyretin, TTR) showed a marked 

variation in different RNA samples (Figure 4.11).  

 

 

 

  

 

 

 

  

 

 

 

 

 

 

Figure 4.10 Northern blot analysis (with new RNA samples) of IMAGp952O2034. Each lane 

contains RNA from 4 individual SWR/J or AKR/J mice fed either the control (C1-C4) or the 

high fat (HF1-HF4) diet. The upper is the RNA gel (ethidium bromide staining) used for 

Northern blotting. 
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Figure 4.11 Northern blot analysis (with new RNA samples) of IMAGp952F2058. Each lane 

contains RNA from 4 individual SWR/J or AKR/J mice fed either the control (C1-C4) or the 

high fat (HF1-HF4) diet. The upper is the RNA gel (ethidium bromide staining) used for 

Northern blotting. 
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Another 4 candidates with high fold changes (8 to 13) from SWR/J Ctrl vs. HF were tested by 

Northern blot analysis (Figure 4.12). The expression patterns were similar to TTR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Northern blot analyses (with new RNA samples) of 4 different candidates from 

SWR/J control vs. HF. Each lane contains RNA from 4 individual SWR/J or AKR/J mice fed 

either the control (C1-C4) or the high fat (HF1-HF4) diet, or the same pooled RNA samples as 

used in the cDNA syntheses for the filter hybridizations (C or HF).  
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4.2.1.4 Sequencing 

In Table 4.6 the sequencing results of the 6 candidates tested by Northern blot analysis are 

listed. In RZPD database, these 6 candidates were named differently with different description. 

However the sequencing results showed that 5 out of the 6 candidates tested are TTR.    

 

     Table 4.6 The sequencing results of the 6 candidates tested by Northern blot analysis. 

Northern blot 

analysis 

RZPD clone ID  RZPD description Blast results 

with 

commercial 

sequencing  
Original 

RNA 

Pool 

New RNA 

from 

individual 

mouse 

IMAGp952O2034 aa289615, EST aa289615, EST negative negative 

IMAGp952F2058 Transthyretin Transthyretin positive negative 

IMAGp952C1431 ESTs, Highly similar to 

T17338 hypothetical 

Protein 

Transthyretin positive negative 

IMAGp952F0714 ESTs, Weakly similar to 

KIAA0672 protein 

Transthyretin positive negative 

IMAGp952J1319 ESTs, Weakly similar to 

AF161429_1 HSPC311 

Transthyretin positive negative 

IMAGp952N1531 Down syndrome critical 

region homolog 2 

Transthyretin positive negative 

    Negative: the result of Northern blot analysis is not consistent with filter result. 

    Positive: the result of Northern blot analysis is consistent with filter result. 
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4.2.1.5 In Situ hybridization 

In Situ hybridization (Figure 4.13) showed that Transthyretin (TTR) is localized out side of the 

hypothalamus – dosal 3rd ventricle and the lateral ventricle, both in AKR/J and SWR/J mice. 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Data analysis II 

4.2.2.1 Array hybridization  

The 17 selected candidates are listed in Table 4.7 and 4.8. The majority of candidates (13 out of 

17) emerged from the interstrain comparison.  

 

  

Comparison group Number of candidates 

AKR/J Control vs. HF 2 

SWR/J Control vs. HF 2 

Control AKR/J vs. SWR/J 10 

HF AKR/J vs. SWR/J 3 

 

 

 

 

Figure 4.13 Representative in situ hybridization image demonstrating the

expression of TTR (trsnsthyretin) in the mouse brain. A section from an AKR/J /

SWR/J muse is shown. The hypothalamus is circled.  

Table 4.7 Number of candidates in different comparison groups from data analysis II 

Lateral ventricle 

Dorsal 3rd ventricle
  hypothalamus
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Table 4.8 List of candidates from data analysis II (Part I-IV) 

 

Part I – AKR/J control vs. HF: 

GenBank 

accession 

number 

RZPD 

Clone ID 

Affy ID Blast result Filter 

fold 

changea 

Chip 

fold 

changea

ai119403, 

ai131627 

IMAGp952

J2454 

93797_g_at Atp1a1 ATPase, Na+/K+ 

transporting, alpha 1 

polypeptide 

-1.80  1.25 

w91276 IMAGp952

B0812 

160289_s_at Mm.29482, 1110019C08Rik -2.04 -1.14 

a: positive means upregulated in the HF group while negative means downregulated  

 

Part II – SWR/J control vs. HF: 

GenBank 

accession 

number 

RZPD 

Clone ID 

Affy ID Blast result Filter 

fold 

changea 

Chip 

fold 

changea

ai196320 IMAGp952

J0157 

162274_f_at Lisch7-pending liver-specific 

bHLH-Zip transcription 

factor 

-2.10 -1.27 

aa607542 IMAGp952

L2249 

97989_at similar to gb:M29551 protein 

phosphatase 2b, catalytic 

subunit 2 (human); mRNA 

sequence 

 2.15  1.16 

a: positive means upregulated in the HF group while negative means downregulated 
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Part III – AKR/J control vs. SWR/J control: 

GenBank 

accession 

number 

RZPD Clone ID Affy ID Blast result Filter 

fold 

changea 

Chip 

fold 

changea

aa413119 IMAGp952A1740 93721_at Cap1 adenylyl 
cyclase-associated 
CAP protein homolog 
1 (S. cerevisiae, S. 
pombe) 

 2.03  1.32 

aa036456, 
ai323372, 
ai325380 

IMAGp952H2117 93630_at CUGBP1 CUG triplet 
repeat, RNA binding 
protein 1 

-2.07 -1.20 

aa009082 IMAGp952C2231 94522_at Dctn3 dynactin 3 -2.02 -1.36 

w75791 IMAGp952L059 98525_f_at similar to edr erythroid 
differentiation 
regulator  

 2.39  4.29 

aa475583 IMAGp952K0643 100494_at Fgf1 fibroblast growth 
factor 1 

-2.44 -1.20 

ai097693, 
ai118254 
 
ai119514, 
ai158857 

IMAGp952J2356 
 
 
IMAGp952K1155 

93269_at 
 
 
93269_at 

Glo1 glyoxalase 1 -2.44 
 
 

-2.11 

-1.88 
 
 

-1.88 

 
ai196289, 
ai196587 

  
IMAGp952P0557 
 

  
 93269_at 

   
-2.58 

 
-1.88 

      
ai413558, 
“w34034” 

IMAGp952B243 162457_f_at Hba- α1 hemoglobin 
alpha, adult chain 1 

 2.01  1.64 

aa052364 IMAGp952H105 96667_at Mm.7418, Ppp2cb 
protein phosphatase 
2a, catalytic subunit, 
beta isoform 

 2.23  1.32 

aa473963 IMAGp952A2437 95508_at Nckap1 NCK-
associated protein 1 

-2.02 -1.65 

aa509365 IMAGp952L2441 101024_i_at Skp1a S-phase kinase-
associated protein 1A 

-2.65 -1.32 

a: positive means upregulated in the SWR/J group while negative means downregulated 
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Part IV – AKR/J HF vs. SWR/J HF: 

GenBank 

accession 

number 

RZPD 

Clone ID 

Affy ID Blast result Filter 

fold 

changea 

Chip 

fold 

changea

w97978 IMAGp952

L0912 

101102_at Igbp1 immunoglobulin 

binding protein 1 

 3.76  1.22 

aa146387, 

ai326750, 

ai528541 

IMAGp952

P2126 

162137_f_at Txk TXK tyrosine kinase -2.48 -1.16 

aa030192, 

ai430809, 

ai509123 

IMAGp952

O0316 

102002_at Ubqln2 ubiquilin 2  2.23  1.24 

a: positive means upregulated in the SWR/J group while negative means downregulated 

 

From this list, Hba-α1 and Glo1 were selected according to the fold change in filter and chip for 

further experiments. Although the fold change of candidate edr (w75791) is high in both arrays 

the blast result is not satisfactory so that it was not selected. 
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4.2.2.2 Visual inspection of the filter array image  

The expression patterns of Hba-α1 (hemoglobin alpha, adult; IMAGp952B243) and Glo1 

(glyoxalase 1; IMAGp952J2356, K1155 and P0557) were confirmed by filter image inspections 

(Figure 4.14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Filter image inspections of IMAGp952B243, P0577, J2356 and K1155. The 

candidate (in duplicate) was circled both in SWR/J and AKR/J control filter. 
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4.2.2.3 Northern blot analysis of Glo1 

The higher array Glo1 RNA expression level in AKR/J mice was confirmed by Northern blot 

analysis (Figure 4.15). Within strains, there was no difference in Glo1 expression, i.e., Glo1 

was not affected by diet. Because of sample limitation, only Glo1 was tested on Northern blot 

analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Hypothalamic Glo1 mRNA expression in individual SWR/J and AKR/J mice fed 

either control or HF diet (n = 5 per group). Bars indicate the expression of relative signal 

intensity of each band. Data indicate signal intensity mean ± SD for each group. The difference 

in Glo1 expression between strains is significant (P< 0.001), but not within strains.       
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4.2.2.4 PCR 

PCR was performed with gene-specific primers designed for 8 selected candidates. Only one 

was consistent with the array result (Ppp2cb) but the difference was not significant and the fold 

change (1.16 in PCR) was lower than in array (2.15 in filter and 1.16 in chip). Two candidate 

genes showed regulation in the opposite direction and five showed high individual variation but 

no systematic effect of strain or diet. Glo1 was not confirmed in this normal RT-PCR, however, 

it was confirmed in real time RT-PCR.  

 

 
 

 

 

 

 

 

Figure 4.16 RT-PCR analysis of candidates selected from array data analysis II. Band intensity 

was analyzed by Image station (Kodak).  Glo1 showed slightly downregulated in ac compared 

with sc. Ppp2cb was consistent with the array result, but the fold change is lower in PCR (1.16) 

and the difference was not significant. ac: AKR/J control, sc: SWR/J control, ah: AKR/J high 

fat, sh: SWR/J high fat. 

 

 

 

 

 

 

 

 

 

 Ladder ac1 ac2  ah1  ah2   sc1  sc2   sh1  sh2 
Intensity102 129  138  143   138   143   142  134 

Glo1

 sc1  sc2   sh1 sh2 
 99  114   125  123 

Ppp2cb  
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4.2.2.5 In Situ hybridization 

In Situ hybridization of Hba-α1 (Figure 4.17) showed that the expression of Hba-α1 is not 

restricted to the hypothalamus but the signals are almost randomly distributed all over the brain. 

A hotspot of Hba-α1 expression appears to be in the region of dorsal 3rd ventrile and supraoptic 

nucleus. In general SWR/J mice have a higher Hba-α1 expression than AKR/J both inside and 

outside the hypothalamus. In contrast, Glo1 shows a very district pattern of expression 

preferably in the hippocampus (Figure 4.18). In the hypothalamus, Glo1 expression indicates in 

the arcuate nucleus (ARC), ventromedial hypothalamic nucleus (VMH) and paraventricular 

hypothalamic nucleus (PVN). Whereas the expression of Glo1 outside the hypothalamus is 

similar in both strains, Glo1 mRNA expression in the hypothalamus is much stronger in AKR/J 

compared to SWR/J mice. In situ hybridization therefore qualitatively confirms the results by 

array experiments with respect to Glo1 and Hba-α1.  

 

 
Figure 4.17 Representative image of Hba-α1 mRNA expression in the mouse brain by in situ 

hybridization. Hba-α1 is distributed all over the brain and its overall expression is higher in 

SWR/J than in AKR/J mice. D3V: dosal 3rd ventricle, Hypo.: hypothalamus, SON: supraoptic 

nucleus.  
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D3V
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Figure 4.18 Representative image of Glo1 mRNA expression in the mouse brain by in situ 

hybridization. In the hypothalamus, Glo1 is expressed in the ARC, VMH and PVN, and its 

hypothalamic expression is higher in AKR/J compared to SWR/J mice.  

 

 

4.2.2.6 Alignment of hemoglobin and neuroglobin gene sequences 

Hemoglobin in the erythrocyte is produced from bone marrow. It is surprising to find 

hemoglobin expressed in the brain. There are several members in the globin family – 

hemoglobin, myoglobin and neuroglobin. To check the similarity of sequences between 

neuroglobin (which localizes in the brain) and hemoglobin probe which was used for in situ 

hybridization, alignment analysis was carried out and it showed only 42% similarity (Figure 

4.19).  
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Figure 4.19 Sequence alignment of neuroglobin and hemoglobin probe which was used for in 

situ hybridization. Positions with identical nucleotides are drawn against a black background. 

Dashes represent deletions in the sequence of haemoglobin relative to neuroglobin.  
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4.2.3 Data analysis III  

Focused on diet induced genes, new candidates were selected only from filter data and then 11 

clones were ordered from RZPD.  5 of them were verified in Northern blot analysis but only 

one was confirmed (Table 4.9), which was also confirmed in the filter image inspection (Figure 

4.20). Only the positive Northern blot is shown in Figure 4.21, other blots not shown. 

 

Table 4.9 list of data analysis III 

GenBank 

accession 

number 

 RZPD Clone ID Comparison 

groupa 

 Blast result Fold 

changeb 

Northern 

blot 

analysisc 

aa451138, 

ai481012 

IMAGp952A0241 ACH high mobility group AT-hook 

2, pseudogene 1 

-2.16  

aa051449 IMAGp952J2019 ACH intestinal cell kinase -1.99 N 

aa451434 IMAGp952G1341 ACH map2k7 mitogen activated 

protein kinase kinase 7 

-1.52  

aa869362 IMAGp952A1851 ACH tumor necrosis factor, alpha-

induced protein 1 (endothelial) 

 1.97 P 

w41719 IMAGp952B225 SCH asparaginyl-tRNA synthetase -2.28  

aa511409 IMAGp952D2441 SCH glutaminase  -2.73 O 

ai385680, 

ai893963, 

w79980 

IMAGp952M2410 SCH GPC4 glypican 4 -3.80 N 

aa537148 IMAGp952A1947 SCH laminin, alpha 5  -2.61 O 

aa269563 IMAGp952C0733 SCH RIKEN hypothetical protein -3.75  

aa546545 IMAGp952C2147 SCH Thrap6-thyroid hormone 

receptor associated protein 6 

or hypothetical protein 

-2.09  

aa451295 IMAGp952A1941 SCH ubiquitin-like 3  -2.71  
a: ACH means AKR/J control vs. HF; SCH means SWR/J control vs. HF 
b: negative means downregulated in HF 
c: N means no difference between two groups; P means positive; O means not detectable.  
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Figure 4.20 Filter image inspection of TNFAIP1. The candidate (in duplicate) was circled both 
in control and HF filter.  
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 4.21 TNFAIP1 mRNA expression in individual SWR/J and AKR/J mice fed either 

control or HF diet (n = 3-4 per group). Bars indicate the relative signal intensity of each band 

and the data indicate signal intensity mean ± SD for each group. There is a significant 

difference in TNFAIP1 expression between HF and control mice in AKR/J, but not in SWR/J.  

 

In Situ hybridization shows that TNFAIP1 localizes in the arcuate nucleus, the ventromedial 

hypothalamic nucleus and the paraventricular hypothalamic nucleus (Figure 4.22). 
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Image-Pro Plus (Media Cybernetics). Although it showed 1.6 fold upregulation in the ARC by 

high fat diet, this difference was not significant because of the individual variation (Figure 

4.22), further experiment with more samples should be carried out to confirm this conclusion. 

 

                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 representative image of TNFAIP1 mRNA expression in the mouse brain by in situ 

hybridization and its quantification analysis. In the hypothalamus, TNFAIP1 is expressed the 

ARC, VMH and PVN. Bars indicate relative signal intensity of TNFAIP1 expression in each 

hypothalamus. ac: AKR/J control, ah: AKR/J high fat. 
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4.2.4 Real-time RT-PCR 

A real-time RT-PCR trace for 32 wells on a 96-well plate is shown in Figure 4.23.  The 

threshold was defined by the software in the region associated with an exponential growth of 

PCR product. The point at which the fluorescence crosses the threshold is called the Ct value 

which is inversely proportional to the logarithm value of starting amount of target DNA.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.23 A real-time RT-PCR trace for 32 wells on a 96-well plate. Cycles are shown along 

the X-axis, and background corrected arbitrary fluorescence units are shown on the Y-axis. The 

real-time RT-PCR traces are indicated with different colors. The orange horizontal line 

indicates the threshold.  CF RFU: curve fit relative fluorescence units; Ct: threshold cycle. 

 

The real-time RT-PCR standard curve is shown in Figure 4.24. The standard curve is generated 

from a dilution series (1, 1:4, 1:16, 1:64) of cDNA. From the standard curve, PCR efficiency 

was calculated and relative values for the respective target gene in each experimental and 

control sample were extrapolated.  

 

 

 

 
 

Threshold 
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Figure 4.24 Real-time RT-PCR standard curve. Cycles (   ) indicate the duplicates of 4 dilutions 

(1, 1:4, 1:16, 1:64) and squares (    ) indicate the duplicates of unknown samples.  

 

Four candidate genes were tested in real-time RT-PCR. The relative value was the normalized 

data which was derived from the mean of target gene starting quantity (SQ) divided by the 

mean of corresponding beta actin SQ. However, only strain specific genes – Glo1 and Hba-α1 

were found significantly differentially expressed between strains. No significant difference was 

found for diet-induced genes – Ppp2cb and TNFAIP1 between the control and high fat diet 

groups within strains (Figure 4.25).  
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Figure 4.25 Real-time RT-PCR analyses of 4 candidate genes.  Bars indicate relative value of 

candidate gene in individual animal sample. Strain specific genes – Glo1 and Hba-α1 were 

found significantly differentially expressed between strains, whereas diet-induced genes – 

Ppp2cb and TNFAIP1 were found no difference within strains. Pa2-b2 < 0.05, Pa-b< 0.01, 

Pa1-b1and Pc-d < 0.001. sc: SWR/J control, sh: SWR/J high fat, ac: AKR/J control, ah: AKR/J 

high fat. 
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4.3 SNP analysis of gene Glo1 

Kathrin Reichwald (IMB, Jena) resequenced the Glo1 gene and revealed several sequence 

variations in non-coding and coding regions by SNP analysis (Table 4.10). The reference DNA 

sequence (rc.mm.Glo1.genomic.040120, 24665 bp) used in SNP analysis consists of 19665 bp 

of Glo1 gene and twice 2500 bp of upstream and down stream sequences. Furthermore, the 

online program – MatchTM at www.gene-regulation.com was used to search different potential 

binding sites for transcription factors due to the single nucleotide polymorphism between 

AKR/J and SWR/J strains. Some transcription factor binding sites are changed by the 

nucleotide exchange, which is shown different between these strains.  

 
Table 4.10 SNP analysis of Glo1 gene in AKR/J and SWR/J 
 5’ upstream region Exon 1 Intron 1 Exon3 Intron 5 
Position in 
the genomic 
DNA 

858 925 1057 1374 1601 2158 2485 2732 14878 14882 18737 20730

Sequence in 
reference 
DNA  

C A M G A C G A T G G G 

Sequence in 
AKR/J 

M M M AA AA C/T GG AA CC GG GG TT 

Position in  
AKR/J 
sequence 

857 923 1055 1372 1599 2156 2483 2730 14876 14880 18735 20728

Sequence in 
SWR/J 

M M CC GG M CC CC TT CC AA AA TT 

Position in  
SWR/J 
sequence 

857 923 1056 1373 1599 2156 2483 2730 14876 14880 18735 20728

Transcription 
factor bound 

ND ND ND ND ND B1 ND B2 ND B3 B4 ND 

M: insertion or deletion; AA: homozygote; CT: heterozygote; ND: no difference; B1: T bind s 
c-Ets-1(p54) and FOXD3; B2: A binds CHOP-C/EBPalpha; B3: G binds GATA-1, -2 and -X; 
B4: G binds HNF-4 and Oct-1, A binds HNF-1 and Pax-4. 
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5 Discussion  

5.1 Diet experiment 

In this study, two different diets – a standard control diet and a high fat diet, and two different 

inbred mouse strains –AKR/J and SWR/J – were applied to investigate the effect of diet-

induced obesity on hypothalamus gene expression. The energy from the high fat diet is mainly 

derived from fat, whereas > 50% of the energy in the control diet comes from carbohydrates. 

AKR/J and SWR/J mice represent a useful model for diet research because of their differential 

response to HF feeding. AKR/J mice prefer HF and are prone to obesity, and on the contrary, 

SWR/J mice prefer carbohydrates and are obesity resistant. (Bachmanov et al., 2002;Prpic et 

al., 2002;Smith et al., 1997;Smith et al., 1999;Smith et al., 2000;Smith et al., 2001).  

 

5.1.1 Body mass and body fat 

On given the high fat diet, AKR/J mice increased their body mass rapidly within the first 1-2 

days, after which, body mass increased at a stable level, similar to control mice. After 10 days 

on the diet experiment, both female and male AKR/J mice fed the high fat diet were 

significantly heavier than the control groups. In contrast, SWR/J mice showed no difference in 

body mass between the high fat diet and the control groups (Figure 4.1).  

Not only body mass but also body fat (body fat mass and body fat percentage) in the AKR/J 

high fat groups was higher than in the control groups (Figure 4.3). Compared with the control 

group, the AKR/J high fat diet group had lighter body lean mass (Figure 4.4). This suggests that 

the increase of body mass in AKR/J high fat diet feeding group was primarily due to an 

increase in body fat content, This was reflected in the white adipose tissue depots (inguinal and 

retroperitoneal), which were larger in the AKR/J high fat groups compared with the control 

groups. Similar results were obtained by Prpic et al. in a 4-week high fat diet experiment (Prpic 

et al., 2002) and also by West et al. in a 7-week high fat diet experiment (West et al., 1992). 

Moreover, fat distribution also showed difference between strains. Originally, AKR/J mice had 

smaller inguinal fat pad and similar retroperitoneal fat pad compared with SWR/J mice. After 

10 days on high fat diet, because both were significantly increased only in AKR/J mice, 

inguinal fat pad became similar in two strains and retroperitoneal fat pad was larger in AKR/J 
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than in SWR/J mice. The difference of regional fat distribution may also a phenotype in DIO 

model.  

 

5.1.2 Energy intake  

In the present 10-day diet experiment, energy intake in both strains was significantly higher in 

the high fat diet groups than in the control groups (Figure 4.2), which is consistent with the 

report of Smith et al. (Smith et al., 1999), but is different from the results shown in other 

studies where only AKR/J mice exposed to high fat diet took more energy but not SWR/J mice 

(Prpic et al., 2002;West et al., 1992).  

The reason for this difference could be the different exposure time to high fat diet feeding. 

Ziotopoulou et al. reported that significant difference of energy intake between high fat and low 

fat feeding groups appeared on day 2 but disappeared on day 7, and then again appeared on day 

14 (Ziotopoulou et al., 2000). This was also supported by West et al., who reported that some 

high fat diet groups consumed significantly more energy than the controls only in the first week 

but not in the following 7 weeks (West et al., 1992). It is also possible that the behavior of the 

same mouse strain in different laboratories is different even if the equipment, test protocols and 

many environmental variables are rigorously standardized (Crabbe et al., 1999).  

 

5.1.3 Energy expenditure 

Different genetic background results in the different phenotype between these two strains. The 

observation that the high fat groups in both SWR/J and AKR/J strains consumed more energy 

but only AKR/J mice became obese suggests that SWR/J mice may be able to increase their 

energy expenditure and thereby counterbalance obesity when confronted with HF feeding 

supplies. In agreement, Wahlsten et al. reported that SWR/J mice were particularly difficult to 

handle and much wilder than AKR/J mice (Wahlsten et al., 2003). Moreover, this hypothesis is 

also supported by West et al. who measured energy expenditure by doubly labeled water and 

found that energy expenditure per mouse was higher in SWR/J than in AKRJ mice (West et al., 

1994). In another study, AKR/J mice ate more than SWR/J mice when using the unadjusted 

daily food intake (g/mouse), on the contrary, when the adjusted daily food intake related to 
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body mass (g/30g body mass) was calculated, SWR/J mice consumed more (Bachmanov et al., 

2002), because AKR/J mice are heavier.  Konarzewski and Diamond measured basal metabolic 

rate (BMR) in AKR/J and SWR/J mice and showed no difference (Konarzewski & Diamond, 

1995), however, because AKR/J mice are heavier, SWR/J consumed more oxygen.  

 

5.1.4 Litter size 

In this study, SWR/J mice had a higher breeding performance than AKR/J mice (www.jax.org; 

(Osman et al., 1997) and litter size in SWR/J (7.7 ± 1.8) was larger than in AKR/J mice (5.7 ± 

2.4). The smaller litter size caused heavier body masses on day 21 in AKR/J (9.50 ± 2.34 g) 

than in SWR/J mice (8.41 ± 0.92 g) (Figure 4.5). In agreement, Epstein reported the inverse 

relation between litter size and body mass (Epstein, 1978). This may be a point to help us to 

understand why AKR/J is prone to obese. It was reported that animals (mice, rats and rabbits) 

in small litters were heavier and gained more rapidly than animals in large litters (Roberts et al., 

1988;Cryer & Jones, 1980;Rommers et al., 2001). 

 

5.2 Gene expression profiling 

5.2.1 Normalization  

The RZPD filter hybridization was made twice with the same sample from each group to check 

reproducibility of the results. Because of the difference in radioactive labelling efficiency, 

cDNA filter quality, and exposure time, raw data can not be compared and therefore a 

normalization procedure is required. Different normalization methods have been developed and 

discussed since array technology is used more and more widely. For instance, the MAS 5.0 

Statistical algorithm from Affymetrix (www.affymetrix.com, 2001), intensity-dependent 

normalization (Yang et al., 2002),  non-linear normalization (Workman et al., 2002), and so on. 

The advantage and disadvantage of different methods have been still in discussion. After 

comparison, the latest published quantile normalization (Bolstad et al., 2003) was performed 

for the whole set of filter data to reduce technical bias between filters (Figure 5.1). For chip 

data, the same normalization procedure was applied. After normalization it is possible to make 

the following quantitative comparisons of signal intensities between filters and chips 
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respectively: SWR/J control vs. HF, AKR/J control vs. HF, SWR/J control vs. AKR/J control, 

and SWR/J HF vs. AKR/J HF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Quantile normalization. The x- and y-axes indicate the intensity of individual spots 

from filters 132 and 136 respectively, which in this example were both hybridized with the 

same probe from SWR/J control mice. The solid straight line in each plot represents the line of 

equality of signal intensity. 

 

5.2.2 Candidate selection criteria 

Although the fold change is the most important factor for the differentially expressed gene, the 

candidate selection must go through several criteria including it because all of others can affect 
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it. The candidate selection procedure was based on the following criteria: M value (indicates 

fold change of signal intensity between comparison groups), A value (indicates intensity), 

standard deviation of duplicates within array and of the same candidate gene between arrays, 

and z-scores of signal intensity between comparison groups. The MA plot is first described by 

Dudoit et al. (Dudoit et al., 2002) and widely applied in array data analysis. The M value is a 

quantitative measure for the between-group difference in signal intensity of a specific gene 

spot. However, M values are not independent of absolute signal intensity: for low intensities, M 

values are not reliable because technical variance such as background or neighbouring spots can 

produce large effects, which have no biological significance. Therefore, genes with low M 

values, or even high M values but with low A values were removed from the candidate lists. By 

checking z-scores, most of the genes with relative high M value but in the range of low 

intensity were also eliminated. In addition, differences in spot intensity of each duplicate gene 

within arrays and between arrays was calculated, and only the genes which exhibited low 

differences were short-listed for further analysis.  

 

5.2.3 RZPD high density cDNA Filters and Affymetrix GeneChips 

A filter is an array of clones printed on nylon membrane while a chip is an array of 

oligonucleotides (25-mers) that are synthesized in a photolithographic process directly onto 

chip's surface (glass) at very high density. Filters are hybridized to radioactive labelled cDNA 

synthesized from RNA, while chips are hybridized to biotin-labelled cRNA generated via 

cDNA from RNA. Compared with chips, filters are cheaper and can be reused up to 10 times. 

The disadvantage is that there are 20-30% false spots (telephone communication with RZPD) 

on the filters of the first generation (used in this study), i.e., 20 –30% of clones spotted on a 

filter do not match the gene description supplied by the RZPD. Therefore, the original spotted 

clones of the candidates selected must be sequenced for confirmation. This shortage is now 

overcome in the product of the second generation: all clones are sequenced before they are 

spotted onto the filters. In this gene expression study, it shows that filters are more sensitive 

than chips, because the fold change of the same gene in the filter is higher than in the chip, but 

the variation in filter is also higher than in chip. The optimal method would be to combine these 
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two technologies. In summary, filters appear to be more sensitive at the detection of small 

effects than filters.  

 

5.2.4 Validation of candidate genes from array analysis  

There are a variety of methods for the validation of candidate genes selected from array 

analysis. These include: Northern blot analysis, in situ hybridization, traditional RT-PCR and 

real-time RT-PCR. However, not all of the candidates from array analysis can be validated in 

other methods. Using real-time RT-PCR Mutch et al. examined 27 candidates selected from 

microarray data and found a concordance of 77.7% (Mutch et al., 2002). Similar results (71%) 

were reported by Rajeevan et al. in a validation study of array-based gene expression profiles 

by real-time RT-PCR using the candidates with more than twofold difference (Rajeevan et al., 

2001b;Rajeevan et al., 2001a). In this study, 3 of 10 genes from the array analysis were 

confirmed by Northern blot analysis, 3 of 4 were confirmed by in situ hybridization, and 2 of 4 

by real-time RT-PCR. All of these methods worked well, however, there are some difference. 

Northern blot is the most widely used method in most laboratories, but it requires quite much 

RNA. Although in situ hybridization is the most complicated method it can be used not only for 

the investigation of expression but also for the localization. Real-time RT-PCR is relative 

convenience of use and precise, but expensive. 

Traditional RT-PCR uses gel electrophoresis for the detection of PCR amplification at 

end-point of the PCR reaction. This end-point detection has some problems such as low 

resolution, poor precision, low sensitivity and the need for post PCR processing. Real-time RT-

PCR allows for the detection of PCR product during the early exponential growth phases of the 

reaction. This ability of measuring the reaction kinetics in the early phases of PCR provides a 

distinct advantage over traditional PCR detection. Glo1 was not confirmed in the traditional 

RT-PCR, however, it was validated in the real-time RT-PCR, also in Northern blot analysis and 

in situ hybridization. It could be concluded that real-time RT-PCR is more sensitive than the 

traditional RT-PCR. 
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5.2.4.1 Transthyretin (TTR) 

From data analysis I, transthyretin (TTR) was the first candidate to be investigated. The 

differential effect of HF feeding in the two mouse trains clearly showed in the filter image 

inspection, and was then confirmed by Northern blot analysis loaded with the same RNA as in 

the probe synthesis for the filter hybridization. The consistent result of the array and Northern 

blot analysis supports the view that array technology is a very powerful tool for gene expression 

profiling.  

However, the expression of TTR showed a pronounced individual variation in the Northern blot 

(Fig. 4.12) loaded with different new RNA samples. To further investigate this finding, in situ 

hybridization was carried out using radioactive labelled TTR probe and mouse brain sections. 

The result demonstrates that TTR was not located in the hypothalamus but in the lateral 

ventricle and dorsal 3rd ventricle. The localization of TTR has been studied by many 

researchers. Dickson et al. isolated TTR RNA from choroid plexus of brain (Dickson et al., 

1985), using in situ hybridization Stauder et al. reported that TTR mRNA was located in 

choroid plexus epithelial cells of ventricles (Stauder et al., 1986), Kuchler-Bopp et al. showed 

that only choroidal epithelial cells in the brain synthesized TTR (Kuchler-Bopp et al., 1998), 

Saraiva reviewed the synthesis of TTR by choroids plexus and liver (Saraiva, 2002). 

It is therefore very likely that the apparent difference in TTR expression between strains 

represents a methodological artifact which results from differential dissection of hypothalami in 

individual mice. Fresh brains are soft, they need to be dissected rapidly to prevent RNA from 

degrading, and the hypothalamic boundaries are not easy to define. In this study, hypothalami 

were dissected according to a fixed protocol, and then adjusted by weighing (20-25 

g/hypothalamus), which in the case of TTR was obviously not sufficient to uniformly eliminate 

adjacent regions which express this extra-hypothalamic transcript from all samples. The 

localization of hypothalamus, lateral ventricle and dorsal 3rd ventricle is shown in Figure 5.2.  
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Figure 5.2 Image of brain section showing the localization of hypothalamus (Hypo.), dorsal 3rd 

ventricle (D3V) and lateral ventricle (LV).  

 

To overcome the “contamination”, all of the RNA samples isolated from hypothalami were 

loaded onto Northern blot and then screened by radioactive labelled TTR to select negatives for 

the second set of RNA pool for further experiments – filter and chip hybridizations. 

 

5.2.4.2 Hemoglobin alpha, adult chain 1 (Hba-α1) 

Hemoglobin alpha, adult chain 1 (Hba-α1) is located on mouse chromosome 11 (human 

chromosome 16p13.3). 

The protein consists of an iron-containing heme moiety, the prosthetic group that mediates 

reversible binding of oxygen by hemoglobin, and a tetramer of two unlike pairs, α and β, of 

globin peptide chains surrounding and protecting the heme molecule. The function of 

hemoglobin is to carry oxygen in arterial erythrocytes from the lung to peripheral tissues.  The 

distribution of Hba-α1 in brain is not only in hypothalamus but also in other areas, even all over 

the brain (Figure 4.17). Hemoglobin is synthesized in the bone marrow and expressed in the 

liver and blood (www.jax.org). It is surprising to find hemoglobin expressed in the brain. To 

check the similarity between hemoglobin and neuroglobin (mainly expressed in the brain) gene 

sequences, alignment analysis was carried out and it showed no significant similarity. Brain 

consumes 25% of total oxygen supplied by the body so that it is not surprising that Hba-α1 is 
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widely expressed in this tissue.  In this study, overall the expression of Hba-α1 was higher in 

SWR/J compared to AKR/J mice. This difference between strains may be related to the fact that 

SWR/J mice have higher metabolic rate. So far, no direct relationship between Hba-α1 

expression and obesity has been suggested. 

 

5.2.4.3 Glyoxalase I  

Glyoxalase I (Glo 1) (mouse chromosome 17) was the second candidate to be differentially 

expressed between the two inbred mouse strains. Although it was not diet induced gene in this 

study, it was assigned to the human obesity gene map (www.obesitygene.pbrc.edu human 

chromosome 6 (6p21.2)).  

The glyoxalase system, catalysing the conversion of toxic endogenously produced 2-

oxoaldehydes, such as methylglyoxal (MG) into D-lactate via the intermediate S-D-

lactoyglutathione, is composed of two enzymes: lactoylglutathione lyase (glyoxalase I, Glo 1) 

and hydroxyacylglutathione hydrolase (glyoxalase II, Glo 2) with glutathione (GSH) as the 

cofactor.  

It has been suggested that the aberrant expression of the glyoxalase system is related to cancer 

and diabetes. Ranganathan and Tew showed an elevation in glyoxalase I activity in 16 out of 21 

colon tumors compared to corresponding normal colon tissues (Ranganathan & Tew, 1993). 

Another study by Di Ilio et al. (Di Ilio et al., 1995) measured glyoxalase I and glyoxalase II 

activities in urogenital tumor and non-tumor tissues and found decreased glyoxalase I levels in 

10 out of 15 kidney tumors compared to corresponding normal kidney tissues. Elevated levels 

of glyoxalase I were also reported in human prostate cancer (Davidson et al., 1999). This 

system also appeared to be linked to complications involved in clinical diabetes mellitus as a 

result of increased levels of MG, and affected patients had higher levels of glyoxalase I and 

glyoxalase II than normal ones (Ratliff et al., 1996). Concentrations of methylglyoxal, S-D 

lactoyl glutathione and D-lactate were found to be elevated in the blood samples of both 

insulin-dependent and -independent diabetic patients, compared to normal healthy controls 

(Thornalley et al., 1989;McLellan et al., 1993). 

In this study, glyoxalase I was found total expressed at higher levels in AKR/J than in SWR/J 

mice. Higher levels of Glo1 expression in the brain has previously been reported for AKR/J 



  Discussion 
 

 85

mice, but also BALB/cByJ, C3H/HeJ and A/J mice (Tafti et al., 2003). All of these strains are 

widely used in cancer research because of their special genetic background ( www.jax.org), for 

instance, AKR/J mice are prone to leukaemia (Myers et al., 1970;Nemirovsky & Trainin, 

1973), C3H/HeJ has poor immune response to endotoxic lipopolysaccharide due to a B-cell 

deficit (Rosenstreich & Glode, 1975;Coutinho, 1976), A/J is a model for lung tumor research 

(Festing & Blackmore, 1971;Poirier et al., 1975). Interestingly, not only AKR/J, but also 

C3H/HeJ and A/J are also models for research on diet induced obesity (DIO). This suggests that 

Glo1 may be related to obesity.  

One possible explanation for the observed strain difference in Glo1 gene expression would be 

that certain essential transcription factor binding sites (response elements) are mutated in the 

Glo1 gene of SWR/J mice. Kathrin Reichwald (IMB, Jena) has resequenced the Glo1 gene in 

order to test this idea, which revealed several sequence variations in non-coding and coding 

regions (Table 4.10). Our analysis identified several sites in the 5’ upstream region, in the 

intron 1, 5 and exon 3, which may exhibit altered binding properties for transcription factors. 

The functional significance of these sequence variations for Glo1 gene transcription will be 

tested in future experiments by reporter gene assays. 

 

5.2.4.4 Tumor necrosis factor alpha-induced protein 1 (endothelial) (TNFAIP1) 

TNFAIP1 was upregulated by high fat diet in AKR/J mice but not in SWR/J mice, which was 

shown in filter array and Northern blot but not in real-time RT-PCR and in situ hybridization. 

In the in situ hybridization, although it showed 1.6 fold upregulation in the ARC by high fat 

diet, this difference was not significant because of the individual variation, further experiment 

with more samples should be carried out to confirm this conclusion. The map location of 

TNFAIP1 is on mouse chromosome 11 (45.10 cM) and human 17q22-q23. TNFAIP1 was first 

characterized by Wolf et al. as a novel cDNA by differential screening of a tumor necrosis 

factor-alpha (TNFα) induced human umbilical vein endothelial cell library (Wolf et al., 1992). 

The intron/exon structure of TNFAIP1 was reported in 1998 by Stift et al. (Swift et al., 1998). 

The protein functions in potassium ion transport by protein binding and voltage-gated 

potassium channel activity adjustment (www.niaid.nih.gov). Because it is a newly assigned 

gene not much information on its pathological relevance is available. In 2003, Link et al. 
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reported TNFAIP1 was increased in Alzheimer’s disease brains (Link et al., 2003). So far, there 

have been no papers linking TNFAIP1 and obesity. However, many publications report on a 

role of TNFα in obesity.  

TNFα is located on mouse chromosome 17 (19.06cM) and human chromosome 6p21.3. 

Adipocytes secrete TNFα – a multifunctional proinflammatory cytokine with effects on lipid 

metabolism, coagulation, insulin resistance, and endothelial function. It was assigned to the 

human obesity gene map (www.obesitygene.pbrc.edu). Gene expression studies by Hotamisligil 

et al. showed that TNFα may induce insulin resistance in peripheral tissues both in rodent 

models of obesity and in people with obesity and diabetes (Hotamisligil et al., 

1993;Hotamisligil et al., 1995;Zinman et al., 1999). Using mice lacking TNFα function, Uysal 

et al. reported that TNFα was an important mediator of insulin resistance in obesity through its 

effects on several important sites of insulin action (Uysal et al., 1997). The role of TNFα in the 

state of insulin resistance associated with obesity was to interfere with phosphorylation of 

insulin receptor substrate 1 (IRS-1) (Hotamisligil et al., 1994a;Hotamisligil et al., 

1994b;Peraldi et al., 1996) via stimulation of p55 TNF receptor (Peraldi et al., 1996;Uysal et 

al., 1998). Moreover, TNFα was reported to be involved in the regulation of plasma leptin 

concentration in obese subjects (Corica et al., 1999). The long term effect of TNFα on 

adipocytes is inhibition of leptin synthesis and release (Fawcett et al., 2000;Medina et al., 

1999), whereas its short term effect is stimulation of leptin release (Finck et al., 

1998;Kirchgessner et al., 1997). Herrmann et al. in a promoter polymorphism study showed 

that the carriers of TNFα/-308A allele were more frequently obese than the non-carriers 

(Herrmann et al., 1998). It is followed by other evidences for the association between the 

TNFα/-308A polymorphism and obesity, with high rates of glucose oxidation in normal weight 

subjects and with lipid storage in overweight subjects (Pihlajamaki et al., 2003), with excessive 

fat accumulation (Hoffstedt et al., 2000), with the development of insulin resistance (Dalziel et 

al., 2002) and higher BMI (Brand et al., 2001). 

It is believed that TNFα has an effect on body weight regulation and that it acts probably 

through a local action on adipose tissue. Possibly, elevated secretion of TNFα from adipocytes 

in obese subjects leads to induction of TNFAIP1 in the hypothalamus. Further research needs to 

be conducted to elucidate the function of TNFAIP1 in the brain.  
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7 Abbreviations 

AA  acetic anhydride 

AgRP  agouti-related peptide 

ARC  arcuate nucleus 

BAT  brown adipose tissue 

BMI  body mass index 

BSA  bovine serum albumin 

CART  cocaine- and amphetamine-regulated transcript 

CRH  corticotropin-releasing hormone 

DEPC  diethyl pyrocarbonate 

DTT  dithiothreitol 

EDTA  ethylene diaminetetraacetic acid 

EST   expressed sequence tag 

Glo1  glyoxalase I 

Hba- α1 hemoglobin alpha, adult chain 1 

ICV  intracerebroventricular 

IPTG  isopropyl-β-D-thiogalactopyranoside 

isBAT  inter scapular brown adipose tissue 

ISH  in situ hybridization 

IVT  In Vitro transcription 

iWAT  inguinal white adipose tissue 

LEPR   leptin receptor 

LHA  lateral hypothalamic nucleus 

MC4R  melanocortin-4 receptor 

MOPS  3-(N-morpholino) propane sulfonic acid 

NPY  neuropeptide Y 

ORX  orexin 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 

PFA  paraformaldehyde 
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PF-A  perifornical area 

POMC  proopiomelanocortin 

Ppp2cb  protein phosphatase 2a, catalytic subunit, beta isoform 

PVN  paraventricular hypothalamic nucleus 

rpWAT retroperitoneal white adipose tissue 

SDS  sodium-dodecyl-sulphate 

SSC  standard sodium citrate 

TAE  Tris-acetate-EDTA 

TE  Tris-EDTA 

TEA  triethanolamine 

TNFAIP1 tumor necrosis factor alpha-induced protein 1 (endothelial) 

TRH  thyrotropin-releasing hormone 

TTR  transthyretin 

VMH  ventromedial hypothalamic nucleus 

WAT  white adipose tissue  

X-Gal  5’-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

 

 



  Appendix 
 

 102

8 Appendix  

8.1 Appendix 1 

Appendix 1. List of candidate genes in the inter strain comparison – AKR/J control vs. SWR/J 
control from data analysis I. 
RZPD clone ID GenBank 

accession number 
Cluster description by RZPD Fold 

changea 
IMAGp952I058 w61435 paternally expressed gene 3 3.44 
IMAGp952B1239 aa444730 small inducible cytokine A19 -3.17 
IMAGp952O0350 aa672630,ai551192  -3.13 
IMAGp952N0950 aa672655 ESTs, Highly similar to hGCN5 

[H.sapiens] 
3.03 

IMAGp952M0615 aa016919  -2.93 
IMAGp952C2060 aa981499  -2.84 
IMAGp952H1814 aa013674  -2.80 
IMAGp952B2215 aa023039  -2.73 
IMAGp952P0414 aa013706 ESTs, Moderately similar to 

dJ622L5.8.1 [H.sapiens] 
-2.72 

IMAGp952B0414 aa013524 ESTs, Weakly similar to F52C12.2 
[C.elegans] 

-2.72 

IMAGp952B0745 aa538202 ESTs, Weakly similar to putative 
RNA helicase [M.musculus] 

-2.69 

IMAGp952E0715 aa034643 ESTs, Weakly similar to 
HYPOTHETICAL 55.1 KD 
PROTEIN IN FAB1-PES4 
INTERGENIC REGION 
[Saccharomyces cerevisiae] 

-2.64 

IMAGp952L0515 aa017937 cleavage and polyadenylation specific 
factor 4, 30kD subunit 

-2.64 

IMAGp952H092 w42169 prostaglandin D2 synthase (21 kDa, 
brain) 

2.63 

IMAGp952M0260 aa982515 midline 2 -2.60 
IMAGp952L1462 aa199543,ai592642,

ai666665 
ESTs, Moderately similar to 
ZIC4_MOUSE ZINC FINGER 
PROTEIN ZIC4 [M.musculus] 

-2.59 

IMAGp952G1162 aa138161  -2.58 
IMAGp952N2214 aa013529 ESTs, Moderately similar to unnamed 

protein product [H.sapiens] 
-2.54 

IMAGp952D1420 aa061740,ai327007,
ai893662 

ESTs, Highly  similar to 
PROTEOLIPID PROTEIN PPA1 
[Saccharomyces cerevisiae] 

-2.54 

IMAGp952B1215 aa023244 M.musculus ASF mRNA -2.52 
IMAGp952L1718 aa049636  -2.48 
IMAGp952A1735 aa387581  -2.47 
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IMAGp952P1054 ai119550,ai119733 hemoglobin alpha, adult chain 1 2.47 
IMAGp952A0915 aa015253  -2.46 
IMAGp952P1232 aa259445 eukaryotic translation initiation factor 

4, gamma 2 
2.46 

IMAGp952O0249 aa673382 mitogen-activated protein kinase 
kinase kinase kinase 6 

2.45 

IMAGp952D054 ai391019,ai415191,
w29683 

s17 protein 2.42 

IMAGp952A1547 aa547134,ai505917 baculoviral IAP repeat-containing 6 -2.39 
IMAGp952G1925 aa119613,ai452165  -2.36 
IMAGp952B1327 aa168903 m6a methyltransferase -2.34 
IMAGp952P039 w77193  -2.34 
IMAGp952O1610 ai413741,ai425768,

w76774 
transmembrane tryptase 2.34 

IMAGp952C1427 aa288756  -2.33 
IMAGp952K173 w08585 ESTs, Highly similar to sh3bgr protein 

[M.musculus] 
-2.33 

IMAGp952O0232 aa286155 ESTs, Highly similar to SP24_RAT 
SECRETED PHOSPHOPROTEIN 24 
[R.norvegicus] 

-2.32 

IMAGp952E074 w20733 transmembrane 4 superfamily member 
7 

2.31 

IMAGp952B1363 aa562246  -2.30 
IMAGp952L1827 aa172854  2.29 
IMAGp952K2216 aa027487 ESTs, Moderately  similar to 

HYPOTHETICAL 63.5 KD 
PROTEIN ZK353.1 IN 
CHROMOSOME III [Caenorhabditis 
elegans] 

-2.28 

IMAGp952I1416 aa027365,ai324204 connective tissue growth factor -2.28 
IMAGp952L0663 aa572284,ai507498,

ai615843 
 -2.27 

IMAGp952O2034 aa289615  2.26 
IMAGp952N1054 ai119558 fatty acid Coenzyme A ligase, long 

chain 2 
2.24 

IMAGp952I0420 aa060202 Mus musculus clone BAC126c8 
Rsp29-like protein (Rsp29) and Als 
splice variant 2 (Als) genes, partial 
cds; Als splice variant 1 (Als), TCE2 
(Tce2), NDK3-like protein (Ndk3), 
and TCE4 (Tce4) genes, complete cds; 
and TCE5 (Tce5) gene, partial cds 

2.23 

IMAGp952I0764 aa606337  2.23 
IMAGp952M2461 aa106149  2.23 
IMAGp952I0444 aa516852 ESTs, Highly  similar to S- 2.22 
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ADENOSYLMETHIONINE 
SYNTHETASE GAMMA FORM 
[Rattus norvegicus] 

IMAGp952D2017 aa036096 ESTs, Highly  similar to 
HYPOTHETICAL 25.7 KD 
PROTEIN IN MSH1-EPT1 
INTERGENIC REGION 
[Saccharomyces cerevisiae] 

-2.22 

IMAGp952O1022 aa162681 aconitase 2, mitochondrial 2.22 
IMAGp952M131 w09175  2.21 
IMAGp952M0751 aa673494 Mus musculus cAMP-dependent 

protein kinase regulatory subunit 
mRNA, complete cds 

3.88 

IMAGp952I2410 ai413755,ai425782,
w80260 

chaperonin subunit 3 (gamma) 3.67 

IMAGp952O0238 aa432889  -2.73 
IMAGp952L2062 aa184574 ESTs, Weakly similar to PDI_RAT 

PROTEIN DISULFIDE ISOMERASE 
PRECURSOR [R.norvegicus] 

2.72 

IMAGp952L0560 ai227481 programmed cell death 4 2.47 
IMAGp952G1034 aa289937,ai661641  2.42 
IMAGp952N0262 aa184521  -2.36 
IMAGp952N1221 aa117053,ai427057,

ai550228 
 -2.35 

IMAGp952P0623 aa396595 granzyme G -2.28 
IMAGp952B052 ai414418,w42098  -2.26 
a: positive means up regulated in SWR/J group while negative means down regulated 
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8.2 Appendix 2 

Appendix 2. List of candidate genes in the inter strain comparison – AKR/J HF vs. SWR/J HF 
from data analysis I. 
RZPD clone ID GenBank 

accession number 
Cluster description by RZPD Fold 

changea 
IMAGp952F2058 ai226516,ai266816 transthyretin 12.26 
IMAGp952C1431 aa048282 ESTs, Highly similar to T17338 

hypothetical protein 
DKFZp434O125.1 - human 
[H.sapiens] 

10.55 

IMAGp952F0714 aa011728 ESTs, Weakly similar to KIAA0672 
protein [H.sapiens] 

9.07 

IMAGp952J1319 aa049077 ESTs, Weakly similar to AF161429_1 
HSPC311 [H.sapiens] 

8.87 

IMAGp952N1531 aa060121 Down syndrome critical region 
homolog 2 (human) 

6.89 

IMAGp952E149 w71639 ESTs, Weakly similar to matrin 
cyclophilin [R.norvegicus] 

-5.26 

IMAGp952N0950 aa672655 ESTs, Highly similar to hGCN5 
[H.sapiens] 

3.91 

IMAGp952B0663 aa771366 ESTs, Highly similar to 
I5P1_HUMAN TYPE I INOSITOL-
1,4,5-TRISPHOSPHATE 5-
PHOSPHATASE [H.sapiens] 

3.03 

IMAGp952O2334 aa288036,ai644752,
ai661644 

ESTs, Weakly similar to nuclear 
receptor RVR [M.musculus],thyroid 
hormone receptor alpha 

-2.86 

IMAGp952I0444 aa516852 ESTs, Highly  similar to S-
ADENOSYLMETHIONINE 
SYNTHETASE GAMMA FORM 
[Rattus norvegicus] 

2.74 

IMAGp952M2461 aa106149  -2.64 
IMAGp952O1252 aa688597 ESTs, Highly  similar to KERATIN, 

TYPE II CYTOSKELETAL 4 [Homo 
sapiens] 

-2.52 

IMAGp952H1623 aa396515 DNA segment, Chr 11, ERATO Doi 
603, expressed 

2.50 

IMAGp952I058 w61435 paternally expressed gene 3 2.48 
IMAGp952O1452 aa681073,aa682096 polynucleotide kinase 3-- phosphatase 2.40 
IMAGp952A1710 w98128 low density lipoprotein receptor 

related protein 
2.39 

IMAGp952O0565 aa185650 DNA segment, Chr 18, Wayne State 
University 98, expressed 

2.37 

IMAGp952A1610 w77706 ESTs, Highly similar to scaffold -2.32 
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attachment factor B [R.norvegicus] 
IMAGp952N2361 aa087689 ESTs, Highly  similar to S-

ADENOSYLMETHIONINE 
SYNTHETASE GAMMA FORM 
[Rattus norvegicus] 

-2.32 

IMAGp952I244 w29642  -4.06 
IMAGp952O224 w29499  3.06 
IMAGp952B1828 aa267461 ESTs, Weakly similar to 

TIG1_HUMAN RETINOIC ACID 
RECEPTOR RESPONDER 
PROTEIN 1 [H.sapiens] 

-2.96 

IMAGp952A1816 aa024120 ESTs, Highly similar to KIAA0121 
protein [H.sapiens] 

-2.88 

IMAGp952M0763 aa212649  -2.64 
IMAGp952I2440 aa433525 C-terminal binding protein 2 2.48 
IMAGp952J1123 aa108026 protein tyrosine phosphatase, non-

receptor type 16 
2.41 

IMAGp952H2414 aa013792  2.35 
IMAGp952A1462 aa139332 ESTs, Moderately similar to T12506 

hypothetical protein 
DKFZp434C212.1 - human 
[H.sapiens] 

-2.33 

a: positive means up regulated in SWR/J group while negative means down regulated 
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